B. Lothenbach, G. L. Saout, M. Ben-haha, R. Figi, and E. Wieland, Hydration of a low-alkali CEM III/B-SiO2 cement (LAC), Cem. Concr. Res, vol.42, pp.410-423, 2012.

M. Auroy, S. Poyet, P. Le, J. Torrenti, U. Paris-est et al., Comparison between natural and accelerated carbonation (3% CO 2 ): Impact on mineralogy, microstructure, water retention and cracking, Cem. Concr. Res, vol.109, pp.64-80, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01771687

M. Auroy, S. Poyet, P. L. Bescop, J. M. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cem. Concr. Res, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272793

A. Kronlöf, Injection grout for deep repositories-Low pH cementitious grout for larger fractures: Testing technical performance of materials, Posiva Work. Rep, p.45, 2004.

J. J. Chen, J. J. Thomas, H. F. Taylor, and H. M. Jennings, Solubility and structure of calcium silicate hydrate, Cem. Concr. Res, vol.34, pp.1499-1519, 2004.

E. Rodriguez, I. G. Richardson, L. Black, E. Boehm-courjault, A. Nonat et al., Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C 3 S), Adv. Appl. Ceram, vol.114, pp.362-371, 2015.

A. Nonat and X. Lecoq, The Structure, Stoichiometry and Properties of C-S-H Prepared by C3S Hydration Under Controlled Condition, Nucl. Magn. Reson. Spectrosc. Cem. Mater, pp.197-207, 1998.

H. F. Taylor, Cement chemistry, Limited, 1990.

H. M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cem. Concr. Res, vol.30, pp.101-116, 2000.

R. A. Olson and H. M. Jennings, Estimation of C-S-H content in a blended cement paste using water adsorption, Cem. Concr. Res, vol.31, pp.454-463, 2001.

M. Codina, C. Cau-dit-coumes, J. Verdier, and P. L. Bescop, Formulation et caractérisation de bétons bas pH, Rev. Eur. Génie Civ, vol.11, pp.423-435, 2007.

A. Dauzères, Etude expérimentale et modélisation des mécanismes physico-chimiques des interactions béton-argile dans le contexte du stockage géologique des déchets radioactifs, 2010.

E. Drouet, Impact de la température sur la carbonatation des matériaux cimentaires -prise en compte des transferts hydriques, 2010.

M. Auroy, Impact de la carbonatation Sur les proprietes de transport d'eau des matériaux cimentaires, 2014.

E. Holt, M. Leivo, and T. Vehmas, Low-pH Concrete Developed for Tunnel End Plugs Used in nuclear waste containment, Concr. Innov. Conf, pp.1-8, 2014.

S. Poyet, P. L. Bescop, C. Cau-dit-coumes, G. Touzé, and J. Moth, Formulating a low-alkanity and self-consolidating concrete for the DOPAS-FSS experiment, pp.1-16, 2014.

R. Dole, C. H. Leslie, and . Mattus, Low-pH concrete for use in the us high-level waste repository: part I overview, Work. R&D Low-PH Cem. a Geol. Repos, pp.31-39, 2007.

H. S. Harned and R. Davis, The Ionization Constant of Carbonic Acid in Water and the Solubility of Carbon Dioxide in Water and Aqueous Salt Solutions from 0 to 50°, J. Am. Chem. Soc, vol.65, pp.2030-2037, 1943.

P. V. Danckwerts, Gas-Liquid Reactions, 1970.

R. Segev, D. Hasson, and R. Semiat, Rigorous modeling of the kinetics of calcium carbonate deposit formation -CO2 effect, AIChE J, vol.58, pp.2286-2289, 2012.

M. Thiery, Modélisation de la carbonatation atmosphérique des matériaux cimentaires : Prise en compte des effets cinétiques et des modifications microstructurales et hydriques (in French), Ecole Nationale des Ponts et Chaussées, 2005.

M. M. Reddy, L. N. Plummer, and E. Busenberg, Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model, Geochim. Cosmochim. Acta, vol.45, pp.1281-1289, 1981.

T. M. Stawski, T. Roncal-herrero, A. Fernandez-martinez, A. Matamoros-veloza, R. Kröger et al., on demand" triggered crystallization of CaCO3from solute precursor species stabilized by the water-in-oil microemulsion, Phys. Chem. Chem. Phys, vol.20, pp.13825-13835, 2018.

H. Imai, T. Terada, T. Miura, and S. Yamabi, Self-organized formation of porous aragonite with silicate, J. Cryst. Growth, vol.244, pp.200-205, 2002.

C. Rodriguez-navarro, K. Kud?acz, Ö. Cizer, and E. Ruiz-agudo, Formation of amorphous calcium carbonate and its transformation into mesostructured calcite, CrystEngComm, vol.17, pp.58-72, 2015.

L. Black, C. Breen, J. Yarwood, K. Garbev, P. Stemmermann et al., Structural Features of C-S-H(I) and Its Carbonation in Air-A Raman Spectroscopic Study. Part II: Carbonated Phases, J. Am. Ceram. Soc, vol.90, pp.908-917, 2007.

D. Gebauer, A. Verch, H. G. Börner, and H. Cölfen, Influence of selected artificial peptides on calcium carbonate precipitation -A quantitative studyp, Cryst. Growth Des, vol.9, pp.2398-2403, 2009.

P. Raiteri and J. D. Gale, Water Is the Key to Nonclassical Nucleation of Amorphous Calcium Carbonate, J. Am. Chem. Soc, vol.132, pp.17623-17634, 2010.

M. H. Nielsen, S. Aloni, and J. J. De-yoreo, situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways, vol.345, pp.1158-1162, 2014.

R. Malini, Y. G. Bushuev, S. A. Hall, C. L. Freeman, P. M. Rodger et al., Using simulation to understand the structure and properties of hydrated amorphous calcium carbonate, CrystEngComm, vol.18, pp.92-101, 2016.

M. Saharay and R. J. Kirkpatrick, Water dynamics in hydrated amorphous materials: a molecular dynamics study of the effects of dehydration in amorphous calcium carbonate, Phys. Chem. Chem. Phys, vol.19, pp.29594-29600, 2017.

D. Gebauer, P. N. Gunawidjaja, J. Y. Ko, Z. Bacsik, B. Aziz et al., Proto-calcite and proto-vaterite in amorphous calcium carbonates, Angew. Chemie -Int. Ed, vol.49, pp.8889-8891, 2010.

A. Fernandez-martinez, B. Kalkan, S. M. Clark, and G. A. Waychunas, Pressure-induced polyamorphism and formation of "aragonitic" amorphous calcium carbonate, Angew. Chemie -Int. Ed, vol.52, pp.8354-8357, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840695

R. Demichelis, P. Raiteri, J. D. Gale, and R. Dovesi, A new structural model for disorder in vaterite from firstprinciples calculations, CrystEngComm, vol.14, pp.44-47, 2012.

A. M. Dunster, An investigation of the carbonation of cement paste using trimethylsilylation, Adv. Cem. Res, vol.2, pp.99-106, 1989.

Y. Fang and J. Chang, Microstructure changes of waste hydrated cement paste induced by accelerated carbonation, Constr. Build. Mater, vol.76, pp.360-365, 2015.

C. J. Goodbrake, J. F. Young, and R. L. Berger, Reaction of beta-dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor, J. Am. Ceram. Soc, vol.62, pp.168-171, 1979.

Z. ?auman, Carbonization of porous concrete and its main binding components, Cem. Concr. Res, vol.1, pp.90019-90025, 1971.

D. J. Anstice, C. L. Page, and M. M. Page, The pore solution phase of carbonated cement pastes, Cem. Concr. Res, vol.35, pp.377-383, 2005.

G. W. Groves, A. Brough, I. G. Richardson, and C. M. Dobson, Progressive changes in the structure of hardened C3S cement pastes due to carbonation, J. Am. Ceram. Soc, vol.74, pp.2891-2896, 1991.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cem. Concr. Res, vol.56, pp.153-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

C. M. Hunt and L. A. Tomes, Reaction of hardened portland cement paste with carbon dioxide, J. Res. Natl. Bur. Stand. Sect. A Phys. Chem, vol.66, p.9, 1962.

L. J. Parrott and D. C. Killoh, Carbonation in a 36 year old, in-situ concrete, Cem. Concr. Res, vol.19, pp.90017-90020, 1989.

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, Fundamental modeling and experimental investigation of concrete carbonation, ACI Mater. J, vol.88, pp.363-373, 1991.

G. J. Verbeck, Carbonation of hydrated portland cement, ASTM Spec. Tech. Publ, vol.205, pp.17-36, 1958.

S. K. Roy, K. B. Poh, and D. O. Northwood, Durability of concrete-accelerated carbonation and weathering studies, Build. Environ, vol.34, pp.597-606, 1999.

Y. F. Houst and F. H. Wittmann, Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste, Cem. Concr. Res, vol.24, pp.1165-1176, 1994.

P. López-arce, L. S. Gómez-villalba, S. Martínez-ramírez, M. Álvarez-de-buergo, and R. Fort, Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs, Powder Technol, vol.205, pp.263-269, 2011.

S. Goñi, M. T. Gaztañaga, and A. Guerrero, Role of cement type on carbonation attack, J. Mater. Res, vol.17, pp.1834-1842, 2002.

C. Y. Tai and F. Chen, Polymorphism of CaCO3, precipitated in a constant-composition environment, AIChE J, vol.44, pp.1790-1798, 1998.

A. Leemann and F. Moro, Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity, Mater. Struct, vol.50, pp.2-14, 2017.

E. Drouet, S. Poyet, P. L. Bescop, J. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cem. Concr. Res, vol.115, pp.445-459, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01982390

I. G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater, vol.70, pp.903-923, 2014.

S. Poyet, K. Trentin, and E. Amblard, The use of sorption balance for the characterization of the water retention curve of cement-cased materials, J. Adv. Concr. Technol, vol.14, pp.354-367, 2016.

G. W. Scherer, D. M. Smith, and D. Stein, Deformation of aerogels during characterization, J. Non. Cryst. Solids, vol.186, pp.309-315, 1995.

V. Baroghel-bouny, T. Chaussadent, G. Croquette, L. Divet, J. Gawsewitch et al., Méthode d'essai n°58: Caractéristiques microstructurales et propriétés relatives à la durabilité des bétons, Laboratoire Centrale des Ponts et Chaussées, 2002.

N. Seigneur, É. Kangni-foli, V. Lagneau, A. Dauzères, S. Poyet et al., Understanding the effects of the atmospheric carbonation of cementitious materials using reactive transport modelling, Submitt. to Cem. Concr. Res, 2019.

K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero et al., Mesoscale texture of cement hydrates, Proc. Natl. Acad. Sci, vol.113, pp.2029-2034, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455017

J. Ollivier and J. Torrenti, La structure poreuse des bétons et les propriétés de transfert, pp.51-133, 2008.

K. L. Scrivener, A. K. Crumbie, and P. Laugesen, The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Sci, vol.12, pp.411-421, 2004.

J. S. Dolado and K. Van-breugel, Recent advances in modeling for cementitious materials, Cem. Concr. Res, vol.41, pp.711-726, 2011.

A. Dauzeres, P. L. Bescop, P. Sardini, and C. Cau-dit-coumes, Physico-chemical investigation of clayey/cementbased materials interaction in the context of geological waste disposal: Experimental approach and results, Cem. Concr. Res, vol.40, pp.1327-1340, 2010.

P. Lalan, A. Dauzères, L. De-windt, J. Sammaljärvi, D. Bartier et al., Mineralogical and microstructural evolution of Portland cement paste/argillite interfaces at 70 °C -Considerations for diffusion and porosity properties, Cem. Concr. Res, vol.115, pp.414-425, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01884678

C. Carde, R. François, and J. Torrenti, Leaching of both calcium hydroxide and C-S-H from cement paste: Modeling the mechanical behavior, Cem. Concr. Res, vol.26, issue.96, pp.95-101, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02341207

C. Carde and R. François, Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties, Cem. Concr. Res, vol.27, pp.539-550, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02341174

E. Drouet, S. Poyet, P. L. Bescop, J. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cem. Concr. Res, vol.115, pp.445-459, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01982390

D. Planel, J. Sercombe, P. L. Bescop, F. Adenot, and J. M. Torrenti, Long-term performance of cement paste during combined calcium leaching-sulfate attack: Kinetics and size effect, Cem. Concr. Res, vol.36, pp.137-143, 2006.

X. Cong and R. J. Kirkpatrick, 29Si MAS NMR study of the structure of calcium silicate hydrate, vol.3, pp.90046-90048, 1996.

A. Nonat and X. Lecoq, The Structure, Stoichiometry and Properties of C-S-H Prepared by C3S Hydration Under Controlled Condition, Nucl. Magn. Reson. Spectrosc. Cem. Mater, pp.197-207, 1998.

I. F. Sáez-del-bosque, M. Martín-pastor, I. Sobrados, S. Martínez-ramírez, and M. T. Blanco-varela, Quantitative analysis of pure triclinic tricalcium silicate and C-S-H gels by29Si NMR longitudinal relaxation time, Constr. Build. Mater, vol.107, pp.52-57, 2016.

K. O. Kjellsen and H. Justnes, Revisiting the microstructure of hydrated tricalcium silicate--a comparison to Portland cement, Cem. Concr. Compos, vol.26, pp.947-956, 2004.

A. Helmuth and H. Turk, Elastic Moduli of Hardened Portland Cement and Tricalcium Silicate Pastes : Effect of Porosity, Portl. Cem. Assoc R D Lab Bull, vol.144, 1966.

J. Hagymassy, I. Odler, M. Yudenfreund, J. Skalny, and S. Brunauer, Pore structure analysis by water vapor adsorption. III. Analysis of hydrated calcium silicates and portland cements, J. Colloid Interface Sci, vol.38, pp.90215-90224, 1972.

G. Geng, R. Taylor, S. Bae, D. Hernández-cruz, D. A. Kilcoyne et al., Atomic and nanoscale characterization of a 50-year-old hydrated C3S paste, Cem. Concr. Res, vol.77, pp.36-46, 2015.

E. Pustovgar, R. P. Sangodkar, A. S. Andreev, M. Palacios, B. F. Chmelka et al., Espinose de Lacaillerie, Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates, Nat. Commun, vol.7, p.10952, 2016.

M. Codina, C. Cau-dit-coumes, P. L. Bescop, J. Verdier, and J. P. Ollivier, Design and characterization of low-heat and low-alkalinity cements, Cem. Concr. Res, vol.38, pp.437-448, 2008.

H. Sakamoto, K. Haga, H. Fujita, K. Ishizaki, H. Amano et al., pH Behavior of Hydrated Low-Alkalinity Cement, J. Nucl. Fuel Cycle Environ, vol.5, pp.37-42, 1999.

B. Lothenbach, G. L. Saout, M. Ben-haha, R. Figi, and E. Wieland, Hydration of a low-alkali CEM III/B-SiO2 cement (LAC), Cem. Concr. Res, vol.42, pp.410-423, 2012.

M. Auroy, S. Poyet, P. L. Bescop, J. M. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cem. Concr. Res, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272793

K. Iriya, A. Matsui, and M. Mihara, Study on applicability of HFSC for radioactive waste repositories, 1999.

C. Cau-dit-coumes, S. Courtois, D. Nectoux, S. Leclercq, and X. Bourbon, Formulating a low-alkalinity, highresistance and low-heat concrete for radioactive waste repositories, Cem. Concr. Res, vol.36, pp.2152-2163, 2006.
URL : https://hal.archives-ouvertes.fr/cea-02354116

J. J. Thomas, J. J. Chen, A. J. Allen, and H. M. Jennings, Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes, Cem. Concr. Res, vol.34, pp.2297-2307, 2004.

J. J. Beaudoin, B. Patarachao, L. Raki, J. Margeson, and R. Alizadeh, Length change of C-S-H of variable composition immersed in aqueous solutions, Adv. Cem. Res, vol.22, pp.15-20, 2010.

R. F. Feldman, Factors affecting young's modulus -Porosity relation of hydrated portland cement compacts, Cem. Concr. Res, vol.2, pp.375-386, 1972.

P. J. Sereda and R. F. Feldman, Compacts of powdered material as porous bodies for use in sorption studies, J. Appl. Chem, vol.13, pp.150-158, 2007.

Y. Wang, Q. Yuan, D. Deng, T. Ye, and L. Fang, Measuring the pore structure of cement asphalt mortar by nuclear magnetic resonance, Constr. Build. Mater, vol.137, pp.450-458, 2017.

W. A. Gutteridge and L. J. Parrott, A study of the changes in weight, length and interplanar spacing induced by drying and rewetting synthetic CSH (I), Cem. Concr. Res, vol.6, issue.76, pp.90098-90101, 1976.

E. M. Foley, J. J. Kim, and M. M. Reda-taha, Synthesis and nano-mechanical characterization of calcium-silicatehydrate (C-S-H) made with 1.5 CaO/SiO2 mixture, Cem. Concr. Res, vol.42, pp.1225-1232, 2012.

P. Pourbeik, J. J. Beaudoin, R. Alizadeh, and L. Raki, Correlation between dynamic mechanical thermo-analysis and composition-based models for C-S-H in hydrated portland cement paste, Mater. Struct, vol.48, pp.2447-2454, 2015.

R. Khoshnazar, J. J. Beaudoin, L. Raki, and R. Alizadeh, Durability and mechanical properties of C-S-H/nitrobenzoic acid composite systems, Mater. Struct, vol.49, pp.5315-5325, 2016.

E. Bernard, B. Lothenbach, C. Cau-dit-coumes, C. Chlique, A. Dauzères et al., Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H), Appl. Geochemistry, vol.89, pp.229-242, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02021043

E. Bernard, B. Lothenbach, F. L. Goff, I. Pochard, and A. Dauzères, Effect of magnesium on calcium silicate hydrate (C-S-H), vol.97, pp.61-72, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02065347

H. Yang, Y. Che, and F. Leng, Calcium leaching behavior of cementitious materials in hydrochloric acid solution, Sci. Rep, vol.8, pp.1-9, 2018.

Y. S. Choi and E. I. Yang, Effect of calcium leaching on the pore structure, strength, and chloride penetration resistance in concrete specimens, Nucl. Eng. Des, vol.259, pp.126-136, 2013.

P. J. Sereda, R. F. Feldman, and E. G. Swenson, Effect of sorbed water on some mechanical properties of hydrated Portland cement pastes and compacts, 1967.

W. Kunther, S. Ferreiro, and J. Skibsted, Influence of the Ca/Si ratio on the compressive strength of cementitious calcium-silicate-hydrate binders, J. Mater. Chem. A, vol.5, pp.17401-17412, 2017.

L. Nicoleau, A. Nonat, and D. Perrey, The di-and tricalcium silicate dissolutions, Cem. Concr. Res, vol.47, 2013.

S. Garrault, Study of C-S-H growth on C3S surface during its early hydration, Mater. Struct, vol.38, pp.435-442, 2005.

H. F. Taylor, Cement chemistry, Limited, 1990.

C. Rößler, F. Steiniger, and H. Ludwig, Characterization of C-S-H and C-A-S-H phases by electron microscopy imaging, diffraction, and energy dispersive X-ray spectroscopy, J. Am. Ceram. Soc, vol.100, pp.1733-1742, 2017.

Z. Wu and J. F. Young, The hydration of tricalcium silicate in the presence of colloidal silica, J. Mater. Sci, vol.19, pp.3477-3486, 1984.

K. O. Kjellsen and B. Lagerblad, Microstructure of tricalcium silicate and Portland cement systems at middle periods of hydration-development of Hadley grains, Cem. Concr. Res, vol.37, pp.13-20, 2007.

E. A. Gorrepati, P. Wongthahan, S. Raha, and H. S. Fogler, Silica precipitation in acidic solutions: Mechanism, pH effect, and salt effect, Langmuir, vol.26, pp.10467-10474, 2010.

M. C. Alonso, J. L. García-calvo, S. Petterson, I. Puigdomenech, M. A. Cunado et al., Round Robin test for define an accurate protocol to measure the pore fluid pHof low-pH cementitious materials, Proc. 2nd Int. Symp, pp.1-10, 2014.

A. Behnood, K. Van-tittelboom, and N. De-belie, Methods for measuring pH in concrete : A review, Constr. Build. Mater, vol.105, pp.176-188, 2016.

G. Plusquellec, M. R. Geiker, J. Lindgård, J. Duchesne, B. Fournier et al., Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison, Cem. Concr. Res, vol.96, pp.13-26, 2017.

G. Villain, M. Thiery, and G. Platret, Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry, Cem. Concr. Res, vol.37, pp.1182-1192, 2007.

F. Angeli, M. Gaillard, P. Jollivet, and T. Charpentier, Contribution of 43Ca MAS NMR for probing the structural configuration of calcium in glass, Chem. Phys. Lett, vol.440, pp.324-328, 2007.

T. Charpentier, Résonance magnétique nucléaire haute-résolution des noyaux quadrupolaires dans les solides, 1998.

R. A. Olson and H. M. Jennings, Estimation of C-S-H content in a blended cement paste using water adsorption, Cem. Concr. Res, vol.31, pp.454-463, 2001.

S. Poyet, K. Trentin, and E. Amblard, The use of sorption balance for the characterization of the water retention curve of cement-cased materials, J. Adv. Concr. Technol, vol.14, pp.354-367, 2016.

G. W. Groves, A. Brough, I. G. Richardson, and C. M. Dobson, Progressive changes in the structure of hardened C3S cement pastes due to carbonation, J. Am. Ceram. Soc, vol.74, pp.2891-2896, 1991.

I. G. Richardson and G. W. Groves, Models for the composition and structure of calcium silicate hydrate (CSH) gel in hardened tricalcium silicate pastes, Cem. Concr. Res, vol.22, p.90030, 1992.

J. W. Bullard, J. Hagedorn, T. M. Ley, Q. Hu, W. Griffin et al., A critical comparison of 3D experiments and simulations of tricalcium silicate hydration, J. Am. Ceram. Soc, vol.101, pp.1453-1470, 2018.

Z. Xu, Z. Zhou, P. Du, and X. Cheng, Effects of nano-silica on hydration properties of tricalcium silicate, Constr. Build. Mater. J, vol.125, pp.1169-1177, 2016.

S. Grangeon, F. Claret, Y. Linard, and C. Chiaberge, X-ray diffraction: A powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater, vol.69, pp.465-473, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01024545

S. Merlino, E. Bonaccorsi, and T. Armbruster, The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications, Eur. J. Mineral, vol.13, pp.577-590, 2001.

E. Bonaccorsi, S. Merlino, and H. F. Taylor, The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O, Cem. Concr. Res, vol.34, pp.1481-1488, 2004.

I. Klur, B. Pollet, J. Virlet, A. Nonat, and C. , Structure Evolution with Calcium Content by Multinuclear NMR, pp.119-141, 1998.

I. Klur, J. Jacquinot, F. Brunet, T. Charpentier, J. Virlet et al., Polarization when T IS > T 1 ? ; Examples from Silica Gel and Calcium Silicate Hydrates, J. Phys. Chem. B, vol.104, pp.10162-10167, 2000.

S. Grangeon, F. Claret, C. Roosz, T. Sato, S. Gaboreau et al., Structure of nanocrystalline calcium silicate hydrates: Insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance, J. Appl. Crystallogr, vol.49, pp.771-783, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01695800

I. G. Richardson and G. W. Groves, Microstructure and microanalysis of hardened ordinary Portland cement pastes, J. Mater. Sci, vol.28, pp.265-277, 1993.

J. E. Rossen, B. Lothenbach, and K. L. Scrivener, Composition of C-S-H in pastes with increasing levels of silica fume addition, Cem. Concr. Res, vol.75, pp.14-22, 2015.

J. Haas, A. Nonat, and C. From, Experimental study and thermodynamic modelling, Cem. Concr. Res, vol.68, pp.124-138, 2015.
URL : https://hal.archives-ouvertes.fr/tel-00845956

E. P. Flint and L. S. Wells, Study of the system CaO-SiO2-H2O at 30 C and of the reaction of water on the anhydrous calcium silicates, Bur. Stand. J. Res, vol.12, p.33, 1934.

S. A. Greenberg and T. N. Chang, Investigation of the Colloidal Hydrated Calcium Silicates. II. Solubility Relationships in the Calcium Oxide-Silica-Water System at 25°, J. Phys. Chem, vol.69, pp.182-188, 1965.

K. Suzuki, T. Nishikawa, and S. Ito, Formation and carbonation of C-S-H in water, Cem. Concr. Res, vol.15, pp.90032-90040, 1985.

A. Atkinson, J. A. Hearne, and C. F. Knights, Aqueous chemistry and thermodynamic modelling of CaO-SiO2 -H2O gels, J. Chem. Soc., Dalt. Trans, vol.0, pp.2371-2379, 1989.

M. Atkins, F. P. Glasser, and A. Kindness, Cement hydrate phase: Solubility at 25°C, Cem. Concr. Res, vol.22, pp.241-246, 1992.

A. ,

M. Harris,

W. Manning,

C. Tearle, Tweed, Testing of models of the dissolution of cements-leaching of synthetic CSH gels, Cem. Concr. Res, vol.32, pp.731-746, 2002.

M. Auroy, Impact de la carbonatation Sur les proprietes de transport d'eau des matériaux cimentaires, 2014.

E. Drouet, S. Poyet, and J. Torrenti, Temperature influence on water transport in hardened cement pastes, Cem. Concr. Res, vol.76, pp.37-50, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272801

J. J. Chen, J. J. Thomas, and H. M. Jennings, Decalcification shrinkage of cement paste, Cem. Concr. Res, vol.36, pp.801-809, 2006.

I. G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater, vol.70, pp.903-923, 2014.

A. Nonat, The structure and stoichiometry of C-S-H, Cem. Concr. Res, vol.34, pp.1521-1528, 2004.

I. García-lodeiro, A. Fernández-jiménez, I. Sobrados, J. Sanz, A. Palomo et al., Interpretation of 29Si MAS-NMR spectra, J. Am. Ceram. Soc, vol.95, pp.1440-1446, 2012.

Y. He, L. Lu, L. J. Struble, J. L. Rapp, P. Mondal et al., Effect of calcium-silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature, Mater. Struct, vol.47, pp.311-322, 2014.

T. F. Sevelsted, J. Skibsted, C. , C. , and C. Samples, 13C, 27Al and 29Si MAS NMR spectroscopy, vol.71, pp.56-65, 2015.

E. Hôpital, B. Lothenbach, D. A. Kulik, and K. Scrivener, Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate, Cem. Concr. Res, vol.85, pp.111-121, 2016.

R. J. Myers, S. A. Bernal, R. Nicolas, and J. L. Provis, Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model, Langmuir, vol.29, pp.5294-5306, 2013.

I. G. Richardson and G. W. Groves, Models for the composition and structure of calcium silicate hydrate (CSH) gel in hardened tricalcium silicate pastes, Cem. Concr. Res, vol.22, p.90030, 1992.

I. G. Richardson, The calcium silicate hydrates, Cem. Concr. Res, vol.38, pp.137-158, 2008.

M. D. Andersen, H. J. Jakobsen, and J. Skibsted, Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res, vol.34, pp.857-868, 2004.

J. Haas, A. Nonat, and C. From, Experimental study and thermodynamic modelling, Cem. Concr. Res, vol.68, pp.124-138, 2015.
URL : https://hal.archives-ouvertes.fr/tel-00845956

E. Hôpital, B. Lothenbach, G. L. Saout, D. Kulik, and K. Scrivener, Incorporation of aluminium in calciumsilicate-hydrates, Cem. Concr. Res, vol.75, pp.91-103, 2015.

E. Hôpital, B. Lothenbach, D. A. Kulik, and K. Scrivener, Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate, Cem. Concr. Res, vol.85, pp.111-121, 2016.

G. Geng, R. J. Myers, J. Li, R. Maboudian, C. Carraro et al., Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate, Sci. Rep, vol.7, 2017.

C. C. Dharmawardhana, A. Misra, S. Aryal, P. Rulis, and W. Y. Ching, Cement and Concrete Research Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals, Cem. Concr. Res, vol.52, pp.123-130, 2013.

F. Puertas, M. Palacios, H. Manzano, J. S. Dolado, A. Rico et al., A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc, vol.31, pp.2043-2056, 2011.

C. Rößler, F. Steiniger, and H. Ludwig, Characterization of C-S-H and C-A-S-H phases by electron microscopy imaging, diffraction, and energy dispersive X-ray spectroscopy, J. Am. Ceram. Soc, vol.100, pp.1733-1742, 2017.

E. Kapeluszna, ?. Kotwica, A. Ró?ycka, and ?. Go?ek, Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis, Constr. Build. Mater, vol.155, pp.643-653, 2017.

S. V. Churakov and C. Labbez, Thermodynamics and Molecular Mechanism of Al Incorporation in Calcium Silicate Hydrates, J. Phys. Chem. C, vol.121, pp.4412-4419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02376030

G. Renaudin, J. Russias, F. Leroux, C. Cau-dit-coumes, F. Frizon-;-c-s-h et al., Local environment investigated by spectroscopic analyses, Structural characterization of, vol.182, pp.3320-3329, 2009.

M. J. Qomi, F. Ulm, and R. J. Pellenq, Evidence on the Dual Nature of Aluminum in the Calcium-Silicate-Hydrates Based on Atomistic Simulations, J. Am. Ceram. Soc, vol.95, 2012.

M. J. Qomi, K. J. Krakowiak, M. Bauchy, K. L. Stewart, R. Shahsavari et al., Combinatorial molecular optimization of cement hydrates, Nat. Commun, vol.5, p.4960, 2014.

L. Pegado, C. Labbez, and S. V. Churakov, Mechanism of aluminium incorporation into C-S-H from ab initio calculations, J. Mater. Chem. A, vol.2, pp.3477-3483, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02376057

H. Manzano, J. S. Dolado, and A. Ayuela, Aluminum Incorporation to Dreierketten Silicate Chains, J. Phys. Chem. B, vol.113, pp.2832-2839, 2009.

G. L. Kalousek and R. Rustum, Crystal Chemistry of Hydrous Calcium Silicates, vol.40, pp.74-80, 1957.

S. Komarneni, R. Roy, D. M. Roy, C. A. Fyfe, G. J. Kennedy et al., 27Al and29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites, J. Mater. Sci, vol.20, pp.4209-4214, 1985.

I. G. Richardson, A. R. Brough, G. W. Groves, and C. M. Dobson, The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase, Cem. Concr. Res, vol.24, pp.90002-90009, 1994.

P. Faucon, T. Charpentier, A. Nonat, and J. C. Petit, Triple-Quantum Two-Dimensional 27 Al Magic Angle Nuclear Magnetic Resonance Study of the Aluminum Incorporation in Calcium Silicate Hydrates, J. Am. Chem. Soc, vol.120, pp.12075-12082, 1998.

M. D. Andersen, H. J. Jakobsen, and J. Skibsted, A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res, vol.36, pp.3-17, 2006.

S. Goñi, M. T. Gaztañaga, and A. Guerrero, Role of cement type on carbonation attack, J. Mater. Res, vol.17, pp.1834-1842, 2002.

V. T. Ngala and C. L. Page, Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes, Cem. Concr. Res, vol.27, pp.995-1007, 1997.

M. Auroy, S. Poyet, P. L. Bescop, J. M. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cem. Concr. Res, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272793

G. W. Groves, D. I. Rodway, and I. G. Richardson, The carbonation of hardened cement pastes, Adv. Cem. Res, vol.3, pp.117-125, 1990.

G. W. Groves, A. Brough, I. G. Richardson, and C. M. Dobson, Progressive changes in the structure of hardened C3S cement pastes due to carbonation, J. Am. Ceram. Soc, vol.74, pp.2891-2896, 1991.

A. Silva, R. Neves, and J. D. Brito, Statistical modelling of carbonation in reinforced concrete, Cem. Concr. Compos, vol.50, pp.73-81, 2014.

J. Chang and Y. Fang, Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate(C-S-H) by QXRD and TG/MS, J. Therm. Anal. Calorim, vol.119, pp.57-62, 2015.

A. Dauzeres, P. L. Bescop, P. Sardini, and C. Cau-dit-coumes, Physico-chemical investigation of clayey/cementbased materials interaction in the context of geological waste disposal: Experimental approach and results, Cem. Concr. Res, vol.40, pp.1327-1340, 2010.

Y. F. Houst, Y. F. Houst, F. H. Wittmann, and F. H. Wittmann, Depth profiles of carbonates fonned during natural carbonation, Cem. Concr. Res, vol.32, pp.1923-1930, 2002.

M. Thiery, G. Villain, P. Dangla, and G. Platret, Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics, Cem. Concr. Res, vol.37, pp.1047-1058, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00906081

I. Monteiro, F. A. Branco, J. Brito, and R. Neves, Statistical analysis of the carbonation coefficient in open air concrete structures, Constr. Build. Mater, vol.29, pp.263-269, 2012.

F. Claret, S. Grangeon, A. Loschetter, C. Tournassat, W. De-nolf et al., Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste, IUCrJ, vol.5, pp.150-157, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01766385

L. Black, C. Breen, J. Yarwood, K. Garbev, P. Stemmermann et al., Structural Features of C-S-H(I) and Its Carbonation in Air-A Raman Spectroscopic Study. Part II: Carbonated Phases, J. Am. Ceram. Soc, vol.90, pp.908-917, 2007.

E. G. Swenson and P. J. Sereda, Mechanism of the carbonatation shrinkage of lime and hydrated cement, J. Appl. Chem, vol.18, pp.111-117, 2007.

K. Kamimura, P. J. Sereda, and E. G. Swenson, Changes in weight and dimensions in the drying and carbonation of Portland cement mortars, Mag. Concr. Res, vol.17, pp.5-14, 1965.

E. G. Swenson and P. J. Sereda, Mechanism of the carbonation shrinkage of lime and hydrated cement, J. Appl. Chem, vol.18, pp.111-117, 1968.

M. Auroy, S. Poyet, P. Le, J. Torrenti, U. Paris-est et al.,

E. Gambuzzi, T. Charpentier, M. C. Menziani, and A. Pedone, Computational interpretation of 23 Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses, Chem. Phys. Lett, vol.612, pp.56-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157473

F. Angeli, M. Gaillard, P. Jollivet, and T. Charpentier, Contribution of 43Ca MAS NMR for probing the structural configuration of calcium in glass, Chem. Phys. Lett, vol.440, pp.324-328, 2007.

E. Rodriguez, K. Garbev, D. Merz, L. Black, and I. G. Richardson, Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I) models to synthetic C-S-H, Cem. Concr. Res, vol.93, pp.45-56, 2017.

I. Klur, B. Pollet, J. Virlet, A. Nonat, and C. , Structure Evolution with Calcium Content by Multinuclear NMR, pp.119-141, 1998.

W. Kunther, S. Ferreiro, and J. Skibsted, Influence of the Ca/Si ratio on the compressive strength of cementitious calcium-silicate-hydrate binders, J. Mater. Chem. A, vol.5, pp.17401-17412, 2017.

I. G. Richardson, A. R. Brough, R. Brydson, G. W. Groves, and C. M. Dobson, Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by 29Si and 27Al NMR and EELS, J. Am. Ceram. Soc, vol.76, pp.2285-2288, 1993.

H. Stade and D. Müller, On the coordination of al in ill-crystallized C-S-H phases formed by hydration of tricalcium silicate and by precipitation reactions at ambient temperature, vol.17, pp.553-561, 1987.

S. Kwan, J. Larosa, and M. W. Grutzeck, 29Si and 27Al MASNMR Study of Stratlingite, J. Am. Ceram. Soc, vol.78, pp.1921-1926, 1995.

G. Pérez, A. Guerrero, J. J. Gaitero, and S. Goñi, Structural characterization of C-S-H gel through an improved deconvolution analysis of NMR spectra, J. Mater. Sci, vol.49, pp.142-152, 2014.

A. F. Jamsheer, K. Kupwade-patil, O. Büyüköztürk, and A. Bumajdad, Analysis of engineered cement paste using silica nanoparticles and metakaolin using29Si NMR, water adsorption and synchrotron X-ray Diffraction, Constr. Build. Mater, vol.180, pp.698-709, 2018.

I. G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater, vol.70, pp.903-923, 2014.

J. J. Thomas, J. J. Chen, A. J. Allen, and H. M. Jennings, Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes, Cem. Concr. Res, vol.34, pp.2297-2307, 2004.

S. Grangeon, F. Claret, C. Roosz, T. Sato, S. Gaboreau et al., Structure of nanocrystalline calcium silicate hydrates: Insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance, J. Appl. Crystallogr, vol.49, pp.771-783, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01695800

B. Walkley, R. Nicolas, M. Sani, G. J. Rees, J. V. Hanna et al., H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors, Cem. Concr. Res, vol.89, pp.120-135, 2016.

;. Roosz, C. , and M. , Propriétés thermodynamiques des phases cimentaires hydratées, 2016.

T. F. Sevelsted, J. Skibsted, C. , C. , and C. , samples studied by13C,27Al and29Si MAS NMR spectroscopy, vol.71, pp.56-65, 2015.

F. Angeli, T. Charpentier, P. Faucon, and J. Petit, Structural Characterization of Glass from the Inversion of 23 Na and 27 Al 3Q-MAS NMR Spectra, J. Phys. Chem. B, vol.103, pp.10356-10364, 1999.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cem. Concr. Res, vol.56, pp.153-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

G. K. Sun, J. F. Young, and R. J. Kirkpatrick, The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples, Cem. Concr. Res, vol.36, pp.18-29, 2006.

T. F. Sevelsted, J. Skibsted, C. , C. , and C. Samples, 13C, 27Al and 29Si MAS NMR spectroscopy, vol.71, pp.56-65, 2015.

I. G. Richardson and G. W. Groves, Microstructure and microanalysis of hardened ordinary Portland cement pastes, J. Mater. Sci, vol.28, pp.265-277, 1993.

J. C. Chan, M. Bertmer, and H. Eckert, Site connectivities in amorphous materials studied by double-resonance NMR-of quadrupolar nuclei: High-resolution 11B mutually implies 27Al spectroscopy of aluminoborate glasses, J. Am. Chem. Soc, vol.121, pp.5238-5248, 1999.

E. Lam, A. Comas-vives, and C. Copéret, Role of Coordination Number, Geometry, and Local Disorder on 27Al NMR Chemical Shifts and Quadrupolar Coupling Constants: Case Study with Aluminosilicates, J. Phys. Chem. C, vol.121, pp.19946-19957, 2017.

P. Faucon, J. C. Petit, T. Charpentier, J. F. Jacquinot, and F. Adenot, Silicon substitution for aluminum in calcium silicate hydrates, J. Am. Ceram. Soc, vol.82, pp.1307-1312, 1999.

H. F. Taylor, Cement chemistry, Limited, 1990.

W. F. Cole and B. Kroone, Carbonate minerals in hydrated Portland cement, Nature, vol.184, p.57, 1959.

W. F. Cole and B. Kroone, Carbon dioxide in hydrated Portland cement, J. Am. Concr. Inst, vol.56, pp.1275-1296, 1960.

L. Bertolini, B. Elsener, P. Pedferri, and R. Polder, Corrosion of steel in concrete -prevention, diagnosis, repair, 2004.

R. Neves, F. A. Branco, and J. Brito, A method for the use of accelerated carbonation tests in durability design, Constr. Build. Mater, vol.36, pp.585-591, 2012.

M. Thiery, G. Villain, P. Dangla, and G. Platret, Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics, Cem. Concr. Res, vol.37, pp.1047-1058, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00906081

B. Bary and A. Sellier, Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete, Cem. Concr. Res, vol.34, pp.1859-1872, 2004.

A. V. Saetta, B. A. Schrefler, and R. V. Vitaliani, 2-D model for carbonation and moisture/heat flow in porous materials, Cem. Concr. Res, vol.25, pp.1703-1712, 1995.

A. V. Saetta and R. V. Vitaliani, Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures, Cem. Concr. Res, vol.34, pp.571-579, 2004.

M. Liang, W. Qu, C. H. Liang, and S. M. Lin, Mathematical modeling and applications for concrete carbonation, J. Mar. Sci. Technol, vol.11, pp.20-33, 2003.

A. Silva, R. Neves, and J. D. Brito, Statistical modelling of carbonation in reinforced concrete, Cem. Concr. Compos, vol.50, pp.73-81, 2014.

N. Seigneur, É. Kangni-foli, V. Lagneau, A. Dauzères, S. Poyet et al., Understanding the effects of the atmospheric carbonation of cementitious materials using reactive transport modelling, Submitt. to Cem. Concr. Res, 2019.

R. J. Pellenq, A. Kushima, R. Shahsavari, K. J. Van-vliet, M. J. Buehler et al., A realistic molecular model of cement hydrates, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.16102-16109, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00447710

A. J. Allen, J. J. Thomas, and H. M. Jennings, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nat. Mater, vol.6, pp.311-316, 2007.

H. M. Jennings, Refinements to colloid model of C-S-H in cement: CM-II, Cem. Concr. Res, vol.38, pp.275-289, 2008.

I. G. Richardson, The calcium silicate hydrates, Cem. Concr. Res, vol.38, pp.137-158, 2008.

B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cem. Concr. Res, vol.38, pp.1-18, 2008.

B. Lothenbach, D. A. Kulik, T. Matschei, M. Balonis, L. Baquerizo et al., Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cem. Concr. Res, vol.115, pp.472-506, 2019.

D. A. Kulik, Aqueous solubility diagrams for cementitious waste stabilization systems: II, End-member stoichiometries of ideal Calcium Silicate Hydrate solid solutions, J. Am. Ceram. Soc, vol.84, pp.3017-3026, 2001.

D. A. Kulik, Improving the structural consistency of C-S-H solid solution thermodynamic models, Cem. Concr. Res, vol.41, pp.477-495, 2011.

B. Wu and G. Ye, Development of porosity of cement paste blended with supplementary cementitious materials after carbonation, Constr. Build. Mater, vol.145, pp.52-61, 2017.

G. J. Verbeck, Carbonation of hydrated portland cement, ASTM Spec. Tech. Publ, vol.205, pp.17-36, 1958.

K. Kamimura, P. J. Sereda, and E. G. Swenson, Changes in weight and dimensions in the drying and carbonation of Portland cement mortars, Mag. Concr. Res, vol.17, pp.5-14, 1965.

E. G. Swenson and P. J. Sereda, Mechanism of the carbonation shrinkage of lime and hydrated cement, J. Appl. Chem, vol.18, pp.111-117, 1968.

Y. F. Houst, Carbonation Shrinkage of Hydrated Cement Paste, pp.481-491, 1997.

P. H. Borges, J. O. Costa, N. B. Milestone, C. J. Lynsdale, and R. E. Streatfield, Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS, Cem. Concr. Res, vol.40, pp.284-292, 2010.

M. Auroy, S. Poyet, P. L. Bescop, J. M. Torrenti, T. Charpentier et al., Impact of carbonation on unsaturated water transport properties of cement-based materials, Cem. Concr. Res, vol.74, pp.44-58, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01272793

J. Han, W. Sun, G. Pan, and W. Caihui, Monitoring the evolution of accelerated carbonation of hardened cement pastes by X-Ray Computed Tomography, J. Mater. Civ. Eng, vol.25, pp.347-354, 2013.

K. Wan, Q. Xu, Y. Wang, and G. Pan, 3D spatial distribution of the calcium carbonate caused by carbonation of cement paste, Cem. Concr. Compos, vol.45, pp.255-263, 2014.

V. Dutzer, W. Dridi, S. Poyet, P. L. Bescop, and X. Bourbon, The link between gas diffusion and carbonation in hardened cement pastes, Cem. Concr. Res, vol.123, p.105795, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02339644

É. Kangni-foli, S. Poyet, P. L. Bescop, T. Charpentier, F. Bernarchy-barbé et al., Espinose de Lacaillerie, Model synthetic pastes for low alkalinity cements, Submitt. to Cem. Concr. Res, 2019.

E. Kangni-foli, S. Poyet, A. Dauzères, P. L. Bescop, E. Hôpital et al., C/S ratio influence on the carbonation of cementitious material using designed model systems, proceedings of International conference on Sustainable Materials, Systems and Structures, 2019.

L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bur. Stand. Sect. A Phys. Chem, vol.81, pp.89-96, 1977.

E. Drouet, S. Poyet, P. L. Bescop, J. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cem. Concr. Res, vol.115, pp.445-459, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01982390

G. L. Saoût, T. Füllmann, V. Kocaba, and K. L. Scrivener, Quantitative study of cementitous materials by x-ray diffraction -Rietveld analysis using an external standard, Proc. 12th Int, p.12, 2007.

I. G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater, vol.70, pp.903-923, 2014.

G. Villain, M. Thiery, and G. Platret, Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry, Cem. Concr. Res, vol.37, pp.1182-1192, 2007.

B. Lothenbach, P. Durdzinski, and K. D. Weerdt, Thermogravimetric analysis, pp.177-211, 2016.

D. Massiot, F. Fayon, M. Capron, I. King, S. L. Calvé et al., Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem, vol.40, pp.70-76, 2002.

H. Hornain and G. Arliguie, GranDuBé -Grandeurs associées à la durabilité des bétons, Presses des Ponts et Chaussées, 2007.

M. M. Williams, The mathematics of diffusion, Ann. Nucl. Energy, vol.4, p.90072, 1977.

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, Fundamental modeling and experimental investigation of concrete carbonation, ACI Mater. J, vol.88, pp.363-373, 1991.

V. G. Papadakis, M. N. Fardis, and C. G. Vayenas, Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation, Mater. Struct, vol.25, pp.293-304, 1992.

Z. ?auman, Carbonization of porous concrete and its main binding components, Cem. Concr. Res, vol.1, pp.90019-90025, 1971.

M. Auroy, S. Poyet, P. Le, J. Torrenti, U. Paris-est et al., Comparison between natural and accelerated carbonation (3% CO 2 ): Impact on mineralogy, microstructure, water retention and cracking, Cem. Concr. Res, vol.109, pp.64-80, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01771687

K. Mohan and H. F. Taylor, Analytical Electron Microscopy of Cement Pastes: IV, ?-Dicalcium Silicate Pastes, J. Am. Ceram. Soc, vol.64, pp.717-719, 1981.

A. Nonat, The structure and stoichiometry of C-S-H, Cem. Concr. Res, vol.34, pp.1521-1528, 2004.

K. Garbev, G. Beuchle, M. Bornefeld, L. Black, and P. Stemmermann, Cell Dimensions and Composition of Nanocrystalline Calcium Silicate Hydrate Solid Solutions. Part 1: Synchrotron-Based X-Ray Diffraction, J. Am. Ceram. Soc, vol.91, pp.3005-3014, 2008.

H. M. Ghodake, T. K. Goswami, and A. Chakraverty, Moisture sorption isotherms, heat of sorption and vaporization of withered leaves, black and green tea, J. Food Eng, vol.78, pp.827-835, 2007.

T. Ogino, T. Suzuki, and K. Sawada, The formation and transformation mechanism of calcium carbonate in water, Geochim. Cosmochim. Acta, vol.51, pp.2757-2767, 1987.

J. Kawano, N. Shimobayashi, A. Miyake, and M. Kitamura, Precipitation diagram of calcium carbonate polymorphs: its construction and significance, J. Physics. Condens. Matter, vol.21, p.425102, 2009.

M. Kitamura, Strategy for control of crystallization of polymorphs, CrystEngComm, vol.11, pp.949-964, 2009.

Y. S. Han, G. Hadiko, M. Fuji, and M. Takahashi, Crystallization and transformation of vaterite at controlled pH, J. Cryst. Growth, vol.289, pp.269-274, 2006.

H. Deng, S. Wang, X. Wang, C. Du, X. Shen et al., Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution, Regen. Biomater, vol.2, pp.187-195, 2015.

F. Brunet, P. Bertani, T. Charpentier, A. Nonat, and J. Virlet, Application of 29 Si Homonuclear and 1 H-29 Si Heteronuclear NMR Correlation to Structural Studies of Calcium Silicate Hydrates, J. Phys. Chem. B, vol.108, pp.15494-15502, 2004.

I. Klur, B. Pollet, J. Virlet, A. Nonat, and C. , Structure Evolution with Calcium Content by Multinuclear NMR, pp.119-141, 1998.

C. Biagioni, S. Merlino, and E. Bonaccorsi, The tobermorite supergroup: a new nomenclature, Mineral. Mag, vol.79, pp.485-495, 2015.

E. Bonaccorsi, S. Merlino, and A. R. Kampf, The crystal structure of tobermorite 14 Å (plombierite), a C-S-H phase, J. Am. Ceram. Soc, vol.88, pp.505-512, 2005.

I. G. Richardson and G. W. Groves, Models for the composition and structure of calcium silicate hydrate (CSH) gel in hardened tricalcium silicate pastes, Cem. Concr. Res, vol.22, p.90030, 1992.

X. Cong and R. J. Kirkpatrick, 17O and 29Si MAS NMR study of ?-C2S hydration and the structure of calciumsilicate hydrates, Cem. Concr. Res, vol.23, issue.93, pp.90166-90173, 1993.

X. Cong and R. J. Kirkpatrick, 29Si MAS NMR study of the structure of calcium silicate hydrate, vol.3, pp.90046-90048, 1996.

Y. He, L. Lu, L. J. Struble, J. L. Rapp, P. Mondal et al., Effect of calcium-silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature, Mater. Struct, vol.47, pp.311-322, 2014.

M. Castellote, L. Fernandez, C. Andrade, and C. Alonso, Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations, Mater. Struct, vol.42, pp.515-525, 2009.

S. E. Pihlajavaara, Some results of the effect of carbonation on the porosity and pore size distribution of cement paste, Matériaux Constr, vol.1, pp.521-527, 1968.

Y. F. Houst and F. H. Wittmann, Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste, Cem. Concr. Res, vol.24, pp.1165-1176, 1994.

V. T. Ngala and C. L. Page, Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes, Cem. Concr. Res, vol.27, pp.995-1007, 1997.

P. A. Claisse, H. El-sayad, and I. G. Shaaban, Permeability and pore volume of carbonated concrete, ACI Mater. J, vol.96, pp.378-381, 1999.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cem. Concr. Res, vol.56, pp.153-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

A. J. Katz and A. H. Thompson, Quantitative prediction of permeability in porous rock, Phys. Rev. B, vol.34, pp.8179-8181, 1986.

A. S. El-dieb and R. D. Hooton, Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data, Cem. Concr. Res, vol.24, pp.443-455, 1994.

P. H. Borges, N. B. Milestone, J. O. Costa, C. J. Lynsdale, T. H. Panzera et al., Carbonation durability of blended cement pastes used for waste encapsulation, Mater. Struct, vol.45, pp.663-678, 2012.

A. Leemann and F. Moro, Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity, Mater. Struct, vol.50, p.30, 2017.

J. L. Branch, D. S. Kosson, A. C. Garrabrants, and P. J. He, The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement, Cem. Concr. Res, vol.89, pp.297-309, 2016.

A. Leemann, P. Nygaard, J. Kaufmann, and R. Loser, Relation between carbonation resistance, mix design and exposure of mortar and concrete, Cem. Concr. Compos, vol.62, pp.33-43, 2015.

V. Shah and S. Bishnoi, Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete, Constr. Build. Mater, vol.178, pp.219-232, 2018.

J. J. Chen, J. J. Thomas, and H. M. Jennings, Decalcification shrinkage of cement paste, Cem. Concr. Res, vol.36, pp.801-809, 2006.

A. Morandeau, M. Thiéry, and P. Dangla, Impact of accelerated carbonation on OPC cement paste blended with fly ash, Cem. Concr. Res, vol.67, pp.226-236, 2015.

V. Shah, K. Scrivener, B. Bhattacharjee, and S. Bishnoi, Changes in microstructure characteristics of cement paste on carbonation, Cem. Concr. Res, vol.109, pp.184-197, 2018.

S. T. Pham and W. Prince, The carbonation of calcium-silicate-hydrate C-S-H in cement mortar studied using thermal analysis and gas pycnometer: determination of the quantity of calcium carbonate produced and the increase in molar volume, Adv. Mater. Res, pp.411-415, 2014.

S. Mindess, J. F. Young, and F. V. Lawrence, Creep and drying shrinkage of calcium silicate pastes I. Specimen preparation and mechanical properties, Cem. Concr. Res, vol.8, pp.591-600, 1978.

C. S1, , p.40

C. S1, , p.40

C. S1, , p.40

C. S3, , p.0

C. S3, , p.0

, Those methods might bring the stronger evidences needed to support the CO2 access limiting effect attributed to the surface and interlayer's Al species, which would bring deeper understanding on the nature of those Al species

, ATG), les pâtes modèles durcies aux C/S ? 1,40 sont essentiellement constituées de C-S-H et démontrent une faible dispersion de leurs rapports C/S (MEB-EDS) nous assurant ainsi du contrôle de la chimie et de la minéralogie escompté pour les matériaux fabriqués. L'estimation de la teneur en C-S-H montre une teneur plus élevée de C-S-H dans les pâtes à plus bas pH

, Les pâtes modèles ont démontré avec l'abaissement du C/S, une gamme similaire de porosité et un raffinement de la porosité sondée

, Cette observation est attribuée au comblement de la porosité générée par les teneurs plus élevées en C-S-H. A l'échelle nanométrique les propriétés des C-S-Hs formés sont similaires à celles répertoriées par la littérature. Le recours à la RMN du noyau 29 Si a permis de mettre en évidence des propriétés structurales (distribution d'environnement 29 Si, taille moyenne des chaines de silicates) au sein des pâtes synthétiques modèles similaires aux matériaux industriels, similaire à celle des matériaux bas-pH

, Des points de faiblesses nous sont apparus, spécialement sur les matériaux aux plus bas rapports C/S, cela comprend la présence de fissures à bas rapports C/S. Nous avons proposé comme explication à la présence de ces fissures, la réactivité donnant lieu aux C-S-Hs à bas rapports C/S et les propriétés physicochimiques de ces mêmes C-S-Hs

, Au vu des caractéristiques observées, les matériaux modèles ont démontré des propriétés permettant l'acquisition d'un spectre large de connaissances touchant notamment aux propriétés intrinsèques des C-S-Hs de l'état sain à l'état carbonaté, aux conséquences liées à d'autres pathologies de matériaux cimentaires

, Le second chapitre traite du lien entre propriétés structurales à l'échelle nanométrique et réactivité. Dans cette partie les matériaux utilisés sont des poudres de C(-A)-S-Hs, des silicates de calciums hydratés à teneurs variables en aluminium. Les matériaux à bas-pH incorporent

, L'aluminium est connu pour modifier le motif dreierketten