. .. Remise-en-place-du-système-d'imagerie-acousto-optique, 6.2.3 Difficultés de la remise en place de l'asservissement

.. .. Conclusion,

, Conclusion et perspectives Sommaire 7.1 Conclusion générale

C. Ronda, H. Wieczorek, V. Khanin, and P. Rodnyi, Review : Scintillators for Medical Imaging : A Tutorial Overview, vol.5, pp.3121-3125, 2016.

M. T. Freitag, J. P. Radtke, B. A. Hadaschik, A. Kopp-schneider, M. Eder et al., Uwe Haberkorn, Matthias Roethke, Heinz-Peter Schlemmer et Ali Afshar-Oromieh. « Comparison of hybrid 68Ga-PSMA PET/MRI and 68Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.43, pp.70-83, 2016.

P. Brige, J. P. Chugh, L. X. Lerch, M. Yu, R. V. Pienkowski et al., « Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography, NeuroImage, vol.47, pp.1312-1318, 2009.

Y. Balagurunathan, V. Kumar, Y. Gu, J. Kim, H. Wang et al., « Test-Retest Reproducibility Analysis of Lung CT Image Features, Journal of Digital Imaging, vol.27, issue.6, pp.805-823, 2014.

T. Ruben, G. Larue, D. D. Defraene, and . Ruysscher, Philippe Lambin et Wouter van Elmpt. « Quantitative radiomics studies for tissue characterization : a review of technology and methodological procedures, The British Journal of Radiology, vol.90, p.20160665

A. Padole, R. Khawaja, K. Mannudeep, S. Kalra, and . Singh, « CT Radiation Dose and Iterative Reconstruction Techniques, American Journal of Roentgenology, vol.204, pp.384-392, 2015.

P. C. Lauterbur, « Image Formation by Induced Local Interactions : Examples Employing Nuclear Magnetic Resonance, Nature, vol.242, p.190, 1973.

P. Mansfield, « Multi-planar image formation using NMR spin echoes, Journal of Physics C : Solid State Physics, vol.10, pp.55-58

D. V. Hingorani, A. S. Bernstein, D. Mark, and . Pagel, A review of responsive MRI contrast agents, vol.10, pp.245-265

C. Huang, . V. Chiao-chi, T. Chen, . Siow, S. Sheng-hsiou et al., High-Resolution Structural and Functional Assessments of Cerebral Microvasculature Using 3D Gas ?R2*-mMRA, vol.8, p.78186, 2013.

R. Oren-n-jaspan, . Fleysher, and . Michael-l-lipton, « Compressed sensing MRI : a review of the clinical literature, The British Journal of Radiology, vol.88, p.20150487

M. Vijayalaxmi, O. Fatahi, and . Speck, « Magnetic resonance imaging (MRI) : A review of genetic damage investigations, Mutation Research/Reviews in Mutation Research, vol.764, pp.51-63, 2015.

H. William and . Sweet, « The Uses of Nuclear Disintegration in the Diagnosis and Treatment of Brain Tumor, New England Journal of Medicine, vol.245, issue.6 déc, pp.875-878, 1951.

P. E. Kinahan, B. H. Hasegawa, and T. Beyer, « X-ray-based attenuation correction for positron emission tomography/computed tomography scanners, Seminars in Nuclear Medicine, vol.33, issue.3, pp.166-179

J. Czernin, M. Allen-auerbach, and H. R. Schelbert, « Improvements in Cancer Staging with PET/CT : Literature-Based Evidence as of, Journal of Nuclear Medicine, vol.48, pp.78-88, 2001.

A. Chalkidou, M. J. O'doherty, and P. K. Marsden, « False Discovery Rates in PET and CT Studies with Texture Features : A Systematic Review, Sous la dir. de Daniel L Rubin, vol.10, 2015.

M. Hofmann, B. Pichler, B. Schölkopf, and T. Beyer, Towards quantitative PET/MRI : a review of MR-based attenuation correction techniques, vol.36, pp.93-104, 2009.

S. Vandenberghe, K. Paul, and . Marsden, « PET-MRI : a review of challenges and solutions in the development of integrated multimodality imaging, Physics in Medicine and Biology, vol.60, pp.115-154, 2015.

K. T. Dussik, Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten, pp.153-168

A. Haleem, . Mohd, and . Javaid, « 3D scanning applications in medical field : A literature-based review, Clinical Epidemiology and Global Health, 2018.

M. Vidya-k-sudarshan, . Rama-krishnan-mookiah, V. Rajendra-acharya, F. Chandran, and . Molinari, Hamido Fujita et Kwan Hoong Ng. « Application of wavelet techniques for cancer diagnosis using ultrasound images : A Review, Computers in Biology and Medicine 69 (fév. 2016), pp.97-111

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei et al., « Ultrafast ultrasound localization microscopy for deep superresolution vascular imaging, Nature, vol.527, pp.499-502, 2015.

, Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, Food et Drug Administration (FDA), 2008.

M. Tanter and M. Fink, « Ultrafast imaging in biomedical ultrasound, Ferroelectrics, and Frequency Control, vol.61, issue.1, pp.102-119, 2014.

Q. Huang and Z. Zeng, BioMed Research International 2017, pp.1-20, 2017.

C. Poelma and . Ultrasound, Imaging Velocimetry : a review, Experiments in Fluids, vol.58, 2017.

T. L. Szabo, Diagnostic Ultrasound Imaging : Inside Out

L. Michael, J. Oelze, and . Mamou, Review of Quantitative Ultrasound : Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound, vol.63, pp.336-351, 2016.

A. Francis and . Duck, Nonlinear acoustics in diagnostic ultrasound, vol.28, pp.1-18, 2002.

A. Jorgen, S. Jensen, . Nikolov, C. H. Alfred, D. Yu et al., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp.1-1, 2016.

S. I. Jorgen-arendt-jensen, A. C. Nikolov, D. Yu, and . Garcia, Ultrasound Vector Flow Imaging-Part II : Parallel Systems, vol.63, pp.1722-1732, 2016.

O. V. Armen-p-sarvazyan, . Rudenko, J. Scott-d-swanson, B. Fowlkes, Y. Stanislav et al., Shear wave elasticity imaging : a new ultrasonic technology of medical diagnostics, vol.24, pp.1419-1435, 1998.

M. Gayet, A. Van-der-aa, H. P. Beerlage, B. P. Schrier, and F. A. Peter, Mulders et Hessel Wijkstra. « The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection : a systematic review, BJU International, vol.117, issue.3, pp.392-400, 2016.

A. I??n, C. Direko?lu, and M. ?ah, « Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods, Procedia Computer Science, vol.102, pp.317-324, 2016.

. Litecure, Photobiomodulation Glossary. LiteCure. 22 jan, 2018.

R. Richards-kortum and E. Sevick-muraca, « Quantitative Optical Spectroscopy for Tissue Diagnosis, Annual Review of Physical Chemistry, vol.47, pp.555-606, 1996.

A. Ishimaru, Wave Propagation and Scattering in Random Media. 2 t, 1978.

W. F. Cheong, S. A. Prahl, and A. J. Welch, « A review of the optical properties of biological tissues, IEEE Journal of Quantum Electronics, vol.26, pp.2166-2185

L. Steven and . Jacques, Optical properties of biological tissues : a review, vol.58

T. Vo-dinh and É. , Biomedical photonics handbook, vol.1, pp.978-978, 2003.

D. Grosenick, H. Wabnitz, T. Moesta, J. Mucke, M. Peter et al., « Time-domain scanning optical mammography : II. Optical properties and tissue parameters of 87 carcinomas, Physics in Medicine and Biology, vol.50, issue.11, pp.2451-2468

R. Choe, D. Soren, A. Konecky, K. Corlu, T. Lee et al., « Differentiation of Benign and Malignant Breast Tumors by In-Vivo Three-Dimensional Parallel-Plate Diffuse Optical Tomography, Journal of biomedical optics, vol.14, p.24020, 2009.

R. Nachabé, D. J. Evers, H. W. Benno, G. W. Hendriks, M. Lucassen et al., « Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples, Biomedical Optics Express, vol.2, issue.3, p.600, 2011.

J. Bruce, N. Tromberg, R. Shah, A. Lanning, J. Cerussi et al., « Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy, Neoplasia, vol.2, issue.1, pp.26-40, 2000.

C. Germer, A. Roggan, J. P. Ritz, C. Isbert, D. Albrecht et al., « Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range, Lasers in Surgery and Medicine, vol.23, pp.194-203, 1998.

C. Macias-romero, M. E. Didier, P. Jourdain, P. Marquet, P. Magistretti et al., Vitalijs Zubkovs, Aleksandra Radenovic et Sylvie Roke. « High throughput second harmonic imaging for label-free biological applications, Optics Express, vol.22, pp.31102-31112, 2014.

B. Weigelin, G. Bakker, and P. Friedl, « Third harmonic generation microscopy of cells and tissue organization, Journal of Cell Science, vol.129, issue.2, pp.245-255, 2016.

M. J. Rust, M. Bates, and X. Zhuang, « Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Methods, vol.3, issue.10, p.793, 2006.

T. Samuel, . Hess, P. K. Thanu, M. D. Girirajan, and . Mason, « Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy, er déc. 2006), vol.91, pp.4258-4272

S. W. Hell and J. Wichmann, « Breaking the diffraction resolution limit by stimulated emission : stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, issue.1, pp.780-782

B. Jayet, « Acousto-optic and photoacoustic imaging of scattering media using wavefront adaptive holography techniques in NdYO4, 2015.

S. Adabi, Z. Turani, and E. Fatemizadeh, Anne Clayton et Mohammadreza Nasiriavanaki. « Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin : A Short Review, Biomedical Engineering and Computational Biology, vol.8, p.117959721771347, 2017.

A. Nahas, « Imagerie multimodale optique, élastique et photo-thermique des tissus biologiques par OCT plein champ, vol.160, 2014.

E. A. Swanson and J. G. Fujimoto, « The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact, Biomedical Optics Express, vol.8, issue.3, p.1638, 2017.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson et al., « Optical coherence tomography, Science, vol.254, pp.1178-1181, 1991.

F. Johannes, B. De-boer, B. Cense, M. C. Park, G. J. Pierce et al., « Improved signal-to-noise ratio in spectral-domain compared with timedomain optical coherence tomography, Optics Letters, vol.28, p.2067, 2003.

E. Beaurepaire, A. C. Boccara, M. Lebec, and L. , Blanchot et H. Saint-Jalmes. « Fullfield optical coherence microscopy, Optics Letters, vol.23, p.244, 1998.

M. Zarella, D. E. Breen, and F. U. Garcia, Shantel Maharaj et Gautham Nandakumar. « Image processing to extend effective OCT penetration depth in tissue, Medical Imaging 2018 : Digital Pathology. Digital Pathology. Sous la dir. de Metin N. Gurcan et John E. Tomaszewski. Houston, United States : SPIE, 6 mar, p.42, 2018.

M. Pircher, J. Robert, and . Zawadzki, Review of adaptive optics OCT (AO-OCT) : principles and applications for retinal imaging, vol.8, p.2536

N. D. Gladkova, G. A. Petrova, N. K. Nikulin, S. G. Radenska-lopovok, L. B. Snopova et al., Sergeev et F. I. Feldchtein. « In vivo optical coherence tomography imaging of human skin : norm and pathology, Skin Research and Technology, vol.6, pp.6-16, 2000.

J. Benjamin, D. Vakoc, . Fukumura, K. Rakesh, B. E. Jain et al., « Cancer imaging by optical coherence tomography : preclinical progress and clinical potential, avr. 2012), vol.12, pp.363-368

P. L. Labrinus-van-manen, A. Stegehuis, L. M. Fariña-sarasqueta, J. De-haan, B. A. Eggermont et al., « Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens, PLOS ONE, vol.12, issue.4, p.175862

A. Mamalis, D. Ho, and J. Jagdeo, « Optical Coherence Tomography Imaging of Normal, Chronologically Aged, Photoaged and Photodamaged Skin : A Systematic Review, Dermatologic Surgery, p.1, 2015.

J. P. Angelo, S. Chen, and M. Ochoa, Ulas Sunar, Sylvain Gioux et Xavier Intes. « Review of structured light in diffuse optical imaging, Journal of Biomedical Optics, vol.24, issue.7, p.1, 2018.

. T-durduran, W. Choe, . Baker, and . Yodh, « Diffuse Optics for Tissue Monitoring and Tomography, Reports on progress in physics. Physical Society

J. C. Hebden and T. Austin, « Optical tomography of the neonatal brain, European Radiology, vol.17, p.2926

A. Gibson and H. Dehghani, Diffuse optical imaging, vol.367, pp.3055-3072, 1900.

A. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi et al., « Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity, Biomedical Optics Express, vol.6, issue.1, p.1749

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli et al., New frontiers in time-domain diffuse optics, a review, vol.21, p.91310

H. Zhao and R. J. Cooper, « Review of recent progress toward a fiberless, wholescalp diffuse optical tomography system, Neurophotonics 5.1 (26 sept. 2017), p.1

V. Lihong, J. Wang, and . Yao, « A practical guide to photoacoustic tomography in the life sciences, Nature Methods, vol.13, pp.627-638, 2016.

S. Mallidi, G. P. Luke, and S. Emelianov, « Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance, Trends in Biotechnology, vol.29, issue.5, pp.213-221, 2011.

J. Weber, P. C. Beard, and S. E. Bohndiek, « Contrast agents for molecular photoacoustic imaging, Nature Methods, vol.13, pp.639-650, 2016.

J. Copland, . Eghtedari, . Popov, . Kotov, M. Mamedova et al., Bioconjugated gold nanoparticles as a molecular based contrast agent : implications for imaging of deep tumors using optoacoustic tomography, Molecular Imaging & Biology, vol.6, issue.5, pp.341-349, 2004.

E. M. Strohm, M. J. Moore, and M. C. Kolios, Single Cell Photoacoustic Microscopy : A Review, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.3, pp.137-151, 2016.

A. Danielli, K. I. Maslov, A. Garcia-uribe, A. M. Winkler, C. Li et al., « Label-free photoacoustic nanoscopy, Journal of Biomedical Optics, vol.19, issue.8, p.86006, 2014.

U. S. , Medical Imaging -Ultrasound Imaging, 1988.

E. M. Strohm, E. S. Berndl, C. Michael, and . Kolios, « Probing Red Blood Cell Morphology Using High-Frequency Photoacoustics, juil. 2013), vol.105, pp.59-67

G. Xu, . Zhuo-xian, J. D. Meng, J. Lin, P. L. Yuan et al., « The Functional Pitch of an Organ : Quantification of Tissue Texture with Photoacoustic Spectrum Analysis, Radiology, vol.271, issue.1, pp.248-254, 2014.

F. Gao, Advanced photoacoustic and thermoacoustic sensing and imaging beyond pulsed absorption contrast, Xiaohua Feng et Yuanjin Zheng. «, vol.18, p.74006, 2016.

P. Kumar-upputuri and M. Pramanik, « Recent advances toward preclinical and clinical translation of photoacoustic tomography : a review, Journal of Biomedical Optics, vol.22, issue.4, p.41006, 2016.

P. Debye and F. W. Sears, « On the Scattering of Light by Supersonic Waves, Proceedings of the National Academy of Sciences 18.6 (1 er juin 1932), pp.409-414

R. Lucas and P. Biquard, Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores, vol.3, pp.464-477, 1932.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M. Tang, « Ultrasound-mediated optical tomography : a review of current methods, Interface Focus, vol.1, pp.632-648, 2011.

V. Lihong and . Wang, « Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light : An Analytic Model, Physical Review Letters, vol.87, issue.4, 2001.

S. Sakad?i?, V. Lihong, and . Wang, « Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse, Journal of the Optical Society of America A, vol.24, issue.9, p.2797, 2007.

M. Jang, H. Ruan, B. Judkewitz, and C. Yang, « Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique, Optics Express, vol.22, issue.5, p.5787, 2014.

C. Dupuy, « Image reconstruction for acousto-optics : Towards quantitative imaging, Paris Science et Lettre (PSL), 2017.

M. Draijer and E. Hondebrink, Ton van Leeuwen et Wiendelt Steenbergen. « Review of laser speckle contrast techniques for visualizing tissue perfusion, Lasers in Medical Science, vol.24, issue.3 déc, p.639, 2008.

J. Muhammad-mohsin-qureshi, H. Brake, H. Jeon, Y. Ruan, and . Liu, Changhuei Yang et Euiheon Chung. « In vivo study of optical speckle decorrelation time across depths in the mouse brain, Biomedical Optics Express, vol.8, p.4855, 2017.

L. Wang, S. L. Jacques, and X. Zhao, « Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media, Optics Letters, vol.20, issue.6, pp.629-631, 1995.

J. Laudereau, A. A. Grabar, and M. Tanter, Jean-Luc Gennisson et François Ramaz. « Ultrafast acousto-optic imaging with ultrasonic plane waves, Optics Express, vol.24, issue.4, p.3774, 2016.

M. Bocoum, J. Gennisson, J. Laudereau, A. Louchet-chauvet, J. Tualle et al., « Structured ultrasound modulated optical tomography, Applied Optics, vol.58, issue.8, p.1933, 2019.

K. Barjean, K. Contreras, J. Laudereau, É. Tinet, and D. Ettori, François Ramaz et Jean-Michel Tualle. « Fourier transform acousto-optic imaging with a custom-designed CMOS smart-pixels array, Optics Letters, vol.40, p.705, 2015.

K. Barjean, F. Ramaz, and J. Tualle, « Theoretical study of Fouriertransform acousto-optic imaging, JOSA A, vol.33, issue.1, pp.854-862

K. Barjean, « Mise en oeuvre de circuits intégés dédiés à l'analyse des corrélations temporelles des tavelures optiques, vol.13, 2016.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, « Acousto-optic tomography with multiply scattered light, JOSA A 14.5 (1 er mai 1997), pp.1151-1158

E. Benoit and À. Guillaume, « Imagerie acousto-optique dans les milieux diffusants épais : de l'amélioration technique à l'application pré-clinique ex vivo, 2013.

S. Lévêque, A. C. Boccara, and M. Lebec, Saint-Jalmes. « Ultrasonic tagging of photon paths in scattering media : parallel speckle modulation processing, Optics Letters, vol.24, issue.1, pp.181-183, 1999.

J. Gunther-et-stefan-andersson-engels, « Review of current methods of acoustooptical tomography for biomedical applications, Frontiers of Optoelectronics, vol.10, pp.211-238

J. Li, V. Lihong, and . Wang, Methods for parallel-detection-based ultrasound-modulated optical tomography, Applied Optics, vol.41, p.2079, 2002.

Z. Hajjarian, J. Xi, A. Farouc, G. J. Jaffer, . Tearney et al., « Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall, Journal of Biomedical Optics, vol.16, p.26005, 2011.

J. Li, G. Ku, V. Lihong, and . Wang, Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles, Applied Optics, vol.41, p.6030, 2002.

M. Gross, P. Goy, and M. Al-koussa, « Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging, Optics Letters, vol.28, pp.2482-2484, 2003.

F. L. Clerc, L. Collot, and M. Gross, « Numerical heterodyne holography with two-dimensional photodetector arrays, Optics Letters, vol.25, pp.716-718

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross et al., « Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues, Optics Express, vol.12, pp.5469-5474, 2004.

T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva et al., « Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect, Optics Letters, vol.29, p.2509, 2004.

M. Gross, F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara et al., « Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media, Optics Express, vol.13, p.7097, 2005.

P. Lai, J. R. Mclaughlan, A. B. Draudt, T. W. Murray, R. O. Cleveland et al., « Real-Time Monitoring of High-Intensity Focused Ultrasound Lesion Formation Using Acousto-Optic Sensing, Ultrasound in Medicine & Biology, vol.37, issue.1, pp.239-252, 2011.

S. Farahi, E. Benoit, A. A. Grabar, J. Huignard, and F. Ramaz, « Time resolved three-dimensional acousto-optic imaging of thick scattering media, Optics Letters, vol.37, issue.1, pp.2754-2756, 2012.

J. Laudereau, « Acousto-optic imaging : challenges of in vivo imaging, vol.6, 2016.

G. Rousseau, A. Blouin, and J. Monchalin, « Ultrasound modulated optical imaging using a powerful long pulse laser, Optics Express, vol.16, pp.12577-12590

M. Lesaffre, « Imagerie acousto-optique de milieux diffusants épais par détection photoréfractive, 2009.

P. Lai, X. Xu, V. Lihong, and . Wang, « Ultrasound-modulated optical tomography at new depth, Journal of Biomedical Optics, vol.17, issue.6, 2012.

E. Benoit-a-la-guillaume, U. Bortolozzo, and J. Huignard, Stefania Residori et Francois Ramaz. « Dynamic ultrasound modulated optical tomography by selfreferenced photorefractive holography, er fév. 2013), vol.38, pp.287-289

Y. Suzuki, P. Lai, X. Xu, and L. Wang, « High-sensitivity ultrasound-modulated optical tomography with a photorefractive polymer, Optics letters, vol.38, issue.6, pp.899-901, 2013.

J. Laudereau, E. Benoit-À, L. Guillaume, V. Servois, P. Mariani et al., Jean-Luc Gennisson et François Ramaz. « Multimodal acousto-optic/ultrasound imaging of ex vivo liver tumors at 790 nm using a Sn2P2S6 wavefront adaptive holographic setup, Journal of Biophotonics, vol.8, issue.1, pp.429-436

B. Jayet, J. Huignard, and F. Ramaz, Fast wavefront adaptive holography in Nd :YVO_4 for ultrasound optical tomography imaging, vol.22, p.20622
URL : https://hal.archives-ouvertes.fr/hal-01696353

B. Jayet, J. Huignard, and F. Ramaz, « Optical phase conjugation in Nd :YVO 4 for acoustooptic detection in scattering media, avr. 2013), vol.38, pp.1256-1258

S. Sakad?i?, V. Lihong, and . Wang, « High-resolution ultrasound-modulated optical tomography in biological tissues, Optics Letters, vol.29, pp.2770-2772, 2004.

G. Rousseau, A. Blouin, and J. Monchalin, Ultrasound modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry-Perot interferometer, Optics Letters, vol.34, p.3445, 2009.

Y. Li, P. Hemmer, and C. Kim, Huiliang Zhang et Lihong V. Wang. « Detection of ultrasound-modulated diffuse photons using spectral-hole burning, Optics Express, vol.16, p.14862, 2008.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer et al., « Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter, Applied Physics Letters, vol.93, p.11111, 2008.

J. Selb, L. Pottier, C. Albert, and . Boccara, « Nonlinear effects in acousto-optic imaging, Optics Letters, vol.27, issue.1, pp.918-920

M. L. Haowen-ruan, S. P. Mather, and . Morgan, « Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles, Quantitative Imaging in Medicine and Surgery 5.1 (fév. 2015), pp.9-16

M. Haowen-ruan, C. Jang, and . Yang, « Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light, Nature Communications, vol.6, p.8968, 2015.

Y. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, « Deep tissue focal fluorescence imaging with digitally time-reversed ultrasound encoded light, Nature Communications, vol.3, p.928

A. Hussain, E. Hondebrink, J. Staley, and W. Steenbergen, « Photoacoustic and acousto-optic tomography for quantitative and functional imaging, Optica 5.12 (20 déc, p.1579, 2018.

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, « Correcting photoacoustic signals for fluence variations using acousto-optic modulation, Optics Express, vol.20, pp.14117-14129

A. Louchet, « Manipulation optique d'une cohérence de spin nucléaire dans l'ion thulium en matrice cristalline, 2008.

M. Bonarota, « Optimisation de la programmation d'un cristal dopé aux ions de terres rares, opérant comme processeur analogique d'analyse spectrale RF, ou de stockage d'information quantique, 2012.

B. Cagnac, L. Tchang-brillet, and J. Pebay-peyroula, Physique atomique 2. L'atome : un édifice quantique. 2ème. Sciences Sup. Dunod, août, vol.368, pp.978-980, 2007.

G. H. Dieke and H. M. Crosswhite, « The Spectra of the Doubly and Triply Ionized Rare Earths, Applied Optics 2.7 (1 er juil. 1963), pp.675-686

. B-g-wybourne, Spectroscopic Properties of Rare Earths | Lanthanide | Electron Configuration. Interscience publishers, vol.236, 1965.

M. Roger and . Macfarlane, « High-resolution laser spectroscopy of rare-earth doped insulators : a personal perspective, Journal of Luminescence, vol.100, pp.1-20

A. Abragam and B. Bleaney, Résonance paramagnétique électronique des ions de transition. OCLC : 708320541. Saclay ; Paris : Institut national des sciences et techniques nucléaires, 1971.

R. Orbach and B. Bleaney, Spin-lattice relaxation in rare-earth salts, vol.264, pp.458-484, 1961.

A. Szabo, « Observation of hole burning and cross relaxation effects in ruby, Physical Review B, vol.11, issue.1, pp.4512-4517

J. M. Hayes, R. P. Stout, and G. J. Small, « Hole burning, softon-phonon scattering, and ultrafast dephasing of impurity electronic transitions in glasses, The Journal of Chemical Physics, vol.74, issue.8, pp.4266-4275, 1981.

R. M. Macfarlane, R. J. Reeves, and G. D. Jones, « Persistent spectral hole burning due to deuteron tunneling in SrF 2 : Pr 3+ : D ?, Optics Letters, vol.12, pp.660-662, 1987.

S. Völker and J. H. Van-der-waals, « Laser induced photochemical isomerization of free base porphyrin in an n-octane crystal at 4.2 K ». In : Molecular Physics 32.6 (1 er déc. 1976), pp.1703-1718

A. Harmen-de-vries-et-douwe and . Wiersma, « Homogeneous Broadening of Optical Transitions in Organic Mixed Crystals, Physical Review Letters, vol.36, issue.2, pp.91-94, 1976.

W. E. Moerner, M. Gehrtz, and A. L. Huston, « Measurement of quantum efficiencies for persistent spectral hole burning ». In : (1 er déc, 1984.

R. M. Macfarlane, « Photon-echo measurements on the trivalent thulium ion, Optics Letters, vol.18, p.1958, 1993.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner et al., « Spectra and energy levels of Tm, vol.3, pp.9464-9478, 1989.

Y. Attal, « Processeurs atomiques utilisant la propriété de creusement spectral : modélisation et application à l'analyse spectrale radiofréquence large bande sur porteuse optique, vol.187, 2017.

G. Armagan, A. M. Buoncristiani, D. Baldassare, and . Bartolo, Excited state dynamics of thulium ions in Yttrium Aluminum Garnets, vol.1, pp.11-20, 1992.

T. T. Basiev, Y. V. Orlovskii, K. K. Pukhov, V. B. Sigachev, M. E. Doroshenko et al., « Multiphonon relaxation rates measurements and theoretical calculations in the frame of non-linear and non-Coulomb model of a rare-earth ion-ligand interaction, Journal of luminescence, vol.68, pp.241-253, 1996.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll et al., « Slow light for deep tissue imaging with ultrasound modulation, Applied Physics Letters, vol.100, p.131102, 2012.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, « Homogeneous broadening and hyperfine structure of optical transitions in Pr :YSO, Physical Review B, vol.52, issue.1, pp.3963-3969

K. Holliday, M. Croci, E. Vauthey, P. Urs, and . Wild, « Spectral hole burning and holography in an Pr :YSO crystal, Physical Review B, vol.47, issue.1, pp.14741-14752

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, « Photon Echoes, Physical Review, vol.141, pp.391-406, 1966.

D. P. Burum, R. M. Shelby, and R. M. Macfarlane, « Hole burning and optically detected fluorine NMR in ${\mathrm{Pr}}^{3+}$ : Ca${\mathrm{F}}_{2}$, Physical Review B, vol.25, pp.3009-3019, 1982.

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, « Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis, Optics Letters, vol.30, pp.3003-3005, 2005.

M. Colice, F. Schlottau, and K. H. Wagner, « Broadband radio-frequency spectrum analysis in spectral-hole-burning media, Applied Optics, vol.45, issue.1, pp.6393-6408, 2006.

, S2 Corporation The Spectrum in a Flash. S2 Corporation

L. Ménager, J. Gouët, and I. Lorgeré, « Time-to-frequency Fourier transformation with photon echoes, Optics Letters, vol.26, pp.1397-1399, 2001.

V. Lavielle, I. Lorgeré, J. Gouët, S. Tonda, and D. Dolfi, « Wideband versatile radio-frequency spectrum analyzer, Optics Letters, vol.28, issue.6, pp.384-386, 2003.

P. Berger, M. Schwarz, S. Molin, D. Dolfi, L. Morvan et al., « 20 GHz instantaneous bandwidth RF spectrum analyzer with high time-resolution, Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP) 2014 International Topical Meeting on. Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference, p.2014

, International Topical Meeting on, pp.331-334, 2014.

K. D. Merkel and W. R. Babbitt, « Optical coherent-transient true-time-delay regenerator, Optics Letters, vol.21, issue.1, pp.1102-1104

T. L. Harris, Y. Sun, R. L. Cone, R. M. Macfarlane, and R. W. Equall, « Demonstration of real-time address header decoding for optical data routing at 1536nm, Optics Letters, vol.23, issue.8, pp.636-638, 1998.

K. D. Merkel and W. R. Babbitt, « Chirped-pulse programming of optical coherent transient true-time delays, Optics Letters, vol.23, pp.528-530, 1998.

K. D. Merkel, W. R. Babbitt, K. E. Anderson, and K. H. Wagner, « Variable-time-delay optical coherent transient signal processing, Optics Letters, vol.24, pp.1386-1388, 1999.

Z. W. Barber, C. Harrington, R. K. Mohan, T. Jackson, C. Stiffler et al., « Spatial-spectral holographic real-time correlative optical processor with >100 Gb/s throughput, Applied Optics, vol.56, issue.1, pp.5398-5406

H. Linget, L. Morvan, J. Gouët, and A. Louchet-chauvet, « Time reversal of optically carried radiofrequency signals in the microsecond range, Optics Letters, vol.38, pp.643-645, 2013.

M. Afzelius and C. Simon, Hugues de Riedmatten et Nicolas Gisin. « Multimode quantum memory based on atomic frequency combs, Physical Review A, vol.79, issue.5, p.52329

M. Hugues-de-riedmatten, M. Afzelius, and . Staudt, Christoph Simon et Nicolas Gisin. « A solid state light-matter interface at the single photon level, Nature 456.7223 (11 déc. 2008), pp.773-777

A. Amari, A. Walther, M. Sabooni, M. Huang, S. Kröll et al., « Towards an efficient atomic frequency comb quantum memory, Journal of Luminescence. Special Issue based on the Proceedings of the Tenth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies : Science and Applications (HBSM 2009) -Issue dedicated to Ivan Lorgere and Oliver Guillot-Noel, vol.130, pp.1579-1585

M. Sabooni and Q. Li, Stefan Kröll et Lars Rippe. « Efficient Quantum Memory Using a Weakly Absorbing Sample, Physical Review Letters, vol.110, p.133604, 2013.

M. Gündo?an, P. M. Ledingham, and K. Kutluer, Margherita Mazzera et Hugues de Riedmatten. « Solid State Spin-Wave Quantum Memory for Time-Bin Qubits, Physical Review Letters, vol.114, issue.23, p.230501

P. Jobez, C. Laplane, N. Timoney, N. Gisin, and A. Ferrier, Philippe Goldner et Mikael Afzelius. « Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory, Physical Review Letters, vol.114, issue.23, p.230502

R. Lauro, T. Chanelière, and J. L. Le-gouët, « Slow light using spectral hole burning in a thulium-doped yttrium-aluminum-garnet crystal, Physical Review A, vol.79, issue.6, 2009.

. Thierry-chanelière, « Traiter l'information avec des processeurs atomiques, 0200.

J. S. Toll, « Causality and the Dispersion Relation : Logical Foundations, Physical Review, vol.104, issue.6, pp.1760-1770, 1956.

K. Kutluer, F. María, J. Pascual-winter, P. M. Dajczgewand, M. Ledingham et al., Thierry Chanelière et Hugues de Riedmatten. « Spectral-hole memory for light at the single-photon level, Physical Review A, vol.93, issue.4, p.40302, 2016.

M. J. Thorpe, L. Rippe, T. M. Fortier, and S. Matthew, Kirchner et Till Rosenband. « Frequency-stabilization to 6x10e-16 via spectral-hole burning, Nature Photonics, vol.5, pp.688-693, 2011.

C. W. Thiel, R. L. Cone, and T. Böttger, « Laser linewidth narrowing using transient spectral hole burning, Journal of Luminescence. 18th International Conference on Dynamical Processes in Excited States of Solids, vol.152, pp.84-87

X. Xu, . Sri-rajasekhar, H. Kothapalli, . Liu, V. Lihong et al., « Spectral hole burning for ultrasound-modulated optical tomography of thick tissue, Journal of Biomedical Optics, vol.15, pp.66018-066018, 2010.

J. Tay, P. M. Ledingham, J. Jevon, and . Longdell, « Coherent optical ultrasound detection with rare-earth ion dopants, Applied Optics, vol.49, issue.23, pp.4331-4334

A. Kinos and Q. Li, Lars Rippe et Stefan Kröll. « Development and characterization of high suppression and high étendue narrowband spectral filters, Applied Optics, vol.55, p.10442, 2016.

A. Walther, L. Rippe, L. V. Wang, S. Andersson-engels, and S. Kröll, « Analysis of the potential for non-invasive imaging of oxygenation at heart depth, using ultrasound optical tomography (UOT) or photo-acoustic tomography (PAT), Biomedical Optics Express, vol.8, p.4523, 2017.

D. L. Mcauslan, L. R. Taylor, and J. J. Longdell, « Using quantum memory techniques for optical detection of ultrasound, Applied Physics Letters, vol.101, p.191112, 2012.

L. Veissier, C. W. Thiel, T. Lutz, and P. E. Barclay, Wolfgang Tittel et Rufus L. Cone. « Quadratic Zeeman effect and spin-lattice relaxation of Tm3+ :YAG at high magnetic fields, Physical Review B, vol.94, p.20, 2016.

T. Chanelière, J. Ruggiero, M. Bonarota, M. Afzelius, and J. Gouët, « Efficient light storage in a crystal using an atomic frequency comb, New Journal of Physics, vol.12, p.23025

M. Bonarota, J. Gouët, and T. Chanelière, « Highly multimode storage in a crystal, New Journal of Physics, vol.13, p.13013, 2011.

I. Zafarullah, « Thulium ions in a yttrium aluminium garnet host for quantum computing applications : material analysis and single qubit operations, vol.264, 2008.

A. Louchet, J. S. Habib, V. Crozatier, I. Lorgeré, F. Goldfarb et al., « Branching ratio measurement of a ? system in Tm 3+ : YAG under a magnetic field, Physical Review B, vol.75, p.3, 2007.

A. Louchet-chauvet, Processeurs atomiques pour le traitement de signaux optiques et radio-fréquence, vol.17

R. L. Ahlefeldt, M. F. Winter, A. Louchet-chauvet, T. Chanelière, and J. ,

L. Gouët, « Optical measurement of heteronuclear cross-relaxation interactions in Tm :YAG, Physical Review B, vol.92, issue.14, p.9, 2015.

V. Crozatier, F. De-seze, L. Haals, F. Bretenaker, I. Lorgeré et al., « Laser diode stabilisation for coherent driving of rare earth ions, Optics Communications, vol.241, issue.1, pp.203-213, 2004.

A. Bengtsson, D. Hill, M. Li, M. Di, M. Cinthio et al., Andreas Walther, Lars Rippe et Stefan Kröll. « Characterization and modeling of acousto-optic signal strengths in highly scattering media, Biomedical Optics Express, vol.10, p.5565, 2019.

, Photodiode Quantum Efficiency-Definition,equation,calculator

P. R. Bargo, S. A. Prahl, L. Steven, and . Jacques, « Collection efficiency of a single optical fiber in turbid media, Applied Optics, vol.42, issue.1, pp.3187-3197

C. Venet, M. Bocoum, J. Laudereau, and T. Chaneliere, François Ramaz et Anne Louchet-Chauvet. « Ultrasound-modulated optical tomography in scattering media : flux filtering based on persistent spectral hole burning in the optical diagnosis window, Optics Letters, vol.43, pp.3993-3996

. Afnor and . Nf, EN 60825-1 -Sécurité des appareils à laser -Partie 1 : classification des matériels et exigences, 1994.

E. D. Black, « An introduction to Pound-Drever-Hall laser frequency stabilization, American Journal of Physics, vol.69, p.79, 2001.

V. Crozatier, « Développement de lasers solides agiles ultra-stables pour la manipulation cohérente de systèmes atomiques : applications au traitement optique de signaux radiofréquences et à l'information quantique, 2006.

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, « Understanding laser stabilization using spectral hole burning, Optics Express, vol.15, pp.11444-11465, 2007.

K. Numata, A. Kemery, and J. Camp, « Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities, Physical Review Letters, vol.93, p.250602, 2004.

O. Gobron, « Lasers ultra-stables asservis sur trous-brûlés spectraux : développement en vue d'une application aux horloges optiques, vol.159, 2017.

P. B. Sellin, N. M. Strickland, J. L. Carlsten, and R. L. Cone, « Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning, Optics Letters, vol.24, issue.1, p.1038

D. R. Leibrandt, M. J. Thorpe, C. Chou, T. M. Fortier, and A. Scott, Diddams et Till Rosenband. « Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu :YSO, Physical Review Letters, vol.111, issue.3, 2013.

G. Pryde, R. Böttger, R. C. Cone, and . Ward, « Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 10 13 and their application to devices and spectroscopy, Journal of Luminescence, vol.98, pp.309-315

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, « Laser frequency stabilization using regenerative spectral hole burning, Physical Review B, vol.62, pp.1473-1476, 2000.

P. B. Sellin, N. M. Strickland, T. Böttger, J. L. Carlsten, and R. L. Cone, « Laser stabilization at 1536 nm using regenerative spectral hole burning, Physical Review B, vol.63, p.15, 2001.

T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, « Diode laser frequency stabilization to transient spectral holes and spectral diffusion in Er :YSO at 1536nm, Journal of Luminescence 94-95 (déc. 2001), pp.324-330

T. Böttger, G. J. Pryde, and R. L. Cone, « Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning, Optics Letters, vol.28, issue.1, p.200, 2003.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford et al., « Laser phase and frequency stabilization using an optical resonator, Applied Physics B, vol.31, issue.2, pp.97-105, 1983.

M. Zhu and J. L. Hall, « Stabilization of optical phase/frequency of a laser system : application to a commercial dye laser with an external stabilizer, JOSA B 10.5 (1 er mai 1993), pp.802-816

S. Cook, . Rosenband, R. David, and . Leibrandt, Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu :YSO », vol.114

O. Gobron, K. Jung, N. Galland, K. Predehl, R. L. Targat et al., « Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals, Optics Express, vol.25, p.15539

W. E. Gifford and . Gifford-mcmahon-cycle, Advances in Cryogenic Engineering. Sous la dir. de K. D. Timmerhaus. Advances in Cryogenic Engineering, pp.152-159, 1966.

M. Bocoum, J. Luc-gennisson, C. Venet, M. Chi, P. M. Petersen et al., Grabar et François Ramaz. « Two-color interpolation of the absorption response for quantitative acousto-optic imaging, Optics Letters, vol.43, issue.1, pp.399-402, 2018.

C. Venet, B. Car, L. Veissier, and F. , Ramaz et A. Louchet-Chauvet. « Deep and persistent spectral holes in thulium-doped yttrium orthosilicate for imaging applications, Physical Review B, vol.99, p.115102, 2019.

, WFUMB World Federation for Ultrasound in Medicine and Biology, World Federation for Ultrasound in Medicine et Biology (WFUMB), 2018.

, European Federation of Societies for Ultrasound in Medecine et Biology (EFSUMB)

-. E. Guidelines-&-recommendations,

B. Stanley, G. Barnett, . Haar, C. Marvin, H. Ziskin et al., Francis A Duck et Kazuo Maeda. « International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine, Ultrasound in Medicine & Biology, vol.26, pp.355-366, 2000.

. Articles-maïmouna, J. Bocoum, C. Luc-gennisson, M. Venet, P. M. Chi et al., Grabar et François Ramaz. « Two-color interpolation of the absorption response for quantitative acousto-optic imaging, Optics Letters, vol.43, issue.1, pp.399-402, 2018.

C. Venet, M. Bocoum, J. Laudereau, and T. Chaneliere, François Ramaz et Anne Louchet-Chauvet. « Ultrasound-modulated optical tomography in scattering media : flux filtering based on persistent spectral hole burning in the optical diagnosis window, Optics Letters, vol.43, pp.3993-3996

C. Venet, B. Car, and L. Veissier, François Ramaz et Anne Louchet-Chauvet. « Deep and persistent spectral holes in thulium-doped yttrium orthosilicate for imaging applications, Conférences Présentations Caroline Venet*, Maïmouna Bocoum, vol.99, p.115102, 2017.

C. Venet, *. , M. Bocoum, J. Laudereau, and T. Chanelière, Ultra narrow spectral filter for acousto-optic imaging for medical applications", Rare earth ion crystal for quantum information workshop, 2017.

C. Venet, *. , M. Bocoum, J. Laudereau, and T. Chanelière, Flux filtering for acousto-optic imaging in scattering media, SPIE Photonics West BIOS, 2018.

C. Venet, *. , M. Bocoum, T. Chanelière, and F. Ramaz, Filtrage spectral ultra fin dédié à l'imagerie acousto-optique pour l'imagerie médicale 13 ème journées Imagerie Optique Non-Conventionnelle (JIONC), 2018.

C. Venet, *. , M. Bocoum, J. Laudereau, and T. Chanelière, Ultra-narrow spectral filter for acousto-optic imaging for medical applications, SPIE Photonics Europe, 2018.

C. Venet, *. , M. Bocoum, and T. Chanelière, Filtrage spectral ultra fin dédié à l'imagerie acousto-optique pour l'imagerie médicale, 2018.

A. Louchet-chauvet, *. , C. Venet, M. Bocoum, and T. Chanelière, Filtrage spectral pour l'imagerie acousto-optique en milieu diffusant, Optique Toulouse, 2018.

A. Louchet-chauvet, *. , C. Venet, and F. Ramaz, Trous spectraux profonds et persistants dans Tm :YSO : un filtre pour l'imagerie acousto-optique, Congrès général de la Société Française de Physique (SFP)

C. Poster, *. Venet, J. Laudereau, and T. Chanelière, Filtrage spectral ultra fin dédié à l'imagerie acousto-optique pour l'imagerie médicale, Congrès général de la Société Française de Physique (SFP), 2017.

A. Louchet-chauvet, *. , C. Venet, M. Bocoum, and T. Chanelière, Filtrage spectral pour l'imagerie acousto-optique en milieu diffusant, Optique Toulouse, 2018.

C. Venet, T. Chanelière, M. Bocoum, F. Ramaz, *. et al., Narrow spectral filtering detection techniques for Ultrasound Optical Tomography of biological tissues with a Tm :YAG crystal submitted to a weak magnetic field, Photorefractive Photonics and beyond 2019 (PR'19), 2019.

A. Louchet-chauvet, *. , C. Venet, and F. Ramaz, Trous spectraux profonds et persistants dans Tm :YSO : un filtre pour l'imagerie acousto-optique, Congrès général de la Société Française de Physique (SFP), 2019.

C. Venet, *. , T. Chanelière, M. Bocoum, F. Ramaz et al., Au cours de cette thèse nous avons développé un filtre spectral intrinsèquement robuste à une mise en oeuvre in vivo et capable de filtrer le signal de photons marqués. Ce filtre est basé sur le phénomène de creusement spectral, il est réalisé dans un cristal de grenat d'yttrium aluminium dopé au thulium (Tm : YAG) sous champ magnétique. Dans cette thèse, nous avons caractérisé le filtre spectral et mis au point un dispositif expérimental permettant d'imager un gel diffusant simulant un tissu biologique. Des images sur des fantômes calibrés ont été réalisées et confirment le potentiel de ce filtre spectral pour l'imagerie. Nous avons également fait évoluer le montage en remplaçant le laser par une source commerciale que nous avons asservie en fréquence, Narrow spectral filtering detection techniques for Ultrasound Optical Tomography of biological tissues with a Tm :YAG crystal submitted to a weak magnetic field, 2019.

. Mots-clés-imagerie-acousto-optique, Asservissement laser, Milieu diffusant, Imagerie médicale, Cristaux dopés aux ions de terre rare