L. K. Abbott and D. A. Manning, Soil Health and Related Ecosystem Services in Organic Agriculture, 2015.

L. G. Abeledo, R. Savin, and G. A. Slafer, Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model, 2008.

, European Journal of Agronomy, vol.28, pp.541-550

H. F. Abouziena, W. M. Haggag, H. F. Abouziena, and W. M. Haggag, Weed Control in Clean Agriculture: A Review1, Planta Daninha, vol.34, pp.377-392, 2016.

F. Affholder, C. Poeydebat, M. Corbeels, E. Scopel, and P. Tittonell, The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling, Field Crops Research, vol.143, pp.106-118, 2013.

F. Affholder, E. Scopel, J. M. Neto, and A. Capillon, Diagnosis of the productivity gap using a crop model. methodology and case study of small-scale maize production in central Brazil, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00886183

. Agronomie, , vol.23, pp.305-325

/. Agencebio and . Oc, Repères chiffrées 2017 du bio en France. Dossier de Presse, 2018.

R. Alvarez, H. S. Steinbach, and J. L. De-paepe, Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis, Soil and Tillage Research, vol.170, pp.53-65, 2017.

,

C. Amosse, M. Jeuffroy, F. Celette, and C. David, Relay-intercropped forage legumes help to control weeds in organic grain production, European Journal of Agronomy, vol.49, pp.158-167, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003286

C. Amosse, M. Jeuffroy, and C. David, Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability, Field Crops Research, vol.145, pp.78-87, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001531

W. Anderson, C. Johansen, and K. H. Siddique, Addressing the yield gap in rainfed crops: a review. Agronomy for Sustainable Development, vol.36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532413

W. K. Anderson, Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar, Field Crops Research, vol.116, pp.14-22, 2010.

,

, Références 150

J. Anglade, G. Billen, and J. Garnier, Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in, Europe. Ecosphere, vol.6, pp.1-24, 2015.

,

J. Anglade, G. Billen, J. Garnier, T. Makridis, T. Puech et al., Nitrogen soil surface balance of organic vs conventional cash crop farming in the Seine watershed, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02637384

, Agricultural Systems, vol.139, pp.82-92

M. Askegaard, J. E. Olesen, I. A. Rasmussen, and K. Kristensen, Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management, Agriculture, Ecosystems and Environment, vol.142, pp.149-160, 2011.

M. Askegaard and J. Eriksen, Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on a coarse sand, Ecosystems & Environment, vol.123, pp.99-108, 2008.

M. Askegaard, J. E. Olesen, and K. Kristensen, Nitrate leaching from organic arable crop rotations: effects of location, manure and catch crop, Soil Use and Management, vol.21, pp.181-188, 2005.

,

B. Autret, Quantification and modelling of carbon and nitrogen fate in alternative cropping systems experiments on the long term, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02119362

B. Autret, N. Beaudoin, L. Rakotovololona, and M. Bertrand, Can alternative cropping systems mitigate nitrogen losses and improve GHG balance? Results from a 19-yr experiment in Northern France, Geoderma
URL : https://hal.archives-ouvertes.fr/hal-02624613

B. Autret, B. Mary, C. Chenu, M. Balabane, C. Girardin et al.,

N. Beaudoin, Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment, Ecosystems & Environment, vol.232, pp.150-164, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01531679

J. Bachinger and P. Zander, ROTOR, a tool for generating and evaluating crop rotations for organic farming systems, European Journal of Agronomy, vol.26, pp.130-143, 2007.

,

B. P. Baker, C. M. Benbrook, E. Groth, I. , K. Lutz et al., « Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets, Food Additives & Contaminants, vol.19, issue.5, pp.427-473, 2002.

,

B. C. Ball, T. Batey, and L. J. Munkholm, Field Assessment of Soil Structural Quality -a Development of the Peerlkamp Test, Soil Use and Management, vol.23, issue.4, pp.329-366, 2007.

,

B. C. Ball, T. Batey, L. J. Munkholm, R. M. Guimarães, H. Boizard et al., The numeric visual evaluation of subsoil structure (SubVESS) under agricultural production, Soil and Tillage Research, vol.148, pp.85-96, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638900

,

M. Bara?ski, D. ?rednicka-tober, N. Volakakis, C. Seal, R. Sanderson et al.,

C. Benbrook, B. Biavati, E. Markellou, C. Giotis, J. Gromadzka-ostrowska et al., Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses, British Journal of Nutrition, vol.112, pp.794-811, 2014.

M. Bassanino, D. Sacco, L. Zavattaro, and C. Grignani, Nutrient balance as a sustainability indicator of different agro-environments in Italy, Ecological Indicators, vol.11, pp.715-723, 2011.

,

W. Battye, V. P. Aneja, and W. H. Schlesinger, Is nitrogen the next carbon?, Earth's Future, vol.5, pp.894-904, 2017.

N. Beaudoin, Experimental analysis and modelling of the effects of cropping practices on nonpoint nitrate pollution of a deep aquifer in an arable farming area, PhD. Sciences of the Universe. INAPG (AgroParisTech). <NNT : 2006INAP0028>. <pastel-00002665>, 2006.
URL : https://hal.archives-ouvertes.fr/pastel-00002665

N. Beaudoin, B. Autret, L. Rakotovololona, A. Ronceux, M. Bertrand et al., Quantification et modélisation de la production des bilans C et N en systèmes de culture biologiques (AB), 2017.

N. Beaudoin, S. Buis, D. Ripoche, E. Justes, P. Bertuzzi et al.,

J. Leonard, G. Louarn, B. Mary, J. C. Poupa, F. Ruget et al., STICS : un modèle générique et robuste de réponse des systèmes de culture aux conditions agro-pédoclimatiques, 2015.

N. Beaudoin, N. Gallois, P. Viennot, and C. Le-bas, Evaluation of a spatialized agronomic model in predicting yield and N leaching at the scale of the Seine-Normandie Basin, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372241

, Environmental Science and Pollution Research

N. Beaudoin, M. Launay, E. Sauboua, G. Ponsardin, and B. Mary, Evaluation of the soil crop model STICS over 8 years against the "on farm" database of Bruyères catchment, European Journal of Agronomy, vol.29, pp.46-57, 2008.

N. Beaudoin, B. Nicoullaud, and V. Houlès, Etablissement et validation de classes de pédotransfert pour un modèle de culture à l'échelle parcellaire : Application au modèle STICS. In : 'Hétérogénéité parcellaire et gestion des cultures : vers une agriculture de précision, 2007.

, Editions Quae, collection Update Sciences and Technologies, pp.25-42

N. Beaudoin, J. Saad, C. Van-laethem, J. Maucorps, J. M. Machet et al., Nitrate leaching in intensive arable agriculture in Northern France: effect of farming practices, soils and crop rotations, Agriculture, Ecosystem and Environment, vol.111, pp.292-310, 2005.

C. Bécel, N. M. Munier-jolain, and B. Nicolardot, Assessing nitrate leaching in cropping systems based on integrated weed management using the STICS soil-crop model, European Journal of Agronomy, vol.62, pp.46-54, 2015.

L. Bedoussac, E. P. Journet, H. Hauggaard-nielsen, C. Naudin, G. Corre-hellou et al., Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review, Agronomy for Sustainable Development, vol.35, issue.3, pp.911-935, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01300288

L. W. Bell, B. Sparling, M. Tenuta, and M. H. Entz, Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland, Ecosystems & Environment, vol.158, pp.156-63, 2012.

,

S. Bellon and . Et-servane-penvern, Les dynamiques de recherches en bio, vol.227, pp.189-98, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02630742

D. Benaragama, S. J. Shirtliffe, E. N. Johnson, H. S. Duddu, and L. D. Syrovy, Does yield loss due to weed competition differ between organic and conventional cropping systems?, Weed Res, vol.56, pp.274-283, 2016.

T. Ben-ari, J. Boe, P. Ciais, R. Lecerf, M. Van-der-velde et al., Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nature Communications, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806699

M. Benoit, J. Garnier, J. Anglade, and G. Billen, Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France). Nutrient Cycling in Agroecosystems, vol.100, pp.285-299, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01194827

M. Benoit, J. Garnier, N. Beaudoin, and G. Billen, A participative network of organic and conventional crop farms in the Seine Basin (France) for evaluating nitrate leaching and yield performance, Agricultural Systems, vol.148, pp.105-113, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02632912

J. Bergez, N. Colbach, O. Crespo, F. Garcia, M. H. Jeuffroy et al., Designing crop management systems by simulation, European Journal of Agronomy, vol.32, issue.1, pp.3-9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173261

G. Bergkvist, M. Stenberg, J. Wetterlind, B. Båth, and S. Elfstrand, Clover cover crops under-sown in winter wheat increase yield of subsequent spring barley -Effect of N dose and companion grass, Field Crops Research, vol.120, pp.292-298, 2011.

,

E. Beza, J. V. Silva, L. Kooistra, and P. Reidsma, Review of yield gap explaining factors and opportunities for alternative data collection approaches, European Journal of Agronomy, vol.82, pp.206-222, 2017.

G. Billen, J. Garnier, L. Et, and . Lassaletta, « The Nitrogen Cascade from, 2013.

, Agricultural Soils to the Sea: Modelling Nitrogen Transfers at Regional Watershed and Global Scales ». Philosophical Transactions of the Royal Society of London B, vol.368, 1621.

K. Birkhofer, T. M. Bezemer, J. Bloem, M. Bonkowski, S. Christensen et al., Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, vol.40, pp.2297-2308, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00346704

H. Blanco-canqui, C. A. Francis, and T. D. Galusha, Does organic farming accumulate carbon in deeper soil profiles in the long term?, Geoderma, vol.288, pp.213-221, 2017.

,

F. Boissinot, P. Du-cheyron, and L. Fontaine, Réseau criblage variétal -ITAB. Protocole de notation globale des maladies foliaires des céréales, 2015.

A. Boldrini, P. Benincasa, G. Tosti, F. Tei, and M. Guiducci, Apparent N Balance in Organic and Conventional Low Input Cropping Systems, 2007.

K. Borgen, H. Lunde, L. Reier-bakken, M. Azzaroli-bleken, and T. Breland, Nitrogen dynamics in stockless organic clover-grass and cereal rotations, Nutr Cycl Agroecosyst, vol.92, pp.363-378, 2012.

M. Boy-roura, K. C. Cameron, and H. J. Di, Identification of nitrate leaching loss indicators through regression methods based on a meta-analysis of lysimeter studies. Environmental Science and Pollution Research, vol.23, pp.3671-3680, 2016.

N. Brisson, P. Gate, D. Gouache, G. Charmet, F. X. Oury et al., Why are wheat yields stagnating in Europe? A comprehensive data analysis for France, Field Crops Research, vol.119, pp.201-2012, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964258

N. Brisson, M. Launay, and B. Mary, Conceptual basis, formalisations and parametrization of the STICS crop model, INRA Science Update, p.297, 2008.

N. Brisson, B. Mary, D. Ripoche, M. H. Jeuffroy, F. Ruget et al.,

F. Devienne-barret, R. Antonioletti, C. Durr, G. Richard, N. Beaudoin et al., STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn, Agronomie, vol.18, pp.311-346, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02698682

,

C. Brittain, R. Bommarco, M. Vighi, J. Settele, and S. G. Potts, Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination, Biological Conservation, vol.143, pp.1860-1867, 2010.

L. Bruckler, A. M. De-cockborne, P. Renault, and B. Claudot, Spatial and temporal variability of nitrate in irrigated salad crops, Irrigation Science, vol.17, pp.53-61, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02698250

U. Buczko, R. O. Kuchenbuch, and B. Lennartz, Assessment of the predictive quality of simple indicator approaches for nitrate leaching from agricultural fields, Journal of Environmental Management, vol.91, pp.1305-1315, 2010.

E. T. Bueren, P. C. Struik, and E. Jacobsen, Ecological concepts in organic farming and their consequences for an organic crop ideotype, NJAS Wageningen Journal of Life Sciences, vol.50, pp.1-26, 2002.

C. A. Cambardella, K. Delate, and D. B. Jaynes, Water Quality in Organic Systems, 2015.

K. C. Cameron, H. J. Di, and J. L. Moir, « Nitrogen Losses from the Soil/Plant System: A Review, Annals of Applied Biology, vol.162, issue.2, pp.145-73, 2013.

M. Casagrande, C. David, M. Valantin-morison, D. Makowski, and M. Jeuffroy, Factors limiting the grain protein content of organic winter wheat in south-eastern France: a mixedmodel approach, Agronomy for Sustainable Development, vol.29, issue.4, pp.565-574, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00886484

J. Caubel, M. Launay, D. Ripoche, D. Gouache, S. Buis et al., Climate change effects on leaf rust of wheat: Implementing a coupled crop-disease model in a French regional application, European Journal of Agronomy, vol.90, pp.53-66, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604466

, Références 155

, Grandes cultures biologiques en Ile-de, 2013.

. France, suivi de fermes de références -Résultats technico-économiques pluriannuels 2005-2011. Chambre d'Agriculture

F. Chlébowski, L. Strullu, B. Mary, L. Prieur, B. Soenen et al., Adaptation, parametrization and genericity of the STICS model applied to organic farming, STICS 2017 : XIe séminaire des utilisateurs de Stics, 2017.

H. Clivot, B. Mary, M. Valé, J. P. Cohan, L. Champolivier et al., Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems, Soil Biology and Biochemistry, vol.111, pp.44-59, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607349

B. Colomb, M. Carof, A. Aveline, and J. Bergez, Stockless organic farming: strengths and weaknesses evidenced by a multicriteria sustainability assessment model. Agronomy for Sustainable Development, vol.33, pp.593-608, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01201369

J. Constantin, N. Beaudoin, M. Launay, J. Duval, and B. Mary, Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS model in a temperate climate, Ecosystems & Environment, vol.147, pp.36-46, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650637

J. Constantin, C. Le-bas, and E. Justes, Large-scale assessment of optimal emergence and destruction dates for cover crops to reduce nitrate leaching in temperate conditions using the STICS soil-crop model, European Journal of Agronomy, vol.69, pp.75-87, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638408

,

J. Constantin, B. Mary, F. Laurent, G. Aubrion, A. Fontaine et al., Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments, Ecosystems & Environment, vol.135, pp.268-278, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665182

E. Coucheney, S. Buis, M. Launay, J. Constantin, B. Mary et al.,

D. Ripoche, N. Beaudoin, F. Ruget, K. S. Andrianarisoa, C. Le-bas et al., Accuracy, robustness and behavior of the STICS soil-crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France, Environmental Modelling & Software, vol.64, pp.177-190, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01132243

,

, Références 156

A. Couëdel, L. Alletto, H. Tribouillois, and É. Justes, Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agriculture, Ecosystems & Environment, vol.254, pp.50-59, 2018.

T. E. Crews and M. B. Peoples, Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs, Agriculture, Ecosystems and Environment, vol.102, issue.3, pp.279-297, 2004.

,

C. David, M. Jeuffroy, J. Henning, and J. Meynard, Yield variation in organic winter wheat: a diagnostic study in the Southeast of France, Agronomy for Sustainable Development, vol.25, issue.2, pp.213-223, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02680902

C. David, M. Jeuffroy, S. Recous, and F. Dorsainvil, Adaptation and assessment of the AZODYN model for managing the nitrogen fertilization of organic winter wheat, European Journal of Agronomy, vol.24, pp.249-266, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02680462

C. David, M. Jeuffroy, M. Valentin-morison, and C. Herbain, Improvement of the soilcrop model AZODYN under conventional, low-input and organic conditions, 2007.

T. De-ponti, B. Rijk, and M. K. Van-ittersum, The crop yield gap between organic and conventional agriculture, Agricultural Systems, vol.108, pp.1-9, 2012.

,

D. Schutter, United Nation general Assembly Report on the right to food. Human rights council, sixteenth session, Agenda item, vol.3, 2010.

D. Desclaux, S. Ceccarelli, M. Colley, J. Navazio, G. Trouche et al., Chapter 6-Centralized or decentralized breeding: the potentials of participatory approaches for low-input and organic agriculture, 2012.

V. Deytieux, N. Munier-jolain, and J. Caneill, Assessing the sustainability of cropping systems in single-and multi-site studies. A review of methods, European Journal of Agronomy, vol.72, pp.107-126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01753783

H. J. Di and K. C. Cameron, Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, vol.46, pp.237-256, 2002.

,

J. Doltra, M. Laegdsmand, and J. E. Olesen, Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: A combined modeling and experimental approach, European Journal of Agronomy, vol.34, pp.83-95, 2011.

,

, Références 157

J. Doltra and J. E. Olesen, The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate, European Journal of Agronomy, vol.44, pp.98-108, 2013.

,

T. Doré, C. Clermont-dauphin, Y. Crozat, C. David, M. Jeuffroy et al., Methodological progress in onfarm regional agronomic diagnosis. A review, Agronomy for Sustainable Development, vol.28, pp.151-161, 2008.

T. Doré, M. Sebillotte, and J. M. Meynard, A diagnostic method for assessing regional variations in crop yield, Agricultural Systems, vol.54, pp.169-188, 1997.

C. F. Drury, W. D. Reynolds, C. S. Tan, N. B. Mclaughlin, X. M. Yang et al.,

J. Y. Yang, Impacts of 49-51 years of fertilization and crop rotation on growing season nitrous oxide emissions, nitrogen uptake and corn yields, Canadian Journal of Soil Science, vol.94, pp.421-433, 2014.

R. Eltun, A. Korsaeth, and O. Nordheim, A comparison of environmental, soil fertility, yield, and economical effects in six cropping systems based on an 8-year experiment in Norway, Agriculture, Ecosystems & Environment, vol.90, issue.2, pp.155-168, 2002.

O. Erekul and W. Köhn, Effect of Weather and Soil Conditions on Yield Components and Bread-Making Quality of Winter Wheat (Triticum aestivum L.) and Winter Triticale (Triticosecale Wittm.) Varieties in North-East Germany, Journal of Agronomy and Crop Science, vol.192, pp.452-464, 2006.

S. Eriksen, P. Aldunce, C. S. Bahinipati, R. D. Martins, J. I. Molefe et al., When not every response to climate change is a good one: Identifying principles for sustainable adaptation, Climate and Development, vol.3, pp.7-20, 2011.

G. Estrada-campuzano, G. A. Slafer, and D. J. Miralles, Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments, Field Crops Research, vol.128, pp.167-179, 2012.

L. T. Evans and R. A. Fischer, Yield Potential: Its Definition, Measurement, and Significance, Crop Science, vol.39, pp.1544-1551, 1999.

. Fao, Conservation Agriculture: Case Studies in Latin America and Africa, Food & Agriculture Org, 2001.

. Fao, Conférence internationale sur l'agriculture biologique et la sécurité alimentaire. Rapport, Rome, 3-5 mai, Références, vol.158, 2007.

R. A. Fischer, Definitions and determination of crop yield, yield gaps, and of rates of change, Field Crops Research, vol.182, pp.9-18, 2015.

,

D. Foissy, J. Vian, and C. David, Managing nutrient in organic farming system: reliance on livestock production for nutrient management of arable farmland, Org. Agr, vol.3, pp.183-199, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02645472

,

L. Fontaine, L. Fourrié, J. F. Garnier, M. Mangin, B. Colomb et al.,

T. Quirin, B. Chareyron, R. Maurice, C. Glachant, and J. P. Gouraud, Connaître, caractériser et évaluer les rotations en systèmes de grandes cultures biologiques, Innovations Agronomiques, vol.25, pp.27-40, 2012.

J. Fustec, F. Lesuffleur, S. Mahieu, and J. Cliquet, Nitrogen rhizodeposition of legumes. A review. Agronomy for Sustainable Development, vol.30, pp.57-66, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00886487

,

J. N. Galloway, J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth et al., The nitrogen cascade, Bioscience, vol.53, issue.4, p.53, 2003.

J. N. Galloway and E. B. Cowling, Reactive nitrogen and the world: 200 years of change, Ambio, vol.31, pp.64-71, 2002.

A. Gattinger, A. Muller, M. Haeni, C. Skinner, A. Fliessbach et al.,

M. Stolze, P. Smith, N. E. Scialabba, .. Niggli, and U. , Enhanced top soil carbon stocks under organic farming, Proceedings of the National Academy of Sciences, vol.109, pp.18226-18231, 2012.

,

Y. Gautronneau, Une agriculture écologique pour des zones à enjeux environnementaux majeurs. Le courrier de l'environnement de l'INRA N°32, 1997.

H. C. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence et al., , 2010.

, Billion People. Science, vol.327, pp.812-818

T. Gomiero, M. G. Paoletti, and D. Pimentel, Energy and Environmental Issues in Organic and Conventional Agriculture, Critical Reviews in Plant Sciences, vol.27, pp.239-254, 2008.

,

T. Gomiero, D. Pimentel, and M. G. Paoletti, Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture, Critical Reviews in Plant Sciences, vol.30, pp.95-124, 2011.

, Références 159

R. Gras, M. Benoit, J. P. Deffontaines, M. Duru, M. Lafarge et al., , 1989.

L. Fait-technique-en-agronomie, Activité agricole, concepts et méthodes d'étude. L'Hamarttan. INRA

P. Grassini, L. G. Van-bussel, J. Van-wart, J. Wolf, L. Claessens et al., How good is good enough ? Data requirements for reliable crop yield simulations and yield-gap analysis, Field Crops Research, vol.177, pp.49-63, 2015.

D. J. Greenwood, G. Lemaire, G. Gosse, P. Cruz, A. Draycott et al., Decline in Percentage N of C3 and C4 Crops with Increasing Plant Mass, Annals of Botany, vol.66, pp.425-436, 1990.
URL : https://hal.archives-ouvertes.fr/hal-02715495

L. Guichard, C. Bockstaller, C. Loyce, and D. Makowski, PERSYST, a cropping system model based on local expert knowledge, European Society of Agronomy symposium, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02754207

N. Guilpart, P. Grassini, V. O. Sadras, J. Timsina, and K. G. Cassman, Estimating yield gaps at the cropping system level, Field Crops Research, vol.206, pp.21-32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02626770

,

S. B. Hill, Redesigning the food system for sustainability, vol.12, pp.32-36, 1985.

A. Hodge, D. Robinson, A. Et, and . Fitter, « Are Microorganisms More Effective than Plants at Competing for Nitrogen?, Trends in Plant Science, vol.5, issue.7, pp.304-312, 2000.

, , pp.1656-1659

V. Houlès, B. Mary, M. Guérif, D. Makowski, and E. Justes, Evaluation of the ability of the crop model STICS to recommend nitrogen fertilisation rates to agro-environmental criteria, Agronomie, vol.24, pp.339-349, 2004.

R. W. Howarth, Coastal nitrogen pollution: A review of sources and trends globally and regionally, Harmful Algae, HABs and Eutrophication, vol.8, issue.1, pp.14-20, 2008.

,

N. I. Huth, P. J. Thorburn, B. J. Radford, and C. M. Thronton, Impacts of fertilisers and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: A simulation study, Agriculture Ecosystems & Environment, vol.136, issue.3-4, pp.351-357, 2010.

,

P. P. Iannetta, M. Young, J. Bachinger, and . Bergkvist, A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation, Frontiers in Plant Science, 2016.

, Références 160

, World Reference Base for Soil Resources, World Soil Resources Reports, vol.103, p.145, 2006.

M. Jabloun, K. Schelde, F. Tao, and J. E. Olesen, Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark, European Journal of Agronomy, vol.62, pp.55-64, 2015.

G. Jego, E. Pattey, G. Bourgeois, C. F. Drury, and N. Tremblay, Evaluation of the STICS crop growth model with maize cultivar parameters calibrated for Eastern Canada, Agronomy for Sustainable Development, vol.31, pp.557-570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00930481

E. S. Jensen, M. B. Peoples, R. M. Boddey, P. M. Gresshoff, H. Hauggaard-nielsen et al., Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review, Agron. Sustain. Dev, vol.32, pp.329-364, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00930531

,

R. Jevti?, V. ?upunski, M. Lalo?evi?, and L. ?upunski, Predicting potential winter wheat yield losses caused by multiple disease systems and climatic conditions, Crop Protection, vol.99, pp.17-25, 2017.

E. Johansson, A. Hussain, R. Kuktaite, C. Staffan, M. E. Andersson et al.,

, « Contribution of Organically Grown Crops to Human Health, International Journal of Environmental Research and Public Health, vol.11, issue.4, pp.3870-93

,

E. Justes, N. Beaudoin, P. Bertuzzi, R. Charles, J. Constantin et al., , 2013.

E. Justes, Main Lessons Drawn from the Analysis of the Literature, Cover Crops for Sustainable Farming, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02790422

E. Justes, B. Mary, J. Meynard, J. Machet, and L. Thelier-huche, Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops, Annals of Botany, vol.74, pp.397-407, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02710650

,

E. Justes, B. Mary, and B. Nicolardot, Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: parameterization of the residue decomposition module of STICS model for mature and non mature residues, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01862342

,

, Références 161

B. R. Keeble, The Brundtland report: 'Our common future, Medicine and War, vol.4, issue.1, pp.17-25, 1988.

H. Kirchmann, T. Kätterer, L. Bergström, G. Börjesson, and M. A. Bolinder, Flaws and criteria for design and evaluation of comparative organic and conventional cropping systems, Field Crop Research, vol.186, pp.99-106, 2016.

A. N. Kravchenko, S. S. Snapp, and G. P. Robertson, Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems, PNAS, vol.114, pp.926-931, 2017.

,

R. Krell, G. Allard, J. Henning, and C. David, « L'agriculture biologique face a une specialisation des systemes de production, » In Introduction, vol.95, p.4198, 2000.

B. Küstermann, O. Christen, and K. J. Hülsbergen, Modelling nitrogen cycles of farming systems as basis of site-and farm-specific nitrogen management, Ecosystems & Environment, vol.135, pp.70-80, 2010.

R. Lal, Soils and Sustainable Agriculture, A Review. Agronomy for Sustainable Development, vol.28, issue.1, pp.57-64, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00886417

C. Lamine, J. Meynard, N. Perrot, and S. Bellon, Analyse des formes de transition vers des agricultures plus écologiques : les cas de l'Agriculture Biologique et de la Protection intégrée, Innovations Agronomiques, vol.4, pp.483-493, 2008.

L. Van-buren, E. T. Struik, P. C. Jacobsen, and E. , Ecological concepts in organic farming and their consequences for an organic crop indeotype, Netherlands Journal of Agricultural Science, vol.50, pp.1-26, 2002.

J. Leifeld, R. Reiser, and H. Oberholzer, Consequences of Conventional versus Organic farming on Soil Carbon: Results from a 27-Year Field Experiment, Agronomy Journal, vol.101, pp.1204-1218, 2009.

J. Lelieveld, J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer, The contribution of outdoor air pouultion sources to premature mortality on a global scale, Nature, vol.525, issue.3, pp.67-71, 2015.

A. Lengrand, Diagnostic des facteurs limitant la production des céréales en agriculture biologique : approche par Yield Gap Analysis. Mémoire de fin d'étude 3ème année à l'ENSAIA, Spécialisation DEFI, vol.40, 2017.

C. Lesur, M. Bazot, F. Bio-beri, B. Mary, M. H. Jeuffroy et al., Assessing nitrate leaching during the three-first years of Miscanthus × giganteus from on-farm measurements and modeling, GCB Bioenergy, vol.6, pp.439-449, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173306

, Références 162

D. B. Lobell, K. G. Cassman, and C. B. Field, Crop Yield Gaps: Their Importance, Magnitudes, and Causes, Annual Review of Environment and Resources, vol.34, issue.1, pp.179-204, 2009.

K. Lorenz and R. Lal, Chapter Three -Environmental Impact of Organic Agriculture, Advances in Agronomy, édité par Donald L. Sparks, vol.139, pp.99-152, 2016.

J. M. Machet, P. Dubrulle, N. Damay, R. Duval, J. L. Julien et al., A Dynamic Decision-Making Tool for Calculating the Optimal Rates of N Application for Annual Crops While Minimising the, Residual Level of Mineral N at Harvest. Agronomy, vol.7, p.73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658872

D. Makowski, D. Wallach, and J. Meynard, Models of yield, grain protein, and residual mineral nitrogen responses to applied nitrogen for winter wheat, Agronomy Journal, vol.91, pp.377-385, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02685100

R. Mancinelli, E. Campiglia, A. D. Tizio, and S. Marinari, « Soil carbon dioxide emission and carbon content as affected by conventional and organic cropping systems in Mediterranean environment, Applied Soil Ecology, vol.46, issue.1, pp.64-72, 2010.

,

C. L. Marley, R. Fychan, V. J. Theobald, S. P. Cuttle, and R. Sanderson, Effects of a winter or spring sowing date on soil nitrogen utilisation and yield of barley following a forage crop of red clover, lucerne or hybrid ryegrass, Ecosystems & Environment, vol.181, pp.213-222, 2013.

,

B. Mary, N. Beaudoin, E. Justes, and J. M. Machet, Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model, European Journal of Soil Science, vol.50, pp.549-566, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02691686

J. Mayer, L. Gunst, P. Mäder, M. Samson, M. Carcea et al.,

D. Dubois, Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland, European Journal of Agronomy, vol.65, pp.27-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269382

M. Mazzoncini, D. Antichi, N. Silvestri, G. Ciantelli, and C. Sgherri, Organically vs conventionally grown winter wheat: Effects on grain yield, technological quality, and on phenolic composition and antioxidant properties of bran and refined flour, Food Chemistry, vol.175, pp.445-451, 2015.

, Références 163

M. Daniel, M. D. , A. S. Grandy, L. K. Tiemann, and M. N. Weintraub, Crop rotation complexity regulates the decomposition of high and low quality residues, Soil Biology and Biochemistry, vol.78, pp.243-54, 2014.

B. Melander, I. A. Rasmussen, and J. E. Olesen, Incompatibility between fertility building measures and the management of perennial weeds in organic cropping systems, Ecosystems & Environment, vol.220, pp.184-192, 2016.

C. Mignolet, C. Schott, and M. Benoit, Spatial dynamics of farming practices in the Seine basin: methods for agronomic approaches on a regional scale, STOTEN, vol.375, pp.13-32, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02664293

F. E. Miguez and G. A. Bollero, Review of corn yield response under winter cover cropping systems using meta-analytic methods, Crop science, vol.45, pp.2318-2329, 2005.

,

B. Molinuevo-salces, S. U. Larsen, B. K. Ahring, and H. Uellendahl, Biogas production from catch crops: Evaluation of biomass yield and methane potential of catch crops in organic crop rotations, Biomass and Bioenergy, vol.59, pp.285-292, 2013.

,

K. Möller and H. J. Reents, Effects of Various Cover Crops after Peas on Nitrate Leaching and Nitrogen Supply to Succeeding Winter Wheat or Potato Crops, Journal of Plant Nutrition and Soil Science, vol.172, issue.2, pp.277-287, 2009.

K. Möller, W. Stinner, and G. Leithold, Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutrient Cycling in Agroecosystems, vol.82, p.233, 2008.

K. Mondelaers, J. Aertsens, and G. Van-huylenbroeck, A meta-analysis of the difference in environmental impacts between organic and conventional farming, British Food Journal, vol.111, pp.1098-1119, 2009.

D. Moreau, N. Beaudoin, N. Colbach, O. Pointurier, W. Querey et al., Intégrer les effets de la disponibilité en azote du sol dans un modèle simulant les effets des systemes de culture sur la flore adventice : couplage des modèles STICS et de Florsys, XIè séminaire des utilisateurs de STICS, pp.88-89, 2017.

T. Nemecek, J. Von-richthofen, G. Dubois, P. Casta, R. Charles et al., Environmental impacts of introducing grain legumes into European crop rotations, European Journal of Agronomy, vol.28, pp.380-393, 2008.

, Références 164

B. Nicolardot, S. Recous, and B. Mary, Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues, Plant and Soil, vol.228, pp.83-103, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02673993

E. Oerke, Crop losses to pests, The Journal of Agricultural Science, vol.144, pp.31-43, 2006.

,

J. E. Olesen, M. Askegaard, and I. A. Rasmussen, Winter cereal yields as affected by animal manure and green manure in organic arable farming, European Journal of Agronomy, vol.30, pp.119-128, 2009.

J. E. Olesen, E. M. Hansen, M. Askegaard, and I. A. Rasmussen, The value of catch crops and organic manures for spring barley in organic arable farming. Field Crop Research, vol.100, pp.168-178, 2007.

E. Palupi, A. Jayanegara, A. Ploeger, and J. Kahl, Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis, J. Sci. Food Agric, vol.92, pp.2774-2781, 2012.

F. Pashaei-kamali, J. A. Borges, M. P. Meuwissen, I. J. De-boer, and O. Lansink, Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis, Agricultural Systems, vol.157, pp.118-128, 2017.

,

J. Pernel and N. Munier-jolain, OdERA-Systèmes : un outil de gestion des adventices, 2011.

S. Colloque,

C. Peyrard, B. Mary, P. Perrin, G. Véricel, E. Gréhan et al., N2O emissions of low input cropping systems as affected by legume and cover crops use, Ecosystems & Environment, vol.224, pp.145-156, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02640109

,

S. Pickett, Space-for-time substitution as an alternative to long-term studies. Long-term studies in Ecology : Approaches and Alternatives, Ed Likens GE, pp.110-135, 1989.

D. Plaza-bonilla, J. M. Nolot, D. Raffaillac, and E. Justes, Cover crops mitigate nitrate leaching in cropping systems including grain legumes: Field evidence and model simulations, Ecosystems & Environment, vol.212, pp.1-12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638752

,

L. C. Ponisio, L. K. M&apos;gonigle, K. C. Mace, J. Palomino, P. Valpine et al., Diversification practices reduce organic to conventional yield gap, Proceedings of the Royal Society of London B: Biological Sciences, vol.282, 2015.

, Références 165

J. C. Pridham and M. H. Entz, Intercropping Spring Wheat with Cereal Grains, Legumes, and Oilseeds Fails to Improve Productivity under Organic Management, Agronomy Journal, vol.100, pp.1436-1442, 2008.

S. Pugesgaard, S. O. Petersen, N. Chirinda, and J. E. Olesen, Crop residues as driver for N2O emissions from a sandy loam soil, Agricultural and Forest Meteorology, vol.233, pp.45-54, 2017.

,

L. Rakotovololona, N. Beaudoin, A. Ronceux, E. Venet, and B. Mary, Driving factors of nitrate leaching in arable organic cropping systems in Northern France, Ecosystems & Environment, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02628187

L. Rakotovololona, Etude de la variabilité interannuelle et inter-parcellaire des balances minérales (azote, phosphore et potassium) en système de culture biologique, 2013.

I. A. Rasmussen, M. Askegaard, J. E. Olesen, and K. Kristensen, Effects on weeds of management in newly converted organic crop rotations in Denmark. Agriculture, Ecosystems & Environment, vol.113, pp.184-195, 2006.

A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, Nitrous oxide (N2O): The dominant, 2009.

,

J. P. Reganold and J. M. Wachter, Organic agriculture in the twenty-first century, Nature Plants, vol.2, p.15221, 2016.

D. Rigby and D. Cáceres, Organic farming and the sustainability of agricultural systems, 2001.

, Agricultural Systems, vol.68, pp.60-63

T. Rinnofner, J. K. Friedel, R. De-kruijff, G. Pietsch, and B. Freyer, Effect of catch crops on N dynamics and following crops in organic farming. Agronomy for Sustainable Development, vol.28, pp.551-558, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00886408

G. P. Robertson and S. M. Swinton, Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture, Frontiers in Ecology and the Environment, vol.3, pp.38-46, 2005.

,

I. J. Rochester, M. B. Peoples, N. R. Hulugalle, R. R. Gault, and G. A. Constable, Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems, Field Crop Research, vol.70, pp.151-160, 2001.

, Références 166

A. Ronceux, E. Favrelière, J. Meynard, N. Beaudoin, M. Camgrand et al.,

P. Menu, J. Pernel, H. Plumart, L. Rakotovololona, G. Salitot et al., Produire des références sur la gestion de l'azote et des adventices vivaces en Agriculture Biologique, en combinant connaissances scientifiques et expertise locale, Innovations Agrnomiques

S. E. Roques, D. R. Kindred, and S. Clarke, Triticale out-performs wheat on range of UK soils with a similar nitrogen requirement, The Journal of Agricultural Science, pp.1-21, 2016.

,

S. M. Ross, R. C. Izaurralde, H. H. Janzen, J. A. Robertson, and W. B. Mcgill, The nitrogen balance of three long-term agroecosystems on a boreal soil in western Canada, Ecosystems & Environment, vol.127, pp.241-250, 2008.

T. B. Sapkota, M. Askegaard, M. Laegdsmand, and J. E. Olesen, Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crop Research, vol.125, pp.129-138, 2012.

N. Sautereau and M. Benoit, Quantification et chiffrage des externalités de l'agriculture biologique, Synthèse du rapport au MAFF, ITAB et INRA, vol.20, p.pp, 2016.

N. Schaller, The concept of agricultural sustainability. Agriculture, Ecosystems & Environment, Agriculture and the environment, vol.46, p.90016, 1993.

O. Scheurer, Guide des sols de l'Oise, 1997.

M. Sebillotte, Itinéraires techniques et évolution de la pensée agronomique. CR Académie de l, Agriculture Française, vol.64, issue.11, pp.906-920, 1978.

M. Sebillotte, Système de culture, un concept opératoire pour les agronomes. Les systèmes de culture. INRA éditions, pp.165-96, 1990.

V. Seufert, N. Ramankutty, and J. A. Foley, Comparing the yields of organic and conventional agriculture, Nature, vol.485, pp.229-232, 2012.

A. Shah, M. Askegaard, I. A. Rasmussen, E. M. Jimenez, and J. E. Olesen, Productivity of organic and conventional arable cropping systems in long-term experiments in Denmark, 2017.

, European Journal of Agronomy, vol.90, pp.12-22

H. Sicard, J. Gainche, and L. Fontaine, Notice du module adventices de la BAO RotAB, 2013.

, La boîte à outil adventices

K. Sieling, U. Böttcher, and H. Kage, Canopy traits in rye, triticale and wheat under varying N supply, Agronomy Research, issue.4, pp.1467-1485, 2016.

C. Skinner, A. Gattinger, A. Muller, P. Mäder, A. Flie?bach et al., Greenhouse gas fluxes from agricultural soils under organic and non-organic management -A global meta-analysis, Science of The Total Environment, vol.468, pp.553-563, 2014.

,

L. G. Smith, D. Tarsitano, C. F. Topp, S. K. Jones, C. L. Gerrard et al., Predicting the effect of rotation design on N, P, K balances on organic farms using the NDICEA model. Renewable Agriculture and Food Systems, 2015.

L. G. Smith, A. G. Williams, and B. D. Pearce, The energy efficiency of organic agriculture: A review. Renewable Agriculture and Food Systems, vol.30, pp.280-301, 2015.

,

J. H. Spiertz, Nitrogen, Sustainable Agriculture and Food Security. A Review. Agronomy for Sustainable Development, vol.30, pp.43-55, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00886486

W. Stinner, K. Möller, and G. Leithold, Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems, European Journal of Agronomy, vol.29, pp.125-134, 2008.

,

L. Strullu, N. Beaudoin, P. Thiébeau, B. Mary, F. Ruget et al., Simulation of alfalfa biomass production and environmental impacts with the STICS model, European Journal of Agronomy

L. Strullu, F. Ferchaud, N. Yates, I. Shield, N. Beaudoin et al., Multisite Yield Gap Analysis of Miscanthus × giganteus Using the STICS Model, Bioenerg. Res, vol.8, pp.1735-1749, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02640981

M. A. Sutton, O. Oenema, J. W. Erisman, A. Leip, H. Van-grinsven et al., Too much of a good thing, Nature, vol.472, pp.159-161, 2011.

I. Tamm, Ü. Tamm, A. Ingver, R. Koppel, I. Tupits et al., Different leguminous pre-crops increased yield of succeeding cereals in two consecutive years, Acta Agriculturae Scandinavica, Section B -Soil & Plant Science, vol.66, pp.593-601, 2016.

, Références 168

E. I. Teixeira, P. Johnstone, E. Chakwizira, J. Ruiter, . De et al., Sources of variability in the effectiveness of winter cover crops for mitigating N leaching, Ecosystems & Environment, vol.220, pp.226-235, 2016.

,

V. Thieu, G. Billen, J. Garnier, and M. Benoit, Nitrogen cycling in a hypothetical scenario of generalised organic agriculture in the Seine, Somme and Scheldt watersheds, vol.11, pp.359-370, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647166

K. Thorup-kristensen and D. B. Dresbøll, Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop, Soil Use and Management, vol.26, pp.27-35, 2010.

,

K. Thorup-kristensen, J. Magid, and L. S. Jensen, Catch crops and green manures as biological tools in nitrogen management in temperate zones, Advances in Agronomy, vol.79, pp.227-302, 2003.

C. Tonitto, M. B. David, and L. E. Drinkwater, Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics, Ecosystems & Environment, vol.112, pp.58-72, 2006.

G. Torstensson, H. Aronsson, and L. Bergström, Nutrient use efficiencies and leaching of organic and conventional cropping systems in Sweden, Agronomy Journal, vol.98, issue.3, pp.603-615, 2006.

,

D. Tortorella, A. Scalise, A. Pristeri, B. Petrovi?ovà, and M. Monti, Chemical and biological responses in a Mediterranean sandy clay loam soil under grain legume-barley intercropping, 2013.

L. Agrochimica,

H. Tribouillois, J. Cohan, and E. Justes, Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling, Plant Soil, vol.401, pp.347-364, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636694

S. L. Tuck, C. Winqvist, F. Mota, J. Ahnström, L. A. Turnbull et al., Land-Use Intensity and the Effects of Organic Farming on Biodiversity: A Hierarchical Meta-Analysis, Journal of Applied Ecology, vol.51, issue.3, pp.746-755, 2014.

,

H. L. Tuomisto, I. D. Hodge, P. Riordan, and D. W. Macdonald, Does organic farming reduce environmental impacts? -A meta-analysis of European research, Journal of Environmental Management, vol.112, pp.309-320, 2012.

H. Uchino, K. Iwama, Y. Jitsuyama, K. Ichiyama, E. Sugiura et al., Effect of interseeding cover crops and fertilization on weed suppression under an organic and rotational cropping system, Field Crops Research, vol.127, pp.9-16, 2012.

,

T. K. Udeigwe, J. M. Teboh, P. N. Eze, M. H. Stietiya, V. Kumar et al.,

E. T. Ying and . Kandakji, « Implications of Leading Crop Production Practices on Environmental Quality and Human Health », Journal of Environmental Management, vol.151, pp.267-79, 2015.

N. Urruty, H. Guyomard, D. Tailliez-lefebvre, and C. Huyghe, Factors of winter wheat yield robustness in France under unfavourable weather conditions, European Journal of Agronomy, vol.90, pp.174-183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02623228

E. Valkama, R. Lemola, H. Känkänen, and E. Turtola, Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries, 2015.

. Agriculture, Ecosystems & Environment, vol.203, pp.93-101

M. Van-dijk, T. Morley, R. Jongeneel, M. Van-ittersum, P. Reidsma et al., Disentangling agronomic and economic yield gaps: An integrated framework and application, 2017.

, Agricultural Systems, vol.154, pp.90-99

J. W. Van-groenigen, C. Van-kessel, B. A. Hungate, O. Oenema, and D. S. Powlson,

K. J. Groenigen, Response to the Letter to the Editor Regarding Our Viewpoint, Environmental Science & Technology, 2017.

M. K. Van-ittersum and R. Rabbinge, Concepts in production ecology for analysis and quantification of agricultural input-output combinations, Field Crops Research, vol.52, pp.197-208, 1997.

, , pp.37-40

F. Van-stappen, A. Loriers, M. Mathot, V. Planchon, D. Stilmant et al., Organic Versus Conventional Farming: The Case of wheat Production in Wallonia, 2015.

, Agriculture and Agricultural Science Procedia, Farm Machinery and Processes Management in Sustainable Agriculture, 7th International Scientific Symposium, vol.7, pp.272-279

,

P. Viaux, Agriculture biologique et ressources naturelles: pas si simple. Agronomie, environnement et société, vol.6, pp.89-91, 2016.

J. P. Vidal, E. Martin, L. Franchistéguy, M. Baillon, and J. M. Soubeyroux, A 50-year highresolution atmospheric reanalysis over France with the Safran system, International Journal of Climatology, vol.30, pp.1627-1644, 2010.
URL : https://hal.archives-ouvertes.fr/meteo-00420845

, Références 170

A. Vincent and P. Fleury, Development of organic farming for the protection of water quality: Local projects in France and their policy implications, Land Use Policy, vol.43, pp.197-206, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02093635

,

B. Vinzent, R. Fuß, F. Maidl, and K. Hülsbergen, Efficacy of agronomic strategies for mitigation of after-harvest N2O emissions of winter oilseed rape, European Journal of Agronomy, vol.89, pp.88-96, 2017.

A. S. Voisin, C. Salon, N. G. Munier-jolain, and B. Ney, Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.), Plant and Soil, vol.243, pp.31-42, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02675233

S. Vrignon-brenas, F. Celette, A. Piquet-pissaloux, M. Jeuffroy, and C. David, Early assessment of ecological services provided by forage legumes in relay intercropping, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01533878

, European Journal of Agronomy, vol.75, pp.89-98

S. Wayman, C. Cogger, C. Benedict, I. Burke, D. Collins et al., The influence of cover crop variety, termination timing and termination method on mulch, weed cover and soil nitrate in reduced-tillage organic systems. Renewable Agriculture and Food Systems, vol.30, pp.450-460, 2015.

A. T. Wells, K. Y. Chan, and P. S. Cornish, Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth, New South Wales. Agriculture, Ecosystems & Environment, vol.80, pp.47-60, 2000.

M. Westphal, M. Tenuta, and M. H. Entz, Nitrous oxide emissions with organic crop production depends on fall soil moisture, Ecosystems & Environment, vol.254, pp.41-49, 2018.

,

A. Wezel, G. Soboksa, S. Mcclelland, F. Delespesse, and A. Boissau, The blurred boundaries of ecological, sustainable, and agroecological intensification: a review, Agron. Sustain. Dev, vol.35, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01532268

A. M. Whitbread, G. J. Blair, and R. D. Lefroy, Managing legume leys, residues and fertilisers to enhance the sustainability of wheat cropping systems in Australia: 1. The effects on wheat yields and nutrient balances, Soil and Tillage Research, vol.54, pp.63-75, 2000.

, , pp.112-121

K. Wick, C. Heumesser, and E. Schmid, Groundwater nitrate contamination: factors and indicators, Journal of Environmental Management, vol.111, pp.178-186, 2012.

,

, Références 171

H. Willer and J. Lernoud, Research Institute of Organic Agriculture (FiBL) and IFOAM -Organics International, Statistics and emerging, 2018.

C. Winqvist, J. Ahnström, and J. Bengtsson, Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account, Annals of the New York Academy of Sciences, vol.1249, pp.191-203, 2012.

X. Yin, K. C. Kersebaum, C. Kollas, K. Manevski, S. Baby et al.,

I. G. Atauri, L. Giglio, P. Hlavinka, H. Hoffmann, M. Launay et al.,

B. Mary, W. Mirschel, C. Nendel, A. Pacholski, T. Palosuo et al., Performance of process-based models for simulation of grain N, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594582

, Agricultural Systems, vol.154, pp.63-77

J. C. Zadoks, T. T. Chang, and C. F. Konzak, A decimal code for the growth stages of cereals, 1974.

, Weed Research, vol.14, pp.415-421

, Contribuer à l'amélioration de la gestion de l'azote des systèmes

, Deux types d'expérimentation complémentaires ont été mises en place pour tester la faisabilité et la performance d'une modélisation déterministe : 1) un réseau de parcelles agricoles AB sélectionnées par le projet Agri-Bio « de la connaissance à la performance

, Structuration et co-financement

, Ces volets sont indépendants sur le plan de l'expérimentation et complémentaires sur le plan de la modélisation, Le projet est structuré en 3 volets pilotés par AgroImpact

A. De and L. Rakotovololona, Quantification expérimentale et modélisation de la production, du bilan d'azote et des flux de nitrate en systèmes de grandes cultures biologiques

R. Partenariat-d&apos;agrotransfert, . Hauts-de-france, G. Abp, and . Co-financements,

B. De-bénédicte and A. , Quantification et modélisation des flux de C et N de systèmes de culture alternatifs, en situation expérimentale de longue durée, Collaborations : INRA Grignon, FIBL (Suisse) et Université Aarhus (Danemark), équipe STICS

. Co-financements,

C. Inra, É. Métis, and . Stics, C-Adaptation du modèle STICS aux situations AB. Calibration et test du modèle pour des espèces (ou variétés) et produits résiduaires organiques utilisés en AB. Collaborations : Arvalis, ITAB

. Co-financements, PIREN Seine et AESN. Annexes, vol.174

, Annexes méthodologiques

I. A. Annexe, Description des prélèvements réalisés au cours des différentes étapes du suivi

I. B. Annexe, Présentation du modèle de calcul LIXIM, 2006.

, D'après la notice d'utilisation du modèle LIXIM

, Le programme LIXIM simule l'évolution de l'humidité du sol et de la quantité de nitrate dans un profil de sol, dans le cas d'un sol nu. Il calcule le drainage et le lessivage sous la dernière couche de sol et l'évaporation en surface

. Le-modèle-de-transport-est-un-modèle-réservoir-multicouches-;-van-ploeg, Les couches élémentaires considérées dans le calcul ont une épaisseur fixe, à définir : elle devrait être égale à 2 fois la longueur de dispersivité, 1995.

, Compte tenu de cette résolution, le déplacement du nitrate est décrit par une loi de type chromatographique

D. Le-transfert, eau et de soluté entre couches est décrit selon l'algorithme de I, Burns, 1976.

L. Le, nitrate se déplaçant de la couche i-1 à la couche i sont supposés se mélanger d'une manière homogène dans la couche i. Si la teneur en eau de la couche i excède l'humidité à la capacité au champ (Hcc), l'eau excédentaire passe dans la couche i+1 immédiatement inférieure

, Le modèle ne prend donc pas en compte les mouvements de nitrate par diffusion, mais seulement les mouvements convectifs. Ce modèle fonctionne principalement en régime d'infiltration

, Il inclut cependant un calcul simplifié en régime d'évaporation. L'évaporation de l'eau concerne plusieurs couches, dont l'épaisseur totale z (cm) est à définir par l'utilisateur. Il peut s'agir de la couche labourée uniquement (si le sol présente une faible conductivité hydraulique) ou de tout le profil

, En fait, il effectue les calculs à partir des stocks de nitrate : le modèle calcule en réalité la vitesse de nitrification (Vn). La vitesse de minéralisation (Vm) est ensuite calculée de la façon suivante

, ?A étant la variation du stock d'azote ammoniacal de la première couche de sol sur l'intervalle de temps ?t, On peut distinguer 2 cas : Annexes, p.177

, On a alors Vm ~ Vn. Il est inutile d'entrer les mesures de quantités de NH4 + . ? les variations du pool d'azote ammoniacal sont fortes. Il faut alors entrer les stocks de NH4 + et le modèle calcule la vitesse de minéralisation d, ? les variations du pool d'azote ammoniacal sont très faibles

, La minéralisation peut être décrite de 2 façons : ? la vitesse de minéralisation (Vm) est supposée constante au cours du temps ? la vitesse de minéralisation (Vm) varie au cours du temps. Elle est supposée égale à une vitesse potentielle (Vp), correspondant à une température de référence à définir et une humidité optimale pour la minéralisation, qui est égale à Hcc, multipliée par un facteur température et un facteur humidité

, La vitesse de minéralisation réelle (1er cas) ou potentielle (2ème cas) est supposée constante sur chaque intervalle de temps (entre 2 dates de mesure ou de simulation)

, Attention : Vm représente la vitesse réelle de minéralisation, alors que Vp représente la vitesse potentielle de nitrification

. Le,

, Le rapport k=ETR/ETP qui représente la fraction de l'évapotranspiration potentielle qui

, La vitesse de minéralisation réelle (Vm) ou potentielle (Vp)

, La vitesse de dénitrification (Vd) ou d'absorption (dans le cas où il y a une plante

, Chacun de ces 3 paramètres peut être soit imposé (simulation pure), soit calculé par ajustement non linéaire dans le cas où l'on dispose de mesures réalisées à différentes dates (option ajustement)

C. Dans-le, On impose alors l'absorption journalière calculée pour chaque intervalle de temps via le paramètre Vd (kg N/ha/jour). L'absorption est calculée par le modèle sur tout le profil de sol. Elle est supposée varier en fonction de la quantité d'azote disponible et décroît linéairement en fonction de la profondeur, jusqu'à la profondeur maximale atteinte par les racines, il est possible d'en tenir compte, vol.178

I. C. Annexe and . Beaudoin, Présentation du modèle sol-plante STICS, STICS : un modèle générique et robuste de réponse des agrosystèmes aux facteurs techno-pédo-climatiques, 2015.

N. Beaudoin, S. Buis, D. Ripoche, E. Justes, P. Bertuzzi et al.,

. Brisson, Il simule d'une façon fonctionnelle la production et les impacts environnementaux des systèmes de culture, intégrant une ou deux cultures associées ou plusieurs cultures successives. Il a été conçu comme opérationnel, générique et robuste pour différentes pédo-techno-climat, Les entrées sont les variables de forçage climatiques, les caractéristiques du sol, les pratiques culturales et les valeurs initiales du système (eau, 1996.

, entre lesquelles varient les valeurs de paramètres et/ou l'activation d'options de formalisme

. Coucheney, le drainage et l'évapotranspiration et les émissions de CO2, N2O, NO3 et NH3. L'état du système porte sur le développement des cultures et la température, les teneurs en eau et azote du sol. Parmi elles, les variables observées permettent de tester les prédictions du modèle. Ainsi, les performances du modèle (version 8.2) ont été évaluées sur une grande base de données couvrant 15 cultures et un large éventail de conditions en France (76 sites), représentant 1 809 unités de simulation, Les prédictions portent sur l'état des compartiments et les sorties du système sol-culture atmosphère. Les flux d'intérêt sont l'énergie solaire interceptée, la biomasse produite et le rendement (quantité, qualité), 2015.

L. and L. Diagnostic, l'étude cognitive et la synthèse des connaissances ; il est utilisé seul (interface Java) ou intégré en plate-forme de modélisation. Les résultats ci-dessus justifient l'usage en pronostic, i.e. l'étude des effets d'un changement advenant dans un écosystème donné, Le diagnostic fournit des variables d'intérêt pour une situation réelle dont les entrées de STICS Annexes, p.179

, Lors d'un diagnostic à l'échelle régionale, l'assimilation des données de télédétection sur l'état du couvert permet d'améliorer les prédictions. L'étude cognitive consiste à tester des hypothèses sur le fonctionnement d'un système dont certaines variables d'état sont connues, en jouant sur la valeur de paramètres ou la présence de formalismes. Enfin, la construction collective de STICS en fait un remarquable outil de synthèse de connaissances interdisciplinaires

, Un nouveau challenge consiste à en faire un outil d'évaluation de la durabilité et de test d'hypothèses sur le fonctionnement agro-écologique des systèmes de culture, STICS sert à relever des défis propres aux systèmes de cultures