L. Flowres, ), nancé par l'Agence Nationale de la Recherche, dont l'objectif est de prédire les écoulements dans les plaines d'inondations dont l'occupation du sol varie lors de crues extrêmes, 2015.

, Améliorer l'évaluation des hauteurs et vitesses de l'eau dans les plaines d'inondation en analysant en laboratoire la structure hydrodynamique (hauteur et vitesse), 2. Evaluer si les modélisations numériques existantes pour les périodes de retour T 100 ans sont extrapolable à T 1000 ans ou T 10000 ans

. Annexe-e:-projet and . Flowres,

, Ce projet est divisé en deux parties : une partie expérimentale et une partie de modélisation numériques, elles mêmes divisées en sous-taches. Cette classication est tirée de la restitution du projet

P. Expérimentale,

, Le projet s'est focalisé sur la transition émergence / faible submersion, l'analyse portant sur la structure de l'écoulement à petite échelle (rugosité) et grande échelle (bief ) et sur l'étude des ondes

, Le projet s'est focalisé sur des transitions entre rugosité de fond (type prairie) et éléments de rugosités émergents (zone boisée), en lit majeur isolé ou communicant avec le lit mineur. L'analyse a porté sur la résistance à l'écoulement, les courbes de remous, et la structure de l'écoulement, à l'amont et à l'aval des transitions de rugosité

, Le projet s'est focalisé sur des variations (i) entre rugosités de fond (prairie ou fond lisse) et zones d'éléments de rugosités émergées ou submergées (maisons), (ii) entre deux zones d'éléments de rugosités émergées ou submergées (maisons) dont l'arrangement et/ou la densité diérent

, 4 : Rugosité hydraulique

, Le projet s'est intéressé à des écoulements présentant conjointement plusieurs types de résistance, en l'occurrence à la fois un fond rugueux et des bâtiments

, sur les rôles respectifs du frottement sur le lit et de la force de traînée exercée sur les obstacles dans la résistance à l'écoulement d'inondation, et (ii) sur la manière de les modéliser au sein de simulations numériques

, Pour évaluer les pratiques de modélisation, la première étape a consisté à comparer les données expérimentales à diérents types de simulations (1D, 1D+, 2D, et 3D) et méthodes de modélisation de la résistance à l'écoulement (rugosités de fond, forces de traînée exercées sur les éléments de rugosité, eets combinés des deux). La seconde étape a consisté à améliorer certaines méthodes de modélisation de la résistance à l'écoulement

, Modélisation numérique des inondations à Besançon A travers un exemple de territoire inondé fortement, il s'agit de montrer le caractère applicable des méthodes développées et de comparer l'incertitude apportée par le calcul hydraulique (variable selon les méthodes et localisations) avec l'incertitude souvent jugée comme principale en matière d'inondation extrême, vol.2

, Mes travaux de thèse s'intègre dans la partie expérimentale au niveau de la tache 1.1 concernant la transition verticale, et dans la partie numérique au niveau de la tache 2.1 concernant les modélisations numériques comparées aux données expérimentales, à savoir que uniquement mes travaux ont été traité numériquement à la fois en 1D

M. Abily, High-resolution modelling with bi-dimensional shallow water equations based codes -High-resolution topographic data use for ood hazard assessment over urban and industrial environments, 2015.

I. Afgan, Y. Kahil, S. Benhamadouche, and P. Sagaut, Large eddy simulation of the ow around single and two side-by-side cylinders at subcritical reynolds numbers, Phys. Fluids, vol.23, p.75101, 2011.

, Guide Pratique : Mise en place de l'autosurveillance des réseaux d'assainissement, 2016.

M. M. Alam, M. Moriya, and H. Sakamato, Aerodynamic characteristics of two side-byside circular cylinders and application of wavelet analysis on the switching phenomenon, J. Fluids Struct, vol.18, p.325346, 2003.

M. M. Alam, Q. Zheng, and K. Hourigan, The wake and thrust by four side-by-side cylinders at a low re, Journal of Fluids and Structures, vol.70, p.131144, 2017.

M. M. Alam and Y. Zhou, Flow around two side-by-side closely spaced circular cylinders, J. Fluid Strut, vol.23, p.799805, 2007.

. Asn, Guide de l'a.s.n. numéro 13 : Protection des installations nucléaires de base contre les inondations extrêmes, 2013.

Y. Bao, Q. Wu, and D. Zhou, Numerical investigation of ow around an inline square cylinder array with dierent spacing ratios, Computers & Fluids, vol.55, p.118131, 2012.

J. Bathurst, Flow resistance estimation in mountain rivers, Journal of Hydraulic Engineering, vol.111, issue.4, p.625643, 1985.

M. Bayazit, Free surface ow in a channel of large relative roughness, Journal of Hydraulics Research, vol.14, issue.2, p.115126, 1976.

P. W. Bearman and D. M. Trueman, An investigation of the ow around rectangular cylinders, The Aeronautical Quarterly, vol.23, p.229237, 1972.

P. W. Bearman and A. J. Wadcock, The interaction between a pair of circular cylinders normal to a stream, J. Fluid Mech, vol.61, p.499511, 1973.

R. Bibliographiques,

N. Bertier, Simulations des grandes échelles en aérothermique sur des maillages nonstructures généraux, 2006.

K. Blanckaert, A. Duarte, and A. Schleiss, Inuence of shallowness, bank inclination and bank roughness on the variability of ow patterns and boundary shear stress due to secondary currents in straight open-channel, Adv. Water Resour, vol.33, p.10621074, 2010.

H. Bonakdari, F. Larrarte, L. Lassabatere, and C. Joannis, Turbulent velocity prole in fully-developed open channel ows, Environ. Fluid Mech, vol.8, p.117, 2008.

M. Bottema, Roughness parameters over regular rough surfaces: Experimental requirements and model validation, Journal of Wind Engineering and Industrial Aerodynamics, vol.64, issue.2-3, p.249265, 1996.

M. Brito, J. Fernander, and J. Leal, Porous media approach for rans simulation of compound open-channel ows with submerged vegetated oodplains, Environ. Fluid Mech, 2016.

I. Calmet and J. Magnaudet, Statistical structure of high-reynolds-number turbulence close to the free surface of an open-channel ow, J. Fluid Mech, vol.474, p.355378, 2003.

M. Carini, F. Gianetti, A. , and F. , On the origin of the ip-op instability of two side-by-side cylinder wakes, J. Fluid Mech, vol.742, p.552576, 2014.

M. Carlier, Hydraulique générale et appliquée, 1972.

L. Cassan, H. Roux, and P. Garambois, A semi-analytical model for the hydraulic resistance due to macro-roughnesses of varying shapes and densities, vol.9, p.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01717545

L. Chagot, Struture de la couche limite turbulente dans une canopée : eets de connement, 2019.

H. Chanson, Hydraulics of open channel ow. Number ISBN : 97800880472973, 2004.

H. Chanson, Communication personnelle, 2018.

D. Chatterjee and S. Amiroudine, Two-dimensional mixed convection heat transfer from conned tandem square cylinders in cross-ow at low reynolds numbers. International Communications in Heat and Mass Transfer, vol.37, p.716, 2010.

J. Chen, J. Lee, C. Wu, and Y. Lee, Study on harbor resonance and focusing by using the null-eld biem, Engineering Analysis with Boundary Elements, vol.37, issue.7-8, p.11071116, 2013.

M. Chetibi, Communication personnelle, modélisation des écoulements turbulents dans des canaux non prismatiques, 2019.

M. Chetibi, S. Proust, and S. Benmamar, Transverse surface waves in steady uniform and non-uniform ows through an array of emergent and slightly submerged square cylinders, Journal of Hydraulic Research, p.114, 2019.

, RÉFÉRENCES BIBLIOGRAPHIQUES, vol.227

H. Coanda, Device for deecting a stream of elastic uid projected into an elastic uid, 1936.

O. Coceal, T. Thomas, I. Castro, and S. Belcher, Mean ow and turbulence statistics over groups of urban-like cubical obstacles, Boundary-Layer Meteorology, vol.121, issue.3, p.491519, 2006.

D. Coles, The law of the wake in the turbulent boundray layer, Journal of Fluid Mec, vol.1, issue.2, p.191226, 1956.

J. Cooper, J. Aberle, K. Koll, K. Koll, T. et al., Inuence of relative submergence on spatial variance and form-induced stress of gravel-bed ows, Water Resources, vol.49, issue.9, pp.5765-5777, 2013.

J. Cousteix, Aérodynamique : turbulence et couche limite, Number ISBN13 : 978-2-85428-210-8. Cépaduès-éditions, 1989.

R. W. Davis and E. F. Moore, A numerical study of vortex shedding from rectangles, Journal of Fluid Mechanics, vol.116, p.475506, 1982.

R. Dean and R. Dalrymple, Water wave mechanics for engineers and scientists. World scientic publishing co, 1991.

M. Detert, Hydrodynamic processes at water-sediment interface of streambeds, 2008.

. Dhi, Mike 21 and mike 3 ow model fm, hydrodynamic and transport module, scientic documentation, 2007.

H. Ding, C. Shu, Y. Yeo, and D. Xu, Numerical simulation of ows around two circular cylinders by mesh-free least square bbase nite methods, Int. J. Numer. Method Fl, vol.53, pp.305-332, 2007.

V. Dupuis, Experimental investigation of ows subjected to a longitudinal transition in hydraulic roughness in single and compound channels, 2016.

V. Dupuis, S. Proust, C. Berni, and A. Paquier, Combinated eects of bed friction and emergent cylinder drag in open channel ow, Environ. Fluid Mech, 2016.

S. Dutta, K. Muralidhar, and P. Panigrahi, Inuence of the orientation of a square cylinder on the wake properties, Experiments in Fluids, vol.34, p.1623, 2003.

U. Européenne, Directive 2007/60/ce du parlement européen et du conseil, du 23 octobre 2007, relative à l'évaluation et à la gestion des risques d'inondation, p.2734, 2007.

C. Farell, S. Carrasquel, O. Guven, P. , and O. , Eect of wind-tunnel walls on the ow past circular cylinders and cooling tower models, Journal of Fluids Engineering, vol.99, issue.3, p.470, 1977.

E. Florens, Couche limite turbulente dans les écoulements à surface libre : étude expérimentale d'eets de macro-rugosités, 2010.

M. Franca, R. Ferreira, and U. Lemnin, Parametrization of the logarithmic layer of double-averaged streamwise velocity proles in gravel-bed river ows, Advances in Water Resources, vol.31, issue.6, p.915925, 2008.

A. Ghanmi, J. Robert, and M. Kheli, Three-dimensional nite element model to simulate secondary ows : development and validation, J. Hydr. Res, vol.14, issue.3, p.291300, 1997.

M. Ghomeshi, S. Mortazavi-dortazavi, and R. Falconer, Amplitude of wave formation by vortex shedding in open channels velocimeter data, Journal of Applied sciences, vol.7, issue.24, pp.3927-3934, 2007.

D. Goring and V. Nikora, Despiking acoustic doppler velocimeter data, Journal of Hydraulic Engineering, vol.128, issue.1, p.117126, 2002.

S. Guillén-ludeña, Characterization of ow resistance in a oodplain for varying building density, Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR, 2016.

S. Guillén-ludeña, D. Lopez, E. Mignot, R. , and N. , Flow resistance for varying density of obstacles on smooth and rough bec, Jounal of Hydraulic Engineering, 2018.

S. Hanna, S. Tehranian, B. Carissimo, R. Macdonald, and R. Lohner, Comparisons of model simulations with observations of mean ow and turbulence within simple obstacle arrays, Atmospheric Environment, vol.36, issue.32, p.50675079, 2002.

A. Hauet, Estimation de débit et mesure de vitesse en rivière par Large-Scale Particle Image Velocimetry, Discharge estimates and velocity measurements using Large-Scale Particle Image Velocimetry (in French), 2006.

J. Hervouet, Hydrodynamics of free surface ows, 2007.

J. Hinze, Secondary currents in wall turbulence, J. Phys. Fluids, pp.122-125, 1967.

S. Ikeda, Self-forced straight channels in sandy beds, J. Hydr. Div, vol.107, p.389406, 1981.

S. U. Islam, W. S. Abbasi, Y. , and Z. C. , Transitions in the unsteady wakes and aerodynamic characteristics of the ow past three square cylinders aligned inline, Aerospace Science and Technology, vol.50, p.96111, 2016.

A. Jafari, M. Ghomeshi, M. Bina, and S. Kashepour, Experimental study on ten modes of transverse waves dure to vertical cylinders in open channels, Journal of Foof Agriculture and Environement, vol.8, issue.2, p.949955, 2010.

K. Karthik-selva-kumar and L. Kumaraswamidhas, Investigation on cross ow characteristics over side-by-side square cylinders at dierent spacing conditions, Alexandria Engineering Journal, vol.55, p.10531062, 2016.

G. Katul, P. Wiberg, J. Albertson, and G. Hornerger, A misxing layer theory for ow resistance in shallow streans, Water Ressources Research, issue.11, p.38, 2002.

H. J. Kim and P. A. Durbin, Investigation of the ow between a pair of circular cylinders in the opping regime, J. Fluid Mech, vol.1, p.431448, 1988.

S. Kim and M. M. Alam, Characteristics and suppression of ow induced vibrations of two side-by-side circular cylinders, J. Fluid Strut, 2015.

M. S. Kirkgöz and M. Ardiçlio-§lu, Velocity proles of developing and developed open channel ow, Journal of Hydraulic Engineering, vol.123, issue.12, p.10991105, 1997.

B. Kironoto and W. Graf, Turbulence characteristics in rough non-uniform openchannel ow, Proceedings of the Institution of civil engineers-water maritime and energy, vol.112, p.336348, 1994.

V. Kolar, D. Lyn, R. , and W. , Ensemble-average measurements in the turbulent nearwake of the two side-by-side square cylinders, Journal of Fluid Mechanics, vol.346, 1997.

K. Koll, Parametrisation of the vertical velocity in the wall region over rough surfaces, River Flow 2006 Proceedings of the International Conference on Fluvial Hydraulics, pp.163-172, 2006.

M. Kumada, M. Hiwada, M. Ito, and I. Mabuchi, Wake interference between three circular cylinders arranged side by side normal to a ow, Trans. JSME, vol.50, p.16991707, 1984.

S. Kumar, A. Sharma, A. , and A. , Simulation of ow around a row of square cylinders, J. Fluid Mech, vol.606, p.369397, 2008.

A. Lankadasu and S. Vengadesan, Interference eect of two equal-sized square cylinders in tandem arrangement: With planar shear ow, International journal for numerical methods in uids, vol.57, issue.8, p.10051021, 2008.

F. Larrarte and L. M. Cottineau, The hydre project: 2d sampling of velocities and concentrations in sewer channels, BLPC, vol.272, p.2132, 2008.

D. S. Lawrence, Macroscale surface roughness and frictional resistance in overland ow. Earth Surface processes and landforms, The Journal of the British Geomorphological Group, vol.22, issue.4, p.365382, 1997.

D. S. Lawrence, Hydraulic resistance in overland ow during partial and marginal surface inundation : Experimental observations and modeling, Water Resources Research, vol.36, issue.8, p.23812393, 2000.

R. Bibliographiques,

L. Coz, J. Le-boursicaud, R. Jodeau, M. Hauet, A. Marchand et al., Image-based velocity and discharge measurements in eld and laboratory river engineering studies using the free fudaa-lspiv software, Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW, pp.1961-1967, 2014.

. L'expansion, 10 ans de catastrophes naturelles en france, 2011.

S. Luo, Y. Chew, and Y. Ng, Characteristics of square cylinder wake transition ows, Physics of Fluids, vol.15, issue.9, p.25492559, 2003.

D. Lyn, S. Einav, W. Rodi, and J. Park, A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder, Journal of Fluid Mechanics, vol.304, p.285319, 1995.

R. Macdonald, Modelling the mean velocity prole in the urban canopy layer, Boundary-Layer Meteorology, vol.97, issue.1, p.2545, 2000.

B. S. Massey and J. Ward-smith, Mechanics of Fluids, vol.1, 2006.

R. Mcsherry, K. Chua, and T. Stoesser, Large eddy simulation of free-surface ows, Journal of Hydrodynamics, vol.29, issue.1, p.112, 2017.

V. J. Modi and S. El-sherbiny, Eect of wall connement on aerodynamics of stationary circular cylinders, 3rd Conf. Wind Eects, p.365375, 1971.

J. Munier, Les réfugiés climatiques. France culture, 2017.

M. Muste, K. Lee, and J. Bertrand-krajewski, Standardized uncertainty analysis for hydrometry: a review of relevant approaches and implementation examples, Hydrological Sciences Journal, vol.57, issue.4, p.643667, 2012.

D. Naot, Response of channel ow to roughness heterogeneity, J. Hydr. Eng, vol.110, issue.11, pp.1568-1587, 1984.

H. Nepf and E. Vivoni, Flow structure in depth-limited, vegetated ow, Journal of Geophysical Research: Oceans, vol.105, issue.C12, p.2854728557, 2000.

H. M. Nepf, Flow and transport in regions with aquatic vegetation. Annual review of uid mechanics, vol.44, p.123142, 2012.

B. G. Newman, The deection of plane jets by adjacent boundaries-coanda eect. Boundary layer and ow control, 1961.

I. Nezu and H. Nakagawa, Cellular secondary currents in straight conduit, J. Hydr. Eng, vol.110, issue.2, 1984.

I. Nezu and H. Nakagawa, Turbulence in open-channel ows, 1993.

I. Nezu, H. Nakagawa, R. , and W. , Signicant dierence between secondary currents in closed channels and narrow open channels, Proc. 23rd IAHR Congress Delft The Netherland, vol.A, p.125132, 1989.

I. Nezu and W. Rodi, Experimental study on secondary currents in open channel ow, Proc. 21st Congress of IAHR, vol.2, p.115119, 1985.

F. Nicoud and F. Ducros, Subgrid-scale stress modelling base on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, vol.62, p.183200, 1999.

V. Nikora, S. Mclean, S. Coleman, D. Pokrajac, I. Mcewan et al., Double-average concept for rough-bed open-channel and overland ows : Applications, Journal of Hydraulic Engineering, vol.133, issue.8, p.884895, 2007.

J. Nikuradse, Strömungsgesetze in rauhen rohren (eng. transl. 1950 : Laws of ow in rough pipes, naca tm 1292), p.361, 1933.

A. Okajima, Strouhal numbers of rectangular cylinders, J. Fluid Mech, vol.123, p.379398, 1982.

T. R. Oke, Street design and urban canopy layer climate. Energy and buildings, vol.11, p.103113, 1988.

A. Parsons, A. Abrahams, W. , and J. , On determining resistance to interrill overland ow, Water Resources Research, vol.30, issue.12, p.35153521, 1994.

Y. Peltier, N. Rivière, S. Proust, E. Mignot, A. Paquier et al., Estimation of the error on the mean velocity and on the reynolds stress due to a misoriented adv probe in the horizontal plane: Case of experiments in a compound open-channel, Flow Measurement and Instrumentation, vol.34, p.3441, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00908959

U. Piomelli and J. Chasnov, Large-eddy simulations: theory and applications, Turbulence and transition modelling, p.269336, 1996.

D. Pokrajac, L. Campbell, V. Nikora, C. Manes, and M. , Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness, Experiments in Fluids, vol.42, issue.3, p.413423, 2007.

L. Prandtl, Essentials of uids dynamics, 1952.

S. Proust, C. Berni, M. Boudou, A. Chiaverini, V. Dupuis et al., , 2016.

, Predicting the ow on the ooplains with evolving land occupations during extrême ood events (owres anr project), FLOODrisk 2016 -3rd European Conference on Flood Risk Management, E3S Web of Conferences

R. Bibliographiques,

M. Raupach, R. Antonia, and S. Rajagopalan, Rough-wall turbulent boundary layers, Appl. Mech. Rev, vol.44, issue.1, p.125, 1991.

D. Rickenmann and A. Recking, Evaluation of ow resistance in gravel-bed rivers through a large eld data set, Water Resources Research, issue.7, p.47, 2011.

F. Robertson, An experimental investigation of the drag on idealised rigid, emergent vegetation and other obstacle in turbulent free-surface ows, 2016.

A. Roshko, On the development of turbulent wakes from vortex streets, National Advisory Committee for Aeronautics, vol.1191, p.128, 1954.

H. Rouse, Critical analysis of open-channel resistance, Jounal of Hydraulics Division ASCE, vol.91, issue.HY4, p.123, 1965.

M. Rouzès, Étude expérimentale de l'hydrodynamique d'un écoulement turbulent sur fond rugueux en situation naturelle et/ou à faible submersion, 2015.

M. Rouzes, F. Y. Moulin, E. Florens, and O. Ei, Low relative-submergence eects in a rough-bed open-channel ow, Journal of Hydraulic Research, p.128, 2018.

M. Saeedi and B. Wang, Large-eddy simulation of turbulent ow and dispersion over a matrix of wall-mounted cubes, Physics of Fluids, vol.27, p.34, 2015.

H. Sakamoto, H. Haniu, and Y. Obata, Fluctuating forces acting on two square prisms in a tandem arrangement, Journal of Wind Engineering and Industrial, vol.26, p.85105, 1987.

A. Sarkar, Vortex-excited transverse surface waves in an array of randomly placed circular cylinders, Journal of Hydraulic Engineering, vol.138, issue.7, p.610618, 2012.

O. Schey and A. Biermann, The eect of cowling on cylinder temperatures and performances of a wright j-5 engine, 1930.

H. Schlichting, Boundary-Layer Theory, 1979.

E. Sharify, H. Saito, H. Harasawa, S. Takahashi, and N. Arai, Experimental and numerical study of blockage eect on ow characteristics around a square cylinder, Journal of JSEM, vol.13, pp.7-12, 2013.

T. Stoesser, S. Kim, and P. Diplas, Turbulent ow through idealized emergent vegetation, Journal of Hydraulic, vol.136, issue.12, p.10031017, 2010.

G. Stokes, On the eect of internal friction of uids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, p.8106, 1851.

T. Tran, J. Chorda, P. Laurens, and L. Cassan, Modelling nature-like shway ow around unsubmerged obstacles using a 2d shallow water model, Environmental Fluid Mechanics, vol.16, issue.2, 2016.

S. Turki, H. Abbassi, and S. Nasrallah, Eect of the blockage ratio on the ow in a channel with a built-in square cylinder, Computational Mechanics, vol.33, p.2229, 2003.

D. P. Viero, I. Pradella, D. , and A. , Free surface waves induced by vortex shedding in cylinder arrays, Journal of Hydraulic Research, vol.55, issue.1, p.1626, 2016.

G. Wang, J. Zheng, Q. Liang, and Y. Zheng, Analytical solutions for oscillations in a harbor with a hyperbolic-cosine squared bottom, Ocean Engineering, vol.83, p.1623, 2014.

X. Wang, Z. Wang, M. Yu, L. , and D. , Velocity prole of sediment suspensions and comparison of log law and wake law, Journal of Hydraulic Research, vol.39, issue.2, p.211217, 2001.

Z. Wang and N. Cheng, Secondary ows over articial bed strips, Adv. Water Resour, vol.28, p.441450, 2005.

Z. Wang and N. Cheng, Time-mean structure of secondary ows in open channel with longitudinal bedforms, Adv. Water Resour, vol.29, p.16341649, 2006.

G. West and C. Apelt, The eects of tunnel blockage and aspect ratio on the mean ow past a circular cylinder with reynolds numbers between 10 4 and 10 5, Journal of Fluid Mec, vol.114, p.361377, 1982.

C. H. Williamson, Vortex dynamics in the cylinder wake. Annual review of uid mechanics, vol.28, p.477539, 1996.

S. Yang and J. Mccorquodale, Determination of boundary shear stress and reynolds shear stress in smooth rectangular channel ows, Journal of Hydraulic Engineering, vol.130, issue.5, p.456462, 2004.

S. Yang, S. Tan, and S. Lim, Velocity distribution and dip phenomenon in smooth uniform open channel ow, Journal of Hydraulic Engineering, vol.130, issue.12, p.11791186, 2004.

B. C. Yen, Open channel ow resistance, Journal of Hydraulic Engineering, vol.128, issue.1, p.2039, 2002.

S. Yen, K. San, and T. Chuang, Interactions of tandem square cylinders at low reynolds numbers, Experimental Thermal and Fluid Science, vol.32, issue.4, p.927938, 2008.

S. C. Yen and J. H. Liu, Wake ow behind two side-by-side square cylinders, International Journal of Heat and Fluid Flow, vol.32, issue.1, p.4151, 2011.

M. M. Zdravkovich, Review or ow interference between two circular cylinders in various arangements, ASME J. Fluids Eng, vol.99, p.618633, 1977.

X. Zhao, D. Cheng, D. Zhang, and Z. Hu, Numerical study of low-reynolds-number ow past two tandem square cylinders with varying incident angles of the downstream one using a cip-based model, Ocean Engineering, vol.121, p.414421, 2016.

L. Zima and N. L. Ackermann, Wave generation in open channels by vortex shedding from channel obstructions, Journal of Hydraulic Engineering, vol.128, issue.6, p.596603, 2002.