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For a few decades, many experimental research teams haverbable to isolate
and control individual quantum objects. These objects candoparticles belonging
to the eld of AMO physics, where the trapping of atoms, moleces or ions has
been successfully demonstrated. They can also be solidtstdevices, where complex
systems such as superconducting circuits, NV centers in diand, quantum dots
or semiconductor-based microcavities were proven to beleaas individual multi-
level systems, and consequently can be seen as \arti cialahs”. On these di erent
platforms, local high- delity state manipulations and lorg coherence times have been
reported, so that single quantum objects are nowadays awile at an exquisite
level of control. After the demonstration of the isolation ofingle particles, the next
major experimental breakthrough was the observation of emtglement between a few
particles; for example, in the pioneering work ofAspect, Grangier, and Rogef1983
with correlated pairs of photons, or with two interacting ims [Schmidt-Kaler et al.,
2003.

These experimental demonstrations triggered a huge invegdtion e ort in view
of developing quantum technologies. They consist in usingé coherent control of
quantum objects, implementing genuine quantum features sl as state superposition
or entanglement, in view of outperforming their classicalounterparts in a wide range
of applications. For instance, at the single-particle levethe coherent manipulation of
the isolated quantum objects allows for the local probing afxternal elds, leading
to the development of the quantum sensors eldKitching, Knappe, and Donley,
2017. Along these lines, the measurement of magnetic elds on th@anometer
scale with NV centers in diamond was reportedjondin et al., 2014. For another
application, quantum metrology, engineering highly entagled GHZ states enhances
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the measurement sensitivity to reach the Heisenberg limit (@ example with three
entangled ions is reported inleibfried et al., 2004).

In most of these applications, a two-level system is encodednsidering only two
states of the controlled individual quantum object. This sigle two-level system, often
called qubit for quantum logical bit, would be the elementary building lbck of a
guantum computer. For this application also, taking advarage of state superpositions
and entanglement would enable operations impossible withassical algorithms. The
most famous example is the factoring problem, basis of modtthe currently in-use
encryption procedures, which could be solved with a quantumachine implementing
Shor's algorithm [Shor, 1994. The computation would be based on a sequence of
one- and two-qubit logical operations, the latest being réiaed in practice using
interactions between the single quantum objects. These quam computing, or
guantum information, tasks are hard, long-term applicatios, requiring the challenging
increase of the number of quantum objects under control, vittailored interactions,
and the implementation of fault-tolerant protocols Barendset al., 2014.

Controlling the interactions within an ensemble of qubits As another, mid-term,
application. Hamiltonians of interest in condensed-mattephysics or high-energy
physics can in that way be implemented on an experimental gfarm in view of
mimicking real-world matter with arti cial systems. Simulating real matter with
a controlled experimental quantum system is callequantum simulation and was
rst proposed by Richard P. Feynman [1983. Progress in the eld was recently
reviewed byGeorgescu, Ashhab, and Nof2014. Quantum simulation is expected to
be a reliable way to study quantum many-body dynamics as coraped to numerical
simulations. Indeed, due to the exponential growth of the Hilert space withN the
number of interacting particles, the current limit isN 40 for the best classical
computers, whereas it could be larger for quantum simulater(see the very recent
experimental comparison, for a speci c computational taskbetween a programmable
superconducting quantum processor and a classical compufarute et al., 2019).

The aim of this manuscript is to report a few quantum simulatbn experiments
realized during my Ph.D thesis. They were performed on a pfarm based on neutral
8’Rb atoms, trapped in a versatile con guration of micron-sied optical tweezers, and
brought to highly-excited states known as Rydberg statesnlthis Introduction, | will
rst present a few exciting many-body phenomena, hosted bywo types of model
Hamiltonians, in condensed-matter physics. These two type$ Hamiltonians have
been both studied on our platform during my Ph.D thesis. Thenl will give a few
examples of quantum simulation realized on di erent expemental platforms. Finally,

12



1.1

1.1 Quantum many-body phenomena in condensed-matter physics

I will focus on Rydberg-based quantum simulators.

Quantum many-body phenomena in condensed-mattes physi

One of the goal of condensed-matter physics is to explain theoperties of (macroscopic)
matter from one- and two-body operators acting at the partie (microscopic) level.
Solid-state materials can be described as an ensemble otet:s (spin-1/2 particles)
localized at the nodes of a crystalline structure, having #hability to hop between
lattice sites, and with an on-site interaction energy. Thestwo elementary processes,
hopping and on-site interaction, results in the Fermi-Hubba model, written

A=t * 6 & +e g + UX Ay 40 - (1.1)
hiji, [

wherei,] are the indexes of the lattice sites (the brackets indicatéhat the sum
runs over neighbouring lattice sites), the spin degree of freedom, #, t the hopping
amplitude, U the on-site interaction energy and ¢’ the fermionic annihilation
and creation operators, andh = ¢'¢ the number operator. Although this model is
simple to write, it is extremely hard to solve. Then, the usuaway to treat this model
is to study the regimes where one of the two processes is thestprominent. For
t U, only the spin degree of freedom remains, and we can write rsppiamiltonians.
On the contrary, for U = 0, we recover the tight-binding model. These two types
of Hamiltonians, spin or hopping Hamiltonians, can be implenméed with Rydberg
atoms, as we shall see in this manuscript. Now, | describe a feweresting many-body
phenomena associated to these Hamiltonians.

Spin Hamiltonians  Spin Hamiltonians were proposed to understand the magnetic
behaviour of matter, and are the central objects of study inhie quantum magnetism
eld [ Blundell, 200]. The simplest models involve spins-1/2 localized on late sites.
The quantum operators acting on spin-1/2 are usually writte in terms of Pauli
matrices, N, NY, and 7%, with z the quantization axis. Then, the interaction between
two spins localized on the lattice sites and | is formally written as a product of
Pauli matrices acting on both spins. Few examples of intertieg models are: the
Heisenberg Hamiltonian, where the interaction between two 813 readsJ; ~; ", the
planar XY-model, where it is written Jj; ’\ix’\jx + /\iy/\jy ; or the uni-axial Ising model,
written J; Af~f. The XY model, by the use of the spin raising* and lowering”

operators,"" = M+~ and~ =~ 7Y, can also be writtend; AT + A AL

13
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I mention also the XXZ model, a combination of the Ising and the XYnodels, written
Jj MM+ NN+ AEAf When = 1, we recover the Heisenberg model. In this
manuscript, | will focus on the Ising and the XY models.

These simple microscopic spin models may have di erent phgal origins. For
example, when derived from the Fermi-Hubbard modell(1), spin Hamiltonians
originate from the combination of the Coulomb interaction ad the Pauli exclusion
principle. They can be interpreted classically as the tendey for spins, pictured as
elementary magnets, to orient themselves with respect to @aother to reduce the
global energy of the system. Consequently, they explain theatroscopic spin-ordered
magnetic phases of matter from the interaction at the partie level, which is the
goal of quantum magnetism. The interplay between the lattie structure and the
geometrical dependence of the interaction gives rise to &hivariety of phases, even if
the interaction is simply written in terms of two-body operaors. Some of these phases
still lack a complete characterization, for example frusated phasesNloessner and
Ramirez 2004, and are hot topics in condensed matter physics.

In the presence of a strong enough external magnetic eld,lapins tend to
align into its direction, constituting what is called a paranagnetic phase. A spin
system will be in a paramagnetic phase rather than in the intacting spin-ordered
phase as soon as the energy it gains due to the coupling to thegnetic eld,
given by the single-particle Hamiltonian (1=2) g~ B, overcomes the energy
gained due to the interaction. Varying the amplitude of the xternal eld, the
system undergoes a quantum phase transition, a phenomenantiely studied both
theoretically and experimentally Fachdey 201]. Other phenomena of interest originate
from the out-of-equilibrium physics occurring in these sysms while abruptly tuning
external parameters, which can in some cases be seen as a gyoal quantum phase
transition [Heyl, 2019.

Hard-core boson Hamiltonian  Another important kind of Hamiltonians of interest
in condensed-matter physics are hopping Hamiltonians (théght-binding model is
the limit U = 0 of the Fermi-Hubbard model). They capture most of the tranport
properties of materials, accounting for the distinction bi&veen conductors and insulators
by computing the dispersion relation (band structure). Amog insulators, new sort of
phases are intensively being explored, topological instdes [Qi and Zhang 2011, for
their unique transport properties Moore, 201Q.

Rather than the Fermi-Hubbard model, | focus on the (spinle3$8ose-Hubbard
model, describing the hopping physics for bosons in a laticThe quantum operators
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1.1 Quantum many-body phenomena in condensed-matter physics

acting on bosons are the creatioﬁy and annihilation f) operators. As in the fermionic
case, the hopping of a boson from siieto j simply reads in terms of operatorﬁfqy,
and the hopping term in the Bose-Hubbard Hamiltonian is writen J; B + |
with J; the hopping amplitude. In addition to the hopping term, the Byse-Hubbard
Hamiltonian takes into account the chemical potential and the on-site interaction
U between bosons with the single-site term m; and Uf; (h; 1), with f; = ﬁyﬁ
gives the number of bosons on site This Hamiltonian is known to describe the
transition between a super uid and a Mott insulator. In the peculiar case of an in nite
on-site interaction energy, each lattice site can host eién zero or one boson, and the
Bose-Hubbard model reduces to a hard-core boson Hamiltonian.

Actually, the XY and the hard-core boson Hamiltonians reduce tthe same physical
situation. Indeed, the XY interaction term acting on the pair state of spinsj"#i
transforms it into j#"i , which means that the two spins have exchanged their statégnis
is why the XY Hamiltonian is sometimes referred to as a spin-exange Hamiltonian.
Rather than spins, we can segi as being a lattice site occupied by one particle and
j#i as being an empty lattice site. The spin-exchange procesghen equivalent to the
hopping of one e ective particle between the two sites. As the are only two levels
involved, no state corresponds to a lattice site occupied lwo or more particles, so
two bosons cannot be on the same lattice site, they have intei on-site interaction
energy. As a consequence, implementing the XY Hamiltonian fopias allows also for
the study of hopping hard-core bosons.

Finally, adding a magnetic eld acting on these hopping partiles extends even more
the range of exotic phenomena potentially exhibited by thisnodel, the most famous
one being the quantum Hall e ect Klitzing, Dorda, and Pepper, 1980. The action of
the magnetic eld can be taken into account directly in the hpping term, by writing
complex hopping amplitudes. Then, having complex hoppingrglitudes mimics the
e ect of an external magnetic eld, even in the case of unchged particles, and gives
rise to an arti cial gauge eld [Aidelsburger, Nascimlene, and Goldman2019.

| have presented two types of Hamiltonian, enabling for the @kanation of several
many-body phenomena and promising the understanding of a@hexotic ones. | am
now going to describe examples of their implementation onriee di erent kinds of
platforms, allowing for their study on a controlled arti cial system.
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Chapter 1: Introduction

A short overview of quantum simulation

In order to engineer the aforementioned Hamiltonians, a quarm simulator needs to
ful Il several constraints. The rst requirement is to have an ensemble of particles in a
controlled geometrical con guration, mimicking the lattice structure. The ability for
the particles to tunnel between lattice sites leads to the gineering of some hopping
Hamiltonians. To mimic spin-1/2 physics, one should de ne awo-level system, i.e. a
qubit, considering two quantum states of the particle. Thenif the interaction only
involves the two considered states of the particles, the Halwinian of the controlled
system can be mapped into a spin Hamiltonian. For the one-bodperator of spin
Hamiltonians, driving transitions between the two states othe qubit imitates the
behavior of an external magnetic eld on the e ective spin-R. Indeed, both the
driving of a qubit and the coupling of a spin-1/2 to a magneticeld can be formally
written as rotations of the two-level system. Finally, to peform quantum simulations,
the experimentalists must have access to the populationgrfeach qubit, in the two
levels.

Quantum simulation then relies on rewriting the engineerethteraction within the
system under control in terms of spin or bosonic operators) such a way that a
mapping exists between the physical situation in the labotary and the targeted
model. To be more precise on the quantum simulation eld, tlsiis known asanalog
guantum simulations, where an arti cial system, albeit phgically quite di erent,
obeys the same equation of evolution as the modeled system.tthe experiments
presented in this manuscript, we perform this kind of quanton simulation. Actually, it
exists two other more abstract approaches, known agital and variational quantum
simulations.

Digital quantum simulation relies on the possible formal d®mposition, referred to
as the Trotter formula [Lloyd, 1994, of the evolution operator of a many-body system
into a series of one- and two-body operators. The asset ofghapproach is that many
di erent Hamiltonians can be studied that way, in a close coespondence to Richard
Feynman's original idea. The drawback of this approach is #t it requires the piling
of a lot of quantum gates. Even if the single- and two-body opations show very
high delity in ion- or superconductor-based platforms, tle increasing complexity of
the series of gates that must be performed would eventualleldetrimental to the
e ciency of this approach.

Another hybrid approach has been developed more recently,riaional quantum
simulation. It is expected to simulate as complex Hamiltonias as digital quantum
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1.2 A short overview of quantum simulation

simulation but requiring less quantum operations. It is basd on a feedback loop
between an analog quantum simulator providing entangledittl wavefunctions and
classical optimization algorithms to determine in an iterave way the solution to a
given problem.

| now brie y explain how several experimental teams have saeeded in implementing
the aforementioned Hamiltonians using degenerate quantunases Bloch, Dalibard,
and Nascimbkene 2012 Tarruell and Sanchez-Palencia201g, trapped ions Blatt and
Roos 2017 or superconducting circuits Houck, Tureci, and Koch, 2013. The few
examples | describe are not an exhaustive list.

Ultracold quantum gases | start this short overview by the quantum simulators
based on degenerate quantum gases. To get the particles inantcolled spatial
con guration, experimental groups mostly use periodic traping potential, coming
from standing waves of o -resonant light, known as opticaldttices [Bloch, 2003. The
lattice is lled by making the degenerate gas undergo the plsa transition between a
super uid and a Mott insulator [Greiner et al., 2003. Using high-numerical aperture
optics, some experimental groups are howadays able to reathgle-site resolution
and locally probe the occupancy of each lattice site. Theséafforms are referred to
as quantum gas microscope8akr et al., 2009. They provide the largest controlled
systems, as compared to the other platforms | will describ&he ability to perform
local operations on the encoded qubits inside an optical tate by using addressing
light-shifts was demonstrated \Wang et al., 2015.

By playing on the relative phase and amplitude of the beams gerating the
optical lattice, complex lattice structure can be engineed. Varying the lattice depth
controls the tunneling amplitude of the particles betweeneighboring sites, resulting
in tunable quantum simulators of hopping Hamiltonians. Bagkon the imaging of the
guasi-momentum distribution, several groups have been &blo measure characteristic
properties of the implemented Hamiltonian. The group of ProfTilman Esslinger, for
example, was able to produce a honeycomb lattice, and obsesignatures of the Dirac
points [Tarruell et al., 2013, an emblematic feature of the band structure associated
to this geometry. The group of Prof. Immanuel Bloch measuretthe Zak phase related
to the band structure for a dimerized chainAtala et al., 2013. The Zak phase, or
in higher dimensions the Chern numbers, are topological imants classifying the
di erent phases with respect to their topological properts.

On these platforms, the interaction are mainly limited to the on-site range, whose
amplitude can be easily tuned, for instance, via Feshbachs@nancesChin et al., 2010Q.
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This leads to the engineering of nearest-neighbour spinkspnteraction via a tunnelling
assisted super-exchange procesxupn, Demler, and Lukin 2003. Nearest-neighbor
spin-spin interaction can also be implemented using doulbldhole excitations of a
Mott insulator in a tilted 1D optical lattice [ Sachdev, Sengupta, and Girvin2003.
Following this approach, the group of Prof. Markus Greiner as able to observe 1D
Ising antiferromagnets §imonet al., 201]. Longer-range interaction may emerge using
particles exhibiting a permanent dipole moment, such as magtic atoms Lepoutre
et al., 2019 or polar molecules Gorshkovet al., 2011 Gobanet al., 2018.

The platforms described so far rely on a \top-down" approachStarting with a
macroscopic, qguantum degenerate assembly of indistinguadble particles, the system
reduces to e ective spins interacting on a lattice, or hoppig particles. The loading of
an optical lattice is necessary to imitate the Hamiltonians @scribed in Sectiorl.1,
but actually, other phenomena can be simulated without pesfming this experimental
high-demanding task. For example, some groups have explbihe propagation of
matter waves in disordered potential Billy et al., 2009, or studied exotic phases of
matter, such as the BEC-BCS crossoveNpvon et al., 201Q Ku et al., 2013, quantum
droplets [Ferrier-Barbut et al., 2016 Cabreraet al., 201§ or supersolids leonard
et al., 2017 Bettcher et al., 2019 Chomazet al., 2019. The advantage of this top-down
approach is that it intrinsically provides a system with a lage number of particles, in
a thermal equilibrium. Using a quantum gas microscope leads the control of the
thermodynamic properties at an exquisite level. Indeed, éhgroup of Prof. Markus
Greiner succeeded in getting a higher fraction of the entrgmn the edges of an optical
lattice, in order to generate in the bulk of the lattice the lagest antiferromagnetic
correlations ever observed on a arti cial stateNlazurenkoet al., 2017.

The two other platforms | am going to describe, and the plation | worked on
during my Ph.D. are on the contrary based on a \bottom-up" appoach. They consist
in rst controlling a single quantum object, and then addingmore and more objects
to have an assembly of interacting qubits. They involve fewénteracting particles
than the quantum-gas platforms, but at a better level of sinlg-particle control and a
wider range of possible types of interactions.

Trapped ions | now turn to ion-based quantum simulators. Most of these ptéorms
rely on ionic crystals in a linear Paul trap Raizenet al., 1993, exhibiting very high
delity single- or two-qubit operations [Blatt and Wineland, 200§. The largest systems
are 1D chains of a few tens of qubits, but the extension to high dimensions or
to larger number of interacting particles is extremely ch&nging. The spin-spin
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1.2 A short overview of quantum simulation

interactions are engineered using a laser coupling betwetbe internal states of the
ions and the collective vibrational modes of the ionic cryats [Cirac and Zoller, 1995
Porras and Cirag 2004 Kim et al., 201]. They were shown to decay as=R , R being
the inter-ion distance, where can be tuned between 0 and 3, potentially leading to
very long-range interactions.

The high delity of two-qubit operations on ion-based platbrms allows the group of
Prof. Rainer Blatt to perform digital [Lanyon et al., 2017 or variational [Kokail et al.,
2019 quantum simulations.

Superconducting circuits  Finally, | brie y mention the case of superconducting
qubits. They triggered a lot of interest since they have begroved to behave as arti cial
atoms [Nakamura, Pashkin, and Tsai 1999 You and Nori, 2003. The technology
has considerably improved so that nowadays, supercondungiqubits are available
at an excellent level of controlPaik et al., 2011 Barendset al., 2013. Inter-qubit
coupling have been implemented using either the exchange atrwave photons in
cavity [Wallra et al., 2004 Dalmonte et al., 2015 or the mutual inductance Chen
et al., 2014. On these solid-state devices, the interactions can be hlg tunable as they
do not rely on the geometrical arrangement of the qubits, bubn the inter-connecting
wiring. Nevertheless, tailoring these interactions for amcreasing number of qubits
while keeping the same level of control is quite challenging

The performance of the superconductor- and ion-based platins are then similar :
they exhibit an outstanding delity for single- or two-qubit operations, but the scaling
to larger number of qubits has not been proven yet. Their potgial integrability and
on-chip compactness makes them promising candidates foetfuture of quantum
information [Devoret and Schoelkopf2013, and attracted world-leading companies
such as Google or IBM to invest in this technology. On these aiforms, some groups
have already explored the digital quantum simulation of spidynamics Balatre et al.,
2019, the variational calculation of molecular energiesJ'Malley et al., 2014, or the
analog quantum simulation of hopping HamiltoniansRoushanet al., 20174.

Figure 1.1 compares the numbers of qubits involved in these di erent fyes of
quantum simulators. The ones based on degenerate quantunsga provide the largest
number of interacting particles whereas the two bottom-up @proaches show the
best delity for one- or two-qubit operations, and highly-tunable interaction at the
single-particle level. Another criterion to compare theselg@tforms is the cycling
experimental time. For ultracold gases, the cycling expeniental time is usually a
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Figure 1.1: Experimental platforms for quantum simulation. The color patches indi-
cate the typical number of qubits involved in di erent types obigntum simulators. The
near-by images with an associated color frame are represmmtqiictures of the platform.
The purple one is a sketch of a quantum gas microscofée green one is a picture of a
nine-superconducting-qubit deviteThe yellow one is a sketch of an ion Paul tfagThe
blue one represented sixteen atoms trapped in optical tweeapdsexcited to Rydberg
states.

few tens of seconds. On the contrary, for ions, the time limitg factor comes from
the read-out of the ion state, which can be as fast as a few ns#conds, leading to a
cycling experimental rate close to 106z. The cycling rate can even be higher for
superconducting circuits.

Rydberg-based quantum simulators

I now turn to Rydberg-based platforms, the type of platform Iworked on during my
Ph. D. thesis. | will give a complete description of our expenental apparatus, one of
the rst Rydberg-based quantum simulators that have been ki, in Chapter 2. In a
few words, these platforms combine the trapping of severahgle neutral atoms in

Ihttps://news.harvard.edu/gazette/story/2009/11/quantum-gas-microscope-cre ated/
2https://web.physics.ucsb.edu/ martinisgroup/
3https://quantumoptics.at/en/research/quigs.html
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1.3 Rydberg-based quantum simulators

con gurable arrays of optical tweezers and the coupling toyRlberg states. These states
are highly excited states corresponding to a large principguantum numbern & 20,
exhibiting exaggerated propertiesGallagher, 1994. In particular, their enhanced
electric dipoles lead to large and tunable interactions, antheir extended lifetimes
ensure long coherence times.

Interacting Rydberg gases The rst proposals aiming at performing quantum gates
with Rydberg atoms relied on the Rydberg blockadel@kschet al., 200Q Lukin et al.,
20017. I will detail its mechanism in the beginning of Chapter4. Its origin is the
distance-dependent energy shift experienced by neighbimg interacting Rydberg
atoms, which prevents the simultaneous excitation of sexaratoms to the Rydberg
states, as one atom being in the Rydberg state brings its nélgours out of resonance.
This results in the generation of entangled states with oneyRberg excitation shared
among mesoscopic atomic assemblies. The rst experimentsre performed on dilute
gases, and showed signatures of the Rydberg blockade by meiag a reduced number
of excited atoms Tong et al., 2004 Singeret al., 2004 Vogt et al., 20069. Then, some
evidence of the coherence of the collective excited statesrereported, still on dilute
gases platformsHeidemannet al., 2007 Raitzschet al., 2008 Pritchard et al., 201Q.
A review on these studies of interacting Rydberg gases can foeind in [Lew et al.,
2013.

Using optical tweezers In order to get a better control on the interaction, the team |
joined for my Ph. D. chose to work with single atoms loaded inptical tweezers instead
of dilute gases. Optical tweezers are tight con ning optidadipole traps, and they were
proven to be reliable single-atom sources in pioneering @&pnents performed at the
Institut d'Optique, by the team of Prof. Philippe Grangier [Schlosseret al., 2001].
Then, it is possible to control the interatomic distance, hece the interaction, between
single atoms. This led the hosting team to observe the Rydlgeblockade between
two atoms [Gaetan et al., 2009, jointly with the group of Prof. Mark Sa man in a
similar setup [Urban et al., 2009. The two groups then improved their control of this
two-atom system, and reported the generation of entangledases [Wilk et al., 2010,
or the realization of the two-qubit C-NOT gate [senhoweret al., 201Q.

Towards quantum simulation with Rydberg atoms  Since these rst experimental
demonstrations, arrays of Rydberg atoms were consideredagpromising platform for
quantum simulation experiments YVeimer et al., 201Q. The use of a versatile array of
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optical tweezers enables for the engineering of any lattigeometry, whose lattice
constant can be as small as a few microns. The interatomic @isce is larger than in

the case of optical lattices, which eases the single-sitesotution of the lattice and

local operations on the encoded qubits. Even for an interawhic distance of a few
tens of microns, the interaction between Rydberg atoms carelon the MHz range,

whereas their lifetimes is around a hundred of microsecond3onsequently, the typical

timescale of the interacting dynamics is much smaller tharhe coherence time of the
system, leading to its observation in a laboratory.

One of the advantages of using Rydberg atoms for quantum sitation purposes is
that they can interact within di erent regimes, in such a waythat they naturally
implement di erent kinds of Hamiltonians. | refer to Appendix A for a detailed
description of these regimes of interaction, and their lirkto the Hamiltonians
presented in Sectiorl.1l In a few words, we have used in the experiments presented in
this manuscript the van der Waals and the resonant dipole-pole regimes. We can
choose to work within one of the two regimes by encoding the lojtiinto a speci c set
of two atomic levels.

If the encoded qubit basis idj gi ,jrig, with jgi the electronic ground state and
jri a Rydberg state, the atoms interact within the van der Waalsegime. In that
case, the interaction results in an energy shift of the douplexcited pair statejrri,
which is at the origin of the Rydberg blockade mechanism | mganed above. Then,
the interaction between two atoms labeled andj readsU; hif;, with f; = jri, hrj,
the local projector on the Rydberg state, andJ; is the van der Waals energy shift.
Consideringjgi = j#i andjri = |"i leads to rewrite the interaction in terms of spin
operators. Ash = (1 + ~*) =2, the interaction between two atoms is in the end 7",
implementing an Ising-like model. Combined with a laser @ coupling the two qubit
statesjgi and jri, we can simulate an Ising-like model in the presence of e éat

transverse and longitudinal magnetic elds.

If the qubit is encoded into two dipole-coupled Rydberg stafs, for example anS
state and an% one, the correct regime is in that case the resonant dipolépdle
interaction. Under the in uence of this interaction, a pair d Rydberg atoms in
the jnS, n®Pi state will evolve back and forth between this state and thin®P, nSi
one Barredoet al., 2015, in the same kind of spin-exchange process | mentioned abov
(Section1.1). This is why this interaction implements the XY model, or had-core
boson Hamiltonians. The use of a microwave eld couplingSi and jn®Pi imitates
the behavior of a magnetic eld in the context of spin Hamiltomans, or a chemical
potential in that of hard-core boson Hamiltonians.
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1.3 Rydberg-based quantum simulators

Our group rst characterized the aforementioned di erent egimes of interaction
between a few Rydberg atoms, resulting in several publicatis reviewed in Browaeys,
Barredo, and Lahaye 2014. Then, the team studied Hamiltonians involving a few
tens of Rydberg atoms, with the implementation of an Isingte model Labuhn
et al., 2014. The limitation at that time of Rydberg-based platforms wa due to the
stochastic loading of the optical tweezers by single atomiswill come back to that
point in Chapter 2. The basic idea is that our loading protocol of the optical teezers
implied that only half of them were randomly loaded by singlatoms, preventing us
to work with a targeted atomic con guration. We developed tlen an atom-by-atom
assembling technique, consisting in moving the atoms in treeray to fully load a
targeted sub-array of optical tweezerdHarredo et al., 2014. A similar assembling
process was developed at that time by the group of Prof. MikiHaLukin [ Endreset al.,
2014 and by the one of Prof. Jaewook AhnKim et al., 2014. Very recently, a similar
approach was implemented in the group of Prof. Gerhard Bir§Ohl de Mello et al.,
2019.

Current Rydberg-based quantum simulators Figure 1.2 summarizes the basic
ingredients used on Rydberg-based platforms to perform quiam simulation: defect-
free atomic structures, one- and two-qubit operations anduhable interaction. The
coherence and delity of the one- and two-qubit operationsdve considerably improved
recently, as demonstrated by the group of Prof. Mikhail Luki [Levine et al., 2018
2019, reaching a level of control closer and closer than thoseosin by ion- or
superconductor-based platforms. It is now possible to geag entangled states
involving up to 20 qubits [Omran et al., 2019. To compare these platforms to the
other ones described in Sectioh.2 (see Figurel.l), they provide a similar number of
gubits than ion- or superconductor-platforms, but in a moresersatile con guration
(we demonstrated the generation of 3D atomic structure®rredo et al., 2018). The
cycling experimental rate, limited by the necessary loadgnof the optical tweezers and
the imaging time, is on the order of a few Hz.

The tunability of Rydberg-based platforms allowed us to sty a bosonic version of
the Su-Schrie er-Heeger model and to observe signatures ofogological phase with
interactions [de Lesleuc et al., 2019, which would be extremely hard in other types
of quantum simulators. This is why Rydberg-based experim&l apparatuses are
nowadays very attractive and competitive platforms to pedrm quantum simulation of
many-body physics.
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In the Introduction, arrays of Rydberg atoms were presenteds one of the best
platforms to perform quantum simulation. The aim of the presnt chapter is to
describe the experimental procedures we follow to obtaindtstarting point of quantum
simulation experiments, an assembly of qubits in a well-conlled initial state. Our
experimental setup was built by Lucas Beguin and Aline Verrar, and then was
upgraded by the following generations of Ph.D. students armubst-doc : Sylvain Ravets,
Henning Labuhn, Sylvain de Lesleuc and Daniel Barredo. | W brie y recall the
working principles of the di erent steps of our experimentaprotocol, referring to their
Ph.D. theses for further information. Most of the experimetal results shown in this
chapter were already presented in the thesis of Sylvaite lesleuc [2018.



2.1

Chapter 2: Overview of the experimental apparatus

I will rst describe in Section 2.1 the elementary building block of our experimental
apparatus, the trapping of a single atom in an optical tweerg Then, | will explain in
Section2.2 how we generate fully-loaded arrays of atoms. Finally, in S&mn 2.3, | will
present the Rydberg excitation scheme in the single-atomgiene, i.e. without taking
into account interaction which will be the topic of the follaving chapters.

A single atom in an optical tweezers

One of the requirements for quantum simulation is to isolatand control one single
gquantum object. To do so, the tool we are using in our experimeis an optical
tweezers Ashkin et al., 1984, to trap a single®’Rb atom. Optical tweezers are now
commonly used to trap various types of objectslpnes, Marag, and Volpe2019,
and its application for single-atom trapping was rst demostrated in our lab, in a
pioneering work of the team led by Philippe Grangierdchlosseret al., 200]. In this
section, | will rst explain how we load and detect a single @m in an optical tweezers.
Then, | will describe the di erent steps of the experimentakequence after loading,
enabling the preparation of the atom in a speci ¢ hyper ne leel of the electronic
ground state. For this preparation we need to control the mamggtic eld inside the
chamber. | will show in a third part how we measure the generadl magnetic eld
using microwave manipulation of the electronic ground stat

2.1.1 Loading of an optical tweezers and single-atom irgagin

The usual way to trap matter using light is to shine a far o -resonance red-detuned
laser beam on particles. Indeed, light induces an electrigpdle on the particle, which
tends, to minimize its energy, to seek high-intensity regns. The trapping potential
created that way U is such thatU / 1=, where | is the laser beam intensity and

is the (negative) detuning. When such a dipole trap is focusexh a small volume, on
the order of 1 m3, we create a so-calledptical tweezers

Tight focusing of a dipole trap beam In order to obtain an optical tweezers,
one needs to focus light near the di raction limit. Our grouphas been working on
optical tweezers for about twenty years, and their generamn has been successfully
demonstrated with di erent techniques. At rst, the careful design of a home-made
microscope objectiveYigneron, 1999 allowed the team to achieve this goal in their
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pioneering experimental setup, MIGOU. Then, the experimeat e ort was focused
on simplifying the optical setup using a single large-numieal-aperture aspheric
commercial lens $ortais et al., 2007 Fuhrmanek, 2011, in the second generation
of the experimental platform, ASPHERIX. | have been working dung my Ph.D.
on the third setup generation, CHADOQ. Here, the light is alsodtused using a
large-numerical-aperture aspheric lens (NA = 0.5, focal lgth f = 10 mm), which was
designed by Luca€eguin [2013. From now on, | will only consider this experimental
apparatus.

Describing it in a few words, the part under vacuum of the expenental setup
is composed of two chambers connected by a Zeeman slower. Teeone acts as
an atom source. It contains solid Rubidium crystals heatedpuby an oven. A small
aperture in one wall of the rst chamber generates a directesratomic beam at room
temperature inside the Zeeman slower. The Zeeman slower elecates the atoms to a
few mK, and the atoms arrive in the second, ultra-high vacuuprchamber. There, in
addition to the aspheric lenses, the vacuum chamber contaircoils and electrodes to
control the magnetic and electric elds. The aspheric lenseare coated with a thin layer
of ITO to avoid the accumulation of charges. In combination #h the under-vacuum
electrodes, these two ingredients allow for the cancellati of the electric eld near
the atoms, which was not the case in the previous experimeh&pparatuses. This
signi cantly improved the coherent excitation of the atomstowards Rydberg states.

Loading of single atoms in an optical tweezers Now, | explain how our experimen-
tal setup enables the trapping of single atoms. The experimtal setup is represented
in a simpli ed way in Figure 2.1 A far o -resonance red-detuned 852-nm dipole
trap beam (represented in red) is focused by the aspheric mside the vacuum
chamber on a cloud of’Rb atoms at 100 K, created thanks to the combination of
a Magneto-Optical Trap (MOT) and a Zeeman slower (not showmiFigure 2.1 and
along they-axis on the experimental apparatus). The MOT light, consimg of six
counterpropagating beams (represented in orange) slightted-detuned from the B
line of the 8’Rb, slows down the atoms in the three directions of space viaresonant-
light-induced friction force. As in most of the cold atoms exgriments, the MOT light
whose frequency is set on the cycling transitiorbS;-,, F =2 ! 5P3-,,F =3 comes
along with a repumper light set on the transition 5S;-,,F =1 ! 5P, F =2 . A
pair of coils inside the vacuum chamber, in an anti-Helmholtzon guration, generates
a magnetic eld gradient. Outside the chamber, six compentan coils make it possible
to adjust the position of the magnetic eld zero, and are usetb tune the position of
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Figure 2.1: Trapping and imaging a single atom. The dipole trap beam a852nm (red)
is focused inside a vacuum chamber using aspheric lenses).(Skx counterpropagating
beams (orange) constitute the MOT light. The light scattered bydtatom at 780 nm
(green) is re ected by a dichroic mirror (DM) and imaged on the EMC@Bmera. Top-left
inset, zoom inside the vacuum chamber, where the tight focggihthe laser beam into
an optical tweezers is shown. The orange cloud represents thmit cloud. The 2D-cuts
of the spatial intensity distribution of a Gaussian laser beam shown in the bottom left
corner. The spatial pro le is Gaussian in the radial directigz plane), and is a Lorentz
function in the longitudinal one X direction).

the atomic cloud.

The dipole trap beam tight focusing results in an optical twezers. The intensity
pro le is Gaussian, with a =¢? radiusw 1 m and Rayleigh lengthzz 4 m (see
inset of Figure2.1). Then, for about 5mW of laser power, we obtain a trap depth
Uo=kg 1mK. Once the position of the atomic cloud is properly set near éhoptical
tweezers, the atoms are cooled enough to fall in the dipolep. The tight con nement
resulting from the optical tweezers trapping potential, inaddition to the MOT light
shone on the atoms, make the system enter tloellisional blockaderegime, which
prevents two atoms to be in the optical tweezers at the samente. Indeed, in this
regime, two atoms inside one trap undergo fast inelastic hgassisted collisions, and
the energy the atoms gain during this type of collisions is engh to expel both of
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Chapter 2: Overview of the experimental apparatus

stochasticloading of the latest by single atoms.

Imaging of a single atom Once an atom is loaded in the optical tweezers, it scatters
the MOT light in all directions. Part of this uorescence light is collimated by the very
same aspheric lens, separated from the dipole trap beam gsim dichroic mirror, and
imaged on an electron multiplying CCD camera (EMCCDAndor iXon Ultra 897). The
fact that we are using the same optics for trapping and imaggnis very convenient in
terms of optical access, and was a strong constraint whilesigning the optics, which
have to work at two di erent wavelengths, 852xm and 780nm [Beguin, 2013. The
imaging optical setup was designed in such a way that the radisize of one optical
tweezers (about 1 m) matches the size of one pixel of the Andor Camera (16n), to
improve the signal to noise ratio. A typical uorescence si@al corresponding to the
image of one optical tweezers (only a few pixels of the EMCCRmera were taken
into account) is shown on Figure2.2(b). We clearly see two levels of uorescence,
corresponding to the only two possible loading states of thaptical tweezers: when the
signal is low, the trap is empty, when it is high, the trap corains a single atom. The
red line in Figure 2.2(b) corresponds to the threshold level, allowing us to discninate
between the two loading states by measuring the uorescensggnal. The fact that we
cannot see a higher third level of uorescence means that tloptical tweezers cannot
hold two atoms at the same time. In fact, the timescale of theght-assisted two-body
losses (Ins) is way shorter than the imaging exposure time (2@s). Single atom
loading in optical tweezers within this collisional blockde regime was demonstrated
observing this typical two-level uorescence signaBchlosseret al., 2001, Schlosser,
Reymond, and Grangier 2003.

Atomic motion inside an optical tweezers Due to its nite temperature T, which
can be as low as a few tens ofK using additional cooling procedures described in the
next subsection, the trapped atom oscillates around the pleantensity of the optical
tweezers. As KT U, the atom stays near the bottom of the trap. We can then
approximate the trapping potential as a harmonic potentiglcharacterized by two
di erent frequencies, the radial! ; =(2 ) and longitudinal ! \(=(2 ) frequencies. The
expressions of these frequencies can be written as a functad the trap depth Uy and
the typical length scales of the Gaussian beam pro ley and zg

r S

4U, B
p— and !, =

2Uy
mz3

(2.1)
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2.1 A single atom in an optical tweezers

wherem is the mass of &’Rb atom.

The statistical distributions of positions and velocitiesof single atoms loaded in
the tweezers follow a Maxwell-Boltzmann distribution. Thestandard deviation of
the velocity distribution is = P kg T=m, and in this harmonic approximation,
the standayd deviations of the distributions of the radial ad longitudinal positions

are »x= ksT= m!Z, . As we shall see in the next subsection, this statistical

description enables us to measure the temperature of the p@ed single atoms via a
release and recapture experiment (se€uchendler et al., 2009).

2.1.2 Typical experimental sequence

So far, | described the experimental apparatus in its steadstate, an optical tweezers
stochastically loaded by single atoms. | now present the stgssive manipulations
we do in order to prepare our system in the right initial statgo perform quantum

simulation experiments, that is to say our typical experimetal sequence. This will
allow me to introduce the principle of the measurements we gdand to give the main

characteristics of the trapped atom (lifetime, temperatue, position dispersion inside
the tweezers).

Overview of the experimental sequence Figure 2.3 sums up the di erent steps of
the experimental sequence. We start by dispersing the atomtloud, by turning o the
magnetic eld gradient shutting down the inner coils currety and switching o the
MOT, repumper and Zeeman slower lights. Dispersing the atamcloud stops the
stochastic loading of the optical tweezers. We then take ast uorescence image of
the optical tweezers region in order to check on the presenakthe atom. This is done
in the same way as in the steady state regime, we shine MOT anepumper lights on
the optical tweezers for 20ns and look at the uorescence signal on the EMCCD. The
next step is the assembly of the atomic array, in the case wleewe are working with
several optical tweezers. This step will be described in $Siea 2.2

We then perform a rst additional cooling procedure: after stting the values of
the currents inside the compensation coils in order to carlceut the magnetic eld,
we increase the absolute value of the negative detuning oettMOT light to lower
the limit temperature of the polarization gradient coolingprocess Tuchendler et al.,
2009. The detuning yot is ramped down from yo1 = 5 t0 por = 8, with
2 the natural linewidth of the MOT transition. After this rst additional cooling
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2.1 A single atom in an optical tweezers

the optical pumping step, by simultaneously decreasing thaurrent in the inner coils

and increasing the current in another pair of coils outsidehe chamber, positioned
along the x-axis. Therefore, the norm of the magnetic eld stays di erat from zero

and, the atom following adiabatically the orientation of the magnetic eld, we do not
lose its polarization. After optical pumping, we perform a s®nd additional cooling
process by adiabatically decreasing the trap power to a fevegents of its initial

value [Tuchendleret al., 2008.

The previously described steps have two purposes: the addital cooling of the atoms
and their preparation into the state 5S,-,,F =2, mg = 2 . At this speci ¢ stage of
the experimental sequence, we may perform quantum simulati@xperiments, where
the atoms are excited to a Rydberg state (further describea ithe single-atom case in
Section2.3) and interaction between atoms may play a role. Nearly all thexperiments
described in the further chapters of this manuscript take pice at this precise stage. At
the end of the sequence, we take again an image of the atom aecence, to determine
if the atom is still there. We end the sequence by reforming ¢hatomic cloud and the
experimental setup returns back to its steady state regime.

Working principle of the measurement The quantity we are measuring is the
uorescence light emitted from the optical tweezers area.anks to the threshold
level introduced in Figure2.2, by measuring the quantity of light we can check on the
presence of the atom, at the beginning and at the end of the ssnce (see Appendix
A of Sylvain de lesleuc [201§ thesis for more details). Repeating the sequence for a
given numberN of iterations allows us to measure the probabilityp for the atom to
be recaptured. The error bar on this probability is the standrd error on the mean
(s.e.m), which is equal top p(1 p) =N. The error is the biggest forp = 0.5. To reach
the 5% level of error for this probability we need 100 iterabins, and if we want to
reach the 2% level of error we need more than 500 iterations.de the necessity to
have a cycling experimental time as short as possible to belalto repeat a great
number of times the experimental sequence and perform moreepise measurements.
Thanks to recent improvements of the experimental apparagj we now reach a cycling
rate of 3 to 4 Hz.

We can then measure the recapture probability as a function af varying parameter
of the experimental sequence. As we shall see in the next pguaph, this will allow
us to measure some trapping characteristics, such as thegaratom lifetime and
temperature, and the trapping frequencies. In the case wheethe recapture depends on
the state of the atom, we infer the occupation of the di erenistates via the recapture
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probability measurement. For example, atoms in the Rydbergtates are not trapped
in the optical tweezers, so the probability to lose an atom ithe probability to excite

it to the Rydberg state. Therefore, our measurement prototoelies on a partial loss of
the atoms, it is a destructive measurement. This is why we ngdo start again the

stochastic loading of the optical tweezers at the end of easkquence iteration.

Measurement of the trapping characteristics using the recapture probability
The simplest experiment we can perform is to vary the total dation of the sequence,
and measure the recapture probability as a function of thigrhe. The lifetime of the
single atom in the optical tweezers is inferred that way, its measured to be around
20s. The losses of the single atoms in that case are due toismhs with particles
from the background gas at room temperature, and represertd ultimate limit for
the possible duration of an experiment. This lifetime wouldonsiderably increase in
a cryogenic environment, one of the major improvements exged from the next
generation experimental apparatus currently developed iour team [Magnan, 201§.

Another quantity that can be inferred from recapture probality measurements is the
trapping frequency, via a parametric heating experimentnideed, for a precise frequency
of the modulation of the trap depth (twice the trapping frequency), we parametrically
excite the atom out of the trap, and measure a drop of the recape probability. Their
values were found to be equal tb,=(2 ) =50.2(3) kHz and! (=(2 ) = 8.3 (1) kHz.
For the same trap, we measure spectroscopically its depth=h=5.5 (1) MHz (see
Sylvain de lesleuc [2018's thesis) and deduce from Equationd.1) the dimensions of
the Gaussian beanw =1.01(2) m and zz =4.31(8) m, which are on the expected
order of magnitude.

Figure 2.4 shows how we can also determine the temperature of the singtems using
the measurement of the recapture probability in a release dmecapture experiment.
The experimental sequence is displayed in Figu4(a): starting with an atom in the
optical tweezers, we switch o the trap leaving the atom y avay due to its nite
temperature (release); and switch on the trap again (recapte) after a time . An
atom is still trapped in the optical tweezers after a ight ofduration if the absolute
value of the trapping potential at its nal position is greater than its kinetic energy.

We measure the recapture probability as a function of the rehse time in three
di erent cases (see Figure.4(b)). First (Exp 1), we do it without performing any
additional cooling of the atoms. For Exp 2, we cool the atomssing the ramping of the
trap power, and for Exp 3 we perform both additional cooling cesses, the ramping of
the trap power and MOT detuning. The cooler the atoms, the loger they stay around
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red. Figure 2.4(c) also shows the spatial dependence of the trapping potéitin
the xy plane, and the equipotential lines corresponding to an erngr of 100, 50 or
20 K. We repeat this Monte Carlo simulation for di erent temperatures, and compare
with the experimental results to infer the temperature of tle atoms (Figure2.4(b)).
The temperature of the coolest atoms we can produce is R, whereas if we do not
perform additional cooling procedures their temperaturesion the order of 100 K.
We have improved the cooling by ramping down the MOT detuningn the very last
months of my Ph.D. thesis, so in most of the experiments preged in this work, the
atomic temperature was around 20K. In practice, when we check on a daily basis
the temperature of the atoms, we measure the recapture prdibty for one given
time, usually 20 s (red dashed line in Figure.4(b)).

During the quantum simulation step, the atoms are in free i¢t. Indeed, the
dipole trap is switched o in order to excite the atoms to a Rytherg state without
any lightshift induced by the 852-nm laser beam. As all the rapture curves on
Figure 2.4(c) start with a plateau at probability 1, we can perform thisfree ight for a
given amount of time without losing too many atoms. Typicalf for T 20 K, we
only have a 3% probability to lose an atom for a 10s experiment.

The temperature of the atoms and the trapping frequencieslalv us to estimate the
statistical spreading in position around the peak intensyt of the optical tweezers,

>k = ksT= m!Z, . These spreading are on the order of, ~ 100nm and

k  500nm. They will be of interest further in this manuscript to understand in
details the dynamics of interaction between Rydberg atomss the latest is a ected
by shot-to-shot uctuations of the interatomic distance.

Control of the experimental sequence The experimental sequence reported above
is realized in practice by sending a collection of TTL signsland analog voltages.
They are generated by two National Instruments cards. At theitne when | joined the
team, a LabWindows interface was used to control the cards. Myst task in the lab
was to convert this program into a Python program. It was madgossible thanks
to a Python package dedicated to write on National Instrumerst cards,PyDAQmX,
developed by PierreClace. Since then, all the operating programs of our experimental
setup are written in Python: the camera program acquiring tB uorescence images
and triggering the experiments, the experiment control pgram writing the sequence,
and the program analysing the images and computing the redape probabilities.
This uniformity of programming language will enable us to iplement more easily
in the near future some automatized optimization protocolGaneva, Calarco, and
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Probing transitions in the electronic ground state ~ The experiment consists in ex-
citing the atom in the level 5S,-,,F =1, mg =0 tothelevel 5S,,,F =2, mg =1 ,
using a microwave eld generated with an antenna outside theacuum chamber (see
Figure 2.5a)). The di erence E=h between the frequency of this transition and the fre-
qguency of the clock transition insensitive to magnetic eld 5S;-,,F =1, mg =0 !
5S:1-5,F =2, mg =0 is proportional to the magnetic eld B, with a sensitivity
0.70 MHZG [Steck 2003.

The experiment then works as follows. We prepare the atom imé¢ 5S,-,,F =1
state by shining some MOT light without any repumper light. We then send a microwave
pulse at a controlled frequency and look at the atomic popuian in the 5S,,,F =2
state. This alone would not allow us to determine in which hygr ne state an atom is
because it would be recaptured in both cases. Therefore, ing on the atom before the
nal image a \push-out" beam, set on the resonancesS;-;,F =2 ! 5P3,,F =3 ,
to expel the atom out of the trap if it is in the 5S,-,,F =2 state, whereas it will
stay trapped if it is in the 5S,-,,F =1 state. Consequently, when the frequency
of the microwave eld matches the transition frequency, webserve a drop in the
recapture probability (see Figure2.5b)), allowing us to determine the position of the
line.

Calibration of the magnetic elds By measuring the frequency of the transition as
a function of the current inside the coils, we calibrate theraplitude of the generated
magnetic eld. Figure 2.5 (c) and (d) show that the quantization eld (along z or
x) reach values on the order of 40 G. The larger the magnetic a&lthe larger the
splitting of the Zeeman structure. This will be used to isol@ two levels in the Rydberg
manifolds for quantum simulation purposes, as we shall seddr in this manuscript.
Repeating the same measurement for the compensation comslkeles us to nd the
current corresponding to the cancellation of the magneticeld, as already introduced
in the previous subsection.

Time evolution of the generated magnetic elds = When we switch on the current
in a pair of coils outside the vacuum chamber, compared to aipaf coils inside, it
will take longer for the generated magnetic eld to reach itstationary value because
it will have to overcome the induced eddy currents in the vaaum chamber. Using
the spectroscopic experiment described above, we have rastied that we need to
wait 20ms for the quantization eld along x to reach its nal value, whereas 3ns are
enough in the case of the direction, as in that case the magnetic eld is generated
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2.2 Generation of fully-loaded arrays of atoms

Figure 2.6: Trapping, sorting and imaging many atoms. Schematic representation of
the experimental apparatus, where the devices required tdrgm a single atom to many
were added. The Spatial Light Modulator (SLM) imprints a phase thie 852-nm beam,
resulting in a controlled intensity pattern at the focus of thegheric lens, imaged on the
CCD camera. The purple beam is the moving optical tweezers haminose focus point in
the focal plane is set using Acousto-Optic De ectors (AODs)hree Electrically Tunable
Lenses (ETL) enable the tuning of the focal plane of the di etaptical setups, in order
to access the third dimension along the optical axis

with the coils inside vacuum. We have to take into account thge di erent time scales
when we change the direction of the quantization eld to keefhe value of its modulus
di erent from zero.

Generation of fully-loaded arrays of atoms

So far, | presented how we can isolate a single atom in a concheegion of space
thanks to an optical tweezers. In this section, | will desdoe how we generalize this
technique in order to obtain arrays of single atoms in a tunadé con guration. This
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requires a collection of devices represented in Figu2e6. The roles of the Spatial
Light Modulator (SLM) and the CCD camera will be reported in arst part, where |
will explain how we generate a controlled pattern of many optal tweezers. Then,
| will depict how we reach a targeted loading con guration fom a random initial
con guration via the atom sorting technique (purple optica path on the gure).
Finally, I will describe how we improved our trapping and soitg protocol to extend
it to three dimensions, using among other things Electricgl Tunable Lenses (ETL).

The work brie y reported here are described in details in theriginal publica-
tions: [Barredo et al., 20149 and [Barredo et al., 2018.

2.2.1 Versatile trapping con guration using holograpl@chniques

The rst requirement to ful Il to reach the generation of fully-loaded arrays of atoms
is to multiply the number of optical tweezers, in a controlld geometry. This is realized
using a Spatial Light Modulator (SLM). This device imprintsa phase pattern on
the dipole trap beam, resulting in an intensity pattern conisting of several optical
tweezers in the focal plane of the aspheric lens via di radn. Its rst implementation
on our experimental setup is reported inNogrette et al., 2014 and in the thesis of
Henning Labuhn [2018.

Computation of the phase pattern  The algorithm we use to compute the required
phase pattern to get a targeted lattice of optical tweezers ireported in Leonardo,
lanni, and Ruoccq 2007, and its implementation is explained in the thesis of
Sylvain de lesleuc [2018. It works in an iterative way, adapted from the Gerchberg-
Saxton algorithm. The whole set of optical tweezers is codsred as a collection of
coherent point-like light sources, of uniform amplitudesrad random phases. The
propagation of the interfering light eld, resulting from this collective emission and
depending on the geometrical arrangement, is computed atefposition of the SLM
plane. We then take as a phase pattern for the SLM the phase dfet interfering
light eld and compute at the positions of the optical tweezes the amplitude and
phase of the light propagating from the SLM, i.e. in the reveed direction. The
computed amplitudes are inhomogeneous. In order to compates for that, we repeat
the same procedure with the new computed distribution of pls@s, and, instead of
considering a uniform distribution for the amplitudes of tke traps, we choose a smaller
amplitude for the stronger traps, and on the contrary, a largr amplitude for weaker
ones. Moreover, to achieve a more homogeneous trap intepgiistribution, we replace
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the step consisting in calculating the amplitudes at the pason of the optical tweezers
by measuring using the CCD camera the actual intensities oheh of the generated
traps. That way, repeating this process for a few tens of itations, we create the
targeted con guration of traps with a standard deviation intheir intensities smaller
than 3%.

Global phase masks In addition to the phase pattern required to obtain the targéed
intensity pattern, we can sum other phase masks that will hava global e ect. A linear
evolution of the phase modulo 2 is a blazed grating, acting as a mirror, so applying
this kind of phase mask allows us to displace at will the trapgitern in the focal
plane of the aspheric lens. A quadratic evolution of the phasnodulo 2 is a (Fresnel)
lens, so this kind of phase mask makes it possible to adjustetiposition of the trap
pattern on the optical axis. Finally, the modi cations of the wavefront induced by
the SLM can be used to compensate the ones due to aberratioBy. measuring the
deformations of the wavefront due to aberrations with a Shaeldartmann sensor, we
are able to reduce them thanks to an adapted phase mask. Comsently, the three
global phase masks described above allow us to tune in thedkrspatial dimensions
the position of the array of optical tweezers, and to genemtmore con ned optical
tweezers by reducing aberrations.

Fluorescence imaging of the array of traps We follow the same procedure as the
one reported in the single-atom case to take a uorescenceage of the trapped
single atoms. As the radial size of an optical tweezers matchthe size of one pixel
of the EMCCD camera, and that two traps are not imaged on the sae pixel, the
uorescence coming from each trap is spatially resolved. Figure 2.7, the phase
pattern on the SLM, the related trap intensity image and atomuorescence image are
displayed for two di erent con gurations. Due to the collisonal blockade regime, as an
optical tweezers is loaded by a single atom half of the timenaverage the array of
optical tweezers is half loaded. As a consequence, we cannotkwvith a controlled
atomic con guration, which is detrimental for quantum simdation purposes. | will
explain in the next subsection how we overcome this drawbadKevertheless, for
single-atom measurements, working with partially loadedreays of optical tweezers
has already the advantage to decrease the s.e.m. using savatoms instead of one at
each sequence iteration.
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exponentially with N . In practice, in our team, it was possible to perform experients
with up to N = 9 traps using the stochastic loading protocol. A possibleotution
would be to increasep, by tailoring the light-assisted inelastic collisions in iew of
expelling one atom instead of two after the collisiordmanzweig et al., 201Q Lester
et al.,, 2015 Brown et al., 2019. This allowed some experimental research teams to
reach up top 0.9, but in the end we still have to face the exponential groWwtwith

N of the required time to fully load the trap array.

In this subsection, | will describe the procedure we followotget a controlled loading
con guration. It consists in choosing an initial bigger aray of 2N traps half loaded
with single atoms, and then to move the atoms one by one to |l ta traps we want to
be occupied. That way, we generate a fully-loaded con gurain of N optical tweezers.
I will rst explain how a single atom is transferred from one tap to another, and then
| will depict the whole procedure to assemble a targeted swdsray of optical tweezers.
This work was already reported in details inBarredo et al., 2014 and in the thesis of
Sylvain de Lesleuc [201§.

Transferring one atom The idea is to use another optical tweezers (purple beam
in Figure 2.6) whose position in the focal plane of the aspheric lens is dymically
changed using Acousto-Optic De ectors (AODs). The moving djtal tweezers is
combined with the dipole trap static beam using a PBS, and inged on the same
CCD camera. We can then calibrate the position of the movingMeezers as a function
of the frequencies of the RF signal feeding the AODs. Thesedjuencies are set using
Arduino Due controlled by the master computer program, so inhe end, by analysing
the image of the static traps and of the moving tweezers, theopition of the moving
tweezers can be automatically set to point to any of the trapsnd to go from one
trap to another. The depth of the moving optical tweezers islso tuned dynamically
changing the amplitude of the RF signal feeding the AODs.

An atom stays trapped in the moving optical tweezers for slonneugh maotion,
as previously demonstrated in our teamBeugnonet al., 2007. The transfer of one
atom works as follows (Figure2.8 (a)). The moving optical tweezers is pointed on an
occupied trap with no power. Then, we gradually increase thaepth of the moving
tweezersUyr in 300 s to Uyr =kg = 10 mK. The position of the moving tweezers
is then shifted on an empty trap, steering the atom away, at a aximum speed of
10 m=msto avoid heating up the atom and lose it. The atom is then relezd in the
empty static trap by decreasing the moving tweezers depth tero in another 300 s.
We are able to realize that way the transfer of a single atom thia 99.3% e ciency in
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7 7 square matrix of atoms every second sequence iterationaths to say at a
1 2Hzrate. As we take a uorescence image after the assembling pess, we can
post-select the sequence iterations in order to considerlpthe ones where we had
obtained a defect-free con guration.

2.2.3 Extension to 3D

The assembling technique presented before allowed us to lexp quantum many-body
physics in di erent 2D con gurations (square, triangle, dmerized chain) as we shall see
later in this manuscript. Extending this technique to the thrd space dimension would
increase even more the complexity of the physical phenomenhich could be studied in
our experimental apparatus. | report in this subsection ttg latest improvement, which
led to the publication [Barredo et al., 2018. | refer to the thesis of Sylvainde lesleuc
[2019 for more details.

Generation of 3D array of optical tweezers The advantage of the algorithm we
use to compute the SLM phase patternLjeonardo, lanni, and Ruoccp2007 is that it
can be naturally extended to 3D con guration of traps. As alrady mentioned, the
underlying idea to access the third dimension is to imprint guadratic phase on the
wavefront in order to mimic the propagation through a lens. Tis ability to pile up
traps on the optical axis means that we can that way overcomée limitation of the
number of generated traps coming from the nite eld of view dour uorescence
imaging setup. The total available trapping volume is now ofize 100 100 100 m?d.

Intensity and uorescence imaging To image the intensity or the uorescence of
the whole 3D structure, one needs to change the object focaape of both imaging
optical setups in a controlled way. For that purpose, we useléctrically Tunable Lenses
(ETL), whose focal lengths depend on applied control currén We then take images
for a range of focal lengths, and piling up this set of 2D imageve reconstitute the 3D
intensity or uorescence distribution (Figure2.9a) and (b)). The Ei el Tower array
in Figure 2.9(b) looks fully loaded, as uorescence light is emitted fronevery trap.
Actually, it is not the case, we have performed the assembliraply for multi-planar
geometries (see next paragraph). Therefore, what is shownkigure 2.9b) is a stack
of averaged uorescence images.
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2.3 Excitation to Rydberg states

As a conclusion, I have reported in this section how we genegany 2D con gurations
of N atoms, and 3D con gurations taking into account some consints (multi-planar
geometries and minimal inter-plane distance). | have thusedcribed all the steps
mentioned in Figure2.3, except the quantum simulation one which will be the topic
of the further chapters of this manuscript. At this stage, wehave an assembly of
gubits in a controlled initial state via optical pumping, ard in a controlled spatial
con guration. The necessary element which is still missingp perform quantum
simulation experiments is interaction between atoms. We aeh such an interacting
regime by transferring the atoms to Rydberg states: highlyxeited orbitals with
principal quantum numbern ranging from 50 to 100. The aim of the next section,
completing the overview of our experimental platform, is ta@lescribe how we transfer
the atoms to this state.

Excitation to Rydberg states

Rydberg states are highly excited orbitals, whose exaggtd properties (enhanced
dipole-dipole interactions and extended lifetimes) are afterest for quantum simulation
purposes, as we shall see later in this manuscript. | will dgge in this section how
we excite an atom to a Rydberg state. After showing the two-phon transition we
use, | will present the two regimes we have explored to pregaa Rydberg excitation.

2.3.1 Two-photon transition

For Rubidium, the frequency of the direct transition from the electronic ground state
joi to a Rydberg statejri is in the UV range. As coherent sources at that wavelength
are not easily available, it is more convenient to use a twdapton transition. The
excitation to the Rydberg state then consists, in our casenia rst transition close to
the D; line at 795 nm (red) coupling to the intermediate statgei = 5P;-, , and a
second transition around 475 nm (blue) coupling to the Rydlg state. Our two-photon
scheme enables the preparation ofrgS;-, or nD 3=, excitation. After describing the
di erent two-photon schemes used in this work, | will presdrthe excitation lasers
setup and explain how we detect the atom transfer to a Rydbergjate.

Di erent excitation schemes  Depending on the targeted state, or on the direction
of the quantization axis, we have used di erent orientationgnd polarizations for the
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Frequency locking of the excitation lasers  Both excitation beams are generated by
Toptica Diode Lasers. Sending a small portion of the excit&n beams to a high nesse
ultrastable cavity allows us to stabilize their frequenci using the Pound-Drever-Hall
(PDH) technique. | refer to the thesis of SylvainRavets [2014 for further details.
A careful analysis reported in the thesis of Sylvaide Lesleuc [201§ describes the
origins of the laser phase noise when locked, which will beioterest to understand
the damping of the laser-driven Rabi oscillations (see Sudagtion 2.3.2.

Optical setup for the excitation lasers In order to shape the time evolution of the
amplitude and frequency of the excitation beams, we use an E0and an AOM. The
EOM allows us to switch on and o the excitation beams in a fastime scale (1s)
to apply laser pulses as in the next subsection. The AOM, feditiw a RF signal sent
by an Arbitrary Waveform Generator (AWG), enables the generdgon of a tunable
time pro le for the amplitude or frequency of the excitationbeams. For example, we
use it to create a Gaussian amplitude time pro le (Subsectin2.3.3, or to perform
optical detuning sweeps (Chapted).

The experiments involving Rydberg excitations reported ithis manuscript are
limited to 2D con gurations. In such a planar geometry, we ca maximize the Rabi
frequencies by focusing the excitation beams into sheetslight, using cylindrical
lenses for the red laser, or the original ellipticity of the lne laser. For example in the
excitation scheme on the left of Figur€.1Q the dimensions (%€ radius) of the beams
are:wy =20 mandw, =50 m for the blue laser,wy =70 m andw, =230 m for
the red laser. Extending the waists of the exciting beams irhé atomic plane direction
allows us to reduce inhomogeneities of the Rabi frequence&r the atomic array.

Detection of a Rydberg atom To excite an atom to the Rydberg state, we rst
switch o the dipole trap to avoid the light-shift it induces, then send the red and
blue laser pulses, and nally switch on the dipole trap againf the atom is in jgi at
the end of this sequence, it will be recaptured, if it is ifri, it will be lost. Indeed,
Rydberg atoms are expelled from high-intensity regions vike ponderomotive force.
We have used such a force to trap the Rydberg atoms in bottle @ traps, as we
shall see in Chapter3. Consequently, the nal uorescence image informs us on the
state of the atom, and a high probability to excite an atom to he Rydberg state
corresponds to a drop of the recapture probability.
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Chapter 2: Overview of the experimental apparatus

In the experiments presented in this manuscript, we have uséwo di erent ways
to excite an atom to a Rydberg state, depending on the Hamiltagan we want to
simulate. Indeed, as stated in the Introduction, we must emcle an e ective spin-1/2
into the levelsjgi and jri to study the Ising model. In that case, the detuning
from the intermediate statejei must be large to treat the atom as a two-level system
fi gi ,jrig while being driven by the two excitation lasers. This regim&here we
perform laser-driven Rabi oscillations is described in Sséction2.3.2 On the contrary,
in the XY-case, the spin-1/2 is encoded in the Rydberg manifaldherefore, what only
matters is to excite the atoms to the Rydberg state, and we do using a stimulated
Raman adiabatic passage in the small regime (Subsectio.3.3.

For both processes, using laser-driven Rabi oscillation ar stimulated Raman
adiabatic passage, the intermediate statgi must not be populated. Indeed, as it is
short-lived (26ns), populating it would induce spontaneous emission. In theflowing
subsections, | will show how we succeed in avoiding this inckd spontaneous emission
in both cases.

2.3.2 Laser-driven Rabi oscillations

A common solution to avoid populating the intermediate stad is to choose a detuning

from this state much larger than the red and blue Rabi frequencies , . In this
subsection, | will rst describe how we can restrict oursebs to the two-level system
joi,jri under this condition, and then | will present the typical spetrum and Rabi
oscillation we obtain.

Reduction to a two-level system When b, We can consider that the
population in jei is always zero. The time evolution of the population in the ta-level
systemjgi, jri when the red and blue excitation laser beams are shone is thgimen
by the e ective Hamiltonian

~

Ae = 26 (rihgj + joihrj)+ ¢ jrihrj (2.2)

where the e ective Rabi frequency and detuning are

e:Z”’anole:+f4—b (2.3)

with  the detuning from the Rydberg statejri (see Figure2.11(a) for the three-level
system scheme). The additional detuning appearing in. is the AC-Stark shift due
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Figure 2.11: Optical Rabi oscillation. (a) Three-level systenj gi ,jei ,jrig showing the
one-photon detuning and the two-photon detuning, and its simpli cation to a two-level
system when r,» b (D) Typical spectroscopic signal obtained for a pulse duration
of 200ns, a Rabi frequency =(2 ) = 2.47 MHz, andjri = 62D3-,,m3; =3=2 . The
solid line is a t to measure the position of the Rydberg line. (cypical Rabi oscillation
measured for =0 andjri = 62D3-,,my = 3=2 . The solid line is a tting damped sine
allowing us to infer the value of the Rabi frequency(2 ) =2.47 MHz.

to the red and blue lasers. In practice, the blue power is seb its maximal value

and we tune the value of ¢ by varying the red power. The intermediate detuning
is =(2 ) =740MHz. We can then obtain an e ective Rabi frequency up to about
5 MHz.

Our optical drive to the Rydberg state can then be seen as a twevel transition of
Rabi frequency . and detuning  which will be written from now on in a simpli ed
way and . This reduction to a two-level system will be mostly used in Rapter 4,
about our study of an Ising-like model.

Spectroscopy of the Rydberg line  Shining the laser beams for a duratiobh = =
and at resonance = 0 allows us to coherently excite an atom prepared ijgi to jri.
Figure 2.11(b) shows the typical spectroscopic signal we obtain when weeasure the
recapture probability varying the detuning .

Pointing the position of the Rydberg line via spectroscopyof various power of
the red laser enables the measurement of the light-shift inded by the latest. The
estimation of this light-shift will be of interest in Chapter 4, and it is a way to measure
the red Rabi frequency.

Due to their exaggerated polarizability, the Rydberg enegglevels are quite sensitive
to electric elds via the DC-Stark e ect. As already presentd in the very beginning
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of this chapter, a combination of eight electrodes inside ¢hvacuum chamber, in
addition to an ITO coating on the aspheric lenses, allows us ttancel out the electric
elds, which is crucial to have an e cient Rydberg excitation and a coherent driving.
In practice, to compensate the electric elds, we scan the kages on the di erent
electrodes and choose the values that cancel out the measuC-Stark shift.

Laser-driven Rabi oscillations When the detuning is set to = 0, shining the laser
beams for a varying duration coherently drives the system tveeen the statesjgi
and jri. Figure 2.11(c) shows such a typical Rabi oscillation, tted with a dampée
sine. The imperfections of the Rabi oscillation in terms ofontrast and damping were
carefully analysed in our publication fle Lesleuc et al., 20184. | recall here its main
results. The contrast is smaller than unity because of the tktion errors and °
(detailed in the paragraph below); and an imperfect initiapreparation in the correct
Zeeman sub-level during the optical pumping process. Thermaing mainly comes
from the Doppler e ect, the laser phase noise, and the stillan-zero population in the
intermediate statejel resulting in spontaneous emission.

| give now more detail about the detection errors and °. | recall that our state
detection protocol relies on the fact that ground-state atms are recaptured whereas
Rydberg atoms are not. Nevertheless, as we have seen in FigRi there is a (small)
non zero probability to lose an atom during the experiment.n this unlikely case, an
atom in the ground state will be mistaken as a Rydberg atom. Weall the probability to
make this detection error , and its typical value ranges between 2 and 5%, depending
on the atom temperature and the total duration of the perforrad experiment. On the
contrary, due to the limited lifetime of the Rydberg state, aRydberg atom can decay
back to the ground state before being expelled away from theapping region, and
then would be misleadingly considered as a ground-state atoThis detection error is
called © and its typical value is also a few percent. More details orup detection
errors can be found in the thesis of Sylvaide Llesleuc [201§.

2.3.3 Stimulated Raman adiabatic passage (STIRAP)

Another possible solution to avoid the spontaneous emissifnom the intermediate
state is to use stimulated Raman adiabatic passages (STIRAP) widely used solution
recently reviewed in Vitanov et al., 2017. Its working principle is the following. For
=0, in the presence of the two couplings  and , one of the three eigenstates of
the three-level systenjgi,jei, jri has no projection on the short-lived statgei. This
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two lasers , ) in order to have the most e cient Rydberg excitation. In practice,
we set the blue laser power to its maximum value, and the redder power in order to
have , = .. After optimization, we reach a STIRAP transfer e ciency of about

90% for the 6(5,-, State in 2 s.

The very valuable advantage of using STIRAP is that it stays ecient for a wide
range of parameters. To illustrate that point, Figure2.12b) shows the measured
Rydberg excitation probability as a function of the positim on the y axis using the
two di erent excitation protocols described in this sectio, a Rabi -pulse (grey) or a
STIRAP (purple). The STIRAP is more e cient in a wider region, t his is why we
will use it in Chapters 5 and 6 when we will want to initialize the atomic array in a
Rydberg nS state.

Deexcitation protocol To transfer an atom injri back to jgi, we could use an
inverse STIRAP process (shining rst a red pulse then a blue fge). To perform the
deexcitation faster, we shine instead a pulse of blue light eesonance to couple back
the atom into jei, and then it will spontaneously decay back to the electroniground
state. This allows us to transfer back the atom in approximay 400 ns.

| have shown in this section that we can excite the atoms to a Rperg state with
an e ciency of  90%, depending on the targeted state. Our analysis condudte
in [de Lesleuc et al., 20184 led us to conclude that the weak dipole matrix element
betweenjei andjri is the limitation to achieve a better transfer e ciency. In order to
improve it, our team plans to adopt theinverted scheme, successfully implemented in
the group of Prof. M.D. Lukin [Bernienet al., 2017 Levine et al., 201§. The idea
is to choose the 6P;-, state as an intermediate state. Then, the wavelength of the
transition from the intermediate state to the Rydberg statels around 1013 1m, for
which we can use amplifying doped bers to reach larger Rahigiquencies. Moreover,
the new excitation laser setup the team plans to use is expedtto exhibit a reduced
phase noise, as it will involve Ti-sapphire lasers instead diole lasers, resulting in an
even more coherent laser-driven Rabi oscillations.

Conclusion

In this chapter, | presented our experimental platform: amys of optical tweezers in a
controllable con guration loaded by single atoms which cabe excited to Rydberg
states in order to implement some interaction. This preseation allowed me to
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introduce the quantity we can measure, the recapture probdity. As being recaptured
depends on the state of the atomjgi or jri), the occupation of these states can be
inferred from this probability. More interestingly, as the uorescence emitted from
each trap can be resolved independently, we can measure satorrelations of these
occupations, which will be of interest in the second part ohis manuscript.

| also showed in this chapter that most of the experimental pameters, such as the
magnetic and electric elds, the red and blue Rabi frequeres, can be measureith
situ using single atoms as probes. The generation of arrays ofgdeatoms allows us
to measure in parallel the spatial dependence of these parters, eventually leading
to a complete characterization of the experimental paramets.

The latest improvement of our experimental platform, the tapping of Rydberg
atoms, will be described in the next chapter. The followinghapters will be dedicated
to the quantum many-body physics arising from the interactin between Rydberg
atoms.
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Rydberg arrays are an attractive platform to perform quantm simulation thanks
to the exaggerated properties of Rydberg atoms, namely lagnteraction energies
and extended lifetimes. These properties make them alsotsile for more general
guantum information tasks, and | already mentioned the re&ation of two-qubit
logic gates using Rydberg atom3Nilk et al., 201Q Isenhoweret al., 201Q Jau et al.,
2018 Levine et al., 2018. Moreover, combining their strong interactions and the
coupling to light elds, Rydberg atoms can be used to engine@on-trivial states of
light and e ective photon-photon interactions. Along thoselines, the experimental
realizations of strong optical non-linearitiesPritchard et al., 201Q, single-photon
sources Dudin and Kuzmich, 2017, attractive photon-photon interactions [Firstenberg
et al., 2013 and single-photon transistorsTiarks et al., 2014 Gorniaczyket al., 2014
have been demonstrated, extending the range of possible hpgitions of Rydberg
atoms in quantum technologies.



Chapter 3: Single Rydberg atoms in ponderomotive bottle beam traps

In order to improve the performance of Rydberg-based platims, a missing in-
gredient so far is the trapping of single Rydberg atoms. Inéd, in the experimental
demonstrations mentioned above, or in the quantum simulain experiments described
in this manuscript, the Rydberg atoms are in free ight. As a cnsequence, due to
their nite temperature or the mechanical forces induced bynteractions, they slightly
move during the experiments, which was proven to be a limitetn for quantum gate
delities [ Sa man and Walker, 2005 Sa man, 2014 or to induce some dephasing
processes in the evolution dynamic8arredo et al., 2015 de lesleuc et al., 20184.
Moreover, trapping single Rydberg atoms would be necessdoyperform precision
measurements of fundamental constants using circular Rydiy states Jentschura
et al., 2008 Ramos, Moore, and Raithel2017 or positronium [Cassidy 201§.

To date, the three dimensional con nement of Rydberg atomsdas been limited
to the case of mesoscopic ensembles trapped in millimetieesregions using static
magnetic [Choi et al., 2009 or electric elds [Hogan and Merkt 200§. To reach the
tight con ning regime required to generate traps for Rydbay atoms of micrometre-size,
one should use thg@onderomotivepotential. It is the potential experienced by the
weakly-bound Rydberg electron at positiom in an AC electric eld whose frequency
is far from any internal transition frequency of the Rydbergatom, such as an infra-red
laser-light eld, for example. This potential is equal to the time-averaged kinetic
energy of the electron oscillating in this eld. It is then reulsive and proportional to
the eld intensity. The ponderomotive potential readsVp (r) = €l (r) =(2me oC! 2),
with e and m, the charge and mass of the electron, respectively, ahd the angular
frequency of the electric eld. Consequently, ponderomate potentials can be used
to laser trap single Rydberg atoms in three dimensions, byeating a dark region
surrounded by light in all directions.

Ponderomotive potentials have already been used to con neyBberg atoms in
optical lattices [Anderson, Younge, and Raithel201% Li, Dudin, and Kuzmich, 2013,
but only in one dimension so far. In this chapter, | will show bw we trapped a single
Rydberg atom in three dimensions, by transferring them froma regular Gaussian
optical tweezers into a holographically generated bottledam (BoB) trap, consisting
in the required dark region surrounded by light. | will rst describe how we create
such traps and the experimental signature of single Rydbeegjom trapping. Then, |
will analyse in more detail the trapping potential and studyour trapping e ciency,
combining measurements and numerical simulations of theaskical atomic motion
inside the trap. Finally, | will show that these traps are comatible with the quantum
simulation tasks we have already performed with Rydberg atas in free ight, namely
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microwave Rabi oscillations between neighbouring Rydbetgvels and spin-exchange
interaction. The results presented in this chapter led to ta publication Barredoet al.,
2019.

Upgraded apparatus for Rydberg trapping

To achieve the trapping of single Rydberg atoms via the pondamotive potential,
we need to create a dark region surrounded by light. This salted bottle beam
(BoB) trap can be generated with di erent techniques Chaloupkaet al., 1997 Ozeri,
Khaykovich, and Davidson 1999 Zhang, Robicheaux, and Sa man2011]. Here we
use holography, and | will describe how we adapted our expmental apparatus to do
so in the rst subsection. Then, | will show how we combine thground-state optical
tweezers with the BoB trap to obtain a single trapped Rydbergtom.

3.1.1 Holographic generation of bottle beam traps

I show in Figure 3.1 the required elements to trap single Rydberg atoms on our
experimental platform. We use two laser beams at 852 nm, wleowavefronts are
controlled by two Spatial Light Modulators (SLM). The red beam in Figure 3.1 creates
optical tweezers at the focus of the aspheric lens, in the sarway as explained in the
previous chapter (see Subsectioh1.]). It acts as a single ground-state atom source.
On these tweezers we superimpose another beam, represemeolue in Figure 3.1
The second SLM imprints a -phase o set on this beam, on a central disk of radius,,
whereas the phase is not modi ed on the outer shell, see togftlinset of Figure3.1
The total area of the beam, a disk of radius, is controlled via an iris. The top-left
inset illustrates how such a -phase mask creates a BoB trap. The outer part of
the beam, as it is wider, will create a tighter optical tweezs (in the radial and
longitudinal directions) than the inner part of the beam. Sige these two light elds
are out of phase, they interfere destructively at the focusf éhe aspheric lens, and
the subtraction of the two elds, shown on the left of the inskg is composed of a
dark region surrounded by light. This is how we generate ha@oaphically a BoB trap.
The simple argument used here does not lead to the correctemsity distribution
near the focus of the aspheric lens. For this, one should sslthe Fresnel di raction
integral [Chaloupkaet al., 1997 Ozeri, Khaykovich, and Davidson 1999.

Figure 3.1 shows two-dimensional cuts of the measured light intensityistribution of
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Figure 3.1: Simplied representation of the experimental apparatus fo r single
Rydberg atom trapping. Two 852-nm laser beams are superimposed with a polarization
beam splitter (PBS) to trap single Rydberg atoms. The red oneates the regular optical
tweezers at the focus of the aspheric lens, as introduced @anptevious chapter, and is a
trap loaded by single ground-state atoms. A SLM (SLM1) imprints a gd@n this beam to
control the con guration of the array of optical tweezers. The beanpresented in blue is

re ected on another SLM (SLM2), which imprints a phase on the inner part of the beam.
This creates a BoB trap at the focus of the aspheric lens. The kefp-inset illustrates the
principle of the holographic generation of a BoB trap. Measured two-@hsional cuts of
the light intensity distribution of the BoB trap are shown.

the BoB trap, indeed revealing a dark region surrounded byght. This measurement
was performed using our trap imaging setup described in theqvious chapter,
with which we can record the light distribution on di erent planes perpendicular
to the optical axis by electrically tuning the focal length 6 the imaging lens (see
Subsection2.2.3.

Figure 3.2 shows the phase pattern imprinted by the SLM and the assoced
intensity distribution in the xz plane. On the left, the phase pattern is the combination
of a linear gradient of phase and a Fresnel lens, enabling the control of the position
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of the optical tweezers. On the right, the phase patterns faeare an added -phase
mask in a central disk of radiug o, highlighted by a dashed green circle, leading to the
generation of a BoB trap. The larger the beam impinging on SLM (radius a), the
smaller the BoB trap, and we have to adapt, in order to always have a destructive
interference condition at the focal point. On our range of pameters, this condition is
rd  0.5a% such that the central disk and the outer shell have approxiately the
same area. This is why the -phase mask radius is the largest for the smallest BoB
trap. All the maxima of intensity distributions are normalized to one.

The bottom of Figure 3.2 allows to compare the trapping volume of the regular
optical tweezers (red, attractive potential normalized to 1) and the ones of BoB traps
(blue, repulsive potential normalized to +1), both attractve and repulsive potentials
being proportional to light intensities. The trapping regons have approximately the
same size. The typical radial and longitudinal dimension®f the regular optical
tweezerszor Xor are given by the Ee? radius and the Rayleigh length, extracted
from ts of the intensity spatial pro le. We measured a trapping size 1.0 m 5.0 m.
For the BoB trap, we de ne the radial and longitudinal dimensons zg,g  Xgog as
the distance between the two local maxima in the radial and hgitudinal cuts of the
intensity pro le. These dimensions are indicated in the leend of Figure3.2

Since the regular optical tweezers and the BoB trap have appimately the same
size, one way to trap a single Rydberg atom is the followingtasting with a ground-
state atom held in an optical tweezers, we release it and ebecit to a Rydberg state
while being in free ight, and then we trap it by shining the BA trap. This transfer
of the atom from one type of trap to the other is possible if théwo traps are correctly
overlapped, and if the atom does not move too far away while ing in free ight. The
two SLMs enable for the precise alignment of the traps with spect to one another,
by tuning the direction of the imprinted linear gradient of fhase.

3.1.2 Signature of Rydberg atom trapping

Once we have observed that we generate BoB traps, we shouldrisfer single atoms
excited to Rydberg states inside them and measure how long @ able to keep them.
This experiment is described in Figure3.3 (Exp 3). To con rm the trapping of single
Rydberg atoms, we actually compare this experiment with twother ones, consisting
in measuring the recapture probability after a varying timefor a Rydberg atom in free
ight (Exp 1) and for a ground-state atom in the presence of te BoB trap (Exp 2).
Exp 1 is the same kind of release and recapture experimentrimtiuced in the
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drastically (red disks in Figure3.3).

Finally, the third kind of experiment is the combination of the two previous one. It
consists in exciting the atoms to a Rydberg state (still 8-, in that case), shining
the BoB trap for a varying duration , deexciting the atom to the ground state and
recapturing it. The recapture probability of a Rydberg atomis enhanced thanks to
the presence of the BoB trap (comparing the results of Exp 3 thithe ones of Exp 1
in Figure 3.3), which is the signature of the trapping of single Rydberg ains. Exp 2
allows us to con rm that the observed extended trapping timen Exp 3 is due to
the excitation to Rydberg states, and not only the presencd the BoB trap. The
measured signal in Exp 3 allows us to optimize the experimetparameters in order
to obtain the best trapping. We vary the 852-nm laser power hie size of the BoB
trap, and the position of the BoB trap with respect to the reglar optical tweezers
to have the largest recapture probability after 30 s in the BoB trap. This led us to
choose a laser power of 400W and the medium-sized BoB trap (see Figur8.2).
With these parameters, we observed an enhanced recapture lmability if the principal
guantum numbers of the Rydberg states involved is such thaD& n < 90. We will
describe in more detail the trapping e ciency as a function dthe principal quantum
number in the next section.

| have shown here how transferring a single Rydberg atom idsi a BoB trap
allows us to recapture it for an extended time compared withhe free ight case,
demonstrating our ability to trap single Rydberg atoms. Alttough the trapping time
is extended, the recapture probability in Exp 3 slightly deays. The aim of the next
section is to understand the origins of this decay.

Trap characterization

Now that we have demonstrated our ability to trap single Rydbey atoms, we need to
characterize quantitatively the BoB trapping features. | vill rst derive the expression

of the trapping potential, leading to the computation of a nmimal energy barrier
which must be high enough to keep the Rydberg atoms trapped. €h, | will show

that the characteristic lifetime inside a BoB trap depends o the principal quantum

number n of the Rydberg state involved. More precisely, it is relatetb the Rydberg

state lifetime in a 300K environment. Finally, | will estimate the trapping frequencies
in such traps.
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3.2 Trap characterization

3.2.1 Trapping potential

So far, | have only mentioned the ponderomotive potentialp (r) experienced by the
nearly free Rydberg electron to explain the repulsive potéal trapping the single
Rydberg atom. | recall that it readsVp (r) = €21 (r) =(2me oc! 2), with e and m, the
charge and mass of the electron, and, the angular frequency of the 852-nm trapping
laser. This potential is proportional to the light intensity | (r), with r the position of
the electron.

In fact, for the trapping potential experienced by a Rydberg@tom at position R, we
must take into account the extension of the electronic wavfction jm . Then, in a
Born-Oppenheimer-like approximation, the trapping potetial for the Rydberg atom is
given by the following convolution Putta et al., 200Q

Z
Unim, (R)= Ve (R+ 1) jm, (r) 2. (3.1)

For an hypothetical zero-extension Rydberg atom, njm; () ? is the Dirac func-
tion, and the potential experienced by the Rydberg aton,;m ; (R) reduces to the
ponderomotive potentialVp (R).

| will then present the result of a numerical calculation of @nvolution (3.1) in order
to derive the value ofUy;m ; (R). This will allow us to extract the minimum energy
barrier con ning the Rydberg atom.

Convolution with the Rydberg wavefunction  Only Rydberg nS;-, were involved
in the experiments described in this section. In that casehe electronic wavefunc-
tion depends onn and r = jrj (it is isotropic), which simpli es the treatment of
equation 3.1). First, we focus on the relative e ect of the convolution, wewill be
interested in the absolute value of the potential later. Theefore, we compardJ,s (R)
with the ponderomotive potential, represented in thexz plane in Figure 3.4(a). For
this comparison, we compute the ratidJ,s (R) =\, wherej is the maximum value of
the ponderomotive potential.

The e ect of the convolution can be interpreted as the averagof the ponderomotive
potential over the spatial range of the radial density probaility of the nS orbital
r2j ns (r)j%. This spatial range scales as2. These orbitals are plotted to scale in
Figure 3.4(a). For n 100, the spatial extent of the radial wavefunction is on theasne
order of magnitude as the typical length scale of the BoB intsity distribution, that
is to say about 1 m. Consequently, we expect that for such high principal quémm
numbers the potential created by the BoB light will not be coming any more, the
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power andn 90, this minimal barrier is about ImK, that is to say on the same
order of magnitude as the trap depth of the regular optical teezers for InW. For a
BoB trap, we then need a large laser power to generate high egb potential barriers
in all directions to con ne atoms at 130 K. Decreasing the atomic temperature (we
proved later that we can reach atomic temperature as low as eWw K), and using
the smallest BoB trap, we have achieved to trap Rydberg atomsith 20 mW laser
power, holding the promise for scalability. We may also wor&n more elaborate phase
patterns to generate a more homogeneous surrounding potehtarrier. In that case,
we could use even less laser power per BoB trap.

3.2.2 Lifetime in the BoB trap

Now that we have understood in more detail the trapping poteinl, in terms of spatial
dependence where we have seen the e ect of the convolutionthg Rydberg radial
wavefunction, and in terms of minimal energy barrier, we casee for how long we can
keep a Rydberg atom inside a BoB trap. To do so, we repeat Exp i@roduced in
Figure 3.3 still for a laser power of 40@nW and the medium-sized BoB trap, and for
a varying principal quantum number of the Rydberg state invived.

Trapping lifetime  Figure 3.6(a) shows the result of such an experiment (solid disks),
for the four Rydberg states 68;-,, 755,-,, 84S,-, and 925,-,. The recapture probability
decays roughly in an exponential manner, and the dashed Isare t to extract
the exponential mean lifetime. We compare the tted lifetines with the Rydberg
state lifetimes in a 300K environment Beterov et al., 2009 Archimi et al., 2019 (see
Figure 3.6(b)). The lattest are radiative lifetimes, computed in our @se using the
Alkali Rydberg Calculator (ARC) software [Sibalc et al., 2014.

This radiative lifetime gives the mean duration before a Rylaerg atom is transferred
into another state. Either it spontaneously decays to lowying states, either it
transitions into neighbouring Rydberg states via black-bdy radiation from the
environment. As shown in Figure3.6(c), both types of radiative process lead to a
loss of the atom. If the atom decays to a low-lying state, thetam is now attracted
away, by the BoB light, from the nal recapture region, and tte recapture probability
drastically drops as already explained for Figur8.3 Exp 2. If the atom is transferred
into a neighbouring Rydberg state, it stays trapped as it exgriences almost the same
trapping potential (its principal quantum number has only keen changed by a few
units). But the deexcitation pulse is not at resonance any nme to transfer the Rydberg
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position and velocity of the atoms at 130K inside the regular optical tweezers. After
setting the initial conditions, we compute the motion rst in free ight for the STIRAP
duration, then inside the BoB trapping potential derived inthe previous subsection
for a time , and then again in free ight for the deexcitation duration.If the kinetic
energy is larger than the potential trapping energy of the gular optical tweezers at
the nal position of the atom, the atom is not recaptured. In the end, repeating the
same procedure one thousand times, we compute the recaptprebability.

In addition to the atomic motion, we take into account the nite STIRAP excitation
e ciency (about 10% of the atoms are not excited). If the STIRAP does not succeed,
the atom stays in the electronic ground state. We also compaithe atomic motion in
that case, where the BoB potential is now attractive, whichdads to a fast decay of
the recapture probability as expected from Exp 2 in Figur&.3.

Finally, the last ingredient we include in our classical comgation of the atomic
trajectory is the Rydberg lifetime in a 300K environment. Fo each trajectory
simulation, we pick up a time according to the exponential {& whose time constant is
the radiative lifetime introduced above. At this speci c time, the atom is transferred
to neighbouring Rydberg states or to low-lying states, anchiboth cases, the atom is
lost (see Figure3.6(c)). Therefore, for an easier numerical treatement of the Riperg
lifetime e ect, we consider in our simulation that the atom s transferred back to the
electronic ground state. Back in the ground state, the recéyre probability drops, so
in the end this simpli cation of the radiative loss mechanis leads to the same result.

The results of the simulations taking into account all the @ments listed above are
plotted as solid lines in Figure3.6(@). The agreement with the measured recapture
probabilities is good, especially, the simulation reproaes quite well the behaviour
at short times (see insets). In our simulations, we do not takinto account the
photoionization e ect (ionization of Rydberg atoms due to he absorption of trapping
light photons), which leads to additional lossesSa man and Walker, 2005 Zhang,
Robicheaux, and Sa man 2011.

Mechanical losses The advantage of our simulation is that we can arti cially renove
the e ect of the Ryderg state decay to other states, to see onthe e ect of the
trapping potential on the recapture probability. Indeed, & a function of the peculiar
set of initial conditions, a Rydberg atom may escape the BoBdp. This results in a
reduced recapture probability de ned as mechanical loss€Ehis is what is shown
in Figure 3.7(a), where | computed the recapture probability as a functio of for
di erent Rydberg states, without taking into account any decay of the Rydberg state.
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To sum up, we observed that the mean trapping lifetimes of Ryukrg atoms in
BoB traps coincide with their radiative lifetimes in a 300 K avironment, for principal
guantum numbers such that 66< n < 90. Classical Monte-Carlo simulations agree
with the observed recapture probabilities, especially tlyeshow that the faster decay at
short times is due to the quick loss of atoms which were not ated to Rydberg states,
and to mechanical losses. In the end, these mechanical Igssesult in a nite trapping
e ciency of Rydberg atoms. For low enough Rydberg states) < 90, it saturates at
70 80%, and it vanishes for higher Rydberg states (see Figu8e/(a)). According to
the simulation, working with colder atoms would improve therapping e ciency as it
reduces the mechanical losses.

3.2.3 Trapping frequencies

Finally, the last trapping characterization lacking is the tapping frequency, already
introduced in the previous chapter in the context of regulapptical tweezers (see
Subsection2.1.]). In that case, these frequencies are derived using the apgpimation
considering the light Gaussian pro le as a harmonic pro lewhich is valid if the atom
stays at the bottom of the trap. Here, the BoB light pro le canrot be considered
as a harmonic pro le, it is quartic in the radial direction ard harmonic only in the
longitudinal one. Nevertheless, the convolution smoothesé quartic pro le (see
Figure 3.4(c)), and we are able to extract trapping frequencies.

Figure 3.8(a) describes the sequence we use to measure the trappingjdiencies. It
consists in exciting the breathing modes of the trapped at@nas already explained in
the thesis of LucasBeguin [2013 in the context of regular optical tweezers. We rst
transfer the atoms in the BoB trap for 30 s, in order to get rid of the hottest atoms.
Then, we let them in free ight for 4 s, shine the BoB trap for a varying duration
let them y away for another 10 s, and nally recapture them. For a harmonic trap
of frequency! , the recapture probability is expected to oscillate at 2.

Figure 3.8(b) shows the measured recapture probabilities for the medn-sized
BoB trap and the 84S,-, Rydberg state, for two di erent laser powers. The dashed
lines are tting damped sine to extract the trapping frequegies. The solid lines
are the results of the same kind of Monte-Carlo simulationssghe ones introduced
in the previous subsection, taking into account the whole gaence of alternating
free ight and trapping steps. They are in qualitative agrement with the measured
recapture probabilities, especially at short times. The ite atomic temperature and
the remaining anharmonicity of the BoB trap could explain te damping of the
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Rydberg trapping and quantum simulation

The aim of this last section is to demonstrate that the Rydbey trapping technique we
have implemented is compatible with the quantum simulatiotasks we usually perform
while the Rydberg atoms are in free ight. | will even show thanew phenomena
are likely to emerge with the use of Rydberg trapping. In the Imoduction, when |

presented the quantum simulation projects we are able to gferm on our platform, |

insisted on the fact that depending on the Hamiltonian we wanto mimic, the qubit

must be encoded in di erent levels. The BoB trap we use is onluitable to con ne

Rydberg atoms and not ground-state atoms (see Figu®3 Exp 2), so using the
Rydberg trapping technique described in this chapter, we naonly perform quantum

simulation of the XY Hamiltonian, where the qubit is encoded ito two neighbouring

Rydberg levels.

We are going to focus on two ingredients we use when studyiniget quantum
simulation of the XY model: rst, the microwave Rabi oscillaion between the
neighbouring Rydberg levels encoding the qubit, and secqgnithe spin-exchange
process. These two experiments, and their role with respect the study of spin or
hard-core boson Hamiltonians, will be described in more dét# the following of
this manuscript (Chapter 5 for the microwave Rabi oscillation and Chaptes for the
spin-exchange).

3.3.1 Microwave Rabi oscillations

Rabi oscillation The rst experiment | describe is the microwave Rabi oscillzon
between neighbouring Rydberg levels. The Rydberg levels atved in the following are
represented in Figure3.9(a). Using two di erent excitation schemes (see Figure.10),
we can prepare via STIRAP either82D3-,,my =3=2 or 84S;,,m; =1=2 . Then,
applying a microwave pulse at the frequency of the transitio (i) between j'i =
82D;-,,my; =3=2 andj# = 83P;-,,my =1=2 (around 3.87GHz), we can induce
a Rabi oscillation between the two encoded spin stat¢$ and j#i. The experimental
sequence we followed to observe this Rabi oscillation is shmoin Figure 3.9b). We
transfer the Rydberg atom prepared in statg"i inside the BoB trap for a xed
duration of 50 s, and apply while the atom is inside the BoB trap a microwave
pulse at resonance of varying durations. When the BoB trap isvéiched o, if the
atom is in j"i , it will be deexcited back to the electronic ground state andhen
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vanishing damping rate (4«Hz). As the BoB potentials seen by the two di erent
Rydberg states are approximately the same (the principal @mtum numbers only
di er by one), and as the atom stays in the dark region at the ager of the BoB
trap, we are not able to measure any state-dependent lightift induced by the BoB
trap, whereas it was the case in an experiment performed in @pderomotive optical
lattice [Youngeet al., 2010. The expected di erence between the state-dependent
light-shifts of two neighbouring Rydberg states is on the der of one percent of the
ponderomotive potential.

Performing the same kind of experiment without any BoB trapthat is to say
operating with a constant time of free ight and a varying micowave pulse duration,
we would also observe an almost undamped Rabi oscillatioreésChapter5), but
with a reduced contrast (only 20% for atoms at 30K and for a 50 s duration of
free ight). The reason is the loss of atoms during free ightthey escape from the
trapping region due to their nite temperature.

Long-duration spectroscopy Thanks to Rydberg trapping, we can then perform
microwave manipulation of the Rydberg states for longer dations, with reasonable
contrast with respect to the free- ight case. Consequentlywe can probe spectroscopi-
cally transitions between Rydberg states for longer durains, that is to say with less
microwave power. Then, the power broadening of the linewidtcan be reduced to a
few tens of kHz. This is what is shown at the bottom of Figur&.9.

We rst probe transition (ii) (see Figure 3.9(a)) with di erent microwave pulse
durations. When increasing the pulse duration, we decreags amplitude in order to
always have the same pulse area. The resulting spectra ar@wh in Figure 3.9d).
The dashed lines are Gaussian ts to extract the spectrum lewidth. For the longest
pulse durations, the linewidth stops decreasing. This is bause the Zeeman shifts
experienced by the 84S,-,,m; = 1=2 state and the 84P,-,,m; = 1=2 state are
not the same, leading to a homogeneous broadening of the lpr@portional to the
magnetic eld uctuations. This broadening is estimated tobe approximately 4kHz,
as it is the minimal spectrum width we measured. Consequewtlthe shot-to-shot
uctuations of the magnetic eld are about 30mG. For an applied magnetic eld
of nearly 50 G, this means uctuations below 0.1%, which is thexpected order of
magnitude.

We then probe the two-photon transition (iii) following the same procedure, and
represent the di erent spectra in Figure3.9(e). The tted linewidth as a function of
the pulse duration is plotted in Figure3.9(f), while probing the one- or two-photon
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transitions. In the two-photon case, the linewidth decre&s as the inverse of the
pulse duration (green dashed line) for longer pulse duratis. The linewidth does
not saturate in this case because the two-photon transitiois insensitive to the
magnetic eld shot-to-shot uctuations. Indeed, the Zeema shifts experienced by the
84S,.,,m; = 1=2 state and the 85S,-,,m; = 1=2 state are the same, so there is
no homogeneous broadening.

Consequently, | have shown that Rabi oscillations betweeremghbouring Rydberg
states can be performed while the atom is trapped. This is thesual single-qubit
operation required in quantum simulation experiments of th XY Hamiltonian. In the
next subsection, we study a two-interacting-qubit processhe spin-exchange.

3.3.2 Spin-exchange

The spin-exchange process is a consequence of the resongutle-dipole interaction,
as already described in the Introduction. Considering thewto qubit statesj"i =
82D3-,,my; =3=2 andj#i = 83Pi-,m; =1=2 and a minimal system of two atoms,
the interaction Hamiltonian reads in the two-atom basis

A = J(j'#ih#j + j#ih).

Consequently, once the two-atom system is prepared in theast j"#i , it will oscillate
between the two stateg"#i and j#"i at a frequency J=h, as represented schematically
in Figure 6.5a). For the Rydberg states involved, the interaction energfor two atoms
at 40 m is such thatJ=h = 0.36 MHz.

Experimental sequence To observe such a phenomenon, we must prepare the state
j"#i , which means that we must change the state of one of the atom$ive the other
stays in the same state. As the microwave driving has a globaket on the two atoms,
we use an additional laser beam, called an addressing beaatused on one of the
two atoms to shift the resonance frequency of this atom. Thethe two atoms do not
have the same resonance frequency and we can change the sthtene atom without
a ecting the other one. | will come back on this addressing tdnique in Chapter6.
Once|"#i is prepared, we let the system evolve for a varying duratiorsee the
experimental sequence in Figuré.5b). We perform the microwave preparation and
this evolution while the two Rydberg atoms are inside the BoBraps. At the end of
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the evolution, we deexcite the atoms. As in the previous suligmn, if the atom is in
j"i , it is transferred back to the electronic ground state and waptured, whereas if it
is in j#i, it will stay in the Rydberg state and will be lost.

Measured spin-exchange The sequence above allows us to observe the spin-exchange
process, shown in Figuré&.5c). We indeed measure an oscillatory behaviour, where
j"#i and j#"i become successively the most probable states. The spinf&ge process,
observed here while the Rydberg atoms are trapped, exhibitse same features as in
its original demonstration realized in free ight Barredo et al., 2015.

Study of the damping Again, the advantage of observing the spin-exchange process
while the Rydberg atoms are being trapped is that we can study for extended
durations. In Figure 6.5d), | show the full time evolution of the probability to be

in the state j"#i during the spin-exchange process, and | will focus on the damg

of the oscillation. The global decrease of the amplitude oli¢ oscillation is due to
shot-to-shot uctuations of the interatomic distance, sirce they result in uctuations of
the frequency of the spin-exchange oscillation. A possibigore interesting behaviour

is the slight increase of the amplitude around 15s. We propose in the following an
explanation for such a behaviour by studying the interplay btween the atomic motion

of the Rydberg atoms inside the traps, and the spin-exchang@eraction.

To do so, we perform the same kind of classical Monte-Carlorgilation as before.
We pick up a set of initial conditions deduced from the thermaistributions in position
and velocity (in this speci c experiment, the atomic tempeature was reduced to
3 K), and compute the atomic motion inside the BoB trap. We usethte medium-sized
BoB trapping potential already derived for the Rydberg sta¢ 84S;-,,m; =1=2 . The
trapping potential for the involved Rydberg states here shdd be di erent because
of their di erent orbital quantum numbers. We compute the abmic motion inside
the trap, without taking into account any radiative decay ofthe Rydberg state or
the imperfect preparation. This gives us a time-dependentistance between the two
atoms. We plug this time-dependent distance into the Schadnger equation and solve
it.

Averaging over many trajectories, we obtain the damped spiexchange curves
displayed at the bottom of Figure6.5d), for di erent laser powers generating the BoB
trap. For low powers, we observe beating in the spin-exchamgscillations, due to
the harmonic part of the motion of the Rydberg atoms inside th BoB traps. The
time when the amplitude of the oscillation increases, or theower needed to observe
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such a beating behaviour, do not correspond with the experantal ones, which may
be because in our simulation we do not derive the potentialrfthe correct Rydberg
states.

Nevertheless, taking into account the motion inside the BoBrap leads to the same
kind of beating in the spin-exchange amplitude, so what we sérved may be a hint
of the interplay between the spin-exchange interaction anithe atomic motion. The
correct way to treat this problem would be to include in the Smedinger equation the
atomic motion, and we could expect to observe e ect of the emglement between the
atomic motion and the spin-exchange if the atoms are cooledwn to the vibrational
ground state of the trap, which is not the case for now. It wasecently proposed to
use this entanglement to engineer exotic interaction&pmbetta et al., 2019. These
interactions have the same origin as the e ective spin-spiimteractions arising between
trapped ions.

Conclusion

| have shown that we are able to trap single Rydberg atoms withigh e ciencies for
low enoughn 90 principal quantum numbers, using holographically genated BoB
trap. We have demonstrated that these traps are compatibleith usual quantum
simulation tasks performed in the Rydberg manifold. The ftdwing steps could consist
in improving the trapping e ciency by cooling down the atom and using more elaborate
phase masks, while generating the BoB trap with less power.

Actually, the same kind of holographically generated BoB tqas can be used to
trap single atoms in the electronic ground statequ et al., 201(Q, if the BoB traps are
created with a blue-detuned light with respect to the trangdions to rst excited states.
Indeed, for blue-detuned light, the potential induced by ght is repulsive, in the same
way as the ponderomotive potential, and the atom will seekJaintensity regions.

We could aim in the future at implementing such a blue-deturceBoB trap, for
several reasons. First, trapped in a dark region, a groundagsé atom experiences a
smaller light-shift than the one it sees trapped in a regulaoptical tweezers. Therefore,
such blue-detuned optical traps enable for a more cohereiiskr-manipulation of
trapped atoms. Second, for a speci ¢ wavelength of the trappm laser beam, the
so-called \magic" wavelength, the repulsive potentials gerienced by an atom in the
ground state and in the Rydberg state will be equalZhang, Robicheaux, and Sa man
2011. In that case, the excitation to Rydberg states can be achied without any
induced light-shift while being trapped, and the atom is traped whatever its state,
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opening the way to long duration quantum simulation of the limg model.
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In the Introduction, | have shown how Rydberg atoms interaghg in the van der Waals
regime can be used to implement an Ising-like Hamiltonian (géHamiltonian (A.1)).
When no external elds are applied, the canonical form of thesing Hamiltonian
simply reads : X
Aising = U A777,

hiji
where U, the nearest-neighbour coupling, is the only coupling takeinto account.
From this model, we deduce the existence of two spin-orderetgses. Indeed, itJ < 0,
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two neighbouring spins will tend to align to decrease the tat energy of the system.
Then, the ground state will be such that every spin points ird the same direction,
giving rise to a macroscopic magnetic moment. This is the salled ferromagnetic
phase. On the contrary, wherlJ > O, two neighbouring spins will tend to anti-align.
Consequently, on an in nite square lattice, the ground stat corresponds also to a
spin-ordered phase: a staggered pattern of spins up and doganspin up only has spins
down as nearest neighbours and vice versa), with a zero globahgnetization. This is
known as an antiferromagnetic or Neel phase. It is charaateed by the alternating
sign of the spin-spin correlation function when scanning #hinter-spin distance, as a
positive (negative) correlation means that the two spins pot into the same (opposite)
direction.

The topic of the present chapter is the observation of thesen@ferromagnetic
correlations in a system of Rydberg atoms. More precisely,will show how we
generated antiferromagnetic-like correlations in an assbély of single atoms, initialized
in a product state, by a dynamical tuning of the parameters dflamiltonian (A.1).
This work, done in collaboration with Michael Schuler, Lows-Paul Henry and Prof.
Andreas M. Lauchli, a theory team from the University of Innsbuck, led to the
publication [Lienhard et al., 2018.

Introduction to Rydberg-based Ising antiferromagnets

Before describing our work in detail, | will address two pois. First, | will emphasize
the link between Ising antiferromagnets and Rydberg atomsteracting in the van der
Waals regime while being coherently driven at resonance.c8ead, since the approach
we follow in this chapter, i.e., the dynamical tuning of the Hamiltonian, is a very
general protocol implemented on several quantum simula®rl will present its principle
and application to the study of spin Hamiltonians.

4.1.1 Rydberg blockade and antiferromagnetic ordering

The connection between interacting Rydberg atoms and Isirgntiferromagnets is done
in Appendix A by rewriting Hamiltonian (A.1) de ned in the qubit-basisfjri ,jgig
in terms of spin operators. This results in an interacting ten proportional to ’\iz"jz,
hence the mapping to an Ising-like model. | will show here thahis mapping can be
easily understood referring to a characteristic feature afiteracting Rydberg atoms,
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will order themselves in di erent spatial con gurations (Figure 4.1(b)). If Ry is

much larger than the size of the array, there will be one sirgyRydberg excitation
shared among the atomic ensemble. WhdRy, is on the order of a fewa, blockade
disks containing a dozen of atoms will pave the array. In thisegime, explored in a
guantum-gas-microscope platformgchau et al., 2013, although Rydberg density
correlations can be observed, the precise arrangement oé tlattice is not yet relevant,

they are liquid-like correlations. Decreasing the interdion strength to R, a makes
the system enter a strongly correlated regime, with one Ryeélbg excitation every
second lattice site on a square array. Since the lattice strre is relevant in this

regime to explain the spatial dependence of the correlatignthis is a solid-like regime.
This corresponds to an antiferromagnetic phase when applg the spin-1/2 mapping
jri = j"i andjgi = j#i.

Consequently, driving an array of atoms at resonance with teractions tuned
such that R,  a enables for the observation of antiferromagnetic correlans.
This sudden switch on of the driving is called a quench, as ibauptly brings the
system out of equilibrium. Quenching an array of Rydberg atos was explored in
our platform [Labuhn et al., 2016, where the team were able to study three di erent
regimes by tuning the interaction energy: the fully blockaeld regimeR, a, the
correlated regimeR, a and the independent regimdR,  a. Quench experiments
were also recently studied by the group of Prof. Jaewook AhKim et al., 201§, where
their careful analysis of the many-body relaxation dynamgfollowing a quench led
them to observe signatures of thermalization in a closed gotam system.

4.1.2 Adiabatic sweeps and phase transition

The contrast of the antiferromagnetic correlations genetad by a quench depends
on time, since quenching a system is an out-of-equilibriunrgress. In this chapter,
we focus instead on the equilibrium properties of the systerdescribed in terms
of thermodynamic phase. This is why we have used another appch to generate
antiferromagnetic correlations in an array of Rydberg atosy which is a very general
approach to engineer non-trivial targeted states. Insteadf applying a quench, it
consists in changing the Hamiltonian slowly enough so that éhsystem follows an
adiabatic evolution and stays in the same instantaneous ey level of the time-
dependent Hamiltonian (Figure4.2(a)). Then, tuning the Hamiltonian in such a way
that the initial prepared state is an eigenstate of the inital Hamiltonian (for example
the one with the lowest energy), and that the targeted statesithe eigenstate of the
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system is a trivial product state with all spins aligned in tle same direction, it is a
paramagnetic phase. Adiabatically decreasing the externald makes the system
going from a paramagnetic phase to a correlated phase, thegnd state ofA ;. In our

case of the Ising Hamiltonian, this correlated state is the tgeted antiferromagnetic
phase. It turns out that the initial paramagnetic phase can b easily generated with
arti cial systems. After preparing such an initial state, s@eral experimental teams
were able to study the phase transition between a paramagnatd an antiferromagnet,
by slowly reducing the amplitude of the e ective external dd, proportional to the

Rabi frequency of the qubit driving. For example, the group foProf. Christopher

Monroe studied it on its quantum simulator based on trappedons Edwardset al.,

201Q Islam et al., 2013.

Similar adiabatic protocols were proposed in the context afteracting Rydberg
atoms to observe crystalline structure of the excitationdPohl, Demler, and Lukin,
201Q Schachenmayeet al., 201Q van Bijnen et al., 2011, and were implemented in
the quantum-gas-microscope platform of Prof. Immanuel Bth [Schau et al., 2013.
This motivated our work, and | will report here our observaton of the many-body
dynamics during a sweep of the external eld, for di erent 2Dgeometries, in view
of engineering the antiferromagnetic state of the Ising metl At the same time, a
similar correlated state was observed in the quantum-gaskenoscope platform of Prof.
Waseem Bakr's team Guardado-Sanchezt al., 2019, involving Li atoms excited to
low-lying Rydberg states. These correlations were also @mtsively studied by the group
of Prof. Mikhail Lukin on their optical-tweezers platform. They observedZ,, Z; and
Z, phases in a chain of trapped atom®rnien et al., 2017. A Z,, phase corresponds
to an ensemble of blockaded sub-chains containimgatoms, the Z, phase corresponds
then to the antiferromagnetic phase we are focused on. Thelsa measured more
recently the critical exponent of the phase transitionKeeslinget al., 2019.

For all of these adiabatic protocols to succeed, the evolat of the Hamiltonian
must be slow enough for the system to stay in the instantanesground state. If not,
the system could be excited to higher-energy states via Laag-Zener transitions.
The smaller the energy gap between the ground state and thecéed states, and the
stronger the coupling to excited states, the more likely theandau-Zener transitions.
This results in a limiting speed for the dynamical tuning of he Hamiltonian, known
as the adiabaticity criterion. Since the energy gaps decreaat the phase transition,
and as imperfections of our laser-driving reduce the cohace time of the evolution,
| will show here that we are not able to adiabatically reach t& antiferromagnetic
ground state.
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4.2 Reaching the antiferromagnetic phase

We decided then to address the reversed question, which ispsidering a given time
evolution of the parameters of the Hamiltonian, what is the awunt of correlations
we can expect, and how do they spread in the system? The speédmreading of
correlations is limited theoretically by the Lieb-Robinsa bounds Lieb and Robinson
1973, an important concept in quantum information. These bouns were explored in
the context of quenches where a light-cone-like spreadinfjamrrelations was observed
in an optical lattice [Cheneauet al., 2017 or with trapped ions PJurcevic et al., 2014.
Our work extends this study to the context of slow sweeps.

In this chapter, | will rst present in more detail the procedure we have followed
to get our system of interacting Rydberg atoms close to an afégrromagnetic state.
Then, | will describe the two types of sweeps we have perfordyerevealing the
antiferromagnetic region in the phase diagram, and a timentiit for a coherent
evolution. Finally, I will analyse the time- and space-depetence of the build-up of
correlations, allowing us to observe their nite speed of spading, and a growth
mechanism well captured by a short-time expansion of the dution operator.

Reaching the antiferromagnetic phase

As mentioned before, we want to reach an antiferromagneticage with Rydberg atoms
by dynamically tuning the parameters of the Hamiltonian. Resicting ourselves to the
nearest-neighbour (NN) interactionU = Cg=2&® with a the lattice constant, and taking
into account the laser-coupling between the two-qubit stasfj ri ,jgig = fj"i ,j#ig
described in subsectior2.3.2 the Hamiltonian reads, in terms of spin operators and in
the rotating wave approximation
X X
AN~y + U nin; (4.1)

7 i
i hoji

A =

with A = (1 + ~*)=2, the Rabi frequency and the detuning from resonance. We
can restrict ourselves to the NN interactions because we wiperate in the regime
Ry, a. This will make the description of the phase diagram assotéal to A easier.
Nevertheless, in the numerical simulations presented in thchapter, the full =R®
dependence of the interaction was taken into account.

For this work the qubit is encoded in the two stateg#i = 5S;;,F =2, mg =2
andj"i = 64D3-, my; =3=2 . As we shall see below, the choice of a Rydbely state
instead of a RydbergS state makes the mapping to a spin-1/2 Hamiltonian more
di cult, but on the other hand, we take advantage of the increased laser coupling
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towards D states, which justi es in the end its use. The lattice constat is tuned
between 9 and 7.5m, leading to a NN interactionjUj=h 1 3MHz. Before
describing the phase diagram as a function ofand for a square and a triangular
array, and the speci c time evolution of these parameters weave investigated to
reach an antiferromagnetic state, | will insist on the speal care we needed to take in
order to involve only the two levels of the qubit basis in the mny-body dynamics of
the system.

4.2.1 Accurate mapping to a spin-1/2 Hamiltonian

In Appendix A, | showed that the energy shift experienced by the doubly-eited
state jrri comes from a second-order perturbation theory, the pertuation being the
dipole-dipole interaction between pairs of Rydberg state#n this perturbative regime,
the eigenstate of the two-atom system has a large overlap tvithe unperturbedjrr i
state, and its potential curve follows the expected asymptic behaviour in Cg=R®. In
that case, a mapping to a spin-#2 Hamiltonian is possible, and the Rydberg blockade
mechanism is valid.

It turns out that the situation can be much more complicated épending on the
precise Rydberg state involved and this simple asymptoticehaviour does not apply
systematically for the distances explored in our experimen This could lead to failures
of the Rydberg blockade, and to deviations from the Isingke model we want to
implement, as the team observed in one of its previous workgbuhn et al., 2014.
To understand those deviations, in collaboration with ProfHans-Peter Buchler and
Sebastian Weber from the University of Stuttgart, we analyskthe potential curve
of the pair state after a numerical diagonalization of the giole-dipole interaction
Hamiltonian, and indeed, we found discrepancies from the amptotic behaviour. We
also found a convenient value for the magnetic eld de ninghe quantization axis
allowing us to reduce these deviations, implementing coatty the Ising-like model.
This accurate mapping into a spin-1/2 Hamiltonian was repodd in [de lesleuc et al.,
20184. I will brie y describe this study here, and | refer to this publication or to the
thesis of Sylvainde Llesleuc [2018 (Chapter 6) for more details.

Dipole-dipole interactions with nDj-, state The treatment of the dipole-dipole
interaction is more complicated withnD -, states for several reasons. First, the
ne splitting are narrower for nD states, which reduces the energy separation be-
tween pair of Rydberg states and makes the e ect of the perthation stronger.
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4.2 Reaching the antiferromagnetic phase

Moreover, a nDj3-,nD3-, pair state can be almost at the same energy as a
(n+2) P, (n  2) Fs=, state. This accidental quasi-degeneracy is called a Ferste
resonance. In this peculiar interaction regime, exploredybour team in [Ravets
et al., 2014, when the two pair states are exactly at resonance, the erggate of
the system has only a 50% overlap with the unperturbed stat&D3-,,nD3-, , and
the system oscillates back and forth between the two pair 4 nD3-,,nD3-, and
n+2Pi,n 2Fs-, . Consequently, close to these kind of resonances, the dgsol
dipole interaction does not result in a mere energy shift ohe pair state, which is
detrimental for our implementation of the Ising model.

In addition to Ferster resonances, coupling to other pair sttes must be taken into
account when the internuclear axis is tilted with respect tdhe quantization axis.
Indeed, the dipole-dipole interaction can couple pair stas with a di erent total
magnetic number (the sum of than; of the two atoms) in that case, thus involving a
larger part of the Zeeman manifold in the dipole-dipole int@&action. As the Zeeman
manifold is more extended fonD states than it is for nS, the possible number of pair
states that must be taken into account in the treatment of thedipole-dipole interaction
increases. Finally, an additional electric eld could mix tle di erent Rydberg states,
extending even more the number of possibly coupled pair sest

For all these reasons, an analytical treatment of the e ectfathe dipole-dipole
interaction is intractable, and we need to perform the numéral diagonalization of the
pair interacting Hamiltonian.

Deviations from the spin-1/2 model  Figure 4.3(a) shows the result of such a diag-
onalization as a function of the interatomic distance, wherjri = 61D3-,,m; = 3=2
and the interacting angle = 78 , in the presence of a magnetic eld (quantiza-
tion axis) B, = 6.9G and an electric eld E, = 20 mV=cm. | intentionnaly chose
those parameters because they realize the worst-case scernfar the treatement of
the dipole-dipole interaction. This numerical treatment vas possible thanks to the
open-source softwar@airinteraction, developed by SebastiaiVeber et al. [2017. The
potential curve of the pair statejrri is far from being as simple as the asymptotic
behaviour in Cg=R®, and the eigenstate of the two-atom system is projected onto
many di erent unperturbed Rydberg pair states. This would éad to deviations from
the spin-1/2 model we want to implement.

To illustrate that point, | show in Figure 4.3(b) the result of a quench experiment, in
the same spirit of the ones performed irLgbuhn et al., 2014. The magnetic eld was
set to the valueB, = 6.9 G, but the electric eld was not as high as in Figure4.3@a).
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We have compensated the electric elds in order to have thenmsiller than 5mV=cm.
The experiment consists in abruptly driving at resonance a 77 square array of atoms
prepared injgi, and measuring as a function of the illuminating time the fraction f,
of atoms injri . Due to the Rydberg blockade, the Rydberg fraction is expesd to
saturate, as shown by the simulation based on the spin-1/2 rdel (solid line). On the
contrary, the measured many-body dynamics (disks) shows kear increase of , at
long time, suggesting a breakdown of the Rydberg blockadedaan incorrect mapping
on the Ising-like model.

Systematic search for an accurate mapping The pairinteraction software allows
us to look for a set of experimental parameters for which wetrieve the Cs=R®
behaviour. It turns out that another value for the magnetic eld, B, = 3.5G, leads
to a much simpler potential curve for the doubly-excited st jrri, as shown in
Figure 4.3(c). The eigenstate of the two-atom system is mostly projeetl ontojrri,
and the C¢=R® behaviour (dashed lines) is a valid approximation, as longsahe
interatomic distance is larger than about 8 m, i.e. for the distances of interest in our
experiments. This results in an accurate mapping into our gp-1/2 model, as observed
in the experiment (Figure4.3(d)), where the increase of ; is no longer visible and the
experimental data are in very good agreement with the spinfZ2 model. This is, to
date, the quantum simulation experiment involving the largst number of spins (49)
we have performed on our platform.

To conclude, | emphasized on the careful analysis of the dipeadipole interaction we
needed to perform in view of accurately implementing an Isyalike model with nD 3-,
Rydberg atoms. This careful treatment was possible thank® tthe development of the
pairinteraction software. The situation would be simpler usingS,-, states, as the
Zeeman manifold would be reduced to two levels and there are Rerster resonances.
But as the laser-coupling to RydberdS states is less e cient, we decided to keep
working with nD 3=, states, having with this study the tools to determine the god
parameters for an accurate mapping.

4.2.2 Phase diagram of an Ising-like model

Now that we have ensured that Hamiltonian 4.1) correctly describes the many-body
dynamics occurring in our atomic array, | will present the phse diagram associated
to this Hamiltonian for two di erent geometries, a square anda triangular array
(Figure 4.4). A phase diagram is built by evaluating, as a function of thgparameters
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4.2 Reaching the antiferromagnetic phase

Phase diagram of K One can notice in Figure4.3(c) that the potential curve is

shifted downwards with respect to the unperturbed pair stat, which means that the
van der Waals shiftU < 0. This is the case for most of theD 3-, states, including

the one used in this work 64D 3-,, m; = 3=2 . Consequently, for the Rydberg state
involved, the previously described antiferromagnetic sta is in fact the most excited
state of A, or stated otherwise, the ground state of A. | will then describe this

most excited state, but the fundamental concept of phase djeam still holds if we

consider H instead of A. In our context of adiabatic state-preparation protocolsfor

an isolated quantum system, what matters is to stay on the sarenergy level, but
this level does not have to be the lowest one. To be in the lowenergy level is only
important when temperature and equilibrium with a thermal kath play a role, which

is not the case for our platform.

Trivial phase In Hamiltonian 4.1, when or is way larger than jUj=~, the most
excited state is only determined by the single-spin opera and therefore is a trivial
product state, every atom being in the same state. Whenis large and positive, this
state corresponds to every atom ifgi, when it is large and negative, it corresponds to
every atom injri, and nally when is large, it corresponds to every atom in the
superposition (jgi + jri)= 2. Using again our mapping into a spin-1/2 system, this
state corresponds to all spins aligned in the opposite ditém of the e ective external
magnetic eld, of transverse (longitudinal) component prportional to ( ). It can
be then considered as the aforementioned paramagnetic pbag K. This phase is
present in both phase diagrams.

Antiferromagnetic phase for a square lattice  The interesting region of the phase
diagram is where the e ective external eld competes with tk interaction, delimiting
the boundaries of the antiferromagnetic phase. The boundas in for =0 are

=0and = 4jUj=. The detuning must be negative for the most excited state
to host Rydberg excitations, and smaller in absolute valuehin 4jUj =, proportional
to the energy gain of having a spin aligned with its four neasé neighbours. The
number of nearest neighbours, or coordination numbez,= 4, plays an important
role in those phase boundaries in condensed matter physiEmally, the boundary
in for = 2jUj=-is known to high precision from Monte Carlo simulations
~ =jUj =1.52219 (1) Bte and Deng, 2003.
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Chapter 4: Growth of antiferromagnetic correlations in an IsiikgImagnet

Interacting phase for a triangular lattice ~ On a triangle, it is impossible for all bonds
to ful | the anti-aligned condition at the same time. This prevents an antiferromagnetic
ordering, which is called geometrical frustration. It reslis in a macroscopic degeneracy
of the ground state, revealed by a non-vanishing entropy neaero temperature,
as measured in a frustrated condensed matter systeRgmirez et al., 1999. In a
guantum system, some \order by disorder” processes can ocauthese frustrated
phases Moessner and Sondhi2001.

In a triangular lattice, the coordination number isz = 6, and due to this frustrated
geometry the phase diagram is richer. A rst phase with one Rymkrg atom every third
lattice site appears in the region =0, z=2jUj< ~ < 0. The conjugated crystal (a
Rydberg atom becomes a ground state atom and vice versa) itmost excited state
in the region =0, zjUj< ~ < z=2jUj. The order by disorder process occurs on
the line~ = z=2jUj for low . As we shall see, some technical imperfections prenes
us from studying these frustrated phases, because of a ligdtduration of a coherent
evolution. Nevertheless, observing the growth of the coreglons in the triangular
case, we will infer some signatures of geometrical frustiat (Subsection4.4.3.

4.2.3 Sweep towards the antiferromagnetic phase

Now that we have identi ed the ground state of H for di erent regions of the

parameters spacé, ), we can choose a time pro le for the tuning of these parameter
to reach the antiferromagnetic state in a square array folldng an adiabatic evolution.

These time pro les, and the associated trajectories in thehase diagram, are plotted
in Figure 4.5a). Before showing in the next section the result we have dahed

with the presented sweeps, | will numerically demonstratehait they can generate an
antiferromagnetic state for the simple case of a 22 matrix. | will also explain how we

realize in practice these sweeps on our experimental setinally, as the generation

of antiferromagnetic correlations relies on adiabatic eiutions, | will show how we can

experimentally probe the adiabaticity on an ensemble of neinteracting qubits.

A three-step sweep At the beginning of the experimental sequence, all the atomm
a defect-free structure, are irjgi. This is the starting point of our quantum simulation
step described in Figure2.3. This corresponds to the paramagnetic phase in the
region > 0 and = 0 in the phase diagram. In order to prepare adiabaticdy
an antiferromagnetic state, we then choose to start the dynacal tuning of the
parameters in this region, with i,y > 0 and =0 (step 1 in Figure 4.5a)). Then, we
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the eigen-energies of, (t) A (t) as a function of the detuning. The energyy (t) is
the one of the most excited state, in order to always have ondbke plots the energy
level of the targeted state on the zero energy line. | add ondke plots the projection of
the quantum system onto the instantaneous eigenstates i@f(t), encoded in the area
of the dark red disks. | also plot for these di erent times thgorobability to nd the 2 4
states de ned in the N -qubit basis, see the bar plots on the right of Figurd.5b). The

leftmost probability is the one to nd %% and the rightmost one .. . The columns

6 and 9 correspond to the two antiferromagnetic con guratios ;’f and ?; .

At the beginning (step 1), the system is in the ﬁﬁ state, which indeed corresponds
to the most excited state (the system in on the zero energy &). When we increase ,
a necessary ingredient as it enables for the appearance ahedRydberg excitations,
the energy separation between the most excited state and tbéher states increases,
while the system stays in the instantaneous most excited $é&a Then, the system can
go through the avoided crossing with a reduced probabilityof the aforementioned
Landau-Zener transitions to occur (from step 2 to step 3). Ithe end (step 4), the
system has stayed on the same energy level and is thereforeaatiferromagnetic
state, as it can be seen on the probability bar plot. Indeedhe system is in an equal
superposition of the two antiferromagnetic con gurationsThese two con gurations
correspond to the two degenerate most excited eigenstatestioe system in the
antiferromagnetic region. Therefore, the system is not mdgtprojected onto one
eigenstate but equally projected onto two degenerate onéis is why the area of the
red disk encoding the projection is smaller for the nal stepin fact there are two
superimposed red disks for the two degenerate eigenstates.

The role of the Rabi frequency is therefore to enlarge the atation gap for an
easier adiabatic evolution. A" does not commute with”?, the transverse eld term
can be seen as the generator of quantum uctuations appeagiin quantum annealing
protocols. This transverse eld can even be considered as guantum catalysis" for
the phase transition Richermeet al., 2013.

The numerical simulation carried out in the case of a 2 2 square array shows that
we must tune the e ective magnetic eld for about 8 s to generate a quasi perfect
antiferromagnet. As already stated, the suitable durationd reach the targeted state
depends on the energy gap ¢ between the instantaneous eigenstates. More precisely,
the suitable duration scales as=1 2 [Das and Chakrabartj 200§. For nite-size
systems, g was proven to scale as=L N for a square array, and to be exponentially
reduced withN for a triangular array, with N the number of spins. Therefore, the
larger the system, the smaller the energy gap, and the longéitakes to follow an
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nal values at a constant speed 18MHz= s, decreasing to di erent values in another
0.5 s, and then applying the reverted sequence (Figure6(a)). The coordinates of
the U-turn point ( yr, ut), and the energy gap in thg , ) plane, are indicated in
Figure 4.6(a). We measure the probability to be injgi at the end of the round-trip
sweep for di erent coordinates of the U-turn point (Figure4.6(b)). The drop in the
recapture probability for U-turn points near the vanishing @p region =0, =0
illustrates our loss of adiabaticity.

Following di erent trajectories in the phase diagram

So far, | have presented and justi ed the experimental protol we followed to reach an
antiferromagnetic phase with arrays of Rydberg atoms. In ik section, | will describe
our investigation of the most suitable time pro les for (t) and (t) in order to
generate the largest antiferromagnetic correlations in a 66 square array of atoms, all
initialized in jgi. To quantify the amount of antiferromagnetic correlationswe evaluate
the Rydberg-Rydberg density correlation function, de nedn the next subsection. It
is based on the measurement of one- and two-atom recapturebpabilities, that we
infer from the analysis of the nal uorescence images as ebgined in Section2.3: at
the end of the parameter sweep, if the atom is recaptured, itilvbe considered as a
jgi = j#i, if not, it will be considered as gri = j"i . In order to be accurate in the
evaluation of these statistical quantities, we repeat theasne parameter sweep for a
few hundred times.

Our rst optimization stage consists in looking for the mostsuitable nal detuning,
which is expected to be between 4jUj =~ and zero. To do so, we perform the dynamical
tuning of the external eld shone in Figure4.5a), for a varying nal detuning, and
a constant ramping speed of the detuning. As we want to be as sébas possible
to adiabaticity for a large range of detuning, we set the paraeters of the system
in order to have ax > ., Where . is the boundary in Rabi frequency of the
antiferromagnetic region (see Figurd.4). Indeed, proceeding that way, we reach the
paramagnetic region < 0 without intersecting the antiferromagnetic one where the
excitation gaps would be smaller.

Once we have found an optimal value for the nal detuning, weary the ramping
speed while crossing the phase boundary. Consequently, frerameters of the system
are in that case such that .« < .. This leads us to nd an optimized value for

tsweep-
Our detailed analysis of the laser-driving of a single atonm ithe qubit basisfj gi , jrig
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showed that the driving is the most coherent when =(2 ) ranges between 1 and
3MHz [de lesleucet al., 20184. Consequently, we have chosen to work withmax=(2 )
around 2MHz. To realize the two kinds of sweeps described abovef;x > . and

max < ¢), we therefore tune . via a change of the lattice constant (resulting in a
change ofU), rather than varying ax.

4.3.1 Probing the phase boundaries in detuning

In this subsection, | will present the results we obtain afteperforming the set of
sweeps where we vary the nal detuning (Figurd.7(a)). The precise xed parameters
for the time pro les are: jJUj=h=1.0MHz, =2 2.3MHz, i, =2 6.0MHz,

tise = 0.25 s andtg = 0.50 s. The nal detuning .4 =(2 ) is scanned between 6

and 2MHz, and as we operate at constant detuning ramping speed, therdtion of

the detuning sweep step is such thalsyeep = ( init nat ) =f2 10(MHz)g s. Since
jUj=h=1.0MHz, o > . (the . value is highlighted with a red dotted line in
Figure 4.7(a)), and we explore the paramagnetic region< 0 without intersecting the
antiferromagnetic one.

Rydberg fraction A rst observable we may think about to make the distinction
between the paramagnetic and the antiferromagnetic phase the mean density of
Rydberg atomshhi, also called the Rydberg fraction. Indeed, in the = 0 case,
hhi = 0 or i =1 for the paramagnetic phase (for > 0 or < 4jUj=h), whereas
hhi = 1=2 for the antiferromagnetic phase. This quantity is expecteto jump abruptly
at the phase transition, which would allow us to observe thedundaries in detuning of
the antiferromagnetic phase.

| plot in Figure 4.7(b) the measured Rydberg fraction as a function of the nal
detuning of the sweep. We observe a smooth transition whengting the antiferro-
magnetic region between two regimes, whehai is close to 0 or close to 1, rather
than the expected plateau at £2. This smoothing of the staircase-function (green
dashed line in Figure4.7(b)), which should have been obtained if we were preparing
the most excited state of Hamiltonian4.1 when = 0, means that we cannot probe
adiabatically this region. | will come back in the next chapgr to these experiments
consisting in observing steps in the Rydberg density.

Spin-spin correlations Consequently, we need another observable to probe the phase
boundaries. The mean density of Rydberg atoms, in the analpgp spin-1/2 physics,
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jump of k lattice sites in the horizontal direction andl lattice sites in the vertical one,
and Ny ; the number of such atom pairs in the array. By de nition, the orrelations are
such that g@ (k,1) = g@ ( k, 1). In order to improve the statistics, we symmetrize
the data for a given(k, 1) over the four quadrants( k, 1). Since these operations are
symmetries of the setup, the symmetrization does not altereguine features in the
experimental data. Following our connection to spin-1/2 pysics, this function is an
equivalent of the spin-spin correlation function mentiong in the introduction to this
chapter. For a perfect Neel state,g® (k,1) = 1=4 for jkj + jlj even or odd, so we
indeed retrieve this characteristic feature of the alterrtang sign of the correlations
when scanning the distance between two atoms.

| show in Figure 4.7(c) the measured correlation functions, and as expected we
see alternating sign correlations when lies in the antiferromagnetic region. We can
extract two numbers fromg® (k, 1) in order to get more quantitative. The amplitude of
the correlations decreases with distance, and we can t thidecay with an exponential
function, g@® (k,1) / ( 1)““”” expf (jkj + jlj) = g. The correlation length (given
in number of lattice sites) is the rst number we can extract.Second, we can compute
the Neel factor, written as

Snel =4 X ( 1y g@ (k,1). (4.3)
kI

This factor is an estimator of the mean number of spins antifemagnetically correlated
with a given spin, so the average size in number of spins of thatiferromagnetic
domains in our 6 6 square array. This quantity can therefore be associatedtiithe
correlation length in lattice sites,Sye /2, for short-ranged enough correlations. As
we get less statistics to evaluate the correlations for lordjstances, we restrict ourselves
to the indexesk, | such asjkj + jlj 4 to compute the Neel factor. Figure4.7(d)
shows the measured Neel factor, which is signi cantly di eent from zero only inside
the boundaries of the antiferromagnetic phase. This is whihé measurement of this
quantity allowed us to identify the phase boundaries in deting.

Statistical and detection errors | have already presented in Chapte the statistical
error on the recapture probability, the standard error on tlie mean (s.e.m). This allows
us to compute the error on the Rydberg fraction. For the erroon the correlations,
and consequently on the Neel factor, our theory collaborats estimated the error
(error bars on Figure4.7(d)) via bootstrapping techniques, consisting in re-samiplg
the original set of data.
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| also presented in Subsectio2.3.1the detection errors: is the probability to

misleadingly see a ground state atom as a Rydberg one, whifés the probability
to make the inverted detection error. Due to these errors, ehratio between the
measured correlations and the one which would have been abtd without any
error is (1 92, None of the experimental results presented here (and in geale
in all this manuscript) are corrected for these detection esrs. We rather include
the detection errors in numerical simulations to get a betteagreement with the
experimental data.

4.3.2 An optimal sweep duration

We have now determined the most suitable nal detuning to olesve the most extended
antiferromagnetic correlations. We can in a following optimzation stage vary the
value of tsweep (Figure 4.8(@)). The precise xed parameters for the time pro les
are in that case:jUj=h = 2.7 MHz, . = 2 1.8MHz, it =2 6.0MHz,

na = 2 4.5MHz, tijse = 0.25 s, tiyy = 0.25 s. For these parameters, as
jUj=h= 2.7 MHz, we are in the regime .x < ¢, and we cross the phase boundary
while sweeping the detuning. We sweep it for a varying duran tsyeep, ranging from
0.1 to 1.3 s. Considering the adiabaticity criterion, we expect thatsyee, Should be
large to have the most correlated state.

Figure 4.8 summarizes the results obtained when varyingeep. The best correlations
are obtained fortsyeep = 0.7 S, corresponding to a measured correlation length in
lattice sites =1.35 0.09 (Figure4.8(c)). Although the correlation length is smaller
than two sites, the correlations have the expected sign up {&j + jlj =5, that is to
say for almost the whole array. The successive shells copesding to a constant
m = jkj + jlj are called Manhattan shells, | will describe in more detailhe correlations
inside a shell in the last section of this chapter.

Figure 4.8(d) shows the Neel factor as a function otsyeep. This factor rst increases
while increasingtsweep as expected from the adiabatic theorem, but then it saturate
and nally decreases. In order to understand this behaviouour theory collaborators
performed several numerical simulations. First, they resad the time-dependent
Schredinger equation. As the Hilbert space size grows a8 fvith N the number of
interacting atoms, tackling this numerical resolution in ar caseN = 36 is hardly
achievable without any truncation of the Hilbert space. Sine the correlations in our
system remain relatively short-range, they chose to solved equation for smaller
systems, 4 4 or 5 5 atomic arrays, taking into account the full Hilbert space. Tie
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result of this simulation (dotted line) matches the experirantal data only at low
tsweep: The solution given by the Schmedinger equation implies annitary evolution,
with a fully-coherent laser driving. In that casetsweep 0.5 S is enough to reach
Sver 10 fora4 4 array, that is to say antiferromagnetic correlations exteded over
a large part of the system. Therefore, if the evolution werenitary, the experimentally
accessible sweep durations, about &, would be large enough to prevent Landau-Zener
transitions to occur and we would observe longer-range celations. The observed
correlations are less extended, not because the adiabatitearion is not ful lled, but
because our system evolution is not unitary.

Local dephasing model We thus need to take into account in the simulation
decoherence processes originating from imperfections of taser-driving [de lesleuc
et al., 20184. Including all the di erent types of imperfection would betoo demanding,
so we chose for convenience to solve a master equation wrtte Lindblad form:

d i hlq [
—N= - N+ LN 4.4
= - AL (4.9)
with ” the density matrix of the many-body system, and. a pure dephasing Liouvillian:
X
L= @A A Ay, (4.5)

!
The Liouvillian is a sum of single-particle jump operatorswhose dephasing rate
3.2 s lis extracted from a t of the single-atom Rabi oscillation (Fgure 4.8(e)).
Indeed, by resolving our dephasing model for the single-piate case, we nd that the
1=e damping time of the envelope of the measured Rabi oscillatis (dotted lines)
is equal to & . In summary, we include the imperfections of our laser-diing by
adopting a pure dephasing model, whose dephasing rate isett from single-atom
Rabi oscillations.

Our empirical dephasing model (dashed line in Figuré.8(d)) is in a very good
agreement with the experimental data. Only a dephasing ratelose to the one inferred
from the measured Rabi oscillations gives the correct evtilbn of the Neel factor,
as shown by Figure4.8(f). This justi es the use of our empirical dephasing model.
The simulation was in that case also performed for a smaller 44 system as the
correlations remain relatively short-ranged, and includethe aforementioned detection
errors with no adjustable parameters. This agreement sugde that the technical
imperfections of our qubit driving, at the single-particle ¢vel, are the reason why we
cannot generate more extended antiferromagnetic correians. Implementing the more
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coherent qubit driving developed on the Harvard platformlevine et al., 201§ could
extend the time our system follows an unitary evolution, inhe end leading to more
extended correlationsBernien et al., 2017 Keeslinget al., 2019.

The results presented in this section allow us to determinenaptimized sweep in
view of generating the largest antiferromagnetic correlamns. In the next section,
instead of looking at the correlations at the end of di erensweeps, we look at their
growth during a sweep. Observing the build-up of correlaties in time, i.e. measuring
how correlations spread in the system, will explain their sial dependence, namely
their relative values inside a Manhattan shell.

Observing the growth of correlations

In this last section, | will focus on how the correlations bld up during an optimized

sweep, for a square array and, only in the last subsection, @aingular one. | will show

that the experimental results are well captured by a shortine expansion approach,
which gives more insight on the many-body dynamics occurgnn our system.

4.4.1 Finite speed of spreading

To observe the growth of correlations in time, the experimémonsists in abruptly
switching o the excitation lasers at di erent times of the evolution, in order to freeze
the many-body dynamics and measure the instantaneous cdatons (Figure 4.9a)).
The sweep parameters are the same as in Subsectb8.2 with tgyeep, = 0.44 s.

| plot in Figure 4.9(b) the Neel factor as a function of the switching o time.
Correlations start to appear fort > 0.5 s, which corresponds to the time when
becomes negative, that is to say when we enter the antiferragnetic region in the
phase diagram. Then, the correlations saturate arountd= 0.8 s. As the agreement
with the simulation including our empirical dephasing rateis very good (dashed
lines) when the value of is the one deduced from single-atom Rabi oscillations
( =3.0 s 1), we can again conclude that it is because of the imperfeati® of the
laser driving that we cannot follow an unitary evolution (dated lines) for a longer
time.

Time delay for the build up of correlations  Figure 4.9c) showsg® (k,l) as a
function of time for the three rst Manhattan shells. The corelations appear rst on
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the nearest neighbours, and then on the farthest ones. Thévee, we observe a delay
in the growth of correlations for increasing Manhattan shid, which is due to their
nite speed of spreading. In order to be more quantitative abut these delays, we
need a more involved analysis of the data. We rst normalizethe correlations for
each Manhattan shells, in such a way that at long times, the utary evolution would
lead to correlations equal to one. Figurd.(d) presents the correlations after this
normalization. Then, we choose a threshold level at 0.2, athaok at the time when
the normalized correlations intersect the threshold lineThese times areé  0.64 s
for the rstshell, t 0.71 s for the second, and 0.79 s for the third, and are
plotted in Figure 4.9(e).

Lieb-Robinson bounds This nite speed of spreading of correlations is reminiscen
of Lieb-Robinson bounds. Lieb and Robinson proved that in morelativistic quantum
mechanics, even if there is no explicit speed of light limitg the propagation of infor-
mation, one can de ne a characteristic velocity for su cierly local interactions [Lieb
and Robinson 1973. This velocity is an upper bound for the spread of any corrafions
in our system. The speed of spreading measured from the timelalys described above
is about 70 times smaller than the bound evaluated by our thep collaborators based
on the Lieb-Robinson formalism.

In order to get a better understanding of the values of thesertie delays, they followed
an approach introduced in Calabrese and Cardy2004, where the light-cone-like
spreading of the correlations is due to the propagation of eixed quasiparticles. They
derived a group velocity for these quasiparticles by calaitlng the dispersion relation
applying a linear spin-wave theory. The group velocity candseen as en e ective
Lieb-Robinson velocity, and it was found to be equalte, 2  1.11a s ! for our
experimental parameters, witha the lattice constant. The time delay of the spreading
of correlation from one shell to the next one is thea=(2ve ) 70ns, which is in a
very good agreement with the experimental data. Indeed, weegasure that correlations
signi cantly appear on the second shell about 7@s after they did on the rst one,
and they appear on the third shell about 8@s after they did on the second one (see
Figure 4.9¢e)).

Exponential decay of the correlations In addition to an upper bound for the speed
of spreading of the correlations, the theory developed bydb and Robinson predicts
that correlations are not zero outside the light-cone but dmy exponentially. This can
also be seen on the experimental data, when the correlatiogaches the threshold
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line for the rst shell, it is not zero for the second. A short ime expansion of the
evolution operator, which is a perturbative analytic calclation valid at times t such
that jUjt=~, t,t 1, captures this trend. Indeed, our collaborators deriveche
expression of the correlations as a function of time in thisegime, and found that
g? (k,1)/ ( 1)™t2*4™ with the Manhattan distance m = jkj + jlj. These expressions
lead to an alternating sign of the correlations when incream m, and, as in this
regimet is small, to an exponential decay of the correlations for ineasingm. All
the correlation patterns we observe in the antiferromagnietregion exhibit these two
features. Even if the regime of times explored in the experant is not within the
range of validity of the short time expansion, the fact that he results are qualitatively
similar is instructive. It means that the features of the obsrved correlations are the
same as in their early development, when the evolution is ktunitary.

4.4.2 Spatial structure of the correlations

I now describe in more detail the measured correlations at ed time for the rst
three Manhattan shells of the 6 6 square array, plotted in Figure4.1Q0 They were
obtained at the end of the sweep described in the previous seégtion. | have already
commented on the alternating sign of the correlations as arfation of the Manhattan
distancem, the feature we expect from an antiferromagnetic state on @sare array.

Correlations inside a shell Inside a given Manhattan shell, the correlations do not
have the same value. For example, fon = 2, we observedg® (1,1) 2 ¢@ (0, 2).
The short-time expansion described above also reproducésstfeature. The expression
of the correlations are rst derived via this method by conslering one chain oim
bonds, no matter the lattice geometry. Then, by multiplyingthe correlations by
the number of linking paths of sizan between siteq0, 0) and (k, ), we obtain the
expression of the correlations for a given lattice geometryor a square lattice, the
number of linking paths between siteg0, 0) and (k, I) is simply given by the binomial
coecient 7 with | k 0, as shown in Figuret.10@a). Consequently, in the short
time regime, we expecg® (1,1)=2 g@ (0, 2). In Figure 4.1Qc), | show how the
experimental data (blue disks) compare with binomial coe tents (green dots). The
proportional factor was set for each Manhattan shell in such way that the maximum
estimated value for the correlations (green dots) is equab the maximum value of the
measured correlations (blue disks). This combinatorial gument coming from the
short time expansion explains qualitatively the spatial sucture of the correlations
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Figure 4.12: Correlations in a square or a triangle. (a) Measured correlations on a
6 6 square array for an optimized sweep. (b) Correlations of theifantomagnetic state.
(c) Measured correlations on a 36-atom triangular array for an optied sweep. (d)
Correlations of thel=3- lling Rydberg crystal.

Therefore, we followed the same approach to estimate the wab of the correlations
with a short-time expansion (Figure4.11(c)), and we obtained a good qualitative
agreement. In the end, this validates our choice to interpteghe measured correlations
via a short-time expansion, as the qualitative agreement good for both square and
triangular array.

Square versus triangle As a conclusion for our study, Figuret.12 compares the
square and the triangle cases. | plot for both geometries tmeeasured correlations
obtained after an optimized sweep, to be compared to the cetations of the targeted
ground state of K. The measured and targeted correlations are qualitativelsimilar
in the case of a square array, but are not for the triangular ca.

| have shown that the spatial structure of both measured coetations could be
explained via a short-time expansion. The build-up mechasm of the correlations
at play within the short-time expansion approach consistsnitheir spreading from
the inner shell to the outer shell. This results in a correlan pattern showing an
alternating sign in the di erent Manhattan shells, which weindeed observed. For
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the square array, the antiferromagnetic state exhibits theame type of correlation
pattern. This implies that building correlations from the nner shell to the outer shell,
as the system does at the very beginning of its evolution acding to the short-time

expansion, is a possible way to generate a state qualitatiyeclose to the targeted
antiferromagnetic state.

On the contrary, for the triangular array, to build the targeted correlation pattern,
the correlations must undergo a more complicated phenomenthan the simple
propagation from the inner shell to the outer shell. They havto go through closed
loops, which is not accounted for in the short-time expangsicsince in this perturbative
treatment, going through closed loops would correspond tagher-order terms. In our
platform, the coherence time is not long enough for the systeto realize the presence
of these closed loops, this is why we do not observe the targgtcorrelation pattern.
These closed loops, whose presence prevents us to genetsetdrgeted state, may be
seen as a signature of geometrical frustration.

Conclusion

In this chapter, | have described our latest work about the cantum simulation of an
Ising-like model. We are able to generate antiferromagnetcorrelations by a dynamical
tuning of the Hamiltonian, following adiabatic protocol wictly used in the quantum
simulation community. We demonstrate that the limited extasion of the observed
correlations comes from imperfections of our single-quldtiving rather than from
a non-respect of the adiabatic criterion, and that the feates of the correlations
are qualitatively captured by a short-time expansion, for bth square and triangular
geometries. In the future, we will use another laser excitan scheme expected to have
better coherence properties. We may then go on exploring tipeoblem tackled in this
chapter with an extended coherence time, and reach the amtifomagnetic states in a
triangular array.

In addition to its use in quantum magnetism, the Ising models also a toy model to
illustrate some features of high-energy physics, such asthon nement of quarks Ko-
rmos et al., 2014, which could also be seen in our platform. In an even widernge of
applications, it has been shown that the Ising model can be pped into di erent
optimization problems Lucas 2014. In that sense, it has been proposed to use
Rydberg atoms interacting in the van der Waals regime to sadvoptimization problems,
such as nding the maximum independent set of a graptPjchler et al., 2013. We will
implement this kind of optimization protocols on our platfam in the near future.
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In this chapter, we will study another spin Hamiltonian, the XY model, of canonical
form X
Axy = Iy A AT+ AN

i i
i

where the sum runs over all pairs of spins andj; is the interaction energy between
spinsi andj . This Hamiltonian describes the coherent exchange of exditans between
pairs of atoms. As stated in the Introduction, for the implematation of this model on
our platform, the e ective spin-1/2 must be encoded in two d¢dole-coupled Rydberg
levels, whereas it was encoded in the electronic ground stand in one Rydberg
level in the Ising case. Here, we will use the statg$ = 60S;-,,m; =1=2 and
j"l = 60P»,my = 1=2 . The two Rydberg pair statesj"#i and j#"i are coupled
via the resonant dipole-dipole interaction, which gives # value of the couplingd;; .
The interaction strength depends on both the interatomic ditanceR;; and the angle
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with respect to the quantization axis j, Jj / Cs( i) :Rﬁ, and is typically on the
MHz range for atoms separated by a few tens of microns. In Sexti5.1, | will describe
in more detail the conditions for which a system of Rydberg atos mimics spins-1/2
interacting via the XY model.

Since the energy separation between two adjacent Rydber@tss is on the ten of
GHz range (it is about 16.7GHz for the qubit in use here), the e ective spin-1/2 will be
manipulated using microwave elds. The microwave eld act®s an e ective magnetic
eld for the qubit, in the same way as the two-photon laser el did in the Ising case.
Then, we will follow the same kind of adiabatic protocol to stdy the XY Hamiltonian:
we will start from a paramagnetic phase under a strong exteah eld, and slowly
decreasing it we will aim at generating correlated phasesdinced by the interaction.
Before presenting the results we obtained, | want to stressibthe di erences between
the Ising and the XY models, which has motivated our implemeation of this other
spin Hamiltonian on our experimental platform.

An exotic phase diagram The main di erence concerns the eigenstates of these two
spin Hamiltonians, in the absence of a transverse magneticlde In the Ising case, the
eigenstates can be written as product states of spins up anpirss down, i.e. states
de ned in the N -qubit basis. Since they are product states, they correspoto classical
con gurations. Such product states are not eigenstates ohé¢ XY Hamiltonian 2.
This means that interactions of the XY-form intrinsically produce some entangled
eigenstates, fundamentally di erent from the classical eogurations and potentially
leading to exotic phases. The characterization of these @es, both theoretically and
experimentally in solid-state physics, is still an activeagsearch eld Balents, 201Q.
Among them, quantum spin liquids Knolle and Moessner2019 have triggered a lot of
interest for a few decades as they could be associated witlpstconductivity [Anderson
1987. Such a spin liquid is expected to appear on a honeycomb liat hosting spins
interacting via the XY Hamiltonian [Varney et al., 201]. Studying these phases is
beyond the scope of the present manuscript, but this justi® the interest in the XY
model and our implementation on our setup.

Coherent transfer of excitations | have already mentioned in the Introduction the
spin-exchange process, a direct consequence of the fact thtates de ned in the
N -qubit basis are not eigenstates of the XY Hamiltonian. For exaple, a two-atom
system prepared inj"#i will oscillate between the two stateg"#i and j#"i . This

LExcept the two fully-polarized spin states j## ... #i and j
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oscillation is coherently driven by the dipole-dipole inteaction, to be contrasted with
regular spin ips driven by external elds. This transfer of excitations driven by the
interaction may also occur in biological systems, which mak the XY model relevant
to study photochemistry or photosynthesisCollini, 2013, and more generally to
describe transports of excitations in various contexts. FFdhe rst implementation of
the XY model in our experimental setup, the team explored thisoherent excitation
transfer in a three-spin chain Barredo et al., 2015.

Link to hard-core bosons The spin-exchange process can also be seen as the hopping
of a particle between two sites instead of the exchange of theo spin states. Hopping
particles therefore naturally arise from the atomic interations, where the particle
is a spin excitation or a boson. This leads to a rewriting of #1 XY Hamiltonian in
terms of bosonic annihilation and creation operators (seeahhiltonian (A.5)). Then,
we are able to engineer speci ¢c hopping Hamiltonians for hatabre bosons, as we
demonstrated in our recent workde Lesleuc et al., 2019. This work consisted in
studying a bosonic version of the Su-Schrie er-Heeger (SSH) iatonian, one of the
simplest models expected to exhibit topological propertse We characterized these
topological properties in the single-particle regime anaf the many-body ground
State.

The spin-exchange process and, more generally, hard-coosén Hamiltonians will
be explored in the last part of this manuscript. | will then irterpret the result in
terms of spin-1/2 physics for convenience in this chapteroF instance, | will show in
Section5.2 how we can generate states with a speci ¢ number of spifis , so how we
can aim at speci c values of the magnetization, via microwa&/sweeps. In the hard-core
boson picture, these microwave sweeps would be seen as thg twwanject a controlled
number of particles in the system, by setting an e ective chmical potential. In the
case of the SSH chain, we used these sweeps to prepare the rtergy ground state
corresponding to a half- lled bulk. While describing thesewgeeps in the particular
case of the SSH chain, | will not insist on the topological pperties of the system
as it is not the central topic of this chapter. | will rather focus on the value of the
magnetization and the spin-spin correlations. But | want tanake it clear for the reader
that the spin-spin correlations described here are not thenty interest motivating our
study of microwave sweeps on an XY magnet, they were used as alttm observe
topological properties in the many-body regime for an SSH aim.
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Long-range e ects Finally, another di erence between our implementation of tle
Ising and the XY models is that the interaction decays as=R® in the Ising case
whereas it decays as=R? in the XY case. This is because in the XY case the interaction
is the direct dipole-dipole interaction, and not a second der perturbation term
like in the Ising case. The dipole-dipole interaction, expienced in our platform by
Rydberg atoms, is also the regime of interaction for polar necules or magnetic
atoms, and is therefore a central tool to engineer Hamiltoma on quantum simulation
experiments. The extended range of the interaction in thisegime enabled the study of
the many-body dynamics even in a sparsely lled polar moletaioptical lattice [Yan
et al.,, 2013. For the rst implementation of the XY model on our platform, the
experimental signatures of this extended range of the intetion were the revivals of
the oscillatory dynamics Barredo et al., 2015. More fundamentally, the long-distance
tail of the dipolar interaction allows for the existence of d@rue long-range order
(correlations are not exponentially vanishing in a two-diransional system at nite
temperature) [Peter et al., 2013. We will also see in this chapter one manifestation of
this long-range feature.

In this chapter, | will report our observation of the many-baly features of an
XY magnet for increasing system sizes. | will start by a detat description of the
dipole-dipole interaction, exploring it for a two-atom sygem. Then, | will show how
we reach magnetization plateaus for 1D-chains by dynamitakuning the parameters
of the external eld. Finally, | will present the correlated phases we observed in 1D-
and 2D-systems. As explained, part of the experimental ressilshown in this chapter
were used as a tool to study the topological properties of ar88 chain fle leeleuc
et al., 2019. The other ones are not published yet.

Resonant dipole-dipole interaction

In this section, | will rst develop the dipole-dipole interaction in terms of the di erent

spherical components of the electric dipole operator, to el to what extent we can
restrict ourselves to speci ¢ terms, depending on the Rydbg levels in use, or the
geometry. Then, as the spin-1/2 is now encoded in two Rydbefgvels, | will describe
what additional experimental steps we must perform to opeta in the Rydberg

manifold. Finally, 1 will show the e ect of the dipole-dipoleinteraction on the simplest
system composed of two atoms.
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5.1 Resonant dipole-dipole interaction

5.1.1 Full expression of the dipole-dipole interaction

The dipole-dipole interaction for two atoms labeled asand | reads in term of electric
dipole operators

1 ai 6,- 3 ai nj 61- Njj

ddi=4 . Ri:f )

with Rj = R;  R; the separation of the atomic pairR; = jRjj and nj = R =R;.
A convenient way to treat this interaction is to use the decomposition of the dipole
operator into the spherical basis, with the componenﬁo, 8" andd , as these operators
correspond to coupling to di erent states in the single-atm Zeeman manifold. The
operatorfi0 couples states such as m; = 0, whereas operatorsﬁ couple states such
as mjy; = 1. With z the direction of the quantization axis, the components in ta
Cartesian basis of the dipole operator are writte®” = 8, 8= 4 @’ 3 and

¥=ia+8 P32 Then, with and the usual angles de ning the position
in spherical coordinatesn; = (sin( j)cos( j),sin( j)sin( j),cos(j)), and the
dipole-dipole interaction nally reads

_ 1 1 3cog i + + 0AO
Oddi - 4 ORI:J)’ 2 ai aj + ai aj +26i aj

+pg—§sinij cos; e 188 @188 e 18A o188
#

gsin2 ;e e +e?i g Q

(5.1)

Three terms appear then in the dipole-dipole interaction, ith a di erent action on
the total magnetic number of the two atomsM = m;; + m; ;. On the rst line, the
two-atom operators are such that M =0, on the second, suchthat M = 1 and
on the third, such that M = 2.

Now, we restrict ourselves to the qubit basig#i = 60S;-,,m; =1=2 andj"i =

60P-,,m; = 1=2 . Consequently, the dipole-dipole interaction simpli esd
Qga= —2 L 8C0Ss gra qp 5.2
ddi — 4 ORﬁ 2 i Y i ' ( . )
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Then, rewriting Equation (5.2) in terms of the raising and lowering spin operators
Ao gives the XY Hamiltonian written at the beginning of this chaper, with
Jj = C3(3cos j 1)= 2R? . will present in Subsection5.1.3how we can measure
the interaction energyJ;; , in order to experimentally infer the value of theC; coe cient
for the involved Rydberg statesCs=h=2.4GHz mq.

The interacting terms appearing in Equation §.2) are the most important ones
as they couple the degenerate pair statg¥i and j#"i . Some other o -resonant
interacting processes may also occur. For example, the teﬁ?ﬁjo couplesj"#i with

60S;,,m; = 1=2 60P;-,, m; = 1=2 . These o -resonant processes are negligible
if the Zeeman splitting is larger than the corresponding imraction energies. For the
experiments described in this chapter, the magnetic eld deing the quantization axis

is set to 47 G, which implies that the energy separation betwa the two pair states
mentioned above is about 9MHz, one order of magnitude larger than any interaction
energy for a typical distance of 10m. Consequently, the interaction Hamiltonian
derived in Equation (5.2) correctly described the dynamics occurring in our system.
This is why | insisted in Chapter2 on the necessity to generate magnetic elds with
large amplitude.

Restricting ourselves to resonant coupling only, Equatio(b.2) shows the complete
angular dependence of the dipole-dipole interaction. In rabof the experiments
presented in this chapter, the quantization axis will be setlong the vertical axis, that
is to say within the atomic array. In that case, ranges between 0 and 2and is
set to an arbitrary value, =0, for example. | will also show experiments with the
guantization axis orthogonal to the atomic array, along theaspherical lenses axis. In
that case, = =2 and the interaction written in Equation (5.2) is isotropic within the
atomic array.

In Chapter 6, we will also operate in the geometry = =2, but in an extended
Zeeman manifold using the state60P3-, . Then, the terms corresponding to the third
line in Equation (5.1) may play a role, and they will allow us to implement complex
hopping amplitude via o -resonant interaction processeske the ones aforementioned.

5.1.2 Quantum simulation with an encoding in the Rydbergiiolan

After loading and preparing the atoms in the array, they are alinitialized in jgi,
in a targeted atomic geometrical con guration. This was thestarting point of the
experiments described in the previous chapter. As the spiri2lis now encoded in two
Rydberg levels, we need to perform additional operations.
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STIRAP in the presence of interactions. Indeed, the Rydbergldckade, introduced in
the previous chapter, prevents two neighbouring atoms to bexcited simultaneously
because of the van der Waals energy shift. In the experimermisesented below, the
typical interatomic distance isa=10 m, and the van der Waals energy shift between
two 60S atoms is measured to b&Jss=h=0.11MHz. To have an e cient Rydberg
excitation for the whole atomic array, we should have the btkade radius such that
Ry . a=2, implying an optical Rabi frequency =(2 ) & 7MHz. Operating at such a
large Rabi frequency would imply important spontaneous ession via the intermediate
state, and eventually a quite low Rydberg excitation e ciercy. On the contrary, |
plot in Figure 5.1(b) the Rydberg excitation e ciency in a 4 4 square array using a
STIRAP as a function of the van der Waals energy shift. The e céncy stays higher
than 0.9 as long asJss=h < 1 MHz.

The nite e ciency of the STIRAP means that the initial lattic e with j#i atoms
contains \holes", which are atoms remaining in the electroniground statejgi. They
will be mistakenly considered ag#i whereas they do not participate to the dynamics.
These holes represent about 10% of the lattice sites. Contydo the Ising case, there is
no way to post select experimental shots with no lattice defts. Indeed, for our study
of an Ising-like model, thej#i is encoded injgi, whose occupation can be checked non
destructively by taking an additional uorescence image &r the assembling process.
Nevertheless, even in the limited presence of lattice defeatre will see that we are
able to observe interesting spin-spin correlation featuse

Finally, to summarize on the experimental sequence, we usestSTIRAP here
(and in all this manuscript) to completely Rydberg excite aratomic array despite
the van der Waals interaction. The optical Rabi frequencieare larger than this
interaction to overcome it. But in a regime where the opticaRabi frequencies are
on the same order of magnitude as the van der Waals shift, asetisTIRAP is also
an adiabatic protocol, it could be used to engineer non-trial entangled state, as
proposed in M ller, Madsen, and M Imer, 2008.

Microwave qubit driving  Once the lattice of spins is initialized inj#i, we apply a
time-dependent e ective \magnetic eld" to reach correlatel phases. This e ective
eld is in practice a microwave radiation, acting on the two qbit levels shown in
Figure 5.2(a). The energy separation is-! ¢  16.7GHz, and the detuning from
resonance isdenedas , =! , !o. The microwave Rabi frequency can be tuned
between ,=(2 )=0.1 20MHz. The microwave eld is generated by an antenna
(the output pin of an SMA connector) outside the vacuum chamér (see Figures.2(a)).
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Our state-detection protocol leads to the measurement of ¢haverage population in
j"i and j#i. Therefore, we measure the spin projection on the quantizah axis z, the
vertical axis of the Bloch spheres shown in Figurg.2(c). To access the other spin
components, we perform additional microwave pulses rotafi the measurement basis.
By convention, the phase of the Rabi coupling is zero. Thewek, applying a pulse of
duration t ,, with a zero-phase o set rotates the spin vector (black arrown the middle
Bloch sphere in Figure5.2(c)) by an angle = ,t ,, around the e ective magnetic
eld along x (green arrow). For a rotating angle = =2,ort = =(2 ), the
middle Bloch sphere in Figures.2(c) shows that the spin component initially alongy
is projected along the vertical measurement axis. Applyinghe same =2 pulse, but
now with a =2 phase o set, projects the spin components initially along x along
the vertical measurement axis (right Bloch sphere in FigurB.2(c)). Indeed, in that
case, due to this phase o set, the rotation axis is now along In general, we access
all the spin components along axes within the equatorial ph& by applying a =2
pulse with a phase o set ranging from 0 to 2. Measuring the spin components in the
equatorial plane is crucial for the study of the XY model, bease, as we shall see in
the following of this chapter, they exhibit characteristicspin-spin correlations.

5.1.3 Dipole-dipole interaction for two atoms

Now that | have introduced all the additional tools we need to prform experiments in
the Rydberg manifold, | report here our study of the dipole-ghole interaction for a
minimal system of two atoms. This will allow me to introduce he type of correlations
we may expect in an XY magnet. The XY Hamiltonian, in presence ofnae ective

external magnetic eld, reads (rotating wave approximatio):

X = X

i b

with fA; = ji ; h"j; and, as already introduced in subsectioB.1.],
Jj = Cs 3co$ j 1 = 2R}

We rst consider two atoms along the quantization axis, so;, =0 and J;, > 0.

Superradiant and subradiant states Figure 5.3(@) shows the energy diagram of the
four two-atom statesj##i, |"#i , j#"i and|™i . The interaction lifts the degeneracy
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emission, we are interested here in their coupling to the ethal eld. Nevertheless,
| will use the words superradiant and subradiant to refer toltese symmetric and
antisymmetric superpositions in the following of this manscript. These two kinds of
symmetric and antisymmetric states are also known as briglaind dark states in the
context of adiabatic passage and state preparation protolco

Now, | discuss the spin-spin correlations of the statgsi andji . They both are
antiferromagnetic alongz ash+j~75j+i = hj ~i7%ji = 1. On the contrary, along
y, j+i is a ferromagnet whereagi is an antiferromagnet. Indeedh+j AN j+i =1
andhj M~ji = 1. Since this is true for any other spin component within the
equatorial plane of the Bloch spherg+i is called an XY ferromagnet andi an XY
antiferromagnet.

Instead of calculating the average ofJ”%, we can see the ferro- or antiferro-
magnetic feature by rewritingj+i and ji in the eigen-basis of*Y, de ned as
ji =(jti +ij#)= 2andji =(j'i ij#i)= 2. Then, the two eigenstates read

NINEN

. i i
+ij = _ = o)
J i 2

i 2

and ji

which is the equal superposition of aligned and anti-aligdespins alongy.

In summary, the superradiant state, shifted in energy by #;,, is an XY ferro-
magnetic state, whereas the subradiant state, shifted in ergy by Ji,, is an XY
antiferromagnetic state. We are going to study these phases larger systems later in
this chapter. Based on the reduced coupling to subradiantaes (in the two-atom case
it is even cancelled), we anticipate that it will be hard to geerate XY antiferromagnetic
correlations.

A two-atom XY ferromagnet | show now our characterization of the two-atom
superradiant statej+i. First, we perform a spectroscopy experiment, applying a wea
microwave pulse with ,=(2 ) = 0.35MHz during 0.75 s for a varying detuning

w (orange curve in Figure5.3(b)). The plotted quantity is 1~ Py Pey, With Pgate
the measured probability to obtain such a two-atom state. Tarefore, we look at
events where only one atom is ifi'i , and discard double excitation events which could
happen if the microwave pulse were too strong. Comparing thposition of the line
with that of a single atom (grey transparent curve centred at , = 0), we infer the
interaction energyJ,,=h=2.4 MHz for ;, =0 and R;; =10 m. We cannot see any
signal for negative detuning around ,,=(2 ) = Ji,=h, because the coupling to the
subradiant stateji vanishes as previously explained.
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Then, we preparegj+i by performing a Rabi oscillation at ,,=(2 ) = J1,=h. We do
it for the same Rabi frequency =(2 ) =0.35MHz, and measure the populations
in the four di erent two-atom states as a function of the duraion of the microwave
pulse (Figure 5.3(c)). The populations in j##i, |"#i and j#"i oscillate at around
0.5MHz, which agrees with the expected enhancement of the Rabi cding between
j##i and j+i by a factor 2. As we operate with a weak microwave probe, meaning

w=(2 ) Jio=h, the excitation to j"'i is inhibited and its population stays close
to zero. The nite contrast of the observed oscillations is ue to the detection errors,
and to the aforementioned imperfect initialization of all he spins of the lattice inj#i.

I nally discuss the spin-spin correlations exhibited by tke j+i state, prepared in
about 1 s by applying a weak microwave pulse (see Figute3(c)). To measure the
spin-spin correlations for di erent spin components, we gy on the j+i state a strong
microwave pulse =(2 ) =13.6 MHz at the single-atom resonance ,, = 0 for a
varying duration t ,,. This strong microwave pulse at resonance rotates all theisp
by an angle = ,t , around the x axis, as introduced in Figure5.2(c). We write
this global rotation operator R ( ). The spin-spin correlations of the rotated state
R ( )j+i along the vertical measurement axis are given by-j R’ ( ) M2A2R () j+i =
Pu:+ P« Ps Puy, which is de ned as the parity quantity. Figure 5.3(d) shows such
a quantity as a function of the rotation angle . Without applying any rotation pulse,
we read the correlations along and measure negative correlations. After & 2 pulse of
around 20ns, we read the correlations alongy and measure positive correlations. So we
indeed observe on the prepared superradiaj#i state XY ferromagnetic correlations.

The rotation angle is equal to the microwave pulse area. For a perfect square
pulse, = ,t , as already introduced. But in practice, due to the nite riseand fall
times, the pulse area is not proportional to its duration. Tlese times are about Bs.
This is why the pulse duration corresponding to a= 2-rotation, indicated by a black
dashed line in Figure5.3(d), does not correspond to the expected duratiorrs (2 ),
indicated by a grey dashed line. The time o set between theseo durations agrees
with the one obtained tting the parity oscillation by an o s et sine (solid line in
Figure 5.3(d)).

To read the correlations alongy, the rotating pulse must be stronger than the
interaction energy to act on both atoms as if they would be nemteracting. This
is why we choose for the read-out microwave pulse a Rabi freqey larger than
10MHz. If the driving strength ~ , is on the same order of magnitude as the Zeeman
splitting, we cannot e ciently rotate the qubit due to the ad ditional coupling to other
Zeeman states. This is the second reason why we need a high netig eld de ning
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the interaction along vertical and horizontal bonds meanshat we can expect on a
square lattice spins ferromagnetically ordered in one dgon and antiferromagnetically
ordered in the orthogonal direction. This non-trivial patiern of correlations will be the
topic of subsection5.3.3

Finally, | present the same kind of measurement for a quantiian axis orthogonal
to the atomic plane in Figure5.4(b). Here, we used a microwave pulse of 2.§,

w=(2 ) = 0.1 MHz, and the interatomic distance wafR;, =10 m. As expected, we
nd the same (negative) value for the interaction, whatevethe orientation of the
atomic pair. | recall that to perform this type of experimens with the quantization
axis being orthogonal to the atomic array, we have rst used sertical quantization
axis to optically pumped the atoms injgi and then ipped the magnetic eld (see
Figure 2.3).

Observation of magnetization plateaus in 1D-chains

Now that | have described the physics of an XY-magnet for the singst case of two
interacting atoms, | consider the study for larger system# fundamental property of
the XY Hamiltonian, only considering here the interacting par/ " "j" + AT A is
that it conserves the number of spin ugN- and spin downNy. In the presence of an
external eld, N- is still conserved for a longitudinal eld but not for a transs/erse one.

This means that the eigenstates of the XY Hamiltonian are alsdgenstates of
the operatorN. = ", h", with integer eigenvalues. This has two consequences.
First, for our numerical study of aN-atom system, we can divide the full Hilbert
space of dimension"? into several Hilbert subspaces of dimensiorﬁ“ , corresponding
to integer values forN- ranging from 0 toN. This makes the numerical simulation
easier. Second, preparing the di erent eigenstates of Hamoihian (5.3) without any
transverse eld , = 0 means that we reach integer average value &F.. As the
magnetization is proportional toN- N, we should be then able to generate states
exhibiting fractional magnetization valuesN-=N. This section aims at demonstrating
this ability on di erent 1D systems.

We are going to reach these eigenstates corresponding to aareasingN- via a
dynamical tuning of the external eld, to be compared to the pocedure in the previous
section where we used a weak square microwave pulse. The pduce we follow here is
very similar to the one presented in the previous chapter, iRigure 4.7(a), where we
tried to reveal the antiferromagnetic region by measuringhe Rydberg fraction after a
sweep with a varying nal detuning. In the context of spin-12 physics, the detuning
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Many-body spectrum Figure 5.5a) shows the eigen-energies of thé four-atom
eigenstates of Hamiltonian %.3) for , =0 and , = 0. Due to the absence of
external transverse eld, we can use the aforementioned c®@rvation ofN- to sort
these eigenstates by increasinyg-. The di erence between this representation of the
eigen-energies and the one in Figufe3(a) is that we do not see here the energy of a
spin-ip ~! o. In fact, Hamiltonian (5.3) is written in the rotating wave approximation
for an external eld ,  which means that the energy di erence of a spin-ip is
taken into account in the de nition of the detuning. In other words, what we exactly
represent here are the eigen-energies of the interactingats dressed by the driving
microwave photons.

A striking feature of the many-body spectrum is that it is synmetric with respect
to the middle column atN- = N=2. This is again a characteristic feature of the XY
Hamiltonian, which re ects the particle-hole symmetry in the context of hard-core
bosons. Consequently, inverting ail'i in j#i and vice-versa does not modify the energy
of the system.

The e ect of the detuning in Hamiltonian (5.9 is to globally shift each column of
Figure 5.5a) by an amount N-~ . Therefore, depending on ,, the ground state
of A or A will correspond to di erent integer eigenvalues oR -, still without any
transverse eld. This is what is shown in Figure5.5b). | plot there the eigen-energies
of o( w) KR ( ), with o the highest eigen-energy ofl, as a function of the
detuning. This plot is very similar to the one presented in Figre 4.5b). The color
encodes the number of spifii for the associated eigenstate. On the zero-energy line,
corresponding to the energy line of the ground state offi, we see thatN- grows
from 0 to N when scanning the detuning from positive to negative values

Magnetization plateaus Consequently, starting from all the atoms initialized in
j#i and a positive detuning, we can increadd- while ramping down the detuning,
following the same adiabatic protocol as in the previous chter (more speci cally
Subsection4.3g). IEthe evolution were perfectly adiabatic, we should seelgteaus in
the measured N. when scanning the nal detuning. The detuning boundaries of
these plateaus are indicated by the dashed lines in Figutex(b), and correspond to
fractional values of the magnetizatiorN-=N with N- ranging fomO0toN. 5 £
In order to understand better these expected plateaus, | glin Figure 5.5c) K-

of the ground state of A as a function of wand . For , =0, weindeed see
the plateaus inN-, and when increasing , the steps become less and less abrupt
until they are totally smoothed for ,=(2 ) =2 MHz, i.e. when ,, becomes on the
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order of the interaction energyJ. The colormap on the plotted surface encodes the
energy gap between the ground state and the rst excited statof H. When the gap
vanishes, it will be harder to follow an adiabatic evolution

Positive versus negative initial detuning  Since the initial state is the product state
of all atoms inj#i, following an adiabatic evolution when starting with a larg positive
(negative) detuning leads to the preparation of the instartneous ground state of A
(A), as it has been already discussed in the Ising case when preig the adiabatic
preparation protocol. The highest energy state is an XY ferroagnet and the ground
state is an XY antiferromagnet becausé > 0, as expected from the two-atom study
presented before. We have also seen that the coupling to XY f@magnet is enhanced
due to superradiance. We check this is still the case for theadom chain. Considering
two eigenstates of} with no transverse eld whose numbers of spijfi dier by one,
j mi andj m+1i, the enhancement or the inhibition of the coupling betweerhese two
states via a transverse magnetic eld is 0 mj ] m+1ij. This quantity is the
ratio between the Rabi frequency of the transition betweejp i andj 411, and the
Rabi frequency in the single-particle case, for the same mowave amplitude. We
call it the relative microwave coupling. Figure5.5d) shows such a quantity for all
the possible coupling between the*Zigenstates. We nd again that the coupling
is enhanced for higher energy states and reduced for loweergy states, which is
reminiscent of the superradiance and subradiance propesidiscussed in the two-atom
case.

As | am focused in this section on reaching a targeted value fNr whatever the
nature of the correlations, we will choose an initial posite detuning to take advantage
of the enhanced coupling to higher energy states.

Observation of magnetization plateaus for a 4-atom line | now report our ex-
perimental observation of the generation of states with frdional magnetization. We
use the same three-step time pro les fof ., ) as in the previous chapter. In a
rst set of experiments, the parameters of the sweep aréise = 1.2 S, tsweep= 1.2 S,
tar = 1.2 s, nit=(2 ) = 6.0MHz, nxx=(2 ) = 1.8 MHz and we scan the nal
detuning between 6 and 6MHz (Figure 5.6(a)). f9r each value of the nal detuning,
we measure the fraction of'i dened asf- = K. =N, which is represented as
solid disks in Figure5.6(b). We indeed see an increase df- when scanning the nal
detuning, but the expected plateaus, dotted line in the Figwe corresponding to the
number ofj"i for the local ground state of R, are quite smoothed. Taking into
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5.2 Observation of magnetization plateaus in 1D-chains

why we aim at reaching the ground state of A. We expect magnetizaton plateaus
for the , =0 line while scanning the detuning (Figure5.7(c)), but the detuning
boundaries between regions corresponding to di erent eip&lues forR . are closer
from each other, and the gap is smaller, as compared to the tbian case.

Consequently, we expect that the magnetization staircaseillvbe less visible when
performing the same dynamical tuning of the Hamiltonian as weid for Figure 5.6(a).
This is indeed what we see in Figur.7(d), where the staircase is completely smoothed.
Plotting the probabilities to get a givenN- (Figure 5.7(e)) reveals the successive
regions where an increasinly- is the most probable state when scanning the nal
detuning towards negative values, but the transitions areoib smooth to see marked
steps.

As a conclusion, the larger the system, the more dicult the obervation of
magnetization plateaus, as the gap decreases with the systsize. Nevertheless, for
the system described in the next subsection, we will be able bbserve plateaus in
the evolution of f- as a function of the nal detuning for an even larger system df4
atoms.

5.2.2 Dimerized chains

I will here report the same type of experiment aiming at obseing magnetization
plateaus, but now in the case of an assembly of dimers, weaklyupled between each
other. This interaction Hamiltonian, which we could implemat using the angular
dependence of the dipole-dipole interaction, is a bosoniergion of the Su-Schrie er-
Heeger (SSH) modeldu, Schrie er, and Heeger1979. This model was originally
developed to understand the electronic transport in polyatylene, a macro-chain of
carbon atoms with alternating double and single bonds. It lsaregained interest a few
decades later as it is one of the simplest model exhibitingdological properties Asoth,
Oroszhny, and Ralyi, 2014.

Geometry for a dimerized chain In order to implement the SSH model, we have to
use a lattice geometry alternating strong and weak couplininks. We could have used
the dependence of the dipole-dipole interaction on the int@omic distance and have
atomic pairs separated by larger distances. We instead udeetangular dependence
and work with the con gurations shown in Figure5.8a). We alternate between
pairs oriented along the quantization axis (quasi verticdink with an interaction
J=h 2.4MHZ) and pairs nearly oriented along the horizontal (weak intexction
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Two con gurations  For the nite-size system we work with, two con gurations ae
possible with an even number of atombl. We start and end the chain either with a
strong link and get seven weakly coupled dimers (top of Figuie8a)), either with a
weak link and get six dimers in the bulk of the chain and two h&dimers on the edges
(bottom of Figure 5.8@)). We compute the eigen-energies of Hamiltoniarb(3) without
external eld for these two con gurations (Figure 5.8(b)), for a smaller system of 10
atoms to ease the numerical treatment. | rst focus on the camn N- = 1. In both
cases, the spectrum shows two bands shifted symmetricaltprh zero by an amount

J, corresponding to the binding energy of the dimers. For theon guration at the
bottom, the spectrum exhibits two additional levels on the ero-energy line, whose
wavefunctions squared have a maximum amplitude on the edgeafsthe chain. These
additional eigenstates at zero-energy are known as edgetsta a typical signature of
the topological properties of our system. Then, the con gation on top of Figure5.8(a)
is called a trivial con guration whereas the con guration d the bottom is a topological
one.

We are now able to understand the many-body spectrum shown Kigure 5.8(b).
For the trivial case (top), adding spinj"i creates bands further and further away from
zero energy until we reacitN- = N=2 and the many-body ground state oA or H
can be seen as an assembly of dimers containing one gfiineach, at a total energy

J N=2. For the topological case (bottom), the many-body groundtate has a
four-fold degeneracy, corresponding to the dimers of the lkthosting one spinj"i each,
and the edges being spifii or j#i (four possibilities with N- = N=2 1, N. = N=2
(doubly degenerate) olN- = N=2 + 1) as ipping spins on the edges costs zero energy.
In that case, the energy of the ground state dff or A is J (N=2 1).Asin
the previous subsection, we compute the coupling betweeretli erent eigenstates
of the Hamiltonian for both con gurations (Figure 5.8(c)), and nd that it is still
enhanced towards higher energy states. We then keep focgson the ground state of

A.

Magnetization plateaus for a dimerized chain | now turn to the experimental
observation of a magnetization staircase for the dimerizechain. For the trivial
con guration, Figure 5.9a) shows the expected staircase for the ,, = 0 line. As
the fractional magnetization steps fromN- =1 to N- = N=2 1 are too narrow in
detuning and the gap vanishes in these regions, we will notsdyve these steps. On the
contrary, the step at zero-magnetizatiorN- = N=2 is wider and the gap is nite, hence
should be observable. This is con rmed by the experimentalatia (Figure 5.9(b)),
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probability), there is only a slight increase at zero detumg.

To conclude, the speci c geometry adopted here (dimerizain) leads to many-body
ground states with a non-vanishing gap, which enables thegparation of these states
even for a relatively high number of spins, namelj = 14.

Generation of correlated-spin states

In the previous chapter, to get more insight on the antifernmagnetic phase we were
aiming at generating, we focused on the spin-spin correlatis using our site-resolved
uorescence imaging. Following the same approach, | repdnere our observation of
the correlations obtained for the 1D systems already preded, and nally fora 4 4
square array. | recall the de nition of the spin-spin connded correlation function
between sites andj (i 6 j)

Ci’j =4 (I”ﬁ.h,l h ﬁ||hﬁjl)

with f; = j"i ; h"j;. Without any further operations, we measure the correlatiog of

the spin component along the quantization axig. Applying an additional global

microwave pulse to rotate the measurement basis, we have @sg to correlations for
the other spin components.

5.3.1 Assembly of two-spin ferromagnets in a dimerized chain

| rst focus on the dimerized chain in the topological con guation. We are interested in
the many-body ground state of H, corresponding to a bulk with a zero magnetization
(onej"i per dimer). We target the plateau atN- = N=2 1, so we use the same sweep
parameters as in Figures.6(a) with a nal detuning .4 =(2 ) = 1.0 MHz.

Figure 5.1(0a) shows the correlations along the quantization axis. We @asure large
intra-dimer negative correlations, as the one we were obs#g for the two-atom case.
We apply a strong microwave pulse to rotate the measuremenasis, and measure
the intra-dimer correlation as a function of the rotating tme (Figure 5.1Qb)). This
result is very similar to the parity quantity we plotted in Figure 5.3(d). After a strong
= 2-pulse, so for about 2@s, we measure positive intra-dimer correlations along
This is the case for all the dimers of the chain, as shown by Figu5.10c), representing
the correlations alongy between all the spins of the chain.
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and y, the middle and right panels are quite similar, meaning thathe dynamical

tuning of the external eld is slow enough to follow an adiabc evolution. Comparing

now to the measured correlations, the experimental data is & good agreement for
correlations alongz and in a qualitative agreement for correlations along. Indeed,

alongy, we should have measured a decay as a function of the distareween

correlated spins, and we rather measure quasi homogeneoosalations.

We draw the same kind of conclusion for the 8-atom line with aimitial positive de-
tuning. We observe short-ranged antiferromagnetic coria@ions alongz (Figure 5.11(c))
and longer-range ferromagnetic correlations along(Figure 5.11(d)). As before, the
main discrepancy between the measured correlations and tbalculated ones is in the
case of correlations along. This could be due to some imperfections in our rotation
process of the measurement basis, and is a call for future éistigations.

XY antiferromagnet  Finally, we tried to generate an XY antiferromagnet on the
4-atom line. For this, we revert the sign of the detuning andtart with ;; =(2 ) =

6.0MHz in order to reach the lowest energy state of the many-body sgeum.
Figure 5.11(e) shows the correlations along and Figure 5.11(f) the ones alongy.
The measured correlations agree with the calculated onesitiag into account the
parameters of the sweep, they have the same sign with a reddamntrast. The
most striking di erence is between the calculated correlaths and the ones of the
ground state ofA, the correlations of an XY antiferromagnet. Indeed, the caldated
correlations do not have the expected sign, which means thatir sweep is not slow
enough to reach adiabatically the ground state dfl .

We were expecting this after computing the coupling betwedhe di erent eigenstates
via a transverse eld (Figure5.5d)). As the coupling towards lower-energy states is
very weak, its adiabatic preparation requires large amousitof time. In order to see
correlations with the expected sign, | numerically found tat we must follow the same
sweep as in Figuré.6(@) but multiplying the durations by at least a factor 40. | did
not scan the other parameters of the sweep, so a shorter sweegy exist to reach the
antiferromagnet. Nevertheless, our rst trial and failure b reach the antiferromagnet
con rms that these states are way more di cult to prepare, diwe to their intrinsic
subradiant nature, resulting in a reduced coupling.

We have not tried experimentally to reach the XY antiferromaget for the 8-atom
line, as we expect to face the same di culties. Actually, it sbuld be even more di cult
for the 8-atom line because the gaps are smaller in that case.
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to the subradiant nature of the XY antiferromagnet prevents 8 to reach it within

the accessible time-scale of our experiment, so we have noed experimentally to

generate it. We have not tried either to generate the XY ferroamgnet starting with

a negative detuning, but in that case we expect to succeed tiies to the enhanced
coupling towards this state.

An up-down symmetry So far, | have discussed about the particle-hole symmetry,
resulting in a left-right symmetry of the many-body spectrm with respect to the
middle column atN- = N=2. | now discuss about a symmetry with respect to the
zero-energy line, an up-down symmetry. In the case of the démized chain, | mentioned
the sub-lattice symmetry, existing in the peculiar geomeyr used there because the
lattice can be divided into two sub-lattices, the two parakl sub-chains, with no
interaction within a sub-chain. A known consequence of thaik-lattice symmetry is
this up-down symmetry of the eigen-energies with respect the zero-energy line.
For the other systems presented in this chapter, as the int&ction between next-
nearest neighbours is not negligible due to the long rangetbé dipole-dipole interaction,
we cannot operate such a partition into two sub-lattices. As aonsequence, the many-
body spectra are not symmetric with respect to zero. The dimnce between the
positive eigen-energies and the negative ones is the mospaortant for the square with
isotropic interaction, as in that case the number of next-reest neighbours increases.
If we had interaction only between nearest neighbours, thateraction Hamiltonian
would respect the sub-lattice symmetry, where a sub-latticis obtained by taking one
site every second lattice site. For the square with the anigopic interaction, as the link
to the next-nearest neighbour is oriented along the 43ine, close to the magic angle,
this interaction is very weak. Therefore, we expect a redugaip-down asymmetry in
the many-body spectra, which is con rmed by the computatior{Figure 5.12b)).
Finally, | comment on which direction the eigen-energies amghifted due to the
long-range interaction, considering the simplest systenf three spins on a line. If
the two rst spins are aligned in the equatorial plane, in an XYferromagnetic order,
aligning the third spin with the two others will ful | the two -spin ferromagnetic
condition at the nearest-neighbour and the next-nearestemghbour levels. If the two
rst spins are anti-aligned, in an XY antiferromagnet, anti-aligning the third spin
with the second one will ful | the two-spin antiferromagnetc condition at the nearest-
neighbour level, but it cannot simultaneously ful | it at th e next-nearest-neighbour
level. This means that ferromagnetic states are shifted filrer than the zero-energy
line and antiferromagnetic states are shifted closer, asmpared to the spectrum
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giving by nearest-neighbour interaction only. Consequdyt the density of states is
bigger in the antiferromagnetic band, leading to reduced engy gaps and a more
di cult preparation to generate these states. These reduakgaps mean that the states
may be almost degenerate, which can be considered as frustia, here due to the
longer range of the interaction (see an example with ionkslam et al., 2013).

Conclusion

In this chapter, | have demonstrated our ability to reach tageted many-body ground
states of the XY Hamiltonian, for di erent geometries, if the oupling via a transverse
eld from the initial trivial product state towards the targ eted state was not reduced.
The generated states show the expected properties, in termsnumber of spinj"i
where we were able to observe magnetization staircases, pinsspin correlations.
| have also explained why we were able to generate these statyy a numerical
study, computing the gaps and the coupling via a transverseeld. As the coupling to
ferromagnetic states is enhanced due to the superradianttoee of these states, we
mostly observed XY ferromagnets. The only possibility to olesve antiferromagnetic
correlations was to study an hybrid system of antiferromaggtic and ferromagnetic
links, exhibiting a stripy order, where we took advantage afs dominant ferromagnetic
nature to have an enhanced coupling to reach it.

In the introduction to this chapter, | made a di erence betwen the eigenstates
of the XY Hamiltonian and the ones of the Ising Hamiltonian, in te absence of a
transverse eld. They are entangled states in the XY case wheas they are classical
product states in the Ising case. In fact, in the presence oh @xternal transverse eld,
the eigenstates of the Ising Hamiltonian are also entangledhis is why some groups
have been able to observe entanglement using the Rydbergdiade Wilk et al.,
201Q Isenhoweret al., 201Q. We can then write, for the Ising Hamiltonian also, the
eigenstates as symmetric or antisymmetric, superradiant subradiant, superposition
of classical product states. For this Hamiltonian, we were dninterested in the
correlations along the quantization axiz, and both symmetric and antisymmetric
superpositions show antiferromagnetic correlations algrthis axis. So the fact that we
can more easily prepare the symmetric superposition did nptevent us to observe
antiferromagnetic correlations in the previous chapter. lreover, in the Ising case, the
symmetric and antisymmetric superposition are degeneratso it does not modify the
many-body spectrum, this is why | did not describe this supposition feature at that
time. On the contrary, the observation of antiferromagnetss more di cult for the XY
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Hamiltonian because these states have subradiant propegienly in that case.

Therefore, depending on the many-body states of the XY Hamiltgan we want to
study in the future, we shall rely on di erent approaches. live study XY ferromagnets,
or more generally states with an enhanced coupling via a traverse eld, the approach
consisting in a dynamical tuning of the parameters, descrddl in this chapter, will
still be valid. Otherwise, for XY antiferromagnets, we shoul either try some more
involved dynamical tuning, developed in the optimal contrbcontext [Caneva, Calarco,
and Montangerq 2011, either engineer a more elaborate product state composefd o
j"i and j#i by locally ipping some of the spins fle lesleuc et al., 2017 (I will show
such a local spin- ip procedure in the next chapter). As this ppduct state is not an
eigenstate of the Hamiltonian, it will evolve and studying i dynamics could reveal
some interesting out-of-equilibrium physics, such as maiyody localization.
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In this last part of the manuscript, we will still study the exchange Hamiltonian
between Rydberg atoms (see Equatioh.1), which implements the XY spin model as
we have seen in the previous chapter, but considering an atiolhal Zeeman level and
other complex-valued exchange terms. The aim of this chaptes to show that, under
this consideration, our system can lead to the engineerind topological matter.

One of the signatures of topological matter for nite-sizedystem is the existence
of chiral edge modes, characterized by the circular motiorf the particle along the
edges of the system, in a preferential direction. The systsnmosting chiral edge modes
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are called topological insulators, as they are conductinghdhe edges but insulating
in the bulk. They have emerged as a new phase of matter aboutdanty years ago,
and triggered a lot of interest due to their unique transporiproperties Moore, 201Q
Wang, Dou, and Zhang 2010.

In order to study these propagation features on our Rydbengased platform, we
need to prepare a localized excitation, meaning we need toadge the state of one of
the atoms, and this excitation will hop to neighbouring latice sites with a hopping
amplitude between two sites given by the dipole-dipole intaction strength between
the two Rydberg atoms. This is a di erent approach than the oa used in the previous
chapter. There, we were aiming at preparing the ground statd the Hamiltonian.
Here, we prepare a localized excitation, which is not an eiggtate of the system, and
see how it propagates. We will use then, for convenience, thramework of hard-core
bosons rather than the one of spin-1/2 for this study, the carection between these
two pictures having already been made (Chaptes).

The single-particle transport properties of the system cabe expected from the
study of its band structure (eigen-energies as a function tife wave vectors of the
eigenstates). Indeed, if this diagram exhibits a linear bakiour, associated with a nite
group velocity (de ned as the derivative of the energy with espect to the wave vector),
we expect some propagating modes. We can also extract fronethand structure
the integrals of the Berry curvature for each band, called #n Chern numbers. The
Chern numbers are topological invariants. If they are di eent from zero, the system
shows topological properties. Having a non-zero Chern numifer an in nite lattice
and observing chiral edge modes on a nite-sized system isuaglent. This is known
as the bulk-edge correspondence, explaining why observiigral edge modes is a
signature of the topological properties of a system.

One way to engineer such topological band structures is todak the time-reversal
symmetry, by implementing some complex hopping amplitud&his is for example the
mechanism at play in the Haldane modeHaldang 19894, experimentally realized
with ultracold fermions in an optical lattice [Jotzu et al., 2014. In this model, the
coupling to next-nearest neighbours in a honeycomb latticre complex-valued.

Implementing complex hopping amplitudes also leads to artial gauge elds [Jaksch
and Zoller, 2003 Goldman, Beugnon, and Gerbier2012 Goldman et al., 2014, acting
on the motion of the particle. This type of eld is a way to mimi the e ect of a
magnetic eld, whereas the particle is not carrying any chae. The link between
complex hopping amplitudes and arti cial magnetic elds mg be understood as an
analogue to the Aharonov-Bohm e ect Aharonov and Bohm 1959. While the particle
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is hopping between lattice sites, a phase, sometimes reésfito as the Peierls phase, is
imprinted on the particle wavefunction. Then, a particle agiculating around a lattice
plaquette will acquire a phase proportional to the magnetiaux enclosed by this
plaguette. Such complex hopping amplitudes have succedlfioeen implemented
on di erent platforms : among others for ultracold atoms, byusing laser-assisted
tunnelling in an optical superlattice Pidelsburgeret al., 2011, by periodically driving
an optical lattice [Struck et al., 2019, or by using synthetic dimensions and Raman
transitions [Mancini et al., 2015 Stuhl et al., 2015; and for supraconducting qubits,
by modulating the coupling strength Roushanet al., 20174.

So far, the dipole-dipole coupling strength described in i manuscript was real. To
implement complex hopping amplitudes with Rydberg atomst has been proposed to
use additional terms of the dipole-dipole interactionHeter et al., 2015 Ki ner, O'Brien,
and Jaksch 2017 Weber et al., 201§, which are non-zero when the quantization axis
is perpendicular to the atomic array!. Considering anS level as being a vacant site
and anP level as being a site occupied by one particle, these additad exchange
terms change the Zeeman level of theP excitation while it is hopping between lattice
sites, and then involve a secondP level. The twonP levels can be interpreted as
the two spin states of the e ective particle. This spin- ip hopping is associated to an
orbital phase factor, giving rise to the targeted complex lpping amplitude. As this
hopping process involves both a spin- ip and an orbital phasfactor, it can be seen as
an intrinsic spin-orbit coupling.

In this chapter, | will show how this intrinsic spin-orbit caupling can lead to the
observation of chiral edge states. | will rst describe in m@ details the di erent
hopping processes at the two-particle level (Sectidhl). Then, | will explain how it
results in some topological features for a system of Rydbesgpms in a honeycomb
lattice (Section 6.2). Finally, | will report our rst experimental observations of
the e ect of the implemented complex hopping amplitudes on minimal system of
three atoms (Section6.3). The study described in this chapter corresponds to the
ongoing work performed in the lab during the completion of tlsi manuscript, so the
experimental results presented here are preliminary. Théeoretical work was realized
by our collaborators in Stuttgart [Weber et al., 2018.

Most of the discussions in this chapter concern the singleupicle regime, and | will
comment on the many-body regime only in Subsectidh 3.3

1They are the terms on the third line of Equation (5.1)
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Chapter 6: Emergent gauge elds for Rydberg atoms

Hopping processes in an extended Zeeman structure

Here, | describe in more details the three Rydberg states antig dipole-dipole
exchange terms involved in view of implementing complex hpimg amplitudes. Using
an additional Rydberg level, we operate in an extended Zeemananifold, and |
will show the microwave control of the Rydberg state in that ase (as compared to
Subsection5.1.2where only two levels were involved). Then, | will explain whan
electric eld is needed to implement the Hamiltonian of inteest. | will present in the
following how we prepare a localized excitation among the Rlgerg atoms, which is
the necessary step to study the propagation of a particle onlattice. Finally, I will
show the calibration of the hopping amplitude, by observinghe spin-exchange process
in the minimal case of two interacting atoms.

6.1.1 Dipole-dipole interaction and spin-orbit coupling

As stated at the beginning of this chapter, the required addibnal exchange terms to
implement complex hopping amplitudes are non-zero when tlygiantization axis is
perpendicular to the atomic plane. Therefore, we set for thichapter the magnetic eld
de ning the quantization axis along thex axis (aspheric lenses axis), i.e perpendicular
to the atomic plane. In that case, =0 (see Equation 6.1)), and the dipole-dipole
interaction reads

V= 1 %%+ 1 a4

+ 3 LA At P
m +ad4q > e?iq aj +e? i Gj . (6.1)

i2|j i

The expression of the dipole-dipole interaction is displagl on the top of Figure6.1
The angle appearing in Equation §.1) is the one between the interatomic axis and a
reference axis in theyz plane. This reference axis is set arbitrarily, so the absa&
value of does not have any physical meaning. In particular, in the twatom case, the
internuclear axis can be chosen as the angle reference, and 0 or = . Therefore,
we need at least three atoms not on the same line to have somenptex amplitude in
Equation (6.1). We choose they axis as the reference axis, and is positive in the
anti-clockwise orientation.

The exchange terms featuring complex amplitudes (framed green in Figure6.1)
change the total magnetic number of the two-atom system. Thefore, they must involve

158






Chapter 6: Emergent gauge elds for Rydberg atoms

hop from site 1 to 2: a resonant process (orange arrow), of alitygde t , where the

particle keeps the same value of spin and the system goes tej@i state; or an

o -resonant process by (green arrow), of complex amplitudeve 2' 12, where the

particle ips spin and the system goes to thg0+i state. The orbital phase factor
e 2 12 resulting from the geometrical dependence of the dipoléstle interaction, can

be understood as follows: while the particle is increasings iinternal momentum by

two quanta ipping from state ji to state j+1i, its orbital momentum must decrease
by two quanta, hence the phase factor. This is the intrinsicpsn-orbit coupling of the

dipole-dipole interaction.

We nd the same two types of hopping processes forja&i particle. The two-atom
state prepared inj+0i can jump resonantly tojO+i (orange arrow, amplitude t.),
or o -resonantly to jOi (green arrow, amplitudewe? 12). In the case of the spin- ip
hopping for j+i, the orbital phase factor is the complex conjugate of the oria the
ji case. Indeed, now the particle is decreasing its internal mentum by two quanta,
so its orbital momentum must increase by two quanta.

The exchange terms described above involve only Rydbergéévbelonging to the
V-structure. Then, restricting to these three levels corrély model the dynamics in
the system. On the contrary, the static dipole-dipole intaaction (purple arrow in
Figure 6.1) makes the system prepared ip Oi leave the V-structure. The in uence of
this last term can be reduced by shifting thgbi state away from the energy window
betweenji andj+i, hence the necessity to isolate the V-structure (Subsectidnl.3.

6.1.2 Probing the extended Zeeman manifold with microwave

| now describe the microwave excitation from the @8-, state to the 6(P;-, state
at the single-atom level (see Figuré.2). The experimental sequence is the same as
the one described in Subsectiob.1.2 The atom is transferred from the electronic
ground state to the Rydberg statg0i via a STIRAP, then excited toji , jb or j+i
shining microwave photons, and nally we send a deexcitatiopulse coupling the
atom in jOi back in the electronic ground state. In the end, an atom if0i before the
deexcitation pulse will be recaptured at the end of the sequee, whereas if it is in any
other Rydberg state, it will be lost. Consequently, our detgion method does not
allow to distinguish between the two particle spin stategi and j+i, and we will
write the particle state in a simpli ed notation j1i. The probability to be in j1i is thus
the probability to be in the states of interestj+i orji , orin jhi.

Figure 6.2 (bottom) shows the spectroscopic signal we obtain varying ¢hmicrowave
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Figure 6.2: Microwave transitions in an extended Zeeman structure. Energy diagram
of the Rydberg levels involed, as a function of the direction of thmmtization eld
By, for jByxj = 6.8 G. The three possible transitions from tHj@i state are indicated by
arrows. Bottom, spectroscopic signal (recapture probability akiaction of the microwave
frequency) showing the three di erent transitions.

frequency. The three dips in the recapture probability indiate the three transitions
from jOi to ji ,jb orj+i. We measure an energy separation betwegn and j+i
=h  25MHz, for a quantization magnetic eldB, = 6.8 G and a cancelled electric
eld. The spectra do not have the same width. Actually, the thee di erent spectra
were recorded with di erent microwave powers (the power wathree times as large to
observe the transition to thejbi state). This is because the Rabi coupling between
jOi and the levels of the 6B3;-, manifold depends on the targeted level, due to the
polarization of the microwave eld and the di erent angular parts of the electric dipole
matrix elements. For example, for an equally polarized citar microwave (as many

* photons as  ones), the Rabi frequency for the transition tg+i is enhanced by a
factor = 3 with respect to the one for the transition toj i

Controlling the polarization of the microwave eld inside tie vacuum chamber
is quite hard, due to the multiple re ections of the eld on the elements under
vacuum, namely the metallic lens holders, whose separati@on the order of the
microwave wavelength. Indeed, the microwave frequency hgiin the 10GHz range,
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its wavelength is about a few centimetres. Nevertheless, teng the alignment of the
microwave antenna, placed above the chamber, along the Zemsmaxisy, we achieve
reducing the generation of -polarized microwave photons (photons linearly polarized
along the quantization magnetic eld directionx). Therefore, to observe the transition
to jbi, we need much more microwave power. For this power and magicetld, the
energy separation is on the order of the Rabi frequencies tbe transition to ji

or j+i, and when the microwave eld is at resonance for the transdn to jb, the
couplingtoji orj+i prevents an e cient driving to jbi. This is why the jbi line is
less contrasted than the other ones.

In the previous chapter, to inhibit the coupling to other Zeenan levels, we were
operating with a large magnetic eld, increasing the Zeemasplitting. Here this is not
a valid solution, since the value of controls the phase of the implemented complex
hopping amplitude, as we shall see in the following of this chier. It cannot be set to
a arbitrarily high value. Then, the Rabi frequency to transfe the atom from jOi to a
particle state must be smaller than the energy separationn(ipractice it will be on the
megahertz range), which means a duration for the preparatiocon the order of the
microsecond.

The solution to operate with larger Rabi frequencies keepinthe same Zeeman
splitting would be to generate some circular polarized miowave eld. In order to do
so, we have installed a second antenna, in that case alignddrg the z direction.
Again, tweaking the alignment of this antenna, we avoid the geration of -polarized
photon. In the near future, we will control the relative ampitudes and phases of the
signals sent to the antennas to produce circular polarizedicnowaves, leading to faster
and more e cient preparation.

Finally, | show in Figure 6.2 how the V-structure is changed when we invert the
direction of the quantization axisBy. It turns out that the m; of the Rydberg levels
involved in the V-structure are inverted, but keeps the same sign. This is because
when we work with a quantization axis along, the atoms are rst optically pumped
into the highest energy level of the5S;-,,F =2 manifold with a quantization axis
along z (see Subsectior2.1.2. Then, when we ip the eld along the x direction, they
adiabatically follow the direction of the eld and stay in the highest energy level.
If By > 0, they are in the 5S,-,,F =2, mg =2 electronic ground state, whereas
if By < 0, they are in 5S,-,,F =2, mg = 2 . In the end, them; of the Rydberg
states belonging to the V-structure are inverted. If we wantd operate in the regime

< 0, we must invert the direction of the quantization eld B, during the optical

pumping.
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6.1 Hopping processes in an extended Zeeman structure

This inversion of themj; while inverting the magnetic eld By has two consequences.
First, performing the spectroscopy of thgi line for both directions of By and
the same microwave power, we deduce the imbalance betweénand  polarized
photons, to characterize more quantitatively the polariz#gon of our microwave source.
The Rabi frequencies, measured in both cases, di er by appimately 10%. Second, in
the inverted case, the spin- ip hopping of g+i particle now corresponds to a increase
of the internal momentum by two quanta, so the orbital momenim must decrease
by two quanta. In the end, in theB, < 0 case, the implemented complex hopping
amplitudes show the opposite phases, leading to the inversiof the circular motion
as we shall see in Subsectidh3.1

6.1.3 Isolating the V-structure with electric elds

As mentioned in Subsectior6.1.1 one exchange term of the dipole-dipole interaction
(Equation (6.1)) involve other levels than the ones belonging to the V-straare
fi0i,ji ,j+ig. It turns out that an interacting model involving only the V-structure
levels accurately describes the hopping dynamics for a widice of magnetic and
electric elds. Our collaborators nd out the values of theg elds by conducting the
same type of investigation as they did to accurately map therpblem of interacting
Rydberg atoms into an Ising problem (see Subsectiah2.1).

Only applying a magnetic eld, the dynamics occurring in thesystem is not
accurately described only considering the levels belongito the V-structure because
the jb state is in between thg i andj+i states (Subsectior6.1.1). To shift it away
from the V-structure, the solution is to apply an electric e, as the Stark e ect
experienced by a level depends on the absolute valuemf. This is what is shown
in Figure 6.3(a). For a high enough electric eld €« > 0.5V=cm), the transitions
from jOi to ji andjb (jm;] = 1=2) are separated from the ones tgci and j+i
(jmyj = 3=2). Then, choosing accordingly the magnetic eld (plot on te bottom-right
corner of Figure6.3(a)), we reach the same value for as before (situation (ii)), or the
regime < O (situation (iii)), while jhbi is shifted away from the V-structure. The last
set of parameters (situation (iii)) was found to lead to an amrate mapping of the
hopping dynamics only considering the levels of the V-strugte, and will be the one
considered for the theoretical discussion in Sectidgh2

Such a high electric eld,E, = 0.7 V=cm, implies an energy shift of the microwave
transitions by about 250MHz. Therefore, even small spatial inhomogeneities of the
generated electric eld over the size of the array, at the peent level, would lead to
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inhomogeneities of the microwave transition frequencieshese inhomogeneities were
con rmed experimentally by measuring the transition freqencies at di erent lattice
sites, and we found discrepancies on the MHz range over a 1@ distance.

Adopting a more symmetric repartition of the voltages (rightof Figure 6.3(b)),
we obtain a more homogeneous eld. The electronic setup to eqate with this more
symmetric repartition of the voltages was developed at theevy end of this thesis, and
it indeed results in a more homogeneous distribution of theansition frequencies
among lattice sites (uctuations below 10&Hz over 10 m). In addition to a more
exible voltage repartition, this new setup allows us to quikly ramp the value of the
electric eld.

6.1.4 Preparation of a localized excitation

To observe the di erent hopping processes previously degm#d, we must prepare on a
targeted lattice site aji or j+i excitation. We use, as described in the single-atom
case, a microwave eld to excite the atom fronjOi to ji or j+i. Without any further
operation, we cannot locally excite one of the atoms to the p&le state. Indeed,
the microwave has a global e ect on the atomic array, sincestwavelength is a few
centimetres, way larger than the size of the array. We haveesein Subsectiorb.1.3that
exciting a two-atom system, in the presence of the resonanipdle-dipole interaction,
generates the symmetric superposition statg0+i + j+0i)= 2or (j0i +j 0i)= 2,
corresponding to an excitation shared among two sites. This not the type of state
we want to prepare in this chapter. Hence the necessity to usa additional laser
addressing beam, focused on one of the atoms to shift its egetevels, and we can
change its state with microwaves while leaving the states tife other atoms unchanged.
We reported the demonstration of this technique inde Lesleuc et al., 2017, and |
refer the interested reader to the thesis of Sylvaide Lesleuc [2018 for more detalils.
The addressing beam, at 1013 nm, couples the Rydberg st@de with the low-lying
state 6Ps;-, (see Figure6.4(a)). It is focused on one lattice site, its waist is about
4 m, which is larger than that of the optical tweezers (1 m) but smaller than the
typical interatomic distance (10 m). For an addressing power of about 10QW,
we measured a Rabi frequency,qqr=(2 ) = 218 MHz. Depending on the detuning
addr We set, we control the energy shift experienced by théi state. If we work at
resonancej0i is split into two levels separated by .qqr, Via the Autler-Townes e ect.
If the atom is in jOi when the addressing beam is shone, it will decay back t6P3-,
and then to the electronic ground state. Consequently, we ratushine this resonant
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For the rst method to succeed, the -pulse must be strong enough to excite both
atoms tojli despite the interaction energy. The interaction is typicdy on the MHz
range, so the microwave Rabi frequency must be on the Bz range, which is still
below the Autler-Townes splitting, on the 100MHz range. We followed this method to
prepare thej10 state when observing the spin-exchange process between Ryalberg
atoms (Subsectior3.3.2. Here, as already explained, we cannot operate at such a
high microwave Rabi frequency because of the restriction ohd value of the Zeeman
splitting. Consequently, we choose to follow the second nhetd.

In addition to enable for the preparation of a localized extition, the second method
was also used inde Lesleuc et al., 2017 to freeze the dipole-dipole interaction at
will, by shifting one of the two-atom states out of resonancé&Ve will not focus on
this feature for this chapter, but it is of interest for our sudy reported in Chapter5.
Indeed, the addressing beam imprints a phase on the shiftedd-atom state, in such
a way that for a speci c freezing duration, we have generatetthe antisymmetric
superposition of the single-excited states, i.e. the twdean XY antiferromagnetic
state. Using several addressing beams, this method may be aywa engineer larger
XY antiferromagnets.

6.1.5 Spin-exchange experiment

After having prepared thej10 state, the system freely oscillates betwegaO and
jOli. The frequency of the oscillation is 2 =h if we preparej 0i, and is 2. =h if we
preparej+0i.

Figure 6.5 shows the observed spin-exchange oscillation preparipngOi (a) or
j*+0i (b). For the preparation, we have used a 1s square microwave pulse with a
Rabi frequency ,=(2 ) =0.5MHz, resonant with theji orj+i line (Figure 6.2
shifted by 6MHz due to the addressing beam. We extract the interaction enaes
t =h=0.45MHz and t. =h = 1.45MHz from the tting damped sine functions, for an
interatomic distancea =11 m. The observed ratiot, 3t agrees with the 3 ratio
of the angular parts of the dipole matrix elements.

The nite contrast is explained, as in the previous chaptersby the detection errors
and the nite STIRAP e ciency, and also by the nite e ciency o f the preparation of
a localized excitation described above. Indeed, such a pagation is di cult in the
presence of the other Rydberg states of the Zeeman manifoéen if we work with a
rather small microwave Rabi frequency. The damping origities from the shot-to-shot
uctuations of the interatomic distance, and the additiond o -resonant hopping terms
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Figure 6.5: Spin-exchange processes.After having prepared 0i (a) and j+0i (b), we
measure the probabilities to be A0 andj0li as a function of time. The solid lines are
tting damped sine to extract the interaction energy.

which perturbs the dynamics involving only two levels.

To conclude, | have presented here the di erent hopping presses occurring when
the particle state is encoded into two levels of the Zeemanrstture, and is therefore
considered as a particle with an internal degree of freedora \spin"). The additional
spin- ip hopping comes along with a phase factor, and will bthe basic ingredient in the
following of this chapter to implement complex hopping amglde. Since we operate
in a Zeeman manifold which cannot be arbitrarily split, the ncrowave manipulation
is less e cient than in the previous chapter, and the high- celity preparation of a
localized excitation is more di cult. Even with a nite prep aration e ciency, we will
be able to observe the e ect of the implemented complex hopig amplitude on a
minimal system of three atoms (see Sectigf3). The experiments reported there
follow the same procedure as the ones described here to osdhe spin-exchange
(preparation of a particle and observation of its propagatin) except that they involve
a third lattice site.

Towards the observation of chiral edge states on hobdgto
tices

Before describing the observed experimental signaturestbé spin- ip hopping, | will
explain how the latest leads to the engineering of topologitmatter hosting chiral edge
states. This theoretical work was realized by our collaboters in Stuttgart [ Weber
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properties. Such a topological state is engineered with Rydrg atoms in a honeycomb
lattice con guration (Figure 6.6(a)). Restricting ourselves to the levels of the V-
structure, as it is well isolated using an electric eld (Subection6.1.3, we write the
hopping interaction between sites and |

|

3 te we 2
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with a the lattice spacing,Rj the separation between both lattice sites anél\iy =

ﬁyﬁ ﬁy , Whereﬁy’ = ji ;h0j; are the creation operators of gi particle on
sitei. The prefactor ; = a3=jR;; j3 takes into account the £R® dependence of the
dipole-dipole interaction as a function of the distance. Gwsidering the energy di erence
betweenj+i andji , the total Hamiltonian of the system reads

Iq_ Iq_hop_l_x Ay =2 0 A

2 j i _ i-
2i6j i 0 =2

(6.3)

For the Rydberg states considered irfeber et al., 201§ and a lattice spacing
a = 10 m, the hopping amplitudes arew=h = 4.17 MHz, t,=h = 2.41MHz and
t =h=0.80MHz. The value of the electric and magnetic elds are such thath =

16MHz. The following results presented in this section were obtad with these
values.

For an in nite honeycomb lattice, one can compute the band sticture originating
from the hopping Hamiltonian (6.3), shown in Figure6.6(b) and extracted from the
publication [Weber et al., 2018. This diagram shows four bands, as the elementary cell
of the honeycomb lattice contains two sites and there are twapin components. All
the bands are associated with non-zero Chern numbers, th@rsature of a topological
system. Another interesting feature of these bands is that éhassociated eigenstates
mostly overlap with one of the two spin components. This mearthat occupying one
particle state, the other one is hardly populated, justifyng its adiabatic elimination
via a perturbative approach, as we shall see in the next sulsten.

Now, for a nite-size system, the bulk topological propertie (non-zero Chern
numbers) should be revealed by a speci ¢ behaviour on the exdg according to the
bulk-edge correspondence. We focus on the 31-site honeyisdattice (indicated by
a green dashed line in Figuré.6(a)). We compute for this nite-sized system the
eigen-energies, and represent them as a function of the ataguguasimomentum of
the associated eigenstat6.6(c). An angular quasimomentum can be de ned as the
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system exhibits a discrete 2 3-rotational symmetry. The dispersion relation shows a
linear behaviour, hallmark of the directed propagation oftte excitation. This mode
propagates on the edge of the system, as expected from a dne@dge mode, and mostly
overlaps with thej+i spin component.

To con rm the presence of chiral edge modes in this honeycortditice, we compute
the hopping dynamics after having prepared a localizget i excitation on a site on the
edge of the lattice. The trajectory of the center of mass of éhexcitation (Figure 6.6(d))
indeed reveals a directed motion on the edge of the system. El@iso, preparing g+ i
particle, the lattice sites show a very small probability tobe in theji state, the
other spin component.

In summary, the system under study exhibits chiral edge stas. To get more insight
on the reason why the system exhibits such topological prapies, we follow in the
next subsection a perturbative approach, to adiabaticallgliminate one of the two
spin components and obtain a simpler two-level model. Such &limination is justi ed
because we have seen here that one of the two spin componestsardly populated
during the computed dynamics.

6.2.2 Adiabatic elimination of one spin component

When is larger than the other energies of the system , t. and w, a particle
initialized in a given spin component will hop between lattie sites while keeping
the same value of spin, since the spin- ip hopping is an o -sonant process and
there are only virtual transitions to the other spin state. Then, the spin- ip hopping
can be treated as a perturbation. This perturbative treatmet will result in some
complex hopping amplitude for the particle, while still keping the same value of spin.
Consequently, only one particle state is involved in this prurbative approach, but the
hopping amplitudes are nevertheless complex. This implentation of complex hopping
amplitude can be interpreted as the imprinting of a Peierls lpase on the particle
wavefunction, and we will observe the signature of this phasn the following section.
Here, to validate our perturbative approach, we will comparéhe hopping dynamics
induced by Hamiltonian (6.3) with the one resulting from the derived e ective hopping
amplitudes.

Implementation of a complex hopping amplitude  For the discussion of the per-

turbative approach, | start considering a three-atom systa (Figure 6.7(a)). When
we prepare a single excitation on one lattice site, as the dile-dipole interaction

171






6.2 Towards the observation of chiral edge states on honeycomb &tic

a) . t b) - - -
X \ —l+
\'/ t w? L.
e —_— _7++76217r/d
IR AN 3V3
x" "~ n2
a = - 7’5\_+[ iefmn/a
3V3  u B B
A

Figure 6.8: Link to the Haldane model. (a) E ective hopping amplitudes for g+
particle propagating in a honeycomb lattice according to our pebiative approach. (b)
Time evolution of the center of mass of the excitation, computed reswg Hamiltonian 6.3)
(colorscale from green to yellow) or the e ective Hamiltonianoforscale from black to
orange).

site 2 (Figure 6.7(c)). Either it hops directly from site 1 to 2 with an amplitude t ,
either it virtually goes through the third lattice site while changing spin twice (so in
the end keeping the same value of spin). During this o -resamt process, the particle
picks up a phase and the amplitude of this process is the praztwof the amplitudes of
the two successive hopa? e 2( 3 2)= _ Since a di erence of angles appears in the
complex exponential, whatever the orientation of the angleeference axis, the value of
this di erence will still be the same, so what only matters ighe relative orientation of
the three atoms with respect to each other.

This picture of two successive spin- ip hops allows to undstand why the particle
hops with complex amplitudes whereas it never populates thlwher spin component.
The advantage of this picture is that it agrees with the exprgsion of the e ective
hopping amplitude derived from the perturbation theory (Eqation (6.4)), without
having to diagonalize the part of the Hamiltonian corresporidg to one spin component
(see orange blocs in Figuré.7(b)). Consequently, we are going to test the validity of
this picture for a larger system, the 31-site honeycomb latie studied in the previous
subsection.

Link to the Haldane model Figure 6.8(@) shows the e ective hopping amplitudes for
aj+i particle travelling around a honeycomb lattice, derived amrding to the previously
described perturbative approach. The hopping amplitude toearest neighbours is
real, as the two successive spin- ip hopping process wouldply in that case one hop
between next-nearest neighbours, and therefore is nedhigi comparing to t.. For

the hopping to next-nearest neighbours, we have to considie resonant hopping of
amplitude t,= 3 3 and the o -resonant process of two successive spin- ip hojng
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between nearest neighbout w?= . Such an e ective hopping Hamiltonian, with
real hopping amplitudes to nearest neighbours and complexpping amplitudes to
next-nearest neighbours, is reminiscent of the Haldane mddkelaldane 1989.

We compare the hopping dynamics of an injected i particle obtained by solving
the Schredinger equation for Hamiltonian 6.3) (this result was already presented in
Figure 6.6(d)), or by solving it for an e ective Hamiltonian written in t he onej+i-
excitation Hilbert subspace with the e ective hopping termsdescribed above. The
agreement between the computed trajectories of the centelr mass of the excitation is
quite good, especially at short times, as it is usually the sa for perturbative approach.
This validates the use of our perturbative approach to desbe, at least qualitatively,
the hopping dynamics induced by Hamiltonian§.3), in the regime where w,ts, t .
Moreover, the perturbative approach allows us to connect Hahlonian (6.3 to the
Haldane model, explaining in a di erent way why our system exbhits topological
properties.

Implementation of a complex hopping amplitude on atbree
system

Now that we have understood, via a perturbative approach, hokamiltonian (6.3
leads to the implementation of complex hopping amplitudemprinting on the particle
circulating among lattice sites a phase similar to the Peilsr phase, we will observe the
e ect of such a phase on a minimal three-atom system. Considlay the representation
in the complex plane of the e ective hopping amplitudes,, (see Figure6.7(c)) derived
in the case of an equilateral triangle, for a given, the ratio jlm J;, =Re J;, j is
larger for theji state ast. >t . This means that we expect stronger e ects of
the implemented Peierls phase on thg particle. We could increase this ratio by
decreasing , but at the risk of leaving the range of validity of the pertubative regime.
This is why we will study the implementation of the Peierls phse on g i particle.
In that case, the aforementioned ratio is the largest when> 0, as shown by the
representation in the complex plane.

The implemented Peierls phase depends on two experimentaloks: the energy
splitting  and the geometrical arrangement of the three-atom system. aAwill
rst vary  to observe the cyclotron-like orbit of aji particle on an equilateral
triangle. We will then vary the three-atom con guration to observe the geometry-
dependent recombination of i excitation. Finally, | will say a few words about the
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