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For a few decades, many experimental research teams have been able to isolate

and control individual quantum objects. These objects can be particles belonging

to the �eld of AMO physics, where the trapping of atoms, molecules or ions has

been successfully demonstrated. They can also be solid-state devices, where complex

systems such as superconducting circuits, NV centers in diamond, quantum dots

or semiconductor-based microcavities were proven to behave as individual multi-

level systems, and consequently can be seen as \arti�cial atoms". On these di�erent

platforms, local high-�delity state manipulations and long coherence times have been

reported, so that single quantum objects are nowadays available at an exquisite

level of control. After the demonstration of the isolation ofsingle particles, the next

major experimental breakthrough was the observation of entanglement between a few

particles; for example, in the pioneering work ofAspect, Grangier, and Roger[1982]

with correlated pairs of photons, or with two interacting ions [Schmidt-Kaler et al.,

2003].

These experimental demonstrations triggered a huge investigation e�ort in view

of developing quantum technologies. They consist in using the coherent control of

quantum objects, implementing genuine quantum features such as state superposition

or entanglement, in view of outperforming their classical counterparts in a wide range

of applications. For instance, at the single-particle level, the coherent manipulation of

the isolated quantum objects allows for the local probing ofexternal �elds, leading

to the development of the quantum sensors �eld [Kitching, Knappe, and Donley,

2011]. Along these lines, the measurement of magnetic �elds on thenanometer

scale with NV centers in diamond was reported [Rondin et al., 2014]. For another

application, quantum metrology, engineering highly entangled GHZ states enhances
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the measurement sensitivity to reach the Heisenberg limit (one example with three

entangled ions is reported in [Leibfried et al., 2004]).

In most of these applications, a two-level system is encodedconsidering only two

states of the controlled individual quantum object. This single two-level system, often

called qubit for quantum logical bit, would be the elementary building block of a

quantum computer. For this application also, taking advantage of state superpositions

and entanglement would enable operations impossible with classical algorithms. The

most famous example is the factoring problem, basis of most of the currently in-use

encryption procedures, which could be solved with a quantummachine implementing

Shor's algorithm [Shor, 1994]. The computation would be based on a sequence of

one- and two-qubit logical operations, the latest being realized in practice using

interactions between the single quantum objects. These quantum computing, or

quantum information, tasks are hard, long-term applications, requiring the challenging

increase of the number of quantum objects under control, with tailored interactions,

and the implementation of fault-tolerant protocols [Barendset al., 2014].

Controlling the interactions within an ensemble of qubits has another, mid-term,

application. Hamiltonians of interest in condensed-matterphysics or high-energy

physics can in that way be implemented on an experimental platform in view of

mimicking real-world matter with arti�cial systems. Simulating real matter with

a controlled experimental quantum system is calledquantum simulation, and was

�rst proposed by Richard P. Feynman [1982]. Progress in the �eld was recently

reviewed byGeorgescu, Ashhab, and Nori[2014]. Quantum simulation is expected to

be a reliable way to study quantum many-body dynamics as compared to numerical

simulations. Indeed, due to the exponential growth of the Hilbert space withN the

number of interacting particles, the current limit is N � 40 for the best classical

computers, whereas it could be larger for quantum simulators (see the very recent

experimental comparison, for a speci�c computational task, between a programmable

superconducting quantum processor and a classical computer [Arute et al., 2019]).

The aim of this manuscript is to report a few quantum simulation experiments

realized during my Ph.D thesis. They were performed on a platform based on neutral
87Rb atoms, trapped in a versatile con�guration of micron-sized optical tweezers, and

brought to highly-excited states known as Rydberg states. In this Introduction, I will

�rst present a few exciting many-body phenomena, hosted by two types of model

Hamiltonians, in condensed-matter physics. These two typesof Hamiltonians have

been both studied on our platform during my Ph.D thesis. Then, I will give a few

examples of quantum simulation realized on di�erent experimental platforms. Finally,

12



1.1 Quantum many-body phenomena in condensed-matter physics

I will focus on Rydberg-based quantum simulators.

1.1 Quantum many-body phenomena in condensed-matter physics

One of the goal of condensed-matter physics is to explain theproperties of (macroscopic)

matter from one- and two-body operators acting at the particle (microscopic) level.

Solid-state materials can be described as an ensemble of electrons (spin-1/2 particles)

localized at the nodes of a crystalline structure, having the ability to hop between

lattice sites, and with an on-site interaction energy. These two elementary processes,

hopping and on-site interaction, results in the Fermi-Hubbard model, written

Ĥ = � t
X

hi ,j i ,�

�
ĉi ,� ĉy

j ,� + ĉy
i ,� ĉj ,�

�
+ U

X

i

n̂i ,#n̂i ," (1.1)

where i , j are the indexes of the lattice sites (the brackets indicate that the sum

runs over neighbouring lattice sites),� the spin degree of freedom" , #, t the hopping

amplitude, U the on-site interaction energy,ĉ� and ĉy
� the fermionic annihilation

and creation operators, andn̂� = ĉy
� ĉ the number operator. Although this model is

simple to write, it is extremely hard to solve. Then, the usual way to treat this model

is to study the regimes where one of the two processes is the most prominent. For

t � U, only the spin degree of freedom remains, and we can write spin Hamiltonians.

On the contrary, for U = 0, we recover the tight-binding model. These two types

of Hamiltonians, spin or hopping Hamiltonians, can be implemented with Rydberg

atoms, as we shall see in this manuscript. Now, I describe a fewinteresting many-body

phenomena associated to these Hamiltonians.

Spin Hamiltonians Spin Hamiltonians were proposed to understand the magnetic

behaviour of matter, and are the central objects of study in the quantum magnetism

�eld [ Blundell, 2001]. The simplest models involve spins-1/2 localized on lattice sites.

The quantum operators acting on spin-1/2 are usually written in terms of Pauli

matrices, �̂ x , �̂ y , and �̂ z, with z the quantization axis. Then, the interaction between

two spins localized on the lattice sitesi and j is formally written as a product of

Pauli matrices acting on both spins. Few examples of interacting models are: the

Heisenberg Hamiltonian, where the interaction between two spins readsJij �̂ i � �̂ j ; the

planar XY-model, where it is written Jij
�
�̂ x

i �̂ x
j + �̂ y

i �̂ y
j

�
; or the uni-axial Ising model,

written Jij �̂ z
i �̂ z

j . The XY model, by the use of the spin raising�̂ + and lowering�̂ �

operators, �̂ + = �̂ x + i �̂ y and �̂ � = �̂ x � i�̂ y , can also be writtenJij
�
�̂ +

i �̂ �
j + �̂ �

i �̂ +
j

�
.
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I mention also the XXZ model, a combination of the Ising and the XYmodels, written

Jij
�
�̂ x

i �̂ x
j + �̂ y

i �̂ y
j + ��^z

i �̂ z
j

�
. When � = 1, we recover the Heisenberg model. In this

manuscript, I will focus on the Ising and the XY models.

These simple microscopic spin models may have di�erent physical origins. For

example, when derived from the Fermi-Hubbard model (1.1), spin Hamiltonians

originate from the combination of the Coulomb interaction and the Pauli exclusion

principle. They can be interpreted classically as the tendency for spins, pictured as

elementary magnets, to orient themselves with respect to each other to reduce the

global energy of the system. Consequently, they explain the macroscopic spin-ordered

magnetic phases of matter from the interaction at the particle level, which is the

goal of quantum magnetism. The interplay between the lattice structure and the

geometrical dependence of the interaction gives rise to a rich variety of phases, even if

the interaction is simply written in terms of two-body operators. Some of these phases

still lack a complete characterization, for example frustrated phases [Moessner and

Ramirez, 2006], and are hot topics in condensed matter physics.

In the presence of a strong enough external magnetic �eld, all spins tend to

align into its direction, constituting what is called a paramagnetic phase. A spin

system will be in a paramagnetic phase rather than in the interacting spin-ordered

phase as soon as the energy it gains due to the coupling to the magnetic �eld,

given by the single-particle Hamiltonian� (1=2) � B �̂ � B , overcomes the energy

gained due to the interaction. Varying the amplitude of the external �eld, the

system undergoes a quantum phase transition, a phenomenon actively studied both

theoretically and experimentally [Sachdev, 2011]. Other phenomena of interest originate

from the out-of-equilibrium physics occurring in these systems while abruptly tuning

external parameters, which can in some cases be seen as a dynamical quantum phase

transition [Heyl, 2019].

Hard-core boson Hamiltonian Another important kind of Hamiltonians of interest

in condensed-matter physics are hopping Hamiltonians (the tight-binding model is

the limit U = 0 of the Fermi-Hubbard model). They capture most of the transport

properties of materials, accounting for the distinction between conductors and insulators

by computing the dispersion relation (band structure). Among insulators, new sort of

phases are intensively being explored, topological insulators [Qi and Zhang, 2011], for

their unique transport properties [Moore, 2010].

Rather than the Fermi-Hubbard model, I focus on the (spinless) Bose-Hubbard

model, describing the hopping physics for bosons in a lattice. The quantum operators

14
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acting on bosons are the creationb̂
y
i and annihilation b̂i operators. As in the fermionic

case, the hopping of a boson from sitei to j simply reads in terms of operatorsb̂i b̂
y
j ,

and the hopping term in the Bose-Hubbard Hamiltonian is written Jij

�
b̂i b̂

y
j + b̂

y
i b̂j

�
,

with Jij the hopping amplitude. In addition to the hopping term, the Bose-Hubbard

Hamiltonian takes into account the chemical potential� and the on-site interaction

U between bosons with the single-site term� �n̂ i and Un̂i (n̂i � 1), with n̂i = b̂
y
i b̂i

gives the number of bosons on sitei . This Hamiltonian is known to describe the

transition between a super
uid and a Mott insulator. In the peculiar case of an in�nite

on-site interaction energy, each lattice site can host either zero or one boson, and the

Bose-Hubbard model reduces to a hard-core boson Hamiltonian.

Actually, the XY and the hard-core boson Hamiltonians reduce tothe same physical

situation. Indeed, the XY interaction term acting on the pair state of spinsj"#i

transforms it into j#"i , which means that the two spins have exchanged their states.This

is why the XY Hamiltonian is sometimes referred to as a spin-exchange Hamiltonian.

Rather than spins, we can seej"i as being a lattice site occupied by one particle and

j#i as being an empty lattice site. The spin-exchange process isthen equivalent to the

hopping of one e�ective particle between the two sites. As there are only two levels

involved, no state corresponds to a lattice site occupied bytwo or more particles, so

two bosons cannot be on the same lattice site, they have in�nite on-site interaction

energy. As a consequence, implementing the XY Hamiltonian for spins allows also for

the study of hopping hard-core bosons.

Finally, adding a magnetic �eld acting on these hopping particles extends even more

the range of exotic phenomena potentially exhibited by thismodel, the most famous

one being the quantum Hall e�ect [Klitzing, Dorda, and Pepper, 1980]. The action of

the magnetic �eld can be taken into account directly in the hopping term, by writing

complex hopping amplitudes. Then, having complex hopping amplitudes mimics the

e�ect of an external magnetic �eld, even in the case of uncharged particles, and gives

rise to an arti�cial gauge �eld [Aidelsburger, Nascimb�ene, and Goldman, 2018].

I have presented two types of Hamiltonian, enabling for the explanation of several

many-body phenomena and promising the understanding of other exotic ones. I am

now going to describe examples of their implementation on three di�erent kinds of

platforms, allowing for their study on a controlled arti�cial system.
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1.2 A short overview of quantum simulation

In order to engineer the aforementioned Hamiltonians, a quantum simulator needs to

ful�ll several constraints. The �rst requirement is to have an ensemble of particles in a

controlled geometrical con�guration, mimicking the lattice structure. The ability for

the particles to tunnel between lattice sites leads to the engineering of some hopping

Hamiltonians. To mimic spin-1/2 physics, one should de�ne a two-level system, i.e. a

qubit, considering two quantum states of the particle. Then, if the interaction only

involves the two considered states of the particles, the Hamiltonian of the controlled

system can be mapped into a spin Hamiltonian. For the one-bodyoperator of spin

Hamiltonians, driving transitions between the two states ofthe qubit imitates the

behavior of an external magnetic �eld on the e�ective spin-1/2. Indeed, both the

driving of a qubit and the coupling of a spin-1/2 to a magnetic�eld can be formally

written as rotations of the two-level system. Finally, to perform quantum simulations,

the experimentalists must have access to the populations, for each qubit, in the two

levels.

Quantum simulation then relies on rewriting the engineeredinteraction within the

system under control in terms of spin or bosonic operators, in such a way that a

mapping exists between the physical situation in the laboratory and the targeted

model. To be more precise on the quantum simulation �eld, this is known asanalog

quantum simulations, where an arti�cial system, albeit physically quite di�erent,

obeys the same equation of evolution as the modeled system. In the experiments

presented in this manuscript, we perform this kind of quantum simulation. Actually, it

exists two other more abstract approaches, known asdigital and variational quantum

simulations.

Digital quantum simulation relies on the possible formal decomposition, referred to

as the Trotter formula [Lloyd, 1996], of the evolution operator of a many-body system

into a series of one- and two-body operators. The asset of this approach is that many

di�erent Hamiltonians can be studied that way, in a close correspondence to Richard

Feynman's original idea. The drawback of this approach is that it requires the piling

of a lot of quantum gates. Even if the single- and two-body operations show very

high �delity in ion- or superconductor-based platforms, the increasing complexity of

the series of gates that must be performed would eventually be detrimental to the

e�ciency of this approach.

Another hybrid approach has been developed more recently, variational quantum

simulation. It is expected to simulate as complex Hamiltonians as digital quantum
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simulation but requiring less quantum operations. It is based on a feedback loop

between an analog quantum simulator providing entangled trial wavefunctions and

classical optimization algorithms to determine in an iterative way the solution to a

given problem.

I now brie
y explain how several experimental teams have succeeded in implementing

the aforementioned Hamiltonians using degenerate quantum gases [Bloch, Dalibard,

and Nascimb�ene, 2012; Tarruell and Sanchez-Palencia, 2018], trapped ions [Blatt and

Roos, 2012] or superconducting circuits [Houck, T•ureci, and Koch, 2012]. The few

examples I describe are not an exhaustive list.

Ultracold quantum gases I start this short overview by the quantum simulators

based on degenerate quantum gases. To get the particles in a controlled spatial

con�guration, experimental groups mostly use periodic trapping potential, coming

from standing waves of o�-resonant light, known as optical lattices [Bloch, 2005]. The

lattice is �lled by making the degenerate gas undergo the phase transition between a

super
uid and a Mott insulator [Greiner et al., 2002]. Using high-numerical aperture

optics, some experimental groups are nowadays able to reachsingle-site resolution

and locally probe the occupancy of each lattice site. These platforms are referred to

as quantum gas microscopes [Bakr et al., 2009]. They provide the largest controlled

systems, as compared to the other platforms I will describe.The ability to perform

local operations on the encoded qubits inside an optical lattice by using addressing

light-shifts was demonstrated [Wang et al., 2015].

By playing on the relative phase and amplitude of the beams generating the

optical lattice, complex lattice structure can be engineered. Varying the lattice depth

controls the tunneling amplitude of the particles between neighboring sites, resulting

in tunable quantum simulators of hopping Hamiltonians. Based on the imaging of the

quasi-momentum distribution, several groups have been able to measure characteristic

properties of the implemented Hamiltonian. The group of Prof. Tilman Esslinger, for

example, was able to produce a honeycomb lattice, and observe signatures of the Dirac

points [Tarruell et al., 2012], an emblematic feature of the band structure associated

to this geometry. The group of Prof. Immanuel Bloch measuredthe Zak phase related

to the band structure for a dimerized chain [Atala et al., 2013]. The Zak phase, or

in higher dimensions the Chern numbers, are topological invariants classifying the

di�erent phases with respect to their topological properties.

On these platforms, the interaction are mainly limited to the on-site range, whose

amplitude can be easily tuned, for instance, via Feshbach resonances [Chin et al., 2010].
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This leads to the engineering of nearest-neighbour spin-spin interaction via a tunnelling

assisted super-exchange process [Duan, Demler, and Lukin, 2003]. Nearest-neighbor

spin-spin interaction can also be implemented using doublon-hole excitations of a

Mott insulator in a tilted 1D optical lattice [ Sachdev, Sengupta, and Girvin, 2002].

Following this approach, the group of Prof. Markus Greiner was able to observe 1D

Ising antiferromagnets [Simon et al., 2011]. Longer-range interaction may emerge using

particles exhibiting a permanent dipole moment, such as magnetic atoms [Lepoutre

et al., 2019] or polar molecules [Gorshkovet al., 2011; Goban et al., 2018].

The platforms described so far rely on a \top-down" approach. Starting with a

macroscopic, quantum degenerate assembly of indistinguishable particles, the system

reduces to e�ective spins interacting on a lattice, or hopping particles. The loading of

an optical lattice is necessary to imitate the Hamiltonians described in Section1.1,

but actually, other phenomena can be simulated without performing this experimental

high-demanding task. For example, some groups have explored the propagation of

matter waves in disordered potential [Billy et al., 2008], or studied exotic phases of

matter, such as the BEC-BCS crossover [Navon et al., 2010; Ku et al., 2012], quantum

droplets [Ferrier-Barbut et al., 2016; Cabrera et al., 2018] or supersolids [L�eonard

et al., 2017; B•ottcher et al., 2019; Chomazet al., 2019]. The advantage of this top-down

approach is that it intrinsically provides a system with a large number of particles, in

a thermal equilibrium. Using a quantum gas microscope leads to the control of the

thermodynamic properties at an exquisite level. Indeed, the group of Prof. Markus

Greiner succeeded in getting a higher fraction of the entropy on the edges of an optical

lattice, in order to generate in the bulk of the lattice the largest antiferromagnetic

correlations ever observed on a arti�cial state [Mazurenkoet al., 2017].

The two other platforms I am going to describe, and the platform I worked on

during my Ph.D. are on the contrary based on a \bottom-up" approach. They consist

in �rst controlling a single quantum object, and then addingmore and more objects

to have an assembly of interacting qubits. They involve fewer interacting particles

than the quantum-gas platforms, but at a better level of single-particle control and a

wider range of possible types of interactions.

Trapped ions I now turn to ion-based quantum simulators. Most of these platforms

rely on ionic crystals in a linear Paul trap [Raizenet al., 1992], exhibiting very high

�delity single- or two-qubit operations [Blatt and Wineland, 2008]. The largest systems

are 1D chains of a few tens of qubits, but the extension to higher dimensions or

to larger number of interacting particles is extremely challenging. The spin-spin
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interactions are engineered using a laser coupling betweenthe internal states of the

ions and the collective vibrational modes of the ionic crystals [Cirac and Zoller, 1995;

Porras and Cirac, 2004; Kim et al., 2011]. They were shown to decay as 1=R� , R being

the inter-ion distance, where� can be tuned between 0 and 3, potentially leading to

very long-range interactions.

The high �delity of two-qubit operations on ion-based platforms allows the group of

Prof. Rainer Blatt to perform digital [Lanyon et al., 2011] or variational [Kokail et al.,

2019] quantum simulations.

Superconducting circuits Finally, I brie
y mention the case of superconducting

qubits. They triggered a lot of interest since they have beenproved to behave as arti�cial

atoms [Nakamura, Pashkin, and Tsai, 1999; You and Nori, 2005]. The technology

has considerably improved so that nowadays, superconducting qubits are available

at an excellent level of control [Paik et al., 2011; Barendset al., 2013]. Inter-qubit

coupling have been implemented using either the exchange of microwave photons in

cavity [Wallra� et al., 2004; Dalmonte et al., 2015] or the mutual inductance [Chen

et al., 2014]. On these solid-state devices, the interactions can be highly tunable as they

do not rely on the geometrical arrangement of the qubits, buton the inter-connecting

wiring. Nevertheless, tailoring these interactions for an increasing number of qubits

while keeping the same level of control is quite challenging.

The performance of the superconductor- and ion-based platforms are then similar :

they exhibit an outstanding �delity for single- or two-qubit operations, but the scaling

to larger number of qubits has not been proven yet. Their potential integrability and

on-chip compactness makes them promising candidates for the future of quantum

information [Devoret and Schoelkopf, 2013], and attracted world-leading companies

such as Google or IBM to invest in this technology. On these platforms, some groups

have already explored the digital quantum simulation of spin dynamics [Salath�e et al.,

2015], the variational calculation of molecular energies [O'Malley et al., 2016], or the

analog quantum simulation of hopping Hamiltonians [Roushanet al., 2017b].

Figure 1.1 compares the numbers of qubits involved in these di�erent types of

quantum simulators. The ones based on degenerate quantum gases provide the largest

number of interacting particles whereas the two bottom-up approaches show the

best �delity for one- or two-qubit operations, and highly-tunable interaction at the

single-particle level. Another criterion to compare these platforms is the cycling

experimental time. For ultracold gases, the cycling experimental time is usually a
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Figure 1.1: Experimental platforms for quantum simulation. The color patches indi-

cate the typical number of qubits involved in di�erent types of quantum simulators. The

near-by images with an associated color frame are representative pictures of the platform.

The purple one is a sketch of a quantum gas microscope1. The green one is a picture of a

nine-superconducting-qubit device2. The yellow one is a sketch of an ion Paul trap3. The

blue one represented sixteen atoms trapped in optical tweezersand excited to Rydberg

states.

few tens of seconds. On the contrary, for ions, the time limiting factor comes from

the read-out of the ion state, which can be as fast as a few milliseconds, leading to a

cycling experimental rate close to 100Hz. The cycling rate can even be higher for

superconducting circuits.

1.3 Rydberg-based quantum simulators

I now turn to Rydberg-based platforms, the type of platform Iworked on during my

Ph. D. thesis. I will give a complete description of our experimental apparatus, one of

the �rst Rydberg-based quantum simulators that have been built, in Chapter 2. In a

few words, these platforms combine the trapping of several single neutral atoms in

1https://news.harvard.edu/gazette/story/2009/11/quantum-gas-microscope-cre ated/
2https://web.physics.ucsb.edu/ martinisgroup/
3https://quantumoptics.at/en/research/quiqs.html
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con�gurable arrays of optical tweezers and the coupling to Rydberg states. These states

are highly excited states corresponding to a large principal quantum number n & 20,

exhibiting exaggerated properties [Gallagher, 1994]. In particular, their enhanced

electric dipoles lead to large and tunable interactions, and their extended lifetimes

ensure long coherence times.

Interacting Rydberg gases The �rst proposals aiming at performing quantum gates

with Rydberg atoms relied on the Rydberg blockade [Jakschet al., 2000; Lukin et al.,

2001]. I will detail its mechanism in the beginning of Chapter4. Its origin is the

distance-dependent energy shift experienced by neighbouring interacting Rydberg

atoms, which prevents the simultaneous excitation of several atoms to the Rydberg

states, as one atom being in the Rydberg state brings its neighbours out of resonance.

This results in the generation of entangled states with one Rydberg excitation shared

among mesoscopic atomic assemblies. The �rst experiments were performed on dilute

gases, and showed signatures of the Rydberg blockade by measuring a reduced number

of excited atoms [Tong et al., 2004; Singeret al., 2004; Vogt et al., 2006]. Then, some

evidence of the coherence of the collective excited states were reported, still on dilute

gases platforms [Heidemannet al., 2007; Raitzsch et al., 2008; Pritchard et al., 2010].

A review on these studies of interacting Rydberg gases can befound in [L•ow et al.,

2012].

Using optical tweezers In order to get a better control on the interaction, the team I

joined for my Ph. D. chose to work with single atoms loaded in optical tweezers instead

of dilute gases. Optical tweezers are tight con�ning optical dipole traps, and they were

proven to be reliable single-atom sources in pioneering experiments performed at the

Institut d'Optique, by the team of Prof. Philippe Grangier [Schlosseret al., 2001].

Then, it is possible to control the interatomic distance, hence the interaction, between

single atoms. This led the hosting team to observe the Rydberg blockade between

two atoms [Ga•etan et al., 2009], jointly with the group of Prof. Mark Sa�man in a

similar setup [Urban et al., 2009]. The two groups then improved their control of this

two-atom system, and reported the generation of entangled states [Wilk et al., 2010],

or the realization of the two-qubit C-NOT gate [Isenhoweret al., 2010].

Towards quantum simulation with Rydberg atoms Since these �rst experimental

demonstrations, arrays of Rydberg atoms were considered asa promising platform for

quantum simulation experiments [Weimer et al., 2010]. The use of a versatile array of
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optical tweezers enables for the engineering of any latticegeometry, whose lattice

constant can be as small as a few microns. The interatomic distance is larger than in

the case of optical lattices, which eases the single-site resolution of the lattice and

local operations on the encoded qubits. Even for an interactomic distance of a few

tens of microns, the interaction between Rydberg atoms can be on theMHz range,

whereas their lifetimes is around a hundred of microseconds. Consequently, the typical

timescale of the interacting dynamics is much smaller than the coherence time of the

system, leading to its observation in a laboratory.

One of the advantages of using Rydberg atoms for quantum simulation purposes is

that they can interact within di�erent regimes, in such a waythat they naturally

implement di�erent kinds of Hamiltonians. I refer to Appendix A for a detailed

description of these regimes of interaction, and their links to the Hamiltonians

presented in Section1.1. In a few words, we have used in the experiments presented in

this manuscript the van der Waals and the resonant dipole-dipole regimes. We can

choose to work within one of the two regimes by encoding the qubit into a speci�c set

of two atomic levels.

If the encoded qubit basis isfj gi , jr ig , with jgi the electronic ground state and

jr i a Rydberg state, the atoms interact within the van der Waals regime. In that

case, the interaction results in an energy shift of the doubly excited pair state jrr i ,

which is at the origin of the Rydberg blockade mechanism I mentioned above. Then,

the interaction between two atoms labeledi and j readsUij n̂i n̂j , with n̂i = jr i i hr j i
the local projector on the Rydberg state, andUij is the van der Waals energy shift.

Consideringjgi = j#i and jr i = j"i leads to rewrite the interaction in terms of spin

operators. Asn̂ = (1 + �̂ z) =2, the interaction between two atoms is in the end/ �̂ z
i �̂ z

j ,

implementing an Ising-like model. Combined with a laser �eld coupling the two qubit

states jgi and jr i , we can simulate an Ising-like model in the presence of e�ective

transverse and longitudinal magnetic �elds.

If the qubit is encoded into two dipole-coupled Rydberg states, for example anS

state and an0P one, the correct regime is in that case the resonant dipole-dipole

interaction. Under the in
uence of this interaction, a pair of Rydberg atoms in

the jnS, n0Pi state will evolve back and forth between this state and thejn0P, nSi

one [Barredo et al., 2015], in the same kind of spin-exchange process I mentioned above

(Section1.1). This is why this interaction implements the XY model, or hard-core

boson Hamiltonians. The use of a microwave �eld couplingjnSi and jn0Pi imitates

the behavior of a magnetic �eld in the context of spin Hamiltonians, or a chemical

potential in that of hard-core boson Hamiltonians.
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Our group �rst characterized the aforementioned di�erent regimes of interaction

between a few Rydberg atoms, resulting in several publications reviewed in [Browaeys,

Barredo, and Lahaye, 2016]. Then, the team studied Hamiltonians involving a few

tens of Rydberg atoms, with the implementation of an Ising-like model [Labuhn

et al., 2016]. The limitation at that time of Rydberg-based platforms was due to the

stochastic loading of the optical tweezers by single atoms.I will come back to that

point in Chapter 2. The basic idea is that our loading protocol of the optical tweezers

implied that only half of them were randomly loaded by singleatoms, preventing us

to work with a targeted atomic con�guration. We developed then an atom-by-atom

assembling technique, consisting in moving the atoms in thearray to fully load a

targeted sub-array of optical tweezers [Barredo et al., 2016]. A similar assembling

process was developed at that time by the group of Prof. Mikhail Lukin [ Endreset al.,

2016] and by the one of Prof. Jaewook Ahn [Kim et al., 2016]. Very recently, a similar

approach was implemented in the group of Prof. Gerhard Birkl[Ohl de Mello et al.,

2019].

Current Rydberg-based quantum simulators Figure 1.2 summarizes the basic

ingredients used on Rydberg-based platforms to perform quantum simulation: defect-

free atomic structures, one- and two-qubit operations and tunable interaction. The

coherence and �delity of the one- and two-qubit operations have considerably improved

recently, as demonstrated by the group of Prof. Mikhail Lukin [Levine et al., 2018,

2019], reaching a level of control closer and closer than those shown by ion- or

superconductor-based platforms. It is now possible to generate entangled states

involving up to 20 qubits [Omran et al., 2019]. To compare these platforms to the

other ones described in Section1.2 (see Figure1.1), they provide a similar number of

qubits than ion- or superconductor-platforms, but in a moreversatile con�guration

(we demonstrated the generation of 3D atomic structures [Barredo et al., 2018]). The

cycling experimental rate, limited by the necessary loading of the optical tweezers and

the imaging time, is on the order of a few Hz.

The tunability of Rydberg-based platforms allowed us to study a bosonic version of

the Su-Schrie�er-Heeger model and to observe signatures of atopological phase with

interactions [de L�es�eleuc et al., 2019], which would be extremely hard in other types

of quantum simulators. This is why Rydberg-based experimental apparatuses are

nowadays very attractive and competitive platforms to perform quantum simulation of

many-body physics.
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Overview of the experimental
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In the Introduction, arrays of Rydberg atoms were presentedas one of the best

platforms to perform quantum simulation. The aim of the present chapter is to

describe the experimental procedures we follow to obtain the starting point of quantum

simulation experiments, an assembly of qubits in a well-controlled initial state. Our

experimental setup was built by Lucas B�eguin and Aline Vernier, and then was

upgraded by the following generations of Ph.D. students andpost-doc : Sylvain Ravets,

Henning Labuhn, Sylvain de L�es�eleuc and Daniel Barredo. I will brie
y recall the

working principles of the di�erent steps of our experimental protocol, referring to their

Ph.D. theses for further information. Most of the experimental results shown in this

chapter were already presented in the thesis of Sylvainde L�es�eleuc [2018].



Chapter 2: Overview of the experimental apparatus

I will �rst describe in Section 2.1 the elementary building block of our experimental

apparatus, the trapping of a single atom in an optical tweezers. Then, I will explain in

Section2.2 how we generate fully-loaded arrays of atoms. Finally, in Section 2.3, I will

present the Rydberg excitation scheme in the single-atom regime, i.e. without taking

into account interaction which will be the topic of the following chapters.

2.1 A single atom in an optical tweezers

One of the requirements for quantum simulation is to isolateand control one single

quantum object. To do so, the tool we are using in our experiment is an optical

tweezers [Ashkin et al., 1986], to trap a single 87Rb atom. Optical tweezers are now

commonly used to trap various types of objects [Jones, Marag, and Volpe, 2015],

and its application for single-atom trapping was �rst demonstrated in our lab, in a

pioneering work of the team led by Philippe Grangier [Schlosseret al., 2001]. In this

section, I will �rst explain how we load and detect a single atom in an optical tweezers.

Then, I will describe the di�erent steps of the experimentalsequence after loading,

enabling the preparation of the atom in a speci�c hyper�ne level of the electronic

ground state. For this preparation we need to control the magnetic �eld inside the

chamber. I will show in a third part how we measure the generated magnetic �eld

using microwave manipulation of the electronic ground state.

2.1.1 Loading of an optical tweezers and single-atom imaging

The usual way to trap matter using light is to shine a far o�-resonance red-detuned

laser beam on particles. Indeed, light induces an electric dipole on the particle, which

tends, to minimize its energy, to seek high-intensity regions. The trapping potential

created that way U is such that U / I=�, where I is the laser beam intensity and �

is the (negative) detuning. When such a dipole trap is focusedon a small volume, on

the order of � 1� m3, we create a so-calledoptical tweezers.

Tight focusing of a dipole trap beam In order to obtain an optical tweezers,

one needs to focus light near the di�raction limit. Our grouphas been working on

optical tweezers for about twenty years, and their generation has been successfully

demonstrated with di�erent techniques. At �rst, the careful design of a home-made

microscope objective [Vigneron, 1998] allowed the team to achieve this goal in their
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2.1 A single atom in an optical tweezers

pioneering experimental setup, MIGOU. Then, the experimental e�ort was focused

on simplifying the optical setup using a single large-numerical-aperture aspheric

commercial lens [Sortais et al., 2007; Fuhrmanek, 2011], in the second generation

of the experimental platform, ASPHERIX. I have been working during my Ph.D.

on the third setup generation, CHADOQ. Here, the light is also focused using a

large-numerical-aperture aspheric lens (NA = 0.5, focal length f = 10 mm), which was

designed by LucasB�eguin [2013]. From now on, I will only consider this experimental

apparatus.

Describing it in a few words, the part under vacuum of the experimental setup

is composed of two chambers connected by a Zeeman slower. The�rst one acts as

an atom source. It contains solid Rubidium crystals heated up by an oven. A small

aperture in one wall of the �rst chamber generates a directive atomic beam at room

temperature inside the Zeeman slower. The Zeeman slower decelerates the atoms to a

few mK, and the atoms arrive in the second, ultra-high vacuum, chamber. There, in

addition to the aspheric lenses, the vacuum chamber contains coils and electrodes to

control the magnetic and electric �elds. The aspheric lenses are coated with a thin layer

of ITO to avoid the accumulation of charges. In combination with the under-vacuum

electrodes, these two ingredients allow for the cancellation of the electric �eld near

the atoms, which was not the case in the previous experimental apparatuses. This

signi�cantly improved the coherent excitation of the atomstowards Rydberg states.

Loading of single atoms in an optical tweezers Now, I explain how our experimen-

tal setup enables the trapping of single atoms. The experimental setup is represented

in a simpli�ed way in Figure 2.1. A far o�-resonance red-detuned 852-nm dipole

trap beam (represented in red) is focused by the aspheric lens inside the vacuum

chamber on a cloud of87Rb atoms at � 100� K, created thanks to the combination of

a Magneto-Optical Trap (MOT) and a Zeeman slower (not shown in Figure 2.1 and

along they-axis on the experimental apparatus). The MOT light, consisting of six

counterpropagating beams (represented in orange) slightly red-detuned from the D2

line of the 87Rb, slows down the atoms in the three directions of space via aresonant-

light-induced friction force. As in most of the cold atoms experiments, the MOT light

whose frequency is set on the cycling transition
�
�5S1=2, F = 2

�
!

�
�5P3=2, F = 3

�
comes

along with a repumper light set on the transition
�
�5S1=2, F = 1

�
!

�
�5P3=2, F = 2

�
. A

pair of coils inside the vacuum chamber, in an anti-Helmholtz con�guration, generates

a magnetic �eld gradient. Outside the chamber, six compensation coils make it possible

to adjust the position of the magnetic �eld zero, and are usedto tune the position of
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Figure 2.1: Trapping and imaging a single atom. The dipole trap beam at852nm (red)

is focused inside a vacuum chamber using aspheric lenses (ALs). Six counterpropagating

beams (orange) constitute the MOT light. The light scattered by the atom at780 nm

(green) is re
ected by a dichroic mirror (DM) and imaged on the EMCCDcamera. Top-left

inset, zoom inside the vacuum chamber, where the tight focusing of the laser beam into

an optical tweezers is shown. The orange cloud represents the atomic cloud. The 2D-cuts

of the spatial intensity distribution of a Gaussian laser beam are shown in the bottom left

corner. The spatial pro�le is Gaussian in the radial direction(yz plane), and is a Lorentz

function in the longitudinal one (x direction).

the atomic cloud.

The dipole trap beam tight focusing results in an optical tweezers. The intensity

pro�le is Gaussian, with a 1=e2 radius w � 1� m and Rayleigh lengthzR � 4 � m (see

inset of Figure2.1). Then, for about 5mW of laser power, we obtain a trap depth

U0=kB � 1mK. Once the position of the atomic cloud is properly set near the optical

tweezers, the atoms are cooled enough to fall in the dipole trap. The tight con�nement

resulting from the optical tweezers trapping potential, inaddition to the MOT light

shone on the atoms, make the system enter thecollisional blockaderegime, which

prevents two atoms to be in the optical tweezers at the same time. Indeed, in this

regime, two atoms inside one trap undergo fast inelastic light-assisted collisions, and

the energy the atoms gain during this type of collisions is enough to expel both of
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stochasticloading of the latest by single atoms.

Imaging of a single atom Once an atom is loaded in the optical tweezers, it scatters

the MOT light in all directions. Part of this 
uorescence light is collimated by the very

same aspheric lens, separated from the dipole trap beam using a dichroic mirror, and

imaged on an electron multiplying CCD camera (EMCCDAndor iXon Ultra 897). The

fact that we are using the same optics for trapping and imaging is very convenient in

terms of optical access, and was a strong constraint while designing the optics, which

have to work at two di�erent wavelengths, 852nm and 780nm [B�eguin, 2013]. The

imaging optical setup was designed in such a way that the radial size of one optical

tweezers (about 1� m) matches the size of one pixel of the Andor Camera (16� m), to

improve the signal to noise ratio. A typical 
uorescence signal corresponding to the

image of one optical tweezers (only a few pixels of the EMCCD camera were taken

into account) is shown on Figure2.2(b). We clearly see two levels of 
uorescence,

corresponding to the only two possible loading states of theoptical tweezers: when the

signal is low, the trap is empty, when it is high, the trap contains a single atom. The

red line in Figure 2.2(b) corresponds to the threshold level, allowing us to discriminate

between the two loading states by measuring the 
uorescencesignal. The fact that we

cannot see a higher third level of 
uorescence means that theoptical tweezers cannot

hold two atoms at the same time. In fact, the timescale of the light-assisted two-body

losses (1ms) is way shorter than the imaging exposure time (20ms). Single atom

loading in optical tweezers within this collisional blockade regime was demonstrated

observing this typical two-level 
uorescence signal [Schlosseret al., 2001; Schlosser,

Reymond, and Grangier, 2002].

Atomic motion inside an optical tweezers Due to its �nite temperature T, which

can be as low as a few tens of� K using additional cooling procedures described in the

next subsection, the trapped atom oscillates around the peak intensity of the optical

tweezers. As kBT � U0, the atom stays near the bottom of the trap. We can then

approximate the trapping potential as a harmonic potential, characterized by two

di�erent frequencies, the radial! ? =(2� ) and longitudinal ! k=(2� ) frequencies. The

expressions of these frequencies can be written as a function of the trap depth U0 and

the typical length scales of the Gaussian beam pro�le,w and zR

! ? =

r
4U0

mw2
and ! k =

s
2U0

mz2
R

(2.1)
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2.1 A single atom in an optical tweezers

wherem is the mass of a87Rb atom.

The statistical distributions of positions and velocitiesof single atoms loaded in

the tweezers follow a Maxwell-Boltzmann distribution. Thestandard deviation of

the velocity distribution is � v =
p

kBT=m, and in this harmonic approximation,

the standard deviations of the distributions of the radial and longitudinal positions

are � ? ,k =

r

kBT=
�

m! 2
? ,k

�
. As we shall see in the next subsection, this statistical

description enables us to measure the temperature of the trapped single atoms via a

release and recapture experiment (see [Tuchendler et al., 2008]).

2.1.2 Typical experimental sequence

So far, I described the experimental apparatus in its steadystate, an optical tweezers

stochastically loaded by single atoms. I now present the successive manipulations

we do in order to prepare our system in the right initial stateto perform quantum

simulation experiments, that is to say our typical experimental sequence. This will

allow me to introduce the principle of the measurements we do, and to give the main

characteristics of the trapped atom (lifetime, temperature, position dispersion inside

the tweezers).

Overview of the experimental sequence Figure 2.3 sums up the di�erent steps of

the experimental sequence. We start by dispersing the atomic cloud, by turning o� the

magnetic �eld gradient shutting down the inner coils current, and switching o� the

MOT, repumper and Zeeman slower lights. Dispersing the atomic cloud stops the

stochastic loading of the optical tweezers. We then take a �rst 
uorescence image of

the optical tweezers region in order to check on the presenceof the atom. This is done

in the same way as in the steady state regime, we shine MOT and repumper lights on

the optical tweezers for 20ms and look at the 
uorescence signal on the EMCCD. The

next step is the assembly of the atomic array, in the case where we are working with

several optical tweezers. This step will be described in Section 2.2.

We then perform a �rst additional cooling procedure: after setting the values of

the currents inside the compensation coils in order to cancel out the magnetic �eld,

we increase the absolute value of the negative detuning of the MOT light to lower

the limit temperature of the polarization gradient coolingprocess [Tuchendler et al.,

2008]. The detuning � MOT is ramped down from� MOT = � 5� to � MOT = � 8�, with

2� � � the natural linewidth of the MOT transition. After this �rst additional cooling
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the optical pumping step, by simultaneously decreasing thecurrent in the inner coils

and increasing the current in another pair of coils outside the chamber, positioned

along thex-axis. Therefore, the norm of the magnetic �eld stays di�erent from zero

and, the atom following adiabatically the orientation of the magnetic �eld, we do not

lose its polarization. After optical pumping, we perform a second additional cooling

process by adiabatically decreasing the trap power to a few percents of its initial

value [Tuchendler et al., 2008].

The previously described steps have two purposes: the additional cooling of the atoms

and their preparation into the state
�
�5S1=2, F = 2, mF = � 2

�
. At this speci�c stage of

the experimental sequence, we may perform quantum simulation experiments, where

the atoms are excited to a Rydberg state (further described in the single-atom case in

Section2.3) and interaction between atoms may play a role. Nearly all theexperiments

described in the further chapters of this manuscript take place at this precise stage. At

the end of the sequence, we take again an image of the atom 
uorescence, to determine

if the atom is still there. We end the sequence by reforming the atomic cloud and the

experimental setup returns back to its steady state regime.

Working principle of the measurement The quantity we are measuring is the


uorescence light emitted from the optical tweezers area. Thanks to the threshold

level introduced in Figure2.2, by measuring the quantity of light we can check on the

presence of the atom, at the beginning and at the end of the sequence (see Appendix

A of Sylvain de L�es�eleuc [2018] thesis for more details). Repeating the sequence for a

given numberN of iterations allows us to measure the probabilityp for the atom to

be recaptured. The error bar on this probability is the standard error on the mean

(s.e.m), which is equal to
p

p(1 � p) =N. The error is the biggest forp = 0.5. To reach

the 5% level of error for this probability we need 100 iterations, and if we want to

reach the 2% level of error we need more than 500 iterations. Hence the necessity to

have a cycling experimental time as short as possible to be able to repeat a great

number of times the experimental sequence and perform more precise measurements.

Thanks to recent improvements of the experimental apparatus, we now reach a cycling

rate of 3 to 4 Hz.

We can then measure the recapture probability as a function ofa varying parameter

of the experimental sequence. As we shall see in the next paragraph, this will allow

us to measure some trapping characteristics, such as the single-atom lifetime and

temperature, and the trapping frequencies. In the case where the recapture depends on

the state of the atom, we infer the occupation of the di�erentstates via the recapture
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probability measurement. For example, atoms in the Rydbergstates are not trapped

in the optical tweezers, so the probability to lose an atom isthe probability to excite

it to the Rydberg state. Therefore, our measurement protocol relies on a partial loss of

the atoms, it is a destructive measurement. This is why we need to start again the

stochastic loading of the optical tweezers at the end of eachsequence iteration.

Measurement of the trapping characteristics using the recapture probability

The simplest experiment we can perform is to vary the total duration of the sequence,

and measure the recapture probability as a function of this time. The lifetime of the

single atom in the optical tweezers is inferred that way, it is measured to be around

20 s. The losses of the single atoms in that case are due to collisions with particles

from the background gas at room temperature, and represent the ultimate limit for

the possible duration of an experiment. This lifetime wouldconsiderably increase in

a cryogenic environment, one of the major improvements expected from the next

generation experimental apparatus currently developed inour team [Magnan, 2018].

Another quantity that can be inferred from recapture probability measurements is the

trapping frequency, via a parametric heating experiment. Indeed, for a precise frequency

of the modulation of the trap depth (twice the trapping frequency), we parametrically

excite the atom out of the trap, and measure a drop of the recapture probability. Their

values were found to be equal to! ? =(2� ) = 50.2 (3) kHz and ! k=(2� ) = 8.3 (1) kHz.

For the same trap, we measure spectroscopically its depthU0=h = 5.5 (1) MHz (see

Sylvain de L�es�eleuc [2018]'s thesis) and deduce from Equation (2.1) the dimensions of

the Gaussian beamw = 1.01 (2) � m and zR = 4.31 (8) � m, which are on the expected

order of magnitude.

Figure 2.4shows how we can also determine the temperature of the singleatoms using

the measurement of the recapture probability in a release and recapture experiment.

The experimental sequence is displayed in Figure2.4(a): starting with an atom in the

optical tweezers, we switch o� the trap leaving the atom 
y away due to its �nite

temperature (release); and switch on the trap again (recapture) after a time � . An

atom is still trapped in the optical tweezers after a 
ight ofduration � if the absolute

value of the trapping potential at its �nal position is greater than its kinetic energy.

We measure the recapture probability as a function of the release time� in three

di�erent cases (see Figure2.4(b)). First (Exp 1), we do it without performing any

additional cooling of the atoms. For Exp 2, we cool the atoms using the ramping of the

trap power, and for Exp 3 we perform both additional cooling processes, the ramping of

the trap power and MOT detuning. The cooler the atoms, the longer they stay around
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red. Figure 2.4(c) also shows the spatial dependence of the trapping potential in

the xy plane, and the equipotential lines corresponding to an energy of 100, 50 or

20� K. We repeat this Monte Carlo simulation for di�erent temperatures, and compare

with the experimental results to infer the temperature of the atoms (Figure2.4(b)).

The temperature of the coolest atoms we can produce is 3� K, whereas if we do not

perform additional cooling procedures their temperature is on the order of 100� K.

We have improved the cooling by ramping down the MOT detuningin the very last

months of my Ph.D. thesis, so in most of the experiments presented in this work, the

atomic temperature was around 20� K. In practice, when we check on a daily basis

the temperature of the atoms, we measure the recapture probability for one given

time, usually 20� s (red dashed line in Figure2.4(b)).

During the quantum simulation step, the atoms are in free 
ight. Indeed, the

dipole trap is switched o� in order to excite the atoms to a Rydberg state without

any lightshift induced by the 852-nm laser beam. As all the recapture curves on

Figure 2.4(c) start with a plateau at probability 1, we can perform thisfree 
ight for a

given amount of time without losing too many atoms. Typically for T � 20� K, we

only have a 3% probability to lose an atom for a 10-� s experiment.

The temperature of the atoms and the trapping frequencies allow us to estimate the

statistical spreading in position around the peak intensity of the optical tweezers,

� ? ,k =

r

kBT=
�

m! 2
? ,k

�
. These spreading are on the order of� ? � 100nm and

� k � 500nm. They will be of interest further in this manuscript to understand in

details the dynamics of interaction between Rydberg atoms,as the latest is a�ected

by shot-to-shot 
uctuations of the interatomic distance.

Control of the experimental sequence The experimental sequence reported above

is realized in practice by sending a collection of TTL signals and analog voltages.

They are generated by two National Instruments cards. At the time when I joined the

team, a LabWindows interface was used to control the cards. My�rst task in the lab

was to convert this program into a Python program. It was madepossible thanks

to a Python package dedicated to write on National Instruments cards,PyDAQmx,

developed by PierreClad�e. Since then, all the operating programs of our experimental

setup are written in Python: the camera program acquiring the 
uorescence images

and triggering the experiments, the experiment control program writing the sequence,

and the program analysing the images and computing the recapture probabilities.

This uniformity of programming language will enable us to implement more easily

in the near future some automatized optimization protocol [Caneva, Calarco, and
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Probing transitions in the electronic ground state The experiment consists in ex-

citing the atom in the level
�
�5S1=2, F = 1, mF = 0

�
to the level

�
�5S1=2, F = 2, mF = 1

�
,

using a microwave �eld generated with an antenna outside thevacuum chamber (see

Figure 2.5(a)). The di�erence � E=h between the frequency of this transition and the fre-

quency of the clock transition insensitive to magnetic �elds
�
�5S1=2, F = 1, mF = 0

�
!

�
�5S1=2, F = 2, mF = 0

�
is proportional to the magnetic �eld B , with a sensitivity

0.70 MHz=G [Steck, 2003].

The experiment then works as follows. We prepare the atom in the
�
�5S1=2, F = 1

�

state by shining some MOT light without any repumper light. We then send a microwave

pulse at a controlled frequency and look at the atomic population in the
�
�5S1=2, F = 2

�

state. This alone would not allow us to determine in which hyper�ne state an atom is

because it would be recaptured in both cases. Therefore, we shine on the atom before the

�nal image a \push-out" beam, set on the resonance
�
�5S1=2, F = 2

�
!

�
�5P3=2, F = 3

�
,

to expel the atom out of the trap if it is in the
�
�5S1=2, F = 2

�
state, whereas it will

stay trapped if it is in the
�
�5S1=2, F = 1

�
state. Consequently, when the frequency

of the microwave �eld matches the transition frequency, we observe a drop in the

recapture probability (see Figure2.5(b)), allowing us to determine the position of the

line.

Calibration of the magnetic �elds By measuring the frequency of the transition as

a function of the current inside the coils, we calibrate the amplitude of the generated

magnetic �eld. Figure 2.5 (c) and (d) show that the quantization �eld (along z or

x) reach values on the order of 40 G. The larger the magnetic �eld, the larger the

splitting of the Zeeman structure. This will be used to isolate two levels in the Rydberg

manifolds for quantum simulation purposes, as we shall see later in this manuscript.

Repeating the same measurement for the compensation coils enables us to �nd the

current corresponding to the cancellation of the magnetic �eld, as already introduced

in the previous subsection.

Time evolution of the generated magnetic �elds When we switch on the current

in a pair of coils outside the vacuum chamber, compared to a pair of coils inside, it

will take longer for the generated magnetic �eld to reach itsstationary value because

it will have to overcome the induced eddy currents in the vacuum chamber. Using

the spectroscopic experiment described above, we have estimated that we need to

wait 20ms for the quantization �eld along x to reach its �nal value, whereas 5ms are

enough in the case of thez direction, as in that case the magnetic �eld is generated
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2.2 Generation of fully-loaded arrays of atoms

Figure 2.6: Trapping, sorting and imaging many atoms. Schematic representation of

the experimental apparatus, where the devices required to gofrom a single atom to many

were added. The Spatial Light Modulator (SLM) imprints a phase onthe 852-nm beam,

resulting in a controlled intensity pattern at the focus of the aspheric lens, imaged on the

CCD camera. The purple beam is the moving optical tweezers beam, whose focus point in

the focal plane is set using Acousto-Optic De
ectors (AODs). Three Electrically Tunable

Lenses (ETL) enable the tuning of the focal plane of the di�erent optical setups, in order

to access the third dimension along the optical axisx.

with the coils inside vacuum. We have to take into account those di�erent time scales

when we change the direction of the quantization �eld to keepthe value of its modulus

di�erent from zero.

2.2 Generation of fully-loaded arrays of atoms

So far, I presented how we can isolate a single atom in a con�ned region of space

thanks to an optical tweezers. In this section, I will describe how we generalize this

technique in order to obtain arrays of single atoms in a tunable con�guration. This
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requires a collection of devices represented in Figure2.6. The roles of the Spatial

Light Modulator (SLM) and the CCD camera will be reported in a�rst part, where I

will explain how we generate a controlled pattern of many optical tweezers. Then,

I will depict how we reach a targeted loading con�guration from a random initial

con�guration via the atom sorting technique (purple optical path on the �gure).

Finally, I will describe how we improved our trapping and sorting protocol to extend

it to three dimensions, using among other things Electrically Tunable Lenses (ETL).

The work brie
y reported here are described in details in theoriginal publica-

tions: [Barredo et al., 2016] and [Barredo et al., 2018].

2.2.1 Versatile trapping con�guration using holographic techniques

The �rst requirement to ful�ll to reach the generation of ful ly-loaded arrays of atoms

is to multiply the number of optical tweezers, in a controlled geometry. This is realized

using a Spatial Light Modulator (SLM). This device imprints a phase pattern on

the dipole trap beam, resulting in an intensity pattern consisting of several optical

tweezers in the focal plane of the aspheric lens via di�raction. Its �rst implementation

on our experimental setup is reported in [Nogrette et al., 2014] and in the thesis of

Henning Labuhn [2016].

Computation of the phase pattern The algorithm we use to compute the required

phase pattern to get a targeted lattice of optical tweezers is reported in [Leonardo,

Ianni, and Ruocco, 2007], and its implementation is explained in the thesis of

Sylvain de L�es�eleuc [2018]. It works in an iterative way, adapted from the Gerchberg-

Saxton algorithm. The whole set of optical tweezers is considered as a collection of

coherent point-like light sources, of uniform amplitudes and random phases. The

propagation of the interfering light �eld, resulting from this collective emission and

depending on the geometrical arrangement, is computed at the position of the SLM

plane. We then take as a phase pattern for the SLM the phase of the interfering

light �eld and compute at the positions of the optical tweezers the amplitude and

phase of the light propagating from the SLM, i.e. in the reversed direction. The

computed amplitudes are inhomogeneous. In order to compensate for that, we repeat

the same procedure with the new computed distribution of phases, and, instead of

considering a uniform distribution for the amplitudes of the traps, we choose a smaller

amplitude for the stronger traps, and on the contrary, a larger amplitude for weaker

ones. Moreover, to achieve a more homogeneous trap intensity distribution, we replace
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the step consisting in calculating the amplitudes at the position of the optical tweezers

by measuring using the CCD camera the actual intensities of each of the generated

traps. That way, repeating this process for a few tens of iterations, we create the

targeted con�guration of traps with a standard deviation intheir intensities smaller

than 3%.

Global phase masks In addition to the phase pattern required to obtain the targeted

intensity pattern, we can sum other phase masks that will have a global e�ect. A linear

evolution of the phase modulo 2� is a blazed grating, acting as a mirror, so applying

this kind of phase mask allows us to displace at will the trap pattern in the focal

plane of the aspheric lens. A quadratic evolution of the phase modulo 2� is a (Fresnel)

lens, so this kind of phase mask makes it possible to adjust the position of the trap

pattern on the optical axis. Finally, the modi�cations of the wavefront induced by

the SLM can be used to compensate the ones due to aberrations.By measuring the

deformations of the wavefront due to aberrations with a Shack-Hartmann sensor, we

are able to reduce them thanks to an adapted phase mask. Consequently, the three

global phase masks described above allow us to tune in the three spatial dimensions

the position of the array of optical tweezers, and to generate more con�ned optical

tweezers by reducing aberrations.

Fluorescence imaging of the array of traps We follow the same procedure as the

one reported in the single-atom case to take a 
uorescence image of the trapped

single atoms. As the radial size of an optical tweezers matches the size of one pixel

of the EMCCD camera, and that two traps are not imaged on the same pixel, the


uorescence coming from each trap is spatially resolved. InFigure 2.7, the phase

pattern on the SLM, the related trap intensity image and atom
uorescence image are

displayed for two di�erent con�gurations. Due to the collisional blockade regime, as an

optical tweezers is loaded by a single atom half of the time, on average the array of

optical tweezers is half loaded. As a consequence, we cannot work with a controlled

atomic con�guration, which is detrimental for quantum simulation purposes. I will

explain in the next subsection how we overcome this drawback. Nevertheless, for

single-atom measurements, working with partially loaded arrays of optical tweezers

has already the advantage to decrease the s.e.m. using several atoms instead of one at

each sequence iteration.

43





2.2 Generation of fully-loaded arrays of atoms

exponentially with N . In practice, in our team, it was possible to perform experiments

with up to N = 9 traps using the stochastic loading protocol. A possible solution

would be to increasep, by tailoring the light-assisted inelastic collisions in view of

expelling one atom instead of two after the collision [Gr•unzweig et al., 2010; Lester

et al., 2015; Brown et al., 2019]. This allowed some experimental research teams to

reach up top � 0.9, but in the end we still have to face the exponential growth with

N of the required time to fully load the trap array.

In this subsection, I will describe the procedure we follow to get a controlled loading

con�guration. It consists in choosing an initial bigger array of 2N traps half loaded

with single atoms, and then to move the atoms one by one to �ll the traps we want to

be occupied. That way, we generate a fully-loaded con�guration of N optical tweezers.

I will �rst explain how a single atom is transferred from one trap to another, and then

I will depict the whole procedure to assemble a targeted sub-array of optical tweezers.

This work was already reported in details in [Barredo et al., 2016] and in the thesis of

Sylvain de L�es�eleuc [2018].

Transferring one atom The idea is to use another optical tweezers (purple beam

in Figure 2.6) whose position in the focal plane of the aspheric lens is dynamically

changed using Acousto-Optic De
ectors (AODs). The moving optical tweezers is

combined with the dipole trap static beam using a PBS, and imaged on the same

CCD camera. We can then calibrate the position of the moving tweezers as a function

of the frequencies of the RF signal feeding the AODs. These frequencies are set using

Arduino Due controlled by the master computer program, so in the end, by analysing

the image of the static traps and of the moving tweezers, the position of the moving

tweezers can be automatically set to point to any of the traps, and to go from one

trap to another. The depth of the moving optical tweezers is also tuned dynamically

changing the amplitude of the RF signal feeding the AODs.

An atom stays trapped in the moving optical tweezers for slow enough motion,

as previously demonstrated in our team [Beugnonet al., 2007]. The transfer of one

atom works as follows (Figure2.8 (a)). The moving optical tweezers is pointed on an

occupied trap with no power. Then, we gradually increase thedepth of the moving

tweezersUMT in 300� s to UMT =kB = 10 mK. The position of the moving tweezers

is then shifted on an empty trap, steering the atom away, at a maximum speed of

10� m=ms to avoid heating up the atom and lose it. The atom is then released in the

empty static trap by decreasing the moving tweezers depth tozero in another 300� s.

We are able to realize that way the transfer of a single atom with a 99.3% e�ciency in
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7 � 7 square matrix of atoms every second sequence iteration, that is to say at a

1 � 2Hz rate. As we take a 
uorescence image after the assembling process, we can

post-select the sequence iterations in order to consider only the ones where we had

obtained a defect-free con�guration.

2.2.3 Extension to 3D

The assembling technique presented before allowed us to explore quantum many-body

physics in di�erent 2D con�gurations (square, triangle, dimerized chain) as we shall see

later in this manuscript. Extending this technique to the third space dimension would

increase even more the complexity of the physical phenomenawhich could be studied in

our experimental apparatus. I report in this subsection this latest improvement, which

led to the publication [Barredo et al., 2018]. I refer to the thesis of Sylvainde L�es�eleuc

[2018] for more details.

Generation of 3D array of optical tweezers The advantage of the algorithm we

use to compute the SLM phase pattern [Leonardo, Ianni, and Ruocco, 2007] is that it

can be naturally extended to 3D con�guration of traps. As already mentioned, the

underlying idea to access the third dimension is to imprint aquadratic phase on the

wavefront in order to mimic the propagation through a lens. This ability to pile up

traps on the optical axis means that we can that way overcome the limitation of the

number of generated traps coming from the �nite �eld of view of our 
uorescence

imaging setup. The total available trapping volume is now ofsize 100� 100� 100� m3.

Intensity and 
uorescence imaging To image the intensity or the 
uorescence of

the whole 3D structure, one needs to change the object focal plane of both imaging

optical setups in a controlled way. For that purpose, we use Electrically Tunable Lenses

(ETL), whose focal lengths depend on applied control currents. We then take images

for a range of focal lengths, and piling up this set of 2D images we reconstitute the 3D

intensity or 
uorescence distribution (Figure 2.9(a) and (b)). The Ei�el Tower array

in Figure 2.9(b) looks fully loaded, as 
uorescence light is emitted fromevery trap.

Actually, it is not the case, we have performed the assemblingonly for multi-planar

geometries (see next paragraph). Therefore, what is shown in Figure 2.9(b) is a stack

of averaged 
uorescence images.
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As a conclusion, I have reported in this section how we generate any 2D con�gurations

of N atoms, and 3D con�gurations taking into account some constraints (multi-planar

geometries and minimal inter-plane distance). I have thus described all the steps

mentioned in Figure2.3, except the quantum simulation one which will be the topic

of the further chapters of this manuscript. At this stage, wehave an assembly of

qubits in a controlled initial state via optical pumping, and in a controlled spatial

con�guration. The necessary element which is still missingto perform quantum

simulation experiments is interaction between atoms. We reach such an interacting

regime by transferring the atoms to Rydberg states: highly excited orbitals with

principal quantum number n ranging from 50 to 100. The aim of the next section,

completing the overview of our experimental platform, is todescribe how we transfer

the atoms to this state.

2.3 Excitation to Rydberg states

Rydberg states are highly excited orbitals, whose exaggerated properties (enhanced

dipole-dipole interactions and extended lifetimes) are ofinterest for quantum simulation

purposes, as we shall see later in this manuscript. I will describe in this section how

we excite an atom to a Rydberg state. After showing the two-photon transition we

use, I will present the two regimes we have explored to prepare a Rydberg excitation.

2.3.1 Two-photon transition

For Rubidium, the frequency of the direct transition from the electronic ground state

jgi to a Rydberg statejr i is in the UV range. As coherent sources at that wavelength

are not easily available, it is more convenient to use a two-photon transition. The

excitation to the Rydberg state then consists, in our case, in a �rst transition close to

the D1 line at 795 nm (red) coupling to the intermediate statejei =
�
�5P1=2

�
, and a

second transition around 475 nm (blue) coupling to the Rydberg state. Our two-photon

scheme enables the preparation of anS1=2 or nD 3=2 excitation. After describing the

di�erent two-photon schemes used in this work, I will present the excitation lasers

setup and explain how we detect the atom transfer to a Rydbergstate.

Di�erent excitation schemes Depending on the targeted state, or on the direction

of the quantization axis, we have used di�erent orientationsand polarizations for the
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2.3 Excitation to Rydberg states

Frequency locking of the excitation lasers Both excitation beams are generated by

Toptica Diode Lasers. Sending a small portion of the excitation beams to a high �nesse

ultrastable cavity allows us to stabilize their frequencies using the Pound-Drever-Hall

(PDH) technique. I refer to the thesis of SylvainRavets [2014] for further details.

A careful analysis reported in the thesis of Sylvainde L�es�eleuc [2018] describes the

origins of the laser phase noise when locked, which will be ofinterest to understand

the damping of the laser-driven Rabi oscillations (see Subsection 2.3.2).

Optical setup for the excitation lasers In order to shape the time evolution of the

amplitude and frequency of the excitation beams, we use an EOM and an AOM. The

EOM allows us to switch on and o� the excitation beams in a fasttime scale (10ns)

to apply laser pulses as in the next subsection. The AOM, fed with a RF signal sent

by an Arbitrary Waveform Generator (AWG), enables the generation of a tunable

time pro�le for the amplitude or frequency of the excitationbeams. For example, we

use it to create a Gaussian amplitude time pro�le (Subsection 2.3.3), or to perform

optical detuning sweeps (Chapter4).

The experiments involving Rydberg excitations reported inthis manuscript are

limited to 2D con�gurations. In such a planar geometry, we can maximize the Rabi

frequencies by focusing the excitation beams into sheets oflight, using cylindrical

lenses for the red laser, or the original ellipticity of the blue laser. For example in the

excitation scheme on the left of Figure2.10, the dimensions (1=e2 radius) of the beams

are: wx = 20 � m and wy = 50 � m for the blue laser;wx = 70 � m and wz = 230 � m for

the red laser. Extending the waists of the exciting beams in the atomic plane direction

allows us to reduce inhomogeneities of the Rabi frequenciesover the atomic array.

Detection of a Rydberg atom To excite an atom to the Rydberg state, we �rst

switch o� the dipole trap to avoid the light-shift it induces, then send the red and

blue laser pulses, and �nally switch on the dipole trap again. If the atom is in jgi at

the end of this sequence, it will be recaptured, if it is injr i , it will be lost. Indeed,

Rydberg atoms are expelled from high-intensity regions viathe ponderomotive force.

We have used such a force to trap the Rydberg atoms in bottle beam traps, as we

shall see in Chapter3. Consequently, the �nal 
uorescence image informs us on the

state of the atom, and a high probability to excite an atom to the Rydberg state

corresponds to a drop of the recapture probability.
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In the experiments presented in this manuscript, we have used two di�erent ways

to excite an atom to a Rydberg state, depending on the Hamiltonian we want to

simulate. Indeed, as stated in the Introduction, we must encode an e�ective spin-1/2

into the levels jgi and jr i to study the Ising model. In that case, the detuning �

from the intermediate statejei must be large to treat the atom as a two-level system

fj gi , jr ig while being driven by the two excitation lasers. This regimewhere we

perform laser-driven Rabi oscillations is described in Subsection2.3.2. On the contrary,

in the XY-case, the spin-1/2 is encoded in the Rydberg manifold. Therefore, what only

matters is to excite the atoms to the Rydberg state, and we do it using a stimulated

Raman adiabatic passage in the small � regime (Subsection2.3.3).

For both processes, using laser-driven Rabi oscillation ora stimulated Raman

adiabatic passage, the intermediate statejei must not be populated. Indeed, as it is

short-lived (26ns), populating it would induce spontaneous emission. In the following

subsections, I will show how we succeed in avoiding this induced spontaneous emission

in both cases.

2.3.2 Laser-driven Rabi oscillations

A common solution to avoid populating the intermediate state is to choose a detuning

� from this state much larger than the red and blue Rabi frequencies 
 r , 
 b. In this

subsection, I will �rst describe how we can restrict ourselves to the two-level system

jgi ,jr i under this condition, and then I will present the typical spectrum and Rabi

oscillation we obtain.

Reduction to a two-level system When � � 
 r , 
 b, we can consider that the

population in jei is always zero. The time evolution of the population in the two-level

systemjgi , jr i when the red and blue excitation laser beams are shone is thengiven

by the e�ective Hamiltonian

Ĥ e� =
~
 e�

2
(jr i hgj + jgi hr j) + � e� jr i hr j (2.2)

where the e�ective Rabi frequency and detuning are


 e� =

 r 
 b

2�
and � e� = � +


 2
r � 
 2

b

4�
(2.3)

with � the detuning from the Rydberg statejr i (see Figure2.11(a) for the three-level

system scheme). The additional detuning appearing in� e� is the AC-Stark shift due
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Figure 2.11: Optical Rabi oscillation. (a) Three-level systemfj gi , jei , jr ig showing the

one-photon detuning� and the two-photon detuning� , and its simpli�cation to a two-level

system when� � 
 r , 
 b. (b) Typical spectroscopic signal obtained for a pulse duration

of 200ns, a Rabi frequency
 =(2� ) = 2.47 MHz, and jr i =
�
�62D3=2, mJ = 3=2

�
. The

solid line is a �t to measure the position of the Rydberg line. (c) Typical Rabi oscillation

measured for� = 0 and jr i =
�
�62D3=2, mJ = 3=2

�
. The solid line is a �tting damped sine

allowing us to infer the value of the Rabi frequency
 =(2� ) = 2.47 MHz .

to the red and blue lasers. In practice, the blue power is set to its maximal value

and we tune the value of 
e� by varying the red power. The intermediate detuning

is � =(2� ) = 740 MHz. We can then obtain an e�ective Rabi frequency up to about

5 MHz.

Our optical drive to the Rydberg state can then be seen as a two-level transition of

Rabi frequency 
 e� and detuning � e� which will be written from now on in a simpli�ed

way 
 and � . This reduction to a two-level system will be mostly used in Chapter 4,

about our study of an Ising-like model.

Spectroscopy of the Rydberg line Shining the laser beams for a durationt � = �= 


and at resonance� = 0 allows us to coherently excite an atom prepared injgi to jr i .

Figure 2.11(b) shows the typical spectroscopic signal we obtain when wemeasure the

recapture probability varying the detuning � .

Pointing the position of the Rydberg line via spectroscopy for various power of

the red laser enables the measurement of the light-shift induced by the latest. The

estimation of this light-shift will be of interest in Chapter 4, and it is a way to measure

the red Rabi frequency.

Due to their exaggerated polarizability, the Rydberg energy levels are quite sensitive

to electric �elds via the DC-Stark e�ect. As already presented in the very beginning
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of this chapter, a combination of eight electrodes inside the vacuum chamber, in

addition to an ITO coating on the aspheric lenses, allows us to cancel out the electric

�elds, which is crucial to have an e�cient Rydberg excitation and a coherent driving.

In practice, to compensate the electric �elds, we scan the voltages on the di�erent

electrodes and choose the values that cancel out the measured DC-Stark shift.

Laser-driven Rabi oscillations When the detuning is set to� = 0, shining the laser

beams for a varying duration coherently drives the system between the statesjgi

and jr i . Figure 2.11(c) shows such a typical Rabi oscillation, �tted with a damped

sine. The imperfections of the Rabi oscillation in terms of contrast and damping were

carefully analysed in our publication [de L�es�eleuc et al., 2018a]. I recall here its main

results. The contrast is smaller than unity because of the detection errors � and � 0

(detailed in the paragraph below); and an imperfect initialpreparation in the correct

Zeeman sub-level during the optical pumping process. The damping mainly comes

from the Doppler e�ect, the laser phase noise, and the still non-zero population in the

intermediate state jei resulting in spontaneous emission.

I give now more detail about the detection errors� and � 0. I recall that our state

detection protocol relies on the fact that ground-state atoms are recaptured whereas

Rydberg atoms are not. Nevertheless, as we have seen in Figure2.4, there is a (small)

non zero probability to lose an atom during the experiment. In this unlikely case, an

atom in the ground state will be mistaken as a Rydberg atom. Wecall the probability to

make this detection error� , and its typical value ranges between 2 and 5%, depending

on the atom temperature and the total duration of the performed experiment. On the

contrary, due to the limited lifetime of the Rydberg state, aRydberg atom can decay

back to the ground state before being expelled away from the trapping region, and

then would be misleadingly considered as a ground-state atom. This detection error is

called � 0, and its typical value is also a few percent. More details on our detection

errors can be found in the thesis of Sylvainde L�es�eleuc [2018].

2.3.3 Stimulated Raman adiabatic passage (STIRAP)

Another possible solution to avoid the spontaneous emissionfrom the intermediate

state is to use stimulated Raman adiabatic passages (STIRAP), a widely used solution

recently reviewed in [Vitanov et al., 2017]. Its working principle is the following. For

� = 0, in the presence of the two couplings 
 r and 
 b, one of the three eigenstates of

the three-level systemjgi ,jei , jr i has no projection on the short-lived statejei . This
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two lasers 
 r , 
 b) in order to have the most e�cient Rydberg excitation. In practice,

we set the blue laser power to its maximum value, and the red laser power in order to

have 
 b = 
 r . After optimization, we reach a STIRAP transfer e�ciency of about

90% for the 60S1=2 state in 2� s.

The very valuable advantage of using STIRAP is that it stays e�cient for a wide

range of parameters. To illustrate that point, Figure2.12(b) shows the measured

Rydberg excitation probability as a function of the position on the y axis using the

two di�erent excitation protocols described in this section, a Rabi � -pulse (grey) or a

STIRAP (purple). The STIRAP is more e�cient in a wider region, t his is why we

will use it in Chapters 5 and 6 when we will want to initialize the atomic array in a

Rydberg nS state.

Deexcitation protocol To transfer an atom in jr i back to jgi , we could use an

inverse STIRAP process (shining �rst a red pulse then a blue pulse). To perform the

deexcitation faster, we shine instead a pulse of blue light at resonance to couple back

the atom into jei , and then it will spontaneously decay back to the electronicground

state. This allows us to transfer back the atom in approximately 400 ns.

I have shown in this section that we can excite the atoms to a Rydberg state with

an e�ciency of � 90%, depending on the targeted state. Our analysis conducted

in [de L�es�eleuc et al., 2018a] led us to conclude that the weak dipole matrix element

betweenjei and jr i is the limitation to achieve a better transfer e�ciency. In order to

improve it, our team plans to adopt theinverted scheme, successfully implemented in

the group of Prof. M.D. Lukin [Bernien et al., 2017; Levine et al., 2018]. The idea

is to choose the
�
�6P3=2

�
state as an intermediate state. Then, the wavelength of the

transition from the intermediate state to the Rydberg stateis around 1013nm, for

which we can use amplifying doped �bers to reach larger Rabi frequencies. Moreover,

the new excitation laser setup the team plans to use is expected to exhibit a reduced

phase noise, as it will involve Ti-sapphire lasers instead of diole lasers, resulting in an

even more coherent laser-driven Rabi oscillations.

2.4 Conclusion

In this chapter, I presented our experimental platform: arrays of optical tweezers in a

controllable con�guration loaded by single atoms which canbe excited to Rydberg

states in order to implement some interaction. This presentation allowed me to
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introduce the quantity we can measure, the recapture probability. As being recaptured

depends on the state of the atom (jgi or jr i ), the occupation of these states can be

inferred from this probability. More interestingly, as the
uorescence emitted from

each trap can be resolved independently, we can measure spatial correlations of these

occupations, which will be of interest in the second part of this manuscript.

I also showed in this chapter that most of the experimental parameters, such as the

magnetic and electric �elds, the red and blue Rabi frequencies, can be measuredin

situ using single atoms as probes. The generation of arrays of single atoms allows us

to measure in parallel the spatial dependence of these parameters, eventually leading

to a complete characterization of the experimental parameters.

The latest improvement of our experimental platform, the trapping of Rydberg

atoms, will be described in the next chapter. The following chapters will be dedicated

to the quantum many-body physics arising from the interaction between Rydberg

atoms.
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Single Rydberg atoms in
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Rydberg arrays are an attractive platform to perform quantum simulation thanks

to the exaggerated properties of Rydberg atoms, namely large interaction energies

and extended lifetimes. These properties make them also suitable for more general

quantum information tasks, and I already mentioned the realization of two-qubit

logic gates using Rydberg atoms [Wilk et al., 2010; Isenhoweret al., 2010; Jau et al.,

2016; Levine et al., 2018]. Moreover, combining their strong interactions and the

coupling to light �elds, Rydberg atoms can be used to engineer non-trivial states of

light and e�ective photon-photon interactions. Along thoselines, the experimental

realizations of strong optical non-linearities [Pritchard et al., 2010], single-photon

sources [Dudin and Kuzmich, 2012], attractive photon-photon interactions [Firstenberg

et al., 2013] and single-photon transistors [Tiarks et al., 2014; Gorniaczyk et al., 2014]

have been demonstrated, extending the range of possible applications of Rydberg

atoms in quantum technologies.



Chapter 3: Single Rydberg atoms in ponderomotive bottle beam traps

In order to improve the performance of Rydberg-based platforms, a missing in-

gredient so far is the trapping of single Rydberg atoms. Indeed, in the experimental

demonstrations mentioned above, or in the quantum simulation experiments described

in this manuscript, the Rydberg atoms are in free 
ight. As a consequence, due to

their �nite temperature or the mechanical forces induced byinteractions, they slightly

move during the experiments, which was proven to be a limitation for quantum gate

�delities [ Sa�man and Walker, 2005; Sa�man, 2016] or to induce some dephasing

processes in the evolution dynamics [Barredo et al., 2015; de L�es�eleuc et al., 2018a].

Moreover, trapping single Rydberg atoms would be necessaryto perform precision

measurements of fundamental constants using circular Rydberg states [Jentschura

et al., 2008; Ramos, Moore, and Raithel, 2017] or positronium [Cassidy, 2018].

To date, the three dimensional con�nement of Rydberg atoms has been limited

to the case of mesoscopic ensembles trapped in millimetre-size regions using static

magnetic [Choi et al., 2005] or electric �elds [Hogan and Merkt, 2008]. To reach the

tight con�ning regime required to generate traps for Rydberg atoms of micrometre-size,

one should use theponderomotivepotential. It is the potential experienced by the

weakly-bound Rydberg electron at positionr in an AC electric �eld whose frequency

is far from any internal transition frequency of the Rydbergatom, such as an infra-red

laser-light �eld, for example. This potential is equal to the time-averaged kinetic

energy of the electron oscillating in this �eld. It is then repulsive and proportional to

the �eld intensity. The ponderomotive potential readsVP (r ) = e2I (r ) =(2me� 0c! 2
L ),

with e and me the charge and mass of the electron, respectively, and! L the angular

frequency of the electric �eld. Consequently, ponderomotive potentials can be used

to laser trap single Rydberg atoms in three dimensions, by creating a dark region

surrounded by light in all directions.

Ponderomotive potentials have already been used to con�ne Rydberg atoms in

optical lattices [Anderson, Younge, and Raithel, 2011; Li, Dudin, and Kuzmich, 2013],

but only in one dimension so far. In this chapter, I will show how we trapped a single

Rydberg atom in three dimensions, by transferring them froma regular Gaussian

optical tweezers into a holographically generated bottle beam (BoB) trap, consisting

in the required dark region surrounded by light. I will �rst describe how we create

such traps and the experimental signature of single Rydbergatom trapping. Then, I

will analyse in more detail the trapping potential and studyour trapping e�ciency,

combining measurements and numerical simulations of the classical atomic motion

inside the trap. Finally, I will show that these traps are compatible with the quantum

simulation tasks we have already performed with Rydberg atoms in free 
ight, namely
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microwave Rabi oscillations between neighbouring Rydberglevels and spin-exchange

interaction. The results presented in this chapter led to the publication [Barredo et al.,

2019].

3.1 Upgraded apparatus for Rydberg trapping

To achieve the trapping of single Rydberg atoms via the ponderomotive potential,

we need to create a dark region surrounded by light. This so-called bottle beam

(BoB) trap can be generated with di�erent techniques [Chaloupka et al., 1997; Ozeri,

Khaykovich, and Davidson, 1999; Zhang, Robicheaux, and Sa�man, 2011]. Here we

use holography, and I will describe how we adapted our experimental apparatus to do

so in the �rst subsection. Then, I will show how we combine theground-state optical

tweezers with the BoB trap to obtain a single trapped Rydbergatom.

3.1.1 Holographic generation of bottle beam traps

I show in Figure 3.1 the required elements to trap single Rydberg atoms on our

experimental platform. We use two laser beams at 852 nm, whose wavefronts are

controlled by two Spatial Light Modulators (SLM). The red beam in Figure 3.1 creates

optical tweezers at the focus of the aspheric lens, in the same way as explained in the

previous chapter (see Subsection2.1.1). It acts as a single ground-state atom source.

On these tweezers we superimpose another beam, representedin blue in Figure 3.1.

The second SLM imprints a� -phase o�set on this beam, on a central disk of radiusr0,

whereas the phase is not modi�ed on the outer shell, see top-left inset of Figure3.1.

The total area of the beam, a disk of radiusa, is controlled via an iris. The top-left

inset illustrates how such a� -phase mask creates a BoB trap. The outer part of

the beam, as it is wider, will create a tighter optical tweezers (in the radial and

longitudinal directions) than the inner part of the beam. Since these two light �elds

are out of phase, they interfere destructively at the focus of the aspheric lens, and

the subtraction of the two �elds, shown on the left of the inset, is composed of a

dark region surrounded by light. This is how we generate holographically a BoB trap.

The simple argument used here does not lead to the correct intensity distribution

near the focus of the aspheric lens. For this, one should solve the Fresnel di�raction

integral [Chaloupkaet al., 1997; Ozeri, Khaykovich, and Davidson, 1999].

Figure 3.1 shows two-dimensional cuts of the measured light intensitydistribution of
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Figure 3.1: Simpli�ed representation of the experimental apparatus fo r single

Rydberg atom trapping. Two 852-nm laser beams are superimposed with a polarization

beam splitter (PBS) to trap single Rydberg atoms. The red one creates the regular optical

tweezers at the focus of the aspheric lens, as introduced in the previous chapter, and is a

trap loaded by single ground-state atoms. A SLM (SLM1) imprints a phase on this beam to

control the con�guration of the array of optical tweezers. The beam represented in blue is

re
ected on another SLM (SLM2), which imprints a� phase on the inner part of the beam.

This creates a BoB trap at the focus of the aspheric lens. The top-left inset illustrates the

principle of the holographic generation of a BoB trap. Measured two-dimensional cuts of

the light intensity distribution of the BoB trap are shown.

the BoB trap, indeed revealing a dark region surrounded by light. This measurement

was performed using our trap imaging setup described in the previous chapter,

with which we can record the light distribution on di�erent planes perpendicular

to the optical axis by electrically tuning the focal length of the imaging lens (see

Subsection2.2.3).

Figure 3.2 shows the phase pattern imprinted by the SLM and the associated

intensity distribution in the xz plane. On the left, the phase pattern is the combination

of a linear gradient of phase and a Fresnel lens, enabling forthe control of the position
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of the optical tweezers. On the right, the phase patterns feature an added� -phase

mask in a central disk of radiusr0, highlighted by a dashed green circle, leading to the

generation of a BoB trap. The larger the beam impinging on SLM2 (radius a), the

smaller the BoB trap, and we have to adaptr0 in order to always have a destructive

interference condition at the focal point. On our range of parameters, this condition is

r 2
0 � 0.5a2, such that the central disk and the outer shell have approximately the

same area. This is why the� -phase mask radius is the largest for the smallest BoB

trap. All the maxima of intensity distributions are normalized to one.

The bottom of Figure 3.2 allows to compare the trapping volume of the regular

optical tweezers (red, attractive potential normalized to� 1) and the ones of BoB traps

(blue, repulsive potential normalized to +1), both attractive and repulsive potentials

being proportional to light intensities. The trapping regions have approximately the

same size. The typical radial and longitudinal dimensions for the regular optical

tweezerszOT � xOT are given by the 1=e2 radius and the Rayleigh length, extracted

from �ts of the intensity spatial pro�le. We measured a trapping size 1.0� m � 5.0� m.

For the BoB trap, we de�ne the radial and longitudinal dimensions zBoB � xBoB as

the distance between the two local maxima in the radial and longitudinal cuts of the

intensity pro�le. These dimensions are indicated in the legend of Figure3.2.

Since the regular optical tweezers and the BoB trap have approximately the same

size, one way to trap a single Rydberg atom is the following: starting with a ground-

state atom held in an optical tweezers, we release it and excite it to a Rydberg state

while being in free 
ight, and then we trap it by shining the BoB trap. This transfer

of the atom from one type of trap to the other is possible if thetwo traps are correctly

overlapped, and if the atom does not move too far away while being in free 
ight. The

two SLMs enable for the precise alignment of the traps with respect to one another,

by tuning the direction of the imprinted linear gradient of phase.

3.1.2 Signature of Rydberg atom trapping

Once we have observed that we generate BoB traps, we should transfer single atoms

excited to Rydberg states inside them and measure how long weare able to keep them.

This experiment is described in Figure3.3 (Exp 3). To con�rm the trapping of single

Rydberg atoms, we actually compare this experiment with twoother ones, consisting

in measuring the recapture probability after a varying timefor a Rydberg atom in free


ight (Exp 1) and for a ground-state atom in the presence of the BoB trap (Exp 2).

Exp 1 is the same kind of release and recapture experiment introduced in the
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drastically (red disks in Figure3.3).

Finally, the third kind of experiment is the combination of the two previous one. It

consists in exciting the atoms to a Rydberg state (still 84S1=2 in that case), shining

the BoB trap for a varying duration � , deexciting the atom to the ground state and

recapturing it. The recapture probability of a Rydberg atomis enhanced thanks to

the presence of the BoB trap (comparing the results of Exp 3 with the ones of Exp 1

in Figure 3.3), which is the signature of the trapping of single Rydberg atoms. Exp 2

allows us to con�rm that the observed extended trapping timein Exp 3 is due to

the excitation to Rydberg states, and not only the presence of the BoB trap. The

measured signal in Exp 3 allows us to optimize the experimental parameters in order

to obtain the best trapping. We vary the 852-nm laser power, the size of the BoB

trap, and the position of the BoB trap with respect to the regular optical tweezers

to have the largest recapture probability after 30� s in the BoB trap. This led us to

choose a laser power of 400mW and the medium-sized BoB trap (see Figure3.2).

With these parameters, we observed an enhanced recapture probability if the principal

quantum numbers of the Rydberg states involved is such that 60 < n < 90. We will

describe in more detail the trapping e�ciency as a function of the principal quantum

number in the next section.

I have shown here how transferring a single Rydberg atom inside a BoB trap

allows us to recapture it for an extended time compared with the free 
ight case,

demonstrating our ability to trap single Rydberg atoms. Although the trapping time

is extended, the recapture probability in Exp 3 slightly decays. The aim of the next

section is to understand the origins of this decay.

3.2 Trap characterization

Now that we have demonstrated our ability to trap single Rydberg atoms, we need to

characterize quantitatively the BoB trapping features. I will �rst derive the expression

of the trapping potential, leading to the computation of a minimal energy barrier

which must be high enough to keep the Rydberg atoms trapped. Then, I will show

that the characteristic lifetime inside a BoB trap depends on the principal quantum

number n of the Rydberg state involved. More precisely, it is relatedto the Rydberg

state lifetime in a 300 K environment. Finally, I will estimate the trapping frequencies

in such traps.
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3.2.1 Trapping potential

So far, I have only mentioned the ponderomotive potentialVP (r ) experienced by the

nearly free Rydberg electron to explain the repulsive potential trapping the single

Rydberg atom. I recall that it readsVP (r ) = e2I (r ) =(2me� 0c! 2
L ), with e and me the

charge and mass of the electron, and! L the angular frequency of the 852-nm trapping

laser. This potential is proportional to the light intensity I (r ), with r the position of

the electron.

In fact, for the trapping potential experienced by a Rydbergatom at position R, we

must take into account the extension of the electronic wavefunction  nljm j . Then, in a

Born-Oppenheimer-like approximation, the trapping potential for the Rydberg atom is

given by the following convolution [Dutta et al., 2000]

Unljm j (R) =
Z

VP (R + r )
�
� nljm j (r )

�
�2

d3r . (3.1)

For an hypothetical zero-extension Rydberg atom,
�
� nljm j (r )

�
�2

is the Dirac func-

tion, and the potential experienced by the Rydberg atomUnljm j (R) reduces to the

ponderomotive potentialVP (R).

I will then present the result of a numerical calculation of convolution (3.1) in order

to derive the value ofUnljm j (R). This will allow us to extract the minimum energy

barrier con�ning the Rydberg atom.

Convolution with the Rydberg wavefunction Only Rydberg nS1=2 were involved

in the experiments described in this section. In that case, the electronic wavefunc-

tion depends onn and r = jr j (it is isotropic), which simpli�es the treatment of

equation (3.1). First, we focus on the relative e�ect of the convolution, wewill be

interested in the absolute value of the potential later. Therefore, we compareUnS (R)

with the ponderomotive potential, represented in thexz plane in Figure3.4(a). For

this comparison, we compute the ratioUnS (R) =V0, whereV0 is the maximum value of

the ponderomotive potential.

The e�ect of the convolution can be interpreted as the average of the ponderomotive

potential over the spatial range of the radial density probability of the nS orbital

r 2 j nS (r )j2. This spatial range scales asn2. These orbitals are plotted to scale in

Figure 3.4(a). For n � 100, the spatial extent of the radial wavefunction is on the same

order of magnitude as the typical length scale of the BoB intensity distribution, that

is to say about 1� m. Consequently, we expect that for such high principal quantum

numbers the potential created by the BoB light will not be con�ning any more, the
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power andn � 90, this minimal barrier is about 1mK, that is to say on the same

order of magnitude as the trap depth of the regular optical tweezers for 5mW. For a

BoB trap, we then need a large laser power to generate high enough potential barriers

in all directions to con�ne atoms at 130� K. Decreasing the atomic temperature (we

proved later that we can reach atomic temperature as low as a few � K), and using

the smallest BoB trap, we have achieved to trap Rydberg atomswith 20 mW laser

power, holding the promise for scalability. We may also workon more elaborate phase

patterns to generate a more homogeneous surrounding potential barrier. In that case,

we could use even less laser power per BoB trap.

3.2.2 Lifetime in the BoB trap

Now that we have understood in more detail the trapping potential, in terms of spatial

dependence where we have seen the e�ect of the convolution bythe Rydberg radial

wavefunction, and in terms of minimal energy barrier, we cansee for how long we can

keep a Rydberg atom inside a BoB trap. To do so, we repeat Exp 3 introduced in

Figure 3.3, still for a laser power of 400mW and the medium-sized BoB trap, and for

a varying principal quantum number of the Rydberg state involved.

Trapping lifetime Figure 3.6(a) shows the result of such an experiment (solid disks),

for the four Rydberg states 60S1=2, 75S1=2, 84S1=2 and 92S1=2. The recapture probability

decays roughly in an exponential manner, and the dashed lines are �t to extract

the exponential mean lifetime. We compare the �tted lifetimes with the Rydberg

state lifetimes in a 300 K environment [Beterov et al., 2009; Archimi et al., 2019] (see

Figure 3.6(b)). The lattest are radiative lifetimes, computed in our case using the

Alkali Rydberg Calculator (ARC) software [�Sibali�c et al., 2016].

This radiative lifetime gives the mean duration before a Rydberg atom is transferred

into another state. Either it spontaneously decays to low-lying states, either it

transitions into neighbouring Rydberg states via black-body radiation from the

environment. As shown in Figure3.6(c), both types of radiative process lead to a

loss of the atom. If the atom decays to a low-lying state, the atom is now attracted

away, by the BoB light, from the �nal recapture region, and the recapture probability

drastically drops as already explained for Figure3.3 Exp 2. If the atom is transferred

into a neighbouring Rydberg state, it stays trapped as it experiences almost the same

trapping potential (its principal quantum number has only been changed by a few

units). But the deexcitation pulse is not at resonance any more to transfer the Rydberg
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position and velocity of the atoms at 130� K inside the regular optical tweezers. After

setting the initial conditions, we compute the motion �rst in free 
ight for the STIRAP

duration, then inside the BoB trapping potential derived inthe previous subsection

for a time � , and then again in free 
ight for the deexcitation duration.If the kinetic

energy is larger than the potential trapping energy of the regular optical tweezers at

the �nal position of the atom, the atom is not recaptured. In the end, repeating the

same procedure one thousand times, we compute the recaptureprobability.

In addition to the atomic motion, we take into account the �nite STIRAP excitation

e�ciency (about 10% of the atoms are not excited). If the STIRAP does not succeed,

the atom stays in the electronic ground state. We also compute the atomic motion in

that case, where the BoB potential is now attractive, which leads to a fast decay of

the recapture probability as expected from Exp 2 in Figure3.3.

Finally, the last ingredient we include in our classical computation of the atomic

trajectory is the Rydberg lifetime in a 300 K environment. For each trajectory

simulation, we pick up a time according to the exponential law whose time constant is

the radiative lifetime introduced above. At this speci�c time, the atom is transferred

to neighbouring Rydberg states or to low-lying states, and in both cases, the atom is

lost (see Figure3.6(c)). Therefore, for an easier numerical treatement of the Rydberg

lifetime e�ect, we consider in our simulation that the atom is transferred back to the

electronic ground state. Back in the ground state, the recapture probability drops, so

in the end this simpli�cation of the radiative loss mechanism leads to the same result.

The results of the simulations taking into account all the elements listed above are

plotted as solid lines in Figure3.6(a). The agreement with the measured recapture

probabilities is good, especially, the simulation reproduces quite well the behaviour

at short times (see insets). In our simulations, we do not take into account the

photoionization e�ect (ionization of Rydberg atoms due to the absorption of trapping

light photons), which leads to additional losses [Sa�man and Walker, 2005; Zhang,

Robicheaux, and Sa�man, 2011].

Mechanical losses The advantage of our simulation is that we can arti�cially remove

the e�ect of the Ryderg state decay to other states, to see only the e�ect of the

trapping potential on the recapture probability. Indeed, as a function of the peculiar

set of initial conditions, a Rydberg atom may escape the BoB trap. This results in a

reduced recapture probability de�ned as mechanical losses. This is what is shown

in Figure 3.7(a), where I computed the recapture probability as a function of � for

di�erent Rydberg states, without taking into account any decay of the Rydberg state.
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To sum up, we observed that the mean trapping lifetimes of Rydberg atoms in

BoB traps coincide with their radiative lifetimes in a 300 K environment, for principal

quantum numbers such that 60< n < 90. Classical Monte-Carlo simulations agree

with the observed recapture probabilities, especially they show that the faster decay at

short times is due to the quick loss of atoms which were not excited to Rydberg states,

and to mechanical losses. In the end, these mechanical losses result in a �nite trapping

e�ciency of Rydberg atoms. For low enough Rydberg states,n < 90, it saturates at

70� 80%, and it vanishes for higher Rydberg states (see Figure3.7(a)). According to

the simulation, working with colder atoms would improve thetrapping e�ciency as it

reduces the mechanical losses.

3.2.3 Trapping frequencies

Finally, the last trapping characterization lacking is the trapping frequency, already

introduced in the previous chapter in the context of regularoptical tweezers (see

Subsection2.1.1). In that case, these frequencies are derived using the approximation

considering the light Gaussian pro�le as a harmonic pro�le,which is valid if the atom

stays at the bottom of the trap. Here, the BoB light pro�le cannot be considered

as a harmonic pro�le, it is quartic in the radial direction and harmonic only in the

longitudinal one. Nevertheless, the convolution smoothes the quartic pro�le (see

Figure 3.4(c)), and we are able to extract trapping frequencies.

Figure 3.8(a) describes the sequence we use to measure the trapping frequencies. It

consists in exciting the breathing modes of the trapped atoms, as already explained in

the thesis of LucasB�eguin [2013] in the context of regular optical tweezers. We �rst

transfer the atoms in the BoB trap for 30� s, in order to get rid of the hottest atoms.

Then, we let them in free 
ight for 4 � s, shine the BoB trap for a varying duration� ,

let them 
y away for another 10� s, and �nally recapture them. For a harmonic trap

of frequency! , the recapture probability is expected to oscillate at 2! .

Figure 3.8(b) shows the measured recapture probabilities for the medium-sized

BoB trap and the 84S1=2 Rydberg state, for two di�erent laser powers. The dashed

lines are �tting damped sine to extract the trapping frequencies. The solid lines

are the results of the same kind of Monte-Carlo simulations as the ones introduced

in the previous subsection, taking into account the whole sequence of alternating

free 
ight and trapping steps. They are in qualitative agreement with the measured

recapture probabilities, especially at short times. The �nite atomic temperature and

the remaining anharmonicity of the BoB trap could explain the damping of the
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3.3 Rydberg trapping and quantum simulation

The aim of this last section is to demonstrate that the Rydberg trapping technique we

have implemented is compatible with the quantum simulationtasks we usually perform

while the Rydberg atoms are in free 
ight. I will even show that new phenomena

are likely to emerge with the use of Rydberg trapping. In the Introduction, when I

presented the quantum simulation projects we are able to perform on our platform, I

insisted on the fact that depending on the Hamiltonian we wantto mimic, the qubit

must be encoded in di�erent levels. The BoB trap we use is onlysuitable to con�ne

Rydberg atoms and not ground-state atoms (see Figure3.3 Exp 2), so using the

Rydberg trapping technique described in this chapter, we can only perform quantum

simulation of the XY Hamiltonian, where the qubit is encoded into two neighbouring

Rydberg levels.

We are going to focus on two ingredients we use when studying the quantum

simulation of the XY model: �rst, the microwave Rabi oscillation between the

neighbouring Rydberg levels encoding the qubit, and second, the spin-exchange

process. These two experiments, and their role with respectto the study of spin or

hard-core boson Hamiltonians, will be described in more detail in the following of

this manuscript (Chapter 5 for the microwave Rabi oscillation and Chapter6 for the

spin-exchange).

3.3.1 Microwave Rabi oscillations

Rabi oscillation The �rst experiment I describe is the microwave Rabi oscillation

between neighbouring Rydberg levels. The Rydberg levels involved in the following are

represented in Figure3.9(a). Using two di�erent excitation schemes (see Figure2.10),

we can prepare via STIRAP either
�
�82D3=2, mJ = 3=2

�
or

�
�84S1=2, mJ = 1=2

�
. Then,

applying a microwave pulse at the frequency of the transition (i) between j"i =
�
�82D3=2, mJ = 3=2

�
and j#i =

�
�83P1=2, mJ = 1=2

�
(around 3.87GHz), we can induce

a Rabi oscillation between the two encoded spin statesj"i and j#i . The experimental

sequence we followed to observe this Rabi oscillation is shown in Figure 3.9(b). We

transfer the Rydberg atom prepared in statej"i inside the BoB trap for a �xed

duration of 50� s, and apply while the atom is inside the BoB trap a microwave

pulse at resonance of varying durations. When the BoB trap is switched o�, if the

atom is in j"i , it will be deexcited back to the electronic ground state andthen

76





Chapter 3: Single Rydberg atoms in ponderomotive bottle beam traps

vanishing damping rate (4kHz). As the BoB potentials seen by the two di�erent

Rydberg states are approximately the same (the principal quantum numbers only

di�er by one), and as the atom stays in the dark region at the center of the BoB

trap, we are not able to measure any state-dependent light-shift induced by the BoB

trap, whereas it was the case in an experiment performed in a ponderomotive optical

lattice [Youngeet al., 2010]. The expected di�erence between the state-dependent

light-shifts of two neighbouring Rydberg states is on the order of one percent of the

ponderomotive potential.

Performing the same kind of experiment without any BoB trap,that is to say

operating with a constant time of free 
ight and a varying microwave pulse duration,

we would also observe an almost undamped Rabi oscillation (see Chapter5), but

with a reduced contrast (only 20% for atoms at 30� K and for a 50� s duration of

free 
ight). The reason is the loss of atoms during free 
ight, they escape from the

trapping region due to their �nite temperature.

Long-duration spectroscopy Thanks to Rydberg trapping, we can then perform

microwave manipulation of the Rydberg states for longer durations, with reasonable

contrast with respect to the free-
ight case. Consequently, we can probe spectroscopi-

cally transitions between Rydberg states for longer durations, that is to say with less

microwave power. Then, the power broadening of the linewidth can be reduced to a

few tens of kHz. This is what is shown at the bottom of Figure3.9.

We �rst probe transition (ii) (see Figure 3.9(a)) with di�erent microwave pulse

durations. When increasing the pulse duration, we decrease its amplitude in order to

always have the same pulse area. The resulting spectra are shown in Figure 3.9(d).

The dashed lines are Gaussian �ts to extract the spectrum linewidth. For the longest

pulse durations, the linewidth stops decreasing. This is because the Zeeman shifts

experienced by the
�
�84S1=2, mJ = 1=2

�
state and the

�
�84P1=2, mJ = � 1=2

�
state are

not the same, leading to a homogeneous broadening of the lineproportional to the

magnetic �eld 
uctuations. This broadening is estimated tobe approximately 40kHz,

as it is the minimal spectrum width we measured. Consequently, the shot-to-shot


uctuations of the magnetic �eld are about 30mG. For an applied magnetic �eld

of nearly 50 G, this means 
uctuations below 0.1%, which is the expected order of

magnitude.

We then probe the two-photon transition (iii) following the same procedure, and

represent the di�erent spectra in Figure3.9(e). The �tted linewidth as a function of

the pulse duration is plotted in Figure3.9(f), while probing the one- or two-photon
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transitions. In the two-photon case, the linewidth decreases as the inverse of the

pulse duration (green dashed line) for longer pulse durations. The linewidth does

not saturate in this case because the two-photon transitionis insensitive to the

magnetic �eld shot-to-shot 
uctuations. Indeed, the Zeeman shifts experienced by the
�
�84S1=2, mJ = 1=2

�
state and the

�
�85S1=2, mJ = 1=2

�
state are the same, so there is

no homogeneous broadening.

Consequently, I have shown that Rabi oscillations between neighbouring Rydberg

states can be performed while the atom is trapped. This is theusual single-qubit

operation required in quantum simulation experiments of the XY Hamiltonian. In the

next subsection, we study a two-interacting-qubit process, the spin-exchange.

3.3.2 Spin-exchange

The spin-exchange process is a consequence of the resonant dipole-dipole interaction,

as already described in the Introduction. Considering the two qubit states j"i =
�
�82D3=2, mJ = 3=2

�
and j#i =

�
�83P1=2, mJ = 1=2

�
and a minimal system of two atoms,

the interaction Hamiltonian reads in the two-atom basis

Ĥ = J (j"#i h#"j + j#"i h"#j ) .

Consequently, once the two-atom system is prepared in the state j"#i , it will oscillate

between the two statesj"#i and j#"i at a frequency 2J=h, as represented schematically

in Figure 6.5(a). For the Rydberg states involved, the interaction energy for two atoms

at 40� m is such that J=h = 0.36 MHz.

Experimental sequence To observe such a phenomenon, we must prepare the state

j"#i , which means that we must change the state of one of the atoms while the other

stays in the same state. As the microwave driving has a global e�ect on the two atoms,

we use an additional laser beam, called an addressing beam, focused on one of the

two atoms to shift the resonance frequency of this atom. Then, the two atoms do not

have the same resonance frequency and we can change the stateof one atom without

a�ecting the other one. I will come back on this addressing technique in Chapter6.

Once j"#i is prepared, we let the system evolve for a varying duration,see the

experimental sequence in Figure6.5(b). We perform the microwave preparation and

this evolution while the two Rydberg atoms are inside the BoBtraps. At the end of
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the evolution, we deexcite the atoms. As in the previous subsection, if the atom is in

j"i , it is transferred back to the electronic ground state and recaptured, whereas if it

is in j#i , it will stay in the Rydberg state and will be lost.

Measured spin-exchange The sequence above allows us to observe the spin-exchange

process, shown in Figure6.5(c). We indeed measure an oscillatory behaviour, where

j"#i and j#"i become successively the most probable states. The spin-exchange process,

observed here while the Rydberg atoms are trapped, exhibitsthe same features as in

its original demonstration realized in free 
ight [Barredo et al., 2015].

Study of the damping Again, the advantage of observing the spin-exchange process

while the Rydberg atoms are being trapped is that we can studyit for extended

durations. In Figure 6.5(d), I show the full time evolution of the probability to be

in the state j"#i during the spin-exchange process, and I will focus on the damping

of the oscillation. The global decrease of the amplitude of the oscillation is due to

shot-to-shot 
uctuations of the interatomic distance, since they result in 
uctuations of

the frequency of the spin-exchange oscillation. A possiblymore interesting behaviour

is the slight increase of the amplitude around 15� s. We propose in the following an

explanation for such a behaviour by studying the interplay between the atomic motion

of the Rydberg atoms inside the traps, and the spin-exchangeinteraction.

To do so, we perform the same kind of classical Monte-Carlo simulation as before.

We pick up a set of initial conditions deduced from the thermal distributions in position

and velocity (in this speci�c experiment, the atomic temperature was reduced to

3� K), and compute the atomic motion inside the BoB trap. We use the medium-sized

BoB trapping potential already derived for the Rydberg state
�
�84S1=2, mJ = 1=2

�
. The

trapping potential for the involved Rydberg states here should be di�erent because

of their di�erent orbital quantum numbers. We compute the atomic motion inside

the trap, without taking into account any radiative decay ofthe Rydberg state or

the imperfect preparation. This gives us a time-dependent distance between the two

atoms. We plug this time-dependent distance into the Schr•odinger equation and solve

it.

Averaging over many trajectories, we obtain the damped spin-exchange curves

displayed at the bottom of Figure6.5(d), for di�erent laser powers generating the BoB

trap. For low powers, we observe beating in the spin-exchange oscillations, due to

the harmonic part of the motion of the Rydberg atoms inside the BoB traps. The

time when the amplitude of the oscillation increases, or thepower needed to observe
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such a beating behaviour, do not correspond with the experimental ones, which may

be because in our simulation we do not derive the potential for the correct Rydberg

states.

Nevertheless, taking into account the motion inside the BoB trap leads to the same

kind of beating in the spin-exchange amplitude, so what we observed may be a hint

of the interplay between the spin-exchange interaction andthe atomic motion. The

correct way to treat this problem would be to include in the Schr•odinger equation the

atomic motion, and we could expect to observe e�ect of the entanglement between the

atomic motion and the spin-exchange if the atoms are cooled down to the vibrational

ground state of the trap, which is not the case for now. It was recently proposed to

use this entanglement to engineer exotic interactions [Gambetta et al., 2019]. These

interactions have the same origin as the e�ective spin-spininteractions arising between

trapped ions.

3.4 Conclusion

I have shown that we are able to trap single Rydberg atoms withhigh e�ciencies for

low enoughn � 90 principal quantum numbers, using holographically generated BoB

trap. We have demonstrated that these traps are compatible with usual quantum

simulation tasks performed in the Rydberg manifold. The following steps could consist

in improving the trapping e�ciency by cooling down the atom and using more elaborate

phase masks, while generating the BoB trap with less power.

Actually, the same kind of holographically generated BoB traps can be used to

trap single atoms in the electronic ground state [Xu et al., 2010], if the BoB traps are

created with a blue-detuned light with respect to the transitions to �rst excited states.

Indeed, for blue-detuned light, the potential induced by light is repulsive, in the same

way as the ponderomotive potential, and the atom will seek low-intensity regions.

We could aim in the future at implementing such a blue-detuned BoB trap, for

several reasons. First, trapped in a dark region, a ground-state atom experiences a

smaller light-shift than the one it sees trapped in a regularoptical tweezers. Therefore,

such blue-detuned optical traps enable for a more coherent laser-manipulation of

trapped atoms. Second, for a speci�c wavelength of the trapping laser beam, the

so-called \magic" wavelength, the repulsive potentials experienced by an atom in the

ground state and in the Rydberg state will be equal [Zhang, Robicheaux, and Sa�man,

2011]. In that case, the excitation to Rydberg states can be achieved without any

induced light-shift while being trapped, and the atom is trapped whatever its state,
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opening the way to long duration quantum simulation of the Ising model.
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Chapter 4
Growth of antiferromagnetic
correlations in an Ising-like magnet
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In the Introduction, I have shown how Rydberg atoms interacting in the van der Waals

regime can be used to implement an Ising-like Hamiltonian (see Hamiltonian (A.1)).

When no external �elds are applied, the canonical form of the Ising Hamiltonian

simply reads :

Ĥ Ising = U
X

hi ,j i

�̂ z
i �̂ z

j ,

whereU, the nearest-neighbour coupling, is the only coupling taken into account.

From this model, we deduce the existence of two spin-ordered phases. Indeed, ifU < 0,
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two neighbouring spins will tend to align to decrease the total energy of the system.

Then, the ground state will be such that every spin points into the same direction,

giving rise to a macroscopic magnetic moment. This is the so-called ferromagnetic

phase. On the contrary, whenU > 0, two neighbouring spins will tend to anti-align.

Consequently, on an in�nite square lattice, the ground state corresponds also to a

spin-ordered phase: a staggered pattern of spins up and down(a spin up only has spins

down as nearest neighbours and vice versa), with a zero globalmagnetization. This is

known as an antiferromagnetic or N�eel phase. It is characterized by the alternating

sign of the spin-spin correlation function when scanning the inter-spin distance, as a

positive (negative) correlation means that the two spins point into the same (opposite)

direction.

The topic of the present chapter is the observation of these antiferromagnetic

correlations in a system of Rydberg atoms. More precisely, Iwill show how we

generated antiferromagnetic-like correlations in an assembly of single atoms, initialized

in a product state, by a dynamical tuning of the parameters ofHamiltonian (A.1).

This work, done in collaboration with Michael Schuler, Louis-Paul Henry and Prof.

Andreas M. L•auchli, a theory team from the University of Innsbruck, led to the

publication [Lienhard et al., 2018].

4.1 Introduction to Rydberg-based Ising antiferromagnets

Before describing our work in detail, I will address two points. First, I will emphasize

the link between Ising antiferromagnets and Rydberg atoms interacting in the van der

Waals regime while being coherently driven at resonance. Second, since the approach

we follow in this chapter, i.e., the dynamical tuning of the Hamiltonian, is a very

general protocol implemented on several quantum simulators, I will present its principle

and application to the study of spin Hamiltonians.

4.1.1 Rydberg blockade and antiferromagnetic ordering

The connection between interacting Rydberg atoms and Isingantiferromagnets is done

in Appendix A by rewriting Hamiltonian ( A.1) de�ned in the qubit-basis fj r i , jgig

in terms of spin operators. This results in an interacting term proportional to �̂ z
i �̂ z

j ,

hence the mapping to an Ising-like model. I will show here that this mapping can be

easily understood referring to a characteristic feature ofinteracting Rydberg atoms,

88





Chapter 4: Growth of antiferromagnetic correlations in an Ising-like magnet

will order themselves in di�erent spatial con�gurations (Figure 4.1(b)). If Rb is

much larger than the size of the array, there will be one single Rydberg excitation

shared among the atomic ensemble. WhenRb is on the order of a fewa, blockade

disks containing a dozen of atoms will pave the array. In thisregime, explored in a

quantum-gas-microscope platform [Schau� et al., 2012], although Rydberg density

correlations can be observed, the precise arrangement of the lattice is not yet relevant,

they are liquid-like correlations. Decreasing the interaction strength to Rb � a makes

the system enter a strongly correlated regime, with one Rydberg excitation every

second lattice site on a square array. Since the lattice structure is relevant in this

regime to explain the spatial dependence of the correlations, this is a solid-like regime.

This corresponds to an antiferromagnetic phase when applying the spin-1/2 mapping

jr i = j"i and jgi = j#i .

Consequently, driving an array of atoms at resonance with interactions tuned

such that Rb � a enables for the observation of antiferromagnetic correlations.

This sudden switch on of the driving is called a quench, as it abruptly brings the

system out of equilibrium. Quenching an array of Rydberg atoms was explored in

our platform [Labuhn et al., 2016], where the team were able to study three di�erent

regimes by tuning the interaction energy: the fully blockaded regimeRb � a, the

correlated regimeRb � a and the independent regimeRb � a. Quench experiments

were also recently studied by the group of Prof. Jaewook Ahn [Kim et al., 2018], where

their careful analysis of the many-body relaxation dynamics following a quench led

them to observe signatures of thermalization in a closed quantum system.

4.1.2 Adiabatic sweeps and phase transition

The contrast of the antiferromagnetic correlations generated by a quench depends

on time, since quenching a system is an out-of-equilibrium process. In this chapter,

we focus instead on the equilibrium properties of the system, described in terms

of thermodynamic phase. This is why we have used another approach to generate

antiferromagnetic correlations in an array of Rydberg atoms, which is a very general

approach to engineer non-trivial targeted states. Insteadof applying a quench, it

consists in changing the Hamiltonian slowly enough so that the system follows an

adiabatic evolution and stays in the same instantaneous energy level of the time-

dependent Hamiltonian (Figure4.2(a)). Then, tuning the Hamiltonian in such a way

that the initial prepared state is an eigenstate of the initial Hamiltonian (for example

the one with the lowest energy), and that the targeted state is the eigenstate of the
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system is a trivial product state with all spins aligned in the same direction, it is a

paramagnetic phase. Adiabatically decreasing the external�eld makes the system

going from a paramagnetic phase to a correlated phase, the ground state ofĤ int . In our

case of the Ising Hamiltonian, this correlated state is the targeted antiferromagnetic

phase. It turns out that the initial paramagnetic phase can be easily generated with

arti�cial systems. After preparing such an initial state, several experimental teams

were able to study the phase transition between a paramagnetand an antiferromagnet,

by slowly reducing the amplitude of the e�ective external �eld, proportional to the

Rabi frequency of the qubit driving. For example, the group of Prof. Christopher

Monroe studied it on its quantum simulator based on trapped ions [Edwards et al.,

2010; Islam et al., 2013].

Similar adiabatic protocols were proposed in the context ofinteracting Rydberg

atoms to observe crystalline structure of the excitations [Pohl, Demler, and Lukin,

2010; Schachenmayeret al., 2010; van Bijnen et al., 2011], and were implemented in

the quantum-gas-microscope platform of Prof. Immanuel Bloch [Schau� et al., 2015].

This motivated our work, and I will report here our observation of the many-body

dynamics during a sweep of the external �eld, for di�erent 2Dgeometries, in view

of engineering the antiferromagnetic state of the Ising model. At the same time, a

similar correlated state was observed in the quantum-gas-microscope platform of Prof.

Waseem Bakr's team [Guardado-Sanchezet al., 2018], involving Li atoms excited to

low-lying Rydberg states. These correlations were also intensively studied by the group

of Prof. Mikhail Lukin on their optical-tweezers platform.They observedZ2, Z3 and

Z4 phases in a chain of trapped atoms [Bernien et al., 2017]. A Zn phase corresponds

to an ensemble of blockaded sub-chains containingn atoms, theZ2 phase corresponds

then to the antiferromagnetic phase we are focused on. They also measured more

recently the critical exponent of the phase transition [Keeslinget al., 2019].

For all of these adiabatic protocols to succeed, the evolution of the Hamiltonian

must be slow enough for the system to stay in the instantaneous ground state. If not,

the system could be excited to higher-energy states via Landau-Zener transitions.

The smaller the energy gap between the ground state and the excited states, and the

stronger the coupling to excited states, the more likely theLandau-Zener transitions.

This results in a limiting speed for the dynamical tuning of the Hamiltonian, known

as the adiabaticity criterion. Since the energy gaps decrease at the phase transition,

and as imperfections of our laser-driving reduce the coherence time of the evolution,

I will show here that we are not able to adiabatically reach the antiferromagnetic

ground state.
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We decided then to address the reversed question, which is, considering a given time

evolution of the parameters of the Hamiltonian, what is the amount of correlations

we can expect, and how do they spread in the system? The speed of spreading of

correlations is limited theoretically by the Lieb-Robinson bounds [Lieb and Robinson,

1972], an important concept in quantum information. These bounds were explored in

the context of quenches where a light-cone-like spreading of correlations was observed

in an optical lattice [Cheneauet al., 2012] or with trapped ions [Jurcevic et al., 2014].

Our work extends this study to the context of slow sweeps.

In this chapter, I will �rst present in more detail the procedure we have followed

to get our system of interacting Rydberg atoms close to an antiferromagnetic state.

Then, I will describe the two types of sweeps we have performed, revealing the

antiferromagnetic region in the phase diagram, and a time limit for a coherent

evolution. Finally, I will analyse the time- and space-dependence of the build-up of

correlations, allowing us to observe their �nite speed of spreading, and a growth

mechanism well captured by a short-time expansion of the evolution operator.

4.2 Reaching the antiferromagnetic phase

As mentioned before, we want to reach an antiferromagnetic state with Rydberg atoms

by dynamically tuning the parameters of the Hamiltonian. Restricting ourselves to the

nearest-neighbour (NN) interactionU = C6=a6 with a the lattice constant, and taking

into account the laser-coupling between the two-qubit statesfj r i , jgig = fj"i , j#ig

described in subsection2.3.2, the Hamiltonian reads, in terms of spin operators and in

the rotating wave approximation

Ĥ =
X

i

�
~

2

�̂ x
i � ~� n̂ i

�
+ U

X

hi ,j i

n̂i n̂j (4.1)

with n̂ = (1 + �̂ z) =2, 
 the Rabi frequency and � the detuning from resonance. We

can restrict ourselves to the NN interactions because we willoperate in the regime

Rb � a. This will make the description of the phase diagram associated to Ĥ easier.

Nevertheless, in the numerical simulations presented in this chapter, the full 1=R6

dependence of the interaction was taken into account.

For this work the qubit is encoded in the two statesj#i =
�
�5S1=2, F = 2, mF = 2

�

and j"i =
�
�64D3=2, mJ = 3=2

�
. As we shall see below, the choice of a RydbergD state

instead of a RydbergS state makes the mapping to a spin-1/2 Hamiltonian more

di�cult, but on the other hand, we take advantage of the increased laser coupling

93



Chapter 4: Growth of antiferromagnetic correlations in an Ising-like magnet

towards D states, which justi�es in the end its use. The lattice constant is tuned

between 9 and 7.5� m, leading to a NN interaction jUj =h � 1 � 3MHz. Before

describing the phase diagram as a function of� and 
 for a square and a triangular

array, and the speci�c time evolution of these parameters wehave investigated to

reach an antiferromagnetic state, I will insist on the special care we needed to take in

order to involve only the two levels of the qubit basis in the many-body dynamics of

the system.

4.2.1 Accurate mapping to a spin-1/2 Hamiltonian

In Appendix A, I showed that the energy shift experienced by the doubly-excited

state jrr i comes from a second-order perturbation theory, the perturbation being the

dipole-dipole interaction between pairs of Rydberg states. In this perturbative regime,

the eigenstate of the two-atom system has a large overlap with the unperturbed jrr i

state, and its potential curve follows the expected asymptotic behaviour in C6=R6. In

that case, a mapping to a spin-1=2 Hamiltonian is possible, and the Rydberg blockade

mechanism is valid.

It turns out that the situation can be much more complicated depending on the

precise Rydberg state involved and this simple asymptotic behaviour does not apply

systematically for the distances explored in our experiments. This could lead to failures

of the Rydberg blockade, and to deviations from the Ising-like model we want to

implement, as the team observed in one of its previous work [Labuhn et al., 2016].

To understand those deviations, in collaboration with Prof. Hans-Peter B•uchler and

Sebastian Weber from the University of Stuttgart, we analysed the potential curve

of the pair state after a numerical diagonalization of the dipole-dipole interaction

Hamiltonian, and indeed, we found discrepancies from the asymptotic behaviour. We

also found a convenient value for the magnetic �eld de�ning the quantization axis

allowing us to reduce these deviations, implementing correctly the Ising-like model.

This accurate mapping into a spin-1/2 Hamiltonian was reported in [de L�es�eleuc et al.,

2018b]. I will brie
y describe this study here, and I refer to this publication or to the

thesis of Sylvainde L�es�eleuc [2018] (Chapter 6) for more details.

Dipole-dipole interactions with nD 3=2 state The treatment of the dipole-dipole

interaction is more complicated withnD 3=2 states for several reasons. First, the

�ne splitting are narrower for nD states, which reduces the energy separation be-

tween pair of Rydberg states and makes the e�ect of the perturbation stronger.

94



4.2 Reaching the antiferromagnetic phase

Moreover, a
�
�nD 3=2, nD 3=2

�
pair state can be almost at the same energy as a

�
�(n + 2) P1=2, (n � 2) F5=2

�
state. This accidental quasi-degeneracy is called a F•orster

resonance. In this peculiar interaction regime, explored by our team in [Ravets

et al., 2014], when the two pair states are exactly at resonance, the eigenstate of

the system has only a 50% overlap with the unperturbed state
�
�nD 3=2, nD 3=2

�
, and

the system oscillates back and forth between the two pair states
�
�nD 3=2, nD 3=2

�
and

�
�n + 2 P1=2, n � 2F5=2

�
. Consequently, close to these kind of resonances, the dipole-

dipole interaction does not result in a mere energy shift of the pair state, which is

detrimental for our implementation of the Ising model.

In addition to F•orster resonances, coupling to other pair states must be taken into

account when the internuclear axis is tilted with respect tothe quantization axis.

Indeed, the dipole-dipole interaction can couple pair states with a di�erent total

magnetic number (the sum of themJ of the two atoms) in that case, thus involving a

larger part of the Zeeman manifold in the dipole-dipole interaction. As the Zeeman

manifold is more extended fornD states than it is for nS, the possible number of pair

states that must be taken into account in the treatment of thedipole-dipole interaction

increases. Finally, an additional electric �eld could mix the di�erent Rydberg states,

extending even more the number of possibly coupled pair states.

For all these reasons, an analytical treatment of the e�ect of the dipole-dipole

interaction is intractable, and we need to perform the numerical diagonalization of the

pair interacting Hamiltonian.

Deviations from the spin-1/2 model Figure 4.3(a) shows the result of such a diag-

onalization as a function of the interatomic distance, where jr i =
�
�61D3=2, mJ = 3=2

�

and the interacting angle� = 78� , in the presence of a magnetic �eld (quantiza-

tion axis) Bz = 6.9 G and an electric �eld Ez = 20 mV=cm. I intentionnaly chose

those parameters because they realize the worst-case scenario for the treatement of

the dipole-dipole interaction. This numerical treatment was possible thanks to the

open-source softwarepairinteraction, developed by SebastianWeber et al. [2017]. The

potential curve of the pair statejrr i is far from being as simple as the asymptotic

behaviour in C6=R6, and the eigenstate of the two-atom system is projected onto

many di�erent unperturbed Rydberg pair states. This would lead to deviations from

the spin-1/2 model we want to implement.

To illustrate that point, I show in Figure 4.3(b) the result of a quench experiment, in

the same spirit of the ones performed in [Labuhn et al., 2016]. The magnetic �eld was

set to the valueBz = 6.9 G, but the electric �eld was not as high as in Figure4.3(a).
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We have compensated the electric �elds in order to have them smaller than 5mV=cm.

The experiment consists in abruptly driving at resonance a 7� 7 square array of atoms

prepared in jgi , and measuring as a function of the illuminating time� the fraction f r

of atoms in jr i . Due to the Rydberg blockade, the Rydberg fraction is expected to

saturate, as shown by the simulation based on the spin-1/2 model (solid line). On the

contrary, the measured many-body dynamics (disks) shows a clear increase off r at

long time, suggesting a breakdown of the Rydberg blockade and an incorrect mapping

on the Ising-like model.

Systematic search for an accurate mapping The pairinteraction software allows

us to look for a set of experimental parameters for which we retrieve the C6=R6

behaviour. It turns out that another value for the magnetic �eld, Bz = 3.5 G, leads

to a much simpler potential curve for the doubly-excited state jrr i , as shown in

Figure 4.3(c). The eigenstate of the two-atom system is mostly projected onto jrr i ,

and the C6=R6 behaviour (dashed lines) is a valid approximation, as long as the

interatomic distance is larger than about 8� m, i.e. for the distances of interest in our

experiments. This results in an accurate mapping into our spin-1/2 model, as observed

in the experiment (Figure4.3(d)), where the increase off r is no longer visible and the

experimental data are in very good agreement with the spin-1/2 model. This is, to

date, the quantum simulation experiment involving the largest number of spins (49)

we have performed on our platform.

To conclude, I emphasized on the careful analysis of the dipole-dipole interaction we

needed to perform in view of accurately implementing an Ising-like model with nD 3=2

Rydberg atoms. This careful treatment was possible thanks to the development of the

pairinteraction software. The situation would be simpler usingnS1=2 states, as the

Zeeman manifold would be reduced to two levels and there are no F•orster resonances.

But as the laser-coupling to RydbergS states is less e�cient, we decided to keep

working with nD 3=2 states, having with this study the tools to determine the good

parameters for an accurate mapping.

4.2.2 Phase diagram of an Ising-like model

Now that we have ensured that Hamiltonian (4.1) correctly describes the many-body

dynamics occurring in our atomic array, I will present the phase diagram associated

to this Hamiltonian for two di�erent geometries, a square anda triangular array

(Figure 4.4). A phase diagram is built by evaluating, as a function of theparameters
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Phase diagram of � Ĥ One can notice in Figure4.3(c) that the potential curve is

shifted downwards with respect to the unperturbed pair state, which means that the

van der Waals shiftU < 0. This is the case for most of thenD 3=2 states, including

the one used in this work
�
�64D3=2, mJ = 3=2

�
. Consequently, for the Rydberg state

involved, the previously described antiferromagnetic state is in fact the most excited

state of Ĥ , or stated otherwise, the ground state of� Ĥ . I will then describe this

most excited state, but the fundamental concept of phase diagram still holds if we

consider� Ĥ instead ofĤ . In our context of adiabatic state-preparation protocols,for

an isolated quantum system, what matters is to stay on the same energy level, but

this level does not have to be the lowest one. To be in the lowest energy level is only

important when temperature and equilibrium with a thermal bath play a role, which

is not the case for our platform.

Trivial phase In Hamiltonian 4.1, when � or 
 is way larger than jUj =~, the most

excited state is only determined by the single-spin operators, and therefore is a trivial

product state, every atom being in the same state. When� is large and positive, this

state corresponds to every atom injgi , when it is large and negative, it corresponds to

every atom in jr i , and �nally when 
 is large, it corresponds to every atom in the

superposition� (jgi + jr i ) =
p

2. Using again our mapping into a spin-1/2 system, this

state corresponds to all spins aligned in the opposite direction of the e�ective external

magnetic �eld, of transverse (longitudinal) component proportional to 
 ( � ). It can

be then considered as the aforementioned paramagnetic phase of � Ĥ . This phase is

present in both phase diagrams.

Antiferromagnetic phase for a square lattice The interesting region of the phase

diagram is where the e�ective external �eld competes with the interaction, delimiting

the boundaries of the antiferromagnetic phase. The boundaries in � for 
 = 0 are

� = 0 and � = � 4jUj =~. The detuning � must be negative for the most excited state

to host Rydberg excitations, and smaller in absolute value than 4jUj =~, proportional

to the energy gain of having a spin aligned with its four nearest neighbours. The

number of nearest neighbours, or coordination number,z = 4, plays an important

role in those phase boundaries in condensed matter physics.Finally, the boundary

in 
 for � = � 2jUj =~ is known to high precision from Monte Carlo simulations

~
 c=jUj = 1.52219 (1) [Bl•ote and Deng, 2002].
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Interacting phase for a triangular lattice On a triangle, it is impossible for all bonds

to ful�l the anti-aligned condition at the same time. This prevents an antiferromagnetic

ordering, which is called geometrical frustration. It results in a macroscopic degeneracy

of the ground state, revealed by a non-vanishing entropy near zero temperature,

as measured in a frustrated condensed matter system [Ramirez et al., 1999]. In a

quantum system, some \order by disorder" processes can occur in these frustrated

phases [Moessner and Sondhi, 2001].

In a triangular lattice, the coordination number isz = 6, and due to this frustrated

geometry the phase diagram is richer. A �rst phase with one Rydberg atom every third

lattice site appears in the region 
 = 0, � z=2jUj < ~� < 0. The conjugated crystal (a

Rydberg atom becomes a ground state atom and vice versa) is the most excited state

in the region 
 = 0, � z jUj < ~� < � z=2jUj. The order by disorder process occurs on

the line ~� = � z=2jUj for low 
. As we shall see, some technical imperfections prevents

us from studying these frustrated phases, because of a limited duration of a coherent

evolution. Nevertheless, observing the growth of the correlations in the triangular

case, we will infer some signatures of geometrical frustration (Subsection4.4.3).

4.2.3 Sweep towards the antiferromagnetic phase

Now that we have identi�ed the ground state of� Ĥ for di�erent regions of the

parameters space(
, � ), we can choose a time pro�le for the tuning of these parameters

to reach the antiferromagnetic state in a square array following an adiabatic evolution.

These time pro�les, and the associated trajectories in the phase diagram, are plotted

in Figure 4.5(a). Before showing in the next section the result we have obtained

with the presented sweeps, I will numerically demonstrate that they can generate an

antiferromagnetic state for the simple case of a 2� 2 matrix. I will also explain how we

realize in practice these sweeps on our experimental setup.Finally, as the generation

of antiferromagnetic correlations relies on adiabatic evolutions, I will show how we can

experimentally probe the adiabaticity on an ensemble of non-interacting qubits.

A three-step sweep At the beginning of the experimental sequence, all the atoms, in

a defect-free structure, are injgi . This is the starting point of our quantum simulation

step described in Figure2.3. This corresponds to the paramagnetic phase in the

region � > 0 and 
 = 0 in the phase diagram. In order to prepare adiabatically

an antiferromagnetic state, we then choose to start the dynamical tuning of the

parameters in this region, with� init > 0 and 
 = 0 (step 1 in Figure 4.5(a)). Then, we
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the eigen-energies of� 0 (t) � Ĥ (t) as a function of the detuning. The energy� 0 (t) is

the one of the most excited state, in order to always have on these plots the energy

level of the targeted state on the zero energy line. I add on these plots the projection of

the quantum system onto the instantaneous eigenstates ofĤ (t), encoded in the area

of the dark red disks. I also plot for these di�erent times theprobability to �nd the 2 4

states de�ned in theN -qubit basis, see the bar plots on the right of Figure4.5(b). The

leftmost probability is the one to �nd
�
� # #

# #

�
and the rightmost one

�
� " "

" "

�
. The columns

6 and 9 correspond to the two antiferromagnetic con�gurations
�
� " #

# "

�
and

�
� # "

" #

�
.

At the beginning (step 1), the system is in the
�
� # #

# #

�
state, which indeed corresponds

to the most excited state (the system in on the zero energy line). When we increase 
,

a necessary ingredient as it enables for the appearance of some Rydberg excitations,

the energy separation between the most excited state and theother states increases,

while the system stays in the instantaneous most excited state. Then, the system can

go through the avoided crossing with a reduced probability for the aforementioned

Landau-Zener transitions to occur (from step 2 to step 3). Inthe end (step 4), the

system has stayed on the same energy level and is therefore anantiferromagnetic

state, as it can be seen on the probability bar plot. Indeed, the system is in an equal

superposition of the two antiferromagnetic con�gurations. These two con�gurations

correspond to the two degenerate most excited eigenstates of the system in the

antiferromagnetic region. Therefore, the system is not mostly projected onto one

eigenstate but equally projected onto two degenerate ones.This is why the area of the

red disk encoding the projection is smaller for the �nal step, in fact there are two

superimposed red disks for the two degenerate eigenstates.

The role of the Rabi frequency is therefore to enlarge the excitation gap for an

easier adiabatic evolution. As�̂ x does not commute with�̂ z, the transverse �eld term

can be seen as the generator of quantum 
uctuations appearing in quantum annealing

protocols. This transverse �eld can even be considered as a \quantum catalysis" for

the phase transition [Richermeet al., 2013].

The numerical simulation carried out in the case of a 2� 2 square array shows that

we must tune the e�ective magnetic �eld for about 8� s to generate a quasi perfect

antiferromagnet. As already stated, the suitable duration to reach the targeted state

depends on the energy gap �E between the instantaneous eigenstates. More precisely,

the suitable duration scales as 1=� 2
E [Das and Chakrabarti, 2008]. For �nite-size

systems, � E was proven to scale as 1=
p

N for a square array, and to be exponentially

reduced with N for a triangular array, with N the number of spins. Therefore, the

larger the system, the smaller the energy gap, and the longerit takes to follow an
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�nal values at a constant speed 10MHz=� s, decreasing 
 to di�erent values in another

0.5� s, and then applying the reverted sequence (Figure4.6(a)). The coordinates of

the U-turn point (� UT , 
 UT ), and the energy gap in the(� , 
) plane, are indicated in

Figure 4.6(a). We measure the probability to be injgi at the end of the round-trip

sweep for di�erent coordinates of the U-turn point (Figure4.6(b)). The drop in the

recapture probability for U-turn points near the vanishing gap region� = 0, 
 = 0

illustrates our loss of adiabaticity.

4.3 Following di�erent trajectories in the phase diagram

So far, I have presented and justi�ed the experimental protocol we followed to reach an

antiferromagnetic phase with arrays of Rydberg atoms. In this section, I will describe

our investigation of the most suitable time pro�les for� (t) and 
 (t) in order to

generate the largest antiferromagnetic correlations in a 6� 6 square array of atoms, all

initialized in jgi . To quantify the amount of antiferromagnetic correlations, we evaluate

the Rydberg-Rydberg density correlation function, de�nedin the next subsection. It

is based on the measurement of one- and two-atom recapture probabilities, that we

infer from the analysis of the �nal 
uorescence images as explained in Section2.3: at

the end of the parameter sweep, if the atom is recaptured, it will be considered as a

jgi = j#i , if not, it will be considered as ajr i = j"i . In order to be accurate in the

evaluation of these statistical quantities, we repeat the same parameter sweep for a

few hundred times.

Our �rst optimization stage consists in looking for the mostsuitable �nal detuning,

which is expected to be between� 4jUj =~ and zero. To do so, we perform the dynamical

tuning of the external �eld shone in Figure4.5(a), for a varying �nal detuning, and

a constant ramping speed of the detuning. As we want to be as close as possible

to adiabaticity for a large range of detuning, we set the parameters of the system

in order to have 
 max > 
 c, where 
 c is the boundary in Rabi frequency of the

antiferromagnetic region (see Figure4.4). Indeed, proceeding that way, we reach the

paramagnetic region� < 0 without intersecting the antiferromagnetic one where the

excitation gaps would be smaller.

Once we have found an optimal value for the �nal detuning, we vary the ramping

speed while crossing the phase boundary. Consequently, theparameters of the system

are in that case such that 
max < 
 c. This leads us to �nd an optimized value for

tsweep.

Our detailed analysis of the laser-driving of a single atom in the qubit basisfj gi , jr ig
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showed that the driving is the most coherent when 
=(2� ) ranges between 1 and

3MHz [de L�es�eleucet al., 2018a]. Consequently, we have chosen to work with 
max=(2� )

around 2MHz. To realize the two kinds of sweeps described above (
max > 
 c and


 max < 
 c), we therefore tune 
c via a change of the lattice constant (resulting in a

change ofU), rather than varying 
 max .

4.3.1 Probing the phase boundaries in detuning

In this subsection, I will present the results we obtain after performing the set of

sweeps where we vary the �nal detuning (Figure4.7(a)). The precise �xed parameters

for the time pro�les are: jUj =h = 1.0 MHz, 
 max = 2� � 2.3MHz, � init = 2� � 6.0MHz,

t rise = 0.25 � s and t fall = 0.50 � s. The �nal detuning � �nal =(2� ) is scanned between� 6

and 2MHz, and as we operate at constant detuning ramping speed, the duration of

the detuning sweep step is such thattsweep = (� init � � �nal ) =f 2� � 10 (MHz)g � s. Since

jUj =h = 1.0 MHz, 
 max > 
 c (the 
 c value is highlighted with a red dotted line in

Figure 4.7(a)), and we explore the paramagnetic region� < 0 without intersecting the

antiferromagnetic one.

Rydberg fraction A �rst observable we may think about to make the distinction

between the paramagnetic and the antiferromagnetic phase is the mean density of

Rydberg atomshn̂i , also called the Rydberg fraction. Indeed, in the 
 = 0 case,

hn̂i = 0 or hn̂i = 1 for the paramagnetic phase (for� > 0 or � < � 4jUj =h), whereas

hn̂i = 1=2 for the antiferromagnetic phase. This quantity is expected to jump abruptly

at the phase transition, which would allow us to observe the boundaries in detuning of

the antiferromagnetic phase.

I plot in Figure 4.7(b) the measured Rydberg fraction as a function of the �nal

detuning of the sweep. We observe a smooth transition when probing the antiferro-

magnetic region between two regimes, wherehn̂i is close to 0 or close to 1, rather

than the expected plateau at 1=2. This smoothing of the staircase-function (green

dashed line in Figure4.7(b)), which should have been obtained if we were preparing

the most excited state of Hamiltonian4.1 when 
 = 0, means that we cannot probe

adiabatically this region. I will come back in the next chapter to these experiments

consisting in observing steps in the Rydberg density.

Spin-spin correlations Consequently, we need another observable to probe the phase

boundaries. The mean density of Rydberg atoms, in the analogy to spin-1/2 physics,
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jump of k lattice sites in the horizontal direction andl lattice sites in the vertical one,

and Nk,l the number of such atom pairs in the array. By de�nition, the correlations are

such that g(2) (k, l) = g(2) (� k, � l ). In order to improve the statistics, we symmetrize

the data for a given(k, l) over the four quadrants(� k, � l ). Since these operations are

symmetries of the setup, the symmetrization does not alter genuine features in the

experimental data. Following our connection to spin-1/2 physics, this function is an

equivalent of the spin-spin correlation function mentioned in the introduction to this

chapter. For a perfect N�eel state,g(2) (k, l) = � 1=4 for jkj + jl j even or odd, so we

indeed retrieve this characteristic feature of the alternating sign of the correlations

when scanning the distance between two atoms.

I show in Figure 4.7(c) the measured correlation functions, and as expected we

see alternating sign correlations when� lies in the antiferromagnetic region. We can

extract two numbers fromg(2) (k, l) in order to get more quantitative. The amplitude of

the correlations decreases with distance, and we can �t thisdecay with an exponential

function, g(2) (k, l) / (� 1)jkj+ jl j expf� (jkj + jl j) =�g. The correlation length � (given

in number of lattice sites) is the �rst number we can extract.Second, we can compute

the N�eel factor, written as

SNe�el = 4 �
X

k,l

(� 1)jkj+ jl j g(2) (k, l) . (4.3)

This factor is an estimator of the mean number of spins antiferromagnetically correlated

with a given spin, so the average size in number of spins of theantiferromagnetic

domains in our 6� 6 square array. This quantity can therefore be associated with the

correlation length in lattice sites,SNe�el / � 2, for short-ranged enough correlations. As

we get less statistics to evaluate the correlations for longdistances, we restrict ourselves

to the indexesk, l such asjkj + jl j � 4 to compute the N�eel factor. Figure4.7(d)

shows the measured N�eel factor, which is signi�cantly di�erent from zero only inside

the boundaries of the antiferromagnetic phase. This is why the measurement of this

quantity allowed us to identify the phase boundaries in detuning.

Statistical and detection errors I have already presented in Chapter2 the statistical

error on the recapture probability, the standard error on the mean (s.e.m). This allows

us to compute the error on the Rydberg fraction. For the erroron the correlations,

and consequently on the N�eel factor, our theory collaborators estimated the error

(error bars on Figure4.7(d)) via bootstrapping techniques, consisting in re-sampling

the original set of data.
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I also presented in Subsection2.3.1 the detection errors:� is the probability to

misleadingly see a ground state atom as a Rydberg one, while� 0 is the probability

to make the inverted detection error. Due to these errors, the ratio between the

measured correlations and the one which would have been obtained without any

error is (1 � � � � 0)2. None of the experimental results presented here (and in general

in all this manuscript) are corrected for these detection errors. We rather include

the detection errors in numerical simulations to get a better agreement with the

experimental data.

4.3.2 An optimal sweep duration

We have now determined the most suitable �nal detuning to observe the most extended

antiferromagnetic correlations. We can in a following optimization stage vary the

value of tsweep (Figure 4.8(a)). The precise �xed parameters for the time pro�les

are in that case:jUj =h = 2.7 MHz, 
 max = 2� � 1.8MHz, � init = 2� � 6.0MHz,

� �nal = � 2� � 4.5MHz, t rise = 0.25 � s, t fall = 0.25 � s. For these parameters, as

jUj =h = 2.7 MHz, we are in the regime 
max < 
 c, and we cross the phase boundary

while sweeping the detuning. We sweep it for a varying duration tsweep ranging from

0.1 to 1.3� s. Considering the adiabaticity criterion, we expect thattsweep should be

large to have the most correlated state.

Figure 4.8summarizes the results obtained when varyingtsweep. The best correlations

are obtained fortsweep = 0.7 � s, corresponding to a measured correlation length in

lattice sites � = 1.35 � 0.09 (Figure4.8(c)). Although the correlation length is smaller

than two sites, the correlations have the expected sign up tojkj + jl j = 5, that is to

say for almost the whole array. The successive shells corresponding to a constant

m = jkj + jl j are called Manhattan shells, I will describe in more detail the correlations

inside a shell in the last section of this chapter.

Figure 4.8(d) shows the N�eel factor as a function oftsweep. This factor �rst increases

while increasingtsweep as expected from the adiabatic theorem, but then it saturates

and �nally decreases. In order to understand this behaviour, our theory collaborators

performed several numerical simulations. First, they resolved the time-dependent

Schr•odinger equation. As the Hilbert space size grows as 2N with N the number of

interacting atoms, tackling this numerical resolution in our caseN = 36 is hardly

achievable without any truncation of the Hilbert space. Since the correlations in our

system remain relatively short-range, they chose to solve the equation for smaller

systems, 4� 4 or 5� 5 atomic arrays, taking into account the full Hilbert space. The
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result of this simulation (dotted line) matches the experimental data only at low

tsweep. The solution given by the Schr•odinger equation implies anunitary evolution,

with a fully-coherent laser driving. In that case,tsweep � 0.5� s is enough to reach

SNe�el � 10 for a 4� 4 array, that is to say antiferromagnetic correlations extended over

a large part of the system. Therefore, if the evolution were unitary, the experimentally

accessible sweep durations, about 1� s, would be large enough to prevent Landau-Zener

transitions to occur and we would observe longer-range correlations. The observed

correlations are less extended, not because the adiabatic criterion is not ful�lled, but

because our system evolution is not unitary.

Local dephasing model We thus need to take into account in the simulation

decoherence processes originating from imperfections of our laser-driving [de L�es�eleuc

et al., 2018a]. Including all the di�erent types of imperfection would betoo demanding,

so we chose for convenience to solve a master equation written in Lindblad form:

d
dt

�̂ = �
i
~

h
Ĥ , �̂

i
+ L [�̂ ] , (4.4)

with �̂ the density matrix of the many-body system, andL a pure dephasing Liouvillian:

L [�̂ ] =
X

i



2

(2n̂i �̂ n̂i � n̂i �̂ � �̂ n̂i ) . (4.5)

The Liouvillian is a sum of single-particle jump operators,whose dephasing rate


 � 3.2� s� 1 is extracted from a �t of the single-atom Rabi oscillation (Figure 4.8(e)).

Indeed, by resolving our dephasing model for the single-particle case, we �nd that the

1=e damping time of the envelope of the measured Rabi oscillations (dotted lines)

is equal to 4=
 . In summary, we include the imperfections of our laser-driving by

adopting a pure dephasing model, whose dephasing rate is �tted from single-atom

Rabi oscillations.

Our empirical dephasing model (dashed line in Figure4.8(d)) is in a very good

agreement with the experimental data. Only a dephasing rateclose to the one inferred

from the measured Rabi oscillations gives the correct evolution of the N�eel factor,

as shown by Figure4.8(f). This justi�es the use of our empirical dephasing model.

The simulation was in that case also performed for a smaller 4� 4 system as the

correlations remain relatively short-ranged, and includes the aforementioned detection

errors with no adjustable parameters. This agreement suggests that the technical

imperfections of our qubit driving, at the single-particle level, are the reason why we

cannot generate more extended antiferromagnetic correlations. Implementing the more
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coherent qubit driving developed on the Harvard platform [Levine et al., 2018] could

extend the time our system follows an unitary evolution, in the end leading to more

extended correlations [Bernien et al., 2017; Keeslinget al., 2019].

The results presented in this section allow us to determine an optimized sweep in

view of generating the largest antiferromagnetic correlations. In the next section,

instead of looking at the correlations at the end of di�erentsweeps, we look at their

growth during a sweep. Observing the build-up of correlations in time, i.e. measuring

how correlations spread in the system, will explain their spatial dependence, namely

their relative values inside a Manhattan shell.

4.4 Observing the growth of correlations

In this last section, I will focus on how the correlations build up during an optimized

sweep, for a square array and, only in the last subsection, a triangular one. I will show

that the experimental results are well captured by a short-time expansion approach,

which gives more insight on the many-body dynamics occurring in our system.

4.4.1 Finite speed of spreading

To observe the growth of correlations in time, the experiment consists in abruptly

switching o� the excitation lasers at di�erent times of the evolution, in order to freeze

the many-body dynamics and measure the instantaneous correlations (Figure 4.9(a)).

The sweep parameters are the same as in Subsection4.3.2, with tsweep = 0.44 � s.

I plot in Figure 4.9(b) the N�eel factor as a function of the switching o� time.

Correlations start to appear fort > 0.5� s, which corresponds to the time when�

becomes negative, that is to say when we enter the antiferromagnetic region in the

phase diagram. Then, the correlations saturate aroundt = 0.8 � s. As the agreement

with the simulation including our empirical dephasing rateis very good (dashed

lines) when the value of
 is the one deduced from single-atom Rabi oscillations

(
 = 3.0 � s� 1), we can again conclude that it is because of the imperfections of the

laser driving that we cannot follow an unitary evolution (dotted lines) for a longer

time.

Time delay for the build up of correlations Figure 4.9(c) showsg(2) (k, l) as a

function of time for the three �rst Manhattan shells. The correlations appear �rst on
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the nearest neighbours, and then on the farthest ones. Therefore, we observe a delay

in the growth of correlations for increasing Manhattan shells, which is due to their

�nite speed of spreading. In order to be more quantitative about these delays, we

need a more involved analysis of the data. We �rst normalizedthe correlations for

each Manhattan shells, in such a way that at long times, the unitary evolution would

lead to correlations equal to one. Figure4.9(d) presents the correlations after this

normalization. Then, we choose a threshold level at 0.2, andlook at the time when

the normalized correlations intersect the threshold line.These times aret � 0.64� s

for the �rst shell, t � 0.71� s for the second, andt � 0.79� s for the third, and are

plotted in Figure 4.9(e).

Lieb-Robinson bounds This �nite speed of spreading of correlations is reminiscent

of Lieb-Robinson bounds. Lieb and Robinson proved that in non relativistic quantum

mechanics, even if there is no explicit speed of light limiting the propagation of infor-

mation, one can de�ne a characteristic velocity for su�ciently local interactions [Lieb

and Robinson, 1972]. This velocity is an upper bound for the spread of any correlations

in our system. The speed of spreading measured from the time delays described above

is about 70 times smaller than the bound evaluated by our theory collaborators based

on the Lieb-Robinson formalism.

In order to get a better understanding of the values of these time delays, they followed

an approach introduced in [Calabrese and Cardy, 2006], where the light-cone-like

spreading of the correlations is due to the propagation of excited quasiparticles. They

derived a group velocity for these quasiparticles by calculating the dispersion relation

applying a linear spin-wave theory. The group velocity can be seen as en e�ective

Lieb-Robinson velocity, and it was found to be equal tove� � 2� � 1.11a � s� 1 for our

experimental parameters, witha the lattice constant. The time delay of the spreading

of correlation from one shell to the next one is thena=(2ve� ) � 70ns, which is in a

very good agreement with the experimental data. Indeed, we measure that correlations

signi�cantly appear on the second shell about 70ns after they did on the �rst one,

and they appear on the third shell about 80ns after they did on the second one (see

Figure 4.9(e)).

Exponential decay of the correlations In addition to an upper bound for the speed

of spreading of the correlations, the theory developed by Lieb and Robinson predicts

that correlations are not zero outside the light-cone but decay exponentially. This can

also be seen on the experimental data, when the correlation reaches the threshold
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line for the �rst shell, it is not zero for the second. A short time expansion of the

evolution operator, which is a perturbative analytic calculation valid at times t such

that jUj t=~, 
 t, �t � 1, captures this trend. Indeed, our collaborators derived the

expression of the correlations as a function of time in this regime, and found that

g(2) (k, l) / (� 1)m t2+4 m with the Manhattan distance m = jkj + jl j. These expressions

lead to an alternating sign of the correlations when increasing m, and, as in this

regimet is small, to an exponential decay of the correlations for increasingm. All

the correlation patterns we observe in the antiferromagnetic region exhibit these two

features. Even if the regime of times explored in the experiment is not within the

range of validity of the short time expansion, the fact that the results are qualitatively

similar is instructive. It means that the features of the observed correlations are the

same as in their early development, when the evolution is still unitary.

4.4.2 Spatial structure of the correlations

I now describe in more detail the measured correlations at a �xed time for the �rst

three Manhattan shells of the 6� 6 square array, plotted in Figure4.10. They were

obtained at the end of the sweep described in the previous subsection. I have already

commented on the alternating sign of the correlations as a function of the Manhattan

distancem, the feature we expect from an antiferromagnetic state on a square array.

Correlations inside a shell Inside a given Manhattan shell, the correlations do not

have the same value. For example, form = 2, we observedg(2) (1, 1) � 2 � g(2) (0, 2).

The short-time expansion described above also reproduces this feature. The expression

of the correlations are �rst derived via this method by considering one chain ofm

bonds, no matter the lattice geometry. Then, by multiplyingthe correlations by

the number of linking paths of sizem between sites(0, 0) and (k, l), we obtain the

expression of the correlations for a given lattice geometry. For a square lattice, the

number of linking paths between sites(0, 0) and (k, l) is simply given by the binomial

coe�cient
� m

l

�
with l � k � 0, as shown in Figure4.10(a). Consequently, in the short

time regime, we expectg(2) (1, 1) = 2 � g(2) (0, 2). In Figure 4.10(c), I show how the

experimental data (blue disks) compare with binomial coe�cients (green dots). The

proportional factor was set for each Manhattan shell in sucha way that the maximum

estimated value for the correlations (green dots) is equal to the maximum value of the

measured correlations (blue disks). This combinatorial argument coming from the

short time expansion explains qualitatively the spatial structure of the correlations
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Figure 4.12: Correlations in a square or a triangle. (a) Measured correlations on a

6 � 6 square array for an optimized sweep. (b) Correlations of the antiferromagnetic state.

(c) Measured correlations on a 36-atom triangular array for an optimized sweep. (d)

Correlations of the1=3-�lling Rydberg crystal.

Therefore, we followed the same approach to estimate the values of the correlations

with a short-time expansion (Figure4.11(c)), and we obtained a good qualitative

agreement. In the end, this validates our choice to interpret the measured correlations

via a short-time expansion, as the qualitative agreement isgood for both square and

triangular array.

Square versus triangle As a conclusion for our study, Figure4.12 compares the

square and the triangle cases. I plot for both geometries themeasured correlations

obtained after an optimized sweep, to be compared to the correlations of the targeted

ground state of� Ĥ . The measured and targeted correlations are qualitativelysimilar

in the case of a square array, but are not for the triangular case.

I have shown that the spatial structure of both measured correlations could be

explained via a short-time expansion. The build-up mechanism of the correlations

at play within the short-time expansion approach consists in their spreading from

the inner shell to the outer shell. This results in a correlation pattern showing an

alternating sign in the di�erent Manhattan shells, which weindeed observed. For
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Chapter 4: Growth of antiferromagnetic correlations in an Ising-like magnet

the square array, the antiferromagnetic state exhibits thesame type of correlation

pattern. This implies that building correlations from the inner shell to the outer shell,

as the system does at the very beginning of its evolution according to the short-time

expansion, is a possible way to generate a state qualitatively close to the targeted

antiferromagnetic state.

On the contrary, for the triangular array, to build the targeted correlation pattern,

the correlations must undergo a more complicated phenomenon than the simple

propagation from the inner shell to the outer shell. They have to go through closed

loops, which is not accounted for in the short-time expansion since in this perturbative

treatment, going through closed loops would correspond to higher-order terms. In our

platform, the coherence time is not long enough for the system to realize the presence

of these closed loops, this is why we do not observe the targeted correlation pattern.

These closed loops, whose presence prevents us to generate the targeted state, may be

seen as a signature of geometrical frustration.

4.5 Conclusion

In this chapter, I have described our latest work about the quantum simulation of an

Ising-like model. We are able to generate antiferromagnetic correlations by a dynamical

tuning of the Hamiltonian, following adiabatic protocol widely used in the quantum

simulation community. We demonstrate that the limited extension of the observed

correlations comes from imperfections of our single-qubitdriving rather than from

a non-respect of the adiabatic criterion, and that the features of the correlations

are qualitatively captured by a short-time expansion, for both square and triangular

geometries. In the future, we will use another laser excitation scheme expected to have

better coherence properties. We may then go on exploring theproblem tackled in this

chapter with an extended coherence time, and reach the antiferromagnetic states in a

triangular array.

In addition to its use in quantum magnetism, the Ising model is also a toy model to

illustrate some features of high-energy physics, such as the con�nement of quarks [Ko-

rmos et al., 2016], which could also be seen in our platform. In an even wider range of

applications, it has been shown that the Ising model can be mapped into di�erent

optimization problems [Lucas, 2014]. In that sense, it has been proposed to use

Rydberg atoms interacting in the van der Waals regime to solve optimization problems,

such as �nding the maximum independent set of a graph [Pichler et al., 2018]. We will

implement this kind of optimization protocols on our platform in the near future.
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In this chapter, we will study another spin Hamiltonian, the XYmodel, of canonical

form

Ĥ XY =
X

i ,j

Jij
�
�̂ �

i �̂ +
j + �̂ +

i �̂ �
j

�
,

where the sum runs over all pairs of spins andJij is the interaction energy between

spinsi and j . This Hamiltonian describes the coherent exchange of excitations between

pairs of atoms. As stated in the Introduction, for the implementation of this model on

our platform, the e�ective spin-1/2 must be encoded in two dipole-coupled Rydberg

levels, whereas it was encoded in the electronic ground state and in one Rydberg

level in the Ising case. Here, we will use the statesj#i =
�
�60S1=2, mJ = 1=2

�
and

j"i =
�
�60P1=2, mJ = � 1=2

�
. The two Rydberg pair statesj"#i and j#"i are coupled

via the resonant dipole-dipole interaction, which gives the value of the couplingJij .

The interaction strength depends on both the interatomic distanceRij and the angle
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with respect to the quantization axis� ij , Jij / C3 (� ij ) =R3
ij , and is typically on the

MHz range for atoms separated by a few tens of microns. In Section 5.1, I will describe

in more detail the conditions for which a system of Rydberg atoms mimics spins-1/2

interacting via the XY model.

Since the energy separation between two adjacent Rydberg states is on the ten of

GHz range (it is about 16.7GHz for the qubit in use here), the e�ective spin-1/2 will be

manipulated using microwave �elds. The microwave �eld actsas an e�ective magnetic

�eld for the qubit, in the same way as the two-photon laser �eld did in the Ising case.

Then, we will follow the same kind of adiabatic protocol to study the XY Hamiltonian:

we will start from a paramagnetic phase under a strong external �eld, and slowly

decreasing it we will aim at generating correlated phases induced by the interaction.

Before presenting the results we obtained, I want to stress out the di�erences between

the Ising and the XY models, which has motivated our implementation of this other

spin Hamiltonian on our experimental platform.

An exotic phase diagram The main di�erence concerns the eigenstates of these two

spin Hamiltonians, in the absence of a transverse magnetic �eld. In the Ising case, the

eigenstates can be written as product states of spins up and spins down, i.e. states

de�ned in the N -qubit basis. Since they are product states, they correspond to classical

con�gurations. Such product states are not eigenstates of the XY Hamiltonian 1.

This means that interactions of the XY-form intrinsically produce some entangled

eigenstates, fundamentally di�erent from the classical con�gurations and potentially

leading to exotic phases. The characterization of these phases, both theoretically and

experimentally in solid-state physics, is still an active research �eld [Balents, 2010].

Among them, quantum spin liquids [Knolle and Moessner, 2019] have triggered a lot of

interest for a few decades as they could be associated with superconductivity [Anderson,

1987]. Such a spin liquid is expected to appear on a honeycomb lattice hosting spins

interacting via the XY Hamiltonian [Varney et al., 2011]. Studying these phases is

beyond the scope of the present manuscript, but this justi�es the interest in the XY

model and our implementation on our setup.

Coherent transfer of excitations I have already mentioned in the Introduction the

spin-exchange process, a direct consequence of the fact that states de�ned in the

N -qubit basis are not eigenstates of the XY Hamiltonian. For example, a two-atom

system prepared inj"#i will oscillate between the two statesj"#i and j#"i . This

1Except the two fully-polarized spin states j## ... #i and j"" ... "i .
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oscillation is coherently driven by the dipole-dipole interaction, to be contrasted with

regular spin 
ips driven by external �elds. This transfer of excitations driven by the

interaction may also occur in biological systems, which makes the XY model relevant

to study photochemistry or photosynthesis [Collini , 2013], and more generally to

describe transports of excitations in various contexts. For the �rst implementation of

the XY model in our experimental setup, the team explored thiscoherent excitation

transfer in a three-spin chain [Barredo et al., 2015].

Link to hard-core bosons The spin-exchange process can also be seen as the hopping

of a particle between two sites instead of the exchange of thetwo spin states. Hopping

particles therefore naturally arise from the atomic interactions, where the particle

is a spin excitation or a boson. This leads to a rewriting of the XY Hamiltonian in

terms of bosonic annihilation and creation operators (see Hamiltonian (A.5)). Then,

we are able to engineer speci�c hopping Hamiltonians for hard-core bosons, as we

demonstrated in our recent work [de L�es�eleuc et al., 2019]. This work consisted in

studying a bosonic version of the Su-Schrie�er-Heeger (SSH) Hamiltonian, one of the

simplest models expected to exhibit topological properties. We characterized these

topological properties in the single-particle regime and for the many-body ground

state.

The spin-exchange process and, more generally, hard-core boson Hamiltonians will

be explored in the last part of this manuscript. I will then interpret the result in

terms of spin-1/2 physics for convenience in this chapter. For instance, I will show in

Section5.2 how we can generate states with a speci�c number of spinsj"i , so how we

can aim at speci�c values of the magnetization, via microwave sweeps. In the hard-core

boson picture, these microwave sweeps would be seen as the way to inject a controlled

number of particles in the system, by setting an e�ective chemical potential. In the

case of the SSH chain, we used these sweeps to prepare the many-body ground state

corresponding to a half-�lled bulk. While describing these sweeps in the particular

case of the SSH chain, I will not insist on the topological properties of the system

as it is not the central topic of this chapter. I will rather focus on the value of the

magnetization and the spin-spin correlations. But I want tomake it clear for the reader

that the spin-spin correlations described here are not the only interest motivating our

study of microwave sweeps on an XY magnet, they were used as a tool to observe

topological properties in the many-body regime for an SSH chain.
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Long-range e�ects Finally, another di�erence between our implementation of the

Ising and the XY models is that the interaction decays as 1=R6 in the Ising case

whereas it decays as 1=R3 in the XY case. This is because in the XY case the interaction

is the direct dipole-dipole interaction, and not a second order perturbation term

like in the Ising case. The dipole-dipole interaction, experienced in our platform by

Rydberg atoms, is also the regime of interaction for polar molecules or magnetic

atoms, and is therefore a central tool to engineer Hamiltonians on quantum simulation

experiments. The extended range of the interaction in this regime enabled the study of

the many-body dynamics even in a sparsely �lled polar molecule optical lattice [Yan

et al., 2013]. For the �rst implementation of the XY model on our platform, the

experimental signatures of this extended range of the interaction were the revivals of

the oscillatory dynamics [Barredo et al., 2015]. More fundamentally, the long-distance

tail of the dipolar interaction allows for the existence of atrue long-range order

(correlations are not exponentially vanishing in a two-dimensional system at �nite

temperature) [Peter et al., 2012]. We will also see in this chapter one manifestation of

this long-range feature.

In this chapter, I will report our observation of the many-body features of an

XY magnet for increasing system sizes. I will start by a detailed description of the

dipole-dipole interaction, exploring it for a two-atom system. Then, I will show how

we reach magnetization plateaus for 1D-chains by dynamically tuning the parameters

of the external �eld. Finally, I will present the correlated phases we observed in 1D-

and 2D-systems. As explained, part of the experimental results shown in this chapter

were used as a tool to study the topological properties of an SSH chain [de L�es�eleuc

et al., 2019]. The other ones are not published yet.

5.1 Resonant dipole-dipole interaction

In this section, I will �rst develop the dipole-dipole interaction in terms of the di�erent

spherical components of the electric dipole operator, to show to what extent we can

restrict ourselves to speci�c terms, depending on the Rydberg levels in use, or the

geometry. Then, as the spin-1/2 is now encoded in two Rydberglevels, I will describe

what additional experimental steps we must perform to operate in the Rydberg

manifold. Finally, I will show the e�ect of the dipole-dipole interaction on the simplest

system composed of two atoms.
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5.1 Resonant dipole-dipole interaction

5.1.1 Full expression of the dipole-dipole interaction

The dipole-dipole interaction for two atoms labeled asi and j reads in term of electric

dipole operators

V̂ ddi =
1

4�� 0

d̂ i � d̂ j � 3
�

d̂ i � n ij

� �
d̂ j � n ij

�

R3
ij

,

with R ij = R j � R i the separation of the atomic pair,Rij = jR ij j and n ij = R ij =Rij .

A convenient way to treat this interaction is to use the decomposition of the dipole

operator into the spherical basis, with the componentsd̂
0
, d̂

+
and d̂

�
, as these operators

correspond to coupling to di�erent states in the single-atom Zeeman manifold. The

operator d̂
0

couples states such as �mJ = 0, whereas operatorsd̂
�

couple states such

as � mJ = � 1. With z the direction of the quantization axis, the components in the

Cartesian basis of the dipole operator are writtend̂
z

= d̂
0
, d̂

x
=

�
d̂

�
� d̂

+
�

=
p

2 and

d̂
y

= i
�

d̂
�

+ d̂
+

�
=
p

2. Then, with � and � the usual angles de�ning the position

in spherical coordinates,n ij = (sin (� ij ) cos (� ij ) , sin (� ij ) sin (� ij ) , cos (� ij )) , and the

dipole-dipole interaction �nally reads

V̂ ddi =
1

4�� 0R3
ij

"
1 � 3 cos2� ij

2

�
d̂

+
i d̂

�
j + d̂

�
i d̂

+
j + 2d̂

0
i d̂

0
j

�

+
3

p
2

sin� ij cos� ij

�
e� i � ij d̂

+
i d̂

0
j � ei � ij d̂

�
i d̂

0
j + e � i � ij d̂

0
i d̂

+
j � ei � ij d̂

0
i d̂

�
j

�

�
3
2

sin2� ij

�
e� 2i� ij d̂

+
i d̂

+
j + e2i� ij d̂

�
i d̂

�
j

�
#

.

(5.1)

Three terms appear then in the dipole-dipole interaction, with a di�erent action on

the total magnetic number of the two atomsM = mJ ,i + mJ ,j . On the �rst line, the

two-atom operators are such that �M = 0, on the second, such that �M = � 1 and

on the third, such that � M = � 2.

Now, we restrict ourselves to the qubit basis,j#i =
�
�60S1=2, mJ = 1=2

�
and j"i =

�
�60P1=2, mJ = � 1=2

�
. Consequently, the dipole-dipole interaction simpli�es to

V̂ ddi =
1

4�� 0R3
ij

1 � 3 cos2� ij

2

�
d̂

+
i d̂

�
j + d̂

�
i d̂

+
j

�
. (5.2)
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Then, rewriting Equation (5.2) in terms of the raising and lowering spin operators

� +̂ , � �̂ gives the XY Hamiltonian written at the beginning of this chapter, with

Jij = C3 (3cos2� ij � 1) =
�
2R3

ij

�
. I will present in Subsection5.1.3how we can measure

the interaction energyJij , in order to experimentally infer the value of theC3 coe�cient

for the involved Rydberg states,C3=h = 2.4 GHz � � m3.

The interacting terms appearing in Equation (5.2) are the most important ones

as they couple the degenerate pair statesj"#i and j#"i . Some other o�-resonant

interacting processes may also occur. For example, the termd̂
0
i d̂

0
j couplesj"#i with

�
�60S1=2, mj = � 1=2

�



�
�60P1=2, mj = 1=2

�
. These o�-resonant processes are negligible

if the Zeeman splitting is larger than the corresponding interaction energies. For the

experiments described in this chapter, the magnetic �eld de�ning the quantization axis

is set to 47 G, which implies that the energy separation between the two pair states

mentioned above is about 90MHz, one order of magnitude larger than any interaction

energy for a typical distance of 10� m. Consequently, the interaction Hamiltonian

derived in Equation (5.2) correctly described the dynamics occurring in our system.

This is why I insisted in Chapter2 on the necessity to generate magnetic �elds with

large amplitude.

Restricting ourselves to resonant coupling only, Equation(5.2) shows the complete

angular dependence of the dipole-dipole interaction. In most of the experiments

presented in this chapter, the quantization axis will be setalong the vertical axis, that

is to say within the atomic array. In that case,� ranges between 0 and 2� and � is

set to an arbitrary value, � = 0, for example. I will also show experiments with the

quantization axis orthogonal to the atomic array, along theaspherical lenses axis. In

that case,� = �= 2 and the interaction written in Equation (5.2) is isotropic within the

atomic array.

In Chapter 6, we will also operate in the geometry� = �= 2, but in an extended

Zeeman manifold using the state
�
�60P3=2

�
. Then, the terms corresponding to the third

line in Equation (5.1) may play a role, and they will allow us to implement complex

hopping amplitude via o�-resonant interaction processes like the ones aforementioned.

5.1.2 Quantum simulation with an encoding in the Rydberg manifold

After loading and preparing the atoms in the array, they are all initialized in jgi ,

in a targeted atomic geometrical con�guration. This was thestarting point of the

experiments described in the previous chapter. As the spin-1/2 is now encoded in two

Rydberg levels, we need to perform additional operations.
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STIRAP in the presence of interactions. Indeed, the Rydberg blockade, introduced in

the previous chapter, prevents two neighbouring atoms to beexcited simultaneously

because of the van der Waals energy shift. In the experimentspresented below, the

typical interatomic distance isa = 10 � m, and the van der Waals energy shift between

two 60S atoms is measured to beUSS=h = 0.11MHz. To have an e�cient Rydberg

excitation for the whole atomic array, we should have the blockade radius such that

Rb . a=2, implying an optical Rabi frequency 
=(2� ) & 7MHz. Operating at such a

large Rabi frequency would imply important spontaneous emission via the intermediate

state, and eventually a quite low Rydberg excitation e�ciency. On the contrary, I

plot in Figure 5.1(b) the Rydberg excitation e�ciency in a 4 � 4 square array using a

STIRAP as a function of the van der Waals energy shift. The e�ciency stays higher

than 0.9 as long asUSS=h < 1 MHz.

The �nite e�ciency of the STIRAP means that the initial lattic e with j#i atoms

contains \holes", which are atoms remaining in the electronic ground statejgi . They

will be mistakenly considered asj#i whereas they do not participate to the dynamics.

These holes represent about 10% of the lattice sites. Contrary to the Ising case, there is

no way to post select experimental shots with no lattice defects. Indeed, for our study

of an Ising-like model, thej#i is encoded injgi , whose occupation can be checked non

destructively by taking an additional 
uorescence image after the assembling process.

Nevertheless, even in the limited presence of lattice defects we will see that we are

able to observe interesting spin-spin correlation features.

Finally, to summarize on the experimental sequence, we use the STIRAP here

(and in all this manuscript) to completely Rydberg excite anatomic array despite

the van der Waals interaction. The optical Rabi frequenciesare larger than this

interaction to overcome it. But in a regime where the opticalRabi frequencies are

on the same order of magnitude as the van der Waals shift, as the STIRAP is also

an adiabatic protocol, it could be used to engineer non-trivial entangled state, as

proposed in [M�ller, Madsen, and M�lmer , 2008].

Microwave qubit driving Once the lattice of spins is initialized inj#i , we apply a

time-dependent e�ective \magnetic �eld" to reach correlated phases. This e�ective

�eld is in practice a microwave radiation, acting on the two qubit levels shown in

Figure 5.2(a). The energy separation is~! 0 � 16.7GHz, and the detuning from

resonance is de�ned as� � w = ! � w � ! 0. The microwave Rabi frequency can be tuned

between 
 � w=(2� ) = 0.1 � 20 MHz. The microwave �eld is generated by an antenna

(the output pin of an SMA connector) outside the vacuum chamber (see Figure5.2(a)).
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Our state-detection protocol leads to the measurement of the average population in

j"i and j#i . Therefore, we measure the spin projection on the quantization axis z, the

vertical axis of the Bloch spheres shown in Figure5.2(c). To access the other spin

components, we perform additional microwave pulses rotating the measurement basis.

By convention, the phase of the Rabi coupling is zero. Therefore, applying a pulse of

duration t � w with a zero-phase o�set rotates the spin vector (black arrowin the middle

Bloch sphere in Figure5.2(c)) by an angle � = 
 � wt � w around the e�ective magnetic

�eld along x (green arrow). For a rotating angle� = �= 2, or t � w = �= (2
 � w), the

middle Bloch sphere in Figure5.2(c) shows that the spin component initially alongy

is projected along the vertical measurement axis. Applying the same�= 2 pulse, but

now with a �= 2 phase o�set, projects the spin components initially along� x along

the vertical measurement axis (right Bloch sphere in Figure5.2(c)). Indeed, in that

case, due to this phase o�set, the rotation axis is now alongy. In general, we access

all the spin components along axes within the equatorial plane by applying a�= 2

pulse with a phase o�set ranging from 0 to 2� . Measuring the spin components in the

equatorial plane is crucial for the study of the XY model, because, as we shall see in

the following of this chapter, they exhibit characteristicspin-spin correlations.

5.1.3 Dipole-dipole interaction for two atoms

Now that I have introduced all the additional tools we need to perform experiments in

the Rydberg manifold, I report here our study of the dipole-dipole interaction for a

minimal system of two atoms. This will allow me to introduce the type of correlations

we may expect in an XY magnet. The XY Hamiltonian, in presence of an e�ective

external magnetic �eld, reads (rotating wave approximation):

Ĥ =
X

i

�
~
 � w

2
�̂ x

i � ~� � w n̂i

�
+

X

i ,j

Jij
�
�̂ �

i �̂ +
j + �̂ +

i �̂ �
j

�
(5.3)

with n̂i = j"i i h"ji and, as already introduced in subsection5.1.1,

Jij = C3
�
3cos2� ij � 1

�
=

�
2R3

ij

�
.

We �rst consider two atoms along the quantization axis, so� 12 = 0 and J12 > 0.

Superradiant and subradiant states Figure 5.3(a) shows the energy diagram of the

four two-atom statesj##i , j"#i , j#"i and j""i . The interaction lifts the degeneracy
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emission, we are interested here in their coupling to the external �eld. Nevertheless,

I will use the words superradiant and subradiant to refer to these symmetric and

antisymmetric superpositions in the following of this manuscript. These two kinds of

symmetric and antisymmetric states are also known as brightand dark states in the

context of adiabatic passage and state preparation protocol.

Now, I discuss the spin-spin correlations of the statesj+ i and j�i . They both are

antiferromagnetic alongz ash+ j �̂ z
1�̂ z

2 j+ i = h�j �̂ z
1�̂ z

2 j�i = � 1. On the contrary, along

y , j+ i is a ferromagnet whereasj�i is an antiferromagnet. Indeed,h+ j �̂ y
1 �̂ y

2 j+ i = 1

and h�j �̂ y
1 �̂ y

2 j�i = � 1. Since this is true for any other spin component within the

equatorial plane of the Bloch sphere,j+ i is called an XY ferromagnet andj�i an XY

antiferromagnet.

Instead of calculating the average of�̂ y
1 �̂ y

2, we can see the ferro- or antiferro-

magnetic feature by rewriting j+ i and j�i in the eigen-basis of�̂ y, de�ned as

j!i = ( j"i + i j#i ) =
p

2 and j i = ( j"i � i j#i ) =
p

2. Then, the two eigenstates read

j+ i =
j!!i � j  i

i
p

2
and j�i =

j! i � j !i

i
p

2

which is the equal superposition of aligned and anti-aligned spins alongy.

In summary, the superradiant state, shifted in energy by +J12, is an XY ferro-

magnetic state, whereas the subradiant state, shifted in energy by � J12, is an XY

antiferromagnetic state. We are going to study these phaseson larger systems later in

this chapter. Based on the reduced coupling to subradiant states (in the two-atom case

it is even cancelled), we anticipate that it will be hard to generate XY antiferromagnetic

correlations.

A two-atom XY ferromagnet I show now our characterization of the two-atom

superradiant statej+ i . First, we perform a spectroscopy experiment, applying a weak

microwave pulse with 
 � w=(2� ) = 0.35MHz during 0.75� s for a varying detuning

� � w (orange curve in Figure5.3(b)). The plotted quantity is 1 � P#" � P"# , with Pstate

the measured probability to obtain such a two-atom state. Therefore, we look at

events where only one atom is inj"i , and discard double excitation events which could

happen if the microwave pulse were too strong. Comparing theposition of the line

with that of a single atom (grey transparent curve centred at� � w = 0), we infer the

interaction energyJ12=h = 2.4 MHz for � 12 = 0 and R12 = 10 � m. We cannot see any

signal for negative detuning around� � w=(2� ) = � J12=h, because the coupling to the

subradiant state j�i vanishes as previously explained.
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5.1 Resonant dipole-dipole interaction

Then, we preparej+ i by performing a Rabi oscillation at� � w=(2� ) = J12=h. We do

it for the same Rabi frequency 
� w=(2� ) = 0.35MHz, and measure the populations

in the four di�erent two-atom states as a function of the duration of the microwave

pulse (Figure 5.3(c)). The populations in j##i , j"#i and j#"i oscillate at around

0.5MHz, which agrees with the expected enhancement of the Rabi coupling between

j##i and j+ i by a factor
p

2. As we operate with a weak microwave probe, meaning


 � w=(2� ) � J12=h, the excitation to j""i is inhibited and its population stays close

to zero. The �nite contrast of the observed oscillations is due to the detection errors,

and to the aforementioned imperfect initialization of all the spins of the lattice inj#i .

I �nally discuss the spin-spin correlations exhibited by the j+ i state, prepared in

about 1� s by applying a weak microwave pulse (see Figure5.3(c)). To measure the

spin-spin correlations for di�erent spin components, we apply on the j+ i state a strong

microwave pulse 
� w=(2� ) = 13.6MHz at the single-atom resonance� � w = 0 for a

varying duration t � w. This strong microwave pulse at resonance rotates all the spins

by an angle� = 
 � wt � w around the x axis, as introduced in Figure5.2(c). We write

this global rotation operator R̂ (� ). The spin-spin correlations of the rotated state

R̂ (� ) j+ i along the vertical measurement axis are given byh+ j R̂
y
(� ) �̂ z

1�̂ z
2R̂ (� ) j+ i =

P## + P"" � P#" � P"# , which is de�ned as the parity quantity. Figure 5.3(d) shows such

a quantity as a function of the rotation angle� . Without applying any rotation pulse,

we read the correlations alongz and measure negative correlations. After a�= 2 pulse of

around 20ns, we read the correlations alongy and measure positive correlations. So we

indeed observe on the prepared superradiantj+ i state XY ferromagnetic correlations.

The rotation angle � is equal to the microwave pulse area. For a perfect square

pulse,� = 
 � wt � w as already introduced. But in practice, due to the �nite riseand fall

times, the pulse area is not proportional to its duration. These times are about 5ns.

This is why the pulse duration corresponding to a�= 2-rotation, indicated by a black

dashed line in Figure5.3(d), does not correspond to the expected duration�= (2
 � w),

indicated by a grey dashed line. The time o�set between thesetwo durations agrees

with the one obtained �tting the parity oscillation by an o�s et sine (solid line in

Figure 5.3(d)).

To read the correlations alongy, the rotating pulse must be stronger than the

interaction energy to act on both atoms as if they would be non-interacting. This

is why we choose for the read-out microwave pulse a Rabi frequency larger than

10MHz. If the driving strength ~
 � w is on the same order of magnitude as the Zeeman

splitting, we cannot e�ciently rotate the qubit due to the ad ditional coupling to other

Zeeman states. This is the second reason why we need a high magnetic �eld de�ning
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the interaction along vertical and horizontal bonds means that we can expect on a

square lattice spins ferromagnetically ordered in one direction and antiferromagnetically

ordered in the orthogonal direction. This non-trivial pattern of correlations will be the

topic of subsection5.3.3.

Finally, I present the same kind of measurement for a quantization axis orthogonal

to the atomic plane in Figure5.4(b). Here, we used a microwave pulse of 2.1� s,


 � w=(2� ) = 0.1 MHz, and the interatomic distance wasR12 = 10 � m. As expected, we

�nd the same (negative) value for the interaction, whateverthe orientation of the

atomic pair. I recall that to perform this type of experiments with the quantization

axis being orthogonal to the atomic array, we have �rst used avertical quantization

axis to optically pumped the atoms injgi and then 
ipped the magnetic �eld (see

Figure 2.3).

5.2 Observation of magnetization plateaus in 1D-chains

Now that I have described the physics of an XY-magnet for the simplest case of two

interacting atoms, I consider the study for larger systems.A fundamental property of

the XY Hamiltonian, only considering here the interacting part / �̂ �
i �̂ +

j + �̂ +
i �̂ �

j , is

that it conserves the number of spin upN" and spin downN#. In the presence of an

external �eld, N" is still conserved for a longitudinal �eld but not for a transverse one.

This means that the eigenstates of the XY Hamiltonian are also eigenstates of

the operator N̂ " =
P

i j"i i h"ji , with integer eigenvalues. This has two consequences.

First, for our numerical study of aN -atom system, we can divide the full Hilbert

space of dimension 2N into several Hilbert subspaces of dimension
� N

N "

�
, corresponding

to integer values forN" ranging from 0 to N . This makes the numerical simulation

easier. Second, preparing the di�erent eigenstates of Hamiltonian (5.3) without any

transverse �eld 
 � w = 0 means that we reach integer average value ofN̂ " . As the

magnetization is proportional toN" � N#, we should be then able to generate states

exhibiting fractional magnetization valuesN" =N. This section aims at demonstrating

this ability on di�erent 1D systems.

We are going to reach these eigenstates corresponding to an increasingN" via a

dynamical tuning of the external �eld, to be compared to the procedure in the previous

section where we used a weak square microwave pulse. The procedure we follow here is

very similar to the one presented in the previous chapter, inFigure 4.7(a), where we

tried to reveal the antiferromagnetic region by measuring the Rydberg fraction after a

sweep with a varying �nal detuning. In the context of spin-1/2 physics, the detuning
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Many-body spectrum Figure 5.5(a) shows the eigen-energies of the 24 four-atom

eigenstates of Hamiltonian (5.3) for 
 � w = 0 and � � w = 0. Due to the absence of

external transverse �eld, we can use the aforementioned conservation ofN" to sort

these eigenstates by increasingN" . The di�erence between this representation of the

eigen-energies and the one in Figure5.3(a) is that we do not see here the energy of a

spin-
ip ~! 0. In fact, Hamiltonian (5.3) is written in the rotating wave approximation

for an external �eld 
 � w,� � w which means that the energy di�erence of a spin-
ip is

taken into account in the de�nition of the detuning. In other words, what we exactly

represent here are the eigen-energies of the interacting atoms dressed by the driving

microwave photons.

A striking feature of the many-body spectrum is that it is symmetric with respect

to the middle column at N" = N=2. This is again a characteristic feature of the XY

Hamiltonian, which re
ects the particle-hole symmetry in the context of hard-core

bosons. Consequently, inverting allj"i in j#i and vice-versa does not modify the energy

of the system.

The e�ect of the detuning in Hamiltonian (5.3) is to globally shift each column of

Figure 5.5(a) by an amount � N" ~� � w. Therefore, depending on� � w , the ground state

of Ĥ or � Ĥ will correspond to di�erent integer eigenvalues ofN̂ " , still without any

transverse �eld. This is what is shown in Figure5.5(b). I plot there the eigen-energies

of � 0 (� � w) � Ĥ (� � w), with � 0 the highest eigen-energy ofĤ , as a function of the

detuning. This plot is very similar to the one presented in Figure 4.5(b). The color

encodes the number of spinj"i for the associated eigenstate. On the zero-energy line,

corresponding to the energy line of the ground state of� Ĥ , we see thatN" grows

from 0 to N when scanning the detuning from positive to negative values.

Magnetization plateaus Consequently, starting from all the atoms initialized in

j#i and a positive detuning, we can increaseN" while ramping down the detuning,

following the same adiabatic protocol as in the previous chapter (more speci�cally

Subsection4.3.1). If the evolution were perfectly adiabatic, we should see plateaus in

the measured
D

N̂ "

E
when scanning the �nal detuning. The detuning boundaries of

these plateaus are indicated by the dashed lines in Figure5.5(b), and correspond to

fractional values of the magnetizationN" =N with N" ranging from 0 to N .

In order to understand better these expected plateaus, I plot in Figure 5.5(c)
D

N̂ "

E

of the ground state of� Ĥ as a function of� � w and 
 � w. For 
 � w = 0, we indeed see

the plateaus inN" , and when increasing 
� w the steps become less and less abrupt

until they are totally smoothed for 
 � w=(2� ) = 2 MHz, i.e. when 
 � w becomes on the
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order of the interaction energyJ . The colormap on the plotted surface encodes the

energy gap between the ground state and the �rst excited state of � Ĥ . When the gap

vanishes, it will be harder to follow an adiabatic evolution.

Positive versus negative initial detuning Since the initial state is the product state

of all atoms in j#i , following an adiabatic evolution when starting with a large positive

(negative) detuning leads to the preparation of the instantaneous ground state of� Ĥ

(Ĥ ), as it has been already discussed in the Ising case when presenting the adiabatic

preparation protocol. The highest energy state is an XY ferromagnet and the ground

state is an XY antiferromagnet becauseJ > 0, as expected from the two-atom study

presented before. We have also seen that the coupling to XY ferromagnet is enhanced

due to superradiance. We check this is still the case for the 4-atom chain. Considering

two eigenstates ofĤ with no transverse �eld whose numbers of spinj"i di�er by one,

j� m i and j� m+1 i , the enhancement or the inhibition of the coupling between these two

states via a transverse magnetic �eld is 0.5jh� m j
P

i �̂ x
i j� m+1 ij . This quantity is the

ratio between the Rabi frequency of the transition betweenj� m i and j� m+1 i , and the

Rabi frequency in the single-particle case, for the same microwave amplitude. We

call it the relative microwave coupling. Figure5.5(d) shows such a quantity for all

the possible coupling between the 24 eigenstates. We �nd again that the coupling

is enhanced for higher energy states and reduced for lower energy states, which is

reminiscent of the superradiance and subradiance properties discussed in the two-atom

case.

As I am focused in this section on reaching a targeted value forN" whatever the

nature of the correlations, we will choose an initial positive detuning to take advantage

of the enhanced coupling to higher energy states.

Observation of magnetization plateaus for a 4-atom line I now report our ex-

perimental observation of the generation of states with fractional magnetization. We

use the same three-step time pro�les for(� � w, 
 � w) as in the previous chapter. In a

�rst set of experiments, the parameters of the sweep are:t rise = 1.2 � s, tsweep = 1.2 � s,

t fall = 1.2 � s, � init =(2� ) = 6.0 MHz, 
 max=(2� ) = 1.8 MHz and we scan the �nal

detuning between 6 and� 6MHz (Figure 5.6(a)). For each value of the �nal detuning,

we measure the fraction ofj"i de�ned as f " =
D

N̂ "

E
=N, which is represented as

solid disks in Figure5.6(b). We indeed see an increase ofN" when scanning the �nal

detuning, but the expected plateaus, dotted line in the Figure corresponding to the

number of j"i for the local ground state of� Ĥ , are quite smoothed. Taking into
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why we aim at reaching the ground state of� Ĥ . We expect magnetizaton plateaus

for the 
 � w = 0 line while scanning the detuning (Figure5.7(c)), but the detuning

boundaries between regions corresponding to di�erent eigenvalues forN̂ " are closer

from each other, and the gap is smaller, as compared to the 4-atom case.

Consequently, we expect that the magnetization staircase will be less visible when

performing the same dynamical tuning of the Hamiltonian as wedid for Figure 5.6(a).

This is indeed what we see in Figure5.7(d), where the staircase is completely smoothed.

Plotting the probabilities to get a given N" (Figure 5.7(e)) reveals the successive

regions where an increasingN" is the most probable state when scanning the �nal

detuning towards negative values, but the transitions are too smooth to see marked

steps.

As a conclusion, the larger the system, the more di�cult the observation of

magnetization plateaus, as the gap decreases with the system size. Nevertheless, for

the system described in the next subsection, we will be able to observe plateaus in

the evolution of f " as a function of the �nal detuning for an even larger system of14

atoms.

5.2.2 Dimerized chains

I will here report the same type of experiment aiming at observing magnetization

plateaus, but now in the case of an assembly of dimers, weaklycoupled between each

other. This interaction Hamiltonian, which we could implement using the angular

dependence of the dipole-dipole interaction, is a bosonic version of the Su-Schrie�er-

Heeger (SSH) model [Su, Schrie�er, and Heeger, 1979]. This model was originally

developed to understand the electronic transport in polyacetylene, a macro-chain of

carbon atoms with alternating double and single bonds. It has regained interest a few

decades later as it is one of the simplest model exhibiting topological properties [Asb�oth,

Oroszl�any, and P�alyi , 2016].

Geometry for a dimerized chain In order to implement the SSH model, we have to

use a lattice geometry alternating strong and weak couplinglinks. We could have used

the dependence of the dipole-dipole interaction on the interatomic distance and have

atomic pairs separated by larger distances. We instead use the angular dependence

and work with the con�gurations shown in Figure5.8(a). We alternate between

pairs oriented along the quantization axis (quasi verticallink with an interaction

J=h � 2.4MHZ) and pairs nearly oriented along the horizontal (weak interaction
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Two con�gurations For the �nite-size system we work with, two con�gurations are

possible with an even number of atomsN . We start and end the chain either with a

strong link and get seven weakly coupled dimers (top of Figure5.8(a)), either with a

weak link and get six dimers in the bulk of the chain and two half-dimers on the edges

(bottom of Figure 5.8(a)). We compute the eigen-energies of Hamiltonian (5.3) without

external �eld for these two con�gurations (Figure 5.8(b)), for a smaller system of 10

atoms to ease the numerical treatment. I �rst focus on the column N" = 1. In both

cases, the spectrum shows two bands shifted symmetrically from zero by an amount

� J , corresponding to the binding energy of the dimers. For the con�guration at the

bottom, the spectrum exhibits two additional levels on the zero-energy line, whose

wavefunctions squared have a maximum amplitude on the edgesof the chain. These

additional eigenstates at zero-energy are known as edge states, a typical signature of

the topological properties of our system. Then, the con�guration on top of Figure5.8(a)

is called a trivial con�guration whereas the con�guration at the bottom is a topological

one.

We are now able to understand the many-body spectrum shown inFigure 5.8(b).

For the trivial case (top), adding spinj"i creates bands further and further away from

zero energy until we reachN" = N=2 and the many-body ground state ofĤ or � Ĥ

can be seen as an assembly of dimers containing one spinj"i each, at a total energy

� � J � N=2. For the topological case (bottom), the many-body ground state has a

four-fold degeneracy, corresponding to the dimers of the bulk hosting one spinj"i each,

and the edges being spinj"i or j#i (four possibilities with N" = N=2 � 1, N" = N=2

(doubly degenerate) orN" = N=2 + 1) as 
ipping spins on the edges costs zero energy.

In that case, the energy of the ground state ofĤ or � Ĥ is � � J � (N=2 � 1). As in

the previous subsection, we compute the coupling between the di�erent eigenstates

of the Hamiltonian for both con�gurations (Figure 5.8(c)), and �nd that it is still

enhanced towards higher energy states. We then keep focusing on the ground state of

� Ĥ .

Magnetization plateaus for a dimerized chain I now turn to the experimental

observation of a magnetization staircase for the dimerizedchain. For the trivial

con�guration, Figure 5.9(a) shows the expected staircase for the 
� w = 0 line. As

the fractional magnetization steps fromN" = 1 to N" = N=2 � 1 are too narrow in

detuning and the gap vanishes in these regions, we will not observe these steps. On the

contrary, the step at zero-magnetizationN" = N=2 is wider and the gap is �nite, hence

should be observable. This is con�rmed by the experimental data (Figure 5.9(b)),

141





5.3 Generation of correlated-spin states

probability), there is only a slight increase at zero detuning.

To conclude, the speci�c geometry adopted here (dimerization) leads to many-body

ground states with a non-vanishing gap, which enables the preparation of these states

even for a relatively high number of spins, namelyN = 14.

5.3 Generation of correlated-spin states

In the previous chapter, to get more insight on the antiferromagnetic phase we were

aiming at generating, we focused on the spin-spin correlations using our site-resolved


uorescence imaging. Following the same approach, I reporthere our observation of

the correlations obtained for the 1D systems already presented, and �nally for a 4 � 4

square array. I recall the de�nition of the spin-spin connected correlation function

between sitesi and j (i 6= j )

Ci ,j = 4 � (hn̂i n̂j i � h n̂i i hn̂j i )

with n̂i = j"i i h"ji . Without any further operations, we measure the correlations of

the spin component along the quantization axisz. Applying an additional global

microwave pulse to rotate the measurement basis, we have access to correlations for

the other spin components.

5.3.1 Assembly of two-spin ferromagnets in a dimerized chain

I �rst focus on the dimerized chain in the topological con�guration. We are interested in

the many-body ground state of� Ĥ , corresponding to a bulk with a zero magnetization

(one j"i per dimer). We target the plateau atN" = N=2� 1, so we use the same sweep

parameters as in Figure5.6(a) with a �nal detuning � �nal =(2� ) = 1.0 MHz.

Figure 5.10(a) shows the correlations along the quantization axis. We measure large

intra-dimer negative correlations, as the one we were observing for the two-atom case.

We apply a strong microwave pulse to rotate the measurement basis, and measure

the intra-dimer correlation as a function of the rotating time (Figure 5.10(b)). This

result is very similar to the parity quantity we plotted in Figure 5.3(d). After a strong

�= 2-pulse, so for about 20ns, we measure positive intra-dimer correlations alongy.

This is the case for all the dimers of the chain, as shown by Figure 5.10(c), representing

the correlations alongy between all the spins of the chain.
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and y, the middle and right panels are quite similar, meaning thatthe dynamical

tuning of the external �eld is slow enough to follow an adiabatic evolution. Comparing

now to the measured correlations, the experimental data is in a good agreement for

correlations alongz and in a qualitative agreement for correlations alongy. Indeed,

along y, we should have measured a decay as a function of the distancebetween

correlated spins, and we rather measure quasi homogeneous correlations.

We draw the same kind of conclusion for the 8-atom line with aninitial positive de-

tuning. We observe short-ranged antiferromagnetic correlations alongz (Figure 5.11(c))

and longer-range ferromagnetic correlations alongy (Figure 5.11(d)). As before, the

main discrepancy between the measured correlations and thecalculated ones is in the

case of correlations alongy. This could be due to some imperfections in our rotation

process of the measurement basis, and is a call for future investigations.

XY antiferromagnet Finally, we tried to generate an XY antiferromagnet on the

4-atom line. For this, we revert the sign of the detuning and start with � init =(2� ) =

� 6.0MHz in order to reach the lowest energy state of the many-body spectrum.

Figure 5.11(e) shows the correlations alongz and Figure 5.11(f) the ones alongy.

The measured correlations agree with the calculated ones taking into account the

parameters of the sweep, they have the same sign with a reduced contrast. The

most striking di�erence is between the calculated correlations and the ones of the

ground state ofĤ , the correlations of an XY antiferromagnet. Indeed, the calculated

correlations do not have the expected sign, which means thatour sweep is not slow

enough to reach adiabatically the ground state ofĤ .

We were expecting this after computing the coupling betweenthe di�erent eigenstates

via a transverse �eld (Figure5.5(d)). As the coupling towards lower-energy states is

very weak, its adiabatic preparation requires large amounts of time. In order to see

correlations with the expected sign, I numerically found that we must follow the same

sweep as in Figure5.6(a) but multiplying the durations by at least a factor 40. I did

not scan the other parameters of the sweep, so a shorter sweepmay exist to reach the

antiferromagnet. Nevertheless, our �rst trial and failure to reach the antiferromagnet

con�rms that these states are way more di�cult to prepare, due to their intrinsic

subradiant nature, resulting in a reduced coupling.

We have not tried experimentally to reach the XY antiferromagnet for the 8-atom

line, as we expect to face the same di�culties. Actually, it should be even more di�cult

for the 8-atom line because the gaps are smaller in that case.
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to the subradiant nature of the XY antiferromagnet prevents us to reach it within

the accessible time-scale of our experiment, so we have not tried experimentally to

generate it. We have not tried either to generate the XY ferromagnet starting with

a negative detuning, but in that case we expect to succeed thanks to the enhanced

coupling towards this state.

An up-down symmetry So far, I have discussed about the particle-hole symmetry,

resulting in a left-right symmetry of the many-body spectrum with respect to the

middle column at N" = N=2. I now discuss about a symmetry with respect to the

zero-energy line, an up-down symmetry. In the case of the dimerized chain, I mentioned

the sub-lattice symmetry, existing in the peculiar geometry used there because the

lattice can be divided into two sub-lattices, the two parallel sub-chains, with no

interaction within a sub-chain. A known consequence of the sub-lattice symmetry is

this up-down symmetry of the eigen-energies with respect tothe zero-energy line.

For the other systems presented in this chapter, as the interaction between next-

nearest neighbours is not negligible due to the long range ofthe dipole-dipole interaction,

we cannot operate such a partition into two sub-lattices. As aconsequence, the many-

body spectra are not symmetric with respect to zero. The di�erence between the

positive eigen-energies and the negative ones is the most important for the square with

isotropic interaction, as in that case the number of next-nearest neighbours increases.

If we had interaction only between nearest neighbours, the interaction Hamiltonian

would respect the sub-lattice symmetry, where a sub-lattice is obtained by taking one

site every second lattice site. For the square with the anisotropic interaction, as the link

to the next-nearest neighbour is oriented along the 45� line, close to the magic angle,

this interaction is very weak. Therefore, we expect a reduced up-down asymmetry in

the many-body spectra, which is con�rmed by the computation(Figure 5.12(b)).

Finally, I comment on which direction the eigen-energies areshifted due to the

long-range interaction, considering the simplest system of three spins on a line. If

the two �rst spins are aligned in the equatorial plane, in an XYferromagnetic order,

aligning the third spin with the two others will ful�l the two -spin ferromagnetic

condition at the nearest-neighbour and the next-nearest-neighbour levels. If the two

�rst spins are anti-aligned, in an XY antiferromagnet, anti-aligning the third spin

with the second one will ful�l the two-spin antiferromagnetic condition at the nearest-

neighbour level, but it cannot simultaneously ful�l it at th e next-nearest-neighbour

level. This means that ferromagnetic states are shifted further than the zero-energy

line and antiferromagnetic states are shifted closer, as compared to the spectrum
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giving by nearest-neighbour interaction only. Consequently, the density of states is

bigger in the antiferromagnetic band, leading to reduced energy gaps and a more

di�cult preparation to generate these states. These reduced gaps mean that the states

may be almost degenerate, which can be considered as frustration, here due to the

longer range of the interaction (see an example with ions [Islam et al., 2013]).

5.4 Conclusion

In this chapter, I have demonstrated our ability to reach targeted many-body ground

states of the XY Hamiltonian, for di�erent geometries, if the coupling via a transverse

�eld from the initial trivial product state towards the targ eted state was not reduced.

The generated states show the expected properties, in termsof number of spinj"i

where we were able to observe magnetization staircases, or spin-spin correlations.

I have also explained why we were able to generate these states by a numerical

study, computing the gaps and the coupling via a transverse �eld. As the coupling to

ferromagnetic states is enhanced due to the superradiant nature of these states, we

mostly observed XY ferromagnets. The only possibility to observe antiferromagnetic

correlations was to study an hybrid system of antiferromagnetic and ferromagnetic

links, exhibiting a stripy order, where we took advantage ofits dominant ferromagnetic

nature to have an enhanced coupling to reach it.

In the introduction to this chapter, I made a di�erence between the eigenstates

of the XY Hamiltonian and the ones of the Ising Hamiltonian, in the absence of a

transverse �eld. They are entangled states in the XY case whereas they are classical

product states in the Ising case. In fact, in the presence of an external transverse �eld,

the eigenstates of the Ising Hamiltonian are also entangled.This is why some groups

have been able to observe entanglement using the Rydberg blockade [Wilk et al.,

2010; Isenhoweret al., 2010]. We can then write, for the Ising Hamiltonian also, the

eigenstates as symmetric or antisymmetric, superradiant or subradiant, superposition

of classical product states. For this Hamiltonian, we were only interested in the

correlations along the quantization axisz, and both symmetric and antisymmetric

superpositions show antiferromagnetic correlations along this axis. So the fact that we

can more easily prepare the symmetric superposition did notprevent us to observe

antiferromagnetic correlations in the previous chapter. Moreover, in the Ising case, the

symmetric and antisymmetric superposition are degenerate, so it does not modify the

many-body spectrum, this is why I did not describe this superposition feature at that

time. On the contrary, the observation of antiferromagnetsis more di�cult for the XY
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Hamiltonian because these states have subradiant properties only in that case.

Therefore, depending on the many-body states of the XY Hamiltonian we want to

study in the future, we shall rely on di�erent approaches. Ifwe study XY ferromagnets,

or more generally states with an enhanced coupling via a transverse �eld, the approach

consisting in a dynamical tuning of the parameters, described in this chapter, will

still be valid. Otherwise, for XY antiferromagnets, we should either try some more

involved dynamical tuning, developed in the optimal control context [Caneva, Calarco,

and Montangero, 2011], either engineer a more elaborate product state composed of

j"i and j#i by locally 
ipping some of the spins [de L�es�eleuc et al., 2017] (I will show

such a local spin-
ip procedure in the next chapter). As this product state is not an

eigenstate of the Hamiltonian, it will evolve and studying its dynamics could reveal

some interesting out-of-equilibrium physics, such as many-body localization.
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In this last part of the manuscript, we will still study the exchange Hamiltonian

between Rydberg atoms (see Equation5.1), which implements the XY spin model as

we have seen in the previous chapter, but considering an additional Zeeman level and

other complex-valued exchange terms. The aim of this chapter is to show that, under

this consideration, our system can lead to the engineering of topological matter.

One of the signatures of topological matter for �nite-sizedsystem is the existence

of chiral edge modes, characterized by the circular motion of the particle along the

edges of the system, in a preferential direction. The systems hosting chiral edge modes
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are called topological insulators, as they are conducting on the edges but insulating

in the bulk. They have emerged as a new phase of matter about twenty years ago,

and triggered a lot of interest due to their unique transportproperties [Moore, 2010;

Wang, Dou, and Zhang, 2010].

In order to study these propagation features on our Rydberg-based platform, we

need to prepare a localized excitation, meaning we need to change the state of one of

the atoms, and this excitation will hop to neighbouring lattice sites with a hopping

amplitude between two sites given by the dipole-dipole interaction strength between

the two Rydberg atoms. This is a di�erent approach than the one used in the previous

chapter. There, we were aiming at preparing the ground state of the Hamiltonian.

Here, we prepare a localized excitation, which is not an eigenstate of the system, and

see how it propagates. We will use then, for convenience, theframework of hard-core

bosons rather than the one of spin-1/2 for this study, the connection between these

two pictures having already been made (Chapter5).

The single-particle transport properties of the system canbe expected from the

study of its band structure (eigen-energies as a function ofthe wave vectors of the

eigenstates). Indeed, if this diagram exhibits a linear behaviour, associated with a �nite

group velocity (de�ned as the derivative of the energy with respect to the wave vector),

we expect some propagating modes. We can also extract from the band structure

the integrals of the Berry curvature for each band, called the Chern numbers. The

Chern numbers are topological invariants. If they are di�erent from zero, the system

shows topological properties. Having a non-zero Chern number for an in�nite lattice

and observing chiral edge modes on a �nite-sized system is equivalent. This is known

as the bulk-edge correspondence, explaining why observingchiral edge modes is a

signature of the topological properties of a system.

One way to engineer such topological band structures is to break the time-reversal

symmetry, by implementing some complex hopping amplitude.This is for example the

mechanism at play in the Haldane model [Haldane, 1988], experimentally realized

with ultracold fermions in an optical lattice [Jotzu et al., 2014]. In this model, the

coupling to next-nearest neighbours in a honeycomb latticeare complex-valued.

Implementing complex hopping amplitudes also leads to arti�cial gauge �elds [Jaksch

and Zoller, 2003; Goldman, Beugnon, and Gerbier, 2012; Goldman et al., 2014], acting

on the motion of the particle. This type of �eld is a way to mimic the e�ect of a

magnetic �eld, whereas the particle is not carrying any charge. The link between

complex hopping amplitudes and arti�cial magnetic �elds may be understood as an

analogue to the Aharonov-Bohm e�ect [Aharonov and Bohm, 1959]. While the particle
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is hopping between lattice sites, a phase, sometimes referred to as the Peierls phase, is

imprinted on the particle wavefunction. Then, a particle circulating around a lattice

plaquette will acquire a phase proportional to the magnetic
ux enclosed by this

plaquette. Such complex hopping amplitudes have successfully been implemented

on di�erent platforms : among others for ultracold atoms, byusing laser-assisted

tunnelling in an optical superlattice [Aidelsburgeret al., 2011], by periodically driving

an optical lattice [Struck et al., 2012], or by using synthetic dimensions and Raman

transitions [Mancini et al., 2015; Stuhl et al., 2015]; and for supraconducting qubits,

by modulating the coupling strength [Roushanet al., 2017a].

So far, the dipole-dipole coupling strength described in this manuscript was real. To

implement complex hopping amplitudes with Rydberg atoms, it has been proposed to

use additional terms of the dipole-dipole interaction [Peter et al., 2015; Ki�ner, O'Brien,

and Jaksch, 2017; Weber et al., 2018], which are non-zero when the quantization axis

is perpendicular to the atomic array1. Considering anS level as being a vacant site

and a nP level as being a site occupied by one particle, these additional exchange

terms change the Zeeman level of thenP excitation while it is hopping between lattice

sites, and then involve a secondnP level. The two nP levels can be interpreted as

the two spin states of the e�ective particle. This spin-
ip hopping is associated to an

orbital phase factor, giving rise to the targeted complex hopping amplitude. As this

hopping process involves both a spin-
ip and an orbital phase factor, it can be seen as

an intrinsic spin-orbit coupling.

In this chapter, I will show how this intrinsic spin-orbit coupling can lead to the

observation of chiral edge states. I will �rst describe in more details the di�erent

hopping processes at the two-particle level (Section6.1). Then, I will explain how it

results in some topological features for a system of Rydbergatoms in a honeycomb

lattice (Section 6.2). Finally, I will report our �rst experimental observations of

the e�ect of the implemented complex hopping amplitudes on aminimal system of

three atoms (Section6.3). The study described in this chapter corresponds to the

ongoing work performed in the lab during the completion of this manuscript, so the

experimental results presented here are preliminary. The theoretical work was realized

by our collaborators in Stuttgart [Weber et al., 2018].

Most of the discussions in this chapter concern the single-particle regime, and I will

comment on the many-body regime only in Subsection6.3.3.

1They are the terms on the third line of Equation (5.1)
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6.1 Hopping processes in an extended Zeeman structure

Here, I describe in more details the three Rydberg states and the dipole-dipole

exchange terms involved in view of implementing complex hopping amplitudes. Using

an additional Rydberg level, we operate in an extended Zeeman manifold, and I

will show the microwave control of the Rydberg state in that case (as compared to

Subsection5.1.2where only two levels were involved). Then, I will explain why an

electric �eld is needed to implement the Hamiltonian of interest. I will present in the

following how we prepare a localized excitation among the Rydberg atoms, which is

the necessary step to study the propagation of a particle on alattice. Finally, I will

show the calibration of the hopping amplitude, by observingthe spin-exchange process

in the minimal case of two interacting atoms.

6.1.1 Dipole-dipole interaction and spin-orbit coupling

As stated at the beginning of this chapter, the required additional exchange terms to

implement complex hopping amplitudes are non-zero when thequantization axis is

perpendicular to the atomic plane. Therefore, we set for this chapter the magnetic �eld

de�ning the quantization axis along thex axis (aspheric lenses axis), i.e perpendicular

to the atomic plane. In that case,� = 0 (see Equation (5.1)), and the dipole-dipole

interaction reads

V̂ ddi =
1

4�� 0R3
ij

"

d̂
0
i d̂
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j +
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2

�
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+
i d̂
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�
�
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�
e� 2i� ij d̂
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i d̂

�
j

�
#

. (6.1)

The expression of the dipole-dipole interaction is displayed on the top of Figure6.1.

The � angle appearing in Equation (6.1) is the one between the interatomic axis and a

reference axis in theyz plane. This reference axis is set arbitrarily, so the absolute

value of � does not have any physical meaning. In particular, in the two-atom case, the

internuclear axis can be chosen as the angle reference, and� = 0 or � = � . Therefore,

we need at least three atoms not on the same line to have some complex amplitude in

Equation (6.1). We choose they axis as the reference axis, and� is positive in the

anti-clockwise orientation.

The exchange terms featuring complex amplitudes (framed ingreen in Figure6.1)

change the total magnetic number of the two-atom system. Therefore, they must involve

158





Chapter 6: Emergent gauge �elds for Rydberg atoms

hop from site 1 to 2: a resonant process (orange arrow), of amplitude � t � , where the

particle keeps the same value of spin and the system goes to the j0�i state; or an

o�-resonant process by� (green arrow), of complex amplitudewe� 2i� 12 , where the

particle 
ips spin and the system goes to thej0+i state. The orbital phase factor

e� 2i� 12 , resulting from the geometrical dependence of the dipole-dipole interaction, can

be understood as follows: while the particle is increasing its internal momentum by

two quanta 
ipping from state j�i to state j+ i , its orbital momentum must decrease

by two quanta, hence the phase factor. This is the intrinsic spin-orbit coupling of the

dipole-dipole interaction.

We �nd the same two types of hopping processes for aj+ i particle. The two-atom

state prepared inj+0 i can jump resonantly toj0+ i (orange arrow, amplitude� t+ ),

or o�-resonantly to j0�i (green arrow, amplitudewe2i� 12 ). In the case of the spin-
ip

hopping for j+ i , the orbital phase factor is the complex conjugate of the onein the

j�i case. Indeed, now the particle is decreasing its internal momentum by two quanta,

so its orbital momentum must increase by two quanta.

The exchange terms described above involve only Rydberg levels belonging to the

V-structure. Then, restricting to these three levels correctly model the dynamics in

the system. On the contrary, the static dipole-dipole interaction (purple arrow in

Figure 6.1) makes the system prepared inj� 0i leave the V-structure. The in
uence of

this last term can be reduced by shifting thejbi state away from the energy window

betweenj�i and j+ i , hence the necessity to isolate the V-structure (Subsection6.1.3).

6.1.2 Probing the extended Zeeman manifold with microwave

I now describe the microwave excitation from the 60S1=2 state to the 60P3=2 state

at the single-atom level (see Figure6.2). The experimental sequence is the same as

the one described in Subsection5.1.2. The atom is transferred from the electronic

ground state to the Rydberg statej0i via a STIRAP, then excited to j�i , jbi or j+ i

shining microwave photons, and �nally we send a deexcitation pulse coupling the

atom in j0i back in the electronic ground state. In the end, an atom inj0i before the

deexcitation pulse will be recaptured at the end of the sequence, whereas if it is in any

other Rydberg state, it will be lost. Consequently, our detection method does not

allow to distinguish between the two particle spin statesj�i and j+ i , and we will

write the particle state in a simpli�ed notation j1i . The probability to be in j1i is thus

the probability to be in the states of interestj+ i or j�i , or in jbi .

Figure 6.2 (bottom) shows the spectroscopic signal we obtain varying the microwave
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Figure 6.2: Microwave transitions in an extended Zeeman structure. Energy diagram

of the Rydberg levels involed, as a function of the direction of the quantization �eld

Bx , for jBx j = 6.8 G. The three possible transitions from thej0i state are indicated by

arrows. Bottom, spectroscopic signal (recapture probability as afunction of the microwave

frequency) showing the three di�erent transitions.

frequency. The three dips in the recapture probability indicate the three transitions

from j0i to j�i , jbi or j+ i . We measure an energy separation betweenj�i and j+ i

�=h � 25 MHz, for a quantization magnetic �eldBx = 6.8 G and a cancelled electric

�eld. The spectra do not have the same width. Actually, the three di�erent spectra

were recorded with di�erent microwave powers (the power wasthree times as large to

observe the transition to thejbi state). This is because the Rabi coupling between

j0i and the levels of the 60P3=2 manifold depends on the targeted level, due to the

polarization of the microwave �eld and the di�erent angularparts of the electric dipole

matrix elements. For example, for an equally polarized circular microwave (as many

� + photons as� � ones), the Rabi frequency for the transition toj+ i is enhanced by a

factor
p

3 with respect to the one for the transition toj�i .

Controlling the polarization of the microwave �eld inside the vacuum chamber

is quite hard, due to the multiple re
ections of the �eld on the elements under

vacuum, namely the metallic lens holders, whose separationis on the order of the

microwave wavelength. Indeed, the microwave frequency being in the � 10GHz range,
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its wavelength is about a few centimetres. Nevertheless, tweaking the alignment of the

microwave antenna, placed above the chamber, along the Zeeman axisy, we achieve

reducing the generation of� -polarized microwave photons (photons linearly polarized

along the quantization magnetic �eld directionx). Therefore, to observe the transition

to jbi , we need much more microwave power. For this power and magnetic �eld, the

energy separation is on the order of the Rabi frequencies forthe transition to j�i

or j+ i , and when the microwave �eld is at resonance for the transition to jbi , the

coupling to j�i or j+ i prevents an e�cient driving to jbi . This is why the jbi line is

less contrasted than the other ones.

In the previous chapter, to inhibit the coupling to other Zeeman levels, we were

operating with a large magnetic �eld, increasing the Zeemansplitting. Here this is not

a valid solution, since the value of� controls the phase of the implemented complex

hopping amplitude, as we shall see in the following of this chapter. It cannot be set to

a arbitrarily high value. Then, the Rabi frequency to transfer the atom from j0i to a

particle state must be smaller than the energy separation (in practice it will be on the

megahertz range), which means a duration for the preparation on the order of the

microsecond.

The solution to operate with larger Rabi frequencies keeping the same Zeeman

splitting would be to generate some circular polarized microwave �eld. In order to do

so, we have installed a second antenna, in that case aligned along the z direction.

Again, tweaking the alignment of this antenna, we avoid the generation of � -polarized

photon. In the near future, we will control the relative amplitudes and phases of the

signals sent to the antennas to produce circular polarized microwaves, leading to faster

and more e�cient preparation.

Finally, I show in Figure 6.2 how the V-structure is changed when we invert the

direction of the quantization axisBx . It turns out that the mJ of the Rydberg levels

involved in the V-structure are inverted, but � keeps the same sign. This is because

when we work with a quantization axis alongx, the atoms are �rst optically pumped

into the highest energy level of the
�
�5S1=2, F = 2

�
manifold with a quantization axis

along z (see Subsection2.1.2). Then, when we 
ip the �eld along the x direction, they

adiabatically follow the direction of the �eld and stay in the highest energy level.

If Bx > 0, they are in the
�
�5S1=2, F = 2, mF = 2

�
electronic ground state, whereas

if Bx < 0, they are in
�
�5S1=2, F = 2, mF = � 2

�
. In the end, the mJ of the Rydberg

states belonging to the V-structure are inverted. If we want to operate in the regime

� < 0, we must invert the direction of the quantization �eld Bz during the optical

pumping.
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This inversion of themJ while inverting the magnetic �eld Bx has two consequences.

First, performing the spectroscopy of thej�i line for both directions of Bx and

the same microwave power, we deduce the imbalance between� + and � � polarized

photons, to characterize more quantitatively the polarization of our microwave source.

The Rabi frequencies, measured in both cases, di�er by approximately 10%. Second, in

the inverted case, the spin-
ip hopping of aj+ i particle now corresponds to a increase

of the internal momentum by two quanta, so the orbital momentum must decrease

by two quanta. In the end, in theBx < 0 case, the implemented complex hopping

amplitudes show the opposite phases, leading to the inversion of the circular motion

as we shall see in Subsection6.3.1.

6.1.3 Isolating the V-structure with electric �elds

As mentioned in Subsection6.1.1, one exchange term of the dipole-dipole interaction

(Equation (6.1)) involve other levels than the ones belonging to the V-structure

fj 0i , j�i , j+ ig . It turns out that an interacting model involving only the V-structure

levels accurately describes the hopping dynamics for a wisechoice of magnetic and

electric �elds. Our collaborators �nd out the values of these �elds by conducting the

same type of investigation as they did to accurately map the problem of interacting

Rydberg atoms into an Ising problem (see Subsection4.2.1).

Only applying a magnetic �eld, the dynamics occurring in thesystem is not

accurately described only considering the levels belonging to the V-structure because

the jbi state is in between thej�i and j+ i states (Subsection6.1.1). To shift it away

from the V-structure, the solution is to apply an electric �eld, as the Stark e�ect

experienced by a level depends on the absolute value ofmJ . This is what is shown

in Figure 6.3(a). For a high enough electric �eld (Ex > 0.5 V=cm), the transitions

from j0i to j�i and jbi (jmJ j = 1=2) are separated from the ones tojci and j+ i

(jmJ j = 3=2). Then, choosing accordingly the magnetic �eld (plot on the bottom-right

corner of Figure6.3(a)), we reach the same value for� as before (situation (ii)), or the

regime� < 0 (situation (iii)), while jbi is shifted away from the V-structure. The last

set of parameters (situation (iii)) was found to lead to an accurate mapping of the

hopping dynamics only considering the levels of the V-structure, and will be the one

considered for the theoretical discussion in Section6.2.

Such a high electric �eld,Ex = 0.7 V=cm, implies an energy shift of the microwave

transitions by about 250MHz. Therefore, even small spatial inhomogeneities of the

generated electric �eld over the size of the array, at the percent level, would lead to
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inhomogeneities of the microwave transition frequencies.These inhomogeneities were

con�rmed experimentally by measuring the transition frequencies at di�erent lattice

sites, and we found discrepancies on the MHz range over a 10� m distance.

Adopting a more symmetric repartition of the voltages (rightof Figure 6.3(b)),

we obtain a more homogeneous �eld. The electronic setup to operate with this more

symmetric repartition of the voltages was developed at the very end of this thesis, and

it indeed results in a more homogeneous distribution of the transition frequencies

among lattice sites (
uctuations below 100kHz over 10� m). In addition to a more


exible voltage repartition, this new setup allows us to quickly ramp the value of the

electric �eld.

6.1.4 Preparation of a localized excitation

To observe the di�erent hopping processes previously described, we must prepare on a

targeted lattice site aj�i or j+ i excitation. We use, as described in the single-atom

case, a microwave �eld to excite the atom fromj0i to j�i or j+ i . Without any further

operation, we cannot locally excite one of the atoms to the particle state. Indeed,

the microwave has a global e�ect on the atomic array, since its wavelength is a few

centimetres, way larger than the size of the array. We have seen in Subsection5.1.3that

exciting a two-atom system, in the presence of the resonant dipole-dipole interaction,

generates the symmetric superposition state(j0+ i + j+0 i ) =
p

2 or (j0�i + j� 0i ) =
p

2,

corresponding to an excitation shared among two sites. Thisis not the type of state

we want to prepare in this chapter. Hence the necessity to use an additional laser

addressing beam, focused on one of the atoms to shift its energy levels, and we can

change its state with microwaves while leaving the states ofthe other atoms unchanged.

We reported the demonstration of this technique in [de L�es�eleuc et al., 2017], and I

refer the interested reader to the thesis of Sylvainde L�es�eleuc [2018] for more details.

The addressing beam, at 1013 nm, couples the Rydberg statej0i with the low-lying

state
�
�6P3=2

�
(see Figure6.4(a)). It is focused on one lattice site, its waist is about

4� m, which is larger than that of the optical tweezers (1� m) but smaller than the

typical interatomic distance (10� m). For an addressing power of about 100mW,

we measured a Rabi frequency 
addr =(2� ) = 218 MHz. Depending on the detuning

� addr we set, we control the energy shift experienced by thej0i state. If we work at

resonance,j0i is split into two levels separated by 
addr , via the Autler-Townes e�ect.

If the atom is in j0i when the addressing beam is shone, it will decay back to
�
�6P3=2

�

and then to the electronic ground state. Consequently, we must shine this resonant
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For the �rst method to succeed, the� -pulse must be strong enough to excite both

atoms to j1i despite the interaction energy. The interaction is typically on the MHz

range, so the microwave Rabi frequency must be on the 10MHz range, which is still

below the Autler-Townes splitting, on the 100MHz range. We followed this method to

prepare thej10i state when observing the spin-exchange process between twoRydberg

atoms (Subsection3.3.2). Here, as already explained, we cannot operate at such a

high microwave Rabi frequency because of the restriction on the value of the Zeeman

splitting. Consequently, we choose to follow the second method.

In addition to enable for the preparation of a localized excitation, the second method

was also used in [de L�es�eleuc et al., 2017] to freeze the dipole-dipole interaction at

will, by shifting one of the two-atom states out of resonance. We will not focus on

this feature for this chapter, but it is of interest for our study reported in Chapter5.

Indeed, the addressing beam imprints a phase on the shifted two-atom state, in such

a way that for a speci�c freezing duration, we have generatedthe antisymmetric

superposition of the single-excited states, i.e. the two-atom XY antiferromagnetic

state. Using several addressing beams, this method may be a way to engineer larger

XY antiferromagnets.

6.1.5 Spin-exchange experiment

After having prepared thej10i state, the system freely oscillates betweenj10i and

j01i . The frequency of the oscillation is 2t � =h if we preparej� 0i , and is 2t+ =h if we

preparej+0 i .

Figure 6.5 shows the observed spin-exchange oscillation preparingj� 0i (a) or

j+0 i (b). For the preparation, we have used a 1� s square microwave pulse with a

Rabi frequency 
 � w=(2� ) = 0.5 MHz, resonant with the j�i or j+ i line (Figure 6.2)

shifted by 6MHz due to the addressing beam. We extract the interaction energies

t � =h = 0.45 MHz and t+ =h = 1.45 MHz from the �tting damped sine functions, for an

interatomic distancea = 11 � m. The observed ratiot+ � 3t � agrees with the
p

3 ratio

of the angular parts of the dipole matrix elements.

The �nite contrast is explained, as in the previous chapters, by the detection errors

and the �nite STIRAP e�ciency, and also by the �nite e�ciency o f the preparation of

a localized excitation described above. Indeed, such a preparation is di�cult in the

presence of the other Rydberg states of the Zeeman manifold,even if we work with a

rather small microwave Rabi frequency. The damping originates from the shot-to-shot


uctuations of the interatomic distance, and the additional o�-resonant hopping terms
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Figure 6.5: Spin-exchange processes.After having preparedj� 0i (a) and j+0 i (b), we

measure the probabilities to be inj10i and j01i as a function of time. The solid lines are

�tting damped sine to extract the interaction energy.

which perturbs the dynamics involving only two levels.

To conclude, I have presented here the di�erent hopping processes occurring when

the particle state is encoded into two levels of the Zeeman structure, and is therefore

considered as a particle with an internal degree of freedom (a \spin"). The additional

spin-
ip hopping comes along with a phase factor, and will bethe basic ingredient in the

following of this chapter to implement complex hopping amplitude. Since we operate

in a Zeeman manifold which cannot be arbitrarily split, the microwave manipulation

is less e�cient than in the previous chapter, and the high-�delity preparation of a

localized excitation is more di�cult. Even with a �nite prep aration e�ciency, we will

be able to observe the e�ect of the implemented complex hopping amplitude on a

minimal system of three atoms (see Section6.3). The experiments reported there

follow the same procedure as the ones described here to observe the spin-exchange

(preparation of a particle and observation of its propagation) except that they involve

a third lattice site.

6.2 Towards the observation of chiral edge states on honeycomb lat-

tices

Before describing the observed experimental signatures ofthe spin-
ip hopping, I will

explain how the latest leads to the engineering of topological matter hosting chiral edge

states. This theoretical work was realized by our collaborators in Stuttgart [ Weber

168





Chapter 6: Emergent gauge �elds for Rydberg atoms

properties. Such a topological state is engineered with Rydberg atoms in a honeycomb

lattice con�guration (Figure 6.6(a)). Restricting ourselves to the levels of the V-

structure, as it is well isolated using an electric �eld (Subsection6.1.3), we write the

hopping interaction between sitesi and j

Ĥ
hop
ij =

a3

jR ij j3
 ̂

y
i

 
� t+ we� 2i� ij

we2i� ij � t �

!

 ̂ j + h.c., (6.2)

with a the lattice spacing,R ij the separation between both lattice sites and ̂
y
i =�

b̂
y
i ,+ , b̂

y
i ,�

�
, where b̂

y
i ,� = j�i i h0j i are the creation operators of aj�i particle on

site i . The prefactor � ij = a3=jR ij j3 takes into account the 1=R3 dependence of the

dipole-dipole interaction as a function of the distance. Considering the energy di�erence

betweenj+ i and j�i , the total Hamiltonian of the system reads

Ĥ =
1
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X

i 6= j

Ĥ
hop
ij +

X

i
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y
i

 
�= 2 0

0 � �= 2

!

 ̂ i . (6.3)

For the Rydberg states considered in [Weber et al., 2018] and a lattice spacing

a = 10 � m, the hopping amplitudes arew=h = 4.17MHz, t+ =h = 2.41MHz and

t � =h = 0.80MHz. The value of the electric and magnetic �elds are such that�=h =

� 16MHz. The following results presented in this section were obtained with these

values.

For an in�nite honeycomb lattice, one can compute the band structure originating

from the hopping Hamiltonian (6.3), shown in Figure6.6(b) and extracted from the

publication [Weber et al., 2018]. This diagram shows four bands, as the elementary cell

of the honeycomb lattice contains two sites and there are twospin components. All

the bands are associated with non-zero Chern numbers, the signature of a topological

system. Another interesting feature of these bands is that the associated eigenstates

mostly overlap with one of the two spin components. This means that occupying one

particle state, the other one is hardly populated, justifying its adiabatic elimination

via a perturbative approach, as we shall see in the next subsection.

Now, for a �nite-size system, the bulk topological properties (non-zero Chern

numbers) should be revealed by a speci�c behaviour on the edges, according to the

bulk-edge correspondence. We focus on the 31-site honeycomb lattice (indicated by

a green dashed line in Figure6.6(a)). We compute for this �nite-sized system the

eigen-energies, and represent them as a function of the angular quasimomentum of

the associated eigenstate6.6(c). An angular quasimomentum can be de�ned as the
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system exhibits a discrete 2�= 3-rotational symmetry. The dispersion relation shows a

linear behaviour, hallmark of the directed propagation of the excitation. This mode

propagates on the edge of the system, as expected from a chiral edge mode, and mostly

overlaps with the j+ i spin component.

To con�rm the presence of chiral edge modes in this honeycomblattice, we compute

the hopping dynamics after having prepared a localizedj+ i excitation on a site on the

edge of the lattice. The trajectory of the center of mass of the excitation (Figure6.6(d))

indeed reveals a directed motion on the edge of the system. Here also, preparing aj+ i

particle, the lattice sites show a very small probability tobe in the j�i state, the

other spin component.

In summary, the system under study exhibits chiral edge states. To get more insight

on the reason why the system exhibits such topological properties, we follow in the

next subsection a perturbative approach, to adiabaticallyeliminate one of the two

spin components and obtain a simpler two-level model. Such an elimination is justi�ed

because we have seen here that one of the two spin components is hardly populated

during the computed dynamics.

6.2.2 Adiabatic elimination of one spin component

When � is larger than the other energies of the systemt � , t+ and w, a particle

initialized in a given spin component will hop between lattice sites while keeping

the same value of spin, since the spin-
ip hopping is an o�-resonant process and

there are only virtual transitions to the other spin state. Then, the spin-
ip hopping

can be treated as a perturbation. This perturbative treatment will result in some

complex hopping amplitude for the particle, while still keeping the same value of spin.

Consequently, only one particle state is involved in this perturbative approach, but the

hopping amplitudes are nevertheless complex. This implementation of complex hopping

amplitude can be interpreted as the imprinting of a Peierls phase on the particle

wavefunction, and we will observe the signature of this phase in the following section.

Here, to validate our perturbative approach, we will comparethe hopping dynamics

induced by Hamiltonian (6.3) with the one resulting from the derived e�ective hopping

amplitudes.

Implementation of a complex hopping amplitude For the discussion of the per-

turbative approach, I start considering a three-atom system (Figure 6.7(a)). When

we prepare a single excitation on one lattice site, as the dipole-dipole interaction
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Figure 6.8: Link to the Haldane model. (a) E�ective hopping amplitudes for aj+ i

particle propagating in a honeycomb lattice according to our perturbative approach. (b)

Time evolution of the center of mass of the excitation, computed resolving Hamiltonian (6.3)

(colorscale from green to yellow) or the e�ective Hamiltonian (colorscale from black to

orange).

site 2 (Figure 6.7(c)). Either it hops directly from site 1 to 2 with an amplitude � t � ,

either it virtually goes through the third lattice site while changing spin twice (so in

the end keeping the same value of spin). During this o�-resonant process, the particle

picks up a phase and the amplitude of this process is the product of the amplitudes of

the two successive hopsw2 e� 2i( � 13 � � 23 )=� . Since a di�erence of angles� appears in the

complex exponential, whatever the orientation of the anglereference axis, the value of

this di�erence will still be the same, so what only matters isthe relative orientation of

the three atoms with respect to each other.

This picture of two successive spin-
ip hops allows to understand why the particle

hops with complex amplitudes whereas it never populates theother spin component.

The advantage of this picture is that it agrees with the expression of the e�ective

hopping amplitude derived from the perturbation theory (Equation (6.4)), without

having to diagonalize the part of the Hamiltonian corresponding to one spin component

(see orange blocs in Figure6.7(b)). Consequently, we are going to test the validity of

this picture for a larger system, the 31-site honeycomb lattice studied in the previous

subsection.

Link to the Haldane model Figure 6.8(a) shows the e�ective hopping amplitudes for

a j+ i particle travelling around a honeycomb lattice, derived according to the previously

described perturbative approach. The hopping amplitude tonearest neighbours is

real, as the two successive spin-
ip hopping process would imply in that case one hop

between next-nearest neighbours, and therefore is negligible comparing to� t+ . For

the hopping to next-nearest neighbours, we have to considerthe resonant hopping of

amplitude � t+ =
�
3
p

3
�

and the o�-resonant process of two successive spin-
ip hopping
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Chapter 6: Emergent gauge �elds for Rydberg atoms

between nearest neighbour/ w2=� . Such an e�ective hopping Hamiltonian, with

real hopping amplitudes to nearest neighbours and complex hopping amplitudes to

next-nearest neighbours, is reminiscent of the Haldane model [Haldane, 1988].

We compare the hopping dynamics of an injectedj+ i particle obtained by solving

the Schr•odinger equation for Hamiltonian (6.3) (this result was already presented in

Figure 6.6(d)), or by solving it for an e�ective Hamiltonian written in t he one-j+ i -

excitation Hilbert subspace with the e�ective hopping termsdescribed above. The

agreement between the computed trajectories of the center of mass of the excitation is

quite good, especially at short times, as it is usually the case for perturbative approach.

This validates the use of our perturbative approach to describe, at least qualitatively,

the hopping dynamics induced by Hamiltonian (6.3), in the regime where� � w, t+ , t � .

Moreover, the perturbative approach allows us to connect Hamiltonian (6.3) to the

Haldane model, explaining in a di�erent way why our system exhibits topological

properties.

6.3 Implementation of a complex hopping amplitude on a three-atom

system

Now that we have understood, via a perturbative approach, howHamiltonian (6.3)

leads to the implementation of complex hopping amplitude, imprinting on the particle

circulating among lattice sites a phase similar to the Peierls phase, we will observe the

e�ect of such a phase on a minimal three-atom system. Considering the representation

in the complex plane of the e�ective hopping amplitudesJ �
12 (see Figure6.7(c)) derived

in the case of an equilateral triangle, for a given� , the ratio jIm
�
J �

12

�
=Re

�
J �

12

�
j is

larger for the j�i state ast+ > t � . This means that we expect stronger e�ects of

the implemented Peierls phase on thej�i particle. We could increase this ratio by

decreasing� , but at the risk of leaving the range of validity of the perturbative regime.

This is why we will study the implementation of the Peierls phase on aj�i particle.

In that case, the aforementioned ratio is the largest when� > 0, as shown by the

representation in the complex plane.

The implemented Peierls phase depends on two experimental knobs: the energy

splitting � and the geometrical arrangement of the three-atom system. We will

�rst vary � to observe the cyclotron-like orbit of aj�i particle on an equilateral

triangle. We will then vary the three-atom con�guration to observe the geometry-

dependent recombination of aj�i excitation. Finally, I will say a few words about the
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