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Abstract 

Title: Pathological modeling of tick-borne encephalitis virus infection and induced 
antiviral response in neurons and astrocytes using human neural progenitor-derived 
cells. 

Keywords: Tick-borne encephalitis virus, Antiviral immunity, Human neural 
progenitor cells, Neurons, Astrocytes, Flavivirus 
 

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, genus 

Flavivirus, is, from a medical point of view, the most important arbovirus in Europe 

and North-East Asia. It is responsible for febrile illness and, in some cases, for 

neurological manifestations ranging from mild meningitis to severe encephalomyelitis 

that can be fatal. Despite its medical importance, the neuropathogenesis induced by 

this zoonotic agent remains poorly understood. Here, we used human neural cells 

differentiated from fetal neural progenitor cells (hNPCs) to model the infection in vitro 

and to decipher the mechanisms by which the virus damages the human brain. Our 

results showed that neurons and glial cells, namely astrocytes and oligodendrocytes, 

were permissive to TBEV. Neurons were massively infected and subjected to a 

dramatic cytopathic effect (60% loss 7 days post-infection). Astrocytes were also 

infected, although at lower levels, and the infection had a moderate effect on their 

survival (30% loss 7 days post-infection), inducing a hypertrophied morphology 

characteristic of astrogliosis. Thus, two major cellular events described in TBEV-

infected human brain (i.e. neuronal loss and astrogliosis) were reproduced in this 

in vitro cellular model, showing its relevance to study TBEV-induced 

neuropathogenesis. We therefore used it to tackle TBEV-induced antiviral response. 

Using PCR arrays, we first showed that TBEV induced a strong antiviral response 

characterized by the overexpression of viral sensors, cytokines and interferon-

stimulated genes (ISGs). Then, setting up enriched cultures of human neurons and 

human astrocytes, we further showed that the two cellular types were participating in 

the global antiviral response. However, astrocytes developed a stronger antiviral 

response than neurons. These results, by demonstrating that human neurons and 

human astrocytes have unique antiviral potential, suggest that their particular 

susceptibility to TBEV infection is due to their different capacity to mount a protective 

antiviral response. 
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Résumé 

Titre : Modélisation pathologique de l’infection par le virus de l’encéphalite à tiques 
et réponse antivirale induite dans les neurones et astrocytes dérivés de progéniteurs 
neuraux fœtaux humains 

Mots-clés : Virus de l’encéphalite à tiques, Immunité antivirale, Cellules 
progénitrices neurales humaines, Neurones, Astrocytes, Flavivirus 

Le virus de l’encéphalite à tiques (TBEV), membre de la famille des Flaviviridae et du 

genre Flavivirus, est d’un point de vue médical, l’arbovirus le plus important en Europe 

et en Asie du Nord-Est. Il est responsable de symptômes fébriles et de manifestations 

neurologiques allant de la méningite légère à l'’encéphalomyélite sévère pouvant être 

fatale. En dépit de son importance médicale, la neuropathogenèse induite par cet agent 

zoonotique reste peu caractérisée. Ici, nous avons utilisé des cellules neurales humaines 

différenciées à partir de progéniteurs neuraux fœtaux pour modéliser l’infection in vitro 

et élucider les mécanismes par lesquels le virus endommage le cerveau humain. Nos 

résultats ont montré que les neurones et les cellules gliales (astrocytes et 

oligodendrocytes) étaient permissifs au TBEV. Les neurones étaient massivement 

infectés et la cible d’un effet cytopathique important (perte de 60 % des neurones 

7 jours après l’infection). Les astrocytes étaient également infectés, bien qu’à des 

niveaux inférieurs, et l’infection avait un effet modéré sur leur survie (perte de 30 % 

des astrocytes 7 jours après l’infection), induisant une hypertrophie caractéristique 

d’une astrogliose. Ainsi, deux événements majeurs décrits dans les cerveaux de patients 

infectés par TBEV (perte neuronale et astrogliose) étaient reproduits dans ce modèle 

cellulaire in vitro, démontrant ainsi sa pertinence pour des études de 

neuropathogenèse. Nous l’avons donc utilisé pour étudier la réponse antivirale induite 

par TBEV. En utilisant des PCR arrays, nous avons d’abord montré que le virus induisait 

une forte réponse antivirale caractérisée par une surexpression de senseurs viraux, de 

cytokines et de gènes stimulés par l’interféron. Puis, en établissant des cultures 

enrichies en neurones humains et astrocytes humains, nous avons montré que ces deux 

types cellulaires participaient à la réponse antivirale globale. Cependant, les astrocytes 

élaboraient une réponse antivirale plus forte que les neurones. Ces résultats, en 

démontrant que les neurones humains et les astrocytes humains élaboraient chacun une 

réponse antivirale unique suite à l’infection, suggèrent que leur sensibilité particulière 

à TBEV serait due à leur capacité différente à établir une réponse antivirale protectrice. 
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Résumé substantiel 

Le virus de l’encéphalite à tiques (TBEV) est un membre de la famille des 

Flaviviridae et du genre Flavivirus. D’un point de vue médical, il est l’arbovirus le 

plus important en Europe et en Asie du Nord-Est, avec en moyenne 8000 cas cliniques 

déclarés par an. L’infection par TBEV est souvent asymptomatique, mais les patients 

atteints peuvent développer un syndrome fébrile voire des manifestations 

neurologiques allant d’une méningite bénigne à une encéphalomyélite sévère 

pouvant être fatale. En dépit de son importance médicale, la neuropathogenèse 

induite par TBEV reste peu caractérisée. Ici, nous avons utilisé des cellules neurales 

humaines différenciées à partir de progéniteurs neuraux fœtaux (hNPCs) pour 

modéliser l’infection in vitro et élucider les mécanismes par lesquels le virus 

endommage le cerveau humain.  

Afin de déterminer quel était le tropisme de TBEV dans les cellules neurales 

humaines dérivées de hNPCs, nous avons réalisé des immunomarquages avec des 

anticorps dirigés contre TBEV et contre des marqueurs spécifiques des neurones 

(HuC/HuD ou βIII-Tubulin), des astrocytes (GFAP) ou des oligodendrocytes (Olig2), et 

nous les avons quantifiés en utilisant un imageur automatique (ArrayScan Cellomics 

Thermo Scientific). Nos résultats ont montré que les cellules neurales étaient 

permissives à TBEV. Les neurones étaient la cible principale du virus avec 55.2±3.8 % 

de neurones infectés. Les cellules gliales étaient également permissives au virus, 

avec 6.81±21.5 % d’oligodendrocytes infectés et 13.6±5.3 % d’astrocytes infectés. 

Ces résultats ont révélé un tropisme de TBEV pour les neurones et les 

oligodendrocytes et suggèrent une résistance des astrocytes à l’infection. 

Nous avons ensuite évalué les dommages induits par TBEV dans les trois types 

de cellules. Nous avons réalisé des immunomarquages spécifiques de chacun des 

types cellulaires, comme précédemment. Nos résultats ont montré une perte 

importante et continue de neurones dès 72 heures post-infection (hpi). De manière 

inattendue, nous avons également observé une perte modérée d’astrocytes à un 

temps plus tardif (7 jours post-infection –jpi-), mais nous n’avons pas observé 

d’altération induite par TBEV dans la population d’oligodendrocytes. Cela suggère 

un impact diffèrent de TBEV sur les neurones et les cellules gliales humaines, 

confirmant que ces dernières seraient plus résistantes à la mort induite par TBEV. 
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Comme nous avons observé une diminution du nombre de neurones et 

d’astrocytes suggérant une mort cellulaire, nous avons cherché à déterminer par 

quelles voies la mort cellulaire était induite par TBEV dans les cultures. Pour cela, 

nous avons réalisé des PCR arrays nous permettant d’analyser l’expression de 

84 gènes impliqués dans l’apoptose et de 84 gènes impliqués dans l’autophagie. 

Nos résultats ont mis en évidence une surexpression de plusieurs gènes impliqués 

dans l’apoptose, alors que peu de gènes impliqués dans l’autophagie étaient 

surexprimés. Nous avons confirmé la surexpression ou l’absence de surexpression de 

certains gènes (TNFSF10, P53, BECN1 et ATG3) par qRT-PCR. De plus, un marquage 

TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling), spécifique 

des cassures double brin de l’ADN, avait monté une augmentation des figures 

d’apoptose dans les cultures neurales. De manière plus spécifique, nous avons 

observé, par immunomarquage, une induction du clivage de la Caspase 3 dans les 

neurones, suggérant une activation des voies de l’apoptose. 

Par ailleurs, dans le but de déterminer si les cellules neurales dérivées de hNPCs 

développent une réponse antivirale contre TBEV, nous avons analysé par PCR array 

l’expression de 84 gènes impliqués dans la réponse antivirale humaine. Nos résultats 

ont montré que 23 gènes étaient surexprimés suite à l’infection par TBEV, parmi 

lesquels des récepteurs de reconnaissance de motifs moléculaires (PRR), des 

cytokines et des gènes stimulés par l’interféron (ISG). Nous avons confirmé la 

surexpression de 11 gènes par qRT-PCR, à savoir DDX58 (RIG-I), TLR3, IFIH1 (MDA5), 

CXCL10, CCL5 (RANTES), CXCL11, ISG15, OAS2, MX1, ISG56 et IFI6. Pour tous ces 

gènes, des cinétiques d’infection ont montré une surexpression dès 7 hpi, qui 

augmentait jusqu’à 14 jpi, sauf pour les cytokines dont l’expression diminuait à 

14 jpi. Cela a montré une activation importante de la réponse antivirale dans les 

cultures. 

Pour élucider si cette réponse antivirale était différente entre les neurones et 

les astrocytes, nous avons établi des cultures enrichies soit en neurones, soit en 

astrocytes, en utilisant la technologie MACS (Magnetic-Activated Cell Sorting), basée 

sur des billes magnétiques conjuguées à des anticorps anti-GLAST spécifiques des 

astrocytes. Nous avons respectivement enrichi la proportion de neurones, passant de 

74.1±4.1 % dans les cultures non séparées à 94.1±0.4 % dans les cultures enrichies en 

neurones (En-Neurons), et la proportion d’astrocytes, passant de 20.8±4.9 % dans les 

cultures non séparées à 53.5±2.7 % dans les cultures enrichies en astrocytes 
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(En-Astrocytes). Nous avons ensuite analysé l’expression de gènes de la réponse 

antivirale dans les cultures En-Neurons, En-Astrocytes et non séparées. Nous avons 

montré une surexpression de gènes de la réponse antivirale à la fois dans les neurones 

et dans les astrocytes. En revanche, le niveau d’expression était plus important dans 

les astrocytes. Nous avons ensuite effectué des qRT-PCR pour confirmer cette 

surexpression à différents temps après l’infection. Nous avons confirmé que, dès 7hpi 

pour IFIH1 (MDA5) et OAS2, et dès 24hpi pour DDX58 (RIG I), TLR3, MX1, CXCL10, les 

gènes étaient surexprimés de manière plus importante dans les astrocytes que dans 

les neurones. RSAD2 (viperin), un ISG décrit comme participant au contrôle de la 

réplication de TBEV dans les cellules neurales murines, suit le même profil 

d’expression. Globalement, nos résultats suggèrent que la sensibilité neuronale à 

TBEV pourrait être due à une réponse antivirale globale associée à l’absence de 

régulation de gènes clés de la réponse antivirale. A l’inverse, la résistance des 

astrocytes pourrait être due à une réponse antivirale plus forte et protectrice. 

Les astrocytes humains induisaient donc une réponse antivirale protectrice, 

mais l’effet protecteur de cette réponse sur l’infection et la survie des neurones 

humains n’est pas caractérisé. Pour identifier un potentiel effet, nous avons infecté 

des cultures En-Neurons (contenant ≅95 % de neurones) et des cultures non séparées 

(contenant ≅75 % de neurones) avec TBEV et comparé leur taux d’infection. Dès 

24 hpi, alors que TBEV infectait 66.5±3.8 % des neurones dans les cultures mixtes, le 

taux d’infection avait atteint 94±4.3 % des neurones dans les En-Neurons, suggérant 

fortement que la présence des astrocytes dans la culture diminuait l’infection des 

neurones. Cependant, la déplétion des astrocytes ne semblait pas impacter la survie 

des neurones dans les cultures infectées par TBEV à ce temps d’infection. Par 

ailleurs, l’impact de l’infection des neurones sur la survie des astrocytes n’est 

également pas connu. Pour identifier  cet impact, nous avons infecté des cultures 

En-Astrocytes (contenant ≅35% de neurones) et des cultures non séparées (contenant 

≅75% de neurones) avec TBEV et nous avons quantifié et comparé le nombre et 

l’infection des astrocytes dans les cultures. Nos résultats ont montré que la déplétion 

des neurones ne s’accompagnait pas d’une augmentation de l’infection des 

astrocytes. Cependant, la survie des astrocytes était restaurée dans les En-Astrocytes 

à 7jpi, en comparaison des cultures non séparées, suggérant que l’effet de TBEV sur 
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les astrocytes dans les cultures neurales dérivées de hNPCs serait médié par les 

neurones.  

Ainsi, nos résultats montrent pour la première fois une étude comparative de 

l’impact de TBEV sur les neurones, astrocytes et oligodendrocytes humains. Nous 

avons mis en évidence une réponse antivirale induite par TBEV différente entre les 

neurones et les astrocytes humains, suggérant que même si les neurones sont des 

acteurs de l’immunité dans le CNS, la réponse antivirale qu’ils développent resterait 

plus faible que dans les astrocytes et nous émettons l’hypothèse que cette réponse 

conditionnerait la neuropathologie induite par TBEV. Par ailleurs, nous avons 

identifié des interactions entre les neurones humains et les astrocytes humains 

montrant que des cultures complexes sont nécessaires pour étudier la 

neuropathologie viroinduite. 
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Chapter I: Introduction 

 Tick-borne encephalitis virus 

Tick-borne encephalitis virus (TBEV) is a member of the genus Flavivirus within 

the Flaviviridae family [1]. The genus Flavivirus comprises more than 53 known 

members, including Dengue viruses (DENV), yellow fever virus (YFV), Japanese 

encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) that are 

serologically related and share common genome and structural organization [2,3]. 

About two thirds of flaviviruses are known to infect and to be transmitted to 

vertebrate species by arthropod vectors, and approximately 60% of them are able to 

induce encephalitis in the infected hosts [4]. 

The name ‘flavivirus’ is derived from the Latin word flavus meaning yellow, 

signifying the jaundice caused by YFV [5]. In 2017, a proposal to change the family 

name from Flaviviridae to Kitrinoviridae was issued, kitrino meaning yellow in 

Greek, to avoid the ambiguity between the Flavivirus genus among the Flaviviridae 

family in the use of the words Flavivirus or flaviviral [6]. So far, the International 

Committee on Taxonomy of Viruses did not rule on the proposal. 

TBEV is a member of the mammalian tick-borne flavivirus group (previously 

called TBEV serocomplex) (Figure 1). Along with other genetically and antigenically 

related viruses, this group includes Omsk hemorrhagic fever virus (OHFV), Langat 

virus (LGTV), Alkhurma hemorrhagic fever virus (AHFV), Kyasanur Forest disease virus 

(KFDV), Powassan virus (POWV), Royal Farm virus (RFV), Karshi virus (KSIV), Gadgets 

Gully virus (GGYV) and louping ill virus (LIV) [7,8]. Among those viruses, TBEV, LIV 

and POWV can cause encephalitis in humans [9]. 

The first description of a tick-borne encephalitis-like disease dates back to 

Scandinavian church records from the 18th century [10]. Descriptions of tick-borne 

encephalitis (TBE) can be found in several publications as early as the 19th century 

[11] but tick-borne encephalitis was first described as a clinical entity in 1931, in 

Austria [12]. TBEV, the causative agent of the disease, was isolated by Soviet 

scientists in the late 1930s, after several fatal encephalitis cases among the soldiers 

posted in the Taiga [11,13]. 
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Figure 1 - Genetic relatedness of flaviviruses 

The tree was build using genetic alignments of complete genomic sequences [14].  

 

Three subtypes of TBEV are described [1]: 1/ the European subtype (TBEV–Eu) is 

prevalent in western, northern, central and eastern parts of Europe, 2/ the Far-Eastern 

subtype (TBEV–FE) is located mainly in eastern parts of the Russian Federation, in 

China and Japan, 3/ the Siberian subtype (TBEV–Sib) occurs in all parts of the Russian 

Federation, predominately in the Asian parts. All 3 subtypes co-circulate in the Baltics 

[15,16], the European part of the Russian Federation, and in Siberia [17]. All are 

pathogens of the risk group (RG) 3, and they have to be handled in a containment 

level (CL)-3 laboratory.  
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 Genomic and structural organization 

The genome of flaviviruses is a single positive stranded RNA of ≅10,8 kilobases 

(Kb) that serves three discrete roles within the life cycle, as 1/ the messenger RNA 

(mRNA) for translation of all viral proteins, 2/ a template during RNA replication, and 
3/ genetic material packaged within new viral particles [18,19]. Furthermore, the 

genomic RNA is infectious by itself [20].  

The genomic viral RNA (gRNA) is a single open reading frame (ORF) of ≅3,400 

codons, flanked by a 5’- and a 3’-noncoding regions (NCR) of respectively 

≅100 nucleotides and 350 to 750 nucleotides [21]. The ORF encodes a polyprotein 

that is processed by viral and host proteases into three structural and seven 

non-structural proteins (Figure 2). The 5’NCR carries two conserved stem-loop 

regions and a type I cap structure m7GpppAmpN2 [22–24]. The 3’NCR is made up of 

a stem-loop and two dumbbell sequences and, unlike cellular mRNAs, does not carry 

a poly-A tail [25]. However, for some variants and quasispecies of TBEV, an internal 

poly-A tract is included in the 3’-NCR variable region that enhances viral virulence 

[25–28]. Because they are located at the 5’ and 3’ ends of the flaviviral genome, the 

NCRs of flaviviruses play an important role in translation, RNA replication and 

packaging, as well as in immune modulation [29].  

 

 
Figure 2 - Flavivirus genome and polyprotein structures. 

A unique ORF is expressed and the produced polyprotein is processed by cleavage. The viral protein 

prM, NS2A and NS3 are then subject to maturation. Specific marks highlight cleavage sites for host 

signalase (♦), viral serine protease (�), furin or related protease (�), and unknown proteases (?) 

[Adapted from 30]. 
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The incomplete degradation of the gRNA by the host 5′-3′ exoribonuclease 1 

(XRN1) produces long subgenomic flaviviral RNA (sfRNA) of 300 to 500 nucleotides, 

originating from the three dimensional structures of 3’ NCR [31–33]. The produced 

sfRNAs interfere with RNAi complex mediators, inducing a decrease in siRNA response 

in tick cells [34] and/or in mammalian and mosquito cells [35,36]. Mosquito-borne 

flaviviruses sfRNAs also increase uncapped cellular mRNA stability by repressing XRN1 

activity [37], interfere with type I interferon (IFN) signaling [38], and are essential 

for viral growth [39,40].  

From a structural point of view, Flavivirus virions are small spherical particles 

of 35 nanometers (nm) to 55 nm, enclosing a 25 nm to 30 nm electron-dense core, 

that is presumed to contain one copy of the viral genome and hundreds of copies of 

Capsid (C) protein [41,42]. This nucleocapsid (NC) core is surrounded by a lipid 

envelope in which 180 copies of the Membrane (M, 8 kDa) and Envelope (E, 53 kDa) 

transmembrane proteins are anchored (Figure 3)[2,21,30,42]. The M protein 

produced during maturation of nascent virus particles within the secretory pathway 

is a small proteolytic fragment of the precursor prM protein [18]. The E glycoprotein, 

the major antigenic determinant on virus particles, is a class II viral fusion protein 

that forms an icosahedral network. It mediates binding and fusion during virus entry 

[43,44]. 

 

  
Figure 3 - Schematic diagram of the structural organization of TBEV particles. 

The viral nucleocapsid (in blue), formed by the positive-stranded RNA genome and protein 

C, is surrounded by a lipid envelope (in yellow) in which prM/M (in green) and E (in red) 

proteins are carboxy-terminally anchored. prM and E form heterodimers in immature 

particles, whereas infectious, mature virus particles carry the small protein M and 

homodimers of protein E [9]. 
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TBEV is very stable under natural conditions and the three subtypes are 

genetically and antigenically very similar. TBEV-Fe and TBEV-Sib are phylogenetically 

more closely related to each other than to TBEV–Eu, but the degree of variation in 

the amino acid level between strains within TBEV-Eu and TBEV-FE subtypes remains 

low [17,45]. The amino acid variability between the three subtypes is in the range 

of variation within flaviviruses (3±6% to 5±6%), while the nucleotide level variability 

is higher (1% to 16±9%). Sequences of the E protein differ by no more than 2±2%, 

suggesting a selection pressure favoring the conservation of the E protein [46]. As a 

result of this close antigenic relationship, there is a high degree of cross-protection 

between the subtype strains in mice [47,48]. Moreover, neutralizing antibodies 

against TBEV can also provide a protection against the infection by some other 

flaviviruses, such as Omsk Hemorrhagic Fever Virus (OHFV) [49]. 

 

 Replication cycle 

1.1.2.1. Binding and entry 

The first step of Flavivirus entry involves the interaction of the E glycoprotein 

with cellular attachment factors that concentrate and recruit the virus, and primary 

receptors that bind the viral particles and induce endocytosis [50,51].  

Negatively charged sulfated Glycoaminoglycans (GAG), which are abundantly 

expressed on numerous cell types, are utilized as attachment factors by several 

flaviviruses [52–56]. For TBEV, the GAG protein Heparan Sulfate (HS) mediates viral 

attachment but CHO epithelial cell lines lacking HS are still highly susceptible to 

TBEV, suggesting that other surface molecules, which might be laminin binding 

protein (LBP) [57] and human αVβ3 integrin [58], are involved in viral attachment 

and entry [59,60].  

After attachment, TBEV entry into the cell can occur through clathrin-mediated 

endocytosis [61] or through micropinocytosis, a clathrin-independent endocytosis 

[62]. This might be dependent on cell type and serotype [63]. So far, the entry 

receptors of TBEV are not deciphered. The virus utilizes either a ubiquitous receptor 

molecule or multiple receptors for cell entry, as TBEV infection has been observed 

in a variety of host cells and as it circulates in nature between arthropod vectors and 

their vertebrate hosts [59]. 
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The internalized virus is then transported to the early/intermediate endosome 

that matures into a late endosome. The low pH in the endosome, at an optimum of 

pH=5.4±1, triggers conformational rearrangements of the class II fusion E protein 

[43,64], inducing the fusion of the viral particle with endosomal membrane and gRNA 

delivery into the cytoplasm (Figure 4) [65,66]. 

 

 
Figure 4 – Replication cycle of tick-borne encephalitis virus. 

(1) Endocytosis. (2) Fusion with the membrane of the endosome and release of viral genome 

into the cytoplasm. (3) Translation of the polyprotein from viral genomic RNA and synthesis 

of negative strand RNA. (4) Genome replication in the ER. (5) Viral particle assembly and 

packaging of newly synthesized positive strands RNA. (6) Maturation of virions in the 

trans-Golgi Network and transport via the secretory pathway. (7) Release of mature virions 

from the cell. ER=endoplasmic reticulum. PM=plasma membrane [67] 
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1.1.2.2. Replication, assembly, maturation, and release. 

Flaviviruses replicate in the cytoplasm of infected cells. The released gRNA acts 

as a template for mRNA synthesis [19]. The capped 5’-end of the viral genome, aided 

by 3’UTR elements, triggers the recruitment of eukaryotic initiation factors to form 

the ribosome complex [41]. The RNA is directly translated into a single polyprotein 

of 3411 amino acids and is then co- and post-translationally cleaved by NS2B/NS3 

viral serine protease and host-encoded proteases such as signalase and furin [68,69]. 

The cleavage results into three structural proteins: C, prM, and E, and seven 

non-structural (NS) proteins: NS1 (glycoprotein), NS2A, NS2B (protease component), 

NS3 (protease, helicase and NTPase activity), NS4A, NS4B, NS5 (RNA-dependent 

polymerase) (Figure 2) [10,70,71]. 

The newly produced NS viral proteins remodel the rough endoplasmic reticulum 

(RER) membrane, forming membrane curvatures and invaginations where the 

replication complex forms, becoming viral replication hubs (Figure 4) [72–75]. 

NS3 and NS5 proteins will bind to the 5’ cap structure of the gRNA and induce 

negative sense RNA synthesis that acts as a template for multiple rounds of capped 

positive-stranded viral RNA synthesis [41]. Intermediates of dsRNA are formed 

between positive and negative strands [76,77] and the replication occurs in a semi-

conservative and asymmetric way, where positive-strands accumulate in a large 

excess over negative-strands [30,78]. The NS5 acts as a regulatory element of viral 

gRNA synthesis and replication (Reviewed by [79]) and TBEV NS5 mutant viral genome 

fails to replicate [80]. 

The assembly process is probably coupled with the replication and is initiated 

by association of C-dimers with newly synthesized viral gRNA, on the cytoplasmic 

side of the ER membrane, to form a nucleocapsid precursor [81]. The NC buds into 

the ER, thus acquiring an envelope. The assembly of NC and E-prM heterodimers 

forms immature non-infectious viral particles [71,82].  

The immature viral particles accumulate in the ER lumen and are transported 

via the host secretory pathway to the Golgi. Maturation of TBEV occurs in the acidic 

environment of the late trans-Golgi network, when prM is cleaved by a cellular furin 

protease [69,83], associated with E protein conformational rearrangements [30,43]. 

The mature particles are released in the extracellular matrix by fusion of the 

transport vesicles with the plasma membrane (Figure 4) [9]. While flaviviral RNA 
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synthesis is detected after three to six hours of infection, the release of infectious 

viral particles begins after 12 hours [21]. 

 

1.2. Transmission and epidemiology of tick-borne encephalitis virus 

As an arbovirus, TBEV is maintained in nature by hard ticks, which act as vectors 

of the virus [84,85]. In addition to tick bites, it can be transmitted to humans by 

consumption of unpasteurized dairy products from infected livestock [86]. Several 

confirmed or suspected cases of TBEV transmission by exposure to raw milk or dairy 

products were reported. While viremia in TBEV-infected livestock remains low 

[86-88], LGTV, a closely related virus, is stable for several days in milk at room 

temperature, and cheese making processes are likely to reduce viral loads [90], 

which suggests a similar stability for TBEV. Other transmission routes were also 

reported in rare or single occurrences, such as laboratory infection [91] and person-

to-person transmission after an organ transplantation [92] or blood transfusion [93]. 

Transmission to infants through breastfeeding was suggested to be possible for 

several flaviviruses such as DENV [96], WNV [97], or YFV [98], but unlikely for ZIKV 

[94,95]. Even though reviews evoke this transmission route for TBEV [84,99], no 

evidence of TBEV presence in maternal milk or breastfeeding transmission was 

reported. Transmission through sexual intercourse was also reported for ZIKV and 

suggested for WNV and YFV, as they have been detected in semen [100], but there 

is no data supporting sexual transmission of TBEV in humans [101].  

 

1.2.1. Risk areas and endemic zone 

Tick-borne encephalitis Virus endemic zone spreads From Central, Northern and 

Eastern Europe to the Russian Far East, including Mongolia, northern China, and 

Japan (Figure 5) [84,102,103].  
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Figure 5 - Geographical distribution of Eastern and European subtypes of tick-

borne encephalitis virus. 

Endemic zone of TBEV-Eu (red), TBEV-FE (yellow) and overlapping areas (orange) are 
represented [104]. 

 

Since the 1990s, TBEV is expanding to previously unaffected areas such as Czech 

Republic, Germany, Norway, Slovenia, Sweden, Switzerland [105–107] and more 

recently, the Netherlands [108]. Endemic zones are also expanding in altitude, up to 

1500 meters above sea level, as reported in Austria and Slovakia [109,110], 

However, it is possible that the attention drawn to the disease may have led to a 

higher number of registered cases [111]. A review from Charrel et al. [112] mapped 

at least 25 European and 7 Asian countries where TBEV is present. In France, fewer 

than 10 cases are reported yearly, mainly in the Alsace region, with a significant 

increase in 2016 [113]. As a consequence of the higher risk of TBE in Western Europe, 

it is listed as a disease under surveillance in the European Union (EU), and it joined 

the list of notifiable diseases in September 2012 [114–116]. Prior to the EU decision, 

the type of TBE cases routinely reported, the source and type of case-based data 

surveillance, the case definition, and the laboratory test used for diagnosis were 

country-dependent [107]. This might lead to a high number of underdiagnosed or 

unreported TBE cases, and in highly endemic countries, the number of reported cases 

does not adequately reflect the real risk of infection [111]. However, thanks to 

efficient vaccination campaigns, the disease incidence in some endemic countries, 

such as Austria, decreased importantly [117].  

Between 1976 and 1989, TBEV was widely undiagnosed and fewer than 40,000 

cases were reported in Europe, with an average of about 2,700 per year. TBEV 

reported incidence has increased since the 1990s, and between 1990 and 2007, 

nearly 160,000 TBE cases were documented worldwide, with an average of about 
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8,700 cases per year. This corresponds to an increase of TBE morbidity by more than 

300% [111]. The most recent data about the morbidity worldwide [84] and in 20 EU 

member states [107] are from 2010. By crossing data from different reviews and 

databases [84,111,118–120], we were able to estimate the number of cases 

worldwide from 1985 to 2010 (Figure 6). Yearly, 10,000 to 12,000 clinical cases of 

TBE is often given as a reference, but although this estimate is above those recent 

data (about 6000 cases in 2010), this figure is believed to significantly underestimate 

the actual total, due to the high rate of asymptomatic cases [103]. 

 

 

 
Figure 6 – Number of recorded TBEV human infections worldwide between 1985 

and 2010. 

Data gathered from [84,111,118–120]. Bulk data are in shown in Supplementary table 1. 

 

Interestingly, the increase of the TBEV risk in Europe might be partly due to 

climate change, affecting vector biology, pathogen transmission [121] and density of 

hosts on which ticks feed [122]. Other factors might as well be involved, such as 

political or sociological changes and human behavior which influenced the tick bite 

exposure of humans and vaccination acceptance [121,123–127]. Those factors may 

have created favorable living conditions for ticks and thus led to a further spread of 

tick-borne diseases.  

Symptomatic infection occurs in all age groups and genders but the case 

distribution may vary by region [103]. However, it is often more severe in adults and 
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elderly people and the seroconversion rate following vaccination decreases after the 

age of 50 [128,129]. 

 

1.2.2. Amplifying and spreading hosts 

Ticks feed on a large span of hosts. In general, immature stages of ticks (larvae 

and nymphs) feed on small mammals and birds, while adults feed on large animals 

such as ungulates and livestock [130]. TBEV transmission to a vertebrate host occurs 

mainly after a tick bite, during a blood meal [131], and is indirectly facilitated by 

tick saliva through its contained analgesic, anti-inflammatory and anti-coagulant 

substances that allow the blood meal to be unnoticed [132]. 

Small rodents and insectivores, mainly yellow-necked field mice (Apodemus 

flavicollis) and bank voles (Myodes glareolus), act as a the main reservoir of TBEV, 

transmitting the virus to feeding ticks and amplifying tick populations  [133,134]. In 

bank voles, TBEV RNA was found in the brain, where it can cause marginal clinical 

symptoms and mild meningoencephalitis [135,136]. Moreover, infected laboratory 

male mice can transmit TBEV to females through the sexual route, inducing increased 

embryonal mortality [137]. The virus is also transmitted vertically in Myodes red 

voles, through placenta to embryo [133]. This suggests a possible mechanism for 

tick-free long-term maintenance of TBEV in rodent hosts [138].  

Birds can be infected by TBEV but they are more likely to play a role in dispersal 

of TBEV-infected ticks. TBEV was found in birds or bird-infesting ticks in the Baltic 

region of Russia [139], Siberia [140,141], Slovakia [142], Sweden [143], and Latvia 

[144]. Their role in virus circulation and dissemination is not clear and no outbreak 

was associated with this dispersal route but the involvement of birds in transport of 

TBEV-infected ticks from Russia to Japan was hypothesized [145]. 

In dogs, TBEV infection induces clinical signs similar to those observed in human 

cases, including fever, apathy and neurological signs such as paresis, seizures or 

hyperalgesia. The infection can be acute or chronic, and the outcome is often fatal 

[146]. The neuropathology of TBE in dogs was found consistent with observations in 

humans and laboratory mice [147]. Seropositive dogs were also found in Spain [148], 

a country that is not endemic for TBEV and where no human case was recorded [107], 

suggesting they can be sentinels for TBEV risk [149,150]. 
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Ungulates can be infected by TBEV and clinical signs were sparsely reported in 

infected horses, including poor general condition, anorexia, ataxia, cramps, 

seizures, and paralyses [151,152]. Roe deer develop a short and low-grade viremia 

but are non-receptive hosts for TBEV [150]. TBEV-neutralizing antibodies and TBEV 

RNA were found in Dutch roe deer [153]. They can hence be used as sentinel [154]. 

It is unclear whether they contribute positively to TBEV dissemination and 

amplification, through co-feeding and transport of infected ticks [155], or 

negatively, by diverting questing ticks from hosts able to act as reservoir, such as 

rodents [122,156]. Furthermore, wild ungulates could also be infected, as 

TBEV-neutralizing antibodies  were found in Flemish wild boars [157]. 

In sheep, goats, and cows, TBEV infection rarely causes clinical signs, and blood 

viremia is not detectable (or for very short time periods) [158,159]. Infectious virus 

is found in milk [86], and neutralizing antibodies are produced, suggesting that they 

can be used as sentinels in non-endemic or low prevalence areas [159,160].  

Non-human primates are susceptible to infection and symptoms similar to those 

observed in mild humans cases as well as chronic infection were described [161,162]. 

The main reference for experimental infections on non-human primates was 

published in Russian in the 1980s [163–165]. However, there is no description of 

natural TBEV infection of non-human primates. 

 

1.2.3. Biology of the vector 

Ticks activity (including development, feeding, and movement) starts when the 

temperature is above 5°C and the humidity level is high (92% is optimal) [10]. 

The occurrence of these conditions is dependent on latitude and altitude, and is seen 

between spring and autumn in temperate climates [121]. New features in tick biology 

are observed, such as an increase in ticks activity [166], an acceleration in their life 

cycle [167,168] and a higher and northern distribution [124], increasing the risk of 

tick-bites for humans.  

Ixodes ricinus (TBEV-Eu) and Ixodes persulcatus (TBEV-Sib and TBEV-FE) are the 

main vectors for TBEV. Their geographical distributions is represented in Figure 7, 

and partially overlaps with TBEV endemic zone. However, up to 18 species of ticks 

can be infected with TBEV [10,112]. Among those, Boophilus microplus, Dermacentor 

reticulatus, D. silvarum, D. marginatus, Haemaphysalis concinna H. flava, H. 
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longicornis or Ixodes ovatus have been found carrying TBEV or were associated with 

local outbreaks [84,169–173].  

With respect to their role as vectors of TBEV, the critical ecological features of 

I.ricinus and I.persulcatus ticks that allow TBEV foci maintenance, and distinguish 

them from other sympatric (present in the same geographic areas) tick species are 
1/ their long life cycle lasting two to six years [130,168], involving long survival of 

infected individuals 2/ the aggregated distribution of larvae and nymphs on hosts 

caused by the overlapping seasonal periods of feeding activity [174], and 3/ the range 

of small mammal species, such as birds and rodents, on which the immature stages 

feed and can get infected [85,175].  

 

 
Figure 7 - Geographic distribution of TBEV-transmitting ticks 

Ixodes ricinus and Ixodes persulcatus are present in the areas colored in red and yellow, 

respectively. Both species are present in the area colored in orange [Adapted from 176] 

 

TBEV is maintained in tick population through three main ways [177] (Figure 8): 

transmission by feeding on an infected viremic animal [130,178]; transmission by 

co-feeding, meaning between ticks feeding in close proximity on the same host without 

systemic viremia [179–181]; or transstadial survival, through the life span of ticks 

[182,183]. Moreover, while they can carry TBEV throughout their life and through all 

stages, nymphs seem to be the most important stage for virus transmission [178]. 

Other transmission routes were also documented. Transovarial transmission to 

eggs occurs at a low ratio <1% [184] and sexual transmission from infected tick males 
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to females through saliva and/or seminal fluid was also evoked in reviews 

[84,135,185], but there is no data supporting this route.  

 

 
Figure 8 - Schematic transmission cycle of TBEV.  

Tick larvaes, nymphs, and more rarely adults, feed on small rodents that represent the 

natural reservoir of TBEV. A mechanism known as cofeeding allows the transmission of the 

virus among the tick population, hence contributing to the maintenance of TBEV-infected 

ticks in the environment. The transmission to a various range of vertebrate hosts occurs by 

tick bites during a blood meal. Humans can be infected by TBEV after a bite of adult or 

nymph ticks, or by consumption of raw dairy products. Full arrows represent high rate 

transmission, dashed arrows represent low rate transmission. Adapted from 

[10,183,186,187] 
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1.3. Tick-borne encephalitis 

1.3.1. Clinical presentation in humans 

As with many arboviruses, the majority of TBEV infections are asymptomatic. 

Their proportion is difficult to establish because those with mild symptoms may be 

undiagnosed [188] but reviews suggest 70% to 95% of asymptomatic or sub-clinical 

cases [178,189]. The disease occurs in a biphasic course in about two thirds of 

neurologic cases [190]. The biphasic form is more often encountered with TBEV-Eu 

subtype infections (72-75%) [191,192] than with TBEV-Sib subtypes (21%) and 

TBEV-FE (3-8%) [193]. The monophasic form (one third of cases) is more severe and 

is more likely to involve central nervous system (CNS) alteration [191]. 

The incubation period after a tick bite varies from 2 to 28 days and usually lasts 7 to 

14 days [102]. The following viremic phase lasts 2 to 8 days and is characterized by 

flu-like symptoms such as fever, headache, fatigue, nausea and aching back and 

limbs. Leukopenia and thrombocytopenia are common features, and abnormal liver 

functions are observed but rare [191,194,195]. In the biphasic course, those 

symptoms fade and patients experience a period without clinical signs assimilated to 

remission. The virus spreads eventually into the CNS and causes anorexia, fever, 

headache, vomiting, photophobia and possibly sensory changes, visual disturbance, 

paresis and paralysis. Those symptoms can culminate to coma and death quickly after 

manifestation of neurological symptoms [178]. The biphasic course of TBE is 

represented in Figure 9. 
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Figure 9 – Overview of the biphasic course of human TBEV infection. 

Viral particles and nucleic acids are detected in the blood during the viremic phase that 

occurs usually one week after transmission. An asymptomatic period occurs in one third of 

the patients before experiencing the second phase of the disease. In this non-viremic phase, 

neurological symptoms, such as meningitis and encephalitis, occur. [196,197]. 

 

Meningitis is the most characteristic, clinical form of TBE, although not 

disease-specific, and is usually manifested by high hyperthermia, headache, nausea, 

vomiting, and vertigo. Encephalitis is mainly characterized by a disturbance of 

consciousness ranging from somnolence to stupor and, in rare cases, coma. 

Meningo-encephalomyelitis is the most severe form of the disease, characterized by 

flaccid paresis that usually develops during the febrile phase of the illness. Severe 

pain in the arms, back, and legs occasionally precedes the onset of paresis [189]. 

The severity of the disease varies depending on the subtype, TBEV-Sib and TBEV-FE 

inducing the most severe forms [198]. The outcome of the disease in humans 

(represented in Figure 10) is also influenced by factors such as the infecting dose, 

genetic susceptibility of the hosts, their immune status, and their age [84,199]. The 

fatality rate in adult patients is less than 2% for TBEV-Eu, 6-8% for the TBEV-Sib, and 

can reach 35% for TBEV-FE [102,198]. However, the high mortality figure observed 

with TBEV-FE subtype might be due to a lack of detection of mild cases, increasing 

the overall mortality rate [200]. A long-term morbidity is observed in 10 to 20% of 

the patients as a post-encephalitic TBE syndrome is defined, associated with 

temporary or permanent chronic neurological or neuropsychiatric symptoms, mainly 

cognitive and focal neurological signs, memory and concentration disturbance, 
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paresis, imbalance and headaches [201]. This chronic form is mainly induced by 

TBEV-Sib strains [193,202].  

 
Figure 10 - Spectrum of possible outcomes of TBEV infection 

[Adapted from 203] 

 

1.3.2. Vaccination against TBEV in humans 

Active immunization is the only option for prophylaxis against TBEV, as no 

antiviral treatment is presently available. Four widely used vaccines containing 

formalin or formaldehyde-inactivated TBEV derived from chicken embryonic 

fibroblast cells and using aluminum hydroxide as adjuvant are available, and they all 

require 3 doses for a complete course of immunization [204]. Two vaccines, based 

on the Neudoerfl and K23 European strains respectively, are currently in use in 

Western Europe: FSME-Immun® (Baxter, Austria) and Encepur® (Novartis Vaccines, 

Germany). Two other vaccines, based on the 205 or Sofjin Far-Eastern strains 

respectively, are in use in the Russian Federation: EnceVir® (Scientific Production 

Association Microgen, Russia) and TBE vaccine Moscow® (Federal State Entreprise of 

Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russia Academy of 

Medical Sciences, Russia) [103,205]. A formalin-inactivated TBEV vaccine is also in 

use in China [206], but there is a lack of information about its composition, safety, 

efficacy and effectiveness [103]. The vaccines induce a protective response against 

the homologous subtypes, but they are also interchangeable and they are able to 

induce a cross-protective response against the other subtypes [47,48,204,207,208]. 

Clinical effectiveness of TBE vaccination in the field was demonstrated in Austria 

[209]. 
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Langat virus (LGTV), a member of the mammalian tick-borne flavivirus group, 

is closely related to TBEV. It shares more than 80% amino acid identity with TBEV but 

is less virulent, and was previously used as a live-attenuated anti-TBEV vaccine. 

However, while LGTV-vaccination decreased the overall incidence, it resulted in 

meningoencephalitis in 1/10000 recipients, which led to its discontinuation [178]. It 

remains broadly used as an attenuated alternative for TBEV in research, as it is a 

HG-2 virus handled in a CL-2 laboratory. 

 

1.3.3. Viral pathogenesis 

Neurotropic viral infections initiate in the periphery (skin, mucosa, gut, or 

lung). Following TBEV inoculation by tick-bite, the first cells replicating the virus in 

the skin are probably epidermal dendritic cells (DCs), namely Langerhans cells [210]. 

They migrate to draining lymphatic nodes via the lymphatic system and the virus 

replicates in the lymphatic organs (spleen, liver and bone marrow), leading to 

dissemination in the periphery and viremia (Figure 11) [181,211]. When the infection 

occurs through the alimentary route, after consumption of raw milk or dairy 

products, the virus enters to the intestinal lumen and replicates in epithelial cells. 

It is then able to cross the intestinal epithelium by transcellular (through the cell) or 

paracellular (between cell junctions) routes, as shown in vitro on Caco-2 cell lines, 

and to join the blood circulation, leading to a systemic infection [62]. After 

hematogenic spread, the virus replicates in T- and B-cells, as well as in macrophages, 

and different organs are invaded, including sympathetic and parasympathetic 

ganglia, olfactory mucosa, and the brain parenchyma [193,201,212,213]. Viral 

neuropathogenicity involves three major properties: 1/ viremic capacity (capacity of 

the virus to highly replicate in peripheral tissues), 2/ neuroinvasiveness (capacity of 

the virus to cross the blood-brain barrier and enter the CNS), and 3/ neurovirulence 

(ability to replicate, spread, and cause neuropathology within the CNS) [9,203,214].  
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Figure 11 - TBEV invasion of the CNS following tick bite. 

After a tick bite (1), TBEV replicates in epidermal dendritic cells that migrate to draining 

lymph nodes where it replicates massively (2), before reaching the circulatory system, 

leading to viremia (3). The virus could then cross the blood brain barrier (BBB) and enter the 

brain (4) (Adapted from [212]).  

 

1.3.3.1. Models to study viral pathogenesis 

• In vivo animal models 

Animal models are an interesting approach to study neurotropic viral infections. 

They offer complexity, including developed brain structures and different immune 

entities, but they are unable to recapitulate the human brain physiology accurately 

[215,216]. They also have specific innate immune response features that differ from 

humans [217]. Moreover, it is difficult to study key cellular and molecular 

mechanisms underlying brain diseases pathology in whole-animal models [218]. 

The study of TBEV-induced neuropathology was mainly performed on laboratory 

mice. This is led by the availability of tools on mice, but also because they develop 

neurological signs similar to those observed in humans, such as meningoencephalitis 

[193,199,219–221]. Other animal models were also used in the past, such as chick 

embryos, suckling white rats, Syrian golden hamsters, sheep and monkeys (Reviewed 
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by [193]). However, all those models remain phylogenetically far from humans and 

the obtained results are difficult to translate to human neuropathogenesis [193]. 

  

• Two-dimensional cell cultures 

The dominant models for studying neuroviral infections are the 

two-dimensional (2D) cell cultures in monolayer structures. They rely on cell 

adherence to the flat surface of the culture dish. The 2D cultures allow a simplified 

approach to study the brain diseases, at low cost, and with high reproducibility due 

to equal access of cells to nutrients and growth factors, resulting in homogenous 

growth and proliferation [222]. 

Immortalized cell lines are an easy model to study brain infection with viruses 

such as TBEV [223] and HSV1 [224]. However, genetic and signaling abnormalities 

found in these cultures require validation on a more stable model [225]. The 2D cell 

culture models were further enhanced by using primary cells, that can easily be 

obtained from mice [226], but in humans, experiments on those cells are limited by 

the difficulties to access cell sources such as embryos and cadavers [227]. Other 

limitations of those human cells cultures include that they might fail to mimic the 

complexity of the human brain if the cellular composition of brain cells, such as 

neurons or different glial cells, is not well characterized [225,228,229]. Supporting 

the importance of complex cultures, neurons were shown to act differently when co-

cultured with astrocytes in comparison to neuronal monocultures [230]. To address 

these issues, human neural cells can be derived from human embryos or human iPSC 

of healthy patients or with pathological manifestations [231], and multicellular 

differentiated complex brain cell cultures have been used, for instance the study of 

the physiopathology induced by La Cross virus (LACV) [225] or impairment of 

neurogenesis by Borna disease virus (BDV) [232,233]. 

 

• Three-dimensional models  

While the 2D cultures are useful to study viral interactions with neural cells, 

they do not represent the 3D architecture and different regions of the brain. To 

overcome this issue, new culture systems that allow reconstruction of architectural 

and three-dimensional features of the human brain were developed. They aim to 
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mimic the human brain tissue in a reproducible manner and provide high-throughput 

studies for drug and neurotoxic components screening. 

 

Brain organotypic slices 

Brain organotypic slices create a platform that simulates the in vivo 

architecture of the brain in an in vitro environment. They can be obtained from 

murine neonates or adults [234], but when obtained from older animals, the slices 

are thin and fragile [218] hence not representing an easy model for studies on a fully 

developed brain. More importantly, they can also be obtained from adult human 

donors, which offers a relevant environment of live human CNS tissue  [235,236]. 

They allow to study both the infection and dissemination of neurotropic viruses 

within the CNS, but also the evaluation of antiviral molecules [237,238]. Compared 

to animal models, they are easier to prepare and have a lower maintenance cost 

[218]. So far, most infectious studies carried on viruses such an HSV-1 and ZIKV used 

organotypic slices obtained from rodents at prenatal or early postnatal stages [237–

241], which makes the data harder to extrapolate to the human adult brain. 

 

Neurospheroids and cerebral organoids 

In the last decade, systems using human pluripotent-stem cells-derived three-

dimensional (3D) cultures that model organogenesis and form brain region-specific 

structures were developed. Those three-dimensional models are composed of 

proliferative progenitor neural cells that produce specific brain-like structural 

organization, mimicking brain physiology and allowing a relevant modeling  of 

neurodevelopmental disorders [242]. Those 3D models comprise two types: 

neurospheroids and cerebral organoids. 

Neurospheroids (or neurospheres) originate from single cell suspension of neural 

progenitor cells, and are less complex than organoids. They are mainly used to study 

the proliferation, self-renewal capacity, and multipotency of neural stem cells and 

progenitor cells during development [218]. They are good models for the developing 

forebrain and cerebellum, but they fail to develop into other regions such as ventral 

midbrain. Neurospheroids were highly useful to model ZIKV-infection of the prenatal 

brain. Garcez and colleagues [243,244] used human iPSC-derived neurospheroids that 

mimic a three-month old brain development, and infected them with ZIKV for 
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24 hours to study the mechanisms by which the virus causes microcephaly. They 

showed that ZIKV reduces the size of human neurospheroids, by altering translation, 

cell cycle, and neural differentiation. 

On the other hand, cerebral organoids are able to recapitulate the 

three-dimensional architecture of the brain tissue in a higher resolution than 

neurospheroids [218]. They can differentiate, self-organize and form distinct 

multiple neural populations forming brain-like structures, which makes them an ideal 

model for development, disease pathogenesis, and drug screening studies [245]. 

They are formed by culturing floating cells in spinning bioreactors that favor human 

pluripotent stem cells to compartmentalize in different brain regions leading to a 

specific brain structure [242]. They can also be  generated by fusion of 

neurospheroids resembling different regions of the human brain, allowing the 

formation of forebrain-like organoids [246]. 

Cerebral organoids were used to mimic ZIKV-induced brain malformations and 

explore the interferon response [247]. Furthermore, a ZIKV inhibitor, azithromycin, 

was shown to reduce ZIKV infection in glioma cells but not in organoids [238,248], 

which suggests a limited effect on the fetal brain and shows the relevance of three-

dimensional models. 

While it is clear that cerebral organoids represent the future of in vitro brain 

models, the technology still faces several limitations [218]. First, the cerebral 

organoids developed are mostly based on spontaneous cell self-aggregation (Figure 

12), which makes each organoid typical and does not allow reproducibility [249]. 

Second, the organoids require several months of culturing, frequent change of a large 

medium volume and specific spinning bioreactors, which increases the costs. 

Additionally, while three-dimensional structures are formed, brain organoids do not 

always recapitulate embryonic human cerebral cortex cell composition, such as the 

absence of outer radial glia cells, nor allow proper development of certain 

structures, such as the subventricular zone (SVZ). They also fail to recapitulate many 

late brain development events, such as myelination and gliagenesis [218]. 

However, recent developments have improved reproducibility and miniaturized 

the bioreactors, allowing cost-effective and reproductive study of brain 

development-impairing viruses, such as ZIKV that causes microcephalies [249]. 

Furthermore, those organoids can produce mature glutamatergic and GABAergic 
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neurons, which allows studying neurogenesis, but they fail to generate other cell 

types such as astrocytes and oligodendrocytes  [242,249].  

 

 
Figure 12 – Cerebral organoid cell culture system and representative images of 

each stage 

bFGF, basic fibroblast growth factor; hES, human embryonic stem cell; hPSCs, human 

pluripotent stem cells; RA, retinoic acid [242]. 
 

1.3.3.2. TBEV in the brain 

The CNS is separated from the blood circulation by a physical barrier called the 

blood-brain barrier (BBB). It represents a physical and metabolic barrier, aiming to 

selective transport and trafficking of molecules and cells from the blood circulation 

into the brain parenchyma [250]. It is composed of specialized endothelial cells that 

form tight cell-cell junctions, and interact with astrocytes and microglia to maintain 

its integrity [251]. While TBEV induces an increase in BBB permeability, its disruption 

is not a prerequisite to TBEV entry into the brain as it precedes CNS invasion [252], 

which was also observed with other flaviviruses such as JEV [253]. The mechanisms 

by which TBEV enters the CNS are not fully characterized, but they are likely to 

include: 

1/ Direct infection of endothelial cells and transcellular migration by 

transcytosis through the endothelial cells layer without prior alteration of its 

integrity (Figure 13), as suggested in an in vitro model of the BBB [254],  
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2/ Transcellular or paracellular transport of infected peripheral blood 

mononuclear cells (PBMCs) by infiltration into the brain, via “Trojan horse” 

mechanism [255], 

3/ Axonal transport of viral RNA in a retrograde way (towards the cell body) 

following a peripheral infection, shown in a rodent model in vivo [256] or in human 

neurons in vitro [221], 

4/ High replication in the olfactory epithelium that might lead to CNS invasion 

through olfactory neurons [257], supported by accidental human laboratory infection 

with aerosols as a probable route of infection [91,258]. 

Paracellular entry of TBEV between endothelial cells of brain capillaries was 

also suggested [201], however, using an in vitro model of the BBB, Palus et al. [254] 

showed that the tight junctions of microvascular endothelial cells are not 

compromised, which does not argue in favor of this hypothesis. 

 

 
Figure 13 – TBEV entry to the brain and disruption of the BBB 

TBEV enters the CNS, possibly by infection of HBMEC, and infects brain cells, such as neurons 

and astrocytes. Infected cells within the CNS induce a cytokine signaling, which will 

eventually lead to BBB breakdown and massive entry of the virus and immune cells. HBMEC= 

Human Brain Microvascular Endothelial cells [253].  

 

Upon viral entry into the brain, TBEV induces non-specific pathological changes. 

Its antigens are detected in the pericaryon of large cerebellar neurons (Figure 14A). 
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Lesions, including inflammatory changes and neuronal damage (Figure 14b), are 

widespread in the spinal cord (anterior horns), the brainstem (medulla oblongata, 

pontine nuclei and tegmentum of pons), the cerebellum (dentate nucleus and 

Purkinje cells), and the striatum, while they were absent in meningeal structures, 

peripheral nerve and blood cells [259–262]. Microglial hypertrophy and astrogliosis 

were observed in human fatal cases of TBE (Figure 14C) [259]. 

   

  
Figure 14 – Histology of human brains of fatal cases of TBE 

(A) Immunolabeling of TBEV shows infection neurons (Purkinje cells in the cerebellum) and 

their processes (600x). (B) Immunolabeling of TBEV shows a disintegrating Purkinje cell 

associated with a mononuclear inflammatory cells (black arrow) (600x). (C) Proliferation and 

hypertrophy of microglia, stained with Gallyas’ silver stain (figure adapted from [259] and 

[261]). 

 

Neurons are the main target of TBEV [72,263]. TBEV antigens accumulate in the 

cell body, and spread to dendrites at later stages of infection (Figure 15A). The virus 

replicates in dendrites, causing a swelling, and induces a rough endoplasmic 

reticulum (RER) disorganization and degranulation, tubule-like structures, as well as 

the formation of specific laminal or smooth membrane structures (LMS or SMS) inside 

the cisternae of the RER, probably through budding from its membrane [72,223,264]. 

Those structures are probably intracellular membrane vesicles used by the virus to 

escape the immune system and delay IFN response signaling [265]. TBEV induces 

neuronal death but the underlying mechanisms are not fully understood. It might 

occur through direct and/or indirect effect, mediated by immune cells in the latter 

case. In vivo experiments showed that CD8-/- mice survive longer than 

immunocompetent mice following TBEV infection and cytotoxic CD8-positive T-cells 
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were observed in close contact with neurons in brains of fatal TBE cases 

post mortem, supporting a role for cell-mediated immunity in TBEV-induced 

neuropathogenesis [199,262]. However, so far, a direct effect remains considered as 

the major cause of TBEV-induced neuropathology [220]. Both apoptosis and necrosis 

may be involved, as the two processes have been described in vivo, in the brain of 

mice and monkeys [199,264,266,267] and in vitro, in human neuroblastoma cell 

cultures [223]. Caspase 3 was also observed in neurons of human fatal TBE cases 

analyzed post mortem (Figure 15B) [262]. In favor of an apoptotic death, E and NS3 

proteins of LGTV have been shown to induce massive cell death in mouse 

neuroblastoma cell lines through caspase-3 or caspase 8 (for NS3 only) pathways 

[268,269]. However, this is not further supported by data obtained in primary 

cultures of murine neurons showing that apoptotic cells were rare [264]. In human 

cultures of neurons, no apoptotic figures were described either [72]. Furthermore, 

similar to other flaviviruses [270,271], TBEV induces autophagy in human neuronal 

cells, and this induction increases TBEV replication [72,223]. However, the 

mechanisms of TBEV-induced autophagy are not deciphered. 

 
Figure 15 – Infection and induction of apoptosis in neurons of fatal human TBE 

cases  

(A) Immunolabeling of TBEV in neuronal perikarya and processes (red arrow). (B) 

Immunolabeling of Caspase 3 in TBEV-expressing neurons (black arrow). Stainings in (A) and 

(B) were performed on consecutive tissue sections (Adapted from [261]). 
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In addition to neurons, the CNS encompasses glial cells, composed of microglia, 

astrocytes and oligodendrocytes. Microglia are macrophage-like resident cells 

[272,273]. They are involved in homeostatic functions such as clearance of necrotic 

and apoptotic cells and their debris [273]. Astrocytes are star-shaped cells that 

provide important structural, metabolic and trophic support to neurons [274] and 

are involved in the BBB formation and maintenance [275]. Following brain trauma or 

infection, both astrocytes and microglia undergo a process called astrogliosis and 

microgliosis, respectively, associated with reversible changes such as 

stimulus-dependent modification of gene expression, and thicker hypertrophic 

intermediate filaments, as well as long-lasting astrocytes scar formation that 

sequestrate the affected region of the CNS [276]. Oligodendrocytes are associated 

with neuronal axons through a myelin sheath and are involved in improving 

conduction of neuronal impulses. They produce soluble factors and maintain the 

ionic homeostasis of the brain, thus promoting neuronal survival [277–279]. TBEV 

infection of glial cells was first studied using immortalized cell lines. It was shown 

that TBEV replicates in cells of glial origin (glioblastoma cell lines), though in a lower 

extent than in cells of neural origin (neuroblastoma cell lines). Similar ultrastructural 

rearrangements and features of apoptosis were however observed in both cell types 

[223]. Further studies using primary cells from murine or human origins confirmed a 

low rate of infection of astrocytes (<20%) due to a fast IFN response, and showed 

ultrastructural modifications in the cytoskeleton, formation of tubule-like structures 

and limited necrotic figures [61,280]. While TBEV weakly altered astrocytes viability 

[263,280,281], it induced astrogliosis [259,280], as well as secretion of a large set of 

cytokines and matrix metalloproteinases (MMP), some of which, such as MMP-9, may 

play a role in the increase of BBB permeability [280]. As for oligodendrocytes, little 

is known in a TBEV-infectious context, but they are thought to be rarely infected 

[193]. However, microglial cells seem not to support TBEV replication [193], but the 

virus induces their activation [262,282], suggesting a cytokine response. 

 

Furthermore, a cellular immune response is observed, and is represented by 

inflammatory infiltrates of CD3-, CD4-, and CD8-positive T cells and activated 

macrophages/microglia in parenchymal and perivascular compartments, and B cells 

mainly confined in the perivascular compartment (Figure 16) [261].  
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Figure 16 - Immunohistochemical characterization of inflammatory cell subsets 

and inflammation-assisted factors 

T lymphocytes were detected in the parenchymal and perivascular compartment (A: anti-

CD3, ×400; B: anti-CD4, ×400; C: anti-CD8, ×400). CD8-positive cytotoxic lymphocytes were 

predominant in the parenchyma (C), and were seen in contact to morphologically intact 

neurons (C, inset). B lymphocytes were mainly found in the perivascular compartment (D: 

anti-CD20, ×400; E: anti-CD79A, ×400). Numerous CD68-positive cells (F, ×400) were 

detected in both compartments, neuronophagias were observed (F, inset; ×600) [262]. 

 

While innate and adaptive immune cells infiltrates might play a role in 

TBEV-induced pathogenesis, experimental studies about TBEV-induced 

immunopathology and cellular immune response are limited [197].  

During viral infection, innate immune cells, such as neutrophils, macrophages 

and natural killer (NK) cells provide a fast response aiming to control viral infection 

and replication. Neutrophils and macrophages are phagocytic cells that are recruited 

to the site of TBEV infection [181] and the macrophages present antigens to B- and 

T cells by increasing MHC expression [283]. They are susceptible to TBEV infection 
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and might participate in peripheral spread of the virus [181,284]. Mouse 

macrophages support TBEV replication [285], but whether it replicates in neutrophils 

is still unknown. NK cells represent innate lymphocytes that have the ability to 

respond against pathogens and kill virus-infected cells through the release of perforin 

and granzymes [286,287]. They also contribute to viral control of flaviviral infections 

[288,289] but little is known about their role in TBEV infection. Their cytotoxic 

responses involve induction of apoptosis by TRAIL and FAS-ligand in targeted cells 

[290,291]. They are detected in cerebrospinal fluid (CSF) of patients with TBE, 

indicating that they infiltrate through the BBB  [292]. Furthermore, acute TBEV 

infection activates NK cells but impairs their functionality [293] and NK levels were 

transitorily stimulated in TBEV-infected mice [220,294]. 

In comparison, adaptive immunity cells, such as T and B cells, develop later 

after infection and provide a more specific response targeting viral antigens [295].   

In mice, CD8-positive T cells are the main immune cells involved in TBEV-

immunopathology [199] and they are strongly activated by TBEV infection [296]. 

However, breakdown of the BBB is not dependent on infiltration of CD8-positive 

T cells into the CNS after TBEV-infection [252]. In humans, they contribute to 

neuronal damage in TBEV-infected human brain, by releasing granzyme B, a serine 

protease inducing cell death by apoptosis and/or necrosis [261]. CD4-positive T cells 

have a protective role, confining TBEV spread [199], but they show only a low to 

moderate activation by TBEV infection [296].  
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1.4. Cell response to TBEV infection 

The CNS is a sensitive organ where immune responses are highly regulated 

[297]. This regulation enhances protection of vital structures and non-renewable 

cells, such as neurons, from damage by inflammatory responses, and the CNS is 

considered as an immune regulated site [298,299].   

In the homeostatic brain, the CNS parenchyma has poor lymphatic drainage 

[300] and is separated from the blood circulation by the BBB, protecting it from the 

entry of pathogens and circulating immune cells [301]. The meninges are accessible 

and patrolled by immune cells but the entry of monocytes, B and T cells is restrained. 

CNS cells express fas ligand (fasL) which induces death of fas-positive T cells that 

reach the CNS, independently from antigen recognition [302,303]. Furthermore, 

astrocytes and microglia inhibit T-cell proliferation and cytokine production, by 

inducing regulatory T cells [304]. Neurons also convert activated T cells to regulatory 

T cells [305]. Moreover, the low expression of major histocompatibility complex 

(MHC) class I and II prevents them from recognizing corresponding antigens [306]. 

Some pathogens, such as neurotropic viruses, are able to breach the 

physiological and immunological barriers and enter the CNS, either causing 

devastating inflammation or taking advantage of the immune environment of the CNS 

to persist as latent infections. Upon inflammation, immune reactions take place in 

the CNS due to immunostimulatory effects of locally produced cytokines, such as 

breakdown of the BBB, facilitation of antigen drainage to the periphery, DC 

appearance, and MHC upregulation [307]. Furthermore, all brain cells are able to 

mount an intrinsic antiviral response against pathogens. 

 

1.4.1.  Intrinsic immune response  

1.4.1.1. Sensing of viral infection 

Within the CNS, the innate immune response is the first line of defense against 

viral infections. It relies primarily on the recognition of pathogen associated molecular 

patterns (PAMPs) by cellular sensors known as pathogen recognition receptors (PRR), 

which induces antiviral response cascades and interferon (IFN) production. Different 

PRRs react with specific PAMPs, show distinct expression patterns, activate specific 

signaling pathways, and lead to distinct antiviral responses [308]. PRRs are either 
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localized at the cell or endosomal membranes, such as toll-like receptors (TLRs), or in 

the cytosol, such as RIG-I-like receptors (RLRs) [309]. 

 

• RIG-I like receptors (RLR) pathway 

The three members of the RLR family are retinoic acid-inducible gene I (RIG-I), 

melanoma differentiation-associated 5 (MDA5) and laboratory of genetics and 

physiology 2 (LGP2). Those receptors have highly conserved structures. They carry two 

repeats of caspase activation and recruitment domain (CARD)-like region at the 

N-terminal end, which are important to downstream signaling through their 

interaction with other CARD-containing proteins. The middle portion contains the 

DExD/H helicase domain associated with an ATP-binding motif. The C-terminal region 

contains a repressor domain that inhibits downstream signaling [310]. 

Both RIG-I and MDA5 sense viral RNA with their helicase domain and induce 

downstream signaling through their card domain. LGP2 lacks the CARD homology and 

was thought to function as a negative regulator by interfering with viral RNA 

recognition by RIG-I and MDA5 [310]. It seems that it can on the contrary facilitate 

viral RNA recognition by other RLRs through its ATPase domain [311].  

RLRs recognize double-stranded RNAs (dsRNAs) formed during flavivirus 

replication [312]. MDA5 recognizes long dsRNAs (>4kb), that can be generated as 

intermediates during viral infection and replication, while RIG-I can recognize short 

dsRNAs (≅300bp) and 5’ di- and 5’ tri-phosphorylated single stranded RNAs (ssRNAs) 

[313]. Because of this specific recognition of nucleic acids, RIG-I and MDA5 sense the 

replication of different viruses [314]. They can act in synergy, in a temporal manner, 

depending on PAMPs displayed along the infection [315]. 

Upon recognition of PAMPs, RLRs change their conformation and form oligomers 

through their CARD domains, which also interacts with the CARD domain in the 

N-terminal end of IPS-1 (also known as MAVS, VISA or CARDIF) that is localized at the 

external mitochondrial membrane [316]. IPS-1 recruits several proteins of the tumor 

necrosis factor (TNF) receptor-associated factor (TRAF) family [317]. TRAF proteins 

are E3-ubiquitine ligases that will recruit inhibitor of nuclear factor kappa-B kinase 

subunit gamma (IKK-γ) protein (also called NFκB essential modulator -NEMO-) that will 

activate the TBK1/IKKε and IKKα/IKKβ complexes. TRAF3 induces TBK1 and IKKε 

activation, that will form a complex with NEMO, NF-κB activating kinase associated 
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protein 1 (NAP-1), and similar to NAP-1 TBK1 adaptor (SINTBAD) proteins and induce 

IRF3 and IRF7 phosphorylation, conformational change, dimerization, and nuclear 

translocation of the dimers to induce type I IFN gene expression [318]. TRAF6 

association with TAK1, TAB 1/2/3 and TANK proteins induces the formation of 

IKKα/IKKβ complex that induce nuclear translocation of NF-κB and proinflammatory 

cytokines production [319] (Figure 17). 

TBEV infection induces the upregulation of both RIG-I and MDA5 in T98G 

neuroblastoma cell line, and both are involved in the enhanced activation of interferon 

regulatory factor 3 (IRF3) signaling and RANTES (CCL5) expression in human astrocytes 

[320,321]. However, IFN induction by the virus depends only on RIG-I, and not on 

MDA5, in human osteosarcoma cell lines U2OS [80]. The downstream adaptor of RLR 

signaling, IPS-1, is also important for restricting LGTV infection, as IPS1-/- mice show 

higher viral replication and increased mortality [282], supporting the involvement of 

RLRs in TBEV sensing.  
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Figure 17 – RLR pathway and known TBEV interactions.  

Known interactions inhibiting (green) or favoring (red) TBEV replication are represented. 

 

• Toll-Like Receptors pathway  

Double-stranded RNAs (dsRNAs) can also be recognized in the endosome by 

Toll-Like Receptor proteins (TLRs). TLRs are very conserved transmembrane proteins 

composed of an N-terminal ectodomain, involved in ligand recognition, a 

transmembrane domain, and a C-terminal cytosolic domain called tool interleukin-1 

(TIR), that induce downstream signaling [322]. Among the 10 described TLRs in 
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mammals, TLR2 and TLR4 are involved in viral recognition at the cell membrane, while 

TLR3, TLR7, TLR8 and TLR9 are involved in viral sensing at membranes of endosomes 

[322]. The TLR pathway is represented in Figure 18. 

 

 

Figure 18 - TLR pathway and known TBEV interactions. 

Known interactions inhibiting (green) or favoring (red) TBEV replication are represented. 

 

TLR2 and TLR4, localized at the cell membrane, recognize viral glycoproteins, 

mainly localized at the surface of viral particles such as vesicular stomatitis virus (VSV) 

or Ebola viruses [323,324]. Their activation induces proinflammatory cytokine 

production but TLR2 and its internalization can also induce type I IFN by binding murine 

CMV [325]. 
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Within the cell, viral nucleic acids are directed to the endosomal compartment 

through three main ways: 1/ degradation by cellular proteases of viral particles after 

entry by endocytosis, 2/ viral entry by membrane fusion, autophagy, and degradation 

of viral particles after viral entry and membrane fusion, and 3/ nucleic acid transfer to 

pDC through exosomes [326–328]. TLR3 recognizes dsRNAs that either form the viral 

genome or are replication intermediates [329]. TLR7 and TLR8 recognize ssRNA, and 

are involved in the sensing of ssRNA viral genomes. TLR7 induces type I IFN production 

while TLR8 induces mainly proinflammatory cytokines production through NF-κB 

activation [313,328]. TLR9 recognize non-methylated cytosine-guanosine motifs (CpG) 

that are present in the bacterial and viral DNA. They induce type I IFN production, but 

can also induce proinflammatory cytokines production through NF-κB activation [330].  

TLRs binding to their ligand induces their dimerization and recruitment of TIR 

domain-containing adapters. There are four different adapters: myeloid 

differentiation primary response protein 88 (Myd88), TIR-associated protein/MyD88 

adaptor like (TIRAP/MAL), TIR domain-containing adaptor protein inducing IFNβ/TIR–

domain containing molecule 1 (TRIF/TICAM), and TRIF-related adaptor molecule 

(TRAM) [331].  

TLR3 induces the activation of TRIF adapter, while TLR2, TLR4, TLR7, TLR8 and 

TLR9 activate both TRIF and MyD88 adapters. The C-terminal domain of TRIF binds 

TRAF 6 protein, while its N-terminal interacts with receptor interacting protein 1 

(RIP1). The TRAF-RIP1 complex activates TAK1 kinase and NF-κB activation [332]. TRIF 

also interacts with TRAF3 to activate TBK1 and IKKε. The formed complex induces IRF3 

and IRF7 phosphorylation and type I IFN production [333]. 

Myd88 is recruited to TLR receptors dimers through its TIR domain [334]. 

Its recruitment by TLR2 and TLR4 is facilitated by MyD88-adapter-like (MAL) protein 

[335]. Through its death domain (DD), Myd88 recruits kinase proteins of the IRAK 

family [336]. The formed complex dissociates from Myd88 and binds TRAF6. 

TRAF6 dimerization induces the formation of TAK1-TAB1/2/3 complex that 

autophosphorylates and phosphorylates the IKKα-IKKβ-IKKγ complex [337]. 

The phosphorylated IKK complex activates NF-κB, which translocate to the nucleus. 

Furthermore, TLR7, TLR8 and TLR9 can induce IRF3-IRF7 phosphorylation and 

translocation through the complexes Myd88/IRAK4/TRAF6 and TRAF6/IRAK1/IKKα 

[338] 
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TLRs involvement in TBEV sensing is not clear, as few laboratory experiments 

have investigated the importance of TLR3-TRIF pathway in tick-borne Flaviviruses 

(TBFV) [67]. TLR3 expression was not induced by TBEV in T98G neuroblastoma cell 

lines [320]. In TBE patients, TLR3 expression is associated with either a protective 

[339] or a more severe outcome/risk factor [340–342]. This led to the suggestion that 

TLR3 might support TBEV penetration through BBB and facilitate the onset of 

neurologic symptoms, but that within the CNS, its expression would be protective 

[339]. Indeed, TLR7 might act in a related way in LGTV infection, as it restricts viral 

replication and spread in the CNS in an IFN-independent manner, by activation of the 

inflammatory response, which might facilitate BBB disruption [343].  

 

1.4.1.2. Interferon signaling 

The activation of the PRR cascades results in the phosphorylation, 

oligomerization and then nuclear translocation of the transcription factors IRF3, IRF7 

and/or NFκB [308,344,345]. Translocation of IRF3 and IRF7 induces the expression of 

specific cytokines called interferon (IFN). Three types of IFNs are produced by cells: 

type I IFN, type II IFN, and type III IFN (Figure 19). 

 

• Type I Interferon 

Type I IFNs are key innate immune regulators for viral infections within the CNS. 

They enclose 5 different classes: IFN-α (comprising 12 subtypes), IFN-β, IFN-ω, IFN-ε, 

and IFN–κ that form a large family of cytokines that control early spread of viral 

infection. Most cells produce IFN-β, whereas hematopoietic cells such as 

plasmacytoid dendritic cells (pDC) are specialized in IFN-α production [346]. IFN-ε 

and IFN–κ are not induced by PRRs activation, but are constitutively expressed. IFN-ε 

is expressed by epithelial cells of the female genital tract and protects against 

sexually transmitted infections such as HSV-2 and Chlamydia muridarum [347].  IFN-κ 

is produced by keratinocytes, and does not have a known subsequent antiviral 

activity [348]. IFN-ω is mainly produced by leucocytes and stimulate NK cells MHC 

class I expression [349]. 

Type I IFNs bind to a receptor composed of two major subunits, IFNAR 1 and 

IFNAR 2, constitutively associated with JAK1 and TYK2 kinases [350]. Binding of type I 
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IFN to its specific receptor, in a paracrine or autocrine manner, induces the 

trans-phosphorylation of the JAK tyrosine kinases, which phosphorylate tyrosine 

residues within the intracellular subunit of IFN receptors. These residues recruit 

STAT proteins that are then phosphorylated by the JAKs, allowing the formation of 

STAT1-STAT2 heterodimers associated with IRF9, known as ISGF3 transcription 

factor. These complexes translocate to the nucleus and bind the ISRE promoter, 

which induces the expression of hundreds of interferon stimulated genes (ISGs) 

[351,352]. 

 

 
Figure 19 – Type I, type II, and type III interferon. 

Known interactions inhibiting (green) or favoring (red) TBEV replication are represented. 
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• Type II Interferon 

Type II IFN, represented by IFN-γ, binds to a receptor composed of the two 

subunits IFNGR1 and IFNGR2 [353]. Binding of IFN-γ to its receptor induces the 

activation of JAK1 and JAK2 proteins that are associated with the intracellular ends 

of its subunits. This leads to the phosphorylation and dimerization of STAT1 which 

will translocate to the nucleus and activate the IFN-γ-activated site (GAS) and the 

expression of genes such as ISGs [351,352]. IFN-γ is an important immune modulator. 

It is mainly produced by immune cells and stimulates macrophages differentiation, 

induces neutrophils activation, increases NK cells cytotoxicity and stimulates MHC 

class I and II expression [354]. 

 

• Type III Interferon 

Type III IFNs, represented by IFN-λ1 (IL-29), IFN-λ2 (IL-28A), and IFN-λ3 

(IL-28B), signal through a heterodimeric receptor complex including IFNLR1 and 

IL10TB subunits [355]. While IL-10TB subunit is widely distributed across cell types, 

IFNLR1 is restricted to epithelial cells and, as a consequence, many other cell types 

respond poorly to type III IFNs [356].  Although binding a different receptor, 

type III IFN induces a similar pathway than type I IFNs, through the JAK/STAT 

signaling [357]. It has an antiviral activity and is able to control rotavirus infection 

in the gut [358] and influenza infection in the respiratory tract [359] 

 

• Interferon and TBEV infection 

IFN response through IFNAR is important for control of TBEV, as its replication 

and infection are increased in IFNAR-/- murine astrocytes [281].  Type I IFN induction 

in TBEV-infected cells is protective [80,282,360] and they can inhibit LGTV 

replication in pretreated cell cultures [361,362]. Type III IFN slightly restricts LGTV 

replication in murine neuroblastoma cells [361] but unlike type I IFN, it does not 

mediate antiviral protection when used to pretreat human medulloblastoma cells 

derived from cerebellar neurons (DAOY) [362]. In DAOY cells, TBEV infection 

activates type III IFN, but not type I or type II IFN cascades [362]. Moreover, TBEV-NS5 

induces the activation of IRF3 through IKKε and TBK1, resulting in the expression of 
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RANTES, while IRF7 and IKKε/NF-κB roles do not seem essential for TBEV-induced 

RANTES production [320,321]. 

TBEV evolved to escape IFN response, by sequestrating its gRNA and replication 

intermediate dsRNA in intracellular vesicles located in the ER membranes, delaying 

type I IFN production by hiding from PRR recognition factors and abrogating IRF-3 

translocation to the nucleus [80,265]. Viral proteins of flaviviruses are known to 

antagonize type I IFN, particularly NS5 [Reviewed by 363] but also TBEV-NS1, as its 

overexpression in vitro, but not during viral replication, abrogates the IFN-β signaling 

[80]. TBEV-NS5 protein inhibits IFNAR1 expression by binding to prolidase 

(Peptidase D or PEPD) involved in the IFN receptor maturation and cell surface 

expression [364]. LGTV- and TBEV-NS5 also interfere with JAK-STAT signaling 

pathway induced by type I (IFN-α) and II (IFN-γ) interferons. LGTV-NS5 binds to IFNAR 

and IFNGR receptors, blocking the phosphorylation of JAK1, TYK2, STAT1 and STAT2 

(Figure 19) [361], while TBEV-NS5 abolishes STAT1 phosphorylation through its 

interaction with the PDZ protein Scribble [365]. The overall data suggest that the 

inhibition of neuronal outgrowths (neurites) by TBEV-NS5 interaction with Scribble, 

competing with Rac1 [366], is a side effect of IFN signaling inhibition. 

 

1.4.1.3. Interferon-stimulated genes response 

The JAK-STAT transduction pathway induces the expression of hundreds of 

interferon stimulated genes (ISGs) that can directly act on restraining the viral 

replication [367]. Some ISGs are directly involved in IFN signaling, such as RIG-I, 

MDA5 or STAT1. Others regulate this signaling, such as ISG15, or have intrinsic 

antiviral activities by modulating nucleic acid integrity (OAS/RNAse L, ADAR1, and 

APOBEC family members), viral entry (IFITM3), or protein translation (PKR, IFIT 

family members) [368].  

A wide panel of ISGs are upregulated following TBEV infection, with amongst 

them IFIT1, IFIT2, RSAD2 (viperin), OASL, IFIT3, OAS2, ISG15 and ISG20 [362]. Here, 

I develop the functions and mechanisms of four ISGs that have been well 

characterized and are relevant in flavivirus-induced interferon response. 
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• Mx proteins family 

Mx (Myxovirus resistance) proteins family encloses two members: MxA (or Mx1) 

and MxB (or Mx2). They inhibit several viruses by targeting viral nucleocapsids, 

resulting in viral inhibition prior to viral replication (Figure 20) [369,370]. MxA 

contains GTP binding domains in the N-terminal end and a specific effector domain 

for GTP hydrolysis in the C-terminal end [371], but the functions of the two domains 

are not essential for its activity and depend on the targeted virus  [372,373]. 

 
Figure 20 – Antiviral mechanisms of Mx proteins 

Mx proteins family inhibit several steps in the life cycle of viruses. They block nuclear translocation 

of nucleocapsids of Influenza A virus and Thogoto virus (THOV) (1), and inhibits the secondary 

transcription and replication of their viral genome in the nucleus (2) or of vesicular stomatitis virus 

(VSV) in the cytoplasm (3). MxA also sequesters N protein of La Crosse virus (LACV) (4), thereby 

blocking genome replication. Furthermore, MxB inhibits uncoating, nuclear uptake and/or stability of 

HIV-1, preventing chromosomal integration [370]. N, nucleocapsid protein. Adapted from [374]. 
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• OAS/RNaseL proteins 

OAS genes are upregulated by IFN signaling and encode 2’-5’ oligoadenylate 

synthetase (OAS) proteins. Double stranded-RNAs, originating from replicative 

intermediates ssRNAs, stem structures of ssRNAs, or viral dsRNA genomes activate 

OAS proteins inducing the polymerization of adenosine 5’-triphosphate (ATP) into 

2’-5’-linked oligoadenylates (2-5A). These 2-5A oligomers bind to and activate latent 

RNase L that degrades single stranded RNA from cellular or viral origins [375] (Figure 

21). OAS1b, a murine gene also called Flv or falvivirus resistance gene, is known to 

induce a cell resistance to flaviviruses by an unknown mechanism independently of 

RNase L [376]. Furthermore, RNase L is also involved in control of flavivirus 

replication, such as WNV [377]. 

OAS1b is involved in the reduction of TBEV replication in transgenic mice [378]. 

In humans, polymorphism in OAS2 and OAS3 but not OAS1 genes are associated with 

an increased susceptibility to TBEV-induced disease [379] and 2'-5'-oligoadenylate 

synthetase like (OASL) and OAS2 genes were overexpressed in TBEV-infected DAOY 

human neuroblastoma cell lines [362].  

 

 
Figure 21 – OAS2/RNase L system. 

IFN signaling induces transcription of OAS gene through ISRE promoter. They bind dsRNA and activate 

RNase L through 2-5A production, mainly (2′-5′)p3A3 and (2′-5′)p3A4, leading to ssRNA cleavage. PPi, 

pyrophosphate; 2′PDE, 2′-phosphodiesterase; P'tase, phosphatase; IFN-R, IFN receptor. Reproduced 

from [380]. 
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• TRIM proteins family 

The tripartite motif (TRIM) protein family comprises 66 members. They are 

E3 ligase proteins that contain an RBCC domain formed by a really interesting new 

gene (RING) domain, one or two B-boxes domains and a coiled-coil domain [381]. 

Their functions are highly dependent on the capacity of the C-terminal domain to 

recruit specific partners. The physiological role of several TRIMs is poorly understood 

but it is established that it can act in the cytoplasm or the nucleus, at multiple stages 

of the viral life cycles, and can target various viral [382]. They are mainly known to 

affect retroviral replication. 

TRIMs regulate PRRs function and downstream signaling. For instance, TRIM4 

and TRIM25 facilitate RIG-I oligomerization and stabilization by catalyzing the 

synthesis of unanchored K63-linked poly-Ub chains, which promotes the interaction 

of its CARD domains with IPS-1 [383,384]. TRIM65 also activates MDA5 by 

ubiquitination of its RNA helicase domain [385], but TRIM13 and TRIM59 act as 

inhibitors of MDA-5 induced cascades, inhibiting transcription of IRF3 and NF-κB 

genes [386,387]. Furthermore, TRIM56 interacts with TRIF and promotes TLR3 

activation [388]. 

TRIMs are also able to restrict replication of several viruses. TRIM5α blocks the 

replication of human immunodeficiency virus-1 (HIV-1) and murine leukemia virus 

(MLV), at a stage following reverse transcription but before integration of viral DNA 

into the host chromosome [389,390]. TRIM52 interacts with NS2A protein of JEV and 

directs it to proteasome mediated degradation [391] and TRIM56 may restrict YFV 

and DENV with an unknown mechanism [388]. Taylor et al. [392] showed that 

TRIM79α, also known as TRIM30-3 or TRIM30D is upregulated in LGTV-infected mice. 

It binds TBEV-NS5 and mediates its proteasome independent lysosome-mediated 

degradation, inhibiting viral replication. However, the NS5 protein of WNV, a 

mosquito-borne flavivirus, was not recognized, showing a specific mode of action 

[392]. TRIM79α expression is also highly upregulated in TBEV-infected murine 

astrocytes [281]. However, as TRIM79α is specific for mice, other TRIM proteins might 

have a similar anti-TBEV role in humans. 

 

 

 



  

62 

 

• Viperin 

Viperin, coded by the RSAD2 gene, is an ISG with broad-spectrum antiviral 

activity induced both in an IFN-dependent manner and IFN-independent manner 

[393,394]. Viperin is a radical S-adenosylmethionine (SAM) domain-containing 

molecule, which uses a [4Fe-4S] cluster to cleave SAM. It targets different steps of 

the replication cycle of viruses, including CMV, influenza A virus, Sindbis virus, WNV 

and DENV. 

Viperin interferes at several levels of TBEV replication cycle: selective blocking 

of genomic RNA synthesis [395], proper viral particle assembly [396], and induction 

of proteasome-dependent degradation of NS3 and NS3-interacting viral proteins 

[397]. Viperin also restricts LGTV replication in the brain in a region-specific manner. 

Its expression is higher in astrocytes than in cortical neurons (CN) and it restricts 

viral replication in both cell types, while viral replication in granule cell neurons 

(GCN) mediate a viperin-independent antiviral response [263]. 

 

1.4.1.4. Cytokines and chemokines 

During viral infections, in addition to IFN production through IRF3-IRF7 nuclear 

translocation, PRRs-induced signaling activates downstream cascades that induce 

NF-κB nuclear translocation, leading to activation of pro-inflammatory cytokines. 

Neurons, astrocytes, microglia and oligodendrocytes can produce inflammatory 

mediators, and cytokine receptors are expressed constitutively throughout the CNS. 

In pathophysiological conditions, microglia and macrophages are rapidly recruited to 

the site of insult, and produce cytokines and trophic factors that can either damage 

or protect neighboring cells [398].  

 

• Interleukins 

Up to date, more than 40 interleukins (IL) have been identified. During immune 

response, they have a role in activation, proliferation and of leucocytes [399]. 

Interleukin signaling is cell-type dependent and mainly regulated by JAK/STAT 

pathway [400,401]. The can have a pro-inflammatory role, such as IL-1, IL-6, IL-12, 

and IL-17, inducing leucocytes differentiation, activation, and proliferation.  They 
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can also have an anti-inflammatory role, such as IL-4, IL-10, IL-13, and IL-22, which 

are secreted at later stages of inflammation  

 

• TNF 

Tumor necrosis factor-α (TNFα) is a central mediator of inflammation and is 

involved in the pathogenesis of several viral infections. TNF signaling is mediated by 

two receptors, p55 and p75, that are involved in either protective or deleterious 

effect on neurons. The downstream signaling activates NF-κB, induces neuronal 

apoptosis, and can disrupt the BBB [402,403]. It also modulates the inflammatory 

response, and regulate pro-inflammatory cytokines during JEV infection [404]. In the 

brain, astrocytes and microglia are able to synthesize TNFα [403]. 

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family 

that promotes apoptosis  in  a wide variety of transformed and cancerous cells, by  

binding  to  and  activating the death receptors DR4 and DR5 [405]. It can also 

mediate antiviral functions in an apoptosis-independent manner [406,407]. 

Furthermore, its expression can be induced by viruses such as  measles virus [408] 

and DENV [406].  

 

• Chemokines 

Cytokines involved in immune cells migration are called chemokines. They are 

produced by a large number of cells and form gradients that attract leucocytes to 

the highest concentration. 

There are two types of chemokines: homeostatic chemokines, which are 

constitutively produced in certain organs, and inflammatory chemokines, which are 

induced in response to immune response insults [409,410]. Depending on the position 

of cysteine residues at their N-ter end, they are subdivided into CCL, CSCL, CX3CL 

and XCL. Chemokines receptors are divided depending on the chemokine that they 

bind:  CCR, CXCR, CX3CR and XCR. The chemokine-receptor are not exclusive, as 

different chemokines can bind to different receptors [409]. 

Among pro-inflammatory chemokines, C-X-C motif chemokine ligand (CXCL) 10 

acts primarily on neutrophils as chemoattractant and activators [398]. It can also 
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mediate apoptosis in neurons [411], and viral infections induce its expression by 

astrocytes [412].  

 

• Cytokine response to TBEV-infection 

TBEV/LGTV infection induces an elevated production of several cytokines and 

chemokines, such as CCL3 (MIP1α), CCL4 (MIP1β), CCL5 (RANTES), CXCL10 (IP-10), 

IL-6, TNFα as well as IL-1α/β, IL-6, IL-8 IFN-α and IFN-γ [252,280,362], produced at 

least partly by glial cells (Zhang et al. 2016; Zheng et al. 2018). This production of 

cytokines is associated with an acute infection in HEK 293T cell lines, as cells 

infected in a persistent manner with LGTV did not upregulate cytokine-expressing 

genes [413]. The activation of the inflammatory response is important for the control 

of infection, as deletion in the CCR5 gene, coding for the receptor of CCL5 (RANTES) 

is associated with severe tick-borne encephalitis syndromes [414]. 

 

 

1.4.2. Cell death 

Cell death is an essential biological process for physiological growth and 

development. The classical forms of cell death include apoptosis, necrosis and 

autophagy [415]. They activate specific signaling pathways and display distinct 

morphological features. Cell death is a common outcome of virus infection. It can 

either slow down viral replication or enhance virus dissemination. Following viral 

infection, cell death can occur through one or several pathways. 

 

1.1.2.1 Apoptosis 

Apoptosis can be triggered by extrinsic signals, such as cytokines, or by intrinsic 

signals. Both rely on cysteine aspartyl proteases (caspase) signaling. Caspases are 

inactive zymogens that can be autoactivated (caspase 8, 9 and 10), or activated by 

a proteolytic cascade (caspase 3, 6 and 7) [416]. Both intrinsic and extrinsic pathways 

induce cell shrinkage, nuclear and chromatin condensation, DNA fragmentation, 

membrane blebbing and breakdown into apoptotic bodies. 

The extrinsic pathway is stimulated by ligands of the TNF family, such as TNF, 

Fas ligand (FasL) and TRAIL. In the absence of TNFα, its receptor TNFR1 is associated 
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with NFR-associated death domain (TRADD), receptor interacting protein kinase 

(RIP1), cellular inhibitor of apoptosis 1 (cIAP1), cIAP2, TNFR-associated factor 2 

(TRAF2) and TRAF5. This induces the formation of a complex at the plasma 

membrane termed complex I which activates cell survival through NF-κB signaling 

[417]. Binding of TNFα to its receptor TNFR1 leads to its internalization and the 

formation of a new complex including RIP1, RIP3, TRADD, FAS-associated protein 

with a death domain (FADD) and caspase-8. This complex is called cytosolic death-

inducing signaling complex (DISC) or complex II.  RIP1 and RIP3 are then cleaved by 

caspase 8, which induces the death signal by direct cleavage of caspases 3, 6 and 7, 

or by cleavage of Bid, a pro-apoptotic member of Bcl-2 family that will trigger Bax 

and Bak to initiate intrinsic apoptotic pathway [418]. 

On the other hand, the intrinsic pathway can be induced by a variety of 

intracellular stimuli that promote mitochondrial outer membrane permeabilization 

(MOMP) and the release of pro-apoptotic mitochondrial proteins. Among them, 

cytochrome c promotes the formation of a complex comprising Apaf-1 and caspase 9. 

This complex (called apoptosome) stimulates the autoactivation of caspase 9, which 

cleaves downstream effector caspases, such as caspase 3 [419]. The protein p53 (or 

TP53) is another inducer of intrinsic apoptotic pathway. Upon stress, p53 

translocates to the mitochondria and interacts with Bcl-2 family members,  leading 

to MOMP and apoptosis (Figure 22) [420]. 
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Figure 22 - Extrinsic and intrinsic apoptotic signaling pathways 

See text for details. ER=endoplasmic reticulum, MCL1=myeloid cell leukaemia 1, 

tBID=truncated BID. [421]. 

 

1.1.2.2 Necroptosis 

Necrosis has historically been considered an accidental form of death. However, 

evidence demonstrates that necrosis can be tightly regulated, involving specific 

ligands and genes. The terms programmed necrosis, necroptosis, or regulated 

necrosis are used to distinguish the programmed necrosis from the accidental 

necrosis [419]. Diverse signals, such as DNA damage, ATP depletion, or excessive 
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production of reactive oxygen species (ROS) can induce organelle distention and 

disruption, cell swelling, and the release of cytoplasmic content [422]. 

The most characterized pathway is through the signaling pathway of TNFα. It 

can also be induced by PRRs, but the mechanisms of this signaling are not known. 

TNFα induces the intrinsic pathway of apoptosis through activation of caspase 8. 

When caspase 8 is deleted or inhibited, apoptosis cannot be initiated, which results 

in necroptosis [423]. 

  

1.1.2.3 Autophagy 

Autophagy pathways are divided into three classes: microautophagy 

(engulfment of the cytoplasm at the lysosomal membrane, mainly characterized in 

yeasts), chaperon-mediated autophagy (directs unfolded proteins towards the 

lysosome for degradation), and macroautophagy, by which cells undergo partial 

autodigestion to provide nutrients that are necessary to maintain cell viability 

[424,425]. Macroautophagy is the most well characterized of the three types and is 

highly conserved [426]. Here, the focus is made on macroautophagy, hereafter 

referred to as autophagy, because of its involvement in antiviral response and cell 

death.  

Autophagy is mainly activated by stimuli such as starvation, deficiency of 

nutrients, hypoxic conditions, ER stress, and high temperatures [427]. It plays a role 

in physiological processes including immunity, survival, development and 

homeostasis [428]. While it is established that autophagy represents a cytoprotective 

process, it was suggested that it can also have pro-death functions [427,428]. 

However, the autophagic death is still in debate, and there is conflicting literature 

about whether autophagy is simply associated with other types of cell death or if it 

is a distinct cell death process [429]. 

Upon autophagy induction, cytoplasmic material is engulfed by double 

membranes, starting from the formation of a cup-shaped structure called the 

phagophore to the sequestration into double membrane vesicles, called 

autophagosomes. Autophagosomes eventually fuse with acidic lysosomes and form 

autolysosomes, where cargo is degraded [430]. 

The autophagic processes involve key factors among which several autophagy- 

related (Atg) proteins (Figure 23).  
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Figure 23- Regulatory processes of autophagy 

Autophagy is initiated through inhibition of mTORC1. This results in the recruitment of 

coordinated induction of nucleation factors that assemble the mitochondrial associated 

membrane (MAM). The nucleation is followed by conjugation of phosphatidylethanolamine 

(PE) onto LC3-I, which activates its binding onto the autophagosome membrane by LC3-II. 

Cargo selection and closure of the autophagosomal membrane allows mature autophagosome 

formation, which fuses with lysosomes, forming autolysosome, in which cargo is degraded 

[426,430]. 

 

In normal conditions, mammalian target of rapamycin complex 1(mTORC1) 

strictly inhibits induction of autophagy by imposing an inhibitory phosphorylation on 

Unc-51-like kinase (ULK1). Under stress conditions, several factors remove this 

inhibition, such as PTEN, AMPK, and TSC2 [431]. The formation of ULK1 initiation 

complex, by activation of ULK1 and its association with Atg13/FIP200/Atg101, allows 

the isolation membrane to expand and leads to the formation of a 

pre-autophagosomal structure (PAS). This involves the phosphatidylinositol-3-kinase 

class III (PI3K III) complex that includes Vps34, Beclin 1 (Atg6), and Atg14 [432]. 

During autophagosome formation, two ubiquitin-like systems, the Atg12 and the 

Atg8 conjugation systems, are involved to achieve a proper elongation of the 

phospholipidic isolation membrane (Figure 23). The Atg12 conjugation is initiated by 

a cascade of ubiquitination involving E1-like Atg7 and E2-like Atg10/Atg5. Atg5 forms 

then a multimeric complex with Atg12 and Atg16 [433]. Rather than conjugating to 

another protein, Atg8 conjugation system involves the attachment of ubiquitin-like 

(Ubl) Atg8/LC3 to phosphatidylethanolamine (PE). Atg8/LC3 is processed by Atg4 and 
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binds Atg7, which is also involved in the Atg12-Atg5 conjugation. Activated Atg8/LC3 

is then transferred to the E2-like enzyme Atg3 and conjugated to PE, forming a 

tightly membrane-associated form of Atg8/LC3-PE complex [425]. Moreover, Atg12–

Atg5 conjugate has an E3-like activity for Atg8/LC3 lipidation [434], and Atg12–Atg5-

Atg16 is also required for the correct localization of Atg8/LC3 [435]. 

For its last steps, autophagy involves the docking of completed autophagosomes 

with lysosomes. This process involves lysosomal protein LAMP-2 and GTP-binding 

protein Rab7. Autophagosome fusion with lysosome creates a structure called 

autolysosome. Within this structure, lysosomal enzymes (mainly cathepsins B, D 

and L) degrade the constituents of the inner autophagosomal membrane  [436,437] 

 

Autophagy is activated upon infection by several viruses, including flaviviruses 

such as DENV [438,439], WNV [440], ZIKV [426], and TBEV [72]. It can either serve 

pro- or antiviral functions during viral infections. For instance, ZIKV inhibits 

Akt-mTOR signaling to induce autophagy and increase virus replication [271]. 

Moreover, TLRs activation, such as TLR3, TLR4, and TLR7, are able to induce 

autophagy in macrophages [441,442] 

Supporting antiviral function, autophagy induction reduced Sindbis virus 

replication and induced neuronal apoptosis by interaction of Beclin with the 

anti-apoptotic protein Bcl-2 [443]. In contrast, studies have shown that autophagy 

processes can negatively regulate antiviral response to VSV. Indeed, Atg5-Atg12 

conjugate binds to RIG-I, impairing its function and abolishing IFN production [444], 

and autophagy defective cells enhance RLR signaling and resistance to VSV [445]. 

To counteract this antiviral effect, viruses have evolved to avoid autophagic 

processes. HSV-1 inhibits autophagy by targeting Beclin 1, and the abolition of this 

inhibition reduced viral neurovirulence [446,447]. Furthermore, TBEV hides from 

PRRS in intracellular vesicles that are thought to be induced by autophagy [265]. 

Several viruses also evolved to use autophagy processes to the benefit of their own 

replication. Indeed, autophagy can be hijacked and enhance the replication of 

several viruses, including ZIKV [271], DENV [438], HCV [448], and TBEV [72] 
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Objectives 

TBEV infects the human brain and induces a wide range of neurological 

disruptions that are likely to be due to neuronal impairment. Several studies, 

performed on rodent in vivo and in vitro or on transformed/immortalized human 

brain cell lines, showed that TBEV infects neurons and astrocytes and impairs cells 

homeostasis. Post mortem analyses of brains from fatal TBE patients provided more 

knowledge on infected cells in humans and the inflammatory response and 

infiltrates. Furthermore, primary or iPSC-induced neurons and astrocytes allowed 

the analysis of human neural cells, and underlined structural changes induced by 

TBEV.  

However, studies using human cells only focused on a specific cell type, neurons 

or astrocytes, which is not representative of cellular interactions within the CNS. 

Taking this into account, the first objective of my thesis was to develop a model of 

TBEV infection using a well characterized human differentiated neurons, astrocytes, 

and oligodendrocytes cultures derived from human neural progenitor cells (hNPCs). 

This type of multicellular cultures was used by our team and others for studying 

viruses such as BDV and LACV, highlighting differential impacts on the cell types or 

a high production of cytokines which can be important for signaling to neighboring 

cells. 

While co-cultures provide a more complex environment than monocultures to 

study brain cells interactions, it is mandatory to unravel the specific responses of 

each cell type. For instance, astrocytes and neurons are producers of interferon and 

respond to its signaling, but in our knowledge, no comparative analysis of the induced 

antiviral response were performed. The second objective of my thesis was then to 

set up a method for separation of differentiated neurons and astrocytes. To achieve 

a satisfactory level of enrichment and viability of each cell type, we used magnetic 

cell sorting, which allows a fast, cost effective and adaptable sorting of cells based 

on membrane markers. 

The enriched populations of neurons and astrocytes, associated with 

hNPC-differentiated co-cultures of the two cell types, represent original tools to 

decipher neurotropic viral infections of brain cells and the interactions between the 
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cell types. Using these newly established cultures, my third objective was to use the 

enriched neurons and astrocytes to decipher the mechanisms of antiviral response in 

both cell types. We formulated the hypothesis that the physiopathology of TBEV 

infection and the differential impact observed on neurons and astrocytes is 

associated to different levels and kinetics of antiviral response that controls viral 

replication. Exploring this hypothesis will help understand neuronal susceptibility 

and vulnerability to TBEV-infection. 

Overall, this project represents a proof of concept that hNPCs-derived neural 

cells in co-cultures are adaptable to study the interactions between neurotropic 

viruses and neurons, astrocytes, and oligodendrocytes, and more interestingly, the 

interactions between neurons and astrocytes in an infectious environment.  
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Chapter II: Results 

2.1. TBEV infects human brain cells differentiated from fetal neural 

progenitors 

Cultures of human neural progenitor cells (hNPCs) and hNPCs-derived neural 

cells were previously developed in the laboratory and were used to study the 

mechanisms by which Borna Disease Virus impairs neuronal differentiation [232,233]. 

Here, we used hNPCs-derived neural cells to study TBEV-induced neuropathogenesis 

(experimental design shown in Figure 24). To avoid variability in the differentiation 

outcome, we exclusively used hNPCs from passage 13 to 15. 

 

 
Figure 24 – Experimental design for hNPC-derived neural cells applications. 

hNPCs are differentiated into neurons (yellow), astrocytes (green) and oligodendrocytes 
(magenta). Infections and downstream experiments involving infectious virus are performed 
at d13 of differentiation. The figure was created using Servier Medical Art 
(smart.servier.com), licensed under a CC BY 3.0 attribution. 

Upon withdrawal of growth factors, hNPCs generate three cell types: neurons, 

astrocytes and oligodendrocytes. It was previously shown that neurons and astrocytes 

are the most numerous cells present in the co-cultures [232,233]. However, 

no enumeration was performed for oligodendrocytes. To precise the relative 

percentage of each cell population, we first reexamined the cell type composition 

of hNPCs-derived neural cultures. We differentiated hNPCs for 13 (d13) to 21 days 

(d21) and performed fluorescent immunostaining using antibodies against HuC/HuD 

or βIII-Tubulin to mark neurons, GFAP to mark astrocytes and Olig2 to mark 

oligodendrocytes (Figure 25a). Those markers are widely used for neural cells 

stainings and are localized either in the nucleus (HuC/HuD and Olig2) or in the 

cytoskeleton (βIII-Tubulin and GFAP). We automatically quantified neurons and 

oligodendrocytes using an automated microscope (ArrayScan Cellomics, Thermo 

Scientific). Due to technical reasons, it was not possible to enumerate GFAP-positive 

cells using the ArrayScan. Astrocytes were hence considered the remaining 
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population, and we further confirmed astrocytes enumeration by manual 

quantification of GFAP-immunostained cells. Our results using automated 

quantification showed that neural co-cultures contained 77.1±3.2% of neurons, 

21.5±4.1% of astrocytes, and 1.4±1.0% of oligodendrocytes at d13 (Figure 25b), 

confirming previous results in the laboratory. Manual quantification of astrocytes by 

enumeration of GFAP-positive cells showed a proportion of 22.8±5.6 of astrocytes at 

d13, which is similar to enumeration of astrocytes using the ArrayScan (Figure 25c). 

Cell type composition was stable between d13 and d21, confirming that all hNPCs 

had exited the cell cycle and had entered neuronal or glial pathways by d13.  

 

In all the following experiments, we used 13 day old differentiated hNPCs and 

performed TBEV infections (Hypr strain) at MOI 10-2. We examined the capacity of the 

virus to infect, replicate and disseminate into the culture by immunofluorescence at 

14 hours post-infection (hpi) as well as days 1, 2, 3, 4, and 7 post-infection (dpi), using 

an antibody specific to the domain 3 of TBEV envelop (TBEV-E3) (Figure 26a). 

Observation and enumeration of immunostained cells revealed that while 7.3±0.7% of 

cells were infected at 14hpi, their number increased to reach 45±4% at 72hpi, the peak 

of infection (Figure 26b). We constantly observed a decrease in the number of infected 

cells at 7dpi. This demonstrated that the virus infects and disseminates efficiently in 

hNPCs-derived brain cells. We further confirmed this by quantification of the viral 

genome either in the supernatant or intracellularly by RT-qPCR (Figure 26c) and by 

quantification of infectious particles in the supernatant by TCID50 assays (Figure 26d), 

from 14hpi to 7dpi. We observed similar profiles, showing an increase in viral genome 

and particles up to 48-72h followed by a decrease from 96h to 7 days. 
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Figure 25 – Cellular composition of hNPCs-derived co-cultures.  

(a) Immunostaining of neurons (βIII-Tubulin), astrocytes (GFAP), and oligodendrocytes 
(Olig2). Scale bar=50µm. (b) Quantification of neurons (HuC/HuD positive cells), astrocytes 
(HuC/HuD-negative and Olig2-negative cells) and oligodendrocytes (Olig2-positive cells) 
using the ArrayScan Cellomics. (c) Quantification of astrocytes by manual quantification of 
GFAP-positive cells using imageJ software. Data in (b) and (c) are expressed as mean±SD.  
Statistical analyses were performed using one-way ANOVA analysis (Bonferroni's Multiple 
Comparison Test) on Graphpad Prism V4.0.3, ns=non-significant (p>0.05). 
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Figure 26 – TBEV infection and replication of hNPCs-derived neural cells. 

(a) Immunostaining of TBEV-E3 protein (green) in infected cells at 24hpi, 72hpi, and 7dpi 
using an anti-TBEV-E3 polyclonal antibody. Nuclei were counterstained with (4',6-diamidino-
2-phenylindole) (DAPI, Blue). Scale bar=100µm. (b) Number of infected cells during the 
course of infection. TBEV-E3 immunostaining was quantified with an ArrayScan Cellomics. 
(c) Viral genome was quantified by RT-qPCR. d) Infectious particles in the supernatant were 
quantified by TCID50 plaque assays on Vero cells. Results in (b), (c) and (d) are 
representative of at least 2 independent experiments performed in triplicate. Data are 
expressed as mean±SD. Statistical analyses were performed using one-way ANOVA analysis 
(Bonferroni's Multiple Comparison Test) on Graphpad Prism V4.0.3, ns=non-significant 
(p>0.05); ***=p<0.001. 
 

 

2.2. TBEV infects human neurons, astrocytes, and oligodendrocytes 

Human neurons have been shown to be widely infected by TBEV in vitro and 

in vivo, but human astrocytes and endothelial cells are also susceptible to the virus 

infection in vitro [72,254,261,280], while oligodendrocytes susceptibility to TBEV is 

not characterized. To identify TBEV tropism in our cultures, we infected human 

neural cells and performed immunostainings at different time points (14hpi to 7dpi), 

using anti-TBEV-E3 antibody and antibodies specific for brain cell markers, as 

described above. Microscopy analyses showed that, as early as 14hpi, TBEV infected 

human neurons, astrocytes and oligodendrocytes. Viral antigens were distributed in 

the cytoplasm, but accumulation of envelop protein was also observed in neurites 
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and astrocytes outgrowth (Figure 27a). Enumeration of cells from 14hpi to 7dpi 

revealed that the most important population among infected cells was neurons 

(81.4±3.5% to 92.2±1.1%) followed by astrocytes (6.2±1.4% to 11.7±5.2%) and 

oligodendrocytes (1.6±0.3% to 12.1±1.7%) (Figure 27b). We further determined the 

percentage of infected neurons, astrocytes and oligodendrocytes among their 

respective subpopulations over time (Figure 15c). Similar profiles were observed 

between neurons and astrocytes. Infection increased up to 48-72hpi and then 

decrease by 7dpi. Oligodendrocytes had a similar profile in the beginning of infection 

but there was no decrease at 7dpi. Importantly, whereas 55.2±3.8% of neurons and 

68±21.5% of oligodendrocytes were infected at the peak of infection (72hpi), there 

was no more than 13.6±5.3% of infected astrocytes. This revealed a similar tropism 

of TBEV for both neurons and oligodendrocytes and strongly suggested a particular 

resistance of astrocytes to TBEV infection. 

 

 
See Figure 27 caption on next page 

 



  

77 

 

 
Figure 27 – TBEV infects human neurons, astrocytes, and oligodendrocytes. 

TBEV-infected hNPCs-derived neural cells were immunostained with antibodies against βIII-
Tubulin (neurons), GFAP (astrocytes), Olig2 (oligodendrocytes), and TBEV-E3 (TBEV) from 
14hpi to 7dpi. (a) Photomicrographs showing immunostained cells at 14hpi. Arrowheads show 
accumulation of viral envelop in neurons and astrocytes outgrowths. Nuclei were 
counterstained with DAPI. Scale bar=20µm. (b) quantification of TBEV-infected cells per 
subtype. (c) percentage of infected cells within neuronal (green), astroglial (red) and 
oligodendroglial (grey)populations, respectively. Cells in (b) and (c) were enumerated using 
an ArrayScan Cellomics. Astrocytes were estimated as HuC/HuD-negative and Olig2-negative 
cells. Results are representative of at least 2 independent experiments performed in 
triplicate. Data in (b) and (c) are expressed as mean±SD. Statistical analyses were performed 
(vs neurons) using one-way ANOVA analysis (Bonferroni's Multiple Comparison Test) on 
Graphpad Prism V6.0.1, ns=non-significant (p>0.05), *=p<0.05, ***=p<0.001. 
 
 

2.3. TBEV induces massive neuronal loss whereas it moderately 

affects glial cells viability 

We showed that TBEV infected neurons, astrocytes, and oligodendrocytes, and 

that it efficiently replicates in hNPCs-derived neural cultures. We then sought to 

evaluate TBEV-induced damage on the different cell types, by enumerating their 

number. As all cells are post-mitotic and quiescent in our cultures, a decrease in 

their number would indicate a decrease in their viability. We immunostained 

non-infected (NI) and TBEV-infected neural cells with an antibody directed against 

βIII-Tubulin or HuC/HuD. Microscopic analysis showed a strong alteration in neurite 

network at 14dpi (Figure 28a) and an alteration in the number of neurons (Figure 

28b), suggesting that TBEV damages the neurons. Quantification of neurite length 

using HCS Studio Cell Analysis software V6.6.0 (Thermo Scientific) confirmed neurites 

alteration as a ≅50% decrease in length was observed as early as 72hpi in 

TBEV-infected cells compared to their matched NI controls (Figure 28c). Further 
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analyses of βIII-Tubulin expression by qRT-PCR showed a decrease in βIII-Tubulin 

mRNAs as early as 72hpi (Figure 28d). Next, we quantified the number of neurons 

from 14hpi to 14dpi. We observed that the neuronal population decreased 

significantly from 72hpi continuously up to 14dpi (Figure 28e), which shows that TBEV 

alters neuronal viability. 

 
Figure 28 – Impact of TBEV on human neurons. 

Immunostaining of (a) βIII-Tubulin (red) and (b) HuC/HuD (green) in TBEV-infected cells at 
14dpi and their matched NI controls. Nuclei were counterstained with DAPI. Scale 
bars=100µm. (c) evaluation of neurite network density (Neurite length per mm²) using an 
ArrayScan Cellomics. (d) quantification of βIII-Tubulin mRNAs by qRT-PCR. (e) enumeration 
of HuC/HuD-positive neurons, using an ArrayScan Cellomics. The number of HuC/HuD-
positive cells was normalized to HuC/HuD count in non-infected d13-differentiated cells. X-
axis in (c), (d) and (e) represent times post-infection. Results are expressed as mean±SD and 
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are representative of at least two independent experiments performed in triplicates. 
Statistical analyses were performed using a two-tailed unpaired t test on Graphpad Prism 
V4.0.3, ns=non-significant (p>0.05); *=p<0.05; **=p<0.01; ***=p<0.001 

 

We have shown that astrocytes are permissive to TBEV although they are 

infected at lower rates than neurons and oligodendrocytes (Figure 27c). To address 

the impact of TBEV infection on astrocytes population, we infected hNPCs-derived 

co-cultures and performed immunostainings of GFAP. Fluorescent imaging showed a 

difference in astrocytes morphology upon TBEV infection reminiscent of astrogliosis, 

although not in a systematic way (Figure 29a). qRT-PCR analyses showed variable 

levels of GFAP mRNA between experiments and did not reveal any significant 

tendency (Figure 29b). We further analyzed the number of astrocytes from 24hpi to 

7dpi by manual enumeration of GFAP-positive cells. At 72hpi, a time point at which 

neuronal loss had already occurred, there was no significant alteration in astrocytes 

number. However, at 7dpi, we observed a significant decrease of ±30% in their 

number in TBEV-infected cultures compared to their matched NI controls (Figure 

29c). These data showed that astrocytes, although affected in their number at later 

stage of TBEV infection, were more resistant than neurons. 

 

 
See Figure 29 caption on next page 
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Figure 29 - Impact of TBEV on human astrocytes. 

(a) Immunostaining of GFAP in non-infected (NI) and TBEV infected hNPCs-derived neural 
cells at 7dpi. Scale bar=20µm. (b) quantification of GFAP mRNAs by qRT-PCR. (c) Manual 
quantification of GFAP-positive cells using ImageJ software. The number of GFAP-positive 
cells was normalized to NI cells at d13. The results are expressed as mean±SD and are 
representative of three independent experiments performed in triplicates. Statistical 
analyses were performed using a two-tailed unpaired t test on Graphpad Prism V4.0.3, 
ns=non-significant (p>0.05); *=p<0.05. 

Our data also showed that oligodendrocytes, like neurons, were strongly 

infected by TBEV (Figure 27c). We thus questioned whether TBEV affects their 

viability. Automated enumeration of Olig2-positive cells did not reveal any 

significant difference in their number when TBEV-infected cultures were compared 

to their matched NI cultures (Figure 30), thus showing that despite direct TBEV 

infection, oligodendrocytes were not affected in their viability. 

 

 
Figure 30 - Impact of TBEV on human oligodendrocytes. 

Immunostained cells with Olig2 were quantified using an ArrayScan Cellomics. The number of 
Olig2 was normalized to NI cells at d13. Results are representative of two independent 
experiments performed in triplicates. Data are represented as mean±SEM. Statistical analyses 
were performed using a two-tailed unpaired t test on Graphpad Prism V4.0.3, ns=non-
significant (p>0.05). 
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Thereby, our results showed that TBEV infection differently affected three 

human cellular subpopulations of the CNS, namely neurons, astrocytes and 

oligodendrocytes. Whereas neurons massively died, astrocytes were moderately 

affected and oligodendrocytes were not impaired in their survival. This further showed 

that glial cells were less susceptible to TBEV infection and less affected by TBEV-

induced death than neuronal cells. 

 

2.4. TBEV-induced cell death: apoptosis or autophagy? 

As the survival of TBEV-infected neurons and astrocytes was reduced as 

compared to their uninfected counterparts, we sought to determine the molecular 

mechanisms that could underlie cell death. Apoptosis and autophagy are two 

pathways by which TBEV alters the cells [72,223]. In order to determine if these two 

pathways could be involved in TBEV-induced neural cell death, we used human PCR 

arrays (SABiosciences) to analyze the expression of 84 apoptosis-related genes and 

84 autophagy-related genes. Transcripts from hNPCs derived neural cells infected 

with TBEV for 72 hours were pooled from biological triplicates and compared to their 

matched NI controls. Studied genes are shown in Table 1 and Table 2. 

After application of an arbitrary cut off (fold regulation of 3), according to the 

manufacturer’s instructions, our preliminary data showed the upregulation of 

15 genes in the apoptosis pathway (TNFSF10, CASP1, BIRC3, BCL2A1, TNFRSF9, 

CASP4, TNF, CD40, HRK, CASP8, TNFRSF1B, CASP5, CD70, BCL2L10, and CASP14) and 

9 upregulated genes in autophagy pathway (TNFSF10, CTSS, TNF, IGF1, TGM2, CASP8, 

NFKB1, TMEM74, DRAM1, and EIF2AK3) (Figure 31a, Supplementary table 2 and 

Supplementary table 3). TNFSF10, coding for TNF-related apoptosis inducing ligand 

(TRAIL) protein that is involved in the induction of apoptosis, was the most expressed 

gene in both PCR arrays. In order to validate the PCR array, we addressed the 

expression of TNFSF10 (a gene that was found upregulated by TBEV) and TP53 (p53), 

Atg3 and BECN1 (three genes that were not regulated) by RT-qPCR at different time 

points after infection (Figure 31b). TNFSF10 up-regulation was confirmed and we 

further showed that it took place as early as 7hpi and continuously increased up to 

14dpi. In contrast, kinetic analyses by qRT-PCR revealed a slight increase in TP53 

and Atg3 from 48hpi that was not previously shown by PCR array. Finally, the absence 
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of regulation of Beclin1, a major gene of autophagy, was also confirmed at all time 

points studied. 

 

Table 1 - Apoptosis pathways and genes listed by RT2 Profiler PCR array Human 

Apoptosis 

Upregulated genes are underlined and presented in bold 

Induction of Apoptosis 
Death Domain Receptors CRADD, FADD, TNF, TNFRSF10B (DR5). 
DNA Damage & Repair ABL1, CIDEA, CIDEB, TP53 (p53), TP73. 
Extracellular Apoptotic 
Signals 

CFLAR (Casper), DAPK1, TNFRSF25 (DR3). 

Other Pro-Apoptotic Genes 

BAD, BAK1, BAX, BCL10, BCL2L11, BID, BIK, BNIP3, BNIP3L, CASP1 (ICE), 
CASP10 (MCH4), CASP14, CASP2, CASP3, CASP4, CASP6, CASP8 (FLICE), CD27 
(TNFRSF7), CD70 (TNFSF7), CYCS, DFFA, DIABLO (SMAC), FAS (TNFRSF6), 
FASLG (TNFSF6), GADD45A, HRK, LTA (TNFB), NOD1 (CARD4), PYCARD (TMS1, 
ASC), TNFRSF10A (TRAIL-R), TNFRSF9, TNFSF10 (TRAIL), TNFSF8, TP53BP2, 
TRADD, TRAF3. 

Anti-Apoptotic 
AKT1, BAG1, BAG3, BAX, BCL2, BCL2A1 (BFL1), BCL2L1 (BCLXL), BCL2L10, BCL2L2, BFAR, BIRC3 (c-IAP2), BIRC5, 
BIRC6, BNIP2, BNIP3, BNIP3L, BRAF, CD27 (TNFRSF7), CD40LG (TNFSF5), CFLAR (Casper), DAPK1, FAS (TNFRSF6), 
HRK, IGF1R, IL10, MCL1, NAIP (BIRC1), NFKB1, NOL3, RIPK2, TNF, XIAP (BIRC4). 

Regulation of Apoptosis 

Negative Regulation of 
Apoptosis 

BAG1, BAG3, BCL10, BCL2, BCL2A1 (BFL1), BCL2L1 (BCLXL), BCL2L10, 
BCL2L2, BFAR, BIRC2 (c-IAP1), BIRC3 (c-IAP2), BIRC6, BNIP2, BNIP3, BNIP3L, 
BRAF, CASP3, CD27 (TNFRSF7), CD40LG (TNFSF5), CFLAR (Casper), CIDEA, 
DAPK1, DFFA, FAS (TNFRSF6), IGF1R, MCL1, NAIP (BIRC1), NOL3, TP53 (p53), 
TP73, XIAP (BIRC4). 

Positive Regulation of 
Apoptosis 

ABL1, AKT1, BAD, BAK1, BAX, BCL2L11, BID, BIK, BNIP3, BNIP3L, CASP1 
(ICE), CASP10 (MCH4), CASP14, CASP2, CASP4, CASP6, CASP8 (FLICE), CD40 
(TNFRSF5), CD70 (TNFSF7), CIDEB, CRADD, FADD, FASLG (TNFSF6), HRK, LTA 
(TNFB), LTBR, NOD1 (CARD4), PYCARD (TMS1, ASC), RIPK2, TNF, TNFRSF10A 
(TRAIL-R), TNFRSF10B (DR5), TNFRSF25 (DR3), TNFRSF9, TNFSF10 (TRAIL), 
TNFSF8, TP53 (p53), TP53BP2, TRADD, TRAF2, TRAF3. 

Death Domain Receptors 
CRADD, DAPK1, FADD, TNFRSF10A (TRAIL-R), TNFRSF10B (DR5), TNFRSF11B (OPG), TNFRSF1A (TNFR1), TNFRSF1B, 
TNFRSF21, TNFRSF25 (DR3), TRADD. 

Caspases & Regulators 
Caspases 

CASP1 (ICE), CASP10 (MCH4), CASP14, CASP2, CASP3, CASP4, CASP5, CASP6, 
CASP7, CASP8 (FLICE), CASP9, CFLAR (Casper), CRADD, PYCARD (TMS1, ASC). 

Caspase Activation 
AIFM1 (PDCD8), APAF1, BAX, BCL2L10, CASP1 (ICE), CASP9, NOD1 (CARD4), 
PYCARD (TMS1, ASC), TNFRSF10A (TRAIL-R), TNFRSF10B (DR5), TP53 (p53). 

Caspase Inhibition CD27 (TNFRSF7), XIAP (BIRC4). 
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Table 2 - Autophagy pathways and genes listed by RT2 Profiler PCR array Human 

Autophagy 

Upregulated genes are underlined and presented in bold 

Autophagy Machinery Components 

Autophagic Vacuole 
Formation 

AMBRA1 (NYW1), Atg12, Atg16L1, Atg4A, Atg4B, Atg4C, Atg4D, Atg5, Atg9A, 
Atg9B, BECN1, GABARAP, GABARAPL1, GABARAPL2, IRGM, MAP1LC3A, 
MAP1LC3B, RGS19, ULK1, WIPI1. 

Vacuole Targeting Atg4A, Atg4B, Atg4C, Atg4D, GABARAP. 

Protein Transport 
Atg10, Atg16L1, Atg16L2, Atg3, Atg4A, Atg4B, Atg4C, Atg4D, Atg7, Atg9A, 
GABARAP, GABARAPL2, RAB24. 

Autophagosome-Lysosome 
Linkage 

DRAM1, GABARAP, LAMP1, NPC1. 

Ubiquitination Atg3, Atg7, HDAC6. 
Proteases Atg4A, Atg4B, Atg4C, Atg4D. 

Regulation of Autophagy 

Co-Regulators of Autophagy 
& Apoptosis 

AKT1, APP, Atg12, Atg5, BAD, BAK1, BAX, BCL2, BCL2L1 (BCLXL), BECN1, 
BID, BNIP3, CASP3, CASP8 (FLICE), CDKN1B (P27KIP1), CDKN2A (p16INK4a), 
CLN3, CTSB, CXCR4, DAPK1, DRAM1, EIF2AK3, FADD, FAS (TNFRSF6), 
HDAC1, HTT, IFNG, IGF1, INS, MAPK8 (JNK1), MTOR, NFKB1, PIK3CG, 
PRKAA1 (AMPK), PTEN, SNCA, SQSTM1, TGFB1, TGM2, TNF, TNFSF10 
(TRAIL), TP53 (p53). 

Co-Regulators of Autophagy 
& the Cell Cycle 

BAX, CDKN1B (P27KIP1), CDKN2A (p16INK4a), IFNG, PTEN, RB1, TGFB1, TP53 
(p53). 

Autophagy Induction by 
Intracellular Pathogens 

EIF2AK3, IFNG, LAMP1. 

Autophagy in Response to 
Other Intracellular Signals 

CTSD, CTSS, DRAM2 (TMEM77), EIF4G1, ESR1 (ERα), GAA, HGS, MAPK14 
(p38ALPHA), PIK3C3 (Vps34), PIK3R4, RPS6KB1, TMEM74, ULK2, UVRAG. 

Chaperone-Mediated 
Autophagy 

HSP90AA1, HSPA8. 
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Figure 31 – TBEV-regulation of genes involved in apoptosis and autophagy 

pathways in hNPCs-derived neural cells. 

(a) Fold regulation of 84 human apoptosis genes and 84 human autophagy genes at 72hpi. 
The heat map shows their differential expression. The most upregulated genes are colored 
in red and the most downregulated genes are colored in green, according to the color code. 
The black lines indicate the arbitrary cutoff of three. Genes between the two lines are 
considered non-regulated. (b) qPCR analysis of apoptosis and autophagy response genes. 
Data are expressed as mean±SD. Statistical analyses were performed using a two-tailed 
unpaired t test on Graphpad Prism V4.0.3, ns=non-significant (p>0.05); *=p<0.05; **=p<0.01; 
***=p<0.001. 
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Thus, although we observed an up-regulation of co-regulators of apoptosis and 

autophagy (TNFSF10, TNF, CASP8, NFKB1, IGF1, TGM2), there was little to no modulation 

of key genes involved in autophagy, such as Atg3 and BECN1. On the contrary, there was 

a marked induction of apoptotic pathways, suggesting that apoptosis could have driven 

TBEV-induced neural cell death. We therefore performed DAPI staining on hNPCs-derived 

neural cells and analyzed nuclei morphology. We observed pyknosis (nuclear shrinkage) 

and formation of apoptotic bodies in several cells (Figure 32a). To confirm the occurrence 

of apoptotic events, we also performed a TUNEL assay. Quantification of TUNEL staining 

revealed an increase in TBEV-infected cultures from 72hpi to 14dpi compared to their 

matched NI controls (Figure 32b). To address activation of apoptosis pathways in the 

specific neuronal population, we quantified cleaved caspase 3 immunostaining in neurons 

(HuC/HuD- and cleaved caspase 3 positive cells). Caspase 3 cleavage in neurons was 

higher in TBEV-infected cultures at 72hpi and 7dpi (Figure 32c). Thus, our results 

confirmed that apoptosis was involved in TBEV-induced cell loss, in particular in neurons. 

 
Figure 32 – Apoptosis in TBEV-infected neural cells. 

(a) TBEV-infected cells at 7dpi and their matching NI controls were stained using TdT-mediated 
dUTP Nick-End Labeling (TUNEL) assays. Note the TUNEL staining (in green) and pyknotic cells 
on the magnification image of TBEV-infected cells. (b) Quantification of TUNEL-positive cells 
using an ArrayScan Cellomics. (c) Quantification of cleaved caspase 3 and HuC/HuD immune-
positive cells, normalized to the neuronal population at each time point. Data in b) and c) are 
expressed as mean±SD, and are representative of one experiment performed in triplicate. 
Statistical analyses were performed using a two-tailed unpaired t test on Graphpad Prism 
V4.0.3, ns=non-significant (p>0.05); *=p<0.05. 
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2.5. Human neural cells develop a strong antiviral response to TBEV 

infection 

When infected with a virus, cells are capable of defending themselves by 

expressing factors that will tend to control viral replication. In order to determine 

whether TBEV infected human neural cells are able to develop such an antiviral 

response, we analyzed the expression of 84 genes involved in human antiviral 

response by using a specific PCR array (SABiosciences). Transcripts from 

hNPCs-derived neural cells infected with TBEV for 24h were pooled from biological 

triplicates and compared with their matched NI-controls. All genes studied are shown 

in Table 3. 

 
Table 3 - Antiviral response pathways and genes listed by RT2 Profiler PCR array 

Human Antiviral response 

Upregulated genes are underlined and presented in bold 

Toll-Like Receptor (TLR) Signaling 
Toll-Like Receptors & 
Chaperones 

CTSB, CTSL, CTSS, TLR3, TLR7, TLR8, TLR9. 

Signaling Downstream of 
Toll-Like Receptors 

CHUK (IKKα), FOS, IKBKB (IKKβ), IRAK1, IRF3, IRF5, IRF7, JUN, MAP2K1 
(MEK1), MAP2K3 (MEK3), MAP3K7 (TAK1), MAPK1 (ERK2), MAPK14 
(p38ALPHA), MAPK3 (ERK1), MAPK8 (JNK1), MYD88, NFKB1, NFKBIA (IκBα, 
MAD3), RELA, RIPK1, SPP1, TBK1, TICAM1 (TRIF), TNF, TRAF3, TRAF6. 

Toll-Like Receptor Signaling 
Responsive Genes 

CCL3 (MIP-1A), CCL5 (RANTES), CD40 (TNFRSF5), CD80, CD86, CXCL10 
(INP10), CXCL11 (I-TAC, IP-9), CXCL9 (MIG), IFNA1, IFNA2, IFNB1, IL12A, 
IL12B, IL15, IL1B, IL6. 

NOD-Like Receptor (NLR) Signaling 
Receptors & Signaling 
Molecules 

AIM2. 

NOD-Like Receptors & 
Signaling Molecules 

CARD9, CASP1 (ICE), HSP90AA1, MEFV, NLRP3, NOD2, OAS2, PSTPIP1, 
PYCARD (TMS1, ASC), PYDC1 (POP1), SUGT1. 

NOD-Like Receptor Signaling 
Responsive Genes 

IL1B, IL18. 

RIG-I-Like Receptor Signaling 
Receptors & Chaperones CYLD. 
RIG-I-Like Receptors & 
Chaperones 

DAK, DDX58 (RIG-I), DHX58 (LGP2), IFIH1 (MDA5), ISG15 (G1P2), TRIM25. 

Signaling Downstream of RIG-
I-Like Receptors 

Atg5, AZI2, CASP10 (MCH4), CASP8 (FLICE), CHUK (IKKα), DDX3X, FADD, 
IKBKB (IKKβ), IRF3, IRF7, MAP3K1 (MEKK1), MAP3K7 (TAK1), MAPK14 
(p38ALPHA), MAPK8 (JNK1), MAVS, NFKB1, NFKBIA (IκBα, MAD3), PIN1, RELA, 
RIPK1, TBK1, TNF, TRADD, TRAF3, TRAF6. 

RIG-I-Like Receptor Signaling 
Responsive Genes 

CXCL10 (INP10), IFNA1, IFNA2, IFNB1, IL12A, IL12B, CXCL8. 

Type I Interferon Signaling & Response 
Type I Interferon Signaling IFNA1, IFNA2, IFNAR1, IFNB1, STAT1. 
Interferon Responsive Genes APOBEC3G, IL15, ISG15 (G1P2), MX1, TLR3. 

 

After applying an arbitrary cut-off (fold regulation >3), 23 genes were shown to 

be upregulated in TBEV-infected cells among which were PRRs, cytokines including 

IFNβ, and ISGs (Figure 33a, Supplementary table 4). The overexpression of nine of 
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those genes was confirmed using qRT-PCR, namely DDX58 (RIG-I), TLR3, and IFIH1 

(MDA5) as PRRs, CXCL10, CCL5 (RANTES), and CXCL11 as proinflammatory cytokines, 

and ISG15, OAS2, and MX1 as ISGs. For these nine genes as well as two additional 

ISGs, ISG56 and IFI6, kinetic analysis revealed that the antiviral response was 

initiated as early as 7hpi and maintained up to 14dpi, with the exception of 

proinflammatory cytokines whose expression decreased at 14dpi (Figure 33b). Thus, 

TBEV-infected hNPCs-derived neural cells developed a strong antiviral response in 

order to control TBEV replication.  

 

Figure 33 – TBEV-induced antiviral response in hNPCs-derived neural cells. 

(a) TBEV-infected neural cells and their matched NI controls were analyzed 24hpi using an RT² 
Profiler PCR array specific to human antiviral response. The heat map shows the differential 
expression of 84 human genes. The most upregulated genes are colored in red and the most 
downregulated genes are colored in green, according to the color code. The black lines indicate 
the arbitrary cutoff of 3. Genes between the two lines are considered non-regulated. Results 
are representative of one experiment performed on pooled triplicates. (b) qPCR analysis of key 
antiviral response genes expression. Data were normalized using ∆∆Ct. They are expressed as 
mean±SD. Results are representative of two experiments performed in triplicate. Statistical 
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analyses were performed using a two-tailed unpaired t test on Graphpad Prism V4.0.3, ns=non-
significant (p>0.05); *=p<0.05; **=p<0.01; ***=p<0.001 

 

2.6. TBEV induces an antiviral response in human neurons and human 

astrocytes 

Our results showed a strong antiviral response in TBEV-infected hNPCs-derived 

neural cells and a difference in susceptibility and vulnerability of human neurons, 

astrocytes and oligodendrocytes. Thus, we hypothesized that intrinsic capacities to 

antiviral defense, specific to each cellular type, may underlie these differences. 

In order to test this hypothesis, we developed a protocol to obtain enriched cultures 

either in neurons (further called En-Neurons) or in astrocytes (further called 

En-Astrocytes). 

 

2.6.1. Experimental design for enrichment of neurons and astrocytes 

To obtain enriched cultures of neurons and astrocytes, we used 

Magnetic-Activated Cell Sorting (MACS) technology (Miltenyi Biotec). This method is 

based on antibody-conjugated magnetic beads passed through a magnet-associated 

column. While fast ready-to-use kits are commercialized for the isolation of murine 

neurons and astrocytes, there is no equivalent for human neural cells. We thus 

developed a two-step binding protocol based on biotinylated-cell specific antibodies 

and anti-biotin conjugated microbeads. Two cell specific antibodies were available 

for human neural cell sorting. They were directed against either 

Polysialylated Neuronal Cell Adhesion Molecule (PSA-NCAM) to bind neurons, or 

Glutamate Aspartate Transporter (GLAST or ACSA-1) to bind astrocytes. We 

evaluated the expression of PSA-NCAM and GLAST in hNPCs-derived neural cells using 

fluorescent antibodies and qRT-PCRs. Although PSA-NCAM mRNA was detected 

(Figure 34a), we did not observe any immuno-positive staining using a specific 

antibody (Figure 34b). Accordingly, cell-sorting experiments using PSA-NCAM-

associated magnetic beads did not result in binding neuronal cells nor in sorting the 

cells into two distinct populations. Using LD columns that are designed for positive 

selection (binding the population of interest and stringent depletion of unbound 

cells), we quickly observed a clogging of the column that did not allow the pursuit 
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of the sorting. Hence, it was not possible to perform a positive selection of neurons 

using anti-PSA-NCAM specific antibodies. We thus sought to perform the cell sorting 

by negative selection of neurons using an anti-GLAST antibody. We first verified that 

GLAST mRNAs were detectable by qRT-PCR (Figure 34c) and that GLAST antibodies 

allowed the recognition of astrocytes in the hNPCs-derived neural cells (Figure 34d). 

MS columns optimized for negative selection (depleting strongly magnetically labeled 

cells) were used. The MS columns showed a slight clogging, and were suitable for the 

pursuit of cell sorting protocol. 

 

 

Figure 34 - Expression of GLAST and PSA-NCAM in hNPCs-derived neural cells. 

hNPCs were differentiated for 14 to 28 days and PSA-NCAM or GLAST were detected by qRT-
PCR (a,c) or by immunostaining (b,d) at d14. Non-normalized cycle threshold (Ct) are shown 
in (a) and (c). Note the absence of PSA-NCAM immunostaining (panel b), and presence of 
GLAST immunostaining (red, panel d). Cells were counterstained with DAPI. Scale bar = 
50µm.  

 

Combining anti-GLAST antibodies and MS columns, we used the experimental 

setting as shown in Figure 35a (fully described in material and method section). 

Thirteen day-old differentiated neural cells were sub-cultured and either directly 

plated as previously described (unsorted cells) or loaded on MS columns after 

incubation with an anti-GLAST antibody and anti-biotin microbeads. Enriched 

neurons were recovered from the flow through whereas enriched astrocytes were 

obtained after elution of the bound population. We faced two challenges: 1/ meet 

the right conditions for neurons survival after sorting and 2/ perform an efficient 
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antibody based cell sorting. We worked on optimizing the medium composition to 

enhance neuronal survival. We observed that supernatant of co-cultures (containing 

≅30% astrocytes) used as conditioned medium is favorable for neuronal survival 

without further addition of growth or neurotropic factors. We further confirmed that 

unsorted cells were comparable to non-subcultured neural cells. There was indeed 

no obvious difference in cell morphology, as observed by phase contrast imaging. 

Short neuronal outgrowths were visible as early as 24h after sorting and a normal 

network of neurites had grown after 3 to 4 days, showing that neurons were not 

affected by the sorting protocol (Figure 35b). Next, to assess the enrichment of each 

subpopulation in enriched fractions, we performed fluorescent immunostainings 

using antibodies directed against specific cell markers: HuC/HuD for neurons, GFAP 

for astrocytes and Olig2 for oligodendrocytes (Figure 35c). Immunofluorescence 

imaging analysis showed viable cells in each fraction. Astrocytes had a normal 

morphology immediately after adhesion. Oligodendrocytes were observed both in the 

En-Neurons and En-Astrocytes cultures. We then enumerated the three cell types in 

each culture. In unsorted cells, the culture was similar to the non-subcultured one 

(74.1±4.1% neurons and 20.8±4.9% astrocytes). In En-Neurons, neuronal population 

increased to 94.1±0.4 of neurons, and in En-Astrocytes, astrocytes population 

increased to 53.5±2.7% of astrocytes. The oligodendrocytes represented 10.8±0.5% 

of En-Astrocytes cultures and 2.8±0.2% of En-Neurons cultures (Figure 35d). Thus, we 

developed a method to obtain cultures enriched in either neurons or astrocytes that 

is suitable to address neural cells response to viral infections. 
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See Figure 35 caption on next page 
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Figure 35 – Enrichment of human neurons and human astrocytes by Magnetic-

Activated Cell sorting.  

(a) Experimental setting for magnetic sorting of neurons and astrocytes using MACS. The 
figure was created using Servier Medical Art (smart.servier.com), licensed under a CC BY 3.0 
attribution. (b) hNPCs-derived neural cells at d13 of differentiation were sorted using the 
developed MACS protocol. Phase-contrast micrographs of cells were acquired 24h after 
sorting. Scale bars=20µm. (c) Unsorted cultures (Uns), enriched neurons (En-N) and enriched 
astrocytes (En-As) were immunostained with anti-HuC/HuD (neurons, green), anti-GFAP 
(astrocytes, red), and Anti-Olig2 (oligodendrocytes, magenta) antibodies. Scale bars=100µm. 
(d) sorted and unsorted hNPCs-derived neural cells were immunostained with specific 
antibodies and enumerated with an ArrayScan Cellomics 4 days after sorting. Data are 
representative of 4 experiments performed in triplicate. Statistical analyses were performed 
using a two-tailed unpaired t test on Graphpad Prism V4.0.3, ns=non-significant (p>0.05); 
**=p<0.01; ***=p<0.001. 

 

2.6.2. Antiviral response to TBEV infection is weaker in human neurons than 

in human astrocytes 

As a difference in neurons and astrocytes susceptibility and vulnerability to TBEV 

infection may be explained by a different basal level expression of antiviral response 

genes, we first used the previously described PCR array to compare the level of expression 

of 84 human antiviral response genes in NI En-Neurons and NI En-Astrocytes. In both 

cultures, the basal level of expression was low. Most of the genes were indeed weakly 

expressed, as shown by Ct values >30 (50 genes in astrocytes and 42 genes in neurons) 

(Supplementary table 5). Importantly, for most studied genes, there was no major 

difference in their level of expression in En-neurons and En-astrocytes (Figure 36a). 

Seventeen genes were differentially expressed in our experimental setting (fold >3), with 

either a higher expression in astrocytes (CASP1, CTSL, FOS, IFIH1 –MDA5-, IL12A, IRF3, 

ISG15, MAP2K3, STAT1, TICAM1, TLR3, TRADD, TRAF3, and TRIM25) or in neurons (CARD9, 

IFNβ, and TLR9). However, all genes were distributed along the black line on the scatter 

plot (Figure 36a) indicating that while their expression might be slightly different, it tends 

to be globally comparable in neurons and astrocytes. Using RT-qPCR analyses, we further 

analyzed OAS2 and IFNα expression and showed no difference in En-Neurons and 

En-Astrocytes, therefore validating the PCR array results (Figure 36b). The expression of 

RSAD2 (viperin) was also compared, and again, no difference was observed (figure 13b). 

Thus, our results suggested that the overall basal expression levels of antiviral response 

genes are comparable between En-Neurons and En-Astrocytes. 
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Figure 36 – Basal level of antiviral response genes in En-Neurons and En-

Astrocytes. 

(a) Scatterplot of basal levels of antiviral response genes analyzed using an Antiviral 
Response PCR array. Genes along the black line have similar expression levels between 
neurons and astrocytes. Dotted lines represent the arbitrary cut off (fold expression=3). Each 
grey dot represents a gene with a fold expression >3 and each black dot represents a gene 
with a fold expression <3. Data are representative of one experiment performed with 
material from pooled triplicates. (b) qPCR analysis of antiviral response genes in 
TBEV-infected En-Astrocytes (En-As) and En-Neurons (En-N). Fold expression normalized to 
HPRT1 using ∆∆Ct is shown in arbitrary units (a.u.). The results are expressed as mean±SD. 
Data are representative of two independent experiments performed in triplicate. Statistical 
analyses were performed using a two-tailed unpaired t test on Graphpad Prism V4.0.3, 
ns=non-significant (p>0.05); *=p<0.05; **=p<0.01; ***=p<0.001.  

 

The difference in susceptibility and vulnerability might also be explained by 

differential levels of antiviral response gene expression. We then sought to determine 

whether neurons and astrocytes were capable of producing a different antiviral response 

upon TBEV infection, qualitatively and/or quantitatively. We first verified that unsorted 

cells had the same antiviral response as non-subcultured neural cells. This was indeed the 

case, as shown in Supplementary table 4 and Supplementary table 5. Thus, the 
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sub-culturing of cells did not activate any antiviral program. Using the PCR array, we then 

compared the expression of antiviral response genes in En-Neurons, En-Astrocytes and 

unsorted cultures infected with TBEV for 24 hours (Figure 37a). Most genes that were 

up-regulated in En-Neurons were also up-regulated in En-Astrocytes, except for two of 

them, coding for the cytokines IL15 and IL12B. This suggested the activation by TBEV of a 

similar antiviral program in both human neurons and human astrocytes. However, genes 

up-regulation was stronger in En-Astrocytes than in En-Neurons, showing that, while 

similar genes were overexpressed in the two cellular types, they were not induced with 

the same intensity. This revealed that although using a similar program, astrocytes were 

capable of developing a stronger antiviral response than neurons upon TBEV infection. To 

validate the PCR array results and to get further insight into the kinetics of expression of 

these genes, we performed a qRT-PCR analysis at 7hpi, 24hpi, and 72hpi for DDX58 (RIG-I), 

IFIH1 (MDA5), TLR3, OAS2, MX1, and CXCL10 genes (Figure 37b). Analysis of RSAD2 

(viperin) was added, as it is known to be an important player in TBEV antiviral response 

[396,397]. All genes were significantly more overexpressed in En-Astrocytes than in En-

Neurons at 24hpi, including RSAD2, which confirmed the PCR array data. Interestingly, 

five of those genes (DDX58, IFIH1, TLR3, OAS2, and RSAD2) were significantly more up-

regulated in En-Astrocytes as early as 7hpi and four of them (IFIH1, TLR3, OAS2, and 

RSAD2) were not up-regulated at all at this time point in En-Neurons. Furthermore, in 

En-Neurons, RSAD2 was not upregulated at any time point considered. This showed that, 

in addition to a weaker antiviral response in En-Neurons compared to En-Astrocytes, the 

antiviral response was delayed and one gene, RSAD2, coding for viperin, was not 

upregulated. Thus, TBEV activated a globally similar antiviral program in both neurons and 

astrocytes, but with a different intensity and kinetics, which could conduct to a reduced 

efficiency in neurons. However, part of the activated program was different, as at least 

one gene, RSAD2, was upregulated in astrocytes but not in neurons. 
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See Figure 37 caption on next page 
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Figure 37 - Antiviral response in En-Neurons and En-Astrocytes, and unsorted 

cells. 

(a) TBEV-infected En-Neurons, En-Astrocytes, and unsorted cultures were analyzed 24hpi 
using an RT² Profiler PCR array specific for human antiviral response. The heat map shows 
the differential expression of the 84 human genes, related to their matched NI controls, in 
each culture. The most upregulated genes are colored in red and the most downregulated 
genes are colored in green, according to the color code. The black lines indicate the arbitrary 
cutoff of three. Genes between the two lines are considered non-regulated, except for the 
genes noted (+). (b) qPCRs analyses of antiviral response genes expression in En-Neurons 
(red) and En-Astrocytes (green). The results are expressed as mean±SD. They are 
representative of 2 independent experiments performed in triplicate. Statistical analyses 
were performed using two-tailed unpaired t test on Graphpad Prism V4.0.3, 
ns=non-significant (p>0.05); *=p<0.05; **=p<0.01; ***=p<0.001. 
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2.7. Complex interplay between neurons and astrocytes modulates 

TBEV infection in each cell type 

2.7.1. Astrocytes modulate TBEV infection in neurons 

Our data suggested that human astrocytes strongly defend themselves against 

TBEV infection, limiting viral replication by mounting a strong antiviral response. 

However, whether they can participate in the defense of human neurons was not clear. 

To tackle this question, we infected unsorted cultures (containing ≅75% of neurons and 

20% of astrocytes) and En-Neurons cultures (containing ≅95% of neurons and less than 

5% of astrocytes) with TBEV at MOI 10-2 for 24 hours and compared the percentage of 

infected neurons. At 24hpi, whereas 66.5±3.8% of neurons were infected in unsorted 

cultures (shown as 100%), TBEV infected 94.4±4.3% of neurons in En-Neurons cultures 

(increase of ≈40%), showing that the presence of astrocytes in the culture was 

associated with a lower TBEV infection in neurons (Figure 38a). In an attempt to 

determine whether this increase in neurons infection was associated with an increase 

in neuronal loss, we performed a HuC/HuD immunostaining and enumerated neurons 

in both cultures at 24hpi (Figure 38b). As expected, there was no significant difference 

in unsorted cells. We made a similar observation in En-Neurons, showing that a higher 

number of infected neurons was not correlated to an increase in neuronal death at 

this time point. We sought to enumerate neurons at 72hpi, a later time point; 

however, neurons had formed clusters in En-Neurons cultures, which did not allow 

their enumeration. Thus, our results strongly suggested that human astrocytes 

modulated TBEV-infection of human neurons whereas it remains unclear whether this 

has an impact on neuronal death.  

 
Figure 38 – TBEV infection and impact on neurons in En-Neurons. 

Co-immunostaining was performed on En-Neurons and matching unsorted cultures 24hpi. 
Β-III Tubulin and TBEV-E3 (a) and β-III Tubulin (b) were manually enumerated using ImageJ 
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software. Results are representative of two experiments performed in triplicate. Data are 
expressed as mean±SEM. Statistical analyses were performed using a two-tailed unpaired t test 
on Graphpad Prism V4.0.3, ns=non-significant (p>0.05); **=p<0.01. 

 

2.7.2. Neurons modulate astrocytes fate in TBEV-infected cells 

We further questioned whether human neurons are also capable of modulating 

TBEV infection and fate of human astrocytes. After immunostaining with GFAP and 

TBEV antibodies, we manually enumerated and compared the percentage of infected 

astrocytes in both unsorted cultures (containing ≅75% of neurons) and En-Astrocytes 

cultures (containing ≅35% of neurons). We did not observe any significant difference 

at any time point studied (Figure 39a). However, whereas enumeration of total 

astrocytes did not show any difference at 24hpi, it revealed a difference later on, at 

7dpi (Figure 39b). As previously shown, the number of astrocytes had decreased in 

unsorted cells at this time point. On the contrary, we did not observe a decrease in 

their number in En-Astrocytes, showing that protection of astrocytes was correlated 

to a lower level of neurons in the culture. This was also correlated to a lower level 

of TBEV gRNA, as shown in Figure 39c. Thus, our results, by showing that a higher 

number of neurons correlated with a higher level of TBEV replication and to a 

decrease in the number of astrocytes number strongly suggested that the presence 

of neurons modulates astrocytes fate. 

 

 
Figure 39 - TBEV impact on astrocytes in En-Astrocytes. 

Unsorted cultures and En-Astrocytes were infected with TBEV and immunostained with GFAP 
and TBEV-E3 antibodies at different time points after infection (a) or with GFAP antibodies 
24hpi or 7dpi along with their matched NI controls (b). Staining in (a) and (b) was manually 
enumerated using ImageJ software. (c) Unsorted cultures and En-Astrocytes were infected 
with TBEV and the intracellular viral load was analyzed by RT-qPCR at 7hpi, 24hpi and 72hpi. 
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Results in (a), (b), and (c) are representative of two independent experiments. Data are 
expressed as mean±SD. Statistical analyses were performed using a two-tailed unpaired t 
test on Graphpad Prism V4.0.3, ns=non-significant (p>0.05); *=p<0.05. 

2.8. Preliminary data: siRNA transfections to downregulate PRRs  

We previously showed, by PCR array and qPCRs, a strong up-regulation of the 

genes encoding the PRRs RIG-I (DDX58), TLR3 and MDA5 (IFIH1) in TBEV-infected 

hNPCs-derived neural cells (Figure 33). To determine which PRRs are involved in 

TBEV recognition in human neural cells, we sought to down-regulate the expression 

of these three genes by siRNAs transfection. We first worked on optimizing the 

conditions of transfection by adjusting: 1/ siRNA concentration vs transfectant 

volume ratio and 2/ siRNA pretreatment time before infection. We showed that ApoE 

expression was not influenced by TBEV infection (Figure 40). Hence, we used siApoE, 

which targets the gene coding for ApoE, a factor involved in the lipid metabolism, as 

a transfection control. Once the optimal conditions set up (see details in the methods 

section), we observed a down-regulation of more than one log of ApoE mRNA 

expression upon siRNA transfection (Figure 40). 

 
Figure 40 – Down-regulation of ApoE mRNA expression. 
hNPCs-derived neural cells at d13 of differentiation were transfected with 25nM siApoE and 
infected after 48h with TBEV. Analysis was performed 24hpi. Data are expressed as mean±SD. 
Statistical analyses were performed using a two-tailed unpaired t test on Graphpad Prism 
V4.0.3, ns=non-significant (p>0.05); ***=p<0.001. UTD=untransfected, NI= non-infected 

 

Using those conditions, we transfected hNPCs-derived cells with siRNAs 

targeting the genes encoding ApoE, RIG-I (DDX58), TLR3 and MDA5 (IFIH1), and we 

infected the cells 48 hours after transfection. We analyzed the expression of 

targeted genes by qPCRs at early time points, at 7hpi and 14hpi. The down-regulation 
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of ApoE expression was confirmed (>90% downregulation of ApoE mRNA at 7hpi and 

14hpi). We also observed a down-regulation in DDX58 mRNA expression of ≅60% at 

both 7hpi and 14hpi. The expression of IFIH1 and TLR3 mRNA was also decreased but 

only at 14hpi (Figure 41). 

 
Figure 41 – siRNA-gene down-regulation in hNPCs-derived neural cells. 

hNPC-derived neural cells were pretreated with siRNAs for 48h and infected with TBEV. 
Analysis was performed by qPCR 7hpi and 14hpi. UTD=untransfected, NI= non-infected. Data 
are expressed as mean±SD. Statistical analyses were performed using a two-tailed unpaired 
t test on Graphpad Prism V4.0.3, ns=non-significant (p>0.05); *=p<0.05.  

To address whether the down-regulation of PRRs affected viral replication and 

induction of antiviral response genes, we performed qPCR analysis of intracellular 

viral gRNA and of two ISGs (OAS2 and IFI6). While we did not observe a significant 

change of TBEV replication at 7hpi, transfection with siTLR3 increased TBEV genome 

loads at 14hpi (Figure 42). Furthermore, in TBEV-infected cells, siTLR3 and siIFIH1 

transfection induced an increase in ISGs expression when compared to non-treated 

controls. Interestingly, downregulation of DDX58 led to a decrease in OAS2 

expression at 4hpi, but IFI6 expression remained unaffected. These preliminary 

results, showing a down-regulation of OAS2 gene expression in siDDX58-treated cells 

and an increase of both ISGs in siTLR3-treated cells, suggested a possible 

involvement of RIG-I and TLR3 in TBEV-induced antiviral response. 

These observations need to be confirmed by further experiments. 
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Figure 42 – Involvement of PRRs in viral sensing and ISGs induction.  

hNPC-derived neural cells were pretreated with siRNAs for 48h and infected with TBEV. 
Analysis of TBEV intracellular genome (a) and of the ISGs OAS2 and IFI6 (b) was performed 
by qPCR 7hpi and 14hpi. UTD=untransfected, NI= non-infected. Data are expressed as 
mean±SD. Statistical analyses were performed using a two-tailed unpaired t test on 
Graphpad Prism V4.0.3, ns=non-significant (p>0.05); *=p<0.05; **=p<0.01. 
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Chapter III: Discussion 

Despite its importance in human health, TBEV-induced neuropathogenesis is 

poorly understood. For a long time, human and mice neural cell lines in vitro and 

rodents in vivo were the only available models for the study of anti-TBEV immunity 

and TBEV-induced neuropathology [61,199,264,281,282,362]. Pathogenicity of 

TBEV in mice was shown to correlate with severity of infection in humans [449]. 

However, data obtained with cell lines could be biased, as it occurs that the 

identity of immortalized cell lines is often mistaken [450] and, more importantly, 

they differ in their signaling from the primary cells or in vivo situation [451,452]. 

Moreover, studies have highlighted species differences. More specifically, it has 

been shown that each mammalian specie possess a specific IFN response and a 

unique repertoire of ISGs [217], which limits extrapolation of knowledge on viral 

infections and antiviral response from mice to humans. In the last years, relevant 

contributions using iPSc-induced or primary human neurons and astrocytes were 

made [72,280], but the studies focused mainly on structural changes and 

inflammatory response. Here, we developed and characterized a new human 

physiological model to understand the antiviral response developed during TBEV 

infection and in particular the specificities of 2 main cell types within the CNS, 

neurons and astrocytes. We further explored the association between antiviral 

response and neuropathogenesis. Using hNPCs that differentiate into specialized 

brain cells and generate cultures containing neurons, astrocytes and 

oligodendrocytes [232,233], we showed that TBEV preferentially infects and 

damages human neurons. We further highlighted that TBEV induced an antiviral 

immune response in human neural cells. This antiviral response was however more 

strongly induced in astrocytes compared to neurons which led us to suggest that 

the particular neuronal susceptibility and vulnerability to TBEV infection is due, 

at least partly, to their inability to develop a protective antiviral response. 

 

• Human Neural Stem cells as a source of neural cultures 

The characterization of cell type composition of in vitro models is critical, 

as the CNS encloses regions with variable cellular compositions, and it is likely 

that the susceptibility of each cell type as well as their interactions shape the 



  

103 

 

susceptibility of specific regions to specific viruses. Despite that, studies using 

primary or iPSc-induced human or murine neurons or astrocytes disclose scarce 

data about the cellular heterogeneity of the cultures, and their cellular purity 

was poorly characterized. In this study, we have used a well-characterized hNPCs-

derived neural cells culture that contains approximately 75% of neurons, 20% of 

astrocytes and less than 5% of oligodendrocytes. An important limitation of this 

model is that it is still far from representing the human brain, as the ratios of 

these cell types are not representative of the overall brain cellular composition 

[453], yet they might represent specific regions where the ratio of neurons to 

astrocytes is favorable to the former cell type. Moreover, as hNPCs are prepared 

from fetal brain tissue [232], the derived neural cultures lack microglia, an 

important player in CNS that derive from primitive myeloid precursors [454]. 

There is no evidence that microglia cells are permissive to TBEV. However, 

microglial cells respond to the brain infection by inducing their proliferation and 

activation, as shown in postmortem human brain tissues [261]. This activation is 

likely to be involved in neuronal damage and brain tissue destruction. It seems 

plausible that microglial cells are activated following a direct infection by TBEV, 

as they can be also be infected by other flaviviruses. ZIKV infects microglia and 

leads to their activation and the induction of an inflammatory response [455]. 

Microglia are also susceptible to JEV with no apparent cytopathogenic effect, but 

the virus can be transmitted to neighboring cells in a cell-dependent manner 

[456].  

Further work assessing microglial susceptibility to TBEV, and its implication 

in the pathogenesis of the adult human brain is needed. Organotypic brain slices 

collected from human donors could provide a complementary view to our study 

by investigating TBEV infection of microglia in a multicellular environment. 

Microglia with a functional immune response can be developed in iPSC-derived 

human cerebral organoids, and be associated with neurons and other glial cells 

[457], which might allow the study of broader cellular interactions in a three 

dimensional environment. 
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• A differential susceptibility of human neural cells to TBEV 

TBEV infects and replicates mainly in neurons, as shown in human and mouse 

neurons [72,264]. Glial cells are also susceptible to TBEV infection, as in vitro 

cultures showed ≅20% of infection in primary human and in primary rat astrocytes 

[61,280], but TBEV infection in oligodendrocytes had not been reported so far.  

Here, we showed that primary human neurons and astrocytes are permissive 

to TBEV infection. This is the first direct comparison between the two cell types 

using co-culture of human neural cells, showing that susceptibility to TBEV 

infection is higher in neurons compared to astrocytes (more than 3 folds in the 

specific populations), and confirming that neurons are the main target of TBEV. 

Moreover, we revealed for the first time that human oligodendrocytes are highly 

permissive to TBEV infection, but we did not observe any evidence damage 

induced by the infection. 

Other neurotropic viruses have been reported to infect and replicate in 

various cells of the brain. Both neurons and astrocytes are susceptible to LACV 

[225]. JEV can infect immature neurons [458,459] and astrocytes [460] [459,460] 

while ZIKV infects mainly neural stem cells, but also astrocytes [228,461]. 

Immature neurons are susceptible to ZIKV infection, but mature differentiated 

neurons are more resistant to the virus [462].  

Oligodendrocytes infection by viruses is not well known. ZIKV was shown to 

infect oligodendrocytes within murine myelinating cultures, and to cause 

neuronal demyelination [463]. Theiler's murine encephalomyelitis virus (TMEV), 

murine leukemia viruses (MLV), and spongiogenic murine retroviruses also infect 

murine oligodendrocytes or oligodendrocytes progenitors, which also leads to 

neuronal demyelination, or to the impairment the differentiation of 

oligodendrocytes progenitors [464–466]. Oligodendrocytes are also injured during 

HIV-1 neurotropic infection [467]. 

Whether TBEV induces an alteration of the myelin sheath similarly to other 

viruses that infect oligodendrocytes has not been investigated. This could 

represent a mechanism of indirect neuronal alteration that does not involve cell 

death. 
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• A differential impact of TBEV on human neural cells 

TBEV induces ultrastructural changes in infected neurons and astrocytes 

[61,72,264,280], it is however unclear whether it induces cell death exclusively 

by apoptosis, or if other cell death mechanisms, involving necrosis or autophagy, 

are involved. Apoptotic figures were observed in human neuroblastoma [223], but 

only limited apoptotic cells were observed in primary human neurons [72]. Our 

data showed that TBEV induces neuronal death by apoptosis and a massive 

neuronal loss. Bílý et al. [72] have also observed a maintenance of viral titers in 

neuronal cultures up to 13dpi and suggested a persistent infection. The kinetic 

studies we performed on hNPC-derived co-cultures showed a decrease of TBEV 

titers at later time points and do not favor the hypothesis of TBEV persistence in 

the brain. Because neurons survive hardly for a long time in cultures depleted of 

astrocytes, we were not able to perform longer time point analyses of viral 

replication in enriched-neuronal cultures. Furthermore, we observed an 

impairment of neurites network at 72hpi, which was stable up to 7dpi.The kinetics 

of this neurites loss, showing the same network density at 72hpi and 7dpi while 

neuronal count decreases suggests a retrograde neuronal degeneration. This 

mechanism of neuronal damage is well described in Rabies virus (RABV) infections 

[468]. 

Apoptotic figures were also observed in glioblastoma [223] but only marginal 

necrotic cells were present in human [280] and rat [61] astrocytes. Unexpectedly, 

our data showed a decrease in astrocytes number at later time points (7dpi) but 

we did not observe pyknosis or any other cell death figures in astrocytes. As rat 

primary astrocytes viability was not impaired, Potokar et al. [61] previously 

suggested they might act as a reservoir for TBEV during chronic infections of 

rodents. However, our data have shown that human astrocytes are also impaired 

in their survival, and are not likely to act as a source of TBEV within the CNS. 

Moreover, an increase in GFAP production was previously observed in human 

astrocytes [280], as well as structural changes of the cytoskeleton [61]. We 

observed an astroglial hypertrophy, suggesting astrogliosis but we did not observe 

an increase in GFAP transcripts. Furthermore, the hypertrophy was not 

accompanied by astrocytes proliferation, another figure of astrogliosis, which 

questions its occurrence.  
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Our results did not reveal a significant impairment of oligodendrocytes 

viability, however, we relied on Olig2 nuclear protein to mark cells from the 

oligodendroglial lineage, which allowed us to perform automated olig2-positive 

cells enumeration using an Arrayscan Cellomics. However, Olig2 is mainly 

expressed in oligodendrocytes progenitor cells, and directed them to an 

oligodendroglial fate [469]. Furthermore, while we did not observe Olig2 co-

localization with neuronal or astroglial markers,  Olig2 can be expressed in 

subpopulations of neurons [470] and astrocytes [471]. The use of mature 

oligodendrocytes markers such as O4 and MBP [472] will provide a complementary 

picture of the impact of TBEV infection on mature oligodendrocytes. 

Hence, here, we confirm, using neurons and glial cells differentiated from 

the same culture, that astrocytes are more resistant to TBEV-infection than 

neurons. While the infection is lower and the replication is weaker, their viability 

is impaired during long-term infection. 

 

• The antiviral response in neurons and astrocytes: a link to 

pathogenesis? 

 Two possible reasons could explain the difference in TBEV impact on neurons 

and astrocytes.  

TBEV entry might be mediated by a specific receptor in neurons. For 

instance, AXL, the entry receptor of ZIKV, is known to be strongly expressed in 

astrocytes, but weakly in neurons [473], which is consistent with the virus 

tropism. Our results showed a higher infection in neurons (8.0±0.8%) than in 

astrocytes (4.3±1.5%) early after infection (14hpi), which suggests that viral entry 

is facilitated in neurons in comparison to astrocytes. However, while heparin 

sulfates are involved in TBEV attachment, the specific receptors mediating viral 

entry are not known, which does not allow us to address this possibility as a 

differential mechanism between neurons and astrocytes.  

The different impact of TBEV infection on neurons and astrocytes might also 

be due either to a high basal level of antiviral response genes expression in 

astrocytes or to a difference in intrinsic capacity of neurons and astrocytes to 

develop a protective antiviral response upon TBEV infection. We observed a high 

difference in TBEV infection at 72hpi between neurons and astrocytes (Infection 
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of 43.6±6.7% of neuron and 8.5±3.3% of astrocytes). This suggests that astrocytes 

limit strongly viral replication compared to neurons. Our data did not show a 

significant difference in basal levels of antiviral response genes in neurons and 

astrocytes. However, while we showed the induction of the same antiviral 

program in both En-Neurons and En-Astrocytes, we observed a higher global 

expression in astrocytes compared to neurons. Previous work performed on mice 

revealed that IFN is essential for viral control and protection of the CNS [360] and 

that the cell-type- and region-specific IFN activation is protective and determines 

tropism of TBEV [263,282]. Astrocytes are the main IFN-producing cells in 

response to several neurotropic viruses (LACV, VSV, TMEV, and RABV [474,475]), 

and they mount a fast type I IFN response following TBEV infection [281]. Other 

flaviviruses, such as WNV, infect astrocytes in a similar manner, replicating slowly 

and inducing a strong IFN I response as well [476,477]. For a long time, neurons 

were considered immunologically quiescent cells, but it is now well established 

that they are able to produce IFN and mount an IFN response by expressing ISGs, 

hence participating to the antiviral response [478]. This response is specific to 

neuronal subtypes, and neurons from different regions of the brain have a 

different antiviral response and susceptibility to flaviviruses such as WNV and 

TBEV [263,479]. Our results demonstrate for the first time that TBEV induces a 

global antiviral response in human neurons that is weaker than the induced 

antiviral response in human astrocytes. 

As neurons from different regions have specific antiviral responses, neuronal 

susceptibility might also be due to the lack of expression of one or few factor that 

restrict TBEV replication. Our data showed a higher expression of PRRS, ISGs, and 

proinflammatory cytokines in astrocytes compared to neurons. Among these 

genes, the expression of RSAD2, coding for the ISG viperin, was significantly 

upregulated in astrocytes but not in neurons. Viperin was shown to inhibit the 

replication of several viruses in mice, including TBEV and WNV [395,396]. Its 

expression is not necessary to control TBEV replication in granule cell neurons 

(GCN) of the cerebellum, but it is essential for a protective IFN-response in 

astrocytes and in cortical neurons (CN) of the cerebral cortex [263], showing a 

cell type specific mode of action. Whether the antiviral response in hNPCs-derived 

neurons lacks specific factors that are expressed in other neural types is unknown. 

Using iPSc to generating hNPCs that differentiate in different types of neurons 
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might help to tackle this question. Furthermore, our results raise the question of 

the involvement of viperin in TBEV control in human neural cells, but whether its 

ectopic expression can enhance the control of TBEV replication in neurons is 

unclear. 

 

• Interplays between neurons and astrocytes, a love and hate 

relationship  

Cellular environment is critical for viral clearance within the CNS. Control of 

the replication of an avirulent strain of WNV in astrocytes was hypothesized to be 

associated with milder neuropathology [477], suggesting that antiviral response 

in astrocytes may protect neurons. Furthermore, combined IFN responses of 

neurons and astrocytes together, but not separately induced a protective 

response in the murine olfactory bulb, through activation of macroglia [480]. 

Moreover, IFN response in astrocytes was shown to be crucial for protection of 

neighboring cells by suppressing TBEV-replication in the CNS [281]. However, 

astrocytes can also be deleterious to neurons, and microglia can induce this 

neurotoxic state [481].  

Using enriched cultures of neurons, we showed that depletion of astrocytes 

strongly increased infection in neurons, suggesting that astrocytes not only 

control TBEV replication, but that they also limit neurons infection possibly 

through inducing a specific antiviral response. On the contrary, little is known 

about how neurons affect astrocytes infection and injury. We showed that 

decrease in neurons number led to a restoration in astrocytes viability at 7dpi. 

Thus, our results suggest that neurons have a harmful impact on astrocytes. This 

could be due to a higher replication of TBEV in neurons, which would lead to an 

increase in astrocytes infection and injury. However, analysis of astrocytes 

infection in En-Astrocytes cultures did not show an increase in their infection, 

which does not favor this possibility. Another explanation could be the release of 

proapoptotic factors by neurons in the extracellular medium. We observed an 

increase of TNFSF10 transcripts, coding for TRAIL, following TBEV infection. TRAIL 

is a proapoptotic factor that that can be produced by neurons or astrocytes, and 

both cells are sensitive to its signaling, although TRAIL receptors, DR4 and DR5, 

are weakly expressed in astrocytes [482]. It can also be induced by IFN signaling 
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in humans, but only weakly in mice [217]. Further work is necessary to investigate 

TRAIL producing cells and its involvement in both neuronal and astroglial 

impairment. 

Based on our results and data from the literature, we propose a model for 

TBEV interactions with human neural cells represented in Figure 43. 

 

 

 
Figure 43 – Physiopathogenic model for TBEV induced pathogenesis in the human brain 

After crossing the BBB, TBEV infects neurons, astrocytes and oligodendrocytes (1). Astrocytes control 

the infection by developing a strong antiviral response that is also beneficial for neurons (2). They 

also enter a reactive stage and express strongly pro-inflammatory cytokines (3), but are not damaged 

by the infection (4). Neurons, on the other hand, are highly susceptible to TBEV (5), which induce 

their alteration, probably by direct mechanisms (6), but also astroglial damage by an indirect 

mechanism (7). Figure adapted from [254] and created using Servier Medical Art (smart.servier.com), 

licensed under a CC BY 3.0 attribution.  
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Overall, our study, using human brain cells derived from fetal neural 

progenitors, led to the development of a new and highly relevant model that mimics 

major events of TBEV infection in the human brain. This allowed us to compare, 

for the first time, the impact of TBEV on human neurons, astrocytes and 

oligodendrocytes. We highlighted that TBEV infection induces a different antiviral 

response in human neurons and human astrocytes, which supports the concept that 

although neurons have an active immune role in the CNS, their intrinsic antiviral 

response is weaker than astrocytes response, and we hypothesized that this 

response conditions the neuropathology induced by the virus. We further identified 

a complex interplay between neurons and astrocytes showing the usefulness of 

complex cultures for the study of virus-induced neuropathogenesis.  
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Material and methods 

Human neural progenitor cells culture 

Human neural progenitor Cells (hNPCs) were prepared from the CNS of one first-

trimester human embryo as described in [232]. Human embryos were obtained after 

legal abortion with written informed consent of the patient and procedures for the 

procurement and use of this human fetal CNS tissue were approved and monitored 

by the Comité Consultatif de Protection des Personnes dans la Recherche 

Biomedicale of Henri Mondor Hospital, France. Briefly, the cortex was dissected and 

cut into 1mm3 tissue pieces. After mechanical dissociation, single-cell suspensions 

were cultured in Dulbecco’s modified Eagle medium-F12 (DMEM-F12; 1/1; Invitrogen 

Life Technologies) supplemented with B27 (Invitrogen Life Technologies) and 

containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) 

at 20ng/ml (R&D Systems), heparin (5µg/ml, Sigma), 100U penicillin, and 1,000U 

streptomycin (Invitrogen Life Technologies). This cell suspension generated 

proliferating clones containing human Neural Progenitor Cells (hNPCs) in floating 

spheres (neurospheres). Cells were further expanded and maintained in suspension 

as neurospheres in uncoated tissue culture dishes in advanced Dulbecco’s modified 

Eagle medium-F12 (DMEM-F12 Adv.; Invitrogen Life Technologies) supplemented with 

L-glutamine (2mM; Gibco), apotransferrin (0.1mg/ml; Sigma), insulin (25µg/ml; 

Sigma), and progesterone (6.3 ng/ml; Sigma). Medium, referred to as N2A medium, 

was changed twice a week, and the growth factors EGF and bFGF (both at 20 ng/ml; 

Abcys, Eurobio) were added three times a week to maintain undifferentiated cells. 

For infection, cells were cultured as monolayers by seeding them in matrigel-coated 

dishes (1/1,000; BD Biosciences) in N2A medium. They were subcultured using TrypLE 

(Invitrogen Life Technologies) when 80% confluence was reached. Cells were 

maintained at 37°C in a humidified atmosphere containing 5% CO2. 

 

Neural stem cells differentiation 

Undifferentiated proliferative hNPCs were subcultured using TrypLE and replated on 

a matrigel-coated dish at an average density of 30,000 cells/cm². Differentiation was 

induced as described in [232]. Briefly, one day after plating, N2A medium was 

replaced with 1:1 N2A and Neurobasal supplemented with L-glutamine and B27 
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without vitamin A (Invitrogen Life Technologies) (referred to as NBC) with withdrawal 

of EGF and bFGF. Differentiation conditions were maintained for 13 days before 

infection with medium replacement twice a week. 24-well plates (IBIDI) were used 

for fluorescent immunostainings and 6-well plates (Falcon) were used to prepare 

lysates for RNA and protein analysis. 

 

Virus and infection 

Hypr strain (provided by Dr S.Lecollinet, ANSES, France) is a well-characterized 

representative of European subtype TBE virus. Its complete sequence was described 

previously in [483] (GenBank accession number U39292). Hypr strain was first 

isolated in 1953 from the blood of a 10-year-old child with TBE in Czechoslovakia, 

and propagated through numerous suckling mouse brain passages [483]. Viral 

amplification was performed by successive passages on confluent Vero cells cultured 

in MEM medium (ThermoFisher) supplemented with 2% Fetal Bovine Serum (FBS). The 

supernatant was cleared by centrifugation (10000rpm, 10minutes) and aliquots were 

frozen prior to infection. Virus titers were estimated by plaque assays on Vero cells 

covered with a sterile v/v solution of PBS-Carboxymethyl cellulose (CMC) 3,2% and 

MEM 2X. Cells were colored with violet crystal for lysis quantification. 

 

Cell transfection 

Neural differentiation was induced as described above. hNPCs differentiated for 13 

days were exposed to transfection complexes for 48 h prior to TBEV infection. 

HiPerfect transfection reagent (Qiagen) and siRNAs (25nM to 200nM) directed against 

IFIH1, DDX58, TLR3, ApoE or a non-targeting siRNAs (ON-TARGETplus siRNAs, 

Dharmacon) were used.  

 

Intracellular RNA extraction 

Cells were lysed using the Lysis buffer MR1 of NucleoMag® 96 RNA kit 

(Macherey Nagel). RNAs and protein were extracted as two separate fractions using 

this same kit associated with a King Fisher Duo automate (Fisher Scientific) following 

provided instructions. RNAs were eluted in water. 
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Viral RNA extraction 

Infected cells supernatants were first centrifuged at 4,000rpm to eliminate all 

cellular fragments before freezing. Extraction was performed using QIAamp Viral 

RNA Mini Kit (Qiagen) following manufacturer’s spin protocol instructions. 

 

PCR array analysis 

Intracellular RNAs were extracted as described previously and RNAs of biological 

triplicates were pooled for each condition. Retrotranscription of the RNAs pool (250 

to 500 ng) was performed using the RT² First Strand Kit (SA Biosciences, Qiagen). 

Obtained cDNAs were processed on RT² Profiler PCR array arrays (Human antiviral 

response PAHS—122Z, human apoptosis PAHS—012Z and human autophagy 

PAHS-084Z), following strictly manufacturer’s instructions. Data were normalized for 

HPRT1 gene expression and analyzed using the 2∆∆Ct (Livak & Schmittgen, 2001) for 

relative quantification on Qiagen Data analysis center 

(http://www.qiagen.com/fr/shop/genes-and-pathways/data-analysis-center-

overview-page/). 

 

Reverse transcription and quantitative polymerase chain reaction analysis 

Total RNA concentration in the samples was quantified on a Nanodrop (Fisher 

Scientific). Reverse transcription of 160 to 250ng of RNA was performed using 

SuperScript™ II Reverse Transcriptase kit (ThermoFisher Scientific) following the 

manufacturer’s instructions.  

Real-time PCR was performed using 2µl of cDNA and QuantiTect SYBR green PCR 

master (Qiagen) with a LightCycler 96 (Roche Applied Science) on a 20µl reaction 

mixture. Gene expression was normalized with the ∆∆Ct method (Livak & 

Schmittgen, 2001), with GAPDH or HPRT1 as a housekeeping gene. The primer pairs 

used for gene expression analysis are show in Table 4. The amplification protocol 

used on the LightCycler96 is represented in Table 5. 
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Table 4 - Primer pairs used for qRT-PCR analyses. 

Gene name 3’ primer 5’ primer 

GAPDH CACCATCTTCCAGGAGCGAG GAGAtgAtgACCCTTTTGGC 

HPRT1 GGACTAATTAtgGACAGGACTG GCTCTTCAGTCTGATAAAATCTAC 

TBEV GGGCGGTTCTTGTTCTCC ACACATCACCTCCTTGTCAGACT 

GFAP AGGTCCAtgTGGAGCTTGAC GCCATTGCCTCATACTGCGT 

βIII-tubulin CAACAGCACGGCCATCCAGG CTTGGGGCCCTGGGCCTCCGA 

TLR3 GCTGCAGTCAGCAACTTCAT     AGGAAAGGCTAGCAGTCATCC    

DDX58 (RIG-I) GAGAAAAAGTGTGGCAGCCT     ATATCCGGAAGACCCTGGAC     

IFIH1 (MDA5) TGCCCAtgTTGCTGTTAtgT     GTCTGGGGCAtgGAGAATAA     

Caspase 1 TTTCCGCAAGGTTCGATTTTCA GGCATCTGCGCTCTACCATC 

TNFSF10 AGCAAtgCCACTTTTGGAGT TTCACAGTGCTCCTGCAGTC 

PSA-NCAM AGTCCAAGGGGAACCCAGT TAGTGTCTGAtgGGGGAGCC 

GLAST ACAtgAAGGAACAGGGGCAG CACGGGGGCATACCACATTA 

CXCL10 GCAGGTACAGCGTACGGTTC     CAGCAGAGGAACCTCCAGTC     

CXCL11 AtgCAAAGACAGCGTCCTCT     CAAACAtgAGTGTGAAGGGC     

CCL5 (RANTES) TGTACTCCCGAACCCATTTC     TACACCAGTGGCAAGTGCTC     

RSAD2 (viperin) GTCCCTGGCATACAGAGACTG GCTCAGAGGTTGCCTGAACA 

IFI6 TCGCTGAtgAGCTGGTCTGC ATTACCTAtgACGACGCTGC 

OAS2 TGTTTTCCGTCCATAGGAGC     CTGATCGACGAGAtgGTGAA   

MX1 CTACACACCGTGACGGATAtg CGAGCTGGATTGGAAAGCCC 

Beclin 1 ACCTCAGCCGAAGACTGAAG AACAGCGTTTGTAGTTCTGACA 

Atg3 ACAtgGCAAtgGGCTACAGG CTGTTTGCACCGCTTATAGCA 

P53 GAGGTTGGCTCTGACTGTACC TCCGTCCCAGTAGATTACCAC 

IFNα (1 and 13) GACTCCATCTTGGCTGTGA TGATTTCTGCTCTGACAACCT 

IFNβ CAACTTGCTTGGATTCCTACAAAG TATTCAAGCCTCCCATTCAATTG 

ISG15 CACCGTGTTCAtgAATCTGC CTTTATTTCCGGCCCTTGAT 

ISG56 GGACAGGAAGCTGAAGGA AGTGGGTGTTTCCTGCAA 

Trim5α TGCCTCTGACACTGACTAAGAAGAtg GGGCTAAGGACTCATTCATTGG 

 

Table 5 - Amplification program on LightCycler96 (Roche). 

Program Cycles Duration T° Acquisition Ramp 

Preincubation 1 cycle 900 s 95°c - 4,4 °C/s 

Three step 
amplification 40 cycles 

30 s 95°c - 4,4 °C/s 
30 s 60°c - 2,2 °C/s 
30 s 72°c - 4,4 °C/s 

Melting 
1 cycle 

10 s 95°c - 4,4 °C/s 

60 s 58°c - 2,2 °C/s 
Continuous 1s 95°c 5 acq/°C 0,2 °C/s 

Cooling 1 cycle 30s 40°c - 2,2 °C/s 
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Immunofluorescence and TUNEL analyses  

Cells were fixed for 20 minutes in PBS-PFA 4% (Electron Microscopy Sciences) and 

immunofluorescent stainings were performed for HuC/HuD (Thermofisher, A-21271), 

βIII-Tubulin (Sigma, #T8660), GFAP (Dako, #M076101-2 or #Z033429-2), Olig2 (R&D 

Systems #AF2418), TBEV-E3 (Kind gift of Dr S.Lecollinet, ANSES, France), cleaved 

caspase 3 (Cell Signaling Technology, #9662), GLAST (Miltenyi Biotec #130-095-814) 

or PSA-NCAM (Miltenyi Biotec #130-093-273). For all antibodies, cells were blocked 

1h in a solution of PBS supplemented with 3% BSA 0.3% (Sigma) and Triton X-100 

(VWR) solution and primary antibodies were incubated overnight in a solution of PBS 

supplemented with 1% BSA 0.1% Triton X-100 overnight at +4°C. Secondary 

immunostaining was performed with anti-IgG antibodies coupled with Alexa Fluor 

(Molecular Probes, Invitrogen, France). For the assessment of cell death, terminal 

deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) 

staining was performed using DeadEnd™ Fluorometric TUNEL System (Promega, 

#G3250) according to the manufacturer’s instructions. For all immunostainings, 

nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (Life Technologies) at 

0,1 ng/ml. Images of cells Immunostained with βIII-Tubulin, GFAP, βIII-Tubulin-GFAP 

and GFAP-TBEV were acquired with an AxioObserver Z1 (Zeiss) inverted microscope 

using ZEN software (Zeiss). In every experiment, three wells per condition were 

analyzed and an average of 1,200 cells were manually enumerated using ImageJ 

1.49m software. Images of cells TUNEL-stained or immunostained with HuC/HuD, 

TBEV and Olig2 antibodies were acquired using the Cellomics ArrayScan automated 

microscope (Thermofisher Scientific). Cell enumeration and neurite length 

measurement was automatically performed using Colocalization or Neuronal profiling 

bio applications on HCS Studio Cell Analysis Software V6.6.0 (Thermofisher 

Scientific). In every experiment, three wells per condition were analyzed and an 

average of 5,000 cells per well were enumerated. 

 

Magnetic-activated cell sorting 

Co-cultures of neural cells differentiated for 13 days (60 million cells) were detached 

using Gibco™ TrypLE™ Select Enzyme (1X) (Fisherscientific, #12563011) and collected 

in N2A-NBC medium. A fraction was collected to be centrifuged, resuspended in fresh 

N2A-NBC medium and subcultured as unsorted cultures. The remaining cells were 
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centrifuged at 80g speed for 10 minutes and resuspensded in 80µl sorting buffer per 

107 cells. Sorting buffer is a solution of PBS supplemented with 0.5% BSA and 10% 

Kynurenic acid solution 10x. Kynurenic acid solution 10x is a solution of H2O 

supplemented with Kynurenic acid (1,89mg/ml), MgCl2 0,1M, NaOH 9mM, Hepes 5mM 

and 0.25‰ Phenol Red. Details of the preparation procedure is disclosed by Welsh et 

al., [485]. Cell sorting was performed by positive selection of astrocytes using Anti-

GLAST (ACSA-1) MicroBead Kit (Miltenyi Biotec #130-095-826). In brief, resuspended 

cells were incubated 10 minutes at 4°C with 20µl anti-GLAST (ACSA-1) Biotin 

conjugated antibodies per 107 cells. After washing, centrifugation and resuspension 

in sorting buffer as before, cells were incubated with AntiBiotin MicroBeads for 

15 minutes at 4°C. The labelled cells were washed in excess using sorting buffer, 

centrifugated and resuspended in 500µl N2A-NBC. The magnetic sorting of the cells 

was performed using an MS columns (Miltenyi Biotec, #130-042-201) that was placed 

in a MiniMACSTM separator (Miltenyi Biotec #130-090-312). The sorted and unsorted 

cells were seeded at density of 100,000 cells per cm² in a v/v mix of fresh N2A-NBC 

medium and N2A-NBC conditioned medium (supernatant of 13d old co-cultures 

conditioned for 48 hours) on 24-wells µ-Plates (Ibidi, #82406). The negative selected 

cells were considered enriched neurons (En-Neurons) and the positive selected cells 

were considered enriched astrocytes (En-Astrocytes). Half the medium was changed 

every two days and replaced with fresh N2A-NBC.  

 

Statistical analyses 

Data are represented as mean±SD. Statistical analysis were performed on GraphPad 

Prism V4.03 or V6.0.1 using an unpaired Student’s t test or a one-way ANOVA analysis 

(Bonferroni's Multiple Comparison Test), as described in the figures 

legend.*=(p<0,05), **=(p<0,01), ***=(p<0,001), non-significant (ns)= (p>0,05). 
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Supplementary information 

Supplementary table 1 - Detailed number of recorded TBEV human infections worldwide between 

1985 and 2010. 

Data were gathered from (Süss 2011; Donoso Mantke et al. 2011; Poblete-Durán et al. 2016; WHO 
2018; Süss 2008). 
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Albania n/a n/a n/a n/a n/a 1 0 3 0 0 1 2 0 0 1 0 0 0 0 0 n/a n/a 0 n/a n/a 23

Andorra n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0 n/a 0 n/a 0 0 0 0 n/a 0

Armenia n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a

Austria n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 6 12 23 36 44 n/a 59 51 n/a n/a n/a 58

Azerbaijan n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a 0 n/a n/a n/a n/a n/a 0 n/a n/a n/a

Belarus 2 n/a 1 11 4 5 4 2 20 50 66 97 67 78 26 23 61 18 53 44 n/a 108 82 n/a 88 86

Belgium n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 2 2 9 n/a n/a

Bosnia and Herzegovina n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a 1 0 0 0 0 n/a n/a n/a 2

Bulgaria 33 18 15 10 9 12 14 18 15 45 34 36 14 24 22 0 n/a 0 n/a 0 0 0 n/a n/a n/a n/a

Croatia n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 25 24 26 18 27 30 36 38 28 20 11 20 44 36

Cyprus n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a

Czech Republic 350 333 178 191 166 182 356 338 629 619 743 571 415 422 490 719 633 647 606 507 643 1029 546 631 n/a 589

Denmark n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0

Estonia n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 387 185 272 215 90 237 182 164 171 140 90 179 201

Finland n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 5 8 19 16 12 41 33 38 16 29 16 17 20 23 n/a 44

France n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 7 n/a n/a 10

Georgia n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a 0 0 0 0 0 n/a n/a

Germany n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a 255 239 278 n/a 431 547 238 n/a 313 n/a

Greece n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a 0 0 n/a n/a

Hungary 226 372 208 218 295 229 288 206 329 278 240 253 107 84 56 46 55 60 73 76 53 57 69 77 70 n/a

Iceland n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Ireland n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0 n/a n/a n/a n/a

Israel n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Italy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n/a n/a n/a n/a n/a n/a

Kazakhstan n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 56 56 n/a n/a n/a 32 34 n/a n/a

Kyrgyzstan n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 10 36 n/a 5 3 n/a n/a 15 21 n/a 16

Latvia 150 184 246 119 117 122 226 287 771 1366 1341 736 874 1029 350 544 303 153 365 251 142 170 171 184 n/a 494

Lithuania 10 12 9 17 8 9 14 17 198 284 427 310 645 548 171 419 298 168 763 425 243 462 234 220 n/a 612

Luxembourg n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a 0 n/a n/a 0 n/a 0 0 n/a n/a n/a n/a

Malta n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0 0 0 0 0 0 0 0 0 n/a n/a

Monaco n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Montenegro n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0 n/a n/a

Netherlands n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Norway 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 5 2 5 13 11 n/a 11

Poland 14 10 24 15 6 8 4 8 249 181 267 257 201 208 101 170 210 126 339 262 262 317 233 n/a 351 294

Portugal n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Republic of Moldova n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a n/a n/a 0 0 n/a n/a n/a n/a

Romania n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a 0 n/a 1 n/a n/a n/a n/a 8 n/a 3

Russian Federation n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 6528 n/a n/a 4156 4566 3494 3138 2796 3720 3094

San Marino n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 n/a n/a 0 n/a 0 0 n/a n/a n/a n/a

Serbia n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 n/a n/a n/a 1 6 1 0 n/a n/a n/a

Slovakia 36 21 24 29 18 14 24 16 51 60 89 106 76 54 63 92 75 62 74 70 50 91 57 85 n/a 90

Slovenia 274 226 106 114 65 104 118 80 197 532 283 406 274 153 151 196 260 262 282 204 297 373 199 251 306 166

Spain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n/a n/a n/a

Sweden n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 53 198 117 n/a 107 175 131 163 182 224 n/a 174

Switzerland n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 123 68 112 91 108 53 116 137 202 252 106 121 117 90

Tajikistan n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a n/a 0 n/a n/a n/a

The former Yugoslav 
Republic of Macedonia

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Turkey n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Turkmenistan n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Ukraine n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 25 45 45 n/a n/a 28 n/a n/a n/a n/a 7 n/a 3

United Kingdom of Great 
Britain and Northern 
Ireland

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0 0 n/a 0 0 0 0 0 0 n/a n/a

Uzbekistan n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a n/a n/a 0 n/a n/a n/a
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Supplementary table 2 - Cycle threshold (Ct) and fold regulation of genes involved in human apoptosis 

in hNPCs-derived neural cells using specific PCR arrays (SABiosciences). 

Gene symbol 
Ct 

Fold Regulation 
 

Gene symbol 
Ct 

Fold Regulation 
NI TBEV   NI TBEV  

ABL1 35.00 35.00 1.18  DFFA 26.90 27.75 -1.53 

AIFM1 28.62 28.43 1.35  DIABLO 26.34 26.70 -1.09 

AKT1 25.03 25.57 -1.23  FADD 27.24 27.27 1.16 

APAF1 26.75 27.73 -1.67  FAS 26.84 26.22 1.82 

BAD 26.45 27.26 -1.48  FASLG 35.00 35.00 1.18 

BAG1 29.99 30.53 -1.23  GADD45A 29.29 27.97 2.95 

BAG3 28.67 28.83 1.06  HRK 29.66 27.26 6.23 

BAK1 28.57 29.22 -1.33  IGF1R 25.66 26.93 -2.04 

BAX 25.49 25.47 1.20  IL10 34.75 35.00 -1.01 

BCL10 26.70 26.64 1.23  LTA 32.40 31.26 2.60 

BCL2 27.93 28.50 -1.26  LTBR 35.00 35.00 1.18 

BCL2A1 35.00 31.65 12.04  MCL1 24.06 23.93 1.29 

BCL2L1 27.07 27.77 -1.38  NAIP 24.29 25.39 -1.82 

BCL2L10 35.00 33.16 4.23  NFKB1 29.12 28.14 2.33 

BCL2L11 29.39 28.92 1.64  NOD1 28.48 28.00 1.65 

BCL2L2 26.36 27.02 -1.34  NOL3 28.81 29.65 -1.52 

BFAR 26.15 26.31 1.06  PYCARD 30.45 30.25 1.36 

BID 27.35 27.71 -1.09  RIPK2 28.66 28.65 1.19 

BIK 31.33 31.96 -1.31  TNF 35.00 32.17 8.40 

BIRC2 25.08 25.13 1.14  TNFRSF10A 33.80 33.30 1.67 

BIRC3 32.62 28.83 16.34  TNFRSF10B 26.71 25.92 2.04 

BIRC5 30.28 31.45 -1.91  TNFRSF11B 28.86 29.21 -1.08 

BIRC6 25.79 25.95 1.06  TNFRSF1A 26.10 26.25 1.06 

BNIP2 25.94 26.47 -1.22  TNFRSF1B 35.00 32.89 5.10 

BNIP3 24.93 25.47 -1.23  TNFRSF21 27.95 27.89 1.23 

BNIP3L 24.57 25.51 -1.62  TNFRSF25 28.63 29.61 -1.67 

BRAF 28.18 28.98 -1.47  TNFRSF9 35.00 31.90 10.13 

CASP1 30.98 26.03 36.50  TNFSF10 34.31 27.85 103.97 

CASP10 33.21 32.91 1.45  TNFSF8 35.00 35.00 1.18 

CASP14 35.00 33.58 3.16  TP53 25.32 25.17 1.31 

CASP2 26.32 27.37 -1.75  TP53BP2 25.29 25.99 -1.38 

CASP3 25.66 26.48 -1.49  TP73 35.00 35.00 1.18 

CASP4 33.78 30.89 8.75  TRADD 31.55 32.49 -1.62 

CASP5 35.00 32.93 4.96  TRAF2 28.13 28.20 1.13 

CASP6 26.59 27.56 -1.66  TRAF3 27.69 27.92 1.01 

CASP7 28.63 27.49 2.60  XIAP 25.84 26.64 -1.47 

CASP8 31.78 29.47 5.86  ACTB 19.10 19.92 -1.49 

CASP9 26.72 27.64 -1.60  B2M 22.38 20.43 4.56 

CD27 33.21 33.36 1.06  GAPDH 21.63 22.40 -1.44 

CD40 35.00 32.59 6.28  HPRT1 28.93 29.28 -1.08 

CD40LG 32.25 33.14 -1.57  RPLP0 20.49 21.70 -1.96 

CD70 34.53 32.46 4.96  HGDC 34.11 34.87 -1.43 

CFLAR 27.01 27.15 1.07  RTC 22.77 22.44 1.48 

CIDEA 35.00 33.73 2.85  RTC 22.78 22.42 1.52 

CIDEB 26.93 27.38 -1.16  RTC 22.81 22.47 1.49 

CRADD 28.99 31.15 -3.78  PPC 19.54 19.73 1.04 

CYCS 29.07 29.62 -1.24  PPC 19.53 19.68 1.06 

DAPK1 27.59 28.71 -1.84  PPC 19.49 19.66 1.05 
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Supplementary table 3 - Cycle threshold (Ct) and fold regulation of genes involved in human autophagy 

in hNPCs-derived neural cells using specific PCR arrays (SABiosciences). 

Gene symbol 
Ct 

Fold Regulation 
 

Gene symbol 
Ct 

Fold Regulation 
NI TBEV   NI TBEV  

AKT1 35.00 35.00 -1.48  HSP90AA1 23.35 22.57 1.16 

AMBRA1 27.75 26.62 1.48  HSPA8 22.27 21.82 -1.08 

APP 23.53 23.42 -1.37  HTT 27.47 26.85 1.04 

Atg10 28.97 28.98 -1.49  IFNG 35.00 35.00 -1.48 

Atg12 25.70 25.41 -1.21  IGF1 33.50 30.86 4.21 

Atg16L1 27.63 26.99 1.05  INS 35.00 35.00 -1.48 

Atg16L2 29.24 29.05 -1.30  IRGM 35.00 35.00 -1.48 

Atg3 25.60 25.37 -1.26  LAMP1 24.81 24.45 -1.15 

Atg4A 28.43 28.53 -1.59  MAP1LC3A 26.55 26.50 -1.43 

Atg4B 26.51 26.13 -1.14  MAP1LC3B 24.48 24.46 -1.46 

Atg4C 26.74 27.24 -2.09  MAPK14 26.70 26.39 -1.19 

Atg4D 27.73 27.27 -1.08  MAPK8 24.95 25.54 -2.23 

Atg5 26.23 26.02 -1.28  MTOR 26.60 26.21 -1.13 

Atg7 27.15 27.02 -1.35  NFKB1 29.38 27.05 3.40 

Atg9A 27.94 27.37 1.00  NPC1 27.70 27.11 1.02 

Atg9B 34.59 33.01 2.02  PIK3C3 25.97 25.82 -1.33 

BAD 27.05 26.54 -1.04  PIK3CG 35.00 35.00 -1.48 

BAK1 28.85 28.13 1.11  PIK3R4 27.56 27.21 -1.16 

BAX 25.87 24.97 1.26  PRKAA1 25.96 25.80 -1.33 

BCL2 28.03 27.82 -1.28  PTEN 25.26 24.79 -1.07 

BCL2L1 27.78 27.43 -1.16  RAB24 30.11 29.05 1.41 

BECN1 27.21 26.79 -1.11  RB1 25.66 25.41 -1.24 

BID 27.47 26.92 -1.01  RGS19 29.85 29.02 1.20 

BNIP3 25.00 24.99 -1.47  RPS6KB1 26.14 25.82 -1.19 

CASP3 25.79 25.97 -1.68  SNCA 26.65 27.10 -2.02 

CASP8 31.46 29.08 3.52  SQSTM1 24.30 23.02 1.64 

CDKN1B 25.11 24.04 1.42  TGFB1 27.78 27.41 -1.15 

CDKN2A 28.67 27.69 1.33  TGM2 33.49 30.85 4.21 

CLN3 27.60 27.39 -1.28  TMEM74 32.20 30.06 2.98 

CTSB 25.67 25.65 -1.46  TNF 34.53 31.45 5.71 

CTSD 25.46 24.90 -1.00  TNFSF10 35.00 27.31 139.49 

CTSS 31.86 28.58 6.56  TP53 25.48 24.49 1.34 

CXCR4 25.17 25.46 -1.81  ULK1 27.85 27.87 -1.50 

DAPK1 28.14 28.19 -1.53  ULK2 26.26 26.27 -1.49 

DRAM1 29.74 27.74 2.70  UVRAG 29.14 27.63 1.92 

DRAM2 26.72 26.70 -1.46  WIPI1 27.87 27.81 -1.42 

EIF2AK3 27.75 26.11 2.11  ACTB 19.32 19.27 -1.43 

EIF4G1 26.11 25.08 1.38  B2M 22.39 19.56 4.80 

ESR1 34.41 34.76 -1.89  GAPDH 21.92 21.70 -1.27 

FADD 27.86 26.76 1.45  HPRT1 28.65 28.31 -1.17 

FAS 26.83 25.47 1.73  RPLP0 20.36 20.97 -2.26 

GAA 27.41 27.09 -1.19  HGDC 33.26 32.94 -1.19 

GABARAP 23.33 23.27 -1.42  RTC 22.82 22.95 -1.62 

GABARAPL1 26.73 26.36 -1.15  RTC 22.77 23.00 -1.74 

GABARAPL2 23.58 23.79 -1.71  RTC 22.81 22.96 -1.64 

HDAC1 26.23 26.14 -1.39  PPC 19.67 19.59 -1.40 

HDAC6 26.37 26.03 -1.17  PPC 19.67 19.57 -1.38 

HGS 28.95 28.14 1.18  PPC 19.66 19.56 -1.38 
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Supplementary table 4 - Cycle threshold (Ct) and fold regulation of genes involved in human antiviral 

response in hNPCs-derived neural cells using a specific PCR array (SABiosciences). 

 Gene 

symbol 

Ct Fold Regulation  Gene symbol Ct Fold Regulation 

NI TBEV     NI TBEV   

AIM2 32.97 33.03 1.68  MAP2K3 29.16 28.59 1.46 

APOBEC3G 39.34 34.20 6.41  MAP3K1 27.95 28.19 1.32 

Atg5 26.79 27.04 1.09  MAP3K7 26.58 26.90 1.30 

AZI2 26.39 26.37 1.69  MAPK1 24.96 25.16 1.23 

CARD9 n.d. 33.86 -1.30  MAPK14 27.69 28.00 1.04 

CASP1 31.21 27.70 37.01  MAPK3 28.12 28.31 -1.04 

CASP10 33.23 34.57 -3.16  MAPK8 26.01 26.65 1.19 

CASP8 31.37 31.28 -1.21  MAVS 28.34 28.59 -1.03 

CCL3 41.57 36.03 1.04  MEFV 33.87 35.09 3.18 

CCL5 43.49 25.47 207.94  MX1 32.55 23.91 522.76 

CD40 43.95 n.d. -3.89  MYD88 29.03 27.64 3.14 

CD80 35.43 41.75 1.13  NFKB1 30.59 29.38 2.28 

CD86 n.d. n.d. 2.97  NFKBIA 28.71 27.45 3.03 

CHUK 28.51 28.60 1.31  NLRP3 n.d. n.d. -4.06 

CTSB 26.48 26.85 1.24  NOD2 41.52 35.41 2.41 

CTSL 26.49 27.13 1.09  OAS2 42.50 27.13 541.19 

CTSS 33.84 31.63 3.27  PIN1 27.56 27.80 1.04 

CXCL10 43.64 24.88 719.08  PSTPIP1 32.96 32.43 -1.48 

CXCL11 n.d. 26.80 188.71  PYCARD 33.06 33.49 -1.05 

CXCL9 30.76 29.77 5.70  PYDC1 34.99 36.14 2.19 

CYLD 28.93 28.14 1.72  RELA 27.67 27.46 1.31 

TKFC 30.55 30.51 -1.16  RIPK1 29.37 28.72 2.20 

DDX3X 25.08 25.36 1.13  SPP1 30.22 29.52 1.15 

DDX58 27.86 24.35 17.63  STAT1 26.78 24.13 11.63 

DHX58 35.28 31.16 99.04  SUGT1 25.57 25.93 1.36 

FADD 28.93 29.37 1.46  TBK1 28.40 28.26 1.35 

FOS 27.24 26.86 1.67  TICAM1 30.78 29.84 1.46 

HSP90AA1 23.08 23.12 1.25  TLR3 30.61 27.85 8.40 

IFIH1 29.90 24.75 42.81  TLR7 37.65 37.79 1.04 

IFNA1 n.d. 35.11 -1.68  TLR8 n.d. n.d. 1.04 

IFNA2 n.d. n.d. 1.30  TLR9 34.15 42.40 -1.04 

IFNAR1 25.69 26.18 -1.09  TNF 40.18 32.70 -1.16 

IFNB1 33.74 26.40 44.32  TRADD 33.63 33.08 1.59 

IKBKB 27.96 28.02 1.20  TRAF3 29.00 28.98 1.04 

IL12A 30.19 30.55 1.78  TRAF6 27.70 27.47 1.14 

IL12B 35.59 35.01 2.19  TRIM25 27.49 25.52 6.41 

IL15 34.82 32.78 6.45  ACTB 19.49 19.60 -1.42 

IL18 33.00 34.45 1.17  B2M 23.00 20.63 3.93 

IL1B 39.11 34.31 -2.07  GAPDH 21.91 21.86 -1.27 

IL6 34.41 31.40 -1.10  HPRT1 28.64 28.70 -1.37 

CXCL8 37.46 30.05 12.55  RPLP0 20.67 20.95 -1.60 

IRAK1 29.70 29.54 1.29  HGDC 33.93 35.00 -2.76 

IRF3 27.94 27.66 1.15  RTC 22.76 22.40 -1.02 

IRF5 32.90 32.90 -1.09  RTC 22.76 22.43 -1.05 

IRF7 31.06 28.63 5.03  RTC 22.77 22.43 -1.04 

ISG15 30.05 23.98 203.66  PPC 19.80 19.77 -1.29 

JUN 28.24 27.72 1.62  PPC 19.76 19.71 -1.27 

MAP2K1 27.85 27.84 1.10  PPC 19.76 19.70 -1.26 
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Supplementary table 5 - Cycle threshold (Ct) and fold regulation of genes involved in human antiviral 

response in unsorted cultures, En-Neurons and En-Astrocytes using specific PCR arrays 

(SABiosciences). 

Unsorted cultures 

Gene symbol 
Ct 

Fold Regulation 
 

Gene symbol 
Ct Fold 

Regulation NI TBEV   NI TBEV  

AIM2 32.97 33.03 -1.13  MAP2K3 29.16 28.59 1.37 

APOBEC3G 35.00 34.20 1.60  MAP3K1 27.95 28.19 -1.28 

Atg5 26.79 27.04 -1.29  MAP3K7 26.58 26.90 -1.36 

AZI2 26.39 26.37 -1.07  MAPK1 24.96 25.16 -1.25 

CARD9 35.00 33.86 2.03  MAPK14 27.69 28.00 -1.35 

CASP1 31.21 27.70 10.48  MAPK3 28.12 28.31 -1.24 

CASP10 33.23 34.57 -2.75  MAPK8 26.01 26.65 -1.69 

CASP8 31.37 31.28 -1.02  MAVS 28.34 28.59 -1.29 

CCL3 35.00 35.00 -1.09  MEFV 33.87 35.00 -2.38 

CCL5 35.00 25.47 680.29  MX1 32.55 23.91 367.09 

CD40 35.00 35.00 -1.09  MYD88 29.03 27.64 2.41 

CD80 35.00 35.00 -1.09  NFKB1 30.59 29.38 2.13 

CD86 35.00 35.00 -1.09  NFKBIA 28.71 27.45 2.20 

CHUK 28.51 28.60 -1.16  NLRP3 35.00 35.00 -1.09 

CTSB 26.48 26.85 -1.40  NOD2 35.00 35.00 -1.09 

CTSL 26.49 27.13 -1.69  OAS2 35.00 27.13 215.27 

CTSS 33.84 31.63 4.26  PIN1 27.56 27.80 -1.28 

CXCL10 35.00 24.88 1024.00  PSTPIP1 32.96 32.43 1.33 

CXCL11 35.00 26.80 270.60  PYCARD 33.06 33.49 -1.46 

CXCL9 30.76 29.77 1.83  PYDC1 34.99 35.00 -1.09 

CYLD 28.93 28.14 1.59  RELA 27.67 27.46 1.06 

TKFC 30.55 30.51 -1.06  RIPK1 29.37 28.72 1.44 

DDX3X 25.08 25.36 -1.32  SPP1 30.22 29.52 1.49 

DDX58 27.86 24.35 10.48  STAT1 26.78 24.13 5.78 

DHX58 35.00 31.16 13.18  SUGT1 25.57 25.93 -1.39 

FADD 28.93 29.37 -1.47  TBK1 28.40 28.26 1.01 

FOS 27.24 26.86 1.20  TICAM1 30.78 29.84 1.77 

HSP90AA1 23.08 23.12 -1.12  TLR3 30.61 27.85 6.23 

IFIH1 29.90 24.75 32.67  TLR7 35.00 35.00 -1.09 

IFNA1 35.00 35.00 -1.09  TLR8 35.00 35.00 -1.09 

IFNA2 35.00 35.00 -1.09  TLR9 34.15 35.00 -1.96 

IFNAR1 25.69 26.18 -1.53  TNF 35.00 32.70 4.53 

IFNB1 33.74 26.40 149.09  TRADD 33.63 33.08 1.35 

IKBKB 27.96 28.02 -1.13  TRAF3 29.00 28.98 -1.07 

IL12A 30.19 30.55 -1.39  TRAF6 27.70 27.47 1.08 

IL12B 35.00 35.00 -1.09  TRIM25 27.49 25.52 3.61 

IL15 34.82 32.78 3.78  ACTB 20.81 21.21 -1.43 

IL18 33.00 34.45 -2.97  B2M 23.06 21.86 2.11 

IL1B 35.00 34.31 1.48  GAPDH 23.12 23.33 -1.26 

IL6 34.41 31.40 7.41  HPRT1 29.24 29.12 1.00 

CXCL8 35.00 30.05 28.44  RPLP0 21.33 22.08 -1.83 

IRAK1 29.70 29.54 1.03  HGDC 34.13 35.00 -1.99 

IRF3 27.94 27.66 1.12  RTC 21.23 21.43 -1.25 

IRF5 32.90 32.90 -1.09  RTC 21.26 21.36 -1.16 

IRF7 31.06 28.63 4.96  RTC 21.28 21.46 -1.23 

ISG15 30.05 23.98 61.82  PPC 19.46 19.46 -1.09 

JUN 28.24 27.72 1.32  PPC 19.44 19.40 -1.06 

MAP2K1 27.85 27.84 -1.08  PPC 19.47 19.44 -1.06 
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En-Neurons 

Gene symbol 
Ct 

Fold Regulation 
 

Gene symbol 
Ct 

Fold Regulation 
NI TBEV   NI TBEV  

AIM2 32.73 33.05 1.01  MAP2K3 30.14 30.01 1.39 

APOBEC3G 35.00 35.00 1.27  MAP3K1 28.17 28.74 -1.17 

Atg5 26.97 27.56 -1.19  MAP3K7 26.72 26.83 1.17 

AZI2 26.50 26.61 1.17  MAPK1 25.73 26.22 -1.11 

CARD9 32.71 33.51 -1.38  MAPK14 27.52 28.17 -1.24 

CASP1 33.39 31.08 6.28  MAPK3 28.50 29.10 -1.20 

CASP10 32.98 33.60 -1.21  MAPK8 25.39 26.01 -1.21 

CASP8 31.62 32.51 -1.46  MAVS 28.72 29.50 -1.36 

CCL3 35.00 34.45 1.85  MEFV 35.00 35.00 1.27 

CCL5 33.93 26.22 265.03  MX1 32.36 27.41 39.12 

CD40 35.00 35.00 1.27  MYD88 29.36 29.61 1.06 

CD80 33.96 35.00 -1.62  NFKB1 30.97 30.54 1.71 

CD86 35.00 35.00 1.27  NFKBIA 28.41 28.05 1.62 

CHUK 28.34 28.72 -1.03  NLRP3 35.00 35.00 1.27 

CTSB 26.95 27.60 -1.24  NOD2 35.00 35.00 1.27 

CTSL 27.77 28.08 1.02  OAS2 34.03 29.79 23.92 

CTSS 32.86 32.85 1.27  PIN1 27.86 28.63 -1.35 

CXCL10 35.00 26.64 415.87  PSTPIP1 32.73 33.50 -1.35 

CXCL11 35.00 28.36 126.24  PYCARD 31.60 32.44 -1.41 

CXCL9 30.55 30.17 1.65  PYDC1 35.00 35.00 1.27 

CYLD 27.96 28.23 1.05  RELA 28.09 28.47 -1.03 

TKFC 30.68 31.61 -1.51  RIPK1 30.08 29.92 1.41 

DDX3X 25.63 26.04 -1.05  SPP1 30.60 31.39 -1.37 

DDX58 28.61 26.43 5.74  STAT1 28.01 27.02 2.51 

DHX58 35.00 31.94 10.56  SUGT1 25.52 25.94 -1.06 

FADD 29.19 30.17 -1.56  TBK1 28.77 28.85 1.20 

FOS 28.88 29.03 1.14  TICAM1 31.80 31.58 1.47 

HSP90AA1 23.72 24.35 -1.22  TLR3 31.35 30.92 1.71 

IFIH1 31.25 27.29 19.70  TLR7 35.00 35.00 1.27 

IFNA1 35.00 33.48 3.63  TLR8 34.89 35.00 1.17 

IFNA2 35.00 35.00 1.27  TLR9 32.28 33.48 -1.82 

IFNAR1 26.36 27.10 -1.32  TNF 35.00 33.96 2.60 

IFNB1 32.91 27.09 71.51  TRADD 34.98 35.00 1.25 

IKBKB 28.51 29.15 -1.23  TRAF3 29.90 29.94 1.23 

IL12A 32.92 32.43 1.78  TRAF6 28.06 28.64 -1.18 

IL12B 35.00 32.77 5.94  TRIM25 29.26 28.46 2.20 

IL15 34.97 33.60 3.27  ACTB 20.90 21.88 -1.56 

IL18 31.39 32.42 -1.61  B2M 24.77 24.20 1.88 

IL1B 35.00 34.98 1.28  GAPDH 23.73 24.63 -1.47 

IL6 34.43 31.36 10.63  HPRT1 29.01 29.35 1.00 

CXCL8 35.00 31.83 11.39  RPLP0 22.21 22.73 -1.13 

IRAK1 29.76 30.84 -1.67  HGDC 35.00 34.19 2.22 

IRF3 28.93 29.16 1.08  RTC 20.99 20.89 1.36 

IRF5 32.93 33.52 -1.19  RTC 20.90 20.88 1.28 

IRF7 30.81 31.27 -1.09  RTC 20.96 20.92 1.30 

ISG15 30.99 26.34 31.78  PPC 19.56 19.42 1.39 

JUN 28.87 29.17 1.03  PPC 19.46 19.40 1.32 

MAP2K1 28.39 28.95 -1.16  PPC 19.47 19.45 1.28 
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En-Astrocytes 

Gene symbol 
Ct 

Fold Regulation 
 

Gene symbol 
Ct 

Fold Regulation 
NI TBEV   NI TBEV  

AIM2 32.78 31.09 4.00  MAP2K3 28.45 28.39 1.29 

APOBEC3G 35.00 33.73 2.99  MAP3K1 27.58 28.16 -1.21 

Atg5 26.55 27.05 -1.14  MAP3K7 25.95 26.48 -1.16 

AZI2 26.23 26.22 1.25  MAPK1 24.56 25.31 -1.36 

CARD9 35.00 35.00 1.24  MAPK14 27.32 27.93 -1.23 

CASP1 30.97 26.66 24.59  MAPK3 27.69 28.72 -1.65 

CASP10 33.70 33.23 1.72  MAPK8 26.28 27.31 -1.65 

CASP8 31.26 30.84 1.66  MAVS 27.88 29.11 -1.89 

CCL3 35.00 34.73 1.49  MEFV 35.00 33.89 2.68 

CCL5 35.00 25.64 814.63  MX1 32.82 23.20 975.50 

CD40 35.00 35.00 1.24  MYD88 28.40 26.81 3.73 

CD80 35.00 35.00 1.24  NFKB1 30.02 29.55 1.72 

CD86 35.00 35.00 1.24  NFKBIA 28.45 27.77 1.99 

CHUK 28.14 28.82 -1.29  NLRP3 35.00 35.00 1.24 

CTSB 26.03 27.01 -1.59  NOD2 35.00 35.00 1.24 

CTSL 26.01 26.93 -1.53  OAS2 35.00 26.35 498.00 

CTSS 34.59 32.53 5.17  PIN1 27.35 28.45 -1.73 

CXCL10 34.53 24.60 1209.34  PSTPIP1 31.57 33.28 -2.64 

CXCL11 35.00 26.71 388.02  PYCARD 33.15 33.43 1.02 

CXCL9 30.31 29.66 1.95  PYDC1 35.00 35.00 1.24 

CYLD 28.55 28.10 1.69  RELA 27.43 27.80 -1.04 

TKFC 29.83 31.33 -2.28  RIPK1 29.06 29.04 1.26 

DDX3X 24.60 25.46 -1.46  SPP1 29.29 28.68 1.89 

DDX58 27.42 23.73 16.00  STAT1 26.05 23.45 7.52 

DHX58 35.00 30.49 28.25  SUGT1 25.27 25.75 -1.13 

FADD 28.60 29.34 -1.35  TBK1 27.69 27.87 1.09 

FOS 26.57 27.07 -1.14  TICAM1 30.38 29.75 1.92 

HSP90AA1 22.74 22.84 1.16  TLR3 29.49 27.13 6.36 

IFIH1 28.84 24.01 35.26  TLR7 35.00 35.00 1.24 

IFNA1 35.00 35.00 1.24  TLR8 35.00 35.00 1.24 

IFNA2 35.00 35.00 1.24  TLR9 34.11 35.00 -1.49 

IFNAR1 25.21 26.35 -1.78  TNF 35.00 33.41 3.73 

IFNB1 35.00 26.24 537.45  TRADD 32.70 33.04 -1.02 

IKBKB 27.48 28.17 -1.30  TRAF3 28.27 29.00 -1.34 

IL12A 29.11 29.47 -1.04  TRAF6 27.44 27.42 1.26 

IL12B 35.00 35.00 1.24  TRIM25 26.87 25.02 4.47 

IL15 34.26 33.37 2.30  ACTB 20.32 21.26 -1.55 

IL18 32.51 33.22 -1.32  B2M 22.35 21.24 2.68 

IL1B 34.50 35.00 -1.14  GAPDH 22.51 23.16 -1.27 

IL6 34.78 32.06 8.17  HPRT1 29.23 29.54 1.00 

CXCL8 35.00 30.78 23.10  RPLP0 20.73 21.70 -1.58 

IRAK1 29.35 30.30 -1.56  HGDC 34.75 34.67 1.31 

IRF3 27.36 27.38 1.22  RTC 20.97 20.92 1.28 

IRF5 33.44 35.00 -2.38  RTC 21.01 20.92 1.32 

IRF7 30.67 28.58 5.28  RTC 21.01 20.96 1.28 

ISG15 29.28 22.87 105.42  PPC 19.47 19.45 1.26 

JUN 27.96 27.51 1.69  PPC 19.45 19.45 1.24 

MAP2K1 27.29 27.87 -1.21  PPC 19.44 19.52 1.17 

 

 



 

 

 

 

Title: Pathological modeling of tick-borne encephalitis Virus infection and induced antiviral response in neurons and 
astrocytes using human neural progenitor-derived cells. 
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Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, genus Flavivirus, is, from a medical point of view, the 

most important arbovirus in Europe and North-East Asia. It is responsible for febrile illness and, in some cases, for neurological 

manifestations ranging from mild meningitis to severe encephalomyelitis that can be fatal. Despite its medical importance, the 

neuropathogenesis induced by this zoonotic agent remains poorly understood. Here, we used human neural cells differentiated from 

fetal neural progenitor cells (hNPCs) to model the infection in vitro and to decipher the mechanisms by which the virus damages the 

human brain. Our results showed that neurons and glial cells, namely astrocytes and oligodendrocytes, were permissive to TBEV. 

Neurons were massively infected and subjected to a dramatic cytopathic effect (60% loss 7 days post-infection). Astrocytes were also 

infected, although at lower levels, and the infection had a moderate effect on their survival (30% loss 7 days post-infection), inducing 

a hypertrophied morphology characteristic of astrogliosis. Thus, two major cellular events described in TBEV-infected human brain 

(i.e. neuronal loss and astrogliosis) were reproduced in this in vitro cellular model, showing its relevance to study TBEV-induced 

neuropathogenesis. We therefore used it to tackle TBEV-induced antiviral response. Using PCR arrays, we first showed that TBEV 

induced a strong antiviral response characterized by the overexpression of viral sensors, cytokines and interferon-stimulated genes 

(ISGs). Then, setting up enriched cultures of human neurons and human astrocytes, we further showed that the two cellular types 

were participating in the global antiviral response. However, astrocytes developed a stronger antiviral response than neurons. These 

results, by demonstrating that human neurons and human astrocytes have unique antiviral potential, suggest that their particular 

susceptibility to TBEV infection is due to their different capacity to mount a protective antiviral response. 

Titre : Modélisation pathologique de l’infection par le virus de l’encéphalite à tiques et réponse antivirale induite dans les 
neurones et astrocytes dérivés de progéniteurs neuraux fœtaux humains 

Mots-clés : Virus de l’encéphalite à tiques, Immunité antivirale, Cellules progénitrices neurales humaines, Neurones, 
Astrocytes, Flavivirus 

Le virus de l’encéphalite à tiques (TBEV), membre de la famille des Flaviviridae et du genre Flavivirus, est d’un point de vue médical, 

l’arbovirus le plus important en Europe et en Asie du Nord-Est. Il est responsable de symptômes fébriles et de manifestations 

neurologiques allant de la méningite légère à l’encéphalomyélite sévère pouvant être fatale. En dépit de son importance médicale, 

la neuropathogenèse induite par cet agent zoonotique reste peu caractérisée. Ici, nous avons utilisé des cellules neurales humaines 

différenciées à partir de progéniteurs neuraux fœtaux pour modéliser l’infection in vitro et élucider les mécanismes par lesquels le 

virus endommage le cerveau humain. Nos résultats ont montré que les neurones et les cellules gliales (astrocytes et oligodendrocytes) 

étaient permissifs au TBEV. Les neurones étaient massivement infectés et la cible d’un effet cytopathique important (perte de 60 % 

des neurones 7 jours après l’infection). Les astrocytes étaient également infectés, bien qu’à des niveaux inférieurs, et l’infection 

avait un effet modéré sur leur survie (perte de 30 % des astrocytes 7 jours après l’infection), induisant une hypertrophie 

caractéristique d’une astrogliose. Ainsi, deux événements majeurs décrits dans les cerveaux de patients infectés par TBEV (perte 

neuronale et astrogliose) étaient reproduits dans ce modèle cellulaire in vitro, démontrant ainsi sa pertinence pour des études de 

neuropathogenèse. Nous l’avons donc utilisé pour étudier la réponse antivirale induite par TBEV. En utilisant des PCR arrays, nous 

avons d’abord montré que le virus induisait une forte réponse antivirale caractérisée par une surexpression de senseurs viraux, de 

cytokines et de gènes stimulés par l’interféron. Puis, en établissant des cultures enrichies en neurones humains et astrocytes humains, 

nous avons montré que ces deux types cellulaires participaient à la réponse antivirale globale. Cependant, les astrocytes élaboraient 

une réponse antivirale plus forte que les neurones. Ces résultats, en démontrant que les neurones humains et les astrocytes humains 

élaboraient chacun une réponse antivirale unique suite à l’infection, suggèrent que leur sensibilité particulière à TBEV serait due à 

leur capacité différente à établir une réponse antivirale protectrice. 


