N. Abas, A. Kalair, and N. Khan, Review of fossil fuels and future energy technologies, Futures, vol.69, issue.299, pp.31-49, 2015.

M. Meinshausen, N. Meinshausen, W. Hare, S. C. Raper, K. Frieler et al., Greenhouse-gas emission targets for limiting global warming to 2°C, Nature, vol.458, issue.7242, pp.1158-1162, 2009.

J. E. Szulejko, P. Kumar, A. Deep, and K. H. Kim, Global warming projections to 2100 using simple CO 2 greenhouse gas modeling and comments on CO 2 climate sensitivity factor, Atmospheric Pollution Research, vol.8, issue.1, pp.136-140, 2017.

J. Cook, N. Oreskes, P. T. Doran, W. R. Anderegg, B. Verheggen et al., Consensus on consensus : A synthesis of consensus estimates on human-caused global warming, Environmental Research Letters, vol.11, issue.4, 2016.

D. Larcher and J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nature Chemistry, vol.7, issue.1, pp.19-29, 2015.

H. Moon, I. S. Chang, and B. H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell, Bioresource Technology, vol.97, issue.4, pp.621-627, 2006.

J. Heilmann and B. E. Logan, Production of Electricity from Proteins Using a Microbial Fuel Cell, Water Environment Research, vol.78, issue.5, pp.531-537, 2006.

H. Liu and R. Ramnarayanan, Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell, Environ.Sci.Technol, vol.38, issue.7, pp.2281-2285, 2004.

H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim et al., A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme and Microbial Technology, vol.30, issue.2, pp.145-152, 2002.

V. G. Gude, Wastewater treatment in microbial fuel cells -An overview, Journal of Cleaner Production, vol.122, pp.287-307, 2016.

J. R. Trapero, L. Horcajada, J. J. Linares, and J. Lobato, Is microbial fuel cell technology ready ? An economic answer towards industrial commercialization, Applied Energy, vol.185, pp.698-707, 2017.

O. Crowther and A. C. West, Effect of Electrolyte Composition on Lithium Dendrite Growth, Journal of The Electrochemical Society, vol.155, issue.11, p.806, 2008.

V. Agubra and J. Fergus, Lithium ion battery anode aging mechanisms, Materials, vol.6, issue.4, pp.1310-1325, 2013.

R. Koksbang and D. Fauteux, Rechargeable lithium battery anodes : alternatives to metallic lithium, Journal of Applied Electrochemistry, vol.23, pp.1-10, 1993.

K. Xie, K. Yuan, K. Zhang, C. Shen, W. Lv et al., Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries, ACS Applied Materials and Interfaces, vol.9, issue.5, pp.4605-4613, 2017.

X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong et al., Three-Dimensional Carbon Nanotube -Textile Anode for High-Performance Microbial Fuel Cells, Nano Letters

P. G. Balakrishnan, R. Ramesh, and T. Kumar, Safety mechanisms in lithiumion batteries, Journal of Power Sources, vol.155, issue.2, pp.401-414, 2006.

J. M. Noël, L. Mottet, N. Bremond, P. Poulin, C. Combellas et al., Multiscale electrochemistry of hydrogels embedding conductive nanotubes, Chemical Science, vol.6, issue.7, pp.3900-3905, 2015.

L. Mottet, D. L. Cornec, J. M. Noël, F. Kanoufi, B. Delord et al., A conductive hydrogel based on alginate and carbon nanotubes for probing microbial electroactivity, Soft Matter, vol.14, issue.8, pp.1434-1441, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02336985

H. Parant, G. Muller, T. L. Mercier, J. M. Tarascon, P. Poulin et al., Flowing suspensions of carbon black with high electronic conductivity for flow applications : Comparison between carbons black and exhibition of specific aggregation of carbon particles, Carbon, vol.119, pp.10-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544046

B. Kang and G. Ceder, Battery materials for ultrafast charging and discharging, Nature, vol.458, issue.7235, pp.190-193, 2009.

H. Liu, G. Wang, J. Liu, S. Qiao, and H. Ahn, Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance, Journal of Materials Chemistry, vol.21, issue.9, pp.3046-3052, 2011.

A. Vu, Y. Qian, and A. Stein, Porous electrode materials for lithium-ion batterieshow to prepare them and what makes them special, Advanced Energy Materials, vol.2, issue.9, pp.1056-1085, 2012.

C. Jiang, Y. Zhou, I. Honma, T. Kudo, and H. Zhou, Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material, Journal of Power Sources, vol.166, issue.2, pp.514-518, 2007.

E. Frackowiak, Carbon materials for the electrochemical storage of energy in capacitors, vol.39, pp.937-950, 2001.

M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon -metal oxide composite electrodes for supercapacitors : a review, nanoscale, pp.72-88, 2013.

A. Yuan and Q. Zhang, A novel hybrid manganese dioxide / activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochemistry Communications, vol.8, pp.1173-1178, 2006.

M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon -metal oxide composite electrodes for supercapacitors : a review, nanoscale, pp.72-88, 2013.

S. Liu and H. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode, Biosensors and Bioelectronic, vol.19, pp.177-183, 2003.

S. Palanisamy, S. K. Ramaraj, S. Chen, T. C. Yang, P. Yi-fan et al., A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol, pp.1-12, 2017.

L. Mei, J. Feng, L. Wu, J. Zhou, J. Chen et al., Biosensors and Bioelectronics Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium -copper alloyed nanocages, Biosensors and Bioelectronic, vol.74, pp.347-352, 2015.

M. Guo, H. Wang, D. Huang, Z. Han, Q. Li et al., Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon ( N-OMC )/ PVA matrix, Science and Technology of Advanced Materials, vol.15, 2014.

Y. M. Kim, J. H. Lee, S. J. Kim, and D. Favrat, Potential and evolution of compressed air energy storage : Energy and exergy analyses, Entropy, vol.14, issue.8, pp.1501-1521, 2012.

W. Xu, P. Northwest, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 2013.

Y. P. Wu, E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries, Journal of power sources, vol.114, pp.228-236, 2003.

M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Recent development of carbon materials for Li ion batteries, Carbon, vol.38, pp.183-197, 2000.

A. Tron, Y. N. Jo, S. H. Oh, Y. D. Park, and J. Mun, Surface Modi fi cation of the LiFePO 4 Cathode for the Aqueous Rechargeable Lithium Ion Battery, 2017.

C. Yang, J. Chen, T. Qing, N. Eidson, C. Wang et al., , pp.122-132

C. Ponce-de-león, A. Frías-ferrer, J. González-garcía, D. A. Szánto, and F. C. Walsh, Redox flow cells for energy conversion, Journal of Power Sources, vol.160, issue.1, pp.716-732, 2006.

H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim, and M. Skyllas-kazacos, Membranes for redox flow battery applications, vol.2, pp.275-306, 2012.

J. Giner, L. Swette, and K. Cahill, Screening of Redox Couples, 1976.

P. Leung, X. Li, P. D. Leo, L. Berlouis, C. T. John et al., Progress in redox flow batteries , remaining challenges and their applications in energy storage, 2012.

E. Sum and M. Skyllas-kazacos, A study of the v(ii)/v(iii) cell applications, Journal of Power Sources, vol.15, pp.179-190, 1985.

M. Rychcik and M. Skyllas-kazacos, 61 59 Characteristics Battery, Journal of Power Sources, vol.22, pp.59-61, 1988.

P. Alotto, M. Guarnieri, and F. Moro, Redox flow batteries for the storage of renewable energy : A review, Renewable and Sustainable Energy Reviews, vol.29, pp.325-335, 2014.

C. Zhang, L. Zhang, Y. Ding, S. Peng, X. Guo et al., Progress and prospects of next-generation redox flow batteries, Energy Storage Materials, vol.15, pp.324-350, 2018.

M. Lopez-atalaya, G. Codina, J. R. Perez, J. L. Vazquez, and A. Aldaz, Optimization studies on a Fe/Cr redox flow battery, Journal of Power Sources, vol.39, issue.2, pp.147-154, 1992.

X. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang et al., Materials and Systems for Organic Redox Flow Batteries : Status and Challenges, ACS Energy Letters, vol.2, issue.9, pp.2187-2204, 2017.

C. Wang, Q. Lai, P. Xu, D. Zheng, X. Li et al., Cage-Like Porous Carbon with Superhigh Activity and Br2-Complex-Entrapping Capability for Bromine-Based Flow Batteries, Advanced Materials, vol.29, issue.22, pp.2-7, 2017.

C. Xie, Y. Duan, W. Xu, H. Zhang, and X. Li, A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage, Angewandte Chemie -International Edition, vol.56, issue.47, pp.14953-14957, 2017.

V. Singh, S. Kim, J. Kang, and H. R. Byon, Aqueous organic redox flow batteries, vol.12, 2019.

M. Duduta, B. Ho, V. C. Wood, P. Limthongkul, V. E. Brunini et al., Semi-solid lithium rechargeable flow battery, Advanced Energy Materials, vol.1, issue.4, pp.511-516, 2011.

S. Hamelet, T. Tzedakis, J. Leriche, S. Sailler, D. Larcher et al., Non-Aqueous Li-Based Redox Flow Batteries, Journal of The Electrochemical Society, vol.159, issue.8, pp.1360-1367, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00870471

Z. Li, K. C. Smith, Y. Dong, N. Baram, F. Y. Fan et al., Aqueous semi-solid flow cell : Demonstration and analysis, Physical Chemistry Chemical Physics, vol.15, issue.38, pp.15833-15839, 2013.

A. Dicks, Fuel Cell Systems Explained

M. Warshay and P. R. Prokopius, The Fuel Cell in Space : Today and Tomorrow Yesterday, 2019.

N. Sulaiman, M. A. Hannan, A. Mohamed, E. H. Majlan, and W. R. Daud, A review on energy management system for fuel cell hybrid electric vehicle : Issues and challenges, Renewable and Sustainable Energy Reviews, vol.52, pp.802-814, 2015.

P. Sivasankar, S. Poongodi, and P. Seedevi, Bioremediation of wastewater through a quorum sensing triggered MFC : A sustainable measure for waste to energy concept, Journal of Environmental Management, vol.237, pp.84-93, 2019.

P. Taylor, J. M. Morris, and S. Jin, Journal of Environmental Science and Health , Part A : Toxic / Hazardous Substances and Environmental Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater Feasibility of using microbial fuel cell technology, Journal of Environmental Science and Health, pp.37-41, 2007.

Y. Zhang and I. Angelidaki, Submersible Microbial Fuel Cell Sensor for Monitoring Microbial Activity and BOD in Groundwater : Focusing on Impact of Anodic Biofilm on Sensor Applicability, Biotechnology and Bioengineering, vol.108, issue.10, pp.2339-2347, 2011.

D. Dávila, J. P. Esquivel, N. Sabaté, and J. Mas, Silicon-based microfabricated microbial fuel cell toxicity sensor, Biosensors and Bioelectronic, vol.26, pp.2426-2430, 2011.

. Potter, Electrical Effects accompanying the Decomposition o f Organic Compounds, pp.260-276, 1911.

C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, Microbial fuel cells : From fundamentals to applications . A review, Journal of Power Sources, vol.356, pp.225-244, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01900378

G. Delaney, H. P. Bennetto, J. R. Mason, S. D. Roller, J. L. Stirling et al., Electron-transfer Coupling in Microbial Fuel Cells . 2 . Performance of Fuel Cells Containing Selected Microorganism-Mediator-Substrate Combinations, J.Chem. Tech. Biotechnol, pp.13-21, 1984.

U. Schröder, Anodic electron transfer mechanisms in microbial fuel cells and their energy efficien, Physical Chemistry Chemical Physics

Z. Du, H. Li, and T. Gu, A state of the art review on microbial fuel cells : A promising technology for wastewater treatment and bioenergy, Biotechnology Advanced, vol.25, pp.464-482, 2007.

D. H. Park and J. G. Zeikus, Improved Fuel Cell and Electrode Designs for Producing Electricity from Microbial Degradation, 2003.

B. H. Kim and D. H. Park, Direct electrode reaction of Fe ( III ) -reducing bacterium , Shewanella putrefaciens, J.Microbiol. Biotechnol, vol.1514, 1999.

D. H. Zeikus, Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens, Applied Microbiology and Biotechnology, pp.58-61, 2002.

D. R. Bond and D. R. Lovley, Electricity Production by Geobacter sulfurreducens Attached to Electrodes, Applied and Environmental Microbiology, vol.69, issue.3, pp.1548-1555, 2003.

B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Environment Research, vol.39, pp.1675-1686, 2005.

S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, vol.21, issue.10, pp.1229-1232, 2003.

Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo et al., Electricigens in the anode of microbial fuel cells : pure cultures versus mixed communities, Microbial Cell Factories, pp.1-14, 2019.

J. Lobato, R. Paz, and J. J. Linares, Production of electricity from the treatment of urban waste water using a microbial fuel cell, Journal of Power Sources, vol.169, pp.198-204, 2007.

J. Jiang, Q. Zhao, J. Zhang, G. Zhang, and D. J. Lee, Electricity generation from bio-treatment of sewage sludge with microbial fuel cell, Bioresource Technology, vol.100, issue.23, pp.5808-5812, 2009.

Z. Wang, J. Ma, Y. Xu, H. Yu, and Z. Wu, Power production from different types of sewage sludge using microbial fuel cells : A comparative study with energetic and microbiological perspectives, Journal of Power Sources, vol.235, pp.280-288, 2013.

B. E. Morris, R. Henneberger, H. Huber, and C. Moissl-eichinger, Microbial syntrophy : Interaction for the common good, FEMS Microbiology Reviews, vol.37, issue.3, pp.384-406, 2013.

Y. Qu, Y. Feng, X. Wang, and B. E. Logan, Use of a Coculture To Enable Current Production by Geobacter sulfurreducens, Applied and Environmental Microbiology, pp.3484-3487, 2012.

S. Schmitz and M. A. Rosenbaum, Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures, Biotechnology and Bioengineering, vol.115, issue.9, pp.2183-2193, 2018.

M. Zhou, M. Chi, J. Luo, H. He, and T. Jin, An overview of electrode materials in microbial fuel cells, Journal of Power Sources, vol.196, issue.10, pp.4427-4435, 2011.

Y. Zhao, K. Watanabe, R. Nakamura, S. Mori, and H. Liu, Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells, pp.4982-4985, 2010.

X. Xie, M. Ye, L. Hu, N. Liu, J. R. Mcdonough et al., Environmental Science Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes, Energy & Environmental Science, 2011.

B. Bian, D. Shi, X. Cai, M. Hu, Q. Guo et al., Nano Energy 3D printed porous carbon anode for enhanced power generation in microbial fuel cell, Nano Energy, vol.44, pp.174-180, 2017.

H. O. Park and D. Sanchez, Bacterial Communities on Electrodes in a Mediator-Less Microbial Fuel Cell, vol.42, issue.16, pp.6243-6249, 2008.

K. S. Anseth, C. N. Bowman, and L. Brannon-peppas, Mechanical properties of hydrogels and their experimental determination, volume = 17, year = 1996, Biomaterials, issue.17, pp.1647-1657

P. Eiselt, J. Yeh, R. K. Latvala, L. D. Shea, and D. J. Mooney, Porous carriers for biomedical applications based on alginate hydrogels, Biomaterials, vol.21, pp.1921-1927, 2000.

C. Lin and K. S. Anseth, PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine Expert Review PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine, Pharmaceutical Research, 2009.

B. Kim and N. A. Peppas, Polyethylene glycol-containing Hydrogels for Oral Protein Delivery Applications, Biomedical Microdevices, pp.333-341, 2003.

M. Kokabi and Z. M. Hassan, POLYMER PVA -clay nanocomposite hydrogels for wound dressing, European Polymer Journal, vol.43, pp.773-781, 2007.

X. Xu, A. K. Jha, D. A. Harrington, M. C. Farach-carson, and X. Jia, Hyaluronic Acid-Based Hydrogels : from a Natural Polysaccharide to Complex Networks, Soft Matter, vol.8, issue.12, pp.3280-3294, 2012.

A. Haug, Dependence upon uronic acid composition of some ion-exchange properties of alginates, Acta Chemica Scandinavica

I. Braccini and S. Pérez, Molecular basis of Ca2+-induced gelation in alginates and pectins : The egg-box model revisited, Biomacromolecules, vol.2, issue.4, pp.1089-1096, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00307667

A. Haug, J. Bjerrum, O. Buchardt, G. E. Olsen, C. Pedersen et al., The Affinity of Some Divalent Metals for Different Types of Alginates, 2008.

A. Haug and O. Smidsrod, the effect of divalent metals on the properties of alginate solutions.pdf, Acta Chemica Scandinavica, 1965.

M. Mestdagh, Physico-Chemical Properties of Alginate Gel Beads, Polymer Gels and Networks, vol.3, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02694331

Ä. A. Mørch, I. Donati, B. L. Strand, and G. Skja, Effect of Ca 2 + , Ba 2 + , and Sr 2 + on Alginate Microbeads, BioMacromolecules, pp.1471-1480, 2006.

R. G. Schweiger, Acetylation of Alginic Acid. II. Reaction of Algin Acetates with Calcium and Other Divalent Ions, Journal of Organic Chemistry, vol.27, issue.5, pp.1789-1791, 1962.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.354, pp.56-58, 1991.

;. S. Bibliographie and . Iijima, single shell carbon nanotubes of 1 nm diameter, letters to nature, vol.29, issue.8, pp.183-184, 1971.

M. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, vol.381, pp.678-680, 1996.

B. Demczyk, Y. Wang, J. Cumings, M. Hetman, W. Han et al., Direct mechanical measurement of the tensile strength and elastic.pdf, Materials Science and Engineering A, vol.334, pp.173-178, 2002.

E. Kim, T. Gordonov, W. E. Bentley, and G. F. Payne, Amplified and in Situ Detection of Redox-Active Metabolite Using a Biobased Redox Capacitor, Analytical Chemistry, 2013.

J. Hur, K. Im, S. W. Kim, J. Kim, D. Chung et al., Polypyrrole / Agarose-Based Electronically Conductive and Reversibly Restorable Hydrogel, pp.10066-10076, 2014.

D. W. Litchfield, D. G. Baird, D. W. Litchfield, and D. G. Baird, the Rheology of High Aspect Ratio Nano-Particle Filled Liquids, Rheology Reviews, pp.1-60, 2006.

C. Ouwerx, N. Velings, M. M. Mestdagh, and M. A. Axelos, Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations, Polymer Gels and Networks, vol.6, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02694331

E. C. Ehman, G. B. Johnson, J. E. Villanueva-meyer, S. Cha, A. P. Leynes et al., Nat Rev Microbiol, vol.46, issue.5, pp.1247-1262, 2017.

L. V. Hooper, Commensal Host-Bacterial Relationships in the Gut, Science, vol.292, issue.5519, pp.1115-1118, 2002.

S. E. Lindgren and W. J. Dobrogosz, Antagonistic activities of lactic acid bacteria in food and feed fermentations, FEMS Microbiology Letters, vol.87, issue.1-2, pp.149-163, 1991.

N. Das and P. Chandran, Microbial degradation of petroleum hydrocarbon contaminants : an overview, Biotechnology research international, vol.2011, p.941810, 2011.

F. Science, Modeling of the Bacterial Growth Curve, Applied and Environmental Microbiology, vol.56, issue.6, pp.1875-1881, 1990.

J. Noe, B. Delord, and P. Poulin, Soft Matter PAPER A conductive hydrogel based on alginate and carbon nanotubes for probing microbial, Soft Matter, pp.1434-1441, 2018.

C. E. Zobell, The effect of solid surfaces upon bacterial activity, Journal of bacteriology, vol.46, issue.1, pp.39-56, 1943.

P. Watnick and R. Kolter, Biofilm, City of Microbes, Journal of Bacteriology, vol.182, issue.10, pp.2675-2679, 2000.

B. Delord, W. Neri, K. Bertaux, A. Derre, I. Ly et al., Carbon nanotube fiber mats for microbial fuel cell electrodes, Bioresource Technology, vol.243, pp.1227-1231, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618888

S. Sun-yoon, R. F. Hennigan, G. M. Hilliard, U. A. Ochsner, K. Parvatiyar et al., Pseudomonas aeruginosa Anaerobic Respiration in Biofilms : Relationships to Cystic Fibrosis Pathogenesis of toxic NO, a byproduct of anaerobic respiration. Pro-teomic analyses identified an outer membrane protein, Developmental Cell, vol.3, pp.593-603, 2002.

J. Babauta, R. Renslow, Z. Lewandowski, and H. Beyenal, Electrochemically active biofilms : facts and fiction. A review, Biofouling, vol.28, issue.8, pp.789-812, 2012.

S. Choi and J. Chae, Sensors and Actuators A : Physical Optimal biofilm formation and power generation in a micro-sized microbial fuel cell ( MFC ), Sensors & Actuators : A. Physical, vol.195, pp.206-212, 2013.

Y. Sung, K. E. Fletcher, K. M. Ritalahti, R. P. Apkarian, R. A. Sanford et al., Geobacter lovleyi sp . nov . Strain SZ , a Novel Metal-Reducing and Tetrachloroethene-Dechlorinating Bacterium ?, Applied and Environmental Microbiology, vol.72, issue.4, pp.2775-2782, 2006.

E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick et al., Shewanella secretes flavins that mediate extracellular electron transfer, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.3968-3973, 2008.

F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz et al., Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism, Applied and Environmental Microbiology, vol.60, issue.10, pp.3752-3759, 1994.

K. B. Gregory, D. R. Bond, and D. R. Lovley, Graphite electrodes as electron donors for anaerobic respiration, Environmental Microbiology, vol.6, pp.596-604, 2004.

M. V. Coppi, C. Leang, S. J. Sandler, and D. R. Lovley, Development of a Genetic System for Geobacter sulfurreducens, Applied and Environmental Microbiology, vol.67, issue.7, pp.3180-3187, 2001.

H. Yi, K. P. Nevin, B. C. Kim, A. E. Franks, A. Klimes et al., Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells, Biosensors and Bioelectronics, vol.24, issue.12, pp.3498-3503, 2009.

M. Vargas, N. S. Malvankar, P. Tremblay, A. Amino, A. Required et al., Aromatic Amino Acids Required for Pili Conductivity and Long, vol.4, issue.2, pp.1-7, 2013.

R. Mahadevan, B. Palsson, and D. R. Lovley, In situ to in silico and back : Elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling, Nature Reviews Microbiology, vol.9, issue.1, pp.39-50, 2011.

;. R. Bibliographie, D. R. Mahadevan, M. V. Bond, B. O. Coppi, C. H. Palsson et al., Characterization of Metabolism in the Fe(III)-Reducing Organism, Applied and Environmental Microbiology, vol.72, issue.2, pp.1558-1568, 2006.

S. E. Childers, S. Ciufo, and D. R. Lovley, Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis, Nature, vol.416, issue.6882, pp.767-769, 2002.

G. Reguera, K. D. Mccarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen et al., Extracellular electron transfer via microbial nanowires, Nature, vol.435, issue.7045, pp.1098-1101, 2005.

T. Mehta, M. V. Coppi, S. E. Childers, and D. R. Lovley, Outer Membrane c -Type Cytochromes Required for Fe ( III ) and Mn ( IV ) Oxide Reduction in Geobacter sulfurreducens, Applied and Environmental Microbiology, vol.71, issue.12, pp.8634-8641, 2005.

D. E. Holmes, S. K. Chaudhuri, K. P. Nevin, T. Mehta, B. A. Methé et al., Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens, Environmental Microbiology, vol.8, issue.10, pp.1805-1815, 2006.

C. Leang, M. V. Coppi, and D. R. Lovley, OmcB, a c-Type Polyheme Cytochrome, Involved in Fe(III) Reduction in Geobacter sulfurreducens, Journal of Bacteriology, vol.185, issue.7, pp.2096-2103, 2003.

A. Esteve-núñez, J. Sosnik, P. Visconti, and D. R. Lovley, Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens, Environmental Microbiology, vol.10, issue.2, pp.497-505, 2008.

N. T. Trinh, J. H. Park, and B. W. Kim, Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens, Korean Journal of Chemical Engineering, vol.26, issue.3, pp.748-753, 2009.

A. K. Padhi, K. 5. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc, vol.144, issue.4, pp.1-7, 1997.

C. Delmas, M. Maccario, L. Croguennec, F. L. Cras, and F. Weill, Lithium deintercalation in LiFePO 4 nanoparticles via a domino-cascade model, Nature Materials, vol.7, issue.8, pp.665-671, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324979

J. T. Han, D. Q. Liu, S. H. Song, Y. Kim, and J. B. Goodenough, Lithium ion intercalation performance of niobium oxides : KNb 5 O 13 and K 6 Nb 10.8 O 30, Chemistry of Materials, vol.21, issue.20, pp.4753-4755, 2009.

M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleem, and I. Mustafa, Redox Flow Battery for Energy Storage, Arabian Journal for Science and Engineering, vol.38, issue.4, pp.723-739, 2013.

F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz et al., Oxidizing dissimilatory metal-reducing microorganism, Applied and environmental microbiology, vol.60, issue.10, pp.3752-3759, 1994.

W. W. Li, H. Q. Yu, and Z. He, Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy and Environmental Science, vol.7, issue.3, pp.911-924, 2014.

J. J. Gooding, Nanostructuring electrodes with carbon nanotubes : A review on electrochemistry and applications for sensing, Electrochimica Acta, vol.50, issue.15, pp.3049-3060, 2005.

T. Vigdis and Ø. Lise, Microbial diversity and function in soil : from genes to ecosystems, Current Opinion in Microbiology, vol.5, issue.3, pp.240-245, 2002.

N. Elgrishi, K. J. Rountree, B. D. Mccarthy, E. S. Rountree, T. T. Eisenhart et al., A Practical Beginner's Guide to Cyclic Voltammetry, Journal of Chemical Education, vol.95, issue.2, pp.197-206, 2018.