, On the contrary, the high-symmetry directions (?K in red, M Gr K Gr in dashed black and M Ir K Ir in dashed white) are curved in the (?, ?) space and become

S. H. Tolbert and A. P. Alivisatos, High-pressure structural transformations in semiconductor nanocrystals, Annual Review of Physical Chemistry, vol.46, pp.595-626, 1995.

E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, vol.277, 1971.

D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts et al., A review on mechanics and mechanical properties of 2d materials-graphene and beyond, Extreme Mechanics Letters, vol.13, pp.42-77, 2017.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, Photoluminescence from nanosize gold clusters, The Journal of Chemical Physics, vol.108, pp.9137-9143, 1998.

H. Yao, K. Miki, N. Nishida, A. Sasaki, and K. Kimura, Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines, Journal of the American Chemical Society, vol.127, pp.15536-15543, 2005.

A. N. Shipway, E. Katz, and I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, A European Journal of Chemical Physics and Physical Chemistry, vol.1, pp.18-52, 2000.

D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature, vol.408, p.67, 2000.

D. L. Leslie-pelecky and R. D. Rieke, Magnetic properties of nanostructured materials, Chemistry of Materials, vol.8, pp.1770-1783, 1996.

P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli et al., Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science, vol.300, pp.1130-1133, 2003.

C. Chung, Y. Kim, D. Shin, S. Ryoo, B. H. Hong et al., Biomedical applications of graphene and graphene oxide, Accounts of Chemical Research, vol.46, pp.2211-2224, 2013.

Y. Huang, J. Liang, and Y. Chen, An overview of the applications of graphenebased materials in supercapacitors, Small, vol.8, pp.1805-1834, 2012.

F. Perreault, A. F. De-faria, and M. Elimelech, Environmental applications of graphene-based nanomaterials, Chemical Society Reviews, vol.44, pp.5861-5896, 2015.

S. Bae, S. J. Kim, D. Shin, J. Ahn, and B. H. Hong, Towards industrial applications of graphene electrodes, Physica Scripta, p.14024, 2012.

T. Palacios, A. Hsu, and H. Wang, Applications of graphene devices in rf communications, IEEE Communications Magazine, vol.48, pp.122-128, 2010.

R. A. Bizao, T. Botari, and D. S. Galvao, Mechanical properties of graphene nanowiggles, Materials Research Society Symposium Proceedings, vol.1658, pp.14-18, 2014.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, pp.385-388, 2008.

K. S. Novoselov, A. K. Geim, F. Guinea, N. M. Peres, and A. H. Castro-neto, The electronic properties of graphene, Reviews of Modern Physics, vol.81, pp.109-162, 2009.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, pp.183-191, 2009.

A. K. Geim, Graphene : Status and Prospects, vol.324, pp.1530-1535, 2010.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van-dau, F. Petroff et al.,

, 001) cr magnetic superlattices, Physical Review Letters, vol.61, p.2472, 1988.

G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical Review B, vol.39, p.4828, 1989.

E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Currentinduced switching of domains in magnetic multilayer devices, Science, vol.285, pp.867-870, 1999.

L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Physical Review B, vol.54, p.9353, 1996.

D. C. Ralph and M. D. Stiles, Spin transfer torques, Journal of Magnetism and Magnetic Materials, vol.320, pp.1190-1216, 2008.

N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. Van-wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, vol.448, pp.571-574, 2007.

R. Nouchi, N. Mitoma, M. Shiraishi, M. Ohishi, T. Shinjo et al., Robustness of Spin Polarization in Graphene-Based Spin Valves, Advanced Functional Materials, vol.19, pp.3711-3716, 2009.

B. Dlubak, M. Martin, C. Deranlot, B. Servet, S. Xavier et al., Highly efficient spin transport in epitaxial graphene on sic, Nature Physics, vol.8, p.557, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00911221

H. Vita, S. Böttcher, P. Leicht, K. Horn, A. B. Shick et al., Electronic structure and magnetic properties of cobalt intercalated in graphene on Ir

, Physical Review B, vol.90, pp.1-10, 2014.

D. Marchenko, A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba et al., Graphene for spintronics: giant Rashba splitting due to hybridization with Au, Nature Communications, vol.3, pp.1232-1236, 2012.

M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-lastra, K. S. Thygesen et al., Graphene on metals: A Van Der Waals density functional study, Physical Review B, vol.81, pp.1-4, 2010.

E. Voloshina and Y. Dedkov, Realistic Large-Scale Modeling of Rashba and Induced Spin -Orbit Effects in Graphene / High-Z-Metal Systems, Advanced Theory and Simulations, vol.1, pp.1-9, 2018.

D. Pacilé, P. Leicht, M. Papagno, P. M. Sheverdyaeva, P. Moras et al., Artificially lattice-mismatched graphene/metal interface: Graphene/Ni/Ir(111), Physical Review B, vol.87, pp.1-6, 2013.

J. Drnec, S. Vlaic, I. Carlomagno, C. J. Gonzalez, H. Isern et al., Surface alloying upon Co intercalation between graphene and Ir(111), Carbon, vol.94, pp.554-559, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187045

I. Carlomagno, J. Drnec, S. Vlaic, N. Vinogadrov, F. Carlà et al., Co film stretching induced by lattice mismatch and annealing: The role of graphene, Applied Surface Science, vol.432, pp.22-26, 2018.

P. N. First, A. Lanzara, W. A. De-heer, F. Guinea, G. Gweon et al., Substrate-induced bandgap opening in epitaxial graphene, Nature Materials, vol.6, pp.770-775, 2007.

E. Wang, X. Lu, S. Ding, W. Yao, M. Yan et al., Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nature Physics, vol.12, pp.1111-1115, 2016.

A. Varykhalov, M. R. Scholz, T. K. Kim, and O. Rader, Effect of noble-metal contacts on doping and band gap of graphene, Physical Review B, vol.82, pp.1-4, 2010.

R. Q. Wu, Z. Y. Li, Z. Q. Yang, S. Qiao, and J. Hu, Spin-orbit splitting in graphene on metallic substrates, Journal of Physics, vol.23, p.225502, 2011.

I. I. Klimovskikh, S. S. Tsirkin, A. G. Rybkin, A. A. Rybkina, M. V. Filianina et al.,

E. V. Zhizhin, A. M. Chulkov, and . Shikin, Nontrivial spin structure of graphene on Pt(111) at the Fermi level due to spin-dependent hybridization, Physical Review B, vol.90, pp.1-10, 2014.

D. Marchenko, J. Sánchez-barriga, M. R. Scholz, O. Rader, and A. Varykhalov, Spin splitting of Dirac fermions in aligned and rotated graphene on Ir(111), Physical Review B, vol.87, pp.1-8, 2013.

S. Su, Y. Barlas, J. Li, J. Shi, and R. K. Lake, Effect of intervalley interaction on band topology of commensurate graphene/EuO heterostructures, Physical Review B, vol.95, pp.1-8, 2017.

D. Heiman, L. Pinel, P. Wei, J. S. Moodera, D. Cutaia et al.,

W. Chen, S. Cha, F. Lee, F. Katmis, and . Lemaitre, Strong interfacial exchange field in the graphene/EuS heterostructure, Nature Materials, vol.15, pp.711-716, 2016.

J. C. Leutenantsmeyer, A. A. Kaverzin, M. Wojtaszek, and B. J. Van-wees, Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Materials, 4, 2017.

Z. Ren, Y. Wu, B. Yan, J. Li, H. Song et al., Magnetic proximity effect in graphene coupled to a BiFeO3 nanoplate, Physical Review B, vol.95, pp.1-7, 2017.

B. Trauzettel, B. Verberck, T. O. Wehling, M. R. Scholz, C. Carbone et al., Intact Dirac Cones at Broken Sublattice Symmetry: Photoemission Study of Graphene on Ni and Co, Physical Review X, vol.2, pp.1-10, 2012.

A. Varykhalov, C. Biswas, E. Vescovo, O. Rader, A. Rybkin et al., Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Physical Review Letters, vol.101, pp.1-4, 2008.

H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu et al., Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire, ACS Nano, vol.4, pp.7407-7414, 2010.

E. Loginova, N. C. Bartelt, P. J. Feibelmarr, and K. F. Mccarty, Factors influencing

M. Sasaki, Y. Yamada, Y. Ogiwara, S. Yagyu, and S. Yamamoto, Moiré contrast in the local tunneling barrier height images of monolayer graphite on Pt

, Physical Review B, vol.61, pp.15653-15656, 2000.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure, Journal of Physical Chemistry Chemical Physics, vol.13, pp.20836-20843, 2011.

D. G. Castner, B. A. Sexton, and G. A. Somorjai, LEED and thermal desorption studies of small molecules, Surface Science, p.71, 1978.

T. Michely, H. Hattab, B. Poelsema, C. Busse, G. Jnawali et al., Growth temperature dependent graphene alignment on Ir(111), Applied Physics Letters, vol.98, p.141903, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00587437

J. Coraux, A. T. N'diaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir(111), Nano Letters, vol.8, pp.565-570, 2008.

A. T. N'diaye, C. Busse, N. M. Buckanie, M. Horn-von-hoegen, R. Van-gastel et al., Selecting a single orientation for millimeter sized graphene sheets, Applied Physics Letters, vol.95, p.121901, 2009.

P. Lacovig, L. Bignardi, A. Ghafari, A. Baraldi, F. Orlando et al., Key role of rotated domains in oxygen intercalation at graphene on Ni(111), 2017.

E. Voloshina, N. Berdunov, and Y. Dedkov, Restoring a nearly free-standing character of graphene on Ru(0001) by oxygen intercalation, Scientific Reports, vol.6, pp.1-10, 2016.

J. Halle, N. Néel, and J. Kröger, Filling the Gap: Li-Intercalated Graphene on Ir(111), Journal of Physical Chemistry, vol.120, pp.5067-5073, 2016.

A. Sandin, T. Jayasekera, J. E. Rowe, K. W. Kim, M. Buongiorno et al., Multiple coexisting intercalation structures of sodium in epitaxial graphene-SiC interfaces, Physical Review B, vol.85, pp.1-5, 2012.

P. Hofmann, B. Hammer, M. Bianchi, S. Ulstrup, L. Hornekaer et al., Sequential oxygen and alkali intercalation of epitaxial graphene on Ir(111): enhanced many-body effects and formation of pn -interfaces, 2014.

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Physical Review Letters, vol.49, p.57, 1982.

D. Pacilé, S. Lisi, I. D. Bernardo, M. Papagno, L. Ferrari et al., Electronic structure of graphene/Co interfaces, Physical Review B, vol.90, pp.1-6, 2014.

I. Pletikosi?, M. Kralj, D. Okevi?, R. Brako, P. Lazi? et al., Photoemission and density functional theory study of Ir(111); Energy band gap mapping, Journal of Physics: Condensed Matter, vol.22, 2010.

R. Thapa, D. Sen, M. K. Mitra, and K. K. Chattopadhyay, Palladium atoms and its dimers adsorbed on graphene : First-principles study, Physica B, vol.406, pp.368-373, 2011.

I. Cabria, M. J. López, and J. A. Alonso, Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene, Physical Review B, vol.81, pp.1-5, 2010.

Y. Murata, E. Starodub, B. B. Kappes, C. V. Ciobanu, N. C. Bartelt et al., Orientation-dependent work function of graphene on Pd

, Applied Physics Letters, vol.97, pp.28-31, 2014.

X. An, F. Liu, Y. J. Jung, and S. Kar, Large-Area Synthesis of Graphene on Palladium and Their Raman Spectroscopy, Journal of Physical Chemistry, vol.116, pp.16412-16420, 2012.

L. Huang, Y. Pan, L. Pan, M. Gao, W. Xu et al., Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru (0001) surfaces, Applied Physics Letters, vol.99, 2009.

K. Yagyu, K. Takahashi, H. Tochihara, H. Tomokage, and T. Suzuki, Neutralization of an epitaxial graphene grown on a SiC (0001) by means of palladium intercalation, Applied Physics Letters, vol.110, pp.1-6, 2017.

A. F. Carlsson, M. Naschitzki, M. Ba, and H. Freund, The Structure and Reactivity of Al 2 O 3 -Supported Cobalt -Palladium Particles : A CO-TPD , STM , and XPS Study, Journal of Physical Chemistry, vol.107, pp.778-785, 2003.

H. Arslan, K. Garip, and R. L. Johnston, Theoretical study of the structures and chemical ordering of cobalt -palladium nanoclusters, Journal of Physical Chemistry Chemical Physics, vol.17, pp.24-33, 2015.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kolla, The surface energy of metals, Surface Science, vol.411, pp.186-202, 1998.

M. Bazarnik, R. Decker, J. Brede, and R. Wiesendanger, Multi-layer and multicomponent intercalation at the graphene/Ir(111) interface, Surface Science, vol.639, pp.70-74, 2015.

P. R. Wallace, The band theory of graphite, Physical Review, vol.71, pp.622-634, 1947.

H. P. Boehm, A. Clauss, G. Fischer, and U. Hofmann, Surface Properties Of Extremely Thin Graphite Lamealle, Fifth Carbon Conference, vol.12, pp.1-8, 1961.

O. Chuhei and N. Ayato, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces, Journal of Physics: Condensed Matter, vol.9, issue.1, 1997.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.438, pp.201-204, 2005.

S. V. Dubonos, I. Grigorieva, K. S. Novoselov, S. V. Morozov, A. A. Firsov et al.,

M. I. Geim, D. Katsnelson, and . Jiang, Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, 2005.

F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Physical Review B, vol.76, pp.1-7, 2007.

A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials, vol.10, pp.569-581, 2011.

U. Bangert, A. Bleloch, D. Jiang, E. W. Hill, P. Blake et al., Macroscopic Graphene Membranes and Their Extraordinary Stiffness, Nano Letters, vol.8, pp.2442-2446, 2008.

P. L. Mceuen, J. S. Bunch, H. G. Craighead, J. M. Parpia, J. S. Alden et al., Impermeable Atomic Membranes from Graphene Sheets, Nano Letters, vol.8, pp.2458-2462, 2008.

C. K. Chua and M. Pumera, Covalent chemistry on graphene, Chemical Society Reviews, vol.42, pp.3222-3233, 2013.

W. Gao, Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications

. Springer, , 2015.

L. Liao, H. Peng, and Z. Liu, Chemistry makes graphene beyond graphene, Journal of the American Chemical Society, vol.136, pp.12194-12200, 2014.

P. May, U. Khan, A. O'neill, and J. N. Coleman, Approaching the theoretical limit for reinforcing polymers with graphene, Journal of Materials Chemistry, vol.22, pp.1278-1282, 2012.

G. Dresselhaus, S. Riichiro, and M. S. Dresselhaus, Physical properties of carbon nanotubes, 1998.

S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Tight-binding description of graphene, Physical Review B, vol.66, pp.354121-354125, 2002.

M. Dvorak, W. Oswald, and Z. Wu, Bandgap opening by patterning graphene, Scientific Reports, vol.3, pp.1-7, 2013.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin et al., Direct observation of a widely tunable bandgap in bilayer graphene, Nature, vol.459, pp.820-823, 2009.

N. Kerszberg and P. Suryanarayana, Ab initio strain engineering of graphene: Opening bandgaps up to 1 eV, vol.5, pp.43810-43814, 2015.

G. Cocco, E. Cadelano, and L. Colombo, Gap opening in graphene by shear strain, Physical Review B, vol.81, pp.1-4, 2010.

X. Fan, Z. Shen, A. Q. Liu, and J. L. Kuo, Band gap opening of graphene by doping small boron nitride domains, Nanoscale, vol.4, pp.2157-2165, 2012.

P. P. Shinde and V. Kumar, Direct band gap opening in graphene by BN doping: Ab initio calculations, Physical Review B, vol.84, pp.1-6, 2011.

Z. Guan, S. Ni, and S. Hu, Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction, vol.7, pp.45393-45399, 2017.

N. Koratkar, T. Borca-tasciuc, F. Yavari, L. Song, P. M. Ajayan et al., Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules, Small, vol.6, pp.2535-2538, 2010.

M. Papagno, S. Rusponi, P. M. Sheverdyaeva, S. Vlaic, M. Etzkorn et al., Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice, ACS Nano, vol.6, pp.199-204, 2012.

M. Farjam, K. Ziegler, D. Haberer, S. Simonucci, B. Büchner et al., Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene, Nano Letters, vol.10, pp.3360-3366, 2010.

J. Berashevich and T. Chakraborty, Tunable band gap and magnetic ordering by adsorption of molecules on graphene, Physical Review B, vol.80, pp.1-4, 2009.

Y. G. Semenov, K. W. Kim, and J. M. Zavada, Spin field effect transistor with a graphene channel, Applied Physics Letters, vol.91, 2007.

K. V. Shanavas, Z. S. Popovi?, and S. Satpathy, Theoretical model for Rashba spin-orbit interaction in d electrons, Physical Review B, vol.90, 2014.

G. W. Semenoff, Condensed-Matter simulation of a three-Dimensional anomaly, Physical Review Letters, vol.53, pp.2449-2452, 1984.

S. Konschuh, M. Gmitra, and J. Fabian, Tight-binding theory of the spin-orbit coupling in graphene, Physical Review B, vol.82, pp.1-11, 2010.

D. Kochan, S. Irmer, and J. Fabian, Model spin-orbit coupling Hamiltonians for graphene systems, Physical Review B, vol.95, pp.1-19, 2017.

T. Frank, M. Gmitra, and J. Fabian, Theory of electronic and spin-orbit proximity effects in graphene on Cu (111), Physical Review B, vol.93, pp.1-7, 2016.

S. Thakur, E. V. Chulkov, I. I. Klimovskikh, G. D. Santo, A. M. Shikin et al., Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer, ACS Nano, vol.11, pp.368-374, 2016.

H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman et al., Intrinsic and Rashba spin-orbit interactions in graphene sheets, Physical Review B, vol.74, pp.1-5, 2006.

Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spin-orbit gap of graphene: First-principles calculations, Physical Review B, vol.75, pp.2-5, 2007.

G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Physical Review, vol.100, p.580, 1955.

Y. A. Bychkov and É. I. Rashba, Properties of a 2d electron gas with lifted spectral degeneracy, JETP lett, vol.39, p.78, 1984.

A. Varykhalov, D. Marchenko, M. R. Scholz, E. D. Rienks, T. K. Kim et al., Ir(111) surface state with giant Rashba splitting persists under graphene in air, Physical Review Letters, vol.108, pp.1-5, 2012.

M. Hoesch, M. Muntwiler, V. N. Petrov, M. Hengsberger, L. Patthey et al., Physical Review B, vol.69, issue.111, pp.1-4, 2004.

K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima et al., Giant Rashba-type spin splitting in bulk BiTeI, Nature Materials, vol.10, pp.521-526, 2011.

H. C. Koo, R. A. Duine, S. M. Frolov, A. Manchon, and J. Nitta, New perspectives for Rashba spin-orbit coupling, Nature Materials, vol.14, pp.871-882, 2015.

Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding et al., Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Physical Review B, vol.82, pp.3-6, 2010.

T. Taychatanapat, A. Carvalho, Y. Yeo, J. Y. Tan, A. H. Castro-neto et al., Spin-orbit proximity effect in graphene, Nature Communications, vol.5, pp.1-6, 2014.

H. Chen, A. H. Macdonald, Z. Wang, A. F. Morpurgo, D. Ki et al., Strong interface-induced spin-orbit interaction in graphene on WS2, Nature Communications, vol.6, pp.1-7, 2015.

K. H. Jin and S. H. Jhi, Proximity-induced giant spin-orbit interaction in epitaxial graphene on a topological insulator, Physical Review B, vol.87, pp.1-6, 2013.

M. Lohmann, T. Taniguchi, L. Bartels, B. Yang, J. Shi et al., Strong electron-hole symmetric Rashba spinorbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures, Physical Review B, vol.96, pp.1-5, 2017.

S. J. Gong, Z. Y. Li, Z. Q. Yang, C. Gong, C. G. Duan et al., Spintronic properties of graphene films grown on Ni(111) substrate, Journal of Applied Physics, p.110, 2011.

O. Rader, A. Varykhalov, J. Sánchez-barriga, D. Marchenko, A. Rybkin et al., Is there a Rashba effect in graphene on 3d ferromagnets?, Physical Review Letters, vol.102, pp.1-4, 2009.

Y. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Rashba effect in the graphene/Ni(111) system, Physical Review Letters, vol.100, pp.1-4, 2008.

A. M. Shikin, A. G. Rybkin, D. Marchenko, A. A. Rybkina, M. R. Scholz et al., Induced spin-orbit splitting in graphene: The role of atomic number of the intercalated metal and ?-d hybridization, New Journal of Physics, p.15, 2013.

D. Marchenko, A. Varykhalov, J. Sánchez-barriga, T. Seyller, and O. Rader, Rashba splitting of 100 meV in Au-intercalated graphene on SiC, Applied Physics Letters, vol.108, 2016.

J. Lee and J. Fabian, Magnetotransport signatures of the proximity exchange and spin-orbit couplings in graphene, Physical Review B, vol.94, pp.1-5, 2016.

A. G. Swartz, P. M. Odenthal, Y. Hao, R. S. Ruoff, and R. K. Kawakami, Integration of the ferromagnetic insulator EuO onto graphene, ACS Nano, vol.6, pp.10063-10069, 2012.

H. Haugen, D. Huertas-hernando, and A. Brataas, Spin transport in proximityinduced ferromagnetic graphene, Physical Review B, vol.77, pp.1-8, 2008.

J. Shi, Y. Barlas, C. Tang, R. Sachs, and Z. Wang, Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect, Physical Review Letters, vol.114, pp.1-5, 2015.

Z. Zhang, L. Bellaiche, Z. Qiao, W. Ren, H. Chen et al., Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator, Physical Review Letters, vol.112, pp.1-5, 2014.

A. J. Giesbers, K. Uhlí?ová, M. Kone?ný, E. C. Peters, M. Burghard et al., Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene, Physical Review Letters, vol.111, pp.1-5, 2013.

J. Fabian, S. M. Dubois, J. Charlier, D. V. Tuan, F. Ortmann et al., Spin transport in hydrogenated graphene. 2D Materials, vol.2, p.22002, 2015.

D. Soriano, S. Roche, J. Charlier, J. J. Palacios, N. Leconte et al., Magnetism-Dependent Transport Phenomena in Hydrogenated Graphene: From Spin-Splitting to Localization Effects, ACS Nano, vol.5, pp.3987-3992, 2011.

V. K. Dugaev, V. I. Litvinov, and J. Barnas, Exchange interaction of magnetic impurities in graphene, Physical Review B, vol.74, pp.1-5, 2006.

P. Mallet, M. Moaied, J. J. Palacios, F. Yndurain, C. Salgado et al., Atomic-scale control of graphene magnetism by using hydrogen atoms, Science, vol.352, pp.437-441, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01968879

A. G. Rybkin, A. A. Rybkina, M. M. Otrokov, O. Y. Vilkov, I. I. Klimovskikh et al.,

A. M. Chulkov and . Shikin, Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings, Nano Letters, vol.18, pp.1564-1574, 2018.

D. Marchenko, A. Varykhalov, J. Sánchez-barriga, O. Rader, C. Carbone et al., Highly spin-polarized Dirac fermions at the graphene/Co interface, Physical Review B, vol.91, pp.1-5, 2015.

D. Usachov, A. Fedorov, M. M. Otrokov, A. Chikina, O. Vilkov et al., Observation of single-spin Dirac Fermions at the graphene/ferromagnet interface, Nano Letters, vol.15, pp.2396-2401, 2015.

M. Weser, Y. Rehder, K. Horn, M. Sicot, M. Fonin et al.,

E. Voloshina, Y. S. Goering, and . Dedkov, Induced magnetism of carbon atoms at the graphene/Ni(111) interface, Applied Physics Letters, vol.96, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00845831

M. Weser, E. N. Voloshina, K. Horn, and Y. S. Dedkov, Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system, Journal of Physical Chemistry Chemical Physics, vol.13, pp.7534-7539, 2011.

R. T. Yang, P. J. Goethel, J. M. Schwartz, and C. R. Lund, Solubility and diffusivity of carbon in metals, Journal of Catalysis, vol.122, pp.206-210, 1990.

J. C. Hamilton and J. M. Blakely, Carbon segregation to single crystal surfaces of Pt, Pd and Co, Surface Science, vol.91, pp.199-217, 1980.

P. Sutter, J. T. Sadowski, and E. Sutter, Growth and substrate interaction, Graphene on Pt, vol.80, pp.1-10, 2009.

N. Liu, L. Fu, B. Dai, K. Yan, X. Liu et al., Universal segregation growth approach to wafer-size graphene from non-noble metals, Nano Letters, vol.11, pp.297-303, 2011.

S. Marchini, S. Günther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001), Physical Review B, vol.76, pp.1-9, 2007.

L. Gao, J. R. Guest, and N. P. Guisinger, Epitaxial graphene on Cu(111), Nano Letters, vol.10, pp.3512-3516, 2010.

Z. Sun, S. K. Hämäläinen, J. Sainio, J. Lahtinen, D. Vanmaekelbergh et al., Topographic and electronic contrast of the graphene moiré on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy, Physical Review B, vol.83, pp.1-4, 2011.

S. Nie, N. C. Bartelt, J. M. Wofford, O. D. Dubon, K. F. Mccarty et al., Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions, Physical Review B, vol.85, pp.1-6, 2012.

A. T. N'diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, Structure of epitaxial graphene on Ir(111), New Journal of Physics, vol.10, 2008.

E. Loginova, S. Nie, K. Thürmer, N. C. Bartelt, and K. F. Mccarty, Defects of graphene on Ir(111): Rotational domains and ridges, Physical Review B, vol.80, pp.1-8, 2009.

B. Poelsema, A. T. N'diaye, C. Busse, F. Meyer-zu-heringdorf, T. Michely et al., Growth of graphene on Ir(111), New Journal of Physics, vol.11, p.23006, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367776

S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli et al., Cobalt intercalation at the graphene/iridium (111) interface: Influence of rotational domains, wrinkles, and atomic steps, Applied Physics Letters, vol.104, p.101602, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00959682

S. Vlaic, N. Rougemaille, A. Kimouche, B. S. Burgos, A. Locatelli et al., Intercalating cobalt between graphene and iridium ( 111 ): Spatially dependent kinetics from the edges, Physical Review Materials, vol.1, pp.1-5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01625728

R. Decker, J. Brede, N. Atodiresei, V. Caciuc, S. Blügel et al., Atomic-scale magnetism of cobalt-intercalated graphene, Physical Review B, vol.87, p.41403, 2013.

G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface Science, vol.126, pp.236-244, 1983.

C. J. Chen, Introduction to scanning tunneling microscopy, 1993.

F. Besenbacher, Scanning tunnelling microscopy studies of metal surfaces, Reports on Progress in Physics, vol.59, p.1737, 1996.

J. Tersoff and D. R. Hamann, Theory and application for the scanning tunneling microscope, Physical Review Letters, vol.50, 1983.

A. Baratoff, Theory of scanning tunneling microscopy -methods and approximations, Physica B+ C, vol.127, pp.143-150, 1984.

J. Bardeen, Tunneling from a many-particle point of view, Physical Review Letters, vol.6, p.57, 1961.

E. L. Wolf, Principles of electron tunneling spectroscopy, 2012.

N. D. Lang, Spectroscopy of single atoms in the scanning tunneling microscope, Physical Review B, vol.34, pp.2-5, 1986.

H. Hertz, On the photoelectric effect, Annalen der Physik, vol.31, pp.983-1000, 1887.

A. Einstein, A heuristic point of view about the generation and transformation of light, Annalen der Physik, vol.17, p.132, 1905.

C. N. Berglund and W. E. Spicer, Photoemission studies of copper and silver: theory, Physical Review, vol.136, 1964.

G. D. Mahan, Angular dependence of photoemission in metals, Physical Review Letters, vol.24, p.1068, 1970.

G. D. Mahan, Theory of photoemission in simple metals, Physical Review B, vol.2, pp.4334-4350, 1970.

S. D. Kevan, Angle-resolved photoemission: theory and current applications, 1992.

S. Hüfner, Photoelectron spectroscopy: principles and applications, 2013.

M. P. Seah and W. A. Dench, Quantitative Electron Spectroscopy of Surfaces: A standard data base for electron inelastic mean free paths in solids, Surface And Interface Analysis, vol.1, pp.2-11, 1979.

S. Moser, An experimentalist's guide to the matrix element in angle resolved photoemission, Journal of Electron Spectroscopy and Related Phenomena, vol.214, pp.29-52, 2017.

S. Vlaic, N. Rougemaille, A. Artaud, V. Renard, L. Huder et al., Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant, Journal of Physical Chemistry Letters, vol.9, pp.2523-2531, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01781881

M. Kralj, I. Pletikosi, M. Petrovi, P. Pervan, M. Milun et al., Graphene on Ir (111) characterized by angle-resolved photoemission, Physical Review B, vol.84, pp.1-8, 2011.

R. Matzdorf, Investigation of line shapes and line intensities by high-resolution uvphotoemission spectroscopy-some case studies on noble-metal surfaces, Surface Science Reports, vol.30, pp.153-206, 1998.

R. Matzdorf, Quasi-particle lifetimes on noble metal surfaces studied by arpes and stm, Chemical Physics, vol.251, pp.151-166, 2000.

C. Park, F. Giustino, C. D. Spataru, M. L. Cohen, and S. G. Louie, Angleresolved photoemission spectra of graphene from first-principles calculations, Nano letters, vol.9, pp.4234-4239, 2009.

A. Damascelli, Probing the electronic structure of complex systems by arpes

P. Lacovig, M. Pozzo, D. Alfe, P. Vilmercati, A. Baraldi et al., Growth of dome-shaped carbon nanoislands on ir (111): the intermediate between carbidic clusters and quasi-free-standing graphene, Physical Review letters, vol.103, p.166101, 2009.

I. Pletikosi?, M. Kralj, P. Pervan, R. Brako, J. Coraux et al., Dirac cones and minigaps for graphene on Ir(111), Physical Review Letters, vol.102, pp.1-4, 2009.

S. Rusponi, M. Papagno, P. Moras, S. Vlaic, M. Etzkorn et al., Highly anisotropic dirac cones in epitaxial graphene modulated by an island superlattice, Physical Review Letters, vol.105, p.246803, 2010.

A. Borodzi and A. Cybulski, The kinetic model of hydrogenation of acetyleneethylene mixtures over palladium surface covered by carbonaceous deposits. Applied Catalysis A, vol.198, pp.51-66, 2000.

M. Ho, S. Mook, J. Kyo, S. Hyo, W. Bae et al., The graphene-supported palladium and palladium -yttrium nanoparticles for the oxygen reduction and ethanol oxidation reactions : Experimental measurement and computational validation, Applied Catalysis B, vol.129, pp.163-171, 2013.

D. Pletcher and G. Denuault, Mesoporous palladium: the surface electrochemistry of palladium in aqueous sodium hydroxide and the cathodic reduction of nitrite, Journal of Physical Chemistry and Chemical Physics, vol.7, pp.3545-3551, 2005.

L. R. Moore, E. C. Western, R. Craciun, J. M. Spruell, D. A. Dixon et al., Sterically Demanding , Sulfonated , Triarylphosphines : Application to Palladium-Catalyzed Cross-Coupling , Steric and Electronic Properties , and Coordination Chemistry, vol.27, pp.576-593, 2008.

X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen et al., Freestanding palladium nanosheets with plasmonic and catalytic properties, Nature Nanotechnology, vol.6, pp.28-32, 2010.

N. T. Phan, M. Van-der-sluys, and C. W. Jones, On the Nature of the Active Species in Palladium Catalyzed Mizoroki -Heck and Suzuki -Miyaura Couplings -Homogeneous or Heterogeneous Catalysis, Critical Review. Advanced Synthesis and Catalysis, vol.349, 2006.

M. L. Toebes, J. A. Van-dillen, and K. P. Jong, Synthesis of supported palladium catalysts, Journal of Molecular Catalysis A, vol.173, pp.75-98, 2001.

A. Östlin, W. H. Appelt, I. D. Marco, W. Sun, M. Radonji? et al., Electronic structure of palladium in the presence of many-body effects, Physical Review B, vol.93, pp.1-11, 2016.

D. Drakova and G. Doyen, Theory of scanning tunneling spectroscopy on Pd(111), Surface Science, pp.698-703, 1996.

H. Hayashi, J. Jiang, H. Iwasawa, Y. Aiura, T. Oguchi et al., High-resolution angle-resolved photoemission study of electronic structure and electron self-energy in palladium, Physical Review B, vol.87, pp.1-8, 2013.

H. Ohtani, M. A. Van-hove, and G. A. Somorjai, LEED Intensity Analysis of the Surface Structures of Pd(111), Surface Science, vol.187, pp.372-386, 1987.

L. Ilver, E. Sobczak, P. O. Nilsson, A. Kovacs, and J. Kanski, Angle Resolved Inverse Photoemission from Ag(111) and Pd(111), Physica Scripta, vol.35, pp.726-728, 2006.

S. Yamazaki, H. Yanashima, H. Ohnuki, and H. Fukutani, Angle-resolved photoemission study of Pd(110), Surface Science, vol.231, pp.397-403, 1990.

J. Kang and D. Hwang, Energy dispersions and bandwidth in Pd photoemission spectra, Physical Review B, vol.56, pp.10605-10613, 1997.

Z. Jin, D. Nackashi, W. Lu, C. Kittrell, and J. M. Tour, Decoration , Migration , and Aggregation of Palladium Nanoparticles on Graphene Sheets, Chemistry of Materials, vol.22, pp.5695-5699, 2010.

H. Kim, I. Song, T. Kim, S. J. Ahn, H. Shin et al., Millimeter-Scale Growth of Single-Oriented Graphene on a Palladium Silicide Amorphous Film, ACS Nano, vol.13, pp.1127-1135, 2018.

J. Gao, N. Ishida, I. Scott, and D. Fujita, Controllable growth of single-layer graphene on a Pd (111) substrate. Carbon, vol.50, pp.1674-1680, 2011.

S. Kwon, I. Petrov, V. B. Shenoy, S. Kodambaka, V. Petrova et al., Growth of Semiconducting Graphene on Palladium, Nano Letters, vol.9, pp.3985-3990, 2009.

G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for firstrow and transition elements, Journal of Physics: Condensed Matter, vol.6, p.8245, 1994.

G. Kresse and J. Furthmüller, Software vasp, vienna (1999), Physical Review B, vol.54, p.169, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, vol.77, p.3865, 1996.

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, p.17953, 1994.

P. E. Blöchl, O. Jepsen, and O. K. Andersen, Improved tetrahedron method for brillouin-zone integrations, Physical Review B, vol.49, p.16223, 1994.

S. Grimme, Semiempirical gga-type density functional constructed with a longrange dispersion correction, Journal of Computational Chemistry, vol.27, pp.1787-1799, 2006.

P. V. Medeiros, S. Stafström, and J. Björk, Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding, Physical Review B, vol.89, p.41407, 2014.

P. V. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, Unfolding spinor wavefunctions and expectation values of general operators: Introducing the unfoldingdensity operator, 2014.

M. Alattas and U. Schwingenschlögl, Quasi-freestanding graphene on Ni(111) by Cs intercalation, Scientific Reports, vol.6, pp.1-7, 2016.

K. N. Altmann, W. O. Brien, D. J. Seo, F. J. Himpsel, J. E. Ortega et al., Spin-polarized quantum well states, Journal of Electron Spectroscopy and Related Phenomena, vol.103, pp.367-370, 1999.

M. M. Yee, Z. Zhu, A. Soumyanarayanan, Y. He, C. Song et al., Spin-polarized quantum well states on Bi 2-x Fe x Se 3, Physical Review B, vol.91, pp.1-6, 2015.

K. He, T. Hirahara, T. Okuda, S. Hasegawa, A. Kakizaki et al., Spin Polarization of Quantum Well States in Ag Films Induced by the Rashba Effect at the Surface, Physical Review Letters, vol.101, pp.3-6, 2008.

K. J. Kormondy, L. Gao, X. Li, S. Lu, A. B. Posadas et al., Large positive linear magnetoresistance in the two-dimensional t 2g electron gas at the EuO / SrTiO 3 interface, Scientific Reports, vol.8, pp.1-9, 2018.

D. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus et al., Pt-Decorated PdCo at Pd / C Core -Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction, Journal of American Chemical Society, vol.132, pp.17664-17666, 2010.

M. Vondrova, T. Klimczuk, V. L. Miller, B. W. Kirby, N. Yao et al., Supported Superparamagnetic Pd / Co Alloy Nanoparticles Prepared, Cyanogel. Chemical Materials, vol.17, pp.6216-6218, 2005.

K. A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu et al., Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction, Nature Communications, vol.5, pp.1-8, 2014.

D. Kim, J. Kim, I. Jeong, J. Kwon, and Y. Kim, Phase change of bimetallic PdCo electrocatalysts caused by different heat-treatment temperatures : Effect on oxygen reduction reaction activity, Journal of Catalysis, vol.290, pp.65-78, 2012.

D. M. Bagguley, M. Heath, J. A. Robertson, and J. C. Wheeler, Ferromagnetic resonance in a series of alloys : II . Binary alloys of cobalt with platinum and palladium , and one iron-palladium alloy Ferromagnetic resonance in a series of alloys 11 . Binary alloys of cobalt with platinum and palladium , and one ironpalladium alloy, Proceedings of the Physical Society, 1967.

K. Ishida and T. Nishizawa, The Co-Pd ( Cobalt-Palladium ) System, Journal of Phase Equilibria, vol.12, pp.83-87, 1991.

L. R. Bidwell, F. E. Rizzo, and J. V. Smiths, The thermodynamic properties of Cobalt-Palladium solid solutions, Acta Metallurgica, 1970.

H. Takahashi, S. Tsunashima, S. Iwata, and S. Uchiyama, Measurement of magnetostriction constants in polycrystalline alloy and multilayer films of PdCo and PtCo, Journal of Magnetism and Magnetic Materials, 1993.

Y. Matsuo, Ordered alloys in the Cobalt-Palladium systems, Journal of the Physical Society of Japan, 1971.

M. Shamsuddin and O. J. Kleppa, Thermodynamics of dilute solutions of hydrogen in PdNi, PdCo, and PdFe alloys, Journal of Chemical Physics, vol.80, 1998.

A. K. Niessen, A. R. Miedema, A. F. De, R. Boer, and . Boom, Enthalpies of formation of liquid and solid binary alloys based on 3d metals, Physica B, vol.151, pp.401-432, 1988.

M. Krawczyk, L. Zommer, B. Lesiak, and A. Jablonski, Surface Composition of the CoPd Alloys Studied by Electron Spectroscopies, Surface and Interface Analysis, vol.25, pp.356-365, 1997.

A. V. Ruban, H. L. Skriver, and J. K. No, Surface segregation energies in transitionmetal alloys, Physical Review B, vol.59, pp.990-1000, 1999.

E. J. Lamas and P. B. Balbuena, Surfaces : An ab Initio Comparative Study, Journal of Chemical Theory and Computation, vol.25, issue.111, pp.1388-1394, 2006.

D. N. Son, O. K. Le, V. Chihaia, and K. Takahashi, Effects of Co Content in Pd-Skin / PdCo Alloys for Oxygen Reduction Reaction : Density Functional Theory Predictions, Journal of Physical Chemistry, vol.119, pp.24364-24372, 2015.

D. N. Son and K. Takahashi, Selectivity of Palladium -Cobalt Surface Alloy toward Oxygen Reduction Reaction, Journal of Physical Chemistry, vol.116, pp.6200-6207, 2012.

M. Jamali, K. Narayanapillai, X. Qiu, L. M. Loong, A. Manchon et al., Spin-Orbit Torques in Co / Pd Multilayer Nanowires, Physical Review Letters, vol.111, pp.1-5, 2013.

D. Smith, V. Parekh, E. Chunsheng, S. Zhang, W. Donner et al., Magnetization reversal and magnetic anisotropy in patterned

, Co / Pd multilayer thin films multilayer thin films, Journal of Applied Physics

S. D. Pollard, J. A. Garlow, J. Yu, Z. Wang, Y. Zhu et al., Observation of stable néel skyrmions in cobalt/palladium multilayers with lorentz transmission electron microscopy, Nature Communications, vol.8, pp.1-8, 2017.