, Stochastic generation of domestic load curves

. .. , 125 7.3.2 Generation of domestic electric load curves

. .. Numerical-experiments,

D. .. Summary,

. .. Paris, Measurements of the outdoor temperature with various sensor orientations, p.77

, Typical series of the outdoor temperature bias

, Estimated bias reduction of the outdoor temperature

, Estimation of the main parameters, by learning the air temperature bias, p.83

, Typical series of the outdoor temperature bias, vol.87

, Selection of the penalty coefficient ?

, Smoothed dynamics of the outdoor temperature bias

. .. , Smoothed trajectories of the temperature bias and the solar flux, p.103

, Estimation of the main parameters by learning the dynamics of the solar flux, p.105

, Convergence of estimations of the main physical parameter, simulated data, p.106

, Estimation of the heating power and indoor temperature, test set, p.107

, Convergence of estimations of the main physical parameter, BESTLab data, p.109

, Typical domestic non-heating load curves at sampling time one second, p.114

. .. , Measured total load curve and timeline of non-heating events, p.117

, Flowchart of the learning procedure with an aggregated load curve, p.118

, Probability profile of the merged activities whilst people are at home, p.125

, Simulation of the active occupancy profile

, Simulated average daily electricity demand of 100 2-occupant dwellings, p.129

, Disaggregation of the demand between heating and non-heating loads, p.130

, Mean daily heating demand for three dwellings

. .. , 132 7.10 Estimation of a closed-loop R3C2 model from an uncertain load curve, Equipment rates in France: telephony, computer, home internet access, p.134

, Accuracy of the 11 expert models and associated aggregation weights, p.135

. .. , Estimation of the R3C2 model from an uncertain load curve, p.136

, Estimation errors of the R3C2 model from an uncertain load curve, p.137

, Estimation of UA against the frequency and volume of the non-heating loads, p.137

P. .. Aggregated, 138 7.16 RMSE of the estimated T i and Q u against the estimated PI controller, p.138

. .. T-i, 139 7.18 Estimated heating power and indoor temperature, BESTLab experiment with uncertain load curve

T. Nabil, J. Jicquel, A. Girard, and F. Roueff, Système et procédé d'estimation du comportement thermique d'un bâtiment, pour un contrôle optimal de chauffage. Patent applied for, 2016.

T. Nabil, J. Jicquel, A. Girard, and F. Roueff, Procédé et dispositif de détermination indirecte d'un flux solaire incident

T. Nabil, J. Jicquel, A. Girard, and F. Roueff, Estimation d'un circuitélectriqueéquivalent,à résistances et capacités thermiques, d'un bâtiment pour le contrôle optimal du chauffage du bâtiment. Patent applied for, 2018.

, Set l = 1, estimate the parameters ? l of the R3C2 network according to an EM procedure, with ? l = arg ? min J 1 (?), J, vol.1

, Compute K estimators ? (k) , k = 1, . . . , K of the parameters of the PI controller on the intervals I 0k with sufficiently many data

, Compute ? l , aggregated from the K experts ? (k) , using an exponentially weighted average procedure that depends on ? l

, Simulate T i and Q u in closed loop from the system ( ? l , ? l ), using the observed series ? 0 , Q s , T r as well as null free gains

, Compute the root mean square errors of T i and Q u according to

, 12) 7. if ? > ? 0 , where ? 0 is a chosen threshold, then set l ? l + 1, update ? l by minimizing the cost function J 2 (?)

, Outputs: estimated R3C2 parameters ?, estimated PI parameters ?, 1998.

F. Amara, K. Agbossou, A. Cardenas, Y. Dubé, and S. Kelouwani, Manar Amayri, Abhay Arora, Stephane Ploix, Sanghamitra Bandhyopadyay, Quoc-Dung Ngo, and Venkata Ramana Badarla. Estimating occupancy in heterogeneous sensor environment, Smart Grid and Renewable Energy, vol.6, issue.4, pp.46-58, 2015.

, ADEME. Les chiffres clés du bâtiment 2013, 2013.

C. Andrieu, A. Nando-de-freitas, and M. Doucet, An introduction to MCMC for machine learning, Machine learning, vol.50, issue.1-2, pp.5-43, 2003.

C. Andrieu, A. Doucet, S. S. Singh, and V. B. Tadic, Particle methods for change detection, system identification, and control, Proceedings of the IEEE, vol.92, issue.3, pp.423-438, 2004.

R. Azimi, M. Ghayekhloo, and . Ghofrani, A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting, Energy Conversion and Management, vol.118, pp.331-344, 2016.

J. Stephen, K. M. Blundell, and . Blundell, Concepts in thermal physics, 2006.

K. Benmouiza and A. Cheknane, Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Conversion and Management, vol.75, pp.561-569, 2013.

P. Bacher, P. Anton-de-saint-aubain, L. E. Christiansen, and H. Madsen, Non-parametric method for separating domestic hot water heating spikes and space heating, Energy and Buildings, vol.130, pp.107-112, 2016.

N. Beeker, Modeling and control of electric hot water tanks: from the single unit to the group, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01629304

T. Berthou, Développement de modèles de bâtiment pour la prévision de charge de climatisation et l'élaboration de stratégies d'optimisationénergétique et d'effacement, 2013.

C. Michael, Y. Burkhart, . Heo, M. Victor, and . Zavala, Measurement and verification of building systems under uncertain data: A gaussian process modeling approach, Energy and Buildings, vol.75, pp.189-198, 2014.

P. Bacher and H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy and Buildings, vol.43, issue.7, pp.1511-1522, 2011.

E. Leonard, T. Baum, and . Petrie, Statistical inference for probabilistic functions of finite state Markov chains. The annals of mathematical statistics, Alexandros Beskos, vol.37, issue.6, pp.1501-1534, 1966.

A. Beskos, F. J. Pinski, J. Mar?a-sanz-serna, and A. M. Stuart, Hybrid Monte Carlo on Hilbert spaces, Stochastic Processes and their Applications, vol.121, pp.2201-2230, 2011.

T. Berthou, P. Stabat, R. Salvazet, and D. Marchio, Development and validation of a gray box model to predict thermal behavior of occupied office buildings, Energy and Buildings, vol.74, pp.91-100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01299414

E. Peter and . Caines, Linear stochastic systems, 1987.

N. Cesa, -. Bianchi, and G. Lugosi, Prediction, learning, and games, 2006.

L. Chesné, T. Duforestel, J. Roux, and G. Rusaouën, Energy saving and environmental resources potentials: Toward new methods of building design, Building and Environment, vol.58, pp.199-207, 2012.

O. Cappé, J. Simon, E. Godsill, and . Moulines, An overview of existing methods and recent advances in sequential Monte Carlo, Proceedings of the IEEE, vol.95, issue.5, pp.899-924, 2007.

O. Cappé, É. Moulines, and T. Rydén, Inference in hidden Markov models, vol.6, 2005.

N. Cressie, Statistics for spatial data. Wiley series in probability and mathematical statistics, 1991.

G. T. Costanzo, F. Sossan, M. Marinelli, P. Bacher, and H. Madsen, Grey-box modeling for system identification of household refrigerators: A step toward smart appliances, 4th International Youth Conference on Energy (IYCE), pp.1-5, 2013.

A. John, W. Duffie, and . Beckman, Solar engineering of thermal processes, 2013.

K. Deng, P. Barooah, G. Prashant, S. P. Mehta, and . Meyn, Building thermal model reduction via aggregation of states, American Control Conference (ACC), pp.5118-5123, 2010.

A. Doucet, S. Godsill, and C. Andrieu, On sequential monte carlo sampling methods for bayesian filtering, Statistics and computing, vol.10, issue.3, pp.197-208, 2000.

R. Douc, A. Garivier, E. Moulines, and J. Olsson, Sequential Monte Carlo smoothing for general state space hidden markov models, The Annals of Applied Probability, vol.21, issue.6, pp.2109-2145, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00839311

A. Doucet and A. M. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, Handbook of Nonlinear Filtering, vol.12, pp.656-704, 2009.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Physics Letters B, vol.195, issue.2, pp.216-222, 1987.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B (methodological), pp.1-38, 1977.

R. Douc and C. Matias, Asymptotics of the maximum likelihood estimator for general hidden Markov models, Bernoulli, vol.7, issue.3, pp.381-420, 2001.

R. Douc, É. Moulines, and D. Stoffer, Nonlinear time series: Theory, Methods and Applications with R examples, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01263245

M. El and G. , Caractérisation aveugle de la courbe de chargeélectrique: Détection, classification et estimation des usages dans les secteurs résidentiel et tertiaire, 2009.

X. Emery, Iterative algorithms for fitting a linear model of coregionalization, Computers & Geosciences, vol.36, issue.9, pp.1150-1160, 2010.

A. Samuel-f-fux, . Ashouri, J. Michael, L. Benz, and . Guzzella, EKF based selfadaptive thermal model for a passive house, Energy and Buildings, vol.68, pp.811-817, 2014.

U. Forssell and L. Ljung, Closed-loop identification revisited, Automatica, vol.35, issue.7, pp.1215-1241, 1999.

X. Fang, S. Misra, G. Xue, and D. Yang, Smart grid -the new and improved power grid: a survey, IEEE communications surveys & tutorials, vol.14, issue.4, pp.944-980, 2012.

G. Fraisse, C. Viardot, O. Lafabrie, and G. Achard, Development of a simplified and accurate building model based on electrical analogy, Energy and Buildings, vol.34, issue.10, pp.1017-1031, 2002.

G. Flerchinger, W. Xiao, D. Marks, T. Sauer, and Q. Yu, Comparison of algorithms for incoming atmospheric long-wave radiation, Water Resources Research, vol.45, p.3423, 2009.

P. Gaillard, Contributions to online robust aggregation: work on the approximation error and on probabilistic forecasting. Applications to forecasting for energy markets, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01250027

K. Santosh, S. Gupta, . Atkinson, O. Ian, J. Boyle et al., BEES: Real-time occupant feedback and environmental learning framework for collaborative thermal management in multi-zone, multioccupant buildings, Energy and Buildings, vol.125, pp.142-152, 2016.

-. Valentine-genon, C. Catalot, and . Laredo, Leroux's method for general hidden Markov models. Stochastic processes and their applications, vol.116, pp.222-243, 2006.

J. Simon, A. Godsill, M. Doucet, and . West, Monte Carlo smoothing for nonlinear time series, Journal of the american statistical association, vol.99, issue.465, 2004.

Y. Gala, Á. Fernández, J. Díaz, and J. Dorronsoro, Hybrid machine learning forecasting of solar radiation values, Neurocomputing, vol.176, pp.48-59, 2016.

P. Gaillard and Y. Goude, opera: Online Prediction by ExpeRts Aggregation, 2016.

J. Goffart, Impact de la variabilité des données météorologiques sur une maison basse consommation. Application des analyses de sensibilité pour des entrées temporelles, 2013.

N. J. Gordon, D. J. Salmond, and A. F. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F (Radar and Signal Processing, vol.140, pp.107-113, 1993.

F. Gustafsson, Particle filter theory and practice with positioning applications. Aerospace and Electronic Systems Magazine, vol.25, pp.53-82, 2010.

M. Goulard and M. Voltz, Linear coregionalization model: tools for estimation and choice of cross-variogram matrix, Mathematical Geology, vol.24, issue.3, pp.269-286, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02709618

J. Edward, M. Hannan, and . Deistler, The statistical theory of linear systems, vol.70, 1988.

I. Hazyuk, C. Ghiaus, and D. Penhouet, Optimal temperature control of intermittently heated buildings using model predictive control: Part I -building modeling, Building and Environment, vol.51, pp.379-387, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00732243

I. Hazyuk, C. Ghiaus, and D. Penhouet, Model predictive control of thermal comfort as a benchmark for controller performance, Automation in Construction, vol.43, pp.98-109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00986667

H. M-g-iziomon and . Mayer, Assessment of some global solar radiation parameterizations, Journal of Atmospheric and Solar-Terrestrial Physics, vol.64, issue.15, pp.1631-1643, 2002.

T. Inoue, T. Sasaki, and T. Washio, Spatio-temporal kriging of solar radiation incorporating direction and speed of cloud movement, The 26th Annual Conference of the, 2012.

M. Jiménez, H. Madsen, and K. K. Andersen, Identification of the main thermal characteristics of building components using Matlab, Building and Environment, vol.43, issue.2, pp.170-180, 2008.

P. and L. Mora-lópez, Modeling and forecasting hourly global solar radiation using clustering and classification techniques, Solar Energy, vol.135, pp.682-691, 2016.

F. Kasten and G. Czeplak, Solar and terrestrial radiation dependent on the amount and type of cloud, Solar energy, vol.24, issue.2, pp.177-189, 1980.

N. Kantas, A. Doucet, S. Sumeetpal, J. M. Singh, and . Maciejowski, An overview of sequential Monte Carlo methods for parameter estimation in general state-space models, 15th IFAC Symposium on System Identification (SYSID), vol.102, 2009.

J. Kaipio and E. Somersalo, Statistical and computational inverse problems, vol.160, 2005.

C. Lajaunie-;-fredrik-lindsten, P. Bunch, S. Särkkä, B. Thomas, S. J. Schön et al., Rao-Blackwellized particle smoothers for conditionally linear gaussian models, Mines ParisTech, vol.10, pp.353-365, 2011.

F. Lindsten, Rao-Blackwellised particle methods for inference and identification, 2011.

S. Jun and . Liu, Monte Carlo strategies in scientific computing, 2008.

L. Ljung, System identification: theory for the user, 1987.

C. Levy, -. Leduc, and Z. Harchaoui, Catching change-points with lasso, Advances in Neural Information Processing Systems, pp.617-624, 2008.

A. L. Mounier, B. Delinchant, and S. Ploix, Determination of relevant model structures for self-learning energy management system, Building Simulation Optimisation, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082816

F. Lindsten and T. B. Schön, Identification of mixed linear/nonlinear state-space models, 49th IEEE Conference on Decision and Control (CDC), pp.6377-6382, 2010.

F. Lindsten and T. B. Schön, Inference in mixed linear / nonlinear statespace models using sequential Monte Carlo, 2010.

F. Lindsten and . Thomas-b-schön, Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends® in Machine Learning, vol.6, pp.1-143, 2013.

N. Littlestone and M. K. Warmuth, The weighted majority algorithm. Information and computation, vol.108, pp.212-261, 1994.

X. Li and J. Wen, Review of building energy modeling for control and operation, Renewable and Sustainable Energy Reviews, vol.37, pp.517-537, 2014.

P. B. Mackenzie, An improved hybrid Monte Carlo method, Physics Letters B, vol.226, pp.369-371, 1989.

P. Malisani, Dynamic control of energy in buildings using constrained optimal control by interior penalty, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00740044

P. Malisani, F. Chaplais, N. Petit, and D. Feldmann, Thermal building model identification using time-scaled identification methods, 49th IEEE Conference on Decision and Control, pp.308-315, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00549032

O. Mejri, Développement de méthodes de diagnosticénergetique des bâtiments, vol.1, 2011.

G. Mclachlan and T. Krishnan, The EM algorithm and extensions, Wiley Series in Probability and Statistics, vol.382, 2008.

E. Mckenna, M. Krawczynski, and M. Thomson, Four-state domestic building occupancy model for energy demand simulations, Energy and Buildings, vol.96, pp.30-39, 2015.

A. Marti and J. Rignac, Méthode de résolution du système différentiel utilisé par le simulateur thermique de stratège 2, 1991.

A. Mechaqrane, M. Zouak-;-iban-naveros, P. Bacher, D. P. Ruiz, M. Jiménez et al., A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building, Neural Computing & Applications, vol.13, issue.1, pp.303-317, 2004.

M. Radford and . Neal, MCMC using hamiltonian dynamics, Handbook of Markov Chain Monte Carlo, 2011.

I. Naveros, C. Ghiaus, D. P. Ruiz, and S. Castaño, Physical parameters identification of walls using arx models obtained by deduction, Energy and Buildings, vol.108, pp.317-329, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236357

B. Øksendal, Stochastic Differential Equations, 2003.

T. Oluwqseyi, L. Ogunsola, and . Song, Restoration of long-term missing gaps in solar radiation, Energy and Buildings, vol.82, pp.580-591, 2014.

S. Prívara, J. Cigler, Z. Vá?a, F. Oldewurtel, C. Sagerschnig et al., Building modeling as a crucial part for building predictive control, Energy and Buildings, vol.56, pp.8-22, 2013.

C. Perrin-de-brichambaut and C. Vauge, Le gisement solaire: evaluation de la ressourceénergétique, 1982.

B. Pelletier, P. Dutilleul, G. Larocque, and J. W. Fyles, Fitting the linear model of coregionalization by generalized least squares, Mathematical Geology, vol.36, issue.3, pp.323-343, 2004.

T. Petrie, Probabilistic functions of finite state Markov chains. The Annals of Mathematical Statistics, vol.40, pp.97-115, 1969.

L. Pérez-lombard, J. Ortiz, and C. Pout, A review on buildings energy consumption information. Energy and Buildings, vol.40, issue.3, pp.394-398, 2008.

N. Petit and P. Rouchon, Dynamique et contrôle des systèmes -notes de cours, 2015.

J. Page, D. Robinson, N. Morel, J. Scartezzini, ;. Alfred et al., A survey of stochastic simulation and optimization methods in signal processing, IEEE Journal of Selected Topics in Signal Processing, vol.40, issue.2, pp.224-241, 2008.

S. Prívara, L. Jan?iroký, J. Ferkl, and . Cigler, Model predictive control of a building heating system: The first experience, Energy and Buildings, vol.43, issue.2, pp.564-572, 2011.

M. Pritoni, J. M. Woolley, and M. P. Modera, Do occupancy-responsive learning thermostats save energy? a field study in university residence halls, Energy and Buildings, vol.127, pp.469-478, 2016.

V. Richalet, Caractérisationénergétique des bâtiments sur site. Identification de modèles dynamiques. Méthodes de signature energétique, 1991.

I. Richardson and M. Thomson, Domestic electricity demand model-simulation example, 2010.

I. Richardson, M. Thomson, and D. Infield, A high-resolution domestic building occupancy model for energy demand simulations, Energy and buildings, vol.40, issue.8, pp.1560-1566, 2008.

I. Richardson, M. Thomson, D. Infield, and C. Clifford, Domestic electricity use: A high-resolution energy demand model, Energy and buildings, vol.42, issue.10, pp.1878-1887, 2010.

I. Richardson, M. Thomson, D. Infield, and A. Delahunty, Domestic lighting: A high-resolution energy demand model, Energy and Buildings, vol.41, issue.7, pp.781-789, 2009.

C. Rigollier and L. Wald, Selecting a clear-sky model to accurately map solar radiation from satellite images, EARSeL Symposium, pp.131-137, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00465909

. Balkema, , 1999.

S. Särkkä, Bayesian filtering and smoothing, vol.3, 2013.

L. Scanu, P. Bernaud, S. Ploix, and E. Wurtz, Méthodologie pour la comparaison de structures de modèles simplifiés, Conférence IBPSA France. IBPSA, 2016.

M. Schmidt, Graphical model structure learning with L1-regularization, 2010.

M. Schmidt, G. Fung, and R. Rosales, Fast optimization methods for L1 regularization: A comparative study and two new approaches, European Conference on Machine Learning (ECML), 2007.

T. Schön, F. Gustafsson, and P. Nordlund, Marginalized particle filters for mixed linear/nonlinear state-space models, IEEE Transactions on Signal Processing, vol.53, issue.7, pp.2279-2289, 2005.

F. Jan?iroký, J. Oldewurtel, S. Cigler, and . Prívara, Experimental analysis of model predictive control for an energy efficient building heating system, Applied Energy, vol.88, issue.9, pp.3079-3087, 2011.

T. Söderström, Errors-in-variables methods in system identification, Automatica, vol.43, issue.6, pp.939-958, 2007.

M. Stokes, M. Rylatt, and K. Lomas, A simple model of domestic lighting demand, Energy and Buildings, vol.36, issue.2, pp.103-116, 2004.

H. Robert, D. S. Shumway, and . Stoffer, An approach to time series smoothing and forecasting using the EM algorithm, Journal of time series analysis, vol.3, issue.4, pp.253-264, 1982.

H. Robert, D. S. Shumway, and . Stoffer, Dynamic linear models with switching, Journal of the American Statistical Association, vol.86, issue.415, pp.763-769, 1991.

T. B. Schön, A. Wills, and B. Ninness, System identification of nonlinear state-space models, Automatica, vol.47, issue.1, pp.39-49, 2011.

T. Wai-lip, . Jeng-shiun, W. S. Lim, H. Ho, C. Hashim et al., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods, Renawable and Sustainable Energy Reviews, vol.67, pp.531-573, 2017.

J. Torriti, A reivew of time use models of residential electricity demand. Renewable and Sustainable Energy Reviews, vol.37, pp.265-272, 2014.

K. Tijani, S. Ploix, B. Haas, J. Dugdale, and Q. Ngo, Dynamic bayesian networks to simulate occupant behaviours in office buildings related to indoor air quality, IBPSA India, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01317167

V. Jay, N. Hoef, and . Cressie, Multivariable spatial prediction, Mathematical Geology, vol.25, issue.2, pp.219-240, 1993.

F. Charles and . Van-loan, Computing integrals involving the matrix exponential, IEEE Transactions on Automatic Control, vol.23, issue.3, pp.395-404, 1978.

M. Vellei, S. Natarajan, B. Biri, J. Padget, and I. Walker, The effect of real-time context-aware feedback on occupants' heating behaviour and thermal adaptation, Energy and Buildings, vol.123, pp.179-191, 2016.

É. Vorger, Étude de l'influence du comportement des habitants sur la performancé energétique du bâtiment, 2014.

O. Wu, B. Hariprasad, J. Huang, and . Forbes, Identification of linear dynamic errors-in-variables systems with a dynamic uncertain input using the EM algorithm, IEEE 55th Conference on Decision and Control, pp.1229-1234, 2016.

U. Wilke, F. Haldi, J. Scartezzini, D. Widén, M. Lundh et al., Constructing load profiles for household electricity and hot water from time-use data-modelling approach and validation, Building and Environment, vol.60, issue.7, pp.753-768, 2009.

J. Widén, A. Molin, and K. Ellegård, Models of domestic occupancy, activities and energy use based on time-use data: deterministic and stochastic approaches with application to various building-related simulations, Journal of Building Performance Simulation, vol.5, issue.1, pp.27-44, 2012.

A. Wills, T. B. Schön, and B. Ninness, Parameter estimation for discrete-time nonlinear systems using EM, Proceedings of the 17th IFAC World Congress, pp.1-6, 2008.

J. Widén and E. Wäckelgård, A high-resolution stochastic model of domestic activity patterns and electricity demand, Applied Energy, vol.87, issue.6, pp.1880-1892, 2010.

D. Yang, C. Gu, Z. Dong, P. Jirutitijaroen, N. Chen et al., Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging, Renewable Energy, vol.60, pp.235-245, 2013.

C. Zayane, Identification d'un modèle de comportement thermique de bâtiment a partir de sa courbe de charge, 2011.

A. Zoha and A. Gluhak, Muhammad Ali Imran, and Sutharshan Rajasegarar. Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey, Sensors, vol.12, issue.12, pp.16838-16866, 2012.

H. Zhao and F. Magoulès, A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews, vol.16, issue.6, pp.3586-3592, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00802029