F. A. Rahman, M. M. Aziz, R. Saidur, W. A. Bakar, M. R. Hainin et al., Pollution to solution: Capture and sequestration of carbon dioxide (CO 2 ) and its utilization as a renewable energy source for a sustainable future, Renewable and Sustainable Energy Reviews, vol.71, pp.112-126, 2017.

J. Rogelj, M. Den-elzen, N. Höhne, T. Fransen, H. Fekete et al., Paris Agreement climate proposals need a boost to keep warming well below 2 °C, Nature, vol.534, issue.7609, pp.631-639, 2016.

K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch et al., Carbon Dioxide Capture in Metal?Organic Frameworks, Chemical Reviews, vol.112, issue.2, pp.724-781, 2011.

S. D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang et al., Review of recent advances in carbon dioxide separation and capture, RSC Advances, vol.3, issue.45, p.22739, 2013.

M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston et al., Carbon capture and storage (CCS): the way forward, Energy & Environmental Science, vol.11, issue.5, pp.1062-1176, 2018.

Z. Zhang, Z. Yao, S. Xiang, and B. Chen, Perspective of microporous metal?organic frameworks for CO2capture and separation, Energy & Environmental Science, vol.7, issue.9, p.2868, 2014.

L. Dumée, C. Scholes, G. Stevens, and S. Kentish, Purification of aqueous amine solvents used in post combustion CO2 capture: A review, International Journal of Greenhouse Gas Control, vol.10, pp.443-455, 2012.

J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and J. R. Long, Evaluating metal?organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy & Environmental Science, vol.4, issue.8, p.3030, 2011.

A. L. Myers and J. M. Prausnitz, Thermodynamics of mixed-gas adsorption, AIChE Journal, vol.11, issue.1, pp.121-127, 1965.

P. Billemont, N. Heymans, P. Normand, and G. De-weireld, IAST predictions vs co-adsorption measurements for CO2 capture and separation on MIL-100 (Fe), Adsorption, vol.23, issue.2-3, pp.225-237, 2016.

K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt et al., Gas/vapour separation using ultra-microporous metal?organic frameworks: insights into the structure/separation relationship, Chemical Society Reviews, vol.46, issue.11, pp.3402-3430, 2017.

S. Keskin, T. M. Van?heest, and D. S. Sholl, Can Metal-Organic Framework Materials Play a Useful Role in Large-Scale Carbon Dioxide Separations?, ChemSusChem, vol.3, issue.8, pp.879-891, 2010.

R. Krishna, Diffusion in porous crystalline materials, Chemical Society Reviews, vol.41, issue.8, p.3099, 2012.

R. S. Pillai, H. Jobic, M. M. Koza, F. Nouar, C. Serre et al., Diffusion of Carbon Dioxide and Nitrogen in the Small?Pore Titanium Bis(phosphonate) Metal?Organic Framework MIL?91 (Ti): A Combination of Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations, ChemPhysChem, vol.18, issue.19, pp.2739-2746, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01771649

F. Salles, H. Jobic, T. Devic, V. Guillerm, C. Serre et al., Diffusion of Binary CO2/CH4 Mixtures in the MIL-47(V) and MIL-53(Cr) Metal?Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations, The Journal of Physical Chemistry C, vol.117, issue.21, pp.11275-11284, 2013.

R. Krishna and J. R. Long, Screening Metal?Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber, The Journal of Physical Chemistry C, vol.115, issue.26, pp.12941-12950, 2011.

D. M. D'alessandro, B. Smit, and J. R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angewandte Chemie International Edition, vol.49, issue.35, pp.6058-6082, 2010.

Y. Wang, Y. Zhou, C. Liu, and L. Zhou, Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.322, issue.1-3, pp.14-18, 2008.

Y. Bae and R. Q. Snurr, Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture, Angewandte Chemie International Edition, vol.50, issue.49, pp.11586-11596, 2011.

J. Merel, M. Clausse, and F. Meunier, Experimental Investigation on CO2Post?Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites, Industrial & Engineering Chemistry Research, vol.47, issue.1, pp.209-215, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02078621

L. T. Gibson, Mesosilica materials and organic pollutant adsorption: part A removal from air, Chem. Soc. Rev., vol.43, issue.15, pp.5163-5172, 2014.

B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo et al., Adsorption of CO2, CH4, and N2 on Ordered Mesoporous Carbon: Approach for Greenhouse Gases Capture and Biogas Upgrading, Environmental Science & Technology, vol.47, issue.10, pp.5474-5480, 2013.

N. Rao, M. Wang, Z. Shang, Y. Hou, G. Fan et al., CO2 Adsorption by Amine-Functionalized MCM-41: A Comparison between Impregnation and Grafting Modification Methods, Energy & Fuels, vol.32, issue.1, pp.670-677, 2018.

G. Zhang, P. Zhao, and Y. Xu, Development of amine-functionalized hierarchically porous silica for CO2 capture, Journal of Industrial and Engineering Chemistry, vol.54, pp.59-68, 2017.

A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, P. Horcajada, T. Devic et al., Iron(iii) metal?organic frameworks as solid Lewis acids for the isomerization of ?-pinene oxide, Catal. Sci. Technol., vol.2, issue.2, pp.324-330, 2012.

D. Feng, K. Wang, Z. Wei, Y. Chen, C. M. Simon et al., Erratum: Corrigendum: Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal?organic frameworks, Nature Communications, vol.6, issue.1, 2015.

. Zhou, Nature Communications, vol.5, p.5723, 2014.

M. Pang, A. J. Cairns, Y. Liu, Y. Belmabkhout, H. C. Zeng et al., Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach, Journal of the American Chemical Society, vol.135, issue.28, pp.10234-10237, 2013.

N. Stock and S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chemical Reviews, vol.112, issue.2, pp.933-969, 2011.

B. F. Abrahams, B. F. Hoskins, and R. Robson, A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks, Journal of the American Chemical Society, vol.113, issue.9, pp.3606-3607, 1991.

B. F. Hoskins and R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, Journal of the American Chemical Society, vol.111, issue.15, pp.5962-5964, 1989.

O. M. Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal?organic framework, Nature, vol.378, issue.6558, pp.703-706, 1995.

O. M. Yaghi and H. Li, Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels, Journal of the American Chemical Society, vol.117, issue.41, pp.10401-10402, 1995.

K. Susumu and K. Mitsuru, , vol.71, pp.1739-1753, 1998.

H. Li, M. Eddaoudi, M. O'keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, vol.402, issue.6759, pp.276-279, 1999.

S. S. Chui, S. M. Lo, J. P. Charmant, A. G. Orpen, and I. D. Williams, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science, vol.283, issue.5405, pp.1148-1150, 1999.

C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier et al., Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C?C6H4?CO2}·{HO2C?C6H4?CO2H}x·H2Oy, Journal of the American Chemical Society, vol.124, issue.45, pp.13519-13526, 2002.

M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Science, vol.295, pp.469-472, 2002.

G. Férey, C. Serre, C. Mellot-draznieks, F. Millange, S. Surblé et al., A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction, Angewandte Chemie International Edition, vol.43, issue.46, pp.6296-6301, 2004.

G. Férey, C. Serre, C. Mellot-draznieks, F. Millange, S. Surblé et al., A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction, Angewandte Chemie International Edition, vol.43, issue.46, pp.6296-6301, 2004.

Y. Tian, C. Cai, Y. Ji, X. You, S. Peng et al., [Co5(im)10?2 MB]?: A Metal-Organic Open-Framework with Zeolite-Like Topology, Angewandte Chemie International Edition, vol.41, issue.8, pp.1384-1386, 2002.

X. Huang, Y. Lin, J. Zhang, and X. Chen, Angewandte Chemie International Edition, vol.45, issue.11, pp.1557-1559, 2006.

Y. Liu, V. C. Kravtsov, R. Larsen, and M. Eddaoudi, Molecular building blocks approach to the assembly of zeolite-like metal?organic frameworks (ZMOFs) with extra-large cavities, Chemical Communications, issue.14, p.1488, 2006.

S. S. Kaye, A. Dailly, O. M. Yaghi, and J. R. Long, Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5), Journal of the American Chemical Society, vol.129, issue.46, pp.14176-14177, 2007.

P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. Flemming, and K. S. Walton, Effect of Water Adsorption on Retention of Structure and Surface Area of Metal?Organic Frameworks, Industrial & Engineering Chemistry Research, vol.51, issue.18, pp.6513-6519, 2012.

J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem et al., Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration, Journal of the American Chemical Society, vol.131, issue.43, pp.15834-15842, 2009.

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang et al., Nature Reviews Materials, vol.114, pp.10575-10612, 2014.

S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable Metal-Organic Frameworks: Design, Synthesis, and Applications, Advanced Materials, vol.30, issue.37, p.1704303, 2018.

S. Couck, E. Gobechiya, C. E. Kirschhock, P. Serra-crespo, J. Juan-alcañiz et al., Adsorption and Separation of Light Gases on an Amino-Functionalized Metal-Organic Framework: An Adsorption and In Situ XRD Study, ChemSusChem, vol.5, issue.4, pp.740-750, 2012.

S. Surblé, C. Serre, C. Mellot-draznieks, F. Millange, and G. Férey, A new isoreticular class of metal-organic-frameworks with the MIL-88 topology, Chem. Commun., issue.3, pp.284-286, 2006.

C. Serre, C. Mellot-draznieks, S. Surble, N. Audebrand, Y. Filinchuk et al., Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks, Science, vol.315, issue.5820, pp.1828-1831, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02439544

A. Phan, C. J. Doonan, F. J. Uribe-romo, C. B. Knobler, M. O?keeffe et al., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks, Accounts of Chemical Research, vol.43, issue.1, pp.58-67, 2010.

R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O?keeffe et al., Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties, Journal of the American Chemical Society, vol.131, issue.11, pp.3875-3877, 2009.

S. Biswas, D. E. Vanpoucke, T. Verstraelen, M. Vandichel, S. Couck et al., New Functionalized Metal?Organic Frameworks MIL-47-X (X = ?Cl, ?Br, ?CH3, ?CF3, ?OH, ?OCH3): Synthesis, Characterization, and CO2 Adsorption Properties, The Journal of Physical Chemistry C, vol.117, issue.44, pp.22784-22796, 2013.

M. Liu, V. Waroquier, J. F. Van-speybroeck, P. Denayer, . Van-der et al., The Journal of Physical Chemistry C, vol.117, pp.22784-22796, 2013.

G. E. Cmarik, M. Kim, S. M. Cohen, and K. S. Walton, Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization, Langmuir, vol.28, issue.44, pp.15606-15613, 2012.

S. Biswas, J. Zhang, Z. Li, Y. Liu, M. Grzywa et al., Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks, Dalton Transactions, vol.42, issue.13, p.4730, 2013.

Z. Hu, Y. Wang, S. Farooq, and D. Zhao, A highly stable metal?organic framework with optimum aperture size for CO 2 capture, AIChE Journal, vol.63, issue.9, pp.4103-4114, 2017.

S. Biswas, T. Ahnfeldt, and N. Stock, New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior, Inorganic Chemistry, vol.50, issue.19, pp.9518-9526, 2011.

P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux et al., How Linker?s Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88, Journal of the American Chemical Society, vol.133, issue.44, pp.17839-17847, 2011.

T. Devic, F. Salles, S. Bourrelly, B. Moulin, G. Maurin et al., Effect of the organic functionalization of flexible MOFs on the adsorption of CO2, Journal of Materials Chemistry, vol.22, issue.20, p.10266, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695823

C. Serre, F. Millange, T. Devic, N. Audebrand, and W. Van-beek, Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH)·{O2C?C6(CH3)4?CO2}·nH2O, Materials Research Bulletin, vol.41, issue.8, pp.1550-1557, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02439571

J. An, S. J. Geib, and N. L. Rosi, High and Selective CO2Uptake in a Cobalt Adeninate Metal?Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores, Journal of the American Chemical Society, vol.132, issue.1, pp.38-39, 2010.

Y. Chen and J. Jiang, A Bio-Metal-Organic Framework for Highly Selective CO2 Capture: A Molecular Simulation Study, ChemSusChem, vol.3, issue.8, pp.982-988, 2010.

W. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez et al., Comprehensive study of carbon dioxide adsorption in the metal?organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn), Chem. Sci., vol.5, issue.12, pp.4569-4581, 2014.

S. D. Supekar and S. J. Skerlos, Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants, Environmental Science & Technology, vol.49, issue.20, pp.12576-12584, 2015.

J. Yu, L. Xie, J. Li, Y. Ma, J. M. Seminario et al., CO2Capture and Separations Using MOFs: Computational and Experimental Studies, Chemical Reviews, vol.117, issue.14, pp.9674-9754, 2017.

A. Demessence, D. M. D?alessandro, M. L. Foo, and J. R. Long, Strong CO2Binding in a Water-Stable, Triazolate-Bridged Metal?Organic Framework Functionalized with Ethylenediamine, Journal of the American Chemical Society, vol.131, issue.25, pp.8784-8786, 2009.

T. M. Mcdonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong et al., Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal?Organic Framework mmen-Mg2(dobpdc), Journal of the American Chemical Society, vol.134, issue.16, pp.7056-7065, 2012.

S. Ye, X. Jiang, L. Ruan, B. Liu, Y. Wang et al., Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal?organic frameworks: Adsorption, separation and regeneration investigations, Microporous and Mesoporous Materials, vol.179, pp.191-197, 2013.

H. Li and M. R. Hill, Low-Energy CO2 Release from Metal?Organic Frameworks Triggered by External Stimuli, Accounts of Chemical Research, vol.50, issue.4, pp.778-786, 2017.

H. Li, M. M. Sadiq, K. Suzuki, R. Ricco, C. Doblin et al., Magnetic Metal-Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release, Advanced Materials, vol.28, issue.9, pp.1839-1844, 2016.

T. Remy, S. A. Peter, S. Van-der-perre, P. Valvekens, D. E. De-vos et al., Selective Dynamic CO2 Separations on Mg-MOF-74 at Low Pressures: A Detailed Comparison with 13X, The Journal of Physical Chemistry C, vol.117, issue.18, pp.9301-9310, 2013.

M. Denayer, The Journal of Physical Chemistry C, vol.117, pp.9301-9310, 2013.

M. M. Sadiq, H. Li, A. J. Hill, P. Falcaro, M. R. Hill et al., Magnetic Induction Swing Adsorption: An Energy Efficient Route to Porous Adsorbent Regeneration, Chemistry of Materials, vol.28, issue.17, pp.6219-6226, 2016.

F. Luo, C. B. Fan, M. B. Luo, X. L. Wu, Y. Zhu et al., Photoswitching CO2Capture and Release in a Photochromic Diarylethene Metal-Organic Framework, Angewandte Chemie International Edition, vol.53, issue.35, pp.9298-9301, 2014.

R. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, P. C. Kepert et al., Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release, Angewandte Chemie International Edition, vol.52, issue.13, pp.3695-3698, 2013.

H. Li, M. R. Martinez, Z. Perry, H. Zhou, P. Falcaro et al., A Robust Metal-Organic Framework for Dynamic Light-Induced Swing Adsorption of Carbon Dioxide, Chemistry - A European Journal, vol.22, issue.32, pp.11176-11179, 2016.

J. Park, D. Yuan, K. T. Pham, J. Li, A. Yakovenko et al., Reversible Alteration of CO2 Adsorption upon Photochemical or Thermal Treatment in a Metal?Organic Framework, Journal of the American Chemical Society, vol.134, issue.1, pp.99-102, 2011.

H. Li, M. M. Sadiq, K. Suzuki, C. Doblin, S. Lim et al., MaLISA ? a cooperative method to release adsorbed gases from metal?organic frameworks, Journal of Materials Chemistry A, vol.4, issue.48, pp.18757-18762, 2016.

T. Chronopoulos, Y. Fernandez-diez, M. M. Maroto-valer, R. Ocone, and D. A. Reay, CO2 desorption via microwave heating for post-combustion carbon capture, Microporous and Mesoporous Materials, vol.197, pp.288-290, 2014.

S. J. Mcgurk, C. F. Martín, S. Brandani, M. B. Sweatman, and X. Fan, Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO 2 capture, Applied Energy, vol.192, pp.126-133, 2017.

J. Yang, H. Y. Tan, Q. X. Low, B. P. Binks, and J. M. Chin, CO2capture by dry alkanolamines and an efficient microwave regeneration process, Journal of Materials Chemistry A, vol.3, issue.12, pp.6440-6446, 2015.

B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide, Carbon, vol.127, pp.209-217, 2018.

K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co?C Core?Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance, ACS Applied Materials & Interfaces, vol.10, issue.13, pp.11333-11342, 2018.

K. Zhang, F. Wu, A. Xie, M. Sun, and W. Dong, In Situ Stringing of Metal Organic Frameworks by SiC Nanowires for High-Performance Electromagnetic Radiation Elimination, ACS Applied Materials & Interfaces, vol.9, issue.38, pp.33041-33048, 2017.

X. Liang, B. Quan, G. Ji, W. Liu, H. Zhao et al., Tunable Dielectric Performance Derived from the Metal?Organic Framework/Reduced Graphene Oxide Hybrid with Broadband Absorption, ACS Sustainable Chemistry & Engineering, vol.5, issue.11, pp.10570-10579, 2017.

R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, Journal of Materials Chemistry A, vol.3, issue.25, pp.13426-13434, 2015.

W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties, ACS Sustainable Chemistry & Engineering, vol.5, issue.9, pp.7961-7971, 2017.

H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles, ACS Applied Materials & Interfaces, vol.9, issue.48, pp.42102-42110, 2017.

Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen et al., Effect of Pore Morphology on the Dielectric Properties of Porous Carbons for Microwave Absorption Applications, The Journal of Physical Chemistry C, vol.118, issue.45, pp.26027-26032, 2014.

Z. Wang and S. M. Cohen, Postsynthetic modification of metal?organic frameworks, Chemical Society Reviews, vol.38, issue.5, p.1315, 2009.

Y. Ye, W. Guo, L. Wang, Z. Li, Z. Song et al., Straightforward Loading of Imidazole Molecules into Metal?Organic Framework for High Proton Conduction, Journal of the American Chemical Society, vol.139, issue.44, pp.15604-15607, 2017.

M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye et al., Synthesis and Stability of Tagged UiO-66 Zr-MOFs, Chemistry of Materials, vol.22, issue.24, pp.6632-6640, 2010.

J. L. Rowsell and O. M. Yaghi, Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal?Organic Frameworks, Journal of the American Chemical Society, vol.128, issue.4, pp.1304-1315, 2006.

L. N. Mchugh, M. J. Mcpherson, L. J. Mccormick, S. A. Morris, P. S. Wheatley et al., Hydrolytic stability in hemilabile metal?organic frameworks, Nature Chemistry, vol.10, issue.11, pp.1096-1102, 2018.

Q. Zhu and Q. Xu, Metal?organic framework composites, Chem. Soc. Rev., vol.43, issue.16, pp.5468-5512, 2014.

S. Li and F. Huo, Metal?organic framework composites: from fundamentals to applications, Nanoscale, vol.7, issue.17, pp.7482-7501, 2015.

X. Liu, T. Sun, J. Hu, and S. Wang, Composites of metal?organic frameworks and carbon-based materials: preparations, functionalities and applications, Journal of Materials Chemistry A, vol.4, issue.10, pp.3584-3616, 2016.

Y. Zheng, S. Zheng, H. Xue, and H. Pang, Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications, Advanced Functional Materials, vol.28, issue.47, p.1804950, 2018.

B. C. Brodie, Advertisement, Philosophical Transactions of the Royal Society of London, vol.149, p.149, 1859.

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, vol.80, issue.6, pp.1339-1339, 1958.

K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett et al., Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Advanced Materials, vol.22, issue.40, pp.4467-4472, 2010.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nature Chemistry, vol.2, issue.12, pp.1015-1024, 2010.

J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes, Nature Nanotechnology, vol.12, issue.6, pp.546-550, 2017.

C. Yeh, K. Raidongia, J. Shao, Q. Yang, and J. Huang, On the origin of the stability of graphene oxide membranes in water, Nature Chemistry, vol.7, issue.2, pp.166-170, 2015.

Z. P. Smith and B. D. Freeman, Graphene Oxide: A New Platform for High-Performance Gas- and Liquid-Separation Membranes, Angewandte Chemie International Edition, vol.53, issue.39, pp.10286-10288, 2014.

C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials, Chemical Society Reviews, vol.47, issue.13, pp.4860-4908, 2018.

R. Balasubramanian and S. Chowdhury, Recent advances and progress in the development of graphene-based adsorbents for CO2 capture, Journal of Materials Chemistry A, vol.3, issue.44, pp.21968-21989, 2015.

A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide, Nature Chemistry, vol.2, issue.7, pp.581-587, 2010.

M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace et al., The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, The Journal of Physical Chemistry C, vol.115, issue.40, pp.19761-19781, 2011.

W. Chen and L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure, Nanoscale, vol.2, issue.4, p.559, 2010.

N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang et al., Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB, Applied Catalysis B: Environmental, vol.221, pp.119-128, 2018.

Y. Hu, J. Wei, Y. Liang, H. Zhang, X. Zhang et al., Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes, Angewandte Chemie International Edition, vol.55, issue.6, pp.2048-2052, 2015.

X. Zhou, W. Huang, J. Liu, H. Wang, and Z. Li, Quenched breathing effect, enhanced CO2 uptake and improved CO2/CH4 selectivity of MIL-53(Cr)/graphene oxide composites, Chemical Engineering Science, vol.167, pp.98-104, 2017.

Y. Zhang, G. Li, H. Lu, Q. Lv, and Z. Sun, Synthesis, characterization and photocatalytic properties of MIL-53(Fe)?graphene hybrid materials, RSC Advances, vol.4, issue.15, p.7594, 2014.

N. A. Travlou, K. Singh, E. Rodríguez-castellón, and T. J. Bandosz, Cu?BTC MOF?graphene-based hybrid materials as low concentration ammonia sensors, Journal of Materials Chemistry A, vol.3, issue.21, pp.11417-11429, 2015.

C. Petit and T. J. Bandosz, Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal-Organic Framework (MIL(Fe))-Graphite Oxide Composites: Exploring the Limits of Materials Fabrication, Advanced Functional Materials, vol.21, issue.11, pp.2108-2117, 2011.

Y. Cao, Y. Zhao, Z. Lv, F. Song, and Q. Zhong, Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites, Journal of Industrial and Engineering Chemistry, vol.27, pp.102-107, 2015.

S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao et al., Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity, Energy & Environmental Science, vol.6, issue.3, p.818, 2013.

Y. Shen, Z. Li, L. Wang, Y. Ye, Q. Liu et al., Cobalt?citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization, Journal of Materials Chemistry A, vol.3, issue.2, pp.593-599, 2015.

R. Kumar, K. Jayaramulu, T. K. Maji, and C. N. Rao, Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties, Chemical Communications, vol.49, issue.43, p.4947, 2013.

Y. Wang, W. Zhang, X. Wu, C. Luo, T. Liang et al., Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber, Journal of Magnetism and Magnetic Materials, vol.416, pp.226-230, 2016.

P. C. Banerjee, D. E. Lobo, R. Middag, W. K. Ng, M. E. Shaibani et al., Electrochemical Capacitance of Ni-Doped Metal Organic Framework and Reduced Graphene Oxide Composites: More than the Sum of Its Parts, ACS Applied Materials & Interfaces, vol.7, issue.6, pp.3655-3664, 2015.

J. Yang, F. Zhao, and B. Zeng, One-step synthesis of a copper-based metal?organic framework?graphene nanocomposite with enhanced electrocatalytic activity, RSC Advances, vol.5, issue.28, pp.22060-22065, 2015.

Z. Guo, M. V. Reddy, B. M. Goh, A. K. San, Q. Bao et al., Electrochemical performance of graphene and copper oxide composites synthesized from a metal?organic framework (Cu-MOF), RSC Advances, vol.3, issue.41, p.19051, 2013.

M. Jahan, Z. Liu, and K. P. Loh, A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR, Advanced Functional Materials, vol.23, issue.43, pp.5363-5372, 2013.

X. Zhou, W. Huang, J. Shi, Z. Zhao, Q. Xia et al., A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone, J. Mater. Chem. A, vol.2, issue.13, pp.4722-4730, 2014.

K. Jayaramulu, K. K. Datta, C. Rösler, M. Petr, M. Otyepka et al., Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation, Angewandte Chemie International Edition, vol.55, issue.3, pp.1178-1182, 2015.

C. Petit and T. J. Bandosz, MOF-Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal-Organic Frameworks, Advanced Materials, vol.21, issue.46, pp.4753-4757, 2009.

C. Petit and T. J. Bandosz, Engineering the surface of a new class of adsorbents: Metal?organic framework/graphite oxide composites, Journal of Colloid and Interface Science, vol.447, pp.139-151, 2015.

B. Chen, Y. Zhu, and Y. Xia, Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO2 uptake capacity, RSC Advances, vol.5, issue.39, pp.30464-30471, 2015.

X. Qiu, X. Wang, and Y. Li, Controlled growth of dense and ordered metal?organic framework nanoparticles on graphene oxide, Chemical Communications, vol.51, issue.18, pp.3874-3877, 2015.

D. Kim, D. W. Kim, W. G. Hong, and A. Coskun, Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity, Journal of Materials Chemistry A, vol.4, issue.20, pp.7710-7717, 2016.

G. Yu, J. Xia, F. Zhang, and Z. Wang, Hierarchical and hybrid RGO/ZIF-8 nanocomposite as electrochemical sensor for ultrasensitive determination of dopamine, Journal of Electroanalytical Chemistry, vol.801, pp.496-502, 2017.

K. Zhang, A. Xie, M. Sun, W. Jiang, F. Wu et al., Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids, Materials Chemistry and Physics, vol.199, pp.340-347, 2017.

J. Xu, S. He, H. Zhang, J. Huang, H. Lin et al., Layered metal?organic framework/graphene nanoarchitectures for organic photosynthesis under visible light, Journal of Materials Chemistry A, vol.3, issue.48, pp.24261-24271, 2015.

S. He, Z. Li, L. Ma, J. Wang, and S. Yang, Graphene oxide-templated growth of MOFs with enhanced lithium-storage properties, New Journal of Chemistry, vol.41, issue.23, pp.14209-14216, 2017.

R. Kumar, D. Raut, U. Ramamurty, and C. N. Rao, Remarkable Improvement in the Mechanical Properties and CO2Uptake of MOFs Brought About by Covalent Linking to Graphene, Angewandte Chemie International Edition, vol.55, issue.27, pp.7857-7861, 2016.

M. Jahan, Q. Bao, J. Yang, and K. P. Loh, Structure-Directing Role of Graphene in the Synthesis of Metal?Organic Framework Nanowire, Journal of the American Chemical Society, vol.132, issue.41, pp.14487-14495, 2010.

M. Benzaqui, R. S. Pillai, A. Sabetghadam, V. Benoit, P. Normand et al., Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture, Chemistry of Materials, vol.29, issue.24, pp.10326-10338, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649037

X. Cheng, A. Zhang, K. Hou, M. Liu, Y. Wang et al., Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF?water mixed solvents, Dalton Transactions, vol.42, issue.37, p.13698, 2013.

B. Seoane, S. Castellanos, A. Dikhtiarenko, F. Kapteijn, and J. Gascon, Multi-scale crystal engineering of metal organic frameworks, Coordination Chemistry Reviews, vol.307, pp.147-187, 2016.

J. H. Lee, J. Jaworski, and J. H. Jung, Luminescent metal?organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives, Nanoscale, vol.5, issue.18, p.8533, 2013.

L. Shen, L. Huang, S. Liang, R. Liang, N. Qin et al., Electrostatically derived self-assembly of NH2-mediated zirconium MOFs with graphene for photocatalytic reduction of Cr(vi), RSC Adv., vol.4, issue.5, pp.2546-2549, 2014.

J. Cai, J. Lu, Q. Chen, L. Qu, Y. Lu et al., Eu-Based MOF/graphene oxide composite: a novel photocatalyst for the oxidation of benzyl alcohol using water as oxygen source, New Journal of Chemistry, vol.41, issue.10, pp.3882-3886, 2017.

J. Li, Q. Wu, X. Wang, Z. Chai, W. Shi et al., Heteroaggregation behavior of graphene oxide on Zr-based metal?organic frameworks in aqueous solutions: a combined experimental and theoretical study, Journal of Materials Chemistry A, vol.5, issue.38, pp.20398-20406, 2017.

R. Liang, L. Shen, F. Jing, N. Qin, and L. Wu, Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts, ACS Applied Materials & Interfaces, vol.7, issue.18, pp.9507-9515, 2015.

Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu et al., Interfacial Growth of Metal Organic Framework/Graphite Oxide Composites through Pickering Emulsion and Their CO2Capture Performance in the Presence of Humidity, Langmuir, vol.31, issue.26, pp.7410-7417, 2015.

F. Zhang, L. Liu, X. Tan, X. Sang, J. Zhang et al., Pickering emulsions stabilized by a metal?organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites, Soft Matter, vol.13, issue.40, pp.7365-7370, 2017.

J. Meng, X. Chen, Y. Tian, Z. Li, and Q. Zheng, Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy, Chemistry - A European Journal, vol.23, issue.69, pp.17521-17530, 2017.

C. Go?mez-navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch et al., Atomic Structure of Reduced Graphene Oxide, Nano Letters, vol.10, issue.4, pp.1144-1148, 2010.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, issue.7, pp.1558-1565, 2007.

X. Li, Z. Le, X. Chen, Z. Li, W. Wang et al., Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants, Applied Catalysis B: Environmental, vol.236, pp.501-508, 2018.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. S. Dresselhaus, and R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Letters, vol.10, issue.3, pp.751-758, 2010.

G. Bottari, M. Á. Herranz, L. Wibmer, M. Volland, L. Rodríguez-pérez et al., Chemical functionalization and characterization of graphene-based materials, Chemical Society Reviews, vol.46, issue.15, pp.4464-4500, 2017.

S. Claramunt, A. Varea, D. López-díaz, M. M. Velázquez, A. Cornet et al., The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide, The Journal of Physical Chemistry C, vol.119, issue.18, pp.10123-10129, 2015.

D. López-díaz, M. López-holgado, J. L. García-fierro, and M. M. Velázquez, Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide, The Journal of Physical Chemistry C, vol.121, issue.37, pp.20489-20497, 2017.

Y. Wei, Z. Hao, F. Zhang, and H. Li, A functionalized graphene oxide and nano-zeolitic imidazolate framework composite as a highly active and reusable catalyst for [3 + 3] formal cycloaddition reactions, Journal of Materials Chemistry A, vol.3, issue.28, pp.14779-14785, 2015.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, vol.3, issue.2, pp.101-105, 2008.

O. C. Compton and S. T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, Small, vol.6, issue.6, pp.711-723, 2010.

B. Tang, Z. Xiong, X. Yun, and X. Wang, Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions, Nanoscale, vol.10, issue.8, pp.4113-4122, 2018.

J. Shao, W. Lv, and Q. Yang, Self-Assembly of Graphene Oxide at Interfaces, Advanced Materials, vol.26, issue.32, pp.5586-5612, 2014.

S. Bonakala, A. Lalitha, J. E. Shin, F. Moghadam, R. Semino et al., Understanding of the Graphene Oxide/Metal-Organic Framework Interface at the Atomistic Scale, ACS Applied Materials & Interfaces, vol.10, issue.39, pp.33619-33629, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904859

L. Sun, M. G. Campbell, and M. Dinc?, Electrically Conductive Porous Metal-Organic Frameworks, Angewandte Chemie International Edition, vol.55, issue.11, pp.3566-3579, 2016.

Z. Li, Y. Yao, Z. Lin, K. Moon, W. Lin et al., Ultrafast, dry microwave synthesis of graphene sheets, Journal of Materials Chemistry, vol.20, issue.23, p.4781, 2010.

Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner et al., Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, vol.48, issue.7, pp.2118-2122, 2010.

A. M. Schwenke, S. Hoeppener, and U. S. Schubert, Synthesis and Modification of Carbon Nanomaterials utilizing Microwave Heating, Advanced Materials, vol.27, issue.28, pp.4113-4141, 2015.

V. Benoit, R. S. Pillai, A. Orsi, P. Normand, H. Jobic et al., MIL-91(Ti), a small pore metal?organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport, Journal of Materials Chemistry A, vol.4, issue.4, pp.1383-1389, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277431

C. Serre, J. A. Groves, P. Lightfoot, A. M. Slawin, P. A. Wright et al., Synthesis, Structure and Properties of Related MicroporousN,N?-Piperazinebismethylenephosphonates of Aluminum and Titanium, Chemistry of Materials, vol.18, issue.6, pp.1451-1457, 2006.

P. L. Llewellyn, M. Garcia-rates, L. Gaberová, S. R. Miller, T. Devic et al., Structural Origin of Unusual CO2 Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF, The Journal of Physical Chemistry C, vol.119, issue.8, pp.4208-4216, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01417308

A. Zárate, R. A. Peralta, P. A. Bayliss, R. Howie, M. Sánchez-serratos et al., CO2 capture under humid conditions in NH2-MIL-53(Al): the influence of the amine functional group, RSC Advances, vol.6, issue.12, pp.9978-9983, 2016.

E. Stavitski, E. A. Pidko, S. Couck, T. Remy, E. J. Hensen et al., Complexity behind CO2Capture on NH2-MIL-53(Al), Langmuir, vol.27, issue.7, pp.3970-3976, 2011.

M. Mihaylov, K. Chakarova, S. Andonova, N. Drenchev, E. Ivanova et al., Adsorption Forms of CO2 on MIL-53(Al) and NH2-MIL-53(Al) As Revealed by FTIR Spectroscopy, The Journal of Physical Chemistry C, vol.120, issue.41, pp.23584-23595, 2016.

B. Arstad, H. Fjellvåg, K. O. Kongshaug, O. Swang, and R. Blom, Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide, Adsorption, vol.14, issue.6, pp.755-762, 2008.

T. Loiseau, C. Mellot-draznieks, H. Muguerra, G. Férey, M. Haouas et al., Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O, Comptes Rendus Chimie, vol.8, issue.3-4, pp.765-772, 2005.

A. Sabetghadam, X. Liu, M. Benzaqui, E. Gkaniatsou, A. Orsi et al., Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture, Chemistry - A European Journal, vol.24, issue.31, pp.7949-7956, 2018.

Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre et al., Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration, Chemical Communications, vol.47, issue.34, p.9603, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607908

Z. Hu, Y. Peng, Z. Kang, Y. Qian, and D. Zhao, A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs, Inorganic Chemistry, vol.54, issue.10, pp.4862-4868, 2015.

Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang, and D. Zhao, Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal?Organic Frameworks for Optimal Carbon Dioxide Separation, Inorganic Chemistry, vol.55, issue.3, pp.1134-1141, 2016.

S. Devautour-vinot, G. Maurin, C. Serre, P. Horcajada, D. Paula-da-cunha et al., Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations, Chemistry of Materials, vol.24, issue.11, pp.2168-2177, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709359

S. Biswas and P. Van-der-voort, A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2Adsorption Properties, European Journal of Inorganic Chemistry, vol.2013, issue.12, pp.2154-2160, 2013.

F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum et al., Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties, Journal of Materials Chemistry A, vol.3, issue.7, pp.3294-3309, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01077026

Z. Hu and D. Zhao, De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal?organic frameworks and membrane materials, Dalton Transactions, vol.44, issue.44, pp.19018-19040, 2015.

Q. Yang, S. Vaesen, F. Ragon, A. D. Wiersum, D. Wu et al., A Water Stable Metal-Organic Framework with Optimal Features for CO2Capture, Angewandte Chemie International Edition, vol.52, issue.39, pp.10316-10320, 2013.

T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Férey et al., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and?3-Oxo-Centered Trinuclear Units, Journal of the American Chemical Society, vol.128, issue.31, pp.10223-10230, 2006.

V. Benoit, N. Chanut, R. S. Pillai, M. Benzaqui, I. Beurroies et al., A promising metal?organic framework (MOF), MIL-96(Al), for CO2 separation under humid conditions, Journal of Materials Chemistry A, vol.6, issue.5, pp.2081-2090, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01710539

F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang et al., Practical water production from desert air, Science Advances, vol.4, issue.6, p.eaat3198, 2018.

J. S. Chang, U. H. Lee, Y. K. Hwang, C. Serre, T. Devic et al., , pp.2016186454-2016186455, 2016.

A. Sabetghadam, X. Liu, M. Benzaqui, E. Gkaniatsou, A. Orsi et al., Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture, Chemistry - A European Journal, vol.24, issue.31, pp.7949-7956, 2018.

M. Benzaqui, R. S. Pillai, A. Sabetghadam, V. Benoit, P. Normand et al., Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture, Chemistry of Materials, vol.29, issue.24, pp.10326-10338, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649037

V. Benoit, R. S. Pillai, A. Orsi, P. Normand, H. Jobic et al., MIL-91(Ti), a small pore metal?organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport, Journal of Materials Chemistry A, vol.4, issue.4, pp.1383-1389, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277431

M. A. Andrés, C. Sicard, C. Serre, O. Roubeau, and I. Gascón, Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr), Beilstein Journal of Nanotechnology, vol.10, pp.654-665, 2019.

J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin et al., Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets, Chemistry of Materials, vol.21, issue.15, pp.3514-3520, 2009.

W. Chen and L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure, Nanoscale, vol.2, issue.4, p.559, 2010.

A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies, The Journal of Physical Chemistry C, vol.115, issue.34, pp.17009-17019, 2011.

U. N. Maiti, J. Lim, K. E. Lee, W. J. Lee, and S. O. Kim, Three-Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors, Advanced Materials, vol.26, issue.4, pp.615-619, 2013.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, issue.7, pp.1558-1565, 2007.

G. Eda and M. Chhowalla, Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics, Advanced Materials, vol.22, issue.22, pp.2392-2415, 2010.

T. Szabó, E. Tombácz, E. Illés, and I. Dékány, Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides, Carbon, vol.44, issue.3, pp.537-545, 2006.

F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum et al., Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties, Journal of Materials Chemistry A, vol.3, issue.7, pp.3294-3309, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01077026

Y. Cao, Y. Zhao, Z. Lv, F. Song, and Q. Zhong, Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites, Journal of Industrial and Engineering Chemistry, vol.27, pp.102-107, 2015.

K. Krishnamoorthy, M. Veerapandian, K. Yun, and S. J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, vol.53, pp.38-49, 2013.

Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li et al., Solvent-Assisted Thermal Reduction of Graphite Oxide, The Journal of Physical Chemistry C, vol.114, issue.35, pp.14819-14825, 2010.

C. Gómez-navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews et al., Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets, Nano Letters, vol.7, issue.11, pp.3499-3503, 2007.

. Kern, Nano Letters, vol.7, pp.3499-3503, 2007.

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, Insulator to Semimetal Transition in Graphene Oxide, The Journal of Physical Chemistry C, vol.113, issue.35, pp.15768-15771, 2009.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan et al., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films, Advanced Functional Materials, vol.19, issue.16, pp.2577-2583, 2009.

I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at ?Low? Temperatures, Nano Letters, vol.8, issue.12, pp.4283-4287, 2008.

C. Go?mez-navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch et al., Atomic Structure of Reduced Graphene Oxide, Nano Letters, vol.10, issue.4, pp.1144-1148, 2010.

M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace et al., The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, The Journal of Physical Chemistry C, vol.115, issue.40, pp.19761-19781, 2011.

. Chabal, The Journal of Physical Chemistry C, vol.115, 2011.

A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide, Nature Chemistry, vol.2, issue.7, pp.581-587, 2010.

K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett et al., Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Advanced Materials, vol.22, issue.40, pp.4467-4472, 2010.

W. Chen, L. Yan, and P. R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, vol.48, issue.4, pp.1146-1152, 2010.

D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee et al., High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science, vol.353, issue.6306, pp.1413-1416, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01688227

P. L. Llewellyn, M. Garcia-rates, L. Gaberová, S. R. Miller, T. Devic et al., Structural Origin of Unusual CO2 Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF, The Journal of Physical Chemistry C, vol.119, issue.8, pp.4208-4216, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01417308

.. .. Mise-À-l'échelle,

. .. Mise-en-forme,

. .. Objectifs-du-chapitre, CHAPITRE IX. Des verbes avec les suffixes objectifs, Traité de Grammaire Syriaque, pp.198-203, 2010.

. Ii and . .. Synthèse-À-l'échelle, Guest Editorial, IRE Transactions on Military Electronics, vol.MIL-3, issue.4, pp.128-128, 1959.

). .. Ti, Guest Editorial, IRE Transactions on Military Electronics, vol.MIL-3, issue.4, pp.128-128, 1959.

.. .. /go5wt%,

). .. Zr, Dual-Emitting UiO-66(Zr{siComponents}Eu) MetalOrganic Framework Films for Ratiometric Temperature Sensing, Le cas du UiO-66-btc

.. .. /go10wt%, PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials

). .. Al, Cation Exchange Superparamagnetic Al-Based Metal Organic Framework (Fe3O4/MIL-96(Al)) for High Efficient Removal of Pb(II) from Aqueous Solutions

.. .. /go2wt%,

.. .. /go5wt%,

). .. Zr, PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials, Le cas du UiO-66-btc

.. .. /go10wt%, PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials

. Iv and . .. Synthèse-À-plus-grande-Échelle,

. .. V.-conclusion, CONCLUSION, KONSTANTIN STANISLAVSKY, pp.155-156

. .. Références, References, Language Learning, vol.60, pp.157-176, 2010.

M. Rubio-martinez, C. Avci-camur, A. W. Thornton, I. Imaz, D. Maspoch et al., New synthetic routes towards MOF production at scale, Chemical Society Reviews, vol.46, issue.11, pp.3453-3480, 2017.

S. B. Peh, Y. Wang, and D. Zhao, Scalable and Sustainable Synthesis of Advanced Porous Materials, ACS Sustainable Chemistry & Engineering, vol.7, issue.4, pp.3647-3670, 2019.

M. Taddei, D. A. Steitz, J. A. Van?bokhoven, and M. Ranocchiari, Continuous-Flow Microwave Synthesis of Metal-Organic Frameworks: A Highly Efficient Method for Large-Scale Production, Chemistry - A European Journal, vol.22, issue.10, pp.3245-3249, 2016.

B. Karadeniz, A. J. Howarth, T. Stolar, T. Islamoglu, I. Dejanovi? et al., Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal?Organic Frameworks by Water-Assisted Mechanochemistry, ACS Sustainable Chemistry & Engineering, vol.6, issue.11, pp.15841-15849, 2018.

A. M. Fidelli, B. Karadeniz, A. J. Howarth, I. Huski?, L. S. Germann et al., Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal?organic frameworks, Chemical Communications, vol.54, issue.51, pp.6999-7002, 2018.

K. U?arevi?, T. C. Wang, S. Moon, A. M. Fidelli, J. T. Hupp et al., Mechanochemical and solvent-free assembly of zirconium-based metal?organic frameworks, Chemical Communications, vol.52, issue.10, pp.2133-2136, 2016.

Q. Yang, S. Vaesen, F. Ragon, A. D. Wiersum, D. Wu et al., A Water Stable Metal-Organic Framework with Optimal Features for CO2Capture, Angewandte Chemie International Edition, vol.52, issue.39, pp.10316-10320, 2013.

S. Cui, M. Qin, A. Marandi, V. Steggles, S. Wang et al., Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling, Scientific Reports, vol.8, issue.1, 2018.

A. Mallick, G. Mouchaham, P. M. Bhatt, W. Liang, Y. Belmabkhout et al., Advances in Shaping of Metal?Organic Frameworks for CO2 Capture: Understanding the Effect of Rubbery and Glassy Polymeric Binders, Industrial & Engineering Chemistry Research, vol.57, issue.49, pp.16897-16902, 2018.

M. I. Nandasiri, S. R. Jambovane, B. P. Mcgrail, H. T. Schaef, and S. K. Nune, Adsorption, separation, and catalytic properties of densified metal-organic frameworks, Coordination Chemistry Reviews, vol.311, pp.38-52, 2016.

S. Furukawa, J. Reboul, S. Diring, K. Sumida, and S. Kitagawa, Structuring of metal?organic frameworks at the mesoscopic/macroscopic scale, Chem. Soc. Rev., vol.43, issue.16, pp.5700-5734, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01220981

A. H. Valekar, K. Cho, U. H. Lee, J. S. Lee, J. W. Yoon et al., Shaping of porous metal?organic framework granules using mesoporous ?-alumina as a binder, RSC Advances, vol.7, issue.88, pp.55767-55777, 2017.

M. A. Moreira, J. C. Santos, A. F. Ferreira, J. M. Loureiro, F. Ragon et al., Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66, Langmuir, vol.28, issue.13, pp.5715-5723, 2012.

Y. Chen, X. Huang, S. Zhang, S. Li, S. Cao et al., Shaping of Metal?Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams, Journal of the American Chemical Society, vol.138, issue.34, pp.10810-10813, 2016.

G. W. Peterson, J. B. Decoste, T. G. Glover, Y. Huang, H. Jasuja et al., Effects of pelletization pressure on the physical and chemical properties of the metal?organic frameworks Cu3(BTC)2 and UiO-66, Microporous and Mesoporous Materials, vol.179, pp.48-53, 2013.

J. Ren, N. M. Musyoka, H. W. Langmi, A. Swartbooi, B. C. North et al., A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications, International Journal of Hydrogen Energy, vol.40, issue.13, pp.4617-4622, 2015.

V. Benoit, R. S. Pillai, A. Orsi, P. Normand, H. Jobic et al., MIL-91(Ti), a small pore metal?organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport, Journal of Materials Chemistry A, vol.4, issue.4, pp.1383-1389, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277431

V. Benoit, N. Chanut, R. S. Pillai, M. Benzaqui, I. Beurroies et al., A promising metal?organic framework (MOF), MIL-96(Al), for CO2 separation under humid conditions, Journal of Materials Chemistry A, vol.6, issue.5, pp.2081-2090, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01710539

D. Prat, J. Hayler, and A. Wells, A survey of solvent selection guides, Green Chem., vol.16, issue.10, pp.4546-4551, 2014.

D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. Mcelroy et al., CHEM21 selection guide of classical- and less classical-solvents, Green Chemistry, vol.18, issue.1, pp.288-296, 2016.

M. Benzaqui, R. S. Pillai, A. Sabetghadam, V. Benoit, P. Normand et al., Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture, Chemistry of Materials, vol.29, issue.24, pp.10326-10338, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649037

A. Locard and E. Caziot, Les coquilles marines des côtes de Corse (fin), Annales de la Société linnéenne de Lyon, vol.47, issue.1, pp.159-291, 1901.

O. Khan, A. Dormond, and J. P. Letourneux, Echange de ligands mono- et penta-haptocyclopentadienyles en serie du titanocene, Journal of Organometallic Chemistry, vol.132, issue.1, pp.149-162, 1977.

. .. Objectifs-du-chapitre, CHAPITRE IX. Des verbes avec les suffixes objectifs, Traité de Grammaire Syriaque, pp.198-203, 2010.

, Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH2@Natural Fabric Composites

.. .. , Adsorption Forms of CO2 on MIL-53(Al) and MIL-53(Al)OHx As Revealed by FTIR Spectroscopy, pp.2-53

. .. Al)-pur, Adsorption Forms of CO2 on MIL-53(Al) and MIL-53(Al)OHx As Revealed by FTIR Spectroscopy

. .. Références, References, Decomposability, pp.191-196, 1977.

P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp et al., ChemInform Abstract: Beyond Post-Synthesis Modification: Evolution of Metal-Organic Frameworks via Building Block Replacement, ChemInform, vol.45, issue.43, pp.no-no, 2014.

C. V. Mcguire and R. S. Forgan, The surface chemistry of metal?organic frameworks, Chemical Communications, vol.51, issue.25, pp.5199-5217, 2015.

X. Song, T. K. Kim, H. K. Kim, D. K. Kim, S. Jeong et al., Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal?Organic Frameworks: Core?Shell Heterostructures via Selective Transmetalations, Chemistry of Materials, vol.24, issue.15, pp.3065-3073, 2012.

J. A. Boissonnault, A. G. Wong-foy, and A. J. Matzger, Core?Shell Structures Arise Naturally During Ligand Exchange in Metal?Organic Frameworks, Journal of the American Chemical Society, vol.139, issue.42, pp.14841-14844, 2017.

J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura et al., Thermal Conversion of Core?Shell Metal?Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon, Journal of the American Chemical Society, vol.137, issue.4, pp.1572-1580, 2015.

J. Xu, S. Liu, and Y. Liu, Co3O4/ZnO nanoheterostructure derived from core?shell ZIF-8@ZIF-67 for supercapacitors, RSC Advances, vol.6, issue.57, pp.52137-52142, 2016.

J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang et al., Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene, Angewandte Chemie, vol.127, issue.37, pp.11039-11043, 2015.

H. Ji, S. Lee, J. Park, T. Kim, S. Choi et al., Improvement in Crystallinity and Porosity of Poorly Crystalline Metal?Organic Frameworks (MOFs) through Their Induced Growth on a Well-Crystalline MOF Template, Inorganic Chemistry, vol.57, issue.15, pp.9048-9054, 2018.

K. Koh, A. G. Wong-foy, and A. J. Matzger, MOF@MOF: microporous core?shell architectures, Chemical Communications, issue.41, p.6162, 2009.

T. Li, J. E. Sullivan, and N. L. Rosi, Design and Preparation of a Core?Shell Metal?Organic Framework for Selective CO2 Capture, Journal of the American Chemical Society, vol.135, issue.27, pp.9984-9987, 2013.

T. Li, D. Chen, J. E. Sullivan, M. T. Kozlowski, J. K. Johnson et al., Systematic modulation and enhancement of CO2 : N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues, Chemical Science, vol.4, issue.4, p.1746, 2013.

S. Choi, T. Kim, H. Ji, H. J. Lee, and M. Oh, Isotropic and Anisotropic Growth of Metal?Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature, Journal of the American Chemical Society, vol.138, issue.43, pp.14434-14440, 2016.

D. Kim, G. Lee, S. Oh, and M. Oh, Unbalanced MOF-on-MOF growth for the production of a lopsided core?shell of MIL-88B@MIL-88A with mismatched cell parameters, Chemical Communications, vol.55, issue.1, pp.43-46, 2019.

J. Sánchez-laínez, A. Veiga, B. Zornoza, S. R. Balestra, S. Hamad et al., Tuning the separation properties of zeolitic imidazolate framework core?shell structures via post-synthetic modification, Journal of Materials Chemistry A, vol.5, issue.48, pp.25601-25608, 2017.

X. Yang, S. Yuan, L. Zou, H. Drake, Y. Zhang et al., One-Step Synthesis of Hybrid Core-Shell Metal-Organic Frameworks, Angewandte Chemie International Edition, vol.57, issue.15, pp.3927-3932, 2018.

N. Chanut, S. Bourrelly, B. Kuchta, C. Serre, J. Chang et al., Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2Capture from Flue Gas in Metal-Organic Frameworks, ChemSusChem, vol.10, issue.7, pp.1543-1553, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582004

A. Zárate, R. A. Peralta, P. A. Bayliss, R. Howie, M. Sánchez-serratos et al., CO2 capture under humid conditions in NH2-MIL-53(Al): the influence of the amine functional group, RSC Advances, vol.6, issue.12, pp.9978-9983, 2016.

J. Canivet, J. Bonnefoy, C. Daniel, A. Legrand, B. Coasne et al., Structure?property relationships of water adsorption in metal?organic frameworks, New J. Chem., vol.38, issue.7, pp.3102-3111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057455

J. G. Nguyen and S. M. Cohen, Moisture-Resistant and Superhydrophobic Metal?Organic Frameworks Obtained via Postsynthetic Modification, Journal of the American Chemical Society, vol.132, issue.13, pp.4560-4561, 2010.

H. Jasuja and K. S. Walton, Experimental Study of CO2, CH4, and Water Vapor Adsorption on a Dimethyl-Functionalized UiO-66 Framework, The Journal of Physical Chemistry C, vol.117, issue.14, pp.7062-7068, 2013.

Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang, and D. Zhao, Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal?Organic Frameworks for Optimal Carbon Dioxide Separation, Inorganic Chemistry, vol.55, issue.3, pp.1134-1141, 2016.

G. E. Cmarik, M. Kim, S. M. Cohen, and K. S. Walton, Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization, Langmuir, vol.28, issue.44, pp.15606-15613, 2012.

S. Biswas, T. Ahnfeldt, and N. Stock, New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior, Inorganic Chemistry, vol.50, issue.19, pp.9518-9526, 2011.

S. Biswas, T. Rémy, S. Couck, D. Denysenko, G. Rampelberg et al., Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties, Physical Chemistry Chemical Physics, vol.15, issue.10, p.3552, 2013.

V. Haigis, F. Coudert, R. Vuilleumier, and A. Boutin, Investigation of structure and dynamics of the hydrated metal?organic framework MIL-53(Cr) using first-principles molecular dynamics, Physical Chemistry Chemical Physics, vol.15, issue.43, p.19049, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116940

S. Couck, E. Gobechiya, C. E. Kirschhock, P. Serra-crespo, J. Juan-alcañiz et al., Adsorption and Separation of Light Gases on an Amino-Functionalized Metal-Organic Framework: An Adsorption and In Situ XRD Study, ChemSusChem, vol.5, issue.4, pp.740-750, 2012.

T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, J. Senker et al., Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology, Inorganic Chemistry, vol.48, issue.7, pp.3057-3064, 2009.

A. S. Munn, R. S. Pillai, S. Biswas, N. Stock, G. Maurin et al., The flexibility of modified-linker MIL-53 materials, Dalton Transactions, vol.45, issue.10, pp.4162-4168, 2016.

T. Loiseau, C. Mellot-draznieks, H. Muguerra, G. Férey, M. Haouas et al., Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O, Comptes Rendus Chimie, vol.8, issue.3-4, pp.765-772, 2005.

T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin et al., Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host?Guest Interactions, Journal of the American Chemical Society, vol.132, issue.3, pp.1127-1136, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474406

M. Lavalley, G. Daturi, and . Férey, Journal of the American Chemical Society, vol.132, pp.1127-1136, 2010.

T. Devic, F. Salles, S. Bourrelly, B. Moulin, G. Maurin et al., Effect of the organic functionalization of flexible MOFs on the adsorption of CO2, Journal of Materials Chemistry, vol.22, issue.20, p.10266, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695823

A. Shigematsu, T. Yamada, and H. Kitagawa, Wide Control of Proton Conductivity in Porous Coordination Polymers, Journal of the American Chemical Society, vol.133, issue.7, pp.2034-2036, 2011.

N. Acide and N. '-piperazinebis, CSC dans une usine de traitement de gaz naturel acide, p.600, 2009.

H. Hennig, NH-acide Liganden als Neutralchelatbildner, Zeitschrift für Chemie, vol.11, issue.3, pp.81-91, 2010.

L. Tio, Direct Atom-Efficient Esterification between Carboxylic Acids and Alcohols Catalyzed by Amphoteric, Water-Tolerant TiO(acac)2

A. Le noxaïc, Le « vide » mis en évidence par Pascal est-il exempt d?atomes ?, L?atomisme aux XVIIe et XVIIIe siècles, pp.15-25, 1999.

, Table 4: Plasma glucose (mmol/L), serum insulin (?U/mL), serum NEFA (?mol/L) and serum TG (mmol/L) concentrations recorded in ponies and horses during 2 years of excess energy intake (data are presented as means ± SD)., MIL-96(Al) NPs. Dans un ballon de 500 mL sont introduits : acide trimesique (2.5 g, 11.9 mmol), Al(NO3)3.9H2O (4.5 g, 12 mmol), 150 mL H2O et 150 mL DMF. La réaction est placée sous g, 10.4 mmol, 87 %)

A. , Une grande partie du territoire du Brésil est placée sous protection environnementale

, Emplois du temps et formes d'appropriation de l'espace, Un festival sous le regard de ses spectateurs, pp.39-40

D. Leeman, 1. Dans À bas la pensée unique et le terrorisme théorique, est-ce que à bas est une locution prépositive ?, Modèles linguistiques, vol.XXVII, issue.54, pp.9-14, 2006.
URL : https://hal.archives-ouvertes.fr/halshs-00637524

A. Cano, ?am?l al-G???n?: «Papeles de un joven que vivió hace mil años», Sharq Al-Andalus, issue.3, pp.183-190, 1986.

M. Muschi, A. Lalitha, S. Sene, D. Aureau, M. Fregnaux et al., Formation of a Single?Crystal Aluminum?Based MOF Nanowire with Graphene Oxide Nanoscrolls as Structure?Directing Agents, Angewandte Chemie, vol.132, issue.26, pp.10439-10444, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02573498

P. Gabriel and H. Martin, Steady distribution of the incremental model for bacteria proliferation, Networks & Heterogeneous Media, vol.14, issue.1, pp.149-171, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01742140

A. , Products that individuals purchased online from sellers abroad, 2017, p.6, 2019.

, Adsorption Forms of CO2 on MIL-53(Al) and MIL-53(Al)OHx As Revealed by FTIR Spectroscopy, MIL-69(Al) nanoparticles (NPs)

P. Naoh-;-al(no3combining, T. Ft-ir, . Raman, and . Porosimetry, Figure 2: XRD, Raman, XPS and TEM for GO characterization., As shown by TEM (Figure, vol.1, p.69

A. Sabetghadam, X. Liu, M. Benzaqui, E. Gkaniatsou, A. Orsi et al., Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture, Chemistry - A European Journal, vol.24, issue.31, pp.7949-7956, 2018.

T. Loiseau, C. Mellot-draznieks, H. Muguerra, G. Férey, M. Haouas et al., Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O, Comptes Rendus Chimie, vol.8, issue.3-4, pp.765-772, 2005.

M. Jahan, Q. Bao, J. X. Yang, and K. P. Loh, Structure-Directing Role of Graphene in the Synthesis of Metal?Organic Framework Nanowire, Journal of the American Chemical Society, vol.132, issue.41, pp.14487-14495, 2010.

B. Tang, Z. Xiong, X. Yun, and X. Wang, Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions, Nanoscale, vol.10, issue.8, pp.4113-4122, 2018.

X. Qiu, X. Wang, and Y. Li, Controlled growth of dense and ordered metal?organic framework nanoparticles on graphene oxide, Chemical Communications, vol.51, issue.18, pp.3874-3877, 2015.

S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino et al., Electronic and vibrational properties of a MOF-5 metal?organic framework: ZnO quantum dot behaviour, Chem. Commun., vol.10, issue.20, pp.2300-2301, 2004.

I. Strauss, A. Mundstock, D. Hinrichs, R. Himstedt, A. Knebel et al., Frontispiz: Vis/NIR- und Raman-Untersuchung der Wechselwirkung von Gastmolekülen mit Co-MOF-74, Angewandte Chemie, vol.130, issue.25, 2018.

E. , , vol.57, pp.7434-7439, 2018.

J. Wang, Y. Wang, Y. Zhang, A. Uliana, J. Zhu et al., Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance, ACS Applied Materials & Interfaces, vol.8, issue.38, pp.25508-25519, 2016.

C. Petit and T. J. Bandosz, Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal-Organic Framework (MIL(Fe))-Graphite Oxide Composites: Exploring the Limits of Materials Fabrication, Advanced Functional Materials, vol.21, issue.11, pp.2108-2117, 2011.

R. Semino, N. A. Ramsahye, A. Ghoufi, and G. Maurin, Microscopic Model of the Metal?Organic Framework/Polymer Interface: A First Step toward Understanding the Compatibility in Mixed Matrix Membranes, ACS Applied Materials & Interfaces, vol.8, issue.1, pp.809-819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01259519

H. Donnay, D. Harker, and T. Johns, Society's New Headquarters, American Journal of International Law, vol.47, issue.3, pp.467-467, 1953.

G. Friedel, Études sur la loi de Bravais, Bulletin de la Société française de Minéralogie, vol.30, issue.9, pp.326-455, 1907.

A. E. Bravais, ;. Cristallographiques, and . Gauthier-villars, , 1866.

C. R. Catlow, L. Ackermann, R. G. Bell, F. Cora, D. H. Gay et al., Computer Modelling as a Technique in Solid State Chemistry, Faraday Discuss, vol.106, pp.1-40, 1997.

F. Tian, A. M. Cerro, A. M. Mosier, H. K. Wayment-steele, R. S. Shine et al., Surface and Stability Characterization of a Nanoporous ZIF-8 Thin Film, The Journal of Physical Chemistry C, vol.118, issue.26, pp.14449-14456, 2014.

C. Chizallet, S. Lazare, D. Bazer-bachi, F. Bonnier, V. Lecocq et al., Catalysis of Transesterification by a Nonfunctionalized Metal?Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR andab InitioCalculations, Journal of the American Chemical Society, vol.132, issue.35, pp.12365-12377, 2010.

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, issue.2, pp.103-128, 2005.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk et al., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Physical Review B, vol.58, issue.11, pp.7260-7268, 1998.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, vol.132, issue.15, p.154104, 2010.

S. Bonakala, A. Lalitha, J. E. Shin, F. Moghadam, R. Semino et al., Understanding of the Graphene Oxide/Metal-Organic Framework Interface at the Atomistic Scale, ACS Applied Materials & Interfaces, vol.10, issue.39, pp.33619-33629, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904859

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, pp.11225-11236, 1996.

C. M. Breneman and K. B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis, Journal of Computational Chemistry, vol.11, issue.3, pp.361-373, 1990.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

R. Semino, J. P. Dürholt, R. Schmid, and G. Maurin, Multiscale Modeling of the HKUST-1/Poly(vinyl alcohol) Interface: From an Atomistic to a Coarse Graining Approach, The Journal of Physical Chemistry C, vol.121, issue.39, pp.21491-21496, 2017.

M. Benzaqui, R. Semino, N. Menguy, F. Carn, T. Kundu et al., Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes, ACS Applied Materials & Interfaces, vol.8, issue.40, pp.27311-27321, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01840184

A. Lalitha, J. E. Shin, S. Bonakala, J. Y. Oh, H. B. Park et al., Unraveling the Enhancement of the Interfacial Compatibility between Metal?Organic Framework and Functionalized Graphene Oxide, The Journal of Physical Chemistry C, vol.123, issue.8, pp.4984-4993, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02079959

S. L. Mayo, B. D. Olafson, and W. A. Goddard, DREIDING: a generic force field for molecular simulations, The Journal of Physical Chemistry, vol.94, issue.26, pp.8897-8909, 1990.

A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, vol.114, issue.25, pp.10024-10035, 1992.

S. R. Tavares, N. A. Ramsahye, K. Adil, M. Eddaoudi, G. Maurin et al., Computationally Assisted Assessment of the Metal?Organic Framework/Polymer Compatibility in Composites Integrating a Rigid Polymer, Advanced Theory and Simulations, vol.2, issue.11, p.1900116, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02900081

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 2017.

I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism, Journal of Materials Chemistry, vol.16, issue.20, p.1911, 2006.

G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé?Hoover chains: The canonical ensemble via continuous dynamics, The Journal of Chemical Physics, vol.97, issue.4, pp.2635-2643, 1992.

M. J. Deka, U. Baruah, and D. Chowdhury, Insight into electrical conductivity of graphene and functionalized graphene: Role of lateral dimension of graphene sheet, Materials Chemistry and Physics, vol.163, pp.236-244, 2015.

G. Eda and M. Chhowalla, Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics, Advanced Materials, vol.22, issue.22, pp.2392-2415, 2010.

N. Morimoto, T. Kubo, and Y. Nishina, Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications, Scientific Reports, vol.6, issue.1, 2016.

Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li et al., Solvent-Assisted Thermal Reduction of Graphite Oxide, The Journal of Physical Chemistry C, vol.114, issue.35, pp.14819-14825, 2010.

I. Mise-À-l'échelle, , p.procédures

. Mil-91,

, PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials

, PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials

D. Rapakoulias and J. Amouroux, Réacteur de synthèse et de trempe dans un plasma hors d'équilibre : application à la synthèse de C2H2 et HCN, Revue de Physique Appliquée, vol.14, issue.12, pp.961-968, 1979.

H. R. Abid, Z. H. Rada, J. Shang, and S. Wang, Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53, Polyhedron, vol.120, pp.103-111, 2016.

. Mil-96,

, Emplois du temps et formes d'appropriation de l'espace, Un festival sous le regard de ses spectateurs, pp.39-40

D. Rapakoulias and J. Amouroux, Réacteur de synthèse et de trempe dans un plasma hors d'équilibre : application à la synthèse de C2H2 et HCN, Revue de Physique Appliquée, vol.14, issue.12, pp.961-968, 1979.

M. Benzaqui, R. S. Pillai, A. Sabetghadam, V. Benoit, P. Normand et al., Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture, Chemistry of Materials, vol.29, issue.24, pp.10326-10338, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649037