, Figure 1?figure supplement 1. ERp5 level in human platelets and platelet releasate., 20 E/S in 150 µL ABC 50 mM, pH 8 for overnight digestion, p.20

M. S. Nanolc and . Ms, Comprehensive Peptidome Analysis of Mouse Livers by Size Exclusion Chromatography Prefractionation and NanoLC-MS/MS Identification

, Exploring Novel Function of Yeast Ssa1/2p by Quantitative Profiling Proteomics Using NanoESI-LC-MS/MS, pp.350-1500

M. E. Adamo and S. A. Gerber, Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms, Current Protocols in Bioinformatics, vol.55, issue.1, pp.13.29.1-13.29.23, 2016.

E. L. Huang, P. D. Piehowski, D. J. Orton, R. J. Moore, W. Qian et al., SNaPP: Simplified Nanoproteomics Platform for Reproducible Global Proteomic Analysis of Nanogram Protein Quantities, Endocrinology, vol.157, issue.3, pp.1307-1314, 2016.

K. Xu, Y. Liang, P. D. Piehowski, M. Dou, K. C. Schwarz et al., Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells, Analytical and Bioanalytical Chemistry, vol.411, issue.19, pp.4587-4596, 2018.

S. L. Freire and A. R. Wheeler, Proteome-on-a-chip: Mirage, or on the horizon?, Lab on a Chip, vol.6, issue.11, p.1415, 2006.

Y. Li, L. Yan, Y. Liu, K. Qian, B. Liu et al., High-efficiency nano/micro-reactors for protein analysis, RSC Advances, vol.5, issue.2, pp.1331-1342, 2015.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, Integrated Microfluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification, Analytical Chemistry, vol.73, issue.11, pp.2648-2655, 2001.

A. Kecskemeti, C. Nagy, E. Csosz, G. Kallo, and A. Gaspar, The application of a microfluidic reactor including spontaneously adsorbed trypsin for rapid protein digestion of human tear samples, PROTEOMICS - Clinical Applications, vol.11, issue.11-12, p.1700055, 2017.

Y. Zhang, B. R. Fonslow, B. Shan, M. Baek, and J. R. Yates, Protein Analysis by Shotgun/Bottom-up Proteomics, Chemical Reviews, vol.113, issue.4, pp.2343-2394, 2013.

N. Gasilova, L. Qiao, D. Momotenko, M. R. Pourhaghighi, and H. H. Girault, Microchip Emitter for Solid-Phase Extraction?Gradient Elution?Mass Spectrometry, Analytical Chemistry, vol.85, issue.13, pp.6254-6263, 2013.

M. Ethier, W. Hou, H. S. Duewel, and D. Figeys, The Proteomic Reactor: A Microfluidic Device for Processing Minute Amounts of Protein Prior to Mass Spectrometry Analysis, Journal of Proteome Research, vol.5, issue.10, pp.2754-2759, 2006.

J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nature Methods, vol.6, issue.5, pp.359-362, 2009.

A. Zougman, P. J. Selby, and R. E. Banks, Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis, PROTEOMICS, vol.14, issue.9, pp.1006-1000, 2014.

K. R. Ludwig, M. M. Schroll, and A. B. Hummon, Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up Proteomic Studies, Journal of Proteome Research, vol.17, issue.7, pp.2480-2490, 2018.

M. P. Nandakumar and M. R. Marten, Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins, ELECTROPHORESIS, vol.23, issue.14, p.2216, 2002.

T. Trantidou, Y. Elani, E. Parsons, and O. Ces, Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition, Microsystems & Nanoengineering, vol.3, issue.1, p.16091, 2017.

T. Hulsen, J. De-vlieg, and W. Alkema, BioVenn ? a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams, BMC Genomics, vol.9, issue.1, p.488, 2008.

D. Osorio, P. Rondón-villarreal, and R. Torres, Peptides: A Package for Data Mining of Antimicrobial Peptides, The R Journal, vol.7, issue.1, p.4, 2015.

F. S. Collins, M. Morgan, and A. &amp;patrinos, The Human Genome Project: Lessons from Large-Scale Biology, Science, vol.300, issue.5617, pp.286-290, 2003.

, Finishing the euchromatic sequence of the human genome, Nature, vol.431, issue.7011, pp.931-945, 2004.

M. R. Wilkins, J. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-smith et al., Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It, Biotechnology and Genetic Engineering Reviews, vol.13, issue.1, pp.19-50, 1996.

P. Edman, E. Högfeldt, L. G. Sillén, and P. Kinell, Method for Determination of the Amino Acid Sequence in Peptides., Acta Chemica Scandinavica, vol.4, pp.283-293, 1950.

M. Bantscheff, S. Lemeer, M. M. Savitski, and B. Kuster, Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present, Analytical and Bioanalytical Chemistry, vol.404, issue.4, pp.939-965, 2012.

M. H. Simonian and J. A. Smith, Spectrophotometric and Colorimetric Determination of Protein Concentration, Current Protocols in Molecular Biology, vol.76, issue.1, 2006.

B. J. Olson and J. Markwell, Assays for Determination of Protein Concentration, Current Protocols in Protein Science, pp.3.4.1-3.4.29, 2007.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.

B. K. Van-weemen, A. M. Bosch, E. C. Dawson, and A. H. Schuurs, ENZYME-IMMUNOASSAY OF STEROIDS: POSSIBILITIES AND PITFALLS, Hormonal Steroids, vol.11, pp.147-151, 1979.

R. M. Lequin, Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA), Clinical Chemistry, vol.51, issue.12, pp.2415-2418, 2005.

R. M. Lequin, Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA), Clinical Chemistry, vol.51, issue.12, pp.2415-2418, 2005.

R. D. Pedde, H. Li, C. H. Borchers, and M. Akbari, Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics, Trends in Biotechnology, vol.35, issue.10, pp.954-970, 2017.

P. H. O&apos;farrell, High Resolutio T o-Dimensional Electrophoresis of Proteins, The Journal of biological biochemistry, 1975.

A. Görg, W. Weiss, and M. J. Dunn, Current two-dimensional electrophoresis technology for proteomics, PROTEOMICS, vol.4, issue.12, pp.3665-3685, 2004.

B. Schilling, C. B. Yoo, C. J. Collins, and B. W. Gibson, Determining cysteine oxidation status using differential alkylation, International Journal of Mass Spectrometry, vol.236, issue.1-3, pp.117-127, 2004.

H. Wang and S. Hanash, Mass spectrometry based proteomics for absolute quantification of proteins from tumor cells, Methods, vol.81, pp.34-40, 2015.

Y. Zhang, B. R. Fonslow, B. Shan, M. Baek, and J. R. Yates, Protein Analysis by Shotgun/Bottom-up Proteomics, Chemical Reviews, vol.113, issue.4, pp.2343-2394, 2013.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.507, issue.7491, pp.181-189, 2014.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, issue.7101, pp.368-373, 2006.

A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.244-248, 1990.

, Organ-on-a-Chip Platforms for Drug Delivery and Cell Characterization: A Review, Sensors and Materials, vol.1, p.1, 2015.

H. Becker and C. Gärtner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.21, issue.1, pp.12-26, 2000.

D. Shalon, S. J. Smith, and P. O. Brown, A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization., Genome Research, vol.6, issue.7, pp.639-645, 1996.

B. T. Chait, CHEMISTRY: Mass Spectrometry: Bottom-Up or Top-Down?, Science, vol.314, issue.5796, pp.65-66, 2006.

K. A. Brown, B. Chen, T. M. Guardado-alvarez, Z. Lin, L. Hwang et al., A photocleavable surfactant for top-down proteomics, Nature Methods, vol.16, issue.5, pp.417-420, 2019.

F. Lanucara and C. E. Eyers, Top-down mass spectrometry for the analysis of combinatorial post-translational modifications, Mass Spectrometry Reviews, vol.32, issue.1, pp.27-42, 2012.

J. M. Ginter, F. Zhou, and M. V. Johnston, Generating protein sequence tags by combining cone and conventional collision induced dissociation in a quadrupole time-of-flight mass spectrometer, Journal of the American Society for Mass Spectrometry, vol.15, issue.10, pp.1478-1486, 2004.

A. A. Doucette, J. C. Tran, M. J. Wall, and S. Fitzsimmons, Intact proteome fractionation strategies compatible with mass spectrometry, Expert Review of Proteomics, vol.8, issue.6, pp.787-800, 2011.

B. Chen, K. A. Brown, Z. Lin, and Y. Ge, Top-Down Proteomics: Ready for Prime Time?, Analytical Chemistry, vol.90, issue.1, pp.110-127, 2017.

K. Biemann, Appendix 5. Nomenclature for peptide fragment ions (positive ions), Mass Spectrometry, vol.193, pp.886-887, 1990.

V. Vidova and Z. Spacil, A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition, Analytica Chimica Acta, vol.964, pp.7-23, 2017.

M. Blein-nicolas and M. Zivy, Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1864, issue.8, pp.883-895, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01532597

L. I. Leichert, F. Gehrke, H. V. Gudiseva, T. Blackwell, M. Ilbert et al., Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proceedings of the National Academy of Sciences, vol.105, issue.24, pp.8197-8202, 2008.

S. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.1, issue.5, pp.376-386, 2002.

T. Werner, I. Becher, G. Sweetman, C. Doce, M. M. Savitski et al., High-Resolution Enabled TMT 8-plexing, Analytical Chemistry, vol.84, issue.16, pp.7188-7194, 2012.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nature Protocols, vol.11, issue.12, pp.2301-2319, 2016.

D. T. Hess, A. Matsumoto, S. Kim, H. E. Marshall, and J. S. Stamler, Protein S-nitrosylation: purview and parameters, Nature Reviews Molecular Cell Biology, vol.6, issue.2, pp.150-166, 2005.

L. B. Poole, The basics of thiols and cysteines in redox biology and chemistry, Free Radical Biology and Medicine, vol.80, pp.148-157, 2015.

G. Chiappetta, S. Ndiaye, A. Igbaria, C. Kumar, J. Vinh et al., Proteome Screens for Cys Residues Oxidation, Methods in Enzymology, vol.473, pp.199-216, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539860

N. Lion, T. C. Rohner, L. Dayon, I. L. Arnaud, E. Damoc et al., Microfluidic systems in proteomics, ELECTROPHORESIS, vol.24, issue.21, pp.3533-3562, 2003.

I. Hwang, S. Lee, S. Shin, Y. Lee, and J. Lee, Flow characterization of valveless micropump using driving equivalent moment: theory and experiments, Microfluidics and Nanofluidics, vol.5, issue.6, pp.795-807, 2008.

M. R. Hossan, D. Dutta, N. Islam, and P. Dutta, Review: Electric field driven pumping in microfluidic device, ELECTROPHORESIS, vol.39, issue.5-6, pp.702-731, 2017.

V. Tesa, . Pressure, and . Microfluidics, , p.13, 2004.

M. Gustafsson, D. Hirschberg, C. Palmberg, H. Jörnvall, and T. Bergman, Integrated Sample Preparation and MALDI Mass Spectrometry on a Microfluidic Compact Disk, Analytical Chemistry, vol.76, issue.2, pp.345-350, 2004.

J. Fan, S. Li, Z. Wu, and Z. Chen, Diffusion and mixing in microfluidic devices, Microfluidics for Pharmaceutical Applications, pp.79-100, 2019.

S. Takayama, E. Ostuni, P. Leduc, K. Naruse, D. E. Ingber et al., Selective Chemical Treatment of Cellular Microdomains Using Multiple Laminar Streams, Chemistry & Biology, vol.10, issue.2, pp.123-130, 2003.

Y. K. Suh and S. Kang, A Review on Mixing in Microfluidics, Micromachines, vol.1, issue.3, pp.82-111, 2010.

D. Janasek, J. Franzke, and A. Manz, Scaling and the design of miniaturized chemical-analysis systems, Nature, vol.442, issue.7101, pp.374-380, 2006.

J. Voldman, M. L. Gray, and M. A. Schmidt, Microfabrication in Biology and Medicine, Annual Review of Biomedical Engineering, vol.1, issue.1, pp.401-425, 1999.

M. Farré, L. Kantiani, and D. M. Barceló, Microfluidic Devices, Chemical Analysis of Food: Techniques and Applications, pp.177-217, 2012.

G. M. Whitesides and A. D. Stroock, Flexible Methods for Microfluidics, Physics Today, vol.54, issue.6, pp.42-48, 2001.

, Cleanroom Classification Standards, Cleanroom Technology, pp.21-36

J. C. Mcdonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, vol.21, issue.1, pp.27-40, 2000.

G. O. Phillips, Cell and Tissue Banking, vol.1, issue.1, pp.27-40, 2000.

I. Wong and C. Ho, Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices, Microfluidics and Nanofluidics, vol.7, issue.3, 2009.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Soft Lithography in Biology and Biochemistry, Annual Review of Biomedical Engineering, vol.3, issue.1, pp.335-373, 2001.

F. Audoin-rouzeau, Chapitre III. Les successeurs : l'étude du bacille et des puces, Les chemins de la peste, pp.31-57

J. Deval, T. A. Umali, E. H. Lan, B. Dunn, and C. Ho, Reconfigurable hydrophobic/hydrophilic surfaces in microelectromechanical systems (MEMS), Journal of Micromechanics and Microengineering, vol.14, issue.1, pp.91-95, 2003.

B. Huang, H. Wu, S. N. Kim, and R. N. Zare, Coating of poly(dimethylsiloxane) with n-dodecyl-?-d-maltoside to minimize nonspecific protein adsorption, Lab on a Chip, vol.5, issue.10, p.1005, 2005.

K. Boxshall, M. Wu, Z. Cui, Z. Cui, J. F. Watts et al., Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor, Surface and Interface Analysis, vol.38, issue.4, pp.198-201, 2006.

V. Sharma, M. Dhayal, . Govind, S. M. Shivaprasad, and S. C. Jain, Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications, Vacuum, vol.81, issue.9, pp.1094-1100, 2007.

G. Sui, J. Wang, C. Lee, W. Lu, S. P. Lee et al., Solution-Phase Surface Modification in Intact Poly(dimethylsiloxane) Microfluidic Channels, Analytical Chemistry, vol.78, issue.15, pp.5543-5551, 2006.

J. H. Chan, A. T. Timperman, D. Qin, and R. Aebersold, Microfabricated Polymer Devices for Automated Sample Delivery of Peptides for Analysis by Electrospray Ionization Tandem Mass Spectrometry, Analytical Chemistry, vol.71, issue.20, pp.4437-4444, 1999.

T. C. Rohner, J. S. Rossier, and H. H. Girault, Polymer Microspray with an Integrated Thick-Film Microelectrode, Analytical Chemistry, vol.73, issue.22, pp.5353-5357, 2001.

D. L. Devoe and C. S. Lee, Microfluidic technologies for MALDI-MS in proteomics, ELECTROPHORESIS, vol.27, issue.18, pp.3559-3568, 2006.

E. Verpoorte, Microfluidic chips for clinical and forensic analysis, ELECTROPHORESIS, vol.23, issue.5, pp.677-712, 2002.

S. L. Freire and A. R. Wheeler, Proteome-on-a-chip: Mirage, or on the horizon?, Lab on a Chip, vol.6, issue.11, p.1415, 2006.

Y. Wang, J. W. Cooper, C. S. Lee, and D. L. Devoe, Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes, Lab on a Chip, vol.4, issue.4, p.363, 2004.

C. Wang, A. B. Jemere, and D. J. Harrison, Multifunctional protein processing chip with integrated digestion, solid-phase extraction, separation and electrospray, ELECTROPHORESIS, vol.31, issue.22, pp.3703-3710, 2010.

C. Dietze, T. Scholl, S. Ohla, J. Appun, C. Schneider et al., Rapid prototyping of microfluidic chips for dead-volume-free MS coupling, Analytical and Bioanalytical Chemistry, vol.407, issue.29, pp.8735-8743, 2015.

J. Kim and D. R. Knapp, Microfabrication of Electrospray Ionization Emitters in Polydimethylsiloxane Microfluidic Devices Using a Self-Aligning Assembly System, Micro Total Analysis Systems 2001, pp.333-334, 2001.

M. Kuljanin, D. Z. Dieters-castator, D. A. Hess, L. Postovit, and G. A. Lajoie, Comparison of sample preparation techniques for large-scale proteomics, PROTEOMICS, vol.17, issue.1-2, p.1600337, 2017.

T. Chao and N. Hansmeier, Microfluidic devices for high-throughput proteome analyses, PROTEOMICS, vol.13, issue.3-4, pp.467-479, 2012.

W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology, ELECTROPHORESIS, vol.26, issue.19, pp.3689-3696, 2005.

J. Kim, S. Hee-jang, G. Jia, J. V. Zoval, N. A. Da-silva et al., Cell lysis on a microfluidic CD (compact disc), Lab on a Chip, vol.4, issue.5, p.516, 2004.

L. Nan, Z. Jiang, and X. Wei, Emerging microfluidic devices for cell lysis: a review, Lab on a Chip, vol.14, issue.6, p.1060, 2014.

R. S. Foote, J. Khandurina, S. C. Jacobson, and J. M. Ramsey, Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes, Analytical Chemistry, vol.77, issue.1, pp.57-63, 2005.

B. Jung, R. Bharadwaj, and J. G. Santiago, Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis, ELECTROPHORESIS, vol.24, issue.1920, pp.3476-3483, 2003.

M. Ethier, W. Hou, H. S. Duewel, and D. Figeys, The Proteomic Reactor: A Microfluidic Device for Processing Minute Amounts of Protein Prior to Mass Spectrometry Analysis, Journal of Proteome Research, vol.5, issue.10, pp.2754-2759, 2006.

S. Hosic, S. K. Murthy, and A. N. Koppes, Microfluidic Sample Preparation for Single Cell Analysis, Analytical Chemistry, vol.88, issue.1, pp.354-380, 2015.

L. Switzar, M. Giera, and W. M. Niessen, Protein Digestion: An Overview of the Available Techniques and Recent Developments, Journal of Proteome Research, vol.12, issue.3, pp.1067-1077, 2013.

J. Ji, L. Nie, L. Qiao, Y. Li, L. Guo et al., Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry, Lab on a Chip, vol.12, issue.15, p.2625, 2012.

W. C. Nelson, I. Peng, G. Lee, J. A. Loo, R. L. Garrell et al., Incubated Protein Reduction and Digestion on an Electrowetting-on-Dielectric Digital Microfluidic Chip for MALDI-MS, Analytical Chemistry, vol.82, issue.23, pp.9932-9937, 2010.

A. Kecskemeti, C. Nagy, E. Csosz, G. Kallo, and A. Gaspar, The application of a microfluidic reactor including spontaneously adsorbed trypsin for rapid protein digestion of human tear samples, PROTEOMICS - Clinical Applications, vol.11, issue.11-12, p.1700055, 2017.

W. Qin, Z. Song, C. Fan, W. Zhang, Y. Cai et al., Trypsin Immobilization on Hairy Polymer Chains Hybrid Magnetic Nanoparticles for Ultra Fast, Highly Efficient Proteome Digestion, Facile 18O Labeling and Absolute Protein Quantification, Analytical Chemistry, vol.84, issue.7, pp.3138-3144, 2012.

J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, Integrated Microfluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification, Analytical Chemistry, vol.73, issue.11, pp.2648-2655, 2001.

G. Cheng, S. Hao, X. Yu, and S. Zheng, Nanostructured microfluidic digestion system for rapid high-performance proteolysis, Lab on a Chip, vol.15, issue.3, pp.650-654, 2015.

R. Tian, X. D. Hoa, J. Lambert, J. P. Pezacki, T. Veres et al., Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying Protein?Protein Interactions, Analytical Chemistry, vol.83, issue.11, pp.4095-4102, 2011.

A. Kecskemeti and A. Gaspar, Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion, Talanta, vol.166, pp.275-283, 2017.

Q. Chen, G. Yan, M. Gao, and X. Zhang, Ultrasensitive Proteome Profiling for 100 Living Cells by Direct Cell Injection, Online Digestion and Nano-LC-MS/MS Analysis, Analytical Chemistry, vol.87, issue.13, pp.6674-6680, 2015.

R. D. Oleschuk, L. L. Shultz-lockyear, Y. Ning, and D. J. Harrison, Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, vol.72, issue.3, pp.585-590, 2000.

A. P. Dahlin, S. K. Bergström, P. E. Andrén, K. E. Markides, and J. Bergquist, Poly(dimethylsiloxane)-Based Microchip for Two-Dimensional Solid-Phase Extraction-Capillary Electrophoresis with an Integrated Electrospray Emitter Tip, Analytical Chemistry, vol.77, issue.16, pp.5356-5363, 2005.

J. D. Ramsey and G. E. Collins, Integrated Microfluidic Device for Solid-Phase Extraction Coupled to Micellar Electrokinetic Chromatography Separation, Analytical Chemistry, vol.77, issue.20, pp.6664-6670, 2005.

C. Yu, M. H. Davey, F. Svec, and J. M. Fréchet, Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device, Analytical Chemistry, vol.73, issue.21, pp.5088-5096, 2001.

F. Xiang, Y. Lin, J. Wen, D. W. Matson, and R. D. Smith, An Integrated Microfabricated Device for Dual Microdialysis and On-Line ESI-Ion Trap Mass Spectrometry for Analysis of Complex Biological Samples, Analytical Chemistry, vol.71, issue.8, pp.1485-1490, 1999.

N. Lion, J. Gellon, H. Jensen, and H. H. Girault, On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry, Journal of Chromatography A, vol.1003, issue.1-2, pp.11-19, 2003.

H. Yin, K. Killeen, R. Brennen, D. Sobek, M. Werlich et al., Microfluidic Chip for Peptide Analysis with an Integrated HPLC Column, Sample Enrichment Column, and Nanoelectrospray Tip, Analytical Chemistry, vol.77, issue.2, pp.527-533, 2005.

D. Chatterjee, A. J. Ytterberg, S. U. Son, J. A. Loo, and R. L. Garrell, Integration of Protein Processing Steps on a Droplet Microfluidics Platform for MALDI-MS Analysis, Analytical Chemistry, vol.82, issue.5, pp.2095-2101, 2010.

L. Jiang, L. He, and M. Fountoulakis, Comparison of protein precipitation methods for sample preparation prior to proteomic analysis, Journal of Chromatography A, vol.1023, issue.2, pp.317-320, 2004.

J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nature Methods, vol.6, issue.5, pp.359-362, 2009.

Y. Zhu, G. Clair, W. B. Chrisler, Y. Shen, R. Zhao et al., Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS, Angewandte Chemie International Edition, vol.57, issue.38, pp.12370-12374, 2018.

S. R. Wilson, T. Vehus, H. S. Berg, and E. Lundanes, Nano-LC in proteomics: recent advances and approaches, Bioanalysis, vol.7, issue.14, pp.1799-1815, 2015.

Y. Shen, R. Zhao, S. J. Berger, G. A. Anderson, N. Rodriguez et al., High-Efficiency Nanoscale Liquid Chromatography Coupled On-Line with Mass Spectrometry Using Nanoelectrospray Ionization for Proteomics, Analytical Chemistry, vol.74, issue.16, pp.4235-4249, 2002.

M. Wilm, A. Shevchenko, T. Houthaeve, S. Breit, L. Schweigerer et al., Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry, Nature, vol.379, issue.6564, pp.466-469, 1996.

R. A. Zubarev and A. Makarov, Orbitrap Mass Spectrometry, Analytical Chemistry, vol.85, issue.11, pp.5288-5296, 2013.

R. A. Scheltema, J. Hauschild, O. Lange, D. Hornburg, E. Denisov et al., The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer, Molecular & Cellular Proteomics, vol.13, issue.12, pp.3698-3708, 2014.

E. L. Huang, P. D. Piehowski, D. J. Orton, R. J. Moore, W. Qian et al., SNaPP: Simplified Nanoproteomics Platform for Reproducible Global Proteomic Analysis of Nanogram Protein Quantities, Endocrinology, vol.157, issue.3, pp.1307-1314, 2016.

K. Xu, Y. Liang, P. D. Piehowski, M. Dou, K. C. Schwarz et al., Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells, Analytical and Bioanalytical Chemistry, vol.411, issue.19, pp.4587-4596, 2018.

Y. Li, L. Yan, Y. Liu, K. Qian, B. Liu et al., High-efficiency nano/micro-reactors for protein analysis, RSC Advances, vol.5, issue.2, pp.1331-1342, 2015.

N. Gasilova, L. Qiao, D. Momotenko, M. R. Pourhaghighi, and H. H. Girault, Microchip Emitter for Solid-Phase Extraction?Gradient Elution?Mass Spectrometry, Analytical Chemistry, vol.85, issue.13, pp.6254-6263, 2013.

A. Zougman, P. J. Selby, and R. E. Banks, Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis, PROTEOMICS, vol.14, issue.9, pp.1006-1000, 2014.

K. R. Ludwig, M. M. Schroll, and A. B. Hummon, Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up Proteomic Studies, Journal of Proteome Research, vol.17, issue.7, pp.2480-2490, 2018.

T. Trantidou, Y. Elani, E. Parsons, and O. Ces, Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition, Microsystems & Nanoengineering, vol.3, issue.1, p.16091, 2017.

C. Wu, Y. Liang, Z. Liang, L. Zhang, and Y. Zhang, Ethane-bridged hybrid monoliths with well-defined mesoporosity and great stability for high-performance peptide separation, Analytica Chimica Acta, vol.1019, pp.128-134, 2018.

S. Hosic, S. K. Murthy, and A. N. Koppes, Microfluidic Sample Preparation for Single Cell Analysis, Analytical Chemistry, vol.88, issue.1, pp.354-380, 2015.

Y. Yang, N. Zheng, W. Wang, X. Zhao, Y. Zhang et al., N-glycosylation proteomic characterization and cross-species comparison of milk fat globule membrane proteins from mammals, PROTEOMICS, vol.16, issue.21, pp.2792-2800, 2016.

, LAS VEGAS SANDS CORP., a Nevada corporation, Plaintiff, v. UKNOWN REGISTRANTS OF www.wn0000.com, www.wn1111.com, www.wn2222.com, www.wn3333.com, www.wn4444.com, www.wn5555.com, www.wn6666.com, www.wn7777.com, www.wn8888.com, www.wn9999.com, www.112211.com, www.4456888.com, www.4489888.com, www.001148.com, and www.2289888.com, Defendants., Gaming Law Review and Economics, vol.20, issue.10, pp.859-868, 2016.

T. E. Thingholm, O. N. Jensen, and M. R. Larsen, Analytical strategies for phosphoproteomics, PROTEOMICS, vol.9, issue.6, pp.1451-1468, 2009.

B. J. Olson and J. Markwell, Assays for Determination of Protein Concentration, Current Protocols in Protein Science, pp.3.4.1-3.4.29, 2007.

P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner et al., Measurement of protein using bicinchoninic acid, Analytical Biochemistry, vol.150, issue.1, pp.76-85, 1985.

S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.6940-6945, 2003.

H. Sies, Role of reactive oxygen species in biological processes, Klinische Wochenschrift, vol.69, issue.21-23, pp.965-968, 1991.

V. N. Luk and A. R. Wheeler, A Digital Microfluidic Approach to Proteomic Sample Processing, Analytical Chemistry, vol.81, issue.11, pp.4524-4530, 2009.

P. Liuni, T. Rob, and D. J. Wilson, A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization, Rapid Communications in Mass Spectrometry, vol.24, issue.3, pp.315-320, 2010.

R. Tian, X. D. Hoa, J. Lambert, J. P. Pezacki, T. Veres et al., Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying Protein?Protein Interactions, Analytical Chemistry, vol.83, issue.11, pp.4095-4102, 2011.

R. Matthiesen and J. Bunkenborg, Introduction to Mass Spectrometry-Based Proteomics, Mass Spectrometry Data Analysis in Proteomics, vol.1007, pp.1-45, 2013.

S. K. Vashist and J. H. Luong, Immunoassays, Handbook of Immunoassay Technologies, pp.1-18, 2018.

K. S. Lilley and D. B. Friedman, All about DIGE: quantification technology for differential-display 2D-gel proteomics, Expert Review of Proteomics, vol.1, issue.4, pp.401-409, 2004.

P. E. Geyer, L. M. Holdt, D. Teupser, and M. Mann, Revisiting biomarker discovery by plasma proteomics, Molecular Systems Biology, vol.13, issue.9, p.942, 2017.

C. K. Frese, A. F. Altelaar, M. L. Hennrich, D. Nolting, M. Zeller et al., Improved Peptide Identification by Targeted Fragmentation Using CID, HCD and ETD on an LTQ-Orbitrap Velos, Journal of Proteome Research, vol.10, issue.5, pp.2377-2388, 2011.

S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nature Biotechnology, vol.17, issue.10, pp.994-999, 1999.

, Graphique 3.15. Répartition des travailleurs selon la durée de travail hebdomadaire dans une échantillon de pays de l?OCDE en 2012 (%)