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Professeur, École Nationale Supérieure
des Mines de Saint-Étienne Président
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the same love of beer as me. Léa, when I first met you, you were my colleague’s girlfriend.
Now, I do believe that I can truly call you friend. Thank you for all the good times we
had together smoking cigarettes, eating Indian food and talking metaphysics. You are a
beautiful person with so much to offer the world and I know you know it and I think that
that’s great. Both of you are friends that I don’t want to lose. My single biggest regret in
leaving the CEMEF is not being able to see you two on a daily basis.

I would also like to thank my Mom. Mom, you know I would never have been able to
do this without you. I want to thank you for the drive you taught me to have and the
creativity you’ve instilled in me all these years. It hasn’t always been easy to be your son,
but the things you’ve taught me over the years are largely what got me through this thesis
work and I can’t thank you enough. I also want to thank you for you’re unrelenting pride
in my work and career path and for caring enough to try to understand what the work is
about. You’re an amazing person and I’m very lucky to have you.

Romane, my love. You know that this thesis would never have happened the way it
did if it wasn’t for you. Thank you for always being there, always contributing, always
taking up my problems as “our” problems and not making any distinctions between your
well being and mine. Thank you for sharing your life with me, the laughs and the tears,
the joy and the anger, the good and the bad and everything in between. You are really
the only one who knew how difficult these three years have been and you are also the one
who has always thought about my well being throughout. It’s a good thing you were here
to tell me when to stop working and have fun because if not I fear I would have never
made it. I’m so grateful to have such a special person in my life and I wouldn’t have it
any other way.

2



Introduction

Since the advent of high performance computing, or HPC for short, our computing ca-
pabilities have been growing exponentially over time. The HPC market has followed this
trend, going from a 5 billion dollar industry in the year 2000 to a 21 billion dollar market
in 2015 [1]. The applications in the R&D space are multifold, going from the most precise
simulations of the human brain (Human Brain Project) to the understanding of graphene’s
properties and potential (Graphene Flagship). This growth is an indicator not only of the
improvements in the technology underlying the computing infrastructure (both hardware
and software), but also of the democratization of its use. Computer models have become
integral actors in the design, validation and manufacturing of products ranging from au-
tomobiles to detergents. The industrial leaders in almost every sector are now using HPC
technologies to improve their products as well as their processes.

Perhaps no industry is more in need of advanced computer models than the aerospace
sector. Indeed, airplane manufacturers face multi-physics problems that combine elements
of fluid-mechanics, thermal efficiency, energy conversion, acoustics, structural mechanics,
metallurgy and many more. Engineers are faced with all the constraints that the physical
laws impose naturally on flight along with the safety regulations and international norms
necessary to set a standard for passenger transport when improving the performance of
aircraft. The parameter space to be explored while designing an airplane is also enormous,
every piece of the machine encompasses many variables. As such, the number of possible
design iterations, which is on par with the number of points in the parameter space, is
extensive. Moreover, the strict minimum number of validating tests, of the order of the
number of regulatory and physical constraints, that must be run on each design is also
substantial. If physical experiments had to be run on each prototype in order to evaluate
its relevance, new technologies would be far and few in between and the costs would be
monumental. Therefore, models are of immense importance in the design process.

The possibilities afforded to industry, and particularly the aerospace sector, by HPC
technologies are the abilities to create more complex models that can be solved in shorter
times. Indeed, companies are integrating powerful computer modeling approaches not only
into product design, but also into process design. Massive gains in both time and energy
can be obtained with an optimized manufacturing process. However, also as a consequence
of the growing requirements on optimized components from more complicated design loops,
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the requirements on the manufacturing processes are becoming more stringent. As the
specifications list for individual pieces of complex machinery become longer, the margin
of error in the manufacturing process is becoming thinner.

Typically, the nickel based superalloy disks in aircraft motors are forged components
that follow complex processing routes in order to meet both mechanical strength and
thermal resistance requirements at the hearts of turbines. The dimensions of the disks
must be controlled throughout the process of heating, deforming and cooling the material
potentially in multiple combinations of these three steps. However, as the prescriptions
on the properties of the disks multiply in order to meet the demands of the next genera-
tions of aircraft motors, the parameter space of the forging process has remained largely
untouched as being multiple combinations of heat and force. As such, disk manufactur-
ers are looking to fine-tune their processes in order to produce components with better
properties. However, the link between the processing of a forged metallic component and
its final properties is known to be controlled for a large part by its microstructure. This
is the general goal of the OPALE industrial chair co-financed by the French National Re-
search Agency (ANR) and the SAFRAN group. In order to systematically optimize the
manufacturing process of nickel based superalloys numerical methods and experimental
studies must work hand in hand. This work is part of the numerical aspect of the OPALE
project.

The evolution of a metallic material’s microstructure along its manufacture influences
almost all of its final properties (yield strength, conductivity, elastic limit, corrosion resis-
tance, etc.). However, both the exact property/microstructure and microstructure/process
relationships are, in themselves, active fields of research with few definite answers and
many unanswered questions. For example, while it is known that materials with finer mi-
crostructures tend to last longer under fatigue loading, the exact role of secondary phases
in both crack initiation and propagation is still the subject of many studies [2]. Here,
computer models of crystal plasticity are already contributing elements to try and answer
these questions in real-world applications [3–5]. The total effects of deformation and heat-
ing on metallic microstructures remain also relatively unknown even though certain results
are reproducible. Here too, HPC technologies can have a great impact on the prediction
of microstructures and subsequent parametrization of manufacturing chains or in testing
working hypotheses of the mechanisms at play [6–10]. However, even if one chooses to
use the tools of HPC in order to improve design cycles and gain both time and energy,
a numerical framework is only as good as the predictive power of the physical laws it is
based on.

This is the spirit and motivation for the work accomplished during this study and of
which we can decompose the title in order to understand more deeply the elements and
different components :

Towards the full field modeling and simulation of annealing twins using a
Finite Element Level Set method.
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where the words are color coded into three distinct categories: modeling, computing
and physical metallurgy. As such, this thesis is truly at the crossroads in between three
domains, all equally important, that will interplay with each other in order to form a
coherent view of the goal of this project.

First, one may understand annealing twin boundaries as special crystalline defects in
polycrystals which are found in great number in nickel based superalloys. While certain
studies present these defects as strengthening elements of the microstructure [11–14], oth-
ers present these defects as preferential sites of crack nucleation and general degradation
of the material [15–17]. In any case, their presence in material microstructures plays a def-
inite role in the final properties of machine components and thus are of general interest to
the engineering community. However, physical models for their appearance and evolution
during material processing have long remained elusive despite a plethora of phenomenolog-
ical data [18–31]. As such, this work is focused on applying specific mathematical modeling
tools along with fundamental physical principles and powerful numerical methods in order
to contribute to the understanding of the evolution of these defects with respect to given
process parameters. Also, the computer models created using this approach can serve as
a testing ground for a number of hypotheses related to the nucleation of annealing twins
as well as their particular morphologies and advance the fundamental understanding of
their role in material processing.

From this initial analysis, the work program of this study can be deciphered:

• construct predictive mathematical models, starting from physical principles and re-
sults in the domain of physical metallurgy, capable of describing the behavior of the
annealing twin during material processing,

• implement these models in a Finite Element Level Set framework such that their
relevance and validity may be tested and compared to the current state of the art,

• and use these computer models, in a preliminary approach, to glean insights into the
role that annealing twins may play during the processing of nickel based superalloys.

Of course, this program is rather ambitious, and by no means does this work aspire
to explain everything there is to explain about annealing twins. The focus here is rather
to build a sound physical and mathematical modeling approach capable of considering
the particularity of the twin boundary and proposing certain application cases that act as
proofs of concept moving forward. Indeed, this is also the structure given to this document.

The choice made here to concentrate on the annealing aspect of the processing path,
independently of the deformation aspect, is one of necessity. The physical mechanisms
that are attributed to the deformation of crystalline materials are numerous and usually
considered separately from those that take place during heating or cooling even if they
may couple during the deformation of hot matter [32]. Indeed, the coupled mechanisms
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are of such complexity that the choice is made to concentrate on a subset of the phenom-
ena, considered independently, occurring during the forming of a component in order to
make progress in studying the whole. The hope is that when the physical models cre-
ated separately from each other for all the phenomena are then combined coherently, this
will constitute an accurate enough representative of reality. The first chapter reflects this
choice and acts as a repository of information regarding the physical processes that take
place during the annealing of polycrystalline media, the proper definition of the annealing
twin and its particularities and the tools commonly used to model these processes.

The second chapter serves to give both the mathematical concepts and physical foun-
dation used to create a model for the polycrystal as well as derive the proposed equations
that guide the behavior of grain boundaries in crystalline media. Therefore, the second
chapter contains perhaps the most important contribution of this study including the
inception of the proposed mathematical model from which the subsequent chapters are
inspired. Although the explanation of the mathematics used to generate this model is an
attempt to be thorough, given the constraints of writing a coherent manuscript, for a full
understanding of both the terms and symbols used in this chapter the reader is referred to
the numerous monographs on differential geometry of which a few are listed here [33,34].

The third and fourth chapters are direct applications of the theory developed in the
second. They constitute numerical implementations of the mathematical model in specific
cases. As such, these chapters are also where the mathematical model finds validation
in the form of computer models that give predictions that are coherent with physical
observations and analytical expansions generally regarded as true in the literature. An
important aspect of these computer models is their “full field” nature often opposed to
“mean field” models. As such, the approach taken here is to attempt an idealization of
the microstructural scale in a continuum mechanics style and to actually simulate the
dynamics of the created idealized objects individually and throughout space-time. In
contrast, mean field models usually also idealize the microstructure but then proceed to
simulate evolutions of statistical variables such as average quantities or the distributions
of certain variables. Therefore, full field models are usually more predictive but also much
more costly in terms of computational resources. In these two chapters the differentiation
between “heterogeneous” and “anisotropic” models of polycrystals will also be important.
Heterogeneous polycrystals will cover microstructures where the properties of each grain
boundary are homogenized even if these properties may vary when comparing interface
between each other. Anisotropic boundaries, however, allow for the variation of these
properties along interfaces as well as in between them leading to a more general class of
objects.

The fifth and final chapter serves to act as a primer for the predictive qualities of these
computer models when applied to more “real-world” situations. Both the limits and the
capacities of the developed tools are discussed with regards to the type of information one
wishes to quantitatively predict about a microstructural evolution during annealing. Of
course, one very real limitation in the predictions given by these models is not intrinsic to
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the method at all but comes from the extrinsic data used to parametrize them. Indeed,
the exact properties of all grain boundaries, including the twin boundary, is a subject
of much discussion in the current literature [35–43]. As such, the data used to param-
eterize microstructural evolution models, especially models that attribute anisotropic or
heterogeneous properties to boundaries, are often generated from some sort of combina-
tion of experimental data, simulated data and “best guesses” of the parties doing the
parametrizations. Even so, it is shown that certain qualitative aspects of microstructural
evolution, hypothesized from experimental observations, can be reproduced in certain con-
ditions. This shows rather clearly that these physical computer models can also be used
as research tools to both verify and disprove certain hypotheses of cause and effect.
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Introduction en Français

Les disques de turbine des parties chaudes d’un moteur d’avion sont souvent fait en
superalliage base nickel. L’optimisation des propriétés physiques de ces disques est un
processus contraignant qui passe par le choix adéquat du chemin de mise en forme du
composant. Ce chemin thermomécanique est, en grande partie, responsable de la mi-
crostructure de la matère forgée et donc des performances en service des pièces. Par-
contre, le lien procédé/microstructure est une relation complexe et couplée. La chaire
industrielle OPALE, dont ce projet fait partie, a été menée conjointement avec le groupe
SAFRAN, fabriquant de moteurs d’avion, pour proposer des gammes de forgeage op-
timisées pour les superalliages base nickel en partant de la connaissance actuelle des
phénomènes métallurgiques mis en jeu pendant les étapes de mise en forme.

Dans cette optique, les modèles numériques capables de simuler les évolutions de mi-
crostructures pendant les traitements thermomécaniques sont des outils essentiels pour les
ingénieurs de procédés métallurgiques. En effet, tout un ensemble de modèles, en champ
complet et en champ moyen, ont été développés par la communauté pour répondre à ce
besoin. Cependant, la grande majorité de ces outils font l’hypothèse d’une énergie de
joints de grains homogène dans la microstructure même si la cristallographie de la matière
impose le contraire. Sans prendre en compte les variations des propriétés de ces joints,
il est impossible pour ces modèles de simuler correctement certains phénomènes se pro-
duisant localement dans la microstructure. Le joint de macle, omniprésent dans la plupart
des microstructures forgées de superalliage base nickel, constitue un exemple parfait des
limitations des modèles homogènes à l’heure actuelle.

Pour reproduire les particularités du joint de macle dans les modèles numériques il
faut donc lever l’hypothèse d’homogénéité du joint de grains. Ce travail est donc dédié à
l’enrichissement du modèle level set éléments finis appliqué aux évolutions de microstruc-
tures. En effet, prendre en compte l’anisotropie de la densité énergétique des joints de
grains demande d’abord d’introduire les éléments de cristallographie nécéssaires dans le
champ complet. Aussi, il est possible que des forces supplémentaires agissant sur les joints
de grains se manifestent à cause de cette anisotropie. Ce travail consiste donc, dans un
premier temps, à revisiter les premiers principes liés aux évolutions microstructurales et
de les appliquer dans le cas anisotrope. Une fois le modèle complété, il doit être testé sur
des cas analytiques afin de vérifier la justesse de l’approche et en sonder les limites. Enfin,
certains cas applicatifs sont étudiés afin de souligner les capacités de la méthode dans des
cas plus réalistes.
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Chapter 1

Context

In order to begin modeling physical phenomena, the underlying experimental observations
and the state of the art of the domain must first be understood. The following sections
are devoted to not only describing the natural processes of interest in this work but also
defining the terminology that is given to these mechanisms so that readers may become
aware of the current state of knowledge of the field if they are not already. However, the
domain of “physical metallurgy”, which studies the physical properties of metals and their
alloys, is vast. The goal of these sections is not to give a comprehensive view of this subject,
but rather to introduce the natural systems at work during the heating and cooling of a
certain class of metals and alloys. The class of alloys that are of interest here, at least
in an initial approach, is that of “monophase” polycrystals as opposed to “multiphase”
polycrystals or single crystals in general. Monophase systems describe often idealized
versions of reality. Even so, under certain conditions of temperature, composition and
thermo-mechanical history, a significant number of metallic materials are in a monophase
state. Thus, monophase materials are chosen as the main topic of this work. Once
the physical aspects of annealing have been outlined, a certain number of models for
reproducing these mechanisms that have been developed in the literature will be described
and analyzed.

1.1 The microstructures of monophase metallic ma-

terials.

Although the etymology of the term “crystal” can be traced back to the ancient Greeks,
the first indirect measurements of the atomic structure of a crystal can be placed in 1912
in the work by Friedrich, Knipping and Laue who made the first observations of the
interaction between X-rays and structured matter [44]. Their findings, on the diffraction
of X-rays through certain materials, gave birth to the field of crystallography and thus our
modern notion of what is a crystal [45].
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Definition 1. A crystal structure is a state of matter characterized by the regular ar-
rangement of a unit motif over relatively large atomic distances.

In order to clarify this definition, some of the terminology must first be detailed. First,
the “unit motif” referred to can be any structuration of the atomic scale. As such, this
unit structure can be itself an atom, a molecule, a group of atoms, a protein, the motif
of a polymer, etc. The notion of “regular arrangement” holds within it the notion of a
symmetry of the whole structure. This symmetry can be described as translational, where
the unit motif may repeat itself periodically in given directions, or rotational, where the
crystal may look exactly the same in certain directions, or even mirror, where the structure
might be indistinguishable from the mirror image of itself. “Large” atomic distances
are distances that are orders of magnitude larger than the characteristic size of the unit
structure. This means that the crystallinity of the matter is not just a local characteristic
but a global one. Figure 1.1 is a diagram of a 2D crystal lattice where the unit structure
is the circle and the various symmetries are portrayed as operations on the lattice that
leave the entire structure unchanged. These symmetries are in reality what differentiates
crystal structures from each other.

Figure 1.1: 2D crystal lattice diagram of translational, rotational and mirror symmetries.

Almost the entirety of stable metallic matter comes in a crystal state. This means that
the “natural”, at least for the conditions of pressure and temperature found commonly on
earth, solid state of a metallic material is structured periodically. However, this symmetric
ordering at the atomic/“super-atomic” scale does not necessarily extend all the way to
the macroscopic scale except in so-called single crystal materials. There is notably one
intermediate scale of great interest for the material properties of metals and alloys which
is called the microstructure of the material [46]. This scale of the material, ranging
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potentially from a few nanometres to the millimeter, can be seen as a composition of
different crystallites or grains, regions of space with the structural periodicity characteristic
of a crystal, stuck together to form the bulk of the material called a polycrystal. Figure
1.2 illustrates this concept by considering different regions of space made out of the same
crystal structures oriented in different manners.

Figure 1.2: A 2D monophase microstructure diagram where the grains with the same
orientation are colored the same way (the spatial scale is not representative).

Indeed, the Figure 1.2 does not quite do justice to the richness of the most complex
real microstructures which might be composed of different phases, regions where the chem-
ical composition and crystal structure might change. However, considering “monophase”
systems allow us to consider materials made up of one phase, and therefore one crystal
structure, and as such operate in this simplistic view of the polycrystal microstructure.
Even so, certain metallic alloys, such as Inconel R© 718, a nickel based superalloy, can be
found in this monophase form as shown in Figure 1.3 under certain conditions. Some-
times, nickel based superalloys are actually processed in such a monophase state during
the forging process.

However, even as simple as one might want to consider monophase polycrystals, they
come with their own complex features. These objects can be classified as crystallographic
defects and constitute deviations from the perfectly periodic crystal structure. These
distortions come in three large geometric classes:

Point Defects associated to missing or extraneous atoms in the lattice arrangement gen-
erating a local disordering of the atomic structure.
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Figure 1.3: Electron Backscattered Diffraction (EBSD) map of a monophase Inconel R© 718
sample, provided by Alexis Nicolaÿ [47], in which the twin boundaries are shown in red,
the general grain boundaries are in black and the crystallites are colored according to their
crystallographic orientations.

Line Defects of which the largest group are called dislocations, which are locally struc-
tured distorsions in the crystal structure that generate elastic stress fields in the
nearby lattice.

Surface Defects the most prominent example being grain boundaries, structures created
when two crystallites with different crystallographic orientations meet.

Of course, the examples given are the most commonly discussed objects in the literature
and do not constitute an exhaustive list. For example, one could classify a triple line, the
meeting of three grain boundaries in three dimensions, as a line defect that does not
adhere to a dislocation type structure. Figure 1.4 illustrates examples of these of defects
projected into 2D planes of a crystal.

These defects and their distributions play a large role in the final properties of metallic
materials. Their concentration is the metric by which a polycrystal’s deviation from a
perfect crystal structure is quantified both globally and locally. For example, dislocation
densities in polycrystals are directly related to work hardening, the phenomenon by which
a metallic material becomes harder as it is deformed [46]. Grain boundaries implicitly
define the size of the grains in a material, the distribution of which can be related to
the yield strength of polycrystalline matter by the Hall-Petch effect [48]. As such, a
monophase material’s microstructure can truly be characterized by the spatial distribution
of crystallographic defects.
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Figure 1.4: Diagram of a vacancy, a dislocation and a grain boundary in two dimensions
where the neighboring units are in orange and the matrix is in blue while the geometric
aspect of the defect is in black.

Taking a more quantitative view of the microstructure, we can attempt to define the
energy of a defect as follows

Definition 2. The energy of a crystallographic defect is the work one must furnish in
order to insert this defect into an initially defect-free crystal structure.

Therefore, defining the ground state energy of a certain mass of perfect crystal G0 and
potentially calculating the energy of the same mass of crystal containing one defect Gd,
one may calculate the energy of the given defect ℵd as

ℵd = Gd −G0 (1.1)

While this definition is perfectly usable for point defects, the notion of an energy
density must be used for higher dimensional geometric defects. Indeed, line and surface
defects are ill-quantifiable in terms of number because they span certain regions of physical
space. As such, we may define more precisely the energy density ρd of a line or surface
defect as

ρd = lim
µ→0

Gd −G0

µ
(1.2)

where µ is the spatial measure of the defect (length if it spans a line and area if it
spans a surface). As such, one has the necessary notions to define the total energy of a
monophase polycrystal microstructure G as

G = G0 +
∑
p∈P

ℵp +
∑
l∈L

∫
l

ρldµl +
∑
s∈S

∫
s

ρsdµs (1.3)
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where P is the set of all point defects, L is the set of all line defects and S is the set
of all surface defects. Now even though most of the symbols in equation (1.3), have not
yet been properly defined, it serves the symbolic purpose to define the total energy of the
microstructure in terms of a sum of energies of individual defects.

However, there is a zoology of sub-classifications of all kinds of defects. These classes
may or may not follow the geometric categorization given here and can be broken down
into more and more specific sub-groups. For example, point defects can be decomposed
into vacancies, substitutional defects and interstitial defects. The interstitial group may
be sub-divided into interstitials that are made of different types of atoms present in the
nominal composition of the material or impurities that can be found in small quantities.
Dislocations can, schematically, be found in two extreme flavours, edge and screw. Each
of these groups can be hierarchically divided into multitudes of subgroups and so on.
Ultimately, the granularity with which one describes these defects is not so much a physical
choice but a modeling one. The sub-classification of these defects that one might use is
thus a reflection of both the model’s scale and its complexity.

For example, if one considers a model that represents all grain boundaries as equivalent
objects with the same properties, then this model would be incapable of differentiating
between the behaviors of physically different interfaces. Yet, in the most general cases and
close to the atomic scale, grain boundaries can be parameterized by thirteen independent
structural parameters [49]. In this work the goal is to generate a model capable of simu-
lating annealing twin boundaries as distinct objects from other types of grain boundaries.
As such, the first question to ask in this situation is what level of detail does our model
need in the description of the twin boundary? A reformulation of the question is what is
the minimum set of structural parameters of the grain boundary such that the annealing
twins can be successfully differentiated, at the scale of the polycrystal, from other grain
boundaries?

Taking into account the fact that target model is a microstructural model, and not
atomic or macroscopic, and that the properties of the grain boundaries must be measurable
using conventional experimental microscopy techniques, the five parameter description of
the grain boundary [49] is chosen.

Definition 3. The grain boundary space B can be parameterized by five independent pa-
rameters:

• three related to the misorientation of the grains on either side of the boundary,

• and two related to the inclination of the boundary plane.

Figure 1.5 illustrates the concept behind the five parameter description of the grain
boundary in 3D. Indeed, the misorientation of the boundary is defined by both the orien-
tation relationship of both neighboring grains and the symmetries of the base crystal. The
inclination of the boundary is then defined more locally by following the geometry of the
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Figure 1.5: 3D diagram of the five parameter description of the grain boundary Γ between
grains G1 and G2 with respective crystal orientations O1 and O2 with crystal frames C1

and C2 generating a misorientation M12 and an inclination vector n21 in the Ω space
equipped with a reference frame R.

interface with respect to the neighboring crystal structures. However, in order to introduce
these notions properly, their mathematical representations must be first understood [49].

Let Ω ⊂ R3 be the domain of the microstructure equipped with a reference frame
R ∈ R, with R the set of all possible frames of R3

R = {{x0, x1, x2} ∈ (R3)3|{x0, x1, x2} is an orthonormal basis of R3} (1.4)

(SO(3), ·) is the special orthogonal group equipped with its classical group operation.
The elements of this group can be represented by rotations in R3. Given an element
M ∈ SO(3), its action on any set of vectors {xi=1,...,n} ∈ (R3)n conserves both lengths,
angles and orientations between these vectors. As such, the action of M on any frame in
R is also a frame and thus R is closed under the action of any element of SO(3)

M ∈ SO(3) =⇒ M : R → R

Any crystal structure can be attributed a crystal frame C that serves to parametrize
the lattice positions of its unit motifs. However, in a polycrystal, the crystal frames of
each crystallite are all potentially oriented differently from each other in space. As such,
given the reference frame R and the crystal frame of any grain Cn ∈ R one can define the
orientation of the grain as follows

Definition 4. An orientation On of a grain with a crystal frame Cn ∈ R is an element
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of SO(3) such that

Cn = On(R) (1.5)

with R the reference frame.

However, this definition does not ensure the uniqueness of the description of the ori-
entation of a grain because of the symmetries of the crystal structure. These symmetries
naturally define a crystallographic equivalence relation ≡cry between frames in R. Let S
be the rotational symmetry group of the crystal defined as

S = {s ∈ SO(3)|s(C) ≡cry C, ∀C ∈ R}

As such, the crystallographic equivalence set [C] of a frame C ∈ R is the set of frames
defined as

[C] = {s(C), s ∈ S}

Analogously, using the group operation · on SO(3), the equivalence set [O] of a given
grain orientation O ∈ SO(3) can be defined as

[O] = {(s ·O), s ∈ S} (1.6)

This means that each crystallographic orientation has as many representations as there
are rotational symmetries in the symmetry group of the crystal. This fact is important
because if we would like to define the orientation relationship Dnm between two grains
accepting orientations On and Om as

Dnm = On ·O−1
m (1.7)

we come to the conclusion that this object is not unique and admits its own crystallo-
graphic equivalence set [Dnm] as

[Dnm] = {(s ·On) · (s′ ·Om)−1, (s, s′) ∈ S} (1.8)

whose size is actually the number of rotational symmetries squared. From a compu-
tational point of view, this set is rather cumbersome to deal with in that it contains, by
definition, the same information many times over. One would much rather deal with one
representative object of the set than all of them. However, any choice of an individual
orientation relationship from the equivalence set must be made in a systematic manner
such that the same representative is chosen each time the same set is considered.
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Definition 5. A fundamentalization operation Y is a function that takes a set of objects
A and returns one representative of the set a such that each time the same set is given,
the same representative is chosen

Y : P(V )→ V
A→ a ∈ A (1.9)

where P(V ) is the power set of a set V .

As such, for a given choice of fundamentalization operation Y on the base set SO(3)
we can define the misorientation as

Definition 6. The misorientation Mnm between two grains accepting orientations On and
Om respectively is an element of SO(3) such that

Mnm = Y ([Dnm]) (1.10)

Corollary 1. The misorientation of a grain boundary is the misorientation between its
neighboring grains.

Therefore, the misorientation of a grain boundary contains the information regarding
the bicrystallography of its constitutive grains. It does so in a unique and systematic
way. Also, being elements of SO(3) the misorientations can be parameterized by three
independent parameters, three Euler angles for instance.

In practice, the orientation relationships Dnm in an equivalence class [Dnm] can be
represented by angle-axis pairs [(θnm, anm)] where the θnm parameter is the rotation angle
and the unitary vector anm is the axis around which one rotates. This description is not
very useful from a computational point of view where one might need to combine different
rotations together. For this purpose, unit quaternions

qnm = (cos(θnm), sin(θnm)a1, sin(θnm)a2, sin(θnm)a3)

are actually easier to use. The quaternions have a natural Hamiltonian algebra which
make the computation of subsequent rotation much more efficient than other represen-
tations. Also, the fundamentalization operation for the quaternion representation of the
misorientation mnm can be expressed as the unique quaternion

mnm ∈ {q ∈ [qnm] | ∀u ∈ [qnm], q0 ≥ u0} ∩ {q ∈ [qnm] | q0 > q1 > q2 > q3}

which is relatively efficiently computed in a numerical setting.
At the mesoscopic scale, the information regarding the inclination of the grain bound-

ary is contained in the normal vector n to the interface at each point of the interface.
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However, the normal vector represented in the reference frame R gives no information
about the crystal planes of the grain boundary. The normal vector only describes the
atomic planes when it is expressed in the crystal reference frames of the neighboring
grains

(nn, nm) = (O−1
n n,O−1

m n), (1.11)

which holds redundant information when considered with the misorientation Mnm

(nn, nm) = (O−1
n n,M−1

nmO
−1
n n) = (nn,M

−1
nmnn), (1.12)

where the orientations act on vectors with the classic operation of SO(3). Therefore
the inclination of the grain boundary, when put into relation with the misorientation, is
fully characterized by the inclination of the boundary plane in the reference grain, nn in
this case. Normalizing this vector, it becomes unique and can thus be parameterized by
3− 1 = 2 parameters, two angles in spherical coordinates for example.

As such, a grain boundary Bnm can be characterized by a tuple

Bnm = (Mnm, nn) (1.13)

containing the misorientation and the inclination.
As such, when dealing with the parameterization of grain boundaries, extreme care

must be given to respecting this equivalence relation ≡cry. In this sense, the choice of
equivalent orientation for both grains must not influence any physical property one might
wish to calculate.

In fact, in this work, there are only two physical quantities of interest for the dynamics
of grain boundaries during annealing which are the energy density γ and the mobility µ
both maps from B to R+ [32].

However, the measurement of the actual maps γ and µ are still open lines of inquiry that
are studied by both experimental investigations [37–39] and numerical calculations [40,42,
50,51]. What is striking in the results of these studies is the dependence of both the energy
density and the mobility of a grain boundary on its five parameter characterization Bnm.
Indeed, these quantities vary by orders of magnitude, in the same material, at different
points of the five parameter grain boundary space [51]. It is hypothesized that these
two properties of grain boundaries might control both the dynamics and statics of grain
boundaries at the scale of the microstructure. For example, in [52] the faceting behavior of
boundaries are related to the evolution of γ function as the temperature changes. However,
all analytical approaches to define a function of the entire grain boundary space that could
describe the energy density, for example, have been either inconclusive or very new and
untested [50, 51]. The most successful, and perhaps simplest, such analytical function is
perhaps the Read-Shockley model for grain boundary energies [36] based on a dislocation
type reduction of the grain boundary. This model does not cover the entire space of grain
boundaries but only those with the “smallest” relative misorientations, i.e. the “low angle”
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grain boundary subspace. This model is not of particular use in what concerns the twin
boundary which can be classified as a “high angle” grain boundary.

Definition 7. A twin orientation relationship between two crystal orientations is one
which creates an additional bicrystal mirror symmetry.

Given that the most common Nickel based superalloys have face centered cubic (FCC)
crystal structures, the twin boundary in this context can also be more specifically de-
scribed.

Corollary 2. In a FCC crystallographic structure, twin boundary is a grain boundary
that accepts an orientation relationship between its neighboring grains described as a 60◦

rotation around a 〈111〉 axis common to both grains.

The particular bicrystallography of the twin orientation relationship accepts many
crystallographically equivalent representations. Another noteworthy one is

Corollary 3. Two FCC crystallites in a twin orientation relationship can have their
orientations transformed one into the other after applying a mirror symmetry with respect
to their common (111) plane.

Therefore, an annealing twin is classified as such only with respect to its misorientation.
One may also further subdivide the annealing twin class of boundaries into two groups
that depend only on the inclination of the boundary

Corollary 4. A coherent twin boundary is a twin boundary whose boundary plane is the
(111) plane that both grains share while an incoherent twin boundary is any other twin
boundary.

As such, the twin boundaries are actually just a subspace BT of the total boundary
space B. The coherent twin boundary is one point in tcoh ∈ BT while the space of inco-
herent twin boundaries is the complement of tcoh with respect to BT . Figure 1.6 depicts
2D representations of both types of twins in FCC lattices. Even though these singu-
lar boundaries generate more bicrystallographic symmetries than a more general grain
boundary, this is not what generates the interest surrounding them. Their preponderance
in processed microstructures of certain metallic materials (low to medium stacking fault
energy materials to be precise) has long remained a mystery in the physical metallurgy
community [32,49].

The working hypothesis for the disproportionate amount of annealing twin boundaries
in material microstructures is related to their relatively low energy density [32]. Indeed,
in all atomistic calculations of the energy density of grain boundaries in low stacking
fault energy materials, the coherent twin boundary is often computed to have an order
of magnitude lower energy density than other more general boundaries [40]. The idea is
that, statistically, since the energy of the coherent twin boundary is so low, the coherent
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(a) coherent (b) incoherent

Figure 1.6: Diagrams of 2D projections of twin grain boundaries for an FCC structure
viewed along 〈110〉 in the coherent (1.6a) and incoherent (1.6b) cases.

twin boundary is thus favoured over other grain boundaries as the microstructure evolves
during processing. Nickel is a low to medium stacking fault energy material and thus most
nickel based superalloys are as well. Indeed, as is shown in Figure 1.3, a great number of
nickel based superalloys are subject to larger amounts of twin boundaries as compared to
other types of grain boundaries. Even so, the distinction between coherent and incoherent
twin boundaries is an important one. The same atomistic simulation investigations that
show the coherent twin boundary as having very low energy density in pure nickel for
example [40] also show that incoherent twin boundaries may have energy densities of
the same order as other more general boundaries. Thus, the energetic singularity of the
coherent twin boundary does not necessarily extend to the entire twin boundary space BT .
Thus a model capable of predicting the behavior of twin boundaries must not only be able
to differentiate boundaries with respect to their misorientations but also with respect to
their inclinations.

1.2 The phenomenology of annealing processes

Now that the general structures present at the microstructural level in monophase poly-
crystal materials have been enumerated, one may consider the more dynamic aspects of
the microstructure during annealing. For the monophase polycrystal, there are three main
processes at work during the annealing of these types of materials after deformation: re-
covery, recrystallization and grain growth [32]. A brief overview of each before looking at
how the twin boundaries evolve during these processes will be given here.

Definition 8. Recovery is a process by which, at high enough temperatures, both point
defects and line defects become more dynamic in the microstructure, interact with each
other and anihilate or evolve to create more structured configurations of lower energy.
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As such, recovery is often associated with the evolution of dislocations since these are
the easiest line defects to observe experimentally. Indeed, in a metallic microstructure
where dislocations and point defect have been inserted, either by cold work, hot defor-
mation, irradiation or some other energy injective approach, these defects become mobile
enough to start making lower energy configurations at high enough temperatures. The
most relevant example of recovery is the process by which tangles of dislocations, created
often during cold working, reconfigure into what are called “subgrain” boundary struc-
tures. Seemingly initially randomly dispersed dislocations in a grain may, under the effect
of temperature, evolve into a regular cellular structure within the grain. These “sub-
grains” are often devoid of dislocations in their interior with very high concentrations in
their boundaries. Of course, the temperatures at which recovery starts to become visible
and the extent to which a microstructure may recover depend heavily on the aptitude
of the defects to move as well as their density. Once again, the parameter of primary
importance has been shown to be the stacking fault energy of the material, where low
stacking fault energy metallic materials generate very little recovery while high stacking
fault energy materials tend to use recovery as the primary mechanism for stabilizing their
microstructures [32]. In this work, concentrating on low to medium stacking fault en-
ergy materials such as nickel based superalloys, recovery is not the primary mechanism of
interest.

Definition 9. Recrystallization is the mechanism by which defect-heavy microstructures
create new grains that are almost completely defect free and subsequently evolve, favouring
the new crystallites.

The primary mechanism of stabilizing the microstructure in low stacking fault energy
materials is mostly reported to be discontinuous recrystallization. This phenomenon is of-
ten divided into two phases: nucleation and growth, as schematically represented in Figure
1.7. In very defect heavy microstructures, nucleation is the process by which a reconfigu-
ration at the atomic level gives rise to a new crystallite with its own crystal orientation.
This new grain has a rather “perfect” crystal structure and its bulk is thus favoured over
its defect heavy surroundings. As such, the new grain grows into the surrounding matrix
reconfiguring the largely distorted crystal structure into a much more regular atomic ar-
rangement. The reason for which the microstructure must be concentrated in defects is
that the appearance of a new grain costs a considerable amount of energy due to the new
interface that is created. This energy must be over-balanced by the amount of defects de-
stroyed during the process for the nucleation step to be energetically favourable and thus
drive the microstructure to a more stable state. There exists thus a competition between
the energy contained in the defects per volume area of the old microstructure as compared
with the interface energy created when creating new grain boundaries analogous to phase
transformations. However, the growth that can be observed during recrystallization is
differentiated from the so-called process called grain growth.
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Figure 1.7: Diagram of nucleation and growth during the discontinuous recrystallization
process where only the dislocations and grain boundaries are drawn. The colors help
visualize the different grains.

Definition 10. Grain growth is the process by which a microstructure, relatively free of
point and line defects, becomes more stable by having the grains grow.

Indeed, a microstructure that has very few point and line defects but potentially many
grain boundaries has only one avenue of stabilization which is to reduce the energetic con-
tribution of its interfaces. The grains thus grow, not under the influence of reorganizing a
defect heavy crystallite, but in order to reduce the quantity and energy density of inter-
faces in the material. In order to do so, the grain boundaries tend to exhibit properties of
curvature flow, by which the polycrystal interfaces evolve in the opposite direction to their
maximal curvatures. As such, the curvature of the grain boundaries is directly related to
the driving forces of their dynamics. Grain growth is a process that may follow recrystal-
lization once the most defect heavy grains have disappeared. Possibly the most reliable
way to differentiate in between these two growth mechanisms is the characteristic driving
force magnitude and time scales that one may attribute to each. While recrystallization
processes can be very “fast”, lasting only of the order of a hundred seconds in some cases,
in comparison, grain growth is considered to be very “slow”, lasting orders of hours in
order to observe comparable increases in grain size in the microstructure , in metallic ma-
terials [32]. However, what the grain growth mechanism lacks in effectiveness it makes up
for in ubiquity. Any polycrystal, submitted to sufficient temperature conditions, will un-
dergo a grain growth mechanism. Often this growth is detrimental to target macroscopic
mechanical properties in industrial processes however can be beneficial for materials that
require large grains such as materials with specific electromagnetic properties.

These three microstructural evolution mechanisms find their origin in the same place.
Indeed, recovery, recrystallization and grain growth are processes that reorganize atomic
arrangements in order to bring the material closer to its ground state, the monocrystal.
The emergence of these phenomena at the microstructural level thus depend on the defect
structure of the material itself. Even so, the temperature of the material plays a non-trivial
role. In order to operate these processes at the atomic level, certain energetic barriers to
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the movement of units in the lattice must be surmounted [53]. Increase in temperature
serves to increase the vibrational energy of the crystal lattice and thus enables these
barriers to be negotiated. Exactly which temperatures must be provided depend on the
energetic barriers to each process which in turn depend on the metallic materials structural
properties (composition, crystallographic structure, etc.). Thus, these annealing processes
fall under the more general class of thermally activated phenomena.

Given that the defect distribution in a polycrystal is heavily affected by these phe-
nomena, as a subset, the twin boundary distribution also evolves considerably during
annealing. So much so that a another subclass of twin had to be defined.

Definition 11. An annealing twin, and associated boundary, is a twin that has appeared
during the annealing process.

Annealing twins are distinct from deformation twins which appear during the defor-
mation process [46]. In this work, deformation twins will be set aside and only annealing
twins and their boundaries will be considered.

Given the definition of an annealing twin boundary, they must appear and evolve
during the annealing process thus subsequently during either the recrystallization or grain
growth steps. Exactly how they behave during these processes has been the subject of
many experimental investigations, [18–25,54–57] to only cite a few, conducted since their
first observation in [58]. Indeed, the mechanism by which these boundaries appear during
annealing is the subject of much contention in the literature [26–30]. Globally, three
principle mechanisms have been proposed which are illustrated in Figure 1.8.

The most common mechanism cited in the literature is the “Grain Growth Accident”
mechanism by which a stacking fault is created at a moving (111) boundary of a growing
grain [30]. During recrystallization or grain growth, atoms move across grain boundaries
effectively switching from one grain to another. There can be mistakes in the placement
of these new atoms in a growing grain. This mistake or accident in the configuration of
incoming atoms can lead to the beginning of a stacking fault which propagates itself using
the incoming atoms, arranging them in a twin configuration. In low stacking fault energy
materials, the new boundary is relatively stable due to the fact that it is a coherent twin
boundary and thus of low energy. As such, a new twin oriented crystallite is nucleated
at a moving grain boundary and continues to grow where its “parent” would have grown
before.

Another mechanism called “Grain Boundary Dissociation” [28] or “Pop-Out” [27] de-
scribed in different papers at different times but ultimately remaining the same mechanism
is a close contender. In this case, a wave of partial dislocations (i.e. an incoherent twin
boundary) nucleates at a grain boundary for a given reason (lower energy resulting bound-
aries, encounter of special dislocation structure, etc...) and propagates itself within the
grain, reorienting a space within the crystallite into a twin configuration. This is consid-
ered energetically favorable since most of the boundary length created is coherent. The
twin can grow as well if the boundaries with which it is in contact are moving. At first
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(a) Grain growth accident [30]
(b) Pop-Out [27,28]

(c) Stimulated Nucleation/Grain En-
counter [26,29]

Figure 1.8: Diagrams of the three main proposed mechanisms for annealing twinning.
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Figure 1.9: Diagram of the phenomenological evolution of annealing twin boundary den-
sities during recrystallization and subsequent grain growth adapted from [60]

glance, it seems like a peculiar way for a new orientation to appear. The twin orientation
actually propagates into a grain relatively devoid of defects in order to create a sort of
lamellar structure. However, experimentally observed morphologies tend to corroborate
this type of anatomy of a twinned grain.

The final identified mechanism is a “Stimulated” twinning/Grain Encounter [26, 29]
in which a growing grain encounters its twin orientation in the surrounding polycrystal
matrix. Upon meeting this twin “nucleus”, the original grain’s growth is hampered by
a sort of orientation pinning while the twin grain’s growth is stimulated. The twin then
grows out from the original grain’s boundary much as a new nucleated grain. However, not
much interest is afforded to this explanation. The probability of a given grain encountering
another grain with a twin orientation cannot account for the abundance of twin boundaries
observed in experimental microstructures [59].

Putting aside the mechanisms of formation of twin boundaries, much can be said about
the statistical evolution of twin boundaries in polycrystal microstructures. Indeed, there
is an abundance of investigations into the evolution of twin densities during annealing
processes [21, 54–57, 59, 60]. Even so, given the diversity of thermomechanical conditions
and materials for which these studies are conducted, general conclusions are difficult to
extract from all the data. Of particular interest here is the work of [60] in pure nickel and
nickel based superalloys.

The work in [60] can be partially summarized in the diagram shown in Figure 1.9.
The figure schematically represents the evolution of twin boundary density, the length of
the twin boundaries per unit area in a micrograph, in the microstructure during recrys-
tallization and subsequent grain growth. The density is shown to increase quickly during
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recrystallization where it is hypothesized most of the twins are nucleated. During grain
growth, the twin density decreases at a much slower rate. It is shown that many of the
grains nucleated during the recrystallization process already contain a multitude of twin
boundaries. As such, during the growth of these grains, the twin boundaries follow the fate
of their “parent” grains so to speak. If a new grain containing twin boundaries grows, the
twin boundary grows as well and if the grain shrinks, so too does its twin boundary. As
such, since globally the amount of boundary decreases during grain growth, so too does
the twin density. However, given the large proportion of twinned grains, it seems that
annealing processes would favour the persistence of twin boundaries in the microstructure
unless new twins are nucleated during the grain growth process. In [21] the authors show
that even during grain growth it was possible to nucleate twins, even if it was very rare.
This nucleation during grain growth only occurred at multiple junctions. However, this
twin boundary nucleation during grain growth is much too sporadic to account for the
orders of magnitude of twin densities observed experimentally.

In any case, these observations are in accordance with the abnormally twinned mi-
crostructures one obtains in “multi-pass” forging operations [31]. In these processes one
might deform the material at ambient temperature than anneal it for a very short time
and then repeat the process multiple times. The microstructures of these materials are
often the fruit of recrystallization processes where grains grow under the influence of strain
induced grain boundary migration (SIBM). SIBM is a phenomenon where boundaries al-
ready present in the microstructure (i.e. no nucleation step) migrate in order to minimize
the stored energy due to dislocations. As such, the heterogeneity of dislocation distribution
in the polycrystal is the main driving force for the grain boundary migration.

Even if this sort of mean value accounting of twin density and its evolution is vital to
the understanding of the evolution of twins, it does not illustrate the singular morphology
of the twin boundary. Indeed, twins are often separated by a combination of coherent
and incoherent boundaries with the same configurations being oddly widespread in real
microstructures. Figure 1.10 illustrates many of the twin configurations one may find in
2D micrographs schematically. This illustration is directly confirmed by many of the twin
boundaries that can be observed in Figure 1.3 and Figure 1.11.

These morphologies become more convoluted however when looking at 3D microstruc-
tures. Figure 1.12 shows the 3D reconstruction of a twinned grain taken from [59]. This
Figure demonstrates that the 3D morphologies of annealing twins may be more compli-
cated than what the 2D sections may suggest at first sight. These considerations become
even more important when one studies twin related domains (TRDs) in engineered mi-
crostructures [61, 62] where large portions of the microstructure can be considered to be
one twinned grain. In any case, the straight coherent twin boundary seems to be dispro-
portionally present in real microstructures which tends to support its supposed low energy
density.

From a modeling perspective, what is clear from the above bibliography and Figure 1.11
is that one of the main aspects in explaining the behavior of these annealing twins, once
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Figure 1.10: Diagram of 2D observed twin morphologies reproduced from [30]

Figure 1.11: Unpublished results of twin boundary evolution during an in-situ annealing
series of a 304L steel. Twin boundaries are in red and more general boundaries are black.

Figure 1.12: 3D reconstruction of a twinned grain in a pure nickel microstructure using
High Energy X-ray Diffraction Microscopy (HEDM) reproduced from [59]
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they’ve appeared, is related to their special energy densities, specifically concerning the
coherent twin boundary. Indeed, the hypothesis made in this work is that the energy density
of the twin boundary is the first order property in explaining the behavior of this grain
boundary during annealing. In summary, a physically based model capable of taking into
account a twin boundary is a model that can account for a grain boundary energy density
function γ(M,n), where (M,n) is the five parameter description of the grain boundary.
Once this model is developed the boundary energy density should have characteristics that
reproduce the behavior and morphologies of the twin boundaries.

1.3 Full field modeling approaches

The word model has been used thoroughly in this document. Even though most readers
will have an intuitive understanding of the meaning, it may be helpful to give a simple
definition.

Definition 12. A model is a simplified description, especially a mathematical one, of a
system or process, to assist calculations and predictions (Oxford Dictionary).

As such, in the case of physical models, a model does not faithfully represent reality.
Indeed, it is an approximation of reality that can be made richer by integrating more
aspects of reality into it. In this sense, the quality of a model is based only on the
predictions it is capable of making. Any mathematical model that is supposed to describe
natural processes must be faithful to a certain number of observed phenomena in order to
be useful. The best models are capable of predicting phenomena that have not yet been
observed.

This definition gives rise to a spectrum of types of models ranging from very simple to
deeply complex. The simple models are often easy to comprehend but have limited pre-
dictive power. The more complex models tend to cover a much larger range of observable
phenomena with more precision. Thus the process of enriching a model is that which takes
a given representation for a given process and extends the applicability of it to a more
diverse set of mechanisms. However, increasing the complexity of a system comes with a
cost. The more complex a scheme the more difficult it is to extract a prediction from it.
If the model is too complex to solve or to parameterize, it is of no practical use since no
predictions can be made from it. As such, the enriching of any structure is a balancing act
between incorporating the relevant aspects of reality while keeping the system tractable.

This line of thought has given rise to many different types of models with differing
complexities and goals. Some terminology of particular interest is the distinction between
mean field models and full field models.

Definition 13. Mean field models describe the behavior of statistical quantities of a system.

Definition 14. Full field models describe the behavior of local quantities of a system.
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Given these definitions, it is clear that full field models are generally richer than their
mean field counterparts from a physical point of view. Statistical properties can always
be computed from local properties, provided a large enough volume element, while the
converse is not true. However, mean field models provide efficient methods to bridge scales.
For example, a mean field model of the atomic scale can become a full field model of the
microstructural scale when computed everywhere locally. As such, this distinction is less
about comparing the complexity of the relevant models and more about the nature of the
relevant input and output data being either valued locally in a given domain or globally
over the entire space.

Many mean field models have been studied for predicting the effects of annealing
on microstructures [63]. In this work, our concern will be about full field models at the
microstructural level in polycrystalline metallic materials. The choice of constructing a full
field system instead of using a mean field approach was made because the twin boundary
is a local aspect of the microstructure. Indeed, both the geometry and character of the
grain boundary is important in describing the twin boundary. As such, the complete
modeling of the twin boundary and its morphologies can only be undertaken in a full
field model. In the literature, many different approaches are taken to construct full field
models of annealing processes. While specific codes and algorithms such as the vertex [64]
and surface evolver [65] can be used to model grain growth effectively, they tend to be
implementation dependent with each using its own rules. Of the more systematic modeling
approaches, four large families of can be discerned: Monte-Carlo models [66–69], Cellular
Automata algorithms [70–73], Phase-Field systems [74–80] and Level-Set methods [81–95].

The Monte-Carlo method for modeling recrystallization and grain growth is perhaps
the most used approach due to its ease of implementation [66–69]. It is also a relatively
good example of a mean field model used at a higher scale than its domain. The idea in
the Monte-Carlo approach is to describe the microstructure Ω at each spatial point by a
set of intrinsic structural variables (crystal orientation, dislocation density, etc.) and have
these variables evolve using stochastic laws. Indeed, for example, the crystal orientation
at a point x has, at any time t, a given probability P to transform into a neighboring
orientation or not. This probability is calculated by first calculating the energy difference
∆G of the entire microstructure before G(Ωi) and after the transformation G(Ωf )

∆G = G(Ωf )−G(Ωi) (1.14)

Then, the probability for the event to occur is given depending on this energy difference
by a function P (∆G). For example, in [66]

P (∆G) =

{
µe
− ∆G
kBT ∆G > 0
µ ∆G ≤ 0

}
(1.15)
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where µ is a mobility parameter, kB is the Boltzmann constant and T is the absolute
temperature. The model is capable of taking into account both the thermodynamical
aspects of the process, through the calculation of its G(Ω) function, and certain kinetic
aspects, through the probability transition function. However, each transformation op-
eration is discrete and thus takes a pseudo-time step. This pseudo-time step does not
have much to do with the physical time of the mechanism since the transformations are
sequential in the model while in reality multiple points may change orientations at the
same time. Indeed, the absence of a notion of physical time is most likely the largest
limiting factor of the classical Monte-Carlo method.

In contrast, the Cellular Automata method can have a physical representation of time
[70–73]. The idea behind the Cellular Automata method, in recrystallization and grain
growth, is to divide the microstructure into a certain number of units or “cells” that all
have intrinsic states. These cells then evolve using the information from the neighboring
cells and simple rules/laws. In [73], for example, the microstructure is divided into square
cells and the laws that govern each cell are as follows

(a) If three cells among four surrounding cells a, b, d, e have the same state as the cell c,
the state of the cell c will definitely keep its original state at the next time step.

(b) A cell must overcome the energy barrier to reach its new state.

(c) A cell can have states from 1 to Q (Q � 1) instead of 0 and 1. Each state represents
the orientation of grain in a simulated microstructure.

(d) Grain boundary energy is homogeneously distributed.

These laws, with the correctly chosen energy barrier, simulate grain growth in a given
microstructure. The major caveat with this type of approach is the regularity of the grid
that one must chose in order to constitute the unit structures. For complex microstructures
with complex surfaces, this type of cell description is generally difficult to make precise.
For example, in order to compute the curvature of the grain boundaries often higher order
definitions of neighborhoods must be taken into account which make the computation both
more costly and more difficult. The curvature being such a difficult quantity to evaluate,
any supplemental models that might use the local curvature as an input are also relatively
difficult to implement in these settings.

The third type of method used widely throughout the literature is the phase-field
approach [74–80]. This method has a long history in the phase transformation modeling
field and has been adapted to be able to simulate recrystallization and grain growth.
The so-called multi phase field method uses a number of fields defined everywhere on the
microstructure called order parameters or phase-fields ηi. These fields take values in [0; 1].
They are used to describe the spatial distribution of different states of matter. During
the annealing of monophase polycrystals they can describe a crystallographic orientation
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for example. One may compute the free energy F [η0, . . . , ηi, . . .] of a microstructure by
summing over the individual contributions of the phase-fields as well as their interactions.
Looking to minimize this free energy, a set of partial differential equations can be developed
using the concepts of gradient descent

∂ηi
∂t

+ L
δF

δηi
= 0, (1.16)

where L is a kinetic parameter related to the dissipation of energy of the system. In
order to avoid creations of vacuums in between phases, the order parameters must form a
partition of unity of the microstructure

∑
i

ηi(x, t) = 1 ∀(x, t), (1.17)

a condition which, in most cases, must be imposed on the system. However, while the
approach is firmly based in thermodynamics, there exists a certain arbitrariness to the
choice of free energy functional F in the case of grain growth. In the general case [80] the
functional for grain growth can be expressed as

F =

∫
M

[
f(η0, . . . , ηi, . . .) +

∑
i

〈∇ηi,∇ηi〉F

]
dM (1.18)

where f is a potential energy density function and 〈·, ·〉F is a certain inner product
capable of evaluating pairwise interaction energies between order parameters. The choices
for these objects are not unique. While the choice for the inner product is essentially just a
parameterization of the model, the choices for f rely on both physical parameters and the
form of the function one wishes to use. As such, different equally plausible formulations for
the functional are capable of giving different results for microstructural evolution. Also,
given the often highly non-linear nature of f , the implementation of the model in numerical
codes is relatively demanding and costly.

The last method described in this section is the Level-Set (LS) method [81–95]. In
the LS approach a family of level-set functions Φ = {φi, i = 0, . . . , N} are defined over
the microstructure. These fields are used to model interfaces using their iso-zero values
as shown in Figure 1.13. Immediately from Figure 1.13 it can be surmised that the level-
set function is capable of representing very simple but also very complex surfaces in an
implicit manner.

The order parameter of the phase-field method is in fact a level-set field. Indeed, the
interface of the grain boundaries in a polycrystal are described by the level-set values of
the phase-field itself. However, the two models remain quite different. While the phase-
field order parameters describe grain boundaries as diffuse objects that occupy a certain
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(a) Heatmap view with zero iso-
contour of a circle level-set (b) 3D view of a circle level-set

(c) Heatmap view with zero iso-
contour of an enclosing Mandelbrot set
level-set

(d) 3D view of an enclosing Mandelbrot set level-set

Figure 1.13: Different views of level-set fields φ that enclose a circle (a,b) and the Man-
delbrot set (c,d)

38



volume of space, the level-set method uses level-set functions to localise the interfaces at
the zero-iso values. Indeed, the level-set model is what is often referred to as a “sharp
interface” approach as opposed to the diffuse view espoused by the phase-field methods.

While it might be clear that the level-set approach is capable of describing interfaces
in a static sense, the capabilities of this model to interpret the dynamics of objects is not
yet apparent. Indeed, a supplemental concept is needed to make have these fields simulate
grain boundary movement: the transport equation.

∂φ

∂t
+ v · ∇φ = 0 (1.19)

where φ is a level set field and v is the velocity field defined on the interface and
extended everywhere in the domain. Contrary to the phase-field formulations, the ther-
modynamics of the problem are not inherent to the method. As such, the level-set method
is much more flexible in terms of defining the velocity field v. Indeed, the physics of the
problem at hand is completely encapsulated in this vector field. The flexibility comes with
a cost. Given that there are very few constraints on v, it is very easy to construct veloc-
ity fields that do not minimize the free energy functional of the microstructure and thus
potentially go against fundamental principles. As such, the utmost care in the modeling
process must be given to the construction of these velocity fields so that the predictions
offered by the method are correct. One may go even further to say that the entire model-
ing process, in the case of the level-set approach, can be boiled down to the construction
of this velocity field. The following section is entirely devoted to finding candidates for
this velocity field in the case of annealing in polycrystal materials. Even so, certain formu-
lations of this velocity do exist in the literature, for example, for the case of grain growth
with a homogeneous grain boundary energy density function γ( 6M, 6n) [90]

v = −µγκn (1.20)

where µ is the grain boundary mobility, κ is the local mean curvature of the boundary
(simply curvature in 2D and trace of the curvature tensor in 3D) and n is the outward unit
normal to the boundary. When modeling recrystallization phenomena [90], a supplemental
term must be added to the velocity, often written as

v = µ(∇ρ · n− γκ)n (1.21)

where ρ is considered to be a scalar dislocation energy density per unit volume defined
throughout the microstructure and ∇ is a spatial differential operator.

In this work the Level-Set method was chosen to construct a full field model, in part,
because of its flexibility. The extension of a Level-Set model to other phenomena is rather
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simple since the only modification is in the construction of the velocity field. This gives
the LS methodology a modular structure where one can chose to model certain phenomena
and neglect others. Also, the numerical implementation of the model in well established
methods such as Finite Element, Finite Difference or Fast Fourier Transform is relatively
straightforward since the linearization of the transport equation is often simple. The Finite
Element method will be chosen in this work because an unstructured mesh can be used
and remeshed for optimal numerical efficiency. The numerical efficiency of the algorithm
is an important aspect of the approach since the Level Set method, like the phase field
method, is known to be costly in computer resources. Also, the use of an unstructured
mesh allows for a simpler integration of the method into existing tools for simulating
large deformations such as in forging processes. One must also remain acutely aware of
the pitfalls of the method which has no firm basis in physical laws or phenomena. As
such, the majority of this work, outside of the development of the mathematical model, is
devoted to testing in specific analytical cases to ensure that the thus constructed velocity
field has some physical relevance.
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Résumé en Français du Chapitre 1

Ce chapitre est dédié à l’introduction des concepts de métallurgie physique nécessaires
pour la bonne compréhension de la suite du manuscrit. En partant de la définition du
cristal, le texte décrit la structuration de la microstructure des polycrystaux monophasés
et les défauts cristallins que l’on peut y trouver. Ensuite, les mécanismes agissant sur la
dynamique de ces polycrystaux sont passés en revue avec la description successive de la
restauration, la recristallisation et enfin la croissance de grains. Une reflexion particulière
est menée sur les macles et le maclage thermique en termes de structure, de mécanismes
d’apparition et de morphologie. Notamment, l’énergie très faible des joints de macles
cohérentes a été proposée comme la propriété déterminante pour expliquer les comporte-
ments spécifiques de ces joints. Les modèles physiques de polycristaux qui ont pour but
d’inclure les macles thermiques doivent donc assimiler l’énergie de joints de grains comme
une quantité qui varie au sein de la microstructure. Les méthodes existantes pour la
modélisation et simulation des phénomènes d’évolutions microstructurales sont présentés
en dernier lieu pour servir de socle pour les développements menés dans le reste du travail.
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Chapter 2

Theoretical Considerations

The model developed here for the grain boundary network is heavily seated in differential
geometry. While a rough introduction to the notions is provided in what follows, the curi-
ous reader might want to first want to look into [33,34]. The first concept broached in this
chapter is that of a differentiable manifold which, to understand in its entirety, one must
have some prerequisite knowledge of both set theory [96] and topology (more specifically
topological manifolds) [97]. The reasoning in using such advanced mathematics is more
motivated by necessity than by choice. Without the definitions provided by differential
geometry, it is very difficult to recognize the objects manipulated in complex models for
surfaces. Indeed, while previous attempts at integrating arbitrary grain boundary energy
densities into models for grain boundary dynamics [98–100] have been fruitful, there has
remained some ambiguity as to how to use some of the objects defined in these works cor-
rectly and extend them to numerical schemes for solving these anisotropic problems. As
such, the goal of this chapter is to develop the adequate framework for describing surfaces
in a holistic manner and deriving their dynamics from first principles.

2.1 Notions of Differential Geometry

Definition 15. A smooth n-manifold M = (M,O,A) is a triple comprised of

• an underlying set M .

• a topology O for M such that (M,O) is a topological n-manifold (locally Euclidean
of dimension n and Hausdorff).

• a smooth atlas A comprised of charts (U, x), where U ⊆M and x is a bijective map
from U to a subset of Rn, which are all smoothly compatible and cover M = ∪U∈AU .

The exact definition of a topological manifold can be found in [97]. However, one may
intuitively think of a topological n-manifold as a space which can locally look like Rn but
globally may be very different.
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The smooth compatibility condition for the charts is rather simple. If one takes two
charts (U, x) ∈ A and (V, y) ∈ A such that U ∩ V 6= ∅ than the chart transition map

x ◦ y−1 : U ⊆ Rn → V ⊆ Rn

must be smooth for the atlas to be smoothly compatible.
Smooth manifolds are useful because they are spaces endowed with the minimal amount

of structure for which derivatives start making sense. Indeed, any differential equation
must be written with respect to some differential manifold in order to have meaning.
Therefore, looking for a model whose dynamics might be written as a collection of differ-
ential equations, the underlying smooth manifolds are relevant objects.

Notation. C∞(M) is the set of all smooth functions that can be defined on the smooth
manifold M.

Definition 16. Let M be a smooth n-manifold. The tangent space TpM at the point
p ∈ M is the vector space comprised of elements X such that there exists C a smooth
curve of M

C : R→M
t 7→ C(t)

with C(0) = p and

X : C∞(M)→ R

f 7→ Xf :=
d

dt
(f ◦ C)(0)

Corollary 5. There exists an equivalence class between all the smooth curves that pass
through the point p and the elements of the tangent space.

The elements of the tangent space to a point p ∈M are also often called tangent vectors.
Indeed, there is a rather intuitive relationship between the elements of the tangent space
to a point of a manifold and the classical notion of a vector in space. Figure 2.1 is an
attempt to illustrate that relationship geometrically. In a very rough sense, the tangent
vector to each smooth curve passing through a point has a unique representative in the
tangent space to the point.

Making the intuition more formal, if one chooses a chart (U, x) ∈ A such that p ∈ U
and a function f ∈ C∞(M) then and element X ∈ TpM acts on f through its equivalent
curve C

Xf =
d

dt
(f ◦ C)

=
d

dt
(f ◦ x−1 ◦ x ◦ C)
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Figure 2.1: Illustration of the geometrical relationship between the tangent space to a
point of a smooth manifold and the curves passing through that point.

which, using the multidimensional chain rule brings one too

Xf =
d

dt
(xi ◦ C)∂i(f ◦ x−1)

where xi is the ith component function of the chart x, ∂i is the derivative operator of a
multidimensional function with respect to its ith component and the Einstein summation
convention is in effect, which will be implied from here on unless stated otherwise.

Constructing a basis for TpM with the vectors { ∂
∂xi
, i = 1, . . . , n} defined as

∂

∂xi
f := ∂i(f ◦ x−1) (2.1)

the component functions can act as sort of curves on the manifold. One may express
the components of X in this basis {X i, i = 1, . . . , n}

X i =
d

dt
(xi ◦ C)(0) (2.2)

In this vector basis X is often decomposed as

X = X i ∂

∂xi
(2.3)

Also, seeing as TpM is a vector space, it admits a dual space.

Definition 17. The dual vector space T ∗pM or co-tangent space to the tangent space TpM
is the space of linear maps ω such that

ω : TpM→ R
X 7→ ω(X)
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More generally, the local tensor spaces can be constructed.

Definition 18. The space of (q, s)-tensors, (q, s) ∈ N2 , at p ∈M is defined as

T qp,sM := T ∗pM⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s

⊗ TpM⊗ · · · ⊗ TpM︸ ︷︷ ︸
q

As such, from the tangent spaces at each point of M the tangent bundle can be
constructed.

Definition 19. Let TM be defined as

TM =
⋃
p∈M

(p, TpM)

such that the tangent bundle (TM,M, π) is defined as

TM π−→M

where π is a continuous surjective map.

Analogously, the (q, s)-tensor bundles (T qsM,M, πs,q) are defined in the same manner.

Definition 20. A section of a bundle (E,B, π) is a continuous map σ such that

σ : B → E
π(σ(p)) = p

Colloquially, the sections of the tangent bundle are called vector fields and in the same
manner sections of the tangent bundles are called tensor fields.

Notation. Γ(T qsM) is the space of all smooth sections of the bundle (T qsM,M, πs,q).

Definition 21. A Riemannian n-manifold (M, g) is a smooth n-manifold M equipped
with a symmetric (0, 2)-tensor field g ∈ Γ(T 0

2M), called a metric, such that ∀p ∈ M g(p)
is a positive-definite tensor.

The positive definiteness of g means that for any X ∈ TpM, X 6= 0

g(p)(X,X) > 0

∀p ∈M .
Riemannian manifolds are of general interest since the metric structure defines in-

ner products on the tangent spaces. As such, in order to define lengths of curves, and
more general measures of volume, one needs a Riemannian manifold. Indeed, this metric
structure is what allows one to define the Riemannian integral on the manifold.
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Definition 22. A differential q-form ω on a smooth manifold is a completely anti-symmetric
(0, q)-tensor field.

Corollary 6. The volume form dM of an oriented Riemmannian n-manifold (M, g) is
the differential q-form such that for a given a chart (U, x) ∈ A the volume form may be
expressed as

dM =
√

det(g)dx1 ∧ · · · ∧ dxn

where det(g) is the determinant of the matrix composed by the components of g in the
chart (U, x), {dxi, i = 0, . . . , n} is the dual basis of the co-vector space and ∧ is the
exterior product of differential forms.

Using this machinery, any function can be integrated over the manifold.

Definition 23. Let {ρi ∈ C∞(M)} be a partition of unity ofM and let {(Ui, x(i)) ∈ A} be
a set of charts covering the entire Riemannian n-manifold (M, g) such that the overlaps
between the charts are the overlaps between the partitions. The integral of a function
f ∈ C∞(M) over M is defined as∫

M

fdM =
∑
i

∫
x(i)(Ui)

(ρi ◦ x−1)(f ◦ x−1)
√

det(g)dx1
(i) · · · dxn(i)

where the right hand side is to be understood in the classical sense of the integral.

Given the heaviness of the notation, the taking of charts as well as the partition of
unity will be implicit in the notation from here on.

Also, working with a Riemannian manifold, one is able to define a relatively straight-
forward connection on the space called the Levi-Civita connection.

Definition 24. A connection ∇ over a bundle (E,B, π) is a set of linear maps

∇ :Γ(T qsB)→ Γ(T qsB ⊗ T ∗B)

that respect the Leibniz rule, f ∈ C∞(B), σ ∈ Γ(T qsB), τ ∈ Γ(T ji B)

∇(fσ) = σ ⊗ df + f∇σ (2.4)

∇(τ ⊗ σ) = ∇τ ⊗ σ + τ ⊗∇σ (2.5)

where df is the classic differential of a smooth function df = ∂f
∂xi
dxi.

Remark. From a given connection ∇, one may construct rather simply a covariant deriva-
tive

∇· :Γ(TB)× Γ(T qsB)→ Γ(T qqB)

∇·(X, σ) = ∇Xσ = (∇σ)(X)

where, when working in a chart, one may use

(∇Xσ)k...j... = (∇σ)k...j...iX
i = ∇iσ

k...
j...X

i
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Figure 2.2: Diagram of the embedding ϕ.

Definition 25. The Levi-Civita connection ∇ on a Riemannian manifold (M, g) is the
unique connection on the tensor bundles which satisfies

∇g = 0

and has no torsion.

2.2 A smooth manifold model for interfaces

LetM = (M,OM ,AM) be a Riemmanian n-manifold with metric m and S = (S,OS,AS)
be a smooth s-manifold with n ≥ s. Let ϕ be a smooth embedding from S to M

ϕ : S →M
S ≡homeo ϕ(S)

(2.6)

where ≡homeo describes a homeomorphism equivalence and Figure 2.2 provides an il-
lustration. Indeed, a smooth interface is nothing other than an embedding of a smooth
manifold in the special case where n = s+ 1.

The embedding also quite naturally provides a map from the tangent bundle of S to
the tangent bundle of M.

Definition 26. The pushforward ϕ∗ of a map ϕ from S to M, two smooth manifolds, is
the linear map such that

ϕ∗ : TS → TM
(p,X) 7→ (ϕ(p), ϕ∗X)
(ϕ∗X)f := X(f ◦ ϕ)

for f ∈ C∞(M)
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Much in the same manner, the embedding gives rise to a map from the co-tangent
bundles T 0

qM, at least the restriction to ϕ(S), to T 0
q S.

Definition 27. The pullback ϕ∗ of a map ϕ from S to M, two smooth manifolds, is the
linear map such that

ϕ∗ :T 0
qM|ϕ(S) → T 0

q S
(ϕ(p), σ) 7→ (p, ϕ∗σ)

(ϕ∗σ)(X(1), . . . , X(q)) = σ(ϕ∗X
(1), . . . , ϕ∗X

(q))

These two maps are very useful in that they allow one to relate objects of each space
concretely. Indeed, using the charts (U, x) ∈ AS and (V, Z) ∈ AM and using the convention
by which objects inM are indexed by Greek letters and objects in S are indexed by Latin
numbers one can express the components of the pushforward of a vector X ∈ TpS with
its action on a function f ∈ C∞(M)

(ϕ∗X)f = (ϕ∗X)α
∂f

∂Zα

= X(f ◦ ϕ)

= X i∂(f ◦ ϕ)

∂xi

= X i∂(f ◦ Z−1 ◦ Z ◦ ϕ)

∂xi

= X i∂(Zα ◦ ϕ)

∂xi
∂α(f ◦ Z−1)

= X i∂(Zα ◦ ϕ)

∂xi
∂f

∂Zα

Which, defining

ϕα :S → R
p→ Zα(ϕ(p))

leads to, through identification,

(ϕ∗X)α = X i∂ϕ
α

∂xi
(2.7)

Using the pullforward one may induce a metric g on S and therefore turn S into a
Riemannian manifold (S, g) by the following construction
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g(p) = (ϕ∗m)(ϕ(p)) (2.8)

which, using the charts and two vectors (X, Y ) ∈ Tp∈SS

g(X, Y ) = (ϕ∗m)(X, Y )

gijX
iY j = m(ϕ∗X,ϕ∗Y )

= mαβ(ϕ∗X)α(ϕ∗Y )β

= mαβ
∂ϕα

∂xi
∂ϕβ

∂xj
X iY j

and, by identification, gives the components of the induced metric

gij = mαβ
∂ϕα

∂xi
∂ϕβ

∂xj
(2.9)

Considering B a property space (for example the five parameter grain boundary space
described in Section 1.1). Let

SB =
⋃
p∈S

(p,B) = S × B (2.10)

and define the property bundle (SB,S, πB)

SB πB−→ S (2.11)

such that a section b ∈ Γ(SB) of the property bundle describes exactly the properties
of the s-manifold at each point. If one was to define an energy density map

γ :B → R+

then one could calculate the energy density at any point p ∈ S through the property
field as γ(b(p)) creating a scalar field. Given that (S, g) is now a Riemannian manifold,
this energy density can be integrated in order to give the total interface energy I of the
embedding as

I =

∫
S

(γ ◦ b)dS
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The model developed here for the interface is thus a triple (S, ϕ, b) from which, with an
energy density map γ, the total energy of the interface may be expressed. By design, this
model puts no lower bound on s. Therefore, this structural model is readily generalized
to objects that are not strictly interfaces but can be of lower dimension, such as lines if
n ≥ 3. This is an important aspect of this model, even if it might be out of the scope
of this thesis, if ever one was to attempt to attribute properties and therefore energies to
other defects in the polycrystal microstructure such as triple lines or dislocations.

2.3 Interface dynamics

Considering now a closed thermodynamic system made up of a Riemannian n-manifold
(M,m) of volume V with an embedded interface (S, ϕ, b), a boundary energy density map
γ, a temperature T , an entropy η and a homogeneous pressure field p. In this idealized
case, one may conduct a thought experiment of the free evolution of the system for a
normalized time t ∈ [0; 1] at a constant temperature T and pressure p (those conditions
that would be in effect during an isothermal heat treatment). The evolution of the internal
energy can be expressed as

dU

dt
=
dI

dt
+ T

dη

dt
− pdV

dt
(2.12)

In the model developed here, the interface (S, ϕ, b) is sharp. Thus, the interface evo-
lution cannot modify the volume of the system and dV

dt
= 0. However, if one considers

an evolving grain boundary and the subsequent reshuffling of atoms with its passage, it is
very likely that the process is not isenthalpic dη

dt
6= 0.

Reformulating the conservation equation (2.12) in terms of the Gibbs free energy G
one may show

dG

dt
=
dU

dt
− d(Tη)

dt
+
d(pV )

dt

=
dI

dt
− ηdT

dt
+ V

dp

dt

which, given that the heat treatment is isothermal and isobaric,

dG

dt
=
dI

dt
(2.13)

The second principle of thermodynamics gives that
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dG

dt
≤ 0

and, therefore,

dI

dt
≤ 0 (2.14)

Using the principle of least action one may suitably affirm that the energy dissipation
must be maximal and thus dI

dt
must be minimal ∀t ∈ [0; 1].

The flow ψ of the interface in is defined as

ψ :S × [0; 1]→M

(p, t) 7→ ψ(p, t)

ψ(p, 0) = ϕ(p)

and thus describes an embedding of S at each time t.
The only properties of the interface that might evolve during its flow are geometric ones.

For example, a grain boundary should not see its misorientation change while moving, only
its inclination parameters can vary. As such, the property field b should be completely
parameterized by the embedding during the flow of the interface. Indeed, if one considers
the misorientation/inclination parameterization of a grain boundary b = (M,n) ∈ B,
symbolically

dM

dt
= 0 (2.15)

in any representation space of the misorientation value. However, the inclination n
of the boundary does change. Indeed, the n field depends heavily on the embedding,
and the two are related by the fact that n must be orthogonal to any tangent vector to
the interface. As such, for any X ∈ TpS at any time t the value of n(ψ(p, t)) is in part
determined by

m(n, ψ∗X) = 0

mαβn
α∂ψ

β

∂xi
X i = 0

Since this must be true for any vector X,
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mαβn
α∂ψ

β

∂xi
= 0, ∀i = 1, . . . , s (2.16)

the remaining condition on n is the unitary condition which is simply that

m(n, n) = 1 (2.17)

Therefore,

γ

(
M,n

(
. . . ,

∂ψα

∂xi
, . . .

))
= γ

(
. . . ,

∂ψα

∂xi
, . . .

)
(2.18)

for the sake of the derivations that follow. The following will also make extensive use
of the Levi-Civita connection ∇ on (S, g) with the knowledge that ∂ψα

∂xi
= ∇iψ

α.
The velocity field v ∈ Γ(TM) of the interface flow can thus be defined for q = ψ(p, t)

as, with f ∈ C∞(M)

(vf)(q) =
d

dt
(f ◦ ψ(p, ·))(t)

=
dψα

dt
(p, t)

∂f

∂Zα
(q)

= vα
∂f

∂Zα

such that, by identification

vα(ψ(p, t)) =
dψα

dt
(p, t) (2.19)

Using these objects

dI

dt
=

∫
S

d

dt
(γdS)

=

∫
S

d

dt

(
γ
√

det(g)
)
dx1 ∧ · · · ∧ dxs

=

∫
S

∂

∂∇iψα

(
γ
√

det(g)
) d∇iψ

α

dt
dx1 ∧ · · · ∧ dxs

=

∫
S

1√
det(g)

∂γ
√

det(g)

∂∇iψα
∇i
dψα

dt

√
det(g)dx1 ∧ · · · ∧ dxs

=

∫
S

1√
det(g)

∂(γ
√

det(g))

∂∇iψα
∇iv

αdS
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and expressing separately

∂(γ
√

det(g))

∂∇iψα
=
√

det(g)
∂γ

∂∇iψα
+ γ

∂
√

det(g)

∂∇iψα

such that, using the Kronecker delta symbol

δji =

{
1 i = j
0 i 6= j

,

the Jacobi formula, if A is an invertible matrix and depends on a parameter χ,

d det(A)

dχ
= det(A)(A−1)ji

dAij
dχ

,

and the convention that one may simply identify the components of an inverse metric
tensor as (g−1)ij = gij, thus letting the position of the indices inform the reader whether
the metric tensor or inverse metric tensor is in play, one may write

∂
√

det(g)

∂∇iψα
=

1

2
√

det(g)

∂ det(g)

∂∇iψα

=
det(g)

2
√

det(g)
gsq

∂gqs
∂∇iψα

=
1

2

√
det(g)gsq

∂mσζ∇qψ
σ∇sψ

ζ

∂∇iψα

=
1

2

√
det(g)gsqmσζ(δ

i
qδ
σ
α∇sψ

ζ +∇qψ
σδisδ

ζ
α)

Because of the symmetry of both m and g−1, one may simplify the equation

∂
√

det(g)

∂∇iψα
=
√

det(g)(g−1)iqmσα∇qψ
σ (2.20)

Then

∂(γ
√

det(g))

∂∇iψα
=
√

det(g)

(
∂γ

∂∇iψα
+ γgiqmσα∇qψ

σ

)
(2.21)

and
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dI

dt
=

∫
S

(
∂γ

∂∇iψα
+ γgiqmσα∇qψ

σ

)
∇iv

αdS (2.22)

Using Stokes’ theorem and defining the boundary (if there is one) of S as ∂S

dI

dt
=

∫
∂S

gikτ
k

(
∂γ

∂∇iψα
+ γgiqmσα∇qψ

σ

)
vαd∂S

−
∫
S

∇i

(
∂γ

∂∇iψα
+ γgiqmσα∇qψ

σ

)
vαdS

where τ is the outside pointing unitary normal field to the boundary of S.
In order to encapsulate the quantities of interest, we define to restricted vector fields,

B ∈ Γ(TM|ϕ(∂S))

Bα = mαβgikτ
k

(
∂γ

∂∇iψβ
+ γgiqmσβ∇qψ

σ

)
(2.23)

and A ∈ Γ(TM|ϕ(S))

Aα = mαβ∇i

(
∂γ

∂∇iψβ
+ γgiqmσβ∇qψ

σ

)
(2.24)

such that

dI

dt
(t) =

∫
∂S

m(B, v))|ψ(p,t)d∂S −
∫
S

m(A, v)|ψ(p,t)dS (2.25)

Now, one could continue in the general case where ∂S 6= ∅ such that v could remain
smooth on S and minimize dI

dt
. However, for the model being developed in this work

this seems slightly overzealous. The Level-Set method, in this work, will only be applied
to compact interfaces in order to describe the grains in polycrystals. For this reason, a
restriction of the theory to the case ∂S = ∅ is not a limiting one given that any boundary
of the interface will be subject to special boundary conditions anyway. This is thus the
case to be considered from here on out and

dI

dt
= −

∫
S

m(A, v)dS (2.26)

Given the metric properties of m one may define the inner product
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〈·, ·〉 :Γ(TM|ψ(S))× Γ(TM|ψ(S))→ R

〈u,w〉 =

∫
S

m(u,w)dS

such that (Γ(TMψ(S)), 〈·, ·〉) becomes a Hilbert space with a norm, u ∈ Γ(TM|ψ(S))

||u|| =
√
〈u, u〉

Now using the Cauchy-Schwarz inequality

dI

dt
= −〈A, v〉 ≥ ||v||||A||

〈A, v〉
||v||

≤ ||A||

Since we would like to minimize dI
dt

we would like to maximize 〈A, v〉.Thus

〈A, v

||v||
〉 = ||A||

〈 A
||A||

,
v

||v||
〉 = 1

Which, since both A
||A|| and v

||v|| are unitary elements of the Hilbert space, they must
be equal

v

||v||
=

A

||A||

v =
||v||
||A||

A

Thus, µ ∈ R

v = µA (2.27)

where µ is often called the mobility of the boundary. Far from being undetermined,
physical meaning can be given to the mobility by returning to the energy dissipation
equation (2.13)
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dI

dt
=
dG

dt

−µ〈A,A〉 =
dG

dt

such that,

µ = − 1

〈A,A〉
dG

dt
(2.28)

Therefore, the mobility of the interface is determined by a normalized rate of dissipation
of energy over time. For example, if one cosiders that the interfacial energy is entirely
dissipated in terms of heat exhaust, then

µ =
T

〈A,A〉
dηext
dt

where ηext is the entropy of the environement outside of the closed system.

2.4 The Level-Set setting for interface dynamics

Definition 28. A level-set map or function φ is a smooth scalar field over the smooth
manifold M such that, given an embedding ϕ : S →M

φ(ϕ(p)) = 0 (2.29)

∀p ∈ S.

Now, most often, one defines the level-set function as a signed distance function to the
interface such that with

d :M ×M → R+

(p, q) 7→ min
C(p,q)

∫
C(p,q)

dC

where C(p, q) is any curve from p to q, one may then fix

φ(q) = ±d(q, ϕ(S)) := ±min
p∈S

d(q, ϕ(p))
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where one makes a choice of sign over the domains that the interface separates. By
defining the level-set field in this manner, it is relatively straightforward that, using ∇̃ the
Levi-Civita connection on (M,m),

∇̃φ(n) = ±m(n, n) = ±1

∇̃φ(ϕ∗X) = 0 ∀X ∈ Γ(TS)

given that ∇̃φ ∈ Γ(T ∗M). Pushing the equations in charts

∇̃αφ = ±mαβn
β (2.30)

∇̃αφ∇iϕ
α = 0 ∀i = 1, . . . , s (2.31)

which, by applying the covariant derivative ∇j on S to the equation (2.31)

∇j(∇iϕ
α∇̃αφ) = 0

∇j∇iϕ
α∇̃αφ+∇iϕ

α∇j∇̃αφ = 0

and, using the following chain rule,

∇i = ∇iϕ
α∇̃α (2.32)

one arrives at the following geometric equality

∇j∇iϕ
α∇̃αφ = −∇iϕ

α∇jϕ
β∇̃β∇̃αφ (2.33)

thus linking the derivatives of the level-set φ with the derivatives of the embedding
components ϕα.

As such, given an interface (S, ϕ, b) embedded in a smooth Riemannian n-manifold
(M,m), the level-set function φ can be constructed with an arbitrary choice of sign.
The dynamics of this interface can then be modeled by the transport equation (1.19) by
replacing the velocity with the expression (2.27) derived in the previous section. For p ∈ S
one has

∂φ

∂t
+ µAα∇̃αφ = 0 (2.34)

Expanding A
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Aα∇̃αφ = mαβ∇i

(
∂γ

∂∇iϕβ
+ γgiqmσβ∇qϕ

σ

)
∇̃αφ

= mαβ

(
∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζ +∇i(γg
iqmσβ∇qϕ

σ)

)
∇̃αφ

such that, using

gijgji = s

∇k(g
ijgji) = ∇k(s)

(∇kg
ij)gji + gij∇kgij = 0

(∇kg
ij)gji = 0

∇kg
ij = 0

and

∇imαβ = ∇iϕ
σ∇̃σmαβ = 0

we obtain

Aα∇̃αφ = mαβ

(
∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζ + (∇iγ)giqmσβ∇qϕ
σ + γgiqmσβ∇i∇qϕ

σ

)
∇̃αφ

= mαβ ∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζ∇̃αφ+ giq(∇iγ)∇qϕ
α∇̃αφ+ γgiq∇i∇qϕ

α∇̃αφ

so that using equation (2.33)

Aα∇̃αφ = mαβ ∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζ∇̃αφ+ giq∇iγ∇qϕ
α∇̃αφ− γgiq∇iϕ

α∇qϕ
β∇̃β∇̃αφ

Defining a tangential projection tensor field P ∈ Γ(T 2
0M|ϕ(S))

Pαβ = gij∇jϕ
α∇iϕ

β = mαβ − nαnβ (2.35)

we obtain

Aα∇̃αφ = mαβ ∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζ∇̃αφ+ giq∇iγ∇qϕ
α∇̃αφ− γPαβ∇̃β∇̃αφ
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in order to reduce the expression, one may write,

giq∇iγ∇qϕ
α∇̃αφ = giq∇iϕ

β∇̃βγ∇qϕ
α∇̃αφ = Pαβ∇̃βγ∇̃αφ (2.36)

so that

Aα∇̃αφ =
∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζmαβ∇̃αφ+ Pαβ∇̃βγ∇̃αφ− γPαβ∇̃β∇̃αφ (2.37)

Using equations (2.30) and (2.33)

δσα = nσ∇̃αφ+mαβP
βσ

∇i∇jϕ
αδσα = ∇i∇jϕ

α(nσ∇̃αφ+mαβP
βσ)

∇i∇jϕ
σ = ∇i∇jϕ

α∇̃αφn
σ +∇i∇jϕ

αmαβP
βσ

∇i∇jϕ
σ = −∇iϕ

δ∇jϕ
ζ∇̃δ∇̃ζφn

σ +∇i∇jϕ
αmαβg

sq∇sϕ
β∇qϕ

σ

for which, given

∇k(gij) = 0

mαβ∇k(∇iϕ
α∇jϕ

β) = 0

2mαβ∇k∇iϕ
α∇jϕ

β = 0

mαβ∇i∇jϕ
α∇sϕ

β = 0

we have that

∇i∇jϕ
σ = −∇iϕ

δ∇jϕ
ζ∇̃δ∇̃ζφn

σ (2.38)

Also,

∂2γ

∂∇jϕζ∂∇iϕβ
=

∂2γ

∂∇̃δφ∂∇̃αφ

∂∇̃αφ

∂∇iϕβ
∂∇̃δφ

∂∇jϕζ
+

∂γ

∂∇̃αφ

∂2∇̃αφ

∂∇jϕζ∂∇iϕβ

where, once again using the orthogonal condition (2.30),
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∂

∂∇iϕβ
(∇̃αφ∇kϕ

α) = 0

∂∇̃αφ

∂∇iϕβ
∇kϕ

α + ∇̃αφδ
α
β δ

i
k = 0

∂∇̃αφ

∂∇iϕβ
∇kϕ

α = −∇̃βφδ
i
k

∂∇̃αφ

∂∇iϕβ
∇kϕ

α = −∇̃βφg
ismσα∇sϕ

σ∇kϕ
α

to which, applying a second derivative,

∂2∇̃αφ

∂∇jϕζ∂∇iϕβ
∇kϕ

α = − ∂∇̃ζφ

∂∇iϕβ
δjk −

∂∇̃βφ

∂∇jϕζ
δik

= − ∂∇̃ζφ

∂∇iϕβ
gjqmδα∇qϕ

δ∇kϕ
α − ∂∇̃βφ

∂∇jϕζ
giqmδα∇qϕ

δ∇kϕ
α

= −

(
∂∇̃ζφ

∂∇iϕβ
gjq +

∂∇̃βφ

∂∇jϕζ
giq

)
mδα∇qϕ

δ∇kϕ
α

such that, by identification

∂∇̃αφ

∂∇iϕβ
= −∇̃βφg

ismσα∇sϕ
σ (2.39)

∂2∇̃αφ

∂∇jϕζ∂∇iϕβ
= −

(
∂∇̃ζφ

∂∇iϕβ
gjq +

∂∇̃βφ

∂∇jϕζ
giq

)
mδα∇qϕ

δ (2.40)

and, with (2.38),
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∂2∇̃αφ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζ =

(
∂∇̃ζφ

∂∇iϕβ
gjq +

∂∇̃βφ

∂∇jϕζ
giq

)
mδα∇qϕ

δ∇iϕ
σ∇jϕ

ξ∇̃σ∇̃ξφn
ζ

=

(
∂∇̃ζφ

∂∇iϕβ
P δξ∇iϕ

σ +
∂∇̃βφ

∂∇jϕζ
P δσ∇jϕ

ξ

)
mδα∇̃σ∇̃ξφn

ζ

=

(
−∇̃βφg

ismγζ∇sϕ
γP δξ∇iϕ

σ +
∂∇̃βφ

∂∇jϕζ
P δσ∇jϕ

ξ

)
mδα∇̃σ∇̃ξφn

ζ

= −
(
∇̃βφmγζP

γσP δξ + ∇̃ζφmγβP
γξP δσ

)
mδα∇̃σ∇̃ξφn

ζ

= −
(
∇̃βφmγζn

ζP γσP δξ + ∇̃ζφn
ζmγβP

γξP δσ
)
mδα∇̃σ∇̃ξφ

= −mδαmγβP
γξP δσ∇̃σ∇̃ξφ

with also

∂∇̃αφ

∂∇iϕβ
∂∇̃δφ

∂∇jϕζ
∇i∇jϕ

ζ = −∇̃βφg
ismσα∇sϕ

σ∇̃ζφg
jqmξδ∇qϕ

ξ∇iϕ
γ∇jϕ

ε∇̃γ∇̃εφn
ζ

= −∇̃βφmγαmεδP
ξεP γσ∇̃σ∇̃ξφ

so that finally

∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζmαβ∇̃αφ

=

(
∂2γ

∂∇̃δφ∂∇̃αφ

∂∇̃αφ

∂∇iϕβ
∂∇̃δφ

∂∇jϕζ
+

∂γ

∂∇̃αφ

∂2∇̃αφ

∂∇jϕζ∂∇iϕβ

)
∇i∇jϕ

ζmκβ∇̃κφ

= −
(

∂2γ

∂∇̃δφ∂∇̃αφ
∇̃βφmγαmεδP

ξεP γσ∇̃σ∇̃ξφ+
∂γ

∂∇̃αφ
mδαmγβP

γξP δσ∇̃σ∇̃ξφ

)
mκβ∇̃κφ

= −
(

∂2γ

∂∇̃δφ∂∇̃αφ
mγαmεδP

ξεP γσ∇̃σ∇̃ξφ+
∂γ

∂∇̃αφ
mδαmγβP

γξP δσmκβ∇̃κφ∇̃σ∇̃ξφ

)
using P β

α = mασP
σβ

∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕ

ζmαβ∇̃αφ = −

(
∂2γ

∂∇̃βφ∂∇̃αφ
+

∂γ

∂∇̃αφ
mκβ∇̃κφ

)
P ξ
βP

σ
α ∇̃σ∇̃ξφ

(2.41)
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Thus leading to the transport equation

∂φ

∂t
+ µ

(
−

(
∂2γ

∂∇̃βφ∂∇̃αφ
+

∂γ

∂∇̃αφ
mκβ∇̃κφ

)
P ξ
βP

σ
α ∇̃σ∇̃ξφ+ Pαβ∇̃βγ∇̃αφ− γPαβ∇̃α∇̃βφ

)
= 0

Considering now that

∇̃αφn
α = 1

∇̃β∇̃αφn
α + ∇̃αφ∇̃βn

α = 0

∇̃β∇̃αφn
α + nδ∇̃β∇̃δφ = 0

which, because ∇̃α∇̃β = ∇̃β∇̃α

nα∇̃α∇̃βφ = 0 (2.42)

and, as such,

P σ
α ∇̃σ∇̃ξφ = (δσα − nσ∇αφ)∇̃σ∇̃ξφ

= ∇̃α∇̃ξφ

and

Pαβ∇̃α∇̃βφ = mαβ∇̃α∇̃βφ

= ∆φ

where ∆ is the classic Laplacian operator in M.
Using equation (2.42),

∂φ

∂t
+ µ

(
− ∂2γ

∂∇̃βφ∂∇̃αφ
∇̃α∇̃βφ+ Pαβ∇̃βγ∇̃αφ− γ∆φ

)
= 0

and, rewriting the equation,

∂φ

∂t
+ µ

(
−

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφ+ Pαβ∇̃βγ∇̃αφ

)
= 0 (2.43)
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one may identify two distinct terms:
A curvature contribution, which can be tied to the terms developped in [100],

−µ

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφ, (2.44)

and a “stabilization” term

µPαβ∇̃βγ∇̃αφ (2.45)

which should be null using equation (2.31). The extension of the differential equation
from ϕ(S) to all of M can render this stabilization term possibly non-null. Indeed, al-
though the transport equation is valid for all ϕ(S), the level set is defined over M. As
such, the resolution of the equations must be undertaken over the entire domain. One
must, therefore, devise an extension procedure such that the relevant fields can be ex-
tended everywhere in M and still produce the correct dynamics of the iso-zero value of
the level set field.

The two fields that must be extended everywhere are

γ(p ∈ S),
∂2γ

∂∇̃βφ∂∇̃αφ
(p ∈ S)

Any extension operation that fixes the values of these two fields such that, ∀p ∈ S,

γ(p) = γ(ϕ(p))

∂2γ

∂∇̃βφ∂∇̃αφ
(p) =

∂2γ

∂∇̃βφ∂∇̃αφ
(ϕ(p))

and the fields remain regular throughout the domain M, should produce the correct
solution for the dynamics of the interface.

The above developments have generated a prospective velocity field v and the transport
equation necessary to solve for simulating the dynamics of a level set field φ. Quite
naturally, the model proposes a global definition for the mobility µ of the boundaries in
this system. What remains is to test this mathematical formulation in some relevant cases
so as to confirm its value. Remaining lines of inquiry include the well-posedness of the
equations with adequate boundary conditions which will be touched upon in the following
chapter. Also, the role of the metric m of the base manifold M in the cases where the
manifold is not ”flat” has interesting applications for a theory with a local tensorial value
for the mobility. Perhaps the most daunting aspect in the resolution of these equations is
the high non-linearity. Indeed, given that γ(∇̃φ), every term of the transport equation is
non-linear except for the time derivative.
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Résumé en Français du Chapitre 2

Ce chapitre est une application directe des outils de la géométrie différentielle à la min-
imisation de l’énergie d’un système par le déplacement des interfaces internes qui y sont
présentes. En effet, après avoir défini tous les termes mathématiques utiles, le problème
consistant à exhiber le champ de vitesse optimal pour la minimisation de l’énergie liée
à une variété imbriquée dans une autre variété de plus haute dimension est introduit.
En utilisant des principes variationnels, le champ de vitesse “minimal” est exprimé en
fonction des degrés de liberté naturels. Ensuite, ce formalisme est traduit en termes de
méthodologie level set en spécifiant que l’espace imbriqué est une hypersurface de la variété
de base. Par la même occasion, une nouvelle équation de transport du champ level set
est définie dans ce cas plus général. Une définition globale de la mobilité d’une interface
est proposée assez naturellement comme étant un taux de production d’entropie par unité
de temps. Une nouvelle vitesse d’interface dans le cas d’une énergie de joints de grains
anisotrope est donc prête à être testée dans des situations adaptées.
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Chapter 3

Dynamics of the Anisotropic Grain
Boundary

The best way to test a numerical algorithm for solving a physical problem is by using an
analytical test case. When doing so, one may look at the absolute precision of the numerical
solution as a function of the parameterization of the procedure (mesh sizes, time steps,
domain sizes, etc.). One may then evaluate the performance of the solver in a controlled
environment. In the case of isotropic grain growth, two well-known benchmarks exist
for evaluating numerical codes: the shrinking sphere and the so-called “Grim Reaper”
form [101]. Considering truly anisotropic grain growth, no such analytical benchmark
is known to the community. In this chapter, the first section will present the numerical
algorithm used to compute solutions to anisotropic grain growth in the absence of multiple
junctions. The second section is dedicated to developing an analytical solution to the
anisotropic grain growth problem in the specific case of a shrinking ellipse. The third
section will present the results of the proposed algorithm using the ellipse shrinkage case.
The final section will use related test cases to compare the effects of velocity fields with
and without anisotropic torque terms.

3.1 The numerical formulation

In order to solve the minimizing energy flow for the level set function using the Finite
Element (FE) method, the problem must first expressed in a weak form, then it can be
discretized in both time and space.

Consider the transport equation (2.43), reproduced here for convenience,

∂φ

∂t
+ µ

(
−

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφ+ Pαβ∇̃βγ∇̃αφ

)
= 0
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where the relevant fields have already been extended from the smooth manifold S to
the enclosing manifold M and µ is known. With any test function ω ∈ H1(M) and

Dαβ = γmαβ +
∂2γ

∂∇̃βφ∂∇̃αφ

a weak form of the equation can be derived as

∂φ

∂t
ω − µDαβ∇̃α∇̃βφω + µPαβ∇̃βγ∇̃αφω = 0∫

M

∂φ

∂t
ωdM −

∫
M
µDαβ∇̃α∇̃βφωdM +

∫
M
µPαβ∇̃βγ∇̃αφωdM = 0∫

M

∂φ

∂t
ωdM +

∫
M
∇̃α(µDαβω)∇̃βφdM −

∫
∂M
∇̃α(µDαβω∇̃βφ)d∂M

+

∫
M
µPαβ∇̃βγ∇̃αφωdM = 0∫

M

∂φ

∂t
ωdM +

∫
M
µDαβ∇̃αω∇̃βφdM +

∫
M
µ(∇̃αD

αβ)ω∇̃βφ)dM − 0

+

∫
M
µPαβ∇̃βγ∇̃αφωdM = 0

such that∫
M

∂φ

∂t
ωdM +

∫
M
µDαβ∇̃αω∇̃βφdM +

∫
M
µ(Pαβ∇̃βγ + ∇̃βD

βα)ω∇̃αφdM = 0 (3.1)

With respectively three distinct terms: the time derivative, a diffusive term and a
convective contribution.

In this numerical framework, the Riemannian manifold M is meshed using an un-
structured simplicial grid. If the manifold is two dimensional the cells are triangles, if it
is three dimensional the cells are tetrahedra, etc. The mesh M̄ is composed of two sets
M̄ = (P , E) respectively the nodes of the mesh P and the cells/connectivity of the mesh
E . Thus, the smooth Riemannian manifold M is approximated by a C1 by parts mani-
fold M̄ and thus any initially smooth field is approximated by a field whose component
functions are in H1 (i.e. a P1 field). The nodes enclosed in the embedding are referred to
as N ⊂ P . In order to get a numerical representative of the level set field φ̄ Algorithm 1
is used.

As such, the level set field is approximated by a linear by parts (inside each cell of E)
field φ̄. The details of the algorithm used to compute the distance function can be found
in [102]. The brute force algorithm used for the calculation of the distance function also
gives access to an inward pointing P1 unit normal field n. This normal field can be used
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Algorithm 1 LS field computation

for q ∈ P do
φ̄(q) = d(q, ϕ(S))
if q 6∈ N then

φ̄(q) = −φ̄(q)
end if

end for

to compute a P1 representation of the covariant derivative of φ as nβ = mαβ∇αφ. This
representation is more accurate than the numerical covariant derivative of the level set
∇̄φ̄ that would be a P0 field (piecewise constant in each of the cells). This normal field is
also used to compute the surface projector field P = m−1 − n⊗ n.

Simplification Flat metric, Cartesian chart

In the context of a flat metric m for M and in a Cartesian chart in the base space,
the components of m resemble the identity such that

mαβ = δαβ

where δαβ is a Kronecker delta symbol. This means that, in simple cases, the
components of the P tensor will be

Pαβ = δαβ − nαnβ.

This will be the case in what follows.

Thus, given a boundary energy map γ : B → R+, with B the boundary property
space, the C1 geometry dependence of γ can easily be evaluated at each node of the mesh
M̄. Considering that B is only parameterized by the normal to the boundary n for a
given boundary, both values for γ and ∂2γ

∂∇φ2 can be evaluated everywhere on the mesh.

As such, the level set field induces a natural discretized extension of both γ and ∂2γ
∂∇φ2

from ϕ(S) to the entire discretized space M̄. Outside the interface the γ field has no
physical meaning. However, this extension is necessary for solving the problem in a FE
setting. The interpolated values of the fields at the interface ϕ(S) are also guaranteed to
be the correct values given the linear by parts interpolation of φ̄. Figure 3.1 illustrates
the construction for a circle and a particular choice of γ(n).

The ∇̃γ and ∇̃ · D are computed numerically on the mesh using a Superconvergent
Patch Recovery method inspired from [103] such as to obtain P1 fields. As such, both the
diffusive tensor D and the convective velocity are introduced explicitly into the formulation
so as to create linearized approximations of the equation (3.1). Thus, solving the problem
is completely linear without need for non-linear solvers or algorithms.
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(a) The level set field φ

(b) The boundary energy field γ

Figure 3.1: Image of the φ and γ fields defined on an unstructured mesh. The iso-zero
value of the level set is represented in black and γ = 2 + cos(4 arccos(X · ∇φ)) where X is
the unit vector field in the direction of the x axis.
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In this work a Generalized Minimal Residual (GMRES) type solver along with an
Incomplete LU (ILU) type preconditionner, both linked from the PetsC open source li-
braries, are used unless specified otherwise. The system is assembled using typical P1
FE elements with a Streamline Upwind Petrov-Galerkin (SUPG) stabilization for the con-
vective term [104]. The boundary conditions used are classical von Neumann conditions
∇̃φ · n∂M = 0 which guarantees the orthogonality of the level sets to the boundary of the
domain, n∂M being an outgoing unit normal vector field to ∂M. The discretization of
time is obtained using a fully implicit backward Euler method with time step ∆t. Using
classical linear hat functions ωk, k = 1, . . . ,P as the basis functions for the solution, the
weak form (3.1) projections are expressed as follows

∑
c∈E

∫
c

∂φ̄

∂t
ωkdM +

∫
c

µDαβ∇̃αωk∇̃βφ̄dM

+

∫
c

µ(Pαβ∇̃βγ + ∇̃βD
βα)ωk∇̃αφ̄dM = Rk(φ̄, ∇̃φ̄)

where Rk(φ̄, ∇̃φ̄) is the residual error with respect to the ωk test function. Using the
Galerkin method where, ∀q ∈M and φi the value of φ̄ at the ith node of P ,

φ̄(q) =
∑
pi∈P

ωiφ
i

one obtains, using the Einstein sum convention when applicable,

∑
c∈E

∫
c

∂φi

∂t
ωiωkdM +

∫
c

µDαβ∇̃αωk∇̃βωiφ
idM

+

∫
c

µ(Pαβ∇̃βγ + ∇̃βD
βα)ωk∇̃αωiφ

idM = Rk(φ̄, ∇̃φ̄)

where, introducing the time discretization tn+1 = tn+∆t and the notation φin = φi(tn),

∑
c∈E

∫
c

φin+1 − φin
∆t

ωiωkdM +

∫
c

µDαβ∇̃αωk∇̃βωiφ
i
n+1dM

+

∫
c

µ(Pαβ∇̃βγ + ∇̃βD
βα)ωk∇̃αωiφ

i
n+1dM = Rk(φ̄(tn+1), ∇̃φ̄(tn+1))
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and, rearranging,

φin+1

∑
c∈E

∫
c

(ωiωk + ∆tµ(Dαβ∇̃αωk∇̃βωi + (Pαβ∇̃βγ + ∇̃βD
βα)ωk∇̃αωi))dM

= ∆tRk(φ̄(tn+1), ∇̃φ̄(tn+1)) + φin
∑
c∈E

∫
c

ωiωkdM

so that, reintroducing the residual error into the formulation using the SUPG method
[104] as modifications to the test functions ωk → ω̃k and defining

Mik =
∑
c∈E

∫
c

(ωiω̃k + ∆tµ(Dαβ∇̃αωk∇̃βωi + (Pαβ∇̃βγ + ∇̃βD
βα)ω̃k∇̃αωi))dM

Bk = φin
∑
c∈E

∫
c

ωiωkdM

the resolution of the discretized problem becomes a linear algebra system

Mu = B (3.2)

where u = [φin+1] is a vector where the ith component is the value of the level set
function at the ith node pi ∈ P and the next time step ui = φin+1 = φ̄(pi, tn+1).

The convention for the level-set fields used here on out will be positive inside closed
objects and negative outside of them. Because the resolution of the transport equation does
not conserve the distance property of the level set field, the solution is reinitialized using
the algorithm developed in [102]. Also, since the geometry of the interface evolves after
each time increment, all the other fields must also be recomputed from the reinitialized
level set at each step of the simulation. The complete procedure for the minimizing
interface energy flow simulation is reported in Algorithm 2.

3.2 An analytical solution for the ellipse

Consider a circle C = ([0; 2π],OC ,AC) as a smooth manifold with the circle topology
and smooth structure and the Riemannian manifold M = (R2,Ostd,Astd,m) equipped
with the standard topology and differentiable structures and the flat metric m. Using the
chart ([0; 2π], θ) ∈ AC and the Cartesian chart (R2, (x, y)) ∈ Astd one may construct the
following embedding

ϕ :[0; 2π] −→ R2

θ 7→ (a cos θ, b sin θ)
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Algorithm 2 Minimizing Interface Energy Flow

Data: Initial Embedding, M̄, ∆t, tend
Compute the initial Level Set and unit normal fields
Calculate the P field
Calculate γ and D fields and their derivatives
t = 0
while t < tend do

Assemble M,B
Solve Mu = B
t = t+ ∆t
Reinitialize the Level Set and unit normal fields
Update the P field
Update the γ and D fields and their derivatives

end while

Figure 3.2: Ellipse embedding of the circle C into M
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where (a, b) ∈ R2 and Figure 3.2 illustrates this embedding.

Simplification One dimensional object

Given that the C is a one dimensional object, any (p, q)-tensor field σ defined on the
space will only ever have one component

σ
i1···ip
j1···jq = σθ···θθ···θ

where every index refers to the unique dimension of C. However, even if this is the
case, these tensor fields cannot be considered as scalar fields directly due to their
transformation behavior under chart transitions.

All of the relevant geometrical information may thus be extracted from the embedding.
A basis of the tangent space at each point

∂ϕx

∂θ
= −a sin θ (3.3)

∂ϕy

∂θ
= b cos θ (3.4)

and the induced metric tensor

gij = mαβ∇iϕ
α∇jϕ

β

Simplification Flat metric, Cartesian chart, One dimensional object

gθθ = δαβ∇θϕ
α∇θϕ

β

= (∇θϕ
x)2 + (∇θϕ

y)2

such that

gθθ = a2 sin2 θ + b2 cos2 θ (3.5)

The Levi-Civita connection ∇ is thus defined by
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∇θgθθ = 0

∂gθθ
∂θ
− 2Γθθθgθθ = 0

Γθθθ =
1

2gθθ

∂gθθ
∂θ

where Γkij are Christoffel symbols. Therefore,

Γθθθ =
(a2 − b2) cos θ sin θ

a2 sin2 θ + b2 cos2 θ
(3.6)

Now consider the boundary energy

γ(θ) = Gθθgθθ (3.7)

where Gθθ is a (2, 0)-tensor field of C whose component is actually a constant in this
chart. As such, using equations (2.27) and (2.24) the velocity field of the minimizing
energy flow is

vα = µmαβ∇i

(
∂γ

∂∇iψβ
+ γgiqmσβ∇qϕ

σ

)
where, replacing with the expression for γ in equation (3.7) and letting µ ∈ R, one has

vα = µmαβ∇i

(
∂Gskgks
∂∇iψβ

+Gskgksg
iqmσβ∇qϕ

σ

)
= µmαβ∇i

(
2Gsimβζ∇sϕ

ζ +Gskgksg
iqmσβ∇qϕ

σ
)

Simplification One dimensional object, Constant Gθθ

vα = µmαβ∇θ

(
2Gθθmβζ∇θϕ

ζ +Gθθgθθg
θθmσβ∇θϕ

σ
)

= 3µGθθ∇θ∇θϕ
α

using

∇θ∇θϕ
α =

∂2ϕα

∂θ2
− Γθθθ

∂ϕα

∂θ
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one arrives at(
vx

vy

)
= −3µGθθ

(
a cos θ
b sin θ

)
− (a2 − b2) cos θ sin θ

a2 sin2 θ + b2 cos2 θ

(
−a sin θ
b cos θ

)
However, any tangential terms in the velocity, such as the second term in the above

equation, have no influence on the flow of the interface such that the flow generated by
the velocity field above is equivalent to the flow generated by(

vx

vy

)
= −3µGθθ

(
a cos θ
b sin θ

)
(3.8)

Thus, turning ϕ into a flow ϕ : [0; 2π[×[0; 1]→ R2, one has

dϕα

dt
(θ, t) = −3µGθθϕα(θ, t)

for which there is only one solution

ϕα(θ, t) = ϕα(θ, 0)e−3µGθθt

leading to (
ϕx(θ, t)
ϕy(θ, t)

)
= e−3µGθθt

(
a cos θ
b sin θ

)
Now given that the minimizing energy flow of the embedding is just the original em-

bedding multiplied by a time dependent function, the flow is actually simply shrinking the
ellipse in a homothetic manner to the center (0, 0) point ofM. Thus, assuming a > b, the
eccentricity e is a constant of the flow

e =

√
1−

(
ϕy(π

2
, t)

ϕx(0, t)

)2

=

√√√√1−

(
e−3µGθθtb

e−3µGθθta

)2

=

√
1−

(
b

a

)2

(3.9)

and the scalar velocity of any point of the ellipse is

v(θ, t) =
√

(vx)2 + (vy)2 = 3µGθθe−3µGθθt
√
a2 cos2 θ + b2 sin2 θ (3.10)

with, in particular,

v(0, t) = 3µGθθe−3µGθθta (3.11)

v(
π

2
, t) = 3µGθθe−3µGθθtb (3.12)
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3.3 Test cases

The two previous sections have served to explain the numerical formulation and develop an
analytical benchmark. One now has an embedding and a way to represent it as a level set
field φ on an unstructured mesh. One also has the FE formulation needed to simulate the
dynamics of the minimizing energy flow of the interface. However, the boundary energy
γ = Gθθgθθ is not readily computable on the finite element mesh since it does not explicitly
depend on the normal to the interface. Using

(
nx

ny

)
= − 1
√
gθθ

(
b cos θ
a sin θ

)
and the embedding functions ϕx and ϕy, one may express,

gθθ =
ϕxϕy

nxny

However, this definition is ill-defined given that in certain areas the components of n
as well as the embedding functions may take null values. Numerically, this leads to very
large calculation errors on the values of γ when dividing by very small values. As such, a
much simpler method is to consider equation (3.5) such that

gθθ = (b2a
2

b2
sin2 θ + b2 cos2 θ)

= b2(
a2

b2
sin2 θ + cos2 θ)

which, if one considers r =
a

b
which should remain constant throughout the simula-

tion,then γ can easily be extended throughout the mesh using

ny

nx
= r tan θ

θ = arctan

(
1

r

ny

nx

)
with

γ(θ) = b2(r2 sin2 θ + cos2 θ) (3.13)
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Given the definition of the level set field, φ takes maximal values at the points within
the ellipse furthest away from the interface, i.e. the center of the ellipse. Seeing as b is the
smallest of both ellipse axes and the level set is minimal distance valued, the value of the
level set at the center of the ellipsis should be the value of the small axis. Therefore

b = max
q∈M

φ(q) (3.14)

Also, implicit in the calculations in the previous section is the fact that

∂2γ

∂∇̃αφ∂∇̃βφ
= 2γmαβ (3.15)

so that knowing the extension of the boundary energy γ is sufficient for calculating
Dαβ = 3γmαβ.

Simplification Flat metric, Cartesian chart

Dαβ = 3γδαβ

Thus the boundary energy field γ can be computed at each iteration of the simulation.
Using µGθθ = 1, the simulation can be run on any arbitrary mesh with arbitrary mesh
size h using any time step ∆t. All meshes used in this section were generated using Gmsh
software [105].

Figure 3.3 illustrates the time evolution of the level set field for an isotropic unstruc-
tured 1 × 1 mesh with h = 3e − 3, ∆t = 5e − 4, a(t = 0) = 0.2 and r = 2. A sensitivity
analysis has been conducted with respect to the isotropic mesh size h and time step ∆t
whose results are reported in Figures 3.4, 3.5, 3.6 and 3.7. The data is evaluated by look-
ing at the time evolution of both b and a as well as their time derivatives Vb = db

dt
and

Va = da
dt

. The b value is evaluated using equation (3.14) while the a parameter is evaluated
at each time step by

a = a(t = 0) + φ(x = a(t = 0), y = 0) (3.16)

The values are compared with their analytical analogs in order to compute errors. The
convention in the legend is that bared quantities are measured while non-bared quantities
are the analytical counterparts.

Each simulation can be given a scalar error value by computing the L2 error between
the analytical evolution of b and the measured values
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(a) t = 0 (b) t = 0

(c) t = 5e− 3 (d) t = 5e− 3

(e) t = 1e− 3 (f) t = 1e− 3

Figure 3.3: Time evolution of the level set φ and boundary energy γ fields for the ellipse
shrinkage test case. The iso-zero value of the level-set field is in black. The mesh size is
h = 3e− 3 and the time step is ∆t = 5e− 4 and the ellipse axes ratio is r = 2.
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(a) Both a and b as a function of simulated time t

(b) Both Va and Vb as a function of simulated time t

Figure 3.4: Sensitivity of the trajectory and velocity to the mesh size h parameter study
with ∆t = 5e− 4, r = 2 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) Both ea and eb errors committed on the positions as a function of simulated time t

(b) Both eVa and eVb errors committed on the velocities as a function of simulated time t

Figure 3.5: Sensitivity of the errors to the mesh size h parameter study with ∆t = 5e− 4,
r = 2 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) Both a and b as a function of simulated time t

(b) Both Va and Vb as a function of simulated time t

Figure 3.6: Sensitivity of the trajectory and velocity to the time step ∆t parameter study
with h = 3e− 3, r = 2 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) Both ea and eb errors committed on the positions as a function of simulated time t

(b) Both eVa and eVb errors committed on the velocities as a function of simulated time t

Figure 3.7: Sensitivity of the errors to the time step ∆t parameter study with h = 3e− 3,
r = 2 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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eL2 =

∫ tend

0

(b− b̄)2dt (3.17)

which can be approximated using a trapezoidal rule. Figure 3.8 depicts the evolution
of the logarithm of this L2 error with respect to both h and ∆t.

Figures 3.4, 3.5, 3.6, 3.7 and 3.8 clearly establish convergence of the method towards
the analytical solution as both the time step ∆t and mesh size h become smaller. While
it may seem that the simulation is actually less accurate in predicting the larger axis a,
this can actually be attributed to the method of calculating ā described in equation (3.16)
which is much less precise than the measure of b.

For ellipses with ratio r = 2 one may expect the numerical formulation to give adequate
approximations of the minimizing energy flow with a convergence rate of approximately 3
in space and 1.5 in time. However, one may remain dubious in terms of ellipses with even
stronger axis ratios r > 2. Figures 3.9, 3.10 and 3.11 report some results that have been
obtained for r = {8

3
, 4, 5, 8} using h = 3e − 3, ∆t = 5e − 4, a(t = 0) = 0.4 and a 1 × 1

domain.
While, in a qualitative sense, in Figure 3.9 the simulations give sensible results. For

the ratios tested here, the level set fields remain elliptical while shrinking. However, in a
quantitative sense, in Figures 3.10 and 3.11 one may observe that the errors committed
during the simulation increase with increasing ellipse ratio r. Indeed, the mesh size used for
these simulation is not sufficient to accurately describe the curvatures of the ellipses in the
highest ratio cases. These simulations prove that in order to describe strong geometrical
features and their evolution accurately, the mesh size must be sufficiently refined. The
results could be greatly improved by using adaptive remeshing algorithms throughout the
simulations to capture the strongest features of the geometry. In any case, the numerical
parameters (h,∆t) must be adapted to the geometry of the problem in order to obtain
sensible results.

Overall, the numerical formulation is adept at simulating the shrinking ellipse test case
and converging towards the analytical solution when refining the discretization.

3.4 Comparison between the anisotropic and isotropic

velocities

While no doubt relevant to the evaluation of the numerical formulation for the minimizing
energy flow, the ellipse shrinkage case cannot truly distinguish between a velocity that
does not include the anisotropic terms

Dαβ
iso = γmαβ
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(a) ln(eL2) = f(ln(h))

(b) ln(eL2) = f(ln(∆t))

Figure 3.8: Evolution of the ln(eL2) as a function of h (for ∆t = 5e − 4) and ∆t (for
h = 3e− 3) with r = 2, a(t = 0) = 0.4 in a 1× 1 domain.
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r = 8
3

r = 4

r = 5

r = 8

t = 0 t = 5e− 3 t = 1e− 2

Figure 3.9: Time evolution of the level set φ for the ellipse shrinkage test case for different
ellipse ratios. The iso-zero value of the level-set field is in black. The mesh size is h = 3e−3
and the time step is ∆t = 5e− 4.
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(a) b as a function of simulated time t

(b) r as a function of simulated time t

Figure 3.10: Sensitivity of the trajectory and measured ratio r̄ to the initial ratio r pa-
rameter study with h = 3e− 3, ∆t = 5e− 4, and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) eb errors committed on the positions as a function of simulated time t

(b) eVb the errors committed on the velocities as a function of simulated time t

Figure 3.11: Sensitivity of the errors to the ellipse ratio r parameter study with h = 3e−3,
∆t = 5e− 4 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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and one that does

Dαβ
aniso = γmαβ +

∂2γ

∂∇̃αφ∂∇̃βφ

even if one does compute a boundary energy density field that depends on the geometry
γ(∇̃φ). This is because of equation (3.15) where, for the boundary energy used in the
ellipse shrinkage, case Daniso = 3Diso which can be rectified in practice by a scaling of the
mobility or of the time parameter. So, while the ellipse shrinkage case would differ by a
factor of 3 in comparing the cases, the geometry of the interface flow would be the same.

As such, in order to observe the added benefits of including the anisotropic term to
the formulation, one may study a test case where the analytical solution is unknown but
the anisotropic term modifies the velocity differently then the isotropic term. One may
then compare simulations where the Diso is used to results where the Daniso is employed
for the same boundary energy density functions γ and the same initial geometries.

The most important aspect in the choice of the boundary energy density γ is the
continued positive definiteness of the Daniso tensor such that the problem is well posed.
Indeed, Daniso, as a sort of diffusion tensor, must be positive definite

Daniso(ω, ω) > 0, ∀ω ∈ Γ(T ∗M)|ω 6= 0

Simplification One dimensional object

Using the change of parameter cosλ = ∇̃xφ one may express the derivatives

∂γ

∂∇̃βφ
=
∂γ

∂λ

∂λ

∂∇̃βφ

∂2γ

∂∇̃αφ∂∇̃βφ
=
∂2γ

∂λ2

∂λ

∂∇̃αφ

∂λ

∂∇̃βφ
+
∂γ

∂λ

∂2λ

∂∇αφ∂∇̃βφ
(3.18)

Such that
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[
∂λ

∂∇̃αφ

]
=


−1

sinλ

1

cosλ


[

∂2λ

∂∇̃αφ∂∇̃βφ

]
=


− cosλ

sin3 λ

1

sin2 λ

−1

cos2 λ

sinλ

cos3 λ


in 2D. Given that Dαβ is always contracted on symmetric tensors, it too may be

symmetrized such that one may write

1

2

[
∂2λ

∂∇̃αφ∂∇̃βφ
+

∂2λ

∂∇̃βφ∂∇̃αφ

]
=


− cosλ

sin3 λ

1

2 sin2 λ
− 1

2 cos2 λ

1

2 sin2 λ
− 1

2 cos2 λ

sinλ

cos3 λ


and the other component

[
∂λ

∂∇̃αφ

∂λ

∂∇̃βφ

]
=


1

sin2 λ

−1

sinλ cosλ

−1

sinλ cosλ

1

cos2 λ


so that

[Dαβ
aniso] = γ

[
1 0
0 1

]
+
∂2γ

∂λ2


1

sin2 λ

−1

sinλ cosλ

−1

sinλ cosλ

1

cos2 λ

 (3.19)

+
∂γ

∂λ


− cosλ

sin3 λ

1

2 sin2 λ
− 1

2 cos2 λ

1

2 sin2 λ
− 1

2 cos2 λ

sinλ

cos3 λ


Acceptable grain boundary energy density functions respect the positive definiteness

of Daniso. For any ω ∈ Γ(T ∗M),
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Daniso(ω, ω) = γ(ω2
x + ω2

y) +
∂2γ

∂λ2

(
ω2
x

sin2 λ
− 2

ωxωy
sinλ cosλ

+
ω2
y

cos2 λ

)
+
∂γ

∂λ

(
ω2
y sinλ

cos3 λ
− ω2

x cosλ

sin3 λ
+ ωxωy

(
1

sin2 λ
− 1

cos2 λ

))
> 0

ω2
x

(
γ − cosλ

sin3 λ

∂γ

∂λ
+

1

sin2 λ

∂2γ

∂λ2

)
+ ω2

y

(
γ +

sinλ

cos3 λ

∂γ

∂λ
+

1

cos2 λ

∂2γ

∂λ2

)
+ ωxωy

((
1

sin2 λ
− 1

cos2 λ

)
∂γ

∂λ
− 2

sinλ cosλ

∂2γ

∂λ2

)
> 0

which, given the arbitrariness of ω

Dxx
aniso = γ − 1

sin2 λ tanλ

∂γ

∂λ
+

1

sin2 λ

∂2γ

∂λ2
> 0 (3.20)

Dyy
aniso = γ +

tanλ

cos2 λ

∂γ

∂λ
+

1

cos2 λ

∂2γ

∂λ2
> 0 (3.21)

and using

2Dxy
aniso =

(
1

sin2 λ
− 1

cos2 λ

)
∂γ

∂λ
− 2

sinλ cosλ

∂2γ

∂λ2

one may show

2|Dxy
aniso| < min

(ωx,ωy)

∣∣∣∣Dxx
anisoω

2
x +Dyy

anisoω
2
y

ωxωy

∣∣∣∣
which admits a unique minimum

|Dxy
aniso| <

√
Dxx
anisoD

yy
aniso (3.22)

Thus, any boundary energy density function γ must satisfy the conditions (3.20), (3.21)
and (3.22). If it does not, the problem becomes ill-posed and the solutions are not unique.
However, these conditions do not amount to a prescription for the choosing of the grain
boundary energy density. A host functions are viable candidates. While delimiting the
space of possible functions is a worthwhile endeavor, it is not the goal of this work in
particular. As such, in what follows, one particular density that respects these conditions
will be constructed and its effect on the direct embedding of the circle will be studied.
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Considering

γ(λ) = 1 + ε(cos(6λ)− 9 cos(2λ)) (3.23)

where ε ∈ R+. The derivatives can then be expressed

∂γ

∂λ
= 192ε sin3 λ cos3 λ (3.24)

∂2γ

∂λ2
= 576ε sin2 λ cos2 λ(cos2 λ− sin2 λ) (3.25)

thus generating

Dxx
aniso = 1 + ε(cos(6λ)− 9 cos(2λ)) + 192ε cos4 λ+ 576ε cos2 λ(cos2 λ− sin2 λ)

= 1 + ε(375 cos(2λ) + 168 cos(4λ) + cos(6λ) + 216)

Dyy
aniso = 1 + ε(cos(6λ)− 9 cos(2λ)) + 192ε sin4 λ+ 576ε sin2 λ(cos2 λ− sin2 λ)

= 1 + ε(183 cos(2λ)− 120 cos(4λ) + cos(6λ)− 72)

Dxy
aniso = 96ε(sinλ cos3 λ− sin3 λ cosλ)− 576ε sinλ cosλ(cos2 λ− sin2 λ)

= −120ε sin(4λ)

so that

[Dαβ
aniso] =

[
1 0
0 1

]
+ ε


375 cos(2λ) + 168 cos(4λ) −120 sin(4λ)

+ cos(6λ) + 216
183 cos(2λ)− 120 cos(4λ)

−120 sin(4λ) + cos(6λ)− 72

 (3.26)

Now, in order to fulfill the conditions in equations (3.20), (3.21) and (3.22) as well as
the positivity γ > 0, one may express these conditions as acting on ε. Using that ∀x ∈ R
both cos(x) and sin(x) are bounded by −1 and 1

Dxx
aniso > 1 + ε(−375− 168− 1 + 216) > 0

ε <
1

328
Dyy
aniso > 1 + ε(−183− 120− 1− 72) > 0

ε <
1

376
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Figure 3.12: Components Dxx
aniso, D

yy
aniso and Dxy

aniso as a function of λ ∈ [0, 2π]. The limit
expressed in the inequality (3.22) is also shown for comparison as limDxy.
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Figure 3.13: Wulff plot, (r, θ) = (γ, λ), for the grain boundary energy density γ and its
derivatives.

which is actually the best possible majoration of ε since for λ = π
2

one has that
cos(2λ) = cos(6λ) = − cos(4λ) = −1 which is the actual minimum of Dyy

aniso.

Choosing ε = 1
377

, Figure 3.12 illustrates the components of the Daniso tensor as a
function of λ. Graphically, Dxy

aniso is strictly inferior to the required limit.

Figure 3.13 shows a polar plot of the boundary energy density γ(λ) as well as its deriva-
tives. Indeed, in this case, the variations of the boundary energy density are constrained to
be rather small. However, even these relatively small variations can induce relatively large
second derivative terms. The proposed γ function meets all the criteria for the positive
definiteness of Daniso.

Having the grain boundary energy function γ and thus being able to calculate Daniso,
we will consider once again the circle C = ([0; 2π],OC ,AC) and the Riemannian manifold
M = (R2,Ostd,Astd,m). However, the initial embedding ϕ is more direct
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ϕ :[0; 2π] −→ R2

θ 7→ (R cos θ, R sin θ)

where R ∈ R+/{0} is the radius of the embedded circle. The initial conditions for
both the level set field and the grain boundary energy field as well as its derivatives are
represented in Figure 3.14 for R = 0.4.

The test case was run for both Diso and Daniso on a 1 × 1 size isotropic mesh with
h = 3e − 3 and ∆t = 5e − 4. The results of the form evolution of the circle as well as
the evolution of the grain boundary energy field are presented in Figure 3.15. The Diso

and Daniso tensors generate very different boundary flows. While the Diso case tends to
remain circular until disappearing, the Daniso case takes on a very distinctive form. The
persistence of circularity of the Diso case is most likely due to the very small variations in
the boundary energy of the order of only 3%.

However, the most efficient of the two simulations in terms of energy dissipation is thus
the closer to reality since the principle of minimal action is in effect. Thus, the parameter
of most relevance to comparing the two simulations is the energy efficiency of the geometry
obtained in each step of the simulation, defined here as

Λ =

(∫
C
γdC∫

C
dC

)−1

. (3.27)

with respect to the smooth manifold C.
Figure 3.16 shows the evolution of the computed energy efficiency Λ for both simula-

tions. Clearly, the energy efficiency of the form developed by the Daniso flow is better than
that of the Diso flow from the start of the simulation to the disappearance of the boundary.
While not being a direct proof of the validity of the Daniso formulation, these test cases
show that the full Daniso formulation is definitely more adept then the Diso formulation
for the minimizing energy flow problem.

In conclusion, two test cases have been studied in this chapter. The ellipse shrinkage
study shows that the formulation is capable of accurately converging towards the minimal
boundary energy flow. The more arbitrary boundary energy density shows that the ad-
ditional torque term can have a large impact on the dynamics of the interface even when
the anisotropy is relatively small. The constraints on the γ function for the well-posedness
of the problem were derived in a practical setting. No other benchmarks, to the author’s
knowledge, exist in the state of the art to test minimal energy interfacial flows in an
anisotropic setting.
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(a) γ (b) Dxx
aniso

(c) ∂γ
∂λ

(d) Dyy
aniso

(e) ∂2γ
∂λ2 (f) Dxy

aniso

(g) φ

Figure 3.14: Initial values of the level set field φ, boundary energy field γ, its derivatives
and the components of Daniso. The iso-zero value of the level set is in black.

96



t = 0

t = 2.5e−3

t = 5e− 3

t = 7.5e−3

Diso Daniso

Figure 3.15: Time evolution of the grain boundary energy field γ and the iso-zero value
of the level set for the circle shrinkage test case run with Diso and Daniso. The iso-zero
value of the level-set field is in black. The mesh size is h = 3e − 3 and the time step is
∆t = 5e− 4.
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Figure 3.16: Computed energy efficiency Λ as a function of time t for circle shrinkage test
cases run with Diso and Daniso.
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Résumé en Français du Chapitre 3

Ce chapitre a pour but de tester les équations développées dans le chapitre précédent en
utilisant des cas idéalisés. Dans un premier temps, l’implémentation numérique de type
éléments finis pour le transport des champ level set est décrite. Puis, un nouveau cas
analytique anisotrope, concernant le rétrécissement d’une ellipse, est explicité. La con-
vergence numérique de l’algorithme est démontrée à travers une campagne de simulations
faisant varier la discrétisation spatiale et temporelle aussi bien que quelques paramètres
géométriques du système. Enfin, le formalisme est testé sur un cas non-analytique où
la comparaison des résultats issus de simulations utilisant le champ de vitesse dit “clas-
sique” et le nouveau illustre clairement la supériorité de ce dernier. On considerera comme
résultat phare de ce chapitre les équations (3.20), (3.21) et (3.22) qui imposent des condi-
tions claires et calculables sur l’anisotropie acceptable de l’énergie de joints de grains.

99



100



Chapter 4

Multiple Junctions

The previous chapters have been devoted to developing the mathematical and numerical
framework needed to model a single interface. The monophase metallic material’s mi-
crostructure is composed of a great number of interfaces, or grain boundaries, that are
connected between each other. In the following, this gap we attempt to be bridged using
level set techniques. The main difficulty confronted in this work is attempting to model
the grain boundary network as a sum of grain boundaries. Indeed, the junctions at which
these boundaries meet in the polycrystal break the classic topology of the interfaces and
therefore the differential structure. Techniques to circumvent this issue are developed and
tested. Also, the crystallography of the material, through the orientations of the grains, is
introduced. This enrichment of the description of the polycrystal comes with the develop-
ment of supplemental numerical choices as well as procedures for evaluating the dynamics
of the grains.

4.1 Statics of the polycrystal

Let Ω be a Riemannian d-manifold with metric ω and the entire polycrystal domain. This
enclosing manifold can be partitioned into N mutually disjoint sub-manifolds {Gi, i ∈
{1, . . . , N}} called grains

Ω =
⋃
i

Gi (4.1)

Gi ∩Gj = ∅, i 6= j (4.2)

where the underlying sets of each Gi are open in Ω. Thus, using the topological closure
of the grains Ḡi one can give a precise definition of the grain boundary network Γ as a
topological space
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Γ =
⋂
i

Ḡi (4.3)

However, Γ is not a topological manifold since the multiple junctions where more than
three grains meet can not be given a locally Euclidean topology. Failing to be a topological
manifold, there is no way to define a differentiable structure and thus make it into a smooth
manifold. As such, in order to continue to use level set models for the interfaces, each
interface

Si = Ḡi/Gi, (4.4)

which inherits its topology from Ω, must be modeled individually. However, in order
to attribute a differentiable structure to the interfaces in a strong sense, the “corners” of
the interface generated by the multiple junctions must be smoothed. Defining any one
parameter smoothing operation ηε, ε ∈ R+ such that

lim
ε→0

ηε(Si) = Si

one may define the level set field φi describing the grain Gi as

φi(X ∈ Ω) = ±d(X, ηε(Si)) (4.5)

with the sign convention that φi(X) > 0 when X ∈ Gi. In practice, the smoothing
operation ηε is implicitly performed when defining the level set field on the FE mesh
where the smoothing parameter ε is related to the mesh size. Figure 4.1 summarizes the
description and subsequent approximations of the polycrystal.

However, if one was to implement this description directly on microstructures with a
large number of grains, there would be N level set fields. This is highly inefficient when
considering that the dynamics of each level set field are solved separately. As such, using
coloring techniques from graph theory, multiple non-neighboring grains Gj are heaped into
one level set field φi using the developments described in [7, 106] such that

φi :Ω −→ R
φi(X) = ±min

j∈Gi
d(X,Gj)

where Gi is a set containing the indexes of the grains modeled by the ith level set field.
One may define Φ = {φi, i = 0, . . . ,M}, where M is the number of level set fields, as the
set containing all the level sets.
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Figure 4.1: Illustration of the mathematical description of the polycrystal, the approxi-
mations applied to generate a smooth level set description and the numerical adaptation
on a FE mesh.
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The crystallographic orientations {Oi} of the grains {Gi} are then modeled by a unit
quaternion field q(X) such that, using the characteristic functions of the grains χi

χi(X) =

{
1 X ∈ Gi

0 X /∈ Gi

one may define,

q(X) =
∑

i=1,...,N

W (Oi)χi(X) (4.6)

where W takes crystallographic orientations to their unit quaternion representatives.
On a finite element mesh, the quaternion field is defined on the nodes of the mesh. As
such, the misorientation between two grains Gi and Gj with unit quaternion orientations
qi and qj respectively may be simply expressed as the unit quaternion mij

mij = (ssqi)
−1qjsq

min
s,q

θ(ssqi,sjqj)

(4.7)

where the sk are the unit quaternion representatives of the symmetry group of the
crystal, θ(·, ·) is a function that calculates the disorientation angle between two quaternions
and the classical Hamiltonian quaternion algebra H is used. However, in order to define a
misorientation field on the discretized finite element mesh one must use the misorientation
equation locally at each cell. As such, we define the misorientation field me as a P0
(constant per element/cell) field as

me = (ssq(Xi))
−1q(Xj)sq

max
i,j

min
s,q

θ(ssq(Xi),sjq(Xj))

(4.8)

where Xk are the nodes that constitute the element e. Figure 4.2 illustrates the con-
figuration on a FE mesh.

With this definition of misorientation, an element traversed by two iso-zero level sets
will have a non-null misorientation which will be the value of the misorientation in between
the neighboring grains. However, in elements traversed by three or more iso-zero level set
values, the misorientation is ill-defined. As such, the discrete equation (4.8) calculates
all the possible misorientations between neighboring grains and attributes the one with
the highest disorientation value to the element. Thus, all elements traversed by grain
boundaries have non-null misorientations, while the elements completely enclosed in the
grains have null misorientations.
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Figure 4.2: Illustration of the misorientation me and orientation fields q on a finite element
mesh.

A P0 unitary normal vector field to the boundary is quite readily available from the
gradient of the level set fields nα =

∑
i χiω

αβ∇̃βφi which can then be expressed in any
crystallographic frame. Thus, the grain boundary character b(X) = (m(X), n(X)) can
be computed in any element traversed by a grain boundary. As such, a grain boundary
energy density γ(b(X)) can also be calculated for any cell crossed by a boundary and thus
generate a grain boundary energy field γ(X). However, this grain boundary energy field
is highly discontinuous seeing that it is a field that is constant per element and only takes
non-null values at elements traversed by boundaries. This field must be extended to the
entire manifold Ω for the finite element calculation.

The proposed extension algorithm is reported in Algorithm 3 and [94]. The algorithm
iterates over the nodes of the mesh attributing maximal values of the energy to nodes
that neighbor grain boundaries. The result is a P1 γ field with adequate values of grain
boundary energy interpolated at the boundaries and mostly null elsewhere. By solving a
Laplace equation for the new boundary energy field γ, conserving the calculated values
at the boundaries, one extends the field to all of Ω without modifying the values at the
boundaries. As such, the new γ(X) field is a P1 field with non-null values everywhere
with adequate regularity properties.

Figure 4.3 illustrates the entire process from orientation field to extended grain bound-
ary energy visually.

As such, the polycrystal in Ω is characterized by a tuple (Φ, q) representing the geom-
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Figure 4.3: Visual illustration of the process from q(X) → γ(X) for a close-up of a
polycrystal
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Algorithm 3 γ extension

NΓ = {}
for node X in mesh do

γBC(X) = 0
for element e connected with X do

γBC(X) = max(γ(e), γBC(X))
end for
if γBC(X) 6= 0 then

put X in NΓ

end if
end for
solve ∆γ(X ∈ Ω) = 0 for boundary conditions γ(X ∈ NΓ) = γBC(X)

etry of the grain boundary network and the crystallography of the microstructure from
which all the relevant fields may be computed.

4.2 Dynamics of the polycrystal

Now that the static description of the polycrystal is complete, the dynamics of the grain
boundary network can be modeled. All the level set fields φi ∈ Φ are subject to the
interface migration equation (2.43) individually

∂φi
∂t

+ µ

(
−

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφi + Pαβ∇̃βγ∇̃αφi

)
= 0 (4.9)

such that there are as many equations as there are level set fields. However, after a
resolution increment of the FE problem there are a number of regularization procedures
one must perform on the fields describing the polycrystal.

Firstly, seeing as the transport equation is solved individually for each of the level sets,
it does not conserve the configuration described in Figure 4.1. Due to the very intense
hessian values of the level set fields ∇̃∇̃φi at the multiple junctions, the geometric voids
created by the level set description tend to grow. For this reason authors in [82] proposed
a regularization procedure after each resolution increment that reduces these voids and
also cancels potential overlaps. For φi ∈ Φ

φi(X) =
1

2

(
φi(X)− max

φj∈Φ,j 6=i
φj(X)

)
(4.10)
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This is the procedure used in this numerical model to deal with the extraneous voids
generated by the FE resolution. A more general variational approach to the voids and
overlaps is proposed in [107]. This method was not used here for simplicity. The algorithms
in [106] allow for the redistribution of the grains in the different level set fields (i.e. the
reconfiguration of the sets Gi) so as to avoid coalescence of grains, described by the same
level set, that might come into contact. However, due to both these regularizations and
the solution of the FE problem, the level set field loses its distance property. Given
the development in Chapter 2, the level set must be a distance function for the migration
equation to be valid. As such, as in the previous chapter, the direct reinitialization method
developed in [102] is used to recompute the level set fields as distance functions to the
grain boundaries.

As the level set fields evolve and the grains in the polycrystal reconfigure themselves
with respect to one another the crystallographic orientation field q must also be updated
to track the new contours of the crystallites. In practice, this operation is achieved by
attributing the value of the orientation found at the intersection of the old and new
description of the grains. Such that, considering χi as the characteristic field of the
updated grain G̃i and Gi the old description of the same grain,

q =
∑
i

q(G̃i ∩Gi)χi (4.11)

with the insight that the orientation field in the overlap between the new and old grains
q(G̃i ∩Gi) is a constant.

Once the orientation field has been updated, one may once again compute the grain
boundary character field b = (m,n) and the initial P0 grain boundary energy field γ. Using
the extension operation in Algorithm 3, the P1 γ field may be calculated. Of course, the
extension algorithm remains general enough to also extend the tensor quantity ∂2γ

∂∇̃φ∂∇̃φ .

As in the previous chapter, the covariant derivatives of γ and the associated fields are
computed using higher order interpolations [103].

The above described procedure for the fully anisotropic pure grain growth of a poly-
crystal is summarized in Algorithm 4.

4.3 The Grim Reaper test case

In [101] the most well known analytical test case for the heterogeneous triple junction
is described. Using the so-called “Grim Reaper” profile solution of the isotropic grain
growth, the authors develop a stationary solution for the evolution of a symmetric triple
junction. Figure 4.4 illustrates the configuration for this benchmark.

Indeed, a stable triple junction should respect Herring’s equilibrium at the junction
itself
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Algorithm 4 Anisotropic Grain Growth

Data: Initial Polycrystal: Ω, {Gi}, {Oi} ∆t, tend
Compute the initial Φ({Gi}) and q({Oi})
t = 0
while t < tend do

Calculate b = (m(q), n(q,Φ))

Calculate γ(b) and ∂2γ

∂∇̃φ∂∇̃φ(b)

Extend both γ and ∂2γ

∂∇̃φ∂∇̃φ
Compute covariant derivatives for the convective term
Solve the FE element problems for all φi ∈ Φ
t = t+ ∆t
Regularize the multiple junction voids
Redistribute the grains among the level sets
Reinitialize the Level Set fields
Update the q field

end while

∑
i=1,2,3

γiτi +
∂γi
∂τi

= 0 (4.12)

where the γi are the boundary energy densities of the three boundaries and the τi are
the inward pointing tangent vectors to each of the interfaces at the junction. In conditions
where the boundary energy functions γ(M,n) are independent of the inclination of the
boundary γ(M), the values of the energy density are constants per interface and the
equations become those of a Young equilibrium

∑
i=1,2,3

γiτi = 0 (4.13)

This equation admits a solution of the form

sin ξ1

γ1

=
sin ξ2

γ2

=
sin ξ3

γ3

(4.14)

where the ξi are the angles made by the boundaries opposite to the ith boundary in
the steady state. In cases where γ1 = γ2 = γtop and γ3 = γbot then using the ratio r = γtop

γbot
one may directly express
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Figure 4.4: Diagram of the “Grim Reaper” test case for the triple junction. The initial
state of the case is in gray.

ξ3 = 2 arccos

(
1

2r

)
(4.15)

where the two other angles are given, using symmetry and geometry, by ξ1 = ξ2 =
π− ξ3

2
. The authors of [101] were able to construct boundary conditions for the S1 boundary

(and by symmetry the S2 boundary as well) using these angles and orthogonal settings for
the boundaries at their intersection with the boarder of the domain. This system admits
a constant velocity solution y(x, t) with a stationary geometry of the boundaries given by
the “Grim Reaper” profile


y(x, t) = g(x) + ct

g(x) = −µγtop
c

ln cos

(
c

µγtop
x

)
+ y0

(4.16)

where c is the magnitude of the constant velocity, µ is the mobility of the boundaries,
y0 is a shift and (x, y) is a Cartesian chart for the domain. The c parameter is related to
the size of the simulated domain
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c = −2µγtop
L

(
π

2
− ξ3

2

)
(4.17)

As such, the simulations of this benchmark can be evaluated on three interconnected
criteria

• the respect of the analytical profile g(x) of the boundary,

• the obtention of the ξ3 angle

• and the adherence to the stationary velocity c.

Also, starting from an initial “T” junction (represented in gray in Figure 4.4) the
simulation should have a transition period towards the stationary solution depending on
the imposed energy density ratio r and the length of the simulation domain L.

From the atomistic calculations in [40] the energy density ratio between the coherent
twin boundary and a more general boundary can be roughly estimated at r = 10. As
such, this will be the test ratio used for the convergence analysis of the formulation in this
benchmark. Also, for convenience L = 1.

This analytical case is also the perfect setting to investigate the effects of the convective
term in the formulation. As such, three different formulations will be studied:

Classic

∂φi
∂t
− µγmαβ∇̃α∇̃βφi = 0

Projected

∂φi
∂t

+ µ
(
−γmαβ∇̃α∇̃βφi + Pαβ∇̃βγ∇̃αφi

)
= 0

Full

∂φi
∂t

+ µ
(
−γmαβ∇̃α∇̃βφi +mαβ∇̃βγ∇̃αφi

)
= 0

111



Simplification Flat metric, Cartesian chart

Defining both the gradient and the laplacian generally as

mαβ∇̃β· = grad(·)α

and

mαβ∇̃α∇̃β· = ∆·

and applying the flat metric and cartesian chart hypotheses, the formulations can
be written in more conventional terms

Classic

∂φi
∂t
− µγ∆φi = 0

Projected

∂φi
∂t
− µγ∆φi + µ(δαβ − nαnβ)∇̃βγ∇̃αφi = 0

Full

∂φi
∂t
− µγ∆φi + µgrad(γ)α∇̃αφi = 0

where the goal is to compare the effects of the inclusion of the additional term in the
covariant derivative of γ (the second derivative term ∂2γ

∂∇̃φ2 is implicitly null because the

energy density does not depend upon the inclination of the boundary). In the strictly for-
mal sense of the one interface model described in the two previous chapters this additional
term should be null due to the orthogonality of ∇̃γ and ∇̃φ and the three formulations
should yield the same results. However, the various regularizations and treatments of both
the level set fields and the energy density field around the triple junction actually render
this term non-negligible. The genesis of the “Full” formulation might seem completely
arbitrary at first sight as compared to the two other expressions. In the chronology of
this investigation, the “Full” formulation was actually found to be a candidate before the
“Projected” one. As such, in order to be coherent with currently published works such
as [94], this supplemental equation is included here. Figure 4.5 reports on the vector fields
m−1 · ∇̃γ and P · ∇̃γ.

As is customary when testing a new numerical model, a convergence analysis has been
conducted for the (r = 10, L = 1) case for the three formulations. Figure 4.6 reports on the
time evolution of all three formulations in the most precise case. While both the Classic
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(a) grad(γ) (b) P · ∇̃γ

Figure 4.5: Glyph views of the grad(γ) and P · ∇̃γ vector fields close to the T junction
for r = 10. Boundaries are in white.

and Projected formulations do seem to produce Grim Reaper profiles for the boundaries,
the Full formulation does not. The Full case actually takes an opposite trajectory to the
two other cases and to the analytical solution for this heterogeneous ratio r = 10.

A method for calculating the angles at the triple junction as well as the trajectory of
the triple point has been developed and used here to measure ξ3 and vTJ , the y component
of the velocity of the triple point. The Appendix A details the algorithm where here the
ε parameter is taken equal to 0.05. Also, the total interfacial energy of the system EΓ is
calculated using

EΓ =
∑
i

∑
e∈E

1

2
γle(φi),

where E is the set of all elements of the mesh and le measures the quantity of iso-zero
set interface in the element e. The 1

2
is necessary in order to account for the duplication of

the interfaces by the level set framework. Relative errors in the ξ3 angle eξ3 and in velocity
evTJ are computed using

eξ3 =
ξana3 − ξ̄3

ξana3

,

evTJ =
c− vTJ

c
,
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(a) Classic

(b) Projected

(c) Full

Figure 4.6: Time lapse images of the iso-zero values of the level sets obtained for the differ-
ent formulations for an initial T junction and (r = 10, L = 1) with the mesh size h = 1e−3
and time step ∆t = 1e−5. Plotted level sets correspond to t = {0, 0.01, 0.02, 0.04, 0.08} re-
spectfully from top to bottom for the “Classic” and “Projected” formulations and bottom
to top for the “Full” case.
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where ξ̄3 is the value measured for the ξ3 angle and ξana3 is the analytical value. Figures
4.7, 4.8 and 4.9 show the time evolution of the eξ3 , evTJ and EΓ quantities for all three
formulations and for different mesh sizes h. The results, being particularly noisy, are
shown smoothed by a Savitzky-Golay [108] algorithm with quintic polynomials and 301
point patches. The same format is adopted for the convergence analysis with respect to
the time step in Figures 4.10, 4.11 and 4.12.

In order to better analyze the convergence results, the smoothed data of the most
precise simulation (h = 1e− 3,∆t = 1e− 5) was interpolated using splines and then used
as the reference evolution (Xref ) for calculating eL2(X) values

eL2(X) =

√∫ tend

0

(Xref −X)2dt

where X can be the value of the measured ξ̄3 angle, the trajectory of the triple point
yTJ or the total energy EΓ. Figures 4.13 and 4.14 show the evolution of eL2 result as a
function of h and ∆t respectively in logarithmic plots. These two final figures demonstrate
the numerical convergence of all three formulations. However, the explicit time evolution
show that for this range of (h,∆t) numerical parameters the systems are more sensitive
to the mesh size than the time step. Also, the strong oscillations in the results reveal that
the measurement of the angles, velocities and energies have noise attached to them (which
is to be expected given the discrete nature of the mesh). However, the classification
of the instability from least to most oscillatory being the Classic, Projected and Full
formulations in that order clearly point at the scheme becoming less stable with stronger
convective terms. Thus, although the finite elements are stabilized, the localized nature
of the convective term is introducing some instability.

Even though the numerical schemes are convergent, the results obtained show signifi-
cant errors with regards to the analytical values. Figure 4.15 reports on the time evolution
of eξ3 , evTJ and EΓ for all three formulations in the most precise case. Looking at the total
energy evolution, all formulations generate increases in the total energy of the system.
This result, while disappointing, can possibly be related to a numerical error for the Pro-
jected case which continues to lower its energy evolution with finer space discretizations
in Figure 4.8. Interpreting the results obtained here directly, the EΓ evolution are not
physically coherent with the Projected formulation being the least wrong.

The Full formulation obtains the best fit for the ξ3 angle but it fails to obtain the
correct sign for the velocity, explaining the bizarre forms of triple junction obtained, as
well as ultimately increasing the total energy of the system more than the other two.
The timeseries data for the Classic and Projected formulations are more similar with
generally the Projected cases performing better than the classic case in every measured
quantity. Indeed, the Projected scheme reduced the error obtained for the ξ3 angle by
10% as compared with the Classic case. Considering the analytical form, velocity and
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(a) eξ3 = f(t, h)

(b) evTJ = f(t, h)

(c) EΓ = f(t, h)

Figure 4.7: Time series plots of eξ3 , evTJ and EΓ for the Classic formulation run with
∆t = 1e− 5 and h = {1e− 3, 3e− 3, 5e− 3}. Smoothed by a Savitzky-Golay filter.
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(a) eξ3 = f(t, h)

(b) evTJ = f(t, h)

(c) EΓ = f(t, h)

Figure 4.8: Time series plots of eξ3 , evTJ and EΓ for the Projected formulation run with
∆t = 1e− 5 and h = {1e− 3, 3e− 3, 5e− 3}. Smoothed by a Savitzky-Golay filter.
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(a) eξ3 = f(t, h)

(b) evTJ = f(t, h)

(c) EΓ = f(t, h)

Figure 4.9: Time series plots of eξ3 , evTJ and EΓ for the “Full” formulation run with
∆t = 1e− 5 and h = {1e− 3, 3e− 3, 5e− 3}. Smoothed by a Savitzky-Golay filter.
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(a) eξ3 = f(t,∆t)

(b) evTJ = f(t,∆t)

(c) EΓ = f(t,∆t)

Figure 4.10: Time series plots of eξ3 , evTJ and EΓ for the Classic formulation run with
∆t = {1e− 5, 2.5e− 5, 1e− 4} and h = 1e− 3. Smoothed by a Savitzky-Golay filter.
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(a) eξ3 = f(t,∆t)

(b) evTJ = f(t,∆t)

(c) EΓ = f(t,∆t)

Figure 4.11: Time series plots of eξ3 , evTJ and EΓ for the Projected formulation run with
∆t = {1e− 5, 2.5e− 5, 1e− 4} and h = 1e− 3. Smoothed by a Savitzky-Golay filter.
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(a) eξ3 = f(t,∆t)

(b) evTJ = f(t,∆t)

(c) EΓ = f(t,∆t)

Figure 4.12: Time series plots of eξ3 , evTJ and EΓ for the “Full” formulation run with
∆t = {1e− 5, 2.5e− 5, 1e− 4} and h = 1e− 3. Smoothed by a Savitzky-Golay filter.
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(a) eL2 for the yTJ

(b) eL2 for ξ̄3

(c) eL2 for EΓ

Figure 4.13: ln(eL2) as a function of ln(h) for a variety of characteristic degrees of freedom
of the triple junction for ∆t = 1e− 5.
122



(a) eL2 for the yTJ

(b) eL2 for ξ̄3

(c) eL2 for EΓ

Figure 4.14: ln(eL2) as a function of ln(h) for a variety of characteristic degrees of freedom
of the triple junction for h = 1e− 3.
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energy evolution, the Projected case is the best candidate. With regards to the ξ3 angle,
the Full formulation obtains the best results for this level of heterogeneity but does so by
eschewing other constraints.

However, seeing that these results were obtained for a given heterogeneity (r = 10) one
would be justified in questioning their validity for other heterogeneous ratios. Figure 4.16
summarize the results obtained using r = {0.8, 1, 2, 5, 10} with (h,∆t) = (1e− 3, 1e− 4).
These data globally support the conclusions made in the (r = 10) case.

As such, the results presented in this section seem to point towards the Projected
formulation as the one that produces interface flows that are the closest to the analytical
case. These new equations provide a definite improvement on the results of the Classical
case where no supplemental convection is added at the triple junction. This is, therefore,
the form for the equations used here on out. However, the algorithm is far from perfect and
cannot account for exactly analytical results at the triple point. Perhaps some adequate
mixing of the Full and Projected formulations might do so or maybe a different extension
of the γ field might provide a more suitable ∇̃γ field. Also, it is very possible that the
surface terms neglected in Chapter 2, leading from equation (2.25) to (2.26), play a non
trivial role. Regardless, seeing as the three formulations are theoretically equivalent and
differ in practice due to the singular topology of the triple junction it is remarkable that
one observes such striking differences between the results. The case is more than likely
exacerbated in 3D where triple points become lines and more exotic junctions (quadruple,
etc.) become commonplace. These results show the beginning of the limits of models
which attempt to simulate the grain boundary network as a sum of interfaces. In reality,
the junctions between interfaces correlate the entire network so that it becomes more than
just the sum of its parts.

4.4 Torque effects on a triple junction

The heterogeneous cases studied above are very important in regards to polycrystal evo-
lution. However, they do not cover more general anisotropic cases where the boundary
energy density might depend on the inclination of the boundary as well. As such, this
section is devoted to investigating the dynamics of a triple junction subject to an inclina-
tion dependent energy density function. Considering a separable grain boundary energy
density

γ(M,n) = Ξ(M)ν(n)

such that Ξ may be calculated as in the previous section and ν is constrained by
the conditions expressed in equations (3.20), (3.21) and (3.22). Proposing the following
function, with λ = arccos(nx)
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(a) eξ3 = f(t)

(b) evTJ = f(t)

(c) EΓ = f(t)

Figure 4.15: Time series plots of eξ3 , evTJ and EΓ for the three formulations with h = 1e−3
and ∆t = 1e− 5. Smoothed by a Savitzky-Golay filter.
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(a) eξ3 = f(r)

(b) evTJ = f(r)

(c) EΓ = f(t, r)

Figure 4.16: Plots of the final values of eξ3 , evTJ as a function of r and EΓ as a function of
t for the three formulations with h = 1e− 3 and ∆t = 1e− 5 and different heterogeneous
ratios. The EΓ timeseries data is smoothed by a Savitzky-Golay filter.126



Figure 4.17: Polar plot of ν(λ) and N(λ) components.

ν(λ) = 1 +
1

20

(
3

32
cos (4λ)− 3

64
cos (8λ) +

1

96
cos (12λ)

)
(4.18)

one can compute the various elements of the symmeterized Nαβ = νmαβ + ∂2ν
∂∇̃αφ∇̃βφ

which are reported in Figure 4.17. However, ν should be rotated with respect to each
grain so as to weigh the crystallographically equivalent directions in the same way. Using
the nx parameter here instead of the inclination represented in the crystallographic frame
of each grain is a simplifying choice which is completely non-physical. Nevertheless, in
order to make more sense of the results, this sort of artifact is useful.

With Ξ(M) being characterized here by a heterogeneous ratio of r = Ξmax
Ξmin

= 10 as in

the energy density of the previous section and Dαβ = Ξ(M)Nαβ(λ), the initial state of
the triple junction is illustrated in Figure 4.18 for a mesh with h = 1e− 3. The energetic
state is relatively similar to the triple junctions investigated in the previous section.

In order to explore the implications of including the inclination dependence of the
energy density and its effect on the migration velocity of the boundaries, two projected
formulations for the dynamics are compared
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(a) γ (b) Dxx

(c) Dyy (d) Dxy

Figure 4.18: Initial γ and D fields of the triple junction. The interfaces are pictured in
black.
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Heterogeneous

∂φi
∂t

+ µ
(
−γmαβ∇̃α∇̃βφi + Pαβ∇̃βγ∇̃αφi

)
= 0

Anisotropic

∂φi
∂t

+ µ

(
−

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφi + Pαβ∇̃βγ∇̃αφi

)
= 0

Simplification Flat metric, Cartesian chart

Heterogeneous

∂φi
∂t
− µγ∆φi + µ(δaβ − nαnβ)∇̃βγ∇̃αφi = 0

Anisotropic

∂φi
∂t
− µγ∆φi − µ

∂2γ

∂∇̃βφ∂∇̃αφ
∇̃α∇̃βφi + µ(δaβ − nαnβ)∇̃βγ∇̃αφi = 0

where the goal is once again to evaluate the role of the second derivative. The sim-
ulations are performed using (h,∆t) = (1e − 3, 1e − 4) and the junction evolution are
presented in Figures 4.19 for the Heterogeneous and Anisotropic cases. The final state
of the γ and D fields are presented in Figure 4.20. From these figures the ability of the
second derivative term to generate a torque on the junction is remarkable. Given the very
low anisotropy induced by the chosen ν, the effect on the triple junction is substantial
following along the same lines as the previous chapter.

Using the definition given in equation (3.27), the energy efficiency of both simulations
are compared at each time step in Figure 4.21. Unfortunately, the results in Figure 4.21
are inconclusive as to which formulation generates the most energy efficient configurations.
However, it is remarkable that the Anisotropic formulation manages to deviate from the
classical “Grim Reaper” symmetric solution without losing any general energy efficiency.
Supplemental simulations as well as analytical benchmarks are needed to better inform
the results using these formulations and move towards more realistic junctions.

In this chapter, the numerical implementation for considering the pure grain growth
of polycrystals in a level set formalism was developed. Also, the effect of the term in the
equation (2.45) was evaluated in the context of the triple junction. While the formulation
exhibits some inconsistencies, it has proven to be better than its non-heterogeneous coun-
terpart. Also, the second derivative in equation (2.44) is shown to generate torque in an
anisotropic context, a necessary component of annealing twin modeling. The applications
to polycrystals is treated in the next chapter.
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(a) t = 0
(b) t = 0.02

(c) t = 0.04 (d) t = 0.06

(e) t = 0.08 (f) t = 0.1

Figure 4.19: Time evolution of the triple junction for the Heterogeneous formulation (in
black) and Anisotropic formulation (in orange). Simulations run with (h,∆t) = (1e −
3, 1e− 4)
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(a) γ (b) Dxx

(c) Dyy (d) Dxy

Figure 4.20: Final γ and D fields of the triple junction for the Anisotropic formulation.
The interfaces are pictured in black.
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Figure 4.21: The energy efficiency Λ of the configuration as a function of time t for the
Heterogeneous and Anisotropic formulations.
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Résumé en Français du Chapitre 4

Ce chapitre concerne l’élargissement des capacités du formalisme level set, développé dans
ce manuscrit, de modélisation des polycristaux. D’abord, les ajouts et modifications du
modèle, pour la plupart issus d’autres travaux sur le sujet, sont décrits afin de pouvoir
simuler des jonctions multiples, éléments omniprésents dans les microstructures. Une
fois que ces modifications sont prises en compte, l’approche numérique est testée sur un
cas analytique bien connu, le “Grim Reaper” [101]. La simulation numérique de cette
configuration est réalisée pour trois formalismes proches mais toutefois différents. La
comparaison des résultats permet de trancher parmi les trois solutions. Cependant, même
la plus performante des trois méthodes donne des résultats qui semblent déviés des attentes
analytiques pour les cas les plus hétérogènes. Un dernier cas est proposé où une anisotropie
complète de l’énergie du joint est prise en compte dans une jonction triple et l’effet du
terme de “torque” du joint est évalué.
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Chapter 5

Applications

Now that a full field level set formulation for grain growth has been developed and tested
on analytical test cases, one may start to look at configurations that are closer to real
microstructures. This is the goal of this chapter. The first section is dedicated to in-
vestigating “twinned” grains in a controlled environment. Through this study one may
start to observe the singular behavior of very low energy grain boundaries. The second
section reports on the simulation of virtual microstructures using grain boundary energy
densities that depend only on the misorientation. Multiple such test functions are used
in order to evaluate the links between the grain boundary energy density function and
microstructural evolution during grain growth. The third section is devoted to studying
the evolution of virtual microstructures that exhibit an inclination dependence of the grain
boundary energy density but no misorientation dependence. As such, the effects of each
term of the formulation on polycrystals may be decorrelated from each other.

5.1 Applied test configurations for “twins”

In order to correctly model the twin boundary, one would need to use a 3D model. To
differentiate between the coherent and incoherent twin boundaries one would need to know
the full inclination parameters of the interface. Even so, a “pseudo-twin” boundary can
be thought of in 2D by considering the coherency of the interface at the (11) lines instead
of the (111) planes. This is a gross simplification of reality. However, this 2D model of
the twin boundary enables one to start thinking about the configurations illustrated in
Figure 1.10.

When thinking of benchmark calculations on twinned grain configurations, the ideal
case would be to use a grain structure that is fully stable without the twin boundary. As
such, the evolution of the configuration is fully controlled by the presence of the singular
interface. Isotropic grain boundaries have stable multiple junctions which are isogonic.
Thus, tessellations of regular hexagons are metastable for isotropic grain boundary energies
under grain growth. Given these considerations, the grain structure illustrated in Figure
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Figure 5.1: Stationary isotropic hexagonal configuration

5.1 is stationary using isotropic grain boundary energies. The meshed domain is an octagon
in order to comply with the orthogonality of the interfaces at the boundaries of the domain.

One may then insert a coherent “twin” boundary in the middle of the center hexagonal
grain using a separable grain boundary energy

γ(M,λ) = Ξ(M)ν(λ− π

4
) (5.1)

where ν is defined in equation (4.18). The phase shift π
4

is integrated in order to displace
the minima of the grain boundary energy to the (10, 01, 1̄0, 01̄) planes and thus make a
horizontal boundary a local minimum of the energy function. The logic is that the two
middle grains share a (11) plane that happens to be the (01) plane in the reference frame of
the domain. In order to keep the stability of the isotropic junctions, the anisotropy of the
boundaries is only “activated” at the inserted twin boundary. The Ξ function is devised
such that the ratio between the reference isotropic boundaries and the twin boundary r
can be calibrated. This initial configuration is represented in Figure 5.2.

The mesh is remeshed at every iteration of the grain growth algorithm for numerical
efficiency. The same type of anisotropic remeshing algorithm used in [91, 109] is used
here. The idea is to have a zone close to the interface and in the normal direction very
concentrated in mesh nodes and to coarsen the mesh elsewhere. As such, maximal precision
can be concentrated in the greatest zones of interest. Outside the refined zone the mesh
is isotropically defined with a mesh size of hcoarse = 7e− 3 and inside the refined zone the
mesh is anisotropically defined with a mesh size in the normal direction of hn = 1e− 3.

Knowing that the coherent twin boundary is a very low energy boundary one may
study multiple iterations of the same configuration by increasing the heterogeneous ratio
r (thus steadily decreasing the energy of the twin boundary). Observations in real twinned
microstructures promote the idea that this configuration is relatively stable. Even though
there is no way for this structure to be completely stationary, increasing the heterogeneous
ratio should make it decay less rapidly at least. Figure 5.3 reports on the total energy
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(a) Full view

(b) Zoomed view

Figure 5.2: Initial configuration of the twinned grain benchmark for r = 10. The bound-
aries are colored by their energy density and the ν field values are represented. The mesh
is shown on half the figure and a zoomed view is portrayed at the left triple junction of
the low energy boundary.
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Figure 5.3: Total energy EΓ as a function of t for various heterogeneous ratios.

evolution of the system as a function of time for different heterogeneous ratios. This figure
demonstrates that as the ratio increases, the evolution in total energy of the systems tends
to converge. This means that there seems to be a sort of upper limit in the stability of
the system which is obtained around r = 100.

Figure 5.4 shows different snapshots of the configurations of the boundaries for the
r = {1, 10, 100} systems. The first observation is that increasing the heterogeneous ratio
does stabilize the grain. It takes much longer for the lower energy boundaries to disappear
than the boundary in the r = 1 case. This is thanks to the more obtuse angles created at
the triple junctions in the higher ratio cases. However, what is perhaps surprising is the
role of the torque terms in the simulations. There seems to be a competition between the
torque generated by the twin boundary, which will tend to keep the boundary horizontal,
and the torque generated by the multiple junctions, which tend to lightly incline the twin
boundary. Indeed, the twin boundary in both the r = 1 and r = 10 cases has a tendency
to rotate from the influence of both the right and left junctions. The r = 100 case seems
to be relatively unaffected by the torque terms as compared to the two other simulations.
Whether this is because the torque terms at the junctions are relatively less intense or
because the torque of the boundary is more dominant is unknown as of now. This sort
of interaction is of importance in boundary migration in polycrystals and merits more
profound investigation.

Using these insights and setting r = 100, other interesting twin boundary configura-
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t = 0

t = 0.01

t = 0.03

t = 0.08

r = 1 r = 10 r = 100

Figure 5.4: Comparison of twinned grain configurations at different simulation times for
different heterogeneous ratios r.
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tions can be simulated using the same template. Figure 5.5 shows the time evolution of
some other grain structures including twin boundaries. Ultimately the “Double” configu-
ration contains much of the same information as the single twin boundary case presented
above. Including these results here serves to highlight the flexibility of the formulation to
describe complex grain structures. The “Step” configuration appears very often in highly
twinned monophase materials. The step itself is often very stable due to the fact that the
system prefers to keep as much coherent boundary length as possible. The results of the
simulations tend to diffuse this kink along the twin boundary until arriving at a stationary
state where the equilibrium at the triple junctions and smoothed profile is obtained. The
reason for this discrepancy is most likely due to the very low anisotropy of the ν func-
tion used in these tests. Indeed, the differences in between the highest and lowest energy
boundaries at a fixed misorientation is only about 6%.

If this is true, the one may question the choice of this anisotropic modifier for testing
twin boundary dynamics. Even so, one would be reminded of the constraints on the γ
function and its dependence on the inclination of the boundary in equations (3.20), (3.21)
and (3.22) for the well-posedness of the problem. Indeed, this ν is, in some sense, al-
ready a maximally anisotropic function that satisfies these constraints and keeps all the
components of the D tensor bounded. Given these somewhat disappointing results in the
“Step” configuration the only answer this model can provide is that the true anisotropy
related to the twin boundaries is much stronger than the ν function used here. As such,
the only conclusion that one might make is that the components of the D tensor must be
unbounded for certain values of the inclination of the interface. Letting certain values of
the tensor go to ∞ for given inclinations would effectively remove this anisotropy limit
and keep the problem essentially well-posed. However, this would also render these spe-
cial inclinations dynamically impossible to obtain in simulations. As soon as an interface
would start to rotate towards these inclination values they would diffuse faster and faster.
The unboundedness of the D tensor would effectively render certain boundary inclinations
impossible to obtain dynamically and therefore would annihilate their existence in virtual
microstructures. This idea of excluded inclination values for crystalline boundaries has
been studied since seminal papers by Cahn and Hoffman [98,99] but in a surface equilib-
rium sense and not a dynamical setting. To this author’s knowledge no work exists on
these kinds of dynamical effects arising in polycrystals. From a numerical point of view,
unbounded D tensors pose the challenge of computing dynamics with potentially infinite
values which is not to be taken lightly.

In any case, what is clear from the results of these simulations is that, although the
setting is greatly improved from the classical modeling of isotropic curvature flow, it is
currently insufficient to reproduce the exact observed behaviors of the twin boundary.
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t = 0

t = 0.01

t = 0.03

t = 0.08

Double Step

Figure 5.5: Time evolution of “Double” and “Step” twinned grain configurations with
r = 100.
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Figure 5.6: Normalized numerical microstructure initial grain radius distribution in both
analytical form as well as discretized.

5.2 Purely heterogeneous 2D microstructures

Once a numerical framework capable of simulating heterogeneous microstructures is de-
veloped, it can be interesting to see the effects that simple disorientation angle dependent
grain boundary energies can have on the evolution of a polycrystal. As such, this section
is devoted to simulating grain growth on virtually generated statistical microstructures
using a variety of grain boundary energy functions. The results of these simulations are
evaluated using both the time evolution of mean values and distributions of characteristic
fields (grain size, disorientation angle, coordinance, . . . ). As a disclaimer, the simulations
performed in this section were run before the development of the “Projected” formulation
presented in Chapter 4. As such, the “Full” formulation, defined in the same Chapter,
for grain growth was utilized. Towards the end of the section the effect of this choice is
explored.

A reference numerical microstructure will be studied in what follows. This polycrystal
is representative of a monophase material with a log-normal distribution of grain sizes as
shown in Figure 5.6.

Crystallographic orientations are attributed to the grains by generating Euler angles
randomly, for example Figure 5.7a where the color scheme is developed using the vector
magnitude e =

√
ϕ2

1 + Φ2 + ϕ2
2 where (ϕ1,Φ, ϕ2) are Euler angles, leading to a Macken-

zie type disorientation distribution [110] as demonstrated in Figure 5.7b. Also, all the
disorientation distributions measured here are weighted by boundary length and not by
number.

The polycrystal is generated using a Laguerre-Voronoi tessellation with a dense sphere
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(a) Example of a generated microstructure containing approximately 5000 grains and colored
by the magnitude of a vector whose components are the Euler angles of the crystallographic
orientations.

(b) Initial disorientation distribution with the analytical solution for the Mackenzie plot [110]

Figure 5.7: Crystallographic characterization of the microstructure: (a) an image of the
numerical microstructure and (b) its disorientation distribution.
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Figure 5.8: Illustration of the anisotropic mesh refinement operating at the interfaces
between grains as in [91,109], using the same color map as Figure 5.7a.

packing algorithm described in [111]. The size of the domain determines the number
of grains. Anisotropic re-meshing is used [91, 109] and the mesh is refined close to the
interfaces as exhibited in Figure 5.8. With this algorithm, the sizes of the grains at the
border of the domain respect the imposed distribution and thus can and are considered in
the statistical analysis.

The mesh size in the normal direction is studied in what follows. The mesh size in the
tangential direction as well as far away from the interface (at a distance η = 6.2µm) is
fixed at 5µm. The initial average grain radius is R̄ ' 12µm. The average grain boundary
energy is aimed at γ̄ ' 1 J ·m−2 and the mobility used is µ = 0.1mm4 · J−1 · s−1 which
are of the order of pure Nickel at 1400K [40, 41].

In order to study the sensitivity to numerical parameters in a heterogeneous setting,
a form for the misorientation dependent grain boundary energy must be chosen. Below,
due to its prevalence in the literature, a Read-Shockley type function (RS) [36] is chosen

γ(θ) =

 γmax

(
θ

θmax

)(
1− ln

(
θ

θmax

))
, θ < θmax

γmax, θ ≥ θmax

(5.2)

where θ is the disorientation, γmax is the maximal grain boundary energy here equal to
1.012J ·m−2 and θmax is a threshold angle taken here, to be 30◦. Commonly, when using
the Read-Shockley function, the low angle grain boundary cut-off is considered to be in the
10− 15◦ range. Here, a value of 30◦ was chosen in order to exaggerate the heterogeneity
and produce measurable heterogeneous effects. The function is plotted in Figure 5.9.
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Figure 5.9: The Read-Shockley (RS) function for grain boundary energy.

The sensitivity of the evolution of the mean grain size R̄, the number of grains Ngr as
well as the total interface energy

EΓ =

∫
Γ

γdΓ, (5.3)

will be studied. Convergence with regard to a numerical variable x (where x can be the
mesh size or the time step) will be determined using an averaged L2 error eL2 relative to
the energy evolution of the microstructure

eL2(x) =

√
1

tend

∫ tend

0

(Eref
Γ − EΓ(x))2dt, (5.4)

where Eref
Γ is determined from a linear fit with respect to time of the most precise simu-

lation (i.e. the smallest time step and mesh size). Supposing the evolution of eL2 follows
a polynomial type law,

eL2(x) = Axn, (5.5)

one may extract the convergence parameters A and n using a logarithmic scale plot.
In order to study the sensitivity of the simulation to the discretization of both space and

time a microstructure of physical side length l = 0.5mm was generated (containing about
600 grains) and virtually annealed for a physical time of tend = 30min with different mesh
sizes hn in mm and time steps ∆t in s. The mean value results of these simulations are
exposed in Figures 5.10 and 5.11 for the mesh size and time step convergence respectively.
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(a) EΓ = fhn(t) (linear fit) (b) Ngr = fhn(t)

(c) f(hn) = eL2 (d) R̄ = fhn(t)

Figure 5.10: Evolution of mean field values with the mesh size hn at a fixed time step
∆t = 10s
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(a) EΓ = f∆t(t) (linear fit) (b) Ngr = f∆t(t)

(c) f(∆t) = eL2 (d) R̄ = f∆t(t)

Figure 5.11: Evolution of mean field values with the time step ∆t at a fixed mesh size
hn = 0.3µm
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Convergence is clearly established both as a function of mesh size and time step for the
polycrystal simulations in the range of values presented here. This means that the precision
of the solutions obtained can be improved by refining both time and mesh discretizations
arbitrarily and independently.

With the introduction of spatial heterogeneities comes the question of the represen-
tativity of a microstructure [112]. If a given volume of matter is representative of the
behavior of the whole when the models do not contain heterogeneities, is this volume as
representative when one starts to include local variations in properties? The answer is
surely dependent upon the nature of the inserted heterogeneity.

As such, one can study the effect that the size of the polycrystal has on the results of the
simulation, but also, the effects that variations in the spatial distributions of grains might
generate. Therefore, in order to study the variability of the calculations as a function of
size, with l the side length of the square domain, and spatial distribution of heterogeneities
9 simulations were performed in order to test 3 domain sizes and 3 different polycrystal
generations. As such, the statistical parameters of the polycrystals described above remain
the same, yet the local parameters and the influence of the boundary conditions vary. A
supplemental reference simulation with an even larger volume element, l = 2mm and
approximately 8000 grains, was performed in order to use as a reference point. Figure
5.12 illustrates the numerical plan.

The results of the simulations are presented in Figure 5.13. While the results do vary as
a function of the size of the domain, which is expected, sensible distinctions are to be made
when comparing the differently generated microstructures. Perhaps most surprisingly, the
differences between different randomly generated microstructures are of the same order as
the differences between the different sizes of volume elements. In any case, a convergence,
in the same sense as for the time step or the mesh size, is observed for the three generated
microstructures in that they get closer to the behavior of the most precise simulation as
their size increases. Even so, one should probably not trust the representativity of these
microstructures for modeling real-life materials. Even if convergence in the size of the
domain is observed, there is no reason that bigger more representative microstructures
might not deviate from the results shown here.

Indeed, to the present author’s knowledge, no such study has been conducted in virtual
statistical polycrystal generation such that there is a clear answer as to the number of
grain boundaries one might need to simulate in order to obtain trustworthy results in
the case of heterogeneous grain boundary energies. As such, in order to circumvent this
understandable objection to the results that follow, here we propose to only compare
microstructural evolutions that originate from exactly the same microstructure. By fixing
not only the geometry of the initial grain boundary network but also the orientations of
all the grains, the deviations of simulated microstructural evolutions from one another
can only be attributed to the differences in their grain boundary energy functions. By
proceeding in this relative sense the representativity of the microstructure is no longer an
issue. In the following, a microstructure with a side length of 1.5mm and approximately
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Figure 5.12: Visual explanation of the volume element sensitivity study. The three
microstructures were generated using three different random seed generators for the
packing algorithm and three sizes were obtained from each of the generations, l =
{0.5mm, 1.0mm, 1.5mm} (in the images smaller microstructures are used to make the
information more visible).The color map is the same as in Figure 5.7a
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(a) EΓ = fl(t) (b)
Ngr
l2

= fl(t)

(c) f(l) = eL2 (d) R̄ = fl(t)

Figure 5.13: Evolution of the normalized energy, grain number density, L2 error relative to
the normalized energy and mean grain size as a function of the different RVE generations
and sizes. The referencing of the microstructures can be found in Figure 5.12.
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5000 initial grains is studied.
Now, even though the RS function for the grain boundary energy is widespread, it does

not allow for testing large heterogeneities in untextured microstructures. As such, in order
to study the response of a polycrystal to different levels of heterogeneity, grain boundary
energy test functions must be generated and compared with respect to the homogeneous
case. However, in order to compare the effects of different grain boundary energy functions
fairly, there must be a common scaling imposed upon the functions such that they become
comparable. In this study, an average initial grain boundary energy of the microstructure
was imposed constant for all mappings γ(θ):

γ̄ =

∫
Γ
γdΓ∫

Γ
dΓ

, (5.6)

which can also be seen as the same initial total energy for all cases given that the ini-
tial polycrystal is also unvarying. In order to solve this problem analytically, one can
integrate the grain boundary energy function over the disorientation distribution of the
microstructure, which is the Mackenzie plot in this case,

γ̄ =
1

θlim

∫ θlim

0

γpMacdθ, (5.7)

where pMac is the probability density related to the Mackenzie distribution [110] and
θlim = 62.8◦ is the limit of the fundamental region of the disorientation for cubic structures.

Even so, when attempting to choose a misorientation dependent grain boundary energy
function there are multiple things one might want to look for. The constant grain boundary
energy function, i.e. the homogeneous case, is by default the reference case. The Read-
Shockley [36] type grain boundary energy is the most popular function in the current
literature for modeling low angle grain boundaries. However, if one wishes to introduce a
more diverse set of grain boundaries, one may modify the RS function, for example, in a
very discontinuous manner such that the disorientation region where twin boundaries are
found can be much lower energy than the rest. Also, in both numerical and experimental
approaches to determining the grain boundary energy function, cusps are present and
one might wish to study the effect these minima might have on the evolution of the
grain boundary network, hence one may use a ”bumpy” energy function in order to study
these cusps as shown below. In a mathematical approach, one may use a more classical
function, such as a Gaussian distribution function, in order to probe the effects of a more
“naturally” distributed energy. Given this reasoning, five test functions, which do not aim
to be physical representations of the grain boundary energy function, are considered in
this work:

Homogeneous
γ = γ̄ (5.8)
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(a) γ(θ) (b) γpMac(θ)

Figure 5.14: Considered test grain boundary energy functions.

RS the same as in equation (5.2).

RS+

γ =


γmax′

(
θ

θmax

)(
1− ln

(
θ

θmax

))
, θ < θmax

γmax′, θthresh > θ > θmax
0.1γmax′, θ > θthresh

, (5.9)

where γmax′ ' 1.1 J/m2 and θthresh = 55◦.

Bumpy
γ = γb(α3| sin(3θ)|+ α5| sin(5θ)|) (5.10)

where γb ' 1.2 J/m2, α3 = 0.9 and α5 = 0.3.

Gaussian

γ = γge
−(θ−θµ)2

2θ2σ (5.11)

with γg ' 1.54J/m2, θµ = 40◦ and θσ = 10◦.

Figure 5.14 shows both the plot of the grain boundary energy functions as well as a
graph of the analytical grain boundary energy distribution densities γpMac.

What is most striking in Figure 5.14 is that seemingly large differences in the base grain
boundary energy functions can actually have little to no impact on the actual heterogeneity
present in the microstructure. For example, Figure 5.14b shows that the RS function is
actually extremely close to the homogeneous function when the disorientation distribution
is taken into account. Even so, the panel of functions chosen here gives access to a
relatively diverse spectrum of heterogeneities in the actual microstructure. This can be
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Energy Function dL2

RS 2.89e-3
RS+ 3.70e-2
Bumpy 2.90e-2
Gaussian 6.44e-2

Table 5.1: The L2 distances of the heterogeneous γpMac functions from the homogeneous
one.

quantified by the values present in Table 5.1 which represent the L2 distance of each of the
heterogeneous γpMac functions with respect to the homogeneous γpMac function calculated
using a simple trapezoidal rule for the numerical integration. This table gives a gauge of
the heterogeneities present in each of the functions which can be observed to vary from
least to most heterogeneous in the following order: RS, Bumpy, RS+ and Gaussian.

The first observation concerning the time evolution of both the mean grain radius and
the number of grains is that the more heterogeneous a grain boundary energy function
is, the slower its kinetics, a result easily corroborated in most heterogeneous grain growth
simulations in the literature [60, 67, 69, 74–78]. Looking at the evolution of the energy
however, the cases with the most heterogeneity are also those which dissipate the interface
energy the most efficiently. As such, the most heterogeneous case should have the smallest
grains and thus the largest amount of interface length and yet it has the smallest total
energy. A direct explanation for this phenomenon could be that the most heterogeneous
cases have the most diverse grain boundary energy distributions and thus the most degrees
of freedom for minimizing the energy of the system.

Also, the slowing of the kinetics of grain growth could be related to the phenomenon
discussed in certain experimental studies known as orientation pinning [115, 116]. This
mechanism is related to the fact that as grains grow and compete for space, the probability
that a grain encounters a particularly unfavorable orientation for its continued expansion
increases. As the grain meets this disadvantageous orientation (creating a low energy grain
boundary) its kinetics slow and therefore the orientation cohabitation tends to persist
during the rest of the grain coarsening process. Typically, this is a process that is not
observable in simulations unless using a heterogeneous description of the grain boundary
energy and becomes even more evident as the heterogeneity is increased.

More generally, the results presented in Figure 5.15 show that even with the same
average grain boundary energy, the kinetics of grain growth can vary significantly. As
such, using time evolution of grain size, for example, in order to calibrate average grain
boundary energies experimentally is clearly limited. More in depth characterizations of
the microstructure are needed in order to probe the nature of the grain boundary energy
distribution. In [117] is proposed an interesting idea in which the grain boundary character
distribution should be inversely correlated to the grain boundary energy function. In other
terms, the most energetic grain boundaries should tend to disappear leaving only the least
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(a) EΓ = f(t) (b) Ngr = f(t)

(c) R̄ = f(t)

Figure 5.15: Time evolution of mean values for the different grain boundary energy func-
tions. The mean grain size evolution of the homogeneous case is fitted with a generalized
Burke and Turnbull type law [113,114].
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energetic boundaries during grain growth.

In a three dimensional experimental polycrystal, the grain boundary character distri-
bution would have to be set in the five dimensional grain boundary space [49] in order
to be complete. However, this is impractical due to the high dimensionality and small
datasets available. Here, given the way in which the grain boundary energy functions are
defined, only one variable of the grain boundary character is considered, the disorienta-
tion. As such, the disorientation distributions at 10000 s are plotted for the different grain
boundary energy functions as well as the grain boundary energy distributions in Figure
5.16. The grain size distributions are also compared in the same figure.

The differences in between the disorientation distributions obtained from the different
grain boundary energy functions are striking. While the homogeneous case emulates the
Mackenzie plot throughout the simulation, the RS function, even given its proximity to the
homogeneous case, favors low angle grain boundaries, a result also found in [77,86,88]. The
RS+ case also encourages low angle grain boundaries, as in the RS case, but tilts towards
the high angle boundaries as well (the transition is around 55◦). The bumpy case also
tends toward keeping its least energetic boundaries, a behavior replicated in the Gaussian
case which tilts towards a bimodal distribution. Globally, using this formulation for grain
growth, the character distribution of the boundaries are clearly inversely correlated with
the grain boundary energy functions, a statement also supported by the grain boundary
energy distributions, which would corroborate [117].

The grain size distributions are relatively diverse as well. However, upon closer inspec-
tion, they all respect a lognormal type distribution law and their differences can be clearly
explained by the different growth kinetics of the different cases shown in Figure 5.15.

The virtual micrographs of the various cases after 3 hours of annealing are presented
in Figure 5.17. The quantitative results present in Figure 5.16 are clearly represented in
the virtual microstructures qualitatively given the diversity of grain boundary energies.
Perhaps more interestingly however, the grain boundary energy landscape is not the only
observable difference in between the grain boundary networks developed using different
grain boundary energy functions. The morphology of the grains in different cases are
also relatively varied. While the least heterogeneous cases tend to favor relatively regular
polyhedra, the most heterogeneous cases seem to develop more rectangular and disparate
grains. This observation can be made more quantitative with the introduction of Figure
5.18. The distributions of the number of neighboring grains for each grain boundary
energy functions remain centered around 5 and 6. However, the more heterogeneous
cases tend to flatten their distributions acquiring a greater zoology of grains than in
the more homogeneous cases, a result corroborated by [75] but contested by [76]. This
polycrystal behavior is most likely a product of the diversity of triple junctions in the
most heterogeneous cases compared to the more homogeneous ones. Indeed, as more and
more triple junctions stray from the homogeneous 120◦ angle equilibrium, the forms of the
grains become more irregular and the polycrystal manages to obtain a more diverse set.

To summarize, the simulations show that more heterogeneous microstructures exhibit
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(a) Normalized grain boundary disorientation distribution

(b) Normalized grain boundary energy distribution

(c) Normalized grain size distribution (in number)

Figure 5.16: Comparisons of the different grain boundary energy functions using various
distributions after 10000 s of numerical annealing.
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(a) Homogeneous (b) RS

(c) RS+ (d) Bumpy

(e) Gaussian

Figure 5.17: States of grain boundary networks obtained for all grain boundary energy
functions after 3 hours of numerical heat treatment.
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Figure 5.18: Normalized number of neighboring grains distributions for all of the studied
grain boundary energy functions at 10000 s.

slower grain growth kinetics. In light of this discovery, common methods for determin-
ing mean grain boundary energy values as a function of grain growth kinetics in real
microstructures can be flawed. Also, the distribution of disorientation angles is shown
to evolve to be inversely correlated to the grain boundary energy function. This obser-
vation lends weight to the idea that aspects of the grain boundary energy dependence
on the disorientation angle θ can be inferred from the disorientation distributions of real
microstructures that have been annealed for long times. As such, if one adopts the hy-
potheses and simplifications that are made in the elaboration of this framework, then one
could possibly use an inverse analysis approach on the misorientation distribution evolu-
tion of real materials to generate plausible candidates for misorientation dependent grain
boundary energy functions. Finally, the annealed geometry of the grain boundary net-
work depends heavily on the heterogeneity of the microstructure. This is to be expected
given that the equilibria at the multiple junctions are completely determined by the grain
boundary energies of the polycrystal.

As a sanity check, a further investigation into the effect of using the “Classic”, “Pro-
jected” and “Full” formulations, presented in Chapter 4, for heterogeneous grain growth
in polycrystals has been conducted. Using the same statistical volume element as above,
with approximately 2300 initial grains, the Gaussian energy function was imposed on the
microstructure so as to exacerbate the heterogeneity. The three formulations were used to
simulate a three hour anneal on exactly the same initial microstructure. The mean value
results are presented in Figure 5.19 and the disorientation and energy density distributions
are reported in Figure 5.20.

Commenting on Figure 5.19, one could propose two different regimes. Initially, as
would be expected from the results in Chapter 4, the “Projected” formulation exhibits
behavior in between the “Classic” and “Full” cases remaining quantitatively closer to
the “Full” results. However, at approximately 4000s this trend changes rather brutally.
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(a) EΓ = f(t) (b) Ngr = f(t)

(c) R̄ = f(t)

Figure 5.19: Time evolution of mean values for the different proposed formulations for
grain growth.
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(a) Normalized grain boundary disorientation distribution

(b) Normalized grain boundary energy distribution

Figure 5.20: Comparisons of the different proposed grain growth formulations using various
distributions after 10000 s of numerical annealing.
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While the energy EΓ evolution respects this first regime, the changes in number of grains
and average grain size (which are related of course) stop following this simple bounding.
Indeed, it would seem that the “Full” formulation suffers from some supplemental pinning
phenomena while continuing to minimize its interface energy efficiently. This emergent
behavior remains unexplained in terms of possible mechanics of the polycrystal. The
results shown in Figure 5.20 respect the fact that the “Projected” formulation exhibits
behavior in between the two others even at 10000s. However, it would seem that the
“Projected” case is more similar to the “Classical” evolution of boundary character than
to the “Full” case.

While it is indeed possible that the effects observed here are purely kinetics related,
from this initial study, it does seem that something deeper is at play. Seeing as the
“Projected” formulation was identified as the better candidate in Chapter 4, it is likely
that results produced by the “Full” formulation exaggerate the kinetics of heterogeneous
microstructures. In any case, these three results, when used in conjunction with each
other, might be able to give good estimates concerning some of the limiting behaviors of
heterogeneous polycrystals.

5.3 Homogeneously anisotropic 2D microstructures

The dependence of the grain boundary energy density on the inclination of a grain bound-
ary can possibly have singular impacts on the dynamics of a polycrystal. In order to start
elucidating these effects one may use numerical annealing experiments on grain boundary
networks that exhibit only this inclination dependence. As such, this section is devoted
to taking the virtual microstructure developed in the previous section and applying an
inclination dependent grain boundary function modeled by

γ(M,n) = Ξ(M)ν(n)

where ν is once again the function defined in (4.18) and Ξ(M) = Ξ forces a constant
misorientation dependence such that Ξ = 1e − 7J · mm−2 and µ = 1mm4 · J−1 · s−1.
Besides these grain boundary energy properties, all other aspects of the microstructure
are identical to the volume (area) element used in the previous section.

Two different formulations will be studied and compared: one with all the correct terms
developed in (2.43) and the other one which is missing the “torque” term ∂2γ

∂∇̃φ2 . They will

be denoted respectively as the “Torque” and “No Torque” cases. The physical relevance of
the cases simulated here is very limited since the grain boundary energy is dependent on the
expression of the inclination in the global reference frame and not the local crystallographic
frames. However, from a modeling standpoint, this comparison allows one to measure
some of the effects that the torque term might generate in a polycrystal setting. The
initial state of the generated microstructure is represented in Figure 5.21 and is the same
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Figure 5.21: Initial state of the purely inclination dependent grain boundary energy mi-
crostructure.

for both formulations. The side length of the domain is once again l = 1.5mm and there
are approximately 5000 initial grains.

Figure 5.22 plots the time evolution of some of the mean characteristics of the grain
boundary network for a simulated anneal of approximately 3000s. Globally, the cases are
relatively close since the torque terms are really very local phenomena and the simulated
annealing was performed for less than an hour in physical time. Figure 5.23, which indeed
shows that the final states of the microstructures are not very far apart, supports this
hypothesis. However, it seems that the kinetics of the case with the torque terms are
slower than the case without them. This effect can possibly be attributed to the increased
constraints at both the multiple junctions and on the boundaries leading to globally a
slower system.

Figure 5.24 reports on the distributions of the inclination (λ = arctan(n
y

nx
)) for the

initial as well as final states of of the grain boundary network for the two formulations.
The values of the inclinations are weighted by the number of mesh points and thus can be
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(a) EΓ = f(t) (b) Ngr = f(t)

(c) R̄ = f(t)

Figure 5.22: Time evolution of mean values for the “Torque” and “No Torque” formula-
tions.
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Figure 5.23: Comparison of the final states of the microstructure for the “Torque” (in
orange) and “No Torque” (in green) formulations.
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considered to be roughly weighted by length of the boundaries. The first observation one
may make is that the initial distribution is far from random. Indeed, the Laguerre-Vornoi
tessellation algorithm used to generate the polycrystal seems to favor inclinations that
satisfy λ = π

4
+ mod (π

2
). Secondly, the “No Torque” formulation tends to homogenize

the distribution such that most inclinations are around equi-probable without regard for
their energy. In the sense of a minimal energy requirement, this type of configuration of the
polycrystal seems far from optimal. The “Torque” formulation, on the other hand, does
extremize the inclination distribution around the extrema of the γ(λ) function. However,
while some minima of the γ function correspond to maxima of the inclination distribution,
which is to be expected, the case of minima of the grain boundary energy coinciding with
minima of the inclination distribution is also present. The same can be said for the maxima
of the inclination distribution and grain boundary energy density. This is a conundrum.
How does the polycrystal decide which inclinations to minimize and which to maximize if
it is not a purely energetic consideration? Two main conjectures can be presented:

• A 3000s anneal is most likely not sufficient for the polycrystal to stabilize its inclina-
tion distribution and that, given more physical time, the microstructure will present
a majority of low energy boundaries.

• The dynamical equilibria at the triple junctions admit configurations where a high
energy boundary is present and these configurations are relatively common through-
out the microstructure.

The two hypotheses are not mutually exclusive and it may be that the grain boundary
network is in a metastable state. More data is needed in order to pinpoint the exact chains
of causality in the virtual microstructure that lead to this phenomenon.

This section has successively shown the capability of the formulation developed in the
previous chapters to simulate some initial polycrystal test cases. These preliminary results
do improve the results with respect to the classical formalism for grain growth. This in-
troductory application to polycrystals shows the robustness and flexibility of the approach
while underlining new avenues of investigation. Ultimately, the virtual polycrystal exhibits
a global behavior that cannot be reduced to a sum of its parts whether it be in the case
of a heterogeneous grain boundary energy density, a purely inclination dependent energy
or a fully anisotropic one. Finally, implicit throughout this entire chapter, the effects of
the multiple junction on the kinematics and dynamics of the polycrystal are shown to be
crucial aspects of microstructural evolution.

165



Figure 5.24: Kernel density estimation of the inclination distribution (λ = arctan(n
y

nx
)) for

the initial case as well as the final states for the “Torque” and “No Torque” formulations.
The vertical blue lines represent local minima in the grain boundary energy functions
while the red and black lines position the maxima and saddle points respectively.
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Résumé en Français du Chapitre 5

Ce chapitre est dédié à l’application du modèle développé aux premiers cas polycristallins.
Étant donné la complexité du système réellement anisotrope, ces applications aux poly-
cristaux initiaux sont restreintes à des cas plutôt idéalisés. Le premiers cas concerne la
modélisation d’un “joint de macle” 2D avec pour but d’étudier l’effet d’un changement
d’énergie de joints de grains sur une configuration censée être stable. En effet, dans ce cas
bien précis, la diminution de l’énergie du joint de macle ralentit l’évolution du système
et donc le stabilise. Une deuxième application concerne les polycristaux hétérogènes
soumis à différentes fonctions de densité d’énergie de joints de grains. Il est montré que
l’hétérogénéité de la fonction d’énergie de joints de grains peut ralentir la cinétique de
croissance de grains, ayant un effet d’épinglage d’orientation. Aussi, l’évolution de la
distribution du caractère de joints de grains tend à être inverse à la fonction de densité
énergétique de départ. La dernière application étudiée est une microstructure où la den-
sité énergétique ne dépend que de l’inclinaison du joint dans le repère macroscopique. Les
conclusions préliminaires montrent que les extrema de la fonction de densité énergétique
jouent un rôle non negligeable dans l’évolution du polycristal.
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Conclusion

The goal of this work was to develop the necessary mathematical and numerical frame-
works to include annealing twin boundaries in the Level Set Finite Element method for
recrystallization and grain growth. As such, the first step consolidated the current in-
formation on the behavior of microstructures during annealing, the mechanisms behind
the structuring of the microscale and the particularities of the twin boundary. This bib-
liography led to the conclusion that most of the special behavior of the annealing twin
could possibly be attributed to the low energy density of its boundary. Thus, the problem
of including the twin boundary into simulation morphed into the issue of integrating the
effect of the intrinsic crystallographic structure of an interface on its energy density into
microstructural models. In order to accomplish this objective, the internal structure of
the crystalline interface was divided into two distinct parts: the misorientation and the
inclination. The dependence of the grain boundary energy density on the inclination could
thus be treated separately from the effect of a varying misorientation.

The mathematical description of the grain boundary dynamics was developed using
concepts from differential geometry. The thermodynamics of a closed system was used to
develop a action principle related to the maximal dissipation of energy. This Lagragian
has helped elucidate the hypotheses and equations for minimizing energy flows of general
energy density boundaries. As a byproduct, a clear definition for a macroscale isotropic
mobility parameter arose in relation to the energy dissipation rate during grain growth.
This embedded description of the flow was condensed into a Level-Set depiction so as to
simplify the degrees of freedom and their use in Finite Element software. As a direct
result, the well-posedness of the problem was found to be dependent on a number of very
specific characteristics of the grain boundary energy density function.

This newly developed mathematical formulation was then discretized using a classic
Galerkin approach. The Finite Element model for simulating the minimizing anisotropic
boundary energy flow was generated from this discretization. As such, approximate solu-
tions to the problem could be sought on discrete domains. A completely novel benchmark
configuration for the problem, a stationary ellipse, was established. This numerical frame-
work was validated on this benchmark. The numerical model was also tested on a circular
case with a more arbitrary inclination dependent boundary energy. Comparisons between
the new and classical formulation show superior energetic efficiency associated with the
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dynamics of anisotropically valued energy densities using the newer method.
In the effort to extend the formalism toward polycrystals, the numerical framework

was expanded to be able to handle multiple junctions of boundaries. This widening of
the capabilities of the framework demanded the development of new tools for computing
crystallographic quantities on the finite element mesh. When put to the test on the “Grim
Reaper” benchmark, the new formulation performed better than the other tested solutions
to the problem. However, the particular topology of the multiple junction remains an issue.
When strong variations in the energy density are put into play, the framework displays a
considerable error. Whether this error is numerical in nature (i.e. a convergence issue) or
foundational (i.e. a modelling insufficiency) is as yet unknown. A fully anisotropic triple
junction simulation was also run where the torque acting on the junction was manifest.

The final chapter of this manuscript demonstrates the flexibility and robustness of
the method. Some 2D “twin” configurations were tested and shown to exhibit certain
“twin-like” properties. Heterogeneous statistical volume elements were generated and a
virtual annealing treatment was performed. The microstructures exhibit behaviors such
as orientation pinning, which has been observed experimentally, and an inverse correlation
of the grain boundary character to the boundary energy density, which has been thought
to exist in real microstructures. Finally, an initial foray into the effect of the inclination
dependence on the grain boundary energy was performed in which certain behaviors of
the microstructure are elucidated but remain unexplained.

As such, this work has contributed a certain number of elements towards the full field
modeling of annealing twin boundaries. While marked caveats still exist, the numerical
model developed here has been demonstrated to be objectively better than the classi-
cal Level Set model for grain growth. The complexities related to integrating arbitrary
grain boundary energies into simulation of recrystallization and grain growth have been
established and many of them have been better understood. Moving forward, some sup-
plemental issues must still be addressed, and yet, the model has proven predictive power
concerning polycrystals and can perhaps be used, as is, to understand particular emergent
behavior of the microstructure.
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Perspectives

As in any research subject, new answers lead to new questions and new applications. As
such, there are a number of follow-up investigations that may push the results presented
here even further. Also, given the exploratory nature of this work, choices were made
during the investigation so as to produce tangible results. Therefore, there are quite a few
tangents that remain uncharted and that merit mention as perspectives as well. Taking
even a larger step back, there are particular limitations to the models that currently exist in
the literature and the one developed here. One may propose some completely alternative
ideas to extend the limits of the numerical models even more. These perspectives are
meant to serve as short, medium and long term research propositions for investigators
who might which to push the bounds of current knowledge on annealing phenomena and
their modeling.

Direct Applications

The numerical model developed in this work is directly applicable to a host of potential
studies. The first that comes to mind is to use more realistic grain boundary energies in
polycrystal simulations. There are a number of investigations [40,42,50,51,118] which have
been devoted to proposing grain boundary energy density functions for metallic materials.
The implementation of any grain boundary energy density function in the numerical model
presented in this work should proceed in two steps:

1. The candidate interface energy density γ(M,n) must fulfill the equivalent 3D 3.20,
3.21 and 3.22 conditions for all misorientations. If a candidate density function
does not satisfy this positive definiteness of the D tensor then, technically, it cannot
be used in the numerical model. Furthermore, this deficiency is a serious issue in
terms of the physics of the said candidate function because the interface energy
minimization problem becomes ill-posed (i.e. the solution is no longer unique or
possibly even exists). Obviously, if the candidate energy density is a product of
incontestable experimental data, then the whole modeling approach must be revisited
and the minimizing interfacial energy flow in the sharp limit can no longer be used
as the explanation for the physics of the problem.
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2. In the case where the proposed function does satisfy the positive definiteness con-
straints, the second step would be to apply it to a virtual polycrystal in the same
vein as the second section of Chapter 5. In order to compare the results to experi-
mental data, the simulated microstructure must be “representative”. However, this
representativity is relatively difficult to define in the fully anisotropic setting given
the richness of the crystallographic data. Indeed, this testing of a boundary energy
function would most likely be preceded or accompanied by a thorough analysis and
definition of what is the smallest microstructure that can be considered represen-
tative in an anisotropic setting. Once this representativity is established, the most
adequate distributions of properties to compare between the simulated and real mi-
crostructures would be the grain boundary character evolution (i.e. the distribution
of boundaries in five parameter grain boundary space).

In perhaps a more pragmatic approach, instead of modifying the grain boundary en-
ergy density function, one could also take a Read-Shockley [36] type disorientation angle
dependent function and apply it to highly textured virtual materials. Textured materials,
given their preferential crystal orientation, should exhibit a large proportion of small angle
grain boundaries. This means that the Read-Shockley type density function might be more
relevant than in the “randomly” orientated case. Also, the equivalent experimental data
of grain growth in textured materials should be either readily available in the literature or
relatively simple to procure given the correct technological platform (a source of textured
materials devoid of dislocations, ovens for heat treatments, scanning electron microscopy
equipped with electron back scattered diffraction mapping, etc.).

In the case where no known grain boundary energy functions seem to reproduce sensible
microstructural evolutions, an inverse analysis approach can be developed. Assuming that
in-situ experimental annealing data is available for a monophase material during grain
growth, one could use the numerical model presented in this work to calibrate a grain
boundary energy function. Consider

γ(M,n) = f(X1, . . . , Xn)(M,n)

where f is a map from Rn to the adequate function space on the grain boundary space.
In this setting, one could attempt to optimize the grain boundary energy by acting on the
degrees of freedom {Xi, i = 1, . . . , n}. As such, the problem of finding a relevant grain
boundary energy function is reduced to finding the Xi parameters that generate an optimal
fit between the simulation and the in-situ microstructural data. In the extreme case one
would immerse an initial experimental microstructure into the finite element mesh and
modify the function’s degrees of freedom until the annealing simulation reproduces the
subsequent annealed states. This might prove very delicate in terms of the conditioning
of the problem and very costly in terms of computational resources. However, the same
approach could be used on derived microstructural data such as grain boundary character
distributions or mean values which might provide forgiving fits.
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Of course, the biggest caveat of this investigation is the absence of three dimensional
simulations. While both the mathematical and numerical formalism developed are per-
fectly dimension independent, only 2D polycrystal simulations have been performed thus
far. The reason for remaining in lower dimensional simulation is simple. No anisotropic
analytical benchmarks exist for 3D grain boundary configurations. Thus, while one may
be able to produce numerical results, it would remain relatively difficult to study the pre-
cision of these results. Even something relatively elementary, such as the equilibrium of a
quadruple junction, remains analytically elusive in a three dimensional setting. Of course,
if one presents numerical results in excellent agreement with experimental data then this
can be construed as evidence of a precise numerical model.

As such, the ideal next step in validating the numerical results of the model would
be to develop a 3D analogy of the ellipse benchmark presented in Chapter 3. Once this
benchmark is validated using numerical simulations, the particularities of the multiple
junctions in 3D should be studied. Even if no analytical results exist for these multiple
junctions, simulations of quadruple junctions could possibly serve the community as a
base to come up with more exact cases. Of course, once these tests are performed and one
is convinced of the validity of the model in 3D one may move onto 3D polycrystals with
anisotropic grain boundary energies.

Numerical Improvements

Even though the previous section described some cases where the model could possibly be
applied immediately, one could also first improve the numerical formalism. The first thing
that might need to be enhanced in the numerical algorithm is the remeshing operation.
Indeed, the results presented in the second section of Chapter 4 are accompanied by
numerical costs. These costs are manifest in the amount of CPU time spent on each
computation and can be studied and compared for the different grain boundary energy
functions. Indeed, more heterogeneity in the physical system should lead to a numerical
problem that is less well conditioned than the homogeneous case, meaning a problem that
is generally harder to solve. This means that, using the same algorithms for solving the
grain growth problem, when employing a more heterogeneous grain boundary energy the
computational time should, technically, be higher.

A small caveat might exist for the well informed reader who would like to compare the
calculation times given here to previous works [90–92, 114]. Due to the relatively small
mesh sizes as well as the fixed time step used for obtaining these results the costs presented
here are higher. Indeed, the goal of this work being to compare cases in which the con-
vergence and precision of the simulation are ensured for all heterogeneities, no numerical
parameter optimization (beyond the sensitivity analyses presented in Chapter 4) has been
performed. This means that the calculation times presented here for the homogeneous
case are relatively large compared with optimized calculations in previous studies. How-
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ever, the different heterogeneous systems are on an equal footing regarding the numerical
parameters of the simulation. Therefore, the times given in the following paragraphs are
not to be taken as absolute performance optimums but as comparable quantities used to
evaluate the impact of the heterogeneities on the computational efficiency.

All of the computations were performed on 3 × 24 = 72 Bullx R424 Intel Xeon E5-
2680 (v3 - 2.5GHz or v4 - 2.4GHz) cores using an in-house computing cluster and a
remeshing/re-partitionning algorithm in the same vein as [119]. The CPU times ∆T are
compared in Figure 5.25 with regard to both the type of grain boundary energy function
as well as the type of numerical operations.

Firstly, all the computations take approximately the same amount of time meaning
' 5 − 6 days in total. They all start with meshes containing around 13 million elements
and end around 5 million elements. Relatively small differences can be observed in between
the different heterogeneous simulations which do tend towards an increase in the computa-
tional time as the grain boundary energy functions distances itself from the homogeneous
case. The most computationally intensive operation performed during the computation
is the remeshing which takes around 76% of the total time. This operation has little to
do with the nature of the heterogeneity of the grain boundary energy function directly
and more to do with the morphology and length of the grain boundaries. Therefore, the
small discrepancies between the different heterogeneous simulations can be explained by
the fact that the grain boundary energies do not sensibly affect the most time consuming
activity. However, Figure 5.25b shows that the operation with the highest relative stan-
dard deviation is by far the FE resolution. This fact proves that the operation the most
affected in a relative sense by the change in heterogeneity of the grain boundary energy is
the search for solutions to the physical problem. This would tend to corroborate the fact
that as the grain boundary energy function distances itself from the homogeneous case,
the system becomes more ill conditioned and therefore harder to solve.

Seeing the large proportion of simulation time spent in remeshing operations, looking
to optimize the numerical in this direction would probably be the most efficient way
to proceed. Indeed, the remeshing parameters have been kept constant regardless of
the nature of the anisotropy of the grain boundaries in this work. There are rather
straightforward studies to perform to answer some optimization questions, such as: Should
the lower energy grain boundaries accept more coarsely meshed neighborhood given that
their velocities should generally be slower? How does one remesh a heterogeneously valued
multiple junction? Then there are more difficult questions: How does one incorporate the
calculated D tensor into the remeshing operation so as to have an optimal remshing
algorithm? How can the conditioning of an anisotropic grain growth finite element linear
algebra problem be improved with better remeshing? All these interrogations related to
the spatial discretization must now be re-evaluated in a anisotropic grain boundary energy
setting.

Putting the remeshing aspect aside, one could also improve the numerical description
of the multiple junction. As a topological space, the triple junction is not a manifold. As
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(a) Bar graph of the CPU times spent in total, during remeshing, during the FE resolution and in
the rest of the operations (defining the γ field, calculating disorientations, reinitializing level-set
functions, ...) for each of the simulations.

(b) Bar chart representing the standard deviation σ of the CPU time spent in each operation
divided by the average µ time spent in the same calculation for all the simulations.

Figure 5.25: Evolution of CPU usage as a function of both the grain boundary energy
function and the category of operation performed during the calculation.
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such, Level Set method has a hard time describing these singular points of the polycrystal.
The method proposed in [82] was used in this work to ensure the continuity of the junction
itself. However, another possibility described in [107] could be very promising if rather
costly. Indeed, by penalizing the creation of voids and overlaps in a variational sense,
the continuity constraints at the triple junctions can be included into the finite element
resolution. This would effectively eliminate one step in the complete numerical algorithm
and could modify the angle results that one obtains at heterogeneous multiple junctions.
Whether these new results would be an improvement, or not, on the current results remains
to be seen. Of course, the finite element assembly would need to be drastically revisited
given the coupling between level set fields in the variational approach which is not an issue
in the post-treatment used here. In any case, a rigorous and holistic comparison in a full
anisotropic setting between the results obtained with the two methods would be useful for
the community to decide which is best fitted to which application.

Disregarding the treatment of the multiple junctions, with the inclusion of a grain
boundary energy density function dependent upon the configuration of the grain boundary
network, the grain growth problem becomes highly non-linear. This aspect of the equations
was conveniently brushed aside in this manuscript in an explicit/zero order initial approach
to the problem. However, it is very possible that the model would benefit greatly from
a fully non-linear solver where the γ field and its associated derivatives would become
dynamic during the resolution of the level set field. Obviously there is a plethora of non-
linear numerical methods that already exist in the literature [120] that could be readily
applied to improving the formulation here. Of course, this could greatly increase the
numerical cost of each time step. However, this kind of approach could possibly allow for
the coarsening of both the spatial and temporal discretizations leading to perhaps a more
efficient tool.

Finally, as per the discussion at the end of the first section of Chapter 5, an unbounded
D tensor could possibly be necessary to model the particularities of the twin boundary.
However, numerical methods generally abhor infinities. As such, one could imagine at-
tempting to model boundaries using an unbounded D tensor and numerically using some
sort of cut-off value for its components. As such, one could ensure that the kinetics of
the boundary migration would be generally bounded. This would be necessary in order
to evaluate a convergent time step parameter. Of course, the non-linear solver aspect
described in the previous paragraph could generally improve the performances in exactly
these types of cases. Even so, the method would be inherently flawed by this cut-off pa-
rameter which would have to be calibrated completely empirically. However, if this cut-off
was set high enough, the errors would be completely localized in very fast transient states
of microstructural evolution. These types of errors would need to be quantified and there
should be a convergence of the method with increasing cut-off values.
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Modeling Outlook

While certain “real-world” applications might be exciting and numerical improvements
would generally increase the efficiency of the approach, perhaps the most interesting per-
spectives of this work are in enhancing the modeling approach.

Indeed, there are a number of limits of the model developed in this manuscript when it
comes to modeling multiple junctions. Neither the “Full” nor the “Projected” approaches
developed in Chapter 4 are completely satisfying. However, they could possibly be com-
bined by using a modified projection tensor

Pε = m−1 − ε(n⊗ n)

where ε ∈ [0; 1], m is the Riemannian metric of the physical space and n is the normal
to the grain boundary. As a matter of fact, the “Full” and “Projected” formulations are
respectively the ε = 0 and ε = 1 limit cases of the above projection tensor formulation.
In a completely numerical approach, the ε parameter could be optimized for all values of
the anisotropic ratio at the multiple junction. While remaining a completely numerical
parameter, the formulation would guarantee the correct behavior of triple junctions in 2D
simulations. Even performing the optimization study of this parameter might give more
insight into the reasons for which the model fails to obtain the exact analytical solution.
This type of insight could lead to a much more robust formulation of the velocity at the
multiple junction in general.

Multiple junctions aside, in an effort to make the simulated microstructures more
realistic one could add terms to the velocity of the boundaries v in order to model more of
the physics of hot forging at the microstructural level. In this way, this work could possibly
be used in conjunction with a number of past and undergoing developments in level set
simulations of metallurgical phenomena [7–9, 63, 92, 106, 114, 121, 122]. For example, the
strain tensor ε induced by the deformation of the material could be simply added to the
grain growth velocity vGG

v = vGG(µ, γ(M,n), ∇̃φ, ∇̃∇̃φ) + vDef (ε)

in a very modular manner much like in [63]. Recrystallization phenomena in the
presence of a stored defect energy field ρ is superimposed in the same way

v = vGG(γ(M,n), ∇̃φ, ∇̃∇̃φ) + vDef (ε) + vRX(∇̃ρ)

such that one could attempt to model dynamic recrystallization in a monophase mate-
rial as in [106]. Of course, even more complex metallurgical mechanisms may be simulated
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v = vGG(γ(M,n), ∇̃φ, ∇̃∇̃φ) + vDef (ε) + vRX(∇̃ρ) + vSSPT (Ci, ∇̃φ, ∇̃∇̃φ)

+vGBS(M, ∇̃φ)

such as solid state phase transformations (SSPT) [122], where the Ci are the concen-
tration fields of the species, or grain boundary sliding (GBS), where the misorientation
might become an unknown of the problem as well. However, the inclusion of these sup-
plemental mechanisms is rendered more complicated by the couplings that different terms
might generate. Indeed, grain boundary sliding might change the misorientation of a grain
boundary. This in turn will affect the grain boundary energy density of the boundary and
thus its grain growth velocity. Phase boundary migration due to interface energy min-
imizing effects will induce a matter flux that acts on the concentration fields. As such,
certain aspects of the microstructure that were considered constant in this work might
become degrees of freedom in a more realistic modeling approach. Numerically, these cou-
plings must be dealt with in a coherent manner possibly leading to very large systems of
non-linear equations.

Of course, when modeling both discontinuous recrystallization and solid state phase
transformations, nucleation events are rampant throughout the microstructure. Model-
ing these nucleation mechanisms go beyond just modifying the velocity formulation since
these phenomena occur discontinuously and thus modify the topology of the grain bound-
ary network. Recrystallization simulations containing spontaneous insertions of grains
have already been performed in the works [63, 106] and the associated publications. As
such, the numerical formalism for including specific nuclei during microstructural evolu-
tion already exists and has been tested in the level set framework. However, the exact
localization in space and time of these nucleation incidents is the challenging aspect in
this type of full field model. Furthermore, with the framework developed here, the grains
that appear in the microstructure have supplemental crystallographic degrees of freedom.
What kind of orientation does one give a grain nucleus? This question is specifically
important when attempting to model thermal twinning where most mechanisms [27, 30]
suppose the nucleation of a twin oriented grain. Moreover, looking at the highly twinned
microstructures obtained in forged nickel based superalloys, it is most likely that the twin
oriented nucleus appears or subsists more often than other, less favorably oriented, nuclei.
A numerical model, such as the one developed here, capable of taking into account some
of the particularities of the twin boundary allows one to start modeling these nucleation
phenomena and the subsequent microstructural evolution. As such, this numerical method
can become a tool to explore different hypotheses related to the nucleation of annealing
twins during recrystallization and grain growth.

Now, unrelated to these nucleation considerations, the mobility µ of the grain boundary
has been taken to be a constant in this work. However, given that it is supposed to be a
property of the grain boundary, there is no reason that it should not depend on the five
dimensional grain boundary character (M,n). As such, an anisotropic mobility µ(M,n) is

178



a physical possibility that should not be brushed aside as easily as it has been. Even so, the
definition of µ given in equation (2.28) is a global one and leaves no room for the mobility
to vary in the microstructure. How may one reconcile these ideas? From a modeling
point of view, the Riemannian metric m of the underlying space has been defined but has
not been given very much thought in this work. The simulations conducted here have
largely considered a “flat” base space as the natural space containing the microstructure.
However, one could induce an intrinsic curvature of the space to deviate from the idealistic
flat case. The curvature of the space could act on the passage of time heterogeneously
throughout the microstructure. This would generally have the effect of a mobility varying
from boundary to boundary depending of the orientation field. Moreover, the metric
is a tensorial value which would adhere to the general vision that a boundary might
be able to migrate in certain directions more efficiently than in others. However, these
considerations would turn the metric m into another unknown of the problem much like
the grain boundary energy γ. Moving towards these kinds of models would most likely
cement the need for non-linear solvers in order to remain relatively precise. Most exciting
perhaps, if this kind of curved space model was to perform well in realistic situations then
it would open up new ways to model these types of microstructural evolutions and new
interpretations of the physics as well. Perhaps more sophisticated Lorentzian time-space
metrics could be developed to fully encapsulate the modeling of microstructural evolution.

Additionally, there is a rather large implicit hypothesis throughout this and almost
all studies that model microstructural evolution in metals. That is: the order one defect
determining the kinetics of the grain boundary network is the grain boundary. One may
call this the “grain boundary hypothesis”. However, the three dimensional grain boundary
network is also comprised of triple (or multiple) lines and multiple junctions. When mod-
eling the entire network the emphasis is always placed on the grain boundaries. However,
it is very likely that the triple line, for example, has its own energy density that cannot
be defined as some combination of adjacent boundary energy densities. As the meeting of
three grains, the orientation mismatch at the triple line can be much higher than any grain
boundary on its own. The modeling approach described in the first sections of Chapter 2
is purposefully dimension independent. As such, it is singularly adapted to a hierarchical
description of the microstructure as grains with boundaries comprised of grain boundaries.
These grain boundaries have their own boundaries which are lines. These lines also have
boundaries which are the junctions. In this sense, considering a hierarchical embedded
description of the microstructure, a global velocity field could be constructed so as to
produce a minimizing energy flow. This means that the equation for the velocity, in the
embedded description model, is the same for each element of the hierarchy and the total
velocity is simply a superposition of the velocities at every level with adequate continuity
conditions. More pragmatically, one could develop a “vertex model” where the resolution
of the velocity proceeds hierarchically from the junctions to the lines to the boundaries
where the results at one level are used as boundary conditions for the next level [65,121].
The interest of this type of model would be to test the effect of affecting an energy density
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to triple line or even to multiple junctions that could depend on the orientation field. It
is very possible, in the same way that including terms at the triple junction in 2D simu-
lations can greatly modify the kinetics, that including supplemental terms related to the
minimization of multiple line energies could lead to kinetics closer to real microstructures.
Also, given the lower dimensionality of the hiearchal mesh, the numerical cost of these
types of models might be much less prohibitive than the current state of the art.

In a more “back to basics” approach, in order to hopefully do away with the topological
considerations of the multiple lines and junctions, one could attempt to model the kinetics
of a orientation field. Indeed, polycrystal matter and its associated defects and phases
could quite simply be modeled by the correct orientation fields and species concentration
fields. More formally, consider a microstructure comprised of n phases with their own crys-
tallographic symmetry groups Si and compositions ϕi = (Cα, α = H,He, Li, . . . , C, . . .)
occupying a physical space Ω (a smooth manifold). The static description of the entire
microstructure is encapsulated in following field

χ :Ω −→ {1, . . . , n} × SO(3)× Rp

χ(X) = (i, O, (Cα))

where p is the number of different species present in the material. As such, the i
parameter labels the phase at the point X, the O element in SO(3) characterizes the
crystal orientation and the (Cα) tuple describes the local composition. The microstructure
being completely characterized by this field, the dynamics of the microstructure are thus
ultimately defined by

d

dt
χ = f(T, ε, ε̇, χ,∇χ,∇∇χ, . . .)

with T the temperature, ε the strain and ε̇ the strain rate. The f function would
be constrained by first principles in terms of the relevant energy densities present in the
microstructure. However, the ∇ operator is slightly more difficult to define. While a
covariant derivative in Ω of both the phase parameter ∇i and the composition tuple
∇(Cα) = (∇Cα) are relatively straightforward, the differential quotient in SO(3) is more
difficult. This difficulty is obviously compounded by the fact that each phase ϕi has its
own symmetry space Si and thus its own orientation space Oi = SO(3)/Si. However,
SO(3) is a Lie group and thus also a special type of smooth manifold. As such, every
element of SO(3) admits a tangent space isomorphic to the tangent space at the identity.
Thus, directional derivatives of the orientation field can be described by elements of the
associated tangent space and a ∇O can be defined in this sense using the linearity of this
tangent space. Thus, with u ∈ TXΩ

∇uO ∈ TO(X)SO(3)
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can possibly give a somewhat coherent description of a covariant derivative of an orien-
tation field. This covariant derivative might give a more natural and continuous definition
of misorientation in the case of a grain boundary. To link this model with the previous
developments in this manuscript one could very well define an crystalline defect energy
density as depending upon this spatial derivative so that

Ecrystal defects =

∫
Ω

g(∇uO)2dΩ

where

g : Γ(T ∗Ω⊗ TSO(3)) −→ L2(Ω).

While using more complex mathematics, and demanding very good knowledge of Lie
Groups and differential geometry this kind of so-called “nonlinear sigma model” can per-
haps generate a more fundamental approach with which to predict microstructural evolu-
tion.
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Conclusion en Français

Le but global de ce travail était d’introduire les spécificités du joint de macle dans les
simulations en champ complet d’évolutions de microstructures. Pour y parvenir, cette
étude s’est concentrée sur l’enrichissement des modèles de migration de joints de grains
afin de prendre en compte des densités d’énergie de joint anisotrope. Ce choix a été fait
après une bibliographie menée sur les mécanismes de maclage et le comportement des
macles thermiques conjointement à l’étude des modèles numériques utiles dans l’état de
l’art pour simuler la dynamique des polycristaux. La conclusion majeure de cette revue
de la littérature est que l’énergie faible de la macle cohérente semble être une justification
adéquate pour expliquer son comportement particulier dans les superalliages base nickel.

Pour introduire les aspects d’anisotropie dans les modèles de migration de joints de
grains, un formalisme mathématique basé sur les éléments de la géométrie différentielle
a été développé. Une expression pour la vitesse de migration d’une interface a donc pu
être proposée en partant des premiers principes de la thermodynamique. À l’aide de ce
dévelopement, une définition explicite pour la mobilité d’un joint a pu être exprimée. Par
la suite, ce nouveau modèle a été adapté à une description level-set des interfaces avec
pour but de simuler la migration des interfaces anisotropes à l’aide de la méthode level
set dans un cadre éléments finis.

Ce modèle mathématique a donc été discrétisé afin de pouvoir le simuler numériquement.
Le développement éléments finis a été explicité avant d’introduire un nouveau cas ana-
lytique anisotrope basé sur une ellipse qui rétrécie. La convergence de la méthode à été
démontrée avec ce cas analytique. Ensuite, un certain nombre de conditions sur la fonc-
tion de densité énergétique de joints ont pu être exprimées pour préserver l’existance et
l’unicité de la solution. À partir de ce développement, un cas utilisant une densité d’énergie
plus arbitraire a été proposé. Cette configuration a permis de montrer la supériorité du
nouveau formalisme par rapport à l’existant.

Afin de pouvoir simuler les polycristaux, un ensemble de modifications a été apporté au
modèle numérique. Ces modifications ont permis au modèle d’intégrer la cristallographie
du matériau dans les simulations aussi bien que de simuler les joints multiples. Dans
cette optique, le formalisme modifié a été testé sur un cas analytique bien connu : le
“Grim Reaper”. Les nouveaux développements ont permis de se rapprocher des résultats
théoriques. Néanmoins, il reste une marge de progression possible dans l’approche pour
améliorer davantage les résultats.

En dernier lieu, quelques cas applicatifs sur des polycristaux idéalisés ont été étudiés
afin de montrer l’utilité de la méthodologie. Un premier cas montre une configuration
“maclée” qui est mieux décrite lorsque l’énergie du joint de macle est diminuée. Ensuite,
un polycristal virtuel est généré et différentes énergies de joints de grains, dépendantes
uniquement de la désorientation, sont imposées sur cette microstructure artificielle. Les
résultats des simulations mettent en évidence des phénomènes d’épinglage d’orientation
aussi bien qu’une correlation inverse entre la fonction d’énergie de joints de grains et la
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distribution des angles de désorientation. Un dernier cas réutilise la même microstruc-
ture virtuelle afin d’étudier une énergie uniquement dépendante de l’inclinaison du joint
dans le repère macroscopique. Cette étude préliminaire lie les extrema de la fonction de
densité énergétique de joints à l’évolution des inclinaisons des interfaces présentes dans la
microstructure.

Suite à ce travail, les perspectives sont nombreuses. Pour en citer certaines, les simula-
tions 3D des microstructures découlent naturellement du formalisme et peuvent d’ores et
déjà être envisagées. Des fonctions de densité énergétique de joints de grains plus réalistes
peuvent également être utilisées dans les simulations dans le but d’une comparaison avec
des résultats expérimentaux. Le traitement numérique des jonctions multiples peut aussi
être modifié et potentiellement amélioré avec une approche variationnelle. De plus, le
formalisme bénificierait sûrement de l’utilisation de solveurs non-linéaires pour résoudre
le problème éléments finis.
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Appendix A

A method for measuring angles at a
multiple junction

In order to automatically measure the evolution of the angles at multiple junctions during
a microstructural evolution simulation one must have two things:

1. A way to accurately track the position of a multiple junction.

2. A method for measuring the angles of a multiple junction given its position.

In a LS-FE setting, both requirements are rather simply met. In order to track the
multiple junction points in a domain Ω of dimension 2, one may define a neighborhood
parameter ε such the the set of points:

NJ = {X ∈ Ω |#{i |φi(X) < ε} > 2} (A.1)

is the neighborhood of one multiple junction.
If one takes the barycenter of this neighborhood set NJ than one obtains the multiple

junction point:

XJ =

∫
NJ
XdΩ∫

NJ
dΩ

. (A.2)

As such, one may track the multiple junction point throughout its evolution. In order
to calculate the angles created by the boundaries meeting at the junction, one may define
the circle:

Cε = {X ∈ Ω | d(X,XJ) = ε}, (A.3)

where d(·, ·) is the euclidean distance function, and the arc of the circle passing through
grain Gi as:

Ci
ε = Cε ∩Gi. (A.4)
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Remarking that: ∫
Ciε
dl∫

Cε
dl

=
εξi
2πε

=
ξi
2π
, (A.5)

where dl is the infinitesimal length along the circle. There is a simple expression for ξi:

ξi = 2π
Liε
Pε

(A.6)

where Liε is the length of the arc of Ci
ε and P is the perimeter of Cε.

One may calculate these values on a FE mesh for a given ε and junction configuration
by defining a radial distance function from the triple junction point XJ and integrating the
iso-ε arcs by parts in each element. However, choosing the correct value for ε is relatively
important. One would like to use a ε that is as small as possible in order to be as close
as possible to the junction and large enough so that the angle calculations are precise.
Conducting a sensitivity analysis of the precision of the method with respect to the mesh
size h, as shown in Figure A.1, one observes that ε ≈ 10h is sufficient for obtaining good
results concerning the calculation of the angles.

One may also develop a comparable procedure for both multiple junctions in 3D using
spheres as well as triple lines using cylinders.
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Figure A.1: Sensitivity study of the precision of angle calculations with respect to h and
ε
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merical modelling of primary recrystallization in polycrystalline materials,” Scripta
Materialia, vol. 58, no. 12, pp. 1129 – 1132, 2008.

[84] M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, “Finite element model of primary
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[114] A. L. Cruz-Fabiano, R. E. Logé, and M. Bernacki, “Assessement of simplified 2D
grain growth models from numerical experiments based on a level set framework,”
Computational Materials Science, vol. 92, pp. 305–312, 2014.

[115] S. Takajo, C. Merriman, S. Vogel, and D. Field, “In-situ EBSD study on the cube
texture evolution in 3wt% Si steel complemented by ex-situ EBSD experiment -
From nucleation to grain growth,” Acta Materialia, 2018.

[116] O. Engler, “On the influence of orientation pinning on growth selection of recrys-
tallisation,” Acta Materialia, vol. 46, no. 5, pp. 1555 – 1568, 1998.

[117] E. A. Holm, G. S. Rohrer, S. M. Foiles, A. D. Rollett, H. M. Miller, and D. L.
Olmsted, “Validating computed grain boundary energies in fcc metals using the
grain boundary character distribution,” Acta Materialia, vol. 59, pp. 5250–5256,
2011.

[118] D. Wolf, “A read-shockley model for high-angle grain boundaries,” Scripta Metal-
lurgica, vol. 23, no. 10, pp. 1713 – 1718, 1989.

200



[119] T. Coupez, H. Digonnet, and R. Ducloux, “Parallel meshing and remeshing,” Applied
Mathematical Modelling, vol. 25, no. 2, pp. 153 – 175, 2000.

[120] A. Najah, B. Cochelin, N. Damil, and M. Potier-Ferry, “A critical review of asymp-
totic numerical methods,” Archives of Computational Methods in Engineering, vol. 5,
pp. 31–50, Mar 1998.

[121] S. Florez, M. Shakoor, T. Toulorge, and M. Bernacki, “A new finite element strategy
to simulate microstructural evolutions,” Computational Materials Science, vol. 172,
2020.

[122] J. Furstoss, M. Bernacki, C. Petit, J. Fausty, D. P. Muñoz, and C. Ganino, “Full field
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MOTS CLÉS

Métallurgie, Éléments Finis, Modélisation, Joints de Macles, Anisotropie

RÉSUMÉ

Le dimensionnement des disques de superalliage base nickel dans les moteurs d’avion est un processus complexe et critique
pour le bon fonctionnement du transport aérien. L’amélioration continue des performances de ces composants doit assurer la
bonne tenue du moteur dans des conditions mecaniques et thermiques extrêmes. Un des aspects les plus importants dans
la genèse de ces produits est l’état microstructural de la matière. Les ingénieurs qui développent ces turbines ont donc un
besoin spécifique pour des modèles capables de prédire les évolutions microstructurales pendant le forgeage. Ce travail a
pour but d’améliorer les approches numériques de type Élément Finis - Level Set appliquées à l’évolution des microstructures
métalliques en enrichissant la description des joints de grains. L’enrichissement de la représentation des joints de grains est
nécessaire afin de prendre en compte des joints particuliers - comme les joints de macles - qui sont observés en très grand
nombre dans les superalliages forgés. Cette activité vise particulièrement à incorporer l’effet des énergies arbitraires des
interfaces cristallines dans les modèles de migration de joints de grains. Les modifications aportées à la méthode sont à la
fois numériques et mathématiques. En incluant des termes supplémentaires dans l’expression de la vitesse de migration de
l’interface, cette étude montre, par la simulation de cas analytiques et non-analytiques, que l’approche est capable de simuler
un éventail de phénomènes. À la fois l’effet de l’ancrage dû à l’orientation et le moment sur les joints multiples sont mis en
évidence. La méthode donne aussi des résultats plus fiables sur la simulation des joints avec des propriétés particulières
comme les joints de macles.

ABSTRACT

The design of nickel based superalloy disks in an industrial setting is a stringent process which must produce critical com-
ponents of the aircraft engine. Improving these components is no small feat given the extreme mechanical and thermal
constraints endured by these types of parts. One of the most important aspects of the design is the microstructure of the
unerlying material. As such, the engineers who design these machines have a specific need for models capable of predicting
microstructural evolution in metallic materials during the forging process. This work aims to improve on the existing Level
Set Finite Element framework for microstructural evolution by including enriched descriptions of grain boundaries. These
enriched characterizations are needed in order to take into account special boundaries - such as the twin boundary - which
can be observed in great number in forged superalloys. This effort is concentrated on integrating arbitrary values for the grain
boundary energy density into the numerical models. This enhancement of the model lies not only in the numerical aspects
but also in the underlying mathematical formulation. By including supplemental terms in the expression of the velocity of
a migrating grain boundary, this investigation has found, using analytical and non-analytical benchmarks, that the new ap-
proach is able to take into account a host of phenomena. Evidence of both orientation pinning and torque applied to triple
junctions has been found in virtually annealed polycrystals. Also, the model has proven to be more capable of taking into
account the singular behavior of the twin boundary then previous iterations of the method.
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Metallurgy, Finite Elements, Modeling, Twin Boundaries, Anisotropy


