E. Joseph and S. Conway, Major trends in the worldwide HPC market, 2017.

M. D. Sangid, The physics of fatigue crack initiation, International Journal of Fatigue, vol.57, pp.58-72, 2013.

M. Sakaguchi, R. Komamura, X. Chen, M. Higaki, and H. Inoue, Crystal plasticity assessment of crystallographic Stage I crack propagation in a Ni-based single crystal superalloy, International Journal of Fatigue, vol.123, pp.10-21, 2019.

M. Dakshinamurthy and A. Ma, Crack propagation in TRIP assisted steels modeled by crystal plasticity and cohesive zone method, Theoretical and Applied Fracture Mechanics, vol.96, pp.545-555, 2018.

J. Li, H. Proudhon, A. Roos, V. Chiaruttini, and S. Forest, Crystal plasticity finite element simulation of crack growth in single crystals, Computational Materials Science, vol.94, pp.191-197, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078756

P. Zhao, T. Song-en-low, Y. Wang, and S. R. Niezgoda, An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper, International Journal of Plasticity, vol.80, pp.38-55, 2016.

B. Scholtes, R. Boulais-sinou, A. Settefrati, D. Pino-muñoz, I. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, vol.122, pp.57-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01327901

D. N. Ilin, N. Bozzolo, T. Toulorge, and M. Bernacki, Full field modeling of recrystallization: Effect of intragranular strain gradients on grain boundary shape and kinetics, Computational Materials Science, vol.150, pp.149-161, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770044

L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. P. Muñoz et al., Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Materials & Design, vol.133, pp.498-519, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573836

W. Wang, A. L. Helbert, F. Brisset, M. H. Mathon, and T. Baudin, Monte Carlo simulation of primary recrystallization and annealing twinning, Acta Materialia, vol.81, pp.457-468, 2014.

A. J. Detor, A. D. Deal, and T. Hanlon, Grain Boundary Engineering Alloy 706 for Improved High Temperature Performance, Superalloys 2012 (Twelfth International Symposium), 2012.

A. Ma, F. Roters, and D. Raabe, On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling ? Theory, experiments, and simulations, Acta Materialia, vol.54, issue.8, pp.2181-2194, 2006.

U. Krupp, Improving the resistance to intergranular cracking and corrosion at elevated temperatures by grain-boundary-engineering-type processing, Journal of Materials Science, vol.43, issue.11, pp.3908-3916, 2008.

T. Watanabe, GRAIN BOUNDARY DESIGN FOR DESIRABLE MECHANICAL PROPERTIES, Le Journal de Physique Colloques, vol.49, issue.C5, p.C5-507-C5-519, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00228059

J. C. Stinville, N. Vanderesse, F. Bridier, P. Bocher, and T. M. Pollock, High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy, Acta Materialia, vol.98, pp.29-42, 2015.

D. Texier, J. Cormier, P. Villechaise, J. Stinville, C. J. Torbet et al., Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions, Materials Science and Engineering: A, vol.678, pp.122-136, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01662609

J. Genée, L. Signor, and P. Villechaise, Slip transfer across grain/twin boundaries in polycrystalline Ni-based superalloys, Materials Science and Engineering: A, vol.701, pp.24-33, 2017.

Q. He, T. Huang, L. Shuai, Y. Zhang, G. Wu et al., In-situ investigation of the evolution of annealing twins in high purity aluminium, Scripta Materialia, vol.153, pp.68-72, 2018.

S. Liu, J. Zhang, G. Xi, X. Wan, D. Zhang et al., Effects of intermediate annealing on twin evolution in twin-structured Mg-Nd alloys, Journal of Alloys and Compounds, vol.763, pp.11-17, 2018.

X. Chen, Y. C. Lin, and F. Wu, EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy, Journal of Alloys and Compounds, vol.724, pp.198-207, 2017.

B. Lin, Y. Jin, C. M. Hefferan, S. F. Li, J. Lind et al., Observation of annealing twin nucleation at triple lines in nickel during grain growth, Acta Materialia, vol.99, pp.63-68, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186079

K. H. Song, Y. B. Chun, and S. K. Hwang, Direct observation of annealing twin formation in a Pb-base alloy, Materials Science and Engineering: A, vol.454-455, pp.629-636, 2007.

W. Wang, S. Lartigue-korinek, F. Brisset, A. L. Helbert, J. Bourgon et al., Formation of annealing twins during primary recrystallization of two low stacking fault energy Ni-based alloys, Journal of Materials Science, vol.50, issue.5, pp.2167-2177, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02490250

Y. Jin, B. Lin, A. D. Rollett, G. S. Rohrer, M. Bernacki et al., Thermo-mechanical factors influencing annealing twin development in nickel during recrystallization, Journal of Materials Science, vol.50, issue.15, pp.5191-5203, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159091

A. C. Leff and M. L. Taheri, Quantitative assessment of the driving force for twin formation utilizing Nye tensor dislocation density mapping, Scripta Materialia, vol.121, pp.14-17, 2016.

W. G. Burgers, 'Stimulation Crystals' and Twin-formation in Recrystallized Aluminium, Nature, vol.157, issue.3977, pp.76-77, 1946.

M. A. Meyers and L. E. Murr, A model for the formation of annealing twins in F.C.C. metals and alloys, Acta Metallurgica, vol.26, issue.6, pp.951-962, 1978.

S. Dash and N. Brown, An investigation of the origin and growth of annealing twins, Acta Metallurgica, vol.11, issue.9, pp.1067-1075, 1963.

J. P. Nielsen, The origin of annealing twins, Acta Metallurgica, vol.15, issue.6, pp.1083-1085, 1967.

S. Mahajan, C. S. Pande, M. A. Imam, and B. B. Rath, Formation of annealing twins in f.c.c. crystals, Acta Materialia, vol.45, issue.6, pp.2633-2638, 1997.

V. Randle, Twinning-related grain boundary engineering, Acta Materialia, vol.52, issue.14, pp.4067-4081, 2004.

F. J. Humphreys and M. Hatherly, RECRYSTALLIZATION TEXTURES, Recrystallization and Related Annealing Phenomena, pp.327-362, 1995.

J. Lee, Smooth Manifolds, Introduction to Smooth Manifolds, pp.1-29, 2003.

M. Spivak, A Comprehensive Introduction to Differential Geometry, 2005.

G. S. Rohrer, E. A. Holm, A. D. Rollett, S. M. Foiles, J. Li et al., Comparing calculated and measured grain boundary energies in nickel, Acta Materialia, vol.58, issue.15, pp.5063-5069, 2010.

W. T. Read and W. Shockley, Dislocation Models of Crystal Grain Boundaries, Physical Review, vol.78, issue.3, pp.275-289, 1950.

B. Adams, D. Kinderlehrer, W. Mullins, A. Rollett, and S. Ta'asan, Extracting the relative grain boundary free energy and mobility functions from the geometry of microstructures, Scripta Materialia, vol.38, issue.4, pp.531-536, 1998.

A. Morawiec, Method to calculate the grain boundary energy distribution over the space of macroscopic boundary parameters from the geometry of triple junctions, Acta Materialia, vol.48, issue.13, pp.3525-3532, 2000.

D. M. Saylor, A. Morawiec, and G. S. Rohrer, The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters, Acta Materialia, vol.51, issue.13, pp.3675-3686, 2003.

D. L. Olmsted, S. M. Foiles, and E. A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy, Acta Materialia, vol.57, issue.13, pp.3694-3703, 2009.

D. L. Olmsted, E. A. Holm, and S. M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals?II: Grain boundary mobility, Acta Materialia, vol.57, issue.13, pp.3704-3713, 2009.

V. V. Bulatov, B. W. Reed, and M. Kumar, Grain boundary energy function for fcc metals, Acta Materialia, vol.65, pp.161-175, 2014.

E. A. Holm, G. N. Hassold, and M. A. Miodownik, On misorientation distribution evolution during anisotropic grain growth, Acta Materialia, vol.49, issue.15, pp.2981-2991, 2001.

D. Schwarzenbach, The success story of crystallographyThis Laue centennial article has also been published inZeitschrift für Kristallographie[Schwarzenbach (2012).Z. Kristallogr.227, 52?62]., Acta Crystallographica Section A Foundations of Crystallography, vol.68, issue.1, pp.57-67, 2011.

D. Sands, Introduction to Crystallography, 1993.

R. Abbaschian and R. Reed-hill, Gale Cengage Learning, Physical Metallurgy Principles. Cengage Learning

A. Nicolay, Supersolvus forging of Inconel 718 using screw press technologies, 2019.

Z. C. Cordero, B. E. Knight, and C. A. Schuh, Six decades of the Hall?Petch effect ? a survey of grain-size strengthening studies on pure metals, International Materials Reviews, vol.61, issue.8, pp.495-512, 2016.

A. P. Sutton, R. W. Balluffi, H. Lüth, and J. M. Gibson, Interfaces in Crystalline Materials and Surfaces and Interfaces of Solid Materials, Physics Today, vol.49, issue.9, pp.88-88, 1996.

B. Runnels, I. J. Beyerlein, S. Conti, and M. Ortiz, An analytical model of interfacial energy based on a lattice-matching interatomic energy, Journal of the Mechanics and Physics of Solids, vol.89, pp.174-193, 2016.

B. Runnels, I. J. Beyerlein, S. Conti, and M. Ortiz, A relaxation method for the energy and morphology of grain boundaries and interfaces, Journal of the Mechanics and Physics of Solids, vol.94, pp.388-408, 2016.

B. B. Straumal, O. A. Kogtenkova, A. S. Gornakova, V. G. Sursaeva, and B. Baretzky, Review: grain boundary faceting?roughening phenomena, Journal of Materials Science, vol.51, issue.1, pp.382-404, 2015.

C. Kittel and H. Y. Fan, Introduction to Solid State Physics, American Journal of Physics, vol.25, issue.5, pp.330-330, 1957.

X. P. Chen, L. F. Li, H. F. Sun, L. X. Wang, and Q. Liu, Studies on the evolution of annealing twins during recrystallization and grain growth in highly rolled pure nickel, Materials Science and Engineering: A, vol.622, pp.108-113, 2015.

J. R. Cahoon, Q. Li, and N. L. Richards, Microstructural and processing factors influencing the formation of annealing twins, Materials Science and Engineering: A, vol.526, issue.1-2, pp.56-61, 2009.

J. L. Bair, S. L. Hatch, and D. P. Field, Formation of annealing twin boundaries in nickel, Scripta Materialia, vol.81, pp.52-55, 2014.

Y. Jin, Annealing twin formation mechanism. Theses, Ecole Nationale Supérieure des Mines de Paris, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01136225

H. C. Carpenter and S. Tamura, The formation of twinned metallic crystals, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.113, issue.763, pp.161-182, 1926.

B. Lin, Investigating annealing twin formation mechanisms in face-centered cubic nickel, 2015.

Y. Jin, B. Lin, M. Bernacki, G. S. Rohrer, A. D. Rollett et al., Annealing twin development during recrystallization and grain growth in pure nickel, Materials Science and Engineering: A, vol.597, pp.295-303, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945387

J. Lind, S. F. Li, and M. Kumar, Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials, Acta Materialia, vol.114, pp.43-53, 2016.

D. B. Bober, J. Lind, R. P. Mulay, T. J. Rupert, and M. Kumar, The formation and characterization of large twin related domains, Acta Materialia, vol.129, pp.500-509, 2017.

L. Maire, Full field and mean field modeling of dynamic and post-dynamic recrystallization in 3D -Application to 304L steel, MINES Paristech, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02418810

J. Lépinoux, D. Weygand, and M. Verdier, Modeling grain growth and related phenomena with vertex dynamics, Comptes Rendus Physique, vol.11, issue.3-4, pp.265-273, 2010.

K. A. Brakke, The Surface Evolver, Experimental Mathematics, vol.1, issue.2, pp.141-165, 1992.

J. B. Allen, C. F. Cornwell, B. D. Devine, and C. R. Welch, Simulations of anisotropic grain growth in single phase materials using Q-state Monte Carlo, Computational Materials Science, vol.71, pp.25-32, 2013.

Q. Yu, M. Nosonovsky, and S. K. Esche, Monte Carlo simulation of grain growth of single-phase systems with anisotropic boundary energies, International Journal of Mechanical Sciences, vol.51, issue.6, pp.434-442, 2009.

A. D. Rollett, D. J. Srolovitz, and M. P. Anderson, Simulation and theory of abnormal grain growth?anisotropic grain boundary energies and mobilities, Acta Metallurgica, vol.37, issue.4, pp.1227-1240, 1989.

G. S. Grest, D. J. Srolovitz, and M. P. Anderson, Computer simulation of grain growth?IV. Anisotropic grain boundary energies, Acta Metallurgica, vol.33, issue.3, pp.509-520, 1985.

L. Rauch, L. Madej, P. Spytkowski, and R. Golab, Development of the cellular automata framework dedicated for metallic materials microstructure evolution models, Archives of Civil and Mechanical Engineering, vol.15, issue.1, pp.48-61, 2015.

L. Sieradzki and L. Madej, A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials, Computational Materials Science, vol.67, pp.156-173, 2013.

A. D. Rollett and D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Computational Materials Science, vol.21, issue.1, pp.69-78, 2001.

Y. Liu, T. Baudin, and R. Penelle, Simulation of normal grain growth by cellular automata, Scripta Materialia, vol.34, issue.11, pp.1679-1683, 1996.

K. Chang, L. Chen, C. E. Krill, and N. Moelans, Effect of strong nonuniformity in grain boundary energy on 3-D grain growth behavior: A phase-field simulation study, Computational Materials Science, vol.127, pp.67-77, 2017.

K. Chang and N. Moelans, Effect of grain boundary energy anisotropy on highly textured grain structures studied by phase-field simulations, Acta Materialia, vol.64, pp.443-454, 2014.

A. Mallick and S. Vedantam, Phase field study of the effect of grain boundary energy anisotropy on grain growth, Computational Materials Science, vol.46, issue.1, pp.21-25, 2009.

E. Miyoshi and T. Takaki, Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth, Journal of Crystal Growth, vol.474, pp.160-165, 2017.

M. A. Zaeem, H. E. Kadiri, P. Wang, and M. Horstemeyer, Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model, Computational Materials Science, vol.50, pp.2488-2492, 2011.

I. Steinbach, Phase-field models in materials science, Modelling and Simulation in Materials Science and Engineering, vol.17, issue.7, p.073001, 2009.

L. Chen, Phase-Field Models for Microstructure Evolution, Annual Review of Materials Research, vol.32, issue.1, pp.113-140, 2002.

J. A. Sethian, Theory, algorithms, and applications of level set methods for propagating interfaces, Acta Numerica, vol.5, pp.309-395, 1996.

B. Merriman, J. K. Bence, and S. J. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, pp.334-363, 1994.

M. Bernacki, Y. Chastel, T. Coupez, and R. E. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509731

M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in Materials Science and Engineering, vol.17, issue.6, p.064006, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00508362

R. Logé, M. Bernacki, H. Resk, L. Delannay, H. Digonnet et al., Linking plastic deformation to recrystallization in metals using digital microstructures, Philosophical Magazine, vol.88, issue.30-32, pp.3691-3712, 2008.

M. Elsey, S. Esedog¯lu, and P. Smereka, Simulations of anisotropic grain growth: Efficient algorithms and misorientation distributions, Acta Materialia, vol.61, issue.6, pp.2033-2043, 2013.

Y. Jin, N. Bozzolo, A. D. Rollett, and M. Bernacki, 2D finite element modeling of misorientation dependent anisotropic grain growth in polycrystalline materials: Level set versus multi-phase-field method, Computational Materials Science, vol.104, pp.108-123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148034

H. Hallberg, Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth?a 2D level set study, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.8, p.085005, 2014.

H. Hallberg, Approaches to Modeling of Recrystallization, Metals, vol.1, issue.1, pp.16-48, 2011.

M. Bernacki, R. E. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, issue.6, pp.525-528, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00577039

B. Scholtes, M. Shakoor, A. Settefrati, P. Bouchard, N. Bozzolo et al., New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, vol.109, pp.388-398, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203060

L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino-muñoz et al., Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations, Journal of Materials Science, vol.51, issue.24, pp.10970-10981, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369919

M. Elsey, S. Esedog?lu, and P. Smereka, Large-scale simulation of normal grain growth via diffusion-generated motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.467, issue.2126, pp.381-401, 2010.

J. Fausty, N. Bozzolo, D. Pino-muñoz, and M. Bernacki, A novel level-set finite element formulation for grain growth with heterogeneous grain boundary energies, Materials & Design, vol.160, pp.578-590, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890856

H. Hallberg and V. V. Bulatov, Modeling of grain growth under fully anisotropic grain boundary energy, Modelling and Simulation in Materials Science and Engineering, vol.27, issue.4, p.045002, 2019.

P. Halmos, Naive Set Theory, Naive Set Theory. Undergraduate Texts in Mathematics, 1974.

J. Lee, New Spaces from Old, Introduction to Topological Manifolds, pp.39-63

D. W. Hoffman and J. W. Cahn, A vector thermodynamics for anisotropic surfaces, Surface Science, vol.31, pp.368-388, 1972.

D. W. Hoffman and J. W. Cahn, A vector thermodynamics for anisotropic surfaces : II. Curved and Faceted Surfaces, Acta Metallurgica, vol.22, pp.1205-1214, 1974.

C. Herring, Surface Tension as a Motivation for Sintering, Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, pp.33-69, 1999.

H. Garcke, B. Nestler, and B. Stoth, A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions, SIAM Journal on Applied Mathematics, vol.60, issue.1, pp.295-315, 1999.

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, pp.7291-7302, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139858

Y. Belhamadia, A. Fortin, and É. Chamberland, Anisotropic mesh adaptation for the solution of the Stefan problem, Journal of Computational Physics, vol.194, issue.1, pp.233-255, 2004.

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.79, issue.11, pp.1309-1331, 2009.

B. Scholtes, Development of an efficient level set framework for the full field modeling recrystallization in 3D. Theses, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01719664

H. Zhao, T. Chan, B. Merriman, and S. Osher, A Variational Level Set Approach to Multiphase Motion, Journal of Computational Physics, vol.127, issue.1, pp.179-195, 1996.

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.

E. Roux, M. Bernacki, and P. O. Bouchard, A level-set and anisotropic adaptive remeshing strategy for the modeling of void growth under large plastic strain, Computational Materials Science, vol.68, pp.32-46, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00756435

J. K. Mackenzie, SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES, Biometrika, vol.45, issue.1-2, pp.229-240, 1958.

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.224-238, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699554

L. Madej, Digital/virtual microstructures in application to metals engineering ? A review, Archives of Civil and Mechanical Engineering, vol.17, issue.4, pp.839-854, 2017.

J. E. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, vol.3, pp.220-292, 1952.

A. L. Cruz-fabiano, R. E. Logé, and M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Computational Materials Science, vol.92, pp.305-312, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01023803

S. Takajo, C. C. Merriman, S. C. Vogel, and D. P. Field, In-situ EBSD study on the cube texture evolution in 3?wt% Si steel complemented by ex-situ EBSD experiment ? From nucleation to grain growth, Acta Materialia, vol.166, pp.100-112, 2019.

O. Engler, On the influence of orientation pinning on growth selection of recrystallisation, Acta Materialia, vol.46, issue.5, pp.1555-1568, 1998.

E. A. Holm, G. S. Rohrer, S. M. Foiles, A. D. Rollett, H. M. Miller et al., Validating computed grain boundary energies in fcc metals using the grain boundary character distribution, Acta Materialia, vol.59, issue.13, pp.5250-5256, 2011.

D. Wolf, A read-shockley model for high-angle grain boundaries, Scripta Metallurgica, vol.23, issue.10, pp.1713-1718, 1989.

T. Coupez, H. Digonnet, and R. Ducloux, Parallel meshing and remeshing, Applied Mathematical Modelling, vol.25, issue.2, pp.153-175, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00536635

A. Najah, B. Cochelin, N. Damil, and M. Potier-ferry, A critical review of asymptotic numerical methods, Archives of Computational Methods in Engineering, vol.5, issue.1, pp.31-50, 1998.

S. Florez, M. Shakoor, T. Toulorge, and M. Bernacki, A new finite element strategy to simulate microstructural evolutions, Computational Materials Science, vol.172, p.109335, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02431738

J. Furstoss, M. Bernacki, C. Petit, J. Fausty, D. Pino muñoz et al., Full Field and Mean Field Modeling of Grain Growth in a Multiphase Material Under Dry Conditions: Application to Peridotites, Journal of Geophysical Research: Solid Earth, vol.125, issue.1, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02431730