M. Oliveira, J. Alves, B. Chaparro, and L. Menezes, Study on the influence of work-hardening modeling in springback prediction, International Journal of Plasticity, vol.23, issue.3, pp.516-543, 2007.

T. Kuwabara, M. Kuroda, V. Tvergaard, and K. Nomura, Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets, Acta Materialia, vol.48, issue.9, pp.2071-2079, 2000.

B. Haddag, T. Balan, and F. Abed-meraim, Investigation of advanced strain-path dependent material models for sheet metal forming simulations, International Journal of Plasticity, vol.23, issue.6, pp.951-979, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00656323

A. , L'emboutissage des aciers. Dunod, 2010.

A. Phillips, A review of quasistatic experimental plasticity and viscoplasticity, International Journal of Plasticity, vol.2, issue.4, pp.315-328, 1986.

T. Kuwabara, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, International Journal of Plasticity, vol.23, issue.3, pp.385-419, 2007.

C. J. Freitas, The issue of numerical uncertainty, Applied Mathematical Modelling, vol.26, issue.2, pp.237-248, 2002.

C. J. Roy and W. L. Oberkampf, A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.25-28, pp.2131-2144, 2011.

H. Tresca, On the yield of solids at high pressures, Comptes Rendus Academie des Sciences, vol.59, p.1864

R. Mises, Mechanics of the solid body in the plastic deformation state, Göttin Nachr Math Phys, vol.1, p.582, 1913.

R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.193, issue.1033, pp.281-297, 1948.

R. Hill, Theoretical plasticity of textured aggregates, Mathematical Proceedings of the Cambridge Philosophical Society, vol.85, issue.1, pp.179-191, 1979.

R. Hill, The Mathematical Theory of Plasticity. R. Hill. The Clarendon Press. Oxford. 1951. 356 pp. 90 figures. 35s. net., The Journal of the Royal Aeronautical Society, vol.55, issue.490, pp.659-660, 1951.

R. Hill, Constitutive modelling of orthotropic plasticity in sheet metals, Journal of the Mechanics and Physics of Solids, vol.38, issue.3, pp.405-417, 1990.

A. Hershey, Basic Equations of Anisotropic Elasticity, Elasticity of Transversely Isotropic Materials, vol.21, pp.1-27

W. Hosford, A Generalized Isotropic Yield Criterion, Journal of Applied Mechanics, vol.39, issue.2, pp.607-609, 1972.

F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick et al., Plane stress yield function for aluminum alloy sheets?part 1: theory, International Journal of Plasticity, vol.19, issue.9, pp.1297-1319, 2003.

D. Banabic, Formability of Sheet Metals, Sheet Metal Forming Processes, pp.141-211, 2010.

H. Aretz and F. Barlat, General Orthotropic Yield Functions Based on Linear Stress Deviator Transformations, AIP Conference Proceedings, vol.712, p.147156, 2004.

F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem et al., Linear transfomation-based anisotropic yield functions, International Journal of Plasticity, vol.21, issue.5, pp.1009-1039, 2005.

D. Banabic, H. Aretz, D. Comsa, and L. Paraianu, An improved analytical description of orthotropy in metallic sheets, International Journal of Plasticity, vol.21, issue.3, pp.493-512, 2005.

K. Mattiasson and M. Sigvant, An evaluation of some recent yield criteria for industrial simulations of sheet forming processes, International Journal of Mechanical Sciences, vol.50, issue.4, pp.774-787, 2008.

O. Cazacu and F. Barlat, Generalization of Drucker's Yield Criterion to Orthotropy, Mathematics and Mechanics of Solids, vol.6, issue.6, pp.613-630, 2001.

H. Vegter and A. H. Van-den-boogaard, A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, International Journal of Plasticity, vol.22, issue.3, pp.557-580, 2006.

D. Banabic, F. Barlat, O. Cazacu, and T. Kuwabara, Anisotropy and Formability, Advances in Material Forming, vol.3, pp.143-173

P. J. Armstrong and C. Frederick, Central Electricity Generating Board and Berkeley Nuclear Laboratories, vol.731, 1966.

A. Agah-tehrani, E. H. Lee, R. L. Mallett, and E. T. Onat, The theory of elastic-plastic deformation at finite strain with induced anisotropy modeled as combined isotropic-kinematic hardening, Journal of the Mechanics and Physics of Solids, vol.35, issue.5, pp.519-539, 1987.

J. Chaboche and J. Lemaitre, Mechanics of solid materials, 1990.

J. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, vol.24, issue.10, pp.1642-1693, 2008.

F. Yoshida, T. Uemori, and K. Fujiwara, Elastic?plastic behavior of steel sheets under in-plane cyclic tension?compression at large strain, International Journal of Plasticity, vol.18, issue.5-6, pp.633-659, 2002.

F. Yoshida and T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, International Journal of Plasticity, vol.18, issue.5-6, pp.661-686, 2002.

B. K. Chun, J. T. Jinn, and J. K. Lee, Modeling the Bauschinger effect for sheet metals, part I: theory, International Journal of Plasticity, vol.18, issue.5-6, pp.571-595, 2002.

C. Teodosiu and Z. Hu, Evolution of the intragranular microstructure at moderate and large strains : modelling and computational signicance, Simulation of Materials Processing : Theory, Methods and Applications, p.173182, 1995.

C. Teodosiu and Z. Hu, Texture Vs. Microstructure in Anisotropic Plasticity, Anisotropy and Localization of Plastic Deformation, pp.179-182, 1991.

W. Hu, Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy, International Journal of Plasticity, vol.23, issue.4, pp.620-639, 2007.

M. Lee, D. Kim, C. Kim, M. Wenner, R. Wagoner et al., A practical two-surface plasticity model and its application to spring-back prediction, International Journal of Plasticity, vol.23, issue.7, pp.1189-1212, 2007.

F. Barlat, J. J. Gracio, M. Lee, E. F. Rauch, and G. Vincze, An alternative to kinematic hardening in classical plasticity, International Journal of Plasticity, vol.27, issue.9, pp.1309-1327, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640043

F. Barlat, G. Vincze, J. J. Grácio, M. Lee, E. F. Rauch et al., Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels, International Journal of Plasticity, vol.58, pp.201-218, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071864

F. Barlat, J. Ha, J. J. Grácio, M. Lee, E. F. Rauch et al., Extension of homogeneous anisotropic hardening model to cross-loading with latent effects, International Journal of Plasticity, vol.46, pp.130-142, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850218

B. Berisha, P. Hora, A. Wahlen, and L. Tong, A combined isotropic-kinematic hardening model for the simulation of warm forming and subsequent loading at room temperature, International Journal of Plasticity, vol.26, issue.1, pp.126-140, 2010.

G. Rousselier, F. Barlat, and J. W. Yoon, A novel approach for anisotropic hardening modeling. Part I: Theory and its application to finite element analysis of deep drawing, International Journal of Plasticity, vol.25, issue.12, pp.2383-2409, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509789

G. Rousselier, F. Barlat, and J. W. Yoon, A novel approach for anisotropic hardening modeling. Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material, International Journal of Plasticity, vol.26, issue.7, pp.1029-1049, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509789

S. Zang, C. Guo, S. Thuillier, and M. Lee, A model of one-surface cyclic plasticity and its application to springback prediction, International Journal of Mechanical Sciences, vol.53, issue.6, p.425435, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00715762

T. Clausmeyer and B. Svendsen, Comparison of two models for anisotropic hardening and yield surface evolution in bcc sheet steels, European Journal of Mechanics - A/Solids, vol.54, pp.120-131, 2015.

R. Rentmeester and L. Nilsson, On mixed isotropic-distortional hardening, International Journal of Mechanical Sciences, vol.92, pp.259-268, 2015.

F. Yoshida, H. Hamasaki, and T. Uemori, Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect, International Journal of Plasticity, vol.75, pp.170-188, 2015.

E. Lee, T. B. Stoughton, and J. W. Yoon, Kinematic hardening model considering directional hardening response, International Journal of Plasticity, vol.110, p.145165, 2018.

J. Qin, B. Holmedal, and O. S. Hopperstad, A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes, International Journal of Plasticity, vol.101, pp.156-169, 2018.

V. Okorokov, Y. Gorash, D. Mackenzie, and R. Van-rijswick, New formulation of nonlinear kinematic hardening model, Part I: A Dirac delta function approach, International Journal of Plasticity, vol.122, pp.89-114, 2019.

M. Ortiz and J. Simo, An analysis of a new class of integration algorithms for elastoplastic constitutive relations, International Journal for Numerical Methods in Engineering, vol.23, issue.3, p.353366, 1986.

S. W. Sloan, Substepping schemes for the numerical integration of elastoplastic stress strain relations, International Journal for Numerical Methods in Engineering, vol.24, issue.5, p.893911, 1987.

J. C. Simo, Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Computer Methods in Applied Mechanics and Engineering, vol.99, issue.1, pp.61-112, 1992.

C. Miehe, Aspects of the formulation and finite element implementation of large strain isotropic elasticity, International Journal for Numerical Methods in Engineering, vol.37, issue.12, pp.1981-2004, 1994.

D. M. Potts and D. Ganendra, An evaluation of substepping and implicit stress point algorithms, Computer Methods in Applied Mechanics and Engineering, vol.119, issue.3-4, pp.341-354, 1994.

R. I. Borja, K. M. Sama, and P. F. Sanz, On the numerical integration of three-invariant elastoplastic constitutive models, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.9-10, pp.1227-1258, 2003.

J. Raphanel, G. Ravichandran, and Y. Leroy, Three-dimensional rate-dependent crystal plasticity based on Runge-Kutta algorithms for update and consistent linearization, International Journal of Solids and Structures, vol.41, p.59956021, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00091541

R. Mcginty and D. Mcdowell, A semi-implicit integration scheme for rate independent nite crystal plasticity, International Journal of Plasticity, vol.22, issue.6, p.9961025, 2006.

A. V. Amirkhizi and S. Nemat-nasser, A framework for numerical integration of crystal elasto-plastic constitutive equations compatible with explicit nite element codes, International Journal of Plasticity, vol.23, issue.10, p.19181937, 2007.

K. Ding, Q. Qin, and M. Cardew-hall, Substepping algorithms with stress correction for the simulation of sheet metal forming process, International Journal of Mechanical Sciences, vol.49, issue.11, p.12891308, 2007.

Y. Yamakawa, K. Hashiguchi, and K. Ikeda, Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains, International Journal of Plasticity, vol.26, issue.5, pp.634-658, 2010.

M. Vrh, M. Halilovi?, and B. ?tok, Improved explicit integration in plasticity, International Journal for Numerical Methods in Engineering, vol.81, issue.7, pp.910-938, 2009.

J. Lee, D. Kim, Y. Lee, H. J. Bong, F. Barlat et al., Stress update algorithm for enhanced homogeneous anisotropic hardening model, Computer Methods in Applied Mechanics and Engineering, vol.286, pp.63-86, 2015.

C. Zhou, Z. Chen, J. W. Lee, M. G. Lee, and R. H. Wagoner, Implementation and application of a temperature-dependent Chaboche model, International Journal of Plasticity, vol.75, pp.121-140, 2015.

M. Miñano, M. A. Caminero, and F. J. Montáns, On the numerical implementation of the Closest Point Projection algorithm in anisotropic elasto-plasticity with nonlinear mixed hardening, Finite Elements in Analysis and Design, vol.121, pp.1-17, 2016.

M. Á. Sanz, F. J. Montáns, and M. Latorre, Computational anisotropic hardening multiplicative elastoplasticity based on the corrector elastic logarithmic strain rate, Computer Methods in Applied Mechanics and Engineering, vol.320, pp.82-121, 2017.

A. Bartels and J. Mosler, On the numerical implementation of thermomechanically coupled distortional hardening, International Journal of Plasticity, vol.96, pp.182-209, 2017.

H. Choi and J. W. Yoon, Stress integration-based on finite difference method and its application for anisotropic plasticity and distortional hardening under associated and non-associated flow rules, Computer Methods in Applied Mechanics and Engineering, vol.345, pp.123-160, 2019.

D. S. Schnur and N. Zabaras, An inverse method for determining elastic material properties and a material interface, International Journal for Numerical Methods in Engineering, vol.33, issue.10, pp.2039-2057, 1992.

G. Amar and J. Dufailly, Identication and validation of viscoplastic and damage constitutive equations, European journal of mechanics. A. Solids, vol.12, issue.2, 1993.

J. C. Gelin and O. Ghouati, An inverse method for determining viscoplastic properties of aluminium alloys, Journal of Materials Processing Technology, vol.45, issue.1-4, pp.435-440, 1994.

J. Chaboche, D. Nouailhas, and S. Savalle, Graphique 1.1d : Variation annuelle moyenne de la production aérospatiale, 1991-2001, La Recherche Aérospatiale, issue.3, p.5976

G. Cailletaud, Identication and inverse problems related to material behaviour, Inverse Problems in Engineering Mechanics, vol.79, 1994.

R. Mahnken and E. Stein, A unified approach for parameter identification of inelastic material models in the frame of the finite element method, Computer Methods in Applied Mechanics and Engineering, vol.136, issue.3-4, pp.225-258, 1996.

R. Mahnken and E. Stein, Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations, International Journal of Plasticity, vol.12, issue.4, pp.451-479, 1996.

A. L. Araújo, C. M. Mota-soares, and M. J. De-freitas, Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data, Composites Part B: Engineering, vol.27, issue.2, pp.185-191, 1996.

J. Kleinermann and J. Ponthot, Parameter identification and shape/process optimization in metal forming simulation, Journal of Materials Processing Technology, vol.139, issue.1-3, pp.521-526, 2003.

J. Ponthot and J. Kleinermann, A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.5472-5508, 2006.

M. Grédiac, E. Toussaint, and F. Pierron, Special virtual fields for the direct determination of material parameters with the virtual fields method. 1??Principle and definition, International Journal of Solids and Structures, vol.39, issue.10, pp.2691-2705, 2002.

H. Chalal, F. Meraghni, F. Pierron, and M. Grédiac, Direct identification of the damage behaviour of composite materials using the virtual fields method, Composites Part A: Applied Science and Manufacturing, vol.35, issue.7-8, pp.841-848, 2004.

J. Kajberg and G. Lindkvist, Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields, International Journal of Solids and Structures, vol.41, issue.13, pp.3439-3459, 2004.

M. Springmann and M. Kuna, Identification of material parameters of the Gurson?Tvergaard?Needleman model by combined experimental and numerical techniques, Computational Materials Science, vol.33, issue.4, pp.501-509, 2005.

E. Toussaint, M. Grédiac, and F. Pierron, The virtual fields method with piecewise virtual fields, International Journal of Mechanical Sciences, vol.48, issue.3, pp.256-264, 2006.

M. Grédiac and F. Pierron, Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters, International Journal of Plasticity, vol.22, issue.4, pp.602-627, 2006.

M. Grédiac, F. Pierron, S. Avril, and E. Toussaint, The Virtual Fields Method for Extracting Constitutive Parameters From Full-Field Measurements: a Review, Strain, vol.42, issue.4, pp.233-253, 2006.

B. M. Chaparro, S. Thuillier, L. F. Menezes, P. Y. Manach, and J. V. Fernandes, Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms, Computational Materials Science, vol.44, issue.2, pp.339-346, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00404004

S. Avril and F. Pierron, General framework for the identification of constitutive parameters from full-field measurements in linear elasticity, International Journal of Solids and Structures, vol.44, issue.14-15, pp.4978-5002, 2007.
URL : https://hal.archives-ouvertes.fr/emse-00502477

J. Cao and J. Lin, A study on formulation of objective functions for determining material models, International Journal of Mechanical Sciences, vol.50, issue.2, pp.193-204, 2008.

S. Belhabib, H. Haddadi, M. Gaspérini, and P. Vacher, Heterogeneous tensile test on elastoplastic metallic sheets: Comparison between FEM simulations and full-field strain measurements, International Journal of Mechanical Sciences, vol.50, issue.1, pp.14-21, 2008.

H. Haddadi and S. Belhabib, Improving the characterization of a hardening law using digital image correlation over an enhanced heterogeneous tensile test, International Journal of Mechanical Sciences, vol.62, issue.1, pp.47-56, 2012.

S. Thuillier and P. Y. Manach, Comparison of the work-hardening of metallic sheets using tensile and shear strain paths, International Journal of Plasticity, vol.25, issue.5, pp.733-751, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00404007

R. De-carvalho, R. A. Valente, and A. Andrade-campos, On the Objective Function Evaluation in Parameter Identification of Material Constitutive Models - Single-point or FE Analysis, International Journal of Material Forming, vol.3, issue.S1, pp.33-36, 2010.

F. Pierron, S. Avril, and V. T. Tran, Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening, International Journal of Solids and Structures, vol.47, issue.22-23, pp.2993-3010, 2010.
URL : https://hal.archives-ouvertes.fr/emse-00579397

M. Rossi and F. Pierron, Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields, Computational Mechanics, vol.49, issue.1, pp.53-71, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00749836

A. Andrade-campos, R. De-carvalho, and R. A. Valente, Novel criteria for determination of material model parameters, International Journal of Mechanical Sciences, vol.54, issue.1, pp.294-305, 2012.

M. Merklein, S. Suttner, and A. Brosius, Characterisation of kinematic hardening and yield surface evolution from uniaxial to biaxial tension with continuous strain path change, CIRP Annals, vol.63, issue.1, pp.297-300, 2014.

J. Fu, F. Barlat, J. Kim, and F. Pierron, Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels, International Journal of Solids and Structures, vol.102-103, pp.30-43, 2016.

J. Fu, F. Barlat, J. Kim, and F. Pierron, Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels, International Journal of Plasticity, vol.93, pp.229-250, 2017.

M. Abspoel, M. E. Scholting, M. Lansbergen, Y. An, and H. Vegter, A new method for predicting advanced yield criteria input parameters from mechanical properties, Journal of Materials Processing Technology, vol.248, pp.161-177, 2017.

L. Geng and R. H. Wagoner, Role of plastic anisotropy and its evolution on springback, International Journal of Mechanical Sciences, vol.44, issue.1, pp.123-148, 2002.

S. C. Tang, Trends on Simulation of Sheet Metal Forming Processes, SAE Technical Paper Series, p.523530, 2000.

A. Forcellese, L. Fratini, F. Gabrielli, and F. Micari, The evaluation of springback in 3D stamping and coining processes, Journal of Materials Processing Technology, vol.80-81, pp.108-112, 1998.

S. W. Lee and D. Y. Yang, An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process, Journal of Materials Processing Technology, vol.80-81, pp.60-67, 1998.

K. P. Li, W. P. Carden, and R. H. Wagoner, Simulation of springback, International Journal of Mechanical Sciences, vol.44, issue.1, pp.103-122, 2002.

F. Barlat and K. Lian, Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions, International Journal of Plasticity, vol.5, issue.1, pp.51-66, 1989.

F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. C. Brem et al., Yield function development for aluminum alloy sheets, Journal of the Mechanics and Physics of Solids, vol.45, issue.11-12, pp.1727-1763, 1997.

D. Banabic, D. S. Comsa, and T. Balan, Anisotropic Yield Criteria for Aluminum Alloy Sheets, Encyclopedia of Aluminum and Its Alloys, p.109116, 2019.

K. Li, L. Geng, and R. Wagoner, Simulation of springback : choice of element, Advanced Technology of Plasticity, vol.3, p.20912098, 1999.

F. Pourboghrat, K. Chung, and O. Richmond, A Hybrid Membrane/Shell Method for Rapid Estimation of Springback in Anisotropic Sheet Metals, Journal of Applied Mechanics, vol.65, issue.3, pp.671-684, 1998.

M. Wenner, On work hardening and springback in plane strain draw forming, Journal of Applied Metalworking, vol.2, issue.4, pp.277-287, 1983.

F. Morestin, M. Boivin, and C. Silva, Elasto plastic formulation using a kinematic hardening model for springback analysis in sheet metal forming, Journal of Materials Processing Technology, vol.56, issue.1-4, pp.619-630, 1996.

R. M. Cleveland and A. K. Ghosh, Inelastic effects on springback in metals, International Journal of Plasticity, vol.18, issue.5-6, pp.769-785, 2002.

K. Chung, M. Lee, D. Kim, C. Kim, M. L. Wenner et al., Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functionsPart I: theory and formulation, International Journal of Plasticity, vol.21, issue.5, pp.861-882, 2005.

M. Lee, D. Kim, C. Kim, M. L. Wenner, and K. Chung, Spring-back evaluation of automotive sheets based on isotropic?kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications, International Journal of Plasticity, vol.21, issue.5, pp.915-953, 2005.

R. Wagoner and M. Li, Simulation of springback: Through-thickness integration, International Journal of Plasticity, vol.23, issue.3, pp.345-360, 2007.

P. Chen and M. Koç, Simulation of springback variation in forming of advanced high strength steels, Journal of Materials Processing Technology, vol.190, issue.1-3, pp.189-198, 2007.

P. Eggertsen and K. Mattiasson, On constitutive modeling for springback analysis, International Journal of Mechanical Sciences, vol.52, issue.6, pp.804-818, 2010.

S. Wang, W. Zhuang, J. Cao, and J. Lin, An investigation of springback scatter in forming ultra-thin metal-sheet channel parts using crystal plasticity FE analysis, The International Journal of Advanced Manufacturing Technology, vol.47, issue.9-12, pp.845-852, 2009.

H. Chalal, S. Racz, and T. Balan, Springback of thick sheet AHSS subject to bending under tension, International Journal of Mechanical Sciences, vol.59, issue.1, pp.104-114, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00800209

J. Lee, M. Lee, and F. Barlat, Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction, International Journal of Plasticity, vol.29, pp.13-41, 2012.

J. Lee, J. Lee, M. Lee, and F. Barlat, An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending, International Journal of Solids and Structures, vol.49, issue.25, pp.3562-3572, 2012.

H. Lim, M. G. Lee, J. H. Sung, J. H. Kim, and R. H. Wagoner, Time-dependent springback of advanced high strength steels, International Journal of Plasticity, vol.29, pp.42-59, 2012.

R. H. Wagoner, H. Lim, and M. Lee, Advanced Issues in springback, International Journal of Plasticity, vol.45, pp.3-20, 2013.

J. Lee, F. Barlat, and M. Lee, Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets, International Journal of Plasticity, vol.71, pp.113-135, 2015.

X. Xue, J. Liao, G. Vincze, A. B. Pereira, and F. Barlat, Experimental assessment of nonlinear elastic behaviour of dual-phase steels and application to springback prediction, International Journal of Mechanical Sciences, vol.117, pp.1-15, 2016.

X. Xue, Modelling and Control of Twist Springback in Lightweight Automotive Structures with Complex Cross-Sectional Shape, 2016.

S. Sumikawa, A. Ishiwatari, J. Hiramoto, and T. Urabe, Improvement of springback prediction accuracy using material model considering elastoplastic anisotropy and Bauschinger effect, Journal of Materials Processing Technology, vol.230, pp.1-7, 2016.

J. Liao, X. Xue, M. Lee, F. Barlat, G. Vincze et al., Constitutive modeling for path-dependent behavior and its influence on twist springback, International Journal of Plasticity, vol.93, pp.64-88, 2017.

C. Löbbe and A. E. Tekkaya, Mechanisms for controlling springback and strength in heat-assisted sheet forming, CIRP Annals, vol.67, issue.1, pp.273-276, 2018.

J. Lee, H. J. Bong, J. Ha, J. Choi, F. Barlat et al., Influence of Yield Stress Determination in Anisotropic Hardening Model on Springback Prediction in Dual-Phase Steel, JOM, vol.70, issue.8, pp.1560-1566, 2018.

J. Yoon, F. Barlat, R. E. Dick, K. Chung, and T. J. Kang, Plane stress yield function for aluminum alloy sheets?part II: FE formulation and its implementation, International Journal of Plasticity, vol.20, issue.3, pp.495-522, 2004.

D. Banabic, Numerical Simulation of the Sheet Metal Forming Processes, Sheet Metal Forming Processes, pp.213-295, 2010.

J. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, vol.7, issue.7, pp.661-678, 1991.

J. Carbonnière, S. Thuillier, F. Sabourin, M. Brunet, and P. Y. Manach, Comparison of the work hardening of metallic sheets in bending?unbending and simple shear, International Journal of Mechanical Sciences, vol.51, issue.2, pp.122-130, 2009.

H. Haddadi, S. Bouvier, M. Banu, C. Maier, and C. Teodosiu, Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification, International Journal of Plasticity, vol.22, issue.12, pp.2226-2271, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02909381

T. Mánik, B. Holmedal, and O. S. Hopperstad, Strain-path change induced transients in flow stress, work hardening and r-values in aluminum, International Journal of Plasticity, vol.69, pp.1-20, 2015.

A. Friaâ, L. Loi-de-norton-ho-généralisée-en-plasticité-et-viscoplasticité, T. Curie, and P. Vi, , 1979.

M. Djaoua, P. Suquet, and J. C. Nedelec, Évolution quasi-statique des milieux visco-plastiques de maxwell-norton, Mathematical Methods in the Applied Sciences, vol.6, issue.1, pp.192-205, 1984.

A. S. Khan and S. Huang, Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10?5?104s?1, International Journal of Plasticity, vol.8, issue.4, pp.397-424, 1992.

R. Liang and A. S. Khan, A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures, International Journal of Plasticity, vol.15, issue.9, pp.963-980, 1999.

A. S. Khan and R. Liang, Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling, International Journal of Plasticity, vol.15, issue.10, pp.1089-1109, 1999.

A. Rusinek and J. Klepaczko, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress, International Journal of Plasticity, vol.17, issue.1, pp.87-115, 2001.

A. Uenishi and C. Teodosiu, Constitutive modelling of the high strain rate behaviour of interstitial-free steel, International Journal of Plasticity, vol.20, issue.4-5, pp.915-936, 2004.

A. Molinari and G. Ravichandran, Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length, Mechanics of Materials, vol.37, issue.7, pp.737-752, 2005.

A. Rusinek, R. Zaera, and J. R. Klepaczko, Constitutive relations in 3-D for a wide range of strain rates and temperatures ? Application to mild steels, International Journal of Solids and Structures, vol.44, issue.17, pp.5611-5634, 2007.

S. Allain, O. Bouaziz, and X. Lemoine, A viscoplastic behavior law for ferritic steels at low homologous temperature, Revue de Métallurgie, vol.106, issue.2, pp.80-89, 2009.

J. Pipard, Modélisation du comportement élasto-viscoplastique des aciers multiphasés pour la simulation de leur mise en forme, 2012.

J. Pipard, T. Balan, F. Abed-meraim, and X. Lemoine, Elasto-visco-plastic modeling of mild steels for sheet forming applications over a large range of strain rates, International Journal of Solids and Structures, vol.50, issue.16-17, pp.2691-2700, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01192735

J. Weertman, Steady?State Creep through Dislocation Climb, Journal of Applied Physics, vol.28, issue.3, pp.362-364, 1957.

F. Garofalo, Stress dependence of steady state creep rate of cobalt in relation to phase change, Metal Science, vol.15, issue.3, pp.133-136, 1981.

C. R. Barrett and W. D. Nix, A model for steady state creep based on the motion of jogged screw dislocations, Acta Metallurgica, vol.13, issue.12, pp.1247-1258, 1965.

C. M. Sellars and W. Tegart, La relation entre la résistance et la structure dans la deformation à chaud, Mémoires Scientiques de la Revue de Métallurgie, vol.63, pp.731-746, 1966.

J. J. Jonas, C. M. Sellars, and W. J. Tegart, Strength and structure under hot-working conditions, Metallurgical Reviews, vol.14, issue.1, pp.1-24, 1969.

B. Haddag, Contribution à la modélisation de la mise en forme des tôles métalliques : application au retour élastique et à la localisation, Arts et Métiers ParisTech, 2007.

T. Balan, On the numerical implementation of elasto-plastic constitutive equations for metal forming, Romanian Journal of Technical Sciences -Applied Mechanics, vol.60, p.89104, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01556661

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in Fortran 90, vol.2, 1996.

K. Hibbitt and I. Sorensen, Abaqus manuals version 6, vol.3, 2003.

G. Vincze, F. Barlat, E. F. Rauch, C. N. Tomé, M. C. Butuc et al., Experiments and Modeling of Low Carbon Steel Sheet Subjected to Double Strain Path Changes, Metallurgical and Materials Transactions A, vol.44, issue.10, pp.4475-4479, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935044

W. Wen, M. Borodachenkova, C. N. Tomé, G. Vincze, E. F. Rauch et al., Mechanical behavior of Mg subjected to strain path changes: Experiments and modeling, International Journal of Plasticity, vol.73, pp.171-183, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218309

D. C. Drucker and F. Stockton, Instrumentation and fundamental experiments in plasticity, Division of Applied Mathematics, 1952.

R. Hill, A new method for determining the yield criterion and plastic potential of ductile metals, Journal of the Mechanics and Physics of Solids, vol.1, issue.4, pp.271-276, 1953.

J. Hutchinson, Elastic-plastic behaviour of polycrystalline metals and composites, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.319, issue.1537, pp.247-272, 1970.

A. Phillips and T. Juh-ling, The effect of loading path on the yield surface at elevated temperatures, International Journal of Solids and Structures, vol.8, issue.4, pp.463-474, 1972.

S. Stören and J. R. Rice, Localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, vol.23, issue.6, pp.421-441, 1975.

S. Hecker, Environmental surveillance at Los Alamos during 1976, Los Alamos Scientic Lab, 1977.

M. J. Michno and W. N. Findley, An historical perspective of yield surface investigations for metals, International Journal of Non-Linear Mechanics, vol.11, issue.1, pp.59-82, 1976.

J. W. Hutchinson and V. Tvergaard, Shear band formation in plane strain, International Journal of Solids and Structures, vol.17, issue.5, pp.451-470, 1981.

B. Budiansky, J. W. Hutchinson, and S. Slutsky, Void Growth and Collapse in Viscous Solids, Mechanics of Solids, pp.13-45, 1982.

T. Lehmann, On a generalized constitutive law in thermo-plasticity taking into account different yield mechanisms, Acta Mechanica, vol.57, issue.1-2, pp.1-23, 1985.

M. Kuroda and V. Tvergaard, Use of abrupt strain path change for determining subsequent yield surface: illustrations of basic idea, Acta Materialia, vol.47, issue.14, pp.3879-3890, 1999.

M. Kuroda and V. Tvergaard, A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity, Journal of the Mechanics and Physics of Solids, vol.49, issue.6, pp.1239-1263, 2001.

M. Kuroda and V. Tvergaard, Plastic spin associated with a non-normality theory of plasticity, European Journal of Mechanics - A/Solids, vol.20, issue.6, pp.893-905, 2001.

R. Hill, The essential structure of constitutive laws for metal composites and polycrystals, Journal of the Mechanics and Physics of Solids, vol.15, issue.2, pp.79-95, 1967.

E. Shiratori and K. Ikegami, Experimental study of the subsequent yield surface by using cross-shaped specimens, Journal of the Mechanics and Physics of Solids, vol.16, issue.6, pp.373-394, 1968.

J. W. Rudnicki and J. R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, Journal of the Mechanics and Physics of Solids, vol.23, issue.6, pp.371-394, 1975.

J. Christoffersen and J. W. Hutchinson, A class of phenomenological corner theories of plasticity, Journal of the Mechanics and Physics of Solids, vol.27, issue.5-6, pp.465-487, 1979.

M. Gotoh, A class of plastic constitutive equations with vertex effect?I. General theory, International Journal of Solids and Structures, vol.21, issue.11, pp.1101-1116, 1985.

M. Gotoh, A class of plastic constitutive equations with vertex effect?II. Discussions on the simplest form, International Journal of Solids and Structures, vol.21, issue.11, pp.1117-1129, 1985.

T. J. Hughes and F. Shakib, Pseudo?corner theory: a simple enhancement of J2?flow theory for applications involving non?proportional loading, Engineering Computations, vol.3, issue.2, pp.116-120, 1986.

J. Simo, A J2-flow theory exhibiting a corner-like effect and suitable for large-scale computation, Computer Methods in Applied Mechanics and Engineering, vol.62, issue.2, pp.169-194, 1987.

J. H. Lee, Research note on a simple model for pressure-sensitive strain-hardening materials, International Journal of Plasticity, vol.4, issue.3, pp.265-278, 1988.

W. A. Spitzig and O. Richmond, The effect of pressure on the flow stress of metals, Acta Metallurgica, vol.32, issue.3, pp.457-463, 1984.

T. B. Stoughton, A non-associated flow rule for sheet metal forming, International Journal of Plasticity, vol.18, issue.5-6, pp.687-714, 2002.

T. B. Stoughton and J. Yoon, A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming, International Journal of Plasticity, vol.20, issue.4-5, pp.705-731, 2004.

V. Cvitani?, F. Vlak, and ?. Lozina, A finite element formulation based on non-associated plasticity for sheet metal forming, International Journal of Plasticity, vol.24, issue.4, pp.646-687, 2008.

T. B. Stoughton and J. W. Yoon, Anisotropic hardening and non-associated flow in proportional loading of sheet metals, International Journal of Plasticity, vol.25, issue.9, pp.1777-1817, 2009.

A. Taherizadeh, D. E. Green, A. Ghaei, and J. Yoon, A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming, International Journal of Plasticity, vol.26, issue.2, pp.288-309, 2010.

M. Safaei, S. Zang, M. Lee, and W. De-waele, Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and non-associated flow rule approach, International Journal of Mechanical Sciences, vol.73, pp.53-68, 2013.

M. Safaei, J. W. Yoon, and W. De-waele, Study on the definition of equivalent plastic strain under non-associated flow rule for finite element formulation, International Journal of Plasticity, vol.58, pp.219-238, 2014.

E. Lee, T. B. Stoughton, and J. W. Yoon, A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule, International Journal of Plasticity, vol.99, pp.120-143, 2017.

M. Schurig, A. Bertram, and H. Petryk, Micromechanical analysis of the development of a yield vertex in polycrystal plasticity, Acta Mechanica, vol.194, issue.1-4, pp.141-158, 2007.

M. Kuroda, A higher-order strain gradient plasticity theory with a corner-like effect, International Journal of Solids and Structures, vol.58, pp.62-72, 2015.

K. Yoshida, A plastic flow rule representing corner effects predicted by rate-independent crystal plasticity, International Journal of Solids and Structures, vol.120, pp.213-225, 2017.

K. Yoshida and T. Tsuchimoto, Plastic flow of thin-walled tubes under nonlinear tension-torsion loading paths and an improved pseudo-corner model, International Journal of Plasticity, vol.104, pp.214-229, 2018.

M. Zhang, J. M. Benítez, and F. J. Montáns, Capturing yield surface evolution with a multilinear anisotropic kinematic hardening model, International Journal of Solids and Structures, vol.81, pp.329-336, 2016.

M. V. Upadhyay, A. Patra, W. Wen, T. Panzner, S. Van-petegem et al., Mechanical response of stainless steel subjected to biaxial load path changes: Cruciform experiments and multi-scale modeling, International Journal of Plasticity, vol.108, pp.144-168, 2018.

N. Souto, A. Andrade-campos, and S. Thuillier, Material parameter identification within an integrated methodology considering anisotropy, hardening and rupture, Journal of Materials Processing Technology, vol.220, pp.157-172, 2015.

S. Bouvier, J. L. Alves, M. C. Oliveira, and L. F. Menezes, Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain-path changes, Computational Materials Science, vol.32, issue.3-4, pp.301-315, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02908868

J. Wang, V. Levkovitch, and B. Svendsen, Modeling and simulation of directional hardening in metals during non-proportional loading, Journal of Materials Processing Technology, vol.177, issue.1-3, pp.430-432, 2006.

S. Bouvier, B. Gardey, H. Haddadi, and C. Teodosiu, Characterization of the strain-induced plastic anisotropy of rolled sheets by using sequences of simple shear and uniaxial tensile tests, Journal of Materials Processing Technology, vol.174, issue.1-3, pp.115-126, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02908807

P. Flores, L. Duchene, C. Bouffioux, T. Lelotte, C. Henrard et al., Model identification and FE simulations: Effect of different yield loci and hardening laws in sheet forming, International Journal of Plasticity, vol.23, issue.3, pp.420-449, 2007.

S. Bouvier, H. Haddadi, P. Levée, and C. Teodosiu, Simple shear tests: Experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains, Journal of Materials Processing Technology, vol.172, issue.1, pp.96-103, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02920425

T. Clausmeyer, A. Güner, A. E. Tekkaya, V. Levkovitch, and B. Svendsen, Modeling and finite element simulation of loading-path-dependent hardening in sheet metals during forming, International Journal of Plasticity, vol.63, pp.64-93, 2014.

W. D. Carden, L. M. Geng, D. K. Matlock, and R. H. Wagoner, Measurement of springback, International Journal of Mechanical Sciences, vol.44, issue.1, pp.79-101, 2002.

D. Zhang, Z. Cui, X. Ruan, and Y. Li, An analytical model for predicting springback and side wall curl of sheet after U-bending, Computational Materials Science, vol.38, issue.4, pp.707-715, 2007.

H. S. Kim and M. Koç, Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions, Journal of Materials Processing Technology, vol.204, issue.1-3, pp.370-383, 2008.

H. Laurent, R. Grèze, P. Y. Manach, and S. Thuillier, Influence of constitutive model in springback prediction using the split-ring test, International Journal of Mechanical Sciences, vol.51, issue.3, pp.233-245, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400919

L. Sanchez, Modeling of springback, strain rate and Bauschinger effects for two-dimensional steady state cyclic flow of sheet metal subjected to bending under tension, International Journal of Mechanical Sciences, vol.52, issue.3, pp.429-439, 2010.

S. Zang, M. Lee, L. Sun, and J. H. Kim, Measurement of the Bauschinger behavior of sheet metals by three-point bending springback test with pre-strained strips, International Journal of Plasticity, vol.59, pp.84-107, 2014.

H. Ren, J. Xie, S. Liao, D. Leem, K. Ehmann et al., In-situ springback compensation in incremental sheet forming, CIRP Annals, vol.68, issue.1, pp.317-320, 2019.

S. Chen, J. Liao, H. Xiang, X. Xue, and A. B. Pereira, Pre-strain effect on twist springback of a 3D P-channel in deep drawing, Journal of Materials Processing Technology, vol.287, p.116224, 2021.

J. P. Haruff, C. J. Van-tyne, and D. K. Matlock, The sensitivity of lab-measured friction coefficients, JOM, vol.47, issue.7, pp.50-52, 1995.

G. J. Wenzloff, T. A. Hylton, and D. K. Mattock, Technical note: A new test procedure for the bending under tension friction test, Journal of Materials Engineering and Performance, vol.1, issue.5, pp.609-613, 1992.

T. Kuwabara, S. Takahashi, K. Akiyama, and Y. Miyashita, 2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory, SAE Technical Paper Series, p.504513, 1995.

T. Kuwabara, S. Takahashi, and N. Sekp, SPRINGBACK ANALYSIS OF SHEET METAL FORMED INTO A CYLINDRICAL SURFACE UNDER BI-AXIAL STRETCHING FORCES, Advances in Engineering Plasticity and its Applications (aepa 1996), vol.2, pp.759-764, 1996.

J. F. Wang, R. H. Wagoner, D. K. Matlock, and F. Barlat, Anticlastic curvature in draw-bend springback, International Journal of Solids and Structures, vol.42, issue.5-6, pp.1287-1307, 2005.

C. Barthel, V. Levkovitch, and B. Svendsen, Modeling of sheet metal forming processes taking into account distortional hardening, International Journal of Material Forming, vol.1, issue.S1, pp.105-108, 2008.

N. Noma, T. Kuwabara, F. Chinesta, Y. Chastel, and M. El-mansori, Springback Analysis of Draw-Bending of 980 MPa Cold Rolled Steel Sheet and Its Experimental Validation, AIP Conference Proceedings, vol.1315, p.14851490, 2011.

R. K. Verma, N. Noma, K. Chung, and T. Kuwabara, Draw-Bending Analysis of a Cold Rolled DP980 Steel Sheet, AIP Conference Proceedings, vol.1353, p.14051410, 2011.

S. Racz, S. Khan, H. Chalal, F. Abed-meraim, T. Balan et al., Prediction of Springback After Draw-Bending Test Using Different Material Models, AIP Conference Proceedings, vol.1315, p.419424, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656289

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.

I. Burchitz and T. Meinders, Adaptive through-thickness integration for accurate springback prediction, International Journal for Numerical Methods in Engineering, vol.75, issue.5, p.533554, 2008.

Y. Yang, C. Baudouin, and T. Balan, Effect of the plasticity model on the yield surface evolution after abrupt strain-path changes, Journal of Physics: Conference Series, vol.1063, p.012091, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02296328

Y. Yang and T. Balan, Prediction of the yield surface evolution and some apparent non-normality effects after abrupt strain-path change using classical plasticity, International Journal of Plasticity, vol.119, pp.331-343, 2019.

Y. Yang, C. Baudouin, and T. Balan, Effect of kinematic hardening on the yield surface evolution after strain-path change, IOP Conference Series: Materials Science and Engineering, vol.651, p.012033, 2019.

Y. Yang, G. Vincze, C. Baudouin, H. Chalal, and T. Balan, Strain-path dependent hardening models with rigorously identical predictions under monotonic loading, Mechanics Research Communications, p.103615, 2020.