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DUCTILITY PREDICTION OF METAL SHEETS USING CPFEM (C RYSTAL
PLASTICITY FINITE ELEMENT METHOD)

RESUME : Cette thése a pour objectif de développer un outihérique multi-échelles capable de
prédire la ductilité des matériaux hétérogénesgmtésit une microstructure périodique. Tenant compte
de la périodicité spatiale des milieux étudiéesdetdnique d’homogénéisation périodique est retenue
pour assurer la transition entre les échelles reémpique et macroscopique. Cette technique, foemulé
sous I'hypothese des grandes déformations, estémap’approche de bifurcation de Rice pour pedir
les limites de ductilité des matériaux étudiés.rR@surer ce couplage, trois techniques numérigptes
été implantées et comparées pour calculer le madotgent macroscopique. Ce couplage a été utilisé,
entre autres, pour prédire la limite de ductiligs anilieux poreux et polycristallins. L'étude mersée

les matériaux poreux a permis de bien analyseotapétition entre la coalescence des cavités et
I'apparition du phénoméne de localisation de laod@éétion plastique. D’un autre c6té, I'étude partan
sur les matériaux polcrystallins a mis en éviddiettet de plusieurs parametres sur la perte déilitéc

de ce type de matériaux.

Mots clés :milieux hétérogenes, homogénéisation périodiquetjlidé, théorie de bifurcation, module

tangent macroscopique.

ABSTRACT: The main objective of this PhD thesis is to developulti-scale numerical tool capable
of predicting the ductility of heterogeneous matsridisplaying periodic microstructure. Considering
the spatial periodicity of the studied media, tkequic homogenization technique is selected taiens
the transition between the microscopic and macmscsrales. This technique, formulated under the
large deformation assumption, is coupled with theeRifurcation approach to predict the ductility
limits of the studied media. To ensure this couplihree numerical techniques have been implemented
and compared to compute the macroscopic tangentilodrhis coupling has been used, among other
applications, to predict the ductility limit of pmss and polycrystalline media. The study conduoted
porous media has allowed the careful analysis efcibmpetition between void coalescence and the
onset of plastic strain localization phenomenon. Ba other hand, the study carried out on
polycrystalline materials has highlighted the effefcseveral parameters on the loss of ductilityhig

type of materials.

Keywords: heterogeneous media, periodic homogenization, ldychifurcation theory, macroscopic

tangent modulus.
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General introduction

General introduction

Context of the thesis

This work has been carried out within the reseaedm ‘Méthodes Numériques, Instabilités et

Vibrations’ of the laboratory ‘Laboratoire d’Etudes Microstructures et de Mécanique des Matériaux’
(LEM3) at ENSAM, Metz Campus. The main objectivetlof thesis is to develop a numerical tool

based on the periodic homogenization approacheigirthe ductility limits of heterogeneous matksria

(composites, polycrystalline aggregates, porousianeyl
Motivation and general framework of the study

Sheet metals represent a significant part of themads used for the manufacture of various comptme
and finished products, particularly in industry dadhnology (automotive, rail, aeronautics, hous&ho
appliances, electronics, etc.). The current clinaatkenvironmental standards require the produacets
processors of metal sheets (steelmakers, automablilstry, etc.) to improve the production and the
industrialization methods in order to meet new cetitipeness challenges. Among these initiatives, on
of the important innovations is to considerabltiEn metal parts and products, while maintainirgyth
strength. It is reported that reducing the mass ofehicle by 25%, for example, reduces its fuel
consumption by 15%. However, this lightening of #treictures requires an advanced design of new
metallic materials with optimal physical and medbahproperties (low mass density, high mechanical
resistance, high ductility, high corrosion resisgnetc.). Nowadays, new generations of metallic
materials, such as stainless steels, titanium @lémd new aluminum alloys emerge in succession. At
the same time, the development of these new nwetaliterials often requires a deep understanding of
the physical mechanisms involved in plastic defdioma Indeed, the application of sheet forming
processes, such as stamping or deep drawing, adridethe appearance of defects (related to plastic
instabilities) on the formed parts. These instdbgdican be classified into two main families: stasal
instabilities (buckling, wrinkling, springback, etcand material instabilities (diffuse and locatize
necking, damage, etc.). In this thesis, attentidhbe paid to the second type of instabilitiesg anore
specifically to localized necking. This localizedrd of necking manifests itself as a very strong
concentration of plastic deformation in a very narzone of the sheet, and is often preceded bysff
necking, which flows and amplifies until precipiteg in the localization of the deformation. The
occurrence of localized necking represents theildudimit of a metal sheet, since this phenometi®n
often precursor to failure. The ductility (or formlity) of a material is measured by its capability
undergo irreversible deformation without the ocenoe of localized necking. To characterize the
ductility of a material, the concept of forming lindiagram (FLD) is commonly used. To determine a
FLD, the material is subjected to biaxial loadiagsording to different deformation paths, rangirogf
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uniaxial tension to equibiaxial stretching. For leapplied loading path, the maximum principal
deformations (in the plane of the sheet) measur#eeaccurrence of localized necking are deterthine
Thus, the obtained forming limit diagram separ#tesspace of the principal deformations of the shee
in two zones: safe zone — the zone below the FiD failure zone — the zone above the FLD. Namely,
the forming processes are therefore calibratethaiothe associated principal deformations are éutat
below the FLD, in order to obtain formed parts with defects. The first works devoted to the
determination of FLDs are essentially experimefitaieler and Backofen, 1964; Goodwin, 1068
However, the experimental formability tests are stimes limited by many practical difficulties, such
as the high cost of implementing the experimentathods, and the absence of strict standardized
measures which can thus lead to large variatiotiseimesults. To overcome these practical diffiealt
numerous works have been devoted for several detadee development of alternative methods based
on theoretical approaches (analytical and / or mig@. These theoretical approaches are essegntiall
based on the coupling of a localized necking dateand a behavior model describing the mechanical
response of the studied material. Among the stogialization criteria used in the literature, we cite

the bifurcation theoryRudnicki and Rice, 1975; Rice, 197@he initial imperfection approach of
Marciniak-Kuczy ski (Marciniak and Kuczyski, 1967; Hutchinson and Neale, 1y&hd linearized
perturbation stability analysi$(idzinski and Molinari, 1991; Toth et al., 199@he models used to
describe the mechanical behavior of materials ca&n dmssified into two main families:
phenomenological models and multiscale modelsarlier contributions, phenomenological models
have been widely adopted to predict the FLDs. is#gardHill has developethe Hill's zero-extension
instability criterion to predict the left-hand sidéthe FLD using a phenomenological isotropicdigi
plastic model i, 1952). More recently, Marciniak and Kuczski have developed the initial
imperfection approach and coupled it withisotropic rigid-plastic modeh order to predict the right-
hand side of the FLD then to complete the Hill'®#&f(Marciniak and Kuczyski, 1967. Despite their
reliability and their wide application in the FLDPgulictions, phenomenological constitutive framevgork
present some conceptual limitations such as thability to accurately account for some key phyisica
factors and phenomena, such as initial and indteoddres and other microstructure-related parammeter
(grain morphology, crystallographic structure These limitations have motivated the researcleers t
set up multiscale schemes for the predictions db$:IContrary to phenomenological modeling, the
multiscale approaches allow linking physical meésiais and microstructure-induced properties to the
macroscopic (or homogenized) mechanical behaviostivecently, these multiscale strategies, such as
the Taylor and the self-consistent schemes, hage beupled with several strain localization craeri
such as the bifurcation theory, the initial impetien approach, and the perturbation method inraale
predict necking limit strains. Our team has contiglol to this field, wheréorrain (2005)andFranz
(2008) have developed a strategy combining the self-stersi scheme with the bifurcation theory.
Subsequentlyhkpama(2016)extended the work ¢franz(2008)by coupling the self-consistent scheme

with the initial imperfection approach, and comphtiee predictions from this coupling to those from
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the coupling of self-consistent scheme and bifimoatheory. Despite the substantial advances alliowe
by multiscale modeling strategy, the applicatiorthed previous multiscale approaches presents some
limitations. These limitations are mainly due te thability of these approaches to accurately tate
consideration some important aspects in the coaisgtmodeling, such as a realistic descriptiothef
grains shapes, geometric and mechanical conditieasthe boundary of the polycrystalline aggregate,
grain boundaries, etc. Indeed, only the weighhefgingle crystals is considered in the Taylor rhode
without any additional information on grain morpbgy. By contrast, the single crystals are consitlere
in the self-consistent scheme as ellipsoidal inchs embedded within an infinite matrix. These
simplifications sometimes lead to significant ina@xies in the predictions. One of the goals o thi
thesis is to develop an alternative multiscale sahebased on the Crystal Plasticity Finite Element
Method (CPFEM), in order to predict the ductilitiyroetal sheets. The use of this latter method alow
overcoming the above-mentioned limitations in otdesbtain more accurate predictions. Certainlig, th

multiscale scheme is flexible enough to be apdied wide range of mechanical behavior modeling.
Objectives of the thesis

This thesis aims to develop a finite element baseliscale numerical strategy (a set of numerizals)

to predict the ductility limit of heterogeneous n@edsuch as composites, voided materials,
polycrystalline aggregates...) and then to investighe effect of some microstructural parameters on
ductility. This work is an extension of previous s carried out within our team. On the other hand,
this numerical strategy can account for not onlg tultiscale models obviously also the
phenomenological models. So that, in order to dgvelr numerical tools, the mechanical behavior is
firstly described at the microscopic scale by eithkenomenological modeling or crystal plasticity
modeling (CPFEM). Then, the periodic homogenizatiechnique will be adopted to determine the
macroscopic mechanical behavior of heterogeneousanfiem that of their microscopic constituents.
After that, the obtained macroscopic behavior madéll be coupled with the bifurcation theory to
predict localized necking in a number of heterogeisematerials, such as perforated sheets, voided

materials and polycrystalline aggregates, etc.
Organization of the thesis

In order to apply the bifurcation theory for preaiig the onset of localized necking, the macroscopi
tangent modulus needs to be determined accuratelyetficiently by the periodic homogenization
scheme (Chaptel). Then, the bifurcation theory will be coupled vtome phenomenological models
(in Chapter2 and3) followed by CPFEM models (in Chapté). So that, the manuscript is structured

into four main chapters which are described agvst
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Chapterl presents a comparative study of three numerichiniques for the computation of
the macroscopic tangent moduli by periodic homagggion scheme: the perturbation technique,
the condensation technique and the fluctuationnigcie. The practical implementations of
these technigues within ABAQUS/Standard finite edet(FE) code are specifically underlined.
These implementations are based on the developafeatset of Python scripts which are
connected to the finite element computations talleathe computation of the tangent moduli.
The extension of these technigques to mechanicdllgres exhibiting symmetry properties is
also detailed in this chapter. The reliability, @@y and ease of implementation of these
techniques are evaluated through some typical noadlexamples. Thus, this chapter provides
valuable reference guidelines for efficiently appty our numerical tools in the following
chapters.

Chapter2 employs the developed tools for the predictiom@tking in perforated sheets. The
results are thoroughly analyzed and compared Vhitise: predicted by two diffuse necking
criteria: the maximum force criterion and the gahdifurcation criterion. A sensitivity study
is also conducted to numerically investigate tHeu@amce on the prediction of necking of the
design parameters (dimension, aspect-ratio, otienta and shape of the holes), the
macroscopic boundary conditions and the metal mateterial parameters (plastic anisotropy,
hardening).

Chapter3 applies the developed tools for the predictionttd occurrence of two failure
mechanisms in ductile solid: void coalescence aadrascopic strain localization. In these
predictions, the mechanical behavior modeling ispted with several criteria (the Rice
bifurcation approach, and an energy-based coalesa@iterion among others). The occurrence
of failure mechanisms is examined under two loadoupfigurations: loadings under
proportional stressing (classically used in unit cemputations to study the effect of stress
state on void growth and coalescence), and loadinggr proportional in-plane strain paths
(traditionally used for predicting forming limitagrams). Meanwhile, the relations between the
two configurations of loading are carefully explkdhwithin these two failure mechanisms. The
effect of secondary voids on the occurrence of psmpic strain localization is also
investigated.

Chapter4 is dedicated to the application of our numeritedtegy to FCC polycrystals, where
the CPFEM is used to characterize the mechanid¢e\ier. The mechanical response at both
single crystal and polycrystalline scales is highted through several simulations. Moreover,
the crystal texture and hardening evolutions antieoscale as well as the formability of sheet
metals at the macroscale are investigated. Thetedfehe number of grains on formability is

also investigated.
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Conventions, notations and abbreviations

The following conventions, notations and abbrewiadiare used throughout:
Microscale (resp. macroscale) variables are dermtddwercase (resp. capital) letters.

Vectors and tensors are indicated by bold lettersymbols. However, scalar parameters and
variables are designated by thin atadic letters or symbols.

Einstein’s convention of implied summation overgeged indices is adopted. The range of free
(resp. dummy) index is given before (resp. aftee)corresponding equation.

time derivative of- .

transpose of .

! inverse of- .
det(-) determinant of .
sgn(-) sign of - .
tr(-) trace of - .
e exponential of- .
In(-) natural logarithm of .
SX simple contraction or contraction on one indexér product).

double contraction or contraction on two indi@ser product).

tensor product (external product).

A
d- the virtual counterpart of field.
a Kronecker delta.

second-order identity tensor.

N

iteration of field- (within an incremental finite element computation)

D- small perturbation used for the differentiatidrfield - .
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PT
CT

FT

FUC

RUC

UEL

UMAT
DOF

MPC

PBC (PBCs)
KBC (KBCs)
MFC

GBC

RBC

perturbation technique.

condensation technique.

fluctuation technique.

full unit cell (without or before applicatiaf symmetry restrictions).
reduced unit cell (after application of symmeestrictions).

user element subroutine.

user material subroutine.

degree of freedom.

multi-point constraints option (ABAQUS termingy).
periodic boundary conditions.

kinematic boundary conditions.

maximum force criterion.

general bifurcation criterion.

Rice bifurcation criterion.

' if .- isavectorand * * if -
"2 21 22

in-plane part of tensor equal to

is a second-order tensor, etc.
the transport of in the intermediate configuration defined by thgstal
is a second-

lattice frame (equal to" x- if - is a vector and™" x-¥ if -

order tensor).
the transport of in the co-rotational frame (equal to x - if - is a vector and

r’ x.x if - is a second-order tensor).
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Chapter 1

Comparative study of three techniques for the
computation of the macroscopic tangent moduli

by periodic homogenization scheme

1.1. Introduction

The main objective of micromechanical multiscalprapches is to determine the effective (also called
homogenized, overall or macroscopic) mechanicapgnies of heterogeneous media under some
specific boundary conditions. In this contektashin and Shtrikman (196@nd Hill (1963) have
analytically estimated the overall properties dfiferced composites made of linear elastic pha&ss.
various nonlinear composites (composites contaiatrigast one nonlinear phase) have attractedapeci
interest for both academic and industrial commansijtthe earlier pioneering works have subsequently
been extended to determine their effective properfror instanceé;onte Castaneda and Willis (1988)
have studied the mechanical behavior of nonlinésgous composites. Suquet has derive&nuet
(1993) several analytical averaging relations for petfeptastic composites. Teply and Dvorak have
investigated inTeply and Dvorak (1988the overall behavior of elastoplastic composites. A
comprehensive review of analytical approaches, ldpee to estimate homogenized properties of
heterogeneous composite materials, has been ptbirideeveral contributions (see, e\yillis, 1981;
Mura et al., 1988; Nemat-Nasser et al., 1996; Meret al., 2012; Ghossein and Lévesque, 2014
Despite their wide use, analytical approaches mable to give accurate effective properties for plem
microstructures (random morphology and spatiatitiistion of constitutive phases...) exhibiting strong

geometric and material nonlinearities. To overcehase limitations, some numerical approaches have
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recently been developed, as alternative to analytines. In this regard, one may quote at least two
types of commonly used approaches: those basedsirFBurier Transforms (FFT), and those based on
the Finite Element Method (FEM). As to the FFT noelh, Moulinec and his coauthoigdulinec and
Suquet, 1994, 1995, 2003; Moulinec and Silva, J(iavve proposed a variety of multiscale schemes
and compared their convergence rates for compuiggall properties of both linear and nonlinear
composites. From these investigations, it has tsewn that the contrast between the mechanical
properties in the phases significantly affects tbavergence rate of the FFT-based computations.
Michel et al (1999)have demonstrated that FEM-based approaches cenweng easily for composites
with periodic microstructure and made of phaseh wifinite stiffness contrast (such as rigid inotuns

or voids). Consequently, FEM-based approaches wedenore attention when dealing with more
general heterogeneous materials, such as compgsitgsrystalline aggregates and porous media. In
this perspectiveMiehe (2002) has developed a strain-driven homogenization ambrdor inelastic
microstructures and composites based on an inctainanriational formulation. This formulation can
be used to compute the macroscopic response db@kEplastic media under the three well-known
boundary conditions: (i) linear deformation (LD)) (niform traction (UT), and (iii) periodic bouiady
conditions (PBCs). A small strain formulation haeeb employed irMiehe (2002)to establish the
multiscale relations as well as the constitutiveatipns of the different phases. The multiscalesws
presented irviiehe (2002)have been extended iviehe (2003)to finite strain problems, where the
Lagrange multiplier method has been employed tmreefthe above boundary conditions on the
microstructure. This extension has been achievedidnerating a family of algorithms that allow
deriving homogenized stress and tangent modukkdonposites and polycrystalline aggregates. In this
thesis, our attention is focused on the modelinghef mechanical behavior of heterogeneous media
exhibiting a periodic or quasi-periodic distributi@f heterogeneities (such as composite materials,
voided media, or polycrystalline aggregates). Cibersing this spatial periodicity, the periodic
homogenization approach turns out to be the moitatde scheme to ensure the transition between
microscopic and macroscopic levels. The studiedianatk assumed to undergo large deformation.
Consequently, a total Lagrangian formulation isged to formulate the governing equations of the
periodic homogenization approach, where the defoomaradient and the first Piola—Kirchhoff stress
tensor are selected as appropriate strain and stregsures, respectively. As first step for thdicgmon

of the periodic homogenization approach, a unitagdumed to be representative of the heterogeneous
medium should be selected. Several studies, maabed on some statistical techniques, have been
carried out in the literature to evaluate the mimmsize of the unit cell to ensure its represeveatss

of the heterogeneous medium. This step is nothiexbof the current chapter and the interestedarsa
may refer to reference<@nit et al., 2008 Once the unit cell is defined, the equationsegning the
periodic homogenization problem (namely, locali@atiand homogenization relations, microscopic
equilibrium equations, periodic boundary conditipase solved by the finite element method. To this

end, several academic finite element codes, sutfagamine Ben Bettaieb et al., 20).or Zébulon
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(Feyel, 199Y have been extended by implementing some builbats and routines to automatically
achieve the application of the macroscopic loadindg PBCs and the computation of the macroscopic
response. Analogous to most popular commercialefialement codes, such as ABAQUS/Standard,
several plugin tools have been developed to easiyy the PBCs as well as the macroscopic loading
(which can be strain-driven or stress-driven) amddmpute the macroscopic response. Among these
tools, one may quote the toolbblomtoolsdeveloped by ejeunes and Bourgeois (201 theEasyPBC
tool proposed inOmairey et al. (2019pr the Python codes developed ichalla et al. (2013)
Unfortunately, the above-mentioned tools are unablechieve the automatic computation of the
macroscopic tangent moduli. On the other handiquéar attention has been paid, in some contrilmstio

to the efficient and accurate computation of theseluli for some engineering numerical applications
using multiscale schemes. Indeed, the macroscapigent modulus is required for the prediction ef th
mechanical behavior of polycrystalline structurgshe FE method (adeveze et al., 2001; Terada and
Kikuchi, 2001; Matsui et al., 2004; Asada and OH@0)7; Miehe and Bayreuther, 2007; Ozdemir et al.,
2008. It is also needed for the prediction of the amsacroscopic material and structural instabilities
by loss of ellipticity approache®i(ehe et al., 2002¢; Michel et al., 2007; Brunakf 2010; Tadano et
al., 2013. In the literature, at least three FEM-basednaples have been developed to determine the

macroscopic tangent modulus from the periodic hengtion computations:

The perturbation technique (PT): this technique allows reducing the computationtha#
macroscopic tangent modulus to multiple macroscagifess computationsT¢mizer and
Wriggers, 2008; Tchalla et al., 201By perturbing the macroscopic deformation grati¢he
macroscopic tangent modulus is efficiently condedcby a forward difference of the
macroscopic first Piola—Kirchhoff stress. To obttie approximation of thieth column of the
macroscopic tangent modulus, a small perturbatfoth@i-th component of the macroscopic
deformation gradient is needed (for 3D finite stravherei ranges between 1 and 9). Tk
column of the macroscopic tangent modulus is etmahe forward difference between the
perturbed and unperturbed macroscopic stress divigiethe corresponding perturbation of the
macroscopic deformation gradient. This method, Widelopted to numerically evaluate the
tangent modulus for several phenomenological moeisn and Khandelwal, 20)4has been
recently coupled with the periodic homogenizatiohesne in some investigationsg(mizer and
Wriggers, 2008; Tchalla et al., 201 his technique has the merit of being conceptiessy to
understand, but generally requires a great de@lIRif time, as the finite element computation
should be performed ten times for each incremene (bme to compute the macroscopic

unperturbed stress and nine times to construanémroscopic tangent modulus).

The condensation technique (CT)within this technique, the macroscopic tangent uhasl is
obtained by a condensation procedure of the glstifihess matrix. This method has initially

been introduced for a small strain formulatiovii€he and Koch, 2002 and subsequently
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extended to finite strain frameworkl{ehe, 2003. The practical application of this technique is
based on the construction of a family of link-tamg matrices to automatically represent the
overall properties of discretized microstructurése updated global stiffness matrix as well as
the initial coordinates of the nodes on the boupdéithe unit cell are required to compute the

macroscopic tangent modulus by the condensatiohadet

The fluctuation technique (FT): in this technique, the deformation gradient ofreacde of the
FE discretization is additively decomposed into fpests: a homogeneous part associated with
the macroscopic loading, and a nonhomogeneousrgsuitting from the periodic fluctuation
contribution. As a result of this decompositiorg thacroscopic tangent modulus can be written
as the sum of the volume average of tangent madhli the unit cell, and a fluctuation part,
which depends on the global stiffness matrix and dlactuation matrix. The volume average of
microscopic tangent moduli yields the well-knownylba-type upper bound. The numerical
procedures of this method at small strain anddisitain have been presentedviiehe et al.

(2002b)and inMiehe et al. (2002ayespectively.

In this chapter, the above-discussed three techaifave been implemented in a set of Python scripts
In the developments of these scripts, some popularerical packages, such as the NumPy and SciPy
library, are used for scientific computing with Rgh. This choice is motivated by the fact that ¢hes
libraries contain a powerful N-dimensional arrayesband useful linear algebra methods, thus engbli
efficient matrix computations (reduced computatiome and memory space). These python scripts are
interpreted as post-processing of the finite eldmanalysis, which is carried out within
ABAQUS/Standard FE code. The toolbdiomtools (Lejeunes and Bourgeois, 20Q1is used to
automatically determine and generate the requicethtbary node sets, constraint equations, periodic
boundary conditions, and post-processing calculatio order to compute the macroscopic response.
Technical details, related to the connection betwtbe ABAQUS/Standard FE code environment and
the developed Python codes, will be provided ig thvestigation. A comparative study between the
above-discussed three techniques will be giveménsiection corresponding to the numerical results.
Thus, this chapter gives valuable reference guidslio ABAQUS/Standard users for the determination
of the homogenized tangent moduli. On the basthisfstudy, it is demonstrated that the condensatio
technique reveals to be the most efficient metlasy to implement, requires less CPU time and disk
space). The computation of the tangent moduli spwading to microstructures exhibiting symmetry
properties is also detailed in this chapter. Ndit&t tsuch extension to symmetric problems allows

considerably improving the computational perforne@anc

The remainder of the chapter is organized as falow

Sectionl.2 provides some technical details about the stieges rand associated tangent moduli

adopted in ABAQUS/Standard FE code (built-in maateliser-defined model) to formulate and
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solve the weak form of the virtual work principlhese details are essential for the understanding

of the subsequent sections.

The formulation of the periodic homogenization peob at finite strain, and the practical aspects

related to the solution of this problem are disedss Sectiori..3.

The numerical aspects and the operational deteliiged to the implementation of the three
techniques for the computation of the tangent masighamely, the perturbation technique, the

condensation technique, the fluctuation technigue)detailed in Sectioh4.

Sectionl.5is dedicated to the adaptation of the perturbadioeh condensation techniques to the

case of microstructures displaying symmetry progert

In Sectionl.6, the implementation of the three techniques iglagéd by comparing their results
with those published iliehe et al. (2002b)The performances of these techniques are reported

discussed and compared through some numerical égamp

1.2. Details on the finite element formulation in BMAQUS/Standard

The majority of commercial finite element codescfsias ABAQUS, ANSYS, NASTRAN, LS-
DYNA...) allow the accurate computation of the medbalresponse of solids and structures exhibiting
strong material and geometric nonlinearities (elalsistic behavior, finite strain, finite rotation,
contact...). Within the finite strain framework, tkeesire several work-conjugate strain/stress measures
classically used to formulate the virtual work pipie, which is the basis of the finite element inoet

For instance, the ABAQUS/Standard built-in formidat is based on the Jaumann rate of the Kirchhoff
stress tensor, while NASTRAN is based on the Treksdte of the Cauchy stress tensor. The finite
element simulation results must be independenh@fchoice of these strain/stress measures and the
associated virtual work form. Hence, to ensureatteiracy and correctness of the finite elementtesu
the specific stress rate and associated tangentalomorelating the stress rate to the associatadhst
rate) should be properly chosen. The current segtiovides a brief overview of the relations betwee
the different stress rates as well as the assddiatgent moduli commonly used in ABAQUS/Standard

code.

Starting with the formulation of the virtual workipciple, the equilibrium equation is expressediin

rate form as follows:

div,_(p)+b, =0, (1.1)

where:

Lt is referred to ABAQUS/Standard formulation withauser subroutines for nonlinear incremental asialin
this chapter. ABAQUS/Explicit adopts different fuardental solving technique, as well as the theaktic
formulation.
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p is the rate of the first Piola—Kirchhoff stressiaiv, (p) its divergence with respect to the
reference coordinate systexy.
b, is the body force rate per unit volume in the refiee configuration.

Multiplying Eqg. (1.1) by a virtual velocity fielddv and integrating over the volume of the reference

configuration , yields:

avxdiv, (p) #, d , =0. (1.2)

Employing the chain rule and Gauss theorem (E@) can be reformulated as follows:

flav
0 ﬂXO.

pd,= dvit,d,+ v, d,, (1.3)

where , andt, denote the boundary surface of the reference garaiion and the nominal traction
rate prescribed on,, respectively. Vectot, is equal top>n,, wheren, is the outer normal to the

boundary .

The virtual work principle defined by E@L.3) can be equivalently expressed in terms of thetiocf

stress (=p>*", wheref denotes the deformation gradient) and its objectierivatives ™ as

follows (Ji et al., 201
ad: ™- (2 m) :(akd)+ (a’xg) d,= avx,d, + dvbgd,, (1.4)
where:
g is the velocity gradient, defined §s/ §x, and ag its virtual counterpatrt.

d is the strain rate, defined as the symmetric @lagt and ad its virtual counterpart.

mis a parameter that defines the different objectates of the Kirchhoff stress. It is equal to O,

1, and 2 for the Jaumann, Biot and Truesdell rag=pectively.

In ABAQUS/Standard built-in modeling, the Jaumaateris employed. Hence, EG.4) is used with

m=0:
ad: @-2 :(dxad)+ :(ngg)dO = aviggd, + avbxd, (1.5)
On the other hand, the Jaumann rate of the Kirdistiafss © is related to the strain rate as follows:
© =g (1.6)

where the tangent moduls” is expressed in terms of the jacobian maBRSDDE (using the

terminology of ABAQUS/Standard FE code) ap¢= detf )) as follows:

¢® =  DDSDDE (1.7)
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Utilizing finite element discretization, the velocifield v and the strain ratd can be obtained from

the nodal displacement rate vectpiby the interpolation rule:

v= x ; d %(B B') o, (1.8)

with N being the shape function vector, d@ds derivative with respect t®.

The substitution of Eq$1.6) and(1.8) into the different components of Ed.5) leads to:

o ad: ©@d,= ad:c?:dd, = x 0BT 82 Bd, gxof Kxq;

0

-2 (dxad) + :(g" >0g) d , = Kgy 0% (1.9)
t,xvd , + b, wvd, = rx

where:
K, is the part of the global stiffness matrix ass@aavith the mechanical behavior.

K on IS the part of the global stiffness matrix reswtirom the geometric nonlinearities.

r is the residual vector.

Then, Eq(1.5) can be written in the following discretized matiaxm:
[Ky +Kow]8 K ox 1= (1.10)
Equation(1.10)is strongly nonlinear, as stiffness math(z[K u TK GNL]) and vector depend on

the nodal displacement rate vectpr Consequently, this equation is classically solvgdan iterative
scheme, such as the Newton—Raphson method.
For ABAQUS/Standard FE code, when the mechanicdhatier is inelastic (elastoplastic,

elastoviscoplastic...) and built-in material subroat are used to model this behavior (i.e., withiget
material subroutine UMAT), Eq1.9), is rearranged as follows:

ad: @ d, = ad:cc:d®*d,

= ad:c®:(d-d”) d ,
(1.11)
=dq' x B" s Bd, gx -c%:d”d,

0

=aq’ >(KE & r-p),

whered® andd® are the elastic and plastic parts of the straie, randc® is the elasticity modulus,
which contributes to the elastic stiffnelss. . With this rearrangement, the global nonlinearatigm

system(1.10)is reformulated as follows:

[Ke+Kou]® 4, (1.12)
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Hence, when the ABAQUS/Standard built-in mechanicatleling is used, the global stiffness matrix
is only constructed on the basis of the elastidrdmution. However, when user material subroutines
UMAT are used, the stiffness matrix is construobedthe basis of th® DSDDE tangent modulus,

which obviously considers the effect of both efaatid inelastic behavior.

On the other hand, the rate of the first Piola—Htiraff stresgp is related to the rate of the deformation
gradientf by the tangent modulus™:

p=cPP:f, (1.13)
The substitution of Eq(1.13) into Eq.(1.3) leads to the following expression of the virtuabriv
principle:

of cPVf d = dvt,d , + odr bod (1.14)

Equation(1.14) can be considered as the total Lagrangian formoualaif the virtual work principle.
Forms (1.5) and(1.14) are strictly equivalent as long as the relationdhetweenc® and ¢ is
properly defined. To define this relationship,ustintroduce tangent modui” andc™? relating the
Truesdell derivative of the Kirchhoff stres§’ (m=2) to the strain rate, on the one hand, and the
second Piola—Kirchhoff stress raeto the Green strain ra& on the other hand:

@=c®:d ; s=d™?:e (1.15)

As demonstrated ifi et al. (2013)c is linked toc® through the following indicial form:
"hjki=1,2,3: Ci}l?l): Clj(k2I)+ %(fikdjl + 10y 1,0+ d, )v (1.16)
where g is the Kronecker delta.

Meanwhile,c® and c™® are related ta™? by the following indicial formsJ et al., 201}

"ijkl= 1,23 cld= fof o feted o clil= cUPf fe s, (117)

im " jn Ig~mnpq inkg — mnpgq © im kp

Equation(1.16) together with Eq(1.17) define the relations between the different tangeatiulus
forms (namelyc®, c¢®, ¢™® andc“?). If these relations are not strictly respectée, tivo forms
of the virtual work principle (i.e., Eqél.5) and(1.14) become different, and this difference may lead
to some work-conjugacy issues (convergence problean®rs associated with lack of energy

conservation...).
1.3. Periodic homogenization problem

The periodic homogenization technique is used tsuenthe transition between microscopic and

macroscopic scales. Without loss of generality assume that the initial configuration of the umli
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, occupies the domain-/,/2{ /2" -/ IR, ;12 4 {12, , /2. The studied unit cell is

assumed to undergo finite strain and total Lagragaamulation is used to formulate the periodic
homogenization relations. Consequently, the defaonaradient and the first Piola—Kirchhoff stress
tensor are used as appropriate work-conjugatenstmad stress measures. For the sake of clarity,
microscopic (resp. macroscopic) quantities will denoted by small (resp. capital) characters and

symbols.

The main equations governing the periodic homoggitiz scheme are outlined hereafter:

The microscopic deformation gradiefit is additively decomposed into its macroscopic

counterpart~ and a periodic fluctuation gradiefy, :
f=F+f . (1.18)

The current positiorx of a material point can be determined by spatiggration of Eq(1.18)

x=Fx, (1.19)

per?
wherex, is the initial position of the material point, ang,, is a periodic displacement over the
initial configuration of the unit cell. The expréss of the nodal velocity can be easily derived

from Eq.(1.19}

V=FX, W, F X ¥ (1.20)

per-

The averaging relations linking the microscopicodefation gradient and the microscopic first

Piola—Kirchhoff stress tensqr to their macroscopic counterpafsand P :

[P

fd, : P=—= pd,, (1.21)

0 | of ©

F=

o

with | 4| being the initial volume of the unit cell, whichequal here toé/o)a.

Equation(1.21)can be equivalently expressed in the following fatm:

[P

F= fd, ; P=— pd,, (1.22)

|

The microscopic static equilibrium equation in #iesence of body forces:

1
o

o|°

div, (p)=0. (1.23)
The constitutive relation describing the microscops well as the macroscopic mechanical
behavior can be summarized by the following gerferia:
p=c™:f . p=cl™.E (1.24)
Compared to classic finite element problems, théoge homogenization problem defined by Egs.
(1.1841.24) presents two particular specificities: the natuirehe loading to which the unit cell is
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subjected, and the boundary conditions appliedhenouter surfaces of the unit cell. These practical
aspects will be clarified in the following developnis. As a starting point for these developmehts, t

virtual work principle given in Eq.1.3)is reduced to the following form in the absencéady forces:

flav .
0 ﬂXOI

pd,= dvit,d,. (1.25)

Considering the decomposition in Ed.20) and Eq.(1.22), the left-hand side of Eq1.25) can be

written as follows:

fav fav
pd,= dF = pd
B T I * x, = o (1.26)
= D(dF:p)d ot O((O\IperAl’lo)Zp)d 0

Considering the anti-periodicity of tensdr/perA n, and the periodicity op’, one can easily show

that:
0((deerA”o)3p)d 0=0. (1.27)

Together with Eq(1.27), Eq.(1.26)is reduced to the Hill-Mandel conditioi€n Bettaieb et al., 201pa

fav . _ .
T p d o= |aF:P. (1.28)

As shown in some literature®¢bordes, 1986; Miehe and Bayreuther, 2006; Tenandr\Wriggers,
2009 for the classical periodic homogenization techmigvithin a total Lagrangian formulation, Eq.
(1.26)enables to treat the macroscopic deformation gnadite F as macroscopic degrees of freedom
associated with the nodal forc¢%|P. In practice, the application of macroscopic loadiin
combination with PBCs within ABAQUS is ensured thetuse of the reference point technique
(Lejeunes and Bourgeois, 201 We detail in the following developments how ttederence point
technique manages the macroscopic loading andB@s i only one space direction (direction 1). The
extension to the other directions can be donesimdar way.
If we consider two nodeM - and M * belonging to faces ;; and ; and having identical coordinates
in 2 and 3 directions<g. 1.7), the position of these two nodes can be detewifirmen Eq.(1.19)

X, =FX,,. WX 5 X

L Fox, w (1.29)

The PBCs require that’” =u%". Consequently, Eq1.29) and Eq(1.29) can be combined to obtain:
X ,=-X = FX(X0M+ = Xou- ) (1.30)

On the other hand, the diﬁerenxﬁ+ - X, is defined as follows:

-28-



Chapter 1 Computation of the macroscopic tangeoduli

Xpye = Xy = (uw- u, )f— (XOM; Xow ) (1.31)
whereu . andu,, are the displacements of nodés and M, respectively. Considering the initial

coordinates of nodesl * and M ", the substitution of Eq1.31)into Eq.(1.30)leads to the following

relation between displacements. andu,, :

/0
Uy - Uy = (F 1K (Xge = X J7 (F- 1% O (1.32)
0

Practically, the PBCs on the opposite facgsand ; and the macroscopic loadiriy, summarized
by Eq.(1.32) are applied by using the multi-point constra{iM®C) option of ABAQUS for each node

pair (M‘ ,M* ) The set of python scriptdomtoolsenables to automatically identify all the noderpai

of faces ,, and ,; and to apply the MPC between the nodes from theesaode pair. To easily

manage the application of the macroscopic loading, anore interestingly, to automatize the
determination of the macroscopic mechanical respos reference point (using the ABAQUS

terminology ), designate®&R), is created. The macroscopic loading is applietriposing the following
displacement orRR: (U1 =(Fu-1)/ 4 U,=0;U = O) This reference point is connected with each
node pair to apply the MPC represented by(E2) The reaction forces induced by the displacement
applied onRR are equal to the componerts, 12 and13 of the macroscopic Piola—Kirchhoff stress
tensorP multiplied by the initial volume of the unit cdll,| (Lejeunes and Bourgeois, 201 Quite
similar developments can be performed for the apptin of the PBCs on the other faces.

node pair(M' M*) managed RP

02

Fig. 1.1.lllustration of the PBCs between nodks andM ™.

1.4. Computation of the macroscopic tangent modulus

The practical aspects related to the solution@piriodic homogenization problem by the finitenadat
method have been detailed in Sectlof This solution is conducted by using tHemtoolscapable of
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handling the application of the PBCs and the mamois loading as well as the determination of the
macroscopic response. To achieve this technicattefive have developed a set of python scripts to
automatically determine the numerical evolutiontted macroscopic tangent modulus by using three
FEM-based techniques. This is the main objectivh@fpresent section, where the theoretical coscept
behind the three techniques are briefly revisited the practical implementations of these techrique
within ABAQUS/Standard FE code are extensively assed.

1.4.1. Perturbation technique

1.4.1.1. Numerical concept

The macroscopic tangent modulus, dena®d? | links the rate of the macroscopic deformation

(P can be

gradientF to the rate of the macroscopic first Piola—Kirctilatress tensoP . Hence,C
obtained by the differentiation of the first Pidkarehhoff stress tensor with respect to the defdioma

gradient:
P=c:FUDP» ™ .DF, (1.33)
whereD - is a very small perturbation applied to field

Following the perturbation technique, each colurhicS* is numerically constructed by perturbing
the components of the macroscopic deformation gradi and using the associated perturbed response
as follows:

OR” R -R(F)
DFk(,a) a

i, k= 1,2,3: Cli with F= F+DF®=F+aeA e, (1.34)

wheree, and g are respectively thi-th andl-th unit vector, anda is the perturbation magnitude

(which typically ranges betweet0® and10°). For illustration, the matrix form of Eq.1.34)

corresponding to the perturbation ten®5" =a e, A e can be written as:

chy cii o ¢ cnd ohh ¢t ¢, ¢

coo g o dm dn A, ¢, O, 6,0 o
cli) o cid cn dih O ¢, cl ci o ppw
cl) c cid dml Ok dL ¢ ¢S o0 DAY
cli) ce cnd dmd duk dL ¢, 67, €7, 0 = DRY . (13)
Cl) cli cid dml duh ol ci o dm 0 DRY
cli) cp cnd i dud o e, e, e, 0 DR
e e B R T P
:

Cn Chx Cim oy o o i ¢l C¢Tl

PK1)

Thus, the first column of modulu@' is computed as:
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(PK1)yy Pu (Fl(f))' PIJ (F) ‘

"i,j= 1,2,3: {5 a (1.36)

The eight other columns are obtained in the sanyeasdor the first column.

1.4.1.2. Practical implementation

To determine the macroscopic tangent moduGi&Y by the perturbation technique, ten FE

computation steps are performed: one general catipntstep to compute the unperturbed tensor

P(F), followed by nine perturbation steps to compute plerturbed tensorB(Fk(f’)) for k,1=1,2,3

The perturbation steps are achieved using the AB&(3thndard restart technique. In the general
computation step, it is needed to specify the retpaerestart files in the input file. An analyséde
restarted only if the restart request is madetfdniABAQUS/Standard, these files include the agtst
(.res), analysis database (.mdl and .stt), part)(.putput database (.odb), and substructure datab
(.sim) files. Accordingly, based on these restatticht each specific restart time, the nine pestiob
steps will restart the analysis with the perturbestroscopic deformation gradient. It is worth ngtin
that the general computation step can be lineaonlinear, modeled via either built-in material rabd
or user-defined material subroutine (UMAT). As twetperturbation computation steps, they are
performed using the linear static perturbation gsialof ABAQUS/Standard. The algorithmic steps of

the perturbation technique are illustratedrin. 1.2

Fig. 1.2.Basic algorithmic steps for the perturbation tégha.
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Box 1.Main steps for the implementation of the pertudsatechnique.

The main steps for the implementation of the pbgtion technique are summarized as follows:
Step 1: run the general static step with addition of tpdion “*Restart, write, frequeney’ in the
“.inp’ file and then compute the unperturbed stré‘$§) by theHomtools Integem, used as frequency

parameter, specifies the increments at which restéormation will be written. For example,

frequency:2 is to write restart information at incrementg 26, etc.

Step 2: create nine restart ‘.inp’ files with the optiGiRESTART, READ, STER1, INC=n, END
STEP’ to specify the step and the increment froniclvinestart analysis continues (see Appendix B).

In these files, static perturbation analysis sgepsied and the corresponding option is:
*STEP, PERTURBATION
*Static’
Step 3: run these nine restart jobs with command ‘abgqgbsjob-name oldjoboldjob-name’, or

‘abaqus jobjob-name oldjoboldjob-name usetumat.f’ when a UMAT is used in Step 1.

Step 4: outputP(Flff)) corresponding tBIff) k,(I=1, 2, 3) and construct the different columns|of
ct™ by substitutingP(F), computed in Step 1, ariél( Flfla)) into the differential rule of Eq. (1.34)

We have developed a set of Python codes to autcafigtperform Steps® 4. Our codes are devoted fo

managing the execution of the general and pertusteggs as well as the numerical constructio€ 8t .

1.4.2. Condensation technique

1.4.2.1. Numerical concept

This technique is based on a condensation proceduhe global stiffness matrik introduced in Eq.
(1.10) As previously explained in Sectidn?, when the ABAQUS/Standard built-in material models
are used to describe the microscopic behaviomtterial partk ,, of the stiffness matrix is constructed
on the basis of the elastic tangent modulus. Bxdhase, the condensation technique only givedalsde
macroscopic tangent modulus whether the mechabiglahvior is elastic or inelastic. To avoid this
problem, a UMAT should be used to implement thestitutive equations at the microscopic scale.
To apply the condensation technique, the nodeleofinit cell mesh shall be partitioned into twasset
set andset composed by the nodes inthe interior and on tedary of the unit cell, respectively.
Let ¥V and N denote the number of nodes of setsand , respectively. Following this partition,

9 3 i 9 3

let us introduce the three link-topology matricegl D J 0 ™

defined in the subsequent developments. The ueesé matrices enables to simplify the algorithmic

treatment and implementation of the condensatiohnigue.
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The topology matrix _, associated with nodg that belongs to the boundary of the unit cell,sists

q?

of the components,,,, X,,, and x,,; of the initial coordinate vectax,, of nodeq as follows:

X O 0
0 Xq02 0
0 0 X3
Xq02 0 0
"FL..N: = 0 Xe 0 . (1.37)
X3 O 0
0 Xq01 0
0 0 X2
0 0 Xq01
Matrix  is introduced in order to rewrite E@L.30)in a matrix form that is more suitable for
algorithmic implementation:
n . — T T — T
q=1W”Np.x¢-x{-( ; q%F= XF, (1.38)

with N, being the total number of node pairs.

As to matrix , itis built to link the current coordinate vectifithe nodes on the boundary of the unit

cell x, to the current coordinate vectry = X = Xq of node pairq :

COFE LGN, XE S XX (1.39)

q q

The components of matrix , take one of the following values:0} or 1.

Using matrices , and , Eq.(1.38)can be re-expressed in a more compact form:

q

"o LN, xx, = [ oF. (1.40)

q
Thus, all the periodic constraints of the unit calh be assembled in the global notation:
x, = ' R, (1.41)

where global matrices and  are constructed by concatenation of their nodahtarparts , and

L (LEQEN,):
;
1 1
=, s =L (1.42)
T
N, N,
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On the other hand, following the partition of theole node set into subsets and , Eq.(1.10)can
be restated in the following form (after permutatiof lines and columns of matriKk and the

corresponding components of vectorsandr ):
X = : (1.43)

As a consequence of the microscopic equilibriumaéqo (1.23), the internal force vectar is equal
to O at the convergence of the FE computations. Hence | E®)becomes:

K K q 0
X = . (1.44)
K K q r

The elimination ofg from Eq.(1.44)allows deriving the condensed (or reduced) stfématrixK

relating the boundary displacement rgteto r :
K x = with K K K K 'Kx (1.45)

At the convergence of incremental analysis, therosamopic tangent modulu ™ is computed in

terms of the condensed stiffness maffix , matrices and as follows {liehe, 2003; Geers et al.,

20179):

CPKD = 1

== x K?! x
o

X, (1.46)

Considering expressign.45)of K, the macroscopic tangent moduld€™® can be expressed as:

C(P|<1)=|i0 % (« K Kl Kx )_l L B Tx (2.47)

For sake of brevity, only the final result of thendensation technique is given in Ed.47) The

interested readers may refer to referentéslt{e, 200y and (Geers et al., 20)for further details on
how Eq.(1.47)is obtained. Analogous developments will be cdrdat in Sectiori.5to determine the
macroscopic tangent modul@™® by the condensation method for the particular cdssymmetric

problems.

1.4.2.2. Practical implementation

As presented in Section.4.2.], the macroscopic modulug™<?

is obtained by a condensation
procedure of the global stiffness matkx, which is assembled from the elementary stiffmaagrices
K. . The requested option to output the elementarineis matrices is *Element Matrix Output’,
which needs to be added in the input file. To iHat& the operational aspects, a brief example of an

input file is provided in Appendi. After achieving the finite element computatidme elementary
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stiffness matrices will be stored in an externlal #ith *.mtx’ extension (e.g. ‘myMatrix.mtx’ as ithe
example of Appendix\). This file is the input of the Python codes depeld to assemble and handle
the global stiffness matriK . Recalling that all the nodes of the unit cell mase grouped into two

sets and ;hence, a nodg belongs to set if at least one of the following conditions hold:

Xeor =1 ol200 (12 5 X1 ol2br (/2 5 % &/~ o/Ror /2 (1.48)

otherwise, it belongs to set .

In order to construct topology matrices and , the set of node pairs as well as the correspgndin

initial coordinates need to be identified. As itha¢ed inFig. 1.3 nodes andj make up a node pair in
the Z-direction.

Fig. 1.3.Node pairs irZ-direction.

To identify all the node pairs in node set the following algorithm is developed and implemehigo

the Python code.

Nodesi andj represent a hode pair Xadirection, if:
Xop™ X o= * / ,and X, = ( 02 and x o, = X 03

Nodesi andj represent a node pair Yadirection, if:
X2~ X o=/ gand X o, = X o and X o3 = X 5-

Nodesi andj represent a node pair Zdirection, if:
Xo3~ X w=*/ andx,, = X o1 and x,, = X 62-

3Ng 3N

The components of matrix 1 take one of three possible values:-Q, or 1. These

components can be determined as follows, oncealode pairs detected:

If Nodesi andj form a node pair (with < j ), the distribution of values 1 andL in  can be

summarized as:

s.23 2=1 s 23 2=- 1
sig1=1 s13 1-- L (1.49)
sa =1 a3 =1
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The other components of matrix , not defined by Eq. (1.49), are set to O.

9 3N 9

Matrix 1 is assembled from matriceshT *, defined in Eq(1.37), as follows:

i j

X1 O 0 X 01 0 0

0 X 02 0 0 X o2 0

O 0 Xi03 O O XOB

X 0 0| |x 0 0 (150)
= 0 Xe O 0 X 03 0

X3 0 0 s 0 0

0 X1 0 0 X o1 0

0 0 X 0 0 X

0 0 Xg 0 0 Xq

Once matrix constructed, matrix can be determined by the following matrix muligliion:

= x T, (1.51)
With the label®f nodes belonging to sets and , one can easily extract the four submatrikes

K ,K andK from the global matrix , as stated in Eq.1.43) Thus far, all the ingredients

needed to comput€!™? are prepared.

Box 2.Main steps for the implementation of the conddoeatchnique.

The main steps for the implementation of the cosd#an technique are summarized as follows:

>

Step 1: add the option “*Element Matrix Output’ in thepiat file; run the finite element computatia

with a user subroutine UMAT, the elementary stiffsienatriceK ,, will be outputted in a ‘.mtx’ file.

Step 2: assemble the global stiffness matkix from elementary stiffness matrices stored in the ‘.mitx’
file by using the connectivity of the different rexdof the elements; partitidd into four submatriceg

K ,K ,K andK |, after permutation of its lines and columns atestin Eq. (1.43).
Step 3: compute the condensed matkx from submatriceX , K , K andK on the

basis of Eq. (1.45).

Step 4: construct matrices and by using Egs. (1.49) and (1.51), respectively.
Step 5: compute the macroscopic tangent modug{i&” by using Eq. (1.47).

We have developed a set of Python scripts to autoally manage StepsgR5. To improve the efficiency of
the condensation method, the developed scriptpaadielized with multiple processors (see Apperilior
more details). The execution of Step 5 inflictsth@@PU and memory costs. These costs are mainlyodihe
double matrix-inversion required in Eq. (1.47). €ficiently optimize this execution, these inversip

operations are performed by using the functiomalfj.solve’ and ‘linalg.pinvh’ of the NumPy library
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1.4.3. Fluctuation technique

1.4.3.1. Numerical concept

Considering Eq91.26)and(1.27), the following condition should be fulfilled ataltonvergence of the

finite element iterations:

ﬂdvper
G:= ﬂ—xp d OZO. (152)
0 0

The linearization of Eq.1.52), classically used in finite element computatiaakes the form:

G+ G=0, (1.53)

where - is the iteration of field (in the finite element sense). Higher-order teares neglected in

the linearized form given by EQL.53).

The linearized forni1.53)requires thaG® 0 and G® 0 at the convergence of the finite element

computation. Hence, the following iterative forrndze derived from Eq1.52]

av v
G-= av,e cPKY . Eg M d,=0. (1.54)
0 ﬂXO ﬂxo

After finite element discretization, the periodelacity v, can be obtained from the interpolation rule

(similar to the one used in E@..8)):

Vo = % por (1.55)

per

The substitution of Eq.1.55)into Eq.(1.54)leads to the following linear algebraic system:

Kx g, =K xF, (1.56)

where the global stiffness matrik and a fluctuation matriX are defined as:

n ~ n
K= BTxM™Bd, ; K=

el=1 el=1

BTckd (1.57)

n
where denotes the finite element assembly operator wherunit cell is discretized by finite
el=1

elementsel . It is worth noting that the global stiffness nvatk defined by Eq(1.57) is exactly the

same as the one introduced in Eiql0)and equal tc[K u TK GNL] (as long as the relations between the
microscopic tangent moduti®, ¢@, ¢ andc™? are correctly defined).
Vector ¢, can be obtained by solving EG.56})

Oper = - K K xF, (1.58)
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and then iteration f , can be obtained from E(]..58)by:
foa=Bxqg, =BK'K F. (1.59)
On the other hand, we have the following relation:

P==  pd,== c™:( F+ f.)d,. (1.60)

The combination of Eqs1.59)and(1.60)yields:

1 1
o o

P== pd,=— ™ F-BK'K xF)d,. (1.61)

As iteration F is homogeneous over the volumgof the unit cell, Eq(1.61)can be reformulated as:

1 1
| 0 0

p=|i pd 0=ﬁ( PO - kaK‘lK): F. (1.62)
of ° o' °

By comparing Eqs.1.33)and(1.62) one can easily deduce that:

C(PKY) =i(

0

PV - KTxK 1K ) (1.63)

0

1.4.3.2. Practical implementation

As stated by Eq.1.63), the macroscopic tangent moduld§*? consists of two main parts: the volume
average of the microscopic modul™® and a fluctuation part dependent on the globtihstis matrix
K and on a global fluctuation matriK . Global matricesk and K are obtained from their

elementary counterparts, and Kel by the assembly rules given by Et.57) Elementary matrices

K, and Kel are dependent o™ . Hence, to ensure the accurate computation ofriaeroscopic

PK1)

tangent modulusC™ | the microscopic tangent modut™® should be correctly defined and

implemented. Furthermore, to determine the differggredients required for the computationcdf’“)

by the fluctuation technique, a user element (U&lhroutine needs to be used. To achieve thisuask,
have used the UEL developedSalahouelhad] et al. (201 Zfter some modifications and additions.
Indeed, the virtual work principle has been sligimiodified to consider the Jaumann derivative ef th
Kirchhoff stress instead of the Truesdell derivatissed in the initial version. After these moditicas,

the elementary stiffness matrik,, has been correctly computed in the UEL by addwegcontribution

of the geometric nonlinearitigs ;,, ., (see Eq(1.9)) to the contribution due to material behavioy,

(see Eq(1.9)) . As to P which is associated with each integration pairi§ determined from the

jacobian matrixDDSDDE (an output of the corresponding UMAT) by using E(ds7), (1.16) and

(PK1)

(1.17). Once matriceg are determined for all the integration pointshef element, the elementary
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contribution to the volume average of the microscopoduli ™ q .0 can be determined by an

el
0

easy integration operation, and the elementarinesgé matrixkK , and fluctuation matrixK - Can be

computed by the following relations:

Ky= ,BTxPYRd ® ; K,= BTc¥d,°. (1.64)

The different elementary contributions should btpatted and stored in separate files.

Box 3.Main steps for the implementation of the fluctaattechnique.

The main steps for the implementation of the flatitan technique are summarized as follows:

Step 1: compute the microscopic tangent modifi from jacobian matrixDDSDDE by using Egs.
(1.7), (1.16) and (1.17).

PK1)

Step 2: compute the elementary contributions (namély,, Kel and ™ d ,7) and store them

el

in external files.

Step 3: read the external files and use the connectiditthe different nodes to assemble the varigus
elementary contributions and to obtain the gloloainterparts.

(P2 can be

Step 4: once the global counterparts determined, the osaopic tangent moduluS
easily computed by Eq. (1.63).
A set of Python codes has been developed to peistems ® 4. The algorithm of the codes can be foundin

Appendix B.

1.5. Extension to symmetric microstructures

In some applications, the studied heterogeneousanad made of unit cells exhibiting symmetry
properties (composite materials, porous media...nddeit is essential to examine whether these
symmetry properties can be efficiently exploitedspeed up the computation of the overall properties
of heterogeneous media. A heterogeneous unitagisymmetry properties if the geometric distrilbutio
of the different phases is symmetric ($€g. 1.9 and the behavior of each phase exhibits material

symmetries (isotropic or orthotropic). Without laxfsgenerality, we consider a 3D unit cell occupyin

the initial domain ,= -/,/2/ /12" -/ IR, ,12 41 {12, , /2. This unit cell is assumed to

be symmetric about three planes of symmexy£0, x, =0 and x,; =0), as displayed iftig. 1.4 In
this case, the study of one eighth of the unit ,cealiccupying the initial domain

0= 07,127 0 , /12" D, , /2, is sufficient to determine the mechanical respouisthe full

unit cell only if the boundary conditions on theupes of symmetryx, =0, x, =0 and x,; =0) and

on the outer surfacesxf,=/,/2, x,=/,/2 andx,=/,/2) are correctly defined. Otherwise, the
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results of such analyses could mislead. The usmefeighth of the unit cell (shortly called RUC, as
reduced unit cell), instead of the full one (dedats FUC), allows dividing the number of mesh eletsie
by 8 (for the same computation accuracy), thusidersbly reducing the CPU time required for the
computation of the macroscopic tangent modulus. dureent section is focalized on the theoretical
extension of the perturbation and condensatiomigales for the determination of the overall moduli
of RUCs. The practical aspects related to the implgation of these extended techniques in this
particular case are quite similar to those devealdpe the general case (Sectidng.1.2and1.4.2.9.

These practical aspects are omitted for the sakeewity.

Symmetry planeo;=0

N

A0/ 2

Symmetry planeos=0

Symmetry planeo=0

Fig. 1.4.RUC occupying the initial domain,= 0,/,/2 "~ 0, , /2" 0, , /2 and its corresponding FUC
assumed to be symmetric about three planes of symife, =0, x,, =0 and x,; =0).

1.5.1. Perturbation technique

The suitable boundary conditions to be appliednenRUC to ensure the same mechanical response as
that of the whole unit cell have been initiallyaddtshed by.enée (1984 for media undergoing small
strain. The developments achieved lbyne (1984) are extended in this chapter to the finite strain
framework, and these extensions are used to cahstrel overall tangent modulus by the perturbation
technique. The prescribed boundary conditions, wtideperturbed steps, are dependent on the applied
perturbation. The details are given imble 1.1(with a being the magnitude of the perturbation
introduced in Section.4.1.7). As shown in this table, the boundary conditiapplied on the different

degree of freedoms (DOFs) are categorized intomaim families:

DOFs subjected to a small linear displacement mere Du, =( OF xo)i (wherex, is the

initial position of the associated node a(rDFk‘f) >9<0)i is thei-th component of vectobF® X, );

-40-



Chapter 1 Computation of the macroscopic tangeoduli

DOFs free from any displacement constraib,(free). In this case, the associated reaction force

is obviously equal to zero.

To better explain these boundary conditions, ledetail them for the perturbatiddF :

On facex,, =0: Dy, =( oF®) xo)l ©, while the other DOFs are free.

On facex, =/,/2: Dy, =( R xo)l al ,/ 2, while the other DOFs are free.

On facesx, =0and/, / z: Du, :( [ x0)2 B, while the other DOFs are free.

On facesx,, =0and/, /2. Du, =( R x0)3 ®, while the other DOFs are free.

The perturbed stress tens@éﬁff”) , corresponding to the various perturbati@®" and required to

construct the macroscopic tangent mod&? column by column, are derived from the reaction

forces applied on the boundary of the reducedagiit | :

To define the different perturbation steps, theemigstart “.inp’ filesdescribed in Step 2 of Box 1 need

to be modified to integrate the difference in the boundary tondifrom one perturbation step to

another.

P(F;f>)=i

ro
ro

1
‘ro

Table 1.1.Boundary conditions applied on the RUC.

p(Fé,a))d ro :_‘ roto(Flfla))AXod ro

Perturbed Boundary conditions
components faces x,= Oand, / faces x,= Oand, /. faces x,= Oand, /
Du, :( oFy) xo)l; Dy, free; Du, free;
kk =11, 22 X 3< Du2 free : DU2 :( I:Fk(lf) XO)Z; Du2 free ;
— (a)
Du, free Du, free Du, —( DR Xo)3
Du, free ; Du, :(Dzl(j) xo)l; Dy, free;
12 Du, =(D:1(§) xo)z; Du, free ; Du, free ;
a a = (a)
Du, :( D:l(z) Xo)3 Du, :( D:l(Z) Xo)s Du, (D:12 XO)3
Du, free; Du, =( oFe xo)l; Du, free ;
21 Du, :(EFS) XO)Z; Du, free ; Du, free;
_ a _ a - (a) .
Du, —( D:él) X0)3 Du, —( I:Fél) XO)3 Du, (D:21 Xo)s-
o (0 x| Dw AT R | (k)
23 Du, free ; Du, free ; Du, =(0F%) x,), ;
DU3 free DU3 :( D:g) X0)3 Du3 free
Dy, :( D:s(g) XO)l ; Dy, :( D:ég) Xo)l; Dy, :( D:?(’g) Xo)l;
32 Du, free ; Du, free ; Du, =(F$) %), ;
Du, free Du, :( D:3(g) Xo)s Du, free
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Du, free; Dy, free; Du, =(CFS %), ;

13 Du, =(FY x,),; Du, =(CFY x,), ; Du, =(OFY x,). ;
Du, =( OFY x 0)3 Dy, free Du, free

Du, free; Dy, free; Du, =(CFE %), ;

a1 Du, =(TF$ %), ; Du, =(CF$ %), ; Du, =(CFY x,), ;
Du, =( oF x0)3 Du, free Du, free

1.5.2. Condensation technique

The development of a condensation technique pértato unit cells exhibiting symmetry properties is
presented hereafter. This development follows #reetpl idea behind the same technique for full unit
cells (without symmetry properties), summarizedecttionl1.4.2.7 with some main adaptations that
are essential to account for the particularitieROCs. The perturbation technique presented in@ect
1.5.1is of great use to ensure the theoretical exterdditime condensation technique. Unlike the original

(PK1)

condensation technique, where the different colurahghe overall tangent modulu§ are

simultaneously determined in a single matrix openatthe columns of the tangent modulus
corresponding to the RUC are computed separataiyugh successive iterations. Indeed, the starting
point of the original condensation technique cdassisthe partition of nodes into two differentset

and . The composition of these node sets is indeperafethie boundary conditions applied on the

(PK1)

unit cell. Then, the same sets can be used to dengluthe columns oC" "~ . For the extended

condensation technique, the partition of DOF sefsedds on the boundary conditions, as shown in

(PK1)

Table 1.1 Therefore, it is not possible to simultaneousinstruct all the columns of by using

(PK2)

the same DOF patrtition, and thus the computatiaghetolumns ofC in successive iterations (one

iteration for each column) is unavoidable.

In what follows, we detail how a column &™) can be determined, and the same algorithm could be

used to compute the other columns.

As a starting point of this algorithm, the DOFdlué nodes of the RUC mesh should be partitionexd int

two sets:

setY : the set of DOFs on which the reaction forceszare. This set includes the DOFs of all
the nodes in the interior of the RUC as well asDii=s of the nodes on the boundary, which are
free from any displacement constraint (Seé@le 1.2for illustration). Then, seY is defined by
the following equation at the convergence:

r, =0, (1.66)

wherer, is the residual rate vector corresponding to DiDFs®tY .
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set W: the set of DOFs on the boundary of the RUC thatsabjected to a linear displacement.

Consequently, the vector of displacement ratesesponding to DOFs i/, denotedq,,, is

related to the rate of the macroscopic deformagraientF by the following matrix form (more

suitable for algorithmic treatment):

d,- "xF =0, (1.67)
where the topology matrix is constructed in the same manner as matgixntroduced in Eq.
(1.37) but with DOFs in sel/V.

The residual rate vector corresponding to DOF®in&, denotedr,,, can be related to the rate

of the macroscopic Piola—Kirchhoff stress tenBofsee Eq.(1.65)to understand this matrix

form):

P- ﬁ X1,y =0. (1.68)
ro

The partition into set¥ and W is illustrated inTable 1.2for the construction of the first and fourth

columns of CP*Y |

Table 1.2.Composition of set¥” , W required for the computation of the first and tburolumns ofc™Y .

Column of
- the DOFs of all the nodes in the interior|of
the RUC; - the first DOF of nodes belonging to fades
- the second and the third DOF of node,, =0and/, /z;
. belonging to faces,, =0and/, /% - the secondDOF of nodes belonging tp
First column

- the first and the thirdDOF of nodes facesx, =0and/, /2

belonging to facesy, =0and/, /2 - the thirdDOF of nodes belonging to faces

- the first and the seconBOF of nodes X,;=0and/, /2
belonging to facex,, =0and/, /2

- the DOFs of all the nodes in the interior|of

the RUC; - the second and the third DOF of nodes
- the first DOF of nodes belonging to facebelonging to faces,, =0and/, /z;
Xu =0and/, /7 - the first and the thirdDOF of nodes

Fourth column | _ the secondDOF of nodes belonging tpbelonging to faces, =0and/, /2

facesx, =0and/, /2 - the thirdDOF of nodes belonging to faces

- the first and the second DOF of node¥,; =0and/, /2
belonging to facex,, =0and/, /2

Considering this partition rule, the matrix formtb& equilibrium equation associated with the RW@€ ¢

be written in the following form (very similar togg(1.43)):

K K r

Yy Yw q Y - Y . (1.69)

KWY KWW.qW rW

The linearization of Eqg1.66), (1.67)and(1.68), required for finite element iterations, yields:
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r,+ r, =0;
qQu - TxF + quw- "x F =0; (1.70)
P-i Xr,, + P-i x r, 0.
| r0| | r0|
Using Eq.(1.69) equation systerfi..70)can be further elaborated:
rY +KYY qu KYW qu O:,
AQuw- TxF + Quw- "x F =0; (1.71)
1 1
P'ﬁxrw"' P'ﬁ X(KWYXqY KWW>qW) 0=
ro ro
Equation(1.71) allows us to expressq, as:
Ay =-Kyy x(r, Ky, xqy, ). (1.72)

At the equilibrium state, we hawe =0. Therefore, Eq.1.72)can be reduced to the following form:

ay :'K)_/)l/ XKYW XQu- (1-73)
Insertion of Eq(1.73)into Eqgs.(1.71) :leads to the reduced equation system:

Qu- "XF+ qu- Tx F =0;

1.74
P'ﬁ Xry + P'ﬁ X(KWW-K WYK-}/YK( YW) g Woz' ( )
ro ro
Together with equation systerh.70), the equilibrium state daf..74)requires:
dw- 'x F=0;
1 ] (1.75)
P- ﬁ X(KWW'K m K gy K YW) q y 0=
ro
The elimination of q,, in (1.75)allows us to obtain:
P- ﬁ X(Kyw-K ;K 3y K yy) X K 0= (1.76)
ro
The expression of the overall tangent modud&® can be easily identified from E@L..76)
c‘PKl)zﬁ K Ky K Key,) X (1.77)
ro

1.6. Numerical results

1.6.1. Basic validations of the three techniques

To validate the implementation of the three teches) (namely, CT, FT, and PT), the numerical

predictions obtained by these techniques are cadpaith those given byliehe et al. (2002h)
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Consistently, two plane composite microstructure® a&onsidered (width/lengti/1). Each
microstructure is made of a soft matrix reinfordsda stiff inclusion. The behavior of each phase is

assumed to be isotropic linear elastic with théofeing elasticity parameters:

Matrix: E, =2081.06 MPa ; n, = 0.300

m

Inclusion: E =10E, ; n =n

For the first microstructure, the inclusion is gda centered in the middle of the composite and

occupying 1/3 of the total volumé&i@. 1.9. As to the second microstructure, the associaedsion

is centered cylindrical fiber and its volume fractiis equal to 12.56%-(g. 1.9.

To compute the macroscopic tangent moduli by tfferdint techniques, a plane-strain loading has been

applied on the two analyzed microstructures (timeesas the one definedlifiehe et al., 20020 In this

(PK1)

case, we report and compare the in-plane componétite macroscopic modu@® stored in matrix

Z:

Cy Cn 0

z=cl) chy) o . (1.78)
0 o c&

The difference between the results frarighe et al., 2002band our predictions obtained by the three
techniques is quantified by a scalar indicatodefined as:

12 12

(z) i 3(4Ref)2 , (1.79)

3
i=1 j=1 i=1j=1

m:||z||/Hz Ref

where Z"*®" andZ denote the overall modulus determined in referdhtehe et al., 2002band that

computed by our predictions, respectively.
1.6.1.1. Microstructure with centered layer

To investigate the effect of mesh discretization the prediction of the tangent modulus, this
microstructure is discretized by two different meshMesh 1 made of 36 finite elements, as displayed

in Fig. 1.5a, and Mesh 2 composed of 144 finite elementshawisinFig. 1.5.
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(a) (b)
Fig. 1.5.The finite element discretization of microstruetwvith centered layer: (a) Mesh 1; (b) Mesh 2.
The components o obtained by the different techniques (namely, €T, and PT) with the two
meshes (Mesh 1 and Mesh 2) are reportedaine 1.3 For the three techniques, the predictions are
almost insensitive to the mesh density, thus comfig the earlier observations made in reference
(Miehe et al., 2002b)Moreover, the three techniques provide the sagelts with indicatom very

close to 1, thus implying that our predictions aeey close to those given iviehe et al. (2002h)

Table 1.3.Components of matriX for the two meshes of the microstructure with eezd layer.

Referenc (Miehe et al., 2007) CT FT PT
Mesh] Mesh: Mesh! Mesh: Meshl Mesh: Meshl Mesh:
Z, 78682.6 78682.6 78564.6 78564.4 78564.6 78564.464/B5 78564.5
Z, 4204.0 4204.0 4189.5 41895 41895 41895 41895 41895
Z, 1815.9 1815.9 1801.5 18015 18015 18015 1801.501.58
Zy, 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0
m 1.000 1.000 0.998 0.998 0.998 0.998 0.998 0.998

1.6.1.2. Microstructure with centered cylindricdddr

In this case, the unit cell is discretized by 7@0reents ig. 1.6.

Fig. 1.6.The finite element discretization of microstruetwvith centered cylindrical fiber.

As reported infable 1.4 the results obtained by CT, FT, and PT are alndesttical and very close to

the reference values. These results provide additialidation of our implementations.

-46-



Chapter 1 Computation of the macroscopic tangeoduli

Table 1.4.Components of matriX for the microstructure with centered cylindricie.

Reference¢Miehe et al., 2002)  CT FT PT

Z, 3413.1 3400.7 3400.7 3400.8
Z,, 3413.1 3400.8 3400.8 3400.8
Z, 14151 1407.2 1407.2 1407.2
Zy 960.1 958.8 958.8 958.9
m 1.000 0.996 0.996 0.996

1.6.2. More advanced validations of the three tecluues

In the previous section, some basic validationghef three techniques have been conducted by
comparing our predictions with the results presgnteMiehe et al. (2002h)It appears from this
preliminary study that all of the three technigaesurately predict the macroscopic tangent modulus.
Thus, the accuracy and reliability of the implenagion of the three techniques are partially vaédat
In this section, attention is focused on evaluativegcomputational performances of the three teglas,

by considering two microstructure examples:

Microstructure with cubic inclusion: the geometsydharacterized by a cube containing a stiff
cubic inclusion in the center, which occupies 200d%the total volume Kig. 1.7). This

microstructure is discretized by 1000 finite eletsen

Microstructure with elliptical cylindrical fiberhie geometry is characterized by a cube containing
a stiff elliptical cylindrical fiber in the centewhich occupies 12.6 % of the total volunieg(
1.7b). The fiber is aligned in th&-direction and its cross section is an ellipse vaispect ratio

(long axis/short axis) equal to 2. This microstunetis discretized by 2176 finite elements.
For the two cases, the mechanical behavior of tteixrand the inclusion are assumed to be elagtipla

and linear elastic, respectively:

The matrix elasticity and hardening parameters are:

)0.184

E,=210GPa ; n,= 0.3 ; isotropic hardeninga =362.9£é 0.008+,,

y

The inclusion elasticity parameters are:
E =10E, ; n =n,.

The two microstructures are subjected to the fdatgwdeformation history:

1 00 1.2 0 0
initial state: F(Q= 0 1 0® final state:F(tf )= 0 0.91287 0 (1.80)
0 01 0 0 0.91287

with t, corresponding to the end of the loading histong the deformation gradiefit is assumed to

evolve linearly betweefr(0) and F(t,) .
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(a) (b)

Fig. 1.7. Two typical composites discretized by finite elerse (a) Microstructure with cubic inclusion; (b)
Microstructure with elliptical cylindrical fiber.

During the general finite element computations gkternal files required to compute the overaltyent
moduli are automatically created and filled. Basadhese external files, the developed Python tscrip
are executed. For CT, the required external fithés.mtx’ file, which contains the elementaryffstess
matricesK,, at eachn converged increments (with being the record frequency, as shown in

AppendixA). For FT, besides this ‘.mtx’ file, two other ‘ttfiles are required, which contain the micro

(PK1)

tangent modulic for all the integration points and the elementargtuation matriceK o+ FOr PT,

the external files are the database needed to cotitel restart analysis. This data includes thes”.r
‘“mdl" and “.stt’, ‘.prt’, ‘.odb’ files, as well aghe ‘.sim’ files. Some practical aspects relatedhe
execution of the Python scripts can be found inti®ed .4 and in the appendices. Note that the disk
space allocated for the generated external files the CPU time spent for the tangent modulus
computations increase with the complexity of thedi&d microstructures. Therefore, the evaluation of
the computational efficiency is twofold: the readrdisk space and CPU time. These computations

were made on 8 parallelized cores allocated inefuomputer.

1.6.2.1. Microstructure with a cubic inclusion

The mechanical behavior of the two phases is asstorige isotropic (for both elasticity and plagsii

and the von Mises yield function is used to comgh&equivalent stress from the stress tensor. The

evolution of the componenBf<?, ) c™ andCc?%! obtained by CT, FT, and PT are reported

in Fig. 1.8 It is clear from this figure that the three teicjues give identical results, thus providing

additional validation of our implementation.
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Fig. 1.8.Evolution of the components of modul@™ obtained by CT, FT,
(d cf

cubic inclusion: (2)C{Y; (b) Clan?; (c) C

PK1) .
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PK1)
212 -

and PT for microstructure vath

The overall modulu€™ is evaluated at eadbt =0.01, (see Eq(1.80). Then,C™ is computed

100 times during the loading history. As shownTable 1.5 PT consumes more disk space and CPU

time than CT and FT. This result is expectable idamig the fact that ten finite element computagio

are required when the PT is used, against onlyglescomputation for the other techniques. Despie

fact that the nine finite element steps requiredumerically construct the overall tangent modudys

the PT are linear (hence, relatively quick to b rthe CPU time consumed by the computationsign th

case remains relatively high. Even though themn®iswuch difference between the CPU times consumed
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by CT and FT, the external file size required byigalmost twice that required by CT. This ressilt i

also expectable considering the amount of dat@ toubputted when the FT is applied.

Table 1.5. Performance of the different techniques in ternfisakocated space disk and CPU time for
microstructure with cubic inclusion.

CT FT PT
External files GB)  3.97¢ 7.65¢ 11.08:
CPU time Minute9) 82 85.1 111.6¢

1.6.2.2. Microstructure with elliptical cylindricdiber

In this case, the plastic behavior of the matrimgsumed to be anisotropic and it is modeled by the
Hil'48 vyield function with Lankford coefficientsr,=0.585y, = 0.571;and,,= 0.7¢. The
evolutions of the componenB!"Y , ™ c®  and CP%Y obtained by the three implemented

techniques are plotted ing. 1.9 This figure confirms once again that the threzhimeéques provide

identical results.
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The overall tangent modulus is evaluated at daich0.04t, (see Eq(1.80). As shown infable 1.6
PT consumes much more CPU time and requires tgedadisk space. Also, as previously shown, CT

appears to be the most efficient in terms of CPtes and external files.

Table 1.6. Performance of the different techniques in ternfisadocated space disk and CPU time for
microstructure with elliptical cylindrical fiber.

CT FT PT
Externalfiles (GB) 2.06¢ 3.977 4.4¢
CPU time Minute)) 24 26.7 40.F

1.6.3. Numerical assessment of extended formulatiaf condensation technique in

symmetric microstructures

We have presented in Sectiarb the extended formulations of CT as well as of PTthe case of
symmetric microstructures. In the same way asénpitevious Sectiofi.6.2, the comparison between
the performances of extended CT and PT has beatuctad for reduced unit cells (RUC). The results
of such a comparison (not shown here for brevigyeal that the performance difference between CT
and PT is similar to the case of original formwdag with full unit cells (FUC) (which have beenoejed

in Table 1.5and Table 1.§. Consequently, attention is confined in this imecto the performance
analysis of the extended CT. The objective is imgare the performance of the extended formulation

with RUC to the performance of the original forntida with FUC.

To assess the performance of the extension of @fofllems exhibiting symmetry properties (Section

1.5), let us consider the microstructure with ellipticylindrical fiber. The RUC is discretized by 272
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elementsiig. 1.10 versus 2176 elements for FUE{. 1.7b). The material parameters of both phases

(matrix and inclusion) are the same as those peavid Section..6.2.
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Fig. 1.10 RUC with elliptical cylindrical fiber.

Both FUC and RUC are subjected to the followingodefation history:

100 1. 02 0
initialstate: F(Q= 0 1 0® finalstate:F(t,)= 0 1. 0, (1.81)
001 0 0 1

which corresponds to a simple shear test.

The distribution of the von Mises equivalent stressl the maximum principal logarithmic strain
obtained for both unit cells (namely FUC and RUCha end of the loading are displayed-ig. 1.11

As clearly shown in this figure, the two unit cetinfigurations give very close mechanical respanses
These results prove the reliability and accuracthefboundary conditions applied on the boundary of

the RUC, as summarizedTmble 1.1

(a) (b)
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(c) (d)

Fig. 1.11.Mechanical responses for both unit cells: (a) Gonplot of the von Mises equivalent stress for the
FUC; (b) Contour plot of the von Mises equivaletnéss for the RUC; (c) Contour plot of the maximprimcipal
logarithmic strain for the FUC; (d) Contour plottbe maximum principal logarithmic strain for th&J@.

Fig. 1.12provides the evolution of componer@<?, c{> c™ andC{%? as predicted by both
the original CT with FUC and the extended CT varsidoth RUC. The perfect agreement between the

predictions observed in this figure clearly demmtss that the extended condensation technique is

correctly implemented and is reliable.
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Fig. 1.12.Evolution of the components of modul@™ as predicted by the original CT with FUC and the
extended CT with RUC: (af{1"; (b) Clh; () Cliag” s (d) Clhns.

The overall tangent modulus is evaluated at dch0.04t, . As shown inTable 1.7 the use of the

RUC instead of the FUC for the computation of thecmscopic tangent modulus allows dividing the
size of external files by 8 and the CPU time byTltds means that the RUC model greatly improves the
computational efficiency. It is worth noting th&ty CT, the CPU time is essentially consumed by the
process of inverting large matrices. In the presentparative study, the element number used for the
RUC model is reduced by a factor of 8, comparethéoFUC model, which leads to a strong reduction
in the stiffness matrix dimension (reduction byaatbr of 43.84 in the current model). This stroizg s
reduction induces a significant decrease in thegedational effort. This comparison highlights theaj

interest of using the RUC model when the microstmgcexhibits symmetry properties.

Table 1.7.Disk space and CPU time required for the use ofu@f FUC and RUC.

FUC RUC
External filesGB) 2.06¢ 0.2¢€
CPU time Minute)) 24 1.8

1.7. Summary and conclusions

In this chapter, three numerical techniques usedmapute the overall tangent moduli for periodi@t un
cells have been briefly presented and implemenitdnvABAQUS/Standard by developing a set of
Python scripts. Several conclusions can be drawtherpasis of the study conducted to compare the

different techniques:

The perturbation technique can be carried out ygusnly theHomtools(for the application of

the periodic boundary conditions and the macroscimading) and the Python scripts that we
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have developed. Hence, additional subroutinesass {such as UMAT or UEL) are not essential
for the computation of the overall tangent modwlithis technique. The numerical predictions
reveal that PT is the most expensive both in terh@PU time and external file storage. The high
CPU time is attributable to the necessity to penften finite element computation steps (1 general

step and 9 perturbation steps) for each computafitime tangent modulus.

To implement and run the fluctuation technique sartelement (UEL) subroutine needs to be
used. This limits the potential use of this methgdhe ABAQUS users’ community. Furthermore,
even though this technigue does not consume exesSHiU time, the disk space occupied by the
external files generated by this method remairegtively large as compared to the case of the

condensation method.

Compared to the latter techniques, the condenst@mique seems to be easier to operate and
reveals to be timesaving. To use this techniqueomunction with inelastic behavior, a user
material (UMAT) subroutine should be used. Moregvuhis technique has been successfully
extended to explore microstructures exhibiting sytmgn properties, and the interest of this

extension has been highlighted through some nuaigredictions.

Thus, this chapter provides valuable reference dlimies to ABAQUS/Standard users for the
determination of the homogenized tangent modulingfar or nonlinear heterogeneous materials, such
as composites, polycrystalline aggregates and paolids. The techniques and tools developed i thi

chapter could be used, in the following chaptessitie implementation of multiscale transition.
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Chapter 2

Numerical investigation of necking in
perforated sheets using the periodic

homogenization approach

2.1. Introduction

Due to their lightness and aesthetic attractivengsdgorated sheets have been increasingly used in
various industrial fields, including automotivechitecture, agriculture, pollution control, and imm
(IPA., 2019. Additionally, the variety of patterns and pegton shapes makes them quite versatile. To
accurately design and manufacture press-formeduptedin-depth knowledge of the mechanical
behavior and the conditions of occurrence of ptasstabilities in this kind of sheets remains acaal
task for both scientific and technological commigsit The theoretical and numerical modeling of the
mechanical behavior of perforated sheets has beyinvestigated in several previous contribusion
in the literature. The various developed modelsshas/objectives to predict the geometric distrduti

of the relevant mechanical fields (stress, plastiain, ...) or to derive an effective (macroscopic)
constitutive model representative of the mecharbedlavior of the perforated medium as well as the
corresponding mechanical parameters (elasticityarpaters, anisotropy parameters, hardening
parameters). Among these investigations, one catedbe pioneering work ad’Donnell and Langer
(1962) who have developed a theoretical method for taticlg the stress distribution and effective
mechanical properties of perforated plates widmggular penetration pattern.@bDonnell and Langer
(1962) the mechanical behavior of the dense matrix simgd to be linear elastic. More recently,

Krajcinovic et al. (1992have applied the percolation theory to deterntieestress state and distribution
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in a two-dimensional elastic medium containing @nty distributed circular voids. The effect of gias
behavior of the dense matrix on the effective pridpe of perforated sheets has been widely studied
several contributions. In these contributions, éffective (macroscopic) plastic behavior has been
generally determined by defining a yield criterimnd the corresponding evolution of the yield stress
(macroscopic hardeningl-hen (1993)has performed finite element simulations and erpamtal
tensile tests to propose a yield criterion andabsociated flow rules for perforated sheets wittutar
holes in hexagonal or equilateral triangular pageinChen (1993)both von Mises and Hill’48 yield
functions have been used to characterize the gilgstif the dense matrix. A similar methodology has
been followed imBaik et al. (199710 determine a yield criterion for perforated dhegith a uniform
triangular pattern of round holes. In the lattemtcibution, the plastic anisotropy of the metal xahas
been modeled by the von Mises and Hosford yielatfons. It should be noted that in the previous
works (Chen, 1993; Baik et al., 199 he classical finite element method has mairdgrbused to
determine the effective mechanical behavior ofpmesentative volume element (RVE) of the studied
perforated sheet. Concretely, to build a typicald/ifunction, a monotonically increasing loading
combination is applied on the RVE. This loadingssumed to be linear in the macroscopic stresgspac
(the ratio of the major to minor average stressé®pt constant during loading), while the sheasst

is set to zero. During this loading, the homogethigeeess—strain data are recorded. The yield p®int
determined from the plot of the effective (macrgscpequivalent stress as a function of the eflecti
equivalent plastic strain. The numerical modelifighe mechanical behavior of perforated sheets has
been significantly improved by coupling the claasiinite element analysis to multiscale approaches
These multiscale approaches are based on the ¢mfcapbstituting a heterogeneous medium with an
equivalent macroscopically homogeneous one. In tostext, perforated sheets are viewed as
heterogeneous media made of two main phases: laahd the metal dense matrix (which may be itself
made of several metallurgical phases). Such a scale strategy has been used by several authors to
characterize equivalent mechanical behavior ofgpatéd sheets. For instaneen Rens et al. (1998)
have used a numerical homogenization approachi¢ordme the initial yield function and its evolutio
for a RVE of perforated sheets with square patégircular holes. More recentlighatam and Pindera
(2011)have employed a finite-volume direct averagingrotitechanics (FVDAM) theory to accurately
determine the homogenized response of perforateetshvith hexagonal arrays of circular holes, and
to establish the relation of homogenized responsgeld and limit surfaces. In this chapter, we dnav
adopted the multiscale strategy to study the machbbehavior of perforated sheets with periodicall
distributed holes (in the two directions of ther@af the sheet). Considering this periodic distitdn,

the periodic homogenization technique already Betdh Chapterl has been used to determine the
overall mechanical behavior of one square patteghich is selected to be the unit cell represergabiv
the studied sheet. It is worth noting that the na@atal behavior of perforated shells and platedleas
extensively studied by using the asymptotic homamgion approach in several contributions
(Kalamkarov, 1992, 2014; Kalamkarov and Kolpakov, 979 Andrianov et al., 2012a, 2012b;

-58-



Chapter 2 Investigation of necking in perforasbeets

Kalamkarov et al., 20)2 By contrast to the above references, which aaniy focused on the
derivation of the macroscopic behavior of perfadatiein structures (determination of the effective
macroscopic elastic properties...), our contribuadms to investigate the onset of plastic instabift
perforated sheets. As such instability usually egdun the finite strain range, a total Lagrangian
framework is adopted to express the assumptiongquations governing the periodic homogenization
approach. Within this framework, the deformatioadient (resp. the first Piola—Kirchhoff stress tafis

is used as strain (resp. stress) measure. ThafEehomogenization scheme is based on the assumptio
of spatial periodicity of the microscopic mechahifialds (namely, the microscopic deformation
gradient and the microscopic first Piola—Kirchheffess) over the boundary of the unit cell. The
equations governing the periodic homogenizatiohrigpie are solved by the finite element method. To
achieve this task, the Python scripismtoolsdescribed in Chapter, has been used to easily apply the
periodic boundary conditions (PBCs) and to deteentlme macroscopic first Piola—Kirchhoff stress

tensor associated with the prescribed macroscafarmation gradient.

Despite the large number of contributions dedicatethe modeling of the mechanical behavior of
perforated sheets and to the determination of teéfiective macroscopic properties (effective
elastoplastic parameters, shape of the macrosagpld surface and its evolution), theoretical
investigations on the necking and formability offpeated sheets are still seldom and not very eskten

It is however well recognized that the initiatiohpdastic instability in this kind of sheets is essally
dependent on the mechanical behavior of the demgexnand on the morphology (size and form) of
patterns and holes. In the majority of past studisted to this particular issue, perforated shaet
considered as thin media containing periodic aofagylindrical voids.Tvergaard (1981is one of the
first authors who extensively studied the onsg@lastic strain localization in voided sheets ursieral
mechanical states, such as uniaxial and biaxialeptdrain tension. In the latter reference, plestigin
localization is viewed as a bifurcation from thendamental solution path, and Hill's theory of
uniquenessHill, 1958) has been used to numerically predict bifurcatibm.apply this analysis, the
incremental form of the virtual work principle hbhsen established on the basis of the incremental
equilibrium equations. At each stage of the loadhisgory, an approximate solution to this increnaént
form has been obtained by the finite element metBdfdrcation occurs when the determinant of the
global stiffness matrix vanishes. Tivergaard (1981 the limit strains given by bifurcation theory leav
been compared with their counterparts obtainedhieynhbaximum nominal traction criterion (diffuse
necking criterion). More recently (ergaard, 201}, the previous study has been extended to voidtshe
subjected to simple shear and pure shear statés.tdt be noted that Tvergaard’'s investigations
(Tvergaard, 1981, 20)'have been restricted to the following particidaoices and assumptions: only
some specific strain and stress states are stutiedhrm of voids is taken to be solely circukamgd the
plane-strain condition is assumed in the thickndssction of the sheet. In addition to these

investigations, the necking occurrence in perfarateeets has also been analyzed through the @hssic

-590-



Chapter 2 Investigation of necking in perforasbeets

concept of forming limit diagrams (FLDs). As thadied sheets are assumed to be thin, FLD predgtion
have been legitimately based on the plane-strassmation in the thickness of the sheeétichinson et

al., 1979. Furthermore, a wide range of strain paths (froniaxial tension state to equibiaxial tension
state) is covered when the FLD approach is usee.cbhcept of forming limit diagrams has been first
applied to perforated sheetslieki et al. (1989)In this chapter, a diffuse necking criterion thaen
used to predict the onset of necking. Accordinthts criterion, the necking limit is reached whée t
product of external force and displacement ratehies a maximum value. The effect of hole shape
(circular, elliptical, square) on the formabilitynit has been particularly highlightedlizeki et al. (1989)

It has been found from this study that perforatezbss with square holes have the best formabhiiti. |
Iseki’s formability criterion [seki et al., 198Phas been subsequently usediyba et al. (20150
predict the FLDs of perforated aluminum sheets wétuare holes. In this analysis, both
phenomenological material models (based on Hilkd®l von Mises yield functions) and a crystal
plasticity model have been used to describe théharécal behavior of the dense matrix. In the above-
cited contributionsTvergaard, 1981, 2015; Iseki et al., 1989; Chikal.e201Y, finite element analyses
have been combined with the different necking detéo predict the onset of necking. In the present
chapter, we have coupled the periodic homogenizagipproach with some diffuse and localized
necking criteria to predict the forming limits oénforated sheets. The onset of diffuse necking is
predicted by the maximum force criteriofnsidere, 1895and the general bifurcation criterion
(Drucker, 1950, 1956; Hill, 1998As to localized necking, its occurrence is deieed by the loss of
ellipticity criterion (Rudnicki and Rice, 197)5To apply both bifurcation criteria, the analytitahgent
modulus, which relates the macroscopic first Piklechhoff stress rate to the macroscopic defornmatio
gradient rate (as a total Lagrangian formulatioadspted), needs to be determined. To compute this
tangent modulus, we have used the condensationiteehdetailed in Chaptér The different necking

criteria have been implemented in the form of Pgthoripts.
A brief outline of the present chapter is as foow

- Section2.2 details the modeling of the mechanical behavidhefperforated sheets.

- Section2.3 gives the main lines of the adopted necking dater

- The numerical results of the current study are mtegoin Sectior?.4. Our numerical results are
firstly compared with the numerical predictionsiofrgaard (1981 Secondly, a sensitivity study
is conducted to analyze the effect of several machhand design parameters on the shape and
the level of forming limit diagrams.

- Section2.5 closes this chapter by summarizing some conclesaoil future work.

-60-



Chapter 2 Investigation of necking in perforasbeets

2.2. Modeling of the mechanical behavior of perforeed sheets

2.2.1. Multiscale transition problem

We consider a thin perforated sheet with a largalar of holes, which are periodically distributed i
the two directions of the plane of the sheet agctiesgphinFig. 2.1a. This perforated sheet may be viewed
as a heterogeneous medium made of two main phthsdsole and the metal matrix. Consequently, the
mechanical behavior of this perforated sheet cbalthodeled by using a multiscale scheme. The metal
matrix is assumed to be homogeneous, as microsclogierogeneities between the different
metallurgical phases are neglected in this stublg.first step in the application of this multiscpfecess
consists of the selection of a RVE, such that @afilng it provides sufficient accuracy for repreagen

the material larger scales. In the current chapterhave chosen a RVE with square pattern continin
a unique hole located in the center of the RW¥E (2.1b). The second step concerns the choice of the
most relevant multiscale scheme to determine theolgenized behavior of this RVE. Considering the
periodicity of the hole arrangement, the periodiecnlegenization techniqué/(ehe, 200} is selected

for this purpose. The use of this homogenizatichn&ue allows us to replace the heterogeneous RVE
(called also unit cell in the context of periodamiogenization) by an equivalent homogenized medium

with the same effective mechanical propertieg (2.1c).

(@) (b) (©)
Fig. 2.1.Concept of the periodic homogenization approach.
In what follows, capital (resp. small) letters asyinbols will be used to denote macroscale (resp.
microscale) quantities and variables. The constgutlations that describe the mechanical behafior
the dense matrix, which will be detailed in Secti@r?.2 The equations governing periodic
homogenization scheme presented in SectigiiChapterl) are adapted into the plane-stress state. The

main lines of this adaptation are introduced int®ac’.2.3
2.2.2. Constitutive relations at the microscale |l

As the metal matrix is assumed to be homogeneopseaomenological constitutive framework is
sufficient to describe the mechanical behavior ahiaroscopic material point from this matrix. To
simplify the notations in the following developmgnteference to the current position of the micopsc

material pointx in the different mechanical fields will be omittelderforated sheets are generally
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manufactured from cold-rolled products, which exhiton negligible plastic anisotropy. Hence, a
plastically anisotropic and rate-independent framrdws chosen to model the mechanical behavior of
the metal dense matrix. To develop the constitigtygations governing the mechanical behavior of the
dense matrix, it is more convenient to use an kneiormulation. In this formulation, the velocity
gradientg and the Cauchy stress tensoiare used as strain and stress measures. Thesestans

related to their Lagrangian counterpdrt@andp by the following classical relations:
g=fxt ; p = K with j detf), (2.1)

wheref " denotes the transpose of the inverse of tefisor

The microscopic velocity gradiegtis additively decomposed into its symmetric anevglsymmetric
parts, denotedl andw , respectively

g=d+w. (2.2)
To satisfy the objectivity principle (i.e., framevariance), objective derivatives for tensor vagab
should be used. A practical approach, used to erfsame invariance while maintaining simple forms
of the constitutive equations, consists in reforating these equations in terms of rotation-compedsa
variables. In the present work, a co-rotationalrapph based on the Jaumann objective rate is used.
Accordingly, tensor quantities are expressed mtating frame so that simple material time derixegi
can be used in the constitutive equations. Thdiootat of this rotating frame, with respect to the fixed
one, is derived from the spin tensmr (skew-symmetric part aj) by the following relation:

T

rx . (2.3)

In the remainder of the current section (Secfioh?), all tensor variables will be expressed in the
rotating frame (called co-rotational frame), thatto say, using rotation-compensated variables.
Consequently, time derivatives are involved indbmestitutive equations, making them identical inro

to a small-strain formulation.
The strain ratal is itself split into its elastic pad® and plastic part®:
d=d®+dP. (2.4)
The stress rate is described with a hypoelastic law
=cdf, (2.5)
wherec® denotes the fourth-order elasticity tensor. Hetasticity is assumed to be isotropic and is
defined by two material parameters: the Young masitland the Poisson ratia

The plastic strain ratd® is assumed to be normal to the yield surface tlaadollowing normality law

is adopted:

1F
d=/a (2.6)
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where/ denotes the plastic multiplier, afd is the yield function defined as the differencénzen

the equivalent stress,, and the microscopic yield stresg. In this chapter, the Hill'48 criterion is

used as equivalent stress meastie (1948), while hardening is assumed to be isotropic amdadeled

by the Swift law. Consequently,,, and , are defined by the following expressions:

y

eq:“ :H: ; :K(O+ Zq)n’ (27)

y
where:

K, , andn are hardening parameters.
+ is the equivalent plastic strain.

H is the Hill'48 orthotropic matrix, whose componerdre expressed in terms of three

Lankford coefficients (,,r I o,) that measure the degree of plastic anisotropy.
The activation of the plastic deformation is goestiby the well-known Kuhn—Tucker constraints:

/::( y)go; /30; FIl = 0. (2.8)

eq -
The Cauchy stress rateis related to the strain ratk by the elastoplastic continuum tangent matrix

c®:

=c®:d. (2.9)
The expression of this elastoplastic tangent madalan be obtained by combining the different
constitutive equations?.2}-2.9). One can obtain after classical computations aheviing expression

for ¢c® (Haddag et al., 2007

L N

c®=c- 1 T : (2.10)
e LTy
il 1 ’

el

=

=

Q

As demonstrated biylansouri et al. (2014 the microscopic tangent moduld€*” is related to the

elastoplastic tangent module® by the following relationship:

"ik)=1,2,3: clid= g Lo 20 8 (2.11)

ji KTk

where ., &, ., are respectively the index forms of fourth-ordensors *, * and ° that

originate from the large strain framework and whacé given by:
1 1

"jkl=1,2,3: i:}klz i G ijilzi( P4tk Q’) ; iJ'lj :E(ik 7 ,ﬂ) (2.12)
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2.2.3. Numerical implementation of the multiscalerainsition scheme

As demonstrated in ChaptértheHomtoolshas been used to easily define the PBCs and #rage

loadings over the unit cells as well as to deteentire average response. As a first step in solvieg
periodic homogenization problem, the unit cell gndng an initial volume , =[0,1,] " [0J,] [0,0.1,]

is discretized by finite elementsi(). 2.2). 3D finite elements (C3D20) have been used is thapter,
in spite of the small thickness of the studied shefs the numerical strategy (introduced in Sexctid)

is used to predict forming limit diagrams, the uetl is submitted to biaxial stretching along ttet
and 2nd directions, while under a plane-stres® stathe third directionKig. 2.9. This loading is

represented by the following generic macroscogid$:

F, O 2 20
F= 0 F, ?» ; P=? ? 0, (2.13)
? 0?2 7 0 0O

where the components denoted by ‘?’ are the unkrammmponents that need to be determined.

Under plane-stress state, the kinematic relatidnpeoiodic homogenizatiori1.19) and (1.20) are

respectively adapted into the in-plane forms:

Nx=NEx, U (2.14)

per?

and

Ny="NExNx, MNu  FF %x, Yy

per

(2.15)

per?

where™ - are the reduced in-plane forms of vector and tefisils - .

The other equations related to periodic homogeioizatre the same as those presented in Settion

(namely, Eqgs(1.21}1.24). For the sake of brevity, these equations areeualled here.

With the in-plane relations, the unit cell is teiatly submitted to the following boundary conditg
On the boundary surfaces, and ; : a reference poinRP. (following the ABAQUS
terminology) is created to apply the componéfts F,,(=0) and F,(=free) of the macroscopic
deformation gradienE. Furthermore, for the current position of the tearesponding nodes
"Xy, @and ™ xg, with identical coordinates in 2 and 3 directions sanfaces , and ;, the

following constraint equation is imposed:

IN g+ |NX-q= IN Fx('N VLY ) (2.16)

q 0q = 0q

Constraint equatiof?.16)is the in-plane form of Eq1.30)presented in Section3.

-64-



Chapter 2 Investigation of necking in perforasbeets

On the boundary surfaces, and ,: a reference poirRRP: is created to apply the components
F,,(=0), F,, and F,;(=free) of F. Furthermore, a periodic constraint, similar t® ¢time imposed

to the nodes of surfaces, and ;, is applied.

+

On the boundary surfaces;, and ;: a reference poinRPs is created to enforce the

macroscopic stress compones=PF,, = P,;=0.

Fig. 2.2.Finite element discretization and boundary condgiapplied to the unit cell.

The above macroscopic loading in terms of displam#non the reference points can be summarized

briefly:

iy

RR:U,=(F;-1)ly; U= 0;P5 0;
RR:U,=0; Uy =((Fy) - )15 P,z 0; (2.17)
'B=0; B,=0; R,=0.

N

A
«U

More details about the practical aspects of apgl¥Qg.(2.17)can be found in Sectioh3.
Meanwhile, the macroscopic ford® applied on the boundary surfaceg and ; is obtained by

multiplying the componenB, by the initial surface ,, of boundaries ;, or ;, namely:

R=R o (2.18)

A similar relationship can be defined between tireé R, applied on , and , andP,,.

As discussed in Sectidn3, by using theHomtools it is allowed to treat the macroscopic defornmatio
gradientF as macroscopic degrees of freedom associatedtidtimodal reaction force}sb|P at the
reference points. It is worth noting that the destrtion in Sectiori.3is also suitable for the plane-

stress case in this chapter, which are specifi¢darollowing.

As a departure, we recall the virtual work prineipkpressed in EQL.25}
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oy
11T1x pd,= v, d,. (2.19)
0 0 0

+ - +

where , (= oo o o o o o) andt, denote, respectively, the boundary surface of the
initial configuration and the nominal traction rgtescribed on ,. Vectort, is equal topn,, where

n, is the outer normal to the boundary.

To solve Eq(2.19) the Hill-Mandel condition could be used afteridating it for the plane-stress state.

This condition states the incremental internal gpeiquivalence between the micro and macroscales as

flav ) e
T, p d,-| aF:P=0. (2.20)

To prove equality?.20), the left-hand side of the latter can be recaaged

0 KV:'O d o-| aF:P= Cav- dx, Xty -Pong d . (2.21)
0

Following the decomposition of the whole boundafyhe unit cell , into six faces, the right-hand

side of Eq(2.21)could be expanded as:

av- oFxx, xt, Pr,d , = .  av -dFx, ¥ Rnsd,
0 01 01 02 02 (222)
+ av - daFxx, xt, P r, d ,.

+
03 03

Making use of the kinematic relationshipder plane-stress condition, the first part of rilgat-hand

side of Eq(2.22)may be transformed as:

. av- afFxx, xt; P n, d |

o0 o1 02 02

= Nowv- NaFxNx, xNt, NP ¥, d (2.23)

- + - +
01 01 02 02

- lNdeerxtho _INF>>Q\II..]0 d

S Ly 0
o1 01 02 02

with ™. being the reduced in-plane forms of vector andderiields- . The periodicity of vector

+

"av,,, and the anti-periodicity of vector"t,- "Px™n; overthe setof faces; o 5
lead to the following boundary integral constraint:

+ + INdvper>< INt0 -NP wno d 0 =0. (224)

o1 o1 02 o2

On the other hand, the second part of the rightttssate of Eq(2.22)can thereby be naturally reduced

to 0 considering the plane-stress condition:

over 5 g5 to-Pxn, =0 o av- arFxx, xt, -Px, d , 9. (2.25)

-66-



Chapter 2 Investigation of necking in perforasbeets

Considering Eqs(2.24)and(2.25), the Hill-Mandel condition of Eq2.20)is validated for the plane-
stress state.

2.2.4. Computation of the macroscopic tangent modus$

The application of the bifurcation criteria presshtn Section2.3 requires the computation of the

macroscopic tangent modul@™ introduced in Eq(1.24). To determine this tangent modulus from
the finite element outputs, the condensation teglmpresented in Chaptehas been adopted, after its
adaptation to the kinematics of the plane-streste sEor completeness, the main steps of this igeén
will be recalled in the following developments. fgr information about this technique can be found
in Sectionl.4.2and reference\(iehe, 200}.

Step 1 at the convergence of the finite element metR®IAQUS offers the possibility to save

the elementary stiffness matrick$' in a “mtx file by using the commandElement Matrix

Output. A classical assembly procedure has been implémdeio determine the global stiffness

matrix K from the elementary ong$® and by taking into account the connectivity of the

different nodes of the mesh:
K = K®, (2.26)

where Nel refers to the total number of finite elementshi@ mesh.

Step 2the nodes of the mesh are partitioned into tvwe G€). 2.2: set  made of nodes located

+

on the boundary surfaces, , , ', Where periodicity constraints are applied, and set

which is composed of the other nodes of the mBghusing this patrtition, the lines and
columns of the global stiffness matrik are rearranged (permuted) to obtain the following

decomposition:
K= : (2.27)

Step 3 matrices and are computed by following the numerical proceddegailed in

Sectionl.4.2

Step 4the macroscopic tangent modulus is computed mguke following relation:

-1

ey = 1 K K kikx ) x0T (2.28)
[l

The constitutive equations used to model the machBinehavior of the dense matrix have been

integrated by using an Euler explicit algorithm antplemented as a UMAT subroutine in

ABAQUS. As the integration algorithm is explicihet consistent elastoplastic tangent modulus

used to construct the stiffness matkix coincides with the analytical one given by Ef10) as
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explained inSimo (1998) As demonstrated imemizer and Wriggers (2008the condensation

technique allows us to obtain an analytical ma@pgctangent modulus if the microscopic one,

used to compute the global stiffness matfix is itself analytical. Consequentig™" is an
analytical tangent modulus, which can be used witremy modification in the subsequent

bifurcation analyses.
2.3. Necking criteria

To predict the occurrence of necking in thin peafed sheets, and represent the prediction results i
terms of forming limit diagrams, the applied macac deformation gradient given in E@.13)is

defined by the following in-plane components:
F,=e™ ; F,=¢é= with E,=r E, (2.29)

To cover the whole range of strain paths, relef@nthe plot of forming limit diagrams, the strgiath

ratio r is varied between 1/ 2 (uniaxial tensile state) arid(equibiaxial tensile state).

To predict the onset of necking in the unit céle tacroscopic first Piola—Kirchhoff stress tenBor

and the corresponding analytical tangent moda@(i&? are used as inputs for three necking criteria:
the Maximum Force Criterion (MFC), the General Bifation Criterion (GBC), and the Rice

PK1)

Bifurcation Criterion (RBC). Considering the plasieess assumptiom:( will be used as its in-plane

PK1)

form ™ C(™ in those necking criteria, wheféC!™? can be deduced by:

C-( PK1) C( PK1)
"k 12: Mo o SR (2.30)
3333
These necking criteria will be briefly presentedtia following SectionsA(3.1; 2.3.2and2.3.3.
2.3.1. Maximum Force Criterion

Swift (1952)proposed a diffuse necking condition for stretcimedal sheets submitted to biaxial loading,

as depicted ifrig. 2.2 This condition can be mathematically expressed as
R=0 and R=C (2.31)

Condition (2.31) suggests that diffuse necking occurs when compgenBn and R, reach their

maximum values simultaneously. However, the satiifa of this simultaneous condition is only
possible for two particular strain paths (uniaxald equibiaxial strain paths), as it has been
experimentally and theoretically demonstratedHiabbad (1994)and Abed-Meraim et al. (2014)
Accordingly, to be able to predict the onset ofudie necking for the whole range of strain paths, w

only consider the first condition in E(2.31), namely:
R =0. (2.32)
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As the componenB, of tensorP is proportional to forceR , condition(2.32) can be equivalently

rewritten as:

P.=0. (2.33)
2.3.2. General Bifurcation Criterion

Diffuse necking is also predicted by the generalrbation criterion (GBC). This criterion statesith
plastic instability occurs when the second-orderkweanishes [Qrucker, 1950, 1956; Hill, 1998

According to the GBC, diffuse necking is predicteiten at least one eigenvalue of the symmetric part
of NP (called hereafteM C{°“) ) becomes negative. Further details about the dpwegnt of this

sym

criterion are provided iBouktir et al. (2018)
2.3.3. Rice Bifurcation criterion

In the approach proposed Byidnicki and Ric€1975) material instability corresponds to a bifurcation
associated with admissible jumps for strain anesstrates across a localization band, as illustiate
Fig. 2.3 In a Lagrangian formulation, the kinematic coiuditfor the strain rate jump writes:

IN

F =INF+_ INF—:IN AIN , (234)

where' F isthe jump of the in-plane velocity gradientdié! F across the discontinuity band, while

™ is the in-plane jump vector, arfl  is the in-plane unit vector normal to the locdii@a band in

the initial configuration equal t()cosq ,sirq), wheregq is the inclination of vectol'  (seeFig. 2.9.

On the other hand, the continuity condition for thece equilibrium across the band is expressed as:

IN

P XN 0. (2.35)

The combination of Eqg2.34) and (2.35) with the macroscopic constitutive laiiz.24) leads to the

following equation:

(IN C(PKl) <INCR N )%N =0, (2.36)

which can be written in index form:
e 2 (MO )Y =0, jki= L2 (2.37)

PK1)

By introducing matrix™ C(™¥ | defined as the transpose of mathe ™Y by permutation of the first

two indices ("Cl; = M Clf*), condition(2.37)can be rewritten as follows:

"= 1,2 (IN i|NCij(kF|’K1) IN I)|N =0, ikl= 1,z (2.38)

-69-



Chapter 2 Investigation of necking in perforasbeets

which is equivalent to:

(IN WN C(PKl) [ ) IN G. (2.39)

Tensor™ Xcl*) ¥ s the so-called acoustic tensor. As long astéfisor is invertible, the jump

vector™ remains equal to zero, thus precluding any discoity (bifurcation) in the deformation
field. However, when the acoustic tensor becomegutar, there exists non-zero jump vectors that
satisfy Eq(2.39) and this can be seen as indicator of effectifigdtation. Therefore, strain localization

occurs when the acoustic tensor is no longer irblert

olet('N N PR g ) 0, (2.40)

The bifurcation criterion given by E(2.40)is implemented in the set of Python codes by Yalhg the
algorithm developed iBen Bettaieb and Abed-Meraim (2015)

Fig. 2.3.lllustration of the Rice bifurcation criterion.

2.4. Results and discussions

2.4.1. Results for homogeneous unit cell

To provide a first validation to the developed nuce tools, attention is confined here to the jgdn
of the occurrence of necking in a homogeneous eglit (without holes). For this simulation, the
mechanical behavior is assumed to be plasticadtyapic, following the von Mises yield function. In

this context, the Lankford coefficients, r,, andr,, used in the Hill’'48 yield function are set to 1.

Elastic and isotropic hardening parameters (Bq/)) are reported infable 2.1 These parameters

correspond to the aluminum alloy AA5052-0.

Table 2.1.Elastic and hardening material parameters

Elastic parameters Isotropic hardening parameters
E (GPa) n K (MPa) 0 n
210 0.3 363 0.008 0.184
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The prediction of the onset of necking using thevabdescribed diffuse and localized necking citeri

is illustrated inFig. 2.4for three particular strain paths:=-0.5, r =0, andr =1. In Fig. 2.4, the
evolution of the componerR, is plotted as a function d&,, (=In(F,)). For MFC, the moment when

B, reaches its maximum value is considered as iraficdtthe onset of diffuse necking. For the three

strain-path ratios considered, the correspondimgsststrain curves are clearly distinct, but the

maximum values folB, are reached at the same strain level, which islequn- , (»0.176). The

evolution of the cubic root of the determinant e symmetric part C<V of Nc(PY js plotted as a

sym

function of E;, in Fig. 2.4. The onset of necking starts, according to theCGBhen the smallest

eigenvalue of¥ C(7%Y vanishes, or in an equivalent way, whea{’<") becomes singular (3C{HkY

sym sym
is positive definite before it becomes singularg.cdearly shown in this figure, the predicted listitains

E,, are strictly the same (equal to ,» 0.176) for the three different strain-path ratios coesadi.
The predictions based on RBC are reportediin 2.4, where the evolution of the cubic root of the

minimum of the determinant of the acoustic tensmrer all possible orientationS  for the

localization band, is plotted as a functionEf. It can be seen that, irrespective of the selestien

path, the minimum of that determinant abruptly drdpring the transition from elastic to plasticineg.

This determinant vanishes for the strain-path gatio=-0.5 and r =0 at strain levels equal to
2(n- 0) andn- ,, respectively. By contrast, this determinant remaairictly positive, even for very

large strain levels, for the equibiaxial tensicatet(r =1). Consequently, localized necking cannot be

predicted by RBC for this particular strain-pattica

300 1
P, (MPa) _ 4x10 3 det( IN C(sl;:}l))
250
3x10°
200
r=-05
150 2x10°
r=1
100+
1x10P
501
E,
0 ) ! ) ' ) J ) J ) = O T T T T Ell
0.0 0.1 0.2 0.3 0.4 0.C 0.1 0.2 0.2 0.4
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3x10°-

3

Min det( XN PR )

2x10°

1x10* -

0 T T T T
0.C 0.1 0.2 0.2 0.4

(©)

Fig. 2.4.Prediction of necking, for three particular strpith ratios, using the different necking crite(&: MFC;
(b) GBC,; (c) RBC.

Fig. 2.5provides the FLDs predicted by using the thretedéht necking criteria. As can be seen, the
forming limit curve given by MFC reveals to be aribontal line, which also coincides with the

predictions given by GBC for the three particulaai®i-path ratiosr =-0.5; r =0, and r =1 (see,
e.g.,Abed-Meraim et al., 20)4The RBC is able to determine limit strains alzed necking only in
the range of negative strain-path ratios. In thteldaange, the FLD takes the form of a straigheli
along whichE,(r) is equal to(n- )/(1+ r). This result may be viewed as an extension of the
results demonstrated for the particular case ad-p¢astic behavior. Indeed, the adopted elasttiplas

behavior model can be reduced to a rigid-plastie loy setting , to 0. In this limiting case of rigid-

plasticity, Hill (1952) has demonstrated th&t, (7 ) is equal ton/(1+7) in the left-hand side of the

FLD. This classical result has also been confirfogdhe recent numerical investigations reported in
Ben Bettaieb and Abed-Meraim (201Epr the positive strain-path ratios, the limrmasts predicted by
RBC are so unrealistically high that they cannotdpesented ifig. 2.5 It is also clearly shown from

Fig. 2.5that the three necking criteria provide the samé ktrain for the plane-strain state € 0). As

a preliminary conclusion, the results giveririg. 2.5represent a first partial validation for the deypsd

numerical tools.
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0.4+
Ey
0.31 ——MFC
——RBC
24
n-&
0.1
r T T T 0.0 T T T E2|2
-0.2 -0.1 0.0 0.1 0.p

Fig. 2.5.FLDs for a homogeneous sheet (without holes), edigted by MFC, GBC, and RBC.
2.4.2. Comparison with Tvergaard’s results

To further validate the developed numerical apgnpacr numerical predictions have been compared
with those published imvergaard (1981)To this aim, our numerical tools have been shgimodified

and adapted to be conformal with the simulationgop@ed in Tvergaard (1981)For instance, the
plane-strain condition is applied in the thicknes®ction of the sheet, instead of the plane-stress

condition commonly adopted so far. Accordingly, tmenponentr,; is set to 1 all along the loading

(Fig. 2.9. Also, the material parameters and the finitemelet mesh discretization used in these
comparisons coincide with those considered\inrgaard (1981)in these comparisons, three different

loading states have been considered:
Uniaxial tension state: for this loading, the comgat P,, is set to 0Kig. 2.69. Consequently,
F,, is left free. The loading is applied in directidn where componenf,; increases

monotonically from 1 (which corresponds &, =0) to 2.

Plane-strain tension state: for this loading, th@pgonentF,, is setto 1Kig. 2.9. Consequently,
P,, is left free, and componeif,, increases monotonically from 1 (which correspaods,, =0)

to 2.

Proportional in-plane stressing: for this loaditig ratioP,,/ B, of the in-plane components of
the first Piola—Kirchhoff stress tensor is set {¢-2). 2.9. To apply this loading, componeh,

increases monotonically from 1 to 2. The appligatd this proportional in-plane stressing has
required further numerical developments. Indeee, tibolbox Homtools used to apply the

macroscopic boundary conditions allows us to easiynage strain-driven boundary conditions.
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However, for stress-driven boundary conditions, samprovements and extensions are needed.
In fact, the application of proportional stressimgs been made possible by implementing in
ABAQUS a procedure based on the coupling of ktwantoolsand the user-subroutine MPC
(Multi-point constrainty. The use of the MPC subroutine allows us to updhe value of

componentF,, in order to ensure that rati,/ B, remains equal to 2 during the loading. The

interested reader may refer to Chagtey better understand how proportional stressiagpdied
on the unit cell. The new results further confirne fprevious and current trends showing the

perfect agreement between our numerical predicamiaisthose obtained ifvergaard (1981)

Fig. 2.6.Initial unit cell used for the comparisons withefgaard'’s results.

The comparisons between our predictions (in blat&ry and Tvergaard’s results (in green color) are

given inFig. 2.7 In this figure, the compone®, normalized by the initial yield stress is plotsia
function of E ;. To analyze the effect of the hole radius on tis¢ability predictions (such as shear band
bifurcation), four values for the ratiB, / A are takenKig. 2.9: 0 (which corresponds to homogeneous
unit cell); 0.175; 0.25 and 0.375. Frdrm. 2.7, the following conclusions can be drawn:

The plots in~ig. 2.7show that the level of the maximum strésis significantly reduced when

increasing the hole diameter. This observed getrexrad is common to all of the simulations and

for both loading situations (i.e., uniaxial tensgiate, and plane-strain tension state).

All of our predictions agree very well with thosahtished inTvergaard (1981)Indeed, the

B,- E,, curves are perfectly superposed. Furthermoregithecation points that we predict here

by using the RBC are identically the same as thweéicted inTvergaard (1981based on

bifurcation theory with instability modes in theio of shear band localization.

For the uniaxial tensile statgi{. 2. ), the strains corresponding to the maximum nohsiness

and those associated with bifurcation exhibit ogposvolution with the increase of the ratio
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R,/ A. Indeed, while the strains corresponding to th&imam nominal stress increase when

increasing the void volume fraction, the opposind is observed for the bifurcation critical

strains.

For the plane-strain tension stateg( 2.), when the void volume fraction is set to zere.(i
homogeneous sheet), the nominal stress does raiit semaximum, and also bifurcation is not

predicted. In this case, the strain compondftsand E,, remain equal to 0 and the sheet is

deformed with a very small volume change, whicknsrely due to elastic compressibility (as
plastic deformation is taken to be without volurhamge). Consequently, a very important stress
P

), Is required to slightly deform the sheet, and #tigss level cannot decrease. For the other

ratios (R,/ A* 0), maximum nominal stress and bifurcation are neasily reached, as the

volume change of the perforated sheet is allowethbyevolution of the hole volume. For this

plane-strain tension state, maximum nominal stoessrs simultaneously with bifurcation when
R, >0.

The results provided iRig. 2.7 show that bifurcation cannot be reached for h@negus sheet

(i.e., whenratioR,/ A is setto zero) witlP,,/ B, = 2. This result is quite expectable considering

the fact that for this loading, the strain-patha@t positive (but not constant). For the otheit un
cells, the limit strains at bifurcation decreaseewlthe hole radius increases. On the other hand,
the strains corresponding to the maximum nomirrakstare less sensitive to the hole radius, as

shown inFig. 2. 7.
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P14/Sy0 Pn/fyo RyA =0
R/A; =0 1 / Ry/A, = 0.175
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0.5' j “ -
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Fig. 2.7. Comparisons between the current numerical predistand Tvergaard’s results (in green color): (a)
uniaxial tension state; (b) plane-strain tensi@test(c) loading with proportional in-plane stressP,,/ B, =2.

2.4.3. Sensitivity study

In this section, a sensitivity study is conductedihalyze the effect of several design and mechhnic
parameters on the onset of necking in perforategtsh When not explicitly specified, the material
parameters of the dense matrix are the same as thesn inTable 2.1 A preliminary sensitivity
analysis has been performed to investigate thednfle of the selected finite element mesh on the
necking predictions. The choice of mesh discrabmahas been mainly dictated by seeking good
compromise between the CPU time required for thepdations and the accuracy of the predictions.

For the sake of conciseness, the details of tlenpinary study are not discussed in the curreaptdr.

2.4.3.1. Effect of the hole radius

In this subsection, the hole is assumed to belhitcircular and the influence of its initial radi R, on

the forming limit diagrams is analyze#iq. 2.9. The results of this analysis are showrt-ig. 2.9
Contrary to the case of zero void volume fractibe.(homogeneous unit cell without holes, Bége
2.5), localized necking for perforated unit cell idicted at realistic (finite) limit strains, eventhe
range of positive strain-path ratios (see rightehsite of the FLDs ifrig. 2.99. Indeed, the presence
of holes induces some softening, which allows primgothe occurrence of localized necking
(Tvergaard, 1981; Koplik and Needleman, 1p&Clearly, the necking limit strains decrease ba t
whole when increasing the size of the holes, wbarhesponds to larger void volume fraction. As diea
shown inFig. 2.9 the effect of the hole radius on the neckingtlistiains is much more pronounced in
the range of positive strain-path ratios. This camnrend, which is observed for the three adopted

necking criteria (se€ig. 2.9, is directly attributable to the hole growth, whiis mainly dependent on
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the applied loading path as showrin. 2.10 To further explain this point, let us introdube surface

growth factor05= S- §, with §, and S denoting the initial and current hole surfaceha plane of

the sheet, respectively. One can easily derivédlie@ving expression fors:
D= ( B 1) S. (2.41)

Hence, the surface growth factor increases wittstitzén-path ratio (and also with the triaxialigctor).
For negative strain-path ratios (especially neamtmaxial tensile state, as illustratedig. 2.1b), £S
is relatively small and the loading path is chaggzed more by a change in the hole shape thaarageh
in the hole surface. By contrast, for equibiaxeldile state, the hole remains circular and thdihaga
path exhibits the largest surface growth factog (2.1().

() (b) (c)
Fig. 2.8.Unit cells with different circular hole initial di: (a) R,/ A =0.1; (b) R,/ A =0.2; (c) R,/ A =0.5.
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Fig. 2.9.Effect of the hole radius on the FLDs predicted(ay MFC; (b) GBC; (c) RBC.

(@) (b) ()

Fig. 2.10.Schematic evolution of the unit cell: (a) init@nfiguration; (b) current configuration for =-0.5; (c¢)
current configuration for =1.

2.4.3.2. Effect of the elliptical hole aspect ratio

It is expected that the hole shape has a signtfitapact on the mechanical behavior and on the
development of necking in perforated sheets. Testigate this aspect, our interest is firstly cexde
on perforated sheets with elliptical holes. We assthat the minor (resp. major) axis of the hole is

aligned with the direction of major (resp. minoiam E, (resp.E,,), as illustrated iri-ig. 2.11 The
initial hole shape is characterized by the iniaapect ratidy, / a,, whereh, (resp.a,) is the major

(resp. minor) radius of the hole. In the curremudations, we have used three different valuesHer

ratio b,/ g,: 1 (which corresponds to a circular hole), 2 an@de®Fig. 2.11). The initial radiia, and
b, are determined in such a way that the hole ingiaiface is the same for the three different

configurations. Frontig. 2.17 it is clearly shown that the necking limit straitlecrease with an increase

in the initial aspect ratity, / a,. This result also confirms the trends observedeweral pioneering
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studies, devoted to 3D voided materials and focasesome particular loading paths, which state that
void-induced softening is mainly dependent on theseidal void aspect ratio (see for instaneéejdoen
and Hutchinson, 2000; Keralavarma and Benzergd))2These studies have revealed that the increase

in void aspect ratio induces accelerated void gnotiius resulting in earlier occurrence of softgnin

(a) (b) (c)
Fig. 2.11.Unit cells with different elliptical hole initisspect ratioga) b,/ a,=1; (b) b,/ 8,=2; (c) b,/ a, =3.
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Fig. 2.12.Effect of the hole aspect ratio on the FLDs prididoy: (a) MFC; (b) GBC; (c) RBC.
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2.4.3.3. Effect of the elliptical hole orientation

In the current subsection, the effect of the adigdt hole orientation on the necking predictions is

investigated. To this end, the initial orientatigy defined by the angle between the major axis ef th
hole and the major strain direction, is varied wiihee values considered fgg: 0° (Fig. 2.1%), 45°

(Fig. 2.13%) and 90°fig. 2.1%). Note that the initial shape and aspect ratihehole are kept the same
for all of the simulations in this subsection. Bgalyzing the results ofig. 2.14 the following

conclusions can be drawn:

The most favorable hole orientation, in terms afkirgg resistance, is 45°. This result may be
explained by the fact that, for this orientatidmg tapplied loading leads to a change in the hole
shape and orientation without significant growttdded, in this case, the hole is subject to shear-
type loading, as its principal axes are orientetbatwith respect to the principal strain direcson

Consequently, necking is delayed with significampiovement in the necking limit.

The hole orientation at 0° results in higher negkiimit strains than those obtained with the
orientation at 90°, as demonstrated-in. 2.14 This result can be easily understood through the
analysis conducted in Sectian?.3.2 In fact, holes with initial orientations at 0°ch80° may be
viewed as elliptical holes with aspect rabgp/ a, equal tol/ 2 and 2, respectively (see the

analysis in Sectiofi.4.3.9.

For the particular case of equibiaxial tensionistgath, the necking limit strains predicted by
bifurcation (i.e., GBC and RBC) are the same foerdgations 0° and 90°, as shownHiy. 2.14b
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andFig. 2.14. This result is obvious considering that these drientations are equivalent, as

E,, is equal toE,,. This is obviously not the case when the MFC &dus

(a) (b) (c)
Fig. 2.13.Unit cells with different elliptical hole initiadrientations: (a)g, =0°; (b) g, =45°; (c) g, = 90°.
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Fig. 2.14.Effect of the elliptical hole orientation on thes predicted by: (a) MFC; (b) GBC; (c) RBC.

2.4.3.4. Effect of the hole shape

In the current subsection, the effect of the hdlapg on the prediction of necking is numerically
investigated. To this aim, three initial hole sheapee used and compared in the simulations: circula
elliptical and square (see illustrationkig. 2.15. In these simulations, the initial hole surfagéaken

the same for the different unit cells. The initabpect ratidy, / g, of the elliptical hole is set to 2. The

results reported ifrig. 2.16reveal that the necking limit strains predictedtfte unit cell with square
hole are the highest, regardless of the adoptekingecriterion and of the strain-path ratio consedke
These necking predictions are consistent with thmerical results obtained hya et al.(2002)and
Iseki et al. (1989and confirming the excellent formability of perdited sheets with square holes, as

compared to those with circular or elliptical holesthe same hole surface.

(@) (b) (©)
Fig. 2.15.Unit cells with different initial hole shapes: @jrcular; (b) Elliptical; (c) Square.

0.20n 0.20n
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(©)
Fig. 2.16.Effect of the hole shape on the FLDs predicted(&yMFC; (b) GBC; (c) RBC.

2.4.3.5. Effect of the plastic anisotropy of theahmatrix

In the previous subsections.{.3.1to 2.4.3.9 attention has been focused on the analysis offfleet
of the hole geometric characteristics on the ookeecking in perforated sheets. In those subsextio
the plasticity of the dense matrix has been assumled isotropic, and described by the von Miselyi
function. On the other hand, it is well recognizledt plastic anisotropy has a significant effecttos
necking limit strains of metal sheets (without peation), especially in the range of positive strpaith
ratios (see, e.gBarlat, 198). The objective of this subsection is to numehcahalyze the effect of
the plastic anisotropy of the metal matrix on theuwrence of necking in perforated sheets. Todhds
the Hill'48 yield function is used to model the rmletnatrix plastic anisotropy with three differeets

of Lankford’s coefficients ,,r,..r o), as reported iffable 2.2 The rolling direction of the metal sheet

is assumed to coincide with the major strain dicectSetl typically corresponds to plastic anisotropy
of aluminum alloys Chiba et al., 2015 By contrastset2 corresponds to an isotropic dense matrix. As
to the parameters gkt3, the latter are virtual and are chosen purpasebetter understand the effect
of plastic anisotropy on the predicted necking tistrains. The impact of these different sets of

anisotropy parameters on the shape of the metaixyatld surface is shown iRig. 2.17

Table 2.2.Lankford’s coefficients

r0 r45 r90
setl 0.585 0.571 0.766
set 2 1 1 1
set 3 1.5 1.5 1.5
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All of the simulations in this subsection pertaonuinit cells with circular hole, where the rafiy/ A

is setto 0.2F1g. 2. 17illustrates the effect of the Lankford coefficiemin the prediction of forming limit
diagrams. As revealed in this figure, the neckingtlstrains predicted by the different neckingeria

are not very sensitive to the values of the Larkfarefficients in the range of negative strain-pattos.

By contrast, this sensitivity to plastic anisotrapynore pronounced in the range of positive stpaith
ratios. Furthermore, it is clear froffig. 2.17thatset 1 of Lankford’s coefficients results in higher
necking limit strains thaset2, which in turn leads to necking limit straingér than those predicted
by set3. These numerical predictions of necking arelyike be correlated with the sharpness of the
associated yield surfaces. To further assess saatre@ation, we plot ifrig. 2.18the yield surfaces of
the metal matrix that correspond to the above-édfisets of Lankford coefficients. Similar to some
studies in the literature (see, e.g/u et al.,, 200), these yield surfaces are normalized by their

corresponding equibiaxial yield stresseg € ,,), in order to emphasize their differences in teohs

sharpness. In accordance with several literatuwselte a correlation between the overall levelha t
FLDs, in the neighborhood of equibiaxial tensiond ¢he degree of sharpness of the associated yield
surfaces may be clearly established. The sharpeeyidid surface, the lower the corresponding FLD.
The FLD predictions reported ig. 2.17are consistent with the above discussion on thepsiess of

the yield surface (se€g. 2.19, and confirm once again the important role ofemat anisotropy in the

modeling of forming limits of perforated sheets.

0.20n 0.20n
£y £y
0.15. Set Set
Set Set
0.104

0.05+ 0.05+

. —0-00 : : Ez? . — 0 : Ez?
010 -0.05 000 005 010 0.1§[-0.10 -0.05 0.00 005 010 0.1§

(a) (b)
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Fig. 2.17.Effect of the plastic anisotropy of the metal rixatm the FLDs predicted by: (a) MFC; (b) GBC; (c)
RBC.

1522

Fig. 2.18.Impact of the Lankford coefficients on the shapthe dense matrix yield surface.

2.4.3.6. Effect of the hardening parameters ofntle¢al matrix

In this subsection, we investigate the effect af thotropic hardening parameters (the hardening

exponentn and the initial yield strength ,/E ) of the dense matrix on the mechanical behavior o

the perforated sheets (stress—strain curves antilitguiémits). All the simulations presented inigh

section are made for unit cells with circular holebere the ratidR,/ A is set to 0.2 and the plastic
behavior of the dense matrix is assumed to beoigitr(i.e.r, =r, =r,,=1). The objective of this

section is twofold. Firstly, it aims to better \gdte the proposed approach by comparing our prensct
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(black color) with the results publishedlinergaard (1981(green color). The results presentedin.
2.1% andFig. 2.2@ confirm again the good agreement between thesei® of results. This further
validates the developed approach. Secondly, tbitoseanalyzes the effect of the hardening pararsete
on the level and the shape of forming limit diagsa@n the one hand, it is clearly showri-ig. 2.1%
that the ductility limits, obtained by the diffeterecking criteria, strongly increase when incregshe
hardening exponemt (see Eq(2.7)). In connection witlrig. 2.1%, some numerical investigations (see,
e.g.,Hutchinson et al., 1978; Ben Bettaieb and Abed-inera015 also support the trend according to
which low hardening materials are more prone tatmanstabilities. On the other hand, the effect o
initial yield stress of the dense matrix on thetdity of the unit cell seems to be relatively sinahd

dependent on the applied strain path, as demoadtiatig. 2.20.

2.C

P,./s
/Sy |&1
1 0.20-
1.6 n=0.368
n=0.184
0.167
N 1//_4\\
0.8 n=0.092
0'4" o Maximum
| x Bifurcation
0.0 : : : : El.l —0-00 : : : Ez.z
0.0 0.1 0.2 0.3 0.4 0Jb -0.0 0.00 0.03 0.06 0.09 0.11

(a) (b)

Fig. 2.19.Effect of the hardening exponent on: (a) the msmwpic stress—strain curves; (b) the FLDs predicted
by the RBC.
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Fig. 2.20.Effect of initial yield strength on: (a) the masoopic stress—strain curves; (b) the FLDs predibted
the RBC.

2.4.3.7. Effect of the macroscopic boundary coodgi

In order to investigate the effect of the macroscdypundary conditions on the mechanical behavior
(stress—strain curves and ductility limits) of peated sheets, the results obtained by the periodic
boundary conditions (briefly called PBCs) are coredawith those obtained by the application of the

kinematic boundary conditions (briefly designate®®§). It must be noted that the KBCs can be viewed

as a particular case of the PBCs, where the pertidplacement fieldi . (see Eq(1.19) is set to0.

per
Consequently, the deformation gradient on the bandf the unit cell is assumed to be homogeneous
(f =F over the boundary of the unit cell). Also, the KB@®r mixed with PBCs) have been usually
adopted in the study of the mechanical behavigpifed materials (see, e.giy et al., 201). However,

the different boundary conditions lead to differemcroscopic responses and consequently different
evolutions of the macroscopic tangent modulus. dupte the homogenization approach based on the
KBCs with the bifurcation approach, the condensapimcedure, which has been presented in Section
2.2.4and Sectionl.4.2and used to derive the macroscopic tangent modoéssbeen modified. More
details about these modifications are provided/iehe (2003) The results displayed iRig. 2.21
highlight the effect of these boundary conditionstloe strain—stress curves as well as on the ekl

the shape of the forming limit diagrams. Especjatlye can observe that the ductility limits preslict

by using the KBCs are higher than their countegudetermined by the PBCs. To plot the curvesiof

2.21, the hole is assumed to be circular, with theor&j/ A set to 0.2, and the metal matrix material

parameters are taken to be the same as thoseagpoSectior?.4.1.
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Fig. 2.21.Effect of the macroscopic boundary conditions(ajpthe macroscopic stress—strain curves; (b) thesF
predicted by the MFC and RBC.

2.4.3.8. Conclusions common to the various seitgistudies

In addition to the conclusions revealed in the fines subsections, which are specific to each deitgit

study, more common conclusions (valid for the vasieensitivity studies) can be drawn:

For all of the strain paths of the FLD (aside frima particular plane-strain tension state), RBC
predicts limit strains that are strictly highernhthose predicted by MFC and GBC. This confirms
the statement, widely recognized in thin sheet lmetithout holes, according to which diffuse

necking occurs prior to localized necking, and matethis result to perforated sheets.

For the particular strain path of plane-straini@mé¢, =0), the three necking criteria investigated

predict the same limit strains for perforated shieehich is a well-admitted result in thin sheet
metals without holes.

The impact of hole perforation on the reductiometking limit strains is more drastic in the

range of positive strain-path ratios. This resudlyrbe explained by the fact that in this range of
positive strain-path ratios, the hole growth pheanon is more important than in the range of

negative strain-path ratios.

2.5. Conclusions

In this chapter, several numerical tools have tmreloped to predict the occurrence of diffuse and
localized necking in perforated sheets. These tapdsbased on the coupling between the periodic
homogenization technique, used to numerically mdkel mechanical behavior of a representative

volume element of the studied sheet, and threeimgckiteria. Various sensitivity studies have been
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conducted to analyze the effect of some designnagchanical parameters on the onset of necking in
thin perforated metal sheets. From all of the deityi studies, it appears that the geometric
characteristics of the holes (size of radius, &g aspect ratio, orientation, shape) signifibant
influence the predicted necking limit strains. Rermore, when the void volume fraction is reduaed t
zero (i.e., sheet metals without holes), localizedking is not predicted in the range of posititrais-
path ratios, which confirms the central role of-psésting voids as key destabilizing factor. liaiso
demonstrated that the hardening parameters anulabic anisotropy of the dense metal matrix have a
significant impact on the forming limit diagramsprforated sheets. Such sensitivity studies dmerst
may be advantageously used to select the optirsamland mechanical parameters leading to improved
ductility and formability characteristics. In théense, the developed numerical tools will be héipfu
the design and the manufacture of perforated steetwell as other heterogeneous materials (for
example, the composite materials). Additionally, lsing these developed tools, it will be more
attractive to explore the ductile failure of voidedterials (presented in Chap#rand polycrystalline

aggregates (presented in Chagder
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Chapter 3

Investigation of the competition between void
coalescence and macroscopic strain
localization using the periodic homogenization

multiscale scheme

3.1. Introduction

The ductility of thin metal sheets is often limitég the onset of ductile failure. Therefore, this
phenomenon is central in structural integrity assest together with corrosion and fatigue. Several
possible failure scenarios may occur during plastiming operations. In this field, one can quadte a
least three main scenarios. The first one takepaly for very pure metals. In this case, makéaits
without damage occurrence, owing to the absena®idf nucleation sites. In such circumstances, the
deformation state is homogeneous at the beginningh® loading, and the deformation starts
concentrating in narrow bands at a certain limiaist The initiation of such bands marks the
development of localized necking in the materidde Becond scenario corresponds to the localization
of plastic strain into narrow bands due to varipassible softening mechanisms. Ultimately, follogvin
the accumulation of large plastic strains and iigeciase of stress triaxiality in the necked regivngls
nucleate, grow and coalesce to lead to final maltéailure. The third mechanism involves damage
initiation within the material prior to plastic atn localization. The softening induced by the
accumulated porosity is sufficient to counteraetstrain hardening capacity of the material, wieelals

to plastic strain localization in narrow bands.@naustive analysis of the different failure medsias

and the competition between them has been repiortecko lu et al. (2015)1t is now well known that
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the initiation of ductile failure and the compaeiiti between void coalescence and plastic strain
localization are sensitively dependent on the stetate applied to the metal sheets. To thoroughly
analyze these fundamental aspects, various expasneve been designed in several pioneering
contributions. In this area, one can quéteo and Wierzbicki (2004)who have experimentally
highlighted thatvoid growth is the dominant failure mode for highess triaxiality, while failure for
low stress triaxiality is mainly governed by therdmnation of shear and void growth modes. These
observations have been confirmed Byrsoum and Faleskog (20Q04vho have experimentally
established that the onset of ductile failure iditawhally dependent on the Lode paramdterand not
only on the stress triaxiality ratib, especially for low values of . The combined effect of stress
triaxiality ratio and Lode parameter on the failbehavior has also been confirmed by the experiahent
program conducted byriemeier et al. (2010)Although some observations have been ascert&iped
guantitative experimental testing, the comprehaenaiformation about the underlying mechanisms,
such as void growth, detection of localizationlie specimens, and onset of void coalescencelis stil
difficult to reach. To overcome this difficulty,gfiound knowledge on ductile failure in voided mtksr

can mainly be acquired through theoretical appreschihese theoretical approaches can be classified
into two main families: micromechanical models amdmerical approaches based on unit cell
computations.

The class of micromechanical models has beenteutiny the pioneering work ¢éfurson (1977)who

has derived, on the basis of limit-analysis thearyplastic potential describing the plastic floweof
representative volume element defined by a spHantd embedded in a rigid perfectly plastic matrix
The original Gurson model is based on severalictisg assumptions such as: only the effect of void
growth on the mechanical behavior is considereglytiids are initially spherical and remain sphérica
during the growth process, and the metal matrideizse. These restrictive assumptions limit the Gurs
model capability of providing accurate predictioofsthe mechanical behavior. Consequently, the
original Gurson model has been largely extendetthénliterature. The most widely-known extension
has been developed irvergaard and Needleman (19&6)consider the effect of nucleation of new
voids and coalescence of existing voids on the rmgchl behavior. In this extension, referred tohas
GTN model, the final material failure has been joed by using an empirical coalescence criterion.
The numerical predictions based on the GTN modekhaeen favorably compared with various
experimental resultsT{ergaard and Needleman, 19870 analyze the competition between void
coalescence and strain localization, the GTN mbdsl been coupled iansouri et al. (2014and
Chalal and Abed-Meraim (201@ijth the Rice bifurcation theoryr(udnicki and Rice, 1975; Rice, 1976
This theory is based on the loss of ellipticitytbé governing equations. Hence, to predict strain
localization via the Rice bifurcation theory, thepeession of the analytical tangent modulus needs t
be derived from the constitutive equations. Dedpiégr well-recognized interest, the extended wa15i

of the Gurson model present some limitations aad/dacks in the analysis of the different metalfail

scenarios (e.g., by void coalescence or strairfizatmsn). In fact, these models are generally daze
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heuristic extensions of the original Gurson modgheaut sound physical foundations. Furthermore,
they involve additional material parameters to dreteproduce the experimental results (such as

parametersy, g, andd,, or the threshold coalescence paraméterintroduced in the GTN model),

and the identification of these parameters is hohys easy and often questionable. Moreover, and
despite the significant progress made in this atesse extended models are still unable to acdyrate
consider relatively complicated situations, sucke@splex loadings (as these models are mainly based
on axisymmetric loading), or realistic void shafesthese models only consider spherical or eliijaso
voids).

To overcome the above-mentioned drawbacks, a nuofliammerical approaches, based on unit cell
finite element computations, have been developeddriterature. In these models, the ductile s@lid
represented by a spatially periodic arrangemenidentical unit cells. Therefore, to describe the
mechanical behavior of the whole solid, it is sti#fint to consider a single unit cell, to which applied
relevant boundary conditions that accurately actdémnthe effect of neighboring unit cells on the
mechanical behavior (generally periodic or kinemabundary conditions or a combination of them).
Thanks to its reliability and flexibility, unit dednalysis has been widely employed to investigia¢e
mechanical response of voided materials as wethacompetition between the phenomena of void
coalescence and strain localization. To thoroughBlyze this competition, it is essential to coupié

cell computations with relevant theoretical crigesind indicators that are able to accurately predich
material instability phenomena. Several indicateeise been adopted in some contributions as void
coalescence criteria, while in other contributiassstrain localization criteria. Indeed, the diiion
between the two phenomena and the corresponditegiarhas not been clearly established in early

investigations. These criteria can be categorimtmifour main families:

Initial imperfection criteria: this approach, following the same spirit as therdi#dak and

Kuczy ski method [{larciniak and Kuczyski, 1967, assumes that strain localizationcurs
when the ratio? of the deformation gradient rate inside the ualt © that outside the unit cell
becomes sufficiently large. It has been first idtroed byNeedleman and Tvergaard (1992)
within unit cell computations to predict the ons#tstrain localization. This indicator has
subsequently been adoptedibynand and Mohr (2014Dezhli et al. (2017andZhu et al. (2018)

to predict the onset of void coalescenceDimand and Mohr (201@ndDaehli et al. (2017the
critical value of parametet has been set to 5.0. Howeveénu et al. (2018have set the critical
value of # to 10.0 by following the work oBarsoum and Faleskog (2011The above
investigations reveal the difficulty in definingumified and consistent threshold value for
Moreover, the associated numerical predictionsgareerally sensitive to the mesh refinement,
and this approach is not able to predict void cz@ace for high stress triaxiality, and when the

Lode parameter is close to 0, as demonstratéthinoum and Faleskog (2018 very similar
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criterion has been usedirko lu et al. (201530 predict the onset of strain localization in vexid

ductile solids.

Maximum load criteriathis class of criteria has been initiatedTergaard (2012and recently

used byTeko lu et al. (2015)who have assumed that strain localization occursntie
equivalent macroscopic stress reaches its maxinaloevMore recentlysuo and Wong (2018)
have proposed a strain localization indicator, Wrassumes that strain localization is met when
the macroscopic force applied on the unit cell neadts maximum value. The same authors have
demonstrated that this criterion is equivalenh®Rice bifurcation approacRi(dnicki and Rice,
1975; Rice, 197% It is interesting to note that this approachamehow similar to the maximum
force criterion developed bywift (1952)to predict the occurrence of diffuse necking imthi

metal sheets.

Energy-basedriterion: this approach, which has been initiated\ibgng and Guo (2015js

exclusively adopted to predict the onset of voidlescence. It defines void coalescence as the
point along the straining history where the rafi@eerall elastic to plastic work rates of the unit
cell attains a negative minimum value. This endvgged criterion has recently been utilized in
several investigations to predict the onset of waidlescence (u et al., 2016; Daehli et al., 2017;
Guo and Wong, 2018; Luo and Gao, 2018

Void growth type criteriathis family of criteria assumes that void coaleseeoccurs when void

growth exhibits abrupt acceleratioreko lu et al. (2015have developed an indicator by closely
following the same concept, which assumes thabttset of void coalescence is reached when
the ratio of the maximum to the minimum effectidagtic strain rate at the void surface first

exceeds 15.0.

It is well known that the competition between thepomena of macroscopic strain localization and
void coalescence is generally dependent on thesssttate, especially the stress triaxiality rati@and

the Lode parameter. Teko lu et al. (2015have demonstrated that macroscopic strain locadizat
occurs prior to void coalescence at high stressitdity, while at lower stress triaxiality, the dw
phenomena occur simultaneously. Motivated by thitef investigation(zuo and Wong (201&have
shown that the onset of macroscopic strain locitineand that of void coalescence are distinct, and
that macroscopic strain localization plays a presurole to void coalescence. Furthermore, they
demonstrate that the difference in the strain Eeelresponding to the onset of strain localizatind
void coalescence, respectively, decreases as desglity T increases, suggesting that both
phenomena may occur simultaneously for sufficielaige T . These latter results are at variance with
the trends obtained byeko |u et al. (2015)This apparent contradiction is likely to be atttddule to
the difference between the void coalescence aathdtrcalization criteria used in both investigago
For the considered ranges of stress triaxialty £ T £ 2.C) and Lode parameter {.CE LE 1.0), Guo

and Wong (2018have enumerated three possible scenarios assbwidtedifferent ranges of and
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L : both macroscopic strain localization and void leseence are possible (fdrO£T £ 2.C,
independently of the value df); macroscopic strain localization is possible, boid coalescence is
not possible (for0.8E£T £ 0.9 and - 1.CE LE 0.4); both macroscopic strain localization and void

coalescence are not possible (for 0.7 and- 1.CE L£ 1.0).

In the present chapter, unit cell computations padormed to investigate the competition between
macroscopic strain localization and void coalesednt a wide range of loading states. The unitisell
subjected to fully periodic boundary conditions (B, allowing for the accurate modeling of the
interaction between the studied unit cell and thigboring ones. This point represents the firshma
theoretical originality of the developed approael, compared to the earlier ondhe periodic
homogenization multiscale scheme is used for detémmthe macroscopic behavior of the unit cell.
This multiscale scheme is coupled with the condemséechnique, detailed in Chapteto numerically
evaluate the macroscopic tangent modulus relakiagrtacroscopic first Piola-Kirchhoff stress rate to
the rate of macroscopic deformation gradient. Téemination of the macroscopic tangent modulus
allows rigorously applying the Rice bifurcationterion for the prediction of the onset of macroscop
strain localization. This accurate application lo¢ tifurcation criterion constitutes the secondmai
theoretical originality of our approach, as theieanumerical approaches were not able to detesmin
the macroscopic tangent modulus. The competititwden the onset of strain localization predicted by
the Rice bifurcation theory and the ductility lisifiredicted by other existing criteria is investiagh To
analyze this competition, attention is focused wo main configurations of loading states. Firstly,
loadings under proportional stressing (or constaess paths) are considered, where the stresalitia
ratio T ranges betweef.7 and 3.0, and the Lode parametéris comprised betweenl.0 and1.0.

For this first loading configuration, our numerigaledictions are found to be consistent with the
classical published trends: strain localizationuss@rior to void coalescence, both being predietied
realistic strain levels for the whole rangesTofand L . Moreover, the trends obtaineddmio and \Wong
(2018) stating that the difference between the strairelte corresponding to the onset of strain
localization and void coalescence decreases assstriaxiality T increases, are confirmed by our
numerical predictions. The second loading confijanacovers the in-plane strain paths used for
predicting the forming limit diagrams (applied heetperforated sheets in ChapirAlthough of major
importance in the context of forming processesnffaility of thin metal sheets), this second loading
configuration has not been sufficiently investighite the early studies based on unit cell compauasti
Our numerical predictions reveal that only plasticain localization may occur for this second
configuration of loading, as void coalescence cabeaeached. The developed approach, based on the
coupling between the periodic homogenization schame the strain localization and coalescence
criteria, is also used for investigating the effeatt void shape and secondary population of voitdihe

ductility limit of thin metal sheets.

This chapter is organized as follows:
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Section3.2 details the micromechanical approach used to ntbealnit cell behavior.
Section3.3 presents the boundary conditions and the two meepis loading configurations
applied in the unit cell computations.

The adopted strain localization and void coalese@niteria are described in Sectior.

The numerical results of the current study arenteplcand extensively discussed in Secticn

Section3.6 closes this chapter by summarizing some conclusodsuture works.
3.2. Micromechanical modeling of the unit cell

We consider a ductile solid defined as an arragutsic unit cells containing a void at their centes,
shown inFig. 3.Ja. Each unit cell may be regarded as a heterogemaedium composed of two main
phases: the primary void and the metal matrix, tvliscitself assumed to be voided to account for the
possible effect of secondary population of voids)( 3.1b). The initial shape of the primary void is

assumed to be spherical or ellipsoidal, while ladl secondary voids are assumed to be spherical. A
Cartesian framge,, e, g) is introduced to define the coordinates of theemiak points, where vectors

e are normal to the faces of the unit cell in theahconfiguration. The origin of this coordinatgstem

is located at the center of the unit cell. Hendee ftnitial unit cell occupies the domain

[-1g/2)06/2) T1g/2413-[1,12,, /2, as shown ifFig. 3.1 (with I, =1mm).

ll

e

= o| of o] o ——
o| p| o] o
o‘/o ol ol |/

!

(a) (b)

Fig. 3.1.(a) Micromechanical model of a material layer cosgd of an arrangement of cubic voided unit cells;
(b) a unit cell containing a centered, sphericatl\surrounded by a voided matrix.

3.2.1. Multiscale transition problem

Considering the periodicity of the void arrangemgnd. 3.1a), the periodic homogenization seems to
be a suitable multiscale scheme to determine theogenized behavior of the unit cellighe, 2003;
Zhu et al., 202)) The use of this homogenization technique allsulsstituting the heterogeneous unit

cell by an equivalent homogenized medium with tae effective mechanical properti€sy( 3.9.
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@) (b)

Fig. 3.2.lllustration of the concept of periodic homogetiaa: (a) unit cell containing primary and secondar
voids; (b) equivalent homogenized medium.

The equations governing periodic homogenizatiorsehare presented in Sectibf (for the general
3D cases) and Sectién2.3(for the plane-stress cases), they are not rechieel for brevity. Further
details on the practical aspects related to théicgipn of the PBCs on the outer surfaces of thié u
cell can also be found in Sectiar3 and Sectior?.2.32 The developments of SectioAs3.2and3.3.3

provide more details on how to apply the correspanchacroscopic loading¥he constitutive relations

describing the mechanical behavior of the metatimatill be detailed in Sectiofi.2.2.
3.2.2. Constitutive model for the metal matrix

To account for the effect of secondary populatibwoids, the mechanical behavior of the metal matri
is modeled by the original Gurson porous mddelrson, 197). The same methodology can be applied
for any other constitutive framework (for instantee GTN model to include void nucleation and

coalescence). A typical finite element mesh foruhi cell is presented iRig. 3.3

Fig. 3.3.Finite element mesh for one-half unit cell, fduskration.
At the microscopic level, a relationship has beerived by combining the constitutive relations fud t
metal matrix:
p=cPY ¢ (3.1)

PK1)

The expression of the microscopic analytical tangemdulusc( is determined from the following

developments. As a departure point for these dpwadmts, the strain rate is expressed as the

symmetric part of the microscopic velocity gradigrisee also Eq2.2)):

d=%(g+gT). (3.2)
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Meanwhile, the strain raté is itself split into its elastic and plastic padsandd®:
d=d°+dP". (3.3)

In a co-rotational material frame (we adopt hew ¢h-rotational frame associated with the Jaumann

objective rate), the Cauchy stress rate is destmbih the following hypoelastic law:
=ctd’, (3.4)
wherec® is the fourth-order elasticity tensor.

The plastic strain ratd” is determined by the normality rule:

1F
dP=/—,
T (3.5)
with / denoting the plastic multiplier, andl the Gurson yield function defined as:
2
F= _c +2fscosh% SERRA¢ (3.6)

y y

where

. . . . 1/2
o IS the von Mises equivalent stress, equildo,.,: /2) .

@ and ,=tr( )/3 are the deviatoric and hydrostatic parts of thedbg stress tensor,

respectively.

, Is the yield stress of the dense metal matrixneefby the Swift hardening law:

,=K(o+7P) (3.7)

where K, , andn are hardening parameters, antl is the equivalent plastic strain of the
dense metal matrix.
Note that settingf, =0, one recovers the conventiordalflow theory with isotropic hardening. This
particular case will be used when the metal magrexsssumed to be fully dense.

In the current chapter, only growth of secondaridsas considered (i.e., the effects of nucleatibn
new secondary voids and coalescence between gxigiids are neglected). By neglecting the elastic

volume change, the rate of the secondary void velfraction reads:
fo=(1- f,)tr(d"). (3.8)

The equivalent plastic strain raté is obtained from the equivalence principle in tewhrate of plastic
work for the metal matrix and its dense patrt:

:dP
(1- fs) y .

The activation of plastic flow is governed by thpphbcation of the Kuhn—Tucker constraints:

(1- f,) , "= :d°0 = (3.9)
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elastic loading / unloading:F £ 0; F < 0; / = |

elastoplastic loading:F = 0; F = 0; / > 0. (3.10)
In the case of elastoplastic loading, conditr= 0 can be expanded as follows:
F=V 1 +V, y V. =0, (3.11)
where:
:E :i 3ﬂ+ fscosh h |2 :
ﬂ y y 2 y
F 1 i 3
Vsy :ﬂ_ =-—2 -2 +3 fsSinh —h (3.12)
ﬂ y y y 2 y
V, =1 o ocosh 3n 21,
s Tl'fs y

The substitution of Eq$3.3), (3.5)and(3.12) into Eq.(3.4) leads to the following expression for.
=ce:(d- dp)z ce:(d- / V)= c®:d. (3.13)
The combination of the above equations allows ushtain the following expression for the plastic

multiplier / :

:c°:d Vo :v)T
/| =——"— where H, =V °V - ! y
H, / (1_ fs) KRG (3.14)
The expression of the elastoplastic tangent modeffusan be derived by combining Eqs.13)and
(3.14)

(ce:V )A(V :ce)

ep — ~€_
c?=c"-a H, 1 (3.15)

where a =0 for elastic loading or unloading, arl=1 for elastoplastic loading.

The relation between modutf® and ™ can be found in Sectich?2.2
3.3. Periodic boundary conditions and macroscopiohding

The periodic homogenization problem briefly recdllén Section 3.2.1 is solved within the
ABAQUS/Standard finite element software. The mdeps of this solution strategy are summarized

hereafter:

Discretization of the unit cell by finite elements:this end, the C3D20 quadratic solid element

is used, with a higher mesh density around thegmymoid (to avoid potential element distortion).
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A user-defined material (UMAT) subroutine is used implementing the Gurson constitutive

equations describing the mechanical behavior oftbtal matrix.

Application of the periodic boundary conditions (B8: this task is automatically managed by
using the set of python scrigtdmtools(as described in Chapteand?). These PBCs are applied
on the six (resp., four) outer faces of the unlit @ehen this unit cell is subjected to proportibna
stressing (resp., proportional in-plane strain path will be detailed in Sectiofis3.2and3.3.3
Further practical details on the application of BBCs were provided in Sectidn3 and Section
2.2.3

Application of macroscopic loading: in the currehtipter, the unit cell may be subjected to two
different loading configurations. Firstly, macropao proportional stressing (i.e., proportional
stress paths) to investigate the effect of thesstigaxiality ratioT and Lode parametdr on the
competition between void coalescence and macrosqapstic strain localization. Secondly,
macroscopic proportional in-plane strain pathsregjct forming limit diagrams (FLDs) of thin
voided sheets. To apply the first loading configiora some extensions of the set of python
scriptsHomtoolsare requiredHowever, the application of the second loading igumation is
easily achieved by using théomtools(see Sectio2.2.3. Further details on the first and second

loading configuration will be given in Sectiofs3.2and3.3.3 respectively.

Computation of the macroscopic mechanical respotteeHomtools enables to readily and

automatically manage this task.
3.3.1. Periodic boundary conditions

The fully PBCs are practically applied on the odgeres of the unit cells. The developments presente
in Section1.3 have detailed how to apply PBCs in one space dwector the two following
macroscopic loadings, these developments will weopaed in 2 directions (direction 1 and direction

2) for proportional in-plane strain paths while3idirections for proportional stressing.
3.3.2. Proportional stressing

As previously stated, loadings under macroscopipg@rtional stressing (i.e., proportional streshipat
are applied to investigate the effect of the stiteissiality ratio T and Lode parametet on the
competition between void coalescence and macrosgigstic strain localization. In this case, thé& un
cell is subjected to a diagonal triaxial macroscatiess state (without shear stresses) as iltadtia
Fig. 3.4
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Fig. 3.4.Unit cell subjected to triaxial macroscopic stretsge without shear stresses.
Proportional stress state requires that the steg®s 6, and b, defined as:
b =—; b,=—%, (3.16)
33 33
should be kept constant during the deformatiorohystin Eq.(3.16), ,,, ,, and ,; designate the

diagonal components of the macroscopic Cauchysstegsor , which is related to its microscopic

counterpart through the following averaging rule:

=L (x4, (3.17)

where s the cell volume of the current configuration.

The macroscopic hydrostatic stresg and the macroscopic equivalent (von Mises) stregsare

obtained from components,, ,, and ,, as:

2

—_ 11 22 33 . _i _ 2 _ _ 2
h_f ) eq_\/é\/( 11 22) +( 11 3:«)"'( 22 3;- (3-18)

Assuming that ;,° ,2 .., the macroscopic stress triaxiality raioand Lode parametdr can be

expressed in terms of the stress raifpsand b, (Liu et al., 201%:

T=—h = \fé(l-l- b +2b2) > Sgn( 33) ,
eq 3\/(1- bl) + (]: /92)"' (bl' bz) (3.19)
L=l b D) o0
b -1

Stress triaxiality ratiof and Lode parametdr characterize the spherical and deviatoric parthef
macroscopic stress state, respectively. Rafiaand L are kept constant during the deformation history

by prescribing constant values foy and b, . By inverting Eq(3.19) b, and b, can be expressed as

functions of T andL:
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_3TY3+ 12 +3-L

T3+ 12-3 L

b= IVIF L+ A

> a3 1= 3L

b, (3.20)

It is worthwhile to note that this inversion is notique, as multiple combinations ¢f and b, can be
obtained for the same valuesDfand L (\Wong and Guo, 20)5The influence of this non-uniqueness
on void coalescence can be found in Seciioh\Wong and Guo (2015By following Liu et al. (2016)

the solution forh, and b, given by Eq.(3.20) is adopted for all the predictions of Sectiorn.3
Meanwhile, we have adopted the following sign cantiom for L : the extreme values df = +1,-1,0
refer to the stress state case of generalized @ssipn, generalized tension and pure shear,
superimposed with hydrostatic stress, respectiyely et al., 201). Note that an opposite sign
convention,L =+1, -1, is adopted in numerous studi@siiand and Mohr, 2014; Wong and Guo, 2015;
Guo and Wong, 20)8or generalized tension and generalized compressisectively.

To apply proportional triaxial stressing, 3D peroboundary conditions shall be imposed on the six
outer faces of the unit cell (two by two faces)|dwing the concept presented in Sectibf. In this
case, three reference poirR}, RE and RE are created by using thdomtoolsto manage these
boundary conditions and the macroscopic loadings€heference points are defined by the following
displacements:

RR:U,=(F;-1)1y;U.= 0;U = 0;
RR:U,,=0;U,,=(F,-1I,;U,= 0; (3.21)
RR: Uy, =0;U,=0;Ug=(Fs;u- I,

ComponentsH;, F,, and F,; of the macroscopic deformation gradiéntshould be prescribed in such

a way that the stress triaxiality ratio and the Lode parametér hold constant during the entire
deformation history. Such prescription is not pbiesto be directly operated on the displacements of

the reference point®R, RE and RR. To overcome this inconvenience, an extra dummygfwost’)
node is introduced into the finite element modéie DOFs of this dummy node and the associated

reaction forces are denotéldl* ,U;,U;) and(a,.a,a ;) , respectively. A user subroutine MP&qus,

2014 has been developed to connect the dummy node thribe reference poinRR, RE and RR

(and further to the unit cell). In this subroutirtee reference points serve as slave nodes, wigle t
dummy node serves as master node wherein the fpaglimposed. The master node transmits the

imposed loading through the multi-point constratotshe reference points as stated by (B®2)

Ull UI
U, = U,. (3.22)
Us; U;
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where is a functional to be determined in order to eesbat the displacements,, U,,, andU,,
applied on the reference points lead to the pheedriratios 4, and b6, between the different
macroscopic stress components. A simplified iltsdn of the MPC subroutine is shownHim. 3.5
—> b (] = ) =01 =

RF{- Ull_( ':11' 1) |01U12_ 01U13_ 0
»RR: U, =0;U,,=(Fy,-1)1,;U,= 0

Uy =0;U,=0;U,=(Fp- D 1,

Functional  vie

dummy nod¢U. U’ U’
Y eé v 3) MPC subroutine

—» RR:Uy,

Fig. 3.5.Schematic illustration of the multi-point consinai between the dummy node and the reference points
(RR, RR, RE).

We next detail the derivation of the expressiofuattional . In this aim, the work rate equivalence

between the dummy node and the unit cell shalldeel {iu et al., 201}:
U4 | T e, (3.23)

whereU™ and are the displacement and the associated reaciior f/ectors of the dummy node,

respectively. As to andG , they represent the storage vectors for the dagoomponents of the
macroscopic Cauchy stress and the macroscopic itelgradient associated with the unit cell,

respectively:

a, Ul 11 Gn
=a, ; U=U, ; = , ; G=G,. (3.24)
as U; 33 G33

VectorsU" andG may be linked by a transformation matrix belonging to  (3)?2 (Wong and

Guo, 201%:
G11 Ul
G, = xUj. (3.25)
G33 U;

In the present contribution, we have adopted thmfof ~ given byLiu et al. (2016)
sin’/ ,+cos , cg$ | jcos,/ cof s £os gip / cqs sin
= coy, cgs, gin,- jcos/ sing, j cos Sing dos j / sip sin. (3.26)
- coy, sin , - gin,/sin, J Cos,
The form(3.26)of the transformation matrix is valid for ., >0 (i.e., sgn( ,; )= J). This condition

is obviously ensured for the loadings studied inti®a 3.5.3 where0.7£T £ 3and- 1£ LE 1, which

corresponds to positive stress ratifgsand b,. The expressions of the rotation angiesand/ , used

to define matrix  will be derived in the subsequent developments.

ZMatrix  belongsto (3) if  isorthogonal (i.e., *= T)anddet )=1.
-103-



Chapter 3 Investigation of ductile failure inided solids

The external loading is applied on the dummy nau# the transformation matrix is used to suitably

transfer this loading on the different referencengo We apply a linear displacement on only thelth

DOF of the dummy node withl; =1. The first two DOFs are left free. Consequentig, ¢orresponding

reaction forces are equal to zero (namely=a, =0). With this particular loading, E¢3.23)reduces

to:

a3U; :| |( 11G11+ 253 22+ 3@ 3)' (327)
Without dwelling into the mathematical details, alinihave been extensively discussed\inng and

Guo (2015)andLiu et al. (2016, the expression of, can be derived as a function |011 and the

components of the macroscopic stress, ,, and ,, as follows:

a, =| |\/( W) 02 () (3.28)

By involving Eqs.(3.16), Eq.(3.28)can be rewritten as follows:

oz WO+ = (o) =) ) » e

Using the fact that, =a, =0, the rotation angleg, and,/ ,, which define the rotation matrix

introduced in Eq(3.26), can be obtained by the following relationshipsi et al., 201):

jrmant 2y et ) (3.30)
1

The substitution of Eq$3.30)into Eq.(3.26) leads to the following expression of the transfation

matrix

(&) m(8)" b0, 1)

(b +(6) (o) +(e) .

= b b, (m]) (b1)2+(b2)2m with  m= - —. (3.31)
(Y +(6) (o) +(6) By +(5.) +1
-bm - Bm m

For proportional stressing, the transformation iRatr holds constant during the loading (as ratips

and b, do not change). Hence, the integration of Ed25) leads to the following expression:

E11 Ul
E, = .U,, (3.32)
Ess U,

whereE is the macroscopic logarithmic strain tensor defias:

E= ;G dt=In(F). (3.33)
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The combination of Eq$3.21), (3.32)and(3.33)yields:

=(Uu/1o) +1=e( nUit Uz lﬁ;

(U 22/|0) +1:e( 21U+ U+ zyiz); (334)

Fll
I:22
Fro= (Usfl) +1zel 25 % ¥4,

The expression of functional can be readily identified from E3.34) Thus, the relations between
the DOFs of the dummy node and those of the tlafeeence points to be implemented in the MPC user
subroutine are summarized by E@3.34). The PBCs together with constrairits34) determine the
boundary value problem of the unit cell, and thapprtional stressing applied during the loadingdnis

3.3.3. Proportional in-plane strain paths

We consider a thin metal sheet made of 2D arraspinfed unit cells (a single unit cell in the thieas
direction), as depicted iRig. 3.6a. Loading under macroscopic proportional in-planaistpaths is
classically adopted to predict forming limit diagre (FLDs) of thin metal sheets. In this case, thé u
cell is subjected to biaxial stretching in the H @directionsiig. 3.t). Additionally, the out-of-plane
P, P.

components of the macroscopic first Piola-KirchhstifessP (and thus ): P, P,,, Py, Py, and Py,

)3
are set to zero. The strain-path raticc E,/ E,, is kept constant during the loading, and it ranges
between- 1 2uniaxial tension state) and 1 (equibiaxial tenstate). The other in-plane components
of the macroscopic logarithmic strai, E,,) are set to zero. In this case, PBCs are onlyiegppin
the faces normal to directions 1 and=2y( 3.th). However, faces normal to direction 3 are freenf

any boundary condition. This specific choice englteensure the macroscopic plane-stress stdte in t

third direction.

!

(a) (b)
Fig. 3.6.(a) Thin metal sheet made of 2D array of voidei cgils; (b) unit cell subjected to in-plane straiath.

Recalling that the macroscopic loading takes thieviicng form (the same as the loading in Section
2.2.9:
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F, 0 7 2 20
F=0 (R) ? ; P=2?2 2 0, (3.35)
? ? ? 0 0O

where components marked by “?” are unknown and teée determined. Componerfg, F,;, F,;,
F,, and F,, are calculated by making use of the plane-stresditons:

F:)l3 = P?:l: P23: P32: P33:0' (336)
To apply the 2D periodic boundary conditions arerttacroscopic loading of EG.35), three reference
points RR, RE and RR should be created. The prescribed boundary conditshould be applied on

the reference points (a displacementRid and RE, and a force orRR) to comply with Eq(3.35),
are the same as E@..17)(in Section2.2.3.

3.4. Void coalescence and strain localization crit&

In the present work, attention is directed towahagsprediction of ductile failure by using four iodtors,
which will be presented hereafter: the first thoges have been used in previous contributions (but
without rigorous coupling with the periodic homogetion multiscale scheme), while the last one is
applied for the first time herein. These differamticators will be classified for the loading cageler

proportional stressing.
3.4.1. Maximum reaction force criterion

This indicator has been adopted:ino and Wong (201&p predict the onset of strain localization. With

this criterion, strain localization is attained whthe reaction force componeat applied on the
dummy node and defined by E.28)reaches its maximum value, or equivalently:

a, =0. (3.37)

The critical equivalent strain predicted at the neaitrwhen this criterion is verified will be denotE@.

3.4.2. Maximum equivalent stress criterion

This indicator, initiated by vergaard (2012)states that material failure occurs when the osmpic

equivalent stress ,, reaches its maximum value. For triaxial proporiogtressing, the macroscopic

Cauchy stress tensor takes the general form:

L 0 0 b, 0 0
=0 , 0=,0 b, 0. (3.38)
0 0 0 0 1
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In this case, the macroscopic equivalent stregscan be expressed as follows:

:\/( 1 22)2+( 1 33)2+ ( 2 392:\/(b1)2+(b2)2-b1b2- b; by 1| 3J' (3.39)

The critical equivalent strain predicted at the nsotrwhen this criterion is verified will be denotﬂ.

3.4.3. Energy-based criterion

The energy-based criterion has been proposed/ioyg and Guo (2015nd is based on the fact that
void coalescence involves localization of plastafadmation between neighboring voids, with the
material outside the localization band undergoiagte unloadingffardoen and Hutchinson, 200To

apply this criterion, elastic and plastic work saghould be computed:

We = :d°d . WP= dPfd (3.40)

where is the microscopic Cauchy stress tenstirandd® are respectively the elastic and plastic
parts of the deformation rate tensor. The sigmefratioWw® MW?P implies three different loading states:
We¢/WP>0 for a state of elastoplastic loadingy®/W" <0 for a state of elastic unloading,
We/WP=0 for a state of neutral loading. Followirngong and Guo (2015)the onset of void

coalescence is deemed to occur when the VifiboW" attains a minimum and is negative.

The critical equivalent strain predicted at the neaitrwhen this criterion is verified will be denotE@.

3.4.4. Rice bifurcation criterion

In this chapter, the Rice bifurcation criterionaidopted to predict the macroscopic strain locatpat
under both loading configurations: proportionalesting (3D stress configuration) and in-plane
proportional strain paths (plane-stress conditide in-plane formulation of this criterion has bee

presented in Sectich 3.3 In the following, we present the formula in 3Pest configuration.

Following the Rice approacl (idnicki and Rice, 1975; Rice, 197the onset of strain localization may
be mathematically related to the loss of ellipyicdf the macroscopic governing equations. The

kinematic condition for the strain path jump reada Lagrangian framework:

(3.41)

where:

F is the jump of the velocity gradient field across the localization band equal to the
difference between velocity gradient outside thedb&® and its counterpart inside the baRtd

is the jump vector,
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is the unit vector normal to the localization baindthe initial configuration equal to

(sing,cosy, , sim, siw, ,cog), whereg, (0£¢, <2 ), g, (0£g,£ ) is the inclination of

vector

The continuity condition of the in-plane force didprium through the band writes:

Px =0 (3.42)

Combining Eqgs(3.41) (3.42)and(1.24), one can deduce the following condition:
(d“”( A )} -0, (3.43)
which can be equivalently expressed in its indemfo

"i=1,2,3: ( 'Cij(lzKl) |) = 0, jki= 1,2,. (3.44)

J

(PK1)

IntroducingC as the transpose of macroscopic tangent modzitd (' see also Section3.3:

",k = 12,3 = cli, (3.45)
Condition(3.44)is written as:

"F123 (cf )= 0 ikl 128 (3.46)
This criterion corresponds to the singularity af thacroscopic acoustic tensor >CPRY
def ™ x ) o (3.47)
This condition will be reduced into its in-planero(2.40)when the plane-stress condition is considered.

The practical details about the implementationhef ¢ondensation technique for computt’r)@“) can
be found in Sectiofi.4.2and inZhu et al. (2020)As presented in boxof Sectionl.4.2, step 2 requires
that all the nodes of the mesh are partitioned twim categories: set made of the nodes located on
the boundary surfaces where periodic constraisnaposed and set composed of the other nodes.

So that, set is made of the nodes located oy 5, o 0 s o (S€eFig. 1.7) when

+

proportional stressing is applied, ang, ,, 4 o When proportional in-plane strain path is

applied (the same situation addressed in Chéapter

The critical equivalent strain predicted at the nsatrwhen this criterion is verified will be denotE@.
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3.5. Numerical predictions

The material parameters used in the simulationsrteg in Sections3.5.2 3.5.3 and 3.5.4 are
summarized in Sectiof.5.1 Then, the validity of the periodic conditions &pg on the boundary of
the unit cell is examined in Sectiéh5.2 by assessing its degree of accuracy and effectbgeme
reproducing the behavior of the macroscopic mediafterward, the predictions performed under
proportional stressing are presentedin.3 where some of our numerical predictions are fallyr
compared with existing results published in ther&ture. The competition between void coalescence
and macroscopic plastic strain localization is ftdlg analyzed in this section. Finally, SectiGrb.4
focuses on the predictions of forming limit diagsafor thin voided metal sheets by using the devedop

numerical approach.

3.5.1. Material parameters

The initial volume fraction of the primary voidl, is set t00.04 in all the simulations presented

hereafter. The metal matrix is assumed to be fidlgse for all the simulations of Sectidhs.1and
3.5.2 The effect of the secondary void population igBtigated in Sectiof.5.3by varying the value
of f,,. The mechanical behavior of the dense part ofriteal matrix is assumed to be elastically and

plastically isotropic. For consistent comparisorithviziu et al. (2016) the elasticity and hardening

parameters provided inable 3.1are used in the different simulations.

Table 3.1.Elastoplastic parameters of the dense matrix.

Elasticity Hardening

E (GPa) n K (MPa) o n

210 0.3 958.8 0.0025| 0.105%8

The initial yield stress , of the dense matrix can be deduced from the paesmgiven infable 3.1

=K ()" (3.48)
3.5.2. Validity of the periodic boundary conditions

One of the most important issues in terms of engutihat a homogenization multiscale scheme is
accurate and effective is how the boundary conuitare treated. It is well known that uniform boairyd
conditions (kinematic or uniform force) requireade representative volume element to accurately
capture microscopic properties and phenomena. Biyrast, PBCs can provide better evaluations of the
microscopic fields and thus of the macroscopicaasp than uniformly distributed conditions, even fo
non-periodic geometries ¢rada et al., 2000; Kanit et al., 2003; Henys e2819. Despite its major
importance, the effect of boundary conditions om dhset of void coalescence or macroscopic strain

localization has not been analyzed in earlier itigations. In fact, a large majority of these
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investigations use KBCs.i( et al., 201) or a mixture of KBCs and PBC&{rsoum and Faleskog,
2011; Wong and Guo, 2015; Guo and Wong, 2018; Zhal.£201§, and a very limited number of
contributions is based on fully PBCs. In the préssttion, we investigate the effect of the applied
boundary conditions on the distribution of the ragmopic fields and on the onset of strain localirt

as predicted by the Rice bifurcation approachhis &im, we consider a 2D voided thin sheet made of
5" 5 unit cells. This sheet is subjected to classiqaitgaxial loading until 1% of deformation in each
direction (ig. 3.9.

O O O ()
O O () ()
&0 O O 0O OpF=)
e e 0 0 ¢
e 00 0

Fig. 3.7.The entire sheet with the prescribed boundary itiond.

The distributions of the microscopic equivalentr(\dises) stress and plastic strain at the end f th
loading with a focus on the central unit cell arewn inFig. 3.8 This figure highlights the heterogeneity

of the microscopic fields, especially around thaso

A 4

(a) (b)
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