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DUCTILITY PREDICTION OF METAL SHEETS USING CPFEM (C RYSTAL 

PLASTICITY FINITE ELEMENT METHOD) 

 

RÉSUMÉ : Cette thèse a pour objectif de développer un outil numérique multi-échelles capable de 

prédire la ductilité des matériaux hétérogènes présentant une microstructure périodique. Tenant compte 

de la périodicité spatiale des milieux étudiées, la technique d’homogénéisation périodique est retenue 

pour assurer la transition entre les échelles microscopique et macroscopique. Cette technique, formulée 

sous l’hypothèse des grandes déformations, est couplée à l’approche de bifurcation de Rice pour prédire 

les limites de ductilité des matériaux étudiés. Pour assurer ce couplage, trois techniques numériques ont 

été implantées et comparées pour calculer le module tangent macroscopique. Ce couplage a été utilisé, 

entre autres, pour prédire la limite de ductilité des milieux poreux et polycristallins. L’étude menée sur 

les matériaux poreux a permis de bien analyser la compétition entre la coalescence des cavités et 

l’apparition du phénomène de localisation de la déformation plastique. D’un autre côté, l’étude portant 

sur les matériaux polcrystallins a mis en évidence l’effet de plusieurs paramètres sur la perte de ductilité 

de ce type de matériaux. 

Mots clés : milieux hétérogènes, homogénéisation périodique, ductilité, théorie de bifurcation, module 

tangent macroscopique.  

ABSTRACT: The main objective of this PhD thesis is to develop a multi-scale numerical tool capable 

of predicting the ductility of heterogeneous materials displaying periodic microstructure. Considering 

the spatial periodicity of the studied media, the periodic homogenization technique is selected to ensure 

the transition between the microscopic and macroscopic scales. This technique, formulated under the 

large deformation assumption, is coupled with the Rice bifurcation approach to predict the ductility 

limits of the studied media. To ensure this coupling, three numerical techniques have been implemented 

and compared to compute the macroscopic tangent modulus. This coupling has been used, among other 

applications, to predict the ductility limit of porous and polycrystalline media. The study conducted on 

porous media has allowed the careful analysis of the competition between void coalescence and the 

onset of plastic strain localization phenomenon. On the other hand, the study carried out on 

polycrystalline materials has highlighted the effect of several parameters on the loss of ductility of this 

type of materials. 

Keywords: heterogeneous media, periodic homogenization, ductility, bifurcation theory, macroscopic 

tangent modulus. 
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General introduction 

Context of the thesis 

This work has been carried out within the research team ‘Méthodes Numériques, Instabilités et 

Vibrations’ of the laboratory ‘Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux’ 

(LEM3) at ENSAM, Metz Campus. The main objective of this thesis is to develop a numerical tool 

based on the periodic homogenization approach to predict the ductility limits of heterogeneous materials 

(composites, polycrystalline aggregates, porous media…). 

Motivation and general framework of the study 

Sheet metals represent a significant part of the materials used for the manufacture of various components 

and finished products, particularly in industry and technology (automotive, rail, aeronautics, household 

appliances, electronics, etc.). The current climate and environmental standards require the producers and 

processors of metal sheets (steelmakers, automobile industry, etc.) to improve the production and the 

industrialization methods in order to meet new competitiveness challenges. Among these initiatives, one 

of the important innovations is to considerably lighten metal parts and products, while maintaining their 

strength. It is reported that reducing the mass of a vehicle by 25%, for example, reduces its fuel 

consumption by 15%. However, this lightening of the structures requires an advanced design of new 

metallic materials with optimal physical and mechanical properties (low mass density, high mechanical 

resistance, high ductility, high corrosion resistance, etc.). Nowadays, new generations of metallic 

materials, such as stainless steels, titanium alloys and new aluminum alloys emerge in succession. At 

the same time, the development of these new metallic materials often requires a deep understanding of 

the physical mechanisms involved in plastic deformation. Indeed, the application of sheet forming 

processes, such as stamping or deep drawing, can lead to the appearance of defects (related to plastic 

instabilities) on the formed parts. These instabilities can be classified into two main families: structural 

instabilities (buckling, wrinkling, springback, etc.) and material instabilities (diffuse and localized 

necking, damage, etc.). In this thesis, attention will be paid to the second type of instabilities, and more 

specifically to localized necking. This localized form of necking manifests itself as a very strong 

concentration of plastic deformation in a very narrow zone of the sheet, and is often preceded by diffuse 

necking, which flows and amplifies until precipitating in the localization of the deformation. The 

occurrence of localized necking represents the ductility limit of a metal sheet, since this phenomenon is 

often precursor to failure. The ductility (or formability) of a material is measured by its capability to 

undergo irreversible deformation without the occurrence of localized necking. To characterize the 

ductility of a material, the concept of forming limit diagram (FLD) is commonly used. To determine a 

FLD, the material is subjected to biaxial loadings according to different deformation paths, ranging from 
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uniaxial tension to equibiaxial stretching. For each applied loading path, the maximum principal 

deformations (in the plane of the sheet) measured at the occurrence of localized necking are determined. 

Thus, the obtained forming limit diagram separates the space of the principal deformations of the sheet 

in two zones: safe zone – the zone below the FLD, and failure zone – the zone above the FLD. Namely, 

the forming processes are therefore calibrated so that the associated principal deformations are located 

below the FLD, in order to obtain formed parts without defects. The first works devoted to the 

determination of FLDs are essentially experimental (Keeler and Backofen, 1964; Goodwin, 1968). 

However, the experimental formability tests are sometimes limited by many practical difficulties, such 

as the high cost of implementing the experimental methods, and the absence of strict standardized 

measures which can thus lead to large variations in the results. To overcome these practical difficulties, 

numerous works have been devoted for several decades to the development of alternative methods based 

on theoretical approaches (analytical and / or numerical). These theoretical approaches are essentially 

based on the coupling of a localized necking criterion and a behavior model describing the mechanical 

response of the studied material. Among the strain localization criteria used in the literature, we can cite 

the bifurcation theory (Rudnicki and Rice, 1975; Rice, 1976), the initial imperfection approach of 

Marciniak-Kuczy� ski (Marciniak and Kuczy� ski, 1967; Hutchinson and Neale, 1978) and linearized 

perturbation stability analysis (Dudzinski and Molinari, 1991; Tóth et al., 1996). The models used to 

describe the mechanical behavior of materials can be classified into two main families: 

phenomenological models and multiscale models. In earlier contributions, phenomenological models 

have been widely adopted to predict the FLDs. In this regard, Hill has developed the Hill's zero-extension 

instability criterion to predict the left-hand side of the FLD using a phenomenological isotropic rigid-

plastic model (Hill, 1952). More recently, Marciniak and Kuczy� ski have developed the initial 

imperfection approach and coupled it with an isotropic rigid-plastic model in order to predict the right-

hand side of the FLD then to complete the Hill’s effort (Marciniak and Kuczy� ski, 1967). Despite their 

reliability and their wide application in the FLD predictions, phenomenological constitutive frameworks 

present some conceptual limitations such as their inability to accurately account for some key physical 

factors and phenomena, such as initial and induced textures and other microstructure-related parameters 

(grain morphology, crystallographic structure ...). These limitations have motivated the researchers to 

set up multiscale schemes for the predictions of FLDs. Contrary to phenomenological modeling, the 

multiscale approaches allow linking physical mechanisms and microstructure-induced properties to the 

macroscopic (or homogenized) mechanical behavior. Most recently, these multiscale strategies, such as 

the Taylor and the self-consistent schemes, have been coupled with several strain localization criteria, 

such as the bifurcation theory, the initial imperfection approach, and the perturbation method in order to 

predict necking limit strains. Our team has contributed to this field, where Lorrain (2005) and Franz 

(2008) have developed a strategy combining the self-consistent scheme with the bifurcation theory. 

Subsequently, Akpama (2016) extended the work of Franz (2008) by coupling the self-consistent scheme 

with the initial imperfection approach, and compared the predictions from this coupling to those from 
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the coupling of self-consistent scheme and bifurcation theory. Despite the substantial advances allowed 

by multiscale modeling strategy, the application of the previous multiscale approaches presents some 

limitations. These limitations are mainly due to the inability of these approaches to accurately take into 

consideration some important aspects in the constitutive modeling, such as a realistic description of the 

grains shapes, geometric and mechanical conditions over the boundary of the polycrystalline aggregate, 

grain boundaries, etc. Indeed, only the weight of the single crystals is considered in the Taylor model, 

without any additional information on grain morphology. By contrast, the single crystals are considered 

in the self-consistent scheme as ellipsoidal inclusions embedded within an infinite matrix. These 

simplifications sometimes lead to significant inaccuracies in the predictions. One of the goals of this 

thesis is to develop an alternative multiscale scheme, based on the Crystal Plasticity Finite Element 

Method (CPFEM), in order to predict the ductility of metal sheets. The use of this latter method allows 

overcoming the above-mentioned limitations in order to obtain more accurate predictions. Certainly, this 

multiscale scheme is flexible enough to be applied for a wide range of mechanical behavior modeling. 

Objectives of the thesis 

This thesis aims to develop a finite element based multiscale numerical strategy (a set of numerical tools) 

to predict the ductility limit of heterogeneous media (such as composites, voided materials, 

polycrystalline aggregates…) and then to investigate the effect of some microstructural parameters on 

ductility. This work is an extension of previous works carried out within our team. On the other hand, 

this numerical strategy can account for not only the multiscale models obviously also the 

phenomenological models. So that, in order to develop our numerical tools, the mechanical behavior is 

firstly described at the microscopic scale by either phenomenological modeling or crystal plasticity 

modeling (CPFEM). Then, the periodic homogenization technique will be adopted to determine the 

macroscopic mechanical behavior of heterogeneous media from that of their microscopic constituents. 

After that, the obtained macroscopic behavior model will be coupled with the bifurcation theory to 

predict localized necking in a number of heterogeneous materials, such as perforated sheets, voided 

materials and polycrystalline aggregates, etc. 

Organization of the thesis 

In order to apply the bifurcation theory for predicting the onset of localized necking, the macroscopic 

tangent modulus needs to be determined accurately and efficiently by the periodic homogenization 

scheme (Chapter 1). Then, the bifurcation theory will be coupled with some phenomenological models 

(in Chapter 2 and 3) followed by CPFEM models (in Chapter 4). So that, the manuscript is structured 

into four main chapters which are described as follows: 
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·  Chapter 1 presents a comparative study of three numerical techniques for the computation of 

the macroscopic tangent moduli by periodic homogenization scheme: the perturbation technique, 

the condensation technique and the fluctuation technique. The practical implementations of 

these techniques within ABAQUS/Standard finite element (FE) code are specifically underlined. 

These implementations are based on the development of a set of Python scripts which are 

connected to the finite element computations to handle the computation of the tangent moduli. 

The extension of these techniques to mechanical problems exhibiting symmetry properties is 

also detailed in this chapter. The reliability, accuracy and ease of implementation of these 

techniques are evaluated through some typical numerical examples. Thus, this chapter provides 

valuable reference guidelines for efficiently applying our numerical tools in the following 

chapters. 

·  Chapter 2 employs the developed tools for the prediction of necking in perforated sheets. The 

results are thoroughly analyzed and compared with those predicted by two diffuse necking 

criteria: the maximum force criterion and the general bifurcation criterion. A sensitivity study 

is also conducted to numerically investigate the influence on the prediction of necking of the 

design parameters (dimension, aspect-ratio, orientation, and shape of the holes), the 

macroscopic boundary conditions and the metal matrix material parameters (plastic anisotropy, 

hardening). 

·  Chapter 3 applies the developed tools for the prediction of the occurrence of two failure 

mechanisms in ductile solid: void coalescence and macroscopic strain localization. In these 

predictions, the mechanical behavior modeling is coupled with several criteria (the Rice 

bifurcation approach, and an energy-based coalescence criterion among others). The occurrence 

of failure mechanisms is examined under two loading configurations: loadings under 

proportional stressing (classically used in unit cell computations to study the effect of stress 

state on void growth and coalescence), and loadings under proportional in-plane strain paths 

(traditionally used for predicting forming limit diagrams). Meanwhile, the relations between the 

two configurations of loading are carefully explained within these two failure mechanisms. The 

effect of secondary voids on the occurrence of macroscopic strain localization is also 

investigated. 

·  Chapter 4 is dedicated to the application of our numerical strategy to FCC polycrystals, where 

the CPFEM is used to characterize the mechanical behavior. The mechanical response at both 

single crystal and polycrystalline scales is highlighted through several simulations. Moreover, 

the crystal texture and hardening evolutions at the microscale as well as the formability of sheet 

metals at the macroscale are investigated. The effect of the number of grains on formability is 

also investigated. 
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Conventions, notations and abbreviations 

 

 

The following conventions, notations and abbreviations are used throughout: 

�  Microscale (resp. macroscale) variables are denoted by lowercase (resp. capital) letters. 

�  Vectors and tensors are indicated by bold letters or symbols. However, scalar parameters and 

variables are designated by thin and italic letters or symbols. 

�  Einstein’s convention of implied summation over repeated indices is adopted. The range of free 

(resp. dummy) index is given before (resp. after) the corresponding equation. 

�  ·�  time derivative of · . 

�  T·  transpose of · . 

�  1-·   inverse of · . 

�  ( )det ·   determinant of · . 

�  ( )sgn ·   sign of · . 

�  ( )tr ·   trace of · . 

�  e·    exponential of · . 

�  ( )ln ·    natural logarithm of · . 

�  · × ·   simple contraction or contraction on one index (inner product). 

�  :· ·   double contraction or contraction on two indices (inner product). 

�  ·Ä·   tensor product (external product). 

�  d ·   the virtual counterpart of field · . 

�  ijd   Kronecker delta. 

�  2I   second-order identity tensor. 

�  ·�   iteration of field ·  (within an incremental finite element computation). 

�  D ·   small perturbation used for the differentiation of field · . 
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�  PT  perturbation technique. 

�  CT  condensation technique. 

�  FT  fluctuation technique. 

�  FUC  full unit cell (without or before application of symmetry restrictions). 

�  RUC  reduced unit cell (after application of symmetry restrictions). 

�  UEL  user element subroutine. 

�  UMAT  user material subroutine. 

�  DOF  degree of freedom. 

�  MPC  multi-point constraints option (ABAQUS terminology). 

�  PBC (PBCs)  periodic boundary conditions. 

�  KBC (KBCs) kinematic boundary conditions. 

�  MFC  maximum force criterion. 

�  GBC  general bifurcation criterion. 

�  RBC  Rice bifurcation criterion. 

�  IN ·    in-plane part of tensor ·  equal to 1

2

·� �
� �·	 


 if ·  is a vector and 11 12

21 22

· ·� �
� �· ·	 


 if ·  

  is a second-order tensor, etc. 

�  ·    the transport of ·  in the intermediate configuration defined by the crystal 

  lattice frame (equal to T × ·r  if ·  is a vector and T × · ×r r  if ·  is a second-

  order tensor). 

�  ·
�

   the transport of ·  in the co-rotational frame (equal to T × ·r
�

 if ·  is a vector and 

  T × · ×r r
� �

 if ·  is a second-order tensor). 
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Chapter 1   
 

 

 

Comparative study of three techniques for the 

computation of the macroscopic tangent moduli 

by periodic homogenization scheme 

 

1.1. Introduction 

The main objective of micromechanical multiscale approaches is to determine the effective (also called 

homogenized, overall or macroscopic) mechanical properties of heterogeneous media under some 

specific boundary conditions. In this context, Hashin and Shtrikman (1962) and Hill (1963) have 

analytically estimated the overall properties of reinforced composites made of linear elastic phases. As 

various nonlinear composites (composites containing at least one nonlinear phase) have attracted special 

interest for both academic and industrial communities, the earlier pioneering works have subsequently 

been extended to determine their effective properties. For instance, Ponte Castaneda and Willis (1988) 

have studied the mechanical behavior of nonlinear viscous composites. Suquet has derived in Suquet 

(1993) several analytical averaging relations for perfectly plastic composites. Teply and Dvorak have 

investigated in Teply and Dvorak (1988) the overall behavior of elastoplastic composites. A 

comprehensive review of analytical approaches, developed to estimate homogenized properties of 

heterogeneous composite materials, has been provided in several contributions (see, e.g., Willis, 1981; 

Mura et al., 1988; Nemat-Nasser et al., 1996; Mercier et al., 2012; Ghossein and Lévesque, 2014). 

Despite their wide use, analytical approaches are unable to give accurate effective properties for complex 

microstructures (random morphology and spatial distribution of constitutive phases…) exhibiting strong 

geometric and material nonlinearities. To overcome these limitations, some numerical approaches have 
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recently been developed, as alternative to analytical ones. In this regard, one may quote at least two 

types of commonly used approaches: those based on Fast Fourier Transforms (FFT), and those based on 

the Finite Element Method (FEM). As to the FFT methods, Moulinec and his coauthors (Moulinec and 

Suquet, 1994, 1995, 2003; Moulinec and Silva, 2014) have proposed a variety of multiscale schemes 

and compared their convergence rates for computing overall properties of both linear and nonlinear 

composites. From these investigations, it has been shown that the contrast between the mechanical 

properties in the phases significantly affects the convergence rate of the FFT-based computations. 

Michel et al. (1999) have demonstrated that FEM-based approaches converge more easily for composites 

with periodic microstructure and made of phases with infinite stiffness contrast (such as rigid inclusions 

or voids). Consequently, FEM-based approaches received more attention when dealing with more 

general heterogeneous materials, such as composites, polycrystalline aggregates and porous media. In 

this perspective, Miehe (2002) has developed a strain-driven homogenization approach for inelastic 

microstructures and composites based on an incremental variational formulation. This formulation can 

be used to compute the macroscopic response of elastoviscoplastic media under the three well-known 

boundary conditions: (i) linear deformation (LD), (ii) uniform traction (UT), and (iii) periodic boundary 

conditions (PBCs). A small strain formulation has been employed in Miehe (2002) to establish the 

multiscale relations as well as the constitutive equations of the different phases. The multiscale schemes 

presented in Miehe (2002) have been extended in Miehe (2003) to finite strain problems, where the 

Lagrange multiplier method has been employed to enforce the above boundary conditions on the 

microstructure. This extension has been achieved by generating a family of algorithms that allow 

deriving homogenized stress and tangent moduli for composites and polycrystalline aggregates. In this 

thesis, our attention is focused on the modeling of the mechanical behavior of heterogeneous media 

exhibiting a periodic or quasi-periodic distribution of heterogeneities (such as composite materials, 

voided media, or polycrystalline aggregates). Considering this spatial periodicity, the periodic 

homogenization approach turns out to be the more suitable scheme to ensure the transition between 

microscopic and macroscopic levels. The studied media are assumed to undergo large deformation. 

Consequently, a total Lagrangian formulation is adopted to formulate the governing equations of the 

periodic homogenization approach, where the deformation gradient and the first Piola–Kirchhoff stress 

tensor are selected as appropriate strain and stress measures, respectively. As first step for the application 

of the periodic homogenization approach, a unit cell assumed to be representative of the heterogeneous 

medium should be selected. Several studies, mainly based on some statistical techniques, have been 

carried out in the literature to evaluate the minimum size of the unit cell to ensure its representativeness 

of the heterogeneous medium. This step is not the object of the current chapter and the interested readers 

may refer to reference (Kanit et al., 2003). Once the unit cell is defined, the equations governing the 

periodic homogenization problem (namely, localization and homogenization relations, microscopic 

equilibrium equations, periodic boundary conditions) are solved by the finite element method. To this 

end, several academic finite element codes, such as Lagamine (Ben Bettaieb et al., 2011) or Zébulon 
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(Feyel, 1999), have been extended by implementing some built-in tools and routines to automatically 

achieve the application of the macroscopic loading and PBCs and the computation of the macroscopic 

response. Analogous to most popular commercial finite element codes, such as ABAQUS/Standard, 

several plugin tools have been developed to easily apply the PBCs as well as the macroscopic loading 

(which can be strain-driven or stress-driven) and to compute the macroscopic response. Among these 

tools, one may quote the toolbox Homtools developed by Lejeunes and Bourgeois (2011), the EasyPBC 

tool proposed in Omairey et al. (2019) or the Python codes developed in Tchalla et al. (2013). 

Unfortunately, the above-mentioned tools are unable to achieve the automatic computation of the 

macroscopic tangent moduli. On the other hand, particular attention has been paid, in some contributions, 

to the efficient and accurate computation of these moduli for some engineering numerical applications 

using multiscale schemes. Indeed, the macroscopic tangent modulus is required for the prediction of the 

mechanical behavior of polycrystalline structures by the FE2 method (Ladevèze et al., 2001; Terada and 

Kikuchi, 2001; Matsui et al., 2004; Asada and Ohno, 2007; Miehe and Bayreuther, 2007; Özdemir et al., 

2008). It is also needed for the prediction of the onset macroscopic material and structural instabilities 

by loss of ellipticity approaches (Miehe et al., 2002c; Michel et al., 2007; Bruno et al., 2010; Tadano et 

al., 2013). In the literature, at least three FEM-based techniques have been developed to determine the 

macroscopic tangent modulus from the periodic homogenization computations: 

�  The perturbation technique (PT): this technique allows reducing the computation of the 

macroscopic tangent modulus to multiple macroscopic stress computations (Temizer and 

Wriggers, 2008; Tchalla et al., 2013). By perturbing the macroscopic deformation gradient, the 

macroscopic tangent modulus is efficiently constructed by a forward difference of the 

macroscopic first Piola–Kirchhoff stress. To obtain the approximation of the i-th column of the 

macroscopic tangent modulus, a small perturbation of the i-th component of the macroscopic 

deformation gradient is needed (for 3D finite strain, where i ranges between 1 and 9). The i-th 

column of the macroscopic tangent modulus is equal to the forward difference between the 

perturbed and unperturbed macroscopic stress divided by the corresponding perturbation of the 

macroscopic deformation gradient. This method, widely adopted to numerically evaluate the 

tangent modulus for several phenomenological models (Kiran and Khandelwal, 2014), has been 

recently coupled with the periodic homogenization scheme in some investigations (Temizer and 

Wriggers, 2008; Tchalla et al., 2013). This technique has the merit of being conceptually easy to 

understand, but generally requires a great deal of CPU time, as the finite element computation 

should be performed ten times for each increment (one time to compute the macroscopic 

unperturbed stress and nine times to construct the macroscopic tangent modulus). 

�  The condensation technique (CT): within this technique, the macroscopic tangent modulus is 

obtained by a condensation procedure of the global stiffness matrix. This method has initially 

been introduced for a small strain formulation (Miehe and Koch, 2002), and subsequently 
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extended to finite strain framework (Miehe, 2003). The practical application of this technique is 

based on the construction of a family of link-topology matrices to automatically represent the 

overall properties of discretized microstructures. The updated global stiffness matrix as well as 

the initial coordinates of the nodes on the boundary of the unit cell are required to compute the 

macroscopic tangent modulus by the condensation method. 

�  The fluctuation technique (FT): in this technique, the deformation gradient of each node of the 

FE discretization is additively decomposed into two parts: a homogeneous part associated with 

the macroscopic loading, and a nonhomogeneous part resulting from the periodic fluctuation 

contribution. As a result of this decomposition, the macroscopic tangent modulus can be written 

as the sum of the volume average of tangent moduli over the unit cell, and a fluctuation part, 

which depends on the global stiffness matrix and on a fluctuation matrix. The volume average of 

microscopic tangent moduli yields the well-known Taylor-type upper bound. The numerical 

procedures of this method at small strain and finite strain have been presented in Miehe et al. 

(2002b) and in Miehe et al. (2002a), respectively. 

In this chapter, the above-discussed three techniques have been implemented in a set of Python scripts. 

In the developments of these scripts, some popular numerical packages, such as the NumPy and SciPy 

library, are used for scientific computing with Python. This choice is motivated by the fact that these 

libraries contain a powerful N-dimensional array object and useful linear algebra methods, thus enabling 

efficient matrix computations (reduced computation time and memory space). These python scripts are 

interpreted as post-processing of the finite element analysis, which is carried out within 

ABAQUS/Standard FE code. The toolbox Homtools (Lejeunes and Bourgeois, 2011) is used to 

automatically determine and generate the required boundary node sets, constraint equations, periodic 

boundary conditions, and post-processing calculations in order to compute the macroscopic response. 

Technical details, related to the connection between the ABAQUS/Standard FE code environment and 

the developed Python codes, will be provided in this investigation. A comparative study between the 

above-discussed three techniques will be given in the section corresponding to the numerical results. 

Thus, this chapter gives valuable reference guidelines to ABAQUS/Standard users for the determination 

of the homogenized tangent moduli. On the basis of this study, it is demonstrated that the condensation 

technique reveals to be the most efficient method (easy to implement, requires less CPU time and disk 

space). The computation of the tangent moduli corresponding to microstructures exhibiting symmetry 

properties is also detailed in this chapter. Note that such extension to symmetric problems allows 

considerably improving the computational performance. 

The remainder of the chapter is organized as follows: 

�  Section 1.2 provides some technical details about the stress rates and associated tangent moduli 

adopted in ABAQUS/Standard FE code (built-in model or user-defined model) to formulate and 
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solve the weak form of the virtual work principle. These details are essential for the understanding 

of the subsequent sections. 

�  The formulation of the periodic homogenization problem at finite strain, and the practical aspects 

related to the solution of this problem are discussed in Section 1.3. 

�  The numerical aspects and the operational details related to the implementation of the three 

techniques for the computation of the tangent modulus (namely, the perturbation technique, the 

condensation technique, the fluctuation technique) are detailed in Section 1.4. 

�  Section 1.5 is dedicated to the adaptation of the perturbation and condensation techniques to the 

case of microstructures displaying symmetry properties. 

�  In Section 1.6, the implementation of the three techniques is validated by comparing their results 

with those published in Miehe et al. (2002b). The performances of these techniques are reported, 

discussed and compared through some numerical examples. 

1.2. Details on the finite element formulation in ABAQUS/Standard 

The majority of commercial finite element codes (such as ABAQUS, ANSYS, NASTRAN, LS-

DYNA…) allow the accurate computation of the mechanical response of solids and structures exhibiting 

strong material and geometric nonlinearities (elastoplastic behavior, finite strain, finite rotation, 

contact…). Within the finite strain framework, there are several work-conjugate strain/stress measures 

classically used to formulate the virtual work principle, which is the basis of the finite element method. 

For instance, the ABAQUS/Standard built-in formulation1 is based on the Jaumann rate of the Kirchhoff 

stress tensor, while NASTRAN is based on the Truesdell rate of the Cauchy stress tensor. The finite 

element simulation results must be independent of the choice of these strain/stress measures and the 

associated virtual work form. Hence, to ensure the accuracy and correctness of the finite element results, 

the specific stress rate and associated tangent modulus (relating the stress rate to the associated strain 

rate) should be properly chosen. The current section provides a brief overview of the relations between 

the different stress rates as well as the associated tangent moduli commonly used in ABAQUS/Standard 

code. 

Starting with the formulation of the virtual work principle, the equilibrium equation is expressed in a 

rate form as follows: 

 ( )
0 0div + = ,x p b�� 0  (1.1) 

where: 

 
1 It is referred to ABAQUS/Standard formulation without user subroutines for nonlinear incremental analysis in 
this chapter. ABAQUS/Explicit adopts different fundamental solving technique, as well as the theoretical 
formulation. 
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·  p�  is the rate of the first Piola–Kirchhoff stress and ( )
0

divx p�  its divergence with respect to the 

reference coordinate system 0x . 

·  0b�  is the body force rate per unit volume in the reference configuration. 

Multiplying Eq. (1.1) by a virtual velocity field dv  and integrating over the volume of the reference 

configuration 0�  yields: 

 ( )
0

0
0 0div d 0.d � �× + =� �� xv p b��

�
�  (1.2) 

Employing the chain rule and Gauss theorem, Eq. (1.2) can be reformulated as follows: 

  
0 0 0

0 0 0 0 0
0

: d  d  d ,
d

d d
� �¶

= × + ×� ¶� �
� � �

v
p v t  v b  

x
���

� � �
� � �  (1.3) 

where 0�  and 0t�  denote the boundary surface of the reference configuration and the nominal traction 

rate prescribed on 0� , respectively. Vector 0t�  is equal to 0×p n
�

� , where 0n
�

 is the outer normal to the 

boundary 0� . 

The virtual work principle defined by Eq. (1.3) can be equivalently expressed in terms of the Kirchhoff 

stress � ( T= ×p f , where f  denotes the deformation gradient) and its objective derivatives ( )m��  as 

follows (Ji et al., 2013): 

 
0 0 0

( )
0 0 0 0 0: (2 ) : ( ) : ( ) d d d ,m Tmd d d d d� �- - × + × = × + ×� �� � �d � � d d � g g v t  v b  ���

� � �
� � �  (1.4) 

where: 

·  g is the velocity gradient, defined as ¶ ¶v / x , and dg  its virtual counterpart. 

·  d  is the strain rate, defined as the symmetric part of g, and dd  its virtual counterpart. 

·  m is a parameter that defines the different objective rates of the Kirchhoff stress. It is equal to 0, 

1, and 2 for the Jaumann, Biot and Truesdell rates, respectively. 

In ABAQUS/Standard built-in modeling, the Jaumann rate is employed. Hence, Eq. (1.4) is used with 

0m= : 

 
0 0 0

(0)
0 0 0 0 0: 2 : ( ) : ( ) d d d .Td d d d d� �- × + × = × + ×� �� � �d � � d d � g g v t  v b  ���

� � �
� � �  (1.5) 

On the other hand, the Jaumann rate of the Kirchhoff stress (0)��  is related to the strain rate d  as follows: 

 (0) (0) : ,=� c d�  (1.6) 

where the tangent modulus (0)c  is expressed in terms of the jacobian matrix DDSDDE  (using the 

terminology of ABAQUS/Standard FE code) and ( det( ))j = f  as follows: 

 (0) .j=c DDSDDE  (1.7) 



Chapter 1    Computation of the macroscopic tangent moduli 

-25- 
 

Utilizing finite element discretization, the velocity field v  and the strain rate d  can be obtained from 

the nodal displacement rate vector q�  by the interpolation rule: 

 ( )1
; ,

2
T= × = + ×v � q d B B q� �  (1.8) 

with N being the shape function vector, and B its derivative with respect to x . 

The substitution of Eqs. (1.6) and (1.8) into the different components of Eq. (1.5) leads to: 

 ( ) ( )
0 0 0

0

0 0

(0) (0) (0)
0 0 0

0

0 0 0 0

: d : : d d ;

2 : : d  ;

 d d ,

T T T
M

T T
GNL

T

d d d d

d d d

d d d

� � �� � � �= = × × × × = × ×� � � �� � � �
�� � �- × + × = × ×� � �
�
� × + × = ×
��

� � �

�

� �

d � d c d q B c B q q K q 

� d d � g g q K q

t v b v q r 

� � � ��

� �

�� � �

� � �

�

� �

� � �

�

� �

 (1.9) 

where: 

·  MK  is the part of the global stiffness matrix associated with the mechanical behavior. 

·  GNLK  is the part of the global stiffness matrix resulting from the geometric nonlinearities. 

·  r�  is the residual vector. 

Then, Eq. (1.5) can be written in the following discretized matrix form: 

 [ ] .M GNL+ × = × =K K q K q r� � �  (1.10) 

Equation (1.10) is strongly nonlinear, as stiffness matrix K ( [ ]M GNL= +K K ) and vector r�  depend on 

the nodal displacement rate vector q� . Consequently, this equation is classically solved by an iterative 

scheme, such as the Newton–Raphson method. 

For ABAQUS/Standard FE code, when the mechanical behavior is inelastic (elastoplastic, 

elastoviscoplastic…) and built-in material subroutines are used to model this behavior (i.e., without user 

material subroutine UMAT), Eq. (1.9)1 is rearranged as follows: 

  

( )

0 0

0

0 0

(0)
0 0

0

0 0

: d : : d

: : ( ) d

d : d

,

e e

e p

T T e e p

T
E p

d d

d

d

d

� � � �=� � � �

� �= -� �

� �� �� � � �= × × × × -� �� � � �� � �	 


= × × -

� �

�

� �

d � d c d

d c d d

q B c B  q c d

q K q r

�

� �

� � �

� �

�

� �

� �

�

� �
 (1.11) 

where ed  and pd  are the elastic and plastic parts of the strain rate, and ec  is the elasticity modulus, 

which contributes to the elastic stiffness EK . With this rearrangement, the global nonlinear equation 

system (1.10) is reformulated as follows: 

 [ ] + .E GNL p+ × =K K q r r� � �  (1.12) 
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Hence, when the ABAQUS/Standard built-in mechanical modeling is used, the global stiffness matrix 

is only constructed on the basis of the elastic contribution. However, when user material subroutines 

UMAT are used, the stiffness matrix is constructed on the basis of the DDSDDE tangent modulus, 

which obviously considers the effect of both elastic and inelastic behavior. 

On the other hand, the rate of the first Piola–Kirchhoff stress p�  is related to the rate of the deformation 

gradient f�  by the tangent modulus ( 1)PKc : 

 ( 1) : .PK=p c f��  (1.13) 

The substitution of Eq. (1.13) into Eq. (1.3) leads to the following expression of the virtual work 

principle: 

 
0 0 0

( 1)
0 0 0 0 0: : d d d .PKd d d� � = × + ×� �� � �f c f v t  v b  � � ��

� � �
� � �  (1.14) 

Equation (1.14) can be considered as the total Lagrangian formulation of the virtual work principle. 

Forms (1.5) and (1.14) are strictly equivalent as long as the relationship between (0)c  and ( 1)PKc  is 

properly defined. To define this relationship, let us introduce tangent moduli (2)c  and ( 2)PKc  relating the 

Truesdell derivative of the Kirchhoff stress (2)��  ( 2m= ) to the strain rate d, on the one hand, and the 

second Piola–Kirchhoff stress rate s�  to the Green strain rate e� , on the other hand: 

 (2) (2) ( 2): ; : .PK= =� c d s c e � ��  (1.15) 

As demonstrated in Ji et al. (2013), (0)c  is linked to (2)c  through the following indicial form: 

 ( )(0) (2) 1
, , , 1,2,3: ,

2ijkl ijkl ik jl jk il il jk jl iki j k l c c t d t d t d t d" = = + + + +  (1.16) 

where ijd  is the Kronecker delta. 

Meanwhile, (2)c  and ( 1)PKc  are related to ( 2)PKc  by the following indicial forms (Ji et al., 2013): 

 (2) ( 2) ( 1) ( 2), , , 1,2,3: ; .PK PK PK
ijkl im jn kp lq mnpq inkq mnpq im kp nq iki j k l c f f f f c c c f f s d" = = = +  (1.17) 

Equation (1.16) together with Eq. (1.17) define the relations between the different tangent modulus 

forms (namely, (0)c , (2)c , ( 1)PKc  and ( 2)PKc ). If these relations are not strictly respected, the two forms 

of the virtual work principle (i.e., Eqs. (1.5) and (1.14)) become different, and this difference may lead 

to some work-conjugacy issues (convergence problems, errors associated with lack of energy 

conservation…). 

1.3. Periodic homogenization problem 

The periodic homogenization technique is used to ensure the transition between microscopic and 

macroscopic scales. Without loss of generality, we assume that the initial configuration of the unit cell 
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0�  occupies the domain 0 0 0 0 0 0/ 2, / 2 / 2, / 2 / 2, / 2l l l l l l� � � � � �- ´ - ´ -� � � � � � . The studied unit cell is 

assumed to undergo finite strain and total Lagragian formulation is used to formulate the periodic 

homogenization relations. Consequently, the deformation gradient and the first Piola–Kirchhoff stress 

tensor are used as appropriate work-conjugate strain and stress measures. For the sake of clarity, 

microscopic (resp. macroscopic) quantities will be denoted by small (resp. capital) characters and 

symbols. 

The main equations governing the periodic homogenization scheme are outlined hereafter: 

�  The microscopic deformation gradient f  is additively decomposed into its macroscopic 

counterpart F  and a periodic fluctuation gradient perf : 

 .per= +f F f  (1.18) 

The current position x  of a material point can be determined by spatial integration of Eq. (1.18): 

 0 ,per= × +x F x u  (1.19) 

where 0x  is the initial position of the material point, and peru  is a periodic displacement over the 

initial configuration of the unit cell. The expression of the nodal velocity v  can be easily derived 

from Eq. (1.19): 

 0 0 .per per= × + := × +v F x u F x v� ��  (1.20) 

�  The averaging relations linking the microscopic deformation gradient f  and the microscopic first 

Piola–Kirchhoff stress tensor p  to their macroscopic counterparts F  and P : 

 
0 0

0 0
0 0

1 1
d ; d ,= =� �F f P p

� �
� �

� �
 (1.21) 

with 0�  being the initial volume of the unit cell, which is equal here to ( )3

0l . 

Equation (1.21) can be equivalently expressed in the following rate form: 

 
0 0

0 0
0 0

1 1
d ; d ,= =� �F f P p�� � �

� �
� �

� �
 (1.22) 

�  The microscopic static equilibrium equation in the absence of body forces: 

 ( )
0

div .=x p 0�  (1.23) 

�  The constitutive relation describing the microscopic as well as the macroscopic mechanical 

behavior can be summarized by the following generic form: 

 ( ) ( )1 1: ; : .PK PK= =p c f P C F� � ��  (1.24) 

Compared to classic finite element problems, the periodic homogenization problem defined by Eqs. 

(1.18)–(1.24) presents two particular specificities: the nature of the loading to which the unit cell is 
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subjected, and the boundary conditions applied on the outer surfaces of the unit cell. These practical 

aspects will be clarified in the following developments. As a starting point for these developments, the 

virtual work principle given in Eq. (1.3) is reduced to the following form in the absence of body forces: 

 
0 0

0 0 0
0

: d  d .
d

d
� �¶

= ×� ¶� �
� �

v
p v t  

x
��

� �
� �  (1.25) 

Considering the decomposition in Eq. (1.20) and Eq. (1.22), the left-hand side of Eq. (1.25) can be 

written as follows: 

 

( ) ( )( )
0 0

0 0

0 0
0 0

0 0 0

: d : d

: d : d .

per

per

dd
d

d d

� �¶� � � �¶
= +� �� � � �� �¶ ¶	 
 	 
	 


= + Ä

� �

� �

vv
p F p

x x

F p v n p

� �

� �

� �

� �

�� �

�� � ��

 (1.26) 

Considering the anti-periodicity of tensor 0perd Äv n
�

 and the periodicity of Tp� , one can easily show 

that: 

 ( )( )
0

0 0: d .perd Ä =� v n p 0
�

�
� �  (1.27) 

Together with Eq. (1.27), Eq. (1.26) is reduced to the Hill-Mandel condition (Ben Bettaieb et al., 2012a): 

 
0

0 0
0

: d : .
d

d
� �¶

=� �¶	 

�

v
p F P

x�
� � � ��  (1.28) 

As shown in some literatures (Debordes, 1986; Miehe and Bayreuther, 2006; Temizer and Wriggers, 

2008) for the classical periodic homogenization technique within a total Lagrangian formulation, Eq. 

(1.26) enables to treat the macroscopic deformation gradient rate F�  as macroscopic degrees of freedom 

associated with the nodal forces 0 P� � . In practice, the application of macroscopic loading in 

combination with PBCs within ABAQUS is ensured by the use of the reference point technique 

(Lejeunes and Bourgeois, 2011). We detail in the following developments how the reference point 

technique manages the macroscopic loading and the PBCs in only one space direction (direction 1). The 

extension to the other directions can be done in a similar way. 

If we consider two nodes M -  and M +  belonging to faces 01
-�  and 01

+�  and having identical coordinates 

in 2 and 3 directions (Fig. 1.1), the position of these two nodes can be determined from Eq. (1.19): 

 
0 0 

; .per per

M M M M M M- - - + + += × + = × +x F x u x F x u  (1.29) 

The PBCs require that per per

M M- +=u u . Consequently, Eq. (1.29)1 and Eq. (1.29)2 can be combined to obtain: 

 ( )0 0 
.

M M M M+ - + -- = × -x x F x x  (1.30) 

On the other hand, the difference 
M M+ --x x  is defined as follows: 
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 ( ) ( )0 0 
,

M M M M M M+ - + - + -- = - + -x x u u x x  (1.31) 

where 
M +u  and 

M -u  are the displacements of nodes M +  and M - , respectively. Considering the initial 

coordinates of nodes M +  and M - , the substitution of Eq. (1.31) into Eq. (1.30) leads to the following 

relation between displacements 
M +u  and 

M -u : 

 ( ) ( ) ( )
0

2 20 0 
0 .

0
M M M M

l

+ - + -

� �
� 

- = - × - = - × � 
� 
� �

u u F I x x F I  (1.32) 

Practically, the PBCs on the opposite faces 01
-�  and 01

+�  and the macroscopic loading F , summarized 

by Eq. (1.32), are applied by using the multi-point constraints (MPC) option of ABAQUS for each node 

pair ( ),M M- + . The set of python scripts Homtools enables to automatically identify all the node pairs 

of faces 01
-�  and 01

+�  and to apply the MPC between the nodes from the same node pair. To easily 

manage the application of the macroscopic loading and, more interestingly, to automatize the 

determination of the macroscopic mechanical response, a reference point (using the ABAQUS 

terminology ), designated 1RP, is created. The macroscopic loading is applied by imposing the following 

displacement on 1RP: ( )( )1 11 0 2 31 ;  0;  0U F U Ul= - = = . This reference point is connected with each 

node pair to apply the MPC represented by Eq. (1.32). The reaction forces induced by the displacement 

applied on 1RP are equal to the components 11, 12 and 13 of the macroscopic Piola–Kirchhoff stress 

tensor P  multiplied by the initial volume of the unit cell 0�  (Lejeunes and Bourgeois, 2011). Quite 

similar developments can be performed for the application of the PBCs on the other faces. 

  

Fig. 1.1. Illustration of the PBCs between nodes M -  and M + . 

1.4. Computation of the macroscopic tangent modulus 

The practical aspects related to the solution of the periodic homogenization problem by the finite element 

method have been detailed in Section 1.3. This solution is conducted by using the Homtools capable of 

( ) 1node pair ,  managed by - +M M RP

01
+�

02
+�

03
+�

1e
�

2e
�

3e
�
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handling the application of the PBCs and the macroscopic loading as well as the determination of the 

macroscopic response. To achieve this technical effort, we have developed a set of python scripts to 

automatically determine the numerical evolution of the macroscopic tangent modulus by using three 

FEM-based techniques. This is the main objective of the present section, where the theoretical concepts 

behind the three techniques are briefly revisited and the practical implementations of these techniques 

within ABAQUS/Standard FE code are extensively discussed. 

1.4.1. Perturbation technique 

1.4.1.1. Numerical concept 

The macroscopic tangent modulus, denoted ( )1PKC , links the rate of the macroscopic deformation 

gradient F�  to the rate of the macroscopic first Piola–Kirchhoff stress tensor P� . Hence, ( )1PKC  can be 

obtained by the differentiation of the first Piola–Kirchhoff stress tensor with respect to the deformation 

gradient: 

 ( ) ( )1 1: : ,PK PK= Û D » DP C F P C F� �  (1.33) 

where D ·  is a very small perturbation applied to field · . 

Following the perturbation technique, each column of ( )1PKC  is numerically constructed by perturbing 

the components of the macroscopic deformation gradient F  and using the associated perturbed response 

as follows: 

( )
( )

( )

( )
1 ( ) ( )( ) ( )

, , , 1,2,3: withPK ij ij kl ij
ijkl kl kl k l

kl

P P P
i j k l C

F

a a
a a

a a
a

D -
" = » » = + D = + Ä

D

F F
F F F F e e

� �
, (1.34) 

where ke
�

 and le
�

 are respectively the k-th and l-th unit vector, and a  is the perturbation magnitude 

(which typically ranges between 610-  and 810- ). For illustration, the matrix form of Eq. (1.34) 

corresponding to the perturbation tensor ( )
11 1 1

a aD = ÄF e e
� �

 can be written as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1
1111 1122 1133 1112 1123 1113 1121 1132 1131

1 1 1 1 1 1 1 1 1
2211 2222 2233 2212 2223 2213 2221 2232 2232

1 1 1 1 1 1 1
3311 3322 3333 3312 3323 3313 3321

PK PK PK PK PK PK PK PK PK

PK PK PK PK PK PK PK PK PK

PK PK PK PK PK PK PK

C C C C C C C C C

C C C C C C C C C

C C C C C C C ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
3332 3331

1 1 1 1 1 1 1 1 1
1211 1222 1233 1212 1223 1213 1221 1232 1231

1 1 1 1 1 1 1 1 1
2311 2322 2333 2312 2323 2313 2321 2332 2331

1 1 1 1 1
1311 1322 1333 1312 1323

PK PK

PK PK PK PK PK PK PK PK PK

PK PK PK PK PK PK PK PK PK

PK PK PK PK PK

C C

C C C C C C C C C

C C C C C C C C C

C C C C C ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
1313 1321 1332 1331

1 1 1 1 1 1 1 1 1
2111 2122 2133 2112 2123 2113 2121 2132 2131

1 1 1 1 1 1 1 1 1
3211 3222 3233 3212 3223 3213 3221 3232 3231

1 1 1
3111 3122 3133

PK PK PK PK

PK PK PK PK PK PK PK PK PK

PK PK PK PK PK PK PK PK PK

PK PK PK

C C C C

C C C C C C C C C

C C C C C C C C C

C C C ( ) ( ) ( ) ( ) ( ) ( )

( )
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( )

33
( )

12
( )
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( )
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( )
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0
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 (1.35) 

Thus, the first column of modulus ( )1PKC  is computed as: 
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 ( )
( )

1 11
11

( ) ( )
, 1,2,3: .PK ij ij

ij

P P
i j C

a

a
-

" = »
F F

 (1.36) 

The eight other columns are obtained in the same way as for the first column. 

1.4.1.2. Practical implementation 

To determine the macroscopic tangent modulus ( )1PKC  by the perturbation technique, ten FE 

computation steps are performed: one general computation step to compute the unperturbed tensor 

( )P F , followed by nine perturbation steps to compute the perturbed tensors ( )( )kl
aP F  for ,k l =1,2,3. 

The perturbation steps are achieved using the ABAQUS/Standard restart technique. In the general 

computation step, it is needed to specify the requested restart files in the input file. An analysis can be 

restarted only if the restart request is made for it. In ABAQUS/Standard, these files include the restart 

(.res), analysis database (.mdl and .stt), part (.prt), output database (.odb), and substructure database 

(.sim) files. Accordingly, based on these restart data at each specific restart time, the nine perturbation 

steps will restart the analysis with the perturbed macroscopic deformation gradient. It is worth noting 

that the general computation step can be linear or nonlinear, modeled via either built-in material model 

or user-defined material subroutine (UMAT). As to the perturbation computation steps, they are 

performed using the linear static perturbation analysis of ABAQUS/Standard. The algorithmic steps of 

the perturbation technique are illustrated in Fig. 1.2. 

 

Fig. 1.2. Basic algorithmic steps for the perturbation technique. 
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Box 1. Main steps for the implementation of the perturbation technique. 

 

1.4.2. Condensation technique 

1.4.2.1. Numerical concept 

This technique is based on a condensation procedure of the global stiffness matrix K  introduced in Eq. 

(1.10). As previously explained in Section 1.2, when the ABAQUS/Standard built-in material models 

are used to describe the microscopic behavior, the material part MK  of the stiffness matrix is constructed 

on the basis of the elastic tangent modulus. In this case, the condensation technique only gives the elastic 

macroscopic tangent modulus whether the mechanical behavior is elastic or inelastic. To avoid this 

problem, a UMAT should be used to implement the constitutive equations at the microscopic scale.  

To apply the condensation technique, the nodes of the unit cell mesh shall be partitioned into two sets: 

set �  and set �  composed by the nodes in the interior and on the boundary of the unit cell, respectively. 

Let N �  and N �  denote the number of nodes of sets �  and � , respectively. Following this partition, 

let us introduce the three link-topology matrices 9 3
q Î ´� � � , 9 3

q Î ´� � �  and 33 N
q Î ´� �� �  

defined in the subsequent developments. The use of these matrices enables to simplify the algorithmic 

treatment and implementation of the condensation technique. 

The main steps for the implementation of the perturbation technique are summarized as follows: 

�  Step 1 : run the general static step with addition of the option ‘*Restart, write, frequency=n’ in the 

‘.inp’ file and then compute the unperturbed stress ( )P F  by the Homtools. Integer n, used as frequency 

parameter, specifies the increments at which restart information will be written. For example, 

frequency=2 is to write restart information at increments 2, 4, 6, etc. 

�  Step 2: create nine restart ‘.inp’ files with the option ‘*RESTART, READ, STEP=1, INC=n, END 

STEP’ to specify the step and the increment from which restart analysis continues (see Appendix B). 

In these files, static perturbation analysis step is used and the corresponding option is: 

  ‘*STEP, PERTURBATION 

  *Static’ 

�  Step 3: run these nine restart jobs with command ‘abaqus job=job-name oldjob=oldjob-name’, or 

‘abaqus job=job-name oldjob=oldjob-name user=umat.f’ when a UMAT is used in Step 1. 

�  Step 4 ( )( )kl
aP F ( )

kl
aF: output  corresponding to  (k, l = 1, 2, 3) and construct the different columns of 

( )1PKC  by substituting ( )P F , computed in Step 1, and ( )( )kl
aP F  into the differential rule of Eq. (1.34). 

We have developed a set of Python codes to automatically perform Steps 2® 4. Our codes are devoted to 

managing the execution of the general and perturbed steps as well as the numerical construction of ( )1PKC . 
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The topology matrix q� , associated with node q  that belongs to the boundary of the unit cell, consists 

of the components 01qx , 02qx  and 03qx  of the initial coordinate vector 0qx  of node q  as follows: 

 

01

02

03

02

03

03

01

02

01

0 0

0 0

0 0

0 0

0 01,..., : .
0 0

0 0

0 0

0 0

q

q

q

q

qq

q

q

q

q

x

x

x

x

xq N
x

x

x

x

� �
� 
� 
� 
� 
� 
� " = =
� 
� 
� 
� 
� 
� 
� �

��  (1.37) 

Matrix q�  is introduced in order to rewrite Eq. (1.30) in a matrix form that is more suitable for 

algorithmic implementation: 

 ( )1,..., : : ,T T T
p qq q q q

q N + - + -" = - = - × = ×x x F F� � �  (1.38) 

with pN  being the total number of node pairs. 

As to matrix q� , it is built to link the current coordinate vector of the nodes on the boundary of the unit 

cell bx  to the current coordinate vector q q q+ -= -x x x  of node pair q : 

 1,..., : .p q q bq N" = = ×x x�   (1.39) 

The components of matrix q�  take one of the following values: 0, - 1 or 1. 

Using matrices q�  and q� , Eq. (1.38) can be re-expressed in a more compact form: 

 1,..., : T
p q b qq N" = × = ×x F� � .  (1.40) 

Thus, all the periodic constraints of the unit cell can be assembled in the global notation: 

 T
b× = ×x F� � , (1.41) 

where global matrices �  and �  are constructed by concatenation of their nodal counterparts q�  and 

q�  (1 pq N£ £ ): 

 

11

; : .

p p

T

T T
q q

T
N N

� �� �
� � 
� � 
� � := = � � 
� � 
� � 
� � � � � �

��

� �

��

� � � �

� �

 (1.42) 
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On the other hand, following the partition of the whole node set into subsets �  and � , Eq. (1.10) can 

be restated in the following form (after permutation of lines and columns of matrix K  and the 

corresponding components of vectors q�  and r� ): 

 .
� � � �� �

× =� � � �� 
� � � � � �

q rK K

K K q r

� �

� �
� ��� ��

�� �� � �

 (1.43) 

As a consequence of the microscopic equilibrium equation (1.23), the internal force vector r��  is equal 

to 0  at the convergence of the FE computations. Hence, Eq. (1.43) becomes: 

 .
� �� � � �

× =� � � �� 
� �� � � �

qK K 0

K K rq

�

��
��� ��

�� �� ��

 (1.44) 

The elimination of q� �  from Eq. (1.44) allows deriving the condensed (or reduced) stiffness matrix K� ��  

relating the boundary displacement rate q� �  to r� � : 

 1with .-× = = - × ×K q r K K K K K� �� ��� � � �� �� �� �� ��  (1.45) 

At the convergence of incremental analysis, the macroscopic tangent modulus ( 1)PKC  is computed in 

terms of the condensed stiffness matrix K� �� , matrices �  and �  as follows (Miehe, 2003; Geers et al., 

2017): 

 
1( 1) 1

0

1
.PK T T--� �= × × × ×� �C K�� � � ����
 (1.46) 

Considering expression (1.45) of K� �� , the macroscopic tangent modulus ( 1)PKC  can be expressed as: 

 ( )
11( 1) 1

0

1
.PK T T

---� �= × × - × × × ×� � �
C K K K K� � � ��� �� �� ���

 (1.47) 

For sake of brevity, only the final result of the condensation technique is given in Eq. (1.47). The 

interested readers may refer to references (Miehe, 2003) and (Geers et al., 2017) for further details on 

how Eq. (1.47) is obtained. Analogous developments will be carried out in Section 1.5 to determine the 

macroscopic tangent modulus ( 1)PKC  by the condensation method for the particular case of symmetric 

problems. 

1.4.2.2. Practical implementation 

As presented in Section 1.4.2.1, the macroscopic modulus ( )1PKC  is obtained by a condensation 

procedure of the global stiffness matrix K , which is assembled from the elementary stiffness matrices 

elK . The requested option to output the elementary stiffness matrices is ‘*Element Matrix Output’, 

which needs to be added in the input file. To illustrate the operational aspects, a brief example of an 

input file is provided in Appendix A. After achieving the finite element computation, the elementary 
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stiffness matrices will be stored in an external file with ‘.mtx’ extension (e.g. ‘myMatrix.mtx’ as in the 

example of Appendix A). This file is the input of the Python codes developed to assemble and handle 

the global stiffness matrix K . Recalling that all the nodes of the unit cell mesh are grouped into two 

sets �  and � ; hence, a node q  belongs to set �  if at least one of the following conditions hold: 

 01 0 0 02 0 0 03 0 0/ 2 or / 2 ; / 2 or / 2 ; / 2 or / 2,q q qx x xl l l l l l= - = - = -  (1.48) 

otherwise, it belongs to set � . 

In order to construct topology matrices �  and � , the set of node pairs as well as the corresponding 

initial coordinates need to be identified. As illustrated in Fig. 1.3, nodes i and j make up a node pair in 

the Z-direction. 

 
Fig. 1.3. Node pairs in Z-direction. 

To identify all the node pairs in node set � , the following algorithm is developed and implemented into 

the Python code. 

Nodes i and j represent a node pair in X-direction, if: 

01 01 0i jx x l- = ±  and 02 02i jx x=  and 03 03i jx x= . 

Nodes i and j represent a node pair in Y-direction, if: 

02 02 0i jx x l- = ±  and 01 01i jx x=  and 03 03i jx x= . 

Nodes i and j represent a node pair in Z-direction, if: 

03 03 0i jx x l- = ±  and 01 01i jx x=  and 02 02i jx x= . 

The components of matrix 3 3pN NÎ ´� �� �  take one of three possible values: 0, - 1 or 1. These 

components can be determined as follows, once all the node pairs detected: 

If Nodes i and j form a node pair (with i j< ), the distribution of values 1 and - 1 in �  can be 

summarized as: 

 
3 2,3 2 3 2,3 2

3 1,3 1 3 1,3 1

3 ,3 3 ,3

1 ; 1,

1 ; 1,

1 ; 1.

i i i j

i i i j

i i i j

- - - -

- - - -

= = -

= = -

= = -

� �

� �

� �

 (1.49) 
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The other components of matrix � , not defined by Eq. (1.49), are set to 0. 

Matrix 39 NÎ ´� �� �  is assembled from matrices 9 3
q Î ´� � � , defined in Eq. (1.37), as follows: 

 

01 01

02 02

03 03

02 02

03 03

03 03

01 01

02 02

01 01

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 .
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

i j

i j

i j

i i

i j

i j

i j

i j

i j

i j

x x

x x

x x

x x

x x

x x

x x

x x

x x

� �
� 
� 
� 
� 
� 
� =
� 
� 
� 
� 
� 
� 
� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� �

�
 (1.50) 

Once matrix �  constructed, matrix �  can be determined by the following matrix multiplication: 

 .T= ×� � �  (1.51) 

With the labels of nodes belonging to sets �  and � , one can easily extract the four submatrices K �� , 

K �� , K ��  and K ��  from the global matrix K , as stated in Eq. (1.43). Thus far, all the ingredients 

needed to compute ( )1PKC  are prepared. 

Box 2. Main steps for the implementation of the condensation technique. 

 

The main steps for the implementation of the condensation technique are summarized as follows: 

�  Step 1 : add the option ‘*Element Matrix Output’ in the input file; run the finite element computation 

with a user subroutine UMAT, the elementary stiffness matrices elK  will be outputted in a ‘.mtx’ file. 

�  Step 2 : assemble the global stiffness matrix K  from elementary stiffness matrices stored in the ‘.mtx’ 

file by using the connectivity of the different nodes of the elements; partition K  into four submatrices 

K �� , K � � , K � �  and K �� , after permutation of its lines and columns as stated in Eq. (1.43). 

�  Step 3 : compute the condensed matrix K� ��  from submatrices K �� , K � � , K � �  and K ��  on the 

basis of Eq. (1.45). 

�  Step 4 : construct matrices �  and �  by using Eqs. (1.49) and (1.51), respectively. 

�  Step 5 : compute the macroscopic tangent modulus ( )1PK
C  by using Eq. (1.47). 

We have developed a set of Python scripts to automatically manage Steps 2® 5. To improve the efficiency of 

the condensation method, the developed scripts are parallelized with multiple processors (see Appendix B for 

more details). The execution of Step 5 inflicts high CPU and memory costs. These costs are mainly due to the 

double matrix-inversion required in Eq. (1.47). To efficiently optimize this execution, these inversion 

operations are performed by using the functions ‘linalg.solve’ and ‘linalg.pinvh’ of the NumPy library. 
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1.4.3. Fluctuation technique 

1.4.3.1. Numerical concept 

Considering Eqs. (1.26) and (1.27), the following condition should be fulfilled at the convergence of the 

finite element iterations: 

 
0

0
0

: d 0.perG
d¶� �

:= =� ¶� �
�

v
p

x
�

�
�  (1.52) 

The linearization of Eq. (1.52), classically used in finite element computations, takes the form: 

 0,G G+ =�  (1.53) 

where ·�  is the iteration of field ·  (in the finite element sense). Higher-order terms are neglected in 

the linearized form given by Eq. (1.53). 

The linearized form (1.53) requires that 0G ®  and 0G ®�  at the convergence of the finite element 

computation. Hence, the following iterative form can be derived from Eq. (1.52): 

 
0

( 1)
0

0 0

: : + d 0.per perPKG
d� �¶ ¶� �

= =� � �¶ ¶	 
� �
�

v v
c F

x x
�� � �

�
�  (1.54) 

After finite element discretization, the periodic velocity perv  can be obtained from the interpolation rule 

(similar to the one used in Eq. (1.8)): 

 .per per= ×v � q�  (1.55) 

The substitution of Eq. (1.55) into Eq. (1.54) leads to the following linear algebraic system: 

 ˆ ,per× = - ×K q K F��� �  (1.56) 

where the global stiffness matrix K  and a fluctuation matrix ̂K  are defined as: 

 
0 0

( 1) ( 1)
0 0

1 1

ˆ= d ; = d ,
el el

n n
T PK el T PK el

el el= =

× × ×� �K B c B K B c  � �� �
� �  (1.57) 

where 
1

n

el=
� denotes the finite element assembly operator when the unit cell is discretized by n  finite 

elements el . It is worth noting that the global stiffness matrix K  defined by Eq. (1.57)1 is exactly the 

same as the one introduced in Eq. (1.10) and equal to [ ]M GNL+K K  (as long as the relations between the 

microscopic tangent moduli (0)c , (2)c , ( 1)PKc  and ( 2)PKc  are correctly defined). 

Vector perq��  can be obtained by solving Eq. (1.56): 

 1 ˆ ,per
-= - × ×q K K F��� �  (1.58) 
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and then iteration perf��  can be obtained from Eq. (1.58) by: 

 1 ˆ .per per
-= × = - × × ×f B q B K K F� ��� � �  (1.59) 

On the other hand, we have the following relation: 

  ( )
0 0

( 1)
0 0

0 0

1 1
: + d .PK

perd= =� �P p c F f�� ��� � � �
� �

� �
� �

 (1.60) 

The combination of Eqs. (1.59) and (1.60) yields: 

 ( )
0 0

( 1) 1
0 0

0 0

1 1 ˆd : d .PK -= = - × × ×� �P p c F B K K F� � ��� � � �
� �

� �
� �

 (1.61) 

As iteration F��  is homogeneous over the volume 0�  of the unit cell, Eq. (1.61) can be reformulated as: 

 ( )
0 0

( 1) 1
0 0

0 0

1 1 ˆ ˆd d : .PK T -= = - × ×� �P p c  K K K F� ��� � �
� �

� �
� �

 (1.62) 

By comparing Eqs. (1.33) and (1.62), one can easily deduce that: 

 ( )
0

( 1) ( 1) 1
0

0

1 ˆ ˆd .PK PK T -= - × ×�C c  K K K
�

�
�

 (1.63) 

1.4.3.2. Practical implementation 

As stated by Eq. (1.63), the macroscopic tangent modulus ( 1)PKC  consists of two main parts: the volume 

average of the microscopic moduli ( 1)PKc  and a fluctuation part dependent on the global stiffness matrix 

K  and on a global fluctuation matrix K̂ . Global matrices K  and K̂  are obtained from their 

elementary counterparts elK  and ˆ elK  by the assembly rules given by Eq. (1.57). Elementary matrices 

elK  and ˆ elK  are dependent on ( 1)PKc . Hence, to ensure the accurate computation of the macroscopic 

tangent modulus ( )1PKC , the microscopic tangent moduli ( 1)PKc  should be correctly defined and 

implemented. Furthermore, to determine the different ingredients required for the computation of ( )1PKC  

by the fluctuation technique, a user element (UEL) subroutine needs to be used. To achieve this task, we 

have used the UEL developed in Salahouelhadj et al. (2012), after some modifications and additions. 

Indeed, the virtual work principle has been slightly modified to consider the Jaumann derivative of the 

Kirchhoff stress instead of the Truesdell derivative used in the initial version. After these modifications, 

the elementary stiffness matrix elK  has been correctly computed in the UEL by adding the contribution 

of the geometric nonlinearities GNL elK  (see Eq. (1.9)2) to the contribution due to material behavior  M elK  

(see Eq. (1.9)1) . As to ( )1PKc , which is associated with each integration point, it is determined from the 

jacobian matrix DDSDDE (an output of the corresponding UMAT) by using Eqs. (1.7), (1.16) and 

(1.17). Once matrices ( )1PKc  are determined for all the integration points of the element, the elementary 
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contribution to the volume average of the microscopic moduli ( )

0

1
0d

el

PK el� c  
�

�  can be determined by an 

easy integration operation, and the elementary stiffness matrix elK  and fluctuation matrix ̂ elK  can be 

computed by the following relations: 

 ( )

0 0

1( 1)
0 0

ˆ= d ; = d .
el el

PKT PK el T el
el el× × ×� �K B c B K B c  

� �
� �  (1.64) 

The different elementary contributions should be outputted and stored in separate files. 

Box 3. Main steps for the implementation of the fluctuation technique. 

 

1.5. Extension to symmetric microstructures 

In some applications, the studied heterogeneous media are made of unit cells exhibiting symmetry 

properties (composite materials, porous media…). Hence, it is essential to examine whether these 

symmetry properties can be efficiently exploited to speed up the computation of the overall properties 

of heterogeneous media. A heterogeneous unit cell has symmetry properties if the geometric distribution 

of the different phases is symmetric (see Fig. 1.4) and the behavior of each phase exhibits material 

symmetries (isotropic or orthotropic). Without loss of generality, we consider a 3D unit cell occupying 

the initial domain 0 0 0 0 0 0 0/ 2, / 2 / 2, / 2 / 2, / 2l l l l l l� � � � � �= - ´ - ´ -� � � � � �� . This unit cell is assumed to 

be symmetric about three planes of symmetry (01 0x = , 02 0x =  and 03 0x = ), as displayed in Fig. 1.4. In 

this case, the study of one eighth of the unit cell, occupying the initial domain 

0 0 0 00, / 2 0, / 2 0, / 2r l l l� � � � � �= ´ ´� � � � � �� , is sufficient to determine the mechanical response of the full 

unit cell only if the boundary conditions on the planes of symmetry (01 0x = , 02 0x =  and 03 0x = ) and 

on the outer surfaces (01 0 / 2x l= , 02 0 / 2x l=  and 03 0 / 2x l= ) are correctly defined. Otherwise, the 

The main steps for the implementation of the fluctuation technique are summarized as follows: 

�  Step 1 : compute the microscopic tangent moduli ( )1PKc  from jacobian matrix DDSDDE  by using Eqs. 

(1.7), (1.16) and (1.17). 

�  Step 2 : compute the elementary contributions (namely, elK , ˆ
elK  and ( )

0

1
0d

el

PK el� c  
�

� ) and store them 

in external files. 

�  Step 3 : read the external files and use the connectivity of the different nodes to assemble the various 

elementary contributions and to obtain the global counterparts. 

�  Step 4 : once the global counterparts determined, the macroscopic tangent modulus ( )1PKC  can be 

easily computed by Eq. (1.63). 

A set of Python codes has been developed to perform Steps 3® 4. The algorithm of the codes can be found in 

Appendix B. 
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results of such analyses could mislead. The use of one eighth of the unit cell (shortly called RUC, as 

reduced unit cell), instead of the full one (denoted as FUC), allows dividing the number of mesh elements 

by 8 (for the same computation accuracy), thus considerably reducing the CPU time required for the 

computation of the macroscopic tangent modulus. The current section is focalized on the theoretical 

extension of the perturbation and condensation techniques for the determination of the overall moduli 

of RUCs. The practical aspects related to the implementation of these extended techniques in this 

particular case are quite similar to those developed for the general case (Sections 1.4.1.2 and 1.4.2.2). 

These practical aspects are omitted for the sake of brevity. 

 

Fig. 1.4. RUC occupying the initial domain 0 0 0 00, / 2 0, / 2 0, / 2r l l l� � � � � �= ´ ´� � � � � ��  and its corresponding FUC 

assumed to be symmetric about three planes of symmetry ( 01 0x = , 02 0x =  and 03 0x = ). 

1.5.1. Perturbation technique 

The suitable boundary conditions to be applied on the RUC to ensure the same mechanical response as 

that of the whole unit cell have been initially established by Léné (1984) for media undergoing small 

strain. The developments achieved by Léné (1984) are extended in this chapter to the finite strain 

framework, and these extensions are used to construct the overall tangent modulus by the perturbation 

technique. The prescribed boundary conditions, under the perturbed steps, are dependent on the applied 

perturbation. The details are given in Table 1.1 (with a  being the magnitude of the perturbation 

introduced in Section 1.4.1.1). As shown in this table, the boundary conditions applied on the different 

degree of freedoms (DOFs) are categorized into two main families: 

�  DOFs subjected to a small linear displacement increment ( )( )
0i kl i

u aD = D ×F x  (where 0x  is the 

initial position of the associated node and ( )( )
0kl i

aD ×F x  is the i-th component of vector ( )
0kl

aD ×F x ); 

Symmetry plane x01=0 

Symmetry plane x02=0 

Symmetry plane x03=0 
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�  DOFs free from any displacement constraint (iuD  free). In this case, the associated reaction force 

is obviously equal to zero. 

To better explain these boundary conditions, let us detail them for the perturbation ( )
11

aDF : 

·  On face 01 0x = : ( )( )
1 11 0 1

0u aD = D × =F x , while the other DOFs are free. 

·  On face 01 0 / 2x l= : ( )( )
1 11 0 01

/ 2u a alD = D × =F x , while the other DOFs are free. 

·  On faces 02 00 and / 2x l= : ( )( )
2 11 0 2

0u aD = D × =F x , while the other DOFs are free. 

·  On faces 03 00 and / 2x l= : ( )( )
3 11 0 3

0u aD = D × =F x , while the other DOFs are free. 

The perturbed stress tensors ( )( )
kl
aP F , corresponding to the various perturbations ( )

kl
aDF  and required to 

construct the macroscopic tangent modulus ( )1PKC  column by column, are derived from the reaction 

forces applied on the boundary of the reduced unit cell 0r� : 

 ( ) ( ) ( )
0 0

( ) ( ) ( )
0 0 0 0

0 0

1 1
d d .

r r
kl kl r kl r

r r

a a a= = Ä� �P F p F t F x
� �

� �
� �

  (1.65) 

To define the different perturbation steps, the nine restart ‘.inp’ files described in Step 2 of Box 1 need 

to be modified to integrate the difference in the boundary conditions from one perturbation step to 

another. 

Table 1.1. Boundary conditions applied on the RUC. 

Perturbed 
components 

Boundary conditions 

01 0faces 0 and / 2x l=  02 0faces 0 and / 2x l=  03 0faces 0 and / 2x l=  

11; 22 ; 33kk =  
( )( )

1 0 1

2

3

;

free ;

free

kku

u

u

aD = D ×

D

D

F x

 ( )
1

( )
2 0 2

3

free ;

;

free

kk

u

u

u

a

D

D = D ×

D

F x  

( )

1

2

( )
3 0 3

free ;

free ;

kk

u

u

u a

D

D

D = D ×F x

 

12  ( )
( )

1

( )
2 12 0 2

( )
3 12 0 3

free ;

;

u

u

u

a

a

D

D = D ×

D = D ×

F x

F x

 
( )

( )

( )
1 12 0 1

2

( )
3 12 0 3

;

free ;

u

u

u

a

a

D = D ×

D

D = D ×

F x

F x

 

( )

1

2

( )
3 12 0 3

free ;

free ;

u

u

u a

D

D

D = D ×F x

 

21 ( )
( )

1

( )
2 21 0 2

( )
3 21 0 3

free ;

;

u

u

u

a

a

D

D = D ×

D = D ×

F x

F x
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1.5.2. Condensation technique 

The development of a condensation technique pertaining to unit cells exhibiting symmetry properties is 

presented hereafter. This development follows the general idea behind the same technique for full unit 

cells (without symmetry properties), summarized in Section 1.4.2.1, with some main adaptations that 

are essential to account for the particularities of RUCs. The perturbation technique presented in Section 

1.5.1 is of great use to ensure the theoretical extension of the condensation technique. Unlike the original 

condensation technique, where the different columns of the overall tangent modulus ( )1PKC  are 

simultaneously determined in a single matrix operation, the columns of the tangent modulus 

corresponding to the RUC are computed separately, through successive iterations. Indeed, the starting 

point of the original condensation technique consists in the partition of nodes into two different sets �  

and � . The composition of these node sets is independent of the boundary conditions applied on the 

unit cell. Then, the same sets can be used to compute all the columns of ( )1PKC . For the extended 

condensation technique, the partition of DOF sets depends on the boundary conditions, as shown in 

Table 1.1. Therefore, it is not possible to simultaneously construct all the columns of ( )1PKC  by using 

the same DOF partition, and thus the computation of the columns of ( )1PKC  in successive iterations (one 

iteration for each column) is unavoidable. 

In what follows, we detail how a column of ( )1PKC  can be determined, and the same algorithm could be 

used to compute the other columns. 

As a starting point of this algorithm, the DOFs of the nodes of the RUC mesh should be partitioned into 

two sets: 

�  set Y : the set of DOFs on which the reaction forces are zero. This set includes the DOFs of all 

the nodes in the interior of the RUC as well as the DOFs of the nodes on the boundary, which are 

free from any displacement constraint (see Table 1.2 for illustration). Then, set Y  is defined by 

the following equation at the convergence: 

 ,Y =r 0�  (1.66) 

where Yr�  is the residual rate vector corresponding to DOFs in set Y . 
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�  set W : the set of DOFs on the boundary of the RUC that are subjected to a linear displacement. 

Consequently, the vector of displacement rates corresponding to DOFs in W , denoted Wq� , is 

related to the rate of the macroscopic deformation gradient F�  by the following matrix form (more 

suitable for algorithmic treatment): 

  ,T
W - × =q F 0� ��  (1.67) 

where the topology matrix �  is constructed in the same manner as matrix q�  introduced in Eq. 

(1.37), but with DOFs in set W . 

The residual rate vector corresponding to DOFs in set W , denoted Wr� , can be related to the rate 

of the macroscopic Piola–Kirchhoff stress tensor P�  (see Eq. (1.65) to understand this matrix 

form): 

 
0

1
.

r
W- × =P r 0�

�
� �  (1.68) 

The partition into sets Y  and W  is illustrated in Table 1.2 for the construction of the first and fourth 

columns of ( )1PKC . 

Table 1.2. Composition of sets Y , W  required for the computation of the first and fourth columns of ( )1PKC . 

Column of 
( )1PKC  

Set Y  Set W  

First column 

- the DOFs of all the nodes in the interior of 
the RUC; 

- the second and the third DOF of nodes 
belonging to faces 01 00 and / 2x l= ; 

- the first and the third DOF of nodes 
belonging to faces 02 00 and / 2x l= ; 

- the first and the second DOF of nodes 
belonging to faces 03 00 and / 2x l=  

- the first DOF of nodes belonging to faces 

01 00 and / 2x l= ; 

- the second DOF of nodes belonging to 
faces 02 00 and / 2x l= ; 

- the third DOF of nodes belonging to faces 

03 00 and / 2x l=  

Fourth column 

- the DOFs of all the nodes in the interior of 
the RUC; 

- the first DOF of nodes belonging to faces 

01 00 and / 2x l= ; 

- the second DOF of nodes belonging to 
faces 02 00 and / 2x l= ; 

- the first and the second DOF of nodes 
belonging to faces 03 00 and / 2x l=  

- the second and the third DOF of nodes 
belonging to faces 01 00 and / 2x l= ; 

- the first and the third DOF of nodes 
belonging to faces 02 00 and / 2x l= ; 

- the third DOF of nodes belonging to faces 

03 00 and / 2x l=  

Considering this partition rule, the matrix form of the equilibrium equation associated with the RUC can 

be written in the following form (very similar to Eq. (1.43)): 

 . .YY YW Y Y

WY WW W W

� � � � � �
=�  �  � 

� � � � � �

K K q r

K K q r

� �

� �
 (1.69) 

The linearization of Eqs. (1.66), (1.67) and (1.68), required for finite element iterations, yields: 
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0 0

;

+ ;

1 1
.

T T

r r

Y Y

W W

W W

+ =�
� - × - × =�
�
� - × + - × =
��

r r 0

q F q F 0

P r P r 0

� �

� �

�

� �

� �
� �

� �
� �� �

� �� �
 (1.70) 

Using Eq. (1.69), equation system (1.70) can be further elaborated: 

 

( )
0 0

;

+ ;

1 1
.

T T

r r

Y YY Y YW W

W W

W WY Y WW W

+ × + × =�
� - × - × =�
�
� - × + - × × + × =
��

r K q K q 0

q F q F 0

P r P K q K q 0

� �

� �

� �

� �

� � �
� �

� � �
� �� �

� �� � �
 (1.71) 

Equation (1.71)1 allows us to express Yq� �  as: 

 ( )1 .Y YY Y YW W
-= - × + ×q K r K q� �� � �  (1.72) 

At the equilibrium state, we have 0Y =r� . Therefore, Eq. (1.72) can be reduced to the following form: 

 1 .Y YY YW W
-= - × ×q K K q� �� �  (1.73) 

Insertion of Eq. (1.73) into Eqs. (1.71)2,3 leads to the reduced equation system: 

 
( )1

0 0

+ ;

1 1
.

T T

r r

W W

W WW WY YY YW W
-

- × - × =�
�
� - × + - × - × × × =�
�

q F q F 0

P r P K K K K q 0

� �

� �

� �

� �
� �

� �� �

� �� �
 (1.74) 

Together with equation system (1.70), the equilibrium state of (1.74) requires: 

 
( )1

0

;

1
.

T

r

W

WW WY YY YW W
-

- × =�
�
� - × - × × × =�
�

q F 0

P K K K K q 0

�

�

� �

� �
�

��

� �
 (1.75) 

The elimination of Wq� �  in (1.75) allows us to obtain: 

 ( )1

0

1
.T

r
WW WY YY YW

-- × - × × × × =P K K K K F 0� �� �
�

� �  (1.76) 

The expression of the overall tangent modulus ( )1PKC  can be easily identified from Eq. (1.76): 

 ( ) ( )1 1

0

1
.PK T

r
WW WY YY YW

-= × - × × ×C K K K K� �
�

 (1.77) 

1.6. Numerical results 

1.6.1. Basic validations of the three techniques 

To validate the implementation of the three techniques (namely, CT, FT, and PT), the numerical 

predictions obtained by these techniques are compared with those given by Miehe et al. (2002b). 
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Consistently, two plane composite microstructures are considered (width/length=1/1). Each 

microstructure is made of a soft matrix reinforced by a stiff inclusion. The behavior of each phase is 

assumed to be isotropic linear elastic with the following elasticity parameters: 

�  Matrix: 2081.06 MPa ; 0.3007.m mE n= =  

�  Inclusion: 10 ; .i m i mE E n n= =  

For the first microstructure, the inclusion is a layer centered in the middle of the composite and 

occupying 1/3 of the total volume (Fig. 1.5). As to the second microstructure, the associated inclusion 

is centered cylindrical fiber and its volume fraction is equal to 12.56% (Fig. 1.6). 

To compute the macroscopic tangent moduli by the different techniques, a plane-strain loading has been 

applied on the two analyzed microstructures (the same as the one defined in Miehe et al., 2002b). In this 

case, we report and compare the in-plane components of the macroscopic moduli ( )1PKC  stored in matrix 

Z: 

 

( ) ( )

( ) ( )

( )

1 1
1111 1122

1 1
2211 2222

1
1212

0

0 .

0 0

PK PK

PK PK

PK

C C

C C

C

� �
� 

= � 
� 
� � �

Z  (1.78) 

The difference between the results from (Miehe et al., 2002b) and our predictions obtained by the three 

techniques is quantified by a scalar indicator m defined as: 

 ( ) ( )
1/2 1/2

3 3 3 3 22

1 1 1 1

/ / ,Ref Ref
ij ij

i j i j

m Z Z
= = = =

� � � �
= = � � � �

	 
 	 

� � ��Z Z  (1.79) 

where RefZ  and Z  denote the overall modulus determined in reference (Miehe et al., 2002b) and that 

computed by our predictions, respectively. 

1.6.1.1. Microstructure with centered layer 

To investigate the effect of mesh discretization on the prediction of the tangent modulus, this 

microstructure is discretized by two different meshes: Mesh 1 made of 36 finite elements, as displayed 

in Fig. 1.5a, and Mesh 2 composed of 144 finite elements, as shown in Fig. 1.5b. 
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 (a) (b) 

Fig. 1.5. The finite element discretization of microstructure with centered layer: (a) Mesh 1; (b) Mesh 2. 

The components of Z obtained by the different techniques (namely, CT, FT, and PT) with the two 

meshes (Mesh 1 and Mesh 2) are reported in Table 1.3. For the three techniques, the predictions are 

almost insensitive to the mesh density, thus confirming the earlier observations made in reference 

(Miehe et al., 2002b). Moreover, the three techniques provide the same results with indicator m very 

close to 1, thus implying that our predictions are very close to those given in Miehe et al. (2002b). 

Table 1.3. Components of matrix Z for the two meshes of the microstructure with centered layer. 

 
Reference (Miehe et al., 2002b) CT FT PT 

Mesh1 Mesh2 Mesh1 Mesh2 Mesh1 Mesh2 Mesh1 Mesh2 

11Z  78682.6 78682.6 78564.6 78564.4 78564.6 78564.4 78564.5 78564.5 

22Z  4204.0 4204.0 4189.5 4189.5 4189.5 4189.5 4189.5 4189.5 

12Z  1815.9 1815.9 1801.5 1801.5 1801.5 1801.5 1801.5 1801.5 

33Z  1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 1194.0 
m  1.000 1.000 0.998 0.998 0.998 0.998 0.998 0.998 

1.6.1.2. Microstructure with centered cylindrical fiber 

In this case, the unit cell is discretized by 700 elements (Fig. 1.6). 

 
Fig. 1.6. The finite element discretization of microstructure with centered cylindrical fiber. 

As reported in Table 1.4, the results obtained by CT, FT, and PT are almost identical and very close to 

the reference values. These results provide additional validation of our implementations. 
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Table 1.4. Components of matrix Z for the microstructure with centered cylindrical fiber. 

 Reference (Miehe et al., 2002b) CT FT PT 

11Z  3413.1 3400.7 3400.7 3400.8 

22Z  3413.1 3400.8 3400.8 3400.8 

12Z  1415.1 1407.2 1407.2 1407.2 

33Z  960.1 958.8 958.8 958.9 
m 1.000 0.996 0.996 0.996 

1.6.2. More advanced validations of the three techniques 

In the previous section, some basic validations of the three techniques have been conducted by 

comparing our predictions with the results presented in Miehe et al. (2002b). It appears from this 

preliminary study that all of the three techniques accurately predict the macroscopic tangent modulus. 

Thus, the accuracy and reliability of the implementation of the three techniques are partially validated. 

In this section, attention is focused on evaluating the computational performances of the three techniques, 

by considering two microstructure examples: 

�  Microstructure with cubic inclusion: the geometry is characterized by a cube containing a stiff 

cubic inclusion in the center, which occupies 20 % of the total volume (Fig. 1.7a). This 

microstructure is discretized by 1000 finite elements. 

�  Microstructure with elliptical cylindrical fiber: the geometry is characterized by a cube containing 

a stiff elliptical cylindrical fiber in the center, which occupies 12.6 % of the total volume (Fig. 

1.7b). The fiber is aligned in the Z-direction and its cross section is an ellipse with aspect ratio 

(long axis/short axis) equal to 2. This microstructure is discretized by 2176 finite elements. 

For the two cases, the mechanical behavior of the matrix and the inclusion are assumed to be elastoplastic 

and linear elastic, respectively: 

�  The matrix elasticity and hardening parameters are: 

( )0.184
210 GPa ; 0.3 ; isotropic hardening la .w : p

m m y eqE � �n= = = 362.99 0.008 +  

�  The inclusion elasticity parameters are: 

10 ; .i m i mE E n n= =  

The two microstructures are subjected to the following deformation history: 

 ( ) ( )
1 0 0 1.2 0 0

initial state : 0 0 1 0 final state : 0 0.91287 0 ,

0 0 1 0 0 0.91287
ft

� � � �
�  � = ® =�  � 
�  � � � � �

F F  (1.80) 

with ft  corresponding to the end of the loading history, and the deformation gradient F  is assumed to 

evolve linearly between (0)F  and ( )ftF . 
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 (a) (b) 

Fig. 1.7. Two typical composites discretized by finite elements: (a) Microstructure with cubic inclusion; (b) 
Microstructure with elliptical cylindrical fiber. 

During the general finite element computations, the external files required to compute the overall tangent 

moduli are automatically created and filled. Based on these external files, the developed Python scripts 

are executed. For CT, the required external file is the ‘.mtx’ file, which contains the elementary stiffness 

matrices elK  at each n  converged increments (with n  being the record frequency, as shown in 

Appendix A). For FT, besides this ‘.mtx’ file, two other ‘.txt’ files are required, which contain the micro 

tangent moduli ( )1PKc  for all the integration points and the elementary fluctuation matrices ̂ elK . For PT, 

the external files are the database needed to conduct the restart analysis. This data includes the ‘.res’, 

‘.mdl’ and ‘.stt’, ‘.prt’, ‘.odb’ files, as well as the ‘.sim’ files. Some practical aspects related to the 

execution of the Python scripts can be found in Section 1.4 and in the appendices. Note that the disk 

space allocated for the generated external files and the CPU time spent for the tangent modulus 

computations increase with the complexity of the studied microstructures. Therefore, the evaluation of 

the computational efficiency is twofold: the required disk space and CPU time. These computations 

were made on 8 parallelized cores allocated in cluster computer. 

1.6.2.1. Microstructure with a cubic inclusion 

The mechanical behavior of the two phases is assumed to be isotropic (for both elasticity and plasticity), 

and the von Mises yield function is used to compute the equivalent stress from the stress tensor. The 

evolution of the components ( )1
1111

PKC , ( )1
2222

PKC , ( )1
1122

PKC , and ( )1
1212

PKC  obtained by CT, FT, and PT are reported 

in Fig. 1.8. It is clear from this figure that the three techniques give identical results, thus providing 

additional validation of our implementation. 
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 (a) (b) 

 

 (c) (d) 

Fig. 1.8. Evolution of the components of modulus ( )1PKC  obtained by CT, FT, and PT for microstructure with a 

cubic inclusion: (a) ( )1
1111

PKC ; (b) ( )1
2222
PKC ; (c) ( )1

1122
PKC ; (d) ( )1

1212
PKC . 

The overall modulus ( )1PKC  is evaluated at each 0.01 ft tD =  (see Eq. (1.80)). Then, ( )1PKC  is computed 

100 times during the loading history. As shown in Table 1.5, PT consumes more disk space and CPU 

time than CT and FT. This result is expectable considering the fact that ten finite element computations 

are required when the PT is used, against only a single computation for the other techniques. Despite the 

fact that the nine finite element steps required to numerically construct the overall tangent modulus by 

the PT are linear (hence, relatively quick to be run), the CPU time consumed by the computations in this 

case remains relatively high. Even though there is no much difference between the CPU times consumed 
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by CT and FT, the external file size required by FT is almost twice that required by CT. This result is 

also expectable considering the amount of data to be outputted when the FT is applied. 

Table 1.5. Performance of the different techniques in terms of allocated space disk and CPU time for 
microstructure with cubic inclusion. 

 CT FT PT 
External files (GB) 3.979 7.654 11.087 
CPU time (Minutes) 82 85.1 111.64 

1.6.2.2. Microstructure with elliptical cylindrical fiber 

In this case, the plastic behavior of the matrix is assumed to be anisotropic and it is modeled by the 

Hill’48 yield function with Lankford coefficients 0 45 900.585 ; 0.571; and 0.766r r r= = = . The 

evolutions of the components ( )1
1111

PKC , ( )1
2222

PKC , ( )1
1122

PKC , and ( )1
1212

PKC  obtained by the three implemented 

techniques are plotted in Fig. 1.9. This figure confirms once again that the three techniques provide 

identical results. 
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 (c) (d) 

Fig. 1.9. Evolution of the components of modulus ( )1PKC  obtained by CT, FT, and PT for microstructure with an 

elliptical cylindrical inclusion: (a) ( )1
1111

PKC ; (b) ( )1
2222
PKC ; (c) ( )1

1122
PKC ; (d) ( )1

1212
PKC . 

The overall tangent modulus is evaluated at each 0.04 ft tD =  (see Eq. (1.80)). As shown in Table 1.6, 

PT consumes much more CPU time and requires the largest disk space. Also, as previously shown, CT 

appears to be the most efficient in terms of CPU times and external files. 

Table 1.6. Performance of the different techniques in terms of allocated space disk and CPU time for 
microstructure with elliptical cylindrical fiber. 

 CT FT PT 
External files (GB) 2.064 3.977 4.48 
CPU time (Minutes) 24 26.7 40.5 

1.6.3. Numerical assessment of extended formulation of condensation technique in 

symmetric microstructures 

We have presented in Section 1.5 the extended formulations of CT as well as of PT for the case of 

symmetric microstructures. In the same way as in the previous Section 1.6.2, the comparison between 

the performances of extended CT and PT has been conducted for reduced unit cells (RUC). The results 

of such a comparison (not shown here for brevity) reveal that the performance difference between CT 

and PT is similar to the case of original formulations with full unit cells (FUC) (which have been reported 

in Table 1.5 and Table 1.6). Consequently, attention is confined in this section to the performance 

analysis of the extended CT. The objective is to compare the performance of the extended formulation 

with RUC to the performance of the original formulation with FUC. 

To assess the performance of the extension of CT to problems exhibiting symmetry properties (Section 

1.5), let us consider the microstructure with elliptical cylindrical fiber. The RUC is discretized by 272 
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elements (Fig. 1.10) versus 2176 elements for FUC (Fig. 1.7b). The material parameters of both phases 

(matrix and inclusion) are the same as those provided in Section 1.6.2. 

 
Fig. 1.10. RUC with elliptical cylindrical fiber. 

Both FUC and RUC are subjected to the following deformation history: 

 ( ) ( )
1 0 0 1. 0.2 0

initial state : 0 0 1 0 final state : 0 1. 0 ,

0 0 1 0 0 1.
ft

� � � �
�  � = ® =�  � 
�  � � � � �

F F  (1.81) 

which corresponds to a simple shear test. 

The distribution of the von Mises equivalent stress and the maximum principal logarithmic strain 

obtained for both unit cells (namely FUC and RUC) at the end of the loading are displayed in Fig. 1.11. 

As clearly shown in this figure, the two unit cell configurations give very close mechanical responses. 

These results prove the reliability and accuracy of the boundary conditions applied on the boundary of 

the RUC, as summarized in Table 1.1. 

 
 (a) (b) 
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 (c) (d) 

Fig. 1.11. Mechanical responses for both unit cells: (a) Contour plot of the von Mises equivalent stress for the 
FUC; (b) Contour plot of the von Mises equivalent stress for the RUC; (c) Contour plot of the maximum principal 
logarithmic strain for the FUC; (d) Contour plot of the maximum principal logarithmic strain for the RUC. 

Fig. 1.12 provides the evolution of components ( )1
1111

PKC , ( )1
2222

PKC , ( )1
1122

PKC , and ( )1
1212

PKC  as predicted by both 

the original CT with FUC and the extended CT version with RUC. The perfect agreement between the 

predictions observed in this figure clearly demonstrates that the extended condensation technique is 

correctly implemented and is reliable. 
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 (c) (d) 

Fig. 1.12. Evolution of the components of modulus ( )1PKC  as predicted by the original CT with FUC and the 

extended CT with RUC: (a) ( )1
1111

PKC ; (b) ( )1
2222
PKC ; (c) ( )1

1122
PKC ; (d) ( )1

1212
PKC . 

The overall tangent modulus is evaluated at each 0.04 ft tD = . As shown in Table 1.7, the use of the 

RUC instead of the FUC for the computation of the macroscopic tangent modulus allows dividing the 

size of external files by 8 and the CPU time by 13. This means that the RUC model greatly improves the 

computational efficiency. It is worth noting that, for CT, the CPU time is essentially consumed by the 

process of inverting large matrices. In the present comparative study, the element number used for the 

RUC model is reduced by a factor of 8, compared to the FUC model, which leads to a strong reduction 

in the stiffness matrix dimension (reduction by a factor of 43.84 in the current model). This strong size 

reduction induces a significant decrease in the computational effort. This comparison highlights the great 

interest of using the RUC model when the microstructure exhibits symmetry properties. 

Table 1.7. Disk space and CPU time required for the use of CT with FUC and RUC. 

 FUC RUC 
External files (GB) 2.064 0.26 
CPU time (Minutes) 24 1.8 

1.7. Summary and conclusions 

In this chapter, three numerical techniques used to compute the overall tangent moduli for periodic unit 

cells have been briefly presented and implemented within ABAQUS/Standard by developing a set of 

Python scripts. Several conclusions can be drawn on the basis of the study conducted to compare the 

different techniques: 

�  The perturbation technique can be carried out by using only the Homtools (for the application of 

the periodic boundary conditions and the macroscopic loading) and the Python scripts that we 
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have developed. Hence, additional subroutines or tools (such as UMAT or UEL) are not essential 

for the computation of the overall tangent moduli by this technique. The numerical predictions 

reveal that PT is the most expensive both in terms of CPU time and external file storage. The high 

CPU time is attributable to the necessity to perform ten finite element computation steps (1 general 

step and 9 perturbation steps) for each computation of the tangent modulus. 

�  To implement and run the fluctuation technique, a user element (UEL) subroutine needs to be 

used. This limits the potential use of this method by the ABAQUS users’ community. Furthermore, 

even though this technique does not consume excessive CPU time, the disk space occupied by the 

external files generated by this method remains relatively large as compared to the case of the 

condensation method. 

�  Compared to the latter techniques, the condensation technique seems to be easier to operate and 

reveals to be timesaving. To use this technique in conjunction with inelastic behavior, a user 

material (UMAT) subroutine should be used. Moreover, this technique has been successfully 

extended to explore microstructures exhibiting symmetry properties, and the interest of this 

extension has been highlighted through some numerical predictions. 

Thus, this chapter provides valuable reference guidelines to ABAQUS/Standard users for the 

determination of the homogenized tangent moduli of linear or nonlinear heterogeneous materials, such 

as composites, polycrystalline aggregates and porous solids. The techniques and tools developed in this 

chapter could be used, in the following chapters, for the implementation of multiscale transition.
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Chapter 2  
 

 

 

Numerical investigation of necking in 

perforated sheets using the periodic 

homogenization approach 

 

2.1. Introduction 

Due to their lightness and aesthetic attractiveness, perforated sheets have been increasingly used in 

various industrial fields, including automotive, architecture, agriculture, pollution control, and mining 

(IPA., 2015). Additionally, the variety of patterns and perforation shapes makes them quite versatile. To 

accurately design and manufacture press-formed products, in-depth knowledge of the mechanical 

behavior and the conditions of occurrence of plastic instabilities in this kind of sheets remains a crucial 

task for both scientific and technological communities. The theoretical and numerical modeling of the 

mechanical behavior of perforated sheets has been widely investigated in several previous contributions 

in the literature. The various developed models have as objectives to predict the geometric distribution 

of the relevant mechanical fields (stress, plastic strain, …) or to derive an effective (macroscopic) 

constitutive model representative of the mechanical behavior of the perforated medium as well as the 

corresponding mechanical parameters (elasticity parameters, anisotropy parameters, hardening 

parameters). Among these investigations, one can quote the pioneering work of O’Donnell and Langer 

(1962), who have developed a theoretical method for calculating the stress distribution and effective 

mechanical properties of perforated plates with triangular penetration pattern. In O’Donnell and Langer 

(1962), the mechanical behavior of the dense matrix is assumed to be linear elastic. More recently, 

Krajcinovic et al. (1992) have applied the percolation theory to determine the stress state and distribution 
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in a two-dimensional elastic medium containing randomly distributed circular voids. The effect of plastic 

behavior of the dense matrix on the effective properties of perforated sheets has been widely studied in 

several contributions. In these contributions, the effective (macroscopic) plastic behavior has been 

generally determined by defining a yield criterion and the corresponding evolution of the yield stress 

(macroscopic hardening). Chen (1993) has performed finite element simulations and experimental 

tensile tests to propose a yield criterion and the associated flow rules for perforated sheets with circular 

holes in hexagonal or equilateral triangular patterns. In Chen (1993), both von Mises and Hill’48 yield 

functions have been used to characterize the plasticity of the dense matrix. A similar methodology has 

been followed in Baik et al. (1997) to determine a yield criterion for perforated sheets with a uniform 

triangular pattern of round holes. In the latter contribution, the plastic anisotropy of the metal matrix has 

been modeled by the von Mises and Hosford yield functions. It should be noted that in the previous 

works (Chen, 1993; Baik et al., 1997), the classical finite element method has mainly been used to 

determine the effective mechanical behavior of a representative volume element (RVE) of the studied 

perforated sheet. Concretely, to build a typical yield function, a monotonically increasing loading 

combination is applied on the RVE. This loading is assumed to be linear in the macroscopic stress space 

(the ratio of the major to minor average stresses is kept constant during loading), while the shear stress 

is set to zero. During this loading, the homogenized stress–strain data are recorded. The yield point is 

determined from the plot of the effective (macroscopic) equivalent stress as a function of the effective 

equivalent plastic strain. The numerical modeling of the mechanical behavior of perforated sheets has 

been significantly improved by coupling the classical finite element analysis to multiscale approaches. 

These multiscale approaches are based on the concept of substituting a heterogeneous medium with an 

equivalent macroscopically homogeneous one. In this context, perforated sheets are viewed as 

heterogeneous media made of two main phases: the hole and the metal dense matrix (which may be itself 

made of several metallurgical phases). Such a multiscale strategy has been used by several authors to 

characterize equivalent mechanical behavior of perforated sheets. For instance, van Rens et al. (1998) 

have used a numerical homogenization approach to determine the initial yield function and its evolution 

for a RVE of perforated sheets with square pattern of circular holes. More recently, Khatam and Pindera 

(2011) have employed a finite-volume direct averaging micromechanics (FVDAM) theory to accurately 

determine the homogenized response of perforated sheets with hexagonal arrays of circular holes, and 

to establish the relation of homogenized response to yield and limit surfaces. In this chapter, we have 

adopted the multiscale strategy to study the mechanical behavior of perforated sheets with periodically 

distributed holes (in the two directions of the plane of the sheet). Considering this periodic distribution, 

the periodic homogenization technique already detailed in Chapter 1 has been used to determine the 

overall mechanical behavior of one square pattern, which is selected to be the unit cell representative of 

the studied sheet. It is worth noting that the mechanical behavior of perforated shells and plates has been 

extensively studied by using the asymptotic homogenization approach in several contributions 

(Kalamkarov, 1992, 2014; Kalamkarov and Kolpakov, 1997; Andrianov et al., 2012a, 2012b; 
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Kalamkarov et al., 2012). By contrast to the above references, which are mainly focused on the 

derivation of the macroscopic behavior of perforated thin structures (determination of the effective 

macroscopic elastic properties…), our contribution aims to investigate the onset of plastic instability in 

perforated sheets. As such instability usually occurs in the finite strain range, a total Lagrangian 

framework is adopted to express the assumptions and equations governing the periodic homogenization 

approach. Within this framework, the deformation gradient (resp. the first Piola–Kirchhoff stress tensor) 

is used as strain (resp. stress) measure. The periodic homogenization scheme is based on the assumption 

of spatial periodicity of the microscopic mechanical fields (namely, the microscopic deformation 

gradient and the microscopic first Piola–Kirchhoff stress) over the boundary of the unit cell. The 

equations governing the periodic homogenization technique are solved by the finite element method. To 

achieve this task, the Python scripts Homtools described in Chapter 1, has been used to easily apply the 

periodic boundary conditions (PBCs) and to determine the macroscopic first Piola–Kirchhoff stress 

tensor associated with the prescribed macroscopic deformation gradient. 

Despite the large number of contributions dedicated to the modeling of the mechanical behavior of 

perforated sheets and to the determination of their effective macroscopic properties (effective 

elastoplastic parameters, shape of the macroscopic yield surface and its evolution), theoretical 

investigations on the necking and formability of perforated sheets are still seldom and not very extensive. 

It is however well recognized that the initiation of plastic instability in this kind of sheets is essentially 

dependent on the mechanical behavior of the dense matrix and on the morphology (size and form) of 

patterns and holes. In the majority of past studies related to this particular issue, perforated sheets are 

considered as thin media containing periodic array of cylindrical voids. Tvergaard (1981) is one of the 

first authors who extensively studied the onset of plastic strain localization in voided sheets under several 

mechanical states, such as uniaxial and biaxial plane-strain tension. In the latter reference, plastic strain 

localization is viewed as a bifurcation from the fundamental solution path, and Hill’s theory of 

uniqueness (Hill, 1958) has been used to numerically predict bifurcation. To apply this analysis, the 

incremental form of the virtual work principle has been established on the basis of the incremental 

equilibrium equations. At each stage of the loading history, an approximate solution to this incremental 

form has been obtained by the finite element method. Bifurcation occurs when the determinant of the 

global stiffness matrix vanishes. In Tvergaard (1981), the limit strains given by bifurcation theory have 

been compared with their counterparts obtained by the maximum nominal traction criterion (diffuse 

necking criterion). More recently (Tvergaard, 2015), the previous study has been extended to void-sheets 

subjected to simple shear and pure shear states. It is to be noted that Tvergaard’s investigations 

(Tvergaard, 1981, 2015) have been restricted to the following particular choices and assumptions: only 

some specific strain and stress states are studied, the form of voids is taken to be solely circular, and the 

plane-strain condition is assumed in the thickness direction of the sheet. In addition to these 

investigations, the necking occurrence in perforated sheets has also been analyzed through the classical 
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concept of forming limit diagrams (FLDs). As the studied sheets are assumed to be thin, FLD predictions 

have been legitimately based on the plane-stress assumption in the thickness of the sheet (Hutchinson et 

al., 1978). Furthermore, a wide range of strain paths (from uniaxial tension state to equibiaxial tension 

state) is covered when the FLD approach is used. The concept of forming limit diagrams has been first 

applied to perforated sheets in Iseki et al. (1989). In this chapter, a diffuse necking criterion has been 

used to predict the onset of necking. According to this criterion, the necking limit is reached when the 

product of external force and displacement rate reaches a maximum value. The effect of hole shape 

(circular, elliptical, square) on the formability limit has been particularly highlighted in Iseki et al. (1989). 

It has been found from this study that perforated sheets with square holes have the best formability limit. 

Iseki’s formability criterion (Iseki et al., 1989) has been subsequently used by Chiba et al. (2015) to 

predict the FLDs of perforated aluminum sheets with square holes. In this analysis, both 

phenomenological material models (based on Hill’48 and von Mises yield functions) and a crystal 

plasticity model have been used to describe the mechanical behavior of the dense matrix. In the above-

cited contributions (Tvergaard, 1981, 2015; Iseki et al., 1989; Chiba et al., 2015), finite element analyses 

have been combined with the different necking criteria to predict the onset of necking. In the present 

chapter, we have coupled the periodic homogenization approach with some diffuse and localized 

necking criteria to predict the forming limits of perforated sheets. The onset of diffuse necking is 

predicted by the maximum force criterion (Considère, 1885) and the general bifurcation criterion 

(Drucker, 1950, 1956; Hill, 1958). As to localized necking, its occurrence is determined by the loss of 

ellipticity criterion (Rudnicki and Rice, 1975). To apply both bifurcation criteria, the analytical tangent 

modulus, which relates the macroscopic first Piola–Kirchhoff stress rate to the macroscopic deformation 

gradient rate (as a total Lagrangian formulation is adopted), needs to be determined. To compute this 

tangent modulus, we have used the condensation technique detailed in Chapter 1. The different necking 

criteria have been implemented in the form of Python scripts. 

A brief outline of the present chapter is as follows: 

-  Section 2.2 details the modeling of the mechanical behavior of the perforated sheets. 

-  Section 2.3 gives the main lines of the adopted necking criteria. 

-  The numerical results of the current study are reported in Section 2.4. Our numerical results are 

firstly compared with the numerical predictions of Tvergaard (1981). Secondly, a sensitivity study 

is conducted to analyze the effect of several mechanical and design parameters on the shape and 

the level of forming limit diagrams. 

-  Section 2.5 closes this chapter by summarizing some conclusions and future work. 
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2.2. Modeling of the mechanical behavior of perforated sheets 

2.2.1. Multiscale transition problem 

We consider a thin perforated sheet with a large number of holes, which are periodically distributed in 

the two directions of the plane of the sheet as depicted in Fig. 2.1a. This perforated sheet may be viewed 

as a heterogeneous medium made of two main phases: the hole and the metal matrix. Consequently, the 

mechanical behavior of this perforated sheet could be modeled by using a multiscale scheme. The metal 

matrix is assumed to be homogeneous, as microscopic heterogeneities between the different 

metallurgical phases are neglected in this study. The first step in the application of this multiscale process 

consists of the selection of a RVE, such that duplicating it provides sufficient accuracy for representing 

the material larger scales. In the current chapter, we have chosen a RVE with square pattern containing 

a unique hole located in the center of the RVE (Fig. 2.1b). The second step concerns the choice of the 

most relevant multiscale scheme to determine the homogenized behavior of this RVE. Considering the 

periodicity of the hole arrangement, the periodic homogenization technique (Miehe, 2003) is selected 

for this purpose. The use of this homogenization technique allows us to replace the heterogeneous RVE 

(called also unit cell in the context of periodic homogenization) by an equivalent homogenized medium 

with the same effective mechanical properties (Fig. 2.1c). 

 
 (a) (b) (c) 

Fig. 2.1. Concept of the periodic homogenization approach. 

In what follows, capital (resp. small) letters and symbols will be used to denote macroscale (resp. 

microscale) quantities and variables. The constitutive relations that describe the mechanical behavior of 

the dense matrix, which will be detailed in Section 2.2.2. The equations governing periodic 

homogenization scheme presented in Section 1.3 (Chapter 1) are adapted into the plane-stress state. The 

main lines of this adaptation are introduced in Section 2.2.3. 

2.2.2. Constitutive relations at the microscale level 

As the metal matrix is assumed to be homogeneous, a phenomenological constitutive framework is 

sufficient to describe the mechanical behavior of a microscopic material point from this matrix. To 

simplify the notations in the following developments, reference to the current position of the microscopic 

material point x  in the different mechanical fields will be omitted. Perforated sheets are generally 
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manufactured from cold-rolled products, which exhibit non negligible plastic anisotropy. Hence, a 

plastically anisotropic and rate-independent framework is chosen to model the mechanical behavior of 

the metal dense matrix. To develop the constitutive equations governing the mechanical behavior of the 

dense matrix, it is more convenient to use an Eulerian formulation. In this formulation, the velocity 

gradient g and the Cauchy stress tensor �  are used as strain and stress measures. These tensors are 

related to their Lagrangian counterparts f  and p  by the following classical relations: 

 ( )1 ; with  det ,Tj j- -= × = × =g f f p � f f�  (2.1) 

where T-f  denotes the transpose of the inverse of tensor f . 

The microscopic velocity gradient g is additively decomposed into its symmetric and skew-symmetric 

parts, denoted d  and w , respectively: 

 = +g d w . (2.2) 

To satisfy the objectivity principle (i.e., frame invariance), objective derivatives for tensor variables 

should be used. A practical approach, used to ensure frame invariance while maintaining simple forms 

of the constitutive equations, consists in reformulating these equations in terms of rotation-compensated 

variables. In the present work, a co-rotational approach based on the Jaumann objective rate is used. 

Accordingly, tensor quantities are expressed in a rotating frame so that simple material time derivatives 

can be used in the constitutive equations. The rotation r  of this rotating frame, with respect to the fixed 

one, is derived from the spin tensor w  (skew-symmetric part of g) by the following relation: 

 
T× =r r w� . (2.3) 

In the remainder of the current section (Section 2.2.2), all tensor variables will be expressed in the 

rotating frame (called co-rotational frame), that is to say, using rotation-compensated variables. 

Consequently, time derivatives are involved in the constitutive equations, making them identical in form 

to a small-strain formulation. 

The strain rate d  is itself split into its elastic part ed  and plastic part pd : 

 
e p= +d d d . (2.4) 

The stress rate is described with a hypoelastic law: 

 :e e=� c d� , (2.5) 

where ec  denotes the fourth-order elasticity tensor. Here, elasticity is assumed to be isotropic and is 

defined by two material parameters: the Young modulus E and the Poisson ratio n. 

The plastic strain rate pd  is assumed to be normal to the yield surface, and the following normality law 

is adopted: 

 
p F

l
¶

=
¶

d
�

� , (2.6) 
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where l�  denotes the plastic multiplier, and F  is the yield function defined as the difference between 

the equivalent stress eq�  and the microscopic yield stress y� . In this chapter, the Hill’48 criterion is 

used as equivalent stress measure (Hill, 1948), while hardening is assumed to be isotropic and is modeled 

by the Swift law. Consequently, eq�  and y�  are defined by the following expressions: 

 ( )0: :
np

eq y eq� � K � �= ; = +� H � , (2.7) 

where: 

·  K , 0�  and n are hardening parameters. 

·  p
eq�  is the equivalent plastic strain. 

·  H  is the Hill’48 orthotropic matrix, whose components are expressed in terms of three 

Lankford coefficients (0 45 90, ,r r r ) that measure the degree of plastic anisotropy. 

The activation of the plastic deformation is governed by the well-known Kuhn–Tucker constraints: 

 ( ) 0 0 0eq y� �F l F l= - £ ; ³ ; =� � . (2.8) 

The Cauchy stress rate ��  is related to the strain rate d  by the elastoplastic continuum tangent matrix 

epc : 

 ep= :� c d� .  (2.9) 

The expression of this elastoplastic tangent modulus can be obtained by combining the different 

constitutive equations (2.2)–(2.9). One can obtain after classical computations the following expression 

for epc  (Haddag et al., 2007): 

 
: :

: :

e e

ep e

ye
p
eq

�

�

F F

F F

� �� � � �¶ ¶
Ä� �� � � �¶ ¶	 
 	 
� �= -

� �¶¶ ¶
+� �� �¶ ¶ ¶	 


c c
� �

c c
c

� �

.  (2.10) 

As demonstrated by Mansouri et al. (2014), the microscopic tangent modulus ( )1PKc  is related to the 

elastoplastic tangent modulus epc  by the following relationship: 

 ( ) 1 2 3, , , 1,2,3: PK1 ep
jikl ijkl ijkl ijkl ijkli j k l c c" = = + - -� � � , (2.11) 

where 1
ijkl� , 2

ijkl� , 3
ijkl�  are respectively the index forms of fourth-order tensors 1� , 2�  and 3�  that 

originate from the large strain framework and which are given by: 

( ) ( )1 2 31 1
, , , 1,2,3: ; ;

2 2ijkl ij kl ijkl jl ik jk il ijkl ik jl il jki j k l � � � � �d d d d d" = = = + = -� � � . (2.12) 
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2.2.3. Numerical implementation of the multiscale transition scheme 

As demonstrated in Chapter 1, the Homtools has been used to easily define the PBCs and the average 

loadings over the unit cells as well as to determine the average response. As a first step in solving the 

periodic homogenization problem, the unit cell occupying an initial volume [ ] [ ] [ ]0 0 0 00, 0, 0,0.1l l l= ´ ´�  

is discretized by finite elements (Fig. 2.2). 3D finite elements (C3D20) have been used in this chapter, 

in spite of the small thickness of the studied sheets. As the numerical strategy (introduced in Section 2.1) 

is used to predict forming limit diagrams, the unit cell is submitted to biaxial stretching along the 1st 

and 2nd directions, while under a plane-stress state in the third direction (Fig. 2.2). This loading is 

represented by the following generic macroscopic fields: 

 
11

22

0 ? ? ? 0

0 ? ; ? ? 0

? ? ? 0 0 0

F

F
� � � �
� � � �= =� � � �
� � � �
	 
 	 


F P ,  (2.13) 

where the components denoted by ‘?’ are the unknown components that need to be determined. 

Under plane-stress state, the kinematic relations of periodic homogenization (1.19) and (1.20) are 

respectively adapted into the in-plane forms: 

 IN IN IN IN
0 ,per= × +x F x u   (2.14) 

and 

 IN IN IN IN IN IN IN
0 0 ,per per= × + := × +v F x u F x v� ��   (2.15) 

where IN ·  are the reduced in-plane forms of vector and tensor fields · . 

The other equations related to periodic homogenization are the same as those presented in Section 1.3 

(namely, Eqs. (1.21)–(1.24)). For the sake of brevity, these equations are not recalled here. 

With the in-plane relations, the unit cell is technically submitted to the following boundary conditions: 

�  On the boundary surfaces 01
-�  and 01

+� : a reference point RP1 (following the ABAQUS 

terminology) is created to apply the components 11F , 12( 0)F =  and 13( free)F =  of the macroscopic 

deformation gradient F. Furthermore, for the current position of the two corresponding nodes 
IN

0q
-x  and IN 0q

+x  with identical coordinates in 2 and 3 directions on surfaces 01
-�  and 01

+� , the 

following constraint equation is imposed: 

 ( )IN IN IN IN IN
0 0q q q q

+ - + -- = × -x x F x x .  (2.16) 

Constraint equation (2.16) is the in-plane form of Eq. (1.30) presented in Section 1.3. 
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�  On the boundary surfaces 02
-�  and 02

+� : a reference point RP2 is created to apply the components 

21( 0)F = , 22F  and 23( free)F =  of F. Furthermore, a periodic constraint, similar to the one imposed 

to the nodes of surfaces 01
-�  and 01

+� , is applied. 

�  On the boundary surfaces 03
-�  and 03

+� : a reference point RP3 is created to enforce the 

macroscopic stress components 31 32 33 0P P P= = = . 

 
Fig. 2.2. Finite element discretization and boundary conditions applied to the unit cell. 

The above macroscopic loading in terms of displacement on the reference points can be summarized 

briefly: 

 

( )

( )( )
1 11 11 0 12 13

2 21 22 11 0 23

3 31 32 33

: 1 ;  0 ; 0 ;

: 0 ;  1 ;  0 ;

: 0 ;  0 ;  0.

RP U F l U P

RP U U F l P

RP P P P

r

= - = =

= = - =

= = =

 (2.17) 

More details about the practical aspects of applying Eq. (2.17) can be found in Section 1.3. 

Meanwhile, the macroscopic force 1R  applied on the boundary surfaces 01
-�  and 01

+�  is obtained by 

multiplying the component 11P  by the initial surface 01�  of boundaries 01
-�  or 01

+� , namely: 

 1 11 01R P= � . (2.18) 

A similar relationship can be defined between the force 2R  applied on 02
-�  and 02

+�  and 22P . 

As discussed in Section 1.3, by using the Homtools, it is allowed to treat the macroscopic deformation 

gradient F as macroscopic degrees of freedom associated with the nodal reaction forces 0 P�  at the 

reference points. It is worth noting that the demonstration in Section 1.3 is also suitable for the plane-

stress case in this chapter, which are specified in the following.  

As a departure, we recall the virtual work principle expressed in Eq. (1.25): 
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0 0

0 0 0
0

: d  d .
d

d
� �¶

= ×� ¶� �
� �

v
p v t  

x
��

� �
� �  (2.19) 

where 0�  ( 01 01 02 02 03 03
- + - + - += � � � � � �� � � � � ) and 0t�  denote, respectively, the boundary surface of the 

initial configuration and the nominal traction rate prescribed on 0� . Vector 0t�  is equal to 0×p n
�

� , where 

0n
�

 is the outer normal to the boundary 0� . 

To solve Eq. (2.19), the Hill-Mandel condition could be used after validating it for the plane-stress state. 

This condition states the incremental internal energy equivalence between the micro and macroscales as: 

  
0

?

0 0
0

: d : 0.
d

d
� �¶

- =� ¶� �
�

v
p F P

x
� ��

�
� �  (2.20) 

To prove equality (2.20), the left-hand side of the latter can be recasted as: 

 
0 0

0 0 0 0 0 0
0

: d : d .
d

d d d
� �¶ � � � �- = - × × - ×�  � � � �¶� �

� �
v

p F P v F x t P n
x

�� � � ���
� �

� � �  (2.21) 

Following the decomposition of the whole boundary of the unit cell 0�  into six faces, the right-hand 

side of Eq. (2.21) could be expanded as: 

 0 01 01 02 02

03 03

0 0 0 0 0 0 0 0

0 0 0 0

d d

d .

d d d d

d d

- + - +

- +

� � � � � � � �- × × - × = - × × - ×� � � � � � � �

� � � �+ - × × - ×� � � �

� �

�

v F x t P n v F x t P n

v F x t P n

� � �

�

� �� � � �� �

�� ��
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� �

� �

�
 (2.22) 

Making use of the kinematic relationship under plane-stress condition, the first part of the right-hand 

side of Eq. (2.22) may be transformed as: 
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with IN ·  being the reduced in-plane forms of vector and tensor fields · . The periodicity of vector 

IN
perdv  and the anti-periodicity of vector IN IN IN

0 0� �- ×� �t P n
���  over the set of faces 01 01 02 02

- + - +� � �� � � �  

lead to the following boundary integral constraint: 

 
01 01 02 02

IN IN IN IN
0 0 0d 0.perd

- + - +
� �× - × =� �� v t P n

� � �

���
� � � �

�  (2.24) 

On the other hand, the second part of the right-hand side of Eq. (2.22) can thereby be naturally reduced 

to 0 considering the plane-stress condition: 

 
03 03

03 03 0 0 0 0 0 0over : d 0.d d
- +

- + � � � � � �- × = � - × × - × =� � � � � ��t P n 0 v F x t P n
�

�� �� � �� ��
� �

� � �  (2.25) 



Chapter 2    Investigation of necking in perforated sheets 

-67- 
 

Considering Eqs. (2.24) and (2.25), the Hill-Mandel condition of Eq. (2.20) is validated for the plane-

stress state. 

2.2.4. Computation of the macroscopic tangent modulus 

The application of the bifurcation criteria presented in Section 2.3 requires the computation of the 

macroscopic tangent modulus ( )1PKC  introduced in Eq. (1.24)2. To determine this tangent modulus from 

the finite element outputs, the condensation technique presented in Chapter 1 has been adopted, after its 

adaptation to the kinematics of the plane-stress state. For completeness, the main steps of this technique 

will be recalled in the following developments. Further information about this technique can be found 

in Section 1.4.2 and reference (Miehe, 2003). 

·  Step 1: at the convergence of the finite element method, ABAQUS offers the possibility to save 

the elementary stiffness matrices elK  in a ‘.mtx’ file by using the command ‘Element Matrix 

Output’. A classical assembly procedure has been implemented to determine the global stiffness 

matrix K  from the elementary ones elK  and by taking into account the connectivity of the 

different nodes of the mesh: 

 
1

el Nel
el

el

=

=
=K K� , (2.26) 

where Nel  refers to the total number of finite elements in the mesh. 

·  Step 2: the nodes of the mesh are partitioned into two sets (Fig. 2.2): set �  made of nodes located 

on the boundary surfaces 01 01 02 02
- + - +� � �� � � �  where periodicity constraints are applied, and set 

�  which is composed of the other nodes of the mesh. By using this partition, the lines and 

columns of the global stiffness matrix K  are rearranged (permuted) to obtain the following 

decomposition: 

 
� �

= � 
� �

K K
K

K K
�� ��

�� ��

. (2.27) 

·  Step 3: matrices �  and �  are computed by following the numerical procedure detailed in 

Section 1.4.2. 

·  Step 4: the macroscopic tangent modulus is computed by using the following relation: 

 ( ) ( )
111 1

0

1PK T T
---� �= × × - × × × ×� � �

C K K K K� �� ��� �� �� ����
. (2.28) 

The constitutive equations used to model the mechanical behavior of the dense matrix have been 

integrated by using an Euler explicit algorithm and implemented as a UMAT subroutine in 

ABAQUS. As the integration algorithm is explicit, the consistent elastoplastic tangent modulus 

used to construct the stiffness matrix K  coincides with the analytical one given by Eq. (2.10), as 
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explained in Simo (1998). As demonstrated in Temizer and Wriggers (2008), the condensation 

technique allows us to obtain an analytical macroscopic tangent modulus if the microscopic one, 

used to compute the global stiffness matrix K , is itself analytical. Consequently, ( )1PKC  is an 

analytical tangent modulus, which can be used without any modification in the subsequent 

bifurcation analyses. 

2.3. Necking criteria 

To predict the occurrence of necking in thin perforated sheets, and represent the prediction results in 

terms of forming limit diagrams, the applied macroscopic deformation gradient given in Eq. (2.13) is 

defined by the following in-plane components: 

 11 22
11 22 22 11; with  E EF e F e E Er= = = . (2.29) 

To cover the whole range of strain paths, relevant for the plot of forming limit diagrams, the strain-path 

ratio r  is varied between 1/ 2-  (uniaxial tensile state) and 1 (equibiaxial tensile state). 

To predict the onset of necking in the unit cell, the macroscopic first Piola–Kirchhoff stress tensor P  

and the corresponding analytical tangent modulus ( )1PKC  are used as inputs for three necking criteria: 

the Maximum Force Criterion (MFC), the General Bifurcation Criterion (GBC), and the Rice 

Bifurcation Criterion (RBC). Considering the plane-stress assumption, ( )1PKC  will be used as its in-plane 

form ( )1IN PKC  in those necking criteria, where ( )1IN PKC  can be deduced by: 

 ( ) ( )
( ) ( )

( )

1 1
1 1 33 33IN

1
3333

, , , 1,2 : .
PK PK

PK PK ij kl
ijkl ijkl PK

C C
i j k l C C

C
" = = -   (2.30) 

These necking criteria will be briefly presented in the following Sections (2.3.1; 2.3.2 and 2.3.3). 

2.3.1. Maximum Force Criterion 

Swift (1952) proposed a diffuse necking condition for stretched metal sheets submitted to biaxial loading, 

as depicted in Fig. 2.2. This condition can be mathematically expressed as: 

 1 20 and 0R R= =� � . (2.31) 

Condition (2.31) suggests that diffuse necking occurs when components 1R  and 2R  reach their 

maximum values simultaneously. However, the satisfaction of this simultaneous condition is only 

possible for two particular strain paths (uniaxial and equibiaxial strain paths), as it has been 

experimentally and theoretically demonstrated in Habbad (1994) and Abed-Meraim et al. (2014). 

Accordingly, to be able to predict the onset of diffuse necking for the whole range of strain paths, we 

only consider the first condition in Eq. (2.31), namely: 

  1 0R =� . (2.32) 
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As the component 11P  of tensor P  is proportional to force 1R , condition (2.32) can be equivalently 

rewritten as: 

 11 0P =� . (2.33) 

2.3.2. General Bifurcation Criterion 

Diffuse necking is also predicted by the general bifurcation criterion (GBC). This criterion states that 

plastic instability occurs when the second-order work vanishes (Drucker, 1950, 1956; Hill, 1958). 

According to the GBC, diffuse necking is predicted when at least one eigenvalue of the symmetric part 

of ( )1IN PKC  (called hereafter ( )1IN PK
symC ) becomes negative. Further details about the development of this 

criterion are provided in Bouktir et al. (2018). 

2.3.3. Rice Bifurcation criterion 

In the approach proposed by Rudnicki and Rice (1975), material instability corresponds to a bifurcation 

associated with admissible jumps for strain and stress rates across a localization band, as illustrated in 

Fig. 2.3. In a Lagrangian formulation, the kinematic condition for the strain rate jump writes: 

 
IN IN IN IN IN+ -= - = ÄF F F

���	 
� � �� � � � � , (2.34) 

where 
IN

F	 
�� � �  is the jump of the in-plane velocity gradient field IN F�  across the discontinuity band, while 

IN
���  is the in-plane jump vector, and IN

�
�  is the in-plane unit vector normal to the localization band in 

the initial configuration equal to ( )cos ,sinq q , where q  is the inclination of vector IN
�

�  (see Fig. 2.3). 

On the other hand, the continuity condition for the force equilibrium across the band is expressed as: 

 
IN IN× =P 0

� �	 
�� � � � . (2.35) 

The combination of Eqs. (2.34) and (2.35) with the macroscopic constitutive law (1.24) leads to the 

following equation: 

 ( )( )1IN IN IN IN:PK Ä × =C 0
� �� ��� � � , (2.36) 

which can be written in index form: 

 ( )( )1IN IN IN IN1,2,: 0, , , 1,2,PK
j ijkl l ki C j k l" = = =	 	 
 � . (2.37) 

By introducing matrix ( )1IN PKC� , defined as the transpose of matrix ( )1IN PKC  by permutation of the first 

two indices ( ( ) ( )1 1IN INPK PK
ijkl jiklC C=� ), condition (2.37) can be rewritten as follows: 

 ( )( )1IN IN IN IN1,2 : 0, , , 1,2PK
i ijkl l kj C i k l" = = =	 	 
� � , (2.38) 
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which is equivalent to: 

 ( )( )1IN IN IN INPK× × × =C 0
� � � ���� � � . (2.39) 

Tensor ( )1IN IN INPK× ×C
� �

�� �  is the so-called acoustic tensor. As long as this tensor is invertible, the jump 

vector IN
���  remains equal to zero, thus precluding any discontinuity (bifurcation) in the deformation 

field. However, when the acoustic tensor becomes singular, there exists non-zero jump vectors that 

satisfy Eq. (2.39), and this can be seen as indicator of effective bifurcation. Therefore, strain localization 

occurs when the acoustic tensor is no longer invertible: 

 ( )( )1IN IN INdet 0.PK× × =C
� �

�� �  (2.40) 

The bifurcation criterion given by Eq. (2.40) is implemented in the set of Python codes by following the 

algorithm developed in Ben Bettaieb and Abed-Meraim (2015). 

 
Fig. 2.3. Illustration of the Rice bifurcation criterion. 

2.4. Results and discussions 

2.4.1. Results for homogeneous unit cell 

To provide a first validation to the developed numerical tools, attention is confined here to the prediction 

of the occurrence of necking in a homogeneous unit cell (without holes). For this simulation, the 

mechanical behavior is assumed to be plastically isotropic, following the von Mises yield function. In 

this context, the Lankford coefficients 0r , 45r  and 90r  used in the Hill’48 yield function are set to 1. 

Elastic and isotropic hardening parameters (Eq. (2.7)) are reported in Table 2.1. These parameters 

correspond to the aluminum alloy AA5052-O. 

Table 2.1. Elastic and hardening material parameters 

Elastic parameters Isotropic hardening parameters 

(GPa)E  n  (MPa)K  
0�  n 

210 0.3 363 0.008 0.184 
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The prediction of the onset of necking using the above-described diffuse and localized necking criteria 

is illustrated in Fig. 2.4 for three particular strain paths: r = -0.5 , r = 0, and r =1. In Fig. 2.4a, the 

evolution of the component 11P  is plotted as a function of 11E  ( ( )11ln F= ). For MFC, the moment when 

11P  reaches its maximum value is considered as indicator of the onset of diffuse necking. For the three 

strain-path ratios considered, the corresponding stress–strain curves are clearly distinct, but the 

maximum values for 11P  are reached at the same strain level, which is equal to 0n �-  (» 0.176). The 

evolution of the cubic root of the determinant of the symmetric part ( )1IN PK
symC  of ( )1IN PKC  is plotted as a 

function of 11E  in Fig. 2.4b. The onset of necking starts, according to the GBC, when the smallest 

eigenvalue of ( )1IN PK
symC  vanishes, or in an equivalent way, when ( )1IN PK

symC  becomes singular (as ( )1IN PK
symC

is positive definite before it becomes singular). As clearly shown in this figure, the predicted limit strains 

11E  are strictly the same (equal to 0 0.176n �- » ) for the three different strain-path ratios considered. 

The predictions based on RBC are reported in Fig. 2.4c, where the evolution of the cubic root of the 

minimum of the determinant of the acoustic tensor, over all possible orientations IN
�

�  for the 

localization band, is plotted as a function of 11E . It can be seen that, irrespective of the selected strain 

path, the minimum of that determinant abruptly drops during the transition from elastic to plastic regime. 

This determinant vanishes for the strain-path ratios r = -0.5  and r = 0  at strain levels equal to 

( )02 n �-  and 0n �- , respectively. By contrast, this determinant remains strictly positive, even for very 

large strain levels, for the equibiaxial tension state (r =1). Consequently, localized necking cannot be 

predicted by RBC for this particular strain-path ratio. 
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 (c) 

Fig. 2.4. Prediction of necking, for three particular strain-path ratios, using the different necking criteria: (a) MFC; 
(b) GBC; (c) RBC. 

Fig. 2.5 provides the FLDs predicted by using the three different necking criteria. As can be seen, the 

forming limit curve given by MFC reveals to be a horizontal line, which also coincides with the 

predictions given by GBC for the three particular strain-path ratios: r = -0.5 ; r = 0, and r =1 (see, 

e.g., Abed-Meraim et al., 2014). The RBC is able to determine limit strains at localized necking only in 

the range of negative strain-path ratios. In the latter range, the FLD takes the form of a straight line, 

along which ( )11E r  is equal to ( ) ( )0 1n � r- +/ . This result may be viewed as an extension of the 

results demonstrated for the particular case of rigid-plastic behavior. Indeed, the adopted elastoplastic 

behavior model can be reduced to a rigid-plastic one by setting 0�  to 0. In this limiting case of rigid-

plasticity, Hill (1952) has demonstrated that ( )11E r  is equal to ( )1n r+/  in the left-hand side of the 

FLD. This classical result has also been confirmed by the recent numerical investigations reported in 

Ben Bettaieb and Abed-Meraim (2015). For the positive strain-path ratios, the limit strains predicted by 

RBC are so unrealistically high that they cannot be represented in Fig. 2.5. It is also clearly shown from 

Fig. 2.5 that the three necking criteria provide the same limit strain for the plane-strain state (r = 0). As 

a preliminary conclusion, the results given in Fig. 2.5 represent a first partial validation for the developed 

numerical tools. 
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Fig. 2.5. FLDs for a homogeneous sheet (without holes), as predicted by MFC, GBC, and RBC. 

2.4.2. Comparison with Tvergaard’s results 

To further validate the developed numerical approach, our numerical predictions have been compared 

with those published in Tvergaard (1981). To this aim, our numerical tools have been slightly modified 

and adapted to be conformal with the simulations performed in Tvergaard (1981). For instance, the 

plane-strain condition is applied in the thickness direction of the sheet, instead of the plane-stress 

condition commonly adopted so far. Accordingly, the component 33F  is set to 1 all along the loading 

(Fig. 2.6). Also, the material parameters and the finite element mesh discretization used in these 

comparisons coincide with those considered in Tvergaard (1981). In these comparisons, three different 

loading states have been considered: 

�  Uniaxial tension state: for this loading, the component 22P  is set to 0 (Fig. 2.6). Consequently, 

22F  is left free. The loading is applied in direction 1, where component 11F  increases 

monotonically from 1 (which corresponds to 11 0E = ) to 2. 

�  Plane-strain tension state: for this loading, the component 22F  is set to 1 (Fig. 2.6). Consequently, 

22P  is left free, and component 11F  increases monotonically from 1 (which corresponds to 11 0E = ) 

to 2. 

·  Proportional in-plane stressing: for this loading, the ratio 22 11P P/  of the in-plane components of 

the first Piola–Kirchhoff stress tensor is set to 2 (Fig. 2.6). To apply this loading, component 22F  

increases monotonically from 1 to 2. The application of this proportional in-plane stressing has 

required further numerical developments. Indeed, the toolbox Homtools used to apply the 

macroscopic boundary conditions allows us to easily manage strain-driven boundary conditions. 
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However, for stress-driven boundary conditions, some improvements and extensions are needed. 

In fact, the application of proportional stressing has been made possible by implementing in 

ABAQUS a procedure based on the coupling of the Homtools and the user-subroutine MPC 

(Multi-point constraints). The use of the MPC subroutine allows us to update the value of 

component 11F  in order to ensure that ratio 22 11P P/  remains equal to 2 during the loading. The 

interested reader may refer to Chapter 3 to better understand how proportional stressing is applied 

on the unit cell. The new results further confirm the previous and current trends showing the 

perfect agreement between our numerical predictions and those obtained in Tvergaard (1981). 

 
Fig. 2.6. Initial unit cell used for the comparisons with Tvergaard’s results. 

The comparisons between our predictions (in black color) and Tvergaard’s results (in green color) are 

given in Fig. 2.7. In this figure, the component 11P  normalized by the initial yield stress is plotted as a 

function of 11E . To analyze the effect of the hole radius on the instability predictions (such as shear band 

bifurcation), four values for the ratio 0 0R A/  are taken (Fig. 2.6): 0 (which corresponds to homogeneous 

unit cell); 0.175; 0.25 and 0.375. From Fig. 2.7, the following conclusions can be drawn: 

�  The plots in Fig. 2.7 show that the level of the maximum stress 11P  is significantly reduced when 

increasing the hole diameter. This observed general trend is common to all of the simulations and 

for both loading situations (i.e., uniaxial tension state, and plane-strain tension state). 

�  All of our predictions agree very well with those published in Tvergaard (1981). Indeed, the 

11 11P E-  curves are perfectly superposed. Furthermore, the bifurcation points that we predict here 

by using the RBC are identically the same as those predicted in Tvergaard (1981) based on 

bifurcation theory with instability modes in the form of shear band localization. 

�  For the uniaxial tensile state (Fig. 2.7a), the strains corresponding to the maximum nominal stress 

and those associated with bifurcation exhibit opposite evolution with the increase of the ratio 
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0 0R A/ . Indeed, while the strains corresponding to the maximum nominal stress increase when 

increasing the void volume fraction, the opposite trend is observed for the bifurcation critical 

strains. 

�  For the plane-strain tension state (Fig. 2.7b), when the void volume fraction is set to zero (i.e., 

homogeneous sheet), the nominal stress does not reach a maximum, and also bifurcation is not 

predicted. In this case, the strain components 22E  and 33E  remain equal to 0 and the sheet is 

deformed with a very small volume change, which is entirely due to elastic compressibility (as 

plastic deformation is taken to be without volume change). Consequently, a very important stress 

11P  is required to slightly deform the sheet, and this stress level cannot decrease. For the other 

ratios ( 0 0 0R A ¹/ ), maximum nominal stress and bifurcation are more easily reached, as the 

volume change of the perforated sheet is allowed by the evolution of the hole volume. For this 

plane-strain tension state, maximum nominal stress occurs simultaneously with bifurcation when 

0 0R > . 

�  The results provided in Fig. 2.7c show that bifurcation cannot be reached for homogeneous sheet 

(i.e., when ratio 0 0R A/  is set to zero) with 22 11 2P P/ = . This result is quite expectable considering 

the fact that for this loading, the strain-path ratio is positive (but not constant). For the other unit 

cells, the limit strains at bifurcation decrease when the hole radius increases. On the other hand, 

the strains corresponding to the maximum nominal stress are less sensitive to the hole radius, as 

shown in Fig. 2.7c. 
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(c) 

Fig. 2.7. Comparisons between the current numerical predictions and Tvergaard’s results (in green color): (a) 
uniaxial tension state; (b) plane-strain tension state; (c) loading with proportional in-plane stressing 22 11 2P P/ = . 

2.4.3. Sensitivity study 

In this section, a sensitivity study is conducted to analyze the effect of several design and mechanical 

parameters on the onset of necking in perforated sheets. When not explicitly specified, the material 

parameters of the dense matrix are the same as those given in Table 2.1. A preliminary sensitivity 

analysis has been performed to investigate the influence of the selected finite element mesh on the 

necking predictions. The choice of mesh discretization has been mainly dictated by seeking good 

compromise between the CPU time required for the computations and the accuracy of the predictions. 

For the sake of conciseness, the details of this preliminary study are not discussed in the current chapter. 

2.4.3.1. Effect of the hole radius 

In this subsection, the hole is assumed to be initially circular and the influence of its initial radius 0R  on 

the forming limit diagrams is analyzed (Fig. 2.8). The results of this analysis are shown in Fig. 2.9. 

Contrary to the case of zero void volume fraction (i.e., homogeneous unit cell without holes, see Fig. 

2.5), localized necking for perforated unit cell is predicted at realistic (finite) limit strains, even in the 

range of positive strain-path ratios (see right-hand side of the FLDs in Fig. 2.9c). Indeed, the presence 

of holes induces some softening, which allows promoting the occurrence of localized necking 

(Tvergaard, 1981; Koplik and Needleman, 1988). Clearly, the necking limit strains decrease on the 

whole when increasing the size of the holes, which corresponds to larger void volume fraction. As clearly 

shown in Fig. 2.9, the effect of the hole radius on the necking limit strains is much more pronounced in 

the range of positive strain-path ratios. This common trend, which is observed for the three adopted 

necking criteria (see Fig. 2.9), is directly attributable to the hole growth, which is mainly dependent on 
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the applied loading path as shown in Fig. 2.10. To further explain this point, let us introduce the surface 

growth factor 0S S SD = - , with 0S  and S denoting the initial and current hole surface in the plane of 

the sheet, respectively. One can easily derive the following expression for SD : 

 ( )( )111
01ES e SrD += - . (2.41) 

Hence, the surface growth factor increases with the strain-path ratio (and also with the triaxiality factor). 

For negative strain-path ratios (especially near the uniaxial tensile state, as illustrated in Fig. 2.10b), SD  

is relatively small and the loading path is characterized more by a change in the hole shape than a change 

in the hole surface. By contrast, for equibiaxial tensile state, the hole remains circular and the loading 

path exhibits the largest surface growth factor (Fig. 2.10c). 

    
 (a) (b) (c) 

Fig. 2.8. Unit cells with different circular hole initial radii: (a) 0 0 0.1R A =/ ; (b) 0 0 0.2R A =/ ; (c) 0 0 0.5R A =/ . 
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(c) 

Fig. 2.9. Effect of the hole radius on the FLDs predicted by: (a) MFC; (b) GBC; (c) RBC. 

  
 (a) (b) (c) 

Fig. 2.10. Schematic evolution of the unit cell: (a) initial configuration; (b) current configuration for 0.5r = - ; (c) 
current configuration for 1r = . 

2.4.3.2. Effect of the elliptical hole aspect ratio 

It is expected that the hole shape has a significant impact on the mechanical behavior and on the 

development of necking in perforated sheets. To investigate this aspect, our interest is firstly centered 

on perforated sheets with elliptical holes. We assume that the minor (resp. major) axis of the hole is 

aligned with the direction of major (resp. minor) strain 11E  (resp. 22E ), as illustrated in Fig. 2.11. The 

initial hole shape is characterized by the initial aspect ratio 0 0b a/ , where 0b  (resp. 0a ) is the major 

(resp. minor) radius of the hole. In the current simulations, we have used three different values for the 

ratio 0 0b a/ : 1 (which corresponds to a circular hole), 2 and 3 (see Fig. 2.11). The initial radii 0a  and 

0b  are determined in such a way that the hole initial surface is the same for the three different 

configurations. From Fig. 2.12, it is clearly shown that the necking limit strains decrease with an increase 

in the initial aspect ratio 0 0b a/ . This result also confirms the trends observed in several pioneering 

-0.10 -0.05 0.00 0.05 0.10 0.15
0.00

0.05

0.10

0.15

0.20

E22

 R0/A0=0.1

 R0/A0=0.2

 R0/A0=0.5

E11



Chapter 2    Investigation of necking in perforated sheets 

-79- 
 

studies, devoted to 3D voided materials and focused on some particular loading paths, which state that 

void-induced softening is mainly dependent on the ellipsoidal void aspect ratio (see for instance, Pardoen 

and Hutchinson, 2000; Keralavarma and Benzerga, 2010). These studies have revealed that the increase 

in void aspect ratio induces accelerated void growth, thus resulting in earlier occurrence of softening. 

    
 (a) (b) (c) 

Fig. 2.11. Unit cells with different elliptical hole initial aspect ratios: (a) 0 0 1b a =/ ; (b) 0 0 2b a =/ ; (c) 0 0 3b a =/ . 
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(c) 

Fig. 2.12. Effect of the hole aspect ratio on the FLDs predicted by: (a) MFC; (b) GBC; (c) RBC. 

2.4.3.3. Effect of the elliptical hole orientation 

In the current subsection, the effect of the elliptical hole orientation on the necking predictions is 

investigated. To this end, the initial orientation 0q , defined by the angle between the major axis of the 

hole and the major strain direction, is varied with three values considered for 0q : 0° (Fig. 2.13a), 45° 

(Fig. 2.13b) and 90° (Fig. 2.13c). Note that the initial shape and aspect ratio of the hole are kept the same 

for all of the simulations in this subsection. By analyzing the results of Fig. 2.14, the following 

conclusions can be drawn: 

�  The most favorable hole orientation, in terms of necking resistance, is 45°. This result may be 

explained by the fact that, for this orientation, the applied loading leads to a change in the hole 

shape and orientation without significant growth. Indeed, in this case, the hole is subject to shear-

type loading, as its principal axes are oriented at 45° with respect to the principal strain directions. 

Consequently, necking is delayed with significant improvement in the necking limit. 

�  The hole orientation at 0° results in higher necking limit strains than those obtained with the 

orientation at 90°, as demonstrated in Fig. 2.14. This result can be easily understood through the 

analysis conducted in Section 2.4.3.2. In fact, holes with initial orientations at 0° and 90° may be 

viewed as elliptical holes with aspect ratio 0 0b a/  equal to 1 2/  and 2, respectively (see the 

analysis in Section 2.4.3.2). 

�  For the particular case of equibiaxial tension strain path, the necking limit strains predicted by 

bifurcation (i.e., GBC and RBC) are the same for orientations 0° and 90°, as shown in Fig. 2.14b 
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and Fig. 2.14c. This result is obvious considering that these two orientations are equivalent, as 

11E  is equal to 22E . This is obviously not the case when the MFC is used. 

    
 (a) (b) (c) 

Fig. 2.13. Unit cells with different elliptical hole initial orientations: (a) 0 0q = ° ; (b) 0 45q = ° ; (c) 0 0q = 9 °. 
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Fig. 2.14. Effect of the elliptical hole orientation on the FLDs predicted by: (a) MFC; (b) GBC; (c) RBC. 

2.4.3.4. Effect of the hole shape 

In the current subsection, the effect of the hole shape on the prediction of necking is numerically 

investigated. To this aim, three initial hole shapes are used and compared in the simulations: circular, 

elliptical and square (see illustration in Fig. 2.15). In these simulations, the initial hole surface is taken 

the same for the different unit cells. The initial aspect ratio 0 0b a/  of the elliptical hole is set to 2. The 

results reported in Fig. 2.16 reveal that the necking limit strains predicted for the unit cell with square 

hole are the highest, regardless of the adopted necking criterion and of the strain-path ratio considered. 

These necking predictions are consistent with the numerical results obtained by Jia et al. (2002) and 

Iseki et al. (1989) and confirming the excellent formability of perforated sheets with square holes, as 

compared to those with circular or elliptical holes for the same hole surface. 

     

 (a) (b) (c) 

Fig. 2.15. Unit cells with different initial hole shapes: (a) Circular; (b) Elliptical; (c) Square. 
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(c) 

Fig. 2.16. Effect of the hole shape on the FLDs predicted by: (a) MFC; (b) GBC; (c) RBC. 

2.4.3.5. Effect of the plastic anisotropy of the metal matrix 

In the previous subsections (2.4.3.1 to 2.4.3.4) attention has been focused on the analysis of the effect 

of the hole geometric characteristics on the onset of necking in perforated sheets. In those subsections 

the plasticity of the dense matrix has been assumed to be isotropic, and described by the von Mises yield 

function. On the other hand, it is well recognized that plastic anisotropy has a significant effect on the 

necking limit strains of metal sheets (without perforation), especially in the range of positive strain-path 

ratios (see, e.g., Barlat, 1987). The objective of this subsection is to numerically analyze the effect of 

the plastic anisotropy of the metal matrix on the occurrence of necking in perforated sheets. To this end, 

the Hill’48 yield function is used to model the metal matrix plastic anisotropy with three different sets 

of Lankford’s coefficients (0 45 90, ,r r r ), as reported in Table 2.2. The rolling direction of the metal sheet 

is assumed to coincide with the major strain direction. Set 1 typically corresponds to plastic anisotropy 

of aluminum alloys (Chiba et al., 2015). By contrast, set 2 corresponds to an isotropic dense matrix. As 

to the parameters of set 3, the latter are virtual and are chosen purposely to better understand the effect 

of plastic anisotropy on the predicted necking limit strains. The impact of these different sets of 

anisotropy parameters on the shape of the metal matrix yield surface is shown in Fig. 2.17. 

Table 2.2. Lankford’s coefficients 

 0r  45r  90r  

set 1 0.585 0.571 0.766 
set 2 1 1 1 
set 3 1.5 1.5 1.5 
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All of the simulations in this subsection pertain to unit cells with circular hole, where the ratio 0 0R A/  

is set to 0.2. Fig. 2.17 illustrates the effect of the Lankford coefficients on the prediction of forming limit 

diagrams. As revealed in this figure, the necking limit strains predicted by the different necking criteria 

are not very sensitive to the values of the Lankford coefficients in the range of negative strain-path ratios. 

By contrast, this sensitivity to plastic anisotropy is more pronounced in the range of positive strain-path 

ratios. Furthermore, it is clear from Fig. 2.17 that set 1 of Lankford’s coefficients results in higher 

necking limit strains than set 2, which in turn leads to necking limit strains higher than those predicted 

by set 3. These numerical predictions of necking are likely to be correlated with the sharpness of the 

associated yield surfaces. To further assess such a correlation, we plot in Fig. 2.18 the yield surfaces of 

the metal matrix that correspond to the above-defined sets of Lankford coefficients. Similar to some 

studies in the literature (see, e.g., Wu et al., 2004), these yield surfaces are normalized by their 

corresponding equibiaxial yield stresses (11 22� �= ), in order to emphasize their differences in terms of 

sharpness. In accordance with several literature results, a correlation between the overall level of the 

FLDs, in the neighborhood of equibiaxial tension, and the degree of sharpness of the associated yield 

surfaces may be clearly established. The sharper the yield surface, the lower the corresponding FLD. 

The FLD predictions reported in Fig. 2.17 are consistent with the above discussion on the sharpness of 

the yield surface (see Fig. 2.18), and confirm once again the important role of material anisotropy in the 

modeling of forming limits of perforated sheets. 
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(c) 

Fig. 2.17. Effect of the plastic anisotropy of the metal matrix on the FLDs predicted by: (a) MFC; (b) GBC; (c) 
RBC. 

 

Fig. 2.18. Impact of the Lankford coefficients on the shape of the dense matrix yield surface. 

2.4.3.6. Effect of the hardening parameters of the metal matrix 

In this subsection, we investigate the effect of the isotropic hardening parameters (the hardening 

exponent n and the initial yield strength 0 /y� E  ) of the dense matrix on the mechanical behavior of 

the perforated sheets (stress–strain curves and ductility limits). All the simulations presented in this 

section are made for unit cells with circular holes, where the ratio 0 0R A/  is set to 0.2 and the plastic 

behavior of the dense matrix is assumed to be isotropic (i.e. 0 45 90r r r= = =1). The objective of this 

section is twofold. Firstly, it aims to better validate the proposed approach by comparing our predictions 
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(black color) with the results published in Tvergaard (1981) (green color). The results presented in Fig. 

2.19a and Fig. 2.20a confirm again the good agreement between the two sets of results. This further 

validates the developed approach. Secondly, this section analyzes the effect of the hardening parameters 

on the level and the shape of forming limit diagrams. On the one hand, it is clearly shown in Fig. 2.19b 

that the ductility limits, obtained by the different necking criteria, strongly increase when increasing the 

hardening exponent n (see Eq. (2.7)). In connection with Fig. 2.19b, some numerical investigations (see, 

e.g., Hutchinson et al., 1978; Ben Bettaieb and Abed-Meraim, 2015) also support the trend according to 

which low hardening materials are more prone to plastic instabilities. On the other hand, the effect of 

initial yield stress of the dense matrix on the ductility of the unit cell seems to be relatively small and 

dependent on the applied strain path, as demonstrated in Fig. 2.20b. 

 

 (a) (b) 

Fig. 2.19. Effect of the hardening exponent on: (a) the macroscopic stress–strain curves; (b) the FLDs predicted 
by the RBC. 

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.4

0.8

1.2

1.6

2.0

n = 0.092

E11

,  Maximum
,  Bifurcation

P11/s y0

n = 0.368
n = 0.184

-0.03 0.00 0.03 0.06 0.09 0.12
0.00

0.04

0.08

0.12

0.16

0.20

 n = 0.092
 n = 0.184
 n = 0.368

E11

E22



Chapter 2    Investigation of necking in perforated sheets 

-87- 
 

 
 (a) (b) 

Fig. 2.20. Effect of initial yield strength on: (a) the macroscopic stress–strain curves; (b) the FLDs predicted by 
the RBC. 

2.4.3.7. Effect of the macroscopic boundary conditions 

In order to investigate the effect of the macroscopic boundary conditions on the mechanical behavior 

(stress–strain curves and ductility limits) of perforated sheets, the results obtained by the periodic 

boundary conditions (briefly called PBCs) are compared with those obtained by the application of the 

kinematic boundary conditions (briefly designated KBCs). It must be noted that the KBCs can be viewed 

as a particular case of the PBCs, where the periodic displacement field peru  (see Eq. (1.19)) is set to 0 . 

Consequently, the deformation gradient on the boundary of the unit cell is assumed to be homogeneous 

( =f F  over the boundary of the unit cell). Also, the KBCs (or mixed with PBCs) have been usually 

adopted in the study of the mechanical behavior of voided materials (see, e.g., Liu et al., 2016). However, 

the different boundary conditions lead to different macroscopic responses and consequently different 

evolutions of the macroscopic tangent modulus. To couple the homogenization approach based on the 

KBCs with the bifurcation approach, the condensation procedure, which has been presented in Section 

2.2.4 and Section 1.4.2 and used to derive the macroscopic tangent modulus, has been modified. More 

details about these modifications are provided in Miehe (2003). The results displayed in Fig. 2.21 

highlight the effect of these boundary conditions on the strain–stress curves as well as on the level and 

the shape of the forming limit diagrams. Especially, one can observe that the ductility limits predicted 

by using the KBCs are higher than their counterparts determined by the PBCs. To plot the curves of Fig. 

2.21, the hole is assumed to be circular, with the ratio 0 0R A/  set to 0.2, and the metal matrix material 

parameters are taken to be the same as those reported in Section 2.4.1. 
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 (a) (b) 

Fig. 2.21. Effect of the macroscopic boundary conditions on: (a) the macroscopic stress–strain curves; (b) the FLDs 
predicted by the MFC and RBC. 

2.4.3.8. Conclusions common to the various sensitivity studies 

In addition to the conclusions revealed in the previous subsections, which are specific to each sensitivity 

study, more common conclusions (valid for the various sensitivity studies) can be drawn: 

�  For all of the strain paths of the FLD (aside from the particular plane-strain tension state), RBC 

predicts limit strains that are strictly higher than those predicted by MFC and GBC. This confirms 

the statement, widely recognized in thin sheet metals without holes, according to which diffuse 

necking occurs prior to localized necking, and extends this result to perforated sheets. 

�  For the particular strain path of plane-strain tension ( 0r = ), the three necking criteria investigated 

predict the same limit strains for perforated sheets, which is a well-admitted result in thin sheet 

metals without holes. 

�  The impact of hole perforation on the reduction of necking limit strains is more drastic in the 

range of positive strain-path ratios. This result may be explained by the fact that in this range of 

positive strain-path ratios, the hole growth phenomenon is more important than in the range of 

negative strain-path ratios. 

2.5. Conclusions 

In this chapter, several numerical tools have been developed to predict the occurrence of diffuse and 

localized necking in perforated sheets. These tools are based on the coupling between the periodic 

homogenization technique, used to numerically model the mechanical behavior of a representative 

volume element of the studied sheet, and three necking criteria. Various sensitivity studies have been 
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conducted to analyze the effect of some design and mechanical parameters on the onset of necking in 

thin perforated metal sheets. From all of the sensitivity studies, it appears that the geometric 

characteristics of the holes (size of radius, elliptical aspect ratio, orientation, shape) significantly 

influence the predicted necking limit strains. Furthermore, when the void volume fraction is reduced to 

zero (i.e., sheet metals without holes), localized necking is not predicted in the range of positive strain-

path ratios, which confirms the central role of pre-existing voids as key destabilizing factor. It is also 

demonstrated that the hardening parameters and the plastic anisotropy of the dense metal matrix have a 

significant impact on the forming limit diagrams of perforated sheets. Such sensitivity studies and others 

may be advantageously used to select the optimal design and mechanical parameters leading to improved 

ductility and formability characteristics. In this sense, the developed numerical tools will be helpful in 

the design and the manufacture of perforated sheets as well as other heterogeneous materials (for 

example, the composite materials). Additionally, by using these developed tools, it will be more 

attractive to explore the ductile failure of voided materials (presented in Chapter 2) and polycrystalline 

aggregates (presented in Chapter 3).
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Chapter 3  
 

 

 

Investigation of the competition between void 

coalescence and macroscopic strain 

localization using the periodic homogenization 

multiscale scheme 

 

3.1. Introduction 

The ductility of thin metal sheets is often limited by the onset of ductile failure. Therefore, this 

phenomenon is central in structural integrity assessment together with corrosion and fatigue. Several 

possible failure scenarios may occur during plastic forming operations. In this field, one can quote at 

least three main scenarios. The first one takes place only for very pure metals. In this case, material fails 

without damage occurrence, owing to the absence of void nucleation sites. In such circumstances, the 

deformation state is homogeneous at the beginning of the loading, and the deformation starts 

concentrating in narrow bands at a certain limit strain. The initiation of such bands marks the 

development of localized necking in the material. The second scenario corresponds to the localization 

of plastic strain into narrow bands due to various possible softening mechanisms. Ultimately, following 

the accumulation of large plastic strains and the increase of stress triaxiality in the necked regions, voids 

nucleate, grow and coalesce to lead to final material failure. The third mechanism involves damage 

initiation within the material prior to plastic strain localization. The softening induced by the 

accumulated porosity is sufficient to counteract the strain hardening capacity of the material, which leads 

to plastic strain localization in narrow bands. An exhaustive analysis of the different failure mechanisms 

and the competition between them has been reported in Teko� lu et al. (2015). It is now well known that 
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the initiation of ductile failure and the competition between void coalescence and plastic strain 

localization are sensitively dependent on the stress state applied to the metal sheets. To thoroughly 

analyze these fundamental aspects, various experiments have been designed in several pioneering 

contributions. In this area, one can quote Bao and Wierzbicki (2004), who have experimentally 

highlighted that void growth is the dominant failure mode for high stress triaxiality, while failure for 

low stress triaxiality is mainly governed by the combination of shear and void growth modes. These 

observations have been confirmed by Barsoum and Faleskog (2007), who have experimentally 

established that the onset of ductile failure is additionally dependent on the Lode parameter L , and not 

only on the stress triaxiality ratio T , especially for low values of T . The combined effect of stress 

triaxiality ratio and Lode parameter on the failure behavior has also been confirmed by the experimental 

program conducted by Driemeier et al. (2010). Although some observations have been ascertained by 

quantitative experimental testing, the comprehensive information about the underlying mechanisms, 

such as void growth, detection of localization in the specimens, and onset of void coalescence is still 

difficult to reach. To overcome this difficulty, profound knowledge on ductile failure in voided materials 

can mainly be acquired through theoretical approaches. These theoretical approaches can be classified 

into two main families: micromechanical models and numerical approaches based on unit cell 

computations. 

The class of micromechanical models has been initiated by the pioneering work of Gurson (1977), who 

has derived, on the basis of limit-analysis theory, a plastic potential describing the plastic flow of a 

representative volume element defined by a spherical void embedded in a rigid perfectly plastic matrix. 

The original Gurson model is based on several restrictive assumptions such as: only the effect of void 

growth on the mechanical behavior is considered, the voids are initially spherical and remain spherical 

during the growth process, and the metal matrix is dense. These restrictive assumptions limit the Gurson 

model capability of providing accurate predictions of the mechanical behavior. Consequently, the 

original Gurson model has been largely extended in the literature. The most widely-known extension 

has been developed in Tvergaard and Needleman (1984) to consider the effect of nucleation of new 

voids and coalescence of existing voids on the mechanical behavior. In this extension, referred to as the 

GTN model, the final material failure has been predicted by using an empirical coalescence criterion. 

The numerical predictions based on the GTN model have been favorably compared with various 

experimental results (Tvergaard and Needleman, 1984). To analyze the competition between void 

coalescence and strain localization, the GTN model has been coupled in Mansouri et al. (2014) and 

Chalal and Abed-Meraim (2015) with the Rice bifurcation theory (Rudnicki and Rice, 1975; Rice, 1976). 

This theory is based on the loss of ellipticity of the governing equations. Hence, to predict strain 

localization via the Rice bifurcation theory, the expression of the analytical tangent modulus needs to 

be derived from the constitutive equations. Despite their well-recognized interest, the extended versions 

of the Gurson model present some limitations and drawbacks in the analysis of the different metal failure 

scenarios (e.g., by void coalescence or strain localization). In fact, these models are generally based on 
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heuristic extensions of the original Gurson model without sound physical foundations. Furthermore, 

they involve additional material parameters to better reproduce the experimental results (such as 

parameters 1q , 2q  and 3q , or the threshold coalescence parameter cf , introduced in the GTN model), 

and the identification of these parameters is not always easy and often questionable. Moreover, and 

despite the significant progress made in this area, these extended models are still unable to accurately 

consider relatively complicated situations, such as complex loadings (as these models are mainly based 

on axisymmetric loading), or realistic void shapes (as these models only consider spherical or ellipsoidal 

voids). 

To overcome the above-mentioned drawbacks, a number of numerical approaches, based on unit cell 

finite element computations, have been developed in the literature. In these models, the ductile solid is 

represented by a spatially periodic arrangement of identical unit cells. Therefore, to describe the 

mechanical behavior of the whole solid, it is sufficient to consider a single unit cell, to which are applied 

relevant boundary conditions that accurately account for the effect of neighboring unit cells on the 

mechanical behavior (generally periodic or kinematic boundary conditions or a combination of them). 

Thanks to its reliability and flexibility, unit cell analysis has been widely employed to investigate the 

mechanical response of voided materials as well as the competition between the phenomena of void 

coalescence and strain localization. To thoroughly analyze this competition, it is essential to couple unit 

cell computations with relevant theoretical criteria and indicators that are able to accurately predict such 

material instability phenomena. Several indicators have been adopted in some contributions as void 

coalescence criteria, while in other contributions as strain localization criteria. Indeed, the distinction 

between the two phenomena and the corresponding criteria has not been clearly established in early 

investigations. These criteria can be categorized into four main families: 

�  Initial imperfection criteria: this approach, following the same spirit as the Marciniak and 

Kuczy� ski method (Marciniak and Kuczy� ski, 1967), assumes that strain localization occurs 

when the ratio h  of the deformation gradient rate inside the unit cell to that outside the unit cell 

becomes sufficiently large. It has been first introduced by Needleman and Tvergaard (1992) 

within unit cell computations to predict the onset of strain localization. This indicator has 

subsequently been adopted by Dunand and Mohr (2014), Dæhli et al. (2017) and Zhu et al. (2018) 

to predict the onset of void coalescence. In Dunand and Mohr (2014) and Dæhli et al. (2017), the 

critical value of parameter h  has been set to 5.0. However, Zhu et al. (2018) have set the critical 

value of h  to 10.0 by following the work of Barsoum and Faleskog (2011). The above 

investigations reveal the difficulty in defining a unified and consistent threshold value for h . 

Moreover, the associated numerical predictions are generally sensitive to the mesh refinement, 

and this approach is not able to predict void coalescence for high stress triaxiality, and when the 

Lode parameter is close to 0, as demonstrated in Barsoum and Faleskog (2011). A very similar 
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criterion has been used in Teko� lu et al. (2015) to predict the onset of strain localization in voided 

ductile solids. 

�  Maximum load criteria: this class of criteria has been initiated by Tvergaard (2012) and recently 

used by Teko� lu et al. (2015), who have assumed that strain localization occurs when the 

equivalent macroscopic stress reaches its maximum value. More recently, Guo and Wong (2018) 

have proposed a strain localization indicator, which assumes that strain localization is met when 

the macroscopic force applied on the unit cell reaches its maximum value. The same authors have 

demonstrated that this criterion is equivalent to the Rice bifurcation approach (Rudnicki and Rice, 

1975; Rice, 1976). It is interesting to note that this approach is somehow similar to the maximum 

force criterion developed by Swift (1952) to predict the occurrence of diffuse necking in thin 

metal sheets. 

�  Energy-based criterion: this approach, which has been initiated by Wong and Guo (2015), is 

exclusively adopted to predict the onset of void coalescence. It defines void coalescence as the 

point along the straining history where the ratio of overall elastic to plastic work rates of the unit 

cell attains a negative minimum value. This energy-based criterion has recently been utilized in 

several investigations to predict the onset of void coalescence (Liu et al., 2016; Dæhli et al., 2017; 

Guo and Wong, 2018; Luo and Gao, 2018). 

�  Void growth type criteria: this family of criteria assumes that void coalescence occurs when void 

growth exhibits abrupt acceleration. Teko� lu et al. (2015) have developed an indicator by closely 

following the same concept, which assumes that the onset of void coalescence is reached when 

the ratio of the maximum to the minimum effective plastic strain rate at the void surface first 

exceeds 15.0. 

It is well known that the competition between the phenomena of macroscopic strain localization and 

void coalescence is generally dependent on the stress state, especially the stress triaxiality ratio T  and 

the Lode parameter L . Teko� lu et al. (2015) have demonstrated that macroscopic strain localization 

occurs prior to void coalescence at high stress triaxiality, while at lower stress triaxiality, the two 

phenomena occur simultaneously. Motivated by this latter investigation, Guo and Wong (2018) have 

shown that the onset of macroscopic strain localization and that of void coalescence are distinct, and 

that macroscopic strain localization plays a precursor role to void coalescence. Furthermore, they 

demonstrate that the difference in the strain levels corresponding to the onset of strain localization and 

void coalescence, respectively, decreases as stress triaxiality T  increases, suggesting that both 

phenomena may occur simultaneously for sufficiently large T . These latter results are at variance with 

the trends obtained by Teko� lu et al. (2015). This apparent contradiction is likely to be attributable to 

the difference between the void coalescence and strain localization criteria used in both investigations. 

For the considered ranges of stress triaxiality (0.7 2.0T£ £ ) and Lode parameter (1.0 1.0L- £ £ ), Guo 

and Wong (2018) have enumerated three possible scenarios associated with different ranges of T  and 
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L : both macroscopic strain localization and void coalescence are possible (for 1.0 2.0T£ £ , 

independently of the value of L ); macroscopic strain localization is possible, but void coalescence is 

not possible (for 0.8 0.9T£ £  and 1.0 0.4L- £ £ ); both macroscopic strain localization and void 

coalescence are not possible (for 0.7T =  and 1.0 1.0L- £ £ ). 

In the present chapter, unit cell computations are performed to investigate the competition between 

macroscopic strain localization and void coalescence for a wide range of loading states. The unit cell is 

subjected to fully periodic boundary conditions (PBCs), allowing for the accurate modeling of the 

interaction between the studied unit cell and the neighboring ones. This point represents the first main 

theoretical originality of the developed approach, as compared to the earlier ones. The periodic 

homogenization multiscale scheme is used for determining the macroscopic behavior of the unit cell. 

This multiscale scheme is coupled with the condensation technique, detailed in Chapter 1, to numerically 

evaluate the macroscopic tangent modulus relating the macroscopic first Piola-Kirchhoff stress rate to 

the rate of macroscopic deformation gradient. The determination of the macroscopic tangent modulus 

allows rigorously applying the Rice bifurcation criterion for the prediction of the onset of macroscopic 

strain localization. This accurate application of the bifurcation criterion constitutes the second main 

theoretical originality of our approach, as the earlier numerical approaches were not able to determine 

the macroscopic tangent modulus. The competition between the onset of strain localization predicted by 

the Rice bifurcation theory and the ductility limits predicted by other existing criteria is investigated. To 

analyze this competition, attention is focused on two main configurations of loading states. Firstly, 

loadings under proportional stressing (or constant stress paths) are considered, where the stress triaxiality 

ratio T  ranges between 0.7 and 3.0, and the Lode parameter L  is comprised between 1.0-  and 1.0. 

For this first loading configuration, our numerical predictions are found to be consistent with the 

classical published trends: strain localization occurs prior to void coalescence, both being predicted at 

realistic strain levels for the whole ranges of T  and L . Moreover, the trends obtained in Guo and Wong 

(2018), stating that the difference between the strain levels corresponding to the onset of strain 

localization and void coalescence decreases as stress triaxiality T  increases, are confirmed by our 

numerical predictions. The second loading configuration covers the in-plane strain paths used for 

predicting the forming limit diagrams (applied to the perforated sheets in Chapter 2). Although of major 

importance in the context of forming processes (formability of thin metal sheets), this second loading 

configuration has not been sufficiently investigated in the early studies based on unit cell computations. 

Our numerical predictions reveal that only plastic strain localization may occur for this second 

configuration of loading, as void coalescence cannot be reached. The developed approach, based on the 

coupling between the periodic homogenization scheme and the strain localization and coalescence 

criteria, is also used for investigating the effects of void shape and secondary population of voids on the 

ductility limit of thin metal sheets. 

This chapter is organized as follows: 
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·  Section 3.2 details the micromechanical approach used to model the unit cell behavior. 

·  Section 3.3 presents the boundary conditions and the two macroscopic loading configurations 

applied in the unit cell computations. 

·  The adopted strain localization and void coalescence criteria are described in Section 3.4. 

·  The numerical results of the current study are reported and extensively discussed in Section 3.5. 

·  Section 3.6 closes this chapter by summarizing some conclusions and future works. 

3.2. Micromechanical modeling of the unit cell 

We consider a ductile solid defined as an array of cubic unit cells containing a void at their center, as 

shown in Fig. 3.1a. Each unit cell may be regarded as a heterogeneous medium composed of two main 

phases: the primary void and the metal matrix, which is itself assumed to be voided to account for the 

possible effect of secondary population of voids (Fig. 3.1b). The initial shape of the primary void is 

assumed to be spherical or ellipsoidal, while all the secondary voids are assumed to be spherical. A 

Cartesian frame ( )1 2 3, ,e e e
� � �

 is introduced to define the coordinates of the material points, where vectors 

ie
�

 are normal to the faces of the unit cell in the initial configuration. The origin of this coordinate system 

is located at the center of the unit cell. Hence, the initial unit cell occupies the domain 

[ ] [ ] [ ]0 0 0 0 0 0/ 2, / 2 / 2, / 2 / 2, / 2l l l l l l- ´ - ´ - , as shown in Fig. 3.1b (with 0 1l mm= ). 

 
 (a) (b) 

Fig. 3.1. (a) Micromechanical model of a material layer composed of an arrangement of cubic voided unit cells; 
(b) a unit cell containing a centered, spherical void surrounded by a voided matrix. 

3.2.1. Multiscale transition problem 

Considering the periodicity of the void arrangement (Fig. 3.1a), the periodic homogenization seems to 

be a suitable multiscale scheme to determine the homogenized behavior of the unit cell (Miehe, 2003; 

Zhu et al., 2020). The use of this homogenization technique allows substituting the heterogeneous unit 

cell by an equivalent homogenized medium with the same effective mechanical properties (Fig. 3.2). 
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 (a) (b) 

Fig. 3.2. Illustration of the concept of periodic homogenization: (a) unit cell containing primary and secondary 
voids; (b) equivalent homogenized medium. 

The equations governing periodic homogenization scheme are presented in Section 1.3 (for the general 

3D cases) and Section 2.2.3 (for the plane-stress cases), they are not recalled here for brevity. Further 

details on the practical aspects related to the application of the PBCs on the outer surfaces of the unit 

cell can also be found in Section 1.3 and Section 2.2.3. The developments of Sections 3.3.2 and 3.3.3 

provide more details on how to apply the corresponding macroscopic loadings. The constitutive relations 

describing the mechanical behavior of the metal matrix, will be detailed in Section 3.2.2. 

3.2.2. Constitutive model for the metal matrix 

To account for the effect of secondary population of voids, the mechanical behavior of the metal matrix 

is modeled by the original Gurson porous model (Gurson, 1977). The same methodology can be applied 

for any other constitutive framework (for instance, the GTN model to include void nucleation and 

coalescence). A typical finite element mesh for the unit cell is presented in Fig. 3.3. 

 
Fig. 3.3. Finite element mesh for one-half unit cell, for illustration. 

At the microscopic level, a relationship has been derived by combining the constitutive relations of the 

metal matrix: 

 ( )1= :PKp c f��  (3.1) 

The expression of the microscopic analytical tangent modulus ( )1PKc  is determined from the following 

developments. As a departure point for these developments, the strain rate d  is expressed as the 

symmetric part of the microscopic velocity gradient g (see also Eq. (2.2)): 

 ( )1
2

T= +d g g . (3.2) 
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Meanwhile, the strain rate d  is itself split into its elastic and plastic parts ed  and pd : 

 
e p= +d d d . (3.3) 

In a co-rotational material frame (we adopt here the co-rotational frame associated with the Jaumann 

objective rate), the Cauchy stress rate is described with the following hypoelastic law: 

 :e e=� c d� , (3.4) 

where ec  is the fourth-order elasticity tensor. 

The plastic strain rate pd  is determined by the normality rule: 

 
p F

l
¶

=
¶

d
�

� , (3.5) 

with l�  denoting the plastic multiplier, and F  the Gurson yield function defined as: 

 ( )
2

23
2 cosh 1 0

2
eq h

s s
y y

� �
f f

� �
F

� � � �
= + - + £� � � �� � � �

	 
 	 

, (3.6) 

where 

�  eq�  is the von Mises equivalent stress, equal to ( )1/2
3 / 2dev dev:� � . 

�  dev�  and ( )tr / 3h� = �  are the deviatoric and hydrostatic parts of the Cauchy stress tensor � , 

respectively. 

�  y�  is the yield stress of the dense metal matrix, defined by the Swift hardening law: 

 ( )0

np
y� K � �= + , (3.7) 

where K , 0�  and n  are hardening parameters, and p�  is the equivalent plastic strain of the 

dense metal matrix. 

Note that setting 0sf = , one recovers the conventional J2 flow theory with isotropic hardening. This 

particular case will be used when the metal matrix is assumed to be fully dense. 

In the current chapter, only growth of secondary voids is considered (i.e., the effects of nucleation of 

new secondary voids and coalescence between existing voids are neglected). By neglecting the elastic 

volume change, the rate of the secondary void volume fraction reads: 

 ( ) ( )1 tr p
s sf f= - d� . (3.8) 

The equivalent plastic strain rate p��  is obtained from the equivalence principle in terms of rate of plastic 

work for the metal matrix and its dense part: 

 ( )
( )

1 .
1

p
p p p

s y
s y

f � � �
f �
:

- = : Û =
-
� d

� d� �  (3.9) 

The activation of plastic flow is governed by the application of the Kuhn–Tucker constraints: 
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elastic loading / unloading : 0 0 0 ;

elastoplastic loading : 0 0 0 .

F F l

F F l

£ ; < ; =

= ; = ; >

��

��  (3.10) 

In the case of elastoplastic loading, condition 0F =�  can be expanded as follows: 

 : 0
y s� y f sV � V fF = =�V � �� � �+ + , (3.11) 

where: 

 

2

2

31
3 cosh ;

2

31
2 sinh ;

2

3
cosh 2 .

2

y

s

dev h
s

y y y

eq h
s

y y y y

h
f s

s y

�
f

� � �

� �
V f

� � � �

�
V f

f �

s

F

F

F

� �� �¶
= = +� � �� �¶ � 	 
� �

� �� � � �¶ � = = - + 3� � � �� � � �¶ � 	 
 	 
� �

� �¶
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�

�
V I

�

 (3.12) 

The substitution of Eqs. (3.3), (3.5) and (3.12)1 into Eq. (3.4) leads to the following expression for �� : 

 ( ) ( ): : : .e p e epl= - = - =�� c d d c d V c d��  (3.13) 

The combination of the above equations allows us to obtain the following expression for the plastic 

multiplier l� : 

 ( )
( ):: :

where : : .
1

y

e
� ye

p
s y

V �
H

H f � �l
l

l
¶

= = -
- ¶

��
� �

� VV c d
V c V�  (3.14) 

The expression of the elastoplastic tangent modulus epc  can be derived by combining Eqs. (3.13) and 

(3.14): 

 
( ) ( ): :

,
e e

ep e

H l

a
Ä

= - � �c V V c
c c  (3.15) 

where a = 0 for elastic loading or unloading, and a =1 for elastoplastic loading. 

The relation between moduli epc  and ( )1PKc  can be found in Section 2.2.2. 

3.3. Periodic boundary conditions and macroscopic loading 

The periodic homogenization problem briefly recalled in Section 3.2.1 is solved within the 

ABAQUS/Standard finite element software. The main steps of this solution strategy are summarized 

hereafter: 

�  Discretization of the unit cell by finite elements: to this end, the C3D20 quadratic solid element 

is used, with a higher mesh density around the primary void (to avoid potential element distortion). 



Chapter 3    Investigation of ductile failure in voided solids 

-100- 
 

A user-defined material (UMAT) subroutine is used for implementing the Gurson constitutive 

equations describing the mechanical behavior of the metal matrix. 

�  Application of the periodic boundary conditions (PBCs): this task is automatically managed by 

using the set of python scripts Homtools (as described in Chapter 1 and 2). These PBCs are applied 

on the six (resp., four) outer faces of the unit cell, when this unit cell is subjected to proportional 

stressing (resp., proportional in-plane strain path), as will be detailed in Sections 3.3.2 and 3.3.3. 

Further practical details on the application of the PBCs were provided in Section 1.3 and Section 

2.2.3. 

�  Application of macroscopic loading: in the current chapter, the unit cell may be subjected to two 

different loading configurations. Firstly, macroscopic proportional stressing (i.e., proportional 

stress paths) to investigate the effect of the stress triaxiality ratio T  and Lode parameter L  on the 

competition between void coalescence and macroscopic plastic strain localization. Secondly, 

macroscopic proportional in-plane strain paths to predict forming limit diagrams (FLDs) of thin 

voided sheets. To apply the first loading configuration, some extensions of the set of python 

scripts Homtools are required. However, the application of the second loading configuration is 

easily achieved by using the Homtools (see Section 2.2.3). Further details on the first and second 

loading configuration will be given in Sections 3.3.2 and 3.3.3, respectively. 

�  Computation of the macroscopic mechanical response: the Homtools enables to readily and 

automatically manage this task. 

3.3.1. Periodic boundary conditions 

The fully PBCs are practically applied on the outer faces of the unit cells. The developments presented 

in Section 1.3 have detailed how to apply PBCs in one space direction. For the two following 

macroscopic loadings, these developments will be performed in 2 directions (direction 1 and direction 

2) for proportional in-plane strain paths while in 3 directions for proportional stressing. 

3.3.2. Proportional stressing 

As previously stated, loadings under macroscopic proportional stressing (i.e., proportional stress paths) 

are applied to investigate the effect of the stress triaxiality ratio T  and Lode parameter L  on the 

competition between void coalescence and macroscopic plastic strain localization. In this case, the unit 

cell is subjected to a diagonal triaxial macroscopic stress state (without shear stresses) as illustrated in 

Fig. 3.4. 
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Fig. 3.4. Unit cell subjected to triaxial macroscopic stress state without shear stresses. 

Proportional stress state requires that the stress ratios 1b  and 2b  defined as: 

 11 22
1 2

33 33

;   ,
� �
� �

b b= =  (3.16) 

should be kept constant during the deformation history. In Eq. (3.16), 11� , 22�  and 33�  designate the 

diagonal components of the macroscopic Cauchy stress tensor � , which is related to its microscopic 

counterpart �  through the following averaging rule: 

 ( )1
d ,= �� � x

�
�

�
 (3.17) 

where �  is the cell volume of the current configuration. 

The macroscopic hydrostatic stress h�  and the macroscopic equivalent (von Mises) stress eq�  are 

obtained from components 11� , 22�  and 33�  as: 

 ( ) ( ) ( )2 2 211 22 33
11 22 11 33 22 33

1
; .

3 2
h eq

� � �
� � � � � � � �

+ +
= = - + - + -  (3.18) 

Assuming that 11 22 33� � �³ ³ , the macroscopic stress triaxiality ratio T  and Lode parameter L  can be 

expressed in terms of the stress ratios 1b  and 2b  (Liu et al., 2016): 

 

( )
( ) ( ) ( )

( )1 2
332 2 2

1 2 1 2

2 1

1

2 1
sgn ;

3 1 1

(2 1)
,   1 1.

1

h

eq

�
T �

�

L L

b b

b b b b

b b
b

� + +
= =�

� - + - + -
�
� - -

= - £ £� -�

 (3.19) 

Stress triaxiality ratio T  and Lode parameter L  characterize the spherical and deviatoric parts of the 

macroscopic stress state, respectively. Ratios T  and L  are kept constant during the deformation history 

by prescribing constant values for 1b  and 2b . By inverting Eq. (3.19), 1b  and 2b  can be expressed as 

functions of T  and L : 

l
0
 l

0
 

1e
�

l
0
 l

0
 

2e
�

3e
�

11S

22S

33S
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2 2

1 22 2

3 3 3 3 3 2
; .

3 3 3 3 3 3

T L L T L L

T L L T L L
b b

+ + - + +
= =

+ - - + - -
 (3.20) 

It is worthwhile to note that this inversion is not unique, as multiple combinations of 1b  and 2b  can be 

obtained for the same values of T  and L  (Wong and Guo, 2015). The influence of this non-uniqueness 

on void coalescence can be found in Section 5 of Wong and Guo (2015). By following Liu et al. (2016), 

the solution for 1b  and 2b  given by Eq. (3.20) is adopted for all the predictions of Section 3.5.3. 

Meanwhile, we have adopted the following sign convention for L : the extreme values of L = +1,-1,0 

refer to the stress state case of generalized compression, generalized tension and pure shear, 

superimposed with hydrostatic stress, respectively (Liu et al., 2016). Note that an opposite sign 

convention, L = +1, -1, is adopted in numerous studies (Dunand and Mohr, 2014; Wong and Guo, 2015; 

Guo and Wong, 2018) for generalized tension and generalized compression, resectively. 

To apply proportional triaxial stressing, 3D periodic boundary conditions shall be imposed on the six 

outer faces of the unit cell (two by two faces), following the concept presented in Section 1.3. In this 

case, three reference points 1RP, 2RP  and 3RP  are created by using the Homtools to manage these 

boundary conditions and the macroscopic loading. These reference points are defined by the following 

displacements: 

 

( )
( )

( )

1 11 11 0 12 13

2 21 22 22 0 23

3 31 32 33 33 0

: 1  ; 0 ; 0 ;

: 0 ; 1  ; 0 ;

: 0 ; 0 ; 1 .

RP U F l U U

RP U U F l U

RP U U U F l

= - = =

= = - =

= = = -

 (3.21) 

Components 11F , 22F  and 33F  of the macroscopic deformation gradient F  should be prescribed in such 

a way that the stress triaxiality ratio T  and the Lode parameter L  hold constant during the entire 

deformation history. Such prescription is not possible to be directly operated on the displacements of 

the reference points 1RP, 2RP  and 3RP . To overcome this inconvenience, an extra dummy (or ‘ghost’) 

node is introduced into the finite element model. The DOFs of this dummy node and the associated 

reaction forces are denoted ( )* * *
1 2 3, ,U U U  and ( )1 2 3, ,a a a , respectively. A user subroutine MPC (Abaqus, 

2014) has been developed to connect the dummy node to the three reference points 1RP, 2RP  and 3RP  

(and further to the unit cell). In this subroutine, the reference points serve as slave nodes, while the 

dummy node serves as master node wherein the loading is imposed. The master node transmits the 

imposed loading through the multi-point constraints to the reference points as stated by Eq. (3.22): 

 

*
111
*

22 2

*
33 3

.

UU

U U

U U

� �� �
� �  = � � 
� � � � � �

�  (3.22) 
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where �  is a functional to be determined in order to ensure that the displacements 11U , 22U , and 33U  

applied on the reference points lead to the prescribed ratios 1b  and 2b  between the different 

macroscopic stress components. A simplified illustration of the MPC subroutine is shown in Fig. 3.5. 

 

Fig. 3.5. Schematic illustration of the multi-point constraints between the dummy node and the reference points 
( )1 2 3, ,RP RP RP . 

We next detail the derivation of the expression of functional � . In this aim, the work rate equivalence 

between the dummy node and the unit cell shall be used (Liu et al., 2016): 

 *T T× = ×� U � G�� �� , (3.23) 

where *U  and �  are the displacement and the associated reaction force vectors of the dummy node, 

respectively. As to ��  and G� , they represent the storage vectors for the diagonal components of the 

macroscopic Cauchy stress and the macroscopic velocity gradient associated with the unit cell, 

respectively: 

 

*
11 11 11

* *
2 2 22 22

*
3 33 333

; ; ; .
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U � G

� GU

a
a
a
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� �  �  � = = = =� �  �  � 
� �  �  � � � � � � �� �

� U � G��  (3.24) 

Vectors *U�  and G�  may be linked by a transformation matrix �  belonging to (3)�� 2 (Wong and 

Guo, 2015): 

 

*
111
*

22 2

*
33 3

.

UG

G U

G U

� �� �
� �  = ×� � 
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�

�

�
�  (3.25) 

In the present contribution, we have adopted the form of �  given by Liu et al. (2016): 

 

2 2
1 2 1 2 1 1 1 1 1 2

2 2
2 1 1 1 1 2 1 1 2 1

1 2 1 2 2

sin cos cos cos cos sin cos sin cos sin

cos cos sin cos sin cos sin cos sin sin

cos sin sin sin cos

j j j j j j j j j j
j j j j j j j j j j

j j j j j

� �+ -
� 

= - +� 
� - -� �

� . (3.26) 

The form (3.26) of the transformation matrix �  is valid for 33 0� >  (i.e., 33sgn( ) 1� = ). This condition 

is obviously ensured for the loadings studied in Section 3.5.3, where 0.7 3T£ £  and 1 1L- £ £ , which 

corresponds to positive stress ratios 1b  and 2b . The expressions of the rotation angles 1j  and 2j  used 

to define matrix �  will be derived in the subsequent developments. 

 
2 Matrix �  belongs to (3)��  if �  is orthogonal (i.e., 1 T- =� � ) and ( )det 1=� . 

( )* * *
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The external loading is applied on the dummy node and the transformation matrix is used to suitably 

transfer this loading on the different reference points. We apply a linear displacement on only the third 

DOF of the dummy node with *3 1U =� . The first two DOFs are left free. Consequently, the corresponding 

reaction forces are equal to zero (namely, 1 2 0a a= = ). With this particular loading, Eq. (3.23) reduces 

to: 

 ( )*
3 3 11 11 22 22 33 33.U � G � G � Ga = + +� �  (3.27) 

Without dwelling into the mathematical details, which have been extensively discussed in Wong and 

Guo (2015) and Liu et al. (2016), the expression of 3a  can be derived as a function of �  and the 

components of the macroscopic stress 11� , 22�  and 33�  as follows: 

 ( ) ( ) ( )2 2 2

3 11 22 33 .� � �a = + +�  (3.28) 

By involving Eqs. (3.16), Eq. (3.28) can be rewritten as follows: 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2

3 11 22 33 1 2 331 .� � � �a b b= + + = + +� �  (3.29) 

Using the fact that 1 2 0a a= = , the rotation angles 1j  and 2j , which define the rotation matrix �  

introduced in Eq. (3.26), can be obtained by the following relationships (Liu et al., 2016): 

 ( ) ( )( )2 21 12
1 2 1 2

1

tan ; tan .
b

j j b b
b

- -� �
= = +� �

	 

 (3.30) 

The substitution of Eqs. (3.30) into Eq. (3.26) leads to the following expression of the transformation 

matrix � : 
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+ +� + +� 
� - -� �

�  (3.31) 

For proportional stressing, the transformation matrix �  holds constant during the loading (as ratios 1b  

and 2b  do not change). Hence, the integration of Eq. (3.25) leads to the following expression: 

 

*
111
*

22 2

*
33 3

,

UE

E U

E U

� �� �
� �  = .� � 
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�  (3.32) 

where E  is the macroscopic logarithmic strain tensor defined as: 

 ( )
0

d ln .
t

 t= =�E G F  (3.33) 
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The combination of Eqs. (3.21), (3.32) and (3.33) yields: 
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 (3.34) 

The expression of functional �  can be readily identified from Eq. (3.34). Thus, the relations between 

the DOFs of the dummy node and those of the three reference points to be implemented in the MPC user 

subroutine are summarized by Eqs. (3.34). The PBCs together with constraints (3.34) determine the 

boundary value problem of the unit cell, and the proportional stressing applied during the loading history. 

3.3.3. Proportional in-plane strain paths 

We consider a thin metal sheet made of 2D array of voided unit cells (a single unit cell in the thickness 

direction), as depicted in Fig. 3.6a. Loading under macroscopic proportional in-plane strain paths is 

classically adopted to predict forming limit diagrams (FLDs) of thin metal sheets. In this case, the unit 

cell is subjected to biaxial stretching in the 1 and 2 directions (Fig. 3.6b). Additionally, the out-of-plane 

components of the macroscopic first Piola-Kirchhoff stress P  (and thus � ): 13 23 31 32, , ,P P P P  and 33P  

are set to zero. The strain-path ratio 11 22E Er = /  is kept constant during the loading, and it ranges 

between 1 2- /  (uniaxial tension state) and 1 (equibiaxial tension state). The other in-plane components 

of the macroscopic logarithmic strain (12 21, E E ) are set to zero. In this case, PBCs are only applied on 

the faces normal to directions 1 and 2 (Fig. 3.6b). However, faces normal to direction 3 are free from 

any boundary condition. This specific choice enables to ensure the macroscopic plane-stress state in the 

third direction. 

  
 (a) (b) 

Fig. 3.6. (a) Thin metal sheet made of 2D array of voided unit cells; (b) unit cell subjected to in-plane strain path. 

Recalling that the macroscopic loading takes the following form (the same as the loading in Section 

2.2.3): 

l
0
 l

0
 1e

�

l
0
 l

0
 

2e
�

3e
�

11F

22F

33 0S =
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 ( )
11

11

0 ? ? ? 0

0 ? ; ? ? 0

? ? ? 0 0 0

F

F
r

� � � �
�  � = =�  � 
�  � � �� �

F P , (3.35) 

where components marked by ‘?’ are unknown and need to be determined. Components 13F , 31F , 23F , 

32F  and 33F  are calculated by making use of the plane-stress conditions: 

 13 31 23 32 33 0.P P P P P= = = = =  (3.36) 

To apply the 2D periodic boundary conditions and the macroscopic loading of Eq. (3.35), three reference 

points 1RP, 2RP  and 3RP  should be created. The prescribed boundary conditions should be applied on 

the reference points (a displacement on 1RP and 2RP , and a force on 3RP ) to comply with Eq. (3.35), 

are the same as Eq. (2.17) (in Section 2.2.3). 

3.4. Void coalescence and strain localization criteria 

In the present work, attention is directed towards the prediction of ductile failure by using four indicators, 

which will be presented hereafter: the first three ones have been used in previous contributions (but 

without rigorous coupling with the periodic homogenization multiscale scheme), while the last one is 

applied for the first time herein. These different indicators will be classified for the loading case under 

proportional stressing. 

3.4.1. Maximum reaction force criterion 

This indicator has been adopted in Guo and Wong (2018) to predict the onset of strain localization. With 

this criterion, strain localization is attained when the reaction force component 3a  applied on the 

dummy node and defined by Eq. (3.28) reaches its maximum value, or equivalently: 

 3 0.a =�  (3.37) 

The critical equivalent strain predicted at the moment when this criterion is verified will be denoted R
eqE . 

3.4.2. Maximum equivalent stress criterion 

This indicator, initiated by Tvergaard (2012), states that material failure occurs when the macroscopic 

equivalent stress eq�  reaches its maximum value. For triaxial proportional stressing, the macroscopic 

Cauchy stress tensor takes the general form: 

 
11 1

22 33 2

33

0 0 0 0

0 0 0 0

0 0 0 0 1

�

� �

�

b
b

� � � �
�  � = =�  � 
�  � � � � �

� . (3.38) 
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In this case, the macroscopic equivalent stress eq�  can be expressed as follows: 

( ) ( ) ( ) ( ) ( )
2 2 2

2 211 22 11 33 22 33
1 2 1 2 1 2 331

2eq

� � � � � �
� �b b b b b b

- + - + -
= = + - - - + . (3.39) 

The critical equivalent strain predicted at the moment when this criterion is verified will be denoted S
eqE . 

3.4.3. Energy-based criterion 

The energy-based criterion has been proposed by Wong and Guo (2015) and is based on the fact that 

void coalescence involves localization of plastic deformation between neighboring voids, with the 

material outside the localization band undergoing elastic unloading (Pardoen and Hutchinson, 2000). To 

apply this criterion, elastic and plastic work rates should be computed: 

 : d ; : d ,e e p pW W= =� �� d � d� �
� �

� �  (3.40) 

where �  is the microscopic Cauchy stress tensor, ed  and pd  are respectively the elastic and plastic 

parts of the deformation rate tensor. The sign of the ratio /e pW W� �  implies three different loading states: 

/ 0e pW W >� �  for a state of elastoplastic loading, / 0e pW W <� �  for a state of elastic unloading, 

/ 0e pW W =� �  for a state of neutral loading. Following Wong and Guo (2015), the onset of void 

coalescence is deemed to occur when the ratio /e pW W� �  attains a minimum and is negative. 

The critical equivalent strain predicted at the moment when this criterion is verified will be denoted C
eqE . 

3.4.4. Rice bifurcation criterion 

In this chapter, the Rice bifurcation criterion is adopted to predict the macroscopic strain localization 

under both loading configurations: proportional stressing (3D stress configuration) and in-plane 

proportional strain paths (plane-stress condition). The in-plane formulation of this criterion has been 

presented in Section 2.3.3. In the following, we present the formula in 3D stress configuration. 

Following the Rice approach (Rudnicki and Rice, 1975; Rice, 1976), the onset of strain localization may 

be mathematically related to the loss of ellipticity of the macroscopic governing equations. The 

kinematic condition for the strain path jump reads in a Lagrangian framework: 

   (3.41) 

where: 

�  F	 
�� � �  is the jump of the velocity gradient field F�  across the localization band equal to the 

difference between velocity gradient outside the band OF�  and its counterpart inside the band IF� ,  

�  
���  is the jump vector, 
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�  
�

�  is the unit vector normal to the localization band in the initial configuration equal to 

( )2 1 2 1 2sin cos , sin sin , cosq q q q q , where 1q  ( 10 2�q£ < ), 2q  ( 20 �q£ £ ) is the inclination of 

vector 
�

� . 

The continuity condition of the in-plane force equilibrium through the band writes: 

 .× =P 0
� �	 
�� � � �   (3.42) 

Combining Eqs. (3.41), (3.42) and (1.24)2, one can deduce the following condition: 

 ( ) ( )( )1 : ,PK Ä × =C 0
� �� ��� � �   (3.43) 

which can be equivalently expressed in its index form: 

 ( )( )11,2,3: 0, , , 1,2,3PK
j ijkl l ki C j k l" = = =	 	 
 � .  (3.44) 

Introducing ( )1PKC�  as the transpose of macroscopic tangent modulus ( )1PKC  ( see also Section 2.3.3): 

 ( ) ( )1 1, , , 1 2,3: .PK PK
ijkl jikli j k l , C C" = =�  (3.45) 

Condition (3.44) is written as: 

 ( )( )11,2,3: 0, , , 1,2,3PK
i ijkl l kj C i k l" = = =	 	 
� � ,  (3.46) 

This criterion corresponds to the singularity of the macroscopic acoustic tensor ( )1PK× ×C
� �

�� � : 

 ( )( )1det 0.PK× × =C
� �

�� �  (3.47) 

This condition will be reduced into its in-plane form (2.40) when the plane-stress condition is considered. 

The practical details about the implementation of the condensation technique for computing ( )1PKC can 

be found in Section 1.4.2 and in Zhu et al. (2020). As presented in box 2 of Section 1.4.2, step 2 requires 

that all the nodes of the mesh are partitioned into two categories: set �  made of the nodes located on 

the boundary surfaces where periodic constraints are imposed and set �  composed of the other nodes. 

So that, set �  is made of the nodes located on 01 01 02 02 03 03
- + - + - +� � � � �� � � � � �  (see Fig. 1.1) when 

proportional stressing is applied, and 01 01 02 02
- + - +� � �� � � �  when proportional in-plane strain path is 

applied (the same situation addressed in Chapter 2). 

The critical equivalent strain predicted at the moment when this criterion is verified will be denoted B
eqE . 
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3.5. Numerical predictions 

The material parameters used in the simulations reported in Sections 3.5.2, 3.5.3 and 3.5.4 are 

summarized in Section 3.5.1. Then, the validity of the periodic conditions applied on the boundary of 

the unit cell is examined in Section 3.5.2 by assessing its degree of accuracy and effectiveness in 

reproducing the behavior of the macroscopic medium. Afterward, the predictions performed under 

proportional stressing are presented in 3.5.3, where some of our numerical predictions are favorably 

compared with existing results published in the literature. The competition between void coalescence 

and macroscopic plastic strain localization is carefully analyzed in this section. Finally, Section 3.5.4 

focuses on the predictions of forming limit diagrams for thin voided metal sheets by using the developed 

numerical approach. 

3.5.1. Material parameters 

The initial volume fraction of the primary void 0pf  is set to 0.04 in all the simulations presented 

hereafter. The metal matrix is assumed to be fully dense for all the simulations of Sections 3.5.1 and 

3.5.2. The effect of the secondary void population is investigated in Section 3.5.3 by varying the value 

of 0sf . The mechanical behavior of the dense part of the metal matrix is assumed to be elastically and 

plastically isotropic. For consistent comparisons with Liu et al. (2016), the elasticity and hardening 

parameters provided in Table 3.1 are used in the different simulations. 

Table 3.1. Elastoplastic parameters of the dense matrix. 
Elasticity Hardening 

E (GPa) n K (MPa) 
0�  n 

210 0.3 958.8 0.0025 0.1058 

The initial yield stress 0�  of the dense matrix can be deduced from the parameters given in Table 3.1: 

 ( )0 0 .
n

� K �=  (3.48) 

3.5.2. Validity of the periodic boundary conditions 

One of the most important issues in terms of ensuring that a homogenization multiscale scheme is 

accurate and effective is how the boundary conditions are treated. It is well known that uniform boundary 

conditions (kinematic or uniform force) require a large representative volume element to accurately 

capture microscopic properties and phenomena. By contrast, PBCs can provide better evaluations of the 

microscopic fields and thus of the macroscopic response than uniformly distributed conditions, even for 

non-periodic geometries (Terada et al., 2000; Kanit et al., 2003; Henyš et al., 2019). Despite its major 

importance, the effect of boundary conditions on the onset of void coalescence or macroscopic strain 

localization has not been analyzed in earlier investigations. In fact, a large majority of these 
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investigations use KBCs (Liu et al., 2016) or a mixture of KBCs and PBCs (Barsoum and Faleskog, 

2011; Wong and Guo, 2015; Guo and Wong, 2018; Zhu et al., 2018), and a very limited number of 

contributions is based on fully PBCs. In the present section, we investigate the effect of the applied 

boundary conditions on the distribution of the microscopic fields and on the onset of strain localization, 

as predicted by the Rice bifurcation approach. In this aim, we consider a 2D voided thin sheet made of 

5 5´  unit cells. This sheet is subjected to classical equibiaxial loading until 1%  of deformation in each 

direction (Fig. 3.6). 

 

Fig. 3.7. The entire sheet with the prescribed boundary conditions. 

The distributions of the microscopic equivalent (von Mises) stress and plastic strain at the end of the 

loading with a focus on the central unit cell are shown in Fig. 3.8. This figure highlights the heterogeneity 

of the microscopic fields, especially around the voids. 

  

 (a) (b) 

 

 

  
































































































































































































































































