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ques ont été précieuses et m’ont permis de reprendre quelques-unes des imperfections de ce mémoire.
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donnant des conseils précieux pour le bon déroulement de mon travail. J’exprime également toute ma
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Abstract

The Phase-Field Method (PFM), which has been designed for interfacial problems, provides an

attractive framework for the modelling of fracture. The present work aims at developing some consti-

tutive models within the framework of the PFM to model fracture in homogeneous and polycrystalline

materials. For this purpose, two different situations have been examined. For the first situation, which

is typical of brittle fracture, the development of damage is driven by the accumulation of elastic strain

energy. The second situation is the one where damage is controlled by the development of plastic

strains, which is quite common for ductile or fatigue fracture. The phase-field model for brittle frac-

ture uses a scalar damage variable to represent the progressive degradation of mechanical resistance.

The spatial gradient of the damage variable, which is treated as an additional external state variable,

serves regularization purposes and allows considering the surface energy associated with cracks. The

deviatoric/spherical decomposition of elastic strain energy is used to consider closure effects. Some

material parameters have been introduced to control the impact of deviatoric and spherical contribu-

tions on the development of damage. Also, the proposed strategy is adapted to any class of material

symmetry. Numerical implementation is undertaken via the finite element method, where nodal de-

grees of freedom are the displacement and the damage variable. For illustration purpose, the numerical

simulations are carried out under both static and dynamic loading conditions. An extension of the

above model to plasticity-driven fracture in polycrystalline materials is also proposed. The framework

of crystal plasticity has been used for the construction of constitutive relations. To consider the role of

plastic strains on the development of damage, the proposed strategy uses the coupling between dam-

age and hardening. The consequence is that the driving force for damage contains some contributions

from isotropic and kinematic hardening variables. According to the numerical results, the important

features of ductile and fatigue fracture are correctly reproduced.
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R�esum�e

La méthode des champs de phases, qui a été conçue pour les problèmes d’interface, fournit un

formalisme général intéressant pour la modélisation de la rupture. Ce formalisme est donc utilisé

dans ce travail afin de construire des lois de comportement qui permettent de modéliser la rupture

des matériaux homogènes et hétérogènes (i.e. polycristallins). Plus spécifiquement, deux modèles

de comportement, qui utilisent les ingrédients de la mécanique de l’endommagement, sont proposés.

Dans le premier cas, typique de la rupture fragile, l’endommagement est gouverné par le stockage

d’énergie élastique. Le second modèle se concentre sur le cas où l’endommagement est piloté par le

processus de déformation plastique, ce qui est représentatif de l’endommagement ductile ou de fatigue.

Le modèle pour la rupture fragile utilise une variable d’endommagement scalaire pour décrire la perte

de rigidité progressive. Le gradient de cette variable est traité comme une variable d’état supplémen-

taire afin de considérer l’augmentation d’énergie de surface due à la fissuration. La prise en compte

des effets de fermeture repose sur une décomposition déviatorique/sphérique de l’énergie élastique.

L’approche proposée est flexible en cela que des paramètres permettent de contrôler les contributions

sphérique et déviatorique à la croissance de l’endommagement. Aussi, la description de la perte de

rigidité ne nécessite pas d’hypothèse particulière quant à la classe de symétrie du matériau considéré.

L’implémentation numérique du modèle, via la méthode des éléments finis, permet de réaliser des

simulations représentatives sous chargement aussi bien statique que dynamique. Le cadre général de

la plasticité cristalline est ensuite utilisé pour construire un modèle champs de phases pour les matéri-

aux élasto-viscoplastiques polycristallins. L’approche est semblable à celle utilisée précédemment, à

ceci près que le couplage endommagement-écrouissage est introduit. Ce choix de modélisation permet

de considérer l’impact des déformations plastiques sur le développement de l’endommagement. Les

résultats numériques obtenus avec le modèle proposé permettent de reproduire les aspects essentiels

de la rupture ductile et par fatigue des matériaux métalliques.

10













List of Tables

3.1 List of state variables and corresponding driving forces. . . . . . . . . . . . . . . . . . 51

3.2 Single-edge-notched tensile test: Material parameters. . . . . . . . . . . . . . . . . . . 62

3.3 Single-edge-notched shear test: Material parameters. . . . . . . . . . . . . . . . . . . . 64

3.4 Dimensions of the hat-shaped specimen. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Hat-shaped specimen: Material parameters. . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Polycrystalline volume element under tension: Material parameters for different Z values. 69

3.7 Notched rectangular plate under dynamic tension: Material parameters. . . . . . . . . 72

3.8 Notched rectangular plate under dynamic shear loading: Material parameters. . . . . . 76

4.1 List of state variables and corresponding driving forces. . . . . . . . . . . . . . . . . . 83

4.2 List of flux variables and corresponding dissipative forces. . . . . . . . . . . . . . . . . 90

4.3 Material properties of the specimens for the numerical simulations. . . . . . . . . . . . 100

4.4 The modified parameters in order to reflect the effect of the strain rate. . . . . . . . . 105

4.5 Material parameters for the asymmetrical specimen subjected to tension. . . . . . . . 110

4.6 Material parameters for asymmetrically notched shear test. . . . . . . . . . . . . . . . 112

4.7 Material properties for the simulation of crack growth in a pre-cracked specimen sub-

jected to fatigue loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.1 Liste des variables d’état et des forces motrices associées. . . . . . . . . . . . . . . . . 164

16





List of Figures

2.1 Representation of strain equivalence principle . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Representation of a discrete crack by a continuous field. . . . . . . . . . . . . . . . . . 40

2.3 1D localized solutions for different cracked functionals. . . . . . . . . . . . . . . . . . . 42

2.4 In a two dimensional body, the discontinuity line A with normal m separates sides ”+”

and ”-”. The values of quantity a on side ”+” of the discontinuity line is a+ . Its values

on side ”-” is a� . The discontinuity of a is [a] = a+ � a� . . . . . . . . . . . . . . . . . 43

3.1 Single-edge-notched tensile test: Boundary conditions, specimen geometry and mesh. . 61

3.2 Single-edge-notched tensile test: Crack patterns at a vertical displacement of (a) 3:8 �

10� 3 mm for a length scale lc = 0 :015mm (b) 4� 10� 3 mm for a length scale lc = 0 :0075

mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Single-edge-notched tensile test: Load-displacement curve for a length scale of l0 = 0 :015

mm represented by the solid line and lc = 0 :0075mm represented by the dashed line. 63

3.4 Single-edge-notched shear test: Boundary conditions, specimen geometry and mesh. . 64

3.5 The present figure illustrates the role of the f d and f s parameters, which can be ad-

justed to control the tension-compression asymmetry. Single-edge-notched shear test:

intermediate patterns for different values of f s and f d parameters for a imposed dis-

placement of (a) u = 8 � 10� 3 mm, (b) u = 1 � 10� 2 mm and (c) u = 1 :5 � 10� 2

mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Hat-shaped specimen: Boundary conditions, specimen geometry and mesh. . . . . . . 66

18















Chapter 1

Introduction

Contents
1.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 Context and objectives

Microstructure optimization requires a deep understanding of the influence of microstructural

heterogeneities on damage development. Indeed, for most materials, the early stages of damage de-

velopment are often impacted by microstructural features. For instance, the role of grain size (Höppel

et al., 2011; Järvenpää et al., 2014; Deng et al., 2015) and crystallographic orientation (Mateo et al.,

2003; Li et al., 2013) on the nucleation of fatigue cracks in metallic materials is largely documented.

The role of fiber orientation on the development of ductile damage in composite materials is also

well known (Cirino et al., 1988). The emergence of experimental techniques such as DIC (Chu et al.,

1985), tomography (Joachim, 2006), or 3D XRD (Poulsen, 2004) offers some possibilities to gain in-

sight into the role of microstructure on damage development. However, these experimental techniques

often require sophisticated experimental set-ups, hence cannot be used in a systematic fashion. Also,

they provide only partial information regarding the actual state of the probed volume element. Some

numerical models have therefore been developed to get further information regarding the role of mi-

crostructural heterogeneities. Specifically, the description of damage through computational models

is an important challenge in material science. However, the incorporation of damage in constitutive

models is a complex task, mostly because of the computational issues associated with the nucleation
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deal with damage nucleation and growth in homogeneous and polycrystalline materials. More specif-

ically, in order to consider the impact of microstructural heterogeneities, some efforts are made to

consider the anisotropic aspect of stiffness and plastic deformation properties, which can be significant

for crystalline materials. Also, very few studies have investigated the coupling between plasticity and

damage (Miehe et al., 2016a; Miehe et al., 2015; Kuhn et al., 2016; Ambati et al., 2015b). Thus, using

the general crystal plasticity framework, different strategies for coupling hardening and damage are

explored. In this work, the proposed formulation is quite general and allows dealing with different

damage mechanisms. To show the capabilities and limits of this formulation, some numerical simula-

tions are carried out. They allow investigating the impact of loading conditions and microstructural

heterogeneities on damage development as well as the impact of the damage-elasticity and damage-

hardening couplings. Some important aspects of crack nucleation and propagation including kinking

and branching and tension/compression asymmetry are discussed.

1.2 Outline of the thesis

Our contribution is mainly divided into three principal chapters with both theoretical and numerical

aspects:

� The first contribution, which will be presented in chapter 2, provides a brief literature review.

The basic features of damage mechanics are first discussed, with a particular care to the de-

scription of closure effects. Then, the common strategies for introducing a non-local aspect into

damage models are exposed. Finally, in order to motivate the present work, some damage mod-

els, which have been developed in the context of the PFM, are discussed with respect to their

aptitude to describe both brittle and ductile fracture.

� The second contribution, which will be presented in chapter 3, consists in developing a phase-field

model to describe crack nucleation and propagation in elastic materials. The spatial gradient

of the damage variable, which is treated as an additional external state variable, serves reg-

ularization purposes and allows considering the increase of surface energy associated with the

formation of cracks. Constitutive relations are developed within the framework of generalized

standard materials (Halphen and Nguyen, 1975). The coupling of damage with elasticity is

considered. The proposed formulation satisfies the continuity of the stress-strain relation and
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2.1 Introduction

The main purpose of fracture mechanics is provide the tools for modelling crack propagation in

solid materials. This aspect is often necessary when one wants to determine whether the conditions for

failure are met or not within a structure. The theoretical foundation of fracture is based on the work of

Griffith (1921), which relies on energetic arguments for considering crack propagation. Griffith (1921)

postulated that the propagation of an existing crack begins when the energy release rate at the crack

tip becomes equal or greater than the energy required for the creation of new surfaces. Although the

energy approach provides some information on the fracture process, it is inappropriate for dealing with

phenomena such as nucleation or branching. An alternative method, known as the stress intensity

factor method (Irwin, 1958), has proven to be more useful. This method, which directly examines the

stress field around the crack tip, has largely been employed in many practical situations (Michel, 1988;

Hills, 1994; Luke et al., 2016; Kazemi et al., 1989). In a similar fashion, Barenblatt (1962) and Dugdale

(1960) have proposed the Cohesive Zone Model (CZM), which consists in introducing a cohesive law

for a specific surface. The cohesive law of this surface is defined by the traction-separation relation.

The relationship between traction and surface separation is that with increasing spacing, traction on

this cohesive surface reaches a maximum value, then decreases and eventually vanishes, allowing total

separation. The cohesive zone method is a method relatively easy to implement. It however requires

a priori knowledge of the crack propagation path. Different implementation of cohesive models into

finite element solvers have been proposed. In the implementation of Xu and Needleman (1994), all

elements are separated from the beginning and an appropriate cohesive model is used to join the

boundaries of the elements. At the opposite, in the approach of Camacho and Ortiz (1996), new

surfaces are created along the boundaries of the previous elements. From a fundamental point of

view, these approaches (CZM, Griffith and Irwin models) are not naturally autonomous. Additional

criteria must be introduced to determine where and when a crack nucleates, how fast it propagates

and in which direction, and when it branches. Even if many engineering problems can be solved with

the aforementioned methods, some complex numerical challenges are involved, such as tracking crack

surfaces in 3D cases.

For the description of discontinuity surfaces, the eXtended Finite Element Method (XFEM) is

largely used. Indeed, proposed by Moës et al. (1999), this approach has successfully been applied to
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unique solution with continuous dependence on the given data. This may lead to undesirable mesh

dependency. Consequently, various regularization approaches have been developed such as the non-

local continuum theory (Pijaudier-Cabot and Bažant, 1987; Bažant and Jirásek, 2002), the gradient

enhanced damage model (Peerlings et al., 1996; Vandoren and Simone, 2018), the gradient damage

model (Frémond and Nedjar, 1996; Pham et al., 2011) and the Phase Field Method (PFM) for fracture

(Bourdin et al., 2000; Borden et al., 2012; Hofacker and Miehe, 2013). These approaches can be

perceived as different extensions of the CDM framework, which in its original form is purely local.

In the following, a brief overview of damage models is presented. The definition of the damage

variable and the basic concept of effective stress is first discussed. Then, the strategies for introducing

a non-local aspect in constitutive relations are exposed. A particular attention is given to the PFM,

which will be used later. In the final section, some applications of the PFM to both brittle and ductile

fracture problems are presented.

2.2 Damage variable and e�ective stress concept

The phenomenological representation of continuum damage mechanics (CDM) has been pioneered

by Kachanov (1958) and Y.Rabotnov (1968). This approach has been properly structured in the

context of continuum thermodynamics with internal variables by Chaboche (1977). This theory has

since been widely developed and used by many authors to model different damage-related phenomena.

In such a formulation, damage is described by scalar or tensorial variables. Considering a damaged

material point, in which a representative volume element (RVE) is isolated, the damage variable dn is

defined, for each direction n , as the ratio between the damaged surface Sd and the total surface S,

that is:

dn =
Sd

S
(2.1)

The damage variable dn represents the surface density of defects in the plane of normal n :

� dn = 0 corresponds to the initially undamaged material,

� dn = 1 corresponds to the totally broken material.

The above definition of damage is quite general and no specific assumption has been made regarding

the orientation of defects. If defects (cracks, voids) are randomly oriented in all directions n , damage
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variable. If the damage variable takes the form of a fourth-rank tensor D, then the effective stress

tensor is given by:

�~ = ( I � D) � 1 : � (2.3)

where I is the fourt-rank identity tensor. This type of approach has been followed by Ju (1989). Some

similar theories have been developed by directly using the elastic stiffness tensor as a state variable

associated with damage (Ortiz, 1985; Simo and Ju, 1987). Anisotropic damage can also be considered

with a second rank tensor d for the representation of the damage state (Murakami and Ohno, 1984;

Chow and Wang, 1987; Ramtani, 1990; George Voyiadjis, 1999).

2.3 Closure e�ects

An important difficulty when modelling damage is the existence of closure effects. Indeed, while

opened cracks/voids contribute to the decrease of stiffness properties, some stress states allow closing

these defects, hence reducing their impact on stiffness properties. To take into account the unilateral

behavior of microvoids and microcracks, the common approach consists in incorporating a damage

deactivation criterion (Ladevèze.P, 1983). The role of the damage deactivation criterion is easily

understood in a uniaxial context. Indeed, if the load is reversed from tension to compression, cracks

will completely close so that a material point behaves as uncracked or, in other terms, the initial

stiffness properties are fully recovered. In a three-dimensional context, the mathematical description

of the damage deactivation is more complex.

To include damage deactivation, the first type of strategy uses the spectral decomposition of

symmetric second order tensors. Indeed, any symmetric second order tensor (say a) can be decomposed

as follows:

a =
3X

I =1

aI n I 
 n I (2.4)

where a1, a2 and a3 (respectively n 1, n 2 and n 3) are the principal values (respectively principal

directions) of a. The spectral decomposition allows defining the positive and negative parts of the
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where n I and t I are respectively the unit normal and unit tangent vector to the crack and S~ is

the initial compliance tensor. Closure effects are considered when the stress normal to the crack is

negative. For this purpose, the following variable qI is introduced:

qI =

(
1 if � I = n I � � � n I > 0

0 if � I � 0
(2.11)

Andrieux and Marigo (1986) assumes that the shear resistance of the material remains affected by the

crack, even when it is closed. This formulation preserves the continuity of the stress-strain relation,

since, when qI changes value from 1 to 0, the normal stress vanishes and the strain response is not

affected by the discontinuity of the compliance tensor. As a consequence, the only direction affected

by the unilateral condition is n I 
 n I 
 n I 
 n I , which means that the closure effect is limited to

the normal component to the crack.

The third type of strategy uses the decomposition of the strain or stress tensor into spherical and

deviatoric contributions. Indeed, any symmetric second order tensor (say a) can be decomposed as

follows:

a = a s + a d (2.12)

= Ps : a + Pd : a (2.13)

This decomposition uses the spherical projection tensor Ps and the deviatoric projection tensor Pd.

These tensors are defined as follows:

Ps =
1
3

(I 
 I ) (2.14)

Pd = ( I �
1
3

I 
 I ) (2.15)

where I is the symmetric fourth-order-identity tensor defined by I ijkl = 1
2(� ik � jl + � il � jk ) and I is

the second-order-identity tensor defined by I ij = � ij . This method allows decomposing the stress

(or the strain) tensor into spherical and deviatoric contributions. Closure effects are then handled

by considering the impact of damage on stiffness properties differently depending on the sign of the

spherical strain tensor. This type of approach has been used by Freddi and Royer-Carfagni (2011),

Amor et al. (2009), and Bleyer et al. (2017b) in the context of isotropic elasticity.

36







CHAPTER 2. LITERATURE REVIEW

polycrystals by Mareau (2020). The thermomechanical frameworks for treating a state variable like

damage as either an internal or external state variable have been compared to each other by Papenfuss

and Forest (2006).

2.5 Phase �eld method

2.5.1 General principle

The phase field method is a quite general approach for modelling microstructure evolution. Specif-

ically, the phase field method is well suited for dealing with interfacial problems. For instance, this

method has been used to describe solidification (Wang et al., 1993; Suzuki et al., 2002), solid state

transformations (Dreyer and Muller, 2000; Landheer et al., 2009; Warren et al., 2003) as well as crack

growth (Karma et al., 2001; Karma and Lobkovsky, 2004; Miehe et al., 2010a).

In a conventional approach, different phases are described by multiple sets of bulk continuum

equations and additional boundary conditions have to be introduced to determine how the interfaces

will evolve. Phase field modeling offers an alternative to compute the interface evolution. It replaces

the discontinuous (sharp) interface between phases with a description in which material properties

change continuously (diffusely) from one phase to the other. More specifically, the interfaces between

domains are identified by a smooth variation of an order parameter in a narrow region of space (see

figure 2.2). By definition, the diffuse approximation of an interface requires the introduction of an

internal length scale. The local properties (e.g. stiffness, resistance), which depend on the order

parameter, may then vary smoothly across the interface. The major advantage of a phase-field model

is that an explicit tracking of the interface is unnecessary. Also, the boundary conditions at the

interface are replaced by models in the bulk phase-field equations. The cost related to these benefits

is the need to solve an additional equilibrium equation, which is related to the variation of the order

parameter on the length-scale between phases.

39















CHAPTER 2. LITERATURE REVIEW

As a result, the fields � and � are constrained by the following conditions:

div� � � = 0 8x in VnA (2.49)

� � n = 0 8x in S (2.50)

[ � ] � n = 0 8x in A (2.51)

The evolution of the body B, when subjected to the boundary conditions given by (2.46),(2.47), (2.50)

and (2.51), is governed by the equilibrium equations (2.45) and (2.49). At this stage, it is worth

mentioning that the boundary condition (2.50) imposes some constraints regarding the orientation of

cracks as they approach the external boundaries of a body. Specifically, for the common situation

where the micro-stress � is parallel to r d, cracks propagate along the normal direction to the external

surface.

2.6 Applications of PFM

2.6.1 Brittle fracture

Because the PFM provides a framework for the description of moving boundary problems, its

application to damage problems has recently received much attention, especially for the description

of brittle fracture. For instance, based on a regularized Griffith type of formulation, Francfort and

Marigo (1998) proposed a variational approach for brittle fracture. The model of Francfort and Marigo

(1998), which has also been used by Bourdin et al. (2000), is symmetric in the sense that it predicts

identical behavior in tension and compression. In order to take into account the tension/compression

asymmetry, one approach consists in decomposing the stored elastic energy into two parts, one related

to the damage caused by tension and the other by compression (the latter one usually does not

permit damage growth). For example, an asymmetric phase field model has been proposed in Pham

et al. (2011), where the volumetric and deviatoric decomposition of elastic energy density is taken

into account to avoid damage under a negative spherical strain state. Freddi and Royer-Carfagni

(2011) proposed an alternative asymmetric model for shear fracture that was applied to cracking in

masonry structures (The French Panthéon). The volumetric/deviatoric decomposition has also been

used by Nguyen et al. (2017) to construct a multi-phase field phase-field model for polycrystalline

materials. This model, for which each preferential cleavage direction is associated with a damage

variable, considers surface energy anisotropy. An anisotropic phase field model has been developed in
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the context of finite strains by Shanthraj et al. (2016) to model the localization of damage on specific

crystallographic planes, which is typical of cleavage fracture.

A robust formulation, based on continuum mechanics and thermodynamic arguments, has been

presented by Miehe et al. (2010a) and Miehe et al. (2010b). In this formulation, the spectral de-

composition of the strain tensor is used to split the elastic energy density into positive and negative

contributions. This approach has been used by Nguyen et al. (2015) to model the behavior of cemen-

titious materials. Another approach to address tension/compression asymmetry consists of using a

symmetric/asymmetric hybrid formulation (Ambati et al., 2015a). This means that the stress-strain

relationship is always given from the elastic energy stored without division, while the phase field evolu-

tion law is associated with that used in asymmetric phase field models. Though the hybrid formulation

is thermodynamically inconsistent, it is computationally efficient.

The works of Larsen (2010), Bourdin et al. (2011), Borden et al. (2012), and Hofacker and Miehe

(2013) have shown that the PFM can be extended to dynamic fracture and produce results that

agree properly with experimental observations. The above models based on the PFM are smooth

continuum formulations, which avoid the modeling of discontinuities and which can be implemented

in a straightforward manner in finite element solvers. The main advantage of this method is its

ability to produce complex crack patterns, including branching and merging, in both two and three

dimensions. It should be noted that the PFM may suffer from the high computational cost (sufficiently

refined mesh in the damaged zone is necessary to accurately resolve the gradient term). Even so, this

problem can be solved using parallel implementations and adaptive remeshing.

2.6.2 Ductile fracture

At present time, there are only a few studies which have addressed crack propagation in viscoelastic

or viscoplastic solids by using the phase field method. For recent applications of the PFM to ductile

fracture, one can recall the work of Miehe et al. (2016a), Miehe et al. (2015), and Kuhn et al. (2016).

The model of Ambati et al. (2015b) uses a degradation function that couples damage to plasticity.

Borden et al. (2016) proposed an approach which includes a measure of stress triaxiality as the driving

force for crack initiation and propagation. In Alessi et al. (2018), a comparative study between different

phase-field models of fracture coupled with plasticity is outlined. Miehe et al. (2016b) extended the

phase-field modeling of fracture to porous finite plasticity. In the context of crystal plasticity, Na
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and Sun (2018) presented a phase field model that combines multiple phase fields and the framework

of crystal plasticity theory. This approach has been used to investigate the behavior of halite under

non-isothermal conditions.

2.7 Conclusions

In this chapter, a brief literature review has been performed. After discussing the basic concept

of damage variable, the common strategies to deal with closure effects have been exposed. To cir-

cumvent the difficulties associated with damage localization and mesh dependency, some non-local

damage models have been proposed. While different strategies for incorporating the non-local as-

pect in constitutive relations exist, significant efforts have recently been made at developping damage

models within the framework of the phase-field method. In the context of damage, the phase-field

method uses the damage variable and its spatial gradient as external state variables. The resulting

equilibrium equations and boundary conditions, which can be obtained from an extended version of

the principle of virtual power, have then been detailed. Some common damage models using the

PFM have been briefly described in the final section. Most of the phase field models are dedicated to

brittle damage, and often restricted to isotropic elasticity. The few models that consider the coupling

between plasticity and damage have been developed at a macroscopic scale. In order to investigate

the role of microstructural heterogeneities on the development of damage, it is therefore necessary to

construct some constitutive relations that include the impact of damage on stiffness properties in the

context of anisotropic elasticity, as well as the effect of damage on plastic deformation mechanisms at

the microscale (e.g. crystallographic slip).
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3.1 Introduction

For materials with a brittle behavior, elasticity is the main deformation mechanism1 since load-

ing conditions (e.g. high strain rates, low temperatures) prevent inelastic deformation modes (e.g.

crystallographic slip, twinning) from being active. As a consequence, within the context of damage

mechanics, the description of brittle fracture usually relies on the assumption that damage is purely

driven by the accumulation of elastic strain energy (Griffith, 1921).

In this chapter, a phase-field model, which considers a scalar damage variable and its gradient

as state variables, is constructed. Following the suggestion of Amor et al. (2009), the consideration

of closure effects relies on the separation of the elastic strain energy into spherical and deviatoric

contributions. However, while the original proposition of Amor et al. (2009) is restricted to isotropic

elasticity, the proposed model is adapted to any class of material symmetry. Also, particular care is

taken to introduce some material parameters to control the respective impacts of the spherical and

deviatoric contributions on the development of damage, which is not possible in the original model of

Amor et al. (2009). This chapter is organized as follows. The constitutive relations are detailed in

section 3.2. The numerical method used for the solution of equilibrium and compatibility equations is

described in section 3.3. Finally, in section 3.4, some numerical examples are presented.

3.2 Constitutive equations

3.2.1 State laws

In order to model the evolution of the body B, the equilibrium equations, which have been detailed

in 2.5.3, must be supplemented with some constitutive equations. The state variables used for the

construction of constitutive equations are the strain tensor " , the damage variable d and its gradient

r d. They are listed in Table 3.1.

1Strictly speaking, the contribution of thermal expansion coul d also be considered. This contribution is ignored here
for simplicity.
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The state laws used by the present model correspond to equations (3.15), (3.17) and (3.23). For

the constitutive model to be complete, some evolutions equations should also be specified. These

equations are detailed in the following section.

3.2.2 Evolution laws

The second law of thermodynamics, which imposes some restrictions for the evolution of a thermo-

dynamic system, takes the form of an inequality. Specifically, according to the second law of thermo-

dynamics, the dissipated energy rate density ' must be non-negative. For isothermal transformations,

this density is given by:

' = pi �  _ (3.24)

= � : "_+ �d_+ � � r d_�  _ � 0 (3.25)

Using the expression of the Helmholtz free energy  , the above equation is re-written as:

' =
�

� �
@ 
@"

�
: "_+

�
� �

@ 
@d

�
d_+

�
� �

@ 
@r d

�
� r d_ (3.26)

From the list of state variables, their corresponding thermodynamic forces and the equilibrium

condition � = div � (see section 2.5.3), the expression of the dissipation source becomes:

' = � ir : "_+ � ir d_+ � ir � r d_ � 0 (3.27)

with:

� ir = � � � r (3.28)

� ir = � � � r (3.29)

� ir = � � � r = div � � � r (3.30)

According to the above expression, the dissipation source ' is given by the sum of the products

between dissipative forces (i.e. � ir , � ir and � ir ) and flux variables (i.e. "_, d_ and r d_). Within the

context of generalized standard materials (Halphen and Nguyen, 1975), the evolution equations, which

relate the dissipative forces to the flux variables, are obtained from a dissipation potential � .
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that:

d_=
@�

�
� ir ; d

�

@�ir
(3.38)

=

 
h� ir i
K

! N

(1 � d) (3.39)

=

 
h� � + 3gc lc

4 � d � 3gc
8lc

i

K

! N

(1 � d) (3.40)

According to the evolution equation of the damage variable, damage healing is not allowed (i.e.

d_� 0) and the damage variable cannot exceed unity (i.e. d_= 0 for d = 1 ).

As will be discussed in section 3.2.1, the proposed constitutive model offers two advantages. First,

closure effects, which favors the development of damage in tension, are accounted for and can be

controlled with the f s and f d parameters and the stress-strain relation remains continuous when the

unilateral condition takes place. Second, the above constitutive relations do not require any assumption

regarding material symmetry.

3.3 Numerical implementation

In the present chapter, the finite element method is used for the solution to field equations. The

numerical implementation of this method for the specific case of the proposed model is briefly discussed

here. For all simulation, plane strain conditions are assumed.

3.3.1 Displacement �eld

The evolution of the displacement field u is governed by the following field equations:

div� = � u• (3.41)

� = C [" ; d] : " (3.42)

" = sym [r u ] (3.43)

In the above set of equations, which result from equilibrium and compatibility conditions as well as from

constitutive assumptions, the effect of external volume forces has been excluded. The corresponding

variationnal formulation of this problem is given by:

Z



u ? � div� dV =

Z



� u ? � u• dV (3.44)
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In the present work, U is determined from U• with the Newmark method :

U [t + � t] = U [t] + � t U_ [t] +
� t2

2

�
(1 � b) U• [t] + b U• [t + � t]

�
(3.54)

U_ [t + � t] = U_ [t] + � t
�
(1 � a) U• [t] + a U• [t + � t]

�
(3.55)

where � t is the time step while a and b are time integration parameters.

3.3.2 Damage �eld

For the evolution of the damage field d (3.40), a discrete form of the following non-local equation

is first needed:

Kd_= h� � +
3gclc

4
� d �

3gc

8lc
i N (1 � d) (3.56)

To circumvent the difficulty related to the impossibility for damage healing to occur (i.e. d_ � 0) and

the presence of the power N , a local (i.e. point by point) resolution strategy is adopted here. The

only obstacle for this strategy is the presence of the non-local laplacian diffusion operator, which can

be overcome with the construction of a local laplacian diffusion operator obtained from the solution of

the problem � = � d in a weak form. For this purpose, the following non-local equation is considered:

Z



d?� dV =

Z



d?� d dV (3.57)

where d? is the test damage field. Integrating by parts and using the divergence theorem, one obtains:

Z



d?� dV =

Z

@

d?( r d � n ) dS �

Z



r d? � r d dV (3.58)

Combining the boundary condition (2.50) with the constitutive relation (3.23), the surface integral

vanishes and the above equation reduces to:

Z



d?� dV +

Z



r d? � r d dV = 0 (3.59)

Within the context of the finite element method, the damage variables d and d? at position x are

evaluated from the interpolation function N and the nodal damage vectors D and D ? with:

d[x ; t] = N [x ]D [t] (3.60)

d?[x ; t] = D ?T [t]N T [x ] (3.61)
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The spatial gradients of the damage variables r d and r d? are obtained from D and D ? according

to:

r d[x ; t] = Q[x ]D [t] (3.62)

r d?[x ; t] = D ?T [t]QT [x ] (3.63)

Q[x ] =

0

B
B
@

@N1[x]
@x

:::
@Nn [x]

@x
@N1[x]

@y
:::

@Nn [x]
@y

1

C
C
A (3.64)

The vector � , which contains the nodal values of the laplacian term � , can therefore be determined

from:

A � [t] + Z D [t] = 0 (3.65)

with:

A =
Z



N T N dV (3.66)

Z =
Z



QT � QdV (3.67)

In practice and in order to keep close to the operator that we are looking for, we can consider A as

the lumped mass matrix (see appendix A). Once the vector � = � A � 1 Z D is known, the damage

rate vector D_ is obtained from:

K D_[t] = h� � [t] +
3gclc

4
� [t] �

3gc

8lc
D [t]i � N � (1 � D [t]) (3.68)

where � is the symbol of Hadamard product, 1 is the vector containing the value of 1 in each component

and � [t ] is the vector containing the nodal values of the elastic energy restitution rate � . In order to

obtain the nodal values straight from the integration point values, a mapping projector is used (see

appendix A). For time integration of nodal damage variables, an explicit time integration scheme is

employed for the temporal discretzation. The first order Euler explicit method is applied to the time

integration of the damage vector:

D [t + � t] = D [t] + D_[t]� t (3.69)
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3.3.3 Overall algorithm

The overall algorithm for the estimation of the displacement and damage fields is briefly described

here. It is composed of the following steps:

� Initialization

1. Initialize the nodal displacement vector U [t0], the nodal velocity vector U_[t0] and the nodal

damage vector D [t0].

2. Compute the matrices A and Z .

� For each time t

1. For each integration point, compute the strain tensor " [t] and the damage variable d[t].

2. For each integration point, compute the stress tensor � [t ] and the stiffness tensor C[t].

3. Compute the stiffness matrix K [d] and the mass matrix M [d] of the system.

4. Compute the nodal acceleration vector U• [t].

5. Compute the vector � [t ] containing the nodal values of � [t ] = � d[t].

6. For each integration point, compute the elastic energy restitution rate � [t ].

7. Compute the vector � [t ] containing the nodal values of � [t ].

8. Compute the nodal damage rate vector D_[t].

9. Update the nodal displacement vector U [t + � t] and the nodal damage vector D [t + � t].

� End

The present code has been implemented in Matlab.

3.4 Numerical examples

To discuss the advantages offered by the present formulation, some numerical examples are pre-

sented in this section. All the following examples deal with two dimensional problems with generalized

plane strain conditions. For each application, the domain of interest 
 is meshed with triangular el-

ements. Each node possesses three degrees of freedom: two for the displacement field u and one for
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CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC
POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE
FRACTURE

4.1 Introduction

In the previous chapter, a constitutive model for brittle fracture has been proposed. This model,

which uses the phase field method, is based on the assumption that elasticity is the sole deformation

mechanism. For many materials, this assumption is reasonable only for low temperatures and/or

high strain rates. In many practical situations, the above conditions are not satisfied, in which case

some additional deformation mechanisms exist. For metallic materials, crystallographic slip provides

a significant contribution to deformation when the applied stress is sufficient. In this chapter, a

constitutive model for plasticity driven fracture is proposed. This model can be applied to situations

where plastic strains are much larger than elastic strains, which is typical of ductile fracture, or when

elastic and plastic strains have similar magnitude, which is typical of fatigue fracture.

This chapter is organized as follows. The first section focuses on the description of the proposed

constitutive model. Because the model aims at considering the impact of microstructural hetero-

geneities, the general framework of crystal plasticity (Roters et al., 2010) is combined with non-local

damage mechanics for the construction of constitutive relations. The strategy used for the numerical

implementation of the proposed model is detailed in the second section. Some numerical examples are

presented in the final section. These examples allow discussing the advantages and limitations of the

proposed formulation.

4.2 Constitutive equations

4.2.1 Crystal plasticity framework

For polycrystalline metallic materials, crystallographic slip is often the most important plastic

deformation mode. Though some additional deformation mechanisms can be active (e.g. twinning,

phase transformations), crystallographic slip is therefore considered as the sole plastic deformation

mode in the following.

As a result of crystallographic slip, the mechanical response of a crystalline material point depends

on the orientation of slip systems with respect to the loading direction. The anisotropic aspect of

plastic deformation is conveniently modelled with the general framework of crystal plasticity (Roters

et al., 2010). Indeed, this framework provides a natural way of considering the kinematics of crystal-
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given by:

"_p =
X

�

1
2

(m � 
 n � + n � 
 m � )_� (4.2)

where _� is the plastic shear strain rate for the � th slip system. Because n � and m � are orthogonal

to each other, it is clear that crystallographic slip results in an incompressible plastic flow in the sense

that:

tr["_p] = 0 (4.3)

If we neglect lattice rotations, both the slip plane normal and slip direction are constant with

respect to time. As a consequence, relation (4.2) is easily integrated, which leads to1:

" p =
X

�

1
2

(m � 
 n � + n � 
 m � ) � (4.4)

4.2.2 State laws

The starting point for the construction of a constitutive model is the list of state variables used

to define the state of a crystalline material point at each time. In the present work, the thermal

contributions are neglected so that the absolute temperature is not considered as a state variable.

Consequently, the only external state variables are the strain tensor " , the damage variable d and

its spatial gradient r d. As for the elastic formulation discussed in chapter 3, the damage variable

allows considering the progressive degradation of mechanical properties during a deformation process.

Also, the interest of the gradient r d is twofold. First, it provides a way of circumventing the

issues associated with damage-induced localization. Second, it offers the possibility of considering the

increase of surface energy resulting from crack nucleation and propagation.

In order to include the impact of the deformation history, it is necessary to have some internal

variables that allow considering the microstructural changes occurring during a deformation process.

First, to represent the progression of the plastic deformation process, the plastic shear strains  � are

treated as internal variables. Second, due to the evolution of the dislocation density and to internal

stresses, the resistance to plastic deformation changes during a deformation path. To consider possible

hardening/softening phenomena, some harderning variables are also introduced. In the present work,

two different types of hardening variables are considered:

1When integrating ( 4.2), there is an integration constant, which is assumed to be a nul l tensor.
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where � denotes the energy restitution rate:

� =
1
2

" e :
@C[" ; d]

@d
: " e +

1
2

z :
@K[ z ; d]

@d
: z � f i

Q
2

X

�
(� � )2 (4.36)

The derivative of the stiffness tensor C with respect to the damage variable d is:

@C
@d

=

8
>><

>>:

@C+

@d
if tr(" ) = tr(" e) � 0

@C�

@d
=

@C+

@d
� Ps :

@C+

@d
: Ps if tr(" ) = tr(" e) < 0

(4.37)

@C+

@d
= � g0[d] C+ :

�
f s Ps : C~

� 1
: Ps + f d Pd : C~

� 1
: Pd

�
: C+ (4.38)

In a similar way, the derivative of the kinematic hardening moduli tensor K with respect to the damage

variable is given by:

@K
@d

=

8
>><

>>:

@K+

@d
if tr( z ) � 0

@K �

@d
=

@K+

@d
� Ps :

@K+

@d
: Ps if tr( z ) < 0

(4.39)

@K+

@d
= � g0[d] K+ :

�
f s Ps : M~ : Ps + f d Pd : M~ : Pd

�
: K+ (4.40)

with M~ = K � 1. It is worth mentioning that, due to the couplings between elasticity and damage and

hardening and damage, the driving force for damage contains some mechanical contributions from the

elastic strain tensor as well as the hardening internal variables.

Finally, the differentiation of the state potential  with respect to the gradient of the damage

variable r d provides the expression for the driving force � r :

� r =
@ 

@r d
(4.41)

=
3
4

gclc r d (4.42)

The state equations, which connect the driving forces to the state variables, are given by (4.26),

(4.28), (4.30), (4.33), (4.35) and (4.42).

4.2.3 Evolution laws

The second law of thermodynamics requires the dissipation source ' to be non-negative, which

imposes some constraints regarding the evolution laws associated with the different state variables.
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The above equation provides a clear meaning to the isotropic hardening variable � � , which is identified

as the cumulated shear strain. As a consequence of the linear relation (4.30) between the critical shear

stress and the isotropic hardening variable, the proposed dissipation potential leads to a linear isotropic

hardening rule.

The rate of the kinematic hardening variable z_ is obtained from the differentiation of the dissipa-

tion potential with respect to the backstress tensor x , which gives:

z_ = �
@�
@x

(4.64)

=
X

�

1
2

(m � 
 n � + n � 
 m � )_� (4.65)

= "_p (4.66)

The above equation indicates that the kinematic hardening variable is actually the plastic strain tensor.

Except from the impact of damage, the kinematic hardening rule used here is therefore identical to

the one proposed by Prager (1955).

Finally, for the evolution of damage, one finds that:

d_=
@�

@�ir
(4.67)

=

 
h� ir i
K

! N

(1 � d) (4.68)

=

 
h� � + 3gc lc

4 � d � 3gc
8lc

i

K

! N

(1 � d) (4.69)

According to the evolution equation of the damage variable, damage healing is not allowed (i.e. d_� 0)

and the damage variable cannot exceed unity (i.e. d_= 0 for d = 1 ).

4.3 Numerical implementation

For application purposes, the proposed set of constitutive equations has been implemented within

a finite element solver. More specifically, for the two dimensional problems discussed in the next

section, the body 
 is discretized with triangular elements. Each element node has three degrees of

freedom: two for the displacement field u and one for the order parameter d.
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The left hand-side term in equation (4.74) is thus given by:

Z



" ? : � dV = U ?T

� Z



B T : C : B dV

�
U � U ?T

� Z



B T : C : " p dV

�
(4.80)

Introducing the above relation in equation (4.70) leads to the following system:

K [t] U [t] = F [t] (4.81)

� K =
R


 B T : C : B dV , is the stiffness matrix of the system.

� F =
R


 B T : C : " p dV , is the second member representing the plastic contribution.

4.3.2 Damage �eld

In order to determine the evolution of the damage field d, the evolution equation (4.69) for the

damage variable is first reformulated as follows:

Kd_= h� � +
3gclc

4
� d �

3gc

8lc
i N (1 � d) (4.82)

To circumvent the difficulties related to (i) the impossibility for damage healing to occur (i.e. d_ � 0)

and (ii) the presence of the power N , a local (i.e. point by point) resolution strategy is adopted here.

The only obstacle for the application of this strategy is the presence of the non-local laplacian diffusion

operator, which can be overcome with the construction of a local laplacian diffusion operator obtained

from the resolution of the problem � = � d in a weak form. For this purpose, the following non-local

equation is considered:
Z



d?� dV =

Z



d?� d dV (4.83)

where d? is the test damage field. Integrating by parts and using the divergence theorem, one obtains:

Z



d?� dV =

Z

@

d?( r d � n ) dS �

Z



r d? � r d dV (4.84)

Combining the boundary condition (2.50) with the constitutive relation (3.23), the surface integral

vanishes and the above equation reduces to:

Z



d?� dV +

Z



r d? � r d dV = 0 (4.85)

94



CHAPTER 4. A PHASE-FIELD MODEL FOR ELASTO-VISCOPLASTIC
POLYCRYSTALLINE MATERIALS: APPLICATION TO DUCTILE AND FATIGUE
FRACTURE

Within the context of the finite element method, the damage variables d and d? at position x are

evaluated from the interpolation function N and the nodal damage vectors D and D ? with:

d[x ; t] = N [x ]D [t] (4.86)

d?[x ; t] = D ?T [t]N T [x ] (4.87)

In a similar way, the spatial gradients of the damage variables r d and r d? are obtained from D

and D ? according to:

r d[x ; t] = Q[x ]D [t] (4.88)

r d?[x ; t] = D ?T [t]QT [x ] (4.89)

with:

Q[x ] =

0

B
B
@

@N1[x]
@x

:::
@Nn [x]

@x
@N1[x]

@y
:::

@Nn [x]
@y

1

C
C
A (4.90)

The vector � , which contains the nodal values of the laplacian term � , can therefore be determined

from:

A � [t] + Z D [t] = 0 (4.91)

with:

A =
Z



N T N dV (4.92)

Z =
Z



QT � QdV (4.93)

where A as the lumped mass matrix. Once the vector � = � A � 1 Z D is known, the damage rate

vector D_ is obtained from:

K D_[t] = h� � [t] +
3gclc

4
� [t] �

3gc

8lc
D [t]i � N � (1 � D [t]) (4.94)

where � is the symbol of Hadamard product, 1 is the vector containing the value of 1 in each component

and � [t ] is the vector containing the nodal values of the elastic energy restitution rate � . For time

integration of nodal damage variables, an explicit time integration scheme is employed for the temporal

discretzation. The first order Euler explicit method is applied to the time integration of the damage

vector:

D [t + � t] = D [t] + D_[t]� t (4.95)
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4.4 Numerical examples

In this section, some illustrative numerical examples are presented. These examples aim at inves-

tigating the ability of the proposed model to capture representative aspects of the fracture process of

polycrystalline metallic materials. In the following, two different types of simulations are conducted.

First, some polycrystalline specimens are submitted to different monotonic loading conditions. For

such tests, the magnitude of plastic strains is much larger than for elastic strains (i.e. jj " ejj << jj " pjj),

which corresponds to ductile fracture. In the second part, some cyclic loading conditions are prescribed

to polycrystalline specimens to investigate fatigue fracture. For these specific loading conditions, the

elastic and plastic strain tensor have similar magnitudes (i.e. jj " ejj � jj " pjj).

Plane strain state is assumed for all examples. Also, for all geometries used in this section, the

boundary condition � � n = 0 is always assumed (see section 2.5.3).

For stiffness and hardening properties, the specific case of cubic symmetry is considered for the

numerical examples. In this case, the initial fourth-rank stiffness tensor C~ is defined from three

independent constants C11, C12 and C44. Using Voigt notation for two dimensions, the tensor can be

written as:

[C~] =

0

B
@

C11 C12 0
C12 C11 0
0 0 C44

1

C
A (4.96)

In a similar fashion, because of cubic symmetry, the initial kinematic hardening moduli tensor K~ is

given by:

[K~] =

0

B
@

K 11 K 12 0
K 12 K 11 0

0 0 K 44

1

C
A (4.97)

where K 11, K 12 and K 44 are three independent constants. In some situations, the case of isotropy

will be considered. In this case, both C~ and K~ are defined from two independent constants since the

following conditions need to be satisfied:

C11 � C12 = 2C44 (4.98)

K 11 � K 12 = 2K 44 (4.99)

In the following, to reduce the number of material parameters, the initial kinematic hardening moduli

tensor K~ is assumed to be related to the initial stiffness tensor C~ with a single scalar parameter B
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such that:

K~ = B C~ (4.100)

For materials with cubic symmetry, the degree of anisotropy can be evaluated from the Zener ratio Z

(Zener and Siegel, 1949), which is defined according to:

Z =
2C44

C11 � C12
(4.101)

The specific case of isotropy corresponds to the situation where Z is equal to unity.

For the following 2D examples, only the four slip systems (120)[21� 0], (210)[12� 0], (21� 0)[120] and

(12� 0)[210] are considered. Also, the polycrystalline microstructure of the different specimens has

been obtained from a Voronoi tessellation. Once the microstructure has been obtained, a random

crystallographic orientation is affected to each crystal. In the 2D case, the rotation matrix R that

allows switching between the crystal (i.e. fractional) and sample (i.e. global) coordinate systems has

the following form:

R =

0

B
@

cos� � sin � 0
sin � cos� 0

0 0 1

1

C
A (4.102)

where � is the rotation angle. It is emphasized that, whatever the crystallographic orientation is, all

slip systems are contained within the plane of 2D specimens.

4.4.1 Monotonic loading tests

4.4.1.1 Uniaxial tension test

To evaluate the performance of the model, a uniaxial tension test is first simulated. The specimen

geometry and the boundary conditions are presented in Figure 4.2. A vertical displacement of + u

(respectively � u) is progressively imposed on the upper (respectively lower) boundary of the specimen.

The total duration of the tension test is 0:1 s and 20 000increments are used to reach the maximum

vertical displacement which is of 0:03 mm. The prescribed velocity on the upper and lower edges of

the tension specimen is therefore equal to 0.3 mm/s.
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encountered during crack propagation tests.

4.4.2.1 Short fatigue cracks

For the modelling of fatigue crack nucleation, the specimen shown in Figure 4.18 is used. Fatigue

tests are conducted with a frequency of f = 1 Hz. Controlled displacement is assumed for all the tests.

Specifically, as shown in Figure 4.18(a), the upper and the lower surfaces of the specimen are subjected

to a sinusoidal displacement defined by u[t] = um sin(2�f t ). The polycrystalline microstructure has

been generated for all specimens with a Voronöı tessellation of 400 seed points. The crystallographic

orientation of the individual grains are assigned randomly. The structure is meshed with 42 000

triangular elements.

For this example, three different specimen geometries have been considered. The first one is a

smooth specimen with no defect. For the second geometry, a large circular defect, with a radius rh

of 0:006 mm, has been introduced at the center of the specimen (see Figure 4.18). For the third

geometry, four small circular defects are placed in the central region of the specimen. These defects

are far enough from each other so that, during the nucleation stage, they are no interactions. Also,

for small defects, the hole radius is rh = 0 :003mm, so that the defect density is the same as for the

second geometry.
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Chapter 5

Conclusions and prospects
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5.1 Conclusions

The modelling of fracture in solid materials is a complex task, mostly because it requires dealing

with the evolution of discontinuity surfaces known as cracks. The Phase-Field Method (PFM), which

has been designed for interfacial problems, provides an attractive framework for the modelling of frac-

ture. As discussed in the second chapter, significant efforts have been made at developing phase-field

models of fracture in the recent years. While most studies focus on brittle fracture, little attention

has been given to other fracture modes (e.g. ductile, fatigue). Indeed, for these other fracture modes,

the construction of constitutive relations is more complex because multiple deformation mechanisms

coexist. Also, most phase-field models of fracture are designed for structural applications. The charac-

teristic length scale of the structure is usually large and the impact of microstructural heterogeneities

is not considered. Such structures can therefore be treated as a continuum with homogeneous prop-

erties. In the context of material science, the characteristic length scales of a microstructure are

usually much smaller. The impact of microstructural heterogeneities (e.g. grains, fibers, pores) should

therefore be considered for the modelling of fracture at the microscale. In constrast with structural

applications, the anisotropic aspect of material properties is possibly significant at the microscale.

Therefore, the phase-field models of fracture, which are often restricted to isotropy, are inappropriate
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The proposed model is therefore designed for crystalline materials, for which the development of plastic

strains takes plane on specific crystallographic planes and along specific crystallographic directions.

In contrast with some phase-field models for ductile fracture (Miehe et al., 2016a; Miehe et al., 2015;

Kuhn et al., 2016; Ambati et al., 2015b), no direct coupling between the evolution of plastic strain and

the evolution of the damage variable has been introduced. To consider the role of plastic strains on the

development of damage, the proposed strategy uses the coupling between damage and hardening. The

consequence is that the driving force for damage contains some contributions from hardening variables

as well as elastic strains. The resulting phase-field model has been used to model ductile fracture

(under monotonic loading conditions) as well as fatigue fracture (under cyclic loading conditions).

The numerical results indicate the orientation of cracks is consistent with experimental observations,

for both fatigue and ductile fracture. The proposed model is flexible in the sense that it allows

considering either the beneficial or detrimental influence of the strain rate. Also, the main features of

the influence of geometrical defects on fatigue resistance are correctly reproduced.

5.2 Future prospects

While the proposed sets of constitutive relations allow considering some important features of

brittle, ductile and fatigue fracture, some aspects have not been included in the present work.

First, the role of temperature has been excluded, which means that phenomena such as thermal

shock cannot be treated. The introduction of temperature as an external state variable does not lead

to important theoretical difficulties. However, from a numerical point of view, it requires solving an

additional differential equation, i.e. the heat diffusion equation, which might be numerically expensive.

Second, the present work is limited to the context of infinitesimal transformations. While this is

generally satisfactory for brittle or fatigue fracture, an accurate description of ductile fracture would

require an extension to finite strains. Once again, the theoretical framework for an extension to finite

strains is well established (Asaro and Needleman, 1985; Sidoroff, 1982), the main difficulties are related

to the numerical implementation.

Third, while the deviatoric/spherical decomposition allows considering closure effects in a simple

manner, it does not always provide satisfactory results. Indeed, for a cracked specimen, the stiffness

along the crack plane normal is not fully recovered (only the spherical part is). This is a limitation of
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Appendix A

Appendix

Mapping projector

In order to obtain the nodal values straight from the integration point values, a mapping projector

is used. With the context of finite element method, we design by S the vector which contains the

nodal information and by E a vector which contains information in the integration points. The weak

form of the mapping problem is :

Z




�
N N T

�
S d
 =

Z



N T E d


� Z



N N Td


�
S =

Z



N T E d


M � S =
Z



N T E d


where M =
R


 N N Td


S = M � 1 �
Z



N T E d


Lumped mass matrix

In the case of dynamics, we solve the following problem:

M X + K X = 0

In using the mass matrix, there is two approaches:
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Appendix B

R�esum�e de la th�ese en fran�cais
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