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ABSTRACT - RÉSUMÉ

ABSTRACT

Spatial extreme value theory helps model and predict the frequency of extreme events in a spatial
context like, for instance, extreme precipitations, extreme temperatures or high concentrations of pol-
lution in the air. It is well adapted to time series, when the spatial object under study is observed
through time. However, in some cases, such types of data cannot be accessed: only one or just a few
records are made available. This is the case, for instance, in mining resources estimation, soil con-
tamination evaluation or any other applications where the phenomenon of interest either varies too
slowly across time to hope for a decent time series, or is too expensive to sample from. This situation
is rarely addressed in the spatial extremes community, contrary to Geostatistics, which typically deals
with such issues. The aim of this thesis is to make some connections between both disciplines, in order
to better handle the study of spatial extreme events when having only one set of spatial observations.

We �rst focus on the concept of integral range. Intimately related to the ergodic and mixing proper-
ties, it is a geostatistical parameter that characterizes the statistical �uctuations of a stationary random
�eld at large scale. When the latter is max-stable, we show that its extremal coe�cient function (ECF)
is closely related to the integral range of the corresponding exceedance �eld above a threshold. This
approach allows to retrieve and complete previous results established in a spatial risk context. It also
has the advantage of revealing a new expression for the extremal coe�cient function that depends on
the variogram of the exceedance �eld.

From this, we move to proposing a new nonparametric estimator of the ECF. Its asymptotic properties
are derived when it is computed from a single and partially observed realization of a stationary max-
stable random �eld. Speci�cally, considering both in�ll and increasing domain asymptotics, and under
some assumptions on the aforementioned integral range, we prove that it is consistent and asymptot-
ically normal. This illustrates the relevance of geostatistical tools for enriching extreme value analysis.

Finally, we develop a novel algorithm to perform exact simulations in a continuous domain of storm
processes with deterministic shape function. It distinguishes itself from most existing algorithms,
which apply to simulation domains made of a �nite number of points. In this regard, it allows for
easier investigation about the geometry of realizations of such processes. This is of particular interest
when the geometric feature under study involves di�erent scales of observation.

Key words: Spatial extreme value theory, Extremal coe�cient function, Geostatistics, Integral range,
Single realization, Simulation algorithm.
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RÉSUMÉ

La théorie spatiale des valeurs extrêmes permet de modéliser et prédire la fréquence d’évènements
extrêmes ayant une étendue spatiale comme, par exemple, des pluies ou des températures extrêmes,
ou encore de fortes concentrations de polluants dans l’air. Elle s’adapte bien aux données temporelles,
lorsque le phénomène spatial étudié est observé plusieurs fois dans le temps. Cependant, nous n’avons
parfois pas accès à de telles données: seulement un ou quelques enregistrements sont disponibles. C’est
le cas, par exemple, des études sur l’estimation des ressources minières ou sur l’évaluation de la pol-
lution des sols et plus généralement de toute recherche dont l’objet d’étude varie très peu au cours du
temps ou pour lequel le coût d’échantillonnage est trop élevé. Ce cas de �gure est très peu abordé par la
communauté des extrêmes. Au contraire, c’est un cadre d’analyse auquel la Géostatistique s’intéresse
particulièrement. Les travaux réalisés au cours de cette thèse ont pour objectif d’établir des connex-
ions mathématiques entre ces deux disciplines a�n de mieux appréhender les évènements extrêmes,
lorsque le phénomène spatial sous-jacent n’est observé qu’une seule fois.

Nous nous intéressons, dans un premier temps, au concept de portée intégrale. Intrinsèquement lié
aux propriétés d’ergodicité et de mélange, ce paramètre issu de la théorie géostatistique caractérise
les �uctuations statistiques, à large échelle, d’un champ aléatoire stationnaire. Lorsque ce dernier est
un champ max-stable, nous montrons que sa fonction coe�cient extrémal (ECF) est fortement liée à
la portée intégrale du champ des excès, au dessus d’un certain seuil, correspondant. Cette approche
permet de retrouver et de compléter des résultats précédemment établis dans un contexte de risque
spatialisé. Elle met également en évidence une nouvelle expression de la fonction coe�cient extrémal
qui dépend du variogramme du champ des excès.

À partir de cette formule, nous proposons un nouvel estimateur non-paramétrique de l’ECF. Ses pro-
priétés asymptotiques sont établies lorsqu’il est évalué à partir d’une unique réalisation, partiellement
observée, d’un champ stationnaire max-stable. En particulier, lorsque le nombre d’observations se
densi�e en même temps que le champ d’observation grandit, et sous certaines hypothèses concernant
la portée intégrale susmentionnée, nous montrons qu’il est consistent et asymptotiquement normal. Il
est donc pertinent d’utiliser les outils géostatistiques pour enrichir l’analyse des valeurs extrêmes.

Finalement, nous développons un nouvel algorithme permettant de simuler, en continu, des processus
aléatoires tempête pour lesquels la fonction de forme est déterministe. Il se distingue donc de la plupart
des algorithmes existants qui s’utilisent exclusivement lorsque le domaine de simulation est composé
d’un nombre �ni de points. À cet égard, il permet d’étudier plus facilement la géométrie des réali-
sations de tels processus. Cela est particulièrement intéressant quand la caractéristique géométrique
étudiée mêle di�érentes échelles d’observation.

Mots clés: Théorie spatiale des valeurs extrêmes, Function coe�cient extrémal, Géostatistique, Portée

intégrale, Réalisation unique, Algorithme de simulation.
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I
IN TRODUCTION

I.1 motivation

In 2012, the Intergovernmental Panel on Climate Change (IPCC) published a special report
entitledManaging the risks of extreme events and disasters to advance climate change adaptation

(see IPCC, 2012), in which they stated

« It is likely that the frequency of heavy precipitation or the proportion of total rainfall from
heavy rainfalls will increase in the 21st century over many areas of the globe. »

More generally, as suggested by both observational and numerical climate models, the fre-
quency, intensity and spatial extent of weather and climate extremes such as high rainfalls,
heat waves or windstorms will increase in the future. Hence, it is of primary interest to im-
prove our apprehension of spatial extreme events, in order to better assess the related risks.
In such a context, the spatial extreme value theory is particularly relevant: it helps model and
predict the frequency of extreme events in a spatial context.

Even if climate extreme events are likely to be more frequent, they are still rare events, by
de�nition. Consequently, the main issue when studying them from a statistical point of view
is that the amount of related data is limited. Furthermore, it is often needed to infer extremal
behaviours well beyond the range of observed data. Based on some speci�c models, among
which the so-called max-stable models, the extreme value theory basically uses the largest
observations to perform such extrapolations. One approach, linked to the max-stable models,
is to work with maxima, for instance monthly or annual (pointwise) maxima of temperatures
over a region. If the temperatures are recorded over a long period, this results in a time series
of maxima. Hence, since climatic data are generally observed through time, spatial analysis
of climatic extremes often deals with time series. However, as mentioned in Naveau et al.
(2009), climate is de�ned by the atmospheric scientists as the behaviour of the atmosphere
over a long period of time. Instead of monthly or annual maxima, it thus may be interesting to
consider maxima over a longer period. This is done e.g. in Naveau et al. (2009) when studying
the Bourgogne precipitation data set, which regroups 51-year maxima of daily precipitation
recorded at 146 weather station locations. At each location, they consider the maxima of pre-
cipitation over the whole observed period. The resulting data set is thus made of a single set
of spatial observations. Actually, such a framework is rarely addressed in the spatial extremes
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community and, as speci�ed in Naveau et al. (2009), there is a need to theoretically investigate
the estimation of extreme events in this context. On the contrary, Geostatistics typically deals
with such issues. The aim of this thesis is therefore to make some connections between this
discipline and the spatial extreme value theory in order to better handle the study of extremes
when having only one spatial set of data.

I.2 outline of the thesis

Chapter 1 is dedicated to the introduction of spatial extreme value theory. For readers who are
unfamiliar with the statistical study of extreme events, we �rst discuss the speci�cities of these
events. Basic results and objects from univariate extreme value theory are also presented, and
a toy example is provided to illustrate the relevance of the theory when assessing extremal
behaviours. Then, max-stable processes are introduced together with the extremal coe�cient
function. This function is a bivariate measure of spatial extreme dependence, which is at the
center of this PhD. Finally, we address the question of estimating spatial extreme events when
the phenomenon under study is observed only once. In this regard, basic tools and concepts
from Geostatistics are reminded.

Chapter 2 centres on the concept of integral range. Intimately related to the ergodic and
mixing properties, it is a geostatistical parameter that helps characterize the statistical �uctu-
ations of a stationary random �eld at large scale. A detailed account of this quantity is �rst
given. In particular, we introduce a new method to estimate it, which slightly di�ers from the
procedure originally proposed by Lantuéjoul (1991). Then, when the random �eld is simple
max-stable, we show that its extremal coe�cient function is closely related to the integral
range of the corresponding exceedance �eld Iz above a positive threshold z. In particular, we
�nd a necessary and su�cient condition on the former so that the latter is �nite. This condi-
tion is investigated for standard max-stable models, then illustrated on simulations. It is also
related to the ergodic and mixing properties of simple max-stable processes. Finally, we show
that this work allows to retrieve and complete previous results established by Koch (2017) in
a spatial risk context.

From the work of Chapter 2, a new nonparametric estimator of the extremal coe�cient func-
tion is proposed in Chapter 3. It is based on the kernel variogram estimator of Iz studied
in García-Soidán et al. (2004) and García-Soidán (2007). From their work, we derive asymp-
totic properties of our estimator when it is computed from a single spatial set of observations.
Namely, under some assumptions, we show that it is asymptotically consistent and normal.
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I.2 outline of the thesis

Some of these assumptions concern the aforementioned integral range. This con�rms the
relevance of geostatistical tools to enrich extreme value analysis, especially when estimating
starting with a single realization of the spatial process. These results are then illustrated by
numerical experiments and a comparison with the F-madogram estimator proposed in Cooley
et al. (2006) is performed.

Independently of the other chapters, Chapter 4 focuses on the simulation of speci�c storm pro-
cesses. These processes constitute prototype models for spatial extremes. They are classically
simulated on a �nite number of points within a given domain. We propose a new algorithm
that allows to perform such a task in continuous domains like hyperrectangles or hyperballs,
in arbitrary dimension. This consists in generating basic ingredients that can subsequently
be used to assign a value at any point of the simulation �eld. Such an approach is particularly
appropriate to investigate the geometrical properties of storm processes. Particular attention
is paid to e�ciency: by introducing and exploiting the notion of domain of in�uence of each
storm, the running time is considerably reduced. Besides, most parts of the algorithm are de-
signed to be parallelizable. This algorithm is used to perform several illustrative simulations
in the other chapters.
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1
WHAT ARE SPATIAL EXTREMES

Résumé Ce chapitre est une introduction à la théorie spatiale des valeurs extrêmes. Pour les

lecteurs non familiers avec l’étude statistique des évènements extrêmes, la notion d’extrême est

d’abord détaillée. Des éléments de la théorie des valeurs extrêmes sont ensuite rappelés, notam-

ment les approches de maxima par blocs et d’excès au dessus d’un seuil. Un exemple numérique

illustrant la pertinence de cette théorie pour étudier des évènements extrêmes est également fourni.

Par la suite, le chapitre se concentre sur les extrêmes spatiaux et en particulier sur les champs aléa-

toires max-stables. Dans la méthode des maxima par blocs, ces derniers apparaissent naturelle-

ment comme limite de maxima ponctuels de champs aléatoires indépendants et identiquement

distribués (i.i.d.). La fonction coe�cient extrémal est aussi introduite: cette fonction bivariée con-

stitue la principale mesure de dépendance des champs max-stables. Elle est au centre des travaux

présentés dans ce document. Les principaux travaux d’estimation de la fonction coe�cient extré-

mal sont e�ectué sur la base d’observations i.i.d. ou qui se répètent dans le temps. Peu de travaux

se sont intéressés à son estimation à partir d’une unique réalisation, partiellement observée, du

champ max-stable considéré. Cette question et plus largement celle de l’estimation à partir d’un

unique jeu d’observations spatialisées sont discutées à la �n de ce chapitre. À cet égard, des élé-

ments et concepts de base issus de la Géostatistique sont rappelés.

Spatial extreme value theory, as a branch of extreme value theory (EVT), helps model and
predict the frequency of extreme events in a spatial context. The objective of this chapter is
�rst to introduce the speci�city of extreme events from a statistical point of view. Then, basic
results and mathematical objects from univariate and spatial EVT are presented. This includes
the extremal coe�cient function, which is at the center of the works exposed in Chapter 2
and Chapter 3. The �rst three sections are mostly addressed to readers who are unfamiliar
with extreme value theory. They lay the groundwork before getting into the heart of the
matter in the last section. There, we tackle the issue of estimating spatial extreme events
when the phenomenon of interest is observed only once. To the best of our knowledge, this
situation has rarely been investigated in the spatial extremes literature. Geostatistics, on the
other hand, typically deals with unique phenomena. By making fruitful connections between
both disciplines, we aspire to better handle the study of extreme events when having only
one set of spatial observations.
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what are spatial extremes

1.1 extreme events, a statistical issue

1.1.1 De�nition: extreme or not extreme that is the question

As remarked by Stephenson (2008),

« extreme events are generally easy to recognize but di�cult to de�ne »,

partly because there is no unique de�nition for what is meant by extreme, and deciding what
makes an event extreme or not highly depends on the �eld of study (see e.g. McPhillips et al.,
2018). Extreme value theory aims to help these di�erent disciplines to analyse, from a statis-
tical point of view, what they call extreme events. Therefore, we consider the quite general
de�nition hereunder.

De�nition 1.1 – Extreme event. A event is said to be extreme when the two following
conditions are veri�ed:

(i) it is a rare event, i.e. its probability of occurrence is very low,

(ii) the underlying phenomenon takes very high (or very low) values.

By way of illustration, here are some examples of extreme events:

— the main schock of L’Aquila earthquake, in 2009, that was rated 6.3 on the Richter
magnitude scale,

— Hurricane Harvey, a category 4 hurricane that a�ected a large area in Central America
and Eastern United States in August 2017,

— the french record-breaking temperature, 45.9 degrees Celsius, recorded on the 28th of
June 2019 in a southern town called Gallargues-le-Montueux,

— the stock market crash on Monday, 19th October 1987, known as Black Monday.

Notice that these four examples also had a high impact: they caused severe �nancial or ma-
terial damages and/or many deaths. According to De�nition 1.1, an extreme event is not
necessary high-impact and interest can also be in studying phenomena such as long human
life span or sport records (see e.g. Einmahl and Magnus, 2008 and Einmahl et al., 2019). More
detailed examples of extreme events can be found, for instance, in Beirlant et al. (2004), Dey
and Yan (2016), or Embrechts et al. (1997). Formally, suppose that the phenomenon of interest,
e.g. the sea level at a speci�c location, can be modeled by a random variable X with density
function f . Extreme value theory focuses on the right and left tails of f , where it usually takes
very low values (cf. Figure 1.1). Although de�ning what belongs to the tail highly depends
on the current study, the areas of concern are usually over (resp. below) the 90% (resp. 10%)
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0.1

x

f (x)

Figure 1.1 – A density function f = f1 + f2, where f1 and f2 are the density functions associated with

the Gaussian distributions N(5, 2.5) and N(20, 2.5), respectively. The extreme value theory is interested

in the tail of f (red area) and not in its centred part, even if f takes low values (blue area).

quantile (see e.g. IPCC, 2012, page 116 about climate extremes).

In practice, the phenomena under study are typically complex and depend on multivariate
parameters. For instance, the sea level can be divided into several components like the mean
sea level, the tide level and the surge level. Extreme sea levels may be observed when one or
several of these components reach high values. As pointed out by Tawn (1992), possible de-
pendence between the components must be taken into account. In addition, a lot of extreme
events such as heavy rainfalls and heatwaves are spatial in nature; extremes may appear in
clusters over a region, and this spatial dependency must also be considered. Due to the possi-
ble multivariate or spatial characteristics of extreme events, EVT is also concerned with the
tail behavior of random vectors or random �elds. For instance, let the sea level at two spe-
ci�c locations be modeled by the random variables X1 and X2 with joint density function f .
Attention is paid to the tail parts of f , where at least X1 or X2 takes extreme values.

In the following, without any loss of generality (cf. Remark 1.7), we shall focus exclusively on
the right tail of the distribution. In this context, the goal may be to estimate quantities such
as exceedance probabilities above very high thresholds, where very few or even no data are
observed. In such a situation, standard statistical tools are no longer relevant.

1.1.2 Estimating with few observations

In this subsection we illustrate with a speci�c example why standard statistical methods are
inappropriate when studying extreme events.

7
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Figure 1.2 – Histogram of the sample of size 500 drawn from a Student distribution T(4) (in lightblue).

The density functions f of the Student distribution T(4) (in blue) and fN(0,1) of the standard Gaussian

distribution N(0, 1) (in red) are displayed for comparison, as well as the threshold t = 9.

Turning back to the univariate case, let T(4) denote the Student distribution with 4 degrees
of freedom, and take a random variable X ∼ T(4). Denote by f its density function, set
t ∈ (0,+∞) a very high threshold and consider the event {X > t} (cf. Figure 1.2). Accord-
ing to De�nition 1.1, {X > t} is an extreme event. In a risk management context, suppose
now that we are interested in assessing its probability P [X > t] =: F(t); F stands for the sur-
vival function. Assume that 500 independent realizations of X are observed, providing the
histogram displayed in Figure 1.2.
First, notice its bell shape: the standard normal distributionN(0, 1) seems to be a good candi-
date to model the data. However, if the laws N(0, 1) and T(4) have similar behaviour in the
sample range, this is not the case in tail regions: as shown in Figure 1.3, the corresponding
survival functions FN(0,1) and F have respectively a light and a heavy right-tail. The di�erence
between the two tails is also illustrated by Figure 1.4, which compares the quantile functions
of both distributions. This is why usual parametric estimation methods may fail when con-
sidering extreme events, especially when they are based on Gaussian distributions. Since a
Gaussian density function always has a light-tail (see Beirlant et al., 2004), this could lead, as
in the present example, to a serious underestimation of the probabilities associated to extreme
events. In a risk management context, the consequences could be catastrophic; Salmon (2009)
found such Gaussian underestimation to be one of the causes of the global economic crisis of
2008.

Of course, parametric adjustment is not the only option, and we could also estimate P [X > t]
with a non-parametric method. However, there is no observation beyond the threshold t ; the
exceedance probability would be arbitrarily set to 0. The problem of not observing enough
extreme data was also encountered by the Delta committee, in the Netherlands. They were
asked to �nd an appropriate level for the dikes after the severe storm surge on February 1953,
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Figure 1.3 – Survival functions of the Student distribution T(4) (in blue) and the standard normal

distribution N(0, 1) (in red).
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Figure 1.4 – Di�erence between the quantiles of order 1 − p of the Student distribution T(4) and the

standard normal distribution N(0, 1). This di�erence dramatically increases as 1 −p tends to 1.

which caused extensive �ooding in several parts of the country, killing nearly 2000 people. In
particular, they had to determine the height of the dikes so that the probability of a �ood, in a
given year, is 10−4; this corresponds to a quantile of order 1− 10−4. However, high tide water
level had been recorded only for the past 100 years; it was impossible to estimate this quan-
tile using only these data, without making some assumptions on the underlying distribution.
Since we are interested in extreme values, an idea would be, after suitable assumptions on f ,
to use the largest observations of the sample to extrapolate the tail of the distribution beyond
the latter. This is one of the purposes of extreme value theory: by studying the �uctuations
of maxima, it helps choose a model for the tail among a family of models that are appropriate
when studying extreme events. This theory is introduced next in the univariate then in the
spatial case.
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what are spatial extremes

1.2 univariate extreme value theory

Three approaches have been developed to study tails of distributions; they are based on max-
stable distributions, generalized pareto distributions and point processes, respectively. Since
we do not make use of the third approach in this thesis, we shall not introduce it. We invite the
interested reader to consult e.g. Chapter 7 in Coles (2001) for a comprehensive introduction.
We focus instead on the �rst two approaches, which are usually presented when investigating
univariate extremes. The following notation will be needed.

Equality in distribution is denoted by d
= and the indicator function of any condition C is writ-

ten 1{C}. Let X be a real-valued random variable with probability distribution PX, cumulative
distribution function (c.d.f.) F and probability density function (p.d.f.) f . In the sequel, we
shall write equivalently X ∼ PX, X ∼ F or X ∼ f . In addition, for any n ∈ N∗, let X1, . . . ,Xn

be independent real-valued random variables with common c.d.f. F, modelling some obser-
vations of the phenomenon of interest. Recall that F = 1 − F is the corresponding survival
function. For every k ∈ {1, . . . ,n}, we shall denote X(k ) the kth order statistic related with
the vector (X1, . . . ,Xn), i.e. X(1) ≤ · · · ≤ X(n). In particular, X(1) = min(X1, . . . ,Xn) and
X(n) = max(X1, . . . ,Xn). Finally, de�ne the right endpoint of F as

x∗ := sup {x ∈ R : F(x) < 1} ∈ R∪ {+∞}.

1.2.1 Normalized maxima: max-stable distributions

Theoretical foundations

The �rst approach considers that the largest observations are approximately governed by the
law of the maximum X(n) with c.d.f. Fn . Typically, in the same spirit as the Central Limit
Theorem for the sum

∑n
k=1 Xk , we would like to know the possible limit distributions for X(n),

after normalization, as n → +∞. Notice that the normalization is necessary since X(n) → x∗

a.s. when n → +∞, i.e. the distribution of X(n) degenerates to a point mass on x∗. To do so,
�rst consider the following de�nition.

De�nition 1.2 – Distributions of the same type. Two cumulative distribution func-
tions F and G are of the same type if there exist constants a > 0 and b ∈ R such that for
any x ∈ R

F(x) = G(ax +b).

Then, the limit distributions of the normalized maximum are characterized by the next theo-
rem.

10



1.2 univariate extreme value theory

Theorem 1.3 – Limit distributions for maxima (Fisher and Tippett, 1928; Gnedenko,
1943). Suppose there exist sequences of real numbers an > 0 and bn ∈ R such that

lim
n→+∞

P
[X(n) −bn

an
≤ x

]
= G(x), (1.1)

for any x ∈ R at which G is continuous and where G is a non-degenerate distribution.
Then G is called a generalized extreme value (GEV) if it is of the same type as one of the
following three seminal distributions:

— the Fréchet distribution Φγ : x ∈ R 7→ exp
{−x−1/γ} 1 {x > 0} with γ > 0,

— the Gumbel distribution Λ : x ∈ R 7→ exp {−e−x },

— the Weibull distribution Ψγ : x ∈ R 7→ 1 {x > 0} + exp
{−(−x)1/γ} 1 {x ≤ 0}

with γ < 0.

In von Mises (1936) and Jenkinson (1955) a synthetic representation of GEV distributions is
proposed. They are of the same type as the following parametric distribution, de�ned for
γ ∈ R with support S := {x ∈ R : 1 + γ x > 0}:

∀x ∈ S Gγ(x) :=



exp
{
− (1 + γx)−1/γ

}
if γ , 0,

exp {−e−x } if γ = 0.
(1.2)

With this new representation in mind, Theorem 1.3 states that though di�erent choices of
normalizing sequences could lead to a non-degenerate limit in Eq. (1.1), the latter is of �xed
type de�ned by Eq. (1.2) (see also Resnick, 1987, Proposition 0.2). It depends on the parameter
γ ∈ R, referred to as the extreme value index (EVI). If such normalizing sequences exist, then F
is said to be in the maximum domain of attraction (MDA) of Gγ, abbreviated F ∈ MDA(Gγ). Its
right-tail decay regime is controlled by the EVI, which de�nes three categories of maximum
domains of attraction depending on its sign.

— If γ > 0, then F is said to be in the Fréchet maximum domain of attraction. It has a
polynomial tail decay and its upper endpoint x∗ = +∞. This encompasses heavy-tailed
distributions like Pareto or Student laws.

— If γ = 0, then F is said to be in the Gumbel maximum domain of attraction. It has an ex-
ponential tail decay. This includes light-tailed distributions like Normal or Lognormal
laws.

— If γ < 0, then F is said to be in the Weibull maximum domain of attraction. Its upper
tail is bounded: x∗ < +∞. This is the case, for instance, of the c.d.f. of the Uniform
distribution on some closed interval.

Observe that the limit distribution of F is of the same type as a Fréchet, Gumbel or Weibull dis-
tribution i� F belongs to the respective MDA. These seminal distributions are displayed with
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Figure 1.5 – Cumulative distribution functions (left) and probability distribution functions (right) of

the standard Fréchet, Gumbel and Weibull distributions; their right tails are respectively heavy, light and

bounded.

their corresponding p.d.f. in Figure 1.5 for particular values of γ. The maximum domain of
attractions and adequate normalizing sequences of some classical distributions can be found
in Beirlant et al. (2004, pages 59,62,72) or in Embrechts et al. (1997, pages 153-157).

Remark 1.4 Some light-tailed distributions F with bounded upper tail can belong to
the Weibull maximum domain of attraction. Conversely, F can have a bounded upper tail
and satisfy F ∈ MDA(G0). We shall also point out that some distributions belong to nei-
ther of these three maximum domains of attraction. It is the case e.g. for many common
discrete distributions such as the geometric, Poisson and negative binomial distributions.
This is also the case for Log-Pareto distributions, which are identi�ed as super-heavy-tailed
(Cormann and Reiss, 2009). In fact, for every γ ∈ R, necessary and su�cient conditions
have been investigated to guarantee that F ∈ MDA(Gγ). The interested reader may refer
e.g. to Resnick (1987).

It turns out that the class of GEV distributions coincides with that of the so-called max-stable
distributions, de�ned hereunder (Embrechts et al., 1997, Theorem 3.2.2).

De�nition 1.5 – Max-stable distribution. Let X ∼ F, with F a non-degenerate distri-
bution. The c.d.f. F and the random variable X are called max-stable if, for any n ∈ N∗, Fn

is of the same type as F.

Remark 1.6 Givenn ∈ N∗ i.i.d. copies X1, . . . ,Xn of X, Fn is the c.d.f. of X(n). Therefore,
Fn is of the same type as F i� there exist constants an > 0 and bn ∈ R such that

X(n) −bn
an

d
= X.

12



1.2 univariate extreme value theory

Max-stable distributions are the core element of this thesis.

Practical aspects

We shall now demonstrate how GEV distributions can be used to model the tail of F. Assume
that there exists γ ∈ R such that F ∈ MDA(Gγ). Then, there exist sequences of real numbers
an > 0 and bn ∈ R such that

∀x ∈ R lim
n→+∞

Fn(anx +bn) = Gγ(x).

Taking every point x ∈ R for which Gγ(x) ∈ (0, 1), it follows that

lim
n→+∞

n log {F(anx +bn)} = log
{
Gγ(x)

}
,

which implies that lim
n→+∞

F(anx +bn) = 1 and ultimately lim
n→+∞

anx +bn = +∞. Using a Taylor
expansion of the logarithm, we obtain

F(anx +bn) ∼ −
1
n
log

{
Gγ(x)

}
as n → +∞.

Therefore, given some large enough n ∈ N∗ and x ∈ R, the tail of F can be approximated as
follows:

F(x) ≈ −1
n
log

{
Gγ

(
x −bn
an

)}
. (1.3)

If we were to observe a non-negligible number of independent repetitions of X(n), many clas-
sical estimation techniques could be used to assess γ, an and bn (Beirlant et al., 2004). In
practice, such observations can be created arti�cially by dividing the original sample of size
n ∈ N∗ into subsamples of size m < n and taking their respective maxima: this is the so-
called block maxima method. Classical conditions on m are necessary to guarantee the good
properties of the ensuing estimators: m =m(n) → +∞ andm/n → 0 as n → +∞. Practically,
they mean that the number of blocks should be large enough to provide precise estimates (i.e.
with low variance) but small enough not to include false maxima (non-extreme realizations),
which would bias the estimation.

Before introducing the second approach, based on the generalized Pareto distribution, we
shall conclude this subsection with the following comment.

Remark 1.7 – Studying the minimum. Since X(1) = −max (−X1, . . . ,−Xn), the results
presented above can be readily used to study minima and model the left-tail of distributions.

1.2.2 Peaks over threshold: the generalized Pareto distribution

In the previous approach, the statistical analysis of extremes was based on X(n). However, as
remarked in Beirlant et al. (2004),

13



what are spatial extremes

« It would be unrealistic to assume that only the maximum of a sample contains valuable
information about the tail of the distribution. Other large order statistics could do this as

well. »

Further, using the block maxima method on a dataset with a block size n ∈ N∗, su�ciently
large so that the approximation (1.3) be good enough, may lead to a signi�cant loss of in-
formation, see e.g. Madsen et al. (1997). By modelling exceedances over high threshold, the
approach presented hereafter takes into account the largest order statistics when analysing
the tail of a distribution. It is thus generally referred to as the Peaks-Over-Threshold (POT)
method.

Let X ∼ F, �x a threshold t ∈ R and consider the random variable X − t | X > t . Similarly to
the previous approach with X(n), we are interested in the limit distribution of X− t | X > t as
t → x∗. First, we introduce the following theorem, found for instance in de Haan and Ferreira
(2006, Theorem 1.1.6, page 10).

Theorem 1.8 Let γ ∈ R and consider the random variable X with c.d.f. F having upper
endpoint x∗. The following two assertions are equivalent:

(i) F ∈ MDA(Gγ),

(ii) there exists a measurable functionm : R→ (0,+∞) such that for all x ∈ R satisfying
1 + γ x > 0,

lim
t→x ∗

F (t + xm(t))
F(t)

=



(1 + γx)−1/γ if γ , 0,
exp{−x} if γ = 0.

Since for any x ∈ (0,+∞) and t < x∗

F (t + xm(t))
F(t)

= P
[
X − t
m(t) > x

���� X > t

]
,

condition (i) in Theorem 1.8 implies that for all x ∈ (0,+∞) satisfying 1 + γ x > 0,

lim
t→x ∗

P
[
X − t
m(t) > x

���� X > t

]
=



(1 + γx)−1/γ if γ , 0,
exp{−x} if γ = 0.

(1.4)

It exhibits possible limit distributions, after scaling, for X − t | X > t . Every distribution of
the same type as the limit distribution in Eq. (1.4) is called a generalized Pareto distribution

(see De�nition 1.9), abbreviated GPD. Like max-stable distributions, its right-tail is controlled
by the EVI γ ∈ R. Actually, Balkema and de Haan (1974) showed that when x∗ = +∞, the
generalized Pareto distributions are the only possible non-degenerate limits for the distribu-
tion of (X − t)/m(t) | X > t , as t → x∗. Such distributions are characterized by the threshold

stability property: if the random variable Y has a GPD with �nite right endpoint y∗, then for
any threshold t ′ < y∗, the exceedance Y − t ′ |Y > t ′ has a GPD too.

14



1.2 univariate extreme value theory

De�nition 1.9 – Generalized Pareto distribution. Let H be a c.d.f. and γ ∈ R. The
former is a generalized Pareto distribution (GPD) if it is of the same type as Hγ de�ned by

Hγ(x) =



1 − (1 + γx)−1/γ when γ , 0
1 − exp{−x} when γ = 0,

for any x ∈ (0,+∞) such that 1 + γx > 0. The c.d.f. Hγ is called the standard generalized
Pareto distribution.

Now, �x a high threshold t < x∗ and assume that (i) is satis�ed. The Eq. (1.4) gives the
following approximation:

P [X − t > x | X > t] ≈




(
1 + γ x

m(t)

)−1/γ
when γ , 0

exp
{
− x

m(t)

}
when γ = 0,

(1.5)

i.e. the excess X − t > x | X > t is approximatively distributed according to a GPD. Writing
ζt = F(t), it follows from Eq. (1.5) that, for every x > t ,

F(x) ≈




ζt

(
1 + γ x − t

m(t)

)−1/γ
when γ , 0

ζt exp
{
−x − t
m(t)

}
when γ = 0.

(1.6)

Hence, the exceedance probability F(x) may be evaluated by estimating ζt , m(t) and γ. In
the same way, we could also evaluate the probability P [X − t > x | X > t] in Eq. (1.5); in a
reinsurance context, this typically represents the probability that a claim lies in a given inter-
val, knowing that the latter has already exceeded the level t . Usually, ζt is estimated using
the empirical cumulative distribution function. As for m(t) and γ, there exist di�erent meth-
ods of estimation, and they are only based on the observations exceeding the threshold t in
the sample, see e.g. Beirlant et al. (2004). Thus, choosing t raises similar problems as for the
choice of the size blocks in the block maxima method: a high value of t guarantees that the
approximation (1.5) is good enough but may result in too few exceedances, hence producing
high variance estimators. On the contrary, for small t , the estimators become biased. There
exist several methods that help choosing the threshold t , see e.g. Coles (2001) for the com-
mon graphical ones or Scarrott and MacDonald (2012) for a more exhaustive review of these
existing methods. One of them is detailed in the following subsection.

In the last two subsections, we have presented the basis of univariate extreme value theory
that provides a class of models to enable the extrapolation from observed levels to unobserved
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levels. Such models have the huge advantage to be based on a family of �nite-dimensional
parametric distributions. Before illustrating this theory in the next subsection, we shall end
this part with the following comment from Coles (2001):

It is easy to be cynical about this strategy, arguing that extrapolation of models
to unseen levels requires a leap of faith, even if the models have an underlying
asymptotic rationale. There is no simple defense against this criticism, except
to say that applications demand extrapolation, and that it is better to use tech-
niques that have a rationale of some sort. This argument is well understood and,
notwithstanding objections to the general principle of extrapolation, there are no
serious competitor models to those provided by extreme value theory.

1.2.3 An illustrative example

Consider again the n = 500 realizations x1, . . . ,xn drawn from X ∼ T(4) in Subsection 1.1.2,
with c.d.f. F. We want to estimate the tail of F using the POT method presented in the previous
subsection. First, we shall assume that there exists γ ∈ R such that F ∈ MDA(Gγ). Hence,
for a adequate threshold t ∈ R, the survival function F satis�es Eq. (1.6) for any x > t .
Before evaluating the parameters ζt , m(t) and γ, we thus have to choose a threshold t0 so
that the approximation (1.6) be good enough, but at the same time, as low as possible to have
enough observations beyond t0 when estimating these parameters. For this purpose, we use
a graphical method based on the so-called mean excess function E [X − t | X > t], de�ned for
t < x∗. Suppose that t is high enough so that the standard GPD may be considered as a valid
model for (X − t)/m(t)) | X > t . Consequently, E [X − t | X > t] is in�nite when γ ≥ 1 and is
equal tom(t)/(1− γ)when γ < 1. Consider another threshold t < t ′ < x∗. From the threshold
stability property of GPD and e.g. Theorem 4.1 in Coles (2001), it is easy to show that

E [X − t ′ | X > t ′] = m(t) + γt ′
1 − γ , (1.7)

for γ < 1. In particular, the map t ′ ∈ (t ,x∗) 7→ E [X − t ′ | X > t ′] is linear. Then, for any
t < x∗, let nt stands for the number of realizations exceeding t ′. If γ < 1, the function

en : t 7→ 1
nt

n∑
i=1
(xi − t)1{Xi > t},

that gives the empirical estimate of E [X − t | X > t] for any t < x∗, can thus be expected
to be approximatively linear in t , at least when t is high enough for the GPD to provide
a valid approximation to the excess distribution. Since F ∈ MDA(G0.25) (see e.g. Beirlant
et al. (2004), page 59), this suggests a graphical method for choosing the threshold t0: we can
choose t0 such that en(x) is approximately linear for x ≥ t0. Notice that, in case we did not
know that γ < 1, we could also have estimated γ for di�erent high thresholds in order to
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Figure 1.6 – Mean residual life plot (black line) with associated 95% con�dence intervals (dashed gray

line), where t0 = 1.2. The con�dence intervals are not plotted for thresholds t above which there are too

few observations.

check this condition. Hence, we plot en against t < x∗ in Figure 1.6 with 95% con�dence
intervals based on the approximate normality of sample means: this is the mean residual life

plot. In practice, the interpretation of a mean residual life plot is not always simple, since
we are looking for approximate linearity. In Figure 1.6, the graph is approximatively linear
from t ≈ 1.2 to t ≈ 3.8, beyond which it decays until t ≈ 4, then seems again to linearly
increase. It thus could be tempting to choose t0 = 4, however there are only 6 observations
above this threshold: based on such limited amount of data, the estimate en and the associated
con�dence intervals are thus unreliable. In addition, this would leave too few data to make
meaningful inference afterwards. Accordingly, this is probably better to set t0 = 1.2, which is
exceeded by 63 observations. Of course, this is an approximate choice and it is recommended
to compare �nal estimates across a variety of t0-values. This is not done here but it is also
highly recommended to compare di�erent methods for choosing t0.
Once t has been set, it remains to estimate ζt , m(t) and γ from the data. The former is evalu-
ated using the empirical survival function Fn , which gives the following estimate:

ζ̂t =
1
n

n∑
i=1

1{x(i) > t},

whereas the latter two are estimated by maximum likelihood, see e.g. Coles (2001, page 80).
In particular, we obtain γ̂ ≈ 0.18, which is close to 0.25. Using Eq. (1.6), the tail of the extreme
estimator F̂ is �nally computed and displayed in Figure 1.7, as well as the tail of F and those
of the estimators Fn and FN(0,1) mentioned in Subsection 1.1.2. It appears that the former
performs better than the last two, thus illustrating the relevance of extreme value theory
when studying extreme events.
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Figure 1.7 – Survival function of the Student distribution T(4) (blue curve) as well as its extreme esti-

mator (black dashed curve), its empirical survival function (grey densely dotted curve) and the survival

function of the standard normal distribution N(0, 1) (red dotted curve).

1.3 spatial extremes: all about dependence

As pointed out in the �rst section, a lot of extreme events are spatial in extent and, with the
prospect for future climate change, statistical modelling of spatial extremes have developed
remarkably in the last decades.In contrast to the univariate framework, it aims to apprehend
the spatial dependence of such extreme events, it is thus based on the study of random �elds.
Several approaches to modelling spatial extremes have been proposed so far, see e.g. Davi-
son et al. (2012) for a description of three main types of statistical models. In this thesis we
shall focus on the widely used max-stable processes, which represent a functional extension
to max-stable distributions introduced in Subsection 1.2.1. Notice that there also exist func-
tional extensions to the generalized pareto distribution described in Subsection 1.2.2 that are
not presented here, see e.g. Ferreira and de Haan (2014), Dombry and Ribatet (2015), Tawn
et al. (2018) and de Fondeville (2018, chapter 4). After a brief review of the concept of random
�elds, in the next paragraph, we thus introduce max-stable random �elds. Under relatively
mild assumptions, the latter admit a nice representation, known as the spectral characteriza-
tion, from which a particular measure of spatial dependence is built: the extremal coe�cient
function. This useful tool, we shall focus on in Chapter 2 and Chapter 3, is detailed in the last
subsection.
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1.3 spatial extremes: all about dependence

1.3.1 Random �eld: a brief presentation

Let (Ω,F, P) be a complete probability space and set d ∈ N∗. Let also the Euclidean space
Rd and R be equipped with their respective Borel σ-algebra BRd and BR. Elements of Rd

are written in bold. In addition, the distance separating two points x and y ∈ Rd is written
‖x −y‖. We shall also denote Gd the set of all real-valued functions de�ned on Rd and Gd
the so-called cylinder σ-algebra generated by the cylinder sets of the form { f ∈ Gd : f (x j ) ∈
Bj , j = 1, . . . ,m}, where m ∈ N∗, x1, . . . ,xm ∈ Rd and B1, . . . ,Bm ∈ BR. In the sequel, we
always consider real-valued random �elds (abbreviated RF) on Rd , which can be de�ned

(i) either as a measurable mapping from (Ω,F,P) into
(
Gd ,Gd ) ,

(ii) or as a collection of real-valued random variables with index set Rd ,

see e.g. Adler (1981). We shall mentioned that, in the sequel, random �elds are sometimes
simply called processes. Let X be such a process. This is thus convenient to consider the
latter as the map

X : Ω ×Rd → R

(ω,x) 7→ X(ω,x),

since this recovers both de�nitions (i) and (ii). Indeed, for any x ∈ Rd

X(x) : Ω → R

ω 7→ X(x ,ω)

is a real-valued random variable: this corresponds to (ii). On the contrary, when �xingω ∈ Ω,
the sample path

Rd → R

x 7→ X(x ,ω),
can be viewed as a realization of X, according to (i). Considering again the de�nition (i), it is
known that the law of X, i.e. the pushforward probability measure PX on

(
Gd ,Gd ) , is char-

acterized by its �nite-dimensional distributions, that is all the probability measures PXx1, ...,xk ,
where k ∈ N∗ and x1, . . . ,xk ∈ Rd , de�ned by

PXx1, ...,xk (B1 × · · · × Bk ) = P [X(x1) ∈ B1, . . . ,X(xk ) ∈ Bk ] ,

for any B1, . . . ,Bk ∈ BR. Indeed, as it is shown in e.g. Breiman (1992, Proposition 12.12),
two processes X and Y on Rd have the same law if and only if they have the same �nite-
dimensional distributions. In this case, we write X f .d .d .

= Y. In addition, let (Yn)n∈N∗ be
a sequence of RF’s on Rd ; it is said to converge to X in �nite-dimensional distribution, as
n → +∞, if

PYnx1, ...,xk (B1 × · · · × Bk ) →n→+∞ PXx1, ...,xk (B1 × · · · × Bk ),
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for any k ∈ N∗, x1, . . . ,xk ∈ Rd and B1, . . . ,Bk ∈ BR. It is then denoted by X
f .d .d .→ Y. We

shall now introduce the next two de�nitions. The �rst one gives a stronger notion of equality
between stochastic processes than equality in �nite-dimensional distribution and the second
one de�nes a notion of continuity for stochastic processes; these notions are both used in the
following.

De�nition 1.10 – Modi�cation of a stochastic process. Let X and Y be two RF’s on
Rd , that are de�ned on the same probability space (Ω,F,P). The RF X is said to be a
modi�cation (or a version) of Y if

P [X(x) = Y(x)] = 1,

for any x ∈ Rd .

De�nition 1.11 – Continuity in probability. A RF X on Rd is said stochastically con-

tinuous or continuous in probability if for any x ∈ Rd ,

X(x0) P→ X(x) as x0 → x ,

i.e.

lim
x0→x

P [|X(x0) −X(x)| > ϵ] = 0,

for any ϵ > 0.

By construction, random �elds are relevant tools to stochastically model spatial events, and
consequently to study spatial extreme events. Consider, for instance, a precipitation �eld
modelled by the RF X on R2 and let n ∈ N∗. As mentioned at the beginning of the section,
the spatial extreme analysis aims to apprehend the spatial dependence of extreme events.
Suppose we observe X at k speci�c locations x1, . . . ,xk ∈ R2. It could be interesting e.g. to
evaluate the probability that the rainfall amount exceeds a critical level z ∈ R+ in at least one
location, i.e.

1 − P [X(x1) ≤ z, . . . ,X(xk ) ≤ z] . (1.8)

Consider now a measurable and bounded subset V ⊂ R2. It may also be of great interest to
estimate the probability that the total rainfall amount over V be more than some threshold
z ∈ R+, i.e.

P
[∫

V
X(x)dx > z

]
, (1.9)

or the probability that the largest "pointwise" rainfall amount on V be more than z ∈ R+, i.e.

P
[
sup
x ∈V

X(x) > z

]
, (1.10)
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when these probabilities are well-de�ned, see Remark 1.12. Since the latter involve the de-
pendence structure of the process X, estimating them thus goes beyond the framework of
the univariate extreme value theory. The probability in Eq. (1.8) only includes a countable
number of margins of X; it could be assessed using the multivariate extreme analysis (see
e.g. Beirlant et al. (2004) for a very thorough introduction to multivariate extreme modelling),
but such framework does not take into account the spatial characteristics of the underlying
phenomenon. Evaluating the probabilities in Eq. (1.9) or Eq. (1.10) are more challenging since
it requires the knowledge of the distribution of (X(x))x ∈V. It thus call for spatial extreme
investigation or, in other words, for functional extreme analysis. The latter can be seen as
a generalization of the multivariate settings and has the advantage to take into account the
spatial features of the phenomenon. Hence we shall not introduce multivariate extreme value
theory in the sequel and only concentrate on the so-called functional extreme value theory.
In particular, we whall focus on max-stable processes, which have become, in the last decades,
a prevalent tool for modelling spatial extremes, speci�cally in environmental sciences; they
are introduced in the next subsection.

Remark 1.12 – About measurability of some events. Let X be a RF on Rd . Let also
V ⊂ Rd be a measurable and bounded and z be a positive threshold. By construction of the
σ-algebra Gd ,{

f ∈ Gd :
∫
V
f (x)dx > z

}
and

{
f ∈ Gd : sup

x ∈V
f (x) > z

}

may not be in Gd , and consequently, the probabilities Eq. (1.9) and Eq. (1.10) are not neces-
sarily well-de�ned. To work around these di�culties, the concept of (joint) measurability
and separability have to be introduced. The measurability assumption, detailed in Sec-
tion 2.1, guarantees that the stochastic integral

Ω → R

ω 7→
∫
V
X(x ,ω)dx

is a well-de�ned random variable, when X has P-almost surely (a.s.) locally integrable

sample paths. The separability assumption ensures that
{
f ∈ Gd : sup

x ∈V
f (x) > z

}
is a mea-

surable set; since such set is not studied in the following, we shall not go into further
details but we refer to e.g. Adler (1981) for a very short and comprehensive introduction to
te concept of separability and to Billingsley (1995) for a more detailed discussion.
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1.3.2 Max-stable random �elds

We shall begin by giving the de�nition of a max-stable RF.

De�nition 1.13 –Max-stable processes . Let Z be a RF on Rd . It is said to bemax-stable

if there exist sequences of positive functions (αn)n∈N∗ and real-valued functions (βn)n∈N∗
such that, for any n ∈ N∗,(

max
i ∈{1, ...,n }

Zi (x) − βn(x)
αn(x)

)
x ∈Rd

f .d .d .
= (Z(x))x ∈Rd ,

where Z1, . . . ,Zn are i.i.d. copies of Z.

We shall stress that all �nite dimensional distributions of a max-stable process Z are mul-
tivariate extreme distributions (see e.g. Beirlant et al., 2004), in particular its margins are
all max-stable random variables. Consider i.i.d. copies X1, . . . ,Xn of a RF X on Rd . From the
multivariate extreme value theory, we know that if there exist sequences of positive functions
(an)n∈N∗ and real-valued functions (bn)n∈N∗ such that(

max
i ∈{1, ...,n }

Xi (x) −bn(x)
an(x)

)
x ∈Rd

f .d .d .−→ (Z(x))x ∈Rd , (1.11)

where Z has non degenerate margins, then Z is a max-stable processes, see e.g. de Haan (1984).
Hence, max-stable processes arise as the pointwise maxima taken over an in�nite number of
appropriately rescaled i.i.d. random �elds: they thus provide suitable models when studying,

for n large enough, the partial maxima process
(

max
i ∈{1, ...,n }

Xi (x)
)
x ∈Rd

. This is a statistical

motivation for using max-stable processes for modelling spatial extremes. As in the univari-
ate case, the convergence in (1.11) can also helps estimate probabilities such as Eq. (1.8) (for
the probabilities (1.9) and (1.10), stronger convergence is needed, see Remark 1.15). Indeed,
according to Eq. (1.11), we have the following pratical approximation, for n large enough,

P [X(x1) ≤ z1, . . . ,X(xk ) ≤ zk ]n ≈ P
[
Z(x1) ≤

z1 −bn(x1)
an(x1)

, . . . ,Z(xk ) ≤
zk −bn(xk )
an(xk )

]
,

(1.12)
where k ∈ N∗, x1, . . . ,xk ∈ Rd and z1, . . . , zk ∈ R. Recall that, for any j ∈ {1, . . . ,n}, the
margin Z(x j ) above has a GEV distribution depending on the EVI γ(x j ) ∈ R and, as mentioned
in Subsection 1.2.1, the latter, as well as the parameters an(x j ) and bn(x j ), can be estimated
using methods described e.g. in Beirlant et al. (2004). Hence, it is convenient to transform X
so that Z has common margins; this allows for separating the assessment of the dependence
structure of Z from the evaluation of its margins. A widely used choice is to standardize X so
that Z has unit Fréchet margins, i.e. for any x ∈ Rd and z ∈ (0,+∞),

P [Z(x) ≤ z] = e−1/z ;
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in particular Z(x) has in�nite moments. Such max-stable process is referred to as a sim-

ple max-stable process. From now on, unless otherwise speci�ed, we shall assume that the
max-stable RF Z is simple. This assumption is very convenient since, in this case, Z has the
following representation.

Theorem 1.14 – Spectral characterization, see e.g. de Haan (1984). Let (Z(x))Rd be
a simple max-stable process which is continuous in probability. It can be written

(Z(x))x ∈Rd
f .d .d .
=

(
max
i≥1

UiYi (x)
)
x ∈Rd

, (1.13)

where (Ui )i ∈N∗ are the points of a Poisson point process on (0,+∞) with intensity u−2du

and (Yi )i ∈N∗ are i.i.d. copies of a nonnegative RF Y on Rd called spectral process, which is
continuous in probability and such that E [Y(x)] = 1, for every x ∈ Rd .

In order to better understand this representation, the following interpretation, due to Smith
(1990), may be consider, even though it has no theoretical justi�cation. For any i ∈ N∗,
UiYi (x) may be interpreted as the amount of rainfall at position x from a storm of magni-
tude Ui with spatial extent driven by Yi . Hence, max-stable processes may be seen as the
pointwise rainfall maxima over an in�nite number of storms. The spectral representation in
Theorem 1.14 is very useful. Indeed, to estimate probabilities such as (1.8), we need to as-
sess the dependence structure of Z, in particular its �nite-dimensional distributions. It can be
shown that the latter depends on the RF Y in Eq. (1.13):

P [Z(x1) ≤ z1, . . . ,Z(xk ) ≤ zk ] = exp
{
−E

[
max

i ∈{1, ...,k }
Y(xi )
zi

]}
, (1.14)

where k ∈ N∗, x1, . . . ,xk ∈ Rd and z1, . . . , zk ∈ (0,+∞), see e.g. Ribatet (2013). Now let
x = {x1, . . . ,xk } and z = {z1, . . . , zk }. The Eq. (1.14) can be rewritten

P [Z(x1) ≤ z1, . . . ,Z(xk ) ≤ zk ] = exp {−Vx (z)} ,

where Vx (z) = E
[

max
i ∈{1, ...,k }

Y(xi )
zi

]
is the exponent function linked to the so-called exponent

measure, see e.g. Beirlant et al. (2004). We shall stress that the exponent measure, and more
generally, the dependence structure of Z, cannot be characterized parametrically. In practice,
however, the standard approach is to �t a �exible parametric model for the former. In a spa-
tial context, this amounts to assume a speci�c form for the RF Y; some examples are given in
Subsection 2.3.2. Notice that, despite this parametric approach, the complexity of max-stable
processes makes inference di�cult for high-dimensional data (Castruccio et al., 2016). Some
methods such as composite likelihood (see e.g. Padoan et al. (2010) or Huser and Davison
(2013)) have been proposed to reduce the computational di�culties, otherwise an attractive
alternative is to use peaks-over-threshold analysis.
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The spectral representation in Theorem 1.14 is thus very convenient since it helps build mod-
els for max-stable processes. Despite its complex form, which involves pointwise maximum
of an in�nite number of functions, it is also very helpful when simulating max-stable pro-
cesses; we refer to Oesting et al. (2015) for more details about simulation algorithms. This
representation is used in Schlather and Tawn (2003) to introduce a bivariate measure of the
spatial dependence of a max-stable process: the extremal coe�cient function.

Remark 1.15 – Convergence and sample continuous processes. Although the conver-
gence in �nite-dimensional distributions in Eq. (1.11) is useful when estimating the prob-
ability (1.8), it does not help assess the probabilities (1.9) and (1.10) since the latter neces-
sitate the knowledge of the distribution of (X(x))x ∈V and not only the �nite-dimensional
distribution of X. To evaluate them, we thus need a stronger convergence: the weak con-
vergence. When requiring such convergence instead of the �nite-dimensional distribution
convergence in Eq. (1.11), it is usually assume that X, and consequently Z, has continuous
sample paths, see e.g. Ferreira et al. (2012) or Engelke et al. (2018). This guarantees that
X, as de�ned in (i), is valued in a metric space, a situation in which weak convergence is
well-studied. In this thesis, we are not interested in evaluating probabilities that involve
the distribution of (X(x))x ∈V for some set V ⊂ Rd , hence we do not need such assumptions.
Nonetheless, the results obtained in this work also holds under these assumptions.

1.3.3 Extremal coe�cient function: dependence in extremes

Let Z be again a simple max-stable RF on Rd , which is continuous in probability, and suppose
that we want to obtain some information about its dependence structure but without assum-
ing any speci�c model. Due to high-dimensional distributional complexity the study of the
dependence is thus commonly limited to the bivariate distributions, i.e. for any x ,y ∈ Rd , we
focus on the spatial dependence between the margins Z(x) and Z(y). Notice that the multivari-
ate extreme value theory provides several measures of the dependence between Z(x) and Z(y)
(see e.g. Bacro and Toulemonde (2013)) but the latter do not take explicitly into account the
spatial characteristics of the underlying phenomenon. Assume, for instance, that Z is (strictly)
stationary, i.e. its �nite �nite-dimensional distributions are shift-invariant, see Eq. 1.17. Some
examples of simple stationary max-stable processes are given in Subsection 2.3.2. Hence, a
measure of the spatial dependence between Z(x) and Z(y) shall depend on the distance sepa-
rating x and y. Recall now that Z has unit-Fréchet margins: its expectation and its variance
are in�nite, i.e. E [Z(x)] = +∞ and Var [Z(x)] = +∞ for any x ∈ Rd . This precludes from
considering the covariance function or the variogram usually studied in spatial statistics, see
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e.g. Chilès and Del�ner (2012). When Z is stationary, Schlather and Tawn (2003) introduces
the so-called extremal coe�cient function (ECF) θ de�ned by

θ : h ∈ Rd 7→ E [max (Y(0),Y(h))] , (1.15)

where Y is the spectral process de�ned in Eq. (1.13), and which satis�es

P [Z(0) ≤ z, Z(h) ≤ z] = exp
{
−θ(h)

z

}

for any h ∈ Rd , z ∈ (0,+∞). In particular, according to the Tonelli’s theorem, if Y is(
F ⊗BRd ,BR

)
-measurable then so is θ. The ECF is a spatial extension of the extremal coef-

�cient introduced in Smith (1990); it summarizes the strength of dependence between pairs
of sites separated by the same distance and therefore, its estimation is of primary interest in
spatial extreme value theory. It is easy to show from Eq. (1.15) that, for any h ∈ Rd ,

1 ≤ θ(h) ≤ 2, (1.16)

where θ(h) = 1 corresponds to (a.s.) equality between Z(0) and Z(h) whereas θ(h) = 2
corresponds to independence. We shall remark that, for any h ∈ Rd satisfying θ(h) , 2,

lim
z→+∞

P [Z(h) > z | Z(0) > z] = 2 − θ(h) > 0.

Hence stationary simple max-stable RF’s, and more generally max-stable RF’s, are not suitable
for modelling asymptotic independent events, i.e. events that become independent as they
become more and more extreme, see e.g. Bacro and Toulemonde (2013) and references therein
for more details about asymptotic independence. The next theorem, proposed by Schlather
and Tawn (2003), gives some properties of the ECF that are used in the thesis.

Theorem 1.16 – Schlather and Tawn (2003). Let Z be a stationary simple max-stable
process de�ned on Rd and consider its extremal coe�cient function θ. The following as-
sertions hold.

(i) The function 2 − θ is positive-semide�nite.

(ii) θ is not di�erentiable at the origin unless θ(h) = 1 for every h ∈ Rd .

(iii) If d > 1 and if Z is isotropic, then θ has at most a jump at the origin and is continuous
elsewhere.

Notice that the property (i) guarantees that θ − 1 is conditionally negative-semide�nite, that
is for any n ∈ N∗ and (λ1, . . . , λn) ∈ Rn \ {0} such that

∑n
i=1 λi = 0, then

n∑
i=1

n∑
j=1

λiλj
[
θ(xi − x j ) − 1

] ≤ 0,
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for every x1, . . . ,xn ∈ Rd . Consequently, it is a valid variogram for a stationary random �eld,
see e.g. Chilès and Del�ner (2012). This may helps readers that are more familiar with the
geostatistic theory than the functional extreme analysis to apprehend the extremal coe�cient
function as a measure of spatial dependence.

Once the max-stable RF’s have been introduced, we shall address the question of estimating
extreme events with spatial data.

1.4 estimating extreme events with spatial data

The standard estimation procedures stemming from the extreme value theory theoretically
require i.i.d. replications of the process under study. When dealing with spatial data, it is
impossible to have access to i.i.d. observations and, as next detailed, we often have to work
with temporal repetitions of the object under study. In some cases, even time series are not
available: the phenomenon is recorded only once. This situation is rarely addressed in the
spatial extremes community, contrary to Geostatistics, which typically deals with such issue.
On the other hand, Geostatistics barely makes use of the mathematics tools developed by
the extreme value theory. Hence, it seems interesting to make some connexions between
both disciplines in order to better handle the estimation of extreme events when having only
one set of spatial observations; it would be, for instance, extremely valuable to exploit such
connexion when using the so-called top-cut model in Gesotatistics.

1.4.1 With repetitions of the spatial process: the standard framework

First, consider again the univariate case: let X be a random variable satisfying Eq. (1.1), i.e.
its c.d.f. F is in the domain of attraction of some GEV distribution. As mentioned in Subsec-
tion 1.2.1, when observing i.i.d. repetitions of X, many classical estimation techniques can
be used to assess some quantity of interest by employing the block maxima method. When
studying extreme events, we often deal with temporal data, e.g. daily temperatures or daily
rainfall amounts. However, temporal independence is usually an unrealistic assumption; ex-
treme conditions often persist over several consecutive observations. Is the GEV model still
appropriate to study extremes in such a case ? This question has been investigated for sta-
tionary time series. Let (Xi )i ∈N be a (strictly) stationary sequence of random variables i.e. ,
for any k,h ∈ N and for every i1 < · · · < ik ∈ N, the laws of the vectors (Xi1 , . . . ,Xik )
and (Xi1+h , . . . ,Xik+h) are identical. Suppose also that it satis�es some mixing condition en-
suring that long-range dependence at extremes levels is weak, i.e. the events {Xi > u} and
{Xj > u} are approximately independent provided that the threshold u ∈ R is high enough
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and that the moments i, j ∈ N are separated by a long time period. It can be shown that
if max(X1, . . . ,Xn), after renormalization, converges to a non-degenerate distribution G, as
n → +∞, then G is a GEV distribution. We refer to Leadbetter (1983) for more mathematical
details. In such situation, the GEV model thus remains pertinent to investigate extreme events.
The block maxima method then consists in dividing the time serie in sequential blocks. Again,
this method faces the usual bias-variance tradeo�: the number of observations in each block
must be large enough so that the maximum over these observations may be approximated
by a max-stable random variable. Annual maxima are, for instance, frequently examined. In
addition, large blocks guarantee that all the resulting max-stable random variables may be
considered as independent. On the other hand, the number of blocks, i.e. the number of i.i.d.
max-stable random variables, also needs to be large to correctly conduct standard inference
methods as e.g. the likelihood-based inference.

Actually, such procedure is also used when dealing with spatial extremes. Let (Xi )i ∈N be a
sequence of stationary RF’s on some domain V ⊂ Rd , which are observed through time. The
sequence may represent, for instance, daily temperatures over a region V of interest. Sup-
pose that we are interested in studying the extremal behaviour of the annual maxima of these
temperatures. It is then usually assumed that the sequence ful�ls Eq. (1.11), i.e. the point-
wise maxima taken over an in�nite number of properly rescaled processes of such sequence
is a max-stable RF. A maxima block method is then used to assess the characteristics of this
max-stable RF. Such procedure has been exploited, for instance, to analyse extreme precipi-
tations (see e.g. Coles (1993); Coles and Tawn (1996); Smith and Stephenson (2009); Naveau
et al. (2009); Padoan et al. (2010); Davison et al. (2012); Davison et al. (2019); Castro-Camilo
and Huser (2019)), maximum wind speeds (see e.g. Coles and Walshaw (1994); Ribatet (2013)),
annual maximum temperatures (see e.g. Davison and Gholamrezaee (2012)) or high concen-
trations of pollution in the air (see e.g. Vettori et al. (2018)). Since the main max-stable models
studied in the literature are stationary, thus so are, in general, the max-stable models consid-
ered in such studies; this assumption simpli�es the study of their dependence structure. Some
works have investigated the modelling of non-stationarity in the dependence structure (see
e.g. Huser and Genton (2016)) of a max-stable process. We shall also point out that, when
looking at high threshold exceedances instead of maxima, spatial extreme events may be
modelled using Generalized Pareto processes. Since we only focus, in this work, on station-
ary max-stable processes, this is not detailed here.

In some situations, the spatial phenomenon of interest is recorded only once. Since spatial
independence assumption is usually just as unrealistic as temporal independence assumption,
how to manage estimations in such context ? As explained next, this question is rarely con-
sidered in spatial extremes, whereas Geostatistics typically deals with such issue.
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1.4.2 With a single observation: a geostatistical speci�city

The speci�city of Geostatstics, as a branch of spatial statistics, is that it deals with regional-
ized phenomena modelled by random �elds that are observed only once, see e.g. Chilès and
Del�ner (2012) for a thorough state of the art of the geostatistical approach. That is the case,
for instance, in mining resources estimation, soil contamination evaluation or any other ap-
plications where the phenomenon of interest either varies too slowly across time to hope for
a decent time series, or is too expensive to sample from. To overcome this di�culty when
estimating, it appears that a certain form of spatial homogeneity of the phenomenon under
study needs to be assumed. When considering the associated random �eld, such homogeneity
translates into some stationarity assumptions, which allow us to replace repeatability in time,
which is not available, by repetition in space. We shall distinguish three types of stationar-
ity.

De�nition 1.17 – Strict stationarity. Let Z be a RF on Rd . It is said to be (strictly)

stationary if, for any h,x1, . . . ,xk ∈ Rd and z1, . . . , zk ∈ (0,+∞) with k ∈ N∗,

P [Z(x1) ≤ z1, . . . ,Z(xk ) ≤ zk ] = P [Z(x1 +h) ≤ z1, . . . ,Z(xk +h) ≤ zk ] ,

i.e. the �nite �nite-dimensional distributions of Z are invariant under an arbitrary transla-
tion of the points by a vector h. In the sequel, a stationary RF is abbreviated SRF.

De�nition 1.18 – Second-order stationarity . Let Z be a RF on Rd . It is said to be
second-order stationary (or weakly stationary) if, for any x ,h ∈ Rd ,

— E [Z(x)] = µ < +∞,

— Cov [Z(x),Z(x +h)] = C(h) < +∞,

where µ ∈ R and C : Rd → R is called the covariance function. That is, the (pointwise)
expectation of Z is constant over Rd and the covariance between two margins only depends
on the distance between them. In the sequel, a second-order stationary RF is abbreviated
second-order SRF.

De�nition 1.19 – Intrinsic stationarity. Let Z be a RF on Rd . It is said to be intrinsically
stationary if, for any h ∈ Rd , the incremental process Yh de�ned, for every x ∈ Rd , by

Yh := Z(x +h) − Z(x)

is a second-order SRF. It is then referred to as an intrinsic RF.
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Notice that, when E
[(Z(x))2] < +∞ for every x ∈ Rd , strict stationarity implies second-

order stationarity that implies, in turn, intrinsic stationarity.

Let Z be a RF on a domain V ⊂ Rd , which models some spatial phenomenon and suppose
we are interested in investigating the dependence structure of Z. When the latter is, at least,
second-order stationary, we can try to assess its covariance function. However, the second-
order stationarity assumption is sometimes too strong: the expectation of Z may not be stable
in V and its (pointwise) variance might not be �nite. To overcome this problem, the so-called
variogram is thus introduced.

De�nition 1.20 – Variogram . Let Z be an intrinsic RF on Rd . Its variogram γ is de�ned
by

γ(h) :=
1
2Var [Z(0) − Z(h)] ,

for every h ∈ Rd . It is sometimes called semi-variogram.

The variogram only needs Z to be intrinsically stationary to be well-de�ned. In addition,
when Z is second order-stationary, it is possible to retrieve the covariance function from the
latter by the following equality:

γ(h) = C(0) − C(h), (1.17)

for any h ∈ Rd . Further, as mentioned in Chilès and Del�ner (2012, page 32), the variogram
does not require the knowledge of the expectation of Z to be calculated, see e.g. Eq. (1.18). On
the contrary, the latter has to be estimated from the data in order to compute the covariance
function, which introduces a bias. That is why Geostatistics mainly focuses on the variogram
to grasp the spatial variability of a RF. We shall also mention that γ is conditionally negative-
semide�nite, i.e. −γ is conditionally positive-semide�nite , see e.g. Chilès and Del�ner (2012,
page 63). When predicting Z at unobserved locations, this property guarantees that the vari-
ance of the kriging error is nonnegative.

Next, assume that Z is an intrinsic RF observed on a �nite number n ∈ N∗ of locations
x1, . . . ,xn ∈ Rd . Suppose also that Z has constant expectation, i.e. E [Z(x)] = µ ∈ R, for
every x ∈ Rd . The variogram becomes γ(h) = 1

2E
[(Z(h) − Z(0))2] , for any h ∈ Rd . Math-

eron (1962) has proposed the following unbiased empirical estimator of the variogram, called
experimental variogram:

γ̂(h) :=
1

2|Nh |
∑

(xi ,x j )∈Nh

(
Z(xi ) − Z(x j )

)2
, (1.18)

for every h ∈ Rd , where Nh :=
{(xi ,x j ) : (xi − x j ) = h, i, j = 1, . . . ,k

}
and |Nh | is the num-

ber of distinct pairs in Nh . We shall remark that, when the points x1, . . . ,xk are irregularly
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spaced in V, the set Nh is often taken as Nh =
{(xi ,x j ) : (xi − x j ) ∈ Th , i, j = 1, . . . ,k

}
, with

Th some tolerance region around h. However, this estimator cannot be used directly for spa-
tial prediction since it is not conditionally negative-semide�nite; it has to be adjusted. This is
commonly done by �tting a parametric model on this experimental variogram, which satis�es
the condition of conditionally negative-semide�niteness, see e.g. Desassis and Renard (2012)
and references therein. Hence, the experimental variogram is rather a tool to explore the
spatial variability of the phenomenon of interest. In the vocabulary used by Matheron (1989),
this is an objective quantity, i.e. it may be calculated from the values of a single realization
over a domain, and not a conventional quantity the statement of which is neither decidable
nor falsi�able in Popper’s terminology, like the variogram γ or the expectation µ. That is why
Matheron does not have investigate the asymptotic properties of (1.18)

Other estimators than the empirical variogram have been proposed in the literature and, for a
few, their asymptotic properties have been established under some appropriate mixing condi-
tions; see Section 3.3. Indeed, under some stationarity assumptions, the possibility to perform
statistical inference is always based on some mixing and more generally ergodic properties,
in that the latter guarantee that estimators asymptotically converge, in some sense, towards
the quantity to be estimated. The concept of ergodicity in the context of unique realization
and, in particular, the notion of mean-ergodicity are discussed in Matheron (1989). The latter
ensures, under second-order stationarity, that the spatial mean converges in quadratic mean
to the expectation µ when the domain it is computed on becomes increasingly large. Related
to this property, the notion of integral range is also introduced; this is a quantity that helps
characterize the statistical �uctuations of a second-order stationary random �eld at large scale
and, in some cases, it may be interpreted as the spatial scale of the phenomenon. These two
concept are more detailed in the next chapter.

Now, let Z be a max-stable RF that is (partially) observed only once on some domain. For
simplicity, we shall also assume that Z is stationary; the work presented in this thesis could
constitute the basis of future developments where the strictly stationarity assumption would
be relaxed. It would be nice to use the variogram and associated estimators to explore its
dependence structure. Unfortunately, depending on the EVI of the margins of Z, we might
have E [Z(0)] = +∞ and Var [Z(0)] = +∞, hence the variogram may not exist. This is e.g.

the case for simple max-stable processes. Consider instead the extremal coe�cient function
θ introduced in the last section. Several estimators of the latter has been proposed in the
literature, but they are generally used with temporal replications of Z, see Chapter 3. Among
them, the so-called nonparametric F-madogram estimator, suggested by Cooley et al. (2006),
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has however been inspired by the geostatistical framework. Let F be the c.d.f. of Z(0). It is
based on the so-called F-madogram

νF(h) :=
1
2E

[��F (Z(h)) − F (Z(0)) ��] ,
for everyh ∈ Rd , which corresponds to the variogram of order 1 of the RF

(
F(Z(x)))x ∈Rd . We

refer to Chilès and Del�ner (2012) for more details about variograms of order 1, also called
madograms. This madogram can be estimated by an empirical estimator of the same type as
Eq. (1.18) but this requires the knowledge of the c.d.f. F. In studies, both F and vF are usually
evaluated empirically from time series that are considered as approximatively i.i.d. . Some-
times, F is also estimated by �tting a GEV distribution from such replications. Hence, the
applications conducted in spatial extreme studies generally involve time series, and to our
knowledge, only Bel et al. (2008) and Naveau et al. (2009) have estimated the extremal coef-
�cient function from a single realization of Z. The two papers focus on the same Bourgogne
precipitation data set, which consists of 51-year maxima of daily precipitation recorded at 146
weather station locations. It was obtained from the Météo France research laboratory, which
preprocessed the measurements so that the data can be assumed to be a realization of a sta-
tionary RF. Since the data are maxima computed over a long period of time, the latter is also
supposed to be max-stable. From this data, Bel et al. (2008) compute di�erent estimators of θ
among which the F-madogram estimator. They also propose a nonlinear least squares mado-
gram function based estimator which is a generalization of the latter. Naveau et al. (2009) also
suggest an estimator that generalizes the F-madogram estimator. In both papers, the margins
of the max-stable RF are evaluated empirically and the madograms are estimated using an
empirical estimator of the same type as Eq. (1.18). Both analysis show that there exists a
pairwise extremal dependence in the precipitation �eld, which is rather strong over the �rst
50 kilometers; such dependence thus needs to be taken into account e.g. when modelling ex-
treme events in order to make scenarii for preventing �ood. However, asymptotic properties
of the aforementioned estimators have not been studied; as remarked in Naveau et al. (2009),
it would be very interesting to establish the convergence of these estimators when the num-
ber of locations increases, either by increasing the density of points in a �x domain or by
enlarging the domain size, or both. Actually, this is done in Dombry and Eyi-Minko (2012)
when considering increasing domain asymptotics. Under a mixing condition, the asymptotic
normality of some estimators of the ECF, among which the F-madogram estimator, is estab-
lished. However, this result holds when the when the max-stable process is de�ned on Zd

and, for all we know, no generalization to Rd has been proposed so far.

Based on these considerations, it seems relevant to investigate the connexions between spatial
extreme value theory and Geostatistics in order to better handle the study of spatial extremes
when having a single observation. In this work, we mainly focus on the extremal coe�cient
function of a stationary max-stable random �eld. Recall that θ is a measure of the pairwise
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extremal dependence. In the next chapter, we examine its relation with the integral range,
since the latter can be interpreted, in some cases, as the spatial scale of the phenomenon. Then,
in Chapter 3, a new nonparametric estimator of θ is proposed and its asymptotic properties are
derived when it is computing from a single and partially observed realization of a max-stable
random �eld. More generally, the work presented in this thesis, and especially in Chapter 2,
is an invitation to think about the possibility of estimating, with some precision, relevant
quantities from the extreme value theory, when having a single set of spatial observations.
Such considerations may encourage the more frequent use of the extreme value theory in
geostatistical modelling. For instance, as brie�y developed in the next section, knowing how
to evaluate the EVI from a unique observation might enrich the well-known top-cut model.

1.4.3 A speci�c issue: top-cut model and extreme value theory

Historically, Geostatistics has been developed to address mining resources estimation issues.
In this section, we focus on ore deposits the grade distribution of which is heavy-tailed, typi-
cally gold deposits. Since high-values make the inference of �rst and second-order statistics
(e.g. expectation, variance, variogram) nonrobust, they were usually cut down to some thresh-
old and the estimation was performed using truncated grades. Consequently, the total amount
of metal in a deposit was underestimated, which is not optimal from an investment point of
view. A few years ago, Rivoirard et al. (2013) has proposed the so-called top-cut model to
handle high values.

Let X be a stationary RF that models the grade in the ore deposit V and let ze ∈ (0,+∞) be
the threshold value, called top-cut grade, at which the grade is usually cut down to. Let also
m(ze ) := E [X(0)|X(0) ≥ ze ]. Rivoirard et al. (2013) proposes to split X in three parts:

— the truncated grade
(
min (X(x), ze )

)
x ∈V ,

— the weighted indicator above the top-cut grade
((m(ze ) − ze )1{X(x) ≥ ze }

)
x ∈V ,

— the residual
( (X(x) −m(ze )) 1{X(x) ≥ ze }

)
x ∈V ,

which gives, for any x ∈ Rd ,

X(x) = min (X(x), ze ) + (m(ze ) − ze )1{X(x) ≥ ze } + (X(x) −m(ze )) 1{X(x) ≥ ze }.

Then, they assume that there is no spatial correlation between the residual and the indicator
or the truncated grade; when performing some predictions to unobserved locations, this al-
lows for kriging separately the residual and cokriging the truncated grade and the indicator.
This makes the study more robust since both truncated grade and indicator do not present
high values. Besides, they suggest a method to �nd, if its exists, a minimal bound for the top-
cut grade above which the aforementioned assumption is approximatively met. They also
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propose to �nd, if it exists, a maximal bound for the top-cut grade above which the residual
can be considered as a pure-nugget e�ect: in this case, the simple kriging of the residual is
thus equal to 0.

The top-cut model thus takes into account the high values mainly through the conditional
expectation E [X(0) − ze |X(0) ≥ ze ] = m(ze ) − ze . In Rivoirard et al. (2013), the latter is es-
timated empirically by computing the mean of the excess of all the observations above ze .
However, this empirical mean may underestimate the expectation, especially since the distri-
bution of X is supposed to be heavy tailed. Such expectation could be assess using instead
the extreme value theory. Assume that the c.d.f. of X(0) is in the domain of attraction of
some GEV distribution with EVI γ ∈ R. According to Eq. (1.5), if ze is high enough, then
X(0) − ze |X(0) ≥ ze has (approximatively) a GDP distribution with shape parameter γ. If this
distribution is known, then so is the expectation of X(0) − ze |X(0) ≥ ze . Notice that, when
γ > 1, the latter is in�nite: this information cannot be used directly to predict grades at unob-
served locations but it suggests that we may expect a high quantity of metal in the ore. The
remaining issue is therefore: how to estimate the parameters of this GPD distribution, and in
particular γ, when having a single and partial realization of X on V ? This question is left for
future works.
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2
FROM GEOSTATISTICS TO EVT: IN TEGRAL
RANGE AND EXTREMAL COEFFICIEN T
F UNCTION

Résumé Ce chapitre établit un lien entre la Géostatistique et la théorie spatiale des extrêmes à

travers le concept de portée intégrale. Issu de la théorie géostatistique, ce paramètre caractérise les

�uctuations, à large échelle, d’un champ aléatoire stationnaire. Il intervient notamment lorsqu’on

cherche à évaluer l’espérance de ce dernier par la moyenne spatiale calculée sur une large fenêtre.

Cette quantité est tout d’abord détaillée et une méthode pour l’estimer, qui di�ère légèrement

de celle proposée par Lantuéjoul (1991), est introduite. Ensuite, lorsque le champ stationnaire

est max-stable simple, nous montrons que sa fonction coe�cient extrémal est fortement liée à la

portée intégrale du champ des excès, au dessus d’un certain seuil, correspondant. En particulier,

nous donnons une condition nécessaire et su�sante sur l’ECF pour que la portée intégrale soit

�nie. Cette condition est reliée aux propriétés d’ergodicité et de mélange du champ max-stable.

Elle est étudiée pour des modèles max-stables standards puis est illustrée sur des jeux de données

simulés. En�n, nous montrons que ce travail permet de retrouver et de compléter des résultats

précédemment établis par Koch (2017) dans un contexte de risque spatialisé.

In many geostatistical applications (soil contamination evaluation, mining resources estima-
tion), the physical phenomenon under study is interpreted as a particular realization of a
stationary random �eld (SRF) with a �nite expectation. A natural question that arises in
such a context is whether this expectation can be estimated from a single realization. Part
of the answer is brought by the concept of integral range introduced and studied by Math-
eron (1989) and Lantuéjoul (1991). Intimately related to the ergodic and mixing properties, it
is a geostatistical object that characterizes the statistical �uctuations of the random �eld at
large scale. When the latter is max-stable, we show that its extremal coe�cient function is
closely related to the integral range of the corresponding indicator function above a threshold.
This approach allows to retrieve and complete results established by Koch (2017) in a spatial
risk context. It thereby illustrates the relevance of geostatistical tools to enrich extreme value
analysis, especially when inference must be based on a single realization of the spatial process.
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The chapter is structured as follows. We start o� in Section 2.1 with the introduction of a
few notation and hypotheses, subsequently used when working with the integral range. A
detailed account of this quantity is then given in Section 2.2. In particular, we introduce a
new method to estimate it, which slightly di�ers from the procedure originally proposed by
Lantuéjoul (1991). In Section 2.3, the connection between the integral range and the extremal
coe�cient function is investigated. The results, illustrated by numerical experiments, are then
related to the ergodic and mixing properties of a simple max-stable SRF. In Section 2.4, they
are additionally linked to the work of Koch (2017). Assets, liabilities, natural extensions and
required improvements of our work are �nally listed and discussed in Section 2.5. Technical
proofs are postponed to Section 2.6.

2.1 setting

Like in the previous chapter, let (Ω,F, P) be a complete probability space and setd ∈ N∗. The
spaces Rd and R are equipped with their respective Borel σ-algebra BRd and BR. The origin
of Rd is 0 and elements of Rd are still written in bold. Recall also that the Euclidean distance
separating two points x and y of Rd is written ‖x −y‖, and that the indicator function of any
condition C is denoted by 1{C}. In addition, for any measurable subset V of Rd , let |V| be
its volume with respect to the Lebesgue measure in Rd . We shall denote by K the set of all
compact subsets of Rd and by B the set of measurable bounded subsets of Rd with positive
volume. In the sequel, all random �elds are supposed to be real-valued.

When working with the integral range, we shall deal with stochastic integrals and sequences
of subsets of Rd that converge to Rd in a certain way. They are introduced in this section.
All these concepts are introduced in the following subsections.

2.1.1 Stochastic integrals

Let Z be a random �eld (RF) de�ned on Rd . To guarantee that the quantities we shall work
with are well-de�ned, the following assumptions are required.

Assumption 2.1 Z is
(
F ⊗BRd ,BR

)
-measurable.

Assumption 2.2 Z has P-almost surely (a.s.) locally integrable sample paths.
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The �rst assumption is necessary to apply Tonelli’s theorem, which ensures that, for any
V ∈ B, the stochastic integral

Ω −→ R+ ∪ {+∞}
ω 7−→

∫
V
|Z(x ,ω)| dx

is (F,BR)-measurable, making it a well-de�ned random variable. Now, the second assump-
tion means that

P
[{
ω ∈ Ω :

∫
W
|Z(x ,ω)| dx is �nite for any W ∈ K

}]
= 1, (2.1)

which implies that

P
[{
ω ∈ Ω :

∫
V
Z(x ,ω)dx is �nite for any V ∈ B

}]
= 1.

For any V ∈ B, this allows us to de�ne the P-a.s. �nite random variable

Z(V) : Ω −→ R

ω 7−→ 1
|V|

∫
V
Z(x ,ω)dx .

Assumption 2.1 actually guarantees that, when all the expectations below exist,

E [Z(V)] = 1
|V|

∫
V
E [Z(x ,ω)] dx .

2.1.2 Convergence to Rd

The integral range is an asymptotic quantity obtained when considering sequences of subsets
of Rd that grow in�nitely to Rd in a certain way. To de�ne such types of sequences, we �rst
need to introduce a few de�nitions and notation. Let V and W be two non-empty, bounded,
measurable subsets of Rd . The translation of V by an element w of W is written V+ w. Then,
the Minkowski di�erence of V and W is de�ned as

V 	W :=
⋂
w∈W

V + w.

Let now W̌ := {−v : v ∈ W} denote the symmetric of W with respect to the origin 0. The
set V 	 W̌ represents the erosion of V by the structuring element W (see Figure 2.13 for an
illustrative example). Let also bV ∈ Rd stand for the barycenter of V. For any λ ∈ (0,+∞),
the set λbV corresponds to the image of V after applying the homothety with center b ∈ Rd

and ratio λ. When b = bV, the latter is simply denoted by λV. In addition, we write Br (x) the
closed ball of center x ∈ Rd and radius r ∈ (0,+∞), with the simpli�cation Br (0) = Br .
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De�nition 2.3 Let (Vn)n∈N be a sequence of sets in B. It is written Vn ↑ Rd if it
converges to Rd in the following sense:

(i) Vn ⊂ Vn+1 for all n ∈ N,

(ii)
⋃

n∈N Vn = Rd ,

(iii) lim
n→+∞

|Vn 	 W̌|
|Vn |

= 1, for any compact subset W of Rd .

These conditions are not very restrictive. They are satis�ed by sequences (λnV)n∈N where
V ∈ B contains a ball B(bV, r ) with radius r ∈ (0,+∞), and (λn)n∈N is an nondecreasing
sequence of positive real numbers that diverges to +∞ as n → +∞. Such sequences typically
include nondecreasing sequences of balls or hyperrectangles. Notice that (i) - (iii) imply
that |Vn | → +∞ as n → +∞. The last two conditions have already been considered in
Lantuéjoul (1991). By insuring that Vn grows in all directions as n → +∞, (ii) guarantees the
covering of the whole space Rd . Condition (iii) means that the e�ect of erosions becomes
negligible as n → +∞. In e�ect, the subsets Vn cannot look like Swiss cheese, riddled with
holes.

Example 2.4 – Swiss cheese sets. Set d = 2 and for any n ∈ N, consider the square
Vn of side 2n + 1 and centre 0. Divide it into 2(2n + 1) non-overlapping squares of side 1,
which are then perforated in the middle with a disk of diameter 1/(n + 1), like in Figure 2.1.
Then, the sequence (Vn)n∈N satis�es the conditions (i) and (ii) in De�nition 2.3, but not
condition (iii). Indeed, consider a square of side 1 that is centred in 0, from which the
origin has been removed. The erosion of this set by the disk B1/2 is an empty set, therefore

so is the erosion of Vn by B1/2, for any n ∈ N. Consequently, lim
n→+∞

|Vn 	 B1/2 |
|Vn |

= 0.

We shall see in Section 2.7 that conditions (i) - (iii) hold, in particular, for Van Hove sequences
of subsets. Such increasing sequences were used in a spatial extreme context by, for instance,
Koch (2017, 2019) and Koch et al. (2018).

2.2 the integral range

2.2.1 Background

In this section, let Z be a second-order SRF with expectation µ := E [Z(0)]. Its variance is de-
noted by σ2 := Var [Z(0)] and its correlation function by ρ : h ∈ Rd 7→ σ−2Cov [Z(0),Z(h)] ∈
[−1, 1]. As pointed out in the previous chapter, in many applications, only one realization of
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`

V0 V1

`

V2

`

Figure 2.1 – The sets V0, V1 and V2 (grey area), all centred in 0 (grey cross). They are divided into 1× 1
squares (dashed lines), which are in turn perforated by disks (in white).

Z is partially observed. Can we hope for a good estimation of µ in such situations ? This ques-
tion is of particular interest in the context of heterogeneous material studies. One important
goal is to estimate e�ective physical or morphological properties of such material, which are
then modelled by the expectation µ of some second-order RF. In general, producing several
samples of the studied material is too expensive or too time consuming, and this estimation
has to be performed using only one spatial set of observations. For instance, one might refer
to Azzimonti et al. (2013) for the study of some optical properties, Peyrega and Jeulin (2013)
for accoustic properties estimation, Dirrenberger et al. (2014) for a work on �brous network
and Gasnier et al. (2015) for the evaluation of thermoelastic behaviour of an explosive mate-
rial.

Let Vn ↑ Rd and, for any n ∈ N, assume that Z is observed everywhere in Vn . The random
variable Z(Vn) is square integrable and, by stationarity, it is an unbiased estimator of µ:

E [Z(Vn)] =
1
|Vn |

∫
Vn

E [Z(x)] dx = µ.

Its variance equals

Var [Z(Vn)] =
σ2

|Vn |2
∫
Vn

∫
Vn
ρ(x −y)dx dy = σ2

|Vn |

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh, (2.2)

where, for any h ∈ Rd , Kn(h) := |Vn ∩ (Vn +h)| is called the geometric covariogram of Vn . It
is a measurable function of h satisfying Kn ≤ Kn(0). Notice that Vn ∩ (Vn +h) can be viewed
as the erosion of Vn by {0,h}, i.e. Vn ∩ (Vn +h) = Vn 	 {0,h}. Thus, according to condition
(iii) in De�nition 2.3:

lim
n→+∞

Kn(h)
Kn(0)

= 1. (2.3)
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For practical use, we would like to have some kind of asymptotic consistency that does not in-
volve i.i.d. replications of Z(Vn). Typically, if Var [Z(Vn)]were to vanish when the domain Vn

becomes in�nite (in the sense given in De�nition 2.3), then Z(Vn)would be an asymptotically
consistent estimator of µ. However, it is not always the case. A classic counterexample, given
in Yaglom (1987), is the RF Z de�ned for all x ∈ Vn by Z(x) = W, with W a non-constant
random variable. Hence, for any n ∈ N we have Z(Vn) = W, and Var [(Z(Vn)] does not tend
towards 0 as n → +∞. This is why the concept of ergodicity in the mean is introduced in a
spatial context (see e.g. Yaglom, 1987; Lantuéjoul, 1991).

De�nition 2.5 Let Vn ↑ Rd . The second-order RF Z is said to be ergodic in the mean
(or �rst-order ergodic) if Z(Vn) converges to µ in quadratic mean:

lim
n→+∞

Var [Z(Vn)] = 0. (2.4)

Remark 2.6 – Slutsky’s formula. An equivalent condition for Eq. (2.4) is the so-called
Slutsky’s formula:

lim
n→+∞

1
|Vn |

∫
Vn

Cov [Z(0),Z(h)] dh = 0. (2.5)

Indeed, applying the Cauchy-Schwarz inequality to

Cov
[
Z(0), 1

|Vn |

∫
Vn

Z(h)dh
]

shows that Eq. (2.4) implies Eq. (2.5). The converse directly follows from Eq. (2.2). Conse-
quently, a su�cient (but not necessary) condition for mean-ergodicity is

lim
‖h ‖→+∞

ρ(h) = 0. (2.6)

To the best of our knowledge, there does not exist any procedure to test the mean-ergodicity
assumption when observing only one spatial set of observations. Two references were found
in a discrete temporal setting, namely Domowitz and El-Gamal (1993) and Domowitz and El-
Gamal (2001). In the following, we shall assume that Z satis�es Eq. (2.4).

Now, consider two sequences V1
n ↑ Rd and V2

n ↑ Rd such that |V1
n | = |V2

n | for each n ∈ N.
The Cauchy-Swcharz inequality gives

0 ≤ (
Cov

[
Z(V1

n),Z(V2
n)

] )2 ≤ Var
[
Z(V1

n)
]
Var

[
Z(V2

n)
]
.

Thus, the �rst-order ergodicity assumption is su�cient to yield

lim
n→+∞

Cov
[
Z(V1

n),Z(V2
n)

]
= 0. (2.7)
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It also guarantees that the expectation µ can be assessed from a single realization of Z with
any desirable degree of accuracy, provided that the latter is observed on a su�ciently large
domain. Precisely, by virtue of the Bienaymé-Chebychev inequality, it entails that for any
ϵ ∈ (0,+∞) and η ∈ (0, 1] there exists nϵ,η ∈ N such that for all n ≥ nϵ,η,

P [|Z(Vn) − µ| < ϵ] > 1 − η.

However, the mean ergodicity property does not indicate how to choose n ∈ N to insure that
Var [Z(Vn)] is less than a pre-speci�ed value. The concept of integral range is introduced for
this purpose.

2.2.2 De�nition and interpretation

Considering the mathematical setting described in the previous subsection, let n ∈ N and
de�ne

An := |Vn |
Var [Z(Vn)]

σ2
∈ (0,+∞), (2.8)

which is �nite since Vn is a bounded set. Using Eq. (2.2), it can also be written

An =

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh. (2.9)

De�nition 2.7 – Integral range. When it exists, the quantity

A := lim
n→+∞

An (2.10)

is called the integral range of Z. It is nonnegative, possibly in�nite, and can be considered
as a d-volume (a length when d = 1, an area when d = 2, a volume when d = 3).

Historically, the term of integral range was introduced by Matheron (1989) to name the inte-
gral ∫

Rd
ρ(h)dh. (2.11)

This quantity also appears in Yaglom (1987), but is not referred to as the integral range; it is
called correlation time (or integral time scale) in a temporal framework, and correlation area

(or integral area scale) when d = 2. The more general de�nition we use here was adopted
by Lantuéjoul (1991). He actually showed that it coincides with Eq. (2.11) as long as ρ is
integrable. Indeed, from Eq. (2.9), we have

A = lim
n→+∞

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh. (2.12)

In addition, for any n ∈ N and anyh ∈ Rd the inequality Kn(h)/Kn(0) ≤ 1 holds by construc-
tion, and Eq. (2.3) states that lim

n→+∞
Kn(h)/Kn(0) = 1. Thus, when ρ is integrable, the domi-

nated convergence theorem can be used to exchange limit and integral operator in Eq. (2.12),
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from geostatistics to evt: integral range and extremal coefficient function

which establishes the result. As claimed in Proposition 2.8, the converse holds when ρ is non-
negative, but this is not true in the general case. Consider for instance d = 1 and ρ = cos. This
function is not integrable on R. However, setting n ∈ N and Vn = [−n,n], Eq. (2.3) entails

An =
1
2n

∫ n

−n

∫ n

−n
cos(x − y)dxdy = 2 sin(2n)

n
,

which implies in turn that A = 0.

Proposition 2.8 Let Z be a second-order SRF, with measurable and nonnegative corre-
lation function ρ. Its integral range A always exists and equals

∫
Rd

ρ(h)dh ∈ [0,+∞].

We refer to Subsection 2.6.1 for the proof. In �ne, we shall point out that the limit in Eq. (2.10)
exists for all usual isotropic covariance functions used in geostatistics, the values of which
are given in Lantuéjoul (2002).

To obtain a more physical interpretation of this mathematical object, recall that |Vn | → +∞
and Var [Z(Vn)] → 0 asn → +∞. The integral range A gives information about the behaviour
of the variance Var [Z(Vn)] with respect to |Vn |, for large domains Vn . Three cases shall be
distinguished: when A is �nite positive, null or in�nite. The �rst situation turns out to be
the most interesting in practice, since A can then be interpreted as the spatial scale of the
phenomenon and helps control Var [Z(Vn)] for large Vn .

2.2.2.1 Finite positive integral range

Assume that A ∈ (0,+∞). As n → +∞, the variance of Z(Vn) is of order |Vn |−1:

Var
[
Z(Vn)

] ∼
n→∞

σ2
A
|Vn |

. (2.13)

Since A , 0, for some large enough n ∈ N we can �nd a positive integer N = Nn such that
N ≈ A

|Vn | ; it represents the number of disjoint subdomains of measure A contained in Vn .
Then, Eq. (2.13) becomes

Var
[
Z(Vn)

] ≈ σ2N . (2.14)

Take x1, . . . ,xN separately in each of the N blocks of volume A dividing Vn . Lantuéjoul (1991)
remarks that if Z(x1), . . . ,Z(xn) are uncorrelated, in which case the blocks are said to be
uncorrelated, the variance of N−1

∑N
i=1 Z(xi )would also be σ2/N. Therefore, when the integral

range is positive and �nite, it can be physically interpreted as the scale of the phenomenon,
while Vn is the scale of observation; we can judge how large Vn is with respect to A. Obviously,
the bigger N, the lower Var [Z(Vn)] and the more precise the estimation of E [Z(0)]. In practice,
if we were to provide a good estimate of Aσ2 (see Subsection 2.2.3), the domain Vn could be
chosen so that Var [Z(Vn)] is smaller than a prespeci�ed value. That is why the integral range
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is used in heterogeneous material studies: it helps to de�ne an optimal sample size, which can
be extremely large with respect to the microscopic scale at which the study is conducted. An
example of RF with �nite positive integral range is given in Example 2.9.

On thephysical interpretation of Eq. (2.14) The analogy proposed by Lantuéjoul (1991)
with a partition of Vn into N uncorrelated blocks provides a physical interpretation of the phe-
nomenon. Nonetheless, in general, such subsets cannot be considered as uncorrelated. That
is, for any two of these sub-blocks V1

n and Vn
2 and for any (x ,y) ∈ V1

n × V2
n , there is no rea-

son for the random variables Z(x) and Z(y) to be uncorrelated. Su�cient conditions to have
(approximatively) no correlation would be that lim

‖h ‖→+∞
ρ(h) exist, ρ be integrable and the

distance between x and y be large enough. Indeed, when lim
‖h ‖→+∞

ρ(h) exists

∫
Rd

ρ(h)dh < +∞ ⇒ lim
‖h ‖→+∞

ρ(h) = 0. (2.15)

The implication (2.15) is easily proven by contradiction: assume that lim
‖h ‖→+∞

ρ(h) = ` ∈ R∗.

Then, there existsm ∈ (0,+∞) such that ρ has a constant sign on Em := {h ∈ Rd : ‖h‖ ≥ m}
and, for any h ∈ Em , |ρ(h)| ≥ |`/2|. It follows that∫

‖h ‖≥m
|ρ(h)| dh ≥

∫
‖h ‖≥m

����`2
���� dh = +∞,

which contradicts the assumption that ρ is integrable. Consequently, when lim
‖h ‖→+∞

ρ(h) exists

and ρ is integrable, two blocks V1
n and V2

n may be considered as uncorrelated if they are quite
far apart from each other.

Links with mixing The decrease to 0 of ρ when ‖h‖ → +∞ is linked to the ergodic and
mixing properties. For instance, when Z is a Gaussian second-order SRF, then lim

‖h ‖→+∞
ρ(h) =

0 if and only if it is mixing (in the precise sense given later in De�nition 2.26); this is proven
in the one-dimensional case in Maruyama (1949). This equivalence holds because the law of
a Gaussian SRF is characterized by its expectation and its covariance function, but it is most
likely false in the general case. Indeed, the mixing property involves the �nite-dimensional
distributions of Z, which are more complex objects than the correlation function. According
to Eq. (2.15), when lim

‖h ‖→+∞
ρ(h) exists, the integrability of ρ, which entails that A is �nite, thus

implies that the Gaussian RF Z is mixing. This illustrates the potential link between integral
range and mixing. Notice that the integrability of ρ is much more informative than the con-
vergence of ρ to 0; it means that the latter vanishes fast enough to be integrable. This property
may be an advantage when estimating from a single realization. We shall remark that, simi-
larly to the correlation function of a Gaussian process, the extremal coe�cient function (ECF)
of a simple max-stable SRF is also related to the mixing property given in De�nition 2.26; this
is detailed in the next section. This encourages us to look for some links between the integral
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(a) (b) (c)

Figure 2.2 – Realizations of a Gaussian second-order SRF with: (a) exponential covariance function (pos-

itive integral range), (b) covariance function de�ned by Eq. (2.17) (null integral range) and (c) hyperbolic

covariance function (in�nite integral range), when the scale parameter a is 10, 20 and 10, respectively.
The simulation �eld is 500 × 500, with mesh size equal to 1.

range this function.

Example 2.9 – Gaussian RF with �nite positive integral range. Let Z be a Gaussian
second-order SRF with exponential covariance function C given, for any h ∈ Rd , by

C(h) = exp
{
− ‖h‖

a

}
,

where a ∈ (0,+∞) is a scale parameter. It is known that Z has a �nite non-null integral
range A (see Lantuéjoul, 2002). Figure 2.2(a) shows a realization of Z when a = 10, obtained
with the R package Randomfields. At the scale of the simulation, it gives an impression
of spatial homogeneity; we can hope to estimate the expectation µ of Z with quite good
precision. Others examples of second-order SRF’s with �nite non-null integral range are
given in Lantuéjoul (2002).

2.2.2.2 Null integral range

Assume that A = 0. From Eq. (2.10), it stems that Var
[
Z(Vn)

]
=

n→∞
o
( |Vn |−1

)
: the variance

Var [Z(Vn)] decreases faster than |Vn |−1. Even though this is an ideal framework, knowing A
does not help controlling the variance of Z(Vn). To cope with this liability, in some situations,
Lantuéjoul (1991) proposes to consider the following relation:

Var
[
Z(Vn)

] ≈ σ2 k

|Vn |α
, (2.16)

where k ∈ (0,+∞) and α > 1.
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Example 2.10 – Gaussian RF with null integral range. Let Z be a Gaussian second-
order SRF with covariance function C de�ned, for any h ∈ Rd , by

C(h) = exp
{
− |h |

2

a2

} (
1 − |h |

2

a2

)
, (2.17)

with scale parameter a ∈ (0,+∞). It can be shown that this RF, which has been proposed by
Lantuéjoul (2002), has a null integral rangeA. A realization of Z is displayed in Figure 2.2(b);
it gives a strong impression of spatial homogeneity.

2.2.2.3 In�nite integral range

From Eq. (2.10), |Vn |−1 =
n→∞

o
(
Var

[
Z(Vn)

] )
: the variance Var [Z(Vn)] decreases more slowly

than |V|−1. In this case, the integral range cannot be used to control Var
[
Z(Vn)

]
and if the

decrease of the variance is too slow, we can only expect to estimate µ with a very poor preci-
sion. When appropriate, Lantuéjoul (1991) suggested taking α < 1 in Eq. (2.16). This relation
is satis�ed, in particular, by second-order RF’s based on boolean random closed sets built from
Poisson varieties (Jeulin, 2011). It was used in practice by, e.g. , Dirrenberger et al. (2014).

Example 2.11 – Gaussian RF with in�nite integral range. Let Z be a Gaussian second-
order SRF with hyperbolic covariance function C given, for any h ∈ Rd , by

C(h) = a

a + ‖h‖ ,

with scale parameter a ∈ (0,+∞). It is known that Z has an in�nite integral range A
(see Lantuéjoul, 2002). Figure 2.2(c) shows a realization of Z, when a = 10. It has been
simulated with the R package Randomfields. At the scale of the simulation, the realization
seems to be less homogeneous than the one in Figure 2.2(a).

Before presenting a method to estimate the integral range, we shall end this subsection with
two remarks.

Remark 2.12 – The mean ergodicity assumption. The assumption of mean ergodicity
is not necessary to de�ne the concept of integral range. Even so, it is preferable to work
under this assumption otherwise, by de�nition, the integral range would be in�nite.

Remark 2.13 – On the necessity to consider Vn ↑ Rd . The example below is taken
from Lantuéjoul (1991). Set p < d . The restriction of Z to Rp is also second-order station-
nary and �rst-order ergodic; if the limit in Eq. (2.12) exists, its integral range is well-de�ned.
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It is possible that it is �nite whereas it is in�nite when considering the whole space Rd . This
is the case, for instance, when the correlation function associated to Z is de�ned by

ρ(h) = 1
1 + ‖h‖2

for any h ∈ R3. It is easy to show that the integral range computed in R3 is in�nite,
whereas it is �nite when Z is restricted to R. Set n ∈ N. One may be attempted to estimate
the expectation µ by Z(Vn), where Vn ⊂ R is a very long segment of length rn ∈ (0,+∞).
The variance Var [Z(Vn)] thus behaves like 1/rn . Now, let Vn be a ball in R3 with large
radius rn . Since the integral range is in�nite in R3, the variance Var [Z(Vn)] decreases more
slowly than 1/r 3n . Its explicit calculus shows that it behaves like 1/r 2n , see e.g. Matheron
(1965, pages 56-57) for the computation of the geometric covariogram of a 3-ball. Thus, the
variance of Z(Vn) decreases faster in the second case, when the integral is in�nite, than
in the �rst case when it is �nite. Now, let (Vn)n∈N be a sequence of sets in B. As shown
with this example, when Z is isotropic, we can expect Var [Z(Vn)] to decrease faster (or at
the same speed) when Vn grows in all directions than when it increases only in certain
directions, as n → +∞. That is why we choose to consider sequences (Vn)n∈N of subsets
in Rd such that

⋃
n∈N Vn = Rd in De�nition 2.3. We want to ensure that Vn grows

in all directions, and ideally at the same rate, as n → +∞. Accordingly, with no loss of
generality, we could also have worked with sequences of subsets that lie in the positive
orthants substituing (ii) in De�nition 2.3 by

⋃
n∈N Vn = Rd

+, but it seems unintuitive
in a spatial context. This is sometimes done in a one-dimensional framework, typically
when dealing with time processes, see e.g. Yaglom (1987, pages 218). The situation is more
complicated when Z is anisotropic and it may sometimes be better, in this case, to work with
sequences of subsets that grow only in the anisotropy directions. Since we mainly focus
on isotropic applications in the following, this investigation is left for future research.

2.2.3 Estimation

Let Z be a second-order SRF de�ned on Rd and recall from the last subsection that, if the limit
exists, its integral range is de�ned by

A = lim
n→+∞

An ,

where for any n ∈ N

An = |Vn |
Var [Z(Vn)]

σ2
> 0.

In this subsection, we propose an algorithm to estimate A, starting from a single realization
z of Z on a �xed domain V ⊂ B. This set is supposed large enough to ensure that

Var
[
Z(V)] ≈ σ2 A

|V| , (2.18)
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if A exists and is �nite. It is inspired from the algorithm proposed in Lantuéjoul (2002). The
advantage of our method is that it is more user-friendly: the visual clues to draw conclusions
about A are more explicit. Very brie�y, each algorithm consists in plotting a given quantity
versus a sequence of volumes. In Lantuéjoul (2002), it must be veri�ed whether the points
associated to the largest volumes are ranged on a straight line with slope −1 or not. With
our procedure, we only need to check whether the curve is stabilizing or not, as the volumes
become larger. Since the aim of this section is not to compare these two procedures, we shall
not go into more details and let the interested reader refer to Lantuéjoul (2002).

Set N ∈ N∗ and consider an increasing sequence of measurable subdomains (Vn)n∈{1, ...,N}
in V, with positive volume. Suppose �rst that A exists. If A < +∞ then, when plotting An

versus |Vn |, the curve should stabilize around A, as n becomes large enough. On the contrary,
if A = +∞, the curve must keep increasing. When A does not exist, it should probably
oscillate as n grows. Fix n ∈ {1, . . . ,N}. In practice, An is unknown and an estimation
of the latter shall be plotted instead. The question is thus: how to estimate An for each
subdomain Vn ? This amounts to evaluating Var [Z(Vn)] and σ2. Assume that Vn divides
V, i.e. V can be decomposed into an union of kn ∈ N∗ disjoint subdomains V1

n , . . . ,V
kn
n , all

congruent to Vn . Though this assumption seems quite restrictive, it is actually easy to build
such sequences when V is an hyperrectangle; it su�ces to �nd a partition of smaller and
congruent hyperrectangular domains. Then, estimators of Var [Z(Vn)] and σ2 are respectively

S2(Vn |V) :=
1
kn

kn∑
i=1

[
Z(Vi

n) − Z(V)
]2

and
S2(·|V) :=

1
|V|

∫
V
[Z(x) − Z(V)]2 dx ,

with
E

[
S2(Vn |V)

]
= Var [Z(Vn)] −Var [Z(V)] (2.19)

and
E

[
S2(·|V)] = σ2 −Var [Z(V)] . (2.20)

These expectations are called dispersion variances in Geostatistic, see e.g. Matheron (1971).
Recall now that Z is supposed to be ergodic in the mean. Hence, whenV is very large relatively
to Vn , the term Var [Z(V)] can be neglected in Eq. (2.19) and Eq. (2.20), and the following
approximation holds:

E
[
S2(Vn |V)

] ≈ Var [Z(Vn)] and E
[
S2(·|V)] ≈ σ2. (2.21)

In other words, S2(Vn |V) and S2(·|V) can be considered as unbiased estimators of Var [Z(Vn)]
and σ2. In practice, the realization z of Z is not observed everywhere on V but only in some
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locations, therefore only discretized version of S2(Vn |V) and S2(·|V) can be computed. Sup-

pose that z is known in K ∈ N∗ �xed locations x1, . . . ,xK. Futher, de�ne Z̄ :=
1
K

K∑
j=1

Z(x j )

and, for any i ∈ {1, . . . ,kn}, let Ki
n stand for the number of observations in subdomain Vi

n .
Discretized versions of S2(Vn |V) and S2(·|V) are

S2K(Vn |V) =
1
kn

kn∑
i=1


1
Ki
n

∑
j ∈ {1, ...,N}
x j ∈Vin

Z(x j ) − Z̄



2

(2.22)

and

S2K(·|V) =
1
K

K∑
j=1

[
Z(x j ) − Z̄

]2 . (2.23)

Assume now that the locations x1, . . . ,xK form a regular grid G such that the number of
observations Ki

n is the same for any i ∈ {1, . . . ,kn}; it is denoted by Kn . The estimators (2.22)
and (2.23) have expectations

E
[
S2K(Vn |V)

]
= Var


1
Kn

∑
x ∈V1

n∩G
Z(x)


−Var [

Z̄
]

(2.24)

and
E

[
S2K(·|V)

]
= σ2 −Var [

Z̄
]
. (2.25)

Hence, similarly to the continuous version, when V is very large relatively to Vn , they can

be considered as unbiased estimators of Var
[
1
Kn

∑
x ∈V1

n∩G Z(x)
]

and σ2. In addition, when K

is very large, i.e. G is a dense grid, we can expect S2K(Vn |V) to be an approximately unbiased
estimator of Var [Z(Vn)]. It would be interesting to investigate the asymptotic properties of
such estimators when considering e.g. in�ll asymptotics inside increasing domains. This is
not done in the present work but related questions are examined e.g. in Lahiri et al. (1999),
when the grid is irregular. Finally, for any n ∈ {1, . . . ,N}, we write Ân the estimator of An

resulting from Eq. (2.22) and Eq. (2.23). Before illustrating this method of estimation with the
examples below, we shall make the following comment.

Remark 2.14 – On the choice of V and subdomains Vi
n. At the beginning of this

subsection, we required V to be large enough so that, when A exists and is �nite, Eq. (2.18)
is satis�ed. Since A is unknown, we do not know, in practice, how to choose V. Imagine
now that, when plotting Ân versus |Vn |, for every n ∈ {1, . . . ,N}, a increasing curve is
observed. This may signify that either A is in�nite or that V is not large enough to observe
the curve stabilizing. It could also mean that the assumption of second-order stationarity
is not valid. In such a situation, the choice of taking V larger shall be made on a case by
case basis, taking into account the underlying phenomenon of interest and the �nancial
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Figure 2.3 – The mean curve (black dots) and the corresponding 90% con�dence envelope (blue stars)

from Example 2.15. Several points lie on the same verticals; they correspond to rectangular subdomains

with the same area but with di�erent side lengths.

and technical constraints. We shall also make some general recommendations about the
choice of the subdomains Vn . First, V shall be large with respect to the latter, so that the
approximation (2.21) holds. At the same time, for any n ∈ {1, . . . ,N}, the number kn of
subdomains Vi

n , which form a partition of V, as well as the number of observed locations
x1, . . . ,xKin in Vi

n must not be to small to compute the estimators S2K(Vn |V) and S2K(·|V).

Example 2.15 – Finite non-null integral range. Let d = 2 and consider Z as in Exam-
ple 2.9, with a = 1. By integrating the corresponding correlation function over R2, it is
easy to show that A = 2π. We generate 500 realizations of Z on a regular grid 1000× 1000,
with unit mesh size. Then for each realization and for each n ∈ {1, . . . ,N}, we estimate An

with the previous algorithm. We constrain the sequence (Vn)n∈{1, ...,N} so that each subdo-
main Vn is a rectangle with integer side lengths less than 100 and with kn ≥ 30. Figure 2.3
displays the mean curve obtained by averaging, for each n ∈ {1, . . . ,N}, the 500 estimates
Ân . It also shows the corresponding 90% con�dence envelopes built by computing, for each
n ∈ {1, . . . ,N}, the sample quantiles of order 0.05 and 0.95 of the 500 estimates Ân . Notice
that the three curves are stabilizing as |Vn | increases, suggesting that the integral range
is �nite. Finally, the latter can be estimated, from a single realization, by the intercept of
the linear regression model �tted only from the data

( |Vn |, Ân
)
n∈{1, ...,N} for which |Vn | is

large enough. This is shown in Figure 2.4.
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0 500 1000 1500 2000 2500

1

2

3

4

5

pA

|Vn |

p A n

Figure 2.4 – The estimates Ân as well as an estimate Â = 6.215 of the integral range A = 2π computed

from a single realization of the Gaussian process in Example 2.15. The latter has been obtained by �tting a

linear regression model (blue dashed line) from data lying strictly beyond threshold |Vn | = 500 (in blue).

Example 2.16 – In�nite integral range. Let d = 2 and consider Z as in Example 2.11,
with a = 1. It is easy to show that A = +∞. We generate 500 realizations of Z on a
regular grid 1000 × 1000, with unit mesh size. Then, choosing the sequence (Vn)n∈{1, ...,N}
in the same way as in Example 2.15, we estimate An with the previous algorithm for each
realizations and for eachn ∈ {1, . . . ,N}. The curves displayed in Figure 2.5 keep increasing
as the volume |Vn | grows, which is consistent with having A = +∞.

Now, recall from Eq. (2.12) that the integral range can be written lim
n→+∞

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh,
thus it is linked to the spatial dependence structure of the second-order SRF Z. When consid-
ering an appropriate max-stable RF, we expect it to be connected with the extremal coe�cient
function.

2.3 connecting the integral range with the ex-
tremal coefficient function

We shall now assume that Z is a simple max-stable SRF and write θ : Rd → [1, 2] its extremal
coe�cient function, which satis�es

P [Z(0) ≤ z, Z(h) ≤ z] = exp
{
−θ(h)

z

}
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Figure 2.5 – The mean curve (black dots) and the corresponding 90% con�dence envelope (blue stars)

from Example 2.16.

for any h ∈ Rd and any z ∈ (0,+∞), see Subsection 1.3.3. In addition, suppose that Z is
continuous in probability; it admits the spectral representation given in Eq. (1.13). Notice
that, by Lemma 2 in de Haan (1984), the associated spectral process Y is continuous in L1,
therefore it is also continuous in probability. Hence, both Z and Y have a

(
F ⊗BRd ,BR

)
-

measurable modi�cation; this is a known result from Doob (1990, Theorem 2.6). We shall
point out that the proof is given for stochastic processes de�ned on R but it can be general-
ized to higher dimensions. We also refer to Theorem 3.4 in Pottho� (2009) for a similar result
when d > 1. That is why we additionally assume that both RF’s Z and Y are

(
F ⊗BRd ,BR

)
-

measurable. As remarked in Subsection 1.3.3, the measurability of Y implies, in particular,
that θ is

(
BRd ,BR

)
-measurable. More generally, Strokorb and Schlather (2015, Lemma 23)

have shown that if Z is continuous in probability then θ is a continuous function.

As we pointed out in the �rst chapter, Z does not have �nite expectation and variance; its
integral range cannot be de�ned. In the next subsections, we consider instead the integral
range of the indicator RF of Z above a threshold. This indicator �eld is stationary. It has �nite
�rst and second order moments, and satis�es both Assumption 2.1 and Assumption 2.2.

Set z ∈ (0,+∞) and let the SRF
{
Iz (x) : x ∈ Rd

}
, referred to as the exceedance �eld in the

sequel, be de�ned by
∀x ∈ Rd Iz (x) := 1{Z(x) > z}. (2.26)
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For any x ∈ Rd , the random variable Iz (x) is Bernoulli-distributed with �nite expectation
µz := P [Z(0) > z] = 1 − exp{−1/z} and variance σ2z := (1 − exp{−1/z}) exp{−1/z}. For all
h ∈ Rd , the covariance between Iz (0) and Iz (h) is given by

Cov [Iz (0), Iz (h)] = exp{−θ(h)/z} − exp{−2/z}, (2.27)

with corresponding correlation function

ρ(h, z) = Cov [Iz (0), Iz (h)]√
Var [Iz (0)]Var [Iz (h)]

=

exp
{
2 − θ(h)

z

}
− 1

exp{1/z} − 1 . (2.28)

Because 1 ≤ θ(h) ≤ 2, the correlation function is valued in [0, 1]. From Eq. (2.27), we shall
remark that an estimator of the covariance function Cz : h ∈ Rd → Cov [Iz (0), Iz (h)] imme-
diately provides an estimator of θ. This is used in Chapter 3 to propose a new non-parametric
estimator of the ECF.

Now, for �xed h ∈ Rd , write ρh the map z ∈ (0,+∞) 7→ ρ(h, z) ∈ [0, 1]. Alternatively, for
�xed z ∈ (0,+∞), denote by ρz the function h ∈ Rd 7→ ρ(h, z) ∈ [0, 1]. The two following
propositions exhibit the behavior of both functions.

Proposition 2.17 Let z ∈ (0,+∞). The map ρz is a continuous (thus measurable)
nonnegative function.

Proposition 2.18 Let h ∈ Rd . The map ρh is a continuous (thus measurable) nonneg-
ative and nondecreasing function with limits lim

z→0
ρh(z) = 1 {θ(h) = 1} and lim

z→+∞
ρh(z) =

2 − θ(h).

We refer to Subsection 2.6.2 for both proofs. Now, let Vn ↑ Rd and consider the integral range
associated with Iz , given by

Az := lim
n→+∞

Az,n , (2.29)

where, for every n ∈ N,
Az,n := |Vn |

Var [Iz (Vn)]
σ2z

. (2.30)

According to the last subsection, if Az is �nite and nonzero, then the exceedance probability
P [Z(0) > z] can be estimated from a single realization of Iz , with a chosen precision that de-
pends on the domain Vn of observation, n ∈ N. This may be of great interest for insurance
companies that want to assess some risks, e.g. the risk of �ood at a given location. In addition,
ρz is nonnegative for every z ∈ (0,+∞): when the integral range is �nite, this means that the
latter converges fast enough to 0 to be integrable.
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For any z ∈ (0,+∞), we are thus interested in situations where the integral range Az is �nite.
The latter is linked to the correlation function of Iz and so is θ. In the next subsection, we
give a condition on the ECF so that Az is �nite.

2.3.1 Main results

The next theorem establishes necessary and su�cient conditions on the extremal coe�cient
function of Z so that the integral range Az is �nite.

Theorem 2.19 – Finite integral equivalence. Let Z be a simple max-stable SRF with
extremal coe�cient function θ and, for any z ∈ (0,+∞), denote by Az the integral range of
the associated exceedance �eld Iz . The following assertions are equivalent:

(i) ∃ z ∈ (0,+∞) Az < +∞,

(ii) ∀ z ∈ (0,+∞) Az < +∞,

(iii) A∞ :=
∫

Rd
2 − θ(h)dh < +∞.

If these conditions are ful�lled, the mapping z ∈ (0,+∞) 7→ Az ∈ [0,+∞) is continuous
and nondecreasing with lim

z→0
Az = 0 and lim

z→+∞
Az = A∞.

We refer to Subsection 2.6.3 for the proof. The implication (iii)⇒ (ii), is mentioned in Spo-
darev (2014, page 11), when substituting Az by

∫
Rd

ρz (h)dh in (ii). In a slightly di�erent
form, this statement is also proven in Koch (2017, Theorem 3), in a spatial risk context, but
again without referring to the concept of the integral range. As a consequence, the proofs are
completely di�erent; our proof being, for instance, shorter. We refer to Subsection 2.4.2 for
more details.

From Lemma 2.38, we know that, for any z ∈ (0,+∞),

Az =

∫
Rd

ρ(h, z)dh. (2.31)

Recall now from Chapter 1 that 2 − θ is, in some sense, an extreme values analogue of the
correlation function. Thus, assertion (iii) is not surprising. For some models, the latter is
easy to check. For instance, if θ(h) is bounded above by a constant strictly less than 2 then
(iii) is not satis�ed. It is also sometimes possible to bound above

∫
Rd

2 − θ(h)dh by a �nite
quantity. We refer to Subsection 2.3.2 for speci�c examples. In the particular case of Mov-
ing Maxima processes (M2 processes), we found a necessary and su�cient condition so that∫

Rd
2 − θ(h)dh < +∞. First, let us introduce such RF’s.
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De�nition 2.20 – M2 processes. Let Z be a SRF de�ned on Rd . It is called a M2 process
if

∀x ∈ Rd Z(x) = max
(T,S) ∈ Π

Tf (x − S), (2.32)

where Π is a Poisson process on (0,+∞) ×Rd with intensity t−2dt ds and f : Rd → R+ is
the so-called (deterministic) shape function, which is measurable, nonnegative and satis�es∫

Rd
f (x)dx = 1. Its ECF is then given by

θ(h) =
∫

Rd
max (f (y), f (y +h)) dy,

see e.g. Schlather and Tawn (2003, Equation 9).

Any M2 process is a simple max-stable SRF, see Schlather (2002, Theorem 1). As remarked in
Subsection 1.3.2, Tf (x − S) may be interpreted as the amount of rainfall at position x from
a storm of magnitude T and shape f ; the storm being additionally centred in S. That is why
such a process is sometimes also called storm process and its shape function f is referred to
as a storm. Let us also recall the next standard de�nition.

De�nition 2.21 Let Σ be a symmetric and positive-semide�nite d × d matrix, and
consider the norm ‖.‖Σ associated with the inner product induced by the matrix Σ, i.e.
‖h‖Σ =

√
hTΣh, where hT designates the transpose of h. A function f : Rd → R+ is said

to be Σ-radially symmetric and non-increasing if f (x) = f0 (‖x ‖Σ) for every x ∈ Rd , where
the map f0 : R+ → R+ is non-increasing. When Σ is the identity matrix, f is simply said
to be radially symmetric and non-increasing.

Let Z be a M2 process with Σ-radially symmetric and non-increasing shape function f . The
following corollary gives a necessary and su�cient condition on Z so that the integral range
Az of the corresponding exceedance �eld is �nite.

Corollary 2.22 Let Z be a M2 process on Rd and Az be the integral range of the cor-
responding exceendance �eld above a threshold z ∈ (0,+∞). Let also Σ be a symmetric
and positive-semide�nite d × d matrix, and X = (X1, . . . ,Xd ) ∼ f , where f is the associ-
ated shape function in Eq. (2.32). If f is Σ-radially symmetric and non-increasing, then the
following propositions are equivalent

(i) ∀z ∈ (0,+∞) Az < +∞,

(ii) E{‖X‖d } < +∞,

(iii) ∀i ∈ {1, . . . ,d} E
[|Xi |d

]
< +∞.
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In addition, when Σ is the identity matrix,

A∞ :=
∫

R

2 − θ(h)dh = 2 ωd E{‖X‖d }.

We refer to Subsection 2.6.3 for the proof and to Subsection 2.3.2 for speci�c examples. Addi-
tionally, from Dombry and Eyi-Minko (2012, page 3798), we know that a necessary condition
for Az to be �nite is

lim sup
‖h ‖→+∞

ln (f (h))
ln (‖h‖) < −kd ,

with k1 = 3 and kd = 2(d + 1) for d ≥ 2. Before going further, let us make the following
remark.

Remark 2.23 – Null integral ranges. If there exists z ∈ (0,+∞) such that Az = 0 then,
for all z ∈ (0,+∞), Az = 0. Indeed, let z ∈ (0,+∞) and assume that Az = 0. From Eq. (2.31),
this is equivalent to ρ(h, z) = 0 for almost every h ∈ Rd , i.e. θ(h) = 2 for almost every
h ∈ Rd . The last equality does not depend on z and implies that Az = 0 for all z ∈ (0,+∞).

We can also deduce ergodic and mixing properties of Z from condition (iii) in Theorem 2.19.
Let Z = (Z(x))x ∈Rd be a SRF. The de�nitions of the classical notions of ergodicity and mix-
ing for Z are given below; both formulations are employed e.g. in Kabluchko and Schlather
(2010, De�nition 2.1) in the one-dimensional case or in Bradley (1993a, page 1921) and Wang
et al. (2013, page 216) when extending to the multidimensional case. An equivalent de�ni-
tion, which gives conditions on the σ-�eld of invariants sets, can be sometimes found in the
literature, see e.g. Cressie (1993, page 54) or Adler (1981, page 143).

De�nition 2.24 – Ergodic property. Let m,p ∈ N∗ and Vn ↑ Rd . The SRF Z is called
ergodic if

lim
n→+∞

1
|Vn |

∫
Vn

P
[ (
Z(x1), . . . ,Z(xm)

) ∈ A, (
Z(y1 +h), . . . ,Z(yp +h)

) ∈ B]
dh

= P
[ (
Z(x1), . . . ,Z(xm)

) ∈ A]
P
[ (
Z(y1), . . . ,Z(yp )

) ∈ B]
,

(2.33)

for any x1, . . . ,xm ,y1, . . . ,yp ∈ Rd and any Borel sets A ⊂ Rm and B ⊂ Rp .

The ergodic property means that the event { (Z(x1), . . . ,Z(xm)) ∈ A} and the event { (Z(y1 +
h), . . . ,Z(yp +h)

) ∈ B} become, on spatial average, asymptotically independent.

Remark 2.25 If Z has �nite second order moments and satis�es Eq. (2.33) then it is
ergodic in the mean. This is a consequence of the von Neumann’s mean ergodic theorem
extended to Rd , see Wiener (1939) or Dunford (1939a,b).

The mixing property de�ned next is a stronger notion of asymptotic independence.
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De�nition 2.26 – Mixing property. Let m,p ∈ N∗ and h ∈ Rd . The SRF Z is called
mixing if

lim
‖h ‖→+∞

P
[ (
Z(x1), . . . ,Z(xm)

) ∈ A, (
Z(y1 +h), . . . ,Z(yp +h)

) ∈ B]
= P

[ (
Z(x1), . . . ,Z(xm)

) ∈ A]
P
[ (
Z(y1), . . . ,Z(yp )

) ∈ B]
,

for any x1, . . . ,xm ,y1, . . . ,yp ∈ Rd and any Borel set A ⊂ Rn and B ⊂ Rm .

Remark 2.27 As mentioned above, mixing is a stronger notion of asymptotically inde-
pendence than ergodicity: if Z is mixing then it is ergodic too. This can easily be established
like in the proof of the Cesàro mean convergence theorem.

Remark 2.28 Let Z be a SRF. If Z is mixing (resp. ergodic) then Iz is mixing (resp.
ergodic) too, for any z ∈ (0,+∞).

In a one-dimensional framework (d = 1), ergodic and mixing properties of max-stable SRF’s
have been studied extensively by Stoev (2008, 2010), Kabluchko (2009) and Kabluchko and
Schlather (2010). It has been shown that such properties can be characterized by some con-
ditions on the extremal coe�cient function, see e.g. Theorem 3.1 and 3.2 in Kabluchko and
Schlather (2010). It seems that these results can be generalized to higher dimensions (d > 1).
This is done in Wang et al. (2013) for ergodicity, and this is claimed by Dombry and Kabluchko
(2017) for both ergodic and mixing properties. However, the proof of the extension to higher
dimensions is not provided in the paper.

Theorem 2.29 – Stoev (2008), Kabluchko and Schlather (2010). Let Z be a simple
max-stable SRF on Rd with extremal coe�cient function θ and Vn ↑ Rd . The following
two propositions hold :

(i) Z is ergodic if and only if lim
n→+∞

1
|Vn |

∫
Vn

2 − θ(h)dh = 0,

(ii) Z is mixing if and only if lim
‖h ‖→+∞

2 − θ(h) = 0.

First, notice that

lim
‖h ‖→+∞

2 − θ(h) = 0⇒ lim
n→+∞

1
|Vn |

∫
Vn

2 − θ(h)dh = 0,

which is coherent with Remark 2.25. The second proposition in Theorem 2.29 is not surprising.
Indeed, lim

‖h ‖→+∞
θ(h) = 2 means that the margins Z(0) and Z(h) are asymptotically indepen-

dent. Now, from Resnick (1987, Corollary 5.25), the margins of Z are pairwise independent if
and only if, for any n ∈ N∗ and any x1, . . . ,xn ∈ Rd , the random variables Z(x1), . . . ,Z(xn)
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2.3 connecting the integral range with the extremal coefficient function

are mutually independent. Hence, some properties of the �nite-dimensional distributions of
Z can be characterized in term of θ. However, contrary to the correlation function of a Gaus-
sian RF, we shall stress that the ECF does not determine the law of Z.

The two propositions in Theorem 2.29 help deduce ergodic and mixing properties from The-
orem 2.19. Let Z be as in Theorem 2.19 and assume that the conditions (i)-(iii) are ful�lled.
In particular, (iii) implies that

lim
n→+∞

1
|Vn |

∫
Vn

2 − θ(h)dh = 0,

i.e. Z is ergodic and therefore so is Iz for any z ∈ (0,+∞). Futhermore, if we assume that
lim

‖h ‖→+∞
θ(h) exists then (iii) also gives

lim
‖h ‖→+∞

2 − θ(h) = 0, (2.34)

i.e. Z is mixing and thus so is Iz , z ∈ (0,+∞). This last implication can be proven in the same
way as the one in Eq. (2.15). Similarly to the Gaussian case, a �nite integral range Az is thus
a stronger condition than the ergodic and mixing properties.

In addition, proposition (ii) in Theorem 2.29 also helps show the following result.

Proposition 2.30 – Mixing and mean-ergodicity properties. Set z ∈ (0,+∞) and let
Z be an isotropic and simple max-stable SRF on Rd , with extremal coe�cient function θ.
If lim
‖h ‖→+∞

θ(h) exists then Iz is mean-ergodic if and only if Z is mixing.

This proposition modestly generalizes Corollary 3 in Koch (2017), who obtains this result
when Z is de�ned on R2. To prove this result, we have also extended Corollary 1 in Koch
(2017), which only involves disks or squares, to more general sets. Both proofs are deferred to
Subsection 2.6.4. As it is noticed in Koch (2017), under the conditions of Proposition 2.30, Z (or
Iz ) is mixing if and only if it is ergodic. This equivalence may be retrieved using Theorem 2.29.
We shall now give some examples of max-stable SRF’s that satisfy or not the conditions in
Theorem 2.19.

2.3.2 Examples

To illustrate Theorem 2.19 we provide several well-known models of simple max-stable SRF’s
that either satisfy or do not satisfy the conditions (i)-(iii). Realizations of such processes are
shown in Figure 2.6.
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Example 2.31 – Smith process. The Smith process was �rst considered by Smith (1990).
It is a stationary M2 process with shape function f satisfying f (x) = φΣ,d (x) for any
x ∈ Rd , where φΣ,d stands for the density function of a centred Gaussian d-variate vector
with covariance matrix Σ. When Σ is the identity matrix, the density function is simply
denoted by φd , and by φ in the unidimensional case. For any h ∈ Rd , the ECF is thus given
by (see Eq. 3.1 in Smith, 1990)

θ(h) = 2Φ
( ‖h‖Σ−1

2

)
,

where Φ corresponds to the standard normal cumulative distribution function. It follows
that

0 ≤
∫

Rd
2 − θ(h)dh = 2

∫
Rd

∫
R+

φ(t) 1 {2t ≥ ‖h‖Σ−1} dtdh

= 2
∫

R+

φ(t)
∫

Rd
1 {2t ≥ ‖h‖Σ−1} dhdt ,

where the last equality is a consequence of Fubini-Tonelli theorem. Since all norms are
equivalent in Rd , there exists C ∈ (0,+∞) such that, for every h ∈ Rd , ‖h‖Σ−1 ≥ C‖h‖.
Thus, ∫

Rd
1 {2t ≥ ‖h‖Σ−1} dh ≤

∫
Rd

1 {2t ≥ C‖h‖} dh. (2.35)

Switching to hyperspherical coordinates in the integral on the right hand side, Eq. (2.35)
becomes ∫

Rd
1 {2t ≥ ‖h‖Σ−1} dh ≤ ωd

(
2t
C

)d
,

where ωd represents the volume of the unit d-ball. Consequently,

0 ≤
∫

Rd
2 − θ(h)dh ≤ 2d+1ωd

Cd

∫
R+

tdφ(t)dt < +∞, (2.36)

since φ is even and all moments of a standard Gaussian random variable are �nite. The
assumption (iii) in Theorem 2.19 is thus satis�ed by a Smith process. Observe that, when
Σ equals the identity matrix Id , Eq. (2.36) becomes∫

Rd
2 − θ(h)dh = 2d+1ωd

∫
R+

tdφ(t)dt = 4 (2π)d2 Γ(d)
d

[
Γ

(
d
2

)]2 , (2.37)

where Γ stands for the Gamma distribution. Since f is Σ−1-radially symmetric and non-
increasing, all these results can also be retrieved from Corollary 2.22.

Example 2.32 –M2 process with Cauchy density shape function. Let Z be an isotropic
stationary M2 process de�ned on Rd , where the shape function f is the multivariate
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Cauchy density function with location vector m = 0 and scale matrix Σ; it is symmetric
and positive-semide�nite. Precisely, for every h ∈ Rd ,

f (h) =
[
Γ

(
1
2

)
π
d
2
√
det(Σ)

]−1 Γ
(
d+1
2

)
[
π

(
1 + ‖h‖2

Σ−1

)] d+1
2
, (2.38)

where det(Σ) denotes the determinant of Σ. Let X ∼ f and denote by XT its transpose. It
is known that, for any h ∈ Rd , the random variable XTh is distributed according to an
univariate Cauchy distribution, see e.g. Lee et al. (2014, Theorem 1). In the same way, the
bivariate distribution of a Smith process is calculated in Smith (1990, Equation 3.1). It can
be found that, for any h ∈ Rd ,

θ(h) = 2G
( ‖h‖Σ−1

2

)
,

where G stands for the c.d.f. of a standard Cauchy distribution, see Subsection 2.6.5 for the
proof. Let д : x ∈ R 7→ [

π(1 + x2)]−1 be the associated density function, and contrary to
the previous example, consider C ∈ (0,+∞) such that ‖h‖Σ−1 ≤ C‖h‖ for every h ∈ Rd .
Then,

0 ≤ 2d+1ωd
Cd

∫
R+

tdд(t)dt ≤
∫

Rd
2 − θ(h)dh. (2.39)

The integral on the left hand side is in�nite, thus so is that on the right hand side. As a
result, assumption (iii) in Theorem 2.19 is not ful�lled by the max-stable SRF Z. Again,
since f is Σ−1-radially symmetric and non-increasing, this result can also be established
from Corollary 2.22. Notice however that, since θ(h) → 2 as ‖h‖ → +∞, Z is mixing
according to Theorem 2.29. More generally, it is known from Dombry and Kabluchko
(2017, Theorem 3) that any M2 process with locally bounded sample paths is mixing.

Example 2.33 – Extremal Gaussian process. Introduced �rst by Schlather (2002), the
extremal Gaussian process is a simple max-stable SRF where the spectral process Y in
Eq. (1.13) is given by

∀x ∈ Rd Y(x) =
√
π

2 max (0,W(x)) ,

where W is a Gaussian SRF with standard Gaussian margins and correlation function ρ.
For any h ∈ Rd , the ECF is thus given by (see e.g. Schlather and Tawn, 2003)

θ(h) = 1 +
√

1 − ρ(h)
2 .
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Recall now that ρ is a positive-semide�nite function. If it is isotropic, then ρ(h) ≥ −1/d
for any h ∈ Rd (see Matérn, 1986, page 13). Thus, when d > 1, we obtain that

∀h ∈ Rd θ(h) ≤ 1 +
√

d + 1
2d < 2. (2.40)

Hence, according to Theorem 2.29, the extremal Gaussian process is neither mixing nor
ergodic. In addition, (i)-(iii) are not satis�ed. From Eq. (2.27), we could also have remarked
that

Var [Iz (Vn)] =
1
|Vn |2

∫
Rd

Kn(h)
(
exp{−θ(h)/z} − exp{−2/z}) dh,

for any z ∈ (0,+∞). Since
∫

Rd
Kn(h)dh = |Vn |2, it follows from Eq. (2.40) that

Var [Iz (Vn)] ≥ exp{−c/z} − exp{−2/z} > 0,

where c = 1 +
√

d + 1
2d . Thus, Iz is not mean-ergodic, neither is Z, which is ultimately not

mixing. We shall remark that, under some conditions, Proposition 2.42 gives an expression
for lim

n→+∞
Var [Iz (Vn)].

Example 2.34 – Brown-Resnick processes. First introduced by Brown and Resnick
(1977) and then generalized by Kabluchko et al. (2009), the Brown-Resnick process is a
simple max-stable SRF where the spectral process Y in Eq. (1.13) is given by

∀x ∈ Rd Y(x) = exp
{
W(x) − σ

2
W(x)
2

}
, (2.41)

where (W(x))x ∈Rd is an intrinsically Gaussian RF such that E [Y(x)] = 0 and σ2W(x) =
Var [W(x)] for all x ∈ Rd . Its distribution depends only on its semivariogram de�ned by

∀x ,h ∈ Rd γ(h) = 1
2Var [W(x +h) −W(x)] . (2.42)

For every h ∈ Rd , the ECF is thus equal to

θ(h) = 2Φ
(√

γ(h)
2

)
,

where Φ still denotes the cumulative distribution function of the standard normal distribu-
tion (see Kabluchko et al., 2009, page 2063). Hence, if γ is bounded above by a constant
c < +∞ then so is θ by a constant c̃ < 2. Then, like in the previous example, for any
z ∈ (0,+∞) the excess RF Iz is not mean-ergodic and Z is neither mixing nor ergodic. In
addition, (i)-(iii) are not satis�ed. This is the case for the so-called geometric Gaussian

process (see e.g. Davison et al., 2012) where W is a stationary Gaussian RF with variance
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Var [W(x)] = σ2W < +∞, for any x ∈ Rd . According to Eq. (1.17), θ is then bounded above
by 2Φ (σW/2) < 2. On the contrary, if lim

‖h ‖→+∞
γ(h) = +∞ then lim

‖h ‖→+∞
θ(h) = 2, i.e. Z is

mixing. Further, Dombry and Kabluchko (2018, Example 11) remark that (iii) is satis�ed
provided that the following condition is met:

lim inf
‖h ‖→+∞

γ(h)
ln (‖h‖) > 4d .

We try next to recover the behaviour of the integral ranges Az , for z ∈ (0,+∞), of these
max-stable SRF’s, using the estimation method proposed in Subsection 2.2.3.

2.3.3 Illustrations

Set d = 2 and consider the following max-stable SRF’s, some realizations of which are dis-
played in Figure 2.6:

(i) a Smith process with shape function φ2;

(ii) a M2 process with Cauchy density shape function as in Eq. 2.32;

(iii) an extremal Gaussian process with ρ(h) = exp{−‖h‖}, for any h ∈ R2;

(iv) a geometric Gaussian process where the semivariogram γ in Eq. (2.42) satis�es γ(h) =
1 − exp

{
−
√
‖h‖

}
, for any h ∈ R2. This corresponds to a stable covariance function

with parameter α = 1/2.

Each of these processes is simulated 200 times on a regular grid 1500 × 1500 with unit mesh
size, see Remark 2.36 for more details on the simulation algorithms. Let the thresholds z1 and
z2 be equal to the median and the third quartile of a unit Fréchet distribution, respectively.
That is z1 ≈ 1.44 and z2 ≈ 3.48. For any simulation of the max-stable SRF, the exceedance
�elds Iz1 and Iz2 are then computed. Let V be a 1500 × 1500 square and, as in Example 2.15
and Example 2.16, set N ∈ N∗ such that all the domains of the sequence (Vn)n∈{1, ...,N}, which
divide V, are rectangles with (integer) side lengths less than 150 and with kn ≥ 30. For n ∈
{1, . . . ,N}, the quantities Az1,n and Az2,n are �nally evaluated using the method proposed in
Subsection 2.2.3. The left graphics in Figure 2.7 and Figure 2.9 display the mean curve obtained
by avering the 200 estimates Âz1,n , for each n ∈ {1, . . . ,N}. It also shows the corresponding
90% con�dence envelope built by computing, for each n ∈ {1, . . . ,N}, the sample quantiles
of order 0.05 and 0.95 of the 200 estimates Âz1,n . The same information is shown in the right
graphics when considering the threshold z2. Figure 2.7 is consistent with the expected results.
The stabilization of the curves in Figure 2.7(a) suggests that the integral ranges Az1 and Az2

are �nite for the Smith process, with Az1 ≤ Az2 . Notice also that, as anticipated, the mean
curves for both thresholds z1 and z2 are lower than the limits A∞ :

∫
Rd

2 − θ(h)dh = 4π (see
Eq. (2.37)). In Figure 2.7(b), the increasing curves indicate that they are possibly in�nite for
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(a) Smith process (i) (b) M2 process with Cauchy density (ii)

(c) Extremal Gaussian process (iii) (d) Geometric Gaussian process (iv)

Figure 2.6 – Realizations ofmax-stable RF’s on a grid 600×400, withmesh size equal to 0.05. For viewing
purposes, the processes have been transformed to obtain margins with standard Gumbel distributionΛ (see

Theorem 1.3)
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the M2 process with Cauchy density shape function. Notice that the 90% con�dence envelope
is large; that is why it looks like the mean curve is �attening for large volumes. When it is
plotted without the con�dence band, the positive trend is more evident (see Figure 2.8).
On the contrary, Figure 2.9 contradicts what has been shown in the previous subsection, since
it suggests that Az1 and Az2 are �nite for the extremal and the geometric Gaussian processes.
The reason for this inconsistency is that the exceedance �elds associated with these max-
stable SRF’s are not mean-ergodic. Indeed, recall that, for any z ∈ (z1, z2) and any n ∈
{1, . . . ,N}, the estimation of Az,n requires the evaluation of Var [Iz (Vn)] and σ2z (see Eq. (2.30)).
In accordance with the estimation method proposed in Subsection 2.2.3, the latter are esti-
mated by a discretized version of

S2z (Vn |V) =
1
kn

kn∑
i=1

[
Iz (Vi

n) − Iz (V)
]2

and
S2z (·|V) =

1
|V|

∫
V
[Iz (x) − Iz (V)]2 dx ,

the expectations of which are respectively

E
[
S2z (Vn |V)

]
= Var [Iz (Vn)] −Var [Iz (V)] , (2.43)

and
E

[
S2z (·|V)

]
= σ2z −Var [Iz (V)] . (2.44)

By construction of (Vn)n∈{1, ...,N}, the square V can be considered as very large relatively
to each Vn . As already mentioned, when Iz is mean-ergodic, the variance Var [Iz (V)] can
be omitted in Eq. (2.43) and Eq. (2.44), so that S2z (Vn |V) and S2z (·|V) may be considered as
unbiased estimators of the variances. On the contrary, when Iz is not mean-ergodic, it cannot
be neglected; this is illustrated next. We set z = z1 and, for each max-stable SRF (i)-(iv), we
compute, from the 200 simulations, an empirical estimate of σ2z , Var [Iz (V)] and Var [Iz (Vn)],
for di�erent squares Vn ⊂ V (see Remark 2.35 for more details). This provides empirical
estimates of the relative di�erences of variances

Var [Iz (Vn)] −Var [Iz (V)]
Var [Iz (Vn)]

(2.45)

and
σ2z −Var [Iz (V)]

σ2z
, (2.46)

which are plotted in Figure 2.10. For the Smith process and the M2 process with Cauchy
density chape function, these relative di�erences are very close to 1, even for large subdo-
mains Vn . On the contrary, for the extremal and geometric Gaussian processes, the relative
di�erence (2.46) is further away from 1 and, most importantly, the relative di�erence (2.45)
rapidly decreases to 0. This sharp decrease entails, in average, a very large underestimation
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Figure 2.7 – The mean curve (black dots) and the corresponding 90% con�dence envelope (blue stars)

for thresholds z1 (on the left) and z2 (on the right). They are computed from 200 simulations of each

max-stable SRF (i) (on the top) and (ii) (on the bottom), on a grid 1500 × 1500 with mesh size equal to 1.
Several points lie on the same verticals; they correspond to rectangular subdomains with same area but

with di�erent side lengths.
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Figure 2.8 – The mean curve for thresholds z1 (on the left) and z2 (on the right) for the max-stable RF

(ii). It is computed from 200 simulations of this process on a grid 1500 × 1500 with mesh size equal to 1.
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Figure 2.9 – The mean curve (black dots) and the corresponding 90% con�dence envelope (blue stars) for

thresholds z1 (on the left) and z2 (on the right). They are computed from 200 simulations of max-stable

SRF’s (iii) (on the top) and (iv) (on the bottom), on a grid 1500 × 1500 with mesh size equal to 1.
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(c) Extremal Gaussian Process
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(d) Geometric Gaussian Process

Figure 2.10 – Empirical estimates of the relative di�erence of variances (2.45) (blue dots), when z = z1.

For a better visualization, a logarithmic scale is used for the x-axis. By construction of the grid, the red dot

with coordinate |Vn | = 1 actually corresponds to the relative di�erence of variances (2.46), see Remark 2.35.

of Var [Iz (Vn)], when the latter is evaluated from a single realization of Z by (a discretized ver-
sion of) S2z (Vn |V). Thus, it may compensate for the increase of |Vn | when n grows, thereby ex-
plaining the stabilization of the curves in Figure 2.9. Using i.i.d. observations to estimate Az,n

obviously avoids this problem. From the previous empirical estimates of σ2z and Var [Iz (Vn)],
we compute an empirical estimate of Az,n , for the max-stable processes (iii) and (iv), and
for threshold z ∈ {z1, z2}. It is displayed in Figure 2.11 for the di�erent squares Vn ⊂ V: the
increasing curves suggest that the integral ranges Az1 and Az2 are in�nite for both max-stable
processes, which is now consistent with the results that have been established in the previous
subsection.

Remark 2.35 – Empirical estimates. Recall that V is a square of side 1500. We select
n = 50 di�erent squares Vn ⊂ V with side length less than 150 and such that kn ≥ 30. In
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Figure 2.11 – Empirical estimates Âz,n of the integral range Az for thresholds z = z1 (on the left) and

z = z2 (on the right), computed from 200 simulations of max-stable SRF’s (iii) (on the top) and (iv) (on
the bottom), on a grid 1500 × 1500 mesh size equal to 1.

67



from geostatistics to evt: integral range and extremal coefficient function

particular |V1 | = 1. Now, let n ∈ {1, . . . , 50} and z ∈ (0,+∞). For each max-stable process
(i)-(iv), we want to estimate Var [Iz (Vn)] using the i.i.d. information from the 200 simula-
tions. For this, we �x in each simulation the same square Vn to compute an empirical and
unbiased estimation of this variance. Notice that, since the simulations are performed on a
grid G, we cannot compute Iz (Vn) but only a discretized version of it, i.e.

∑Kn
i=1 Iz (xi ), if we

suppose that Vn ∩G = {x1, . . . ,xKn }. Hence, we actually perform an empirical estimation
of the variance of this discretized version, that we consider also as an empirical estimation
of Iz (Vn). We shall also point out that, when |Vn | = 1, then Vn ∩ G is reduced to a single
point, since the mesh size of the grid is equal to 1. In practice, estimating Var [Iz (Vn)]when
|Vn | = 1 thus amounts to estimating σ2z .

Remark 2.36 – Simulation algorithms. We shall make some comments about the al-
gorithms used to generate realizations of the max-stable RF’s (i)-(iv). The �rst process is
simulated exactly by the algorithm proposed in Oesting et al. (2018), which is based on a
normalized spectral representation. This algorithm is easy to use for M2 processes and it is
implemented in the package Randomfields in R. We also use the package Randomfields to
simulate the RF’s (iii) and (iv). For the former process, it is based on the algorithm proposed
in Schlather (2002). Since the spectral process Y associated with Z is not a.s. bounded, it is
approximated by a bounded one; this results in non-exact simulations. Even so, as shown
in Oesting et al. (2015), the accuracy of this procedure is quite good. For the process (iv),
the package uses an appropriate method within those discussed in Oesting et al. (2012). The
latter do not produce exact simulations either. Hence, we shall at least check whether the
margins are (approximately) unit Fréchet. We generate 1000 realizations of the RF (iv) on a
grid 50× 50, with mesh size equal to 0.2. Then, we randomly pick a point in each realization
and, for better visualisation, we consider its logarithm. This results in a vector of 1000 val-
ues, the empirical quantiles of which are compared to the quantiles of the standard Gumbel
distribution Λ in Figure 2.12. Let θ be the ECF of the process (iv). The �gure also shows an
estimation of the latter, computed from the 1000 realizations. This estimation is obtained
by using the F-madogram estimator (see Chapter 3), which is computed with the function
fmadogram of the package SpatialExtremes in R. These two graphs indicate that the pro-
cedure gives quite accurate results. We shall remark that Dombry et al. (2016) propose an
algorithm, based on the so-called extremal functions, which carries out exact simulations
of max-stable RF’s, including the Brown-Resnick processes. However, their algorithm can
become very time-consuming when simulating on a dense grid; that is why we do not use
it for the geometric Gaussian process. Alternatively, we also have developed an algorithm
to perform exact simulations of M2 processes with radially symmetric and non-increasing
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Figure 2.12 – Diagnostic plots based on 1000 realizations of the max-stable process (iv) on a grid 50× 50,
with mesh size equal to 0.2. On the left: Q-Q plot of the empirical distribution (after logarithmic transfor-

mation) against the standard Gumbel distributionΛ. On the right: the ECF θ (red line) in comparison to an

empirical estimation θ̂ (blue circles), computed from the F-madogram estimator. We select 25 locations on
the grid 50× 50, which remain the same in each simulation. Then, for each pair of points, we calculate the

F-madogram estimator using all the realizations. Several points lie on the same verticals: they correspond

to pairs of locations that are separated by the same distance.

shape function and, contrary to the �rst procedure, it has been designed for simulating in
a continuous domain of Rd , see Chapter 4. We use it to obtain realizations of the RF (ii).

We shall now detail how the concept of integral range and the results in Theorem 2.19 relate
to the work in Koch (2017).

2.4 applications in a spatial risk context

2.4.1 Some context

In August 2017, Hurricane Harvey a�ected a large area in Central America and Eastern United
States especially Texas and Louisina, and caused at least 107 deaths. It is one of the costliest
tropical cyclones on record, in�icting 125 billion USD in damage. A few weeks later, a little
further to the South, Hurricane Irma caused at least 134 deaths and extensive damage exceed-
ing 64.8 billion USD in value. An accurate evaluation of the environmental risk is thus of great
importance for civil authorities and for the insurance and reinsurance industries, especially
its spatial characteristics. For insurance companies, this is related to the question of spatial
diversi�cation. Recently, Koch (2017) propose a new notion of spatial risk measure that takes
into account the spatial dependence in risk assessment. It is summarized hereinafter.
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Let the process (Z(x))x ∈R2 model an environmental variable, which may be a source of risk
(e.g. the temperature, the wind speed or the rainfall amount). Consider also a damage function
D such that, for every x ∈ R2, D(Z(x)) represents the (economic) cost induced by Z at the
location x . It is assumed that (D(Z(x)))x ∈R2 satis�es Assumption 2.1 and Assumption 2.2.
The spatial risk measure introduced by Koch (2017) is based on the spatial aggregation of the
damage �eld over a region of interest:

RΠ : B → R

V 7→ Π

[
1
|V|

∫
V
D(Z(x))dx

]
,

where Π is a classical risk measure, e.g. the variance, the value-at-risk or the expected short-
fall. The paper also proposes a set of axioms regarding the spatial properties of the risk
measure RΠ . One of them is the so-called asymptotic spatial homogeneity of order −α, with
α ∈ (0,+∞). Let λ ∈ (0,+∞) and V ∈ B, and recall that λV corresponds to the image of V
after applying the homothety with center bV. This axiom states that

lim
λ→+∞

RΠ(λV) = K1 + K2 λ
−α + o (λ−α) , (2.47)

where the constants K1 ∈ R and K2 ∈ R∗ may depend on V. This equation helps quantify
the rate of spatial diversi�cation when the region of interest becomes large. Depending on
the value on α, it may be relevant, for an insurance company, to extend its activity to a new
geographical region.

Suppose now that Z is a simple stationary max-stable process with ECF θ. It may represent,
for instance, annual maxima of daily precipitation. Let also D be the indicator function above
a threshold z ∈ (0,+∞) and Π stand for the variance. Then, RΠ becomes

∀V ∈ B RΠ(V) = Var [Iz (V)] ; (2.48)

it is noted R2 in the sequel. In addition, de�ne

ς :=

√∫
R2

Cov [Iz (0, Iz (h)] dh.

We shall recall that the covariance function of Iz is given in Eq. (2.27). It is proven in Koch
(2017, Theorem 3) that if ∫

R2
2 − θ(h)dh < +∞,

then R2 satis�es Eq. (2.47) with α = 2, K1 = 0 and K2 =
ς2

|V | . This result is equivalent to the
implication (iii)⇒ (i) in Theorem 2.19; this stems from the link between the integral range
Az and the axiom of spatial homogeneity of order −2.

70



2.4 applications in a spatial risk context

2.4.2 The integral range, a relevant tool

Set z ∈ (0,+∞) and let again Z be a simple max-stable SRF in R2 with exceedance �eld
Iz . The correlation function and the variance of the latter are respectively denoted by ρz

and σ2z . Consider also a mapping д : R → R and let a ∈ R. As detailed e.g. in Koch (2017,
Appendix A.7), if for any nondecreasing sequence (λn)n∈N of positive real numbers satisfying
lim

n→+∞
λn = +∞,

lim
n→+∞

д(λn) = a,

then lim
λ→+∞

д(λ) = a. Hence, for any convex set V ∈ B, the risk measure R2 in Eq. (2.48)

satis�es the axiom of spatial homogeneity of order −2, with K1 = 0 and K2 =
ς2

|V | if and only
if

Var [Iz (λnV)] ∼
n→∞

σ2z
λ2n |V|

∫
R2
ρz (h)dh,

for any nondecreasing sequence (λn)n∈N of positive real numbers such that lim
n→+∞

λn = +∞.
That is, if and only if the integral range Az is �nite (see Eq. (2.13))

The concept of asymptotic homogeneity is larger than the notion of integral range, but work-
ing with the latter has many advantages. First, the proof of the implication (iii)⇒ (i) in The-
orem 2.19 is shorter and slightly easier than the proof of Theorem 3, proposition 3 in Koch
(2017), and does not require to work with convex sets in B. This is mainly because the prop-
erties of a sequence Vn ↑ Rd are exploited. Further, Az may be estimated with the method
provided in Subsection 2.2.3 without making any assumption on the simple max-stable SRF
Z, except that it is mean-ergodic. Indeed, we shall recall that its estimation in the case of
processes that are not mean-ergodic is problematic since it may lead to the wrong conclusion.
In addition, when Az is �nite, it can be used to assess the variance of Iz (V) when estimating
µz = P [Z((0) > z] from a single realization of Z on a large enough domain V. This may be of
great interest for insurance companies that want to evaluate some risks at a given location,
e.g. the risk of �ood.

Recently, Koch (2019, Theorem 6) extended the results in Koch (2017, Theorem 3) to a more
general damage �eld (D(Z(x)))x ∈R2 than the exceedance �eld we have focused on. In partic-
ular, it is not assumed to be stationary anymore, but only second-order stationary. It would
be interesting to retrieve this result when using the integral range. More generally, it would
be useful to better study the integral range of a second-order SRF Z. Questions of interest
are for instance: in which case the integral range is �nite whereas the correlation function of
Z is not integrable ? What does a null integral range say about the process Z ? This should
be investigated in a joint work with Erwan Koch. This ongoing collaboration mainly aims to
introduce the concept of integral range in an insurance context.
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2.5 discussion

The integral range is a geostatistical object that helps characterize the statistical �uctuations
of a (second-order) stationary random �eld at large scale. When it is �nite and does not vanish,
it can be interpreted as the spatial scale of this �eld, which is ultimately �rst-order ergodic.
Let Z be a simple max-stable SRF and �x a threshold z ∈ (0,+∞). We have found that the
integral range Az of the corresponding exceedance �eld above z is intimately related to the
extremal coe�cient function θ of Z. In Theorem 2.19, we revealed a su�cient and necessary
condition on the latter to guarantee that the former is �nite. This condition has been illus-
trated on a collection of standard max-stable models. It has also been linked to the ergodic
and mixing properties of max-stable processes. When lim

‖h ‖→+∞
θ(h) exists, we showed that if

Az is �nite then Z is mixing, and thus ergodic. At �rst glance, such a result is not common, ex-
cept for Gaussian �elds. We can then surmise that a �nite integral range is a useful condition
when studying Z from only one set of spatial observations. As shown in the next chapter, this
is for instance a su�cient condition to ensure the consistence and the asymptotic normality
of a new nonparametric estimator of the ECF, when it is computed from a single and partially
observed realization of Z. In addition, Theorem 2.19 completes results established by Koch
(2017) in a spatial risk context, but which do not refer to the concept of integral range. This
illustrates the relevance of geostatistical tools for enriching extreme value analysis.

We have also provided a method to assess Az , with no prior knowledge on the ECF. This proce-
dure has been tested on simulated data. When Z is mean-ergodic, it performs well. However,
recall that the process has been simulated on large and dense grids. Except in some studies like
the heterogeneous material studies, the data are generally sparse. In such a case, the method
is likely to fail: this should be empirically and theoretically investigated in future works. Fur-
thermore, it has been shown that the procedure of estimation is not robust to the violation
of the mean-ergodicity assumption. Indeed, when Z is not mean-ergodic, the results indicate
that the integral range seems to be �nite, thus leading to the wrong conclusion. As pointed
out before, there does not exist any procedure to test the mean-ergodicity assumption when
observing only one realization of a spatial process, hence we currently do not know how to
overcome this di�culty.

We shall now suggest some natural extensions of the work presented in this chapter. First,
we think that Theorem 2.19 can be readily extended to max-in�nitely divisible (max-i.d.) pro-
cesses. Introduced by Balkema and Resnick (1977), this class of processes regroups each RF Z
such that, for any n ∈ N∗, there exists a process Y satisfying

Z f .d .d .
= max

i ∈{1, ...,n }
Yi ,
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where Y1, . . . ,Yn are i.i.d. replications of Y. This typically includes max-stable RF’s. Actu-
ally, the equivalence between pairwise independence and mutual independence of the �nite
dimensional distributions holds for max-id process and not only for max-stable processes
(see Resnick, 1987, Proposition 5.24). Besides, similarly to the extremal coe�cient function,
Kabluchko and Schlather (2010) also show that the bivariate distribution of a stationary max-
id RF Z relates to its ergodic and mixing properties. That is why we conjecture that the results
in Theorem 2.19 can be generalized to such processes. It would also be interesting to establish
similar results for Generalized Pareto processes. This is suggested by the "threshold stability
property" of Az revealed in Theorem 2.19: for �xed z ∈ (0,+∞), Az is �nite if and only if it is
�nite for every z ∈ (0,+∞).

It would also be worth improving the results established in this chapter. In Corollary 2.22,
we give a necessary and su�cient condition on a M2 process Z so that

∫
Rd

2 − θ(h)dh, and
thus Az , is �nite. More generally, is it possible to better identify the max-stable processes
for which Az < +∞ ? Consider a stationary Brown-Resnick RF Z, the distribution of which
depends on the semivariogram γ. According to Dombry and Kabluchko (2018, Example 11),∫

Rd
2 − θ(h)dh is �nite provided that the following condition is met:

lim inf
‖h ‖→+∞

γ(h)
ln (‖h‖) > 4d .

In the one-dimensional case, this condition guarantees that the process has a mixed moving
maxima representation, see Kabluchko et al. (2009, Remark 15). We can then wonder if a
stationary max-stable RF Z for which Az is �nite always has a mixed moving maxima rep-
resentation. Notice that the converse is false, since we have shown that a M2 process with
Cauchy density shape function has in�nite integral range Az . Let Y be the spectral process
associated to Z. From Dombry and Kabluchko (2017, Theorem 3), one idea would be to verify
if the following implication is true:∫

Rd
2 − θ(h)dh ⇒ lim

‖h ‖→+∞
Y(h) = 0 a.s .

or, at least, to determine which conditions guarantee this result. As shown in Dombry and
Kabluchko (2018), when Z has a.s. continuous sample paths, the condition lim

‖h ‖→+∞
Y(h) = 0

implies that Z is strongly β-mixing (in the sense given in the paper). This brings up an-
other question: how the concept of integral range relates to mixing coe�cients such as the
α-mixing, the β-mixing or the ϱ-mixing coe�cients. For two subsets V1,V2 ⊂ Rd , they mea-
sure how much (Z(x))x ∈V1 and (Z(x))x ∈V2 di�er from independence (see e.g. Doukhan (1994)
for a thorough review of mixing theory). When working with a unique realization, some stud-
ies required that these coe�cients vanish fast enough to 0 when the distance between V1 and
V2 goes to in�nity. This generally guarantees that the studied estimator are asymptotically
normal, see e.g. Lahiri et al. (1999), or Dombry and Eyi-Minko (2012).
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2.6 proofs

2.6.1 Integral range and nonnegative correlation function

Before tackling its proof, Proposition 2.8 is recalled for convenience.

Proposition Let Z be a second-order SRF, with measurable and nonnegative correlation
function ρ. Its integral range A always exists and equals

∫
Rd

ρ(h)dh ∈ [0,+∞].

Proof. Let Vn ↑ Rd . By assumption, the correlation function ρ is measurable. nonnega-
tive, thus

∫
Rd

ρ(h)dh always exists and is valued in [0,+∞]. Let us consider both the case∫
Rd

ρ(h)dh < +∞ and
∫

Rd
ρ(h)dh = +∞ separately. First, assume that

∫
Rd

ρ(h)dh is �-
nite. As stated by Theorem 2 p.401 in Lantuéjoul (1991), it implies that A exists and equals∫

Rd
ρ(h)dh. Now, assume that

∫
Rd

ρ(h)dh = +∞. If the integral range A exists, recall from
Eq. (2.12) that it is de�ned as

A = lim
n→+∞

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh.

For any n ∈ N, the map h 7→ ρ(h)Kn(h)/Kn(0) is a nonnegative measurable function of h
and for �xed h ∈ Rd , lim

n→+∞
ρ(h)Kn(h)/Kn(0) = ρ(h) according to Eq. (2.3). Therefore, by

Fatou’s lemma,
0 ≤

∫
Rd

ρ(h)dh ≤ lim inf
n→∞

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh.

By assumption,
∫

Rd
ρ(h)dh is in�nite thus, so are lim inf

n→∞

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh and ultimately

lim
n→+∞

∫
Rd

ρ(h) Kn(h)
Kn(0)

dh. The integral range Az exists and equals
∫

Rd
ρ(h)dh.

In �ne, it has be shown that
∫

Rd
ρ(h)dh always exists and is valued in [0,+∞] thus so does

A. In addition, we always have Az =

∫
Rd

ρ(h, z)dh. �

2.6.2 Correlation function behaviour

Let Z be a simple max-stable SRF. For �xed h ∈ Rd , recall that ρh stands for the function
z ∈ (0,+∞) 7→ ρ(h, z) ∈ [0, 1], where ρ is de�ned by Eq. (2.28). Alternatively, for �xed
z ∈ (0,+∞), ρz denotes the map h ∈ Rd 7→ ρ(h, z) ∈ [0, 1]. We can now tackle the proof of
Proposition 2.17 and Proposition 2.18, which are recalled for convenience.
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Proposition Let z ∈ (0,+∞). The map ρz is a continuous (thus measurable) nonnega-
tive function.

Proof. Set z ∈ (0,+∞) and recall that Z is assumed to be stochastically continuous. The non-
negativeness of ρz is straigthforward. Its continuity follows from the continuity of the func-
tion θ, see Strokorb and Schlather (2015, Lemma 23). In some cases, (almost everywhere) con-
tinuity may also be establish from Theorem 1.16 and Kabluchko and Schlather (2010, Propo-
sition 1) when d ≥ 2 and d = 1, respectively. �

Proposition Let h ∈ Rd . The map ρh is a continuous (thus measurable) nonnegative
and nondecreasing function with limits lim

z→0
ρh(z) = 1 {θ(h) = 1} and lim

z→+∞
ρh(z) = 2 −

θ(h).

Proof. Continuity and nonnegativeness are straigthforward. Let us analyze the variations of
ρh . For any z ∈ (0,+∞),

ρh(z) =
exp

{
2 − θ(h)

z

}
− 1

exp{1/z} − 1 .

When h is such that θ(h) = 1 (resp. θ(h) = 2), then ρh is constant equal to 1 (resp. 0).
Alternatively, when h is such that 1 < θ(h) < 2, then ρh is di�erentiable with derivative

ρ′h(z) =
exp{1/z}

z2 (exp{1/z} − 1)2
[
(θ(h) − 1) exp

{
2 − θ(h)

z

}
− (θ(h) − 2) exp

{
1 − θ(h)

z

}
− 1

]

for any z ∈ (0,+∞). The part in front of the brackets is positive. Denote by fh(z) the part
within the brackets. The function fh : (0,+∞) → R is di�erentiable, with derivative

f ′h(z) =
(θ(h) − 2) (1 − θ(h))

z2

[
exp

{
1 − θ(h)

z

}
− exp

{
2 − θ(h)

z

}]
, z ∈ (0,+∞),

which is always negative since 0 < 1 < θ(h) < 2. Therefore, fh is decreasing. Because it
also tends towards 0 as z → +∞, it is positive. Consequently, so is ρ′

h
and ρh is ultimately

increasing.
In �ne, for all h ∈ Rd , the nonnegative continuous function ρh is nondecreasing, bounded
from above by lim

z→+∞
ρh(z) = 2 − θ(h) and from below by lim

z→0
ρh(z) = 1 {θ(h) = 1}. �

2.6.3 Finite integral equivalence

Before handling Theorem 2.19 and Corollary 2.22, we start by establishing two intermediate
results, which are introduced herein-after. The �rst lemma gives a condition on the set D =
{h ∈ Rd : θ(h) = 1}, where θ still denotes the extremal coe�cient function of a simple
max-stable SRF Z, so that its volume is null.
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Proposition 2.37 The set D = {h ∈ Rd : θ(h) = 1} is a measurable set. In addition, if
it exists h ∈ Rd such that θ(h) , 1 then |D| = 0.

Proof. First, we shall prove that D is measurable. Consider the sequence (zn)n∈N of positive
real numbers such that lim

n→+∞
zn = 0. Letn ∈ N. From Proposition 2.17, we know that the map

ρzn is measurable. In addition, for any h ∈ Rd , we have lim
n→+∞

ρh(zn) = 1 {θ(h) = 1} by conti-
nuity of the function ρh , see Proposition 2.18. Conseqently, the map h ∈ Rd 7→ 1 {θ(h) = 1}
is measurable as the pointwise limit of a sequence of measurable functions, therefore so isD.
Now, assume that it exists h ∈ Rd such that θ(h) , 1. From Theorem 3 in Schlather and
Tawn (2003), it implies that the extremal coe�cient function θ is not di�erentiable, and thus
non locally constant, at the origin. We recall that θ(0) = 1. Let us prove that |D| = 0 by �rst
assuming the converse. This means that it exists a non degenerate d-dimensional interval
I ⊂ Rd such that θ(h) = 1, for any h ∈ I. Let A ⊂ Rd be a neighbourhood of 0 such
that it exits v ∈ Rd satisfying A + v ⊂ I and set h ∈ A. Then consider y,x ∈ Rd such
that y − x = h. By de�nition of A, it exists h1,h2 ∈ I whose di�erence h1 −h2 is also equal
to h, and thus x + h1 = y + h2. Since θ(h1) = θ(h2) = 1, we have a.s. Z(x) = Z(x + h1)
and Z(y) = Z(y + h2). By transitivity of the a.s. equality, it follows that Z(x) = Z(y) a.s.,
i.e. θ(h) = 1. The previous equality holds for any h ∈ A and thus contradicts the non-
di�erentiability of θ in 0. Consequently |D| = 0. �

The second intermediate result claims that Az is either �nite or in�nite for every z ∈ (0,+∞).

Lemma 2.38 If there exists z > 0 such that Az < +∞ (resp. = ∞), then Az < +∞ (resp.
= ∞) for all z ∈ (0,+∞).

Proof. For �xed z1 ∈ (0,+∞) assume that Az1 < +∞ and let z2 ∈ (0,+∞).
— When z2 ≤ z1, as stated by Proposition 2.18, the function ρh is nonnegative and

nondecreasing, hence 0 ≤ ρ(h, z2) ≤ ρ(h, z1). Thus, according to Proposition 2.8,
0 ≤ Az2 ≤ Az1 < +∞.

— When z2 > z1, the inequalities 0 ≤ exp
{
2 − θ(h)

z2

}
− 1 ≤ exp

{
2 − θ(h)

z1

}
− 1 hold. In

addition, from Proposition 2.8, Az1 < +∞ is equivalent to
∫

Rd
exp

{
2 − θ(h)

z

}
− 1dh <

+∞. As a consequence, 0 ≤ Az2 ≤ Az1 < +∞.
We prove the in�nity case by contraposition. �

We are now fully equipped to prove Theorem 2.19, the statement of which is recalled below.

76



2.6 proofs

Theorem – Finite integral equivalence. Let Z be a simple max-stable SRF with extremal
coe�cient function θ and, for any z ∈ (0,+∞), denote by Az the integral range of the
associated exceedance �eld Iz . The following assertions are equivalent:

(i) ∃ z ∈ (0,+∞) Az < +∞,

(ii) ∀ z ∈ (0,+∞) Az < +∞,

(iii) A∞ :=
∫

Rd
2 − θ(h)dh < +∞.

If these conditions are ful�lled, the mapping z ∈ (0,+∞) 7→ Az ∈ [0,+∞) is continuous and
nondecreasing with lim

z→0
Az = |D| and lim

z→+∞
Az = A∞, where D := {h ∈ Rd : θ(h) = 1}.

Proof. We shall start by proving the equivalence between (i), (ii) and (iii), then assuming
that these conditions are true, we shall �nally study the variations of the integral range Az

with z ∈ (0,+∞).
Proof that (i) is equivalent to (ii). According to Lemma 2.38, (i) implies (ii) which proves
the equivalence.
Proof that (ii) implies (iii). Assume that (ii) holds and consider the case where z = 1.
Using the power series characterization of the exponential function, for any h ∈ Rd we have

(e − 1) ρ1(h) = exp {2 − θ(h)} − 1 =
+∞∑
n=1

1
n!
(2 − θ(h))n .

All the terms of this serie are nonnegative, thus (e − 1) ρ1(h) is greater than its �rst term
2 − θ(h). According to Proposition 2.8, (ii) holds if and only if

∫
Rd

ρz (h)dh < +∞, for any
z ∈ (0,+∞). Hence, it directly follows that∫

Rd
2 − θ(h)dh ≤ (e − 1)

∫
Rd

ρ1(h)dh < +∞.

Proof that (iii) implies (ii). Assume that (iii) holds and recall that D = {h ∈ Rd :

θ(h) = 1} is a measurable set, see Proposition 2.37. For all h ∈ Rd , Proposition 2.18 estab-
lishes that the nonnegative continuous function ρh is nondecreasing, bounded from above
by lim

z→+∞
ρh(z) = 2 − θ(h) and from below by lim

z→0
ρh(z) = 1 {θ(h) = 1}. Hence, for all

z ∈ (0,+∞), we have ρ0 ≤ ρz ≤ ρ∞ with ρ0 : h ∈ Rd 7→ 1 {θ(h) = 1} ∈ {0, 1} and
ρ∞ : h ∈ Rd 7→ 2 − θ(h)/1 ∈ [0, 1]. Recalling that (iii) holds, we have

|D| =
∫

Rd
ρ0(h)dh ≤

∫
Rd

ρz (h)dh ≤
∫

Rd
ρ∞(h)dh < +∞.

Using Proposition 2.8, we can conclude that Az < +∞ for any z ∈ (0,+∞).

Study of the function z ∈ (0,+∞) 7→ Az . Assume that (i)–(iii) are true. We know
from Proposition 2.8 that (i) implies Az =

∫
Rd

ρ(h, z)dh for any z ∈ (0,+∞). We have
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just seen that for all h ∈ Rd , the function ρh is nondecreasing, therefore so is the map
z ∈ (0,+∞) 7→ Az . The latter is also continuous as a consequence of the dominated con-
vergence theorem, see e.g. Theorem 16.8 p.112 in Billingsley (1995). First, we know from
Proposition 2.17 and Proposition 2.18 that for �xed z ∈ (0,+∞), the map ρz is measurable
and for all z ∈ (0,+∞), h ∈ Rd , |ρ(z,h)| ≤ 2 − θ(h) where, by (iii), the map h 7→ 2 − θ(h) is
integrable on Rd . The key element to remember is that the function ρh is continous for any
h ∈ Rd , i.e. , for any z ∈ (0,+∞) and for any sequence (zn)n∈N of positive real numbers such
that lim

n→+∞
zn = z, we have lim

n→+∞
ρh(zn) = ρh(z). Thus, applying the dominated convergence

theorem to the sequence of function (ρzn )n∈N we obtain that the map z ∈ (0,+∞) 7→ Az

is continuous for any z ∈ (0,+∞). Recalling now that the function ρh is bounded from
above by lim

z→+∞
ρh(z) = 2 − θ(h) and from below by lim

z→0
ρh(z) = 1 {θ(h) = 1}, it follows that

lim
z→+∞

Az = A∞ and lim
z→0

Az = |D| where D := {h ∈ Rd : θ(h) = 1}. Finally, since (iii) means
that there exists h ∈ Rd such that θ(h) , 1, Proposition 2.37 holds and lim

z→0
Az = 0. �

Remark 2.39 – Alternative proof. We shall present another proof for the equivalence
(ii)⇔ (iii) (or equivalently (i)⇔ (iii)), which may be easier then the one given above.

Proof that (i) implies (iii). Set z ∈ (0,+∞) and assume that (ii) holds. By convexity
of the exponential function, (y − x) exp{x} ≤ exp{y} − exp{x}, for any x ,y ∈ R, and
therefore,

0 ≤ 2 − θ(h)
z

exp{−2/z} ≤ exp{−θ(h)/z} − exp{−2/z},

for every h ∈ Rd . Besides, according to Proposition 2.8, (i) is equivalent to∫
Rd

ρz (h)dh < +∞.

It follows that∫
Rd

2 − θ(h)dh ≤
∫

Rd
exp{−θ(h)/z} − exp{−2/z}dh = σ2z

∫
Rd

ρz (h)dh < +∞.

Proof that (iii) implies (i). Set z ∈ (0,+∞) and consider the function x ∈ R 7→
|x | exp{|x |} − | exp{x} − 1|. It can be easily shown that the latter is nonnegative, and con-
sequently, for every h ∈ Rd ,

0 ≤
����exp

{
2 − θ(h)

z

}
− 1

���� ≤ |2 − θ(h)|z
exp

{ |2 − θ(h)|
z

}
.

Since 2 − θ(h) ≥ 0, it follows that

0 ≤ exp
{
2 − θ(h)

z

}
− 1 ≤ 2 − θ(h)

z
exp {2/z} .

78



2.6 proofs

Hence,

(exp{1/z} − 1)
∫

Rd
ρz (h)dh ≤

exp{1/z} − 1
z

exp {2/z}
∫

Rd
2 − θ(h)dh < +∞,

and using Proposition 2.8, we can conclude that Az < +∞.

Now, let us now prove Corollary 2.22 which is recalled below for convenience.

Corollary Let Z be a M2 process on Rd and Az be the integral range of the corre-
sponding exceendance �eld above a threshold z ∈ (0,+∞). Let also Σ be a symmetric and
positive-semide�nite d × d matrix, and X = (X1, . . . ,Xd ) ∼ f , where f is the associated
shape function in Eq. (2.32). If f is Σ-radially symmetric and non-increasing, then the fol-
lowing proposition are equivalent

(i) ∀z ∈ (0,+∞) Az < +∞,

(ii) E{‖X‖d } < +∞,

(iii) ∀i ∈ {1, . . . ,d} E
[|Xi |d

]
< +∞.

In addition, when Σ is the identity matrix,

A∞ :=
∫

R

2 − θ(h)dh = 2ωd E{‖X‖d }.

Proof. Let Z be a M2 process. By de�nition, θ(h) =
∫

Rd
max (f (y), f (y +h)) dy, for any

h ∈ Rd (see De�nition 2.20). We thus have∫
Rd

2− θ(h)dh =
∫

Rd

∫
Rd

min (f (u), f (u +h)) du dh =
∫

Rd

∫
Rd

min (f (u), f (u +h)) dh du,

where the last inequality is obtained by using the Fubini-Tonelli theorem. With substitution
v = h +u, it yields∫

Rd
2 − θ(h)dh =

∫
Rd

∫
v :f (u)≥f (v)

f (v)dvdu +
∫

Rd

∫
v :f (u)<f (v)

f (u)dvdu. (2.49)

Hence,
∫

R

2− θ(h)dh < +∞ if and only if both integrals in Eq. (2.49) are �nite. Now, let Σ be
a symmetric and positive-semide�nite d ×d matrix, and suppose that the shape function f is
Σ-radially symmetric and non-increasing (see De�nition 2.21); it means that the level sets of
f are d-ellipsoids centred in 0. Considering the �rst part of Eq. (2.49), it yields∫

Rd

∫
v : f (u)≥f (v)

f (v)dvdu =
∫

Rd

∫
Rd

f (v) 1 {‖u‖Σ ≤ ‖v‖Σ} dvdu

=

∫
Rd

f (v)
∫

Rd
1 {‖u‖Σ ≤ ‖v‖Σ} du dv

Besides, since all norms are equivalent in Rd , there exist C1,C2 ∈ (0,+∞) such that, for any
u ∈ Rd , C1‖u‖ ≤ ‖u‖Σ ≤ C2‖u‖. Thus, for any v ∈ Rd ,

0 ≤
∫

Rd
1 {C2‖u‖ ≤ C1‖v‖} du ≤

∫
Rd

1 {‖u‖Σ ≤ ‖v‖Σ} du ≤
∫

Rd
1 {C1‖u‖ ≤ C2‖v‖} du.
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Write X = (X1, . . . ,Xd ) the random vector with probability density distribution f and let ωd
represents the volume of the unit d-ball. It then follows

0 ≤ ωd
(
C1
C2

)d
E

[
‖X‖d

]
≤

∫
Rd

f (v)
∫

Rd
1 {‖u‖Σ ≤ ‖v‖Σ} du dv ≤ ωd

(
C2
C1

)d
E

[
‖X‖d

]
.

(2.50)
Notice that the same bounds also hold for the second part of Eq. (2.49). Since

d∑
i=1

E
[
|Xi |d

]
≤ E

[
‖X‖d

]
≤ dd/2E

[
max(|X1 |d , . . . , |Xd |d )

]
≤ dd/2

d∑
i=1

E
[
|Xi |d

]
,

it thus follows that∫
R

2 − θ(h)dh < +∞ ⇔ E{‖X‖d } < +∞ ⇔ ∀i ∈ {1, . . . ,d}, E{|Xi |d } < +∞.
(2.51)

In �ne, when Σ is the identity matrix, remark that the bounds in Eq. (2.50) are equal, and
therefore ∫

R

2 − θ(h)dh = 2ωd E{‖X‖d }. (2.52)

�

Remark 2.40 In the more general case where the level sets of f are d-dimensional
ellipsoids centred in c ∈ Rd , i.e. for all x ∈ Rd , f (x) = f0

((x − c)tΣ(x − c)) , where f0 :

R+ → R+ is non-increasing, the results Eq. (2.51) and Eq. (2.52) still hold.

2.6.4 Mixing and mean-ergodicity properties

Before handling Proposition 2.30 we shall �rst prove the two following intermediate results.

Proposition 2.41 For any A ∈ B, denote by fA the probability distribution function
of the Euclidean distance between two independent points uniformly distributed on A. For
any A ∈ B, any λ ∈ (0,+∞) and any distance t ∈ (0,+∞) , it thus holds

fλA(λt) =
1
λ
fA(t),

Proof. For any A ∈ B, denote by FA the cumulative distribution function associated to fA.
Since fA = fA+y for every A ∈ B, every y ∈ Rd , it is enough to proove Proposition 2.41 only
for sets A ∈ B with barycenter bA = 0. Consider such a set and let λ ∈ (0,+∞). For every
x ∈ Rd , t ∈ (0,+∞), we shall �rst remark that

|λA∩ B(x , t)| = |λA∩ λ0B (x/λ, t/λ) | = |λ0 (A∩ B (x/λ, t/λ)) | = λd |A∩ B (x/λ, t/λ) |,
(2.53)
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The last inequality comes from the Lebesgue measure properties. Now, let X and Y be two
independent random variables uniformly distributed on λA. For any distance t ∈ (0,+∞),we
thus have

FλA(t) = P
[‖X − Y‖ ≤ t

]
=

∫
λA

|λA∩ B(x , t)|
|λA|2 dx =

1
λ2d

∫
λA

|A∩ B (x/λ, t/λ) |
|A|2 dx ,

according to Eq. (2.53). Then, the substitution u = x/λ in the last integral gives

FλA(t) =
∫
A

|A∩ B (u, t/λ) |
|A|2 du,

i.e. FλA(t) = FA(t/λ) for any t ∈ (0,+∞). Consequently, fλA(λt) =
1
λ
fA(t) for any t ∈

(0,+∞). �

Now, Proposition 2.41 enables us to generalize Corollary 1 in Koch (2017), which considered
only increasing sequence of disks or squares in R2, to higher dimensions and to set A ∈ B.
This is what is presented in the next proposition, the proof of which is entirely inspired by
the one in Koch (2017).

Proposition 2.42 Let Z be a simple max-stable and isotropic SRF de�ned on Rd , with
ECF θ. Since the latter is radially symmetric, there exists a function θ0 : (0,+∞) → [1, 2]
such that θ(h) = θ0 (‖h‖) for every h ∈ Rd . Now, consider a set A ∈ B with barycentre
bA ∈ Rd and a threshold z ∈ (0,+∞). If lim

‖h ‖→+∞
θ(h) exists then

lim
λ→+∞

Var [Iz (λA)] = exp


−

lim
λ→+∞

θ0(λ)
z



− exp

{
2
z

}
.

Proof. Let A ∈ B with barycentre bA ∈ Rd and λ ∈ (0,+∞). Since A is bounded, there exits a
ball Br (bA), with r ∈ (0,+∞), such that A ⊂ Br . Consequently, λA ⊂ λBλr (bA) and fλA(t) = 0
for, at least, any real t > 2λr . Now let z ∈ (0,+∞) and recall from Eq. (2.27) that

Var [Iz (λA)] =
1
|λA|2

∫
λA

∫
λA

exp
{
−θ(‖x −y‖)

z

}
− exp

{
2
z

}
dxdy. (2.54)

Notice also that |λA|2 can be thought of as the non discrete analogous of counting the total
number of pairs of points in λA in the �nite case. Similarly, |λA|2 fλA(t) can be thought of as
the number of pairs of points separated by the distance t ∈ (0,+∞) in λA. Since θ is radially
symmetric, the right side of Eq. (2.54) may be thus rewritten∫ 2λr

0
fλA(t)

(
exp

{
−θ0(t)

z

}
− exp

{
2
z

})
dt ,

and given Proposition 2.41, Eq. (2.54) becomes

Var [Iz (λA)] =
∫ 2r

0
fA(t)

(
exp

{
−θ0(λt)

z

}
− exp

{
2
z

})
dt .
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Now, as shown in Remark 2.44, fA is bounded above by 2πd−1/|A|. This allows us to use the
Lebesgue’s dominated convergence Theorem to get

lim
λ→+∞

∫ 2r

0
fA(t)

(
exp

{
−θ0(λt)

z

}
− exp

{
2
z

})
dt =

∫ 2r

0
fA(t) ©­«

exp


−

lim
λ→+∞

θ0(λ)
z



− exp

{
2
z

}ª®¬
dt .

Since fA is a density function, we �nally obtain

lim
λ→+∞

Var [Iz (λA)] = exp


−

lim
λ→+∞

θ0(λ)
z



− exp

{
2
z

}
.

�

Using Proposition 2.42 we can now tackle the proof of Proposition 2.30 which is actually the
same as in Koch (2017), see Remark 2.43 for some comments. Let �rst recall, for convenience,
the statement of Proposition 2.30.

Proposition – Mixing and mean-ergodicity properties. Set z ∈ (0,+∞) and let Z
be a simple max-stable and isotropic SRF on Rd , with extremal coe�cient function θ. If
lim

‖h ‖→+∞
θ(h) exists then the following propositions are equivalent:

(i) Z is mixing ,

(ii) Iz is mean-ergodic .

Proof. Set z ∈ (0,+∞). We already know that (i) implies (ii), see Remark 2.25 and Remark 2.28.
Let us proove the opposite implication and assume (ii). If lim

‖h ‖→+∞
θ(h) exists, then Proposi-

tion 2.42 gives

exp


−

lim
λ→+∞

θ0(λ)
z



− exp

{
2
z

}
= 0,

i.e. lim
λ→+∞

θ0(λ) = 2, which means that Z is mixing, see Theorem 2.29. �

Remark 2.43 To prove Proposition 2.30, it was su�cient to generalize Corollary 1 in
Koch (2017) to higher dimensions only, and not to any set A ∈ B. We carried out anyway
this last generalization, hopping that it may be helpful in future works.
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2.6 proofs

Remark 2.44 Let A ∈ B and fA be the density function de�ned in Proposition 2.41 with
corresponding cumulative distribution function FA. The latter depends on the geometric
covariogram KA of A, introduced in Subsection 2.2.1. Indeed, for any t ∈ (0,+∞)

FA(t) =
∫
A

|A∩ B(x , t)|
|A|2 dx =

1
|A|2

∫
Rd

∫
Rd

1{‖x −y‖ ≤ t} 1{x ∈ A} 1{y ∈ A}dxdy,

which becomes, with substitution h = x −y in the last integral,

FA(t) =
1
|A|2

∫
Rd

1{‖h‖ ≤ t} KA(h)dh. (2.55)

By converting Eq. (2.55) into hyperspherical coordinates, we get

FA(t) =
1
|A|2

∫ t

0

∫
[0,π]d−2×[0,2π)

KA (txs ) dsdt ,

where
— s = (s1, . . . , sn−1),
— xs =

(
cos(s1), sin(s1) cos(s2), sin(s1) sin(s2) cos(s3), . . . , (sin(s1), . . . , sin(sn−1))

)
.

Hence,
fA(t) =

1
|A|2

∫
[0,π]d−2×[0,2π)

KA (txs ) dsdt

and is bounded above by 2πd−1/|A| since KA(h)/|A| ≤ 1 for any h ∈ Rd .

2.6.5 M2 process with Cauchy density shape function

In this part, we shall proove the next proposition.

Proposition 2.45 Let Z be an isotropic stationary M2 process de�ned on Rd where
the shape function f is the multivariate Cauchy density function speci�ed by Eq. (2.38). Its
extremal coe�cient function θ is thus given, for every h ∈ Rd , by

θ(h) = 2G
( ‖h‖Σ−1

2

)
,

where G stands for the c.d.f. of a standard univariate Cauchy distribution.

Proof. Set h ∈ Rd and remember from De�nition 2.20 that

θ(h) =
∫

Rd
max (f (y), f (y +h)) dy

=

∫
Rd

f (y) 1{ f (y) > f (y +h)}dy +
∫

Rd
f (y) 1{ f (y) > f (y −h)}dy

= P [f (X) ≥ f (X +h)] + P [f (X) ≥ f (X −h)] ,
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where X ∼ f . Since f is Σ−1-radially symmetric and non-increasing, f (X) ≥ f (X +h) if and
only if

XTΣ−1X < (X +h)TΣ−1(X +h),
which occurs if and only if

XTΣ−1h > −h
T Σ−1h
2 .

Since
XTΣ−1√
hT Σ−1h

is standard Cauchy distributed (see e.g. Lee et al., 2014), it follows that

P [f (X) ≥ f (X +h)] = G
( ‖h‖Σ−1

2

)
.

Similarly, it can be shown that P [f (X) ≥ f (X −h)] = G (‖h‖Σ−1/2) , which concludes the
proof. �

2.7 supplements about van-hove seqences

Let us introduce or recall some notation. In the following, Rd is equipped with the distance d .
For any measurable subset V of Rd , we shall denote by V its closure, by

◦
V its interior, and by

∂V its boundary. Its translation by a vector x ∈ Rd is written V + x := {v + x : v ∈ V} and,
for any x ∈ Rd , the distance d(x ,V) := inf{d(x , v) : v ∈ V} stands for the distance between
x and V. The Minkowski sum and di�erence of two bounded measurable subsets V and W of
Rd are respectively de�ned as

V ⊕W :=
⋃
w∈W

V + w and V 	W :=
⋂
w∈W

V + w.

Recall now that W̌ denotes the symmetric of W with respect to the origin 0. The sets V ⊕ W̌
and V 	 W̌ represent respectively the dilation and the erosion of V by the structuring element
W. For a more intuitive expression, notice that

V ⊕ W̌ =
{
x ∈ Rd : (W + x) ∩V , �

}
and V 	 W̌ =

{
x ∈ Rd : W + x ⊂ V

}
.

See Figure 2.13 for an illustrative example in two dimensions.
We present now the concept of a Van-Hove sequence as it is de�ned in Koch et al. (2018).

De�nition 2.46 Let (Vn)n∈N be a sequence of sets inB. It is called a Van Hove sequence
if it converges to Rd in the following sense:

(i) Vn ⊂ Vn+1, for all n ∈ N,

(ii)
⋃

n∈N Vn = Rd , and
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Dilation Erosion

Figure 2.13 – Dilatation and erosion (blue area) of a 3 × 3 square (gray area) by the disk B1/2 (black

disk).

(iii) lim
n→+∞

|∂Vn ⊕ Br |
|Vn |

= 0, for all r ∈ (0,+∞).

This convenient concept has been used in di�erent �elds such as dynamical systems theory
(see e.g. Lee et al., 2002; Moody and Strungaru, 2004; Lenz and Stollmann, 2005), thermody-
namics (see e.g. Catto et al., 1998; Ruelle, 2004), stochastic geometry (see e.g. Baake et al.,
2009; Spodarev, 2014) or spatial extreme value theory (see e.g. Koch, 2017; Koch et al., 2018;
Koch, 2019). Notice that this de�nition is more constraining than the one we propose to char-
acterize the convergence to Rd (see De�nition 2.3). As it is shown in Proposition 2.47, the
condition (iii) is stronger than our third condition. It means that the boundary of Vn becomes
negligible in front of its interior as n → +∞. An example of sequence that does not ful�lled
(iii) in De�nition 2.46 but satis�es (iii) in De�nition 2.3 is given at the end of the section.

Proposition 2.47 Let (Vn)n∈N be a sequence of bounded measurable subsets of Rd

with positive volume satisfying (iii) in De�nition 2.46. Then for any compact subset W of
Rd ,

lim
n→+∞

|Vn 	 W̌|
|Vn |

= 1.

Proposition 2.47 holds, in particular, for a Van-Hove sequence. Before proving Proposition 2.47,
we establish the following lemmas.

Lemma 2.48 Let V be a non-empty subset of Rd and x ∈ Rd . If x <
◦
V then

d(x , ∂V) = d(x ,V).

Proof. By de�nition ∂V ⊂ V, thus d(x ,V) ≤ d(x , ∂V) for any x ∈ Rd . Let us prove the
converse inequality. The closure V is a closed subset, hence there exists y ∈ V such that
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d(x ,y) = d(x ,V). Let ϵ > 0 and assume that Bϵ(y) ( V. There exists ỹ ∈ V closer to x than
y which is impossible by de�nition of y, therefore Bϵ(y) ⊂ V. This is true for all ϵ > 0, thus

y <
◦
V, that is y ∈ ∂V. Consequently d(x , ∂V) ≤ d(x ,V) which concludes the proof. �

Lemma 2.49 Let V be a measurable bounded subset of Rd and r ∈ R∗+. Then

∂V ⊕ Br =
(
V ⊕ Br

)
\
( ◦
V 	 Br

)
.

Proof. The equality is immediate if
◦
Vn = �, so we shall assume

◦
Vn , � in the sequel. To

prove the equality of the two subsets, we shall prove the double inclusion.
Proof that ∂Vn ⊕ Br ⊂

(
V ⊕ Br

)
\
( ◦
V 	 Br

)
It stems from the inclusion properties of Minkowski

addition, cf. e.g. Molchanov (2017, p.565)
Proof that

(
V ⊕ Br

)
\
( ◦
V 	 Br

)
⊂ ∂Vn ⊕ Br By contradiction: let us assume that there

exists x ∈
((
V ⊕ Br

)
\
( ◦
V 	 Br

))
∩

(
∂Vn ⊕ Br

)c
. In particular, x ∈

(
∂Vn ⊕ Br

)c
implies that

d(x , ∂Vn) > r , i.e.
Br (x) ∩ ∂V = � (2.56)

Now, we shall consider both the cases x <
◦
Vn and x ∈

◦
Vn separately. First, assume x <

◦
Vn .

As stated in Lemma 2.48, d(x ,V) = d(x , ∂V) > r , i.e. x < V ⊕ Br which is impossible. On
the other hand, suppose x ∈

◦
Vn . By assumption, x <

◦
V 	 Br , i.e. Br (x) 1

◦
Vn . Thus there

exists y ∈ Br (x) such that y ∈ ( ◦
V
)c . Then, notice that y ∈ Br (x) implies d(y,V) ≤ r and

that d(y,V) = d(y, ∂V), according to Lemma 2.48. As a consequence d(y, ∂V) ≤ r , hence
Br (x) ∩ ∂V , � which contradicts Eq. (2.56). The inclusion

(
V ⊕ Br

)
\
( ◦
V 	 Br

)
⊂ ∂Vn ⊕ Br

is proved.
�

Proof of Proposition 2.47. We shall start by proving the proposition when W = Br for some
positive r . Let n ∈ N. By de�nition we have

◦
Vn 	 Br ⊂ Vn 	 Br ( Vn ( Vn ⊕ Br ⊂ Vn ⊕ Br ,

hence 0 ≤ |Vn | − |Vn 	 Br | ≤ |Vn ⊕ Br | − |
◦
Vn 	 Br |. By Lemma 2.49, the right hand part of this

last inequality corresponds exactly to |∂Vn ⊕ Br |. It was assumed to be dominated by |Vn | as
n → +∞, therefore so is |Vn | − |Vn 	 Br |. This implies that lim

n→+∞
|Vn 	 Br |
|Vn |

= 1, which is
true for any r ∈ (0,+∞).
We shall now consider any compact W ⊂ Rd . Again, let n ∈ N. Since W is compact in Rd ,
thus so is its symmetric W̌ := {−w : w ∈ W} and consequently there exists w ∈ W and
r ∈ (0,+∞) such that W̌ + w ⊂ Br . In particular, it implies that Vn 	 Br ⊂ Vn 	 (W̌ + w), cf.
e.g. Matheron (1975). By construction W̌ + w contains {0}, thus Vn 	 (W̌ + w) ⊂ Vn . As a
consequence

1 ≥ |Vn 	 (W̌ + w)|
|Vn |

≥ |Vn 	 Br |
|Vn |

,
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2n`12

`. . . . . .

2n´1 bars 2n´1 bars

Figure 2.14 – The sets Vn centered in 0 (grey area). It is the union of a 2n+1 × 2n+1 square and of 2n

vertical bars of length 2n+1. The bars are equally shared and regularly placed on each side of the square.

where |Vn 	 (W̌ + w)|
|Vn |

=
|(Vn 	 W̌) + w|

|Vn |
=
|Vn 	 W̌|
|Vn |

. Finally, since we have seen that

lim
n→+∞

|Vn 	 Br |
|Vn |

= 1, using the squeeze theorem we obtain that lim
n→+∞

|Vn 	 W̌|
|Vn |

= 1 as
well. �

Example 2.50 Sequence that does not satisfy the Van Hove conditions This example
is taken from Catto et al. (1998, p.17-18). Let d = 2 and consider the sequence of sets
(Vn)n∈N such that, for any n ∈ N, the set Vn ∈ B is the union of a square of side 2n+1

centered in 0, and of 2n bars that are 2n+1 long. The bars are placed so that Vn ⊂ Vn+1.
See Figure 2.14 for a representation of Vn . The sequence satis�es the two �rst conditions
in De�nition 2.46 but not the third one : indeed, for �xed n ∈ N, it holds |∂Vn ⊕ B1 | >
|Vn | (see Figure 2.15), and thus lim

n→+∞
|∂Vn ⊕ B1/2 |
|Vn |

, 0. Nonetheless, it satis�es (iii) in

De�nition 2.3. For any n ∈ N, let Wn be a square of side 2n+1. The limit in (iii) is actually
the same for (Vn)n∈N and (Wn)n∈N, and since Wn ↑ Rd , it is ultimately equal to 1.
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2n`12

`. . . . . .

Figure 2.15 – Dilatation (blue area) of ∂Vn (gray dashed lines) by the disk B1 (black disk). It is the

union of both dilation of the 2n bars and of the 2n+1 × 2n+1 square by the same structuring element B1.

Their volumes are respectively equal to 22(n+1) + π2n+1 and 2n+4 + 2π − 4.
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3
ESTIMATION OF THE EXTREMAL COEFFICIEN T
F UNCTION BASED ON A SINGLE OBSERVATION

Résumé Considérons de nouveau un champ stationnaire max-stable simple. En utilisant les

travaux présentés dans le chapitre précédent, un estimateur non paramétrique de sa fonction coef-

�cient extrémal est proposé. Il dépend de l’estimateur de type Nadaraya-Watson du variogramme

du champ des excès correspondant étudié par García-Soidán et al. (2004) et García-Soidán (2007).

À partir de leurs travaux, les propriétés asymptotiques de ce nouvel estimateur sont établies

quand celui-ci est évalué à partir d’un unique jeu de données spatialisées. En particulier, sous

certaines hypothèses concernant la portée intégrale du champ des excès, nous montrons que cet

estimateur est consistant et asymptotiquement normal. Une étude par simulation est menée a�n

de véri�er ces propriétés asymptotiques sur des échantillons de taille �nie. Une méthode de vali-

dation croisée est notamment proposée pour sélectionner la largeur de la fenêtre associée à cette

estimation non-paramétrique. Les résultats sont satisfaisants, excepté au voisinage de 0 : c’est

une conséquence des e�ets de bords de l’estimateur à noyau du variogramme.

3.1 introduction

Consider a simple stationary max-stable random �eld Z de�ned on Rd . We want to assess its
dependence structure, but without assuming any speci�c model. As speci�ed in Chapter 1,
due to high-dimensional distributional complexity, the study of the dependence is often lim-
ited to the bivariate distributions. Since Z is stationary, this amounts to estimating its extremal
coe�cient function (ECF) θ. Several estimators of θ, which do not require to assume a particu-
lar model for Z, have been proposed in the literature (see e.g. Smith, 1990; Capéraà et al., 1997;
Schlather and Tawn, 2003; Cooley et al., 2006; Bel et al., 2008). They are generally used in a
spatio-temporal context, when spatial replications of Z are observed through time. As detailed
in Chapter 1, to the best of our knowledge, only Bel et al. (2008) and Naveau et al. (2009) have
estimated the extremal coe�cient function from a single and partially observed realization of
Z. However, the asymptotic properties of the estimators under study have not been theoreti-
cally investigated. This is done in Dombry and Eyi-Minko (2012) for some estimators of θ. In
particular, they establish a central limit theorem for sample continuous max-id SRF de�ned

89



estimation of the extremal coefficient function based on a single observation

on Zd , when considering increasing domain asymptotics. Then, in the max-stable case, this
result is used to obtain the asymptotic normality of three di�erent estimators, among which
the F-madogram estimator. This property holds under the condition that 2 − θ(h) vanishes
fast enough as ‖h‖ → +∞. For all we know, no generalization to Rd has been proposed so
far. More generally, we are not aware of any other works about the asymptotic properties
of estimators of θ, when having only one spatial set of observations. For any z ∈ (0,+∞),
let Iz be the exceedance �eld above z associated with Z, de�ned in Eq. (2.26). In this chapter,
we propose a new nonparametric estimator of θ, based on a Nadaraya-Watson estimator of
the variogram of Iz proposed by García-Soidán (2007). From the asymptotic properties of this
kernel estimator, which have been revealed in the paper, we deduce su�cient conditions on
Z so that the nonparametric estimator of θ is asymptotically consistent and normal. These
conditions are related to the mixing property of Z and the integral range Az of Iz .

The chapter is structured as follows. We start o� in Section 3.2 with the introduction of a
few notation. In Section 3.3, the kernel estimator of the variogram of Iz , as well as its asymp-
totics properties, are presented. A special attention is given to the conditions under which the
asymptotic results hold. In particular, some of these assumptions are modi�ed so that they are
more adapted to the extreme context of our study. Then, the new nonparametric estimator
of θ is introduced and its asymptotic properties are derived. The results are illustrated in Sec-
tion 3.4. In addition, the performances of our estimator of θ are compared with those of the
F-madogram estimator. Assets and required improvements of our work are �nally discussed
in Section 3.5. Technical proofs and supplements are postponed to Section 3.6.

We shall point out that this work has been funded by Télécom Paris. It has been realized during
a 6-month stay at Télécom Paris, under the supervision of E. Chautru (Mines ParisTech, PSL
University) and A. Sabourin (Télécom Paris). It is a �rst version of an article that should be
submitted in 2021.

3.2 settings

In this chapter, we shall employ the notation introduced in Chapter 2 (see Section 2.1). In
addition, for any subsets V,W ⊂ Rd , the distance d(V,W) between V and W is given by
d(V,W) := inf{‖v − w‖, (v,w) ∈ V ×W}. Let also d→ stands for the convergence in distribu-
tion.

In the sequel, unless speci�ed otherwise, Z is a stochastically continuous simple max-stable
SRF satisfying Assumption 2.1 and Assumption 2.2. It thus admits the spectral representation
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given in Eq. (1.13). Let Y be the associated nonnegative spectral process. Let also m ∈ N∗,
x1, . . . ,xm ∈ Rd and z ∈ (0,+∞). From Eq. (1.14) in Chapter 1 it holds

P [Z(x1) ≤ z, . . . ,Z(xm) ≤ z] = exp
{
−E

[
max

i ∈{1, ...,m }
Y(xi )
z

]}
.

Now, de�ne the coe�cient ϑ ({x1, . . . ,xm}) := E
[

max
i ∈{1, ...,m }

Y(xi )
]
. By de�nition of Y, ϑ ({x1}) =

1. Whenm ≥ 2, such a coe�cient is termed extremal coe�cient (see Smith, 1990); it is valued
in [1,m]. As remarked e.g. in Schlather and Tawn (2002), when Z(x1), . . . ,Z(xm) are mutually
independent, then

P [Z(x1) ≤ z, . . . ,Z(xm) ≤ z] = exp
{
−m
z

}
.

Hence, ϑ ({x1, . . . ,xm}) may be interpreted as the number of independent margins of the m-
variate vector (Z(x1), . . . ,Z(xm)); the case ϑ ({x1, . . . ,xm}) = 1 referring to (a.s.) equality be-
tween all its margins. In the sequel, for simplicity of notation, we shall write ϑ (x1, . . . ,xm) =
ϑ ({x1, . . . ,xm}). Notice that, to all m-variate extremal coe�cients ϑ (x1, . . . ,xm), can be at-
tached the function

(x1, . . . ,xm) ∈ Rmd 7→ ϑ (x1, . . . ,xm) , (3.1)

which is continuous since Z is continuous in probability (see Strokorb and Schlather, 2015,
Lemma 23). In the following, the m-variate extremal coe�cients and this function are in-
distinctly employed. Hence, depending on the context, ϑ (x1, . . . ,xm) may also refer to the
function (3.1) evaluated in (x1, . . . ,xm). We shall remark that for any x1,x2 ∈ Rd , ϑ(xi ,x2) =
θ(x1 − x2), where θ is the ECF of Z. Finally, set a threshold z ∈ (0,+∞). The stationary
exceedance �eld above z is again denoted by Iz :

Iz (x) = 1{Z(x) > z}, x ∈ Rd . (3.2)

Besides Cz : h ∈ Rd 7→ Cov [Iz (0), Iz (h)] and γz : h ∈ Rd 7→ 1
2E[(Iz (h) − Iz (0))2] stand for

its covariance function and its variogram, respectively.

3.3 a new nonparametric variogram based esti-
mator

3.3.1 Covariance or variogram ?

Set z ∈ (0,+∞) and recall from Chapter 2 that, for any h ∈ Rd ,

Cz (h) = exp{−θ(h)/z} − exp{−2/z}. (3.3)
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Let h ∈ Rd . Since γ(h) = C(0) − C(h), it follows from Eq. (3.3) that

γz (h) = exp{−1/z} − exp{−θ(h)/z}. (3.4)

Therefore, an estimator of θmay be obtained by considering an estimator of either the covari-
ance function or the variogram. The objective is then to �nd, in the literature, an estimator
of Cz or γz built on a single and partially observed realization of Iz , for which asymptotic
properties have already been established. Furthermore, since we do not want to assume a
particular model for the ECF, we focus on nonparametric estimators. We shall point out,
even if the variogram and the covariance function are related, working with one or the other
is in general not equivalent. As already mentioned in Chapter 1, the estimation of the latter,
contrary to the variogram, requires the knowledge of the expectation of Iz . When this ex-
pectation has to be estimated because it is unknown, this generates biased estimators of the
correlation function. Hence, estimators of Cz and γz do not have necessarily the same prop-
erties. More generally, the variogram only needs the process to be intrinsically stationary to
be well-de�ned, whereas the covariance function exists only for second-order stationary RF.
That is why the variogram is usually preferred in geostatistical studies. Since, in our case, Iz
is assumed to be stationary, the choice between considering Cz or γz shall mainly depends on
the asymptotic properties of the respective estimators that are found in the literature. Before
presented them, we shall brie�y discuss about asymptotic regime.

Remark 3.1 – Type of asymptotics. When considering asymptotic properties of estima-
tors computed from only one spatial set of observation, the way the number of observations
increases shall be de�ned; this constitutes the asymptotic regime of the study. Schemati-
cally, there exist two types of asymptotic regimes: the in�ll asymptotics and the increasing
domain asymptotics. In the former framework, the number of observations grows in a �xed
and bounded region, i.e. observations gets denser. Consequently, they may be strongly de-
pendent to each other and, as shown by Lahiri (1996), this can lead to inconsistent esti-
mators. On the contrary, increasing domain asymptotics entails that the observations are
always separated by a minimum distance, so that the region is expanding as the number
of observations increases. As it is done hereafter, these two types of asymptotics may be
combined.

Let Z be a second-order SRF de�ned on Rd , with covariance function C and variogram γ.
There is not a lot of nonparametric estimators of C and γ for which asymptotic properties
have been investigated, when having only one set of spatial observations. We can �rst men-
tion the seminal experimental variogram introduced in Chapter 1 (see Eq. (1.18)) and the cor-
responding empirical estimator of the correlation function (see e.g. Cressie, 1993, Equation
2.4.4). Under some conditions, their asymptotic normality has been established when consid-
ering increasing domain asymptotic. For the covariance function, this is shown in Anderson
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(1971, Theorem 8.4.2) or Fuller (1996, Theorem 6.3.3), in the unidimensional case, when the
time process Z is equal to a weighted sum of i.i.d. random variables. For the variogram, this is
proved in Davis and Borgman (1982) when the spatial process Z is assumed to bem-dependent,
for m ∈ R∗+. That is, when (Z(x))x ∈V and (Z(x))x ∈W are independent for any two subsets
V,W ⊂ Rd separated by the distancem. Properties of non-parametric kernel estimators of C
and γ have also been studied when considering both in�ll and increasing domain asymptotics.
In the unidimensional case Hall et al. (1994) propose a Nadaraya-Watson estimator of C. Un-
der appropriate mixing conditions, the authors show that it is consistent. In thed-dimensional
case and under additional stronger mixing conditions, Hall and Patil (1994) demonstrates that
the integrated squared error of this estimator, over a bounded set of locations h ∈ Rd , con-
verges in distribution to the integral, over this same set, of a squared Gaussian RF. Along the
lines of these works, García-Soidán et al. (2004) also propose a Nadaraya-Watson estimator
of γ. When Z is isotropic and under similar conditions than in Hall et al. (1994), they show
that it is consistent. García-Soidán (2007) generalizes these results to the anisotropic case.
Furthermore, under additional stronger mixing conditions that are closed to the conditions in
Hall and Patil (1994), the author establishes the asymptotic normality of this estimator. The
results in García-Soidán (2007) are the most complete results we were able to �nd. We thus
decide to based the estimator of the ECF on this nonparametric kernel estimator.

This estimator is detailed is the next subsection, when estimating the variogram of the ex-
ceedance �eld Iz of a simple max-stable SRF. We shall also introduce the assumptions under
which its asymptotic properties are established. Before, let us conclude this part with the
following remarks.

Remark 3.2 – On conditionally negative-semide�niteness. Let Z be a second-order
SRF on Rd with covariance function C and variogram γ. As speci�ed in Chapter 1, the
latter are positive-semide�nite and conditionally negative-semide�nite, respectively. In
particular, the conditionally negative-semide�niteness of γ ensures that, when predicting
Z at unobserved locations, the variance of the kriging error is nonnegative. The estimators
of C and γ presented above do not ful�ll these conditions. Hall et al. (1994), Hall and Patil
(1994) and García-Soidán et al. (2004) propose some modi�cations of their estimators to ul-
timately obtain estimators that are themselves a covariance function or a variogram. These
estimators are more complicated to handle and do not necessarily conserve the asymptotic
properties of the original ones. For simplicity, and since we do not want later to perform
some kriging methods, we shall not try to constrain the Nadaraya-Watson estimator of the
variogram to be conditionally negative-semide�nite.
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Remark 3.3 – Ergodicity in the covariance. Let Z be a second-order SRF on Rd with
expectation µ and covariance function C. Can the expectation be estimated starting from
a single realization of Z ? As detailed in Chapter 2, part of the answer is brought by the
concepts of ergodicity in the mean and of integral range. When trying to estimate the
covariance function from a unique realization, the equivalent condition of ergodicity in the
mean is the so-called ergodicity in the covariance, see Subsection 3.6.4. It could be interesting
to investigate this notion and maybe introduce an equivalent concept of the integral range
for the covariance function. Such a work is not conducted in this chapter. Besides, as shown
later, for any z ∈ (0,+∞), having the integral range Az of the indicator �eld Iz �nite is a
su�cient condition to derive asymptotic properties of the Nadaraya-Watson estimator of
the variogram γz , when it is computed from a single and partially observed realization.

3.3.2 Nonparametric kernel estimator of the variogram: de�nition and

assumptions

De�nition

Set a threshold z ∈ (0,+∞) and let Z be a simple max-stable SRF on Rd , a realization z of
which is observed on a �nite number n ∈ N∗ of locations x1, . . . ,xn ∈ Rd . For simplicity, we
shall assume that Iz (or equivalently Z) is isotropic. Since the results in García-Soidán (2007)
also hold for anisotropic RF, we surmise that the results presented hereafter can readily be
extended to the anisotropic case. Hence, for the simplicity of notation, γz now stands for the
radial part of the variogram of Iz : for any h ∈ Rd ,

γz (‖h‖) :=
1
2E

[(Iz (h) − Iz (0))2] .
Now, let K be a compactly supported, symmetric and bounded density function satisfying
K(0) > 0. In nonparametric statistics, it is called a kernel. Let also (τn)n∈N be a sequence of
positive real numbers representing bandwidths. From García-Soidán et al. (2003) and García-
Soidán (2007), the Nadaraya-Watson estimator of γz is given, for any distance t ∈ R∗+, by

γ̂z,τn (t) :=

n∑
i=1

n∑
j=1

K
(
t − ‖xi − x j ‖

τn

) [
Iz (xi ) − Iz (x j )

]2

2
n∑
i=1

n∑
j=1

K
(
t − ‖xi − x j ‖

τn

) , (3.5)

where the denominator is supposed nonzero. In the sequel, it is assumed that K has compact
support [−C,C], with C ∈ R∗+. It is shown in García-Soidán et al. (2004) and García-Soidán
(2007) that, for any t ∈ R+, the estimator γ̂z,τn (t) is consistent and asymptotically normal as
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n → +∞. Before presenting these results, the required assumptions are introduced. We shall
point out that some of the assumptions originally set by the authors was either not appropriate
or di�cult to check in the case of max-stable processes, and consequently, they have been
weakened or modi�ed. This is speci�ed in the sequel. The proofs that the results in García-
Soidán et al. (2004) and García-Soidán (2007) still hold under these alternative conditions are
given later.

Assumptions

The two �rst conditions concern the sampling procedure of the observations. Recall from
Chapter 2 thatB represents the set of measurable bounded subsets of Rd with positive volume.
In addition, Br stands for the closed ball of center 0 and radius r ∈ (0,+∞). For any n ∈ N∗, it
is supposed that the locations x1, . . . ,xn belongs to a set Vn ⊂ Rd . The sequence of domains
(Vn)n∈N∗ is taken such that Vn = λnV where V ⊂ B contains a ball Br with radius r ∈
(0,+∞) and (λn)n∈N is an increasing sequence of positive real numbers which diverges to
+∞. In particular, Vn ↑ Rd . Fix n ∈ N∗ and let f0 : V → R+ a density function such that
d1 < f0(x) < d2, for any x ∈ V and for some d1,d2 ∈ R∗+. Similarly to Hall et al. (1994) and
Hall and Patil (1994), a random design is assumed for x1, . . . ,xn .

(A1) For any i ∈ {1, . . . ,n}, xi = λnui , where ui is a realization of the random variable
Ui ∼ f0, and U1, . . . ,Un are supposed mutually independent.

Then, for every k ∈ N∗ and for any distinct indices i, j1, . . . , jk ∈ {1, . . . ,n}, let fk stands for
the density function of the random vector (Ui −Uj1 , . . . ,Ui −Ujk ). The following assumption
is made

(A2) Let ` ∈ {1, 2}. For every k ∈ {1, . . . , 4` − 1}, fk is assumed to be continuously di�eren-
tiable in a neighbourhood of 0+.

It is also speci�ed in García-Soidán (2007) that f1(0) should be positive. In fact, this condition
is always ful�lled, since f0(0) > 0 and U1, . . . ,Un are mutually independent. The assumptions
(A1) and (A2) are for instance satis�ed when f0 is the uniform distribution on V.

The third assumption is related to the sequences (τn)n∈N and (λn)n∈N. It describes the asymp-
totic regime under which the asymptotic properties of γz are studied.

(A3) τn + λ
−1
n + (nτn)−1 + λdn−1 →n→+∞ 0

This assumption splits in 4 conditions:
— τn →

n→+∞
0,

— λn →
n→+∞

+∞,
— 1/τn = o(n) as n → +∞, and
— λdn = o(n) as n → +∞.
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The second condition has already been set above. This establishes an increasing domain
asymptotic regime. On the contrary, the last one means that the number of observations,
in a �x domain, increases as n → +∞; this corresponds to in�ll asymptotics. Hence, the
asymptotic regime de�ned by these conditions is a compromise between these two types of
asymptotic structures. The other conditions are standard in nonparametric estimation stud-
ies. They express a trade-o� between bias and variance (see e.g. Tsybakov, 2009).

The four last conditions a�ect the dependence structure of Iz .

(A4) For t ∈ (0,+∞), the �rst three derivatives of γz are continuous in a neighbourhood of
t .

Remark that from Eq. (3.4), this condition may also be expressed in term of θ. Before intro-
ducing the two following conditions, de�ne

д1 : (x1,x2,x3) ∈ R3d 7→ Cov
[(Iz (0) − Iz (x1))2 , (Iz (x2) − Iz (x3))2] ∈ R, (3.6)

and

д2 : (x1,x2, . . . ,x7) ∈ R7d 7→ E

[ 3∏
j=0

( [
Iz (x2j ) − Iz (x2j+1)

]2 − E [ [
Iz (x2j ) − Iz (x2j+1)

]2] )] ∈ R.

For any x ∈ Rd , Iz (x) is Bernoulli-distributed: the (well-de�ned) functions д1 and д2 are
bounded. Besides, they may be written in terms of extremal coe�cients, including pair ex-
tremal coe�cients (see Eq. (3.6)). Since the latter are continuous (see Section 3.2), thus so are
д1 andд2. Actually, García-Soidán (2007) further assumes that both functions are continuously
di�erentiable on R3d and R7d , respectively. Such a condition does not seem appropriate for
the context of our study. Indeed, recall for instance that the ECF θ is not di�erentiable at the
origin unless θ(h) = 1 for everyh ∈ Rd (see Theorem 1.16). We show later that the continuity
of д1 and д2 is su�cient to obtain the desired results.

(A5) For any s ∈ (0,+∞),

I1(s) =
∫

‖x1 ‖≤s
‖x2−x3 ‖≤s

|д1(x1,x2,x3)| dx1dx2dx3 < +∞.

(A6) For any s ∈ (0,+∞),

I2(s) =
∫

‖x1 ‖≤s, ‖x2−x3 ‖≤s,
‖x4−x5 ‖≤s, ‖x6−x7 ‖≤s

|д2(x1, . . . ,x7)| dx1 . . .dx7 < +∞.

Notice that (A6) implies (A5). Let Az be the integral range of Iz . Actually we have shown
that, if 2 − θ(h) has a limit as ‖h‖ → +∞, then the integrability of 2 − θ(h) over Rd , or
equivalently a �nite integral range Az (see Theorem 2.19), is a su�cient condition for (A5) to
be satis�ed.
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Proposition 3.4 Let Z be a simple max-stable SRF on Rd with ECF θ. If lim
‖h ‖→+∞

2 −
θ(h) = ` ∈ [0, 1] then ∫

Rd
2 − θ(‖h‖)dh < +∞⇒ (A5).

We refer to the Subsection 3.6.1 for the proof. We also conjecture that (A7) entails (A6) too.
The calculation is much more tedious than for (A5) and, until now, we did not manage to
provide a complete proof. This is discussed at the end of Subsection 3.6.1. Finally the last
condition concerns the mixing property of Z (in the sense given in De�nition 2.26).

(A7) lim
‖h ‖→+∞

2 − θ(h) = 0

This assumption is an alternative condition to (S10) in García-Soidán (2007), see Remark 3.5.

Remark 3.5 – ϱ-mixing condition. For any S ⊂ Rd , let σZ (Si ) the σ-�eld generated
by {Z(x), x ∈ Si }. The correlation between two random variables W and Y is denoted
Corr [W,Y]. In addition, we write W ∈ σZ (S) if W is σZ (S)-measurable. Finally, for any
r ∈ R+, de�ne the following (strong) ϱ-mixing coe�cient

ϱ(r ) := sup
S1,S2⊂Rd

d (S1,S2)>r

sup
Wi ∈ σZ(Si ), i=1,2,

E[W2
i ]<+∞

|Corr [W1,W2] |

The assumption (S10) in García-Soidán (2007) requires that

ϱ(r ) →
r→+∞

0. (3.7)

According to Bradley (1993b), this mixing condition is equivalent to the convergence of the
corresponding α-mixing coe�cient to 0. To the best of our knowledge, only a few works
have studied the mixing coe�cients in a spatial extreme context (see Dombry and Eyi-
Minko, 2012; Dombry and Kabluchko, 2018; Koch et al., 2018). When Z is sample continuous
and de�ned on Zd , Dombry and Eyi-Minko (2012, Corollary 2.2) link the behaviour of
the β-mixing coe�cient with those of 2 − θ(h), h ∈ Zd . As mentioned in the previous
chapter, when it is de�ned on Rd , Dombry and Kabluchko (2018) show that the condition
lim

‖h ‖→+∞
Y(h) = 0, with Y the spectral process associated with Z, implies that Z is strongly

β-mixing (in the sense given in the paper, when considering compact sets). However, they
do not give explicit conditions on max-stable processes de�ned on Rd such that Eq. (3.7) is
satis�ed. That is why we have tried to �nd an alternative condition to Eq. (3.7). As detailed
in Chapter 2, (A7) is a condition which is easy to check for standard max-stable processes.

Once the assumptions introduced, we shall now give the results about the asymptotics prop-
erties of γ̂z,τn (t) for any t ∈ (0,+∞).
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3.3.3 Asymptotic properties

Let z, t ∈ (0,+∞) . We shall �rst present the results about the consistency and normality
of γ̂z,τn (t). These pointwise properties will be then extended to the estimator of the ECF θ
suggested above, when it is based on γ̂z,τn .

Nonparametric kernel estimator of the variogram

The next proposition certi�es the asymptotic non-bias of γ̂z,τn (t) as n → +∞. First de�ne

cK =

∫ C

−C
h2K(t)dt .

Proposition 3.6 Set z ∈ (0,+∞). Let Z be an isotropic and simple max-stable SRF
on Rd and consider its corresponding exceedance �eld Iz with variogram γz . The second
derivative of the latter is written γ′′z . If (A1)-(A4) are satis�ed, with ` = 1, then

E
[
γ̂z,τn (t)

]
= γz (t) +

cK
2 + γ

′′
z (t)τ2n + o(τ2n) as n → +∞,

and consequently, γ̂z,τn (t) is asymptotically unbiased.

This result stems from García-Soidán et al. (2004, Theorem 3.2), the proof of which is given
in the paper. The second proposition establishes its consistency.

Proposition 3.7 Consider the same framework as in Proposition 3.6. Under the addi-
tional assumption (A5), it also holds

Var
[
γ̂z,τn (t)

]
=
k1(t) λdn
n2 τn

+
k2(t)
λdn
+ o

(
λdn

n2 τn
+

1
λdn
+ τ4n

)
as n → +∞,

where k1(t),k2(t) ∈ R. Hence, γ̂z,τn (t) converges in quadratic mean to γz (t) and conse-
quently, it is consistent.

This result is a consequence of Theorem 3.3 in García-Soidán et al. (2004) applied to Iz and
explicit values of k1(t) and k2(t) are given in this paper. Recall that, contrary to García-Soidán
et al. (2004) and García-Soidán (2007), we only suppose that д1 in Eq. (3.6) is continuous on
R3d . We show in Subsection 3.6.2 that the proof of their theorem is still valid under this
weaker assumption. Now, before setting the asymptotic normality of γ̂z,τn (t), some additional
constrains on the convergence rates of the sequences (τn)n∈N and (λn)n∈N need to be set.

(A8) lim
n→+∞

λdn n
−co = c1, for some positive real numbers c0, c1.

(A9) lim
n→+∞

τ5n λ
−d n2 = c2, for a positive real number c2.
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As claimed by García-Soidán (2007), these conditions imply that the variance of γ̂z,τn (t) is of
the order of

νn := n−4(2−c0)/51{c0 ≥ 8/9} +n−c01{c0 < 8/9}.

Theorem 3.8 Consider the same framework as in Proposition 3.6, with ` = 2, and
assume furthermore that (A6)-(A9) hold. Then

1√
νn

(
γ̂z,τn (t) − γz (t)

) d−→
n→+∞

N (
µ(t),σ2(t)) , (3.8)

where
— µ(t) = (c1 c2)

2/5 cK γ′′(t)
2 1{c0 > 8/9},

— σ2(h) = (c41 c−12 )1/5 k1(t) 1{c0 > 8/9} + k2(t) 1{c0 ≤ 8/9},

Again, this result stems from García-Soidán et al. (2004, Theorem 3.2), the proof of which is
given in the paper. Similarly to Proposition 3.7, its proof only necessitates thatд2 is continuous
(see Subsection 3.6.2). In addition, we claimed that the assumption (A7) may replace the
strong ϱ-mixing condition (3.7), which is required in García-Soidán et al. (2004). The proof is
given in Subsection 3.6.3. Another comment about Theorem 3.8 is made in the next remark.

Remark 3.9 – On the necessity of conditions (A6) and (A7) . In García-Soidán (2007),
the proof of Theorem 3.8 is divided in three parts, according to the value of c0 in (A8).
Let t ∈ (0,+∞). The assumptions (A6) and (3.7) (or equivalently (A7)) are only required
to establish the asymptotic normality of γ̂z,τn (t) when c0 ≤ 8/9. When c0 > 8/9, the
framework of Proposition 3.7, additionally to the boundedness of д2 are su�cient to obtain
the desired result.

From these statements, we shall now establish the asymptotic properties of an estimator of θ
based on γ̂z,τn .

Nonparametric variogram based estimator of θ

Since Z is supposed to be isotropic, there exists a function θ0 : R+ → [1, 2] such that, for any
h ∈ Rd , θ(h) = θ0(‖h‖). It is referred to as the radial ECF in the sequel. Let ze ≈ 1.44 stands
for the median of unit Fréchet distributed random variable. De�ne also, for any z ∈ (0,+∞),
the function

Ψz : t ∈ [0, exp{−1/z}) 7−→ −z log [exp{−1/z} − t] ∈ [1,+∞).

From Eq. (3.4), we introduce a new nonparametric estimator of θ0 given by

θ̂0,n,z (t) = Ψz
(
γ̂z,τn (t)

)
,
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for any t ∈ (0,+∞) and any threshold z > ze (see Remark 3.10). The (pointwise) consistency
and asymptotic normality of this estimator are given in the following propositions

Remark 3.10 Let z, t ∈ (0,+∞). and remark that γ̂z,τn (t) is not necessarily lower
than exp{−1/z}. When it is larger, Ψz

(
γ̂z,τn (t)

)
is not de�ned. However, notice that

γ̂z,τn (t) ≤ 1/2. To be sure that it is well-de�ned, we shall take z > ze in the sequel. This
inequality constrain is convenient if, in future works, we do not consider max-stable RF’s
but processes for which the pointwise maxima, taken over an in�nite number of appropri-
ately rescaled i.i.d. replications, converge in law to a max-stable process. In such a case,
we will study the associated exceedance Iz �eld over a high threshold z.

Proposition 3.11 Set z > ze and let Z be an isotropic and simple max-stable SRF with
ECF θ. If conditions (A1)-(A5), with ` = 1, are satis�ed then, for any t ∈ (0,+∞), θ̂0,n,z (t)
is a consistent estimator.

This result is readily deduced from Proposition 3.7: since (A1)-(A5) hold, the estimator γ̂z,τn (t)
converges in probability to γz (t), for any t ∈ (0,+∞). In addition, for any threshold z > ze ,
Ψz is continuous. According to the continuous mapping theorem, this implies that θ̂0,n,z (t) is
consistent.

Proposition 3.12 Consider the same framework as in Proposition 3.11, with ` = 2, and
assume furthermore that (A6)-(A9) hold. Then, for any t ∈ (0,+∞),

1√
νn

(
θ̂0,n,z (t) − θ0(t)

)
d−→

n→+∞
N

(
Ψ′z

(
γz (t)

)
µ(t), [Ψ′z (γz (t)) ]2 σ2(t)) ,

where νn , µ(t), and σ2(t) are given in Theorem 3.8 and Ψ′z stands for the derivative of Ψz .

Since Ψz is di�erentiable with derivative Ψ′z and νn → 0 as n → +∞, this result directly
follows from Theorem 3.8 by using the Delta method. Let z > ze and suppose now that
(A1)-(A4) are satis�ed and that lim

‖h ‖→+∞
2 − θ(h) exists. A su�cient condition for θ̂0,n,z (t) to

be asymptotically normal is that the integral range Az is �nite (if the conjecture announced
above about (A6) is true).

We shall now illustrate these asymptotic results with some numerical experiments.
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3.4 numerical experiments

The asymptotic properties of the nonparametric variogram based estimator of θ are illus-
trated on simulations, then the performances of this estimator are compared to those of the
F-madogram. First, we shall detail the experimental protocol of this study.

3.4.1 Experimental protocol

Setting

The study is conducted in the bidimensional case (d = 2). Consider the isotropic bivariate
Smith and extremal Gaussian process (i) and (iii), introduced in Chapter 2. For both of them,
the �rst three derivatives of γz are continuous, for z ∈ (0,+∞). Further, it has been shown
that the Smith process satis�es ∫

Rd
2 − θ(h)dh < +∞. (3.9)

Set t ∈ (0,+∞). According to Proposition 3.11 and Proposition 3.4, under appropriate condi-
tions on the sampling scheme and the sequence (τn)n∈N of bandwidth parameters, the estima-
tor θ̂0,n,z (t) is thus consistent, as n → +∞. Conjecturing that Eq. (3.9) implies (A6), it is also
asymptotically normal. On the contrary, the extremal Gaussian RF does not ful�l Eq. (3.9); as
veri�ed in Chapter 2, it is even not mixing. We believe that, in this case, (A5) is not satis�ed
and consequently θ̂0,n,z (t) is neither consistent nor asymptotically normal. This is next illus-
trated on simulations.

Let V = [−1, 1]2 and f0 be the uniform density on V. Besides, for every n ∈ N, take λn = n8/9;
this corresponds to c0 = 8/9 and c1 = 1 in (A8). As mentioned in García-Soidán (2007), this
choice minimizes the order of the variance of γ̂z,τn (t), for any t ∈ (0,+∞). Three di�erent
irregular grids are considered, with number of locations n = 300, 1000 and 2000, respectively.
The locations x1, . . . ,xn ∈ R2 of the grids are generated according to condition (A1). Then,
for each grid, 500 simulations of the processes (i) and (iii) are performed, using the algorithm
we propose in Chapter 4 and the method implemented in the package Randomfields , respec-
tively. Notice that, as required by the theoretical framework, the margins of these processes
are unit-Fréchet distributed. In practice, with real data set, we do not know the margins of
the underlying process; consequently, they have to be assessed to ultimately be transformed
into unit-Fréchet margins. To test the robustness of our estimator, we thus carry out this es-
timation. For each simulation, we assume that the margins have a common distribution, the
c.d.f. of which is estimated by the standard empirical c.d.f., computed from this single simu-
lation. The latter is then transformed to obtain unit-Fréchet margins. Now, let the thresholds
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z1 = 1.45 and z2 be the third quartile of a unit Fréchet distribution, i.e. z2 ≈ 3.48. From each
modi�ed simulation, the exceedance �elds Iz , for z = z1, z2, are subsequently computed. Fi-
nally, from each dummy data set, the estimator θ̂0,n,z (t) is calculated for several distances t ,
using the Gaussian kernel given by

∀t ∈ R K(t) :=
1√
2π

exp
{
−t

2

2

}
.

The later vanishes extremely fast. Even if its support is not compact, it can be numerically
considered as such. The choice of the bandwiths is discussed next.

Bandwidth selection

Let n ∈ N and t ∈ (0,+∞). García-Soidán (2007) gives the expression of the optimal band-
width parameter τn , which asymptotically minimize the mean square error of γ̂z,τn (t). To use
this expression, which actually depends on t , some unknown quantities need to be assessed.
García-Soidán (2007) propose to estimate them either parametrically or by employing again
a nonparametric kernel methods. The �rst solution consists in assuming that the process un-
der study is Gaussian: this is not adapted to our framework. The second one is a bit complex,
mainly because the suggested nonparametric kernel methods also depend on bandwidth pa-
rameters that need to be chosen in turn. As it is often done in nonparametric studies, we
have thus decided to select the bandwidth parameters by cross validation. It is known that
the choice of the bandwidths is delicate, since they highly a�ect the outcome of a nonpara-
metric estimation procedure. However the objective of these numerical experiments is not to
propose an elaborate method to choose these parameters. That is why we set up a basic cross
validation procedure. This could be ameliorated in future works.

Let z ∈ {z1, z2} and consider a realization iz of Iz , which is observed at n ∈ {300, 1000, 2000}
locations x1, . . . ,xn ∈ Rd . This data set is �rst divided into 10 clusters E1, . . . E10 of spatially
closed observations with the k-means method. This limits the spatial dependence between
the training and the testing sets. Let τn ∈ (0,+∞) be a bandwidth. In addition, for any
t ∈ (0,+∞) and any k ∈ {1, . . . , 10}, write γ̂−kz,τn (t) the kernel estimation computed from all
the observations that are not in Ek , i.e.

γ̂−kz,τn (t) :=

∑
j<Ek

∑
`<Ek

K
(
t − ‖x j − x` ‖

τn

) [
iz (x j ) − iz (x`)

]2

2
∑
j<Ek

∑
`<Ek

K
(
t − ‖x j − x` ‖

τn

) .

De�ne now the error

Etot =
10∑
k=1

∑
j, ` ∈ Ek
j,`

���2 γ̂−kz,τn (‖x j − x` ‖) − (
iz (x j ) − iz (x`)

)2��� .
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For a given vector of bandwidths, we select the parameter that minimizes Etot. Notice that
this bandwidth does not depend on the distances t at which the estimator θ̂0,n,z will be sub-
sequently evaluated.

Actually, it turns out that the selection by cross validation of the bandwidth was time-consuming,
especially for data sets with 1000 or 2000 observations. We have thus decided, for each under-
lying processes (i) and (iii) and for each threshold z1 and z2, to select the optimal bandwidth
for only one data set among the 500 data sets with n = 300 observations. This parameter is
then used to compute the Nadaraya-Watson estimator of the variogram for all the other data
sets.

3.4.2 Tracking consistency and asymptotic normality

Let n ∈ {300, 1000, 2000} and z ∈ {z1, z2}. Using the experimental protocol described in the
last subsection, we have evaluated θ̂0,n,z for 50 distances t1, . . . , t50 regularly spaced in [0.2, 10].
We shall notice that the optimal bandwidth has been selected among 15 bandwidths regularly
spaced in the interval [0.1, 2]. These estimations are then used to track the consistency and
the asymptotic normality of θ̂0,n,z (tk ), for k ∈ {1, . . . , 50}.

Smith process

Let k ∈ {1, . . . , 50}. As pointed out in the last subsection, in the case of the Smith pro-
cess, θ̂0,n,z (tk ) should be consistent. This is graphically investigated. The left graphics in
Figure 3.1 display the mean curves obtained by averaging, for each k ∈ {1, . . . , 50} and for
each n ∈ {300, 1000, 2000}, the 500 estimates θ̂0,n,z1(tk ) computed from the 500 realizations of
the exceedance �eld Iz1 . They also show the corresponding 90% con�dence envelopes built by
computing, for each k ∈ {1, . . . , 50} and for each n ∈ {300, 1000, 2000}, the sample quantiles
of order 0.05 and 0.95 of the 500 estimates θ̂0,n,z (tk ). For comparison, the radial ECF θ0 of the
Smith process is also plotted on each graphic. The same information is shown in the right
graphics when considering the threshold z2. We can observe that, except around t = 0, the
mean curves �t well the θ0 for both thresholds. Further the con�dence envelopes become
thinner as n increases. As agreed with the theoretical results, these graphics suggest that
θ̂0,n,z (tk ) is consistent for distances tk that are not to close to 0. Since the variogram γz is re-
stricted to nonnegative value, the null distance is an endpoint. The unsatisfactory behaviour
of the estimation near the endpoint is a well-known issue in nonparametric kernel estima-
tion. García-Soidán et al. (2004) propose to modify the kernel K, accordingly to the method
suggested in Kyung-Joon and Schucany (1998), to obtain satisfactory estimates near 0. This
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is left for future improvements of the estimation method.

To illustre the pointwise asymptotic normality of θ̂0,n,z , we have selected the distance t = 4.2
among the 50 distances t1, . . . t50. Then, for n = 2000 and z = z1, we have considered the 500
estimates θ̂0,n,z (t): the corresponding histogram is displayed in Figure 3.2. It is bell-shaped
like a normal distribution. Further investigation should be carried out to test the normality
of the estimates. This is not done in this study. As in García-Soidán (2007), we could also use
the asymptotic normality property for building and testing con�dence intervals. However,
for any distance t ∈ (0,+∞), this requires to estimate the unknown quantities γ′′(t), k1(t)
and k2(t) in Theorem 3.8, which may be a bit delicate. This is not done in this study.

Extremal Gaussian process

In the case of the extremal Gaussian process, the consistency of θ̂0,n,z (tk ), for anyk ∈ {1, . . . ,n}
is also investigated. For n = 300, Figure 3.3 displays the mean curves obtained by averaging,
for each k ∈ {1, . . . , 50} and for each threshold z ∈ {z1, z2}, the 500 estimates θ̂0,n,z (tk ) com-
puted from the 500 realizations of the exceedance �eld Iz . The corresponding 90% con�dence
envelopes are also plotted as well as the radial ECF θ0 of the extremal Gaussian. Contrary to
the case of the Smith process, the mean curve does not �t at all the θ0: the estimates θ̂0,n,z (tk )
always overestimate the radial ECF. Similar results are obtained for n = 1000 and n = 2000.
The estimation procedure of θ0 has also been performed when the margins of the extremal
Gaussian process are not estimated: the results are shown in Figure 3.4. This time, the estima-
tor θ̂0,n,z seems approximatively unbiased, except for distances tk ≤ 2, when z = z1. On the
other hand, the very large con�dence envelopes indicate that the variability of the estimates
is high and do not reduce as n increases. This would suggest that θ̂0,n,z (tk ) is not a consistent
estimator. However, further investigations are needed. Indeed, it is for instance surprising
that the con�dence envelopes are larger than those obtained when the margins of the process
are evaluated.

Finally, as for the Smith process, we have selected the distance t = 4.2. Then, for n = 2000
and z = z1, we have considered the 500 estimates θ̂0,n,z (t): the corresponding histogram is
displayed in Figure 3.5. Contrary to the previous histogram, its shape does not look like the
shape a Gaussian distribution at all.

3.4.3 Comparison with the F-madogram estimator

Let θ be the ECF of the Smith process (i). We shall now compare our estimator with the
nonparametric F-madogram estimator suggested by Cooley et al. (2006), when assesing θ0.
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(c) n = 2000

Figure 3.1 – The mean curve (red line) and the corresponding 90% con�dence envelope (red dashed line)

for thresholds z1 (on the left) and z2 (on the right). They are computed from 500 simulations of the Smith

process (i) on irregular grids with size n = 300, 1000, 2000. For comparison, its radial ECF is also plotted

(black line).
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1.8 1.9 2
t

Figure 3.2 – Histogram of the 500 estimates θ̂0,n,z (t) (in lightblue), when t = 4.2, n = 300 and for

threshold z1. The estimates have been computed from 500 simulations of the Smith process (iii) on an

irregular grid with size n.
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Figure 3.3 – The mean curve (red line) and the corresponding 90% con�dence envelope (red dashed

line) for thresholds z1 (on the left) and z2 (on the right). They are computed from 500 simulations of the

Extremal Gaussian process (iii) on irregular grids with size n = 300. For comparison, its radial ECF is

also plotted (black line).
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(a) n = 300
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(b) n = 1000
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(c) n = 2000

Figure 3.4 – The mean curve (red line) and the corresponding 90% con�dence envelope (red dashed line)

for thresholds z1 (on the left) and z2 (on the right) and for three di�erent grids of size n = 300, 1000, 2000.
They are all computed from 500 simulations of the Extremal Gaussian process (iii), for which the margins

do not have been estimated. For comparison, the radial ECF of the model (iii) is also plotted (black line).
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1 1.5 2
t

Figure 3.5 – Histogram of the 500 estimates θ̂0,n,z (t) (in lightblue), when t = 4.2, n = 300 and for

threshold z1. They estimates have been computed from 500 simulations of the extremal Gaussian process

(iii) on an irregular grid with size n.

Let Z stands for the max-stable process (i) or (iii) and let F be the c.d.f. of Z(0). This estimator
is based on the so-called F-madogram de�ned, for every h ∈ Rd , by

νF(h) :=
1
2E

[��F (Z(h)) − F (Z(0)) ��] .
Indeed, it is shown in Cooley et al. (2006) that for every h ∈ Rd

θ(h) = 1 + 2νF(h)
1 − 2νF(h)

.

Again, since Z is isotropic, there exists a function νF,0 : R+ → [0, 1] such that νF(h) =
νF,0(‖h‖), for any h ∈ Rd . Suppose that a realization of Z is observed at n ∈ N∗ locations
x1, . . . ,xn ∈ Rd and let F̂ be an estimator of the c.d.f. F. According to Eq. (1.18) in Chapter 1,
an empirical estimator of νF̂,0 is given, for any t ∈ (0,+∞), by

ν̂F̂,0,n(t) :=
1

2|Nt |
∑

(xi ,x j )∈Nt

��F (Z(xi )) − F (
Z(x j )

) �� , (3.10)

where Nt :=
{(xi ,x j ) : ‖xi − x j ‖ ∈ Tt , i, j = 1, . . . ,k

}
, Tt is a tolerance region around t , and

|Nt | is the number of distinct pairs in Nt . For any t ∈ (0,+∞), the F-madogram estimator is
then

θ̂F̂0,n(t) =
1 + 2ν̂F,0,n(t)
1 − 2ν̂F,0,n(t)

.

Let t1, . . . , t50 be the vector of distance considered in the last subsection. The same experi-
mental protocol presented in Subsection 3.4.1 is used, when considering the Smith process,
to obtain some estimates of θ̂F̂0,n(tk ), except that F̂, empirical estimation of F, is used to obtain
uniform margins and not unit-Fréchet margins. Besides the data are not ultimately trans-
formed to obtain (some realizations of) exceedance �elds. Notice also that the choice of the
tolerance region Tt amounts to choose some bandwidth parameters: this is done with the
same cross validation procedure presented above. The same graphics as before are displayed
in Figure 3.6. For comparison, we also add the results previously obtained for our estimator
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Figure 3.6 – The mean curves associated to θ̂F̂0,n (blue line) and θ̂0,n,z1 (red line) as well as the corre-

sponding 90% con�dence envelopes (blue and red dashed line, respectively). They are computed from 500
simulations of the Smith process (i) on irregular grids with size n = 300, 1000, 2000. The radial ECF of the
process (i) is also plotted (black line).

θ̂0,n,z (tk ) when z = z1. The curves for both estimators are very similar except near t = 0,
where θ̂F0,n actually performs better.

3.5 discussion

In this chapter, we have introduced a new nonparametric estimator of the radial ECF θ of
the simple max-stable SRF Z, which depends on the variogram γz of the corresponding ex-
ceedance �eld Iz above a positive threshold z. When γz is estimated by the Nadaraya-Watson
estimator proposed in García-Soidán (2007), we derived from the latter asymptotic properties
of our estimator when it is computed from a single and partially observed realization of Z.
Namely, under some assumptions, we showed that it is asymptotically consistent and normal.
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These conditions are modi�ed versions of the assumptions required in García-Soidán (2007),
which are more convenient to check when working with max-stable processes. In particular,
they require that Z is mixing and that the integral range Az of Iz is �nite. This illustrates once
more the relevance of the concept of integral range to study spatial extreme events when hav-
ing only one set of spatial observations.

As detailed in this chapter, the asymptotic normality of the Nadaraya-Watson estimator of γz
is obtained in García-Soidán (2007) under the condition that, for two subsets V1,V2 ⊂ Rd , the
associated ρ-mixing coe�cient vanishes to 0 when the distance between V1 and V2 goes to
in�nity. As mentioned in Chapter 2, some other studies require that such mixing coe�cients
decay fast enough to 0. The result of this chapter therefore encourages us to investigate fur-
ther the link between integral range, ECF and strong mixing properties of Z. The relations
between the β- and α-mixing conditions and θ have already been examined by Dombry and
Eyi-Minko (2012) when Z is de�ned on Zd . More generally, when Z is de�ned on Rd , they
�nd an upper bound for the β-mixing coe�cient, which involves the exponent measure of Z
(see Theorem 2.1 in their paper). These seminal results constitute references for future work
on the connection between integral range and strong mixing.

The results established in this chapter have been illustrated in Section 3.4. It was underlined
that the non parametric estimation of γz could be ameliorated, especially when selecting the
bandwidth parameters. Besides, since θ does not depend on the threshold z, we could also
try to aggregate estimators obtained for di�erent thresholds. We have compared our new es-
timator of the ECF to the F-madogram estimator. Their performances were similar except for
small distances. Comparisons with other estimators, like the maximum likelihood estimator
proposed by Schlather and Tawn (2003), will be performed in forthcoming works. An appli-
cation with real data (Bourgogne precipitation data set) should also be performed.

In this work, we have focused on the Nadaraya-Watson estimator of γz , since its asymptotic
properties were already established. It would be interesting to study, at least with simula-
tions, the performance of our estimator of θ when considering other estimators of γz . As it
is commonly done in geostatistical studies, we could for instance use the estimator resulting
from �tting a parametric model on the experimental variogram.
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3.6 proofs and supplements

3.6.1 Finite integral range: a su�cient condition

In this subsection, we shall prove that, if 2 − θ(h) admits a limit as ‖h‖ → +∞, then∫
Rd

2 − θ(h)dh < +∞ ⇒ I1 < +∞.

The condition I2 < +∞ is discussed after. Before, we shall introduce the next useful inequality
between extremal coe�cients.

Remark 3.13 – About the extremal coe�cients. Set n,m ∈ N∗ and let x1, . . . ,xn ,
y1, . . . ,ym ∈ Rd . Since the spectral process Y associated with Z is nonnegative, it follows
from Section 3.2 that

ϑ (x1, . . . ,xn ,y1, . . . ,ym) = E
[
max

(
max

i ∈{1, ...,n }
Y(xi ), max

i ∈{1, ...,m }
Y(yi )

)]

≤ E
[

max
i ∈{1, ...,n }

Y(xi )
]
E

[
max

i ∈{1, ...,m }
Y(yi )

]

Hence, ϑ (x1, . . . ,xn ,y1, . . . ,ym) ≤ ϑ (x1, . . . ,xn) ϑ (y1, . . . ,ym) .

Integral I1

Set x1,x2,x3 ∈ Rd and remark that

д1(x1,x2,x3) = P [Iz (0) , Iz (x1), Iz (x2) , Iz (x3)] − P [Iz (0) , Iz (x1)] P [Iz (x2) , Iz (x3)] .

By developing each term and using the formula of total probability, it follows

д1(x1,x2,x3) = exp
{
−ϑ(0,x2)

z

}
− exp

{−2
z

}
+ exp

{
−ϑ(x1,x2)

z

}
− exp

{−2
z

}

+ exp
{
−ϑ(0,x3)

z

}
− exp

{−2
z

}
+ exp

{
−ϑ(x1,x3)

z

}
− exp

{−2
z

}
− 2 exp

{
−ϑ(x1,x2,x3)

z

}

− 2 exp
{
−ϑ(0,x1,x3)

z

}
− 2 exp

{
−ϑ(0,x1,x2)

z

}
− 2 exp

{
−ϑ(0,x2,x3)

z

}

+ 4 exp
{
−(1 + ϑ(x2,x3))

z

}
+ 4 exp

{
−(1 + ϑ(0,x1))

z

}
− 4 exp

{
−(ϑ(0,x1) + ϑ(x2,x3))

z

}

+ 4 exp
{
−ϑ(0,x1,x2,x3)

z

}
.

Now let v,w,x ,y ∈ Rd . Recall from Eq. (1.16) that

1 ≤ ϑ(x ,y) ≤ 2. (3.11)
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According to Remark 3.13 it also holds

ϑ(v,w,x) ≤ 1 + ϑ(w,x), (3.12)

and
ϑ(v,w,x ,y) ≤ ϑ(v,w) + ϑ(x ,y). (3.13)

Besides, from equation 13 in Schlather and Tawn (2002, page 92),

ϑ(v,w,x) ≥ ϑ(v,w) + ϑ(v,x) + ϑ(w,x) − 3
≥ [ϑ(v,w) − 2] + [ϑ(v,x) − 2] + ϑ(w,x) + 1,

(3.14)

and, from equation 23 in Schlather and Tawn (2002, page 95),

ϑ(v,w,x ,y) ≥ [ϑ(v,x) − 2] + [ϑ(v,y) − 2] + [ϑ(w,x) − 2] + [ϑ(w,y) − 2] + ϑ(v,w) + ϑ(x ,y).
(3.15)

Consequently, from equations (3.11), (3.12) and (3.13),����д1(x1,x2,x3)
���� ≤

(
exp

{
−ϑ(0,x2)

z

}
− exp

{−2
z

})
+

(
exp

{
−ϑ(x1,x2)

z

}
− exp

{−2
z

})

+

(
exp

{
−ϑ(0,x3)

z

}
− exp

{−2
z

})
+

(
exp

{
−ϑ(x1,x3)

z

}
− exp

{−2
z

})

+ 2
(
exp

{
−ϑ(x1,x2,x3)

z

}
− exp

{
−(1 + ϑ(x2,x3))

z

})

+ 2
(
exp

{
−ϑ(0,x1,x3)

z

}
− exp

{
−(1 + ϑ(0,x1))

z

})

+ 2
(
exp

{
−ϑ(0,x1,x2)

z

}
− exp

{
−(1 + ϑ(0,x1))

z

})

+ 2
(
exp

{
−ϑ(0,x2,x3)

z

}
− exp

{
−(1 + ϑ(x2,x3))

z

})

+ 4
(
exp

{
−ϑ(0,x1,x2,x3)

z

}
− exp

{
−(ϑ(0,x1) + ϑ(x2,x3))

z

})
.

Then, from equations (3.14) and (3.15) and the three following inequalities

— exp
{
−(1 + ϑ(0,x1))

z

}
≤ 1,

— exp
{
−(1 + ϑ(x2,x3))

z

}
≤ 1,

— exp
{
−(ϑ(0,x1) + ϑ(x2,x3))

z

}
≤ 1,

it yields����д1(x1,x2,x3)
���� ≤

(
exp

{
−ϑ(0,x2)

z

}
− exp

{−2
z

})
+

(
exp

{
−ϑ(x1,x2)

z

}
− exp

{−2
z

})

+

(
exp

{
−ϑ(0,x3)

z

}
− exp

{−2
z

})
+

(
exp

{
−ϑ(x1,x3)

z

}
− exp

{−2
z

})
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+ 2
(
exp

{ [2 − ϑ(x1,x2)] + [2 − ϑ(x1,x3)]
z

}
− 1

)
+ 2

(
exp

{ [2 − ϑ(0,x3)] + [2 − ϑ(x1,x3)]
z

}
− 1

)

+ 2
(
exp

{ [2 − ϑ(0,x2)] + [2 − ϑ(x1,x2)]
z

}
− 1

)
+ 2

(
exp

{ [2 − ϑ(0,x2)] + [2 − ϑ(0,x3)]
z

}
− 1

)

+ 4
(
exp

{ [2 − ϑ(0,x2)] + [2 − ϑ(0,x3)] + [2 − ϑ(x1,x2)] + [2 − ϑ(x1,x3)]
z

}
− 1

)
. (3.16)

Let s ∈ R∗+. We shall show that each di�erence in the right-handed part of Eq. (3.16) is
integrable over D := {x1,x2,x3 ∈ Rd : ‖x1‖ ≤ s and ‖x2 −x3‖ ≤ s}, if

∫
Rd

2− θ(h)dh < +∞.

First, recall from Eq. (2.27) that for any v,w ∈ Rd

Cz (v − w) = Cz (w − v) = exp
{
−ϑ(v,w)

z

}
− exp

{−2
z

}
≥ 0

Remark also that∫
‖x1 ‖≤s
‖x2−x3 ‖≤s

Cz (x2)dx1dx2dx3 = |Bs |
∫

Rd

∫
Bs (x2)

C(x2)dx2dx3 = |Bs |2
∫

Rd
C(x2)dx2, (3.17)

where Bs stands for the centred ball of radius s , and∫
‖x1 ‖≤s
‖x2−x3 ‖≤s

Cz (x1 − x2)dx1dx2dx3 = |Bs |
∫

‖x1 ‖≤s

∫
Rd

C(x1 − x2)dx1dx2 = |Bs |2
∫

Rd
C(y)dy.

(3.18)
Similarly, we have ∫

‖x1 ‖≤s
‖x2−x3 ‖≤s

Cz (x3)dx1dx2dx3 = |Bs |2
∫

Rd
C(x3)dx3 (3.19)

and ∫
‖x1 ‖≤s
‖x2−x3 ‖≤s

Cz (x1 − x3)dx1dx2dx3 = |Bx |2
∫

Rd
C(y)dy. (3.20)

Then, assume that
2 − θ(h) →

‖h ‖→+∞
0,

and suppose that ‖x1‖ ≤ s and ‖x3 − x2‖ ≤ x . When considering the taylor series expansion
of the exponential function in 0 at the �rst order, it gives that

exp
{ [2 − ϑ(x1,x2)] + [2 − ϑ(x1,x3)]

z

}
− 1 =

‖x2 ‖→+∞[
1 + 2 − ϑ(x1,x2)

z
+ o

(
2 − ϑ(x1,x2)

z

)] [
1 + 2 − ϑ(x1,x3)

z
+ o

(
2 − ϑ(x1,x3)

z

)]
− 1 =

‖x2 ‖→+∞
1
z
[2 − ϑ(x1,x2) + o (2 − ϑ(x1,x2)) + 2 − ϑ(x1,x3) + o (2 − ϑ(x1,x3))] .

Similarly,
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exp
{ [2 − ϑ(0,x3)] + [2 − ϑ(x1,x3)]

z

}
− 1 =

‖x2 ‖→+∞
1
z
(2 − ϑ(0,x3) + o (2 − ϑ(0,x3)) + 2 − ϑ(x1,x3) + o (2 − ϑ(x1,x3))) ,

exp
{ [2 − ϑ(0,x2)] + [2 − ϑ(x1,x2)]

z

}
− 1 =

‖x2 ‖→+∞
1
z
(2 − ϑ(0,x2) + o (2 − ϑ(0,x2)) + 2 − ϑ(x1,x2) + o (2 − ϑ(x1,x2))) ,

exp
{ [2 − ϑ(0,x2)] + [2 − ϑ(0,x3)]

z

}
− 1 =

‖x2 ‖→+∞
1
z
(2 − ϑ(0,x2) + o (2 − ϑ(0,x2)) + 2 − ϑ(0,x3) + o (2 − ϑ(0,x3))) ,

and

exp
{ [2 − ϑ(0,x2)] + [2 − ϑ(0,x3)] + [2 − ϑ(x1,x2)] + [2 − ϑ(x1,x3)]

z

}
− 1 =

‖x2 ‖→+∞
1
z

(
2− ϑ(0,x2)+o (2 − ϑ(0,x2))+ 2− ϑ(0,x3)+o (2 − ϑ(0,x3))+ 2− ϑ(x1,x2)+o (2 − ϑ(x1,x2))

+ 2 − ϑ(x1,x3) + o (2 − ϑ(x1,x3))
)
.

Now remember that it has been shown in Chapter 2 that∫
Rd

2 − θ(h)dh < +∞⇔ ∀z ∈ (0,+∞)
∫

Rd
Cz (h)dh < +∞,

(see Theorem 2.19) and that, if lim
‖h ‖→+∞

2 − θ(h) exists,

∫
Rd

2 − θ(h)dh < +∞⇒ 2 − θ(h) →
‖h ‖→+∞

0.

Therefore, if lim
‖y ‖→+∞

2 − θ(y) exists and if
∫

Rd
2 − θ(h)dh < +∞ thus so are the integrals in

equations (3.17)-(3.20). Hence the integrals over D of each di�erence in the right-handed part
of Eq. (3.16) is �nite, and consequently I1(x) < +∞.

Integral I2

First notice that if ∫
Rd

2 − θ(h)dh < +∞, (3.21)

then for any s ∈ (0,+∞),
∫

‖x1 ‖≤s, ‖x2−x3 ‖≤s,
‖x4−x5 ‖≤s, ‖x6−x7 ‖≤s

(
exp

{
−θ(y2, ỹ2)

z

}
− exp

{
−2
z

}) (
exp

{
−θ(y4, ỹ4)

z

}
− exp

{
−2
z

})
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×
(
exp

{
−θ(y6, ỹ6)

z

}
− exp

{
−2
z

})
dx1, . . . ,x7 < +∞, (3.22)

where the elements y2 ∈ {x2,x3}, y4 ∈ {x4,x5}, y6 ∈ {x6,x7}, ỹ2 ∈ {0,x1,x4,x5,x6,x7},
ỹ4 ∈ {0,x1,x2,x3,x6,x7}, ỹ6 ∈ {0,x1,x2,x3,x4,x5} are such that the pairs {y2, ỹ2}, {y4, ỹ4}
and {y6, ỹ6} are distinct, with 0 ∈ {ỹ2, ỹ4, ỹ6} or x1 ∈ {ỹ2, ỹ4, ỹ6}.

Now, let x0,x1, . . . ,x7 ∈ Rd , with x0 = 0. We have

д2(x1, . . . ,x7) = P

[ 3⋂
j=0

Iz (x2j ) , Iz (x2j+1)
]

−
3∑
i=0

P


⋂

j ∈{0, ...,3}
j,i

Iz (x2j ) , Iz (x2j+1)


P [Iz (x2i ) , Iz (x2i+1)]

+
∑

i,k ∈{0, ...,3}
i,k

P


⋂

j ∈{0, ...,3}
j,i,k

Iz (x2j ) , Iz (x2j+1)


P [Iz (x2i ) , Iz (x2i+1)] P [Iz (x2k ) , Iz (x2k+1)]

− 3
3∏
j=0

P
[
Iz (x2j ) , Iz (x2j+1)

]
. (3.23)

As in the case of the integral I1, we have conveniently decomposed Eq. (3.23) into 16 sums of
14 terms each. Then, using the inequalities for the extremal coe�cients found by Schlather
and Tawn (2002), we have tried to bound above the absolute value of these sums by the inte-
grand in Eq. (3.22). Because each sum involves 14 terms, this task is more di�cult than for I1

and, up to now, we did not manage to show that Eq. (3.21) implies that I2 is �nite.

3.6.2 Continuity: an adequate assumption

As mentioned above, Theorem 3.2 in García-Soidán et al. (2004) and Theorem 3.1 in García-
Soidán (2007) need for д1 and д2 to be continuously di�erentiable, respectively. Notice that if
д2 continuously di�erentiable then so is д1. When looking at the proof of Theorem 3.1 closely,
it turns out that only the assumption on д1 is involved. Hence, we shall prove that the conti-
nuity of д1 is a su�cient condition for both theorems. Since the part of the proof where the
continuity assumption is required are similar in both proofs, we shall only concentrate on
Theorem 3.2 in García-Soidán et al. (2004).

First, recall that Iz is isotropic, for any z ∈ (0,+∞). Consequently, there exists a function
д : R4

+ → R such that,

∀x1,x2,x3 ∈ Rd д1(x1,x2,x3) = д(‖x2‖, ‖x1 − x3‖, ‖x3‖, ‖x1 − x2‖).
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Similarly to García-Soidán et al. (2004), we shall focus on д instead on д1. Recall that д1 is
assumed bounded: thus so is д. Now, set t ∈ (0,+∞), n ∈ N∗ and let the random variables
U1, . . . ,U4 be independent, with same density f0. De�ne also

α1(t) := E
[(
K

(
t − λn ‖U1 −U2‖

τn

))2
д (0, 0, λn ‖U1 −U2‖, λn ‖U1 −U2‖)

]
,

α2(t) := E
[
K

(
t − λn ‖U1 −U2‖

τn

)
K

(
t − λn ‖U1 −U3‖

τn

)

×д (0, λn ‖U2 −U3‖, λn ‖U1 −U3‖, λn ‖U1 −U2‖)
]
.

and

α3(t) := E
[
K

(
t − λn ‖U1 −U2‖

τn

)
K

(
t − λn ‖U3 −U4‖

τn

)

×д (λn ‖U1 −U3‖, λn ‖U2 −U4‖, λn ‖U1 −U4‖, λn ‖U2 −U3‖)
]
.

In the proof of Theorem 3.2 in García-Soidán et al. (2004), the assumption that д is con-
tinuously di�erentiable is invoked when calculating the expectation α1(t), α2(t) and α3(t),
but this computation is not detailed at all. We shall detail the calculus and show that the
result is still valid when only assuming that д is continuous. Let us focus on α1(t). Let
E0 = {x1 − x2 ∈ Rd : x1,x2 ∈ V}. It follows

α1(t) =
∫
E0

(
K

(
t − λn ‖x ‖

τn

))2
д (0, 0, λn ‖x ‖, λn ‖x ‖) f1(x)dx ,

Let m0 = sup{‖x1 − x2‖ : x1,x2 ∈ V}. By an abuse of notation, we shall write, for any
y = (y1, . . . ,yd ) ∈ Rd , f1(y) = f1(y1, . . . ,yd ). When switching to hyperspherical coordinates,
it yields that

α1(t) =
∫ m0

0

∫ π

0
. . .

∫ π

0

∫ 2π

0
rd−1

(
K

(
t − λnr
τn

))2
Jd (θ1, . . . , θd−1)д (0, 0, λnr , λnr )

× f1

(
r cos(θ1), . . . , r

d−1∏
j=1

sin(θj )
)
drdθ1, . . . ,dθd−1, (3.24)

where Jd (θ1, . . . , θd−1) = (sin(θ1))d−2(sin(θ2))d−3 . . . sin(θd−2). With substitution s = (t −
λnr )/τn , this becomes

α1(t) =
∫ s/τn

(t−λnm0)/τn

∫ π

0
. . .

∫ π

0

∫ 2π

0
τnλ
−d
n (t − sτn)d−1 (K (s))2 Jd (θ1, . . . , θd−1)

×д (0, 0, t − sτn , t − sτn) f1
(
λ−1n (t − sτn) cos(θ1), . . . , λ−1n (t − sτn)

d−1∏
j=1

sin(θj )
)
dsdθ1, . . . ,dθd−1.
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Then, by using the binomial expansion and the dominated convergence theorem, it holds

α1(t) = τnλ−dn td−1
∫ t/τn

(t−λnm0)/τn

∫ π

0
. . .

∫ π

0

∫ 2π

0
(K (s))2 Jd (θ1, . . . , θd−1)д (0, 0, t − sτn , t − sτn)

× f1

(
λ−1n (t − sτn) cos(θ1), . . . , λ−1n (t − sτn)

d−1∏
j=1

sin(θj )
)
dsdθ1, . . . ,dθd−1 + o(τnλ−dn ),

as n → +∞. Indeed, recall that τn → 0 and λn → +∞ as n → +∞. Notice also that

— K is compactly supported on [−C,C],

— lim
n→+∞

1
{
max

(
−C, t − λnm0

τn

)
≤ s ≤ min

(
C, t
τn

)}
= 1{−C ≤ s ≤ C}

— f1 is a density function, which is continuous in 0 (see (A2)),

— д is bounded and is continuous in (0, 0, t , t),

— |д (0, 0, t , t) | f1 (0)
∫ C

−C
. . .

∫ π

0

∫ 2π

0
sd−1−k (K (s))2 |Jd (θ1, . . . , θd−1)| drdθ1, . . . ,dθd−1 <

+∞, for any k ∈ {0, . . . ,d − 2}.

By using the dominated convergence theorem, we obtain

lim
n→+∞

∫ t/τn

(t−λnm0)/τn

∫ π

0
. . .

∫ π

0

∫ 2π

0
sd−1−k (K (s))2 Jd (θ1, . . . , θd−1)д (0, 0, t − sτn , t − sτn)

× f1

(
λ−1n (t − sτn) cos(θ1), . . . , λ−1n (t − sτn)

d−1∏
j=1

sin(θj )
)
dsdθ1, . . . ,dθd−1 < +∞

and consequently,

τnλ
−d
n

d−2∑
k=0

Ck
d−1t

k (−τn)d−1−k
∫ t/τn

(t−λnm0)/τn

∫ π

0
. . .

∫ π

0

∫ 2π

0
sd−1−k (K (s))2

× Jd (θ1, . . . , θd−1)д (0, 0, t − sτn , t − sτn)

× f1

(
λ−1n (t − sτn) cos(θ1), . . . , λ−1n (t − sτn)

d−1∏
j=1

sin(θj )
)
dsdθ1, . . . ,dθd−1 =

n→+∞
o(τnλ−dn ).

Similarly, according to the dominated convergence theorem, we also have

lim
n→+∞

∫ t/τn

(t−λnm0)/τn

∫ π

0
. . .

∫ π

0

∫ 2π

0
(K (s))2 Jd (θ1, . . . , θd−1)

×
[
д (0, 0, t − sτn , t − sτn) f1

(
λ−1n (t − sτn) cos(θ1), . . . , λ−1n (t − sτn)

d−1∏
j=1

sin(θj )
)

× 1
{
max

(
−C, t − λnm0

τn

)
≤ s ≤ min

(
C, t
τn

)}

−д (0, 0, t , t) f1 (0) 1{−C ≤ s ≤ C}
]
dsdθ1, . . . ,dθd−1

=

∫ t/τn

(t−λnm0)/τn

∫ π

0
. . .

∫ π

0

∫ 2π

0
(K (s))2 Jd (θ1, . . . , θd−1)
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× lim
n→+∞

[
д (0, 0, t − sτn , t − sτn) f1

(
λ−1n (t − sτn) cos(θ1), . . . , λ−1n (t − sτn)

d−1∏
j=1

sin(θj )
)

× 1
{
max

(
−C, t − λnm0

τn

)
≤ s ≤ min

(
C, t
τn

)}

−д (0, 0, t , t) f1 (0) 1{−C ≤ s ≤ C}
]
dsdθ1, . . . ,dθd−1

= 0

Consequently, the result in García-Soidán et al. (2004) is retrieved:

α1(t) = dK f1(0)td−1Ad д(0, 0, t , t)τnλ−dn + o(τnλ−dn ), (3.25)

with dK and Ad de�ned as in García-Soidán et al. (2004).

We can also recover α2(t) and α3(t) in García-Soidán et al. (2004) by only using the assumption
that д is continuous and not continuously di�erentiable. Since the calculus are similar, this is
not presented here.

3.6.3 Finite integrale range: an alternative condition

Let r ∈ R+ and de�ne
ϱ̃(r ) := sup

x1,x2 ∈Rd

‖x1−x2 ‖≥r

(2 − ϑ(x1,x2)).

In García-Soidán (2007), the asymptotic normality of the Nadaraya-Watson semivariogram
estimator is obtained under the assumption that:

ϱ(r ) →
r→+∞

0, (3.26)

see Remark 3.5. We shall prove that this condition may be replaced by

ϱ̃(r ) →
r→+∞

0,

which is actually equivalent to lim
‖h ‖→+∞

2 − θ(h) = 0 as n → +∞, see Remark 3.14. Let us �rst

introduce some notation. First recall from Chapter 2 that the Minkowski sum of two bounded
measurable subsets V and W of Rd is de�ned as

V ⊕W := {v + w, v ∈ V and w ∈ W}.

For any subset V ∈ Rd and for any λ ∈ (0,+∞), the set λV corresponds to the image of V after
applying the homothety with center 0 and ratio λ. We shall stress that this notation slightly
di�ers from Chapter 2 where λV standed for image of V after applying the homothety with
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ratio λ but with center equal to the barycenter of V.

Set n ∈ N and let (Cj,n)j ∈N∗ be a sequence of d-dimensional hypercubes of side αn , which
cover Rd so that each hypercube is separated from its nearest neighbours by a spacing strip of
width βn . The sequences (αn)n∈N and (βn)n∈N satisfy limn→+∞ αn = +∞, limn→+∞ βn = +∞
and

λdn α
−d
n ϱ

(
βn
2

)
→

n→+∞
0. (3.27)

Let also Jn := {j ∈ N∗ : λ−1n Cj ∩ V , �}, with number of elements Jn . Since 0 ∈ V,
limn→+∞ Jn = +∞. In the sequel, for simplicity of notation, we shall write Cj = Cj,n and
J = Jn . Finally, let W = {y1 −y2 ∈ Rd : y1,y2 ∈ V} and de�ne, for any z, t ∈ (0,+∞) and
j ∈ N∗,

Y2, j (t) :=
∫
W

∫
λ−1n Cj∩V

K
(
t − λn ‖x ‖

τn

) (
[Z(λnx + λnv) − Z(λnv)]2 − 2γz (λn ‖x ‖)

)

× f0(x + v)f0(v)dxdv.

Now, set z, t ∈ (0,+∞) and j0 ∈ J , and recall that the kernel K in Eq. (3.5) is compactly
supported on [−C,C], with C ∈ (0,+∞). In the proof of Theorem 3.1 in García-Soidán (2007)
(see the appendix, section 5), Eq. (3.26) intervenes at the end of the page 498 to get

A := E

Y2, j0(t)

∑
j ∈J\j0

Y2, j (t)

= O

(
λ−3dn τ2n ϱ (βn − 2[t + C])

)
as n → +∞. (3.28)

The author does not give any details about the di�erent steps to get Eq. (3.28). This result to-
gether with Eq. (3.27) and Eq. (3.26) is then used in an intermediate step to ultimately obtain
the asymptotic normality of γ̂z,τn (t). Similarly to Eq. (3.27), assume without any inconve-
nience that (αn)n∈N and (βn)n∈N satisfy

λdn α
−d
n ϱ̃

(
βn
2

)
→

n→+∞
0. (3.29)

We shall demonstrate that

A = O
(
λ−3dn τ2n ϱ̃ (βn − 2[t + C])

)
as n → +∞.

Proof. We have

A =
∑

j ∈J\j0

∫
W

∫
λ−1n Cj∩V

∫
W

∫
λ−1n Cj0∩V

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)

×E
[ {[Z(λnx1 + λnv1) − Z(λnv1)]2 − 2γz (λn ‖x1‖)}

× {[Z(λnx2 + λnv2) − Z(λnv2)]2 − 2γz (λn ‖x2‖)} ]
× f0(x1 + v1)f0(v1)f0(x2 + v2)f0(v2)dx1dv1dx2dv2,

119



estimation of the extremal coefficient function based on a single observation

Since

E
[ {[Z(λnx1 + λnv1) − Z(λnv1)]2 − 2γz (λn ‖x1‖)}

× {[Z(λnx2 + λnv2) − Z(λnv2)]2 − 2γz (λn ‖x2‖)} ]
= Cov

[(Z(λnx1 + λnv1) − Z(λnv1))2 , (Z(λnx2 + λnv2) − Z(λnv2))2] ,
and by assumption, sup

x ∈V
f0(x) < +∞, the following inequality holds

A ≤
(
sup
x ∈V

f0(x)
)4 ∑

j ∈J\j0

∫
W

∫
λ−1n Cj∩V

∫
W

∫
λ−1n Cj0∩V

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)

× Cov [(Z(λnx1 + λnv1) − Z(λnv1))2 , (Z(λnx2 + λnv2) − Z(λnv2))2] dx1dv1dx2dv2,
In addition K is nonnegative and compactly supported on [−C,C]. Hence,

A ≤
(
sup
x ∈V

f0(x)
)4 ∑

j ∈J\j0

∫
x1 s.t.

t−Cτn ≤λn ‖x1 ‖≤t+Cτn

∫
λ−1n Cj∩V

∫
x2 s.t.

t−Cτn ≤λn ‖x2 ‖≤t+Cτn∫
λ−1n Cj0∩V

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)

×
����Cov [(Z(λnx1 + λnv1) − Z(λnv1))2 , (Z(λnx2 + λnv2) − Z(λnv2))2]

����dx1dv1dx2dv2.
Let now Wt := {x ∈ Rd : 0 ≤ λn ‖x ‖ ≤ t + C}. Consequently, for n large enough so that
τn ≤ min(t/C, 1),

A ≤
(
sup
x ∈V

f0(x)
)4 ∑

j ∈J\j0

∫
Wt

∫
λ−1n Cj∩V

∫
Wt

∫
λ−1n Cj0∩V

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)

×
����Cov [(Z(λnx1 + λnv1) − Z(λnv1))2 , (Z(λnx2 + λnv2) − Z(λnv2))2]

����dx1dv1dx2dv2. (3.30)

Let x1,x2 ∈ Wt , v1 ∈
(
λ−1n Cj ∩V

)
, and v2 ∈

(
λ−1n Cj0 ∩V

)
. Remembering that for any j0 ∈ J

and for any j ∈ J \ j0, d(Cj0 ,Cj ) ≥ βn , notice that,

d
(
λnWt ⊕

(
Cj ∩ λnV

)
, λnWt ⊕

(
Cj0 ∩ λnV

) ) ≥ βn − 2(t + C). (3.31)

We shall now prove that����Cov [(Z(λnx1 + λnv1) − Z(λnv1))2 , (Z(λnx2 + λnv2) − Z(λnv2))2]
���� ≤ ϱ̃n,t , (3.32)

with
ϱ̃n,t = 16

(
exp

{
4 ϱ̃ (β − 2[t + C])

z

}
− 1

)
.

For simplicity, write y1 = λnx1, y2 = λnx1 + λnv1 − λnx2 − λnv2 and y3 = λnx1 + λnv1 − λnv2.
From Eq. (3.16),����Cov [(Z(λnx1 + λnv1) − Z(λnv1))2 , (Z(λnx2 + λnv2) − Z(λnv2))2]

����
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=

����Cov [(Z(0) − Z(y1))2 , (Z(y2) − Z(y3))2]
����

≤
(
exp

{
−ϑ(0,y2)

z

}
− exp

{−2
z

})
+

(
exp

{
−ϑ(y1,y2)

z

}
− exp

{−2
z

})

+

(
exp

{
−ϑ(0,y3)

z

}
− exp

{−2
z

})
+

(
exp

{
−ϑ(y1,y3)

z

}
− exp

{−2
z

})

+ 2
(
exp

{ [2 − ϑ(y1,y2)] + [2 − ϑ(y1,y3)]
z

}
− 1

)
+ 2

(
exp

{ [2 − ϑ(0,y3)] + [2 − ϑ(y1,y3)]
z

}
− 1

)

+ 2
(
exp

{ [2 − ϑ(0,y2)] + [2 − ϑ(y1,y2)]
z

}
− 1

)
+ 2

(
exp

{ [2 − ϑ(0,y2)] + [2 − ϑ(0,y3)]
z

}
− 1

)

+ 4
(
exp

{ [2 − ϑ(0,y2)] + [2 − ϑ(0,y3)] + [2 − ϑ(y1,y2)] + [2 − ϑ(y1,y3)]
z

}
− 1

)
.

Consider the right-handed part of this inequality. According to Eq. (3.31), the four �rst
terms, the four following terms and the last term are less than exp {ϱ̃(βn − 2[h + C])/z} − 1,
2 (exp {2ϱ̃(βn − 2[h + C])/z} − 1) and 4 (exp {4ϱ̃(βn − 2[h + C])/z} − 1), respectively. Hence
Eq. (3.32) is satis�ed. Coming back to Eq. (3.30), it follows that

A ≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4 ∑

j ∈J\j0

∫
Wt

∫
λ−1n Cj∩V

∫
Wt

∫
λ−1n Cj0∩V

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)
dx1dv1dx2dv2

≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
λ−2dn (Jn − 1)|Cj ∩ λnV| |Cj0 ∩ λnV|

×
∫
Wt

∫
Wt

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)
dx1dx2,

For every j ∈ J , |Cj | = αdn and, since V is bounded, there exists b3 ∈ R∗+ such that Jn ≤
b3 (λnα−1n )d . Hence, for large enough n,

A ≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
b3 α

d
n λ
−d
n

∫
Wt

∫
Wt

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)
dx1dx2. (3.33)

If additionally n is such that b3 αdn ≤ 1, then

A ≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
λ−d

∫
Wt

∫
Wt

K
(
t − λn ‖x1‖

τn

)
K

(
t − λn ‖x2‖

τn

)
dx1dx2. (3.34)

Let Rt = {r ∈ R+, 0 ≤ λnr ≤ t +C}, and let n ∈ N such that (t +C)/λn ≤ 1. When switching
to polar coordinates, we thus obtain that

A ≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
λ−d d |B1 |

∫
Rt

∫
Rt
rd−11 rd−12 K

(
t − λnr1
τn

)
K

(
t − λnr2
τn

)
dr1dr2

With substitutions s1 = (t − λr1)/τn and s2 = (t − λr2)/τn , it follows that

A ≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
λ−3d τ2n d |B1 |

∫
s1∈R+ s.t. −Cτn ≤s1≤

t
τn

∫
s2∈R+ s.t. −Cτn ≤s2≤

t
τn

(t − τn s1)d−1(t − τn s2)d−1
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× K (s1)K (s2) ds1ds2

≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
λ−3d τ2n d |B1 | (τn + C)2(d−1)

∫
s1∈R+

−C
τn ≤s1≤

t
τn

∫
s2∈R+

−C
τn ≤s2≤

t
τn

K (s1)K (s2) ds1ds2.

For large enough n, since K is a density function compactly supported on [−C,C], it yields

A ≤ ϱ̃n,t
(
sup
x ∈V

f0(x)
)4
λ−3d τ2n d |B1 | (τn + C)2(d−1).

When assuming that lim
r→+∞

ϱ̃(r ) = 0, and since lim
n→+∞

βn = +∞, it gives

A = O
(
λ−3d τ2n ϱ̃n,t

)
as n → +∞,

which is equivalent to

A = O
(
λ−3d τ2n ϱ̃ (βn − 2[t + C])

)
as n → +∞,

since exp{x} − 1 ∼ x as x → +0. This concludes the proof.
�

Remark 3.14 The two following propositions are equivalent:

(i) ϱ̃(r ) →
r→+∞

0

(ii) 2 − θ(0,h) →
‖h ‖→+∞

0

The implication (i)⇒ (ii) is straightforward. Now, let ϵ ∈ R∗+. The condition (ii) guaran-
tees that it exists hϵ1 ∈ Rd such that for any h ∈ Rd satisfying ‖h‖ ≥ ‖hϵ1‖,

0 ≤ 2 − θ(0,h) < ϵ.

Hence, for any r ≥ ‖hϵ1‖,

0 ≤ sup
x1,x2∈Rd

‖x1−x2 ‖≥r

(2 − θ(x1,x2)) ≤ ϵ,

and consequently (ii) implies (i).

3.6.4 Ergodicity in the covariance

Let Z be a second-order SRF on Rd with expectation µ and covariance function C. In this
subsection, we shall digress brie�y from the possibility of estimating the covariance function
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from a unique realization of Z, which is observed everywhere. Remind the notation intro-
duced in Chapter 2: consider a sequence Vn ↑ Rd . Let h ∈ Rd and for any n ∈ N, de�ne
Vh
n := Vn ∩ (Vn +h); obsviously Vh

n ↑ Rd . An empirical estimator of C(h) is thus given by

Ĉn(h) =
1
|Vh

n |

∫
Vhn

[
Z(x) − Z(Vh

n)
] [

Z(x +h) − Z(Vh
n)

]
dx

=
1
|Vh

n |

∫
Vhn

Z(x)Z(x +h)dx −
[
Z(Vh

n)
]2
,

where
Z(Vh

n) :=
1
|Vh

n |

∫
Vhn

Z(x)dx .

This estimator is biased:

E
[
Ĉn(h)

]
= C(h) − E

[(
Z(Vh

n) − µ
)2]

.

It is asymptotically unbiaised if Z is assumed to be ergodic in the mean (see De�nition 2.5),
since this implies that Z(Vh

n) converges to µ in the mean square sense as n → +∞. Similarly,
under appropriate conditions on the fourth-order moments of Z, we could also suppose that
Z is ergodic in the covariance, i.e.

lim
n→+∞

Var
[
Ĉn(h)

]
= 0, (3.35)

for any h ∈ Rd . This means that Ĉn(h) is consistent (in the mean square sense); C(h) can
be estimated from a single realization of Z with any desirable degree of accuracy provided
that the latter is observed on a su�ciently large domain. Suppose also that the random �eld
Yh = (Z(x)Z(x +h))x ∈Rd is second-order stationary, with covariance function CYh . It is easy
to show that an equivalent condition to Eq. (3.35) is

lim
n→+∞

1
|Vn |

∫
Vn

CYh (y)dy = 0.
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4
CON TINUOUS SIMULATION OF STORM
PROCESSES

Résumé Ce chapitre porte sur la simulation exacte de processus tempête. Ces processus con-

stituent des prototypes pour modéliser les extrêmes spatiaux. La plupart des algorithmes existants

permettent de simuler ces processus de manière exacte sur un ensemble �ni de points dans un

domaine donné. Lorsque la fonction de forme associée à ces processus est déterministe, nous pro-

posons un nouvel algorithme pour obtenir de telles simulations sur un domaine continu comme

des pavés ou des boules. Il consiste à générer des ingrédients de base qui peuvent ensuite être

utilisés pour assigner une valeur à n’importe quel point du champ de simulation. Cette approche

est particulièrement adaptée à l’étude des propriétés géométriques des processus tempêtes. Une

attention particulière est dédiée à l’e�cience de cet procédure : en introduisant et en exploitant

la notion de domaine d’in�uence, le temps de simulation est considérablement réduit. De plus, la

plupart des étapes de la méthode de simulation ont été construites a�n d’être parallélisables. Cet

algorithme est en�n utilisé pour simuler trois processus tempête di�érents.

When working on the relation between integral range and extremal coe�cient function, we
needed to �nd a mixing max-stable process for which the integral range of the corresponding
exceedance �eld above a �nite threshold was in�nite. The objective was to show how the
method we had proposed to estimate the integral range behaved when the latter was in�nite.
We proved that the M2 process Z with Cauchy density shape function satis�ed these con-
ditions. Algorithms to perform exact simulations of such processes has been suggested by
Dombry et al. (2016) or Oesting et al. (2018) but actually no package in R have implemented
them. Further, like most algorithms, these procedures only apply to simulation domains made
of a �nite number of points. When investigating e.g. the geometrical properties of random
�elds, it may be convenient to perform simulation in continuous domains, especially if the
geometric feature under study involves di�erent scales of observations. This motivated us to
propose and implement a new method for simulating storm processes like Z exactly in contin-
uous domain of Rd . This work is presented in this chapter. It actually corresponds to a paper
written in collaboration with R. Carnec, E. Chautru, and C. Lantuéjoul (Mines ParisTech, PSL
University) and recently submitted for publication. The notation may slightly di�er from the
other chapters. For instance, to avoid confusion, a dot shall sit on top of random elements. In
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addition, for any measurable subset V of Rd , its volume with respect to the Lebesgue measure
in Rd is written vd (V) instead |V|.

4.1 introduction

In the last decades, max-stable processes (or random �elds, random functions) have become
a prevalent model for spatial extremes in environmental sciences, see for instance Davison
et al. (2019) and references therein. An important class is the storm process, often referred
to as a mixed moving maxima process. First introduced by Smith (1990), then extended by
Schlather (2002) to model convective precipitations, it has subsequently been studied and
applied, mainly in climatology (cf. e.g. Coles, 1993, Coles and Walshaw, 1994, Coles and Tawn,
1996, de Haan and Pereira, 2006, Bel et al., 2008, Smith and Stephenson, 2009, Padoan et al.,
2010, Cooley et al., 2010 and Lantuéjoul et al., 2011). It is de�ned as follows: let d ∈ N∗, ÛΠ
be a homogeneous Poisson point process with intensity µ ∈ (0,+∞) on Rd × (0,+∞) and
( ÛYτ, τ > 0) be independent copies of a nonnegative process ÛY de�ned on Rd with integrable
expectation on Rd . Then the storm process is written ÛZ := ( ÛZ(x),x ∈ Rd ) with

∀x ∈ Rd ÛZ(x) = max
( Ûs, Ûτ) ∈ ÛΠ

{ ÛYÛτ(x − Ûs)
Ûτ

}
.

To �x ideas, ÛY is referred to as a storm, Ûs as its location and 1/Ûτ as its magnitude. It can be
shown that the margins of ÛZ are 1-Fréchet distributed. More generally, the spatial distribution
of ÛZ is given by

P
[
max
i ∈I

ÛZ(si )
zi
< 1

]
= exp

{
−µ

∫
Rd

E
{
max
i ∈I

ÛY(s − si )
zi

}
ds

}

for all �nite sets of indices I ⊂ N and all families of points (si , i ∈ I) and values (zi , i ∈ I).
However, it is well known that all statistical properties of ÛZ are not conveyed by its spatial
distribution. Besides standard questions like the di�erentiability of its realizations or their
connectivity above a certain level, there are a number of speci�c issues, such as what is the
extension of a storm versus its magnitude? How do the magnitudes of neighbouring storms
compare? To a large extent, the spatial distribution of ÛZ says very little about the geometry
of its realizations.

Of course, these questions should be addressed from a mathematical point of view, but this
might be quite a delicate exercise. For that reason simulations are considered as a �rst alterna-
tive approach. Several algorithms can be found in the literature to simulate storm processes,
e.g. Schlather (2002), Dombry et al. (2016), Oesting et al. (2018). They are exact and applicable
to any workspace dimension. The most two recent algorithms have been designed to be fast,
either by simulating only the active storms, i.e. those that have an impact on the simulation
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(Dombry et al., 2016), or by ingeniously choosing a spectral representation of the process
with suitable properties (Oesting et al., 2018). However, these algorithms apply to simulation
domains made of a �nite number of points, which may not be appropriate if the geometric
feature under study involves di�erent scales of observation.

This is what prompted us to develop an algorithm for simulating storm processes exactly in
a continuous domain of Rd , such as a hyperrectangle or a hyperball. At �rst sight, this may
look overambitious, but a previous paper (Lantuéjoul et al., 2011) showed that this is feasible,
at least in the particular case where the storms are indicator functions of Poisson polytopes.
The idea is to generate a �nite family of storms that includes all active storms. This family is
subsequently used to assign a value to any point of the simulation domain.

It has been observed on simulations that most storms have limited in�uence, or even no in�u-
ence at all. In order to get faster simulations, this should de�nitely be taken into account. To
each storm with given location and magnitude, it is possible to assign a domain of in�uence

that delimits the part of the simulation domain where it contributes to the realization of the
storm process, given other storms of larger magnitude.

For the sake of simplicity, the present paper deals mainly with deterministic storms. It is
organized as follows. Section 4.3 presents a general algorithm to generate the active storms
and clari�es the concept of domain of in�uence. A simple but general procedure is proposed to
enclose it. Section 4.4 shows examples with di�erent deterministic storms (Gaussian, Student,
power exponential). For each type of storm, emphasis is put on the explicit construction of
its domain of in�uence. Then follows Section 4.5 that discusses a number of issues regarding
the shape of the simulation domain, the e�ciency of the proposed algorithm, and its range of
applicability towards models with random storms. A brief conclusion terminates this paper
in Section 4.6.

4.2 notation and setting

Notation

Throughout this paper, the workspace is the d-dimensional Euclidean space Rd . Points are
boldface type to distinguish them from their coordinates. The Euclidean distance separating
two points x = (x1, . . . ,xd ) andy = (y1, . . . ,yd ) is denoted by ‖x −y‖ and their scalar product
by 〈x ,y〉.
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More generally, let I be a nonempty subset of {1, . . . ,d} with k(I) elements. For each x ∈ Rd ,
let xI be the family of the coordinates of x that are indexed by I. In other words xI = (xi , i ∈ I).
The space RI of all xI’s can be equipped with the distance ‖xI −yI‖I =

√∑
i ∈I(xi − yi )2, and

BI(r ) := {xI ∈ RI : ‖xI‖I ≤ r } is the closed ball of RI with radius r , centered at the origin.
When I = {1, . . . ,d}, the standard notation Bd (r ) is used. In addition, many scalar operations
shall be applied component by component, e.g. the absolute value |xI |, the sign sign(xI), and
inequalities xI ≤ yI.

Subsets of dimension k are represented by uppercase, lightface letters. If V is such a subset,
then its intrinsic boundary is written ∂V and its relative complement in Rk by Vc . Assuming
V measurable, we shall denote by vk (V) its k-volume (number of elements in 0 dimension,
length in 1 dimension, and so on). In the particular case where V is a ball of radius r , the
standard notation ωk is used for the unit ball, so that vk (V) = ωkrk and vk−1(∂V) = kωkr

k−1.
The uniform distribution on V is abbreviatedU(V). Similarly, given λ ∈ (0,+∞), E(λ) stands
for the exponential distribution with expectation 1/λ. Finally, to avoid any confusion, a dot
shall sit on top of random elements.

Setting

Equipped with this notation, we shall focus on deterministic and radial storms. Precisely,
the typical storm is written ÛY(s) = f (‖s‖), where f is a function from R+ to [0, 1] that is
non-increasing and satis�es f (0) = 1. Attached to f are its moments

∀k ∈ {0, . . . ,d − 1} mk :=
∫ ∞

0
f (u)uk du, (4.1)

and its weighted probability density functions

∀k ∈ {0, . . . ,d − 1} ∀u ≥ 0 fk (u) :=
f (u)uk
mk

. (4.2)

The assumption that the storms are integrable is expressed by the conditionmd−1 < +∞.

The simulation �eld is a hyperrectangle of dimension d , termed R. Its edge lengths are de-
noted by 2`1, . . . , 2`d . There is no inconvenience in assuming R centered at the origin and
its edges parallel to the coordinate axes, so that its 2d vertices have coordinates of the form
(ϵ1`1, . . . , ϵd`d ) with ϵi = ±1 for each i = 1, . . . ,d .
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4.3 an algorithm for continuous simulation

For this simulation exercise, since the storms are deterministic, only the Poisson points need
to be simulated. At �rst, the task looks daunting because the Poisson process is made of
in�nitely many points. However, it can be surmised that points with at least one large spatial
or temporal coordinate are likely not to a�ect the result of the simulation. This prompts us
to distinguish between the active points, i.e. all the Poisson points ( Ûs, Ûτ) ∈ ÛΠ such that there
exists x ∈ R for which

ÛZ(x) = f (‖x − Ûs‖)
Ûτ , (4.3)

and the other passive points. Each active point ( Ûs, Ûτ) can be assigned a domain of in�uence,
which is formed by all x ∈ R that satisfy (4.3). Our �rst objective is to delimit the part of
Rd × (0,+∞) where the active Poisson points are situated. To do this, it is convenient to split
the Poisson process ÛΠ into two smaller independent Poisson point processes ÛΠin and ÛΠout, the
points of which have their spatial component respectively inside and outside the simulation
�eld:

ÛΠin = {(Ûs, Ûτ) ∈ ÛΠ : Ûs ∈ R} and ÛΠout = {(Ûs, Ûτ) ∈ ÛΠ : Ûs < R}.

Starting from the two point processes, two independent random �elds are de�ned on Rd :

∀x ∈ Rd




ÛZin(x) = max
( Ûs, Ûτ) ∈ ÛΠin

f
(‖x − Ûs‖)
Ûτ ,

ÛZout(x) = max
( Ûs, Ûτ) ∈ ÛΠout

f
(‖x − Ûs ‖)
Ûτ ,

so that ÛZ = max( ÛZin, ÛZout).

4.3.1 Contribution of the inner process

Since the number of Poisson points in a compact subset is �nite, the Poisson points of ÛΠin can
be ordered by decreasing order of magnitude. Thus we can write

∀x ∈ Rd ÛZin(x) = max
k≥1

f
(‖x − Ûsk ‖)
Ûτk

, (4.4)

where the Ûsk ’s are independent and uniform points of R and, independently, the Ûτk ’s are the
constitutive points of a homogeneous Poisson process with intensity µ vd (R) on (0,+∞). A
problem with (4.4) is that it involves in�nitely many points. Can the inner storm process be
exactly generated using only a �nite number of Poisson points?

To answer this question, consider a �nite covering C of R by domains such as balls or hy-
perrectangles. A population of points on R is said to be C-dispersed if each domain of the
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covering contains at least one point of the population. De�ne Ûn as the minimum number of
Poisson points generated once C-dispersion has taken place:

Ûn := min {n ∈ N∗ : ∀C ∈ C C∩ {Ûs1, . . . , Ûsn} , �} ·

Let δ := max
C∈ C

max
x ,y ∈C

‖x − y‖ be the diameter of the covering, and x be an arbitrary point of

R. The previous de�nitions ensure min
1≤k≤ Ûn

‖x − Ûsk ‖ ≤ δ, which implies in turn max
1≤k≤ Ûn

f (‖x −
Ûsk ‖) ≥ f (δ) since f is non-increasing. Using the sequential construction of the Ûτk ’s, it follows

max
1≤k≤ Ûn

f (‖x − Ûsk ‖)
Ûτk

≥ max
1≤k≤ Ûn

f (‖x − Ûsk ‖)
Ûτ Ûn

≥ f (δ)
Ûτ Ûn
·

This is true for all x ∈ R, therefore

min
x ∈R

max
1≤k≤ Ûn

f (‖x − Ûsk ‖)
Ûτk

≥ f (δ)
Ûτ Ûn
· (4.5)

This shows that the current inner storm process is lower bounded by a strictly positive value
as soon as the C-dispersion condition is satis�ed. Now let Ûnin be the random index de�ned
as follows:

Ûnin := min
{
n > Ûn :

1
Ûτn
<

f (δ)
Ûτ Ûn

}
· (4.6)

Then the assumption f ≤ 1 as well as (4.6) and (4.5) imply that for any n ≥ Ûnin

f (‖x − Ûsn ‖)
Ûτn

≤ 1
Ûτn
≤ 1
Ûτ Ûnin
<

f (δ)
Ûτ Ûn

≤ min
x ∈R

max
1≤k≤ Ûn

f (‖x − Ûsk ‖)
Ûτk

≤ min
x ∈R

max
1≤k≤n

f (‖x − Ûsk ‖)
Ûτk

· (4.7)

It appears that all storms of index n ≥ Ûnin cannot a�ect the current simulation. As a conse-
quence, the inner Poisson process needs not be simulated beyond index Ûnin.

The algorithm to simulate the inner storm process can therefore be seen in two distinct stages:
�rst generate Poisson points so as to meet the C-dispersion condition, then resume the gen-
eration of Poisson points until constraint (4.6) is satis�ed. Of course, the e�ciency of this
algorithm depends largely on the choice of the parameter δ. The discussion on this matter is
deferred to Section 4.5.

Here is the algorithm for simulating the inner process:

4.3.2 Contribution of the outer process

Once the inner process has been generated, the simulation of the outer process can start.
Among all outer Poisson points, only those that are susceptible to modify the inner process
need be considered. These points are located in the random domain

ÛDout :=
{
(s, τ) ∈ Rc × (0,+∞) : ∃x ∈ R f (‖x − s‖)

τ
> max

k< Ûnin

f (‖x − Ûsk ‖)
Ûτk

}
.
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4.3 an algorithm for continuous simulation

Algorithm 1: Simulation of ÛΠin

(i) set τ = 0 and S = T = �;
(ii) generate ϵ ∼ E(µ vd (R)), put τ = τ + ϵ and insert τ to T;
(iii) generate s ∼ U(R) and insert s to S;
(iv) if C∩ S = � for some C ∈ C, then goto (ii);

(v) put n = v0(S) and τn = τ;
(vi) generate ϵ ∼ E(µ vd (R)), put τ = τ + ϵ and insert τ to T;
(vii) generate s ∼ U(R) and insert s to S;
(viii) if τf (δ) < τn , then goto (vi);

(ix) return S,T and τn ;

Unfortunately, this domain is di�cult to handle because it involves the points of R. Consider
instead the random domain

ÛD :=
{
(s, τ) ∈ Rc × (0,+∞) :

f
(
d(s,R))
τ

>
f (δ)
Ûτ Ûn

}
, (4.8)

where d(s,R) := min
x ∈R
‖s − x ‖ denotes the distance from s to R. This domain possesses three

distinctive features:

— Its de�nition does not rely on any point of R.

— It contains the domain of interest: ÛD ⊃ ÛDout. Let (s, τ) ∈ Rc × (0,+∞) and let x ∈ R be
chosen as in the de�nition of ÛDout. The inclusion results from the following chain of
inequalities:

f (d(s,R))
τ

≥ f (‖x − s ‖)
τ

> max
k< Ûnin

f (‖x − Ûsk ‖)
Ûτk

≥ f (δ)
Ûτ Ûn
·

Indeed, starting from d(s,R) ≤ ‖s − x ‖, the �rst inequality stems from the assumption
that f is non-increasing. The second inequality is provided by the de�nition of ÛDout,
and the third one derives from (4.7).

— It has �nite volume: vd+1( ÛD) < +∞. This directly stems from the fact that the storms
are integrable.

As a consequence, given Ûτ Ûn , the number Ûnout of points of ÛΠout in ÛD is Poisson distributed with
mean µ vd+1( ÛD). Moreover, these points are uniform and independent in ÛD. Starting from
this, a natural idea for simulating the outer process consists in generating each Poisson point
of ÛΠout in ÛD and computing its contribution to the storm process. However, there is still a
pending problem: how to simulate a uniform point ( Ûs, Ûτ) in ÛD? This question is addressed
now. In the sequel, the probability density function (p.d.f.) of a random variable Ûu shall be
denoted by f Ûu , eventual conditioning being made explicit by writing f Ûu (·|·).
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continuous simulation of storm processes

Suppose that Algorithm 1 returns the value τn for Ûτ Ûn . Then ÛD is a deterministic domain, say D.
Given Ûs = s , the de�nition of D shows that Ûτ is uniform on the segment

[
0, τn f (d(s,R))/f (δ)

]
.

Thus, the main problem is the simulation of Ûs . The de�nition of D also suggests to perform
the simulation of d( Ûs,R) prior to that of Ûs , according to the randomization formula

∀ s ∈ Rc f Ûs (s) =
∫ ∞

0
fd ( Ûs,R)(u) f Ûs (s |u)du. (4.9)

The distribution of d( Ûs,R) has an expression that depends on the closest point of R to Ûs . It is
therefore convenient to write it as a mixture of p.d.f.’s, which can be done by introducing the
following family of domains (cf. Figure 4.1):

∀ I ⊂ {1, . . . ,d} EI :=
{
s ∈ Rd : ∀ i ∈ I |si | > `i , ∀ j < I |sj | ≤ `j

}
.

Further de�ne the distribution p that gives each I ⊂ {1, . . . ,d} the probability pI := P [ Ûs ∈ EI]
of being selected, and the conditional p.d.f.’s

∀ I ⊂ {1, . . . ,d} ∀u ≥ 0 fd ( Ûs,R)(u | I) :=
f (u)uk (I)−1
mk (I)−1

(4.10)

that can be written fd ( Ûs,R)(u | I) = fk (I)−1(u) owing to (4.2). Then, the randomization formula
(4.9) becomes

∀ s ∈ Rc f Ûs (s) =
∑
I,�

pI

∫ ∞

0
fk (I)−1(u) f Ûs (s | I,u)du.

Writing Ic the complement of I in {1, . . . ,d} and putting RIc :=
∏

j ∈Ic [−`j ,+`j ], one explicitly
�nds

∀ I ⊂ {1, . . . ,d} pI =
vk (Ic )(RIc )k(I)ωk (I)mk (I)−1∑

J,� vk (Jc )(RJc )k(J)ωk (J)mk (J)−1
. (4.11)

The proofs of formulae (4.10) and (4.11) are deferred to Subsection 4.7.1.

E{1,2}

E{1,2}

E{1,2}

E{1,2}

E{2}

E{2}

E{1} E{1}R = E∅

Figure 4.1 – Illustration when d = 2: to each point exterior to the simulation domain, its closest face is

associated.
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4.3 an algorithm for continuous simulation

Remark 4.1 The probability pI admits a geometric interpretation. Given two subsets A
and B of Rd , recall that a point z ∈ Rd belongs to the Minkowski’s sum A ⊕ B of A and
B if there exist x ∈ A and y ∈ B such that z = x + y. In the case where A and B lie in
two orthogonal subspaces of respective dimensions i and j, then vi+j (A ⊕ B) = vi (A) vj (B).
It can be easily shown that pI is proportional to the expected value of vd−1(RIc ⊕ ∂BI( Ûu)),
where Ûu is a random variable with p.d.f. proportional to f .

Suppose that the moments of f have been calculated, which must be done on a case by case
basis. Then the simulation of p is rather simple using the standard inversion method. Once a
subset I has been generated, the conditional simulation of fk (I)−1 is also often straightforward.
In certain situations, it may be helpful to interpret this distribution as that of the modulus of
a random vector with k(I) components. Having thus generated the positive real number u,
there just remains to simulate f Ûs (· | I,u), which is is a bit more tricky.

A symmetry argument shows that the distribution of Ûs given I and u is uniform over EI ∩
∂(R ⊕ Bd (u)). Let s ∈ EI ∩ ∂(R ⊕ Bd (u)), and let x be its projection onto R. Owing to the
de�nition of EI, |xI | = `I and −`Ic ≤ xIc ≤ +`Ic . It follows that s satis�es sI = xI + yI with
yI ∈ RI such that sign(yI) = sign(xI) and ‖yI‖I = u, as well as sIc = xIc . By construction,
the point yI can be generated uniformly over a sphere of radius u in k(I) dimensions. Its sign
speci�es to which face it should be a�ected (see Figure 4.2).

Figure 4.2 – Illustration when d = 3: when considering the Minkowski sum of R (in light grey) with

a sphere, the contribution of each vertical edge is a quarter of a cylinder (in dark grey). The point yI is

generated uniformly on its circular basis (drawn in bold).

Finally, here is the algorithm for simulating each point of the outer process:
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continuous simulation of storm processes

Algorithm 2: Simulation of ( Ûs, Ûτ) ∈ ÛΠout

(i) generate I ∼ p;
(ii) generate u ∼ fk (I)−1;

(iii) generate sIc ∼ U(RIc );
(iv) generate yI ∼ U

(
∂BI(u)

)
;

(v) put sI = sign(yI) +yI;
(vi) τ ∼ U ([0, τn f (u)/f (δ)]);
(vii) return s = (si , i = 1, . . . ,d) and τ.

4.3.3 E�cient computation of maxima

Once all Poisson points of interest have been generated, the next question is how to compute
the values of the storm process at a given population of points within the simulation �eld.
A natural idea consists in computing the maximum of the generated storms at each point of
the population. It turns out that this standard procedure is squarely long time consuming. A
�ner approach is therefore required.

Considering the inner process, one can surmise that except the �rst Poisson points, all others
have a limited in�uence on the �nal outcome of the simulation. The following lemma should
clarify this idea:

Lemma 4.2 Let (s, τ) and (s0, τ0) be two points of Rd × (0,+∞) satisfying τ0 < τ. There
does not exist any point x ∈ Rd satisfying

f (‖x − s0‖)
τ0

<
f (‖x − s‖)

τ
(4.12)

in the closed half-space H0 limited by the mediator hyperplane of s0 and s and containing
s0.

Proof. By contradiction, suppose that there exists x ∈ H0 such that (4.12) holds. Since x ∈
H0, then ‖x − s0‖ ≤ ‖x − s‖, which implies f (‖x − s0‖) ≥ f (‖x − s ‖) because f is non-
increasing. Moreover, τ0 < τ implies 1/τ0 > 1/τ. Then, multiplying both inequalities gives
f (‖x − s0‖)/τ0 > f (‖x − s‖)/τ, which contradicts (4.12). �

Suppose now that a population of C-dispersed Poisson points has been generated. Then
Lemma 4.2 can be used to delimit the domain of in�uence of each newly generated point (s, τ),
i.e. the region A ⊂ R where it a�ects the realization of the storm process. The circumscription
of A can subsequently be exploited when simulating the storm process on a grid. It su�ces
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to consider only the Poisson points that may in�uence each grid point. Note that the domain
of in�uence of each Poisson point of the outer process can also be delimited once they have
been sorted into decreasing orders of magnitude.

Now it should be pointed out that Lemma 4.2 is a general result that can give only a crude ap-
proximation of the domains of in�uence. In particular, it does not state that many of them are
in fact empty. The case-by-case study of the following examples will make their delimitation
much more precise.

4.4 examples

In this section, the algorithm is detailed for three di�erent types of storm (Gaussian, Student
and power exponential). This includes the calculation of the moments (4.1) of f , the simula-
tion of the weighted distributions (4.2) involved in (4.10) and a more re�ned conscription of
the domains of in�uence built from f . In all illustrations presented hereunder, the simulation
domain is a 600× 400 rectangle. In addition, the intensity µ of ÛΠ is always chosen so that the
realizations have standard Fréchet margins.

From now onward, we shall call relative domain of in�uence of (s, τ) ∈ Rd × (0,+∞) over
some reference point (s0, τ0) ∈ Rd × (0, τ) the set

A0 :=
{
x ∈ R :

f (‖x − s‖)
τ

>
f (‖x − s0‖)

τ0

}
. (4.13)

It is trivially empty when s = s0. In addition, the symbols Γ and B shall refer respectively to
the gamma and beta functions.

4.4.1 Gaussian storms

This is one of the cases treated by Smith (1990): given a scale parameter a ∈ (0,+∞),

∀u ≥ 0 f (u) = exp
{
−

(u
a

)2}
. (4.14)

Moments of the storm: straightforward calculations give

∀k ∈ {0, . . . ,d − 1} mk =
ak+1

2 Γ

(
k + 1
2

)
.
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Figure 4.3 – Realization of a Gaussian storm process at three di�erent scales, on grids 600 × 400. All
the grids are centered at the same point and, from left to right, their mesh sizes are respectively 1, 0.5 and
0.25.

Simulation of the weighted distributions: for each k ∈ {0, . . . ,d − 1}, the probability
density function fk takes the form

∀u ≥ 0 fk (u) =

2
a

(u
a

)k
exp

{
−

(u
a

)2}

Γ

(
k + 1
2

) ,

which is that of the square root of a random variable that is distributed like a Gamma variable
with shape parameter (k + 1)/2 and scale factor a2. The simulation of Gamma distributions is
standard (Devroye, 1986).

Domains of in�uence: let (s, τ) ∈ Rd × (0,+∞) and (s0, τ0) ∈ Rd\{s} × (0, τ). Given
(4.14), the relative domain of in�uence of (s, τ) over (s0, τ0) de�ned in (4.13) directly simpli�es
into

A0 =

{
x ∈ R : 〈x , s − s0〉 >

1
2

(
a2 ln

(
τ

τ0

)
+ ‖s‖2 − ‖s0‖2

)}
.

This corresponds to the intersection between R and an open half-space in Rd . Therefore, the
domain of in�uence of (s, τ) is included in the intersection between R and a polyhedron.

Illustrations: we are now fully equipped to perform a simulation. Consider a bidimen-
sional Gaussian storm process with scale factor a = 10. The results obtained about the do-
mains of in�uence have been incorporated to the algorithm, which leads to a drastic reduction
of the number of Poisson points to consider. For the inner and the outer processes, only 2 221
out of 134 344 and 630 out of 10 252 Poisson points have been respectively detained as poten-
tially active. Hence, in total, 98% of the Poisson points have been removed. The remaining
points are then used to generate a realization of the storm process on three di�erent grids of
600× 400 pixels. All are centered at the origin and have the same orientation. Their mesh sizes
are respectively equal to 1, 0.5 and 0.25. The corresponding results are displayed in Figure 4.3.
Everything happens exactly as if the simulation had been zoomed around the origin.
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4.4.2 Student storms

With scale a ∈ (0,+∞) and shape α ∈ (d/2,+∞), the storm f is now given by

∀u ≥ 0 f (u) =
(
1 + u2

a2

)−α
; (4.15)

taking α > d/2 ensures that f is integrable. It has the same form as a multivariate t-distribution.

Moments of the storm: like before, straightforward calculations give

∀k ∈ {0, . . . ,d − 1} mk =
ak+1

2 B
(
k + 1
2 , α −

k + 1
2

)
.

Simulation of the weighted distributions: for each k ∈ {0, . . . ,d − 1}, the previous
equality yields

∀u ≥ 0 fk (u) =
uk

(
1 + u2

a2

)−α
ak+1

2 B
(
k + 1
2 , α −

k + 1
2

) .

Simulating such a density is less direct than in the Gaussian case; it involves the mixture
of two distributions. Precisely, let Ûw be a Gamma distributed random variable with shape
α − (k + 1)/2 and scale 1. For any w ∈ (0,+∞) consider the Gamma distributed random
variable Ûuw with shape (k + 1)/2 and scale a2/w, independent from Ûw. Then, the compound
random variable

√Ûu Ûw has density fk .

Domains of in�uence: let (s, τ) ∈ Rd × (0,+∞) and (s0, τ0) ∈ Rd\{s} × (0, τ). To sim-
plify the notation, also put λ := τ1/α and λ0 = τ1/α0 . Given (4.15), the relative domain of
in�uence of (s, τ) over (s0, τ0) de�ned in (4.13) becomes

A0 =

{
x ∈ R :





x − λ s − λ0 s0λ − λ0






2
<

λ λ0
(λ − λ0)2

‖s − s0‖2 − a2
}
.

This set is non-empty if and only if the coe�cient

ρ2 :=
λ λ0

(λ − λ0)2
‖s − s0‖2 − a2

is positive. In this case, A0 is the intersection between R and an open ball in Rd with center
(λ s − λ0 s0)/(λ− λ0) and radius ρ. Therefore, the domain of in�uence of (s, τ) is either empty
or contained in the intersection between R and an intersection of balls in Rd .

Illustrations: three bidimensional Student storm processes have been simulated with the
same scale factor a = 10, but di�erent shape parameters (α = 5, 3 and 1.5, respectively). In the
case α = 1.5, f has the form of a bivariate Cauchy distribution. These simulations, performed
on a regular grid 600 × 400 with unit mesh size, are displayed in Figure 4.4.
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Figure 4.4 – Realization of a Student storm process on a grid 600 × 400 with unit mesh size. The scale

factor of the typical storm is equal to 10 and its shape parameter takes, from left to right, the values 5, 3
and 1.5.

4.4.3 Power exponential storms

Let a, α ∈ (0,+∞) be scale and shape parameters, and consider the following storm

∀u ≥ 0 f (u) = exp
{
−

(u
a

)α}
. (4.16)

It has the form of a power exponential distribution (see e.g. Gómez et al., 1998). In particular,
when α = 2, it corresponds to the Gaussian storm introduced above. When d = 1 and α = 1,
the well-known Laplace distribution is retrieved.

Moments of the storm: similarly to the Gaussian case,

∀k ∈ {0, . . . ,d − 1} mk =
ak+1

α
Γ

(
k + 1
α

)
.

Simulation of the weighted distributions: for each k ∈ {0, . . . ,d − 1}, the previous
equation gives

∀u ≥ 0 fk (u) =
α

a

(u
a

)k
exp

{
−

(u
a

)α}

Γ

(
k + 1
α

) .

This is the density function of a Gamma distributed random variable, with shape (k + 1) α−1
and scale aα, raised to the power 1/α.

Domains of in�uence: let (s, τ) ∈ Rd × (0,+∞) and (s0, τ0) ∈ Rd\{s} × (0, τ). Also
de�ne the positive real number

cα :=
(

a

‖s − s0‖

)α
ln

(
τ

τ0

)
.

Then, given (4.16), the relative domain of in�uence of (s, τ) over (s0, τ0) de�ned in (4.13) is

A0 =
{
x ∈ Rd : ‖x − s0‖α − ‖x − s‖α > cα ‖s − s0‖α

}
.
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Consider the closed half-space H0 limited by the mediator hyperplane of s0 and s and contain-
ing s0. Lemma 4.2 guarantees that A0 ⊂ Hc

0 . When α > 2, there is little hope to �nd a better
approximation of the relative domain of in�uence, which has a complex form. It is, however,
explicit in the case α = 2, which was treated in Subsection 4.4.1. The following proposition
shows that when α < 2, it is actually possible to further circumscribe A0. In some speci�c situ-
ations, it is even found to be bounded. The proof is deferred to Subsection 4.7.2.

Proposition 4.3 Consider the objects de�ned in Subsection 4.4.3. Let λ ∈ (1/2,+∞)
and de�ne Hλ := H0 + (λ − 1/2) (s − s0) so that Hc

λ
⊂ Hc

0 . Then, for α ∈ (0, 2), taking

λ =




1 −
(
2−α − cα

2

)1/α
if α ∈ (0, 1),

c1 + 1
2 if α = 1,

1 if α ∈ (1, 2) and cα = 1,(
2−α + cα

2

)1/α
if α ∈ (1, 2) and cα < 1,

2 + cα − 2α + 1
α (2α−1 − 1) if α ∈ (1, 2) and cα > 1,

yields A0 ⊂ Hc
λ
. Moreover, when α ∈ (0, 1) and cα < 1, set the real numbers

λ := 1 + 1
2

((cα
α

)1/(α−1)
−

(
2−α − cα

2

)1/α)

and ρ :=
1
2

((cα
α

)1/(α−1)
+

(
2−α − cα

2

)1/α)
.

Then, A0 is included in the ball centered at (1 − λ) s0 + λ s with radius ρ.

As a consequence, the domain of in�uence of (s, τ) is always included in the intersection
between R and either a polyhedron, an intersection of balls, or an intersection of balls and
half-spaces in Rd .

Illustrations: consider three bidimensional power exponential storm processes with the
same scale factor a = 10, but di�erent shape parameters (α= 2, 1 and 0.5, respectively). They
have all been simulated on a regular grid 600× 400, with unit mesh size. The result is displayed
in Figure 4.5.
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Figure 4.5 – Realization of a power exponential storm process on a grid 600 × 400 with unit mesh size.

The scale factor of the typical storm is equal to 10 and its shape parameter takes, from left to right, the

values 2, 1 and 0.5.

4.5 discussion

4.5.1 On the covering

One important parameter that can be used to minimize the running time is the number of
generated storms. This is the sum Ûnin + Ûnout of the storms generated in the inner and the
outer process. Both depend largely on the diameter δ of the covering domains. Starting from
(4.6) and (4.8), trite calculations give

E[ Ûnin] = 1 + E[ Ûn]
f (δ) ≈

E[ Ûn]
f (δ) ,

E[ Ûnout] =
E[Ûτ Ûn]
f (δ)

∫
Rc

f (d(s,R))ds ∝ E[Ûτ Ûn]
f (δ) .

Now, the relation E[Ûτ Ûn] ∝ E[ Ûn] also holds. If follows, roughly speaking, that the number of
storms to generate is proportional to the ratio

ϱ :=
E[ Ûn]
f (δ) .

Given n1, . . . ,nd ∈ N∗, suppose that the covering C is a partition of hyperrectangular do-
mains of edge lengths `′1 = `1/n1, . . . , `′d = `d/nd . The number of domains of C is thus
v0(C) = 2dn1 . . .nd . A standard probability exercise (Feller, 1968) shows that

E[ Ûn] = v0(C)
v0(C)∑
j=1

1
j
≈ v0(C)

(
ln v0(C) + γ

)
,

where γ = 0.577 . . . is Euler’s constant. If δ is close to 0, then f (δ) is close to 1 and E[ Ûn] is
large. Conversely, if δ is large compared to the diameter of the simulation domain, then E[ Ûn] is
slightly greater than 1, but f (δ)may be quite small. In both cases, ϱ is large. As a consequence,
an intermediate value for δ should be retained. Strictly speaking, δ should be optimized via
the edge lengths of the covering domains, but this procedure is delicate. As a rule of thumb,
we recommend a δ value such that f (δ) ≈ 0.5. This corresponds to ϱ ≈ 2 v0(C)

(
ln v0(C) + γ

)
.
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4.5.2 About the simulation domain

In this paper, we present an algorithm for simulating storm processes in a hyperrectangle
R ⊂ Rd . This procedure may be readily adapted when the domain of simulation is a hyper-
ball. Let r ∈ (0,+∞) and consider the ball Bd (r ). The part of the algorithm that concerns the
inner process remains unchanged, but building the covering C is a bit more intricate. Indeed,
there is no partition of congruent domains. As a result, evaluating the mean number of gen-
erated storms is not straightforward.

Conversely, the simulation of the uniform point ( Ûs, Ûτ) ∈ ÛD of the outer process becomes
much easier. The reason is that ÛD is a radial domain: the distance of a point s < Bd (r ) to the
simulation domain is d (s,Bd (r )) = ‖s‖ − r . It can be found that

∀u ≥ 0 fd ( Ûs,Bd (r ))(u) =
∑d−1

k=0
(d−1
k

)
rd−1−k f (u)uk∑d−1

k=0
(d−1
k

)
rd−1−kmk

,

where mk is still given by (4.1). Again, this can be rewritten in the form of a �nite mixture
model:

∀u ≥ 0 fd ( Ûs,Bd (r ))(u) =
d−1∑
k=0

pk fk (u),

where p is the distribution that gives each k ∈ {0, . . . ,d − 1} a probability

pk :=

(d−1
k

)
rd−1−kmk∑d−1

`=0
(d−1

`

)
rd−1−`m`

of being generated, and the fk ’s are the weighted distributions de�ned in (4.2).

The simulation of p is rather simple using the standard inversion method. An alternative
approach consists in generating a candidate value k according to a binomial distribution of
index d − 1 and parameter (r + 1)−1. It is then accepted with probability mk/(

∑d−1
`=0m`) and

rejected otherwise, in which case the procedure is repeated.

4.5.3 Improving computation e�ciency

There are a few practical ways to further improve the e�ciency of our algorithm.

First of all, using domains of in�uence helps reduce the number of potential active storms,
leading to a more e�cient computation of maxima. However, it also requires a large number
of time-consuming comparisons between the generated Poisson points; a compromise must
be found to optimize the �nal running time. By construction, storms have a limited range
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of action, and have no chance of having in�uence over spatially distant competitors. This
suggests to compare a candidate storm to its nearest spatial neighbours only. To do so, it is
convenient to use the grid generated by the covering, so that a candidate storm has its spatial
component in one of the cells. Then, restricting comparisons to those located in its extended
Moore neighborhood (8-connectivity in two dimensions, and 26-connectivity in three dimen-
sions) of order 2 was found to be e�cient in practice.

Second, the simulation of the outer process turns out to be parallelizable. Computation time
can easily be saved by exploiting this asset and distributing calculations.

Finally, because we worked in a continuous setting, the computation of maxima is indepen-
dent from the generation of storms. It is, in addition, fully parallelizable. This attractive
feature, exploited in Subsection 4.4.1, makes high-resolution simulations technically possible
in a limited amount of time.

4.5.4 Random storms

Although the storm process has been de�ned in the introduction of this paper in terms of
random storms, only deterministic storms have been considered so far. The ensuing question
is whether the algorithm designed for continuous simulations can by applied to storm pro-
cesses with random storms? This is certainly possible if each realization of a random storm
is completely characterized by a limited number of parameter values or ingredients. An ex-
ample was shown in Lantuéjoul et al. (2011), where storms consist of indicator functions of
Poisson polytopes. In this case, each realization of a Poisson polytope is speci�ed by the
hyperplanes supporting its (d − 1)-faces. A simple way to design a random storm is to start
from a deterministic storm and make one or several of its parameters random. A typical ex-
ample is the Gaussian storm with random scale factor. Despite the complexity introduced,
the construction of the domains of in�uence remains possible. More precisely, consider two
Gaussian storms located at (s0, τ0) and (s, τ), with respective scale factors a0 and a. Suppose
τ0 < τ. The inequality

1
τ0

exp
(
− ‖x − s0‖

2

a20

)
<

1
τ
exp

(
− ‖x − s‖

2

a2

)

holds if and only if
‖x − s0‖2

a20
− ‖x − s‖

2

a2
> ln

(
τ

τ0

)
,

that is if and only if x belongs to a domain limited by a two sheeted hyperboloid.
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4.6 conclusion

Motivated by the exploration of geometrical properties of storm processes, we proposed
in Section 4.3 an algorithm for the continuous simulation of deterministic, isotropic, non-
increasing storms on a hyperrectangle in arbitrary dimension. It consists of the succession
of two independent tasks: �rst identify all the potentially active Poisson points, with spatial
component located inside then outside the domain of simulation, then compute the value of
the storm process at any chosen point within the domain. As illustrated in Section 4.4 and
discussed in Section 4.5, this structure, made possible by working in a continuous framework,
allows for fast and e�cient simulations. In particular, both the generation of the outer active
points and the calculation of maxima are parallelizable, which makes high-resolution simula-
tions accessible.

Possible improvements of our algorithm were also brought up in Section 4.5, thereby sug-
gesting avenues for future research. For instance, the running time could be reduced even
more by optimizing the covering. More general, random storms could also be considered.
Another natural extension, which shall be the focus of forthcoming work, is the adaptation
of our results to conditional simulations. Taking into account either point or regional data
exceeding a critical value in a portion of space would make our algorithm full of potentialities
in real-world applications. Finally, simulations could be performed on non-Euclidean spaces
like spheres, which is of special interest in climatology.

4.7 proofs

4.7.1 Distribution of Ûs

To simplify mathematical expressions, the indicator function of any condition C is denoted
by 1{C}. It is equal to 1 if C is true and 0 otherwise.

Calculation of pI

Recall that D =
{(s, τ) ∈ Rc × (0,+∞) : f

(
d(s,R))/τ > f (δ)/τn

}
, and let I , �. Since ( Ûs, Ûτ) is

uniformly distributed on D, then we have

pI =

∫
D 1

{
s ∈ EI

}
dτds∫

D dτds
=

∫
EI
f
(
d(s,R)) ds∫

Rc f
(
d(s,R)) ds =

∫
EI
f
(
d(s,R)) ds∑

J,�
∫
EJ
f
(
d(s,R)) ds .
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To calculate the numerator∫
EI
f
(
d(s,R)) ds = ∫

Rd
f
(
d(s,R)) 1{|sI | ≥ `I} 1{|sIc | < `Ic }ds,

the crux is to observe that

∀ s ∈ EI d(s,R) = ‖ |sI | − `I‖.

This shows that the integrand does not depend on s but only on |s |, that is the absolute
values of its coordinates. Accordingly, integration needs to take place only in the positive
hyperoctant, in which case the relation d(s,R) = ‖sI − `I‖I holds. It follows:∫

EI
f
(
d(s,R)) ds = 2d

∫
Rd
+

f
(‖sI − `I‖I) 1{sI ≥ `I} 1{0 ≤ sIc < `Ic }ds .

Denoting by k(I) the number of elements of I, and putting RI =
∏

i ∈I[−`i , `i ], this integral
becomes ∫

EI
f
(
d(s,R)) ds = 2k (I) vk (Ic )(RIc )

∫
R
k (I)
+

f
(‖sI − `I‖I) 1{sI ≥ `I}dsI.

The changes of variables sI − `I −→ sI yields∫
EI
f
(
d(s,R)) ds = 2k (I) vk (Ic )(RIc )

∫
R
k (I)
+

f
(‖sI‖I) dsI.

Then, a change into polar coordinates gives∫
EI
f
(
d(s,R)) ds = vk (Ic )(RIc )

∫
Rk (I)

f
(‖sI‖I) dsI

= vk (Ic )(RIc )k(I)ωk (I)
∫ ∞

0
f (τ) τk (I)−1 dτ

= vk (Ic )(RIc )k(I)ωk (I)mk (I)−1.

Calculation of fd( Ûs,R)(u | I)

This p.d.f. is calculated via its complementary distribution function. Starting from the fact
that ( Ûs, Ûτ) is uniform over D, it appears that

P
[
d( Ûs,R) > u

�� I ] =
∫
EI
f
(
d(s,R)) 1{d(s,R) > u}ds∫

EI
f
(
d(s,R)) ds .

The denominator was obtained in the previous section. Regarding the numerator, it is calcu-
lated exactly the same way. All calculations done, the result is

P
[
d( Ûs,R) > u

�� I ] =
∫ ∞
u f (τ) τk (I)−1 dτ∫ ∞
0 f (τ) τk (I)−1 dτ

,

which �nally gives

∀u > 0 fd ( Ûs,R)(u | I) =
f (u)uk (I)−1
mk (I)−1

.
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4.7.2 Domains of in�uence of power exponential storms

This section is dedicated to the proof of Proposition 4.3. We shall �rst establish some prelim-
inary results. In what follows, consider the same notation as in Subsection 4.4.3 and recall
that

A0 =
{
x ∈ Rd : ‖x − s0‖α − ‖x − s‖α > cα ‖s − s0‖α

}
. (4.17)

Also denote by M :=
{
x ∈ Rd : ‖x − s0‖ = ‖x − s‖

}
the mediator hyperplane of the segment

with endpoints s0 and s , and by L := {(1 − λ) s0 + λ s : λ ≥ 1/2} the half-line with initial point
(s + s0)/2 ∈ M and direction s − s0. The distance between two subsets A and B of Rd shall be
denoted by d(A,B) := inf {‖x −y‖ : (x ,y) ∈ A × B}.

Lemma 4.4 The following properties are equivalent:
(i) A0 = �,

(ii) A0 ∩ L = �,
(iii) α ≤ 1 and cα ≥ 1.

Proof. The proof of this lemma relies on the de�nition of A0 given in (4.17).
First of all, (i) clearly implies (ii).
To check that (ii) implies (iii), consider the contraposive. First take cα < 1, then s ∈ L is also
trivially in A0. Now consider α > 1 and cα ≥ 1. Because u ∈ (0,+∞) 7→ uα is increasing and
continuous, it is easy to check that −cα s0 + (cα + 1) s ∈ L is also in A0. Therefore, in both
cases, A0 ∩ L , �.
The proof is concluded by showing the last entailment: (iii) implies (i). First take α = 1. The
triangular inequality ‖x − s0‖ ≤ ‖x − s‖ + ‖s − s0‖ directly implies that A0 = � if cα ≥ 1.
Now let α < 1. Since u ∈ (0,+∞) 7→ uα is concave and increasing with uα → 0 as u → 0,

‖x − s0‖α ≤ (‖x − s‖ + ‖s − s0‖)α ≤ ‖x − s‖α + ‖s − s0‖α ,

therefore A0 = � if cα ≥ 1. �

Lemma 4.5 A0 is bounded if α < 1 and cα < 1.

Proof. Let α < 1 and cα < 1. Because the function u ∈ (0,+∞) 7→ uα is concave and
di�erentiable, its graph lies under all of its tangents, which yields

∀x ∈ Rd ‖x − s0‖α − ‖x − s ‖α ≤ α ‖x − s‖α−1 (‖x − s0‖ − ‖x − s‖) .

Taking x ∈ A0, this implies in turn that(cα
α

)1/(α−1)
‖s − s0‖ ≥ ‖x − s‖ ,
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continuous simulation of storm processes

which means thatx is contained in the closed ball in Rd of center s and radius (cα/α)1/(α−1) ‖s − s0‖.
�

Lemma 4.6 If α < 1 and cα < 1, there exist positive real numbers λ∗ and λ∗ satisfying

1 −
(
2−α − cα

2

)1/α
≤ λ∗ < 1 and 1 < λ∗ ≤ 1 +

(cα
α

)1/(α−1)
such that the the relative domain of in�uence A0 meets the half-line L on the open segment
with endpoints (1 − λ∗) s0 + λ∗ s and (1 − λ∗) s0 + λ∗ s:

A0 ∩ L = {(1 − λ) s0 + λ s : λ ∈ (λ∗, λ∗)} .

Proof. Let α < 1, cα < 1 and x ∈ A0 ∩ L. By de�nition, there exists λ > 1/2 such that������
‖x − s0‖α − ‖x − s‖α > cα ‖s − s0‖ ,
x = (1 − λ) s0 + λ s,

which is equivalent to λα + |λ − 1|α > cα.
Consider the function ϕα : λ ∈ (1/2,+∞) 7→ λα + |λ − 1|α. It is continuous on its domain
of de�nition, and di�erentiable separately on (1/2, 1) and (1,+∞). A study of its variations
shows that when α < 1, it is increasing on (1/2, 1), going from ϕα (1/2) = 0 to ϕα(1) = 1, then
decreasing on (1,+∞), tending to 0 as λ → +∞. Therefore, the intermediate value theorem
guarantees that there exist λ∗ ∈ (1/2, 1) and λ∗ ∈ (1,+∞) such that ϕα(λ∗) = ϕα(λ∗) = cα ∈
(0, 1) and ϕα > cα on (λ∗, λ∗).
More re�ned bounds can be obtained for those two real numbers using the concavity and
di�erentiability of u ∈ (0,+∞) 7→ uα. Indeed, the three chords lemma applied to 1 − λ∗ <
1/2 < λ∗ gives

1 −
(
2−α − cα

2

)1/α
≤ λ∗,

and the subgradient inequality cα = ϕα(λ∗) ≤ α (λ∗ − 1)α−1 yields

λ∗ ≤ 1 +
(cα
α

)1/(α−1)
.

�

Lemma 4.7 If α = 1 and cα < 1 or α > 1, there exists λ∗ > 1/2 such that the relative
domain of in�uence A0 meets the half-line L on the open half-line L∗ with initial point
(1 − λ∗) s0 + λ∗ s and direction s − s0:

A0 ∩ L = {(1 − λ) s0 + λ s : λ > λ∗} =: L∗.
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Moreover, λ∗ satis�es




λ∗ =
c1 + 1
2 if α = 1 and c1 < 1,

(
2−α + cα

2

)1/α
≤ λ∗ < 1 if 1 < α < 2 and cα < 1,

λ∗ = 1 if 1 < α < 2 and cα = 1,

2 + cα − 2α + 1
α (2α−1 − 1) ≤ λ∗ if 1 < α < 2 and cα > 1.

Proof. Let x ∈ A0 ∩ L and ϕα : λ ∈ (1/2,+∞) 7→ λα + |λ − 1|α. Like in the proof of Lemma 4.6,
x ∈ A0 ∩ L means that there exists λ > 1/2 such that ϕα(λ) > cα.
First consider the case where α = 1 and cα < 1. Then ϕ1 simpli�es to

ϕ1(λ) =



2 λ − 1 if λ ∈ (1/2, 1) ,
1 if λ ∈ [1,+∞).

Therefore, the equation ϕ1(λ) = c1 ∈ (0, 1) admits a unique solution λ∗ =
c1 + 1
2 and ϕ1 > c1

on (λ∗,+∞).
Now turn to the case where α > 1. Studying the variations of ϕα yields that it is increasing
on its domain of de�nition, going from ϕα (1/2) = 0 to ϕα(1) = 1 then to +∞ as λ → +∞.
Invoking once more the intermediate value theorem, there exists λ∗ > 1/2 such that ϕα(λ∗) =
cα and ϕα > cα on (λ∗,+∞).
Moreover, when cα < 1, then λ∗ ∈ (1/2, 1). Because u ∈ (0,+∞) 7→ uα is convex for α > 1,
the three chords lemma can be applied to 1 − λ∗ < 1/2 < λ∗, which yields

(
2−α + cα

2

)1/α
≤ λ∗.

When cα = 1, the equation ϕα(λ) = 1 admits a unique solution λ∗ = 1.
Finally, when cα > 1, di�erentiating ϕα twice shows that it is convex. Then, the subgradient
inequality ϕα(λ∗) − ϕα(2) ≥ ϕ′α(2) (λ∗ − 2) gives

2 + cα − 2α + 1
α (2α−1 − 1) ≤ λ∗.

�

Lemma 4.8 If α ≤ 2, then d (A0,M) = d (A0 ∩ L,M) .

Proof. Let x ∈ A0 and consider P the d ×d orthogonal projection matrix onto the line passing
through s0 and s . We shall prove that Px ∈ A0. Indeed, by the Pythagorean theorem,

‖Px − s0‖α − ‖Px − s‖α =
(
‖Px − s0‖2

)α/2
−

(
‖Px − s0‖2

)α/2
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=
(
‖x − s0‖2 − ‖Px − x ‖2

)α/2
−

(
‖x − s‖2 − ‖Px − x ‖2

)α/2
= ‖x − s0‖α − ‖x − s‖α

+

((
‖x − s0‖2 − ‖Px − x ‖2

)α/2
− ‖x − s0‖α

)

−
((
‖x − s‖2 − ‖Px − x ‖2

)α/2
− ‖x − s‖α

)

In addition, for any c ≥ 0 the function u ∈ (√c,+∞) 7→ (
u2 − c )α/2 −uα is di�erentiable and

non-decreasing. Taking c = ‖Px − x ‖2 and u = ‖x − s0‖ > ‖x − s1‖ (because A0 ⊂ Hc
0), this

yields
‖Px − s0‖α − ‖Px − s‖α ≥ ‖x − s0‖α − ‖x − s‖α > cα ‖s − s0‖α .

In other words, Px ∈ A0. Since L is orthogonal to M by construction, it directly follows that
d (A0,M) = d (A0 ∩ L,M). �

We are now fully equipped to handle the proof of Proposition 4.3. Indeed, the inclusion given
for α ∈ (0, 2) is a direct consequence of Lemmas 4.6 and 4.7 combined with Lemma 4.8. Ob-
serve that this also holds when α ≤ 1 and cα ≥ 1, in which case A0 = � (Lemma 4.4). For
α ∈ (0, 1) and cα < 1, the inclusion of A0 in the given ball directly stems from Lemma 4.5
combined with Lemmas 4.6 and 4.8. This concludes the proof of Proposition 4.3.
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MOTS CLÉS

Théorie spatiale des valeurs extrêmes, Function coefficient extrémal, Géostatistique, Portée intégrale, Réali-

sation unique, Algorithme de simulation.

RÉSUMÉ

La théorie spatiale des valeurs extrêmes permet de modéliser et prédire la fréquence d’évènements extrêmes ayant

une étendue spatiale comme, par exemple, des pluies ou des températures extrêmes. Elle s’adapte bien aux don-

nées temporelles. Parfois de telles données ne sont pas accessibles : seulement un ou quelques enregistrements sont

disponibles. C’est le cas, par exemple, des études sur l’évaluation de la pollution des sols. Au contraire, c’est un cadre

d’analyse auquel la Géostatistique s’intéresse particulièrement. L’objectif de cette thèse est d’établir des connexions

mathématiques entre ces deux disciplines afin de mieux appréhender les évènements extrêmes et en particulier leur

structure de dépendance spatiale, lorsque le phénomène spatial sous-jacent n’est observé qu’une seule fois. Dans un

premier temps, un lien est établi à travers le concept de portée intégrale. Issu de la théorie géostatistique, ce paramètre

caractérise les fluctuations, à large échelle, d’un champ aléatoire stationnaire. Lorsque ce dernier est max-stable simple,

nous montrons que sa fonction coefficient extrémal (ECF), qui est une mesure de dépendance spatiale, est fortement

liée à la portée intégrale du champ des excès, au dessus d’un certain seuil, correspondant. À partir de ces travaux, un

nouvel estimateur non-paramétrique de l’ECF est ensuite proposé. Ses propriétés asymptotiques sont établies lorsqu’il

est évalué à partir d’un unique jeu de données spatialisées : sous certaines hypothèses concernant la portée intégrale du

champ des excès, nous montrons qu’il est consistant et asymptotiquement normal. Enfin, nous proposons un algorithme

efficient permettant de simuler de manière exacte des processus max-stables tempête sur un domaine continu, lorsque la

fonction de forme associée est déterministe. Il se distingue de la plupart des autres procédures existantes qui s’utilisent

lorsque le domaine de simulation est composé d’un nombre fini de points. La plupart des étapes de cet algorithme ont

été construites afin d’être parallélisables.

ABSTRACT

Spatial extreme value theory helps model and predict the frequency of extreme events in a spatial context like, for instance,

extreme precipitations, extreme temperatures. It is well adapted to time series. However, in some cases, such types of

data cannot be accessed: only one or just a few records are made available. This is the case, for instance in soil

contamination evaluation. This situation is rarely addressed in the spatial extremes community, contrary to Geostatistics,

which typically deals with such issues. The aim of this thesis is to make some connections between both disciplines,

in order to better handle the study of spatial extreme events, and especially their spatial dependence structure, when

having only one set of spatial observations. A link is first established through the concept of integral range. It is a

geostatistical parameter that characterizes the statistical fluctuations of a stationary random field at large scale. When

the latter is max-stable, we show that its extremal coefficient function (ECF), which is a measure of spatial dependence,

is closely related to the integral range of the corresponding exceedance field above a threshold. From this, we move to

proposing a new nonparametric estimator of the ECF. Its asymptotic properties are derived when it is computed from a

single and partially observed realization of a stationary max-stable random field. Specifically, under some assumptions

on the aforementioned integral range, we prove that it is consistent and asymptotically normal. Finally, we develop a novel

algorithm to perform exact simulations in a continuous domain of storm processes with deterministic shape function. It

distinguishes itself from most existing procedures, which apply to simulation domains made of a finite number of points.

Most part of the algorithm are designed to be parallelizable.

KEYWORDS

Spatial extreme value theory, Extremal coefficient function, Geostatistics, Integral range, Single realization,

Simulation algorithm.
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