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Abstract

The thesis addresses the estimation of the attitude of an artillery shell in free
flight, during the flight phase called exterior ballistics. Attitude estimation
is an essential step for the development of « smart-shells » a.k.a. « guided-
ammunition » which are capable of achieving various guidance tasks such
as in-flight re-targeting and optimization of range. The method developed
here uses strapdown accelerometers and magnetometers only. In particular,
it does not use any rate gyro, a pricey component that is too fragile to sur-
vive the stress of gunshot when it is not subjected to import restrictions. For
attitude determination, we circumvent the intrinsic inability of accelerome-
ters to provide direction information in free flight, by employing them not to
measure the direction of gravity but to estimate the velocity w.r.t. the air.
This is achieved through a frequency detection method applied to the pitch-
ing and yawing rotational dynamics generated by aerodynamics moments.
In turn, the variation of the velocity gives us an orientation information that
complements the direction given by the 3-axis Magnetometer. The two in-
formation are treated by an attitude observer adapted from the well-known
complementary filter. This adaptation requires special care and an analysis
of the convergence of the resulting observer is provided. The applicability
of the method is shown on simulations and real-flight experiments.
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Résumé

Cette thèse présente une méthode pour estimer l’attitude d’un projectile en
vol à partir de mesures de directions. L’estimation d’attitude est une étape
essentielle pour le développement de « munitions intelligentes », rendant pos-
sible le changement de cible en vol et l’optimisation de la portée. La méth-
ode que nous proposons repose exclusivement sur un accéléromètre et un
magnétomètre embarqués. En particulier, elle ne requiert pas de gyroscope,
capteur coûteux et trop fragile pour survivre aux conditions de tir, quand il
n’est pas soumis à des restrictions d’importation. Pour la détermination de
l’attitude du projectile, nous contournons l’incapacité des accéléromètres à
donner une mesure de direction de la gravité en vol ballistique, en les util-
isant pour estimer la vitesse du projectile par rapport à l’air. Ceci est réalisé
grâce à une méthode de détection de fréquence appliquée aux oscillations
de précession et de nutation du projectile induites par les moments aérody-
namiques qu’il subit. Par la suite, les variations de la vitesse du projectile
nous donnent une information d’orientation partielle qui complète la direc-
tion donné par le magnétomètre 3-axes. Les deux informations sont traitées
par un observateur d’attitude adapté du filtre complémentaire ; cette adap-
tation n’est pas triviale et on réalise une étude détaillée de la convergence
de l’observateur proposé. L’efficacité de la méthode est illustrée par des
résultats sur des données de simulation et des données de vol réel.
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Chapitre 1 - Résumé

Ce chapitre introductif pose les bases du problème qui nous a intéressé au
cours de cette thèse, et donne des éléments de contexte sur les munitions
intelligentes d’une part, et l’estimation d’attitude en général d’autre part.
On justifie le rôle central de l’attitude pour la navigation, en illustrant sa
nécessité pour le guidage terminal et des applications de télémétrie. Enfin,
on introduit brièvement la solution proposée, en la décomposant en plusieurs
schémas-blocs : estimation fréquentielle de la vitesse d’une munition, esti-
mation de l’angle de pente de la munition à partir d’une mesure de vitesse,
estimation d’attitude à l’aide de la connaissance d’un angle, et finalement
reconstitution d’une méthode complète reposant exclusivement sur des cap-
teurs embarqués.
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Chapter 1

Context and problem
statement

1.1 Introduction

The topic under consideration in this thesis is the estimation of the attitude
of an artillery shell in free flight, during the flight phase termed exterior bal-
listics. As will be described below, attitude estimation is an essential factor
for the development of « smart-shells » or « guided-ammunition » which are
capable of achieving various guidance tasks such as in-flight re-targeting and
optimization of range. Lately, these topics have been of interest as signif-
icant performance improvements are expected from smart-shells compared
to currently employed ammunition [30, 81, 105].

The attitude estimation problem belongs to the vast class of state esti-
mation problems for Six-Degrees-of-Freedom (6-DOF) rigid bodies subjected
to aerodynamics effects using embedded sensors. As is very common now,
many rigid bodies can be equipped with low-cost strapdown inertial sen-
sors, see e.g. [84, 4, 98, 26, 104, 21, 43, 27, 95, 9, 67, 68, 48], to reliably
solve navigation problems, at the expense of reasonably complex on-board
calculations and off-line tasks such as multi-sensor system calibration [40].
Numerous experiments have been reported in the literature for unmanned
aerial vehicles [73, 49, 10, 51, 47], unmanned ground vehicles [86], micro-
satellites [94, 62, 90], sounding rockets [5], spacecrafts [75, 59, 62, 90, 89, 88],
smart objects [54, 18] among others. Commonly considered sensors are the
component of an inertial measurement unit (IMU) : 3-axis Accelerometer,
3-axis Magnetometer and rate gyro (and sometimes GPS which is usually
discarded as it is easily subjected to spoofing and jamming, especially in
military applications).

However, in our application, several constraints rule out this classic ap-
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proach. The trajectory of a shell has a short duration due to its high speed1,
and, most importantly, is often subjected to a very high spin rate [72, 103,
18, 20, 36], usually favored due to its stabilizing effect on the center of mass
trajectory. In practice, the spin rate saturates most low-cost rate gyro and
even medium-cost ones [3]2, if they are not damaged by the high impact
caused by the gunshot, of approximately 20000 G.

Attitude estimation of a rigid body is a far-reaching question in numerous
fields of engineering and applied science, especially those including motion
control. Classically (see e.g. [27]), following the formulation of the famous
« Wahba » problem [101], two vectors measurements, usually assumed to
be obtained using accelerometers and magnetometers, are sufficient to alge-
braically (and unambiguously) reconstruct the attitude of a rigid body. The
vastly documented methods to solve Wahba’s problem (see [4, 85]) have
been improved in many applications with multi-sensor data fusion, adding
rate gyro to the set of sensors, most frequently using Kalman filtering (see
e.g. [98]) or, more recently, complementary filtering as in [67, 68, 66]. This
last solution is appealing because of its simplicity of implementation (re-
lying on a few nonlinear equations that are readily implemented on-board
any embedded system) and the simplicity of its straightforward tuning pro-
cedure (very few tuning gains being at stake). While they are not strictly
necessary, the rate gyro brings robustness to vector measurements failures,
and provides dynamic responsiveness to the estimation filter. Various exper-
iments and works [16, 46, 55, 6, 96] [35, 56, 74, 99, 11, 71, 32, 7, 70] offer
alternatives and comparisons of the numerous methods implementing such
attitude estimation techniques.

In the context of smart-shells, two of the three sensors composing the
commonly considered IMU are troublesome: the rate gyro and the accelerom-
eter.

Due to their high cost and low survival rates after gunshot, it has been
proposed to remove the rate gyro from the set of on-board components,
advocating a gyroless alternative. Instead of directly measuring the angular
velocity, some works have developed solutions for the problem of estimating
it (see e.g. [97, 8]). In particular, [65, 63, 64] have offered a way of estimating
the angular velocity from vector measurements, even when an unknown
torque is applied. This step essentially lowers the levels of robustness and
performance of the attitude estimation. Several studies have shown that the
losses can be mitigated to acceptable levels provided that dynamical models
are exploited [17, 24], rather than ignored as is common practice with IMU
technologies (e.g. [3]).

1which discards low update-rate sensors such as GNSS.
2typically, rotation rates of 300 Hz can be considered, which is out of the scale of most

low to mid-cost rate gyro, having a maximum range of 9000 deg/s, or 25 Hz.
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By contrast, accelerometers and the magnetometers are essential ingre-
dients to estimate the attitude. In a nutshell, the two directions usually con-
sidered in Wahba’s problem are the gravity vector and the Earth magnetic
field. This view is unfortunately simplistic for the case of a shell. As will be
discussed later-on, the accelerometer measures a variable (« proper acceler-
ation ») that is a sum of the acceleration minus the gravity, or, equivalently,
simply the aerodynamic forces (divided by the mass). The aerodynamics
forces are unrelated to the gravity. The acceleration is non negligible in
front of the gravity. For these two reasons, the commonly acknowledged as-
sumption that the accelerometer gives the direction of the gravity is simply
wrong.

Having the preceding description on mind, it seems quite a challenge
to estimate the shell attitude. In this thesis, we propose a novel method,
outlined below.

A variable plays a central role in our approach: the (norm of the) velocity
w.r.t. the air, as already considered in [78, 100, 80]. This variable is usually
of interest in aerodynamics as it serves to define the aerodynamic effects
applied on the shell, and its dynamics can be monitored to keep track of the
shell ballistic trajectory. The method we propose to estimate this variable
is based on the analysis of the rotational oscillations the shell is subjected
to. As is well documented [72], and clearly observed during experimental
flights, a damped 3-dimensional pendulum-like rotation dynamics is created
by aerodynamics effects. The oscillations are clearly visible in the accelerom-
eter readings, under the form of additive pseudo-periodic disturbances lying
on top of its absolute readings (the latter being of little value for the reason
explained above). The idea leveraged in this thesis is to detect the instanta-
neous frequencies of the oscillations (decomposed into yawing and pitching)
from the accelerometers and to interpret them as information on the velocity.
Several frequency detection techniques can be employed for the very general
first task [34]. Then, the estimates are reconciled with a priori knowledge
on the pendulum dynamics taking the form of analytic expressions of the
theoretical frequencies involving aerodynamic look-up tables of drag, lift and
Magnus effects 3. Eventually, the (norm of the) velocity w.r.t. the air can
be analyzed to estimate one angle: the pitch angle.

At this step, one is left with an unusual reformulation of the general
Wahba problem: determine the attitude of a rigid body knowing one direc-
tion (the direction of the Earth magnetic field) and one angle. As will be
explained, this problem can be solved using a specifically tailored version of
the complementary filter proposed in [67].

In the following, the various concepts sketched above are given in more
3these tables are already at our disposal thanks to preexisting experimental identifica-

tions in wind-tunnels, and exterior ballistic tests.

15



Figure 1.2.1: ISL pyrotechnical thruster.

details.

1.2 The concept of smart artillery shells

Gun-fired ammunition are still a prominent part of military arsenals. They
are significantly cheaper than missiles, and can easily and promptly be de-
ployed on various battlegrounds. So far, their main limitations is their lack
of guidance capabilities, as they cannot be controlled once fired. This major
limitation is being pushed back as some recently developed actuation tech-
nologies have emerged over the last decades such as single mass ejection (or
pyrotechnical thrusters [41] as pictured in Figure 1.2.1 and Figure 1.2.2) or
the deployment of canards and have proven to be valuable means to deflect
and to optimize the projectile trajectory [12]. A prime example is the fold-
ing glide canards found on the M982 Excalibur, a 155 mm extended range
guided artillery shell developed during a collaborative effort between the US
Army Research Laboratory (ARL) and the United States Army Armament
Research, Development and Engineering Center (ARDEC). The fins are uti-
lized to glide from the top of a ballistic arc towards the target. The same
concept is being explored in the ISLs guided long range projectile concept
pictured in Figure 1.2.3.

The projectiles considered here are rigid bodies with one central symme-
try axis. Usually, they have a reference diameter D, called the caliber. Most
of the parameters can be deduced from it for similarly shaped projectiles,
through a homothetic transformation.

Most shells have an ogive-shaped nose, a cylindrical central part, and
possibly a tapering base (boat-tail). The length L of gyro-stabilized shells
commonly ranges between 4 and 5 calibers, the length of the nose hn can

16



Figure 1.2.2: ISL pyrotechnical thruster in action.

Figure 1.2.3: ISL guided long range projectile.

17



Figure 1.2.4: Definition of studied shells.

vary between 2.5 and 4 calibers and its front can be round-shaped or flat.
Finally, the boat-tail typically has a length hb < 0.8D and a diameter Db

between 0.8D and 0.9D. A typical boat-tail shell with a flat nose is pictured
in Figure 1.2.4.

Shells are fired by a cannon which provides them with an initial velocity,
and most of the time a significant spin rate for stabilization purposes. After
gun-fire, they follow a trajectory solely governed by the external forces and
moments acting on them during their flight.

Depending on their shape (which in the scope of the thesis is always
assumed to be rotationally symmetric), most shells are gyro-stabilized, i.e.
submitted to a high spin rate, so that they are stable under normal flight
conditions (see the classical gyroscopic stability criterion [72, Chapter 10]).
Very often, the value of the spin-rate required for the stability overwhelms
the rate gyro range of operation. To circumvent this, decoupled two-section
fuse concepts have been developed, having a slowly (almost despun) rotating
part containing sensors and possibly actuators. In this thesis, we will not
consider these (relatively costly) solutions, and, instead, consider that the
rate gyro is not present.

1.3 Attitude estimation for smart shells applica-
tions

In the context of navigation of smart artillery shells, the knowledge of the
attitude is particularly useful as it makes it possible, in addition with 3-axis
Accelerometer, to estimate the position of the shell in-flight, i.e. solving a
navigation problem4. The attitude is also required as an input for control

4for short time horizons, the aerodynamic forces measured by the 3-axis Accelerometer
can be converted into forces in the inertial frame of reference and added to gravity to
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laws (guidance or terminal guidance controllers), and telemetry applications
(e.g. antennas orientation to minimize data loss). It is often required in
late parts of the flight where trajectory correction have to be made. A
typical ballistic flight for smart shell is depicted in Figure 1.3.1. The steered
gliding phase taking place after the apogee is a prime example where attitude
information is useful.

Figure 1.3.1: Typical ballistic flight phases for smart artillery shells. (ISL)

1.4 Outline of the proposed solution

As explained earlier, classic attitude estimation methods can not work as-is
onboard a smart shell. We will not use any rate gyro, but when needed, an
estimate of the angular velocity will be developed (this estimation will be
referred to as a « virtual gyro »). The 3-axis Magnetometer will be used as a
body-frame measurement of the Earth magnetic field, whose coordinates b0
in the local frame are known Besides, an additional input will compensate for
the missing direction measurement usually given by the 3-axis Accelerometer.
The attitude will be represented under the form of a rotation matrix R̂. A
pictorial view of the estimation method is given in Figure 1.4.1.

The « virtual gyro » can be a simple estimation of the dominant roll
rate, which will be shown to be easily determined using the large oscillations
observed in both transverse accelerometers and transverse magnetometers
signals5.

estimate the true acceleration of the center of mass of the shell, following the classic
navigation principles, see e.g. [31].

5alternatively, one could use the knowledge of the aerodynamic moments, and the fact
that 3-axis Accelerometer provides a good estimation of the angular velocities through that
modeling. Of course, using aerodynamic coefficients accordingly requires the knowledge
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Attitude filtering
3-axis Magnetometer, b0

R̂

(virtual gyro)

Additional input

Figure 1.4.1: Attitude Filtering proposed in the thesis.

The norm of the velocity w.r.t. the air can be obtained through a fre-
quency analysis of the pitching and yawing motion induced by the aerody-
namic moments. This estimation uses one of the transverse accelerometer
as pictured in Figure 1.4.2. It will be detailed in Chapter 3.

Velocity observer v̂
1-axis transverse accelerometer

Figure 1.4.2: Velocity Estimation.

To compensate for the missing direction, one attitude angle will be di-
rectly estimated. As will be explained, measuring only one direction makes
one able to compute the attitude, up to a rotation by an unknown angle
around the single known direction. If an additional « well-chosen » attitude
angle is available, then the attitude estimation has only two isolated solu-
tion, that can be discriminated easily. The angle under consideration is the
pitch angle. It is obtained from the estimate of the velocity w.r.t. the air, as
pictured in Figure 1.4.3, which gives an approximation of it under the form
of the slope angle. The estimation method will be exposed in Chapter 4.
The pitch angle serves as « additional input » for the attitude observer of
Figure 1.4.1 as pictured in Figure 1.4.4. This will be treated in Chapter 5.

Slope angle observerv̂ θ̂

Figure 1.4.3: Slope angle Estimation.

Finally, by connecting all the estimates described above, one obtains
the overall attitude estimation methodology proposed in the thesis. It is

of the velocity.
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Attitude observer
θ̂ ≈ Θ̂ R̂

(Virtual gyro)

Figure 1.4.4: Attitude Estimation.

described in Figure 1.4.5. It uses a 3-axis Accelerometer (actually, only one
of its transverse sensors) and a 3-axis Magnetometer. Experimental results
obtained with this method will be given in Chapter 6.

Velocity observer Slope angle observer Attitude observer

Spin observer

2-axis transverse magnetometer

1-axis transverse accelerometer 3-axis Magnetometer

Attitude

Figure 1.4.5: Attitude Estimation Algorithm from on-board sensors.

1.5 Organization of the thesis

The manuscript is organized as follows.

Chapter 2 presents the mathematical notations employed to describe the
flight dynamics of the shell under the form of a 6-degrees of freedom model of
a rigid body subjected to aerodynamic forces and moments, and gravity. The
two types of rotationally symmetric shells (155 mm and Basic Finner) under
consideration in the thesis are described. The main equation governing
the pitching and yawing motion of the shell is presented. The combined
oscillations define an epicyclic motion. The set of strapdown sensors is
described. Some data obtained during experimental tests serve to illustrate
typical measurements observed in-flight.
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In Chapter 3, the signals generated by the epicyclic motion of the shell
are processed by frequency detection techniques. The frequency is related
to the norm of the velocity w.r.t. the air of the shell. This relation is a
key ingredient for the velocity estimator that is developed to account for
observability issues near Mach 1.0.

In Chapter 4, the previously developed velocity estimation serves to es-
tablish an estimation of the pitch angle of the shell. A simple linear time
varying (LTV) formulation serves to establish the convergence of a Luen-
berger observer, which can be replaced for sake of improved performance
with an extended Kalman filter.

Chapter 5 develops an extension of the attitude complementary filter
dealing with a single vector measurement and the knowledge of one angle.
The convergence analysis is established.

Finally, Chapter 6 is devoted to the application of all the methods pre-
sented above to real flight data, using solely on-board measurements. Com-
parisons with high-fidelity measurements from a ground based position radar
are provided.

Conclusions and perspectives are given in Chapter 7.
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Chapitre 2 - Résumé

Ce second chapitre permet la mise en équation du problème, en introduisant
les différents repères utilisés, la nomenclature des différents états considérés,
et les paramètres physiques propres à la munition et à son environnement.
On y décrira en partie la dynamique de vol d’une munition, en distinguant
dynamiques de translation et de rotation, et en mettant en évidence les
équations sur lesquelles reposeront nos différentes estimations. Les différents
capteurs à notre disposition sont présentés ici, ainsi que les problèmes pra-
tiques auxquels leur utilisation nous confronte (accélérations d’entraînement,
induction), et la structure du signal qu’ils mesurent. Bien qu’on se passe de
gyromètres, on présentera également des méthodes d’estimation de vitesse
angulaire simplifiée à partir des capteurs dont on dispose. Enfin, ce chapitre
se conclut par la présentation du dispositif expérimental utilisé et des jeux
de données considérés dans cette thèse.
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Chapter 2

Mathematical formulation,
notations, flight dynamics
and instrumentation

2.1 Reference frames and Six-Degrees-of-Freedom
description

Let the frame L be defined by orthogonal unit vectors 1L, 2L, 3L where 1L
direction is the direction of the shot on the horizontal plane and 3L is vertical
and pointing to the ground. This direct frame, referred to from now on as
the « local frame », is an adaptation of the classical « North-East-Down »
(NED) frame commonly used in aeronautics, rotated so that its first vector
is oriented in the initial direction of the shot.

Classically, the shell can be modeled as a Six-Degrees-of-Freedom (6-
DOF) rigid body. The full notations are summarized in Table 2.1.1. The
orientation of the rigid body is defined by a set of three Tait-Bryan angles
(here « ZYX » angles are chosen, following the nomenclature of [58], where,
as commonly considered, the spin is defined as the rotation about its axis
of least inertia). As a result, the orientation of the body with respect to the
local inertial frame is described by the Tait-Bryan angle sequence:

yaw: Ψ, pitch: Θ, roll: Φ

The shell state comprises 12 variables, namely the position, velocity,
attitude (under the form of the three angles previously introduced) and
angular velocity. It reads

(2.1.1) Xfull =
(
x y z vx vy vz Ψ Θ Φ p q r

)T
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x, y, z Position of the shell in the local frame
vx, vy, vz Velocity of the shell w.r.t. the local frame
h = −z > 0 Altitude of the shell
V Velocity of the shell w.r.t. the airflow
v = |V | Scalar velocity of the shell w.r.t. the airflow
Nmach Mach number of the shell
vLB Velocity of the shell w.r.t. the local frame
X Position of the shell w.r.t. the local frame
R = [T ]LB Attitude matrix of the shell

(transition matrix from the local frame to the body frame)
Ψ,Θ,Φ Tait-Bryan angles
Ψ Yaw angle
Θ Pitch angle
Φ Roll angle
Ω = (p, q, r) Angular velocity of the shell w.r.t. the local

frame expressed in the body frame
ωIL Angular velocity of the local frame w.r.t.

a geocentric frame (Earth’s rotation, adding Coriolis effect)
p = ⟨Ω, 1B⟩ Spin rate of the shell (or longitudinal component of Ω)
q = ⟨Ω, 2B⟩ transverse component of Ω along 2B

r = ⟨Ω, 3B⟩ transverse component of Ω along 3B

[T ]BW Transition matrix from the body
frame to the wind velocity frame

α, β Incidence angles (see below)
α Attack angle
β Sideslip angle
αt Total angle of attack of the shell

(angle between vectors 1B and V )
θ Slope angle

(« pitch » angle of [T ]LW in « ZYX » decomposition)

Table 2.1.1: Nomenclature.

This vector contains several groups of variables of interest. Let us define
the following partial state variables : the position X, the velocity V (and
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its norm v = |V |), three angles defining the attitude matrix R (and the
corresponding quaternion q) and the angular velocity ω. Details are given
in (2.1.2).

We note (e1, e2, e3) a canonical base of R3, Ra,v the matrix defining the
3D-rotation of angle a about the vector v, and qa,v one of the two unit
quaternions representing Ra,v (see Section 5.1 for more details). Conversely,
the Ra,v matrix can be derived from the quaternion qa,v, see Section 5.1.

(2.1.2)



X =
(
x y z

)T
V =

(
vx vy vz

)T
R = [T ]LB = RΨ,e3RΘ,e2RΦ,e1

q = qΨ,e3 ⊗ qΘ,e2 ⊗ qΦ,e1

Ω =
(
p q r

)T
Besides the local (inertial) frame L and the body B frame, a third frame

is considered and referred to as the « wind velocity frame », denoted W . It
is defined from the body frame using the velocity of the shell with respect
to the airflow, denoted vAB or V , as described by Figure 2.1.1.

The attack angle α and the sideslip angle β are defined by

(2.1.3) [T ]BW = R−α,e2Rβ,e3

where [T ]BW is the transition matrix from the body frame to the wind
velocity frame

The angles between the frames L, B and W are illustrated in Figure 2.1.1
(with the introduction of an intermediate frame L′) and Figure 2.1.2.

2.2 Environment model

The environment of the shell is modeled with standard atmosphere, grav-
ity, and Earth magnetic field reference models. In details, following the
Standardization Agreement STANAG 4355 from NATO, the gravitational
acceleration at altitude h is

(2.2.1) g(h) = g0

(
R

R+ h

)2

where
g0 = 9.80665 × (1 − 0.0026 cos (2 Lat))
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Figure 2.1.1: Definition of Tait-Bryan and incidence angles.
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3L

Ψ

Θ

3B
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1B

vAB

β
α

Φ

Figure 2.1.2: Definition of Tait-Bryan and incidence angles at Φ = 0 ; α
refers to a rotation around 2B and β around 3W .
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while R is an average value of the Earth radius and Lat is the geodetic
latitude of the local frame L (g slightly increases when moving away from
the equator).

At any altitude h, the air density is given, following [39],

(2.2.2) ρ(h) = ρ0

(
T0 − 0.0065h

T0

)4.2561

with ρ0 the air density on the ground. In turn, this defines the sound velocity

(2.2.3) vsound(h) = a0

(
T0 − 0.0065h

T0

) 1
2

where a0 is the velocity of the sound at ground level. The Mach number is,
as usual,

(2.2.4) Nmach(v, h) ≜ v

vsound(h)

This variable is a main input of the aerodynamic forces and moment look-up
tables introduced in Section 2.3.

The various constants appearing in the previous equations are given in
Table 2.2.1.

Constant value unit
ρ0 1.225 kg.m−3

a0 340.429 m.s−1

R 6.356766 × 106 m
Lat 45 deg
T0 288.16 K

Table 2.2.1: Environment constants.

Throughout the thesis (in simulation and for the analysis of actual flight
data), the values for the environment constants are those reported in Ta-
ble 2.2.1.

2.3 Projectile model: dimensional parameters and
aerodynamic coefficients

In the thesis, we consider two types of projectiles : 155 mm shells, fired with
a high spin rate thanks to a rifled barrel (granting gyroscopic stability), and
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Basic Finners, which are smaller and lighter, fired without any initial spin
rate but possessing roll-inducing fins1.

The 155 mm is an all-purpose standard for NATO armies. The Basic
Finner is a more recent experimental shell which has served for many years
as a reference projectile and was tested extensively in numerous aero-ballistic
ranges and in wind tunnels. The model consists of a 20 deg nose cone on a
cylindrical body with four rectangular fins. The main dimensional parame-
ters of the projectiles are listed in Table 2.3.1 with typical values detailed in
Table 2.3.2. Reliable look-up table for their aerodynamic coefficients have
been established (see e.g. [102, 15, 28, 1]).

D Caliber of the shell
S Reference area of the shell
M Mass of the shell
Il Longitudinal moment of inertia
It Transverse moment of inertia
δfin cant Angle of the fins with the shell outer surface

(for Basic Finner only)

Table 2.3.1: Dimensional parameters.

Type D (m) S (m2) M (kg) Il (kg.m2) It (kg.m2)
Basic Finner 0.028 6.16 × 10−4 0.4 4.36 × 10−5 2.14 × 10−3

155 mm 0.155 1.89 × 10−2 43.25 0.15 1.61

Table 2.3.2: Type of projectiles studied.

The coefficients defining the aerodynamics forces and moment are listed
in Table 2.3.3. Their values are reported as a function of the Mach number
in Figure 2.3.1 for the 155 mm artillery shell and in Figure 2.3.2 for the
Basic Finner, for a total angle of attack of zero degree. All the variables in
Table 2.3.3 are functions of (Nmach, αt).

2.4 Flight dynamics

For generality, the high velocity shell under consideration is a 6-DOF rigid
body which is given both initial translational velocity and spin rate2 by

1more precisely, a specific spin rate can be achieved by setting the initial velocity of
the projectile and the angle δfin cant of its fins.

2in the case of the Basic Finner, the initial spin rate can be simply set to zero.
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CD Drag force coefficient
CLα Lift force coefficient
Cmag−f Magnus force coefficient
Cmag−m Magnus moment coefficient
Clδ Rolling moment coefficient
Cspin Roll damping moment coefficient
CMq Pitch damping moment coefficient
CMα Overturning moment coefficient

Table 2.3.3: Aerodynamics coefficients. All the variables in Table 2.3.3 are
functions of (Nmach, αt).

0 1 2 3

Mach number

CD > 0

0 1 2 3

Mach number

CL, > 0

0 1 2 3

Mach number

Cmag!f < 0

0 1 2 3

Mach number

Cmag!m

0 1 2 3

Mach number

Cl/ = 0

0 1 2 3

Mach number

Cspin < 0

0 1 2 3

Mach number

CMq < 0

0 1 2 3

Mach number

CM, > 0

Figure 2.3.1: Aerodynamic coefficients profiles for 155 mm artillery shell.

the gun launch. By contrast with rocket-propelled devices, the shell has
a constant mass during the whole flight. It is subjected to drag and lift
forces, Magnus forces, Coriolis force, gravity, and several moments: Magnus,
overturning 3, rolling 4, pitch damping and roll damping moments [72, 60].

3aerodynamic moment associated with the lift which is applied at the center of pressure.
4only for differentially canted finned shells, as the Basic Finner.
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Figure 2.3.2: Aerodynamic coefficients profiles for Basic Finner.

These forces and moments have been extensively studied and measured using
wind tunnels, free-flight ballistic ranges, spark and Schlieren photography
among others methods. Experimentally established look-up tables are avail-
able for the two projectiles under consideration (see e.g. [102, 15]). Concise
expressions are given in Table 2.4.1 and Table 2.4.2, respectively.

Force Expression

Drag force −1
2ρSCDvv

A
B

Lift force 1
2ρSCLα

(
vAB ×

(
1B × vAB

))
Magnus force 1

2ρS
(
pD
V

)
Cmag−fv

(
vAB × 1B

)
Coriolis force 2MvLB × ωIL

Weight Mg

Table 2.4.1: Forces applied on the shell.
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Moment Expression

Magnus moment 1
2ρSD

(
pD
v

)
Cmag−mv

(
1B ×

(
vAB × 1B

))
Overturning moment 1

2ρSDCMαv
(
vAB × 1B

)
Rolling moment 1

2ρSDδfin cantClδv
21B

Pitch damping moment 1
2ρSD

2CMqv
(
1B ×

(
Ω × 1B

))
Roll damping moment 1

2ρSD
(
pD
v

)
Cspinv

21B

Table 2.4.2: Moments applied on the shell.

2.4.1 Translational dynamics

After some reordering, the application of Newton Second Law yields, in a
concise form

(2.4.1) v̇ = −ρSC̃Dv
2

2M
− g sin θ, ḣ = v sin θ

with

(2.4.2) C̃D(h, v, αt) ≜ CD(Nmach(h, v), αt)

Equation (2.4.1) is obtained with some approximations, namely neglect-
ing the difference between V the velocity of the shell w.r.t. the airflow and
Ẋ the velocity in the local frame, and the contribution of the Coriolis force.
Those approximations are detailed in Appendix A.3.

In (2.4.1), the drag is a dominant effect and deserves some more com-
ments. Some effects of the shell shape on the drag coefficient at various
Mach numbers have long been studied. Those effects depend on a number
of dimensionless variables. The fluid mechanism that transmits the drag
force to the shell consists of two parts: surface pressure and surface shear
stress (a.k.a. skin friction drag). The force generated on the forebody and
the base of the shell are different. Therefore, the various components of the
drag force behave in significantly different ways in the various speed regions.
At subsonic flight speeds (below Mach 1.0), the drag coefficient is essentially
constant. It rises sharply near Mach 1.0, then slowly decrease at higher
supersonic speeds. The sudden rise appearing just below Mach 1.0 is caused
by the formation of shock waves in the flow-field surrounding the shell [72].
This rise is visible in the CD profiles of Figure 2.3.1 and Figure 2.3.2.
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2.4.2 Rotational dynamics

Euler equation of rotation of a rigid body subjected to external aerodynamic
moments can be written under the following form. One shall note the can-
cellation of the bilinear term q r in (2.4.3) due to the symmetric nature of
the shell.

ṗ = ρ(h)SD2Cspinv

2Il
p+ 1

2
ρ(h)SDδfin cantClδv2

(2.4.3)

q̇ = 1
It

(
(Il − It)p r + 1

2
ρSpD2Cmag−mvβ + 1

2
ρSDCMαv

2α+ 1
2
ρSD2CMqvq

)(2.4.4)

ṙ = 1
It

(
(Il − It)p q + 1

2
ρSpD2Cmag−mvα− 1

2
ρSDCMαv

2β + 1
2
ρSD2CMqvr

)(2.4.5)

As is exposed in the early work of [42], the complex reaction of the shell
to aerodynamic forces and moment has a much simplified form when its axis
of symmetry, its axis of rotation and the direction of motion of its center
of mass though the air all coincide. This is precisely the case for the shells
studied in the thesis. Actually, more advanced calculus, and several steps of
careful first-order approximations 5, see [72, Chapter 10], allow one to derive
the equation governing the Pitching and Yawing motion of the rotationally
symmetric projectiles.

Our choice of incidence angles α, β differ from [72]. Ours are attached to
the body, which makes it easier to relate them to the measurement of both
strapdown transverse accelerometers (these angles are oscillating at the spin
rate frequency), whereas in [72] the angles correspond to the horizontal and
vertical oscillating motion as could be observed from the ground. Note α2
and β2, the angles considered by [72] (see Appendix A.2 for alternate angles
definition and approximation). The correspondence is given, under a small
total angle of attack assumption (see Appendix A.2) by

(2.4.6)
{
α2 = sin (pt)α− cos (pt)β
β2 = − cos (pt)α− sin (pt)β

By introducing the complex yaw

ξ = α2 + iβ2

5during the whole flight (typically lasting less than 45 s for ballistic flight and less than
2 s for flat-fire) the spin rate remains very high, and the angles of attitude w.r.t. the wind
frame remain small. Therefore, it is possible to study the attitude dynamics, and, in turn,
the translational dynamics, under the assumption of small-angles.
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one obtains the following complex valued ordinary differential equation

(2.4.7) ξ̈ + v

D
(H − iP )ξ̇ − v2

D2 (M + iPT )ξ = −iPG

with

H = C∗
Lα − C∗

D − MD2

It
(C∗

Mq + C∗
Mα), P = Il

It

pD

v

M = MD2

It
C∗
Mα, T = C∗

Lα + MD2

Il
C∗
mag−m, G = gD cos Φ

v2

where for each aerodynamic coefficient CX one uses the scaled proxy

C∗
X = ρSD

2M
CX

The complex equation (2.4.7) will be central in the works presented in
the thesis. It has been established by several authors, under various forms,
which are all equivalent: [52, 53, 76, 39], among others. Also, it has been
shown to be a very good approximation to the actual flight of symmetric
projectiles.

This equation is a linear, second order differential equation with « almost
constant » (slowly-varying) complex coefficients. Assuming now that the
coefficients are indeed constants (as a short-term approximation), solving
(2.4.7) reveals that the pitching and yawing motion of a symmetric projectile
consists of two modes that rotate at different frequencies so that the complex
yaw ξ follows an epicyclic motion in the complex plane, i.e. a motion of the
general form6

ξ(t) = Ane
iωnt +Ape

iωpt +A0(2.4.8)

where ωn and ωp << ωn designate the so-called « nutation » and « preces-
sion » angular frequencies, respectively. The epicyclic motion is pictured in
Figure 2.4.1.

Going back to the « body-attached » incidence angles α and β which are,
by solving (2.4.6),

(2.4.9)
{
α = sin (pt)α2 − cos (pt)β2

β = − cos (pt)α2 − sin (pt)β2

one has that (2.4.8) yields (2.4.10) through α+ iβ = −eipt (β2 + iα2)

α+ iβ = −i
(
Ane

i(p−ωn)t +Ape
i(p−ωp)t +A0e

ipt
)

(2.4.10)

6This expression is only a short-term approximate solution.
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Figure 2.4.1: Epicyclic motion of the shell during a typical flight ; locus of
the complex yaw ξ from Equation (2.4.8) [simulation results].

2.5 Onboard Sensors

2.5.1 Description of the embedded system

Figure 2.5.1: Embedded Instrumentation in a Basic Finner, from [19].
1 Power supply unit, 2 3-axis Magnetometer, 3 3-axis Accelerometer, 4
CPU (for signal conditioning), 5 RF Transmitter, 6 Monopole Antenna.

The strapdown sensors embedded into the shells (see Figure 2.5.1) con-
sists of a 3-axis Accelerometer and a 3-axis Magnetometer. The data from
the sensors is collected and sent by the radio Frequency transmitter using
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the cone of the shell as a monopole Antenna during the flight. The band-
width allows to stream 2 megabytes of data per second with a low level
of data losses7. All sensors are synchronous and sampled at the same rate
(T = 124 µs for experiments, T = 100 µs in simulations).

The measurement equation are given in (2.5.1).

(2.5.1)
{
Yacc = V̇ −RT g = Fext

M −RT g = Faero
M

Ymag = RT b0

The 3-axis Accelerometer measures the proper acceleration (or acceleration
relative to a free-fall) of the shell, i.e. the sum of the aerodynamic forces
Fext applied onto the shell (divided by the mass), which varies according to

1. the shell velocity (and the associated incidence)

2. its altitude (directly through the corresponding air density, and indi-
rectly though the Mach number)

3. and its spin rate, mostly through Magnus effect.

In turn, the 3-axis Magnetometer provides a measurement of the Earth mag-
netic field b0 expressed in the body frame. Any rotation about the Earth
magnetic field vector leaves the measurement unchanged, which clearly indi-
cates that the magnetometry measurements are not sufficient for estimating
the shell attitude.

Classically, in aircraft applications where during most of the flight the
applied forces compensate each other8, the actual acceleration V̇ remains
close to zero, so that the proper acceleration measured by accelerometers
verifies Yacc ≃ −RT g. This is the main reason why accelerometers are
commonly used as a vector measurement, by improperly considering that
they measure the vector gravity g. Under such circumstances, (2.5.1) boil
down to the measurement of two linearly independent vectors (b0 being
almost never co-linear to g9), which readily allows one to solve Wahba’s
problem of attitude determination.

However, in our case of free-flight, V̇ remains non-negligible from gunshot
until the end of the flight. The shell has no thrust, and is not designed in a
way such that aerodynamic forces could (even approximately) compensate
its weight, the two variables remaining unrelated. The proper acceleration
is different from −RT g, and the difference is strongly varying along the

7as will be visible when treating data, some outliers appears, especially at the end of
the flight when the shell is the farthest from the receiving antenna.

8mostly thanks to thrust and a design making lift sufficient to compensate gravity at
the velocities reached thanks to the thrust.

9this would be false above the North Pole, strictly speaking.
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trajectory, since it corresponds to the aerodynamic forces changing rapidly
with the Mach number, the total angle of attack, and the altitude. This
prevents us from using accelerometers as a vector measurement. We will
see in the following chapters how to circumvent this problem and find a
novel usage of its measurement, providing insights into incidence angles and
velocities, with the help of reliable aerodynamic models.

2.5.2 Detrimental effects and mitigation means

Eddy currents

Once embedded into the shell, the 3-axis Magnetometer no longer directly
provides a valuable vector measurement, because it is corrupted by an induc-
tion effect created by the high spin rate of the electrically conductive shell.
This rotation around its main axis is the root cause for eddy currents. The
effects of eddy currents are mitigated by suppressing the known induction
response to a given spin rate, previously modeled and measured on a testbed
(see Figure 2.5.2) [19]. In the rest of the thesis, it is assumed that the induc-
tion effects are already compensated for. This assumes that the spin rate is
measured, which will be a question treated first of all, in Section 2.6.

Figure 2.5.2: Compensation of eddy currents effect on 3-axis Magnetometer.
Two blinking LEDs are synchronized for various spin rates, showing the
accuracy of the model-based compensation[19].
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Misalignment

Ideally, the sensors should to be perfectly aligned with the body frame. In
practice, there exists a (usually small) rotation between the sensors frame
and the body frame, which results in a malicious modulation visible in the
signals. In theory, there should be no oscillations at the spin rate frequency
on the longitudinal magnetometer. This fact suggests a procedure to reduce
the misalignment issue. Conversely, by applying to the 3-axis Magnetometer
measurement the rotation minimizing the variance of the longitudinal com-
ponent enables us to have an a posteriori better feedback. Ideally, a similar
procedure could be done on the ground prior to the shot with sufficiently fast
varying external magnetic field (generated by Helmholtz bobbins). The ben-
efits of the misalignment compensation, and the reduction of the variance
of the signal after the rotation, is shown on real flight data in Figure 2.5.3.
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Magnetometer misalignment correction

Misaligned longitudinal magnetometer
Corrected longitudinal magnetometer

Figure 2.5.3: Compensation of the longitudinal magnetometer misalignment.
A rotation of approximately 4 deg was employed. [155 mm experimental
data].

After correction of the misalignment and eddy currents, the 3-axis Mag-
netometer gives signals that are close to theory, but significantly corrupted
by the spin rate, as can be seen in Figure 2.5.4
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Figure 2.5.4: Values of longitudinal and transverse 3-axis Magnetometer sig-
nals in 155 mm shell : simulation (left), experimental (right). No misalign-
ment correction is shown on experimental data, hence the heavy spin rate
oscillations in the longitudinal measurement.

Fictitious forces

The accelerometers are disturbed by fictitious forces. Indeed, due to the high
values of spin rate under consideration, even small misalignments (see above)
or lateral shift of the sensors from the shell main axis induce substantial
fictitious forces which directly corrupt the readings of the 3-axis Accelerom-
eter. Interestingly, this will prove to be harmless for the frequency-based
method we develop in the thesis. For reasons we will detail in Chapter 3,
the dominant fictitious forces share the same frequency content as the ideal
accelerometers.

In details, let Yacc0 denote the proper acceleration measured at the center
of mass of the shell, then the proper acceleration occurring at a location
shifted by a vector r is

(2.5.2) Yacc = Yacc0 + Ω × (Ω × r) + dΩ
dt

× r

As is clearly visible in Figure 2.5.5, the longitudinal component of r is
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Figure 2.5.5: Instrumentation of an experimental 155 mm artillery shell from
ISL. Sensors are located in the nose, thus being typically 20 cm away from
the center of mass of the shell.

large (typically, the sensors are located approx. 20 cm from the center of
mass in the direction of the nose). Furthermore, the sensors are not located
right onto the shell symmetry axis, which correspond to small but non neg-
ligible transverse components in r. This is due to mechanical tolerances
and uncertainties in the exact location of the sensors in the shell payload
case. In turn, the high spin rate has a tremendous effect even for small such
transverse shift in (2.5.2). This effect is clearly visible in Figure 2.5.6 in
the case of a 155 mm shell. The shift in sensors location is larger than in
the case of a Basic Finner, due to the extended length of the shell. The
effect is mainly due to the high values of the spin rate, and is thus negligible
on low spin rate projectiles such as Basic Finner. In the case of a Basic
Finner, experimental measurements are similar to the simulation feedback,
even though the location of the sensors is still shifted from the center of
mass of the shell.

The analysis in the case of the 155 mm shell can be pursued as follows.
According to (2.5.2), the factors that can cause fictitious forces are listed in
Table 2.5.1, along with their typical values. In turn, the various disturbance
terms appearing in (2.5.2) are listed by descending order of magnitude in
Table 2.5.2. It is worth mentioning that the term r1 p q + r1 ṙ is actually
much smaller than its constituting factors because, as can be seen in the
last part of the rotational dynamics (2.4.5), one has that

It >> Il implies that ṙ ≈ −p q

This terl is not negligible but it has the same frequency content as Yacc0.
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Then, it appears that the dominant fictitious force is −r2 p
2 and that it acts

as a (slowly drifting) bias on the 3-axis Accelerometer. The « frequency
content » column in Table 2.5.2 describes the oscillating contribution of
each term (q and r obeying (2.4.4) and (2.4.5), respectively, and p being
almost linearly damped according to (2.4.3)). This drifting bias is visible
in Figure 2.5.6 (compare bottom-left and -right plots). Interestingly the
bias is very large but it does not alter the frequency content of the 3-axis
Accelerometer signals. This point will be instrumental in Chapter 3.
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Figure 2.5.6: Values of longitudinal and transverse 3-axis Accelerometer sig-
nals: simulation (left), experimental (right).

Long. shift r1 (m) Trans. shift r2, r3 (m) p (rad.s−1) q, r (rad.s−1)
10−1 10−4 103 101

Table 2.5.1: Root causes of fictitious forces in 155 mm gyrostabilized projec-
tiles.
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Expression Range of value (m.s−2) Frequency content

Yacc0 101 → 100 p, p− ωn, p− ωp

−r2 p
2 102 None

r1( p q + ṙ) 101 → 100 p, p− ωn, p− ωp

r3 q r 10−2 Interfer.a of p, p− ωn, p− ωp

−r2 r
2 10−2 Interfer. of p, p− ωn, p− ωp

−r3 ṗ 10−3 None

Table 2.5.2: Signal at the center of mass and fictitious forces in one trans-
verse accelerometer in a 155 mm gyrostabilized projectile.

awave interference: any a ± b where a and b are picked from the given list.

2.6 Preliminary estimation of the angular velocity
around main axis

As already noted, the symmetric nature of the shell implies the cancellation
of the bilinear term q r in (2.4.3) so that that the equation (2.4.3) governing p
is almost independent on the other angular rates q and r.

The spin rate p thus has a practically autonomous dynamics with almost
linear damping. On the other hand, the transverse components q, r of the
angular rate are linked to the attack and sideslip angles and follows a damped
oscillator dynamics similar to Equation (2.4.7).

The shell is equipped with a dummy gyrometer, which can not be ex-
ploited for the various reasons mentioned in Chapter 1 It can be seen on
Figure 2.5.5. We have explored various options to replace it. A two direc-
tion measurement method (clearly out of the scope of the thesis) is detailed
in [38], and this particular topic has been studied also in the literature (see
e.g. [25, 63, 83, 65, 13]). For the shells considered in the thesis, a simpler
approach can be used, by considering that the angular velocity (p, q, r) is
actually close to (p, 0, 0).

Thankfully, such an estimation is easy, as the spin rate is the fastest fre-
quency of both transverse accelerometers and transverse magnetometers. A
frequency detection methods works well. Adding a physical model of its dy-
namics (relying mostly on rolling moment and roll-damping moment) could
be useful, but is not necessary. In short, an extended Kalman filter with a
model p̈ = 0 yields satisfying results. Figure 2.6.1a shows results on simu-
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lation data, while Figure 2.6.1b shows experimental results. For the latter,
the first estimation features outliers related to magnetometer measurement
outliers. This is readily solved with a complex argument calculation method
more robust to outliers (see Appendix B.1.)

2.7 Shooting range and external instrumentation

The shells are fired on the shooting range shown in Figure 2.7.1a. The
setup of the shooting range is detailed in Figure 2.7.1b. This pictorial view
illustrates the roles of the ground based position radar (Synthetic-aperture
radar, Sarah radar) used to a posteriori reconstruct the trajectory of the
shell. The ground based position radar can also be sued to reconstruct the
translational velocity of the shell. The Weibel Radar is a Doppler radar used
to measure the initial velocity only. The ISL telemetry system corresponds
to the embedded system presented in Section 2.5 combined with ground
receivers and antennas.

2.8 Testcases considered in the thesis

The four testcases listed in Table 2.8.1 will be considered in the manuscript.
The reported time windows are chosen under the form of a single time in-
terval avoiding instants when most data corruption issues take place. These
issues are sensor saturation, data transmission losses and radar measure-
ment failures. Some outliers remain in the considered data though, to keep
the time windows relatively long.
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(a) Estimation of spin rate for a 155 mm shell [simulation results].
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(b) Estimation of spin rate for a 155 mm shell [experimental results].

Figure 2.6.1: Estimation of spin rate.
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(a) Multipurpose free-flight outdoor proving ground at ISL.

(b) Setup of the proving ground.

Figure 2.7.1: Proving ground.
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Chapitre 3 - Résumé

Dans ce chapitre, on présente une méthode pour estimer la vitesse par rap-
port à l’air d’une munition, à l’aide du contenu fréquentiel des accéléromètres,
évoqué dans le chapitre précédent. Le mouvement oscillatoire de précession
et de nutation de la munition est caractérisé grâce à la modélisation évoquée
précédemment. On détaille ensuite les méthodes de détection de fréquence
utilisées pour extraire ces différentes fréquences des signaux d’accéléromètres,
puis on présente un observateur utilisant ces mesures de fréquences pour es-
timer la vitesse de la munition. Une preuve de convergence est donnée, et
des résultats expérimentaux sont présentés.
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Chapter 3

Frequency analysis of the
epicyclic rotational dynamics

3.1 Problem statement

As will be discussed, a way to estimate the velocity w.r.t. the air of a shell
submitted to known aerodynamic moments is through the analysis of the
frequencies of its Pitching and Yawing oscillations. The method detailed in
this chapter is instrumental for using the aerodynamic model of a gun-fired
ammunition, since estimating forces requires the knowledge of its velocity
with respect to the air. In our case, this is used for attitude estimation
purposes as exposed in Figure 3.1.1.

As discussed in Chapter 2, the absolute values of the sensors are biased.
In particular, the 3-axis Accelerometer is strongly biased by the fictitious
forces. However, the bias does not impact the frequency content of the
measurements. For this reason the various frequency detection methods
employed in this chapter are in fact insensitive to the effects of fictitious
forces. Compared to other methods aiming at reconstructing the velocity
w.r.t. the air, frequency detection reveals to be more reliable and accurate
than more direct methods using the absolute values of the sensors such as
inversion of models from accelerometric measurements.

From the description of the rotational dynamics in Section 2.4.2, the
Pitching and Yawing oscillations define an epicyclic motion (depicted by
Figure 2.4.1 where the locus of the complex yaw ξ from Equation (2.4.8)
is shown). The frequencies of the yawing and pitching motions are visible
on the measurements of the strapdown inertial sensors (although one needs
to discriminate them from the spin rate oscillation beforehand, as will be
explained (see Equation 2.4.7 and Table 2.5.2 for the frequency content of
transverse accelerometers).
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Velocity observer Slope angle observer Attitude observer

Spin observer

2-axis transverse magnetometer

1-axis transverse accelerometer 3-axis Magnetometer

Attitude

Figure 3.1.1: Considered cascaded estimation of the attitude. The velocity
information is of interest to estimate the slope and incidence of the shell.

As it will be explained in Section 3.2, those frequencies carry information
on the Mach number, the spin rate of the shell and its aerodynamics coeffi-
cients. The methodology we advocate is pictured in Figure 3.1.2. However,
the frequency information can be more or less difficult to extract, especially
in the trans-sonic region. For this reason, the methodology combines a fre-
quency detection algorithm and a state observer playing the role of filter.

Frequency detection Velocity observer

transverse
accelerometer

ĥ, p̂

6-DOF model

v̂

Figure 3.1.2: Method to estimate the velocity of the shell.

3.2 Frequency content of the embedded inertial
measurements

Some lengthy calculations allow one to determine the frequencies appearing
in the solution of the rotational dynamics (2.4.7). These frequencies are the
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results of some wave interferences1 caused by the nutation, precession and
spin rotations.

The nutation and precession frequencies, ωn and ωp < ωn respectively,
have symmetrical expressions

(3.2.1) ωn = pIl
2It

+ v

2D
(P 2

1 + P 2
2 )

1
4 cos

[1
2

arctan
(
P2
P1

)]

(3.2.2) ωp = pIl
2It

− v

2D
(P 2

1 + P 2
2 )

1
4 cos

[1
2

arctan
(
P2
P1

)]
where

P1(v, h, p) = a1(v, h)2 − b1(v, p)2 − 4a2(v, h)
P2(v, h, p) = 4b2(v, h, p) − 2a1(v, h)b1(v, h)

with

a1(v, h) = −BMCMq +BF (CLα − CD)
a2(v, h) = −BMCMα

b1(v, p) = p

v
D
Il
It

b2(v, h, p) = b1(BFCLα −BMCmag−m
It
Il

)

BF (h) = ρa(h)SD
2m

, BM (h) = ρa(h)SD3

2It

3.3 Instantaneous frequency detection: measuring
varying frequencies

3.3.1 Definition of the frequency of interest

As discussed in Section 2.5, the transverse strapdown accelerometers mea-
sure a projection of the aerodynamic forces in the body frame. Their signal
is thus proportional to the incidence angles of the shell. Typical measure-
ments are reported in Figure 3.3.1. According to (2.4.10), these angles
oscillate with frequencies

{p− ωn, p− ωp, p}

where ωn and ωp are the precession and nutation frequencies (refered to as
« epicyclic frequencies ») defined in eqs. (3.2.1) and (3.2.2).

1(recall from Chapter 2.) wave interference between a and b are any a ± b ; here, only
p, p−ωn and p−ωp show in the signal due to the peculiar expression of the accelerometer
feedback
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Figure 3.3.1: Examples of signals from one of the transverse accelerometers.
Three distinct time windows are reported. [experimental results]. Signals
with and without noise filtering are shown.

In the following, we define our « measurement » ωmeas as

(3.3.1) ωmeas = ωn − p

2
Il
It

= p

2
Il
It

− ωp = ωn − ωp
2

There are a number of possible choices to isolate the velocity-dependent
factor appearing in the equations. Because p is easy to estimate as discussed
in Section 2.6, a simple strategy is to simply subtract it from the detected
frequencies.

Figure 3.3.2 shows the frequency content of a transverse accelerometer,
and the epicyclic frequencies themselves, over the course of a typical ballistic
flight. The nutation frequency ωn, faster than the precession ωp, is both
easier to measure on short time windows (because a larger number of its
periods can be observed over a given time window) and to distinguish from
the spin rate in the accelerometer feedback (see Figure 3.3.2-right). For
these reasons, we now focus on detecting the nutation frequency ωn.
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Figure 3.3.2: Theoretical frequencies of the epicyclic motion ωp < ωn (left)
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any of the transverse accelerometers (right) [simulation results for a 155 mm
shell].
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3.3.2 Envelope filter and FFT

A common practice to estimate the frequency of a monochromatic signal or
a multisinusoidal signal is to use Fast Fourier Transform (FFT) over sliding
windows. This state-of-the-art technique is at the heart of the periodogram
technique [69] and is often employed in various applicative situations.

As previously discussed, the sensor signals contains the frequency p−ωn,
while our interest lies in detecting ωn. A solution is to treat the signal di-
rectly, detect p − ωn as one of peaks of the FFT, and deduce ωn by sub-
stracting the known value of p. This is possible, but is not the best option
because, as illustrated in Figure 3.3.2 and Figure 3.3.5, the frequencies peaks
p − ωn < p − ωp < p of the signal are relatively close, and the accuracy of
the obtained estimate may not be very high.

A useful alternative is to consider the envelope of the signal, which rules
out the spin rate present in the signal. The envelope is calculated using a
standard numerical routine (e.g. an envelope follower filter), or alternatively
using the Hilbert transform.

An envelope follower filter is nonlinear and its simplest form implements
a low-pass filter of (4 times) the square of the signal to be treated or imple-
ments the discrete version of a diode detector [45]:

ẏ =
{

−x
τ if x > s

ks−x
τ otherwise

where k and τ defines the properties of the filter.

The method employing the Hilbert transform of the signal y considers
the complex-valued signal

s(t) = y(t) + iH(y)(t)

with
H(y) = 1

π

∫ +∞

−∞

y(x)
t− x

dx

where the integral is evaluated as a Cauchy principal value. This shows, by
a convolution argument, that H(y) the Hilbert transform can be computed
as the product of the Fourier transform of y with the function −i sign(x).
The envelope is simply the modulus of s(t).

To minimize aliasing effect and leakage in the FFT (mostly due to the
number of cycles in the time window being fractional), a Han window is
applied to the envelope. Finally, to improve the resolution of the FFT, zero-
padding is applied. Then the frequency estimate is found as one of the peaks
of the FFT, and is computed as the maximum of a local polynomial fit for
improved accuracy. The result of this procedure is the estimator f1.
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3.3.3 Detecting peaks in the autocorrelation function

Further, an alternative estimator has been designed. This estimate is based
on the pseudo periods of successive peaks in the envelope of the autocorre-
lation function of the signal.

Prior to calculating the autocorrelation function, the raw signal is de-
biased and its observed drift is canceled by substracting a best-fit affine
time function. Then, the autocorrelation function is numerically calculated
over a linearly-spaced grid of lags. Then, the envelope of this function is
calculated. At this stage, reported in Figure 3.3.3, a pseudo periodic signal
is found. It is smoothed to ease the determination of peaks, which are
computed as the maximum of a local polynomial fit (as previously). The
sequence of peaks is then fit to an affine function of the lag. The distances
between the first three consecutive peaks (the most visible) provide another
estimate f2. The steps above are pictured in Figure 3.3.4.
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Figure 3.3.3: Envelope of autocorrelation function [experimental results].
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Figure 3.3.4: Treatment steps [experimental results].

3.3.4 Frequency detection using super-resolution

In theory FFT based methods directly employed on the signal are not re-
ally ideally suited in the case considered here. The main culprit is that
FFT is only effective in cases where a relatively large number of periods can
be used to estimate the frequency. If this assumption fails, then numerous
malicious effects appear such as spectral aliasing, and frequency leak [69].
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Large time windows can not be employed here, because the oscillations of
the aerodynamics forces are decaying over time (see Figure 2.4.1). Em-
ploying a large window violates the assumption that the signal has constant
magnitude, which is implicitly required for the FFT technique to produce
quality results. Therefore some traded-off must be made.

Instead, we can use a super-resolution technique. In a nutshell, this tech-
nique is optimization-based (in the time domain). It seeks the frequencies
of a multisinusoidal signal as the solution of a best-fit problem. Various im-
plementations exist, from the classic Prony based methods (MUSIC [44]) to
more recent total-variation norm minimization methods [34, 33]. On top of
improving resolution, the methods have proven capabilities of outlier rejec-
tion even with high noise/signal ratios. To work effectively, super-resolution
methods require that the numbers of frequencies to be located in the signal
can be known in advance. This is precisely the case in our application, as
we have seen it in Section 3.2. On experimental data, we use the knowl-
edge of every cross-frequency wave interference added by fictitious forces, as
described in Table 2.5.2.

Super-resolution methods can deal with short time windows, typically
half a period of the lowest frequency to be detected is enough. This is a
helpful feature in our case. We report in Figure 3.3.5, a typical example
where the spin, and linear combinations with nutation and precession fre-
quencies are detected as the sharp peaks of the spectrum obtained from
MUSIC.

Assuming that the frequency-detection algorithm discussed above has
been implemented2, its output is noted f3 and should ideally be equal to
the sought-after angular frequency

Even with relatively large amounts of noise, this output is relatively
reliable. This point is easy to check in simulations. It is not noise-free, as
the output of the super-resolution algorithm is by definition lying on a (fine)
grid of possible values.

In practice, treating experimental data can be more troublesome, this
point will be discussed in Chapter 6. More can be said about that, see
Appendix B.2.

3.3.5 Filtering the estimates

Careful tuning of the various parameters of the estimation procedures de-
scribed above allows to determine successive values for f1, f2, f3. On occa-
sions, each estimator may fail to provide a dependable value. To circumvent
this, some filtering of this signal must be performed. This is the purpose of

2for application we will use the PMUSIC implementation in Matlab.
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Figure 3.3.5: Detection of the frequencies p− ωn < p− ωp < p contained in
the signal from one of the transverse accelerometers (simulation results on
155 mm shell).
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the state observer used in Chapter 6.

3.4 Design of an observer for the velocity from
frequency measurements

3.4.1 System dynamics and output map

To filter the measurement of the velocity w.r.t. the airflow v, we design a
state observer, relying on the dynamics below

v̇ = −ρa(h)SCD(v, h)v2

2M
− g sin (θ)(3.4.1)

y = v

2D
(P1(v, h, p)2 + P2(v, h, p)2)

1
4 cos

[1
2

arctan
(
P2(v, h, p)
P1(v, h, p)

)]
(3.4.2)

For now, we assume that two of the variables appearing in the right-hand
sides above are in fact known in advance, at least to a certain degree of
accuracy 3: the planned altitude h(t) and slope angle of the trajectory θ(t),
and the real spin rate p(t) are known. This allows us to rewrite the dynamics
as a single-state time-varying nonlinear dynamics

v̇(t) ≜f(v, t)(3.4.3)
y(t) ≜g(v, t)(3.4.4)

Various plots of the mappings f and g are reported in Figure 3.4.1 and
Figure 3.4.2.

Observer design for this nonlinear dynamics(3.4.3)-(3.4.4) seems, at first,
a routine problem. The main difficulty here is that g in (3.4.4) is not one-to-
one. In fact, a general property stemming from the behavior of aerodynamic
drag-induced effects near Mach 1.0 (see discussion in §2.4.1), is that for any
given t, v 7→ ∂g

∂v (v, t) has a fixed number N of zeros (at least 2), that we note
mi(t) with

m1(t) < ... < mN (t)

To clarify, those zeros are linked to specific fixed Mach values. They
represent time-varying critical velocities, because said velocities are linked
to Mach values by the sound velocity at the altitude h(t) reached at time t,
via the corresponding air density.

This fact is illustrated in Figure 3.4.2, with N = 2 for a typical ballistic
trajectory of a 155 mm shell. We may call this the non-bijectivity of the

3in practice it can be noted that the variables can be defined from reference histories
provided that they are well synchronized, which is easily done by detecting gun fire from
any of the embedded signal, e.g. any of the accelerometers.
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Figure 3.4.1: Representation of f(v, t) (for a fixed t, at various altitudes).

frequency-velocity mapping in transonic regime. Finally, one can also note
that f becomes steep in the same regime (see Figure 3.4.1). However, it
remains monotonic w.r.t. v at all times. Some (tedious) analytical study
reveals that ∂CD

∂v remains small enough, for all v and t of interest in this
study, so that ∂f

∂v stays strictly negative and bounded4.

For a given trajectory, traveling through the atmosphere, the mi are
time-varying because the extremum points depend on the Mach number,
and thus on the air density in addition to the velocity. For the rest of the
analysis, we consider that the mi are continuous and differentiable functions
of the time (de facto, they are continuous and differentiable functions of the
air density and the spin rate, which vary continuously over time), without
any further assumption on the aerodynamic coefficients.

For all applications considered below, i.e. speed and time ranges, the
mapping f is a contraction in the sense of [57] as

∂f

∂v
< −γ < 0

for some γ > 0.
4Establishing this could be more involved for other shells, e.g. reentry vehicles for

which trajectories cover much wider velocity and time ranges.
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Figure 3.4.2: Representation of g(v, t) (for a fixed t, at various altitudes).

3.4.2 Observer design

The observer is quite easy to design, using the fact that f defines a con-
tractive mapping. However, the exponential convergence stemming from
this property is not sufficient for practical application of velocity estimation
(note that the total flight time is short). To speed-up the convergence, we
make an active usage of the measurement y.

As discussed earlier, the output mapping is not one-to-one. Locally, it
is monotonic, but since the estimate from the observer is the only way to
guess whether the mapping is currently increasing or decreasing, there is no
straightforward condition to determine the sign of the observer gain. This
problem is relatively frequent in control system theory, see e.g. [14] and
references therein.

What we propose is a gain-switching observer, following a classic ap-
proach [2, 22], where the gain is a function of the current estimate. To
guarantee exponential convergence, we consider the squared error as candi-
date Lyapunov function and design the gain so that it is always decreasing.
This is achieved by shutting-down the gain in certain areas near specific
Mach numbers, where the derivative of g w.r.t. the velocity changes sign.
The on-off times are tailored according to the properties of the aerodynamics
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model (upper and lower Lipschitz constants).

3.4.3 Convergence analysis

Let k and ϵ be two strictly positive numbers. Consider the gain

K(v̂, t) ≜ χ(v̂, t)k∂g
∂v

(v̂, t)(3.4.5)

with

χ(v, t) =
{

0 if v ∈
∪N
i=1]mi(t) − ϵ,mi(t) + ϵ[

1 otherwise
(3.4.6)

Then, one can state the following result:

Theorem 1. Consider the state dynamics (3.4.3). Let us assume that there
exists M > 0 such that |v(0) − v̂(0)|< M , and that v̂(0) > mN (0) and
v(0) > mN (0). Then, there exists ϵ and kM such that the observer v̂ defined
by ˙̂v = f(v̂, t)+K(v̂, t)(y−g(v̂, t)) and (3.4.5)-(3.4.6) produces an estimation
error |v − v̂| which converges exponentially to 0.

Proof. Let δ and ϵ be two strictly positive numbers such that v̂(0) > mN (0)+
ϵ and v(0) > mN (0) + ϵ+ δ and kM > 0 satisfies

(3.4.7) kM >
1
ζ1

m

ℓ

and

(3.4.8) kM >
−1
ζ2

2T
log

(
ϵ

M

)
where the following constants are defined (they depend solely on the trajec-
tory under consideration)

T ≜ inf{t ≥ 0, v(t) ≤ mN (t) + ϵ+ δ}
m ≜ max {ṁN (t), t ∈ [0, T ]} + max {−f(mN (t) + ϵ, t), t ∈ [0, T ]}
ℓ ≜ min {|g(mN (t) + ϵ+ δ) − g(mN (t) + ϵ, t)|, t ∈ [0, T ]}

ζ1 ≜ min
0≤t≤T,mN (t)+ϵ≤v≤+∞

(|∂g
∂v

(v, t)|)

ζ2 ≜ max
0≤t≤T,mN (t)+ϵ≤v≤+∞

(|∂g
∂v

(v, t)|)

Note that ζ1 and ζ2 are properly defined as long as we extend our map-
ping of the aerodynamic coefficients by a continuous and differentiable sat-
uration to the end of our mapping. In practical, v stays bounded in a
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finite-flight (the shell has finite energy and the altitude has to remain posi-
tive), and v̂, even though having a different dynamics, only gets closer to v
as t increases, bounding him as well.

Set V = 1
2(v − v̂)2 as a candidate Lyapunov function. It is strictly

positive, and we will show its time derivative is strictly negative along the
system trajectory for any initial conditions satisfying the assumptions of the
statement.

By the mean-value theorem applied to f and g, separately, for any t ≥ 0,
there exists at and bt in between v and v̂ such that :

V̇ = (v − v̂)2(∂f
∂v

(at, t) −K(v̂, t)∂g
∂v

(bt, t))

which expands as

V̇ = 2V
(
∂f

∂v
(at, t) − χ(v̂, t)kM

∂g

∂v
(v̂, t)∂g

∂v
(bt, t)

)

As we know it, ∂f
∂v < −γ < 0. On the other hand the sign of the second

factor is less obvious. In fact, from the definition of the indicator function
(3.4.6), if χ(v̂, t) is non-zero, then ∂g

∂v (v̂, t) and ∂g
∂v (bt, t) are of the same sign

for any bt in between v and v̂. We will show firsthand that this is the case
for t ∈ [0, T ], implying that V̇ < −2γV on that domain, then we will show
that this inequality also holds for t ≥ T for a similar reason.

Before time T By definition, for t ∈ [0, T ], v(t) ≥ mN (t) + ϵ+ δ. Let us
show that for t ∈ [0, T ], v̂ ≥ mN (t) + ϵ.

Given any t ∈ [0, T ] such that v̂(t) = mN (t) + ϵ, then ˙̂v(t) = f(mN (t) +
ϵ, t) + kM

∂g
∂v (mN (t) + ϵ, t)(g(v, t) − g(mN (t) + ϵ, t)).

We show, from (3.4.7), that in this case ˙̂v(t) > ṁN (t). This quite easily
leads to the fact that for t ∈ [0, T ], v̂ ≥ mN (t) + ϵ.

We thus concludes that for t ∈ [0, T ], χ(v̂, t) = 1, and that

kM
∂g

∂v
(v̂, t)∂g

∂v
(bt, t) < 0

As a result, V̇ < −2γV on [0, T ].

After time T Let us show that V̇ remains strictly less than −2γV after
time T .
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Because of (3.4.8), one gets kM > −1
ζ2

2T
log

(
ϵ

|v(0)−v̂(0)|

)
and obviously

V̇ < −2ζ2
2kMV on [0, T ] by definition of ζ2, we get V (T ) < V (0)e−2ζ2

2kMT <

V (0)
(

ϵ
|v(0)−v̂(0)|

)2
which gives us |v(T ) − v̂(T )|< ϵ.

Let us assume that there exists a minimal tc > T where V̇ ≥ −2γV . For
t ∈ [T, tc[, we have V̇ < −2γV and thus |v(tc) − v̂(tc)|< ϵ.

As a result, there are two (exclusive) alternatives : either v̂(tc) belongs to∪N
i=1]mi(t)−ϵ,mi(t)+ϵ[, which nullifies χ and sets the gain to zero ; or v̂(tc)

does not, and then obviously ∂g
∂v (v, t) is of the same sign as ∂g

∂v (v̂, t), because
|v(tc) − v̂(tc)|< ϵ and then neither of the mi(tc) can be between v(tc) and
v̂(tc) ; in that case k ∂g∂v (v̂, t)∂g∂v (bt, t) < 0. Either way, V̇ (tc) < 2γV , which is
a contradiction.

Conclusion of the proof In summary, V is a Lyapunov function for our
observation system (v, v̂). The convergence is exponential, as V̇ < −2γV
with γ > 0. This concludes the proof.

3.5 Illustrative results

3.5.1 Reference velocity

A difficulty in treating experimental results is that no reliable reference for
the velocity with respect to the airflow is available. Instead we use that
velocity w.r.t. the local frame which is measured5, on the shooting range
with the ground based position radar. The algebraic difference between the
two variables is the wind velocity.

Interestingly, it is possible to determine the wind velocity at the instant
when the shell reaches Mach 1 speed. Indeed, this time is obviously materi-
alized in the longitudinal accelerometer feedback (due to the shock wave), as
shown by Figure 2.5.6, and the altitude given by the ground based position
radar makes us able to compute the velocity corresponding to Mach 1. In
data set 2 (see Table 2.8.1), it is equal to 332 m/s, when the ground based
position radar gives a local velocity of 317.8 m/s, implying a contribution of
14.2 m/s of the airflow. Of course, the contribution of the wind velocity onto
the velocity is not constant because the orientations of both the shell and
the wind are subject to change during the course of the flight. This however
gives a good insight on the confidence interval around the local velocity in
which the velocity with respect to the airflow might be located. This inter-

5its values are available a posteriori.
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val can be corroborated with meteorological measurements, which are often
available for experiments at the shooting range. Typically, a value from 0
to 15 m/s is not surprising at higher altitudes, even when there is no wind
on the ground.6.

Additionally, the estimate of the bias obtained near Mach 1 should be
accounted for as a bias on the frequency estimated in Section 3.3.

Note that other model bias can be considered. Among those, a possibly
dominant factor lies in the atmosphere model exposed in Section 2.2. How-
ever, such effects are small. An error in the ground temperature, resulting
in an error in the air density, has an impact on the function linking the
velocity to extracted frequencies. Typical resulting errors are showcased in
Figure A.4.1 and Figure A.4.2.

3.5.2 Results

The observer proposed in this chapter has been tested on experimental data.
For the illustration given here, a filtered fusion of frequency detection meth-
ods is used (it will be detailed on Chapter 6, focused on practical issues aris-
ing when carrying several estimations relying on on-board sensors only). It
represents a significant improvement compared to an open-loop estimation7.
Typical results obtained on experimental data are reported in Figure 3.5.1.
The shell under consideration is a 155 mm in ballistic flight. An accurate
measurement of its local velocity is obtained by the state-of-the-art ground
based position radar we presented earlier. As is visible in Figure 3.5.1, our
method allows one to approach this value, even from a very poor initial esti-
mate of the shell velocity (50 % error). The reader should keep in mind we
are comparing an estimation of the velocity w.r.t. the airflow to the local
velocity. We define an arbitrary confidence interval of ±15 m.s−1 around
the radar reference in which the actual velocity w.r.t. the airflow should lies
for visualization purposes.

3.6 Conclusion

As we have illustrated it, the estimation methodology represents a significant
improvement compared to an open-loop estimation.

For the control applications described in Section 1.3 one can note that
the shell trajectory is controlled by impulsive actions near the end of the
flight. The convergence time of our observer thus is not a limiting factor in

6often, experiments are postponed if the measured wind at ground level is above 10 m/s.
7i.e. forward-time integration from some given initial conditions.
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Figure 3.5.1: Velocity Observer compared to an open-loop estimation (ex-
perimental results).

that regard, as long as it has converged with satisfying accuracy before the
attitude estimation is carried out and the controller is being used.

This estimation of the velocity enables us to use the aerodynamic model
of the shell to carry out an attack and sideslip angles estimation, which
would be a useful input to know the attitude of the shell and estimating
its position by integration, and makes this a key part of any navigation
algorithm. This is certainly a path to explore in future works. As for its use
in this thesis, we will show in the next chapters how the velocity estimation
can provide an input on the attitude, via slope angle estimation.
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Chapitre 4 - Résumé

On cherche ici à obtenir une information d’orientation partielle pour com-
pléter la direction donnée par le magnétomètre 3-axes. Pour ce faire, on va
utiliser la dynamique de la vitesse, dont le chapitre précédent propose une
méthode d’estimation. Grâce aux variations de la vitesse, il est possible de
former un observateur de l’angle de pente d’une munition en vol, qui à terme
fera office d’estimation approchée de son angle de tangage. Un observateur
est présenté, et sa convergence exponentielle démontrée sur un horizon de
temps fixe quantifiable, au bout duquel les gains doivent être mis à jour. Un
filtre de Kalman étendu, plus simple d’implémentation, a été utilisé en pra-
tique, et des résultats obtenus sur des données de simulation et des données
expérimentales sont présentés.
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Chapter 4

Slope estimation through an
analysis of the velocity
dynamics

The previous chapters have focused on providing an estimate of the shell
velocity with respect to the air, by exploiting the low frequencies of the shell
epicyclic motion.

Prior to adressing the attitude estimation problem, we focus on a par-
ticular angle, the pitch angle, which can be directly related to the velocity
discussed above. Indeed, the slope angle heavily influence the shell trajec-
tory, as illustrated in Figure 4.1.1 where trajectories with various initial
pitch angle (only differing from the slope angle by the angle of attack) are
reported.

Previously, in Chapter 3 an estimate of the translational velocity w.r.t.
the airflow of the shell was proposed. According to the description of the
translational dynamics in Chapter 2, the velocity of the shell in-flight is
only affected by the drag force and the gravity. Observing its variations
over time is a way to estimate the slope angle, and consequently the pitch
angle, under the assumption that it is approximately equal to the former.
This is the approach developed in this chapter.

4.1 Slope angle observer

As a reminder of the notations in Chapter 2, the slope angle is defined by
the orientation of the shell velocity, and is equal to the pitch angle when the
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Figure 4.1.1: Altitude and local Velocity for various initial pitch angles
[simulation results].

total angle of attack is zero, which is true on average 1 in typical flights (see
Figure 2.4.1 for typical values of incidence angles).

Below, a method is exposed to construct θ̂ an estimate of θ from a
measurement of the linear velocity v, by exploiting the equations (containing
a reordering of (2.4.1)) obtained under the assumptions of zero total angle
of attack.


ḣ = v sin θ
θ̇ = ω

ω̇ = f(t)
v̇ = −ρ(h)S C̃D(h,v,0) v2

2M − g sin θ

where f(t) = θ̈ is an unknown bounded function of time. Let us define the

1except near apogee.
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following output injection observer, with D(h, v) ≜ ρ(h)SC̃D(h,v,0)v2

2M

(4.1.1)



˙̂
h = v sin θ̂ + l1(v − v̂)
˙̂
θ = ω + l2(v − v̂)
˙̂ω = l3(v − v̂)
˙̂v = −D(ĥ, v) − g sin θ̂ + l4(v − v̂)

The error dynamics is, with the usual notations h̃ = h − ĥ, θ̃ = θ − θ̂,
ω̃ = ω − ω̂, ṽ = v − v̂,

(4.1.2)



˙̃h = v(sin θ − sin θ̂) − l1(v − v̂)
˙̃θ = ω̃ − l2(v − v̂)
˙̃ω = f(t) − l3(v − v̂)
˙̃v = −(D(h, v) −D(ĥ, v)) − g(sin θ − sin θ̂) − l4(v − v̂)

This can be rewritten as a linear time-varying (LTV) model

˙̃X = A(t)X̃ +B(t)(4.1.3)

with
(4.1.4)

A(t) =


0 v

∫ 1
0 cos (θ̂ + (1 − s)(θ − θ̂))ds 0 −l1

0 0 1 −l2
0 0 0 −l3

−
∫ 1

0
∂D
∂h (ĥ+ (1 − s)(h− ĥ), v) ds −g

∫ 1
0 cos (θ̂ + (1 − s)(θ − θ̂))ds 0 −l4



(4.1.5) B(t) =


0
0
f(t)

0


To elaborate, the derivative of the drag force D with respect to the altitude h
is

(4.1.6) − ∂D

∂h
(h, v) = −∂ρ

∂h

SC̃D(h, v, 0)v2

2M
− ρ(h)Sv2

2M
∂C̃D
∂h

(h, v, 0)

with, using the model of § 2.2,

(4.1.7)



∂ρ
∂h = −0.0065×4.2561

T0−0.0065h ρ
∂C̃D
∂h (h, v, 0) = − v

vsound(h)2
∂vsound
∂h

∂CD
∂Nmach

(
v

vsound(h) , 0
)

∂C̃D
∂v (h, v, 0) = 1

vsound(h)
∂CD

∂Nmach

(
v

vsound(h) , 0
)

∂vsound
∂h = −0.0065a0

2T0

(
T0

T0−0.0065h

) 1
2
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4.1.1 Observer design

A can be rewritten as

(4.1.8) A(t) ≜


0 a1(t) 0 −l1
0 0 1 −l2
0 0 0 −l3

a2(t) −a3(t) 0 −l4


with the ai being time-varying functions with strictly positive values.

For any given time t0, consider the matrix

A0 =


0 a1(t0) 0 0
0 0 1 0
0 0 0 0

a2(t0) −a3(t0) 0 0


From the (frozen-time) observability matrix of the pair (A0,

(
0 0 0 1

)
)

which is 
0 0 0 1

a2(t0) −a3(t0) 0 1
0 a1(t0) a2(t0) −a3(t0) 1
0 0 a1(t0) a2(t0) 1


and is clearly non singular, there exist gains l1 ,l2, l3, l4 such that the matrix

(4.1.9) A0 − LC =


0 a1(t0) 0 −l1
0 0 1 −l2
0 0 0 −l3

a2(t0) −a3(t0) 0 −l4


is Hurwitz. The error dynamics can be rewritten, without any approxima-
tion, under the form

(4.1.10) ˙̃X = (A0 − LC + ϵ1(t)A1 + ϵ2(t)A2 + ϵ3(t)A3)X̃ +B(t)

with the following matrices:

A1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , A3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0


and the variables

ϵ1 = a1(t) − a1(t0), ϵ2 = a2(t) − a2(t0), ϵ3 = a3(t) − a3(t0)(4.1.11)
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Since A0−LC is Hurwitz, there exists P a symmetric definite positive matrix
such that

P (A0 − LC) + (A0 − LC)TP = −I

Choosing the candidate Lyapunov function V defined by V (t) = X̃TPX̃,
one obtains

(4.1.12) V̇ = −X̃2 +
3∑
i=1

ϵi(t)X̃T (ATi P + PAi)X̃

To obtain exponential stability, one needs to ensure that sup ϵi(t)||(ATi P +
PAi)|| remains small enough. For sufficiently short duration after t0, this
will be granted by the Lipschitz continuity in (4.1.11). The acceptable bound
on the duration will depend on A0 (which defines P , and then the quantities
||(ATi P + PAi)||). Over the duration, the constant gain L need not be
updated.

In details, a sufficient exponential stability condition on [t0, t1] is∑
i

sup
t∈[t0,t1]

|ϵi(t)|||ATi P + PAi||< 1

Note Mi the Lipschitz constant of the ai (w.r.t. time), then the proposed
observer is exponentially stable on [t0, t1[ where

(4.1.13) t1 = t0 + 1∑
iMi||ATi P + PAi||

Quantitatively, a preliminary change of variables gives some flexibility.
Consider Z = NX, with N invertible, so that we get, with Ai = NAiN

−1,
with P such that PN(A0 − LC)N−1 + (N(A0 − LC)N−1)TP = −I4 and
V = ZTPZ , so that V̇ = −Z̃2 +

∑
i ϵi(t)ZT (Ai

T
P + PAi)Z. For a given

gain L, the proposed observer is then exponentially stable on [t0, t1[ where

(4.1.14) t1 = t0 + sup
N

1∑
iMi||Ai

T
P + PAi||

This result is mostly theoretical, and for treatment of the actual case of
interest we will replace it with a standard EKF.

4.1.2 Simulation results

For the sake of implementation, the results we will showcase are obtained
on an Extended Kalman Filter (EKF) relying on the same model as the
observer we offered in last section. Figure 4.1.2 shows the evolution of the
EKF gains over time, regarding each state h, θ, θ̇, v.

The results displayed in Figure 4.1.3 correspond to the simulated data
set 1 (see Table 2.8.1), using the simulated velocity of the shell.
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Figure 4.1.2: Evolution of the gains of an EKF for slope angle estimation
[simulation results].

4.1.3 Experimental results

For the sake of the implementation, the results we will showcase are obtained
on an Extended Kalman Filter (EKF) relying on the same model as the
observer we offered in last section. Figure 4.1.4 shows the evolution of the
EKF gains over time, regarding each state (h, θ, θ̇, v).

The results reported in Figure 4.1.5 are implemented on data set 2 (see
Table 2.8.1), using a ground based position radar measurement of the veloc-
ity, as a proof of concept. It appears that the slope angle can be estimated
with a residual error of less than 2 deg. An obvious delay is visible, this
could be improved by extending the state of the observer. The final results
displayed in Chapter 6 will correspond to a fully on-board method, but
will rely on a less accurate velocity measurement, obtained as described in
Chapter 3.
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Figure 4.1.3: Slope angle estimation from velocity [simulation results].

4.2 From the slope angle to the pitch angle

The slope angle we estimate here is related to the velocity orientation, and
is not strictly equal to the pitch angle (they are equal if the incidence of the
shell is zero).

A good approximation at small total angle of attack is

(4.2.1) Θ̂ = θ̂ + α2

which can be used if we are able to estimate the shell incidence from trans-
verse accelerometers.

The global results we will present in Chapter 6 will use this correction
for simulation data, as we have access to the angle of attack, but will not
for actual gyrostabilized shells. Instead we will use the slope angle observer
as a pitch angle observer :

(4.2.2) Θ̂ = θ̂

The additional error we introduce by making this assumption is bounded
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[experimental results on 155 mm, data set 2].

by the total angle of attack of the shell, which commonly does not exceed a
few degrees, and exponentially decreases during the course of the flight.

4.3 Conclusion

An output injection gain observer has been provided to reconstruct the slope
angle under assumption of small total angle of attack. A procedure has been
established to compute constant gains that provide exponential convergence
over a covering of the flight time interval. In practice, it should be noted that
the estimate of the frequency of necessary update of the gain is conservative,
and that a single gain is usually sufficient to obtain exponential convergence
over the whole flight. Advantageously, if computational load is not a concern,
an EKF can be preferred. This will be used in Chapter 6, even if the
conditions of convergence of the EKF will not be treated (Uniform Complete
Observability [82] will not be investigated).
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measurements.
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Chapitre 5 - Résumé

Ce chapitre aborde enfin le problème central d’estimation d’attitude. Avant
d’intégrer celle-ci à notre étude, en utilisant les mesures et estimations préal-
ablement obtenues, il propose un estimateur d’attitude inspiré du filtrage
complémentaire. L’estimateur proposé utilise une information d’orientation
partielle, sous la forme d’une mesure d’angle de tangage, remplaçant la
mesure de direction manquante et complétant celle donnée par le magné-
tomètre. On introduira dans un premier temps quelques résultats de con-
vergence partielle du filtrage complémentaire utilisant une seule mesure de
direction, et les solutions algébriques d’une attitude donnant même mesure
de champ magnétique et même angle de tangage que l’attitude réelle, avant
d’introduire notre observateur corrigé utilisant la mesure d’angle de tangage
pour recaler le résultat du filtre complémentaire. Une preuve de convergence
est donnée, et des résultats de simulation et expérimentaux sont présentés.
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Chapter 5

An attitude observer from
3-axis Magnetometer and
pitch angle

To provide an estimate of the attitude we now use the 3-axis Magnetometer
as one direction measurement, and use the pitch estimation constructed in
Chapter 4 as an additional input.

The reader should bear in mind that gyrometers are not available. We
simply replace them with spin rate estimation, as described in Section 2.6.

This chapter offers an adaptation of the classic complementary filter for
attitude of a rigid body, based on [67], using the pitch angle estimation
instead of a second direction measurement. By construction, in Section 2.6
and Appendix B.1, the spin rate estimate is not biased. Therefore, it is
not necessary to implement the gyro bias compensation equation in the
complementary filter, which is left out of the discussion.

5.1 A quaternion representation of the problem

The set of unit quaternions is denoted Q = {q = (s, v ≜ dir(q)) ∈ R×R3, |q|=
1}. It is a group under the operation ⊗ with

q1 ⊗ q2 =
(

s1s2 − vT1 v2
s1v2 + s2v1 + v1 × v2

)
with identity element (1, 0, 0, 0). The group of unit quaternions is homo-
morphic to SO3, the group of all rotations about the origin of R3, via the
mapping

(5.1.1) F (q) := I3 + 2s[v×] + 2[v×]2
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where [v×] is the skew-symmetric matrix corresponding to the cross product
in R3, v × ·. This map is a two to one mapping of Q onto SO3 with kernel

{(1, 0, 0, 0), (−1, 0, 0, 0)}

Thus, Q is locally isomorphic to SO3 via F . Given R ∈ SO3 such that
R = exp (θa×), then

F−1(R) = {±(cos (θ
2

), sin (θ
2

)a)}

For convenience, we will define the quaternion associated with the rota-
tion R = exp (θa×) as

qθ,a =
(

cos (θ
2

), sin (θ
2

)a
)

Let ω denote a body-fixed frame velocity, then the pure quaternion
p(ω) ≜ (0, ω) is associated with a quaternion velocity. The usual rotation
kinematics thus becomes

(5.1.2) ˙̂q = 1
2
q̂ ⊗ p(ω)

5.2 Single-direction attitude complementary filter

5.2.1 Recalls on attitude complementary filter

Consider a rigid body subjected to an angular velocity ω which is equipped
with two embedded vector sensors producing measurements

(5.2.1) vi = RT v̊i, i = 1, 2

where R is the rotation matrix describing the rigid body attitude w.r.t. a set
inertial frame, and v̊1, v̊2 are two constant vectors expressed in the inertial
frame. Without loss of generality, the vectors v̊1, v̊2 are unit vectors 1. They
are assumed to be non-colinear, i.e. v̊T1 v̊2 ̸= 0. The dynamics of the attitude
matrix R are, by definition,

(5.2.2) Ṙ = R[ω×]

In [68], the following result has been established :
1in practical applications these vectors corresponds to fixed directions, e.g. direction

to the Sun, or to the center of the Earth, local magnetic field, among others.
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Theorem 2. [Explicit complementary filter [68]] The filter defined by

(5.2.3)


˙̂
R = R̂

(
[(ωy − b̂)×] + kP [σ×]

)
˙̂
b = −kIσ
σ = k1v1 × (R̂T v̊1) + k2v2 × (R̂T v̊2)

where ωy = ω+ b is the measurement from an embedded gyro assumed to be
corrupted with a constant bias b, and where kI and kP are constant positive
tuning parameters, has three unstable equilibria characterized by

(R̂⋆i, b̂⋆i) ≜ (U0DiU
T
0 R, b), i = 1, 2, 3

where D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1) and D3 = diag(−1,−1, 1),
and U0 ∈ SO(3) such that

M0 ≜
2∑
i=1

ki̊vi̊v
T
i = U0ΛUT0

with Λ a diagonal matrix. Its error (R̃(t), b̃(t)) is locally exponentially sta-
ble to (I, 0) and for almost all initial conditions (R̂0, b̂0) ̸= (R̂T⋆iR, b) the
trajectory (R̂(t), b̂(t)) converges to the trajectory (R(t), b).

5.2.2 Partial convergence using a single direction

The complementary filter of [67, 68] can deal with an arbitrary number of
direction measurements. When the number of linearly independent direction
is larger or equal to 2, the filter converges to the true value of the attitude, in
almost all cases (except on the zero-measure set described in the statement),
see Theorem 2. With a single direction the filter converges to a continuous
set that is not restricted to the actual attitude. Some partial convergence
results can be stated and will prove to be instrumental in the adaptation we
propose. These results, already established in [67], will be the focus of this
section.

Consider the following single direction observer, without bias compensa-
tion, which is directly obtained from [67]:

(5.2.4) ˙̂
R = R̂

(
[ω×] + kp[(Ymag × R̂T b0)×]

)
where Ymag = RT b0 is the measurement from the 3-axis Magnetometer.

With q̂ the unit quaternions representation of R̂, ⊗ the quaternion prod-
uct, and p is the operator defining the pure quaternion of its argument (see
again Section 5.1), an equivalent formulation is

(5.2.5) ˙̂q = 1
2
q̂ ⊗ p

(
ω + kp(Ymag × (q̂−1b0 q̂))

)
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In what follows, σ(q, q̂) or shortly σ(t) or σ will stand for

(5.2.6) σ ≜ Ymag × (q̂−1b0 q̂) = (q−1b0 q) × (q̂−1b0 q̂)

Commonly, σ is referred to as the innovation vector. It is null when the
measurement matches the prediction. For any quaternions q1, q2 in Q, we
define the following error functions

δ(q1, q2) ≜ 2 arccos ((q2 ⊗ q−1
1 )1)(5.2.7)

u(q1, q2) ≜


dir(q2⊗q−1

1 )
sin δ(q1,q2)

2
if δ(q1, q2) ̸= 0

b0 otherwise
(5.2.8)

where (.)1 is the first component of its argument and dir is the last three
components of its argument (see Section 5.1). From eqs. (5.2.7) and (5.2.8),
one has

q2 = qδ(q1,q2),u(q1,q2) ⊗ q1

The convergence analysis provided in [67] states that, in almost all cases2,

(5.2.9) lim
t→+∞

σ(t) = 0

Additionally, since q̂−1b0 q̂ converges exponentially to q−1b0 q (see [67]), and
following the definition of σ, the convergence stated by (5.2.9) is exponential
as well, i.e. there exists κ > 0, µ > 0 such that

(5.2.10) ∀t ≥ 0, ∥σ(t)∥ ≤ κ ∥σ(0)∥ exp(−µt)

Equation (5.2.9) implies

(5.2.11) (q ⊗ q̂−1) · b0 · (q̂ ⊗ q−1)(t) → b0, as t → +∞

Equivalently, since by definition of ⊗

q ⊗ q̂−1 =
(

cos ( δ(q,q̂)2 )
sin ( δ(q,q̂)2 )u(q, q̂)

)

one has

(5.2.12)
(
I + 2δ(q, q̂)[u(q, q̂)×] + 2[u(q, q̂)×]2

)
b0 → b0, as t → +∞

To analyze this property, consider two alternatives: either δ(q, q̂) → 0 or
there exists an unbounded sequence (tn > 0) such that δ(q(tn), q̂(tn)) >

2except for a set having zero-measure, see the unstable equilibrium described by The-
orem 2.
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M for some M > 0. The first one gives [u(q, q̂)×]2b0 → 0 which implies
u(q, q̂) → b0. The second case yields the same conclusion. Indeed we have

(5.2.13) 2δ(q, q̂)[u(q, q̂)×]b0 + [u(q, q̂)×]2b0 → 0

If u(q, q̂) was not converging to b0, there would be a contradiction since we
could extract from [u(q, q̂)×]b0 and −[u(q, q̂)×]2b0 two infinite sequences of
non zero orthogonal vectors, which would contradict (5.2.13). Gathering the
arguments above, we get the following result :

(5.2.14) lim
t→+∞

u(q(t), q̂(t)) = b0

5.3 Complementarity of pitch angle information
and magnetic vector measurement

As previously discussed, when employed with the 3-axis Magnetometer sig-
nals only, the complementary filter (5.2.4)-(5.2.5) converges according to
(5.2.9) and (5.2.14), which means that q̂ asymptotically approaches a set
containing the true attitude quaternion q. The set is not limited to this
desirable value, unfortunately.

We intend to design an observer adding the knowledge of the pitch angle
corresponding to the true attitude. As will be discussed in this section, this
information is well complementing the measurement of the magnetic vector
direction. Several properties will explain this.

5.3.1 Reduction of the convergence set

Attitude solutions

Let us define the following quadratic functions on Q

(5.3.1) q = (q1, q2, q3, q4) →



T (q) = q1q3 − q2q4

T2(q) = q1q4 + q2q3

T3(q) = 1 − 2(q2
3 + q2

4)
T4(q) = q1q2 + q3q4

T5(q) = 1 − 2(q2
2 + q2

3)
It is worth noting that the Tait-Bryan angles are directly expressed as

(5.3.2)



Ψ(q) = arctan 2T2(q)
T3(q)

Θ(q) = arcsin 2T (q) « pitch angle »

Φ(q) = arctan 2T4(q)
T5(q)
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Let us define, for any q ∈ Q, the set
(5.3.3)
C(q) = {q′, u(q, q′) = b0} = {q′, q−1b0 q = q′−1b0 q

′} = {q′, σ(q, q′) = 0}

corresponding of the set of attitudes q′ sharing the same 3-axis Magnetome-
ter measurement as q.

The question naturally arising when considering the additional pitch
angle information is: what are the qf verifying both conditions in (5.3.4)?

(5.3.4)
{
qf ∈ C(q)
T (qf ) = T (q)

or equivalently :

(5.3.5)
{
σ(q, qf ) = 0
T (qf ) = T (q)

Given that C(q) is the intersection of span (q,p(b0) ⊗ q), and the unit sphere
of R4, it is a circle of R4 and we can parametrize it with t :

(5.3.6) C(q) = {(cos t) q + (sin t) (p(b0) ⊗ q) , t ∈ [0, 2π]}

An immediate solution of (5.3.4) is qf = q ; what are the others ? The
parametrization (5.3.6) gives the answer to this question. With the notations

(5.3.7)
{
b0 ≜ [a b c]T

qt = (cos t) q + (sin t) (p(b0) ⊗ q)

some heavy calculation (see Appendix A.5) yields

T (qt) =(cos2 t)T (q) + (cos t sin t)(bT3(q) − 2aT2(q))+
(sin2 t)(−acT3(q) − 2bcT2(q)) + (sin2 t)(c2 − a2 − b2)T (q)

implying that there exists only two t ∈ [0, π[ solutions for T (qt) = T (q) :
the obvious t = 0 (corresponding to qt = q and the following (see again see
Appendix A.5) :

(5.3.8) t# = π

2
+ arctan

(
bT3(q) − 2aT2(q)

2(a2 + b2)T (q) + acT3(q) + 2bcT2(q)

)
which corresponds to q# under the form

(5.3.9) q 7→ q# ≜ (cos t#) q + (sin t#) (p(b0) ⊗ q)

yielding
q# ∈ C(q)
T (q#) = T (q)
q# ̸= q in most cases, as we will see with Proposition 2
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The two additional (besides t = 0 and t = t#) solutions in [0, 2π[ are just
t = π and t = t# + π, corresponding to −q and −q#, representing the same
rotations in SO3.

In the end, we can now formulate the following proposition.

Proposition 1. There are only four elements of C(q) having the same pitch
angle Θ as q. These are q, −q, q# and −q#. They define only two rotations
in SO3.

Separation of the solutions

According to the preceding proposition, one should anticipate that any ob-
server we might construct based on the additional knowledge of the pitch
angle is bound to converge to any of the two isolated rotations. In the follow-
ing we explain how the whole 3-sphere Q can be separated into two potential
basins of attraction for q and q#. The need for this property will naturally
arise when we introduce our proposed observer in the next section.

As a preliminary remark, let us notice, after some steps of calculus, that
for any q ∈ Q, we have

(5.3.10) ∇T (q)T (p(b0) ⊗ q) = bT3(q) − 2aT2(q)

This quantity is linked to the local variation of the pitch of the quaternion
q onto which a rotation around b0 has been applied (precisely, it is the first
order coefficient of the local expansion of T (qδ,b0 ⊗ q) in δ.)

Let us define the sets

(5.3.11)


E0 = {q ∈ Q, ∇T (q)T (p(b0) ⊗ q) = 0}
E+ = {q ∈ Q, ∇T (q)T (p(b0) ⊗ q) > 0}
E− = {q ∈ Q, ∇T (q)T (p(b0) ⊗ q) < 0}

Geometrically, E0 is the intersection of the sphere Q and a hyperplane sep-
arating E+ from E−.

Then, one has the following.

Proposition 2. For any q ∈ Q, exactly one among those properties holds:
q ∈ E0 ∧ q = q#(5.3.12a)
q ∈ E+ ∧ q# ∈ E−(5.3.12b)
q ∈ E− ∧ q# ∈ E+(5.3.12c)

Additionally, −q and −q# lie in the same set as their counterparts q and
q# respectively
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The proof directly follows from the definition of the sets (5.3.11), the
fact that properties (5.3.12a)-(5.3.12b)-(5.3.12c) are mutually exclusive and
jointly exhaustive, and that ∇T (−q) = −∇T (q) and p(b0)⊗(−q) = −p(b0)⊗
q.

5.3.2 A continuity property

Proposition 3 (Small innovation and pitch error imply small δ). For any
ε > 0, there exist (ε1, ε2) such that, for any (q, q′) ∈ Q2

{
||σ(q, q′)||< ε1

|T (q) − T (q′)|< ε2
=⇒ min (|δ(q, q′)|, |δ(−q, q′)|, |δ(q#, q

′)|, |δ(−q#, q
′)|) < ε

where q# is given by (5.3.9).

Proof. By contradiction, let us assume there exist ε > 0, such that for all
ε′ > 0, there exist q′ such that

(5.3.13)


||σ(q, q′)||< ε′

|T (q) − T (q′)|< ε′

min (|δ(q, q′)|, |δ(−q, q′)|, |δ(q#, q
′)|, |δ(−q#, q

′)|) ≥ ε

Let us choose a sequence (ε′
n) converging to zero, and a sequence (q′

n)
such that, for all integer n

(5.3.14)


||σ(q, q′

n)||< ε′
n

|T (q) − T (q′
n)|< ε′

n

min (|δ(q, q′
n)|, |δ(−q, q′

n)|, |δ(q#, q
′
n)|, |δ(−q#, q

′
n)|) ≥ ε

The mapping δ defines a distance on Q. Therefore, the set

Q0 ≜ Q \ {q′,min (|δ(q, q′)|, |δ(−q, q′)|, |δ(q#, q
′)|, |δ(−q#, q

′)|) < ε}

is a compact set. The continuous function q′ 7→ ||σ(q, q′)||+|T (q) − T (q′)|
reaches a non-zero (since its zeros on Q, given by Proposition 1, are isolated)
minimum m on Q0. Since every q′

n belongs to Q0, every |σ(q, q′
n)|+|T (q) −

T (q′
n)| is superior to m, contradicting the fact it should converges to zero,

through the inequality ||σ(q, q′
n)||+|T (q) − T (q′

n)|< 2ε′
n.
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Proposition 3 would be sufficient to show asymptotic stability of the
observer using pitch angle and magnetometer measurement we will introduce
later. We will complete this property in the proof of convergence, showing
how ε1 and ε2 are related to ε. This will be of use to guarantee exponential
stability.

5.4 Proposed observer

We now present the observer we propose (see below in (5.4.1)). It is a
modified version of the complementary filter, as can be seen in its first line
below. The second equation is a gradient-based integrator, containing a
comparison of the actual pitch and the predicted one. The gain contains a
linearizing term which is saturated. The prediction is performed on the basis
of the update quaternion q̄ obtained by a rotation of the filtered quaternion
q̂, the rotation being of magnitude defined by the state χ of the gradient-
based integrator. The input of the observer are the innovation σ computed
using the 3-axis Magnetometer measurement according to (5.2.6) as before,
the angular rate ω as before (here supposed to be known, which will be
replaced in applications by the estimate discussed in Section 2.6), and the
pitch angle under the form T (q). The output of interest of the observer is
q̄.

(5.4.1)



˙̂q = 1
2
q̂ ⊗ p (ω + kpσ)

σ ≜ Ymag × (q̂−1b0 q̂)

χ̇ = kc
T (q) − T (q)

f (∇T (q)T (p(b0) ⊗ q))

q =
(

cos χ
2

+ sin χ
2
b0

)
⊗ q̂

where the measured pitch angle gives 1
2 sin (Θ) = T (q), and with

f : x 7→
√

1 + x2/tanh(x)

The graph of the smooth function f is given in Figure 5.4.1. Because 1/f(.)
is always defined, the observer (5.4.1) is well defined for all times t ≥ 0.

5.5 Assumptions on the flight

In the following Cl(·) designates the closure (in the set sense).

Assumption 1. The compact set Dflight ≜ Cl({q(t), t ≥ 0}) is strictly
contained into E+ i.e. Dflight ⊊ E+.
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Figure 5.4.1: Mapping used to define the observer gain in (5.4.1).

Assumption 1 can be made without loss of generality, the reverse situa-
tion (where q lies in E− and q# in E−) being strictly equivalent in the rest
of the proof. Under Assumption 1, we directly get the following properties :

Proposition 4 (q stays in E+). For all t ≥ 0, ∇T (q)T (p(b0) ⊗ q) ̸= 0

Proposition 5 (q# stays in E−). There exists a compact set Dflight# ⊊ E−
such that for all t, q#(t) ∈ Dflight#. On Dflight#, one has ∇T (q#)T (p(b0)⊗
q#) ̸= 0.

Quaternions lie in the unit sphere of R4. To visualize these, the classical
stereographic projection of this unit sphere onto R3 can be used, as is done
in Figure 5.5.1. In this figure the stereographic view of the trajectories of
q and q# in R3 are represented. The stereographic mapping is described
by (5.5.1). It is chosen such that its only singularity corresponds to the
identity rotation. This last situation, in a ballistic flight, never occurs, since
the body frame is never fully aligned with the local frame. It naturally
defines an isomorphic function from {q ∈ Q, q1 ̸= −1} onto R3.

(5.5.1) q 7→ 1
1 + q1

(
q2 q3 q4

)
This view is handy to interpret Assumption 1. On a typical 155 mm

shell flight, Figure 5.5.1 reports the stereographic representation of q and q#.
Their loci appear to be non intersecting. This property makes Assumption 1
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true : q(t) varies continuously, and because q ∈ E0 implies q# = q from
Proposition 2, for the trajectory q to intersect E0 one should have that at
some instant q# = q, which is never the case as shown in Figure 5.5.1.

Additionally, the quantities ∇T (q)T (p(b0)⊗q) and ∇T (q#)T (p(b0)⊗q#)
are displayed in Figure 5.5.2. Both quantities remains away from zero during
the flight, stressing again that q remains in E+ and q# in E− (without loss
of generality, the reverse is possible and would not contradict Proposition 4
and 5, which are the relevant consequences of Assumption 1 we will actually
use).

-1

-0.5

0

0.5

1

1.5

2

0

10.50-0.5-2-1

Stereographic projection of q
Stereographic projection of q#
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1

1.5
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-2-1.5-1-0.500.51-1

Stereographic projection of q
Stereographic projection of q#

Figure 5.5.1: Stereographic representation of q and q# during the flight.
Their loci are non intersecting, as shown by two different views. Simulation
results for a typical 155 mm flight.

We will need a second assumption on the boundedness of the angular
velocity of the shell during a flight, which physical interpretation is that the
aerodynamics and the gravity cannot indefinitely increase ω :

Assumption 2. There exists ωmax > 0 such that for all t ≥ 0, |ω(t)|< ωmax
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Figure 5.5.2: Variation of the quantities ∇T (q)T (p(b0) ⊗ q) and
∇T (q#)T (p(b0) ⊗ q#) during a typical 155 mm flight.

5.6 Main result

Theorem 3 (Main result). Let us assume q̂(0) and χ(0) are such that q(0) /∈
E0. There exist η2 > 0 such that, for any ε > 0 small enough, there exist
η1 > 0 and kc∗ > 0 such that, if ∥σ(0)∥ < η1, |T (q(0)) − T (q(0))|< η2 and
kc > kc∗, there exist K,λ > 0 such that :

∀t ≥ 0,min (|δ(q, q)|, |δ(−q, q)|, |δ(q#, q)|, |δ(−q#, q)|) < ε+K exp−λt.

Next section will be dedicated to the proof of Theorem 3.

5.7 Proof of convergence

5.7.1 Asymptotic behavior

Consider

V1 = 1 − ⟨Ymag, R̂T b0⟩ = 1 − ⟨RT b0, R̂
T b0⟩(5.7.1)

V2 = 1
2

|1
2

sin (Θ) − T (q)|2= 1
2

|T (q) − T (q)|2(5.7.2)
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Differentiating V2 yields :

(5.7.3) V̇2 =
(
∇T (q)T q̇ − ∇T (q)T q̇

)
(T (q) − T (q))

By substituting, using qχ+π,b0 = qπ,b0 ⊗ qχ,b0 = p(b0) ⊗ qχ,b0 and the associa-
tive property of (Q,⊗),

(5.7.4) q̇ =
(

cos χ
2

+ sin χ
2
b0

)
⊗ ˙̂q + χ̇

2
p(b0) ⊗

(
cos χ

2
+ sin χ

2
b0

)
⊗ q̂

one obtains

V̇2 = − kc
2

∇T (q)T (p(b0) ⊗ q)
f (∇T (q)T (p(b0) ⊗ q))

|T (q) − T (q)|2+B(q, q̂, χ)

Or, more conveniently,

V̇2 = − kc
2
h(q)V2 +B(q, q̂, χ)(5.7.5)

with

(5.7.6) h(q) ≜ ∇T (q)T (p(b0) ⊗ q)
f (∇T (q)T (p(b0) ⊗ q))

and

B(q, q̂, χ) ≜
(

∇T (q)T q̇ − ∇T (q)T
(

cos χ
2

+ sin χ
2
b0

)
⊗ ˙̂q

)
(T (q) − T (q))

which rewrites
(5.7.7)
B(q, q̂, χ) = 1

2

(
∇T (q)T (q ⊗ p(ω)) − ∇T (q)T (q ⊗ p(ω + σ))

)
(T (q) − T (q))

or under the form, B = B1 +B2 with
(5.7.8)B1(q, q̂, χ) ≜ 1

2

(
∇T (q)T (q ⊗ p(ω)) − ∇T (q)T (q ⊗ p(ω))

)
(T (q) − T (q))

B2(q, q̂, χ) ≜ −1
2

(
∇T (q)T (q ⊗ p(σ))

)
(T (q) − T (q))

Let us note that |B| can be simply bounded using (5.7.7) and the ex-
pression of σ, independently of q, q, χ, using the fact it can be seen as a
continuous function of (q, q, ω) which lies in a compact set (see Assump-
tion 2). We will denote Bmax its upper bound.

Under the assumptions of Theorem 3, q(0) /∈ E0. By definition (5.3.11),
this implies ∇T (q(0))T (p(b0) ⊗ q(0)) ̸= 0. This property can be propagated
for all times as stated below in Proposition 6.
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Proposition 6 (q stays on one side of E0). There exist εa > 0, εb > 0, and
k′
c such that if ∥σ(0)∥ ≤ εa, |T (q(0)) − T (q(0))|< εb, and kc ≥ k′

c then one
has

∀t ≥ 0, ∇T (q(t))T (p(b0) ⊗ q(t)) ̸= 0(5.7.9)

and

∀t ≥ 0, h(q(t)) > ℓ(5.7.10)

for some ℓ > 0.

Proof. From Assumption 1, there exists εc such that if for all t ≥ 0, one has

min (|δ(q(t), q(t))|, |δ(−q(t), q(t))|, |δ(q#(t), q(t))|, |δ(−q(t)#, q(t))|) ≤ εc

then one has (5.7.9).

Consider ∆ε the set

{q1 ∈ Q, s.t. ∃q ∈ Dflight

with min (|δ(q, q1)|, |δ(−q, q1)|, |δ(q#, q1)|, |δ(−q#, q1)|) ≤ εc}

Because δ is a distance over Q, ∆ε is a compact set. By construction,
it has no intersection with E0. Therefore there exists ℓ1 such that for all
q ∈ ∆ε,

|∇T (q)T (p(b0) ⊗ q) |≥ ℓ1 > 0

For the considered εc, Proposition 3 gives two positive constants ε1, ε2.

From (5.2.10), one has that, if ∥σ(0)∥ < ε1/κ ≜ εa then

(5.7.11) ∀t ≥ 0, ∥σ(t)∥ < ε1

Let us choose |T (q(0)) − T (q(0))|< b < ε2 and kc ≥ k′
c >

4Bmax
l b2 . we

know from (5.7.5) that if for some t we have |T (q(t)) − T (q(t))|= ε2 then
V̇2(t) < 0.

If the set {t, |T (q(t))−T (q(t))|≥ ε2 was not empty, using the continuity of
the function t 7→ |T (q(t))−T (q(t))|, there would exist tc such that |T (q(tc))−
T (q(tc))|= b and V̇2(tc) > 0. We know from (5.7.5) and from the choice of
kc that V̇2(tc) < 0 giving us a contradiction.

As a consequence, we have established that there exist k′
c such that if

kc ≥ k′
c and |T (q(0)) − T (q(0))|< ε2 ≜ εb then

(5.7.12) ∀t ≥ 0, |T (q(t)) − T (q(t))|< ε2
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Therefore, gathering (5.7.11) and(5.7.12), one has, ∀t ≥ 0,

min (|δ(q(t), q(t))|, |δ(−q(t), q(t))|, |δ(q#(t), q(t))|, |δ(−q(t)#, q(t))|) < εc

which gives the conclusion with the desired constant (using the parity of h)

h(ℓ1) ≜ ℓ > 0

Proposition 7. With the notations of Proposition 6, if ∥σ(0)∥ ≤ εa, |T (q(0))−
T (q(0))|< εb, then for all εd > 0, there exists k′′

c and t2 > 0 such that, if
kc ≥ max (k′

c, k
′′
c ),

∀t ≥ t2, V2(t) ≤ εd(5.7.13)

Proof. Under the assumptions of the statement, one has, from (5.7.5), that
for all t ≥ 0

V̇2 ≤ −kc
2
ℓ V2 +B(q, q̂, χ)(5.7.14)

where |B| is bounded by Bmax. Applying the differential version of Grön-
wall’s inequality gives the conclusion.

Proposition 8. With the notations of Proposition 6, if ∥σ(0)∥ ≤ εa, |T (q(0))−
T (q(0))|< εb, then for all ε > 0, there exists t3 such that

∀t ≥ t3, min (|δ(q, q)|, |δ(−q, q)|, |δ(q#, q)|, |δ(−q#, q)|) < ε

Proof. For any ε > 0, Proposition 3 defines ε1 > 0 and ε2 > 0. Proposition 7
defines t2 for εd = ε2. Using (5.2.10), the result is obtained with

t3 ≜ max
(
t2,

1
µ

(log(κ εa) − log ε1)
)
> 0

Proposition 8 describes the asymptotic behavior of the observer. As
t → +∞, q approaches one of the distinct elements q, −q, q# or −q#. To
characterize the convergence we now consider two exclusive cases defined by
Proposition 9 below.

Proposition 9. For ε > 0 small enough, with the notations of Proposition 8,
one (and only one) of the following statements hold:

1. for all t ≥ t3, min (|δ(q#(t), q(t))|, |δ(−q#(t), q(t))|) > ε
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2. for all t ≥ t3, min (|δ(q#(t), q(t))|, |δ(−q#(t), q(t))|) ≤ ε

Proof. For ε small enough, for any t ≥ 0, the ε-neighborhoods w.r.t. the δ
distance of q(t), −q(t), q#(t) or −q#(t) are four disjoints compact sets.
Therefore, Proposition 9 is a direct consequence of Proposition 8. Alter-
natively, this means that with the notation of Proposition 8, after time t3
the estimate q either stays within ε of ±q or within ε of ±q# w.r.t. δ.

Next, the proof is organized around two exclusive alternatives. Either
the following assumption holds or not.

Assumption 3. With the notation of Proposition 8, there exists ε > 0 such
that Item 1 above is true.

5.7.2 First case: Assumption 3 holds

Let us start with a preliminary property.

Proposition 10. There exist ε′
a > 0 and l2 > 0 such that if ||σ(0)||< ε′

a,
one has

∀t ≥ 0, |∇T (q)T (p(u(q, q)) ⊗ q)|≥ l2

Proof. From Assumption 1, we know that there exist l2 > 0 such that
|∇T (q)T (p(b0) ⊗ q)|> 2l2 for all time t ≥ 0 (if that was not the case, E0
would obviously have an intersection with the closure of the trajectory of q,
contradicting Assumption 1).

From (5.2.14) and the continuity of the function

v 7→ ∇T (q)T (p(v) ⊗ q)

there exist ε′
a > 0 such that if ||σ(0)||< ε′

a, then one has, for all time t ≥ 0,

|∇T (q)T (p(u(q, q)) ⊗ q) − ∇T (q)T (p(b0) ⊗ q)|< l2

This implies |∇T (q)T (p(u(q, q)) ⊗ q)|≥ l2 which concludes the proof

We now pursue the analysis of (5.7.5). Let us focus on the first term in
(5.7.8). Using

∇T (q)T (q ⊗ p(ω)) =
(
q3 −q4 q1 −q2

)
−q2ω1 − q3ω2 − q4ω3
q1ω1 + q3ω3 − q4ω2
q2ω2 − q2ω3 + q4ω1
q3ω3 + q2ω2 − q3ω1


= ω2T3(q) − 2ω3T2(q)
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and (5.3.1), we get
(5.7.15)
B1(q, q̂, χ) = ω2

2
(T5(q)−T5(q))(T (q)−T (q))−ω3(T4(q)−T4(q))(T (q)−T (q))

It is useful to establish that the Ti(q) − Ti(q), i ∈ {4, 5} vary in a similar
fashion as T (q) − T (q), by considering the following expansions :

T (q) − T (q) = δ(q, q)
2

∇T (q)T (p(u(q, q)) ⊗ q) +O(δ(q, q)2)

Ti(q) − Ti(q) = δ(q, q)
2

∇Ti(q)T (p(u(q, q)) ⊗ q) +O(δ(q, q)2), i ∈ {4, 5}

Proposition 11. Under Assumption 3, if ||σ(0)||< ε′
a, there exist C4 > 0,

C5 > 0 such that for all t ≥ t3, one has

(5.7.16)
{

−C4(T (q) − T (q)) < T4(q) − T4(q) < C4(T (q) − T (q))
−C5(T (q) − T (q)) < T5(q) − T5(q) < C5(T (q) − T (q))

Proof. If ||σ(0)||< ε′
a we have ∇T (q)T (p(u(q, q)) ⊗ q) > l2.

Let us denote Cε,l2 the following set

{(q1, q2), q1 ∈ Dflight and q2 ∈ Q s.t.
min (|δ(q1#, q2)|, |δ(−q1#, q2)|) ≥ ε and |∇T (q1)T (p(u(q1, q2)) ⊗ q1)|≥ l2}

From Proposition 10, under Assumption 3, we know that if ||σ(0)||< ε′
a,

then for any t ≥ t3, (q(t), q(t)) lies in Cε,l2 which is a compact set.

Let us consider, for i ∈ {4, 5} the function ri : (q1, q2) 7→ Ti(q1)−Ti(q2)
T (q1)−T (q2) .

We will show that this function can be continuously defined on the compact
set Cε,l2 .

For a fixed q1 ∈ Dflight, the only potential singularities of ri on Cε,l2 are
to q2 = ±q1.

Let us focus on the extension of our ratio function ri for q1 = q2. We
know that we have :
(5.7.17){

T (q1) − T (q2) = δ(q1,q2)
2 ∇T (q1)T (p(u(q1, q2)) ⊗ q1) +O(δ(q1, q2)2)

Ti(q1) − Ti(q2) = δ(q1,q2)
2 ∇Ti(q1)T (p(u(q1, q2)) ⊗ q1) +O(δ(q1, q2)2)

Knowing that ∇T (q1)T (p(u(q1, q2)) ⊗ q1) is non zero for (q1, q2) ∈ Cε,l2 , the
extension of the ratio function ri on the whole compact set Cε,l2 is trivial,
using the following :

(5.7.18) r̃i(q1, q1) = ∇Ti(q1)T (p(b0) ⊗ q1)
∇T (q1)T (p(b0) ⊗ q1)
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The other singularities (q2 = −q1) are treated in a similar way.

Thus r̃i is defined of the compact set Cε,l2 and continuous, so it is
bounded. The same applies to ri, concluding the proof.

Proposition 12 (Quadratic bound on B1). Let us define ωM > 0 such that
for all t,max (ω2(t), ω3(t)) ≤ ωM . Under Assumption 3, if ||σ(0)||< ε′

a, for
all t ≥ t3, one has

(5.7.19) |B1(q, q̂, χ)|< ωM

(
C5
2

+ C4

)
(T (q) − T (q))2

Proof. Under Assumption 3, Proposition 11 holds. Then we get, for all
t ≥ t3 the following

|ω3 (T4(q) − T4(q)) (T (q) − T (q)) |< ωMC4 (T (q) − T (q))2

|ω2 (T5(q) − T5(q)) (T (q) − T (q)) |< ωMC5 (T (q) − T (q))2

Then, one concludes the proof using these inequalities into (5.7.15).

We will now focus on the second term in (5.7.8) which we recall for
convenience

B2(q, q̂, χ) ≜ −1
2

(
∇T (q)T (q ⊗ p(σ))

)
(T (q) − T (q))

From (5.2.9), σ converges exponentially to zero. Additionally, using

∇T (q)T (q ⊗ p(σ)) = σ2
2
T3(q) − σ3T2(q)

|T2(q)|≤ 1
|T3(q)|≤ 1

we get
|∇T (q)T (q ⊗ p(σ))|≤ 3

2
||σ||

Adding |T (q) − T (q)|< 1 (the image of T is included in [−1
2 ,

1
2 ]), the expres-

sion of B2 naturally leads to

(5.7.20) |B2(q, q̂, χ)|≤ 3
4

||σ||

Proposition 13 (Local exponential convergence of the pitch error). If k∗
c >

ωM
ℓ

(
C5
2 + C4

)
, and under Assumption 3, then V2 is exponentially converging

to zero.
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Proof. Gathering eqs. (5.7.19) and (5.7.20) and (5.7.14), one has for all t ≥ t3

(5.7.21) V̇2 < −
(
k∗
c ℓ− ωM

(
C5
2

+ C4

))
V2 + 3

4
||σ||

directly yielding

(5.7.22) V̇2 < −λV2 +K exp−µt

with λ ≜ kc ℓ− ωM
(
C5
2 + C4

)
> 0, K > 0.

Applying the classical differential version of Grönwall’s inequality, one
obtains

V2(t) ≤ exp(−λt)V2(t3) + K

λ− µ
(exp(−µt) − exp(−λt))

which gives the conclusion.

Proposition 14 (Local exponential convergence of δ). If k∗
c >

ωM
ℓ

(
C5
2 + C4

)
,

and under Assumption 3, there exists K1 > 0 and λ > 0 such that

∀t ≥ t3,min (δ(q, q), δ(−q, q)) < K1 exp−λ(t−t3)

Proof. With the notations of Proposition 10, there exists l2 > 0 such that if
||σ(0)||< ε′

a, one has

∀t ≥ 0, |∇T (q)T (p(u(q, q)) ⊗ q)|≥ l2

Using the expansions about q and −q (only the one about q is given below)

T (q) − T (q) = δ(q, q)
2

∇T (q)T (p(u(q, q)) ⊗ q) +O(δ(q, q)2)

and noting3 that

|∇T (±q)T (p(u(±q, q)) ⊗ ±q)|> l2

one deduces that there exists 0 < c < ε such that, if

min (δ(q, q), δ(−q, q)) < c

3more generally, one has

|∇T (±q)T (p(u(±q, q)) ⊗ ±q)|= |∇T (±q#)T (p(u(±q#, q)) ⊗ ±q#)|> l2

.
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then

(5.7.23) min (δ(q, q), δ(−q, q)) < 3|T (q) − T (q)|
l2

From Proposition 13, there exist K ′ > 0 and λ > 0 such that

(5.7.24) |T (q) − T (q)|< K ′ exp−λ(t−t3), t ≥ t3

From Proposition 3 and (5.2.10), there exist t4 > 0 such that if t ≥ t4, then,
using Assumption 3,

min (δ(q, q), δ(−q, q)) = min (δ(q, q), δ(−q, q), δ(q#, q), δ(−q#, q)) < c

Then, using Equation (5.7.23) and Equation (5.7.24), one has, for t ≥ t4,

min (δ(q, q), δ(−q, q)) < K ′′ exp (−λ(t− t4))

with K ′′ = 3K′ exp (−λ(t4−t3))
l2

.

Invoking the continuous existence of the proposed observer over the
bounded interval [t3, t4], one can define an exponential bound Ke−λ(t−t3)

starting at t = t3, by choosing K1 > K ′′ expλ(t4−t3) such that

∀ t ≥ t3,min (δ(q, q), δ(−q, q)) < K1 exp−λ(t−t3)

This concludes the proof.

5.7.3 Second case: Assumption 3 does not hold

In this case, from Proposition 9, one has directly that for all t ≥ t3,

min (δ(q#, q), δ(−q#, q)) < ε

5.7.4 Conclusion of the proof

To summarize, we proved in the previous sections the following results :

Let us choose ε > 0 such that for any t ≥ 0, the ε-neighborhoods w.r.t.
the δ distance of q(t), −q(t), q#(t) or −q#(t) are four disjoints compact sets.
There exists, thanks to Proposition 9 and Proposition 13, t3 ≥ 0 and kc∗ > 0
such that, if kc > kc∗, either

1. Assumption 3 is verified, and then, from Proposition 14, there exist
K1 > 0 and λ > 0 such that

∀t ≥ t3,min (δ(q, q), δ(−q, q)) < K1 exp−λ(t−t3)
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2. Assumption 3 is false, and then from Proposition 9,

∀t ≥ t3,min (δ(q#, q), δ(−q#, q)) < ε

Invoking the continuous existence of the proposed observer over the
bounded interval [0, t3], one can define an exponential bound Ke−λt starting
at t = 0, by choosing K > K1 expλt3 such that

∀ 0 ≤ t ≤ t3,min (δ(q, q), δ(−q, q), δ(q#, q), δ(−q#, q)) < K exp−λt

In the end, there exists η2 = εb (as defined by Proposition 6), such
that for ε > 0 small enough, there exist η1 = min (εa, ε′

a) (as defined by
Propositions 6 and 10) and kc∗ > 0, such that, if ∥σ(0)∥ < η1, |T (q(0)) −
T (q(0))|< η2 and kc > kc∗, then there exist K,λ > 0 such that

∀t ≥ 0,min (|δ(q, q′)|, |δ(−q, q′)|, |δ(q#, q
′)|, |δ(−q#, q

′)|) < ε+K exp−λt.

This concludes the proof of Theorem 3.

5.8 Practical use of the main result

5.8.1 Observed asymptotic behavior

In Figure 5.8.1, we report the asymptotic behavior of the proposed observer
for two typical initial conditions. It can be observed, as stated in Theorem 3,
that the observer can converge to q or q#, almost as often. Indeed, if σ(0)
is not small, it is not always true that q remains for all times on one side
of E0 (however, it quickly becomes true as σ decreases exponentially to
zero independently of the other variables, see Proposition 6). Then, the
destination point of the asymptotic behavior is difficult to predict.

5.8.2 Interpretation of the solution q#

Although q# yields the same pitch angle and magnetometer measurements
as the actual attitude q, it does not correspond to the same rotation matrix.
Fortunately, it is easy to discriminate if the output of the observer is the
actual attitude q or the alternate solution q#, as the latter yields values
of yaw angles that are commonly inconsistent with a priori knowledge of
ballistics (e.g. corresponding to the projectile drifting to the opposite side of
the expected Magnus effect induced by the rifled barrel, or flying backwards).

In details, this inconsistency depends on the orientation of b0 w.r.t. the
shooting « plane ». Compared to q, q# corresponds to a mirror attitude
w.r.t. b0 having the same pitch angle. Then, a difficult to distinguish situ-
ation occurs when the angle between b0 and the shooting direction is small
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Figure 5.8.1: Stereographic representation of q, q# and estimates q from
various initial conditions during the flight (only a short time horizon for the
estimate is reported for clarity). Simulation results for a typical 155 mm
flight.

(corresponding to a shot strictly towards the magnetic North), because the
difference between the actual yaw angle and its symmetric associated with
q# is small in such circumstances4.

For illustration, yaw angles associated with a typical reference attitude
q and its counterpart q# are depicted in Figure 5.8.2, showing the latter can
easily be discarded in practice because yaw angles in the −140 deg range
are clearly impossible.

5.8.3 Practical initialization to ensure convergence towards
actual attitude

Proposition 6 informs us that for σ small enough, having q(0) ∈ E+ is
practically enough to ensure q will remain in E+. In practice, this suggests
the following procedure: one just has to know whether q lies in E+ or E−
beforehand5, use the complementary filter (first two lines of the proposed

4one might argue that is this case the error has a limited impact on the attitude
determination.

5for sake of simplicity, it has been assumed earlier that q lies in E+, the converse case
being treated in the same way.

104



observer) alone until σ is satisfyingly small, and then choose χ(0) so that
q(0) obtained from q̂(0) lies within the right set. In practice, belonging to E+
or E− is easily verified, by determining the sign of (5.3.10). Figure 5.8.2 and
Figure 5.8.3 show the yaw and pitch angles of several estimates initialized
at σ = 0 and various χ(0), compared to the yaw and pitch angles of the
attitudes q and q#.
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Figure 5.8.2: Yaw angle estimates from various (10) initializations during
the early stage of the flight. Simulation results for a typical 155 mm shell.

Alternatively, if the observer has converged to q#, it is still possible to
recover q from q# by applying the operator ·# (which is involutive) on the
output. The result is not completely equivalent to an adequate initialization,
since the asymptotic studies near q and q# differ, as made clear by Propo-
sition 13 and 14 granting exponential stability outside of a neighborhood
of q#.

5.9 Estimation results

To illustrate the merits of the proposed observer (5.4.1), we use data from
simulation or experimental flights, with the additional pitch angle infor-
mation provided using the simulator or the ground based position radar,
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Figure 5.8.3: Pitch angles estimates from various (10) initializations during
the early stage of the flight. Simulation results for a typical 155 mm shell.

respectively. The goal of this section is simply to illustrate the theoretical
convergence of the proposed observer established in Theorem 3.

5.9.1 Simulation results

On 155 mm shell

We applied the observer of this chapter to the simulation data set 1 (see
Table 2.8.1), using simulated pitch angle and simulated magnetometer and
simulated angular velocity as inputs. As seen in Figures 5.9.1a and 5.9.1b,
the estimated attitude yields satisfying estimation of the yaw and pitch
angles. The roll angle is also well reconstructed, see Figure 5.9.2a. Addi-
tionally Figure 5.9.2b stresses that the estimated attitude is consistent with
the magnetometer feedback, showing the convergence of the innovation of
our observer to zero.
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(a) Estimation of the yaw angle.
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(b) Estimation of the pitch angle.

Figure 5.9.1: Estimation of attitude angles [155 mm shell simulation results].

On Basic Finner

Similarly, we applied the proposed observer to the simulation data set 3,
using simulated pitch angle and simulated magnetometer and simulated an-
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gular velocity as inputs. The duration of the flight is much shorter than it is
for a 155 mm shell. As illustrated in Figures 5.9.3a and 5.9.3b, the estimated
attitude yields converging estimation of the yaw and pitch angles. The roll
angle is also well reconstructed, see Figure 5.9.4a. Finally, Figure 5.9.4b
shows that the estimated attitude is consistent with the magnetometer feed-
back.

5.9.2 Experimental results

We applied the proposed observer to the experimental data set 2 (see Ta-
ble 2.8.1), using as inputs a pitch angle estimater determined from the slope
reference angle computed from the ground based position radar trajectory,
a corrected magnetometer feedback (using the procedure procuding the re-
sults exposed in Figure 2.5.3), and an estimation of the spin rate (using the
estimation results exposed in Figure 2.6.1b).

Figures 5.9.5a, 5.9.5b and 5.9.6a report the estimated attitude angles.
Quite satisfying estimations of the yaw, pitch and roll angles are obtained.
Additionally, Figure 5.9.6b shows that the estimated attitude is consistent
with the magnetometer feedback.
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(a) Estimation of the roll angle (left: over the whole flight, right: zoom-in view).
The spin rate and sampling rate are such that each sample is approximately 5 deg
apart, hence the aliasing effect on the edges.
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(b) Reconstitution of one magnetometer feedback from estimated attitude.

Figure 5.9.2: Estimation of roll angle and innovation [155 mm simulation
results].
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(b) Estimation of the pitch angle.

Figure 5.9.3: Estimation of attitude angles [Basic Finner simulation results].
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(b) Reconstitution of one magnetometer feedback from estimated attitude.

Figure 5.9.4: Estimation of roll angle and innovation [Basic Finner simula-
tion results].

111



5 10 15 20 25 30 35 40 45

[s]

-30

-20

-10

0

10

20

30

40

50

60

[d
eg

]
Estimated
Reference

(a) Estimation of the yaw angle.

5 10 15 20 25 30 35 40 45

[s]

-60

-40

-20

0

20

40

60

80

[d
eg

]

Estimated
Reference

(b) Estimation of the pitch angle.

Figure 5.9.5: Estimation of attitude angles [experimental results on 155 mm,
data set 2].
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(b) Reconstitution of one magnetometer feedback from estimated attitude.

Figure 5.9.6: Estimation of roll angle and innovation [experimental results
on 155 mm, data set 2].
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Chapitre 6 - Résumé

Dans cet ultime chapitre, les différents estimateurs des chapitre 3, 4 et 5 sont
rassemblés pour proposés une solution complète au problème posé, reposant
exclusivement sur les memsures de capteurs embarqués. Plusieurs questions
pratiques sont évoquées, les résultats des différents estimateurs constituant
des mesures de moindre qualité que les mesures idéales utilisées dans les
chapitres précédents. Plusieurs lissages intermédiaires sont ainsi préséntés,
dans le but de limiter la dégradation de performance logiquement attendue,
et des résultats expérimentaux sont présentés.
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Chapter 6

Experimental results of the
proposed attitude observer
using only on-board sensors

In this chapter, we present results obtained by exploiting data from on-board
sensors only. We combine observers from Chapters 3, 4 and 5, following the
process recalled in Figure 6.1.1. This approaches in in contrast to previ-
ous chapters in which each component of the complete observer was tested
separately, using external reference signal such as ground based position
radar. Velocity observer from Chapter 3 is used with one 1-axis transverse
accelerometer feedback, which is used in the slope angle observer described
in Chapter 4. This gives a pitch estimate, under the previously discussed
zero incidence assumption. This information is then treated along with the
3-axis Magnetometer feedback through the attitude observer developed in
Chapter 5.

6.1 Multirate Kalman filtering of frequency esti-
mators

The estimators described in Section 3.3 are fused using a Kalman filter
specifically implemented to account for this context of largely corrupted or
incomplete measurements. According to observed noised on the estimates,
the Kalman filter, which implements a simple f (3) = 0 dynamics, is tuned.
When outliers are detected, they are discarded following the methodology
exposed in [23] and exposed early in [50] where outliers are treated under
the form of a change of the observation vector dimension.

On the 155 mm dataset 2 (real flight data), MUSIC turns out to be non
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Velocity observer Slope angle observer Attitude observer

Spin observer

2-axis transverse magnetometer

1-axis transverse accelerometer 3-axis Magnetometer

Attitude

Figure 6.1.1: Attitude Estimation Algorithm from on-board sensors.

sufficiently robust. A possible explanation is the vast level of corruption
of the measurements by the fictitious forces discussed in subsection 2.5.2.
To illustrate this point, we report the signal-to-noise ratio of the 1-axis
transverse accelerometer, as estimated from filtering, in Figure 6.1.2b. It is
definedclassically as

SNR = mean(s2)
mean(n2)

The estimate provided by MUSIC is of good quality up to some (relatively
early) time when the algorithm fails to return a valid frequency estimate.
The estimates are reported in Figure 6.1.2a. Compared to the quality of the
other estimates discussed in Chapter 3, MUSIC seems not to add any useful
information and is simply left out of the analysis. More details about the
sensitivy of MUSIC w.r.t. SNR are given in Appendix B.3. This leaves us
with 2 meaningful estimates to be fused.

The outcome of the fusion procedure is reported in Figure 6.1.3a, before
and after a debiasing procedure we will detail in the next subsection.

6.2 Debiasing of the frequency estimate

The frequency estimate is then de-biased as follows. There is a one-to-one
mapping (referred to as « velocity model » below) between the frequency and
the shell velocity with respect to the air, as discussed in Chapter 4. The
instant when the shell reaches Mach 1 is easily detected on the longitudinal
accelerometer, under the form of a sudden jump of the signal. We now recall
elements from § 3.5.1. Comparing the value of 317.8 m/s obtained from the

118



frequency estimate through the velocity model with Mach 1 (332 m/s) 1,
we deduce that our velocity estimate is biased (at this particular instant)
by ≈ 13.2 m/s. Applying the inverse of the velocity model, we deduce our
frequency estimate is biased by ≈ 2 Hz, and decide to apply a constant bias
correction over the whole time interval. The result of this bias correction is
reported in Figure 6.1.3a. Then, the de-biased frequency estimate is used
though the velocity model to produce a velocity estimate ve.

6.3 Smoothing under convexity constraints

As can be observed in Figure 6.1.3b, the estimate ve has values close to
the reference measurements provided by the ground based position radar
(within the confidence interval of ±15 m/s close to observed wind velocity
at Mach 1). However, this estimate lacks a desirable property in view of
estimating the slope angle: its derivative is not smooth enough.

To address this problem, ve is filtered once again using a moving horizon
constrained optimization procedure, following the constrained estimation
methodology presented in [79] (among others). This discrete-time approach
aims at combining the v(3) = 0 model with the extra assumption that v(2) ≥
0, which is a known property of the flight (the velocity w.r.t the local frame
being a convex function of time). The details of the implementation are
given in Appendix B.2. This produces an estimate vm which is reported in
Figure 6.1.3b. The estimate is significantly smoother, at the expense of a
bias, which has no real impact on the slope estimation.

6.4 Slope and pitch estimation experimental re-
sults

The implementation of the slope and pitch estimation are reported in Fig-
ure 6.4.1. The kind accordance with the reference obtained from the ground
based position radar can be observed in Figure 6.4.1, although some final
errors can be noted, most likely due to difficulties in obtaining reliable fre-
quency estimates during the final stages of the flight.

1assuming the altitude is equal to the reference altitude for such a 155 mm fired at
nominal speed, which is corroborated by the ground based position radar measurements
for sake of completeness.
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6.5 Attitude observer results

The attitude observer from Chapter 5 is used with the previously reported
pitch estimate and the measurements of the 3-axis Magnetometer. The re-
sults are reported in Figures 6.5.1a, 6.5.1b and 6.5.2a. The estimates are
converging. Some level of noise and outliers can be seen propagating in
the estimates. At the the very end of the time interval the error observed
in Figure 4.1.5 corrupts the Yaw estimate (see Figure 5.9.5a). For com-
pleteness, Figure 6.5.2b reports that the innovation of the attitude observer
converges to zero, the attitude estimation yielding a magnetic field measure-
ment matching the real magnetometer output.
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Figure 6.1.2: Experiments with MUSIC on dataset 2 [experimental results].
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Figure 6.1.3: Frequency and velocity estimates [experimental results].
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Figure 6.4.1: Estimation of the slope angle [experimental results].
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(a) Estimation of the pitch angle [experimental results].
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(b) Estimation of the yaw angle [experimental results].

Figure 6.5.1: Attitude angle estimates [experimental results].
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(b) Reconstitution of one magnetometer feedback from estimated attitude [experi-
mental results].

Figure 6.5.2: Roll estimate and innovation [experimental results].
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Chapitre 7 - Résumé

On conclut ici notre étude en présentant quelques perspectives et pistes de
recherches futures. La possible exploitation du magnétomètre pour la dé-
tection des fréquences de précession et nutation peut laisser entrevoir une
méthode sans accéléromètres. L’extraction fréquentielle à proprement par-
ler est également une des améliorations les plus prometteuses, sa précision
ayant un impact considérable sur celle de l’estimation d’attitude finale. On
rappelle également les bons résultats des différents estimateurs pris indépen-
damment, et leurs applications possibles, complétés par d’autres capteurs ou
des mesures externes transmises par télémétrie. Enfin, on évoque les autres
utilisations possibles de l’approche fréquentielle : accompagnée a posteri-
ori de mesures radars, elle peut en effect permettre d’estimer certains des
paramètres du modèle aérodynamique utilisé dans cette thèse.
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Chapter 7

Conclusion and perspectives

As claimed in the introduction of this thesis, we have offered an efficient
method to estimate the attitude of an artillery shell in free-flight, using solely
a 3-axis Magnetometer and one transverse 1-axis accelerometer. Simulation
and experimental results have been presented, and comparisons with high-
fidelity measurements from a ground based position radar are provided. The
particularly challenging case of gyrostabilized shells has been covered.

On the hardware side, it is worth noting that the transverse accelerom-
eter is solely used to extract the frequency corresponding to the epicyclic
modes of its oscillating motion. Theory teaches us that these frequencies
should also be present in the 3-axis Magnetometer feedback. This has not
been exploited in practice, since the high level of noise in this signal made it
more difficult to deal with than the transverse accelerometer. However, this
could be a valuable alternative as it would allow one to reduce the number of
on-board sensors, performing attitude estimation from a 3-axis Magnetome-
ter only. To tamper this, it should be considered that other flight analysis
tasks such as incidence estimation, carried out when using aerodynamic co-
efficients with greater accuracy, and useful to provide a better angular rate
estimation, would still require 2-axis of transverse accelerometer (the results
we have shown in this thesis do not include incidence estimation).

Concerning main leads of improvement on the algorithm side, one can
note that the frequency extraction techniques presented in the thesis are
mostly « off-the-shelve ». Improving them or using custom-designs ones
would certainly have a great impact on the accuracy of the attitude estima-
tion (by improving velocity and slope angle estimation).

Concerning other applications, Chapter 3, 4 and 5 can still be used inde-
pendently, with very promising results. By adding radar measurement with
telemetry, many applications may be possible, not necessarily « on-board
only ». As examples, the knowledge of the velocity from radar measure-
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ments transmitted on board would make it possible to carry out slope angle
estimation and attitude estimation using only, without the difficulty of fre-
quency measurement. Velocity estimation with frequency analysis has a lot
of applications (incidence estimation, using aerodynamics with better accu-
racy, among others), and so on. One should keep in mind that even though
telemetry from a ground station is feasible, its operational use would be
costly and difficult to implement, and on-board solutions are still the safest
bet when it comes to future perspectives.

Finally, the frequency detection approach is used as a way to estimate
the velocity, both as a requirement to make full use of the aerodynamic
model of the shell and a prerequisite to the slope angle estimation. But
the frequency analysis holds more information (even more so as soon as one
is able to measure the precession and nutation amplitudes as well). The
frequency analysis could be used a posteriori with a radar measurement
of the velocity and the best-known aerodynamic coefficients (namely, the
Drag and the Lift coefficient), to refine the models which are known to
suffer from a great level of uncertainty, namely look-up tables concerning the
Magnus moment, the overturning moment and the pitch-damping moment,
using (3.2.1) and (3.2.2).

Spectrum analysisAccelerometer

Reduced 6-DOF model (Drag,Lift)

Refined 6-DOF model
(Cmag−m, CMα, CMq)

Figure 7.0.1: Toward a reduced aerodynamic model through low frequency
analysis.

Achieved and upcoming publications

The velocity estimation method described in Chapter 3 has lead to two
conference papers, a practical one presented at the American Institute of
Aeronautics and Astronautics’s SciTech Forum in 2018 [36], and a theoret-
ical one presented at the 2018 edition of the Conference on Decision and
Control [37]. As a side result, an article has also been written on gyroless
attitude estimation, using vector measurements to estimate angular veloc-
ity and replacing gyrometer measurements with this estimation in classical
complementary filtering. This article has been presented at the European
Conference on Control in 2019 [38].

Finally, we believe the content of Chapter 5 could provide for a theo-
retical article on attitude estimation from one vector measurement and one
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angle input. The practical method described in Chapter 6 could be adapted
into a more « application-oriented » article referring to past publications
describing the various estimation method used. The redaction of those two
articles is currently well underway, to conclude the work conducted during
this thesis.
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Appendix A

Supplementary material

A.1 Transition matrices

The attitude matrix R from the body frame to the local frame can be de-
composed as follows :

(A.1.1)

R =

cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0

0 0 1


 cos Θ 0 sin Θ

0 1 0
− sin Θ 0 cos Θ


1 0 0

0 cos Φ − sin Φ
0 sin Φ cos Φ


which yields
(A.1.2)

R =

cos Ψ cos Θ cos Ψ sin Θ sin Φ − sin Ψ cos Φ cos Ψ sin Θ cos Φ + sin Ψ sin Θ
sin Ψ cos Θ sin Ψ sin Θ sin Φ + cos Ψ cos Φ sin Ψ sin Θ cos Φ − cos Ψ sin Θ

− sin Θ cos Θ sin Φ cos Θ cos Φ


The attack angle α and the sideslip angle β are defined by the relation :

(A.1.3) [T ]BW = [T (−α)][T (β)]

with

(A.1.4) [T (α)] =

 cosα 0 sinα
0 1 0

− sinα 0 cosα



(A.1.5) [T (β)] =

cosβ − sin β 0
sin β cosβ 0

0 0 1


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which yields

(A.1.6) [T ]BW =

cosα cosβ − cosα sin β − sinα
sin β cosβ 0

sinα cosβ − sinα sin β cosα



A.2 Alternative angles

η Slope angle
θ Azimuth angle
α2 Attack angle
β2 Sideslip angle
ϕ2 Roll angle
αt Total angle of attack of the shell

(angle between vectors 1B and V )

Table A.2.1: Nomenclature.

In addition to the local (inertial) frame L and the body B frame, a third
frame is considered and referred to as the « wind velocity frame », denoted
W . It is defined from the body frame with the velocity of the shell with
respect to the airflow, denoted vAB.

The angles are defined by (A.2.2).

[T ]LW = Rη,e3Rθ,e2(A.2.1)
[T ]WB = Rβ2,e3Rα2,e2Rϕ2,e1(A.2.2)

Noting that the velocity w.r.t. the airflow in the body frame both satisfies

(A.2.3) [vAB]B = V

cosα cosβ
sin β

sinα cosβ


and

(A.2.4) [vAB]B = V

1 0 0
0 cosϕ2 sinϕ2
0 − sinϕ2 cosϕ2


 cosα2 cosβ2

− sinα2 cosβ2
− sin β2


we get, under the assumption that the total angle of attack is small, the
following relation between both sets of incidence angles :
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Figure A.2.1: Definition of Tait-Bryan and incidence angles

(A.2.5)
{
α ≃ sin (pt)α2 − cos (pt)β2

β ≃ − cos (pt)α2 − sin (pt)β2

The angles between the frames L, B and W are illustrated in Fig-
ure A.2.1.

A.3 Approximation on the shell velocity

In this section, we will detail the various approximations leading to (2.4.1).

(A.3.1)

v̇ = −ρSC̃Dv
2

2M
− g sin θ

ḣ = v sin θ

We start by applying Newton’s second law in the local frame, thus con-
sidering the velocity w.r.t. the local frame vLB ; we will show under which
approximations this lead to a simpler equation on v, the velocity of the shell
w.r.t. the airflow.

In the following, the notation ∂L·
∂t will refer to the derivative with respect

to time of a vector expressed in the local frame L. We define in an analogous
manner ∂B ·

∂t if said vector is expressed in the body frame B.
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Newton’s second law in the local frame gives

(A.3.2) M
∂LvLB
∂t

=
∑

Fext − 2M [ωIL]vLb

yielding

(A.3.3) ∂BvLB
∂t

= 1
M

∑
Fext − 2[ωIL]vLB − [ωLB]vLB

The angular velocity of the shell w.r.t. the inertial frame ωIB appears

(A.3.4) ∂BvLB
∂t

= 1
M

∑
Fext − [ωIL]vLB − [ωIB]vLB

Most forces being function of the velocity of the shell w.r.t. the wind vAB,
(A.3.4) can be rewritten as such :

(A.3.5) ∂BvAB
∂t

= 1
M

∑
Fext − [ωIL]vAB − [ωIB]vAB + c

with a corrective term coming from the wind velocity :
(A.3.6)

c = −
[∂B (vLA + [ωLA]pAB

)
∂t

]
− [ωIB]

(
vLA + [ωLA]pAB

)
− [ωIL]

(
vLA + [ωLA]pAB

)
In the case of zero wind, c is obviously zero.

Neglecting Coriolis force and the impact of the wind, one still has to
express the gravity vector in the body frame :

(A.3.7) [g⃗]B = g
(
− sin θ cos θ sin Φ cos θ cos Φ

)T
The velocity w.r.t. the wind can be expressed with the incidence angles

as such, on the first order regarding those :

(A.3.8) [vAB]B =

v cosα cosβ
v sin β

v sinα cosβ

 ≃

 v
vβ
vα


This yields, keeping only order 1 terms in α, β :

(A.3.9) v̇ = −ρSC̃Dv
2

2M
− g sin θ + g (β cos θ sin Φ + α cos θ cos Φ)

Neglecting the total angle of attack finally leads to (2.4.1) considered in
the thesis.
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A.4 Material for Chapter 3

Figure A.4.1 and Figure A.4.2 illustrate the impact of the temperature model
w.r.t. the altitude on the velocity estimation conducted in Chapter 3.
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Figure A.4.1: Theoretical frequencies for two ground temperature [experi-
mental results] ; initial apparent outliers come from the spin rate estimation
which does not converge immediately.

A.5 Calculations leading to q# expression in Chap-
ter 5

As discussed in Chapter 5, an immediate solution of (5.3.4) is qf = q ;
what are the others ? The parametrization (5.3.6) gives the answer to this
question. Given that

(A.5.1)
{
b0 ≜ [a b c]T

qt = (cos t) q + (sin t) (p(b0) ⊗ q)

One has, using

qt =


q1 cos t+ (−aq2 − bq3 − cq4) sin t
q2 cos t+ (aq1 − cq3 + bq4) sin t
q3 cos t+ (bq1 + cq2 − aq4) sin t
q4 cos t+ (cq1 − bq2 + aq3) sin t


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Figure A.4.2: Velocity Estimations with a temperature error [experimental
results].

and

T (q) = q1q3 − q2q4

the following :

T (qt) = (cos t)2q1q3

+ (cos t sin t)
(
bq2

1 + cq1q2 − aq1q4 − aq2q3 − bq2
3 − cq3q4

)
+ (sin t)2

(
−abq1q2 − acq2

2 + a2q2q4 − b2q1q3 − bcq2q3

+ abq3q4 − bcq1q4 − c2q2q4 + acq2
4

)
− (cos t)2q2q4

− (cos t sin t)
(
cq1q2 − bq2

2 + aq2q3 + aq1q4 − cq3q4 + bq2
4

)
− (sin t)2

(
acq2

1 − abq1q2 + a2q1q3 − c2q1q3 + bcq2q3

− acq2
3 + bcq1q4 − b2q2q4 + abq3q4

)

(A.5.2)
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This simplifies into

T (qt) =(cos2 t)T (q) + (cos t sin t)
(
b(1 − 2(q2

3 + q2
4)) − 2a(q1q4 + q2q3)

)
+

(sin2 t)(−ac(1 − 2(q2
3 + q2

4)) − 2bc(q1q4 + q2q3)) + (sin2 t)(c2 − a2 − b2)T (q)

(A.5.3)

and finally

T (qt) =(cos2 t)T (q) + (cos t sin t)(bT3(q) − 2aT2(q))+
(sin2 t)(−acT3(q) − 2bcT2(q)) + (sin2 t)(c2 − a2 − b2)T (q)

We would like to solve, for t ∈ [0, 2π[ the equation

(A.5.4) T (q) = T (qt)

If we discard the obvious solutions t = 0 and t = π corresponding to
qt = q and qt = −q, one has, using 1 − cos2 t = sin2 t and simplifying per
sin t ̸= 0, the following equality :
(A.5.5)
cos t (−bT3(q) + 2aT2(q)) = sin t

(
(1 − c2 + a2 + b2)T (q) + acT3(q) + 2bcT2(q)

)
yielding a unique solution in ] − π/2π/2[ :

(A.5.6) t# = arctan
(

bT3(q) − 2aT2(q)
2(a2 + b2)T (q) + acT3(q) + 2bcT2(q)

)
yielding qt ≜ q#, and another (t# ± π) corresponding to qt = −q#.

A.6 An equivalence property for Chapter 5

Section 5.3.2 made it clear that a neighborhood regarding σ and T cor-
responds to some neighborhoods regarding the distance δ. To ensure our
observer converges exponentially, one need to quantitatively relate the sizes
of those neighborhoods. This will be the focus of the following properties.
In the following B(, ) refer to Euclidean balls.

Proposition 15. Consider f : R4 → R4, x 7→ (f1(x), f2(x) ≜ ∥x∥−1) where
f1 is a smooth function and f having a finite number nz of zeros noted xi0,
f(xi0) = 0, i = 1, ..., nz. Assume that Df (xi0) is full rank for i = 1, ..., nz.
Then, for c > 0 small enough the level set Lc ≜ {x s.t. ∥f1(x)∥ = c, f2(x) = 0}
is a subset of ∪

i=1,...,nZ

B(xi0, 2 c/ρmin)

where ρmin ̸= 0 is the smallest singular value of all the Df (xi0), i = 1, ..., nz.
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Proof. Consider x0 any of the zeros xi0, i = 1, ..., nz. A Taylor expansion
of f gives

f(x) = 0 +Df (x0)(x− x0) + O(∥x− x0∥2)
so that

∥f(x)∥2 = (x− x0)TDT
f (x0)Df (x0)(x− x0) + O(∥x− x0∥3)

Then, with ρmin > 0 given in the statement, there exist M > 0, such that,
for all ∥x− x0∥ ≤ M ,

2
3
ρmin ∥x− x0∥ ≤ ∥f(x)∥(A.6.1)

Consider the closed set E = {∥x∥ = 1} \
∪
i=1,...,nZ

int B(xi0,M) and c1 =
minE ∥f1∥ > 0. By construction, for c < c1, the level set satisfies

Lc ⊂
∪

i=1,...,nZ

int B(xi0,M)

We now prove the main statement of the proposition. By contradiction, for
0 < c < min{c1,

Mρmin
2 }, assume there exists x in Lc, such that for every

zero x0 one has 2 c/ρmin ≤ ∥x− x0∥ with ∥f1(x)∥ = c, f2(x) = 0. Then, one
has for every x0, ∥x− x0∥ ≤ M and so, using (A.6.1),

c = ∥f(x)∥ ≥ 4
3
c

which concludes the proof.

Let us choose, for any given q ∈ Q, f defined as

f = (f1, f2)(A.6.2)

f1(q′) ≜
(
T (q) − T (q′) σ(q, q′)T

)T
(A.6.3)

f2(q′) ≜ ||q′||−1(A.6.4)

Proposition 16. With f as defined in (A.6.4), let q ∈ Q be such that the
rank of Df (±q) and Df (±q#) is equal to 4. Then, there exists ρmin ̸= 0 such
that, for c > 0 small enough the level set Lc ≜ {q s.t. ∥f1(q′)∥ = c, f2(q′) = 0}
is a subset of ∪

q0∈{±q,±q#}
B(q0, 2 c/ρmin)

Proof. The zeros of f1 are {±q,±q#}, as established in Proposition 1. The
proof of Proposition 15 can be adapted knowing that the rank of Df (±q)
and Df (±q#) is equal to 4, therefore having a non zero smaller singular
value ; ρmin ̸= 0 is the smallest singular value of all the Df (q0) for q0 ∈
{±q,±q#}.
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Appendix B

Various useful estimation
methods

B.1 Complex argument method for single-axis ro-
tation rate estimation

The following method follows from Theorem 3.1. in [61] :

Theorem 4. [Estimation of the phase of a single axis rotation from sam-
ples [61]] Consider measurements of the form

y[k] = f(ψ[k]) + n[k] ∈ C, 1 ≤ k ≤ N

where

• f is a 2π-periodic function valued in C parameterizing a Jordan curve
C

• ψ[k] = ψ(k∆t)

• n[k] is a measurement noise

Assume that f is such that its Fourier expansion {cn}n∈Z satisfies

|c1|> |c0 − z0|+
∑
n̸=0,1

|cn|

Assume that the interior region I defined by the boundary C is strictly convex.
Assume that the noise n is uniformly bounded by ρ and that |ψ[k+1] −ψ[k]|
is uniformly bounded by ∆ < π. Then consider

Aρ,∆ = I ∩
2π∩
ψ=0

{z ∈ C,ℜv⋆(ψ)(z − f(ψ)) > ρ}
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where v(ψ) = eiπ/2 f(ψ+∆)−f(ψ)
|f(ψ+∆)−f(ψ)| . If Aρ,∆ is not empty, then the following

sequence

(B.1.1) ψ̂z0 [k] =
k−1∑
j=1

arg−π
y[j + 1] − z0
y[j] − z0

where z0 ∈ Aρ,∆ provides an estimate of ψ[k] with an error that is bounded
by

|ez0 |∞≤ 2 arcsin |
|c0 − z0|+

∑
n ̸=0,1|cn|

|c1|
+ 2 arcsin ρ

δ(z0)
where δ(z0) = minζ |f(ζ) − z0|. In practice, a recommendation is to select z0
as one of the following : i) the Chebyshev center of measurements, ii) the
polygon centroid.

In our case, we want to estimate the « phase » of the complex transverse
magnetometer measurements defined by

(B.1.2) Zmag = Ymag2 + iYmag3

The derivative of said phase w.r.t. provide an estimation of the spin rate.

The complex signal Zmag defines a closed curve whose center is close to
the origin, defining a strictly convex interior region. Additionally, |Zmag[k+
1] −Zmag[k]| is uniformly bounded by ∆ < π as long as |Zmag|< 1 (which is
always true) and the sampling rate is larger than half the spin rate (meaning
there are more than two measurements available during one rotation at the
spin rate frequency).

The assumption on Aρ,∆ boils down to the fact that the noise can be
uniformly bounded by ρ such that all measurements are at a strictly positive
distance from some subset of the interior of the curve C . In our case, since
the norm of Zmag is slowly varying compared to the sampling rate, C is
almost a circle. The signal-noise ratio of our magnetometers is small (less
than 10−2), so ρ can be chosen such that Aρ,∆ contains at least z0 = 0. Fig-
ure B.1.1 shows approximately one spin rate period of Zmag measurements
from data set 2, illustrating said claims.

As a consequence, the phase estimation exposed in [61] yields satisfying
results on Zmag, by choosing z0 = 0. Differentiating this estimate provide
an estimation of the spin rate of the shell.

B.2 Linear constrained estimation

This appendix details the linear constrained estimation carried out in Chap-
ter 6 to filter the velocity obtained with frequency measurements, before
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Figure B.1.1: Locus of complex transverse magnetometer measurements on
one spin rate period [experimental results].

applying the slope estimation described in Chapter 4. This follows the
methodology presented in [79].

Consider the discrete-time state at instant k, Xk =
(
v v̇ v̈

)T
k

. It is
governed by the following dynamics Xk+1 = Axk with

A =

1 ∆t ∆t2/2
0 1 ∆t
0 0 1



where ∆T is the time-step. For any time n ≥ 3, consider the matrices B
(size 3(n − 1) × 3n), C (size n × 3n), D (size n − 2 × 3n) constructed as
follows, for k = 1, ..., n− 1

B =

 ...(
03,3(k−1) −A I3 03,3(n−1−k)

)
...


143



C =


...(

01,3(k−1) 1 0 0 01,3(n−k)
)

...(
01,3(n−1) 1 0 0

)


and for 1 ≤ k < n− 1

D =

 ...(
01,3(k−1) −1 0 0 −2 0 0 1 0 0 03,3(n−2−k)

)
...



b = 0n−2,1

Consider the available measurement Y =
(
v1 ... vn

)T
. Note

H = λBTB + CTC f = −Y TC

where λ > 0 should be increased to augment the confidence on the model.
Then, the following quadratic programming problem is solved

(B.2.1)
minimize
x∈R3n

1
2
xTHx+ f x

subject to Dx ≤ b

and the sought-after constrained estimate is simply the 3n − 2 component
of x.

B.3 Background on MUSIC frequency estimation
algorithm

Consider a noise-corrupted multisinusoid signal in discrete time containing n
distinct frequencies. Usually, see e.g. [91], such a signal is represented under
the form

y(t) =
n∑
k=1

αke
i(ωkt+ϕk)(t) + e(t)

where t = 1, 2, ... denotes the normalized discrete time variable, (ωk) are the
frequencies, (ϕk) are some phases and e is the noise.

Note N the number of data points y(1), ...y(N). Numerous methods
have been proposed to estimate the (ωk). MUSIC (MUltiple SIgnal Clas-
sification) [93] has been shown to provide an asymptotically unbiased (as
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N → ∞) estimates. In real applications, one has to deal with finite-sample
bias of MUSIC.

MUSIC determines the frequency estimates from the sample covariances

Rk = 1
N

N−k∑
i=1

y(t+ k)y∗(t), k = 0, 1, ...m

which are used to fill a symmetric Toeplitz m×m covariance matrix R. The
parameter m should be chosen (by the user) such that m ≥ 2n.

In details, the implementations of MUSIC use the eigenelements of R.
The eigenvalues are sorted in decreasing order, and a finite number of them
are kept. From this, a function to be minimized is defined and the frequencies
estimates are determined as the locations the n deepest minima of this
function.

Despite being asymptotically unbiased, MUSIC can not attain the Cramér-
Rao bound [93].

Under a zero-mean Gaussian assumption for the noise e, [92] establishes
that, for large N , the MUSIC estimation errors are asymptotically jointly
Gaussian distributed with zero means. Further, the variance-covariances
are analytically given in [92], using a finite expansion of the function to
be minimized, yielding an estimate of the shift of its minima. It is shown
that the variances are proportional to two factors: d that is large if the
frequencies are closely spaced, and a second one which is the the inverse of
the square of SNR2. One shall also note the role of the number of data N .
In summary, the variances are proportional to

d

SNR2N

For the particular cases of two frequencies, [93] shows that the variance
of the estimates depend on the difference between the frequencies and not
their value. The interplay between the (to be chosen) parameter m and the
frequency separation for which reasonably accurate results can be obtained
is known as a point worth particular care in the tuning of MUSIC.

MUSIC can be seen as a generalization of the eigenanalysis-based method
(a.k.a. subspaces method) for frequency estimation, which started with Pis-
arenko method [77]. Conversely, the Pisarenko Harmonic Decomposition is
a special case of MUSIC, dealing with a single-frequency. Originally, the Pis-
arenko Harmonic Decomposition was studied in [29] which contains reliable
estimates for the variance of the estimator. We refer to this article which
contains a tutorial presentation of the calculus yielding the variance calcu-
lation and approximations, and stresses the negative effect of finite-sample.
A simple implementation can be deduced from the formulation of [87].
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MOTS CLÉS

Observateurs non linéaires, estimation d'attitude, ballistique extérieure, traitement du signal

RÉSUMÉ

Cette thèse présente une méthode pour estimer l'attitude d'un projectile en vol à partir de mesures de directions.
L'estimation d'attitude est une étape essentielle pour le développement de « munitions intelligentes », rendant possible le
changement de cible en vol et l'optimisation de la portée. La méthode que nous proposons repose exclusivement sur un
accéléromètre et un magnétomètre embarqués. En particulier, elle ne requiert pas de gyroscope, capteur coûteux et trop
fragile pour survivre aux conditions de tir, quand il n'est pas soumis à des restrictions d'importation. Pour la détermination
de l'attitude du projectile, nous contournons l'incapacité des accéléromètres à donner une mesure de direction de la grav-
ité en vol ballistique, en les utilisant pour estimer la vitesse du projectile par rapport à l'air. Ceci est réalisé grâce à une
méthode de détection de fréquence appliquée aux oscillations de précession et de nutation du projectile induites par les
moments aérodynamiques qu'il subit. Par la suite, les variations de la vitesse du projectile nous donnent une information
d'orientation partielle qui complète la direction donné par le magnétomètre 3-axes. Les deux informations sont traitées
par un observateur d'attitude adapté du filtre complémentaire ; cette adaptation n'est pas triviale et on réalise une étude
détaillée de la convergence de l'observateur proposé. L'efficacité de la méthode est illustrée par des résultats sur des
données de simulation et des données de vol réel.

ABSTRACT

The thesis addresses the estimation of the attitude of an artillery shell in free flight, during the flight phase called exterior
ballistics. Attitude estimation is an essential step for the development of « smart-shells » a.k.a. « guided-ammunition »
which are capable of achieving various guidance tasks such as in-flight re-targeting and optimization of range. The method
developed here uses strapdown accelerometers and magnetometers only. In particular, it does not use any rate gyro, a
pricey component that is too fragile to survive the stress of gunshot when it is not subjected to import restrictions. For
attitude determination, we circumvent the intrinsic inability of accelerometers to provide direction information in free flight,
by employing them not to measure the direction of gravity but to estimate the velocity w.r.t. the air. This is achieved
through a frequency detection method applied to the pitching and yawing rotational dynamics generated by aerodynamics
moments. In turn, the variation of the velocity gives us an orientation information that complements the direction given
by the 3-axis Magnetometer. The two information are treated by an attitude observer adapted from the well-known com-
plementary filter. This adaptation requires special care and an analysis of the convergence of the resulting observer is
provided. The applicability of the method is shown on simulations and real-flight experiments.

KEYWORDS

Nonlinear observers, attitude estimation, exteriors ballistics, signal processing
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