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Notations 
 

Physics 

 
𝐼 intensity of an electromagnetic wave 

𝜆 wavelength of an electromagnetic wave 

𝑅 reflectance 

𝐾 absorbance coefficient for the Kubelka-Munk theory 

𝑆 scattering coefficient for the Kubelka-Munk theory 

  

Chemometrics 

 

General notations  
𝑛 number of spectral measurements  

𝑚 number of wavelengths in spectral data 

𝑘 number of spectral constituents 

𝒙 a spectrum vector 

𝐗 a matrix containing one spectrum for each row 

𝐏 loading matrix of Principal Component Analysis 

𝐓 score matrix of Principal Component Analysis 

𝒘 model residuals 

𝐈 identity matrix 

𝒩 Normal distribution 

𝑃 probability 

𝝁 mean vector 

𝚺 covariance matrix 

𝝎 Gaussian mixture weights 

𝑀 number of Gaussians in the Gaussian Mixture Model 

  

Matched Subspace Detector 
𝒔 spectral component 

𝒂 spectral contribution 

𝐿 number of components in the model of the regular sample 

𝐽 number of components in the model of the adulterant sample 

𝐌 matrix containing the spectral components 

𝑐 simulated concentration of standard sample 

𝒙̃ simulated spectrum 

𝐓̃ simulated score matrix 

  

Multivariate Curve Resolution Alternating Least-Squares 

𝐂 concentration profile matrix, vector 

𝐒 spectral profile matrix, vector 

𝐄 model error matrix 
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Introduction 
 

1. Context and objectives 

 

This thesis was initiated by a collaboration between AgroParisTech and ONIRIS to 

develop monitoring solutions in the food industry. This thesis focuses on the case of 

food powder like flours using near-infrared (NIR) hyperspectral imaging (HIS) solutions.  

This technology that enables to characterize and localize food or chemical compounds 

in a sample can be used to detect adulteration. Detection of foreign components is a 

major application for enhancing food safety in the industry. As the chemical 

interactions between nutrients during food processing may affect their spectral 

signature, the detection should be done as soon as possible in the process. It means 

hyperspectral imaging should be applied on raw material such as powders which are 

intensively used in the food industry. Ce projet de thèse est issu d’une collaboration 

entre l’AgroParisTech et l’ONIRIS dans le but de développer des solutions de contrôle 

de procédés de fabrication dans l’industrie agroalimentaire. 

However, HSI pixels may be larger than a food particle. In that case, one pixel 

measures the signal of several particles with different spectral signatures which results 

in a mixed signal. In addition, food samples are composed of the main nutrients that 

have similar spectral signatures in the NIR region. Therefore, the detection of foreign 

particles requires the use of specific chemometrics algorithms. One objective of this 

work is to propose performant algorithms for the signal analysis of mixed pixels. 

NIR radiations can penetrate solid samples at a given distance before being 

absorbed. Consequently, the NIR spectral signatures of foreign particles can only be 

detected on a finite depth of raw material. The second objective of this work is to 

propose a method to assess the detection depth of a measurement system in a food 

powder. 

 

2. Structure of the manuscript 

 

The first chapter studies a new method to determine the detection depth of a material 

in a food powder. This method relies on the reflectance profile analysis derived from 

the Kubelka-Munk theory. An original sample holder is designed and produced using 

polylactic acid (PLA) which has a typical spectral signature. The design of the sample 

holder makes the thickness of powder material vary and is measurable using a NIR HSI 

system. A multivariate method based on the PLS regression is developed to determine 

the detection depth of the PLA in the powder material. The results are compared with 

the reflectance profile analysis. This chapter has the same structure as the published 

article. An additional part is provided to discuss the concept of detection depth. 

The second chapter of this manuscript deals with the detection of peanut flour in 

wheat flour using a NIR HSI system and the MSD. Mixed samples with various 



 

 

 

concentration of peanut flours are prepared (from 10 % to 0.02 %) and measured by 

HSI. The MSD is designed using the measurements of the pure samples. A spectral 

simulation method is proposed to provide a validation dataset for three MSD designs. 

The detectors are then applied to the real mixed samples to detect subpixel peanut 

adulteration in pixels. This chapter has the same structure as the published article. 

The third chapter of this manuscript is dedicated to the detection of peanut flour in 

chocolate powder using the MCR-ALS. The chocolate powder is an industrial mix of 

cocoa and sugar which is adulterated with peanut flour in various concentration (from 

10 % to 0.02 %). The samples are measured using a NIR HSI system. The spectral data 

of mixed samples are unmixed using MCR-ALS with an augmented matrix strategy and 

a selectivity constraint. The obtained concentration profiles are then processed by an 

outlier detection algorithm for detecting pixels adulterated with peanuts. This chapter 

has the same structure as the published article. An additional part provides a discussion 

of the unmixing and detection strategies.  

 

A. Main contributions 

 

First chapter 

 

o The design of an original sample holder for the detection depth assessment of 

powder products. 

o The development of a multivariate method for measuring the detection depth 

on the sample holder. 

 

Second chapter 

 

o The tuning of a MSD algorithm for the detection of peanut in wheat flour. 

o A method for spectral data simulation used for the MSD design validation. 

 

Third chapter 

 

o The tuning of MCR-ALS with a selectivity constraint for detecting peanut in 

chocolate powder. 

o The combination of an outlier detection algorithm with MCR-ALS. 
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3. The interest of powder in the food industry 

 

Product stability is a major issue in food industry. Low water content products are 

usually stable, but for convenience, are often supplied as powder [4]. This product form 

induces multiple challenges for the food industry like maintaining the functionality of 

ingredients or preventing segregation of food ingredient mixes and particle stickiness 

[4]. Since food powders are finally consumed by humans, there is a high importance 

for preventing contamination with undesirable bio-life forms and chemical 

components. Contamination is difficult to prevent because of the dust formation which 

leads to particle settling and sticking onto equipment. The contamination may also 

happen in different stages of the product making and/or between several recipes, and 

could become a sanitary problem when considering food allergens. 

The food allergy is defined as “an adverse health effect arising from a specific 

immune response that occurs reproducibly on exposure to a given food. [5]”. It is a 

worrisome public health problem as it is responsible for 200 deaths per year in the 

United States [6]. Adult food allergy represents a population of 3.7 % in United States 

and 3.2 % in France [7]. In addition, the prevalence may be on the rise worldwide [8]. 

Some common foods with an allergen power are frequently used in the industry like 

wheat, egg, peanut, or milk and may have hazardous effects on the consumer [6]. For 

these reasons, the contamination of products by food allergens is highly probable and 

the industry tries to avoid it. 

Pulverulent agri-food products are subject to numerous analyses, for example 

to control mixing and homogeneity [4]. In such cases, the presence of minor 

compounds often poses a problem. Firstly because they can be difficult to detect. This 

is the case of food contamination or food ingredients consciously added in low 

quantity in the mixture. Secondly, because the repartition of such ingredients has to be 

homogeneous. For this purpose, precise information about the chemical nature of 

particles and their position in the sample must be known to quantify the homogeneity. 

During the last decades, the near-infrared spectroscopy (NIRS) has been widely used 

to assess these features. Near infrared hyperspectral imaging (NIR HSI) has been 

recently applied and considered as a promising tool to analyze food samples. This 

technology enables to measure the spectrum of tiny localized areas on the sample and 

characterize it with more precision. 

 

 

4. Near-infrared spectroscopy 

 

The NIR spectroscopy (NIRS) studies the interaction of light radiations with the matter 

in the range between 780 nm and 2 500 nm [9]. When absorbed, these radiations make 

the molecules vibrate and produce a NIR spectrum. The type of vibration determines 

the wavelength at which a spectrum absorbs energy. The amplitude of absorption is 

described by the Beer Lambert’s law and depends on the absorptivity of the molecule, 

its concentration in the sample and the radiation’s pathlength. Figure 1 represents the 



 

 

 

spectrum (A) as a consequence of the periodic stretching (C) of the methyl group. An 

incident light beam of intensity I0 is directed towards two samples of varying 

concentration in methyl group (B). The intensity I2 that goes out from the most 

concentrated sample is weaker than the other I1 because of the molecule absorption. 

 

 
Figure 1: (A) Two absorbance spectra with an two absorption levels; (B) the sample concentration 

affecting the absorbance spectrum (C) and the methyl symmetrical stretching of vs CH3. 

 

Chemical bonds such as C = O, C – H, and N – H are the most active from the 

infrared point of view. They are present in organic compounds and, consequently, in 

food. Many advantages explain why this technology has been widely used in several 

fields like pharmaceutical field, petrochemistry, medicine, earth observation or 

environment. In particular, the use of NIR spectroscopy requires less sample 

preparation than other spectroscopic techniques. 

 

 

5. Near-infrared hyperspectral imaging 

 

NIR HSI consists of combining NIR spectroscopy and conventional imaging. This 

technology can be seen as an extension of RGB imaging by providing hundreds of 

spectral channels [1]. For each measured pixel, a complete NIR spectrum is acquired. 

Especially, NIR HSI provides a spatialized and resolved NIR measurement of 

entire samples. The pixels of an HSI system have a field of view of 0.2  0.2 mm 

depending on the type of objective [2]. It considerably increases the chance to isolate 

a single chemical in one NIR measurement compared to conventional spectroscopy. 



 

 

 

NIR HSI for food quality and safety inspection was proposed at the end of the 

90s thanks to the advances in computer technologies [3]. Multiple measurement 

methods were used such as reflectance, transmittance or fluorescence and various 

wavelength ranges: Visible Near-Infrared (Vis-NIR), 400 – 1000 nm; NIR, 900 – 1700 

nm; and Short Wave Infrared (SWIR), 1000 nm – 2500 nm [1]. The applications of NIR 

HSI in food safety are presented in three categories inspired by the classification 

provided by Feng and Sun [4]. 

 

 

D. Physical contaminations 

 

Physical contaminations in food correspond to the presence of foreign materials in a 

product. They should be avoided to prevent hazardous effects for the consumers. 

Hyperspectral imaging was intensively used to detect foreign materials in food 

matrices in the 2010s. In 2011, Bhuvaneswari et al. demonstrated the use of NIR HSI 

for detecting insect fragments in semolina [9]. Melamine and cyanuric acid 

contamination in soybean were investigated using NIR HSI by Fernández Pierna et al. 

in 2014 following the scandal of contaminated milk in China. Many other studies 

tackled the detection of melamine in milk powder using various chemometrics 

methods [10-13]. In 2015, Mishra et al. showed the detection of peanut particles in 

wheat flour using Principal Component Analysis (PCA) and Independent Component 

Analysis (ICA) [14-15] Later in 2018, Zhao et al. studied the detection of peanut and 

walnut powders in wheat flour using a Partial Least Squares (PLS) regression in NIR 

hyperspectral images [16]. These studies show the interest in detecting food allergen 

like nuts in raw materials and illustrated the capacity of NIR HSI for its detection. More 

recently, detecting foreign materials as bone fragments in chicken and microplastics in 

fish was demonstrated using NIR HSI [17-18]. 

 

 

E. Defects 

 

Besides detecting foreign materials, NIR HSI was used to characterize food samples to 

detect their defects characterized by chemical changes. 

Many applications of defects detection on fruits were demonstrated in the 2010s 

using Vis-NIR HSI. As an example, Gowen et al. showed the identification of 

mushrooms subjected to freeze damage using PCA and Linear Discriminant Analysis 

[19]. Apples were subject to numerous analyses using Vis-NIR HSI for detecting bruises, 

black pox or bitter pits [4]. More recently, Li et al. used Vis-NIR HSI for detecting skin 

defects on peaches showing this measurement method is still investigated for studying 

fruit defects [20]. Singh et al. used NIR HSI for studying insect-damaged wheat kernels 

[21]. 



 

 

 

This kind of applications consists of detection chemical modifications in a localized 

area of a sample. As such, it can be compared to the detection of contaminants in 

powder samples. 

 

 

F. Microbiological contaminations 

 

Hyperspectral imaging was used for bacterial determination in various studies tackling 

the freshness of fish and meat. Grau et al. studied the meat freshness on chicken 

breasts using SWIR HSI [22]. Fish freshness was also investigated and showed various 

model performances according to the measured portion of the sample [4]. 

Contamination of crops by fungi is another type of microbiological contamination 

that was studied using hyperspectral imaging. Jin et al. showed the potential of HSI for 

detecting toxigenic strains of fungi [23]. Later, Del Fiore et al. and Williams et al. both 

showed the potential of using HSI for detecting fungal contamination in maize kernels 

[24-25]. 

The detection of fecal contamination on food surfaces was one of the first 

applications in food safety at the beginning of the 2000s. Park and Lawrence developed 

a Vis-NIR HSI system for detecting feces and ingesta on poultry carcasses using a band 

ratio method [5]. This work was followed by other studies showing the possibility of 

implementing such a solution for the food industry [6]. Fecal contamination was also 

investigated using hyperspectral fluorescence imaging on leafy greens and apples [7] 

[8]. 

 

 

6.  The penetration and the detection depth of NIR radiations 

 

A. The penetration depth 

 

The main theories of light scattering and absorption were established in the past 

century. The Radiative Transfer Equation (RTE) is the most general equation that 

describes the variation in intensity of an incident radiation when passing through an 

absorbing and scattering element [26]. Chandrasekhar proposed a solution in the case 

of two plane-parallel layers [27]. In practice, such calculations are not easily 

transposable to practical cases. Instead, other more straightforward solutions were 

proposed and known as the methods with one (Beer-Lambert) or two (Kubelka-Munk) 

fluxes. 

The Kubelka-Munk theory is based on a model developed by Schuster in 1905 [28]. 

The goal was to simplify the RTE by proposing a two-fluxes model considered as 

isotropic (which means we neglect the fluxes’ angular distribution as it occurs in diffuse 

lightning). In 1931, Kubelka and Munk proposed a similar approach to study the optical 

properties of paint layers [29]. Their theory defines the diffuse reflectance of material 

due to the interaction between inward and backward intensity fluxes. On the one hand, 



 

 

 

because of the scattering effect, the diffuse reflectance signal comes from multiple 

infinitesimal layer of particles. On the other hand, the light intensity decreases with the 

layer’s depth because of the absorbance effect. Consequently, the diffuse reflectance 

signal increases up to a given depth of material for which it becomes stable. Kubelka 

and Munk called this reflectance value R∞ where the infinity symbol stands for the fact 

the material is thick enough. They propose the following formulation that involves the 

scattering and the absorption coefficients of the material S and K: 

 

(1 − R∞)2

2R∞
=

K

S
 

 
Equation 1: The Kubelka-Munk’s formulation for the reflectance with an infinite optical depth. 

 

The main consequence of this concept is that the spectral information of a diffuse 

reflectance measurement is obtained on a limited thickness of the material. The 

concepts of penetration depth and effective sample size were introduced to take this 

phenomenon into account. 

Berntsson et al. studied the effective sample size in diffuse reflectance and 

transmittance NIR spectroscopy by comparing two methods [30]. The first method uses 

calculations from the RTE and the 3-fluxes approximation detailed by Kuhn et al. [31]. 

The reflectance values R for increasing value of optical depth are calculated and 

compared to the theoretical R∞. The optical depth such that 𝑅 reaches a certain 

percentage of R∞ is defined as the penetration depth of the sample. The second 

method is empirical and consists of measuring the sample several times by increasing 

its thickness (Figure 2). It results in a reflectance profile obtained for on a range of 

sample thicknesses. According to the RTE, the reflected signal increases until a certain 

limit noted R∞. This reflectance profile is fitted using a negative exponential function 

as illustrated in Figure 2. This fit can be used to calculate the depth corresponding to 

a percentage of R∞. 

In both methods, the authors refer to the effective mass sample. This notion is 

equivalent to the effective volume sample or the effective depth sample. They all refer 

to the actual quantity of sample that is responsible for the reflectance signal. 

 



 

 

 

 
Figure 2: The empirical method for the determination of the effective sample depth. 

 

Similar methods were used to determine the light penetration of radiations in 

different samples. Stolik et al. provided the light penetration depth of four Vis-NIR 

wavelengths in thirty types of “ex vivo” human tissues [32]. Ciani et al. studied the 

penetration of visible light in 19 different soils [33]. Lammertyn et al. focused on light 

penetration in apple slices [34]. 

 

 

B. The detection depth 

 

The same context as Berntsson et al. can be considered (Figure 2) to define the concept 

of detection depth. A powder sample is lying on a flat and solid surface represented 

by the sample holder (in grey). In the study of Berntsson et al., the flat surface is a black 

polyamide plate that absorbs all the radiations indifferently [30]. Because of this, there 

is no specific absorption pattern that can be identified in the reflectance signal.  

Let us consider a new situation where a material with a specific absorption 

pattern replaces the polyamide black plate. The detection depth corresponds to the 

maximal thickness of powder that enables the absorption signal of the bottom material 

to be identified. Its detection can be achieved when its spectrum exhibits a strong 

absorbance at a given wavelength. If the powder sample does not have an absorbance 

pattern for the surrounding wavelengths, an absorption peak in the diffuse reflectance 

spectrum can be attributed to the bottom material. This is illustrated in Figure 3 which 

shows the influence of the bottom material identified for a specific wavelength λm. 



 

 

 

 

 
Figure 3: The comparison of three absorbance spectra showing the influence of the bottom material for 

in-depth reflectance measurement. 

 

The theories regarding the diffuse reflectance are useful in describing simple 

situations where the scattering material is homogeneous. However, they are not 

efficient in modeling complex cases like the medium discontinuity between the powder 

and the bottom material because no simplification assumptions can be made. Instead, 

the literature shows that empirical approaches appear to be more realistic to achieve. 

This approach was investigated by Huang et al. with regard to melamine 

detection in milk powder [35]. The authors prepared a few samples with a first layer of 

increasing milk powder thicknesses (from 1 mm to 5 mm) above a melamine powder 

layer. They applied a pre-trained classification model (Partial Least Square Discriminant 

Analysis) on the spectra measured by reflectance with a NIR HSI system. This model 

aimed to assess whether each pixel spectrum was pure milk or milk and melamine. The 

authors described that the performance of the model decreases in detecting milk-

melamine pixels when the thickness of the milk layer increases. Thanks to this analysis, 

the authors were able to justify that a layer of 2 mm of milk powder was recommended 

to ensure the melamine beneath could be detected. This work provides a clear 

illustration of the detection depth and shows that the detection using NIR HSI should 

be made with a thin layer of material; otherwise, the melamine may be missed. 

However, there is still no general method to estimate the material depth at which the 

detection application is compromised. Moreover, this detection depth was not 

compared or discussed with the concept of penetration depth. 

 Despite the previously cited works on the field of penetration depth in NIR 

spectroscopy, there is still a lack of empirical study in the context of contamination 



 

 

 

detection. To our knowledge, there is a need for a method measuring the detection 

depth of a given couple of materials in the context of detection using NIR HSI.   

 

 

7. The detection of subpixel food particles 

 

Raw materials in the food industry are often provided in powders because they 

guarantee a better stability [36]. Except for fish and meat, contamination detection in 

food using NIR HSI was often applied on powder. The particle size of food products 

may be smaller than 200 µm. For example, the Codex Standard defines that the particle 

size of wheat flour should be such that more than 98% of it should pass through a 212 

µm sieve [37]. As a result, when measuring a mixture of different flours, the spectrum 

of a pixel 𝒙 may not be representative of a pure chemical compound. The situation is 

comparable to that of the measurement of a heterogeneous sample using 

conventional spectroscopy. At this stage, the acquisition of a hyperspectral image 

needs to be coupled to the signal unmixing process. It means that the spectrum is 

modeled as containing two or more different pure chemical signatures in given 

proportions. These spectral signatures and proportions are generally unknown, and 

some chemometric tools must be used to solve this problem. 

 The unmixing problem is an essential subject in remote sensing. When the goal 

is to detect a target in a hyperspectral image, it is known as the subpixel detection 

problem. Various algorithms were designed to take this problem into account and 

tested on multiple hyperspectral datasets [38-39]. Most of these algorithms were 

developed using annotated datasets. They consist of a hyperspectral image containing 

various types of materials like trees, asphalt, corn, wheat, and so forth. An annotated 

image is provided to give the ground truth of each pixel of the image. For example, the 

dataset University of Pavia1 is an image of a scene acquired by a hyperspectral sensor 

during a flight over Pavia, northern Italy. The ground-truth image gives a class to every 

pixel of the hyperspectral data. There also exist hyperspectral datasets for hyperspectral 

unmixing [40]. It means that unmixing algorithms can be evaluated on real data, which 

reveal their actual performance. This is the standard procedure to produce detection 

algorithms. 

For food powder products, it is not possible to obtain similar ground-truth 

information. It would require knowing the spatial distribution of millions of particles of 

100 µm of diameter and their chemical nature. In addition, annotated hyperspectral 

images for remote sensing analysis focus on the surface signal and do not consider 

multiple layers, which is essential in the case of food powders. Therefore, the result of 

the application of an unmixing algorithm is difficult to compare with the real situation.

 The literature shows several applications of contamination detection in powders 

 
1 The dataset can be found on the website: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes 
 

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


 

 

 

using hyperspectral imaging. According to the situation, the authors chose different 

modeling strategies. 

 

 

A. Classification algorithms 

 

One strategy consists of using classification algorithms to label each pixel of the 

hyperspectral image. This technique requires to have a clear spectral definition of both 

the adulterant and the material. Vermeulen et al. [41] studied the adulteration of 

cereals by ergot bodies on a conveyer belt using a NIR HSI. The authors used Support 

vector Machine (SVM) and Partial Least Square Discriminant Analysis (PLSDA) to 

discriminate the spectra. As ergot bodies and cereals are larger than one pixel of the 

camera, each pixel likely contains either ergot or cereals but not both at the same time. 

Hence, there is no spectral mixing to consider in the pixel. In that case, Vermeulen et 

al. showed that the classification method is efficient for the detection. 

 

 

B. Spectral similarities 

 

Another method consists of using spectral similarity analysis to compare spectra from 

the hyperspectral image with a reference. Fu et al. used this method to detect melamine 

adulteration in milk powders down to a concentration of 0.02 % [10]. In this case, the 

particles of melamine and milk powders are smaller than the pixel meaning the spectral 

signal may be mixed in the pixels. For this reason, the authors used a threshold on the 

spectral similarity scores to identify pixels containing melamine. Huang et al. studied 

the same melamine and milk powder case [12]. They used the band ratio method that 

consists of analyzing the reflectance ratio of two wavelengths. As previously, the 

authors proposed a detection algorithm based on a threshold of the band ratio. 

 

 

C. Quantification methods 

 

A third method consists of the calibration of an algorithm that quantifies the adulterant 

proportion in each pixel. Lim et al. used a PLS regression to detect and quantify the 

melamine in milk powders [13]. As shown in the previous works, the melamine could 

be detected at 0.02 % global adulteration. The PLS regression coefficients show the 

same important wavelengths as the one selected by the band ratio method in [12]. 

Zhao et al. studied the adulteration of wheat flour by walnut and peanut flour using 

PLS model calibration [16]. The authors concluded that the model could detect 

adulteration over 1 % of global concentration. They noticed that the localization of 

peanut and walnut particles was impossible with this methodology because of two 

reasons: the particle size which is smaller than the pixel, and the similar trends of 

spectral curves among pure samples. 



 

 

 

D. Unmixing methods 

 

The Linear Mixing Model 

 

When subpixel particles are measured in one pixel, their spectral signatures all 

contribute to the observed mixed spectrum. The most widely used model is the linear 

mixing model (LMM) [42]. It assumes the resulting spectrum from a pixel is generated 

by the linear combination of the spectra of the constituents, here the powder particles. 

 

 
Figure 4: (A) A pixel is represented with several particles in its field of view. (B) The spectra of the pure 

ingredients and the mixture are represented. 

 

The mathematical model of the LMM is given by [42]: 

 

𝒙 =  ∑ 𝑎𝑖𝒔𝑖 + 𝒘

𝑘

𝑖=1

= 𝐒𝒂 + 𝒘 

 
Equation 2: The Linear Mixing Model. 

 

𝒙 is the pixel spectrum; 𝑘 is the number of constituents in the pixel; the (𝒔𝒊)1≤ 𝑖 ≤ 𝑘 are 

the 𝑘 components representing the spectra of pure constituents of the pixel; (𝒂𝒊)1≤ 𝑖 ≤ 𝑘 

are the contribution coefficients associated to the spectra; 𝒘 is an additive noise vector. 

In the case of adulteration detection, spectral unmixing consist of finding the 

appropriate spectral profiles. The contribution coefficients can be used to detect 

adulteration for each pixel. Several algorithms can decompose a matrix of spectral 

measurements into two matrices of pure spectral components and coefficients. For 

example, PCA assumes the spectral components are orthogonal to each other. On the 

other hand, ICA assumes they are independent of each other. Mishra et al. studied the 

detection of peanut particles in wheat flour using both methods [14] [15]. They 

obtained two different sets of components and performed peanut detection using a 



 

 

 

threshold on the scores. Even if the peanut particles were larger than the pixel, the 

unmixing method helped discriminate the neighboring pixels containing both peanut 

and wheat contribution. The authors noticed that the presence of fatty acids in peanut 

help to discriminate the particle in wheat flour. 

 

 

The Multivariate Curve Resolution model 

 

For melamine detection in milk powders, the particle sizes are smaller than the 

standard pixel sizes in NIR HSI (0.2  0.2 mm) [2]. Huang et al. uses an unmixing 

approach to determine the concentration map of melamine and milk in mixed samples 

[11]. They compare the PCA, the Classical Least Squares (CLS) and the Multivariate 

Curve Resolution Alternative Least-Squares (MCR-ALS) approaches. The authors 

showed that the MCR-ALS approach provides the best quantitative results. This 

method is based on the following bilinear model: 

 

𝐗 =  𝐂𝐒𝐓 + 𝐄 
 

Equation 3 : The bilinear model for MCR. 

 

This model considers a matrix 𝐗 of size 𝑛 ×  𝑚 that contains 𝑛 spectra 𝒙 stacked 

by rows. It decomposes 𝐗 into a combination of 𝑘 spectral components. Their spectral 

profiles are described in 𝐒 of size 𝑘 ×  𝑚. The combination of the spectral components 

for each pixel is described in the concentration matrix 𝐂 of size 𝑛 ×  𝑘. 𝐄 describes the 

model residuals for each pixel in row. 

 

 

The Alternating Least-Squares algorithm 

 

Many algorithms were used in the literature to solve the MCR model [43]. The iterative 

methods are the most widely used solutions because they enable to introduce 

mathematical constraints during the optimization process [44]. The association of MCR 

with the Alternative Least-Squares (ALS) algorithm developed in 1995 is the most 

popular approach [45]. The cost function of the MCR model is given by: 

 

‖𝐗 − 𝐂𝐒𝐓‖2
2 = ∑(𝑥𝑖,𝑗 − 𝒄𝑖𝒔𝑗)2

𝑖,𝑗

 

Equation 4: Cost function of the MCR model. 

 

where 𝒄𝑖 and 𝒔𝑗 are the parameters to optimize. This is not a convex cost function 

because of the interaction between 𝒄𝑖 and 𝒔𝑗. The ALS algorithm consists of 

alternatively fixing one parameter to have a simpler cost function. The solution can be 

calculated using the OLS similarly to the linear regression case. Hence the solution is 

given by: 



 

 

 

 

𝐂̂ = (𝐒𝐓𝐒)−𝟏𝐒𝐓𝐗 

𝐒̂ = (𝐂𝐓𝐂)−𝟏𝐂𝐓𝐗 

 
Equation 5: Estimation of the concentration and spectral profiles using the ALS algorithm. 

 

As the ALS is an iterative process, the algorithm starts with an initial guess either 

for 𝐂 or the 𝐒 matrix. Then, for each step of the process, 𝐂̂ and 𝐒̂ are calculated using 

the OLS (Equation 5) and enforcing the additional constraints. The hat notation 

indicates that the matrices are estimated. The algorithm continuously performs this 

two-steps estimation until a given stop criterion is reached. The criterion should 

evaluate how well the data are reconstructed using the 𝐂 and 𝐒 matrices. The lack of fit 

(LOF) is such a criterion: 

 

 

 

LOF =  √
∑ 𝑒𝑖,𝑗

2
𝑖,𝑗

∑ 𝑥𝑖,𝑗
2

𝑖,𝑗

 

 
Equation 6: The lack of fit for the MCR model. 

 

In practice, the required LOF may never be reached by the algorithm. For instance, 

it may be the case when the constraints are too important or when the noise level is 

high. For this reason, a maximum number of iterations is also taken into account as a 

stop criterion as shown in Figure 5. 

 

 



 

 

 

 
Figure 5: The schema of the MCR-ALS algorithm. The variable 𝑖 denotes the number of iterations of the 

algorithm and 𝑖𝑚𝑎𝑥  is the maximum number of iterations set by the user. 

 

 

The ambiguity of the Multivariate Curve Resolution model 

 

The MCR model (Equation 3) is ambiguous. It means that many solutions (𝐂 and 𝐒 

matrices) fit the model equally well. Although it is mathematically valid to consider that 

various solutions provide a model of the 𝐗 matrix with the same precision, it is a 

problem for interpretation. For practical applications, the pure components should be 

unique and represent the pure constituents of the 𝐗 matrix. The MCR-ALS literature 

identifies three kinds of ambiguities [43]: 

 

o The permutation ambiguity: the order of the MCR components is not 

guaranteed in the 𝐂 and 𝐒 matrices. Let us assume a MCR model with 𝑘 =  3; 𝐂 

of size 𝑛 ×  3, 𝐒𝐓 of size 3 ×  𝑚. This model is mathematically identical if 𝒄𝟏 and 

𝒄𝟐 , as well as 𝒔𝟏 and 𝒔𝟐, are switched. 

 

o The intensity ambiguity: the spectral intensity in the reconstruction of 𝐗 is 

indifferently attributed to the concentration profile 𝐂 or the spectral profile 𝐒𝐓. 

In other words, the two following models are mathematically equivalent: 

 

𝐗 =  ∑ 𝒄𝑖𝒔𝑖
𝑇𝑘

𝑖=1   and 𝐗 =  ∑ (𝒄𝑖𝑎𝑖)(𝒔𝑖
𝑇 1

𝑎𝑖
)𝑘

𝑖=1  where 𝑎𝑖 are non-null scalar values. 

 



 

 

 

Because of this ambiguity, the spectral profiles obtained using MCR may have 

different scales which is a problem for interpretation. 

 

o The rotational ambiguity: spectral profiles with different shapes can reconstruct 

the 𝐗 matrix with the same precision. This ambiguity is probably the most 

problematic since it leads to a change in the shape of the spectral profiles. 

Hence, the pure spectral signature may not be recognized during result 

interpretation (Figure 6). Mathematically, the rotational ambiguity is expressed 

as follows: any rotation matrix 𝐑 can be introduced in the model without 

changing the reconstruction of 𝐗. 

 

𝐗 = 𝐂𝐒𝐓 and  𝐗 = (𝐂𝐑)(𝐑−1𝐒𝐓) where 𝐑 is a rotation matrix which satisfies: 𝐑𝐑𝐓 = 1. 

 

 

 
Figure 6: Effect of the rotational ambiguity on the spectral profiles. (A) The average of pure peanut and 

wheat spectra; (B) the same spectra after a rotation transformation of 𝜋/8 (C) and -𝜋/6. 

 

The ambiguities of the MCR model show that minimizing the reconstruction 

error of 𝐗 is not sufficient to find the purest spectral signatures. Instead, additional 

criteria should be applied to reduce the set of possible solutions, i.e. the ambiguity of 

the model. 

 

 

The constraints of the Multivariate Curve Resolution model 

 

The non-negativity constraint imposes the concentration and/or spectral profiles only 

contain positive values. This constraint is relevant with NIR spectra because intensity, 

reflectance or, absorbance values should always be positive. The closure constraint 

imposes the sum of all contributions is equal to a constant (often 1), which implies 

interdependencies between the species contribution. This constraint can be seen as a 

type of normalization which affects the intensity ambiguity [46]. The knowledge of pure 

spectra or concentration profiles can be introduced as a constraint in the ALS 

procedure. It should be used when a profile is known. 

 



 

 

 

 Although many constraint methods were implemented in the MCR-ALS, it is still 

tricky to reduce the rotational ambiguity because it often requires a prior knowledge 

of the spectral profiles, which is not always possible. The consequence of a rotational 

ambiguity could be that the spectral signals are not well unmixed. It may lead to 

misleading conclusion, in particular for detection purposes. 

Many constraints have been developed and could be useful to reduce the rotational 

ambiguity. The correspondence of species can be applied in the case of a multiset 

analysis. In this situation, a column-wise augmented matrix is used to indicate which 

experiment contains or does not contain a specific component. 

The matrix augmentation is not a constraint as such, but it enables to reduce the 

rotational ambiguity of the MCR solutions [47]. It enables to introduce several matrices 

that share one dimension. The augmented matrix strategy is a possible solution by 

stacking the unfolded matrices on top of each other: 

 

(

𝑿𝟏

𝑿𝟐

𝑿𝟑

) = (

𝑪𝟏

𝑪𝟐

𝑪𝟑

) 𝑺𝑻 + (

𝑬𝟏

𝑬𝟐

𝑬𝟑

) = 𝑪𝒂𝒖𝒈𝑺𝑻 + 𝑬𝒂𝒖𝒈 

 
Equation 7 : The column-wise augmented matrix MCR model. 

 

The selectivity constraint consists of providing concentration information to the ALS 

[48]. It is done by forcing the concentration matrix 𝐂 to fulfill the constraints provided 

by the prior knowledge. For example, the concentration coefficient of one spectral 

component can be set to 0 for some spectra. The correlation constraint imposes than 

the concentration profiles in 𝐂 have a sufficiently high correlation with reference data. 

It is a smoother way to impose that the concentration coefficients follow the prior 

knowledge. 

Cordeiro Dantas et al. used MCR-ALS with a correlation concentration to detect 

adulterants in petroleum diesel using Raman spectroscopy [49]. They showed the 

constraint and the data augmentation strategy improve the quantification and the 

detection. Boiret et al. used a method to set local rank constraints for image resolution 

analysis with MCR-ALS [50]. The application of their method was the detection of a low 

dose compound in pharmaceutical compound using Raman microscopy. Although 

these two works show the potential of MCR-ALS for detection in spectroscopy, there is 

still no study aiming to detect food adulterant using NIR HSI. One reason can be that 

it is difficult to unmix signal composed of similar spectral profiles as it for food products 

in NIR spectroscopy. 

The current methods for pixel unmixing in NIR HSI could be limited because of the 

subpixel problem and the ambiguity of spectral signatures in food products. Mishra et 

al. showed that the detection of peanut is feasible thanks to its fatty acids signature 

which is not present in wheat flour [14]. Quantitative models may be also limited in the 

case where subpixel detection is required as shown by Zhao et al. [16]. The MCR-ALS 

approach has the flexibility to provide constraints and solve the ambiguity problem. To 

our knowledge, the application of MCR-ALS for detection in food products using NIR 



 

 

 

HSI has been quite limited. The application of constraints to reduce the model 

ambiguity seems to be the most promising technique. 

 

 

E. Subspace detector 

 

The last approach for the detection consists of modeling the spectral variability 

of samples to design a detector. The geometrical approach proposes a way to model 

the spectral variability. One spectrum is considered as a vector in a 𝑚-dimensional 

space, 𝑚 being the number of wavelengths in the spectrum. The principle of the 

geometrical approach is to restrict the spectrum’s variations in a lower dimensional 

space [42]. A spectrum 𝒙 is described by:  

 

𝒙 =  ∑ 𝑎𝑖𝒔𝑖

𝐿

𝑖=1

= 𝐒𝒂 

 
Equation 8: The model for spectral variability. 

 

In Equation 8, 𝐿 <  𝑚, and the vectors 𝒔𝒊 define the variability subspace. These 

vectors are spectral signatures that can have multiple origins. It may be the spectral 

signature of a pure sample, or it may be obtained from a statistical method like PCA. 

The spectral signatures are the axis of the subspace, whereas the coefficients 𝒂 are the 

coordinates of the spectrum. 

The variability subspace described in Equation 8 can be obtained using PCA. The 

loading vectors are the weights of the PCs in the original space. Hence, they describe 

how the original variables are affected by the different sources of variability, i.e. the 

PCs. The scores describe the extend of the variability of the individuals for each 

component. 

Figure 7 shows how spectral data are represented in the PC space. Figure 7A 

shows the feature space where one spectrum is represented by a black cross (or a 

vector). Its coordinates correspond to the contribution of each PC. Figure 7B shows the 

spectral contribution of the loadings and the reconstruction of the vector 𝒙 by 

combining the first two components. Figure 7C shows the resulting spectrum for the 

spectrum in (A) after adding the average spectrum represented in dash line2. 

 
2 PCA is commonly applied on the data matrix after mean centering. 



 

 

 

 
Figure 7: Representation of the variability using PCA. (A) the subspace PCA score map; (B) the two first 

loadings their combination; (C) the spectral rebuilding in the original space after adding the average 

spectrum. 

 

The literature of NIR HSI for earth observation described multiple algorithms based 

on this modeling [51]. The Matched Subspace Detector (MSD) assumes that each pixel 

of a hyperspectral image falls into one of the two situations: 

 

o Only particles from the standard sample are measured; 

o Particles from both the standard and the adulterant samples are measured. 

 

The situation where only particles from the adulterant sample are measured is 

excluded because this case can be treated by the second situation without difficulty. 

In the first situation, the pixel spectrum can be described by Equation 8 

considering only the spectral components that describe the food sample. In the second 

situation, the spectral components describing the adulterant spectral signature are 

added to the model as a linear contribution as stated by the LMM. Both hypotheses 

leads to the design of two matrices that are used to build the MSD. Each matrix 

describes a variability subspace were the sample to detect is described. 

This detector was successfully used in the earth observation applications for target 

detection. In this case, the pixels’ field of view is larger than targets of interest and the 

MSD was successfully applied to detect them. Du et al. used MSD to detect targets on 



 

 

 

hyperspectral images [52]. Manolakis et al. provided an extensive description of 

subpixel target detector showing the MSD is particularly suitable for subpixel targets 

[51]. 

To our knowledge, such methods are not used for NIR HSI applications on food 

product. However, such a detector could be of great interest because it explicitly take 

into account the variability of the samples to detect. There is a need to develop this 

type of detector on food detection application. 

 

 

 

 

 

 

 

 

 

  



 

 

 

I. The detection depth of a near-infrared hyperspectral 

imaging system 
 

This part has been adapted from the publication:  

 

A. Laborde, B. Jaillais, R. Bendoula, J.M. Roger, D. Jouan-Rimbaud Bouveresse, L. 

Eveleigh, D. Bertrand, A. Boulanger, C.B.Y. Cordella, A partial least squares-based 

approach to assess the light penetration depth in wheat flour by near infrared 

hyperspectral imaging, J. Near Infrared Spectrosc. (2019). 

https://doi.org/10.1177/0967033519891594. 

 

 

1. Introduction 

 

There is a need for the study of powdered samples as they are often used in food 

industry processes and adulteration issues may occur in powdered raw materials. Even 

though HSI is able to resolve spectroscopic measurement on the surface of the sample, 

the volume that is screened is restricted. In fact, the penetration of light radiation is 

known to be limited because of scattering and absorption phenomena so that only a 

part of the product can be analyzed. This limitation is critical for quality-control 

applications and particularly for detection problems [54]. Indeed, when a sample is 

screened for adulteration checking, the whole sample should be analyzed to make sure 

the product is not contaminated. In this context, it is very important to know the actual 

volume of the screened sample. This knowledge enables technicians to know the best 

measurement conditions to ensure the detection. This is also an issue for powder 

homogeneity assessment using near-infrared spectroscopy (NIRS) [55] as the scale of 

scrutiny may be limited. 

Powdered samples are mainly measured in reflectance mode. For diffuse 

reflectance, the spectroscopic sensor measures photons that are back-scattered in the 

sample or reflected at its surface. As the path length increases in the sample, the chance 

to be absorbed increases. As a consequence, there are much fewer photons that come 

back from the deepest layers of the sample than from the surface. For a certain depth, 

the amount of signal received by the sensor is similar to the noise measurement and it 

is not possible to retrieve any spectral information from this depth. Additionally, the 

amount of spectral information needed for detection may vary according to the 

chemical species. For example, melamine and milk powder [56] have two very distinct 

spectral signatures but it is less true for wheat flour and peanut particles [14]. As a 

consequence, the required signal-to-noise ratio for melamine detection in milk is likely 

to be smaller than those for peanut detection in wheat flour. Thus, the perceived 

detection depth may be different for the two cases whereas neither the sensor nor the 

physical phenomenon have changed. 

 



 

 

 

The problem of light penetration depth for detection involves three considerations: 

first, the physical light penetration phenomenon in powders; second, the sensor 

dynamic range and finally the spectral signatures that have to be unmixed. 

As hyperspectral imaging is more frequently used for detection problems, there are 

two important needs with respect to this light penetration issue. First, the need for an 

empirical method to be able to determine the maximal depth for detection regarding 

a given application. Then, a better understanding of the phenomenon that 

encompasses the physical phenomenon of light penetration, the sensor dynamic and 

the unmixing application case. 

The Kubelka-Munk theory [29][57-58] provides some understanding about the 

penetration depth of near infrared radiations. Using a model with two fluxes of 

photons, it shows the diffuse reflectance for an infinitely deep sample (R∞) depends 

on the ratio between the scattering and absorption constants [54]. Although this theory 

assumes the sample is isotropic, the derived formula for diffuse reflectance is a central 

point for the study of penetration depth in powdered samples. According to this 

theory, the diffuse reflectance signal comes from different layers of the sample. When 

the thickness of the sample increases, the measured reflectance R increases to a given 

limit R∞. Deeper layers of the sample do not contribute to the reflectance. This concept 

is relevant for the determination of penetration depth. In past decades, many authors 

have studied the penetration depth subject according to different points of view. 

Olinger et al. proposed an approach to determine the number of interrogated 

particles by comparing the baseline-corrected value of the pseudo-absorbance 

log10(1/R) to the absorbance per particle [59]. The authors deduced that for an 

absorbing matrix like carbazole, the penetration depth is less than 1 mm. Berntsson et 

al. have provided further understanding about the effect of sample thickness on diffuse 

reflectance measurements [30]. According to them, penetration depth in a sample is 

related to the depths from which the diffuse reflectance signal originates. Following 

this concept, they introduced the effective sample size which defines the sample mass 

which is sufficient to reach 98% of the diffuse reflectance of a corresponding optically 

thick sample (R∞). These results show that, for a powdered sample, the diffuse 

reflectance signal comes from different depths down to a certain level. This level is 

defined as the penetration depth or the effective sample size. Berntsson et al. proposed 

two methods for determining this depth and provided results for radiations between 

400 nm and 2500 nm. For microcrystalline cellulose powder, the penetration depth 

shows a global decreasing behavior between 1000 nm and 2500 nm with penetration 

depth varying between 2.0 mm and 0.33 mm. 

Stolik et al. measured human tissues in transmittance mode in order to 

determine their penetration depth [32]. The authors used the one-dimensional 

diffusion model where the penetration depth plays the role of the distance constant in 

the exponential decreasing law of intensity. By measuring the transmitted flux through 

the tissue for different thicknesses, the authors determine the penetration depth at 

different wavelengths. According to this definition, the penetration depth is the 

thickness of material that attenuates 63% of the incoming flux. Reported results show 



 

 

 

penetration depth values vary between 0.1 and 3.0 mm for different kinds of human 

tissues at different visible light wavelengths. 

Lammertym et al. used reflectance diffuse measurements on apple slices in order 

to determine the penetration depth of near infrared radiations [34]. By successively 

slimming the apple slice, the authors obtained the reflectance measurement for 

different thicknesses and fitted a decreasing exponential curve for each wavelength of 

the range. Results were similar to Berntsson et al. and the authors found a penetration 

depth between 2 mm and 4 mm in apples. 

More recently, Padalkar and Pleshko have worked on the light penetration depth 

into cartilage to ensure the signal is not corrupted by underlying subchondral bone 

[60]. An empirical method was employed using a disk of polystyrene placed behind 

cartilages of different thicknesses. As this thickness increased, authors showed the 

signal of polystyrene decreased until it became invisible at visual inspection of spectra. 

From their protocol, the penetration depth is defined as the sample thickness for which 

the signal of the polystyrene target does not contribute to the diffuse reflectance 

measurement. 

Huang et al. used a similar protocol by placing melamine under different 

thicknesses of milk powder [35]. The authors showed that a PLSDA failed to detected 

melamine contribution for a thickness of milk powder larger than 2 mm. 

The literature shows that light penetration depth in spectroscopy can be studied 

through different underlying definition of the phenomenon. Some authors rely on 

theoretical models such as Kubelka-Munk or the diffusion model, whereas others use 

an empirical method that is specific to the application such as melamine and milk 

powder [35] or light penetration into cartilage [60]. As the literature shows, and to our 

best knowledge, no study offers a multivariate chemometric approach, sensor 

considerations and theoretical interpretation of the phenomenon. 

This work studied the penetration depth of near infrared radiation into wheat 

flour using a sample holder of PLA. Hyperspectral imaging was used to acquire a great 

number of spectra with spatial information. PLS regression was used in order to 

quantify the amount of spectral signature coming from PLA along the sample holder. 

Finally, an interpretation of the phenomenon is proposed using the Kubelka-Munk 

theory and sensor considerations. 

 

 

2. Material and methods 

 

A. Samples 

 

A sample holder has been designed and manufactured for this experiment using a 3-

dimensional printer (Figure 8). The central cavity was designed on a gradient to contain 

powdered samples of varying thickness. The powder is skimmed on the top of the 

sample holder so that the thickness is graduated from 3.5 mm to 0.5 mm. The sample 

holder is made of PLA which has a specific absorbance peak in the near infrared spectral 



 

 

 

range (1168 nm). White wheat flour (Francine, batch number 138, France) was used for 

the investigation of light penetration depth. Two replicates from the same pack were 

used for the measurement. Since packing density may have an effect on light behavior 

in the sample, the powder was not forced into the sample holder. Instead, wheat flour 

was sprinkled over the sample holder and skimmed in order to ensure the repeatability 

of the sample packing. 

 

 
Figure 8: Schema of the sample holder. 

 

 

B. Hyperspectral imaging system 

 

A line-scan pushbroom HySpex SWIR-320m-e camera (Norsk Elektro, Skedsmokorse, 

Norway) was used to acquire hyperspectral images. The spectral range was 1000 – 2500 

nm and 256 spectral bands were acquired, leading to a spectral resolution of 6 nm. The 

camera acquired 320 pixels per line. Two halogen lamps were used to illuminate the 

sample. A standard white diffuse reflectance standard (Spectralon®, SRS-99-010, 

Labsphere) was used to acquire the white reference image. The black reference image 

was acquired by closing the shutter of the camera. 

 

 

C. Data processing 

 

Images were cropped to focus on the central cavity of the sample holder leading to 

100 × 246-pixels images. The white reference image was averaged to obtain one 

spectrum for every pixel of sensor’s line (I0). The black measurement (IB) and the white 

reference were used to calculate the reflectance signal from the raw measurement (I) 

using: 

R =  
I − IB

I0 − IB
 

 
Equation 9: The reflectance calculation. 

 



 

 

 

As they exhibit a low signal-to-noise ratio, the first wavelengths (smaller than 

1100 nm) of the spectra were removed. A Savitzky-Golay filter was applied (2nd order 

polynomial, 7-points window and no derivative) to smooth the spectra. Finally, a log 

transformation (−log10) was applied to obtain absorbance spectra only for PLS 

application. 

 

 

D. Thickness target values 

 

The sample holder designed for the study is made such that the thickness of wheat 

flour varies. In the following, wheat flour thickness is referred as the 𝒚 target value. This 

thickness depends on the sample holder geometry. As a consequence, the 𝒚 target 

vector is constructed using the geometry of the central pit of the sample holder. Since 

it is designed as a slope between 0.05 cm and 0.35 cm, a linear interpolation vector 

was created and assigned to each of the 100-pixel lines across the sample holder. This 

procedure leads to a 2-dimensional mask that can be applied on the hyperspectral 

image (Figure 9). For spectral analysis, hyperspectral cubes are unfolded to obtain 

matrices of 24 600 lines and 256 columns. The 2-dimensional mask for 𝒚 values is 

unfolded in the same way so that each spectrum of the matrix is associated with the 

appropriate 𝒚 target. 

 

 
Figure 9: The construction of the two-dimensional mask for thickness target values. 

 

 

E. Reflectance profile extraction 

 

The reflectance profiles across the sample holder were extracted for each wavelength 

following the procedure described in Figure 10. All the pixels on the same vertical line 



 

 

 

were averaged in order to obtain one spectrum for each 𝒚 thickness value (step 1 to 

2). As a result, a 2-dimensional matrix was obtained as well as the corresponding vector 

of 𝒚 target values. After selecting a wavelength band, all the corresponding reflectance 

values were extracted and plotted against the 𝒚 thickness values giving the reflectance 

profile (steps 3 to 4). 

 
Figure 10: The procedure for the reflectance profile analysis. 

 

 

F. Partial Least-Squares Regression 

 

The PLS regression is an algorithm used for predicting a target value 𝒚 using predictors 

𝐗 with a linear relationship: 𝒚 = 𝐗𝜷 + 𝐄. PLS is a good alternative to classical Multiple 

Linear Regression (MLR) or Principal Component Regression (PCR) when predictors are 

NIR spectral data. For this kind of data, there are a great number of variables (several 

hundreds) that are mostly correlated to each other. As a consequence, the construction 

of orthogonal latent variables is required for applying multiple linear regression. PCA 

is one method used for constructing such variables that are orthogonal and ranked 

according to the amount of variance they represent in 𝐗. PCR is achieved by performing 

MLR on these new variables. However, PCR does not take into account the relationship 

with target values 𝒚 in the construction of the orthogonal latent variables. PLS solves 

this problem by constructing latent variables based on the covariance between 𝐗 and 

𝒚 [20 - 21]. PLS has been widely used in chemometrics as it is particularly suitable for 

near infrared spectral data [61]. In this study, PLS is used in order to quantify the 

amount of PLA signal in the diffuse reflectance measurements. It is assumed that the 

signal of PLA is linked to the wheat flour thickness in the sample holder. As a 

consequence, the 𝐲 thickness vector is used as target for the PLS calibration. The 

training was performed using cross-validation on the first sample replicate. 70% of the 

spectra from the cube were used for calibration and 30% for validation. This procedure 



 

 

 

was repeated 10 times to select the number of latent variables associated to the 

averaged minimum root mean square error of cross-validation (RMSECV).  

 

 

3. Results and discussions 

 

A. Reflectance evolution for each wavelength 

 

Figure 11 shows the reflectance spectral signatures of PLA and wheat flour. The 

spectrum of PLA exhibits high and resolute absorption peaks all along the near infrared 

range. The absorption peak at 1168 nm represents a high difference in reflectance 

between PLA and wheat flour. Figure 12 shows the reflectance profile at 1168 nm 

corresponding to this absorption peak. The experimental points exhibit a curve 

showing two behaviors. The first part of the curve corresponds to low thickness values 

and shows an increasing reflectance profile. The second part shows a stabilization of 

the reflectance level for high thickness values. 

 

 
Figure 11: The pure reflectance spectra of wheat flour and PLA. 

 

When the wheat flour thickness is low, the PLA plays an important role in the 

resulting diffuse reflectance signal. As it absorbs radiation around 1168 nm, the 

reflectance profile at this wavelength starts with low reflectance values. When the 

thickness increases, the role of wheat flour becomes more important than PLA in the 

resulting reflectance spectrum. Since wheat flour absorbs much less than PLA at 1168 

nm, the reflectance level increases. This behavior can be interpreted using the theory 

of Kubelka-Munk presented in the next section. 

 



 

 

 

 
Figure 12: The reflectance profile at 1168 nm through increasing depths of wheat flour in the PLA sample 

holder. 

 

 

B. Physical interpretation 

 

The Kubelka-Munk model 

 

The Kubelka-Munk model developed on a monochromatic case will be applied to the 

following one. It is assumed the results are applicable to every wavelength of the 

detector range between 1100 and 1350 nm. Let us consider a layer of wheat flour of 

thickness 𝒚 as shown in Figure 13. This case corresponds to a slice of the sample holder 

for a fixed thickness value. The surface of the sample holder is assumed to be wide 

enough so that the influence of borders can be neglected for the application of the 

Kubelka-Munk theory. The wheat flour is lying on a layer of PLA with a reflectance Rg. 

An infinitesimal layer of thickness dz is considered in the wheat flour at the height z. 

This layer is crossed by two fluxes: the descending flux i(z) and the ascending flux j(z). 

The wheat flour is assumed to be isotropic so that global absorption and scattering 

coefficients can be defined by K and S respectively. Taking into account the changes 

for both fluxes when crossing the layer of wheat flour leads to the following equations: 

 

−di(z) =  −Ki(z)dz − Si(z)dz + Sj(z) 

dj(z) =  −Ki(z)dz − Si(z)dz + Si(z) 

 



 

 

 

 

These two equations result in a differential equation system: 

{

di(z)

dz
= (K + S)i(z) − Sj(z)

dj(z)

dz
= −(K + S)i(z) + Si(z)

 

Kubelka and Munk proposed a solution to this system [23] which only involves the 

coefficients K and S as well as the reflectance of the sample holder Rg: 

 

R =  
1−Rg(a−b coth(bSy))

a−Rg+b coth (bSy) 
 where a =  

K+S

K
 and b =  √a2 − 1 

 
Equation 10: Solution of the Kubelka-Munk model. 

 

This solution (Equation 10) is suitable to describe the situation in the sample holder. 

However, only the wavelength range 1100 – 1350 nm is considered because it exhibits 

significant signal from PLA at lowest thickness values. In that context, Rg, K and S 

remain constant at each wavelength whereas y increases according to one dimension. 

As a consequence, each reflectance profile can be modeled by this relationship by 

considering y as a variable.  

 

 
Figure 13: The Kubelka-Munk formalism applied on a slice of the sample holder. 

 

The derivation of the Kubelka-Munk model shows the reflectance measurement 

(R) approaches a limit R∞ when the thickness value approaches infinity. In this situation, 

the sample is so thick that the presence of the reflective background has no effect on 

the measurement. This theoretical value can be obtained using the boundary condition 

i(0) = 0 (with j(0) ≠ 0). The final expression of R∞ only depends on K and S [62]: 

 

R∞ = 1 + 
K

S
− √

K2

S2
+ 2

K

S
 

Equation 11: Reflectance for an infinitely thick sample according to Kubelka-Munk. 



 

 

 

Theoretically, the value of R∞ is never reached. In other words, the sample 

holder has an influence on the reflectance measurement for every value of thickness 𝒚. 

 

 

Sensor considerations 

 

In practice, the reflectance measurement is always corrupted by noise. This 

measurement noise is mainly caused by electronic components of the hyperspectral 

camera (thermal noise, shot noise) [63] and leads to variations in the reflectance 

measurement for the same configuration. As a consequence, the reflectance level is 

measured with a certain level of uncertainty. This explains why the measurement points 

on the reflectance profile (Figure 12) describe a curve with a certain width. 

This kind of noise can be counteracted by increasing the exposure time of the 

measurement as long as the sensor is working in its linear phase. With this method, the 

signal-to-noise ratio (SNR) is improved so that the uncertainty of reflectance 

measurement is decreased. However, most of the time, increasing the exposure time is 

not possible because of pixel saturation. The sensor of a hyperspectral camera has a 

linear response on a finite range of photon flux. If the photon flux is more powerful, 

the pixel sensor is saturated, and the information is lost. If the photon flux is not 

powerful enough, the signal is drawn into measurement noise. The ratio between this 

largest and smallest flux corresponds to the dynamic range of the sensor. In practice, 

the exposure time of a camera is tuned so that the exposure time is high enough to 

have a high SNR. The limit is set to avoid pixel saturation. The saturation is mainly due 

to specular reflectance on the surface of the sample. Indeed, this source of the signal 

is, by nature, more powerful than the signal of interest that is partially absorbed.  

Even if the value of R∞ cannot be reached theoretically, it can be measured in 

practice because of measurement noise. As a result, for a given thickness value  y, the 

reflectance value R is so close to the theoretical limit R∞ that it can be reached because 

of uncertainty. For this thickness value, the corresponding reflectance measurements 

do not carry any distinguishable information about the reflectance signal of the sample 

holder. In this context, the penetration depth of the signal is reached. Since this notion 

is depending on sensor considerations as well as the nature of the sample holder, the 

notion of detection depth should be more suitable. However, in the following, the 

penetration depth notion is used to describe results obtained using the Kubelka-Munk 

theory. 

 

 

C. Determination of the penetration depth 

 

The reflectance profiles obtained for each wavelength (Figure 12) correspond to the 

context of the Kubelka-Munk theory. The experimental points are used to fit the model 

defined by Equation 10 as a function of the sample thickness y. The three parameters 



 

 

 

K, S and Rg are estimated using non-linear least squares fitting. The penetration depth 

is estimated by applying the following procedure for each wavelength (Figure 7): 

 

1. The root-mean-square error (RMSE) of the modeling is calculated between the 

experimental points and the fitted function (Equation 10). This value is chosen 

to represent the spread of the experimental points around the fitted curve R(y). 

 

2. The value of R∞ is calculated using Equation 11. 

 

 

3. The threshold reflectance value RT is calculated as the difference between the 

reflectance limit R∞ and the RMSE: RT = R∞ − RMSE . 

 

4. The penetration depth yp is determined such that R(yp) = RT. 

 

 
Figure 14: Procedure for the calculation of the penetration depth at 1168 nm. 

 

 

 

 

 

 

 



 

 

 

 
Figure 15: Penetration depth profile obtained from the reflectance profile measurements. 

 

The penetration depth profile obtained is presented on the Figure 15. The profile 

is estimated on the range 1100 – 1350 nm because the Kubelka-Munk model fitting 

cannot be applied on higher wavelengths. In these conditions, the reflectance profile 

is flat because the PLA spectral signature is not visible for any wheat flour thicknesses. 

Otherwise, the resulting curve shows the penetration depth is highly dependent on the 

wavelength of NIR radiations. It is higher for smaller wavelengths (from 1100 nm to 

1150 nm). The profile can be explained by the absorption coefficients of the pure 

materials (Figure 11). Indeed, it is similar to the reflectance spectral signature of wheat 

flour. Consequently, the penetration depth is smaller for wavelengths at which wheat 

flour absorbs (1210 nm). The lower values for penetration depth between 1100 nm and 

1170 nm can be explained by the strong absorption of PLA between 1123 nm and 1211 

nm. 

 

 

D. Partial Least-Squares regression results 

 

In this study, the use of PLS regression can be compared to unmixing problems. In this 

situation, the aim consists in finding the 𝑘 pure spectral endmembers (𝒔𝒊) associated 

with their proportions (𝑎𝑖) in the linear mixing model (Equation 2) that decomposes the 

signal of the measured spectrum (𝒙). 

In the situation of the sample holder filled with wheat flour, the spectrum of 

each pixel can be modeled by a mixture between the spectral contributions of wheat 

flour and PLA with an additional residual vector (𝒘). However, solving the linear mixing 

model for each pixel requires some knowledge about the endmembers (𝒔𝒊). In our 



 

 

 

study, the pure spectra of wheat flour and PLA may not be relevant. Indeed, linear 

combination of spectral signatures is an appropriate model when the spectral mixture 

occurs in the sensor. In our case, the mixture relies on nonlinear mixture effects [64] 

[65] [66]. As a consequence, making assumptions on the form of spectral endmembers 

in the case of linear mixture model may be not appropriate. As we can consider this 

problem is a two spectral signature mixing, quantifying the proportion of one element 

is sufficient. Consequently, PLS can be seen as a method to solve the mixture model 

within the sample holder. Thus, the resulting prediction 𝒚 represents the contribution 

of PLA in the spectra as well as the wheat flour thickness. Instead of using assumption 

on the spectral endmembers, PLS must be trained with a training set of predictors 𝐗 

and target values 𝒚. 

 

 
Figure 16: PLS prediction results for wheat flour thickness across the sample holder. 

 

PLS model was trained on the spectra issued from the training images. Five 

latent variables were chosen as more variables did not improve the cross-validation 

error. The obtained model was then applied on the image of a different wheat flour 

sample. Each pixel gave a prediction leading to 24 600 prediction points. All predictions 

coming from pixels of the same line (same wheat flour thickness 𝒚) were averaged to 

improve visualization. As a result, 246 prediction points were obtained and plotted on 

a graph (Figure 16) against the real wheat flour thickness values. These results show 

two types of behaviors. The first part of the prediction curve shows a monotonic 

increasing behavior for low thickness values (between 0.5 mm and 1.5 mm). Thus, PLS 

regression exhibits a correlation between the measured spectra and the corresponding 

wheat flour thickness. The measured reflectance data follow a mixing model between 

wheat flour and PLA spectra. The results show that PLS is able to fit this mixing model 



 

 

 

for low thickness values. For thickness values higher than a given value, PLS prediction 

results do almost not evolve. The PLS model does not exhibit any correlation between 

the measured spectra and the wheat flour thickness. The mixing model between wheat 

flour and PLA spectra is not fitted by the PLS model. As a consequence, there is a 

change in the mixing behavior between PLA and wheat flour. As the predictions 

remains constant, the PLS model interprets high thickness wheat flour spectral data as 

pure wheat flour spectra. In this situation, the signal coming from the PLA is so weak 

that its influence becomes comparable to the measurement noise. 

 

 
Figure 17: Regression coefficient of the PLS model used for the prediction of the wheat flour thickness. 

 

Figure 17 shows the PLS regression coefficients for each wavelength. The high 

weights attributed to the low wavelengths show the importance of these variables for 

quantifying the PLA spectral signature across the sample holder. The right part of 

Figure 17 focuses on the range 1100 – 1350 nm to highlight the similarities between 

the regression coefficients and the penetration depth results obtained (Figure 15). 

As these similarities show, the PLS unmixing method and the reflectance profile 

fitting method are relevant to each other. The PLS method provides a multivariate 

analysis of the problem so that all wavelengths contributions are taken into account in 

the prediction result profile (Figure 16). Thus, by extrapolation, the Kubelka-Munk 

theory and the sensor considerations explain the behavior observed on the PLS 

prediction results (Figure 16). 

Indeed, for a given wheat flour thickness y, the signal of the PLA cannot be 

extracted from the diffuse reflectance spectrum. This may be an issue for detection 

problems when the target is buried under a layer of sample. For this reason, it is 

important to define the higher thickness yd for which a detection is possible. This limit 

can be defined by using the PLS prediction results. In the context of the sample holder, 

when the perceived concentration of PLA in the spectral measurement remains 

constant, the limit of detection is reached. For determining this limit, the PLS prediction 

results were used to fit two linear regression models. The intersection of the two 

regression lines is considered to be the maximum acceptable thickness for which the 

PLA concentration evolution can be interpreted by a multivariate unmixing method. 



 

 

 

The detection depth obtained by this method is yd = 1.80 mm (Figure 18). As a 

consequence, the maximum wheat flour thickness to use in order to detect the 

background in PLA is 1.80 mm. This result is specific to the case of PLA under a 

thickness of wheat flour. However, the method of determination may be used for any 

kind of sample and background or target. 

 
Figure 18: Determination method for the detection depth from the PLS prediction results. 

 

Additional experiments (results not shown) were performed using different 

particle sizes for wheat flour, other samples such as chocolate powder or almond 

powder, and different designs for the sample holder. The hyperspectral imaging 

measurement followed by PLS analysis showed to be consistent for each application. 

Globally, the same behavior for the penetration depth were observed with some 

variations according to the samples. The particle size and the density of the powder 

seem to be important parameters that influence penetration depth. For future work, 

the influence of these parameters may be investigated. 

 

 

4. Additional discussions 

 

A. The detection depth versus the penetration depth 

 

This study introduces the notion of detection depth which is different from the 

penetration depth. The penetration depth is defined as the depth (into a given material) 

at which the intensity of an incident beam decreases by 99 % [35]. However, this 



 

 

 

definition is difficult to use for a range of wavelengths because of the absorption 

variations. Although it is a convenient notion to describe the signal theoretically, it may 

not be suitable for the study of complete spectra. Indeed, the analysis of spectral data 

is commonly made using multivariate methods that take all the wavelengths into 

account. Hence, the notion of penetration depth is not adapted for the characterization 

of an entire spectrum in the context of detection. 

Moreover, the detection of PLA under a layer of wheat flour is not possible for 

each wavelength. Examples are the wavelengths where PLA does not exhibit an intense 

absorption peak (Figure 15). In this situation, the obtained reflectance profile does not 

show any evolution depending on the powder thickness. As a result, the curve fitting 

technique cannot be adequately applied and the corresponding penetration depth 

value is ill-defined. This is the reason why the penetration depth cannot be evaluated 

for high wavelengths in the study of wheat flour and PLA. For wavelengths higher than 

1350 nm, the absorption of wheat flour is too strong so that the detection of PLA is 

not possible. Berntsson et al. had the same limitation at 1400 nm using the empirical 

method [30]. As the NIR spectra often have an increasing absorption baseline, this 

would suggest the higher the wavelength, the more difficult is to detect its signal in 

depth. Berntsson et al. have shown, using the theoretical method, that the penetration 

depth for an absorbent material is below 0.5 mm for wavelengths higher than 1500 

nm. 

As a consequence, the notion of detection depth may be more suitable 

regarding detection problems in NIR spectroscopy. This consists of characterizing the 

entire spectrum instead of each wavelength. 

 

 

B. The effective detection depth 

 

Our study shows that the detection depth of PLA in the wheat flour is about 1.80 mm 

on the NIR range [53]. This result can be compared to those obtained by Huang et al. 

[35] who worked on the detection of melamine through milk powder. Indeed, the 

measurement contexts are similar. Moreover, the samples play similar roles: the wheat 

flour and the milk are both powders with smooth spectra (i.e. no sharp absorption 

peak). On the other hand, the melamine and the PLA both exhibit a sharp absorption 

peak in their spectra. In the study of Huang et al., only five thickness values could be 

tested and the authors concluded that the detection depth is below 2 mm. The two 

works are relevant to show that even if there is a strong absorption of a material, it can 

be strongly attenuated by a small thickness of powder in the order of some millimeters 

(Figure 19). As a reference, 10 to 20 wheat flour particles can strongly attenuate the 

NIR radiations. 

 



 

 

 

 
Figure 19: (A) the absorbance profiles of milk powders and melamine samples separately and (B-C) 

measured together with low amount of melamine [35]. 

 

 

C. The consequences of the detection depth 

 

The previous results show that the detection depth is very small compared to the 

typical sample size: only 10 to 20 particles of wheat flour. As a result, the signal 

measured using NIR spectroscopy is mostly representative of the sample surface. It is 

essential to check that the corresponding analysis depth is relevant to the sample 

property to be evaluated. For example, Lammertyn et al. study the penetration depth 

in apple slices to ensure their internal properties can be inferred from standard NIR 

measurements [34]. In a perfect world, such a study should be performed systematically 

to be sure to know what part of the sample is screened. 

The detection depth may have more hazardous implications when the 

application is about detecting adulterations. Because of the NIR limitation, the 

detection can only be performed for a certain depth which may be even more reduced 

than the results shown before. Indeed, the chemical to be detected may have no 

significant absorbance peak to help for the detection. As a result, the conclusion of a 

NIR inspection should be restricted to the sample thickness defined by the detection 

depth. Such a limitation may be a problem for the detection of some default in food 

samples. However, this limitation could be overcome when dealing with powders. One 

solution could be to spread out the powder sample on a large surface to reduce the 



 

 

 

thickness. Another solution could be to analyze the same powder sample several times 

with a HSI. The powder is shuffled each time before measuring. In this way, several 

random layers of powder are presented to the sensor. If there is a particle to be 

detected, both techniques give the sensor a better chance of discovering and 

measuring the minor compound. 

 

 

D. The parameters influencing the detection depth 

 

The detection depth depends on several parameters. They can be separated into two 

categories: the parameters linked to the physical properties of the sample and those 

linked to the properties of the measurement system. The first category has been 

discussed in the previous sections through the scattering and absorption coefficients 

of the medium. These coefficients are dependent on the wavelength and on various 

characteristics of the sample. The scattering coefficient is mainly influenced by the 

particle size (powders) while the absorption coefficient is influenced by the chemical 

nature of the molecules in the sample.  

The properties of the measurement system are also highly responsible for the 

detection depth. In particular, the dynamic of the sensor has a great importance in the 

ability to detect NIR signal in reflectance. Let us consider a NIR incident beam that 

irradiates a powder sample with a bottom material (Figure 20). The probability that the 

photon is scattered or absorbed increases with the path length. Hence, there are a few 

chances a light path reaches the bottom material so that its absorption signature can 

be taken into account by the measurement. Let us present this differently by focusing 

on a specific wavelength at which the bottom material has a sharp absorption peak (for 

example 1168 nm for PLA). Even if the powder absorption for this wavelength is not 

high, the deeper the light beam goes into the powder the higher is the probability it is 

absorbed. As a result, the absorbance peak of the bottom material does not affect the 

measurement. 

 



 

 

 

 
Figure 20: The light beam behavior when measuring in-depth material through a scattering medium. 

 

However, the reflectance measurement is the result of a massive number of path 

lengths. Among them, there probably exist some light beam that successfully reach the 

bottom material. As these path lengths are in minority, their contribution is very weak 

and invisible in the measured signal. It is because this intensity is comparable to the 

measurement noise. Hence, the signal of interest cannot be differentiated from the 

variance of the measurement. The standard way to reduce the importance of the noise 

is to increase the integration time of the sensor. By this process, the signal to noise 

ratio increases. However, increasing the integration time of the sensor also increases 

the amount of counted photons in the sensor. This count is limited by the technology 

and causes the sensor saturation. As a result, the integration time cannot be increased 

indefinitely and the saturation depends on the amount of received signal. 

Unfortunately, the reflectance measurement creates a signal of a strong intensity signal 

from the surface of the sample. In particular, the specular reflectance has a strong 

absorbance that is responsible for the sensor saturation. 

The dynamic of a sensor is the ratio between the smallest and the largest signal 

quantity it can measure. For a spectrometer, it is possible to tune the integration time 

to decide how long the sensor counts the incoming photons. If this time is too short, 

photons from interesting signal maybe confounded with the measurement noise. If this 

time if too long, the sensor maybe saturated and no quantitative information can be 

recovered. For this reason, if a sensor has a high dynamic range, it is possible to 

increase the integration time – meaning measuring more signal – without saturating. 

Hence it can measure signals coming from deeper layers in the sample. 

 

 

 

 



 

 

 

5. Conclusion and perspectives 

 

This work has proposed a method using hyperspectral imaging, a PLA sample holder 

and the PLS regression method to study the light penetration depth in a wheat flour 

sample. Reflectance profiles were extracted and interpreted using the Kubelka-Munk 

theory. Using this model derivation as well as sensor considerations, a criterion for light 

penetration depth was given and calculated for the range 1100 – 1350 nm. Results have 

shown that it is highly dependent on the wavelength value. The PLS method has been 

shown to be an efficient solution for fitting spectral data on the linear mixing model 

up to a given thickness. The use of this multivariate technique has provided a criterion 

for defining the detection depth, the maximum thickness of wheat flour for which PLA 

can be quantified from the signal. Two linear models were fitted on the PLS prediction 

results in order to calculate a detection depth of 1.80 mm. This value provides an 

estimation of the maximum depth for which a spectral target can be detected into 

wheat flour. It also corresponds to the minimum thickness of wheat flour to ensure the 

signal of the background does not have influence in the diffuse reflectance 

measurement. Unlike the concept of penetration depth, the detection depth is related 

to the application and gives a more suitable value for in-depth detection purposes. The 

procedure used in this work could be reproduced using another material as a target. 

By applying a thin layer of target particles at the bottom of the sample holder, the same 

PLS regression procedure could be applied to obtain the detection depth results for a 

given application. 

At this moment, the detection of PLA in wheat flour does not have a direct 

application in the industry, however the detection of contaminants is carried out. A 

solution could be to spread out the target chemical on the bottom of the sample 

holder. By doing this, the target material becomes the chemical of interest. Huang et 

al. proposed a similar approach for studying the detection of melamine in milk powder 

[35]. 

 
Figure 21: Principle of the SRS measurement. 



 

 

 

Finally, the way the reflectance measurement is performed could be changed to 

increase the detection depth. As presented before, the detection depth is limited by 

the fact that the surface contribution dominates the intensity of the reflectance 

measurement. Consequently, there is an interest in being able to measure the 

reflectance signal from the surface and from the sample depth independently. The 

Spatially Resolved Spectroscopy (SRS) is a measurement method that is used to study 

the scattering properties of a sample. When using this technique, one assumes that if 

a light path goes deep in the sample, there is more chance it goes out from the sample 

at a longer distance from the light source. Hence, by illuminating a restricted area of 

the sample the reflected light with a higher pathlength can be isolated and measured 

by a sensor. Figure 21 shows this principle: three different light paths (𝓁1, 𝓁2 and 𝓁3) are 

shown. As the light goes deeper in the powder, it is scattered back at a longer distance 

from its entry point. Multiple sensors can be placed at different distances (𝛿, 𝛿’, 𝛿’’) 

from the lighting to get the information from a specific light path. This sensor must 

target a specific area of the sample, for example a given distance from the lighting 

system. Figure 21 shows that since the surface reflectance does not irradiate the sensor, 

the detection of the bottom material could be done for higher depths. 

 

 

 

 

 

 

 

 

  



 

 

 

II. The detection of peanut flour using the Matched Subspace 

Detector 
 

This part has been adapted from the publication:  

 

A. Laborde, B. Jaillais, J.M. Roger, M. Metz, D. Jouan-Rimbaud Bouveresse, L. Eveleigh, 

C. Cordella, Subpixel detection of peanut in wheat flour using a matched subspace 

detector algorithm and near-infrared hyperspectral imaging, Talanta. 216 (2020) 

120993. https://doi.org/10.1016/j.talanta.2020.120993. 

 

 

1. Introduction 

 

Peanut is a primary product used in the food industry for its fats and proteins [68]. 

However, it is also a major food allergen. As such, it is hazardous for allergic people: 

the ingestion of some mg of protein [69] may have a dramatic effect up to death. For 

this reason, the food industry enforces good manufacturing practices to reduce the risk 

of contamination and to inform the probable presence of food allergen in their 

products [70]. 

Hyperspectral Imaging is a technique combining spectroscopy and imaging to 

obtain both spatial and spectral information from a sample. When associated with the 

NIR spectral range, HSI is a powerful technique to provide a fast, non-destructive, and 

cost-effective control method. It is an emerging technology for food inspection since 

it provides non-destructive analysis of heterogeneous samples [4], and hyperspectral 

images allow the visualization of chemical maps of the samples. As an example, Elmasry 

et al. use this technology to provide water, fat and protein distributions on beef 

samples [71]. The estimation of food nutrients in samples leads to their quality 

assessment [1]. 

Hyperspectral imaging technique enables to obtain a spectral measurement for 

every pixel of an image. As a consequence, each spectrum is representative of a small 

surface of the sample. The spectral measurement is then more sensitive to the minor 

components of this sample since they have more influence on the field of view of one 

pixel than on the entire sample. It offers the opportunity to detect adulterants in food 

by characterizing each pixel of the image [72][73][74]. In practice, the detection consists 

of classifying each pixel of the hyperspectral image as an adulterant or a sample 

spectral signature. As NIR spectroscopy has been a powerful technique for 

characterizing organic matter [75], [76], HSI appears to be a promising tool for 

adulteration detection in the food industry. The literature shows plenty of such 

applications: Vermeulen et al. studied the detection of ergot bodies in cereal flour [77], 

Fernández Pierna et al. investigated the detection of melamine in milk powder [78] [56], 

Verdú et al. proposed to study the adulteration of wheat products [79]. Mishra et al. 

studied the detection of crushed peanut in wheat flour [15] [14] using two different 



 

 

 

detection methods. However, performing this detection may be more difficult in 

another context. Defatted peanut flour is a product obtained from milled peanut. In 

this condition, peanut flour particles are smaller than the crushed peanuts: 500 µm to 

1000 µm [15] for crushed peanut against smaller than 200 µm for peanut flour (similar 

to wheat flour [37]). Additionally, as the fatty acids of peanuts are removed, their 

spectral contribution cannot be used for the discrimination of peanut particles against 

wheat particles. For these reasons, the use of HSI for detection may be a challenge. The 

purpose is to identify different materials based on their spectral signature to label each 

pixel as an adulterant or a sample pixel. However, there is not a unique spectral 

signature for each material [51] because the reflectance value at each wavelength of a 

given material is not deterministic but is a random variable. Its variability is linked to 

the lighting conditions, the material surface, the sample heterogeneity, and many other 

factors. On the other hand, two different materials may have very similar spectra. In 

particular food industry products, the shapes of NIR spectra are often similar since they 

are the result of the mix of the main nutrients. It is the case for wheat and peanut as 

they are similar products once transformed into flour. Thus, the ambiguity of spectral 

information and the spectral variability issue are two main challenges for detection 

purposes in the food industry. 

Another difficulty arises when dealing with powder samples because the particle 

size may be smaller than the pixel size. For a hyperspectral camera, a pixel integrates 

the radiance signal from all the material in its field of view. If it contains particles with 

different spectral signatures, the pixel is considered as mixed and the resulting 

spectrum does not correspond to any pure chemical defined as target or background. 

This problem is known as the subpixel detection [51]. 

In the literature, some detection algorithms have been developed to take into 

consideration both variability and subpixel issues using spectral modeling [51]. On the 

one hand, the mixed pixel issue is tackled using the LMM [64], which assumes the 

radiance measured by a pixel is the sum of the chemical radiances weighted by their 

surface contribution in the pixel field of view. On the other hand, the detection problem 

can be addressed using a MSD [51] [80], which is derived from a hypothesis test. 

The design of the MSD algorithm requires to fine-tune its parameters as well as 

to evaluate its detection performance. It implies to have annotated hyperspectral 

images in which adulterated and regular pixels are identified. However, such data 

cannot be obtained easily in the context of food inspection. When two powders of 

similar aspects are mixed, it is not possible to identify adulterated pixel by human eye 

inspection. On the other hand, it is not possible to control the spatial constitution of 

individual pixels since they represent a very small field of view (0.2 mm × 0.2 mm) [2]. 

Instead, spectral simulations can be used to generate new spectral data from a 

known statistical distribution. With this technique, synthetic spectral data with known 

adulteration concentrations can be used to validate the design of the MSD detection 

algorithm.  

 



 

 

 

The use of a near-infrared hyperspectral imaging for the detection of adulterant 

in food has been studied in plenty of applications [4]. However, the issues regarding 

the variability of the samples, the spectral ambiguity between species, the mixed pixels 

and the lack of reference data for the detector design make the detection difficult. To 

our knowledge, no study has been proposed to tackle detection for such samples with 

particle size smaller than the pixel. The purpose of this study is to evaluate how the 

MSD approach using the LMM and the modeling of spectral variability can provide 

performant detection for such a detection problem. As no reference values for the 

detector design are available, a spectral simulation method is proposed. After studying 

the performances of the detector on simulated data, we propose to study the detection 

using real hyperspectral measurements of flour mixtures at graduated concentrations 

of peanut. 

 

 

2. Material and methods 

 

A. Samples 

 

In this study, the aim is to detect adulteration of peanut flour in wheat flour. White 

wheat flour (Grands Moulins de Paris, Francine batch number ER510 – FTU104, France) 

was used as the regular sample. Samples were taken from two different packs. Defatted 

peanut flour (KoRo Handels GmbH, batch number C170151, Germany) was used for 

the target sample. Flour samples were mixed together to obtain 8 different mass 

concentrations of peanut flour: 20 %, 10 %, 5 %, 2 %, 1 %, 0.5 %, 0.2 % and 0.02 % for 

a total mass of 13.75 g. Pure peanut flour and pure wheat flour were prepared as well. 

Mass measurements were performed using a precision balance (Sartorius Entris, 0.01 

mg precision). 

Mixed samples were put in a container to be shaken and mixed with a spatula. 

Samples were put in a rectangular sample holder (30 mm width × 70 mm length) made 

of a 7 mm depth cavity. The top of the sample holder was skimmed to remove excess 

powder without affecting the packing density. In the following, the wheat flour is 

referred to as the regular sample with letter S, and the peanut flour is referred as the 

adulterant with letter A. 

 

 

B. Hyperspectral imaging system 

 

A line-scan pushbroom Specim SWIR camera (SPECIM, Oulu, Finland) was used for the 

image acquisition. The hyperspectral camera acquired 288 spectral bands from 900 nm 

to 2500 nm with a 5.6 nm step. The camera acquired 392 pixels per line and the pixel 

size was 250 µm × 250 µm. Six halogen lamps were used for the measurement and 

heated up for 30 min before the acquisition. The integration time was 0.973 ms. A white 

reference measurement was performed before each acquisition using a white diffuse 



 

 

 

reflectance standard (Spectralon®, SRS-99-010, Labsphere). Additionally, the dark 

reference image was acquired after closing the shutter of the camera. Each sample was 

measured independently, leading to 30 data cubes. 

 

 

C. Data processing 

 

Each image was cropped to focus on the sample in the central cavity of the sample 

holder leading to data cubes of size 200 × 320 × 188. The white reference image was 

averaged along the perpendicular direction of the sensor array to obtain one spectrum 

for every pixel of the sensor line. The reflectance image is calculated using Equation 9. 

First (under 1200 nm) and last (over 2200 nm) wavelengths were removed as spectra 

were too noisy. Spectra were processed using a Savitsky-Golay filter to reduce the noise 

for the remaining wavelengths (2nd order polynomial, 7-points window, and no 

derivative). A Standard Normal Variate (SNV) transformation was applied to 

compensate for scattering effects. 

 

 

D. Spectral simulation using Principal Component Analysis 

 

A spectrum can be considered as a vector of 𝑚 absorbance values, one for each 

wavelength of the spectral range. The variability of spectral data is the variance of the 

reflectance for each wavelength. NIR spectral data exhibits a high correlation between 

the variables. As a consequence, defining the spectral variability independently for each 

variable is not efficient. Instead, new variables can be calculated using PCA. 

PCA is a method for dimensionality reduction that decomposes the data matrix 

𝐗 ∈ ℝn×m according to orthogonal sources of the highest possible variance. The data 

matrix can be decomposed as follow [81]: 

 

𝐗 = 𝐓𝐏T 

 
Equation 12: Matrix decomposition by PCA. 

 

where 𝐓 ∈  ℝ𝑛 × 𝑚 is the score matrix, 𝐏 ∈  ℝ𝑚 × 𝑚 is the loading matrix and the upper 

script symbol T refers to the transposed matrix. The dimensions of the score and the 

loading matrices hold if 𝑚 ≤ 𝑛. 

Under this new representation, each spectrum is represented by a set of scores 

(from the 𝐓 matrix) in the Principal Component space and their corresponding loading 

vectors (from the 𝐏 matrix) that describe the spectral variability of the 𝐗 image. In this 

context, each loading or component vector from the 𝐏 matrix describes the subspace 

of the hyperspectral image’s variability. On the other hand, the scores describe the 

coordinates of the pixels on the corresponding subspace. 

For each component, the distribution of these scores can be considered as 

Gaussian with mean 𝜇 - which is, for PCA applied on centered data, null - and variance 



 

 

 

𝜎2. As a consequence, a new spectrum can be simulated by randomly generating its 

scores coordinates on the principal components. 

The spectral simulation procedure consists of combining the PCA and the LMM 

(Equation 2). In this context, the vector 𝒔𝒊 can represent a pure spectral signature, like 

the average spectrum of a product. Or it may represent a spectral signature describing 

one variability subspace, like a component from the PCA. The process of data 

simulation used in this study is described by the following procedure: 

 

1. A PCA was performed on the centered data matrix of the regular sample 𝐗𝐒 and of 

the adulterant sample 𝐗𝐀 distinctly. The average spectra of both matrices 𝐗𝑆 and 

𝐗𝐀 were calculated and considered as the pure spectral signatures of the materials. 

 

2. For every principal component index 𝑖 ∈ [1 , m], the distribution of scores 𝑻𝒊 was 

assumed to be Gaussian with mean 𝜇𝑖  (which is equal to 0 in case of a centered 

PCA) and standard deviation 𝜎𝑖. These parameters were estimated from the PCA 

performed in the first step of the procedure. 

 

3. For a given peanut proportion c varying between 0 and 1, the average spectrum 

was simulated using the LMM: 

 

𝑋̃0 = 𝑐𝑋̅𝐴 + (1 − 𝑐)𝑋̅𝑆 

 
Equation 13: Simulation of the average spectrum with the LMM. 

  

where the tilde symbol designates the simulated matrices. 

 

4. The simulated scores for each PC were randomly generated from Gaussian 

distributions with the parameters estimated in step 2. Then, the simulated variability 

was calculated by multiplying the random scores 𝐓̃𝐀 and 𝐓̃𝐒 by the principal 

components of the corresponding PCA 𝐏𝐀 and 𝐏𝐒. The total variability attributed to 

𝐗 is a balance between peanut and wheat controlled by the proportion c. This 

simulated variability was finally added to the averaged spectrum calculated in step 

3:  

 

𝐗 = 𝐗𝟎 + 𝑐𝐓̃𝐀𝐏𝐀
𝐓 + (1 − 𝑐)𝐓̃𝐒𝐏𝐒

𝐓 
 

Equation 14: Simulation of the spectral data with PCA and the LMM.  

 

The simulation procedure was applied to obtain 100 spectra for each peanut 

concentration 5%, 10%, 15% and 20%. 

 

 

 



 

 

 

E. Detection using the Matched Subspace Detector 

 

Two competing hypotheses were tested to address the subpixel detection problem. In 

the null hypothesis, the pixel was assumed to contain only the regular sample (wheat 

flour). The LMM decomposed the pixel spectrum according to the variability subspace 

associated with the regular sample 𝒔𝒊
𝑺. In the alternative hypothesis, the pixel was 

assumed to contain adulterant particles as well as the regular particles. Thus, 𝒙 was 

modeled using the LMM with the variability subspaces associated with the regular 

sample 𝒔𝒊
𝑺 and the adulterant 𝒔𝒊

𝑨. The detection algorithm was based on the following 

statistical test: 

 

H0: 𝑥 =  ∑ 𝑎𝑖𝑠𝑖
𝑆𝐿

𝑖=1  

 

H1: 𝑥 = ∑ 𝑎𝑖
𝑆𝑠𝑖

𝑆𝐿
𝑖=1 + ∑ 𝑎𝑖

𝐴𝑠𝑖
𝐴𝐽

𝑖=1  

 
Equation 15: The two hypothesis for the subpixel detection. 

 

where 𝐿 and 𝐽 defined the dimension of the variability subspace for the regular sample 

and the adulterant sample, respectively. Two matrices were defined corresponding to 

these hypotheses: 𝐌𝐒 contains the vectors 𝒔𝒊
𝑺 in columns, and 𝐌𝐀 contains the vectors 

𝒔𝒊
𝑺 and 𝒔𝒊

𝑨 in columns: 𝐌𝐒 =  (𝒔𝟏
𝑺, 𝒔𝟐

𝑺, … , 𝒔𝑳
𝑺)  and 𝐌𝐀 =  (𝒔𝟏

𝑺, 𝒔𝟐
𝑺, … , 𝒔𝑳

𝑺, 𝒔𝟏
𝑨, 𝒔𝟐

𝑨, … , 𝒔𝑱
𝑨). 

 

The generalized likelihood ratio approach gives the detection statistic for the 

MSD algorithm [51]: 

TMSD(𝑥) =  
𝒙𝑇(𝐐𝐒

⊥ − 𝐐𝐀
⊥)𝒙

𝒙𝑇𝐐𝐀
⊥𝒙

 

Equation 16: The statistic of the MSD. 

 

where 𝐐𝐒
⊥ and 𝐐𝐀

⊥ are the projection matrices on the orthogonal subspace of 𝐌𝐒 and 

𝐌𝐀 respectively. These projectors were obtained using the following formula: 

 
 

𝐐𝐗
⊥ = 𝐈 − 𝐗(𝐗𝐓𝐗)−𝟏𝐗𝐓 

 
Equation 17: The definition of a projection matrix on an orthogonal subspace. 

 

In the first step, the detection statistic was calculated for each pixel spectrum of 

a sample using Equation 16. In a second step, a threshold must be chosen to classify 

each pixel between two classes: regular pixel or adulterant pixel. This threshold was 

chosen by applying the following procedure. First, the detection statistic was applied 

to all the pixels of the regular samples. When the value of TMSD increases, the 

probability that the corresponding spectrum contains adulterant particles increases as 

well. Hence, the maximum value of TMSD calculated on the regular sample was chosen 

as the threshold. This approach consisted of maximizing the detection rate by keeping 



 

 

 

the false alarm rate under a limit. For new pixels, the detection procedure is defined 

by:   

 

TMSD(𝑥) ⋛  𝜂𝑁𝑃 

with 𝜂𝑁𝑃 = 𝑚𝑎𝑥 (TMSD(𝐗𝐒)) 
 

Equation 18: The test decision inequality. 

 

where the two other pure wheat replicates were used in order to assess the robustness 

of the thresholding method. 

 

As Equation 16 shows, the design of the MSD algorithm depends on the design of 

𝐌𝐒 and 𝐌𝐀 which directly depend on the parameters 𝐿 and 𝐽. As a consequence, the 

design of the MSD algorithm consists of finding optimal values for 𝐿 and 𝐽. In the 

following, the performance of the detector is qualified using its sensitivity which refers 

to the minimum local concentration (at the pixel scale) for which the detection rate is 

over 99 %. 

 

 

F. Software 

 

The data processing was performed using Python 3.7. For data simulation, the PCA was 

performed using the Scikit-Learn 0.18.1 implementation consisting of a Singular Value 

Decomposition (SVD). The PCA on non-centered data was performed using the 

eigenvalue decomposition of 𝐗𝐓𝐗 on Numpy 1.16.4. 

 
 

3. Results and discussions 

 

A. Evaluation of data simulation for the detector design 

 

Figure 22 shows the factorial PC1-PC2 plan of PCA performed on the pure wheat and 

the pure peanut samples. Their corresponding scores are plotted with empty squares. 

On the other hand, the simulated data between 5 % and 20 % of peanut adulteration 

are plotted with filled markers. These scores are obtained by projecting the simulated 

spectra onto the first two loading vectors of the PCA. The figure shows that the lowest 

peanut concentrations are closer to the pure wheat sample on the left of the principal 

component. Conversely, the highest peanut concentrations are on the right side of the 

plot. It shows that the simulated data are ordered according to the first principal 

component, which describes the main variability between peanut and wheat. Hence 

the data simulation procedure is relevant with the expected concentration level of 

peanut. 

The figure contains a focus which enables to evaluate the distribution of the 

scores for the simulated data and the pure wheat flour data. This observation shows 



 

 

 

that the simulated data have similar variability as real measurements and can be used 

to assess the sensitivity of the detection algorithm. 

Additionally, Figure 22 shows that the pure peanut flour measurements exhibit 

a higher variance on the second principal component that the wheat flour and the 

simulated data. It is explained by the fact that the surface of the peanut sample exhibits 

more heterogeneity as well as the peanut particles are more diverse than wheat. On 

the other hand, the variability of the simulated data was generated using a combination 

of information coming from the pure wheat and peanut measurements. This 

combination is controlled by the concentration parameter c, as shown by Equation 14. 

As a result, for small concentrations, the simulated data have a variability which is closer 

to that of the wheat flour sample. 

 
Figure 22: Simulated data are projected on the score plot of the PCA performed on real measurements 

of pure samples. 

 

Table 1 shows the details of the design (the values for 𝐿 and 𝐽) for three MSD 

algorithms. These designs were selected because they show the most interesting 

results among all those which were tested. The next section shows the results for other 

designs and focuses on the choice of these parameters. In the current section, we focus 

on the relevancy of the use of simulated data to evaluate the MSD algorithms 

performances. 
Table 1: Design parameters 𝐿 and 𝐽 for the three MSD designs of interest. 

 

Design parameters L J 

MSD 1 1 1 
MSD 2 2 1 
MSD 3 2 2 
   

 



 

 

 

The design of the MSD algorithms requires to evaluate its sensitivity to optimize 

the choice of the parameter values (𝐿 and 𝐽). Figure 23 shows the detection rate of the 

three MSD designs described in Table 1. The detection rate indicates the fraction of 

detected targets for a given peanut concentration of the simulated data. For zero 

peanut concentration, spectra from the real wheat flour images were used. The graph 

shows that no detectors have any false alarm on real wheat measurements. It means 

that the thresholding method is robust for all three MSD designs. MSD 2 and 3 reach 

a detection rate of 100% for a simulated peanut concentration of 20% and they both 

have similar detection rates for smaller peanut concentrations. MSD 1 exhibits a lower 

detection rate for every concentration and does not reach a 100% detection rate for 

20% of peanut adulteration. According to the simulated data, MSD 2 and 3 have a 

similar sensitivity, which is higher that of MSD 1. 

 

 
Figure 23: The detection rate according to the peanut concentration in simulated data for three MSD 

designs. 

 

Figure 24 shows the comparison of the detection maps for the three MSD 

presented in Figure 23 and Table 1. For this purpose, a focus is made on the 

hyperspectral image measured on a sample containing 2% of peanut flour. The map 

represents an area of 104 × 62 pixels (2.6 × 1.5 cm) and each color corresponds to the 

output of the comparison of 2 MSD algorithms. 

The top map shows several groups of blue pixels (top left-hand corner), meaning 

that 30 pixels are only detected by MSD 2 and not by MSD 1. Since real measurements 

do not contain any reference value at the pixel scale, the real position of the targets is 



 

 

 

unknown. However, the fact that neighbor pixels are simultaneously detected 

strengthens the probability that there is effectively peanut in these pixels. In other 

words, the detection of a neighborhood of pixels is more credible than the detection 

of an isolated pixel. On the other hand, MSD 1 only detects one pixel exclusively. The 

comparison of the detection maps shows that MSD 1 is less sensitive than MSD 2. 

The map below shows less colored pixels, which means that MSD 2 and 3 have 

similar performances. MSD 3 detects 13 more pixels than MSD 2 which are located 

close to clusters of pixels that are detected by both MSD designs. On the other hand, 

MSD 2 only detects one more pixel than MSD, which can be considered suspicious 

since it is isolated. These observations show that MSD 3 has better performances that 

MSD 2. 

These conclusions drawn using real measurements are relevant to the results 

obtained with the simulation method (Figure 23). They show that the simulated data 

can be relevantly used for the analysis of the MSD designs.  

 

 
Figure 24: Focus on the detection map comparison for the sample with 2% of peanut (replicate A). 

 

 

 

 

 



 

 

 

B. Evaluation of the Matched Subspace Detector Algorithm 

 

Design of the Matched Subspace Detector 

 

Figure 25 shows the sensitivity of several MSD designs calculated with the simulated 

data. The first graph on the left shows the effect of varying 𝐿 with 𝐽 = 2. It means the 

dimensions of the subspace which represents the regular sample is varying whereas a 

subspace of dimension two is chosen to represent to adulterant sample. 𝐿 = 1 gives 

low performances since no spectra are detected even for a peanut concentration of 

20%. The best performances are obtained for 𝐿 = 2. Then, increasing 𝐿 leads to lower 

detection rates. The graph on the right shows the evolution of the sensitivity when 

fixing 𝐿 = 2. In this condition, the performances of the MSD algorithms are identical 

for 𝐽 = 1 and 𝐽 = 2. Then, choosing a higher value for 𝐽 decreases the detection rate. 

Figure 23 also shows that the design with 𝐽 = 1 and 𝐿 = 1 provides a lower sensitivity 

than MSD 3. Consequently, the results show that there is an optimal design for the 

MSD regarding the performances on the simulated data: 𝐿 = 2, 𝐽 = 2. 

 

 

 

 

 
Figure 25: MSD algorithms sensitivity evaluation for varying 𝐿 and 𝐽. The detection rate was calculated 

on simulated data for concentration from 5% to 20% and on real wheat measurements data for 0%. 

 

According to the test statistic of the MSD algorithm (Equation 16), the pixel 

spectrum 𝒙 is modeled using two different models: the model using only the regular 

sample subspace 𝒔𝑺 , and the model using the adulterant sample subspace 𝒔𝑨 besides. 

Hence, the spectrum 𝒙 can be described by the two models by projection on the 

subspaces 𝐌𝐒 and 𝐌𝐀. The corresponding orthogonal subspaces describe the residuals 

of 𝒙 under each model. The projection matrices 𝐐𝐒
⊥ and 𝐐𝐀

⊥ are used to project a 

spectrum 𝒙 on these subspaces. Precisely, the quantity 𝐱𝐓𝐐𝐒
⊥𝐱 represents the norm of 

the residuals of 𝒙 under this hypothesis H0. This interpretation shows that the statistic 



 

 

 

of the MSD (Equation 16) is the normalized comparison of the residuals under each 

hypothesis. The geometrical interpretation of TMSD in three dimensions is proposed in 

the supplementary materials.  

According to the previous interpretation, the parameters 𝐿 and 𝐽 play a 

significant role in the design of the MSD algorithm. The dimensions of the subspaces 

highly influence the residuals of the projection when projecting 𝒙 on 𝐌𝐒 or 𝐌𝐀. We 

should highlight the fact that 𝐽 describes the number of additional dimensions chosen 

in 𝒔𝑨 to construct 𝐌𝐀. It means that 𝐌𝐀describes a model which has a higher number 

of dimension than 𝐌𝐒. As a result, when 𝐿 <  𝐽, the models for the two competitive 

hypotheses become highly unbalanced in terms of dimension. For instance, if 𝐿 = 2 , 

and 𝐽 = 3, 𝒙 is modeled using a 2-dimensional subspace under H0 compared to a 5-

dimensional subspace under H1. This unbalanced situation is expected to be solved by 

the normalization in the MSD statistic TMSD (Equation 16) and the use of the threshold 

based on the regular sample. However, when the dimension of 𝒔𝑨 increases, the 

residuals under H1 can be arbitrarily reduced. It is the case because the peanut flour 

and the wheat flour samples exhibit spectral similarities. As a consequence, the vectors 

from 𝒔𝑨 have similarities with vectors from 𝒔𝑺. Ultimately, the scalar product between 

𝒙 and the vectors of 𝒔𝑨 is not null even if 𝒙 only contains regular particles. This explains 

why the value of 𝐽 should be kept under the value of 𝐿 to prevent for a degenerated 

design of the MSD algorithm. Figure 25 shows this type of design leads to low 

detection performances (𝐿 = 1, 𝐽 = 1 on the left graph; 𝐿 = 2, 𝐽 = 3 and 𝐿 = 2, 𝐽 = 4 

on the right graph).  

When 𝐿 and 𝐽 are high, each model takes a large variability into account. As 

explained before, this is not a good strategy because of the similarities between peanut 

and wheat. Additionally, it leads to include variability subspaces that are less significant 

in the model which leads to overfitting. This explains why the MSD designs with 𝐿 >  2 

are not optimal (Figure 25). Finally, when 𝐿 and 𝐽 are too small (𝐿 = 1 and 𝐽 = 1, Figure 

23), the design only takes the average shape of the materials as a reference into 

account. However, considering the variability of the sample is detrimental for this 

application.  

 
 

Analysis of the number of detected pixels 

 

Figure 26 shows the detection rate of the three selected MSD (Table 1) calculated on 

the real samples. The 𝒙 axis represents the global peanut concentrations that were 

introduced in the samples. On the other hand, the y axis shows the detection rate: the 

total number of detected pixels using the MSD algorithms divided by the total number 

of pixels in the image. The scatter plot shows that the detection rate increases when 

the sample concentration increases. Hence, the application of the MSD algorithm on 

the real measurements is relevant to the results obtained on simulated data. The results 

also show a high variance in the detection rates for a given MSD applied to the three 

replicate samples with the same concentration. The experimental conditions can 



 

 

 

explain it. Hyperspectral measurements are representative of the material through a 

depth of some millimeters [53]. As a result, the assessment of the detection rate is 

made on a thin layer of flour. On the other hand, the peanut concentration on the x-

axis is a global characteristic of the sample volume. Consequently, both metrics do not 

describe the same aspect of the sample. As it is complicated to ensure the sample is 

homogeneous in peanut concentration through all volume, the apparent concentration 

on the surface of the sample may not be representative of the global concentration. 

Consequently, sample replicates may exhibit different peanut concentrations in the 

surface layer despite the fact that they have the same global concentration, which 

explains the variance observed in Figure 26. 

 

 
Figure 26: The detection rates of the MSD algorithms evaluated on the real samples (from 0.02% to 20% 

of peanut concentration) against the global peanut concentration. 

 

The results show a non-linear behavior in the evolution of the detection rate 

according to the peanut concentration. It is visible on the left-graph of Figure 26. There 

are three phenomena to take into account to explain this behavior. 

 

1. Let us assume a sample is perfectly homogeneous at the pixel-scale with a 

peanut concentration of 20%. One MSD algorithm with a detection sensitivity 

of 10% is applied to the hyperspectral data cube. In this configuration, each pixel 

has a contribution of 20% of peanut and is detected by the algorithm. As a result, 

all the pixels are detected on the image, and the detection rate is 1. Let us 

consider another sample with a peanut concentration of 5%. Following the same 

reasoning, no pixel is detected and the detection rate is 0. This example shows 

that since a pixel can only have two states (detected or not detected), the 

resulting global detection rate has a non-linear relationship with the real 

concentration of the sample. It also shows that comparing these two values may 

not be relevant if the sample is entirely homogeneous. As a consequence, the 

comparison only holds if we assume the scale of scrutiny is higher than the pixel: 



 

 

 

the sampling size for which the homogeneity is guaranteed is bigger than the 

pixel size. 

 

2. More realistically, the fact that a sample has a global concentration of 20% does 

not mean that each pixel surface has the same concentration. We have to 

assume the sample is heterogeneous at the pixel-scale. Also, if we assume there 

is no spatial relationship between neighbor pixels, an image of 100 000 pixels 

can be considered as 100 000 independent experiments. Each one can be seen 

as a series of Bernoulli processes with as many trials as the number of particles 

in the pixel. The probability of selecting a peanut particle corresponds to the 

global concentration of peanut. A binomial distribution thus gives the pixel-wise 

concentration. Such a simulation provides a detection rate curve shown on the 

left graph of Figure 26. The result obtained using a sensitivity of 25%, which is 

relevant to the experimental observations. It shows that the sensitivity of the 

MSD algorithm is close to 25% which was shown using the simulation data as 

well (Figure 23). 

 

In practice, pixels are not independent for two main reasons. Firstly, because flour 

samples contain several particle sizes and some may be higher than 150 µm. With such 

a size, some particles may overlap multiple pixels and make them detectable. Secondly, 

because the particles of flours tend to agglomerate with each other, this is known as 

the stickiness [36]. Despite the fact the median particle size is approximately 50 µm in 

wheat and peanut flours, some particle clusters may have a size of several millimeters 

which is higher than the pixel size (250 µm × 250 µm). The agglomeration occurs 

particularly often for peanut flour because of the remaining fatty acids. 

These arguments show that all the MSD designs provide relevant results regarding 

the real samples with different concentrations. However, even if the relationship 

between the number of detections and the global peanut concentration of samples is 

useful to validate the results, it is complex to interpret. Hence, it should not be the only 

metric to validate the results of a detection problem. 

 

 

Analysis of the detection positions 

 

The previous results show that MSD 3 provides the most sensitive results. Figure 27 

shows the detection maps for three different concentrations and their replicates. These 

maps show that the number of detections is repeatable among the replicates as Figure 

26 showed. They also show the detection locations are credible: for a high 

concentration, most of them are made on neighbor pixels so that peanut 

agglomeration can be seen. Furthermore, the location of these agglomerations is 

randomly distributed across the sample. These results show the MSD algorithm can be 

used to detect challenging targets as peanut flour in wheat flour and give their position. 

 



 

 

 

 
Figure 27: The detection maps obtained by applying MSD 3 on the real samples of concentrations: 20 

%, 5 %, and 0.2 %. 

 

 

4. Conclusions 

 

The purpose of this study was to tackle a challenging detection problem dealing with 

similar materials with high spectral variability and a particle size involving subpixel 

detection. The development of the Matched Subspace Detector algorithm was 

proposed to overcome these difficulties. The spectral variability was tackled using 

subspace modeling by PCA whereas the Linear Mixing Model was used to consider the 

subpixel detection context. Moreover, data simulation of several peanut concentrations 

was proposed to provide an estimation of the sensitivity for the MSD. This technique 

was used to help in choosing the most appropriate design. 

The data simulation method provided realistic data regarding the measurement 

variability. The MSD designs giving a high detection rate on the simulation were 

conserved and used on the real measurements. Despite the lack of local reference 



 

 

 

values, the number and the positions of the detections show that MSD and the data 

simulation were relevant to overcome the detection issue. 

Additional work could be provided for further improvements to this kind of 

detection situation. Firstly, the data simulation process could be improved by selecting 

a subset of loadings to simulate the data. It may provide more reliability in the 

simulation. Indeed, the expected sensitivity obtained on simulated data (20 %) does 

not seems to be reached in practice. Then, even if no spatial a priori hypothesis can be 

made regarding the particle size, the detection results on real data show that most of 

the detections are made on neighbor pixels. This is because of particle agglomeration 

which is a phenomenon that applies to the smallest flour particles. Such an effect could 

be taken into account to improve the detection by adding some spatial dependence in 

the MSD algorithm. Finally, the statistical simulation for the number of detected pixels 

according to the peanut concentration may be improved. For example, the hypothesis 

that each pixel is independent of the other could be changed to get a more accurate 

approach. 

  



 

 

 

III. The detection of peanut flour in chocolate powder using 

Multivariate Curve Resolution 
 

This part has been adapted from the publication: 

 

A. Laborde, F. Puig-Castellví, D. Jouan-Rimbaud Bouveresse, L. Eveleigh, C.B.Y. Cordella, 

B. Jaillais, Detection of chocolate powder adulteration with peanut using near-infrared 

hyperspectral imaging and Multivariate Curve Resolution, Food Control. 119 (2021) 

https://doi.org/10.1016/j.foodcont.2020.107454. 

 

 

1. Introduction 

 

In the industry, there is a high interest in detecting contaminations in powders [36]. 

Food industry concerns about cross-contamination of ingredients are increasing due 

to the increasing prevalence of food allergies. On the one hand, for some people, 

allergic reactions can be triggered with just a few milligrams of pure allergen [83]. On 

the other hand, a significant 4 % of the total world population suffers from a form of 

food allergy [84]. 

Due to the existence of major food allergens such as peanuts [85], food handling 

in the industry can be especially challenging [86]. In addition, processing methods that 

focus on powder foods (i.e., producing a dry mix) can increase the risk of food cross-

contamination due to the difficulty in cleaning the equipment between two lines of 

food products in progress [85] and because it is difficult to assess whether all 

contaminants have been removed after the cleaning phase [84]. However, several 

strategies exist to detect product contamination. Most detection strategies consist of 

direct methods that search for specific target molecules (i.e., proteins, DNA) from the 

adulterant/contaminant, i.e. allergen, using molecular biology and immunological 

methods. For example, the immunological method ELISA detects proteins with a very 

low sensitivity (from 1 to 2.5 ppm) [85]. However, ELISA is a destructive method 

employed on small sample volumes, which might not be representative enough of the 

whole sample. Additionally, immunological or molecular biology methods are not 

optimal for automatic screening because they are expensive and time-consuming. 

Some examples of product contamination detection using spectroscopy 

methods can be found in the literature. For instance, the detection of melamine in milk 

powder was investigated using line scan NIR hyperspectral imaging [10-12][56]. The 

detection of crushed peanut in wheat flour was performed by applying Independent 

Component Analysis (ICA) [15] and Principal Component Analysis (PCA) [14] to the 

hyperspectral data. In the pharmaceutical domain, the amount of low dose of 

magnesium stearate was analyzed using Multivariate Curve Resolution (MCR) and 

Raman hyperspectral imaging [88]. 
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Detecting a spectral signature in spectroscopic signals implies two main steps. 

The first step consists of describing the features of the problem, which are the expected 

standard spectral profiles as opposed to the adulterant spectral profiles. It implies the 

description of their average behavior and their variability. In an adulteration detection 

context, “standard” refers to the expected sample in opposition with the “adulterant” 

which is to be detected. The second step consists of detecting the adulterant spectral 

observations in the feature space. Despite the fact that the two steps are equally 

important, the first one appears to be the main challenge when dealing with detection 

in NIR. 

The previous chapter showed that hyperspectral imaging is subject to the 

subpixel detection problem [64]. Various chemometric methods (i.e., ICA ([15]) ,MCR 

([88]), Non-Negative Least Squares (NNLS) [89]) have been used to address it. All these 

methods showed high-performance results to unmix hyperspectral images, although 

the data analysis may become challenging when the particles to detect (from the 

contaminant) have a spectral signature very close to the background particles 

(belonging to food sample). 

When dealing with food contamination, there is no guarantee the spectral 

features of the contaminant differ from those of the background. For example, this is 

the case for melamine contamination in milk powder [56]. In the same line, the peanut 

NIR spectral signature is very similar to cocoa especially when the products are 

transformed into flour or chocolate powder. These two food compounds are involved 

in potential allergen contamination cases in the food industry. In agreement with this, 

a study of the French market showed that 67% of snacking products labels advised of 

the possible unwanted presence of peanuts in their product [90]. Thus, assuring the 

absence of peanut traces in chocolate products is a matter of utmost importance for 

the food industry. 

In this study, we propose to tackle the problem of detecting peanut flour 

particles in chocolate powder using both the NIR hyperspectral imaging technique and 

chemometrics methods. First, a PCA was performed as a reference technique and then 

a detection algorithm based on the MCR-ALS chemometric method was applied. This 

work provides novel insights into the spectral features of the chocolate-peanut system 

and presents a methodology to address subpixel detection using hyperspectral 

imaging with the potential to be implemented in food processing industries. To our 

knowledge, the study of the detection of food allergens by combining NIR 

hyperspectral imaging and chemometrics is not common in the literature. 

 

 

2. Material and methods 

 

A. Sample preparation 

 

A chocolate powder mix to prepare milk beverages was purchased in a French 

supermarket. The main ingredients of the mixture are sucrose, cocoa, dextrose, and 



 

 

 

soya lecithin. Defatted peanut flour was bought on the German market. The powders 

were mixed in different mass proportions of peanut flour: 10%, 1%, and 0.1%. For each 

concentration, three replicate samples of 13 g were prepared. In addition, pure 

chocolate powder and pure peanut flour samples were also prepared in triplicate, 

leading to a total of 15 samples. For the spectral measurements, the powders were put 

in a plastic sample holder made of polylactic acid. The powder was skimmed on the 

top to achieve a thickness of 7 mm. This thickness ensured that the bottom of the 

sample holder did not have an influence on the near-infrared reflectance signal 

measured by the hyperspectral system [53]. 

 

 

B. Hyperspectral imaging system 

 

A line-scan pushbroom Specim SWIR camera (Specim, Spectral Imaging Ltd, Oulu, 

Finland) was used to acquire the hyperspectral images. The system acquires 288 

spectral bands from 1000 to 2500 nm with a spectral sampling of 5.6 nm. The spectral 

range 1000 – 2500 nm was chosen as it proved its superior capability to analyze the 

chemical content of peanut compared to the range 400 – 1000 nm [91]. Additionally, 

it was successfully used for the measurement of sugar in a similar chocolate powder 

[92]. The camera was moving along the y-axis and acquired 320 pixels per line to form 

the hyperspectral cube. Six halogen lamps were used to illuminate the sample. A white 

diffuse reflectance standard in Teflon was used to acquire the white reference image 

before each measurement. The dark reference image was acquired by closing the 

shutter of the camera. 

 

 

C. Data Processing 

 

Hyperspectral cubes were cropped in the spatial dimension to obtain the same image 

size for each sample. Each image was composed of 61 × 61 pixels, which corresponded 

to a field of view of 1.5 cm × 1.5 cm. The reflectance cube was calculated using Equation 

9. Wavelengths from 1000 nm to 1100 nm and from 2400 nm to 2500 nm were 

removed because they were mainly representative of electronic noise. The remaining 

absorbance were smoothed using a Savitsky-Golay filter (second order polynomial, 7-

point window, and with no derivative). 

 

 

D. Hyperspectral cube unfolding 

 

Hyperspectral images can be regarded as tridimensional hyperspectral cubes, where 

the 𝒙 and 𝒚 planes correspond to the spatial dimensions and the 𝒛 plane contains the 

hyperspectral data for every pixel (left side in Figure 28). This cube can be unfolded 

into a two-dimensional matrix, with as many rows as pixels and as many columns as 



 

 

 

measured wavelengths (right side in Figure 28). Every row in this matrix contains the 

spectrum relative to one pixel. This data unfolding strategy is required to investigate 

tridimensional data with bilinear methods such as MCR-ALS [93]. 

 

 
Figure 28: Hyperspectral cube unfolding. 

 

 

E. Multivariate Curve Resolution – Alternating Least Squares 

 

MCR-ALS is a chemometric method used to solve the unmixing problem [94]. 

According to MCR-ALS [43] [95], a matrix 𝐗 containing mixed signal measurements can 

be decomposed as the product of the pure spectral profiles, 𝐒, associated with their 

pure concentration contributions, 𝐂, using Equation 3. 

In this decomposition, the number of pure profiles to be resolved is determined 

by the number of components, which needs to be estimated before running the 

analysis. The number of components can be estimated using the SVD algorithm [96]. 

MCR-ALS algorithm is an iterative method that optimizes a set of initial estimates for 

the concentration (𝐂) or the spectrum profiles (𝐒) under constraints while minimizing 

the residual part 𝐄.  

In this study, the initial estimates used were the most dissimilar spectra found in 

the hyperspectral images of the pure samples of peanut flour and chocolate powder. 

One spectrum was selected for peanut flour, while two spectra were chosen for 

chocolate powder due to its higher complexity. Hence, during the MCR-ALS analysis of 

the mixture samples, three components were used. 

Concentration and spectral profiles obtained by the application of the bilinear 

model (Equation 3) may not be the correct ones due to the existence of rotational 

ambiguities [97]. The bilinear model allows that several sets of concentration profiles 

and spectra with different shapes can reproduce the data 𝐗 with the same precision 

[97]. In other words, the optimization problem is under-constrained which leads to a 



 

 

 

great deal of possible solutions. To drive the iterative analysis towards the purest 

solution, some known information from the system of study can be used as constraints. 

Examples of constraints include non-negativity and selectivity constraints. The non-

negativity constraint can be applied when the resolved spectral data must be positive. 

The selectivity constraint is used to fix some values in the 𝐒 or 𝐂 matrices. Finally, the 

spectral profiles can also be normalized to reduce the intensity ambiguity of the 

solutions [98]. This ambiguity is caused by the fact that the intensity of spectra can be 

reproduced by multiple dyads of profiles and concentration with different arbitrary 

scales [43]. 

 

 

Augmented matrix 

 

By analyzing more than one sample at once, more information relative to the pure 

components is introduced in the analysis and the possible ambiguities can be 

substantially reduced. In this work, MCR-ALS was applied to the column-wise 

augmented data matrix resulting from stacking the 15 unfolded hyperspectral image 

samples, 𝐗. This matrix has 55,815 rows and 248 columns (Figure 29). 

 

 
Figure 29: The hyperspectral cubes are horizontally stacked as an augmented cube. 

 

 



 

 

 

Selectivity constraint in the concentration matrix 

 

As stated before, an additional constraint can be applied to introduce known 

information in the MCR-ALS analysis and reduce the ambiguity of the final solution. In 

the case of the MCR-ALS multiset analysis, the correspondence among constituents 

and MCR-ALS components allows the introduction of information about the presence 

or the absence of these constituents in the pixels. In the situation depicted in section 

2.A, the composition of the pixels of the pure samples is known, while the composition 

of every pixel in the mixed powder image is not and therefore it could not be inferred. 

The correspondence among species, i.e., the selectivity constraint in the 𝐂 matrix 

(abbreviated as “CSEL”) was implemented to constrain only the pure sample images. 

With this constraint, components representative of chocolate powder 

(components 1 and 2) were imposed to not show contribution in pure peanut pixels. 

Analogously, the component representative of peanut flour (component 3) was 

imposed to not show contribution in chocolate powder pixels. 

In this study, we tested and compared both MCR-ALS resolution methods with 

and without a selectivity constraint. For simplicity, in this paper, these methods will be 

referred to as MCR-ALS and MCR-ALS-CSEL, respectively. 

 

 

F. Detection algorithm 

 

After decomposing the signal of the pixels by MCR-ALS, the resulting 𝐂 matrix was 

investigated with a detection algorithm to determine the presence or absence of 

peanut. In this detection algorithm, the 𝐂 matrix was used to build a Gaussian Mixture 

Model (GMM) [99] on the pure chocolate powder pixels. The GMM consisted of 

modeling the distribution of points in the 3-dimensional sub-space defined by the 3 

MCR-ALS components using several 3D Gaussian distributions. In this study, 2 

Gaussians were fitted using the Expectation-Maximization (EM) algorithm [99] to 

model the distribution of chocolate powder pixels. The Mahalanobis distances between 

each pixel (represented each with the 3 concentration profiles from the 𝐂 matrix) and 

both Gaussians were then computed to obtain the score for detection. The threshold 

for detection was chosen as the highest Mahalanobis distance measured between the 

GMM and a pixel from the pure chocolate powder samples. 

 

 

G. Software 

 

Data processing were performed in Matlab R2016a (MathWorks Inc.) using the SAISIR 

toolbox [100]. Processed samples were analyzed with the MCR-ALS method using the 

MCR-ALS GUI 2.0 under Matlab environment [101]. 

 

 



 

 

 

3. Results and discussions 

 

A. Principal Component Analysis 

 

A PCA was first applied to the 𝐗 augmented matrix containing the hyperspectral data 

from the pixels of all the sample images The PCA score plot on the first two PCs is given 

in Figure 30. In this figure, the scores from the pure peanut flour pixels are clearly 

separated from those from the pure chocolate powder pixels. Regarding the scores 

from the mixture samples, they were found clustered around the distribution of pure 

chocolate pixels scores. 

 

 

 

 
Figure 30: PCA score plots for chocolate powder with peanut. 

 

PC1 (81.2 % of the total explained variance of the dataset) mainly describes the 

variability among pixels within the same sample type, while PC2 (13.9 % of the 

explained variance) allows the discrimination of the pure chocolate pixels cluster from 

the pure peanut pixel cluster. PC3 (2.6 % of the explained variance) does not show any 

separation of the pixels between the pure peanut and the pure chocolate. The same 

observations were made on the following principal components (results not shown). 

The results from this PCA illustrate the so-called “subpixel detection problem” 

[64], since the scores distribution shows that no pixel from the mixture samples is of 

“pure peanut” as they do not fall into the area of the pure peanut cluster. However, a 

few scores from the mixture pixels were found between the pure chocolate and the 

pure peanut variability distributions (see the black arrow in Figure 30A). These scores 

represent the pixels from the mixture samples containing, in addition to the spectral 

signatures from chocolate, the most important spectral contribution from peanut. 

Nevertheless, these intermediate scores were not observed for pixels from samples 

containing 1% of peanut, proving that PCA cannot detect peanut adulteration at this 



 

 

 

concentration level. Therefore, PCA is not an optimal tool to detect peanut pixels in 

chocolate matrices. We can argue that PCA limitation is derived from the fact that 

spectral differences linked to the adulteration do not dominate the dataset, since these 

spectral differences are very small and only occur in a small fraction of the total number 

of pixels. PCA also imposes the components to be orthogonal to each other. However, 

this constraint is not representative of the real chemical signatures. Hence, the principal 

components calculated by PCA does not reflect the true chemical signatures of the 

mixture problem [43]. 

 

 

B. MCR-ALS 

 

Since PCA could not extract the spectral components in the pixels relative to peanut 

flour and chocolate powder, MCR-ALS method was applied instead. Figure 31 shows 

the 𝐂 concentration profiles for the three MCR-ALS resolved components, which are 

representative of the pixels. Thus, MCR-ALS results shown in Figure 31can be directly 

compared to the PCA scores shown in Figure 30. For instance, in Figure 31, the pure 

pixels from peanut and chocolate can be discriminated using the third component (𝒄𝟑) 

only. On the other hand, two principal components were needed to discriminate the 

pure samples on the PCA score plot (Figure 30), demonstrating that MCR-ALS 

components are much easily interpretable than the PCA components. The better 

outcome found for MCR-ALS is mainly derived from the use of the non-negativity 

constraint that reduced the ambiguity of the data decomposition. Since negative 

concentrations were not allowed in the resolution of the MCR-ALS model, the spectral 

components could not compensate for each other. As a result, the spectral shapes of 

the MCR-ALS component were closer to the pure chemical compounds (Figure 32). 



 

 

 

 
Figure 31: Scatter plots of the resolved MCR-ALS 𝑪 concentration profiles with the ellipses of the GMM.  

 

Consequently, some pixels from the samples containing 10 % peanut were 

found within the pure peanut variability whereas this was not observed in the PCA, 

which illustrates that MCR-ALS provided a more suitable model for the detection 

problem of peanut in chocolate powder than the PCA. 

Figure 32 shows the resolved MCR-ALS spectral profiles in blue compared to 

their initial estimates in black. 

The first spectral profile (𝒔𝟏, Figure 32A) is descriptive of cocoa as it includes 

some spectral features characteristics from this constituent as reported elsewhere: the 

low intensity and spread absorption peak at 1208 nm is due to the combination of the 



 

 

 

second overtone of CH, CH2, and CH3; a higher intensity level absorption can be 

observed at 1491 nm corresponding to the N-H group characteristic of the proteins in 

cocoa (Krähmer et al., 2015); the absorption at 1935 nm is attributed to the second 

overtone of amide C=O (Workman Jr. & Weyer, 2012) which is also descriptive of 

proteins in cocoa. 

The second spectral profile (𝒔𝟐, Figure 32 B) is descriptive of the sucrose content 

present in the chocolate powder. The intense absorption peaks at 1435 nm and 2072 

nm in 𝒔𝟐 are associated with the C-H stretching and the combination of O-H stretching 

in sucrose, respectively [92]. Additionally, a double peak at 2280 nm was attributed to 

the C-H stretching and CH2 deformation of polysaccharides [102]. 

The third component is associated with the peanut spectral signature. The peaks 

at 1474 nm and 1735 nm are related to the N-H second overtone from proteins and to 

C-H group of amine polysaccharides respectively [102]. The two main absorption peaks 

at 1200 nm and 1942 nm are representative of the water absorption contained in the 

flour. Since the peanuts were defatted before being milled into flour, the fatty acids of 

peanut were not present in the final product. As a consequence, the near-infrared 

spectrum of peanut was mainly characterized by its proteins, causing the detection 

problem to become more difficult as there were fewer spectral signatures characteristic 

of peanut to be detected in the mixture samples. 

Differences between the initial estimates and the final resolved MCR-ALS 

spectral profiles varied across components. On the one hand, 𝒔𝟐 and 𝒔𝟑 did not change 

significantly after the MCR-ALS iterative process. This occurred because the pixels 

chosen as initial estimates were mainly constitutive of the compounds they describe 

(sucrose and peanut flour, respectively). However, 𝒔𝟏 showed a more prominent 

alteration of the spectral profile after the iterative process is performed, allegedly 

because all pixels from cocoa samples contain sucrose and therefore an initial estimate 

from cocoa without sucrose could not be used. Nevertheless, even without the proper 

initial estimate for 𝒔𝟏, MCR-ALS reached a satisfactory resolution after the iterative 

process. This result highlights that the MCR-ALS method is robust enough to extract 

the pure spectral components of chocolate powder. 

The coefficient of determination between 𝒔𝟏 and 𝒔𝟑 is high (r2 = 0.96), indicating 

that these spectral profiles of cocoa (without sucrose) and peanut flour are very similar 

in spectral shape. As a consequence, the obtained MCR-ALS solutions may not be the 

purest ones due to ambiguities between the two spectra. In fact, this ambiguity could 

explain why some coefficients 𝒄𝟏 for the pure peanut pixels were not null (Figure 31). 

For this reason, the 𝐂 concentration profiles must be read with caution and therefore 

they should not be used directly for detection purposes. 



 

 

 

 
Figure 32: MCR-ALS optimization of the spectral profiles. 

 

 

C. MCR-ALS-CSEL 

 

After noticing some spectral ambiguities in the MCR-ALS model performed in the 

previous section, the MCR-ALS analysis was repeated using CSEL as an additional 

constraint (see Methods). With CSEL, the value of the 𝐂 concentration profiles can be 

imposed for certain known pixels, resulting in a reduction of the ambiguity of the 

system of study. In this work, we imposed that pure peanut pixels only contain spectral 

signatures from 𝒔𝟑, while pure cocoa pixels only contain spectral signatures from 𝒔𝟏 

and 𝒔𝟐.  

Table 2 shows the fitting performances of MCR-ALS and MCR-ALS-CSEL. Both 

methods exhibit high performances with R2 > 0.99. The addition of constraint to the 

MCR-ALS algorithm leads to consider a tradeoff between the fitting of the data matrix 

𝐗 and the satisfaction of the constraints. Table 2 shows that despite the addition of 

constraints in the MCR-ALS-CSEL method, the fitting performances are still similar to 

the MCR-ALS. This indicates that the optimal solution was reached regardless the MCR-

ALS method was more constrained. The effect of CSEL can be observed in Figure 32. In 

this figure, the spectral profiles resolved with MCR-ALS-CSEL are shown in red, while 

those resolved with MCR-ALS are shown in blue. Interestingly, some spectral 

differences can be observed for 𝒔𝟏 and 𝒔𝟑 spectral profiles. On the other hand, s2 



 

 

 

spectral profile remains exactly the same for both methods indicating that the pure 

profile for this component can be achieved without using the given constraint. 

 
Table 2: The performance in lack of fit and coefficient of determination (R2) for MCR-ALS and MCR-ALS-

CSEL. 

 MCR-ALS MCR-ALS-CSEL 

Lack of fit (%) 3.16 % 3.27 % 

R2 0.9990 0.9989 

 

When looking at the differences among the resolved spectral profiles, it can be 

observed that 𝒔𝟏 and 𝒔𝟑 profiles both differ on similar wavelengths around 2080 nm 

and 1940 nm. These two spectral patterns are associated with the second overtone of 

amide group and to the combination O-H stretching, and they can be attributed to 

both cocoa or peanut constituents. Regarding the unconstrained MCR-ALS method, it 

resulted in a higher absorption peak at 2072 nm and a smaller absorption peak at 1935 

nm in 𝒔𝟏, and a smaller absorption at 2072 nm and a higher absorption at 1935 nm in 

𝒔𝟑.  

The CSEL constraint had visible effects on the distribution of pixels in the MCR 

space (Figure 31). Figure 31A and Figure 31C show the evolution of the distributions 

for the 𝒄𝟏 and 𝒄𝟐 contributions with and without the application of the CSEL constraint. 

The main effect observed was the shrinkage of the peanut pixels’ distribution, which 

means the variability of the 𝐂 concentration profiles from peanut pixels was reduced 

after the application of the constraint. The small variability of pure peanut pixels was 

expected because they do not contain any sucrose nor cocoa and thus the resolved 𝒄𝟏 

and 𝒄𝟑 concentrations should be very low. 

Figure 31C and Figure 31D also showed that, in overall, the distribution of the 

mixture pixels was not changed by the application of the constraint. Consequently, 

some scores from mixture pixels were closer to the cluster of peanut distribution for 

the MCR-ALS-CSEL method. On the other hand, Figure 31C shows that the cluster of 

constrained pixels from the chocolate powder pixels is very similar to the cluster of 

unconstrained pixels showing that the MCR-ALS-CSEL is robust.  

These results showed the MCR-ALS-CSEL method was more suitable for solving 

the unmixing problem than the unconstrained one since it provided concentration 

profiles more suitable for detection purposes. 

 

 

D. The detection results 

 

In the previous sections, two MCR- ALS methods were used to decompose the pure 

spectral signatures found in every pixel into different components representative of 

the pure sample constituents. In these analyses, two of the resolved components 

(𝒔𝟏 and 𝒔𝟐) were representative of chocolate powder while the other (𝒔𝟑) was of peanut. 

However, we observed that, for the two MCR-ALS analyses, some pixels from pure 



 

 

 

(chocolate powder and peanut) samples were decomposed as a mixture of non-zero 

contributions when at least one of the contributions should have been of 0. The fact 

that some pure peanut pixels presented 𝒄𝟏 ≠ 0 and 𝒄𝟐 ≠ 0 and some chocolate powder 

pixels presented 𝒄𝟑 ≠ 0 denote that there was still some ambiguity in the MCR-ALS 

resolution. This phenomenon also occurred for the non-constrained pure pixels when 

the MCR-ALS-CSEL method was used, although the abovementioned coefficient 

contributions were closer to 0 than when the resolution was performed with MCR-ALS. 

This result suggests that the value given of 0 in 𝒄𝟑 (the component representing 

peanut) must not be used directly as the threshold level to determine the presence or 

absence in our samples. 

Alternatively, using the lowest value found in c3 of pure peanut pixels as the 

threshold level would cause that the detection algorithm is very restrictive (Figure 31B-

D shows that only a few pixels from the 10 % adulterated sample would be selected). 

Instead, a more sophisticated approach is needed to determine peanut adulteration at 

the pixel level from these MCR-ALS results. For instance, to reduce to a larger extent 

the ambiguity of the system, it would have been desirable to constrain some pixels 

from the mixture samples with the CSEL constraint. However, this is unfeasible as the 

spatial location of the adulterated pixels is not known after performing the mixing.  

To overcome this limitation, we implemented a strategy to determine whether 

a mixture pixel is within the pure chocolate powder variability or not. In the latter 

situation, then the pixel could be considered adulterated. Therefore, to use this 

method, the only information needed is the product (chocolate powder) variability. 

The distribution of pure chocolate pixels in the MCR space was modeled with 

two Gaussian models using the Expectation-Maximization algorithm. Two Gaussian 

models were needed to account for the specific variabilities of the two major 

ingredients found in chocolate (sucrose and cocoa). The resulting Gaussian models are 

represented by the projection of their 99% confidence ellipses in the MCR space in 

Figure 31. Important observations can be made from the analysis of the shape of these 

ellipses. First, the variability of the chocolate powder was effectively reduced on 𝒄𝟑 

when using the CSEL method since the ellipses’ areas from the 𝐂 concentration profiles 

obtained in this method were smaller than when the non-constrained method was 

used. Second, there were a significant amount of mixture pixels with lower 𝒄𝟏 

concentration profile than in the pure chocolate powder pixels. Similarly, some other 

mixture pixels have higher 𝒄𝟑 concentration profile than in the pure chocolate powder 

pixels. A low 𝒄𝟏 coefficient cannot be regarded as a robust proof of peanut adulteration, 

as it only indicates that a pixel does not contain a standard amount of cocoa. 

Conversely, a high 𝒄𝟑 coefficient is undoubtedly indicative of peanut since the 

associated spectral profile is from this ingredient (Figure 32). However, since the 

interpretation of 𝒄𝟏 and 𝒄𝟐 concentration profiles may be required for cases when 

peanut adulteration is very low, we implemented a detection algorithm that used the 

information relative to these three concentration profiles. 

 



 

 

 

Specifically, to account for 𝐂 concentration profiles variability, the designed 

algorithm establishes the peanut adulteration in every pixel on the basis to their 

Mahalanobis distance with the GMM. 

 

 
Figure 33: Histograms of the Mahalanobis distance of every pixel to the GMM for the detection of peanut 

particles. 

 

Figure 33 shows the histograms of the Mahalanobis distances calculated 

between every pixel and the Mixture of Gaussians from chocolate distribution obtained 

under both MCR-ALS methods. From this histogram representation, a threshold value 

that discriminates pure chocolate powder pixels (blue distribution in Figure 33) from 

the rest can be estimated. This threshold value corresponds to the highest Mahalanobis 

distance found for the pure chocolate pixels. Thus, any pixel surpassing this threshold 

was considered to be adulterated. 

Figure 33 revealed important differences between the distributions obtained 

from the two MCR-ALS analyses. For instance, the distribution of the Mahalanobis 

distances for chocolate pixels was narrower when using the CSEL constraint. As a 

consequence, the detection threshold could be set smaller leading to more positive 

detection pixels in the mixture samples. This additional detection power derived from 

the use of the CSEL constraint can be appreciated by comparing the two highlighted 

regions in Figure 33. In this region, it can be observed that a higher number of mixture 

pixels were considered to be adulterated when the constraint was used. 

To assess the reliability of the detection algorithm, the numbers of positive 

peanut adulteration pixel detections for each sample image were calculated (Table 3). 

From these numbers, it is observed that all the pure pixels were correctly assigned to 

chocolate powder or peanut flour. Therefore, the sensitivity and the specificity 

(calculated from the pure samples) are 1 for the two methods. This shows that the two 



 

 

 

methods are reliable to confirm the purity of the samples. Regarding the mixture 

samples, it is not possible to confirm the validity of the assignment since the actual 

position of the adulterated pixels in the mixture cannot be known. However, by 

comparing the proportion of detected adulterated pixels found with the corresponding 

peanut concentrations, we still can evaluate the quality of the detection algorithm. 

 
Table 3: Number of detected pixels in each sample image when using the MCR-ALS and the MCR-ALS-

CSEL methods. 

 
Concentration 
of peanut (%) - 
replicate 

MCR-ALS-CSEL MCR-ALS 

Number of 
detections a 

Percentage 
of detection 
(%) b 

Number of 
detections a 

Percentage of 
detection (%) b 

100 % - A 3,721 100 3,721 100 

100 % - B 3,721 100 3,721 100 

100 % - C 3,721 100 3,721 100 

10 % - A 382 10.30 45 1.21 

10 % - B 325 8.73 39 1.05 

10 % - C 633 17.00 82 2.20 

1 % - A 29 0.78 2 0.05 

1 % - B 24 0.64 2 0.05 

1 % - C 44 1.12 1 0.03 

0.1 % - A 9 0.24 0 0 

0.1 % - B 11 0.30 0 0 

0.1 % - C 1 0.03 0 0 

0 % - A 0 0 0 0 

0 % - B 0 0 0 0 

0 % - B 0 0 0 0 

a Number of detected pixels in the image containing a total of 3,721 pixels. 

b Proportion of detected pixels with respect to the total number of pixels in the image (3,721 pixels). 

Table 3 shows that the number of detections was in line with the global 

adulteration level. For the mixture samples containing 10% peanut, the MCR-ALS-CSEL 

method detected between 8.73% and 17.00% of adulterated pixels. On the other hand, 

for the mixture samples containing 1% peanut, between 0.64% and 1.12% of the pixels 

were found to be adulterated. The unconstrained MCR-ALS method also found 

adulterated pixels at these two concentration levels. Nevertheless, the number of 

positive detections for the unconstrained MCR-ALS method was inferior. The 

coefficient of correlation was used by Vermeulen et al. to measure the relevancy of the 

detection rate between adulterated samples [77]. After considering only the 

adulterated samples, the coefficients of correlation were 0.92 and 0.93 for the detection 

methods using the MCR-ALS and the MCR-ALS-CSEL respectively. 



 

 

 

Regarding the mixture samples with 0.1% adulteration, a few adulterated pixels 

were found when data were analyzed with the detection algorithm based on the MCR-

ALS-CSEL method. However, the same samples were considered to be pure chocolate 

powder samples when analyzed with the detection algorithm based on the 

unconstrained MCR-ALS method. Hence, the algorithm based on MCR-ALS-CSEL has 

a lower limit of detection than the algorithm based on the unconstrained MCR-ALS. 

Figure 34 shows the spatial positions of the adulterated pixels on the mixture 

sample image according to both methods. In this figure, it is observed that the 

adulterated pixels are aggregated in clusters, and these clusters are larger 

proportionally with the adulteration level. The presence of these clusters, rather than a 

random distribution of the adulterated pixels, suggests that peanut flour cannot be 

homogenized easily in the chocolate powder. 

 

 



 

 

 

 
Figure 34: Comparison map for each adulterated sample and the two detection methods. 

 

Figure 35 shows the repartition of the particle size of peanut flour and chocolate 

powder. For peanut, two main modes were observed at 250 µm and 600 µm and the 

maximal particle size reached 1 mm. However, this particle size distribution did not 

correspond to the expected particle size of the product. For example, the FAO standard 

for wheat flour limits the particle size to be less than 212 µm for at least 98% of the 

particles [37]. The apparition of bigger particle clusters could be explained by the 

agglomeration phenomena of small particles, which might have occurred during the 

mixing process. Therefore, the observed clusters of detected pixels in the spectral data 

correspond to agglomerated peanut particles. 

 



 

 

 

To conclude, the detection maps in Figure 34 compare both detection methods. 

These figures, apart from revealing that the MCR-ALS-CSEL method detected much 

more adulterated pixels than without the constraint, also show that the coincident 

adulterated pixels were found in the center of the clusters. This particular pixel 

distribution can be explained because those pixels contain a higher quantity of peanut, 

and therefore are more likely to be recognized by the detection methods as 

adulterated pixels than those from the outer regions of the clusters. 

 

 
Figure 35: The particle size distribution of chocolate powder and peanut flour. 

 

These results showed that the proposed methods, and in particular the one 

using MCR-ALS in combination with the CSEL constraint, are very reliable to detect 

food adulterations even at low concentration levels. The analysis of the adulterated 

pixels highlighted that the method presented a promising detection power, as the 

number of adulterated pixels was coincident with the experimental conditions in the 

terms of signal-response. Moreover, this detection method also revealed that peanut 

adulteration in chocolate powder is not homogeneous and forms clusters of particles. 

Despite the spectral similarities of chocolate powder and peanut flour, the presented 

approach could lead to satisfactory detections of the adulterated pixels. Therefore, this 

methodology has potential to be used for solving other complex food adulteration 

systems. Additionally, the detection results showed that low adulteration levels can be 

detected by screening a small number of pixels. In our case, we were able to detect 

peanut adulteration in a chocolate powder matrix mixed with 0.1% peanut by only 

screening 61 × 61 pixels. 

 

 



 

 

 

4. Additional discussions 

 

In this part, the detection strategies depicted in Chapter II and Chapter III are discussed. 

 

 

A. The pixel unmixing strategy 

 

The detection method 

 

The literature shows at least five main chemometrics methods to provide a bilinear 

model of spectral data [103]. PCA and MCR-ALS are two popular techniques that use 

different assumptions to solve the bilinear model. PCA assumes that the spectral 

components are orthogonal to each other. On the other hand, MCR-ALS applies 

various constraints on the system such as non-negativity on the spectral profiles. 

Besides, the Independent Component Analysis (ICA) is another method that does not 

impose the orthogonality of spectral components like PCA does. Instead, it looks for 

the statistical independence of the spectral sources. According to the Central Limit 

Theorem, linear combinations of independent signal sources tend to be more Gaussian 

than the sources. Hence, ICA aims to find the least Gaussian source signals in a data 

matrix [104]. Non-Negative Matrix Factorization (NMF) is another method that 

provides strictly positive components. It is an appropriate technique to use with NIR 

signals which have positive values [105]. Minimum Volume Simplex Analysis (MVSA) is 

another method that is mainly used in remote sensing and satellite imaging [103]. This 

technique uses a linear model (similar to the LMM) with the constraints that the 

abundance coefficients are all positive, and their sum is 1. As for the other methods, 

MVSA is looking for the spectral components that describe the system. In this case, the 

criterion is the minimization of the simplex volume that encompasses the spectral 

observations. Figure 36 shows the geometrical principle of this method: the spectral 

endmembers (𝑚1, 𝑚2, 𝑚3) are the vertices of the simplex that encompasses the spectral 

observations. 

 
Figure 36: Geometrical principle of the MVSA approach [106]. 

 



 

 

 

The spectral unmixing of hyperspectral data is a complex problem, and each of 

the methods above can be efficient for this. When it comes to detection, it is important 

to evaluate the relevancy of these techniques with regard to the unmixing situation 

and the detection algorithm to be used. 

In the case of MSD, it is important to obtain linearly independent components 

to build a projection matrix. In this purpose, PCA is more suitable than MCR-ALS 

because it assumes the spectral components are non colinear. On the other hand, the 

detection algorithm used with MCR-ALS (GMM with Malahanobis method) is more 

flexible. Since this method directly works on the concentration profiles, no assumptions 

are made on the spectral profiles. Moreover, the GMM enables to fit complex 

distribution in the feature space. 

Choosing the appropriate threshold for detection is also an issue in the tuning 

phase. For the MSD, the metric for target detection is directly linked to a hypothesis 

test which is clearly defined. The threshold determination for outlier detection is fuzzier 

in the case of GMM: a high Mahalanobis distance may be due to an adulterated pixel 

or a standard pixel that follow the main variability of the chemical species and which is 

an extreme observation. As a consequence, this solution requires more interpretation 

and confidence in the design of the feature space, i.e., the determination of the spectral 

profiles. 

The literature shows that ICA [107-108] or vertex-based [109] techniques are 

widely used for hyperspectral unmixing and detection. However, it is not so much used 

in food industry applications. Such methods combined with appropriate detection 

algorithms could be a way forward for hyperspectral imaging in the food industry. 

 

 

Pixel unmixing and mathematical issues 

 

In our work, the pixel unmixing phase is equivalent to the feature space design, 

which is finding the most interesting spectral components for detection. We assumed 

these spectral profiles should represent the signatures of the pure chemical in the 

system. This choice is justified for improving results interpretability. For instance, in the 

case of the MCR-ALS study (Figure 31) the fact that 𝒄𝟑 is associated to the pure peanut 

spectral signature helps in the interpretation and detection process. However, the 

mathematical problem of finding the purest spectral component in a system is 

complex. Fundamentally, this may be considered as an ill-posed problem for two main 

reasons. 

Solving the bilinear model implies that the number of spectral components, 

often referred to as the chemical rank [110], has been chosen beforehand. This choice 

is detrimental for techniques like MCR-ALS or ICA because the solutions will be 

different according to the chosen rank number, i.e. they are not nested method like 

PCA [111]. The link between the chemical rank and its mathematical meaning is not 

completely clear [110]. Consequently, the right number of chemical species in the 

system may not always be an appropriate guide. 



 

 

 

In practice, it is complex to estimate all the independent chemical species that 

influence the NIR signal before analyzing it. As a result, the chemical rank is often 

deduced from a first analysis of the signal, and is not really associated to the number 

of pure existing compounds in the sample. Instead, it should be described as the 

number of different pure signal signatures that can be interpreted based on the pure 

sample analysis. The case of the chocolate powder is a good example. In the context 

of adulteration with peanut, this sample was considered to be a mixture of two main 

ingredients: cocoa and sucrose [82]. However, we know from the sample description 

that it contains many more ingredients like soybean lecithin (Table 5). Hence, it should 

be relevant to consider all the elements of this list. However, it turns out that only the 

sucrose and the cocoa can be distinguished using hyperspectral imaging. Hence only 

these independent spectral signatures were considered for the choice of the MCR-ALS 

rank. Other settings of the camera could lead to distinguish other ingredients by 

measuring smaller pixels (i.e. a smaller field of view). In that case, it could be relevant 

to consider additional components in the unmixing problem. 

 
Table 4: List of ingredients of the chocolate powder sample used in [82]. 

Ingredient Proportion 

Saccharose - 

Powder cocoa 21,3 % 

Dextrose - 

Soya lecithin - 

Salt - 

Cinnamon - 

Aroma - 

 

The ambiguity in spectral profiles is a major difficulty in pixel unmixing and 

detection for two main reasons. 

First, because the true spectral signatures may not be known completely. 

Although the main pure ingredients could be identified for chocolate powder and 

peanut flour, their associated NIR signatures were still ambiguous. As the NIR spectra 

may change according to multiple factors, it may not be obvious to compare chocolate 

spectral signature from one study to another. As another example, studies about the 

spectral signature of crushed peanut can be found in the scientific literature. However, 

it was not possible to find any study about peanut flour. There is a need to have more 

interpretative studies of food powder NIR spectra in the literature. It could help to 

understand the type of NIR pattern that is expected in food powders despite their 

complexity. 

Besides, finding the spectral components of a system may be tricky because of 

mathematical reasons. The unmixing process implies that the spectral signatures 

exhibit different shapes. For instance, techniques like PCA or ICA are looking for 

spectral profiles that are orthogonal and independent, respectively. This assumption 



 

 

 

becomes an issue when two spectral components actually share some NIR patterns. 

The case of peanut in chocolate powder is a good example of such a situation. The NIR 

signatures of peanut and cocoa can be considered to be quite similar (see 𝒔𝟏 and 𝒔𝟑 

on Figure 32). Hence, when considering a pixel containing mainly sucrose, it is not clear 

at all if the remaining substance is cocoa, peanut, or even a mixture of both. In this 

situation, the mathematical problem is ill-defined once again. 

This issue of ambiguity has been addressed, mainly in the case of MCR-ALS, with 

the MCR-BANDS technique [112]. It gives the magnitude of the ambiguity and the 

MCR-BANDS which represents the boundaries of possible solutions for each 

component. This method could be an efficient tool to understand how the additional 

constraints reduce the ambiguity of the solutions. Indeed, the number and the types 

of the constraints that should be applied for a given problem is not straightforward to 

determine. If the problem is under-constrained, the MCR-BANDS may show that the 

system resolution is ambiguous. Hence, not so much confidence can be attributed to 

the spectral and concentration profiles obtained by the optimization process. 

On the other hand, too many constraints may be applied to the system. The data 

matrix cannot be reconstructed by satisfying all the constraints and a sufficiently low 

lack of fit. This kind of situation may be quite common regarding complex unmixing 

situations. One perspective of this work could be to investigate in what extent the 

unmixing situation is over-constrained and the most suitable constraints to apply. 

Finally, hyperspectral imaging offers spatial information about a sample. In our 

work, this information was never used as a reference to help the unmixing process. 

MCR-ALS was initially developed to handle a 2-dimensional matrix that does not hold 

any spatial information. However, it is possible to use an alternative approach to the 

MCR-ALS procedure called HSI-MCR-ALS [113]. This method consists of refolding the 

image structure of the concentration profiles for each component during the ALS. Once 

the spatial information is retrieved, image processing methods can be applied to the 

concentration profiles. Recent works have shown the efficiency of spatial constraints in 

MCR-ALS [114][115]. One perspective of our work could be to implement such 

constraints to improve the unmixing process and the detection. The challenge is that 

the adulterant particles do not follow a clear spatial pattern. The results of the MSD 

and MCR-ALS studies show the detected pixels produce clusters of different sizes. 

Hence, it could be challenging to assume a spectral continuity between neighbor pixels. 

 

 

Dynamic context 

 

The detection approach of this work is used in a static context. It means that the 

adulterant and standard samples are considered to be known. However, the products 

may change according to the seasonality (wheat flour for example) or the product 

formulation (chocolate powder). In a real industrial environment, these changes may 

affect the hyperspectral measurements which may cause a drift in the detection 

algorithms. 



 

 

 

Some solutions are investigated in the literature. One main idea could be to learn 

the statistical behavior of the standard sample directly on the analyzed image. It implies 

there are potentially adulterated pixels in the image. Hence, this method only works 

with the assumption that the adulterant is rare in the sample. This method is used to 

implement the Adaptative Matched Subspace Detector (AMSD) which is the alternative 

version of the MSD used in the present work. More developed methods can be used 

to select random pixels, remove potential outliers and perform the standard sample 

design [52]. Another approach consists of the online estimation of the spectral and 

abundance profiles. Each time a new line of the hyperspectral image is measured, the 

model is updated using the information already collected together with the new line. 

This approach was used with NMF to implement online hyperspectral processing on 

wood samples [105]. 

 

 

B. The detection sensitivity 

 

The importance of the pixel detection sensitivity 

 

The notion of detection sensitivity is tackled in this thesis regarding the peanut 

detection in wheat flour. In this work, we stated that detecting a particle in a subpixel 

context requires the investigation of the detector sensitivity. 

Since the particles to detect were assumed to be potentially smaller than the 

pixel field of view, no assumption could be done on their spatial pattern. Hence, the 

validation and the explanation of the detections could not be done using the detection 

map only. Each pixel detection should be treated independently in the first place, 

regardless of the image structure. This means that only spectral information could be 

used to validate the detected pixels. In this context, it is important to know the minimal 

amount of adulterant particles the detection system (hyperspectral camera and 

algorithm) can detect in standard pixels. That is why the sensitivity at the pixel scale is 

important to determine. 

The detection results obtained for each pixel are usually extrapolated to all 

samples. For example, detecting wheat flour with a peanut adulteration of 1 % only 

depends on the detectability of each pixel. For this reason, the investigation of the 

detector sensitivity should be, once again, considered as a significant interest in the 

case of subpixel detection.  

 

 

The lack of reference method 

 

In practice, studying the detector sensitivity can be conducted as follows. Some pixels 

with known concentrations of target chemicals are selected. The detection algorithm 

is applied to these pixels. Then, the minimal concentration that can be detected with a 

high probability (99 % of the tested pixels with this concentration) can be used as the 



 

 

 

reference sensitivity. Although this process appears trivial, there is a significant 

challenge: knowing the concentration of the target chemical for real pixels. 

In remote sensing, such information can be obtained for earth observation 

images. The hyperspectral dataset HYDICE is partially manually annotated so that each 

pixel contains the percentage of four targets of interest (asphalt, roof, grass, and tree) 

[116]. Such a result could be obtained assuming the linear mixing model holds. 

However, this is a reasonable assumption only for macroscopic spectral mixture [106]. 

In case of lower scale interactions, like for food powders, the multiple scattering 

interactions makes the resulting signal much more challenging to calculate. Besides, 

being able to characterize the particles in a 3D volume raises many complex problems. 

It is not clear what particles and at which scale the particles should be considered. As 

for the unmixing problem, there is no clear guidance about how to choose the spectral 

components. Moreover, the deduction of the signal for one pixel would require to 

know the chemical nature and the position of a large number of particles in a small 3D 

volume. Thus, obtaining the reference values of a hyperspectral image of food products 

using the same approach than earth observation image was not considered in our 

work. 

One solution could be to change the scale of the problem to a larger one. 

Instead of considering the real pixels obtained from the hyperspectral images, one may 

use macro-pixels (Figure 37). These are obtained by combining real pixels from the 

standard and the adulterant samples because their compositions are assumed to be 

pure and known. Once the macro-pixel is obtained, one may assume its signal can be 

obtained by averaging the original pixels’ signals. This equivalent to considering the 

LMM is valid in this context. Therefore, pixels with known and varying target 

proportions are obtained by simulating a larger pixel field of view. Such a technique 

may look promising for testing detection algorithm. However, one major problem of 

this model is that the signal of the macro pixel is, by nature, less noisy than the signals 

coming from the original pixel. Mathematically, it happens because the noise is random 

and the averaging process decreases it. In practice, even if a pixel is larger and should 

provide less noise, the camera’s electronic noise is still added to the measurement. 

Hence, such a method leads to smoother spectra than those obtained in the real pixels. 

This is a problem for the estimation of the detector sensitivity. Spectra with less noise 

exhibit less variability and are closer to average behavior. Hence, the detection of such 

pixels is likely to be much easier to perform. A simulation method that can take the 

pixel variability into account is a must-have. 

 



 

 

 

 
Figure 37: A method to generate macro-pixels with known concentrations from pixel of pure samples. 

 

 

The simulation of hyperspectral data 

 

The simulation method proposed in [67] shows its relevancy in the study of subpixel 

detection. One main significant result is that the simulated dataset enables to draw 

consistent conclusions compared to the observations on real data. We previously 

showed that a significant proportion of simulated spectra (> 95%) were detected by 

the algorithm as soon as the concentration of peanut is above 20%. Hence, it could be 

stated the detection system has a pixel-scale sensitivity of 20%. 

To compare this result with some figures, we can model the pixel field of view as a 

square of size 250 µm. The NIR signal comes from particles under a layer of 1 mm [53]. 

Hence, the particles that contribute to the signal are in the volume described in Figure 

38. This scheme helps to put the result in perspective and make several observations: 

• Knowing that the signal of the underlying particles is weak, there is a big chance 

that if a median peanut particle is on the surface material, it will be detected. In 

this case, the particle represents approximately 20 % of the pixel surface. 

• Lower concentrations of peanut in the pixel can only be obtained by considering 

underlying layers. In this case, the signal from peanut may be highly attenuated 

by the surface layer. 

• The signal contribution of a pixel seems to be much more explained by the 

signal from multiple layers than from neighbor particles at the surface. 

 



 

 

 

 
Figure 38: The pixel scale geometry compared to the peanut and wheat particles. 

 

The last observation tends to show that the multiple scattering in powders may 

have a non-negligible effect on the pixel signal. According to the detection depth study 

results, at least ten layers of particles would be involved in the signal of a pixel. This is 

without considering the influence of neighbor pixels. This means that nonlinear models 

for spectral simulation should be also considered, as already suggested in the literature 

[117]. Nonlinear spectral simulation is still a challenge, and it should be a way for 

perspective. 

Besides, despite it not being directly visible on spectral data, the real pixels from 

the MSD study exhibit a variability that derives from the Gaussian distribution. Figure 

39 shows that the scores of real pixels on PC1 does not entirely overlap the Gaussian 

distribution of the simulated pixels obtained in the study. One may observe that the 

mode of the distribution of the real pixels is slightly shifted from the zero mean because 

of the extreme scores on the right-hand side of the axis. Hence, using more advanced 

simulation methods for fitting the real distribution of scores may improve the results 

for a better estimation of the detector sensitivity. For example, the distribution of each 

score could be estimated using a kernel distribution. 

 



 

 

 

 
Figure 39: The distribution of simulated scores (PC 1) compared to the distribution of the scores of real 

pixels. 

 

 

C. The particle detection in hyperspectral images 

 

The particle agglomeration 

 

The detection results shown on the maps (Figure 24 and Figure 34) are useful to prove 

the agglomeration of peanut particles in the sample mixtures. This phenomenon is also 

reported when studying the particle size of the pure samples (Figure 35). The presence 

of particles with a diameter between 600 µm and 1 mm for peanut flour can only be 

explained by their agglomeration. It is referred to as the particle stickiness problem 

[118]. For microscopic particles, a cohesion force exists and maintains them together 

even during the mixing. We show that the neighbor pixels that were detected as 

containing peanut flour were likely to show peanut particle clusters. Figure 34 also 

shows that for the high peanut concentrated samples, the detected clusters have larger 

pixel neighborhoods. This can be explained by the fact a larger quantity of peanut flour 

was introduced in the mixing. Hence, there is more chance that big clusters were 

incorporated. On the other hand, when smaller quantities were involved, big flour 

clusters had to be crushed to satisfy the mass of peanut introduced. 

Thanks to these observations, the detection of pixel clusters was an argument 

for more credible results. Also, the inspection of the detector statistic shows the 

variation of signal intensity around a cluster of detected pixels (Figure 40). 

 



 

 

 

 
Figure 40: (A) the statistic of the MSD with the colormap highlighting the intensity of the detection 

statistic: high detection for yellow and low detection for blue. (B) is the corresponding detection map 

with detected pixels in yellow. 

 

Besides the validation of the detection results, particle clustering could be used 

as an a priori knowledge of the problem. The principle is that there is more chance a 

peanut particle has been measured if several neighbor pixels show a high detection 

score. It could happen that this detection score is not sufficient so that each pixel 

individually is not detected by the algorithm. However, it may be relevant to consider 

that high scores of neighbor pixels should be combined to detect the area as 

potentially contaminated. This kind of method could be implemented using image 

processing morphology, as described in the HSI-MCR-ALS method [113]. 

Finally, it may be essential to consider the particle clustering effect due to the 

stickiness in the case of involuntary adulteration in food powder. Such contamination 

may happen because of particle sticking onto the equipment [36]. Following this 

hypothesis, one may assume that those particles stay together because of stickiness, 

even during the mixing process. Therefore, the detection of powder contamination 

could be simpler than being able to detect a single particle. Some investigations and 

empirical studies would be essential to understand how involuntary contamination are 

dispersed across food powder during the process. 

 

 

The number of detected particles 

 

One first idea to investigate the relevancy of detections in the mixed samples is to 

compare it to the theoretical global adulteration rate of the samples. We assume the 

number of detected pixels increases as the adulterant concentration increases, and that 

both are correlated. However, we showed that as the adulterant concentration 

increases, this relation is no longer linear (Figure 26). The simulation described in [67] 

explains how this non-linearity arises. This phenomenon happens because we consider 

a pixel entirely as adulterated as soon as it contains enough adulterant spectral 



 

 

 

signature to be detected. Therefore, if the detector sensitivity is 20 %, all the pixels 

containing at least 20 % of adulterant will be detected. When the target concentration 

is low, its particles are sparsely distributed on the image. Hence, only a few detected 

pixels appear. As the adulterant concentration rises, there is more chance that a pixel 

contains some of its particles. It could be that underneath adulterant particles influence 

the pixel signal. As a result, many more pixels will be detected as being influenced by 

the adulterant chemical. However, since each pixel counts for one detection, the 

number of detected pixels increases much faster than the concentration. 

Instead of counting the number of detections, we could count the predicted 

contribution of the adulterant in the pixel spectrum. The relationship between this 

contribution and the global target concentration should be more linear. However, this 

contribution is difficult to assess and we may end up with the same kind of difficulty. 

Indeed, in both methods used for peanut detection, the peanut contribution or the test 

statistic is never zero for non-contaminated pixels. This is visible for pure samples, and 

this is due to the ambiguity of the unmixing process. Hence, such a process would lead 

to an overestimated overall contribution of the adulterant. 

The way the pixels are counted may lead to misleading results. If we assume a 

sample contains 10 % of peanut flour and the particles are homogenously distributed 

in the pixels, each pixel should contain a contribution of 10 % of peanut. Then, 

assuming the detection system has a 20 % sensitivity, it means that no pixels could be 

detected from the sample. It points out an essential assumption in our methodology. 

We actually assume the sample is not perfectly homogeneous so that we expect to 

detect several particles in one pixel to have the chance to detect it. The description of 

such a system does not hold in our case because the particles are not small enough 

compared to the pixels (Figure 38). This observation refers to the concept of the scale 

of scrutiny, which is very important in powder quality inspection in pharmaceuticals 

[119]. That is the sample size for which powder properties like homogeneity have to be 

ensured. In our case, we could say the scale of scrutiny is the pixel field of view. The 

property to be ensured is that the particle size is large enough to guarantee powder 

heterogeneity. In other words, we expect that if an adulterant particle is in the pixel, it 

has a chance to be detected. Either because its size is big enough or either because it 

is not the only one in the pixel field of view. 

 

 

Detecting a global adulteration 

 

In the food industry, the problem of food contamination could be stated differently 

than what was considered up to now. The question should be the following: assuming 

a given quantity of powder has contaminated a sample, how many pixels should be 

investigated to detect at least one particle? 

We assume a binomial distribution can rule the content of a pixel field of view. 

A pixel contains 𝑛 particles that are either standard particles or adulterant with a 



 

 

 

probability 𝑃 related to the global adulteration rate. Hence, the probability of finding 

at least one particle in the pixel is given by:  

 

𝑃pixel(𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙 > 1) = 1 − (1 − 𝑃)𝑛   
 
Equation 19: The probability of finding at least one particle in one pixel for a binomial distribution. 

 

Assuming the system is able to detect a pixel as soon as it contains one particle, 

the probability that one pixel is detected in an entire image of 𝑁 pixels is:  

 

𝑃image(𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑖𝑚𝑎𝑔𝑒 > 1) = 1 − (1 − 𝑃pixel(𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙 > 1))
𝑁

 

 
Equation 20: The probability of finding at least one particle one image of 𝑁 pixels for a binomial 

distribution. 

 

From this calculation, we can infer the number of pixels one should investigate 

to have a high probability 𝑃detection to detect at least one pixel in the image. We may 

assume this is a quantity of interest for the industry because as soon as an adulterant 

particle is detected, the sample should be considered for removal. Table 5 gives the 

result of such a calculation by setting 𝑃detection = 0.99 and using the median particle 

size obtained in our experiment (137 µm for peanut and 80 µm for wheat). For instance, 

it shows that at least 77 pixels should be investigated to ensure one detection in a 

sample with 1 % of adulterant. In practice, a hyperspectral imaging system generally 

measures several hundreds of pixels for each acquisition band. Hence, it is possible to 

detect adulteration of 10 % to 0.1 % with a few hyperspectral measurements. Even if it 

is relevant regarding the detection results obtained in our experiment, these 

estimations should be improved. Many assumptions were made and could be refined. 

 
Table 5: Minimal number of pixels to investigate to ensure at least one particle is detected (99 % of 

chance) for three different levels of adulterant concentration (10 %, 1 % and 0.1 %). 

 

Particle type 

 

Concentration of adulterant 

Standard Adulterant 10 % 1 % 0.1 % 

Wheat Peanut 8 77 764 

Chocolate Peanut 7 69 688 

 

First, the assumption that one particle could be detectable in one pixel field of 

view is difficult to generalize. In theory, if the particle is at the sample surface, the 

detectability could be assessed considering its size. However, if the particle is in the 

pixel depth, its detectability is much more difficult to assess. There is a need for more 

empirical study regarding the detection of underlying targets in food powders using 

NIR HSI. 



 

 

 

Some assumptions of the statistical model may be improved as well. The Bernoulli 

process for choosing the particles in each pixel may be changed. The particle clustering 

could be taken into account by considering there is more chance to get the same 

particle type for succeeding random draws, i.e., the trials are not completely 

independent. Moreover, the number of particles in the pixel field of view should be 

updated according to the particle choice because they do not have the same volume. 

Finally, it is assumed that each pixel of the image is an independent experience. 

However, this is not the case because of particle clusters that are larger than a pixel 

surface. The improvement of this hypothesis will likely lead to less optimistic prediction 

than Table 5 shows. 

 

 

5. Conclusion 

 

The capability of near-infrared hyperspectral imaging supported with the chemometric 

method MCR-ALS to detect peanut flour in chocolate powder was demonstrated. 

Detection of adulterated chocolate powder pixels with peanut flour could not 

be achieved with PCA due to the intrinsic complexity of the problem, as the spectra of 

chocolate powder and peanut flour are very similar and peanut adulteration occurred 

at the subpixel level. To cope with this situation, MCR-ALS was used instead. 

Specifically, we tested two different MCR-ALS methods: a method that incorporates a 

selectivity constraint and another that does not. The best results were obtained for the 

constrained MCR-ALS, highlighting that the detection of peanut adulteration in 

chocolate powder is a very challenging problem. 

MCR-ALS results were used to build a metric for assessing peanut adulteration. 

With this metric, we were able to detect peanut adulteration in all the contaminated 

samples. On the other hand, a selectivity and sensitivity of 1 were obtained on the pure 

samples. Correlations of 0.92 and 0.93 were obtained between the number of 

adulterated pixels and the real concentration of mixed samples for MCR-ALS and MCR-

ALS-CSEL respectively. This result supports the fact that the selectivity constraint was 

efficient to obtain spectral profiles closer to the real ones and to detect more 

adulterated pixels. 

Due to its high performance, the method has the potential to be used for similar 

systems involving powder samples. Future work will be carried out to optimize the data 

acquisition and measurement, accounting by the sensitivity of the hyperspectral 

camera and the penetration depth of the near-infrared radiations. More advanced 

technique could also be used to optimize the MCR-ALS algorithm locally. The local rank 

analysis enables to estimate the complexity of a neighborhood of pixels to set the 

number of components [120]. Using this method, the MCR-ALS fitting may be 

improved locally. 

 
  



 

 

 

Conclusion and future work 
 

1. Conclusion 

 

This thesis aims to study the detection of minority compounds in food powder using 

NIR HSI. It involves two scientific problems: how to determine the maximal depth from 

which the NIR signal comes from in a powder sample; and how to unmix the signal of 

a hyperspectral pixel for detecting minor compounds. These problems are applied to 

the case of contamination, which is characterized by the occurrence of foreign 

compounds in more or less high quantities. 

The first part of the thesis focuses on the interactions of several layers of food 

powder and theirs contributions to the NIR signal. This subject is still a problem to 

solve theoretically and a few studies tackle the penetration depth of NIR radiations in 

an empirical way. An original approach is proposed using a sample holder made of PLA 

that mimics an underlying sample at different depths. We show that the NIR signals 

come from surface layers no deeper than 2 mm in powders like wheat flour. 

The second part of the thesis deals with modelling the spectral variability within 

a pixel, which is essential when the particle size is smaller than the pixel field of view. 

The Linear Mixing Model is used to model the pixel signal, and detect minor 

compounds. A Matched Subspace Detector is designed to model the spectral variability 

and perform pixel detections. The unmixing and detection strategy requires the use of 

validation data, which are difficult to obtain in our context. In addition, the fact that 

food powders share some spectral pattern leads to an ambiguous problem for 

unmixing. A data simulation is used to overcome the first difficulty.  

Then, the Multivariate Curve Resolution Alternating Least-Squares method is used 

to resolve the spectral ambiguity within the pixels. We proposed to use a selectivity 

constraint of the concentration matrix to reduce the ambiguity of the solution. The 

combination with an outlier detection strategy enables to improve the detection of 

peanut flour in chocolate powder. 

The detection experiments of this thesis are performed using industrial food 

powders. The peanut flour is the sample to detect because it represents a harmful 

contaminant for allergic people. This thesis shows that ensuring the detection of such 

chemical in the food industry is a complex problem. Moreover, the quantity of allergen 

that can trigger a reaction may be very small. Such a constraint is not compatible with 

the detection restrictions implied by the technology. In addition, the food allergen 

detection using NIR suffers from a lack of definition of what is an allergen from the NIR 

point of view. As a conclusion, such a complex detection problem using NIR HSI must 

be addressed carefully. 

 

 

 

 



 

 

 

2. Future works 

 

In the first chapter, we used a sample holder as the target to be detected under layers 

of wheat flour. Thus, we studied the detection case of a plane surface of sample. 

Detecting smaller target spheres beneath controlled layers of wheat flour should be a 

case to investigate. First, it is a more realistic representation of particle detection within 

a powder. Then, comparing the results between this experience and the plane sample 

holder could provide insights regarding light scattering in complex media. 

 We studied the detection depth using diffuse reflectance lighting. The study of 

the optical light path can be carried out using spatially resolved spectroscopy (SRS). It 

enables to select specific longer or shorter light paths and measure them 

independently. This measurement technique is suitable with NIR HIS since each pixel 

can be considered as an independent sensor. We discussed the fact the detection 

depth is often limited by the surface signals in diffuse reflectance. The SRS enables to 

filter out these signals by measuring the reflectance at a given distance from the 

incident beam. Hence, an appropriate distance could provide better detection depth 

that the one obtained with diffuse reflectance. Such an experiment can be carried out 

using a white laser beam, a HSI and an appropriate sample holder. 

In the second chapter, we studied the modelling of a pixel signal using linear 

models. As we discussed, such models are theoretically able to take the signal mixing 

in the sensor into account. However, the interactions between multiple layers provoke 

nonlinear effects in the signal. As a consequence, a more precise simulation method 

for spectral data could be based on nonlinear methods. Some multiplicative terms 

between the reflectance of each particle signal can be taken into account. 

In this chapter, we developed the Matched Subspace Detector (MSD) using 

Principal Component Analysis. Other methods could be used to obtain the spectral 

subspaces. Independent Component Analysis (ICA) or Non-Negative Matrix 

Factorization (NMF) are two methods than could be compared to PCA. Another 

method could be to use multiplicative interactions of the compound’s reflectance 

signatures to take their interactions into account  in the detection method. 

 In the third chapter, Multivariate Curve Resolution Alternating Least-Squares 

(MCR-ALS) method was applied to unmix the pixel signal with a selectivity constraint. 

This method is used after the hyperspectral cube is unfolded and the MCR-ALS does 

not take spatial constraint as such into account. However, it is possible to reconstruct 

the cube structure in the ALS procedure to apply image filter and constraints. The 

combination of such a constraint could lead to a better spectral resolution and possibly 

to better detection performances. 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

Appendix A: The Gaussian Mixture Model 

 

 

The Gaussian Mixture Model probability density is given by [60]: 

 

𝑝(𝒙|𝝎𝑖 , 𝝁𝒊, 𝚺𝑖) =  ∑ 𝝎𝑖  𝑔(𝒙|𝝁𝑖 , 𝚺𝒊)

𝑀

𝑖=1

 

𝑔(𝒙|𝝁𝒊, 𝚺𝑖) =  
1

(2𝜋)𝑚/2|𝚺𝑖|1/2
exp (−

1

2
(𝒙 − 𝝁𝒊)

𝑇𝚺𝑖
−1(𝒙 − 𝝁𝑖)) 

 
Equation 21: The Mixture of Gaussian Model. 

 

This model is a weighted sum – with the weights 𝝎𝑖 – of Gaussian probability 

density functions that all have their parameters: the average 𝝁𝑖 and the covariance 

matrices 𝚺𝒊. The notation |𝚺𝑖| refers to the matrix determinant. An example is the 

combination of two Gaussians to fit a bi-modal distribution (Figure 41). 

 

 
Figure 41: Example of a bi-modal distribution fitted with a single Gaussian model (A) and with GMM (B). 

 

The GMM is obtained after estimating its parameters: 𝝎𝑖, 𝝁𝑖 and 𝚺𝒊, the weights, 

the mean and, the covariance matrix for each Gaussian. This estimation is usually done 

using the maximum likelihood approach, which is maximizing the following quantity: 

 

𝑝(𝐗|𝛚, 𝝁, 𝚺) =  ∏ 𝑝(𝒙𝑖|𝛚, 𝝁, 𝚺)

𝑛

𝑖=1

 

 
Equation 22: The quantity to maximize in the maximum likelihood approach. 

 



 

 

 

In Equation 22, 𝐗 is the generic notation for the matrix containing the training 

vectors that are assumed to be independent. In the case of peanut detection in 

chocolate powder, 𝐗 is replaced by the concentration profile matrix 𝐂 obtained by 

MCR-ALS. The quantity is commonly maximized using an iterative method called the 

Expectation-Maximization (EM) algorithm [60]. It aims to continuously increase the 

quantity Equation 22 by estimating the parameters at each step. For more details, the 

formula for the calculation of the parameters at each step are given in [60]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix B: The Mahalanobis distance for outlier detection 

 

The Mahalanobis distance is a measure of the distance between one observation 

and a distribution. It gives an estimation of how far the observation is from the mean 

of the distribution considering its variance [62]. The distance is calculated using 

Equation 23: 

 

𝑑𝑚
2 =  (𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁) 

 
Equation 23 : The expression of the Mahalanobis distance. 

 

 and  are the mean and covariance matrix of the distribution, and 𝒙 is the 

observation. The Mahalanobis distance takes into account the variance of the 

distribution for the distance evaluation. Figure 42 shows that the Mahalanobis distance 

is more important for the outlier (red circle marker) than for extreme observations of 

the distribution (on the top-left of the left figure). This distance is equivalent to the 

Euclidian distance in the principal component space with the axis re-scaled to have unit 

variance. The right plot of Figure 42 shows it because the Mahalanobis distance has a 

circular geometry in the PC-space. 

 

 
Figure 42: Randomly generated observations in the original space (A); and in the PC-space with the 

reduced by the PC standard deviation (B). The colormap, on both graphs, shows the Mahalanobis 

distance in the feature space. 
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Résumé de la thèse par chapitre 
 

 

Introduction 

 

Ce projet de thèse est issu d’une collaboration entre l’AgroParisTech et l’ONIRIS dans 

le but de développer des solutions de contrôle de procédés de fabrication dans 

l’industrie agroalimentaire. En particulier, il s’agit de contrôler les processus industriels 

liés aux poudres telles que les farines à l’aide de l’imagerie hyperspectrale proche 

infrarouge. Cette technique permet, entre autres, d’analyser les poudres 

agroalimentaires et d’en détecter certains contaminants. Cependant, nous avons 

identifié que cette détection soulève deux problèmes techniques majeurs. Tout 

d’abord, le champ de vision des pixels est plus grand que la taille de la plupart des 

particules de poudre. Lorsque des composés de natures chimiques différentes sont 

mesurés au sein d’un même pixel, le spectre proche infrarouge est un mélange de 

signaux dits purs qu’il faut démélanger. Ensuite, les radiations proches infrarouges ne 

sont capables de pénétrer qu’une épaisseur limitée de matériau à cause du phénomène 

d’absorption. Ce phénomène limite la capacité de détection en profondeur d’un 

système proche infrarouge. Pour cette raison, il est important de pouvoir quantifier la 

profondeur de détection. 

Dans cette thèse, nous proposons d’adresser les deux questions scientifiques 

qui en découlent : comment modéliser le mélange de signaux dans les pixels et 

détecter la présence de composés minoritaires ; comment déterminer la profondeur 

de détection d’un système d’imagerie proche infrarouge. 

Les poudres sont largement utilisées dans l’industrie agroalimentaire et ceci 

pour de multiples raisons. En particulier, elles permettent un usage et un transport 

simplifiés, mais aussi une meilleure conservation de l’ingrédient grâce au retrait de 

l’eau. Ces poudres sont utilisées dans le cadre de recettes permettant la fabrication de 

produits agroalimentaires grâce aux différents procédés comme le mélange ou la 

cuisson. Or, les procédés complexes ainsi que les contraintes industrielles d’une recette 

impliquent le risque de sa contamination par un élément étranger. Une telle situation 

peut mener à la présence fortuite de substances non indiquées dans la liste 

d’ingrédients du produit. Il s’agit d’un véritable problème de santé publique qui 

concerne particulièrement les personnes ayant des allergies alimentaires. Un tel constat 

pose la question du contrôle des produits pulvérulents tout au long de la chaîne de 

traitement agroalimentaire. Il existe actuellement plusieurs méthodes permettant de 

limiter les risques de contaminations dans ce contexte. De plus, des méthodes de 

contrôle en temps réel se développent pour compléter les méthodes de contrôle 

traditionnelles qui consistent à réaliser des tests chimiques sur des échantillons 

prélevés. C’est le cas de la spectroscopie proche infrarouge (SPIR) qui permet l’analyse 

indirecte de la nature chimique d’un échantillon par l’étude de son interaction avec des 

radiations proche infrarouges. 

 



 

 

 

L’imagerie hyperspectrale proche infrarouge est une technique qui utilise la 

combinaison de l’imagerie et la SPIR. La spectroscopie classique est capable, en 

fonction du dispositif de mesure utilisé, de produire une mesure sur une zone 

déterminée de l’échantillon. Le spectre mesuré est ensuite considéré comme 

représentatif de l’ensemble de la matrice étudiée. L’imagerie hyperspectrale permet de 

dresser une carte spectrale de l’échantillon puisque chaque pixel de l’image correspond 

à une mesure spectrale. Après transformation de la mesure spectrale en information 

d’intérêt, l’imagerie est donc capable de fournir une carte de l’échantillon pouvant 

mener à une étude de son hétérogénéité chimique. Cette approche est 

particulièrement intéressante pour mettre en avant la présence d’éléments anormaux 

dans une matrice, pourvu que la mesure spectrale les fasse ressortir par l’analyse 

chimiométrique. 

L’imagerie hyperspectrale proche infrarouge a été utilisée pour de multiples 

applications en sécurité alimentaire. Quelques exemples sont la recherche de 

contaminations avec la détection de mélamine dans la poudre de lait ou de la 

cacahuète dans la farine de blé. Ces applications montrent l’utilisation de différentes 

méthodes chimiométriques appliquées à l’imagerie hyperspectrale. Les algorithmes de 

classification ou l’utilisation de métrique de similarité spectrale permettent d’assigner 

une classe à chaque pixel de l’image. Ces classes sont définies par des mesures des 

spectres purs des composés chimiques à identifier. Dans d’autres cas, des méthodes 

de quantification sont utilisées pour assigner une proportion à chaque pixel ou à 

l’ensemble de l’image.  

Les méthodes de démélange telles que la Multivariate Curve Resolution 

Alternating Least-Squares ont été utilisées. Cette méthode permet de résoudre le 

problème du mélange linéaire au niveau de chaque pixel. En spectroscopie, elle est 

généralement utilisée pour des méthodes plus résolues que le proche infrarouge 

comme le Raman ou le moyen infrarouge dans un but de quantification. Dans cette 

thèse, nous proposons d’appliquer cette méthode dans un but de détection de 

composés minoritaires. Dans ce contexte, l’ambiguïté du modèle est grande car les 

spectres des composés purs sont proches. Par conséquent, nous proposons de mettre 

en place des contraintes particulières pour obtenir un démélange efficace. 

Finalement, les méthodes de détecteur à sous-espace sont utilisées dans le 

domaine de l’observation terrestre pour la détection de cible. Ces méthodes 

permettent de prendre en compte la variabilité spectrale du contaminant et de 

l’échantillon séparément afin de construire une métrique de détection. Une difficulté 

de cette méthode réside dans le choix des paramètres du détecteur qui nécessite 

d’utiliser des valeurs de référence pour la validation. Ces données sont très difficiles à 

obtenir dans le cas de l’étude des produits agroalimentaires. Nous proposons de 

mettre en place ce type de détecteur en utilisant une stratégie de simulation de 

données spectrales pour sa validation. 

La profondeur de pénétration des radiations du proche infrarouge est étudiée 

depuis le début du siècle dernier. Cependant, ces développements théoriques ne 

permettent pas toujours d’évaluer ce phénomène dans des cas pratiques beaucoup 



 

 

 

plus complexes. Plusieurs auteurs ont participé au développement d’une approche 

empirique permettant de déterminer la profondeur de pénétration des radiations du 

proche infrarouge dans plusieurs matériaux comme des fruits ou des tissus humains. 

Cette méthode ne permet pas d’évaluer la capacité de détection d’un contaminant à 

travers une poudre. Une autre approche, empirique elle aussi, a été développée pour 

déterminer l’efficacité d’un modèle de détection de mélamine avec différentes couches 

de profondeur de poudre de lait. Cette méthode apporte un éclairage important sur le 

sujet mais ne permet d’évaluer avec précision la profondeur de détection du dispositif. 

Nous proposons une nouvelle méthode qui s’appuie sur l’utilisation d’un socle de 

mesure adapté et d’une méthode chimiométrique pour la détermination de la 

profondeur de détection d’un système. 

Ce manuscrit est décomposé en trois chapitres portant sur trois travaux publiés 

dans des revues scientifiques. 

Le premier chapitre est consacré au développement de la méthode de 

détermination de la profondeur de pénétration. La conception du socle de mesure et 

la méthode chimiométrique sont expliquées. La méthode est ensuite appliquée à une 

farine de blé. 

Le deuxième chapitre est dédié à l’étude de la détection de composés 

minoritaires en imagerie hyperspectrale par l’utilisation d’un détecteur à sous-espace. 

Sa conception est détaillée et validée par une approche de simulation de données 

spectrales. Le détecteur est ensuite appliqué à la détection de farine de cacahuète dans 

la farine de blé. 

Le troisième chapitre propose le développement d’une méthode de démélange 

du signal des pixels basé sur la Multivariate Curve Resolution Alternating Least-Squares 

(MCR-ALS). La mise en place d’une contrainte de sélectivité et la combinaison avec un 

algorithme de détection d’aberrations sont détaillées. Cette méthode est appliquée à 

la détection de farine de cacahuète dans une poudre de chocolat, mélange de cacao 

et de sucre. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

La profondeur de détection d’un système de mesure hyperspectrale proche 

infrarouge 

 

 

Introduction 

 

L’industrie agroalimentaire cherche à garantir l’innocuité de ses matières premières qui 

sont souvent sous forme de poudre. La spectroscopie proche infrarouge permet 

d’étudier indirectement la chimie de ces produits sur une épaisseur finie à cause de la 

profondeur de pénétration des radiations. 

Le problème de la profondeur de détection implique trois concepts : la 

profondeur de pénétration des radiations du proche infrarouge, la dynamique du 

capteur du système de mesures et la nature des signaux spectraux à détecter. 

La théorie de Kubelka-Munk fournit une expression pour l’intensité du signal de 

réflexion obtenu pour un matériau d’épaisseur infinie ayant un coefficient d’absorption 

et de diffusion connu. Cette formule implique que le signal de réflexion converge en 

intensité pour une épaisseur donnée ; et que les couches plus profondes n’influencent 

pas le signal mesuré. 

D’autres auteurs ont proposé une démarche empirique consistant à faire varier 

l’épaisseur de poudre pour des mesures successives de réflexion diffuse. Cette 

approche permet d’obtenir des profils de réflectance qui sont analysés pour mesurer 

la profondeur de pénétration des radiations. Ces travaux montrent une cohérence avec 

les résultats théoriques et permettent d’obtenir des valeurs pratiques de la profondeur 

de pénétration des radiations sur plusieurs gammes et dans plusieurs matériaux. 

D’autres auteurs encore, ont analysé le problème de la profondeur de détection 

sous un angle empirique différent. La démarche consiste à déposer une couche de 

poudre d’épaisseur variable par-dessus une couche de contaminant à détecter. Un 

modèle chimiométrique développé en amont a pour but de détecter les spectres du 

contaminant. Ce dernier est appliqué sur les mesures réalisées avec une épaisseur de 

poudre qui augmente. La dégradation progressive des résultats de détection du 

modèle permet d’évaluer la profondeur de détection du dispositif. 

Nous proposons une nouvelle approche qui introduit l’utilisation d’un socle de 

mesure en pente faisant varier progressivement l’épaisseur de poudre. Nous 

proposons une méthode pour l’évaluation de la profondeur de détection et nous 

analysons ces résultats en utilisant l’approche empirique des profils de réflectance.  

 

 

Matériel et méthodes 

 

Un socle de mesure adapté a été conçu dans le but d’étudier la profondeur de 

détection dans la farine de blé. Il se compose une cavité centrale en pente de 0.5 mm 

à 3.5 mm qui permet de faire varier l’épaisseur de farine. Le matériau du socle est de 

l’acide polylactique (PLA), un polymère ayant une absorption spectrale marquée à 1168 



 

 

 

nm. Ce matériau sert de cible spectrale pour la détection dans la farine de blé. La 

connaissance de la géométrie du socle ainsi que la mesure hyperspectrale de ce dernier 

permettent d’attribuer, pour chaque pixel, la valeur d’épaisseur de farine 

correspondante. 

Cette information est exploitée pour permettre l’extraction des profils de 

réflectance : la valeur de réflectance mesurée en fonction de l’épaisseur de farine. Ces 

profils sont obtenus pour chaque longueur d’onde du spectre. L’information de 

l’épaisseur de chaque pixel est aussi utilisée pour construire l’ensemble des données 

d’apprentissage de la régression Partial Least-Square (PLS). Cette méthode de 

régression permet de relier les niveaux d’absorbance spectrale aux valeurs d’épaisseur 

de la farine de blé.  

 

 

Résultats et discussions 

 

L’analyse des profils de réflectance montre deux phases. Dans la première, le niveau de 

réflectance augmente en fonction de l’épaisseur de la farine de blé. Ceci s’explique par 

le phénomène d’absorption du PLA qui s’atténue. Pour une profondeur de PLA donnée, 

celui-ci n’influence plus le signal de réflectance en surface ce qui explique que le profil 

de réflectance se stabilise à la valeur prévue par la théorie de Kubelka Munk. 

Cette perte d’information dans le signal s’explique par le faible nombre de 

photons qui parviennent à traverser la couche de farine pour atteindre le PLA. Ces 

photons ont une influence très faible sur le signal. Or une telle influence est 

difficilement perceptible pour un capteur notamment à cause du phénomène de 

saturation et de la forte contribution de la réflexion surfacique. 

La méthode de la régression PLS permet d’obtenir la profondeur de PLA perçue 

en fonction du spectre complet de réflectance. Comme pour le profil de réflectance, 

cette méthode met en évidence deux phases qui permettent de caractériser la 

profondeur de détection du PLA dans la farine de blé. 

Ces deux approches montrent une cohérence dans les résultats obtenus et 

permettent de mettre en évidence la profondeur de détection du PLA d’environ 2 mm 

dans la farine de blé. 

 

 

Conclusion du premier chapitre 

 

La méthode proposée est applicable à d’autres couples d’échantillons dont on souhaite 

connaître la profondeur de détection. Notre étude montre qu’une cible spectrale 

(comme le PLA) ne peut être détectée qu’à une profondeur maximale de 2 mm. Cela 

signifie que la réflexion diffuse proche infrarouge n’est pas capable d’assurer 

l’innocuité d’un échantillon de farine de blé au-delà de 2 mm. Cette valeur dépend des 

espèces chimiques en jeu, aussi bien du point de vue de l’échantillon que de celui de 

la cible. Elle est aussi influencée par la granulométrie et le tassage de la poudre. Par 



 

 

 

conséquent il s’agit d’une propriété difficile à prévoir qu’il est nécessaire d’étudier au 

préalable d’une démarche de détection. 

 

 

 

La détection de farine de cacahuète par détecteur à sous-espace 

 

Introduction 

 

La cacahuète est une matière première utilisée dans l’industrie agroalimentaire. Il s’agit 

aussi d’un allergène alimentaire majeur. Quelques études scientifiques ont déjà 

démontré la possibilité de détecter des éclats de cacahuète dans la farine de blé par 

imagerie hyperspectrale proche infrarouge. Cependant, les particules de cacahuète 

étaient repérables de deux manières : leur taille plus importante que le pixel, et leur 

composante lipidique qui permet d’identifier leurs spectres. En revanche, certains 

contaminants comme la farine de cacahuète ne contiennent pas de composante 

lipidique et ont des particules plus petites que les pixels. Dans ce cas, les méthodes 

utilisées ne sont plus adaptées. 

Le Matched Subspace Detector (MSD) est une méthode utilisée en imagerie 

hyperspectrale d’observation terrestre permettant la détection de cibles sous 

pixelliques. Cette méthode a l’avantage de prendre en compte la variabilité des 

mesures spectrales dans la métrique de détection. Cependant, sa conception nécessite 

le choix de paramètres nécessitant d’être validé par des données de référence très 

difficiles à obtenir dans le cas de poudres. 

 

Matériel et méthodes 

 

Des échantillons de farine de blé adultéré par de la farine de cacahuète en 8 

proportions massiques différentes (de 20 % à 0.02 %) sont préparés et mélangés pour 

être disposés dans des socles de mesure. Ces derniers sont mesurés par un système 

d’imagerie hyperspectrale proche infrarouge. 

Les mesures des échantillons purs de farine de blé et de cacahuète sont utilisées 

pour mettre en place une stratégie de simulation de données par Analyse en 

Composantes Principales (ACP). Cette méthode permet de définir les espaces de 

variabilité spectrale des mesures pour chacun des échantillons. Ensuite, le modèle de 

mélange linéaire est utilisé pour simuler des spectres de mélange en plusieurs 

proportions. 

Le MSD est développé à partir d’un test d’hypothèse : dans la première, un pixel ne 

contient que des particules de farine de blé ; dans le deuxième, le pixel contient aussi 

des particules de cacahuète. Le modèle de mélange linéaire et les profils spectraux 

obtenus par ACP sont obtenus pour modéliser chacune des hypothèses. Dans chaque 

cas, le choix du nombre de profils utilisés pour décrire la farine de blé et la farine de 

cacahuète sont les paramètres à optimiser. 



 

 

 

Résultats et discussions 

 

Les résultats de la simulation spectrale montrent une cohérence dans la répartition des 

spectres sur un graphe de plan factoriel issu de l’ACP. Cela permet de valider leur usage 

pour la validation et le choix des paramètres du MSD. 

Les trois choix de paramètres les plus prometteurs sont comparés en utilisant 

les données simulées pour validation. Les taux de détection des spectres simulés de 5 

% à 20 % de cacahuète sont utilisés et montrent que deux choix de paramètres ont les 

meilleures performances. 

Les détecteurs sont ensuite appliqués sur les mesures des échantillons réels. Les 

résultats montrent une cohérence avec les résultats simulés dans le nombre de 

détections obtenues. L’analyse des détections par comparaison des cartes permet de 

sélectionner les meilleurs paramètres qui détectent le plus de pixels. 

Ces résultats montrent que les paramètres choisis correspondent au meilleur 

équilibrage du nombre de profils spectraux utilisés dans la conceptualisation du MSD. 

L’analyse du nombre de détections sur les échantillons réels montre qu’ils sont 

cohérents avec les concentrations en cacahuète introduites. 

 

 

Conclusion du deuxième chapitre 

 

Cette étude montre que l’utilisation de méthode de détection basée sur les détecteurs 

à sous-espace est pertinente pour des applications en sûreté alimentaire. Cependant, 

la validation des résultats dans le cas de détection de composés minoritaires dans les 

poudres est un problème technique complexe à résoudre. 

La simulation spectrale permet d’apporter des données utiles à la validation du 

détecteur. Nous proposons une méthode dont les résultats montrent une cohérence 

avec les données réelles mesurées. De plus, nous montrons que le MSD est capable de 

détecter des contaminations globales d’échantillon de l’ordre de 0.02 %. 

 

 

 

La détection de farine de cacahuète dans le chocolat en poudre par Multivariate 

Curve Resolution Alternating Least-Squares 

 

 

Introduction 

 

Le chocolat en poudre est un produit transformé de l’industrie agroalimentaire 

constitué majoritairement de cacao et de sucre. L’étude de l’adultération d’un tel 

produit par de la cacahuète est un sujet plus complexe que la farine. En effet, la poudre 

de chocolat est un mélange complexe qu’il est difficile de qualifier d’un point de vue 



 

 

 

spectral. Il est donc avantageux d’utiliser une méthode de démélange par pixel qui 

permet de faciliter la procédure de détection par la suite. 

La Multivariate Curve Resolution Alternating Least-Squares (MCR-ALS) est une 

méthode de démélange permettant de décomposer le signal spectral de chaque pixel 

en une somme de signaux purs. Cette méthode est donc pertinente pour traiter 

l’adultération du chocolat en poudre par la cacahuète. 

 

 

Matériel et méthodes 

 

Les échantillons consistent en un mélange de farine de cacahuète avec de la poudre 

de chocolat industrielle en trois proportions différentes (de 10% à 0.01 %). 

La MCR-ALS considère un modèle bilinéaire pour décomposer le signal de 

chaque pixel en une somme de profils spectraux et de leur coefficient de contribution. 

Un tel modèle est ambigu puisqu’une infinité de solutions peut exister. Pour obtenir 

celles adaptées à l’interprétation spectrale, il est donc nécessaire d’appliquer des 

contraintes. 

Un premier groupe de contraintes correspond à la nature des signaux spectraux 

étudiés et est généralement utilisé dans le cadre des mesures spectroscopiques. Nous 

proposons un deuxième groupe qui y ajoute une contrainte de sélectivité sur les 

concentrations. La connaissance de la composition des images des échantillons purs 

permet de contraindre la valeur de leur concentration associée pour les profils 

spectraux correspondants. 

Deux méthodes de démélange sont utilisées : la MCR-ALS utilisant le premier 

groupe de contrainte et la MCR-ALS-CSEL utilisant le deuxième. Par la suite, un 

algorithme de détection d’outlier basé sur un modèle de mélange de Gaussiennes est 

utilisé sur les profils de concentration obtenus. Cela permet d’obtenir des cartes de 

détection de la cacahuète dans la poudre de chocolat. 

 

Résultats et discussions 

 

Une ACP sur les données hyperspectrales montre la difficulté de démélanger les pixels 

issus des échantillons contaminés. L’analyse du plan factoriel montre une difficulté à 

interpréter chaque composante spectrale ce qui est problématique pour 

l’interprétation des détections. 

La MCR-ALS permet une interprétation plus claire des composantes attribuées 

au sucre, au cacao et à la cacahuète. Cependant, nous remarquons une forte ambiguïté 

entre les deux derniers profils ce qui s’explique par la proximité chimique du cacao 

transformé et de la cacahuète dégraissée. 

La MCR-ALS-CSEL permet de réduire l’ambiguïté entre ces deux profils 

spectraux grâce à l’introduction de la contrainte de sélectivité. La comparaison des 

cartes de détection obtenues grâce aux deux techniques de démélange montre une 

meilleure détection par la MCR-ALS-CSEL. 



 

 

 

 

La position des pixels détectés en supplément par cette méthode montre une 

cohérence spatiale. Celle-ci est renforcée par l’analyse de la granulométrie des poudres 

qui montre un phénomène d’agglomération des particules de cacahuète. Bien que 

certains agglomérats de particules soient plus grands qu’un pixel de la caméra, leur 

contribution spectrale est aussi influencée par les couches inférieures de chocolat en 

poudre, ce qui justifie l’intérêt de la méthode de démélange. 

Cette étude met en avant la difficulté de définir des profils spectraux dans le cas de 

mélanges complexes comme le chocolat en poudre. Dans le cas de produits 

transformés, la signature spectrale des matières premières peut être modifiée par les 

différents traitements. De ce fait, il est difficile de comparer les spectres de ces produits 

avec les spectres des matières premières non traitées ce qui complique l’interprétation. 

 

Conclusion du troisième chapitre 

 

Notre étude montre que la MCR-ALS est une méthode pouvant être utilisée pour la 

détection de particules plus petites que le pixel et même lorsqu’il existe une forte 

ambiguïté des signatures spectrales. L’introduction d’une contrainte de sélectivité sur 

les concentrations et la combinaison de la MCR-ALS avec un algorithme de détection 

d’aberrations permet de détecter jusqu’à une contamination globale de 0.1%. 

 

 

Conclusion générale 

 

Cette thèse propose d’étudier deux problématiques liées à la détection de composés 

minoritaires dans les poudres agroalimentaires par imagerie hyperspectrale. La 

première repose sur l’épaisseur limitée que les radiations du proche infrarouge sont 

capables d’inspecter. L’objectif du premier chapitre de cette thèse était de proposer 

une méthode pour la détermination de la profondeur de détection d’une cible 

spectrale sous une couche de poudre. Nous avons proposé un concept de socle de 

mesure pour réaliser ces mesures ainsi qu’une méthode de chimiométrie adaptée. 

Nous avons montré qu’un signal spectral pouvait être complètement atténué par une 

épaisseur supérieure à 2 mm de farine de blé, ce qui limite les applications de détection. 

En revanche, ces études ont été réalisées en utilisant un éclairage diffus. Il existe 

d’autres méthodes de mesure telle que la spectroscopie résolue spatialement qui 

permet de ne mesurer qu’une portion utile du signal. Nous pensons que cette 

technique a un potentiel très intéressant pour l’étude de la profondeur de détection. 

La deuxième problématique abordée est celle de la détection de particules de 

taille inférieure à celle des pixels. Nous avons proposé une méthode de détection 

permettant de modéliser la variabilité des mesures spectrales grâce à au MSD. Nous 

avons montré l’efficacité de cette méthode dans le cas de la détection de cacahuète 

dans la farine de blé. À cause du manque de données de validation, une méthode de 

simulation de données peut être utile pour trouver les bons paramètres du détecteur. 



 

 

 

Cependant, les méthodes de simulation linéaire négligent les interactions du signal au 

sein des poudres. Des méthodes non linéaires plus avancées pourraient être plus 

performantes afin d’obtenir une simulation plus proche de la réalité des mesures. 

Dans un deuxième temps, nous avons étudié la contamination de chocolat en 

poudre par la farine de cacahuète. Nous avons proposé une méthode de démélange 

basé sur la MCR-ALS afin de traiter ce cas plus complexe. Le développement d’une 

contrainte et la combinaison de cet algorithme avec une détection d’aberrations ont 

permis de détecter des adultérations au niveau du pixel. Dans cette étude, la dimension 

spatiale des données hyperspectrales n’est pas exploitée. Or, nous avons montré qu’il 

existe une cohérence spatiale des résultats de détection qui pourrait faire l’objet d’une 

contrainte à l’aide de filtres spatiaux.
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Résumé : L’imagerie hyperspectrale proche 

infrarouge (PIR) permet d’obtenir une carte spectrale 

d’un échantillon organique. La mesure d’un spectre 

pour chaque pixel de la caméra permet notamment 

la recherche de composés minoritaires dans les 

poudres agroalimentaires. Cependant, l’analyse 

spectrale PIR est limitée à une couche de profondeur 

donnée. De plus, la taille des particules associée à une 

résolution insuffisante des caméras PIR actuelles 

induisent un mélange des signaux spectraux dans les 

pixels de l’image. Ces deux problèmes sont une 

limitation pour l’analyse des composés minoritaires 

dans les poudres agroalimentaires. 

Nous proposons une méthode permettant de 

déterminer la profondeur de détection d’une cible 

composite placée dans un produit pulvérulent tel que 

la farine de blé. Basée sur une régression par 

projection sur les structures latentes, cette méthode 

permet d’appréhender l’atténuation du signal PIR  

lorsque la couche de poudre augmente, et ce 

malgré les problèmes inhérents à la détection en 

profondeur. 

Deux stratégies de démélange de spectres sont 

proposées dans le but de détecter les pixels 

contenant des signatures de particules 

minoritaires. Le manque de valeurs de référence 

utilisées en tant que données de validation des 

algorithmes ainsi que l’ambiguïté des spectres des 

composés purs à démélanger sont deux difficultés 

majeures. Une première stratégie consiste à 

modélisation la variabilité des spectres étudiés via 

l’Analyse en Composantes Principales afin de 

construire un algorithme de détection performant. 

La deuxième stratégie, basée sur la Multivariate 

Curve Resolution Alternating Least-Squares permet 

le démélange des signaux par pixels dans un cas 

plus complexe. 

 
 

 
 

Title : Detection of minor compounds in food powder using near infrared hyperspectral imaging 

Keywords: Hyperspectral imaging ; Near-infrared spectroscopy ; Penetration depth ; Spectral unmixing ; food 

powder ; detection 

Abstract: The near-infrared (NIR) hyperspectral 

imaging provides a spectral map for organic samples. 

Minor compounds in food powder can be looked for 

by analyzing the pixel spectra. However, the NIR 

spectral analysis is limited to a given depth. Besides, 

particles smaller than the pixel size induce a mixed 

spectral signature in the pixels. These two issues are 

an obstacle for the analysis of minor compounds in 

food powders. 

We propose a method to determine the detection 

depth of a composite target under a layer of powder 

such as wheat flour. It is based on the Partial Least 

Squares regression and provides an understanding of 

how the NIR signal is attenuated when the layer of 

powder increases despite the penetration depth 

issues. 

Two spectral unmixing strategies are proposed to 

detect pixel with minor compound NIR signatures. 

The lack of reference values to validate the model 

and the ambiguity of the spectral signature to 

unmix are two major difficulties. The first method 

models the spectral variability using Principal 

Component Analysis to design a performant 

detection algorithm. Then, for a more complex 

situation, the Multivariate Curve Resolution 

Alternating Least-Squares algorithm is used to 

unmix each pixel. 
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