N

N

Full field modeling of discontinuous dynamic
recrystallization in a CPFEM context

David Alejandro Ruiz Sarrazola

» To cite this version:

David Alejandro Ruiz Sarrazola. Full field modeling of discontinuous dynamic recrystallization in a
CPFEM context. Mechanics of materials [physics.class-ph]. Université Paris sciences et lettres, 2020.
English. NNT': 2020UPSLMO072 . tel-03338762

HAL Id: tel-03338762
https://pastel.hal.science/tel-03338762

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://pastel.hal.science/tel-03338762
https://hal.archives-ouvertes.fr

PSL

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a MINES ParisTech

Full field modeling of discontinuous dynamic
recrystallization in a CPFEM context - Modélisation a
champ complet pour la recristallisation dynamique
discontinue dans un contexte CPFEM

Soutenue par

David Alejandro RUIZ

SARRAZOLA
Le 07 12 2020

Ecole doctorale n°364

ED SFA - Sciences Fonda-

mentales et Appliquées

Spécialité

Mécanique numérique et

Matériaux

2

MINES
Tech*

PSL*

Composition du jury :

Roland LOGE

Professeur associé, Ecole Polytech-
nique Fédérale de Lausanne

Laurent DELANNAY

Professeur, Université Catholiqgue de
Louvain

Lukasz MADEJ

Professeur, AGH University of Science
and Technology

Javier SIGNORELLI

Professeur, Instituto de Fisica Rosario

Franz ROTERS

Professeur, Max Planck Institute of Mi-
crostructure Physics

Aurore MONTOUCHET

Responsable de laboratoire, Framatome

Daniel PINO MUNOZ
Maitre de recherche, MINES ParisTech

Marc BERNACKI
Professeur, MINES ParisTech

Président

Rapporteur

Rapporteur

Examinateur

Examinateur

Examinateur

Examinateur

Directeur de thése






Acknowledgments

First I would like to express my deepest gratitude to my supervisors Prof.
Marc Bernacki and Prof. Daniel Pino Mufioz, for giving me the opportunity
to participate in this project, and for their guidance and support during my
time in CEMEF, that made this time a very enriching experience. I also
want to thank Prof. Nathalie Bozzolo for her contributions and enriching
discussions that helped deepen my understanding of metallurgical phenom-
ena.

My gratitude also goes to all the members of the jury for accepting and
taking the time to read and evaluate my PhD thesis.

I also wish to thank the ANR and all the members of DIGIMU consortium
for the support and funding that allowed the development of this project,
along with all the personnel in CEMEF. I would specially like to mention
and thank Sélim Kraria for all his help.

Finally my biggest thanks goes to my parents Sonia Sarrazola and Benhur
Ruiz for all their support in everything I do and to my friends and family in
Colombia, specially to Nataly Zapata for being there and making life more
enjoyable.



General Introduction

After the industrial revolution metals took a central role in technology de-
velopment and became one of the foundations of human society. They are
present in electronics, transportation, communications, manufacture and pro-
ductions industries. Thus, creating a constant need for the production of
metallic materials with better properties, and to optimize the manufacturing
processes.

Almost all of the properties of metallic materials (yield strength, conduc-
tivity, elastic limit, corrosion resistance, fatigue resistance) are influenced by
the state of their microstructure. Subjecting a material metallic material to
a forming operation (forging, rolling, extruding or drawing) causes its mi-
crostructure to evolve. This evolution depends on the material, its initial
state and on the conditions of the forming process.

Understanding and controlling how the microstructure evolves depend-
ing on the applied conditions, can allow us to optimize the forming pro-
cesses and to produce metallic materials with better properties. However,
the microstructural evolution of metals is a complex subject that involves
the interaction of many different phenomena [1].

One particular subject of interest, that is the main focus of this work,
is materials subjected to hot forming operations (forging). When a metallic
material with low stacking fault energy is deformed at high temperatures its
microstructure evolves by a process denominated discontinuous dynamic re-
crystallization (DDRX). DDRX has been widely studied and comprehensive
reports on the subject can be found in the literature |1, 2, 3]. This has lead
to the development of several models that aim to predict This phenomenon.

In this context the DIGIMU project was created. The DIGIMU project is
developed at CEMEF - Mines Paristech [4] with the support of the ANR and
the companies that conform the DIGIMU industrial consortium: Arcelor-
Mittal, Framatome, ASCOMETAL, AUBERT & DUVAL, CEA, SAFRAN,
TIMET, CONSTELLIUM and TRANSVALOR. The aim of the DIGIMU
project is to develop an innovative global framework for the simulation of
microstructural changes during forming processes |[5].

Due to the complexity of the processes involved and their interactions
macroscopic models are not able to fully account for the local evolution of
the microstructure. To account for this local evolution, full field models
that describe the microstructure at a mesoscale are required. As part of the
DIGIMU project, L. Maire [6] developed a full field model that was able
to describe DDRX up to high deformation levels, which is a requirement to
reproduce industrial forming processes.

However this model is based on a simplified description of plastic defor-
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mation that does not account for the heterogeneity of the microstructure,
the mechanical response nor the coupled effects of this heterogeneity on the
other metallurgical mechanisms. To model and predict the evolution of the
microstructure during a hot forming process it is necessary to fully consider
the heterogeneous deformation, the mechanical response, the microstructural
evolutions and their interactions. Among the models present in the litera-
ture, of which reviews can be found in |7, 8, 9|, some make attempts to
account for the heterogeneous plastic deformation and its impact, however
these models are only able to describe low deformation levels.

In this PhD work, that is also part of the DIGIMU project, the model pro-
posed by L. Maire [6] is enhanced by coupling it with a crystal plasticity finite
element method (CPFEM). The CPFEM is able to describe the mechanical
response and considers the heterogeneity of plastic deformation. The cou-
pling between the models is performed in a way that interactions between the
different mechanisms involved in DDRX are considered. The coupled model
is also discussed comparatively to experimental measurements in order to
evaluate its capability. This PhD work is divided into chapters as:

e Chapter 1: The first chapter is dedicated to a literature review of the
different DRX models available in the literature. The focus is put on
models that employ improved descriptions of plastic deformation, and
identifying the coupling strategies and their limitations.

e Chapter 2: The second chapter presents the CP formulation used in
this work. Then it describes the developed CP library with its code
structure and numerical tools. The different polycrystal models are also
described along with the FEM framework used. It finalizes presenting
the validation tests performed.

e Chapter 3: The third chapter starts by describing the DDRX model
based on level set (LS) finite element (FE) framework, along with the
different phenomenological laws considered. The coupling algorithm is
presented, along with the interpolation scheme that allows the interac-
tion between the mechanisms. A sensitivity analysis is also performed
to determine the optimal numerical parameters for the coupled models.
Finally different tests of the coupled model features are presented.

e Chapter 4: In the fourth chapter the experimental data used to dis-
cuss the model are presented and analyzed. After, the calibration and
validation procedure are presented along with the results. The model
capabilities and limitations are analyzed and discussed. Finally a sim-
plified version of the model is presented, and the model of Maire [6] is
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compared with both the full version and the simplified version of the
coupled model.

e Chapter 5: In the fifth chapter, some of initial attempts at perspective
works are presented and discussed.

This PhD work has contributed to the following communications:

Written communications:

e Article - Ruiz Sarrazola, D. A., Maire, L., Moussa, C., Bozzolo, N.,
Pino Munoz, D. & Bernacki, M. Full field modeling of Dynamic Re-
crystallization in a CPFEM context - Application to 304L steel. Com-
putational Materials Science 184, 109892 (2020).

e Article - Ruiz Sarrazola, D. A., Pino Munoz, D. & Bernacki, M. A new
numerical framework for the full field modeling of dynamic recrystal-

lization in a CPFEM context. Computational Materials Science 179,
109645 (2020).

e Article - Furstoss, J., Ruiz Sarrazola, D. A., Bernacki, M. & Pino
Munoz, D. Handling tensors using tensorial Kelvin bases : application
to olivine polycrystal deformation modeling using elastically anisotropic
CPFEM. Submitted to Computational Mechanics.

Oral communications:

e Poster - Ruiz Sarrazola, D. A., Pino Munoz, D. & Bernacki, M. Full field
modeling of Dynamic Recrystallization in a CPFEM context. REX&GG
2019 - 7th international conference on recrystallization and grain growth,
Ghent (2019).

e Presentation - Bernacki M., Bozzolo N.;, Moussa C., Pino Munoz D., De
Micheli P., Maire L., Fausty J., Védie L., Florez S., Ruiz Sarraloza D.A.,
Murgas Portilla B., Alvarado K., Ouhiba S., Poitrault I., Montouchet
A., Dumont C., Franchet J.M., Demurger J., Millet Y., Boissonnet L.,
De Rancourt V., Rigal E. Towards the full modeling of microstructure
evolutions during metal forming industrial processes. REX&GG 2019
- Tth international conference on recrystallization and grain growth,
Ghent (2019).
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Chapter 1

Literature review

The study of physical metallurgy, which is linked to the study of physical
properties of metallic alloys is vast and complex. In this chapter, a brief
overview of dynamic recrystallization mechanism is introduced. Moreover
the terminology that is going to be used all along the manuscript is detailed

1.1 Introduction

In crystalline materials, the atoms are orderly arranged in a pattern that is
repeated in three dimensions. The description of this arrangement is denom-
inated the crystal structure, and is defined by the pattern minimal arrange-
ment, denominated the unit cell, that repeats along the lattice. These unit
cells come from the atomistic interactions and they minimize the free energy
in the material.

However, materials contain defects : point defects, like vacancies; line
defects, like dislocations; plane defects, like stacking faults. These defects
modify the free energy in the material and the material properties. Addi-
tionally crystalline materials like metals are usually polycrystalline materi-
als, composed of several crystal or grains, defined as zones of continuous
lattice orientations. The zones that separate two grains are denominated
grain boundaries (GB). Depending on the degree of misorientation grain
boundaries are classified either as: high angle grain boundaries (HAGB),
misorientation higher than 10 — 15°; or low angle grain boundaries (LAGB),
misorientation lower than 10 — 15°; also denominated subgrain boundaries.
Detailed descriptions of the crystal defects and the crystal structure can be
found in [10].

In this work we mainly focus on dislocations as they are introduced dur-
ing plastic deformation. According to their geometry dislocations can be
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classified as: edge dislocations, extra or missing half-plane of atoms in the
lattice; screw dislocations, relative displacement of one face of the crystal in
reference to its adjacent face.

To define dislocations, the Burgers circuit and vector (b) are used. The
burgers circuits is a closed atom to atom path defined anywhere in a crystal
that contains a dislocation. If the same path is defined in the same part of a
crystal without dislocations, the circuit does not close. The vector necessary
to close the circuit is the Burgers vector. The Burgers vector of a single
dislocation has fixed length and direction. Figure 1.1 illustrates the Burgers
circuit and vector defined for a positive edge dislocation.

Burgers vector

Figure 1.1: Schematic representation of a Burgers circuit with positive line
sense into the paper, around an edge dislocation (Top). The same Burgers
circuit in a perfect crystal and its Burgers vector, determined by the failure
in closure (Bottom). Figure from [10].

Since the description and study of atomistic interactions is quite difficult,
the microstructure of metals and its evolution is commonly studied at a
polycrystal scale, referred in this work as the mesocale (dislocation dynamics
and other studies at the dislocation or atomic scale are not within the scope
of this work). Figure 1.2 illustrates a schematic representation of this scale.
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Sample Polycrystal Crystals Dislocations Atoms

Figure 1.2: Schematic representation of metallic material form the macro-
scopic scale to the atomistic scale. Figure from [11].

At the mesoscale, dislocations are classically considered through the den-
sity of dislocations (p) in the material, a type of concentration. Dislocation
density is measured by counting the number of dislocation lines that thread
a unit area of surface; or in terms of the total dislocation length per unit
volume [12].

When a metal is plastically deformed the free energy inside the mate-
rial is raised by means of the accumulation of dislocations. This leads to a
thermodynamically unstable state. However, at low temperatures the energy
is not dissipated and the defects remain in the material. At high tempera-
tures thermally activated mechanisms occur that can remove these defects
or rearrange them in lower energy configurations.

These mechanisms include: recovery, by which dislocations are annihi-
lated or rearranged inside the grains without usually affecting grains bound-
aries (denominated dynamic recovery when it happens along with plastic
deformation); recrystallization (ReX), by which new dislocation free grains
are formed (recrystallized grains form in zones with high stored energy and
high misorientation); grain boundary migration (GBM), by which GB will
migrate due to driving pressures. Detailed descriptions of these mechanisms
can be found in [1]. Figure 1.3 shows an illustration of theses mechanisms at
the mesocale, from a deformed microstructure (a) to: recovery (b), partially
recrystallized (c¢) and fully recrystallized microstructure (d). GB are depicted
as thick black lines and subgrain boundaries are depicted as thin black lines.

The recrystallization mechanisms can occur heterogeneously in the mate-
rial, causing that at the mesoscale the recrystallization mechanisms has clear
nucleation (appearance of recrystallized grains) and growth stages. Or they
can occur uniformly, so that the microstructure evolves gradually with no
nucleation and growth stages easily identifiable at the mesoscale. In the first
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case they are denominated discontinuous and in the second case as contin-
uous. This constitutes a phenomenological classification that only describes
how they are perceived at the mesoscale and not the nature of the atomic
mechanism themselves.

ﬂ \
[ ~h
TR yoseg %
(}4 b \)%)_ { ), e H
¢ 4 2 o [ > _}2’
Q.% {
(b)

Figure 1.3: Schematic representation of a deformed microstructure (a) evolv-
ing by means of: recovery (b), partially recrystallized (c) and fully recrystal-
lized (d). Figure from [1].

The microstructure of a metallic material subjected to hot forming op-
erations will evolve by the combined action of all these mechanisms: plastic
deformation, dynamic recovery, ReX and GBM. This is denominated dy-
namic recrystallization (DRX). On metallic materials with low staking fault
energy this process is discontinuous, thus it is denominated discontinuous
dynamic recrystallization (DDRX).

Metallic materials undergoing DDRX show the following common charac-
teristics, that have been summarized several times in the literature [1, 7, 13]:
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e The flow stress curve of the material shows a peak value, which is
different from the steady state stress. Depending on the temperature
and strain rate conditions, multiple peaks can be observed.

e In order for DDRX to start, the deformation in the material must reach
first a critical strain value, this value is reached before the peak stress.

e Recrystallized grains usually appear at GB. However in cases of low
strain rate and large initial grain sizes, the appearance of recrystallized
grains inside existing grains becomes more significant.

e Recrystallization kinetics accelerate with the decrease in the initial
grain size, with the decrease in strain rate and with the increase in
temperature.

e The grain size tends to decrease comparatively to the initial value and
converge toward a steady value.

Considering that DDRX includes the interactions of the different mecha-
nisms previously introduced, they are further described next.

1.1.1 Plastic deformation

Plastic deformation in metals is an anisotropic mechanism, that results form
the motion, generation and accumulation of dislocations. Due to the difficulty
of modeling dislocation motion at the mesoscale, crystal plasticity theory
[14] is used to model the behaviour of polycrystals. It provides a link to
microscopic features by incorporating concepts of dislocation theory.

Crystal plasticity theory considers that the basic movement of disloca-
tions is called glide. Glide occurs when a dislocation moves in the surface
that contains its Burgers vector. The glide of several dislocations constitutes
slip, it can be represent as the sliding of one plane of atoms over another. The
motion of dislocations is not limited to glide, a description of the different
types of dislocations motion can be found in [10].
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Figure 1.4: Common unit cells present in metallic materials. FCC (left side),
BCC (center) and HCP (right side). Black dots represent an atom of the
material. Image modified from [10].

Slip occurs on specific planes and directions denominated the slip plane
and slip direction, the combination of the two constitutes a slip system. Slip
planes are the most densely populated planes (contain greatest number of
atoms per area), while slip directions are the directions with the most atoms
per length. The number of slip systems in a crystal depend on the crystal
structure unit cells. On metallic crystals the most common crystal structures
are: FCC, BCC and HCP, (shown in figure 1.4) which contain 12, 24 and 3
slip systems respectively.

In order for slip to start a minimal stress is required. In figure 1.5, a
cylindrical crystal sample subjected to a tensile force F', the tensile stress
o parallel to F' is given by 0 = F/A, with A the area of the surface where
I is being applied. The acting force I’ has a component acting on the slip
direction F'cos A with A the angle between the slip direction and F'. The
component of F' in the slip direction acts on an area A/cos¢ with ¢ the
angle between F' and the normal of the slip plane. Thus the shear stress 7
acting on the slip system is defined as:

F
T = ZCOS/\COSgb : (1.1)

7 is denominated the resolved shear stress. In order for plastic defor-
mation to start, 7 must reach a minimal value denominated the critical
resolved shear stress (CRSS). The product of cos Acos¢ is the commonly
known Schmid factor. Equation 1.1 can be extended to 3 dimensions and for
a slip system « as:

™ =0:(m*@n") (1.2)

with o the Cauchy stress tensor and (m®* ®n®) the Schmid tensor, with m®
the vector defining the slip direction and n® the normal vector of the slip
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plane. Eq. 1.2 known as the Schmid Law [15], shows that for a given applied
stress o, the resulting shear stress causing plastic deformation depends on
the crystal structure and its orientation.

The shear stress causes shearing in the material, while the volume remains
constant. The material also deforms elastically, however elastic strains are
comparatively smaller than plastic strains, and numerous crystal plasticity
models neglect them. The stress acting on the material does not active only
one slip system, but several of them, so the material plastic deformation is
the result of the crystallographic slip on all active slip systems. Additionally
the applied shear stress can also cause the crystal lattice to rotate. This
rotation leads to changes in the material texture, defined as the sum of
crystallographic orientations.

slip plane
normal

slip direction

slip plane

Figure 1.5: Schematic representation of the geometry of slip due to the ap-
plication of a force F'. Image modified from [10].

As the material deforms, additional dislocations are generated, when dis-
locations encounter obstacles like GB, they pile up . Dislocations can not
move through grain boundaries, however the stress induced by the accumu-
lation of dislocations in a GB can induce the motion of dislocations in the
neighbour grain. The accumulation of dislocations around obstacles causes
that subsequent motion of dislocations becomes more difficult and requires
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higher stress. This translates into the material hardening.

These considerations are the basics concepts of the crystal plasticity the-
ory. In general terms a single crystal plasticity model is defined by: a kine-
matic framework that describes the motion of the crystal and evolution laws
for the state variables of the model. The evolution laws commonly refer to
the flow rule (which defines the relation between the stress and the strain
rate) and the hardening rule (which defines the hardening rate of the ma-
terial). Some models include additional considerations regarding non local
effects and special treatments for GB as the ones described in [16]. The single
crystal model used in this work is described in chapter 2 along with different
flow rules and hardening rules considered in the literature.

In crystal plasticity models dislocation density can be subdivided in types.
According to the possibility of dislocations to move as mobile or immobile.
According to their source as: dislocations generated due to multiplication
mechanisms (well known as Statically Stored Dislocations - SSD) or disloca-
tions generated due to strain gradient fields caused by geometrical constrains
of the crystal lattice (well known as Geometrically Necessary Dislocations -
GND).

A single crystal model describes the behaviour of individual crystals, how-
ever as mentioned earlier metals are polycrystal materials. In order to de-
scribe their behaviour a polycrystal model is then required. The polycrystal
model describes the way that the macroscopic strain is partitioned between
the grains and how the grains interact with each other. The main polycrys-
tals models found in the literature are (detailed descriptions of these models
and their variants can be found in [17]):

e The Sachs Model [18]: this model assumes that all grains in the poly-
crystal experience the same stress equal to the macroscopic stress, and
that each crystal deforms by activating only one slip system. The
slip system activated is the one subjected to highest resolved shear
stress. The grains deform independently and grains interactions are
not considered. This model leads to incompatibilities in the deforma-
tion between grain boundaries and does not consider heterogeneity in
the deformation inside the grains.

e The Taylor model [19]: this model assumes that all grains in the poly-
crystal deform in the same way as the polycrystal. This condition
ensures compatibility in the deformation between GB, by disregarding
local stress equilibrium. Interaction between grains is also not con-
sidered in this model nor heterogeneity in the deformation inside the
grain.



1.1.

INTRODUCTION 9

e The relaxed constrains Taylor model [20, 21, 22]: this model is derived

from the Taylor model. It assumes an iso-strain condition. However
this condition is relaxed in specific directions. For example the lath
model relaxes the iso-strain condition in the rolling direction (RD)
and in the normal direction (ND), while the pancake model relaxes
the condition in the transverse direction (TD) and in the ND. This
model is specially intended to model grains under specific deformation
conditions, for example elongated grains produced in rolling as in the
pancake model. Interaction between grains are also not considered in
this model.

N-site models [23, 24, 25]: this model considers the behaviour of more
than one grain at the same time. The LAMEL model considers two
grains and the GIA model considers the behaviour of cluster of 8 grains.
The deformation of the group of grains must be equal to the macro-
scopic deformation, however the constrains are relaxed inside the clus-
ter. This allows to, consider at some degree, the interaction between
neighbouring grains. However long range interactions are not consid-
ered, nor heterogeneity in the deformation inside the grain.

The viscoplastic self-consistent model (VPSC) [14, 26, 27, 28|: this
model is based on the work of Eshelby [29], each grain is considered
as an ellipsoidal inclusion in an homogeneous matrix. The stress and
strain of the polycrystal (matrix) are defined by the average behaviour
of all the grains. Long range interactions are considered as the be-
haviour of each grain is affected by the behaviour of the average. How-
ever neighbour interactions are not considered, all grains with the same
initial orientation behave in the same way and heterogeneity inside the
grains are not considered.

Crystal plasticity finite element method (CPFEM) [30, 31, 32, 33]: this
framework couples the finite element method with crystal plasticity by
using a single crystal plasticity model to describe the stress-strain rela-
tion. The CPFEM ensures compatibility at the local level, equilibrium
is also full filled in a weak sense. Both short range and long range
interactions are considered, so no additional assumptions are required.
If grains are discretized with more than one element, heterogeneity in-
side the grains are considered. Its main limitation remains its high
computational cost.

Crystal plasticity spectral method [34, 35, 36]: An alternative to the
CPFEM method consist to use the fast Fourier transformation (CPFFT)
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to solve the equilibrium equations instead of FEM. This method has
been shown to be computationally largely more efficient than the FEM
method. However it requires a regular grid and periodicity in the do-
main, limiting its application when very large deformations have to be
considered as in conventional metal forming operations.

1.1.2 Grain boundary energy (GBE)

As mentioned earlier GB are usually classified according to their misorienta-
tion between HAGB or LAGB. This classification can also provide a general
description of their properties. The properties and structure of LAGB are
caliscally considered as a function of misorientation, while the properties and
structure of HAGB generally considered as being independent of their mis-
orientation. However, this is only a general description as there are numerous
types of high angle grain boundaries that do not adhere to it [1]. Following
this classification a common way to define the grain boundary energy (vop)
as a function of the misorientation (0) is using Read-Shockley type equations
|37] as:

max

Vs for 0>0,4

ront0) = {68 (@) 0o (a22)) o 02t

with 74" the maximal grain boundary energy and 6,,,, the threshold an-

gle used to define the type of GB. In DDRX models LAGB are classically
not considered and ~vgp is defined as an isotropic constant value. It must
be highlighted that this topic (description of vgp in full field Rex model-
ing) is an active research topic in the community, mainly to take into ac-
count misorientation dependence (as in the Read-Shockley model) but also
for the inclination dependence (torque terms) [38, 39]. This aspect will not
be considered in this work, vgp will be mostly assumed as a constant only
dependant of the considered material.

1.1.3 Grain boundary mobility

GB migrate as a result of several atomistic mechanisms happening near the
boundary, these mechanisms depend on the structure of the boundary. How-
ever they are very difficult to study as they happen at high temperatures,
high velocity and in non equilibrium conditions. Thus, the determination of
the GB mobility is also very difficult [1]. Considering that the migration of
a GB is due to an acting pressure (Pgp), it is generally considered that the
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velocity of the grain boundary (V) is proportional to Pgp. In this relation,
the constant of proportionality is the grain boundary mobility (Mgg). Mg
is dependant of the temperature and is commonly defined according to an
Arrhenius type law as:

Mgp = Mg exp (_R;%T) , (1.4)

with M2 5 the mobility pre-exponential factor, Q,, the activation energy for
GBM, R the universal gas constant, and 7" the absolute temperature. This
description of the mobility is classical in hot metal forming and prevails in
the current modelling of ReX at the mesoscale. However, as for v5p, this
question is largely studied in the state of the art due to misfits between some
experimental works and this picture of the mobility or the reduced mobility
(product of Mgp and g5, Mg * vap) [40, 41]. Recent advances concern
the introduction of tensorial mobility or disconnection models used at the
GB scale [42, 43|. However, in this work the classical definition of the GB
mobility, Eq. 1.4, will be used.

1.1.4 Recovery

Recovery refers to the mechanism that allows the material to partially re-
store its properties by reducing the number of dislocations [1|. The number
of dislocations is reduced by the annihilation of dislocations and rearrange-
ment of dislocations into lower energy configurations like lower angle grain
boundaries and the formation of subgrains. These processes are the result
of: dislocations glide (described previously), dislocations cross-slip (defined
as dislocations switching from one plane to another) and dislocations climb
(defined as dislocations moving out of their slip plane to another plane of
atoms).

As mentioned earlier, DDRX models do not usually consider LAGB i.e.,
subgrains. Since recovery is considered to not affect HAGB, it is usually
included as part of phenomenological laws that describe the evolution of
dislocation density with strain. For example Eq. 1.5 describes the law used
in the works of Montheillet et al. [44]:

dp
L =Kt — K 1.5
B 1p 0 (1.5)

with K the parameter describing the increase in dislocations due to plastic
deformation, and K5 the parameter describing the annihilation of dislocations
due to dynamic recovery. This law can represent the well known Yoshie-
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Laasroui-Jonas equation [45] when & = 0, and the Kocks-Mecking equation
|46, 47] when & = 1/2.

1.1.5 Grain boundary migration (GBM)

As described before, GBM is caused by atomistic mechanics acting in zones
near the boundaries that depend on the structure of the boundary. As al-
ready detailed in the mobility discussion section, the classical kinetic equation
describing GBM is |1, 48, 49]:

Veg = MgpPopn (1.6)

with m the outside unitary vector normal to GB. In context of metal forming,
two main driving pressures are considered: the capillarity pressure (PSg), due
to the minimization of the interface energy and the stored energy pressure
(PEy), due to the minimization of the energy stored by plastic deformation.
Pgy is classically defined as PSy = —ygpK, with K the GB curvature (trace
of the curvature tensor in 3D). At the mesoscale PLy is directly linked to
the dislocation density and often homogenized per grain. Then the following
equation is used:

Pip =Telp] (1.7)

with 75 the dislocation line energy estimated as 7z = ub?/2, with b the
magnitude of the Burgers vector and p the shear modulus. [p] corresponds
to the jump of stored energy across the GB in terms of dislocation density.
Finally Vop can be approximated by the following equation:

VGB = MGB (TE[p] — 'VGBK) n . (18)

1.1.6 Nucleation

The DDRX mechanism, can be divided into two main submechanisms: nu-
cleation, i.e., the formation of dislocation free grains and their subsequent
growth, driven by Eq. 1.8. However the term nucleation is ambiguously
used in ReX. Nucleation refers to the classical nucleation theory of phase
transformation [49], that considers random atomic fluctuations leading to
the formation of a crystallite (microscopic crystal) separated by a HAGB
(nucleus), which is subsequently able to overcome the interfacial energy. Us-
ing the same definition, nucleation theory calculations show that, for the case
of ReX, the radius required for the nucleus to grow (critical radius) will be so
big that the rate of appearance of nucleus will be negligible [50]. In fact, it is
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well-known today that in ReX, new grains originate from small-volumes that
pre-exist in the deformed microstructure [1]. So a preferable term would be
probably to discuss the appearance of ReX grains rather than nuclei, even if
this questionable terminology persist in the literature.

The appearance of recrystallized grains is assumed to occur at high tem-
peratures in zones with high stored energy (high dislocation density) or zones
with high misorientation (zones with high misorientation have high stored en-
ergy because of the GND required to accommodate the misorientation). The
main mechanism identified in the literature for the appearance of recrystal-
lized grains, during DDRX is strain induced boundary migration (SIBM). In
SIBM, part of an existing grain boundary will bulge and migrate towards the
interior of a high strained grain, leaving a zone with low dislocation density
behind. This mechanism often leads to the formation of necklaces structures,
characterized by the presence of several small recrystallized grains along grain
boundaries.

The newly formed recrystallized grain will disappear unless its driving
force due to the stored energy is higher than the capillarity effect. This
condition is classically approximated according to the Bailey-Hirsch criterion,
which defines the critical grain size as:

_ 2vaB
TE [P]

(1.9)

7/.CT‘

Further detail of this mechanism can be found in [1]. The appearance of
recrystallized grains during DDRX is typically modelled by the introduction
of dislocation free grains in the microstructure. Classical models [51, 52, 53,
54, 55| describe a critical dislocation density (p..) required for the appearance
of recrystallized grains defined as:

1
207cped’ |’
ecr = | 51747 o R 1.10
P <3blMGBT]% (1.10)

with [ the dislocation mean free path and é;ff the effective plastic strain rate.
The number of recrystallized grains introduced follows a nucleation rate law:

i = Céd exp (%) : (1.11)

with C' a constant and @, the activation energy for nucleation.
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1.1.7 Summary

Considering the interaction of all the mechanisms, the effects of DDRX on
the microstructure during hot deformation can be summarized as [56]:

e The heterogeneous deformation of grains causes a non-uniform distri-
bution of the stored energy, that determines where recrystallized grains
appear and in which direction they grow.

e The morphology change and orientation rotation of the deformed grains
also affects the appearance of recrystallized grain and GBM. Subse-
quently, the evolution of the grains alters the final microstructure and
texture.

e The appearance of recrystallized grains, GBM and dynamic recovery
also cause reduction in the slip resistance by eliminating dislocations
and consequently gives rise to significant changes in the mechanical
properties.

e The changes in the mechanical properties and microstructure alter the
subsequent plastic deformation behavior of the metal in a non-negligible
manner.

The general terminology and scope has been clarified along with the gen-
eral introduction of DDRX. In the next section, we present the main models
that have been proposed in the literature to model DDRX which is the main
focus of this work.

1.2 Modeling of DDRX

Different types of models have been proposed in the literature to describe
DDRX. These models are generally classified as (detailed reviews can be
found in |7, 8, 9]):

e Phenomenological models: these models consist to describe the evolu-
tion of the global recrystallization fraction (X) and mean grain size (R)
as a function of the strain and temperature [57, 58, 59|, based on the
well known JMAK models [60, 61, 62|. These models only describe av-

erage behaviors by fitting phenomenological laws to experimental data.

e Mean field models: in these approaches the microstructure is described
as set of n-number of grains. The evolution of each grain follows
physical-based laws comparing its state against the average of all grains
|44, 63, 64] or specific sets of grains [55, 65, 66].
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e Full field models: in this context the microstructure topology is explic-
itly described at the polycrystal scale. These approaches allow to con-
sider local phenomena and interactions between neighbouring grains.
Several types of full field models exist in the literature:

— Models derived from the Potts model [67] like: Monte-carlo models
|68, 69] and cellular automata models [56, 70, 71, 72, 73].

— Deterministic models like: vertex models [74, 75|, level-set models
|76, 77, 78, 79] and phase-field models [80, 81, 82, 83].

One common limitation of the mentioned numerical strategies is that
they use simplified descriptions of plastic deformation: the Yoshie-Laasroui-
Jonas equation or the Kocks-Mecking equation (Eq. 1.5) [44, 55, 65, 66,
79|, simplified plasticity models [63, 64| or macroscopic plasticity models
|68]. These simplifications do not take into account the crystal structure
nor the grains orientation, which leads to an uniform behaviour of all the
grains and subsequently affect the kinetics of recrystallization. On the other
hand models that incorporate CP formulations [56, 69, 70, 71, 72, 73, 75],
provide better descriptions of plastic deformation but present limitations in:
the description of heterogeneous deformation, the coupling between the CP
model and the GBM model, or are not able to describe high levels of plastic
deformation (common in metal forming operations).

In the next section a detailed description of the mentioned DDRX models
is presented, we focus on models that use enhanced descriptions of plastic
deformation and their coupling strategies. Phenomenological models are not
included. Even tough they are widely used, specially in industrial context,
due to their simplicity and low computational cost, they rely on significant
simplifications of the physical phenomena and thus only describe specific
parameters of the DDRX mechanisms. A discussion regarding phenomeno-
logical models can be found in [6].

1.2.1 Mean field models

Mean field recrystallization models follow a common structure: the mi-
crostructure is described implicitly as a set of grains with specific shape
(usually spherical). Each grain is associated to state variables, dislocation
density, size, orientation. Each grain usually represents not a single grain but
a fraction of grains which share the same initial state (as a bin of a multi-
dimensional distribution), and will evolve equally. Figure 1.6 illustrates this
representation, each spherical grain has an associated size (D;), orientation
(M;) represented by the Taylor factor, and dislocation density (p;).
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Figure 1.6: Schematic of the microstructure representation as considered in
the mean field model model of Cram et al [63]. Figure from [63].

The physical phenomena are described by individual laws. The grains
interact either with the medium, represented by the average behaviour of
all the grains like in the model of [44], or with specific set of grains like in
the models of |55, 65, 66|. For example in the model proposed by Cram et
al. [63, 64|, when considering GBM due to difference in stored energy, the
dislocation density of each grain is compared against the average dislocation
density of the medium (p;):

— ZD?m

pi = W (1.12)

This means that the interaction between a grain and its neighbours is
replaced by the interaction of each grain with the medium. Figure 1.7 shows
a schematic representation of this simplification for the dislocation density
gradient calculation.

A similar representation of the microstructure is used in the VPSC model.
In the VPSC model the microstructure is represented by a set of elliptical
grains embedded in a medium. Each grain or grain class is associated to state
variables and the state of the medium is described by the average behaviour
of all the grains. This common representation of the microstructure between
DDRX mean field models and the VPSC model facilitates their coupling,
which has been proposed in the literature.
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=

Figure 1.7: Schematic representation of the interaction between neighbouring
grains replaced by the interaction with the medium for the dislocation density
gradient calculation. Figure from [63].

We can cite the DDRX model proposed by Cram et al [63, 64|, which
uses the plasticity model of [84] that imposes a condition of iso-work allowing
individual grains to be deformed differently. The model of Zhou et al |85,
86, 87|, in which the iso-work model is replaced by the VPSC formulation in
the DDRX model of Cram et al [63, 64].

In the model proposed by Cram et al. [63, 64], the plastic deformation
is calculated according to the model of [84] which imposes a condition of
iso-work for all the grains. This condition is used to distribute the imposed
macroscopic stress (déepnq.), among the individual grains:

K
de; = — | (1.13)
0;
demac = Z V;dEZ (114)

XV
with K the work performed, de; the strain of each individual grain ¢, o; the

stress of each individual grain ¢ and V; the volume of each individual grain
1. Next, the strain hardening is defined as:

dO’i ag;
G~ O (1— ) , (1.15)

Os.i

with o, the steady state stress of each grain ¢ and ©;; the stage II work-
hardening rate. Finally, the relation between the stress and the dislocation
density is defined as:
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o; = aMipb\/pr (;;) , (1.16)
with o a numerical constant, p the shear modulus, b the magnitude of the
Burgers vector, p; the dislocation density of the grain i and m a strain rate
sensitivity exponent.

In this model the general calculation procedure for each time step is as
follow: first, plastic deformation is calculated according to the described
plasticity model; second, recrystallized grains are introduced following a nu-
cleation rate law; finally, the GBM is performed. This model only considers
the driving force due to stored energy in the GBM calculation. Nonetheless,
Even if the plasticity model allows grains to deform differently from each
other and the Taylor factor considers the grain orientation to some degree,
this approach remains a significant simplification of plastic deformation in
metals.

In the model of Zhou et al. [85, 86, 87|, by taking advantage that the
VPSC considers the evolution of the grains orientation, an additional term
is included in the nucleation rate law. This term is a function of the grain
rotation from its initial orientation. It is introduced following the idea that
grains with a higher rotation will have a higher internal misorientation, thus
higher formation of subgrain boundaries so their probability to nucleate will
be higher. This illustrates the possibility of modifying classical nucleation
laws with the additional information provided by CP formulations.

One difficulty in the coupling between the VPSC model and this DDRX
mean field model is that in the VPSC model grains are considered as el-
lipsoids, represented by the 3 major axis of the ellipsoid and their volume
weight in the aggregate; while in the DDRX model grains are considered as
spheres. To couple the two models the authors use a dual representation. In
the VPSC calculation a grain is considered as an ellipsoid and on the DDRX
model the same grain is considered as a sphere. The two representations are
related through the volume weight, however this procedure is not explained
in detail in their work. The calculation procedure of each time step is as
follow: the VPSC calculation is performed, if the dislocation density does
not reach the critical value required for nucleation, the next step of VPSC
calculation is performed; if the dislocation density reaches the critical value,
recrystallized grains are introduced. After the introduction of ReX grains the
GBM calculation is performed. Finally the volume weights of all the grains
are normalized.

By coupling VPSC model with a the described DDRX mean field model,
the authors obtain a better description of the DDRX mechanism. This in-
cludes a better description of the dislocation density evolution, that considers
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the initial orientation of grains, the ability of the model to predict texture
evolution (VPSC) and the possibility to include to some degree the effect
of misorientation in nucleation laws. Also, since the computational cost of
both the mean field DDRX model and the VPSC-CP models is not high, the
resulting coupled model has low computational cost when compared with full
field approaches.

However this approach is still limited: first, even if the coupling takes
advantage of the similar representation of the microstructure used in both
models, the differences in the grain shapes are not clearly resolved; second,
heterogeneous deformation of grains is not considered, nor gradients inside
grains; third, local neighbour interactions between the grains can not be
considered in mean field models nor in the VPSC model.

1.2.2 Full field Potts models

Full field Potts models are based on the widely known Potts model [67],
they include both the Monte Carlo (MC) and the Cellular Automata (CA)
models. In these approaches the microstructure is described explicitly by
using a regular grid of cells or sites as shown in figure 1.8. In the context
of DDRX simulations the use of regulars grids makes it difficult to consider
deformation, as it causes distortions in the regular grid. Different techniques
proposed in the literature to deal with this problem will be mentioned in the
following.

Monte Carlo model

In the MC model the total energy of the domain E is classically defined as:

ng

E = Z (Z %’7@3(81', s;) + Ep(si)> , (1.17)

with N the number of sites, n; the number of neighbour sites j of a site ¢,
E, the stored energy (related to dislocation density), yap(s;, s;) is the grain
boundary energy between the site and its neighbour.

The evolution of the sites is calculated using a sampling algorithm: sites
are chosen at random, a possible change in the state of the site is proposed
(change of orientation). The change in energy AE caused by the possible
change in the site is calculated. The change is accepted according to a prob-
ability function that depends on AFE. In each MC step N random sites are
chosen, since the sites are chosen at random not all sites are changed during
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each MC step, the MC time step is not equivalent to a physical time step. A
common form of p(AF) is a symmetric function:

p(AE) = %wo [1 _ tanh ( zﬁkg )1 , (1.18)

with wy the reduced mobility between the sites, k£ the Boltzmann constant,
T, a simulation temperature which is not the physical temperature.
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Figure 1.8: Representation of grains (Ids) and their boundaries (Bold lines)
in a regular grid of square cells. Figure from [6].

One of the limitations of the MC model is that the morphology of the
grains are affected by the mapping into the lattice, and can influence the
kinetics of recrystallization. Moreover the MC time step can not be directly
related to physical time step, although alternatives have been proposed in
the literature [88, 89]. On the other hand the main advantage of the MC
model its the simplicity of its implementation even in parallelize calculation
context which allows to perform large simulations.

To the knowledge of the author few DDRX MC models have been pro-
posed |90, 91, 68]. The most recent was proposed by Tutcuoglu et al [69],
where the authors have proposed a coupled CPFFT/MC formulation. To
couple the two approaches, the authors use a regular square grid that is used
for both the CPFFT and the MC calculations. During each time step of
the simulation a CPFFT calculation is performed and the state variables are
updated accordingly. After, the MC model is used to evaluate the possibil-
ity of state switch. If a state switch is accepted, the related internal state
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variables are not updated immediately, but they are updated gradually over
several time steps. This gradual updated is used by the authors to prevent
convergence problems in the next time step during the following CPFFT cal-
culation. In this work the authors do not mention how the deformation of the
domain and its effects are considered. Plus, simulations are presented only
up to 2.5% deformation, and the results are not compared with experimental
data nor with other models.

Cellular Automata Model

In the CA model, similarly to the MC model, the domain is partitioned into
a regular grid, each cell is associated with a series of state variables, and the
states are switched according to switching rules. However, in the CA model
each simulation step can be regarded as a time step since all the cells are
evaluated, and during each time step the states of the cells are only updated
at the end of the step, when all evaluations have been performed. A common
switching rule considers the probability of updating the state of a cell as:

P(switch) = ves

(1.19)

max ?

YeB

with vgp the local grain boundary velocity and v@Z3" the maximum grain

boundary velocity calculated in the domain for the specific time step. If the
switch occurs the state of the neighbour cell is consumed, different switch
rules are discussed in [92]. When evaluating the state switch of a cell, a local
neighbourhood is considered. Different types of neighbours can be defined
for the cells, as shown in figure 1.9. The type of neighbourhood used can be
adapted for different cells and different time steps. One important advantage
of CA model over the MC model is the consideration of a local velocity, that
describes the propagation rate between sites. However, it presents a similar
difficult to the MC approach in the description of the grain curvature, since
GB are represented by square cells.

As in the previously described models, the appearance of recrystallized
grains is modelled according to phenomenological laws, and is represented by
modifying the state variables of the cells. In order to account for plastic de-
formation in CA DDRX simulations, several approaches have been proposed:

Chen et al. [70, 93] proposed a topology transformation technique to
account for deformation in 2D CA DDRX simulations. Two coordinate sys-
tem are defined, one material coordinate system that is deformed according
to a specific deformation mode, and one CA coordinate system that is kept
constant.
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(a) (b)

Figure 1.9: Different types of neighbours considered in CA or MC models.
(a) von Neumann neighboorhood, (b) Moore neighborhood. Figure from [9].

The GB are transferred from one space to another. The calculation follows
the following steps: The evolution of the dislocation density is calculated, ac-
cording to a phenomenological law, on the material coordinate system which
is deformed. When the dislocation reaches the critical value, the GB are
mapped to the CA coordinate system. In the CA system the ReX grains
are introduced and the GBM calculations are performed by means of the CA
model. The CA model considers capillarity effects and the driving force due
to energy gradients in the GBM calculations. However, the capillarity ef-
fect is considered by assuming that grains are always spherical, so the grains
deformation is not considered nor their curvature. The size of the grains is
estimated from the area of the cells.

For recrystallized grains, a critical size is not considered. Each recrystal-
lized grain is represented by one cell, and a random orientation is assigned
to it when introduced. The initial dislocation density of recrystallized grains
is set to zero. A dislocation density density value of zero greatly favors the
growth of recrystallized grains, but remains a rough approximation. When
the CA calculations are finished, the grains are transferred back to the ma-
terial system. Figure 1.10 shows an schematic representation of the transfor-
mations.

Following the work of Chen et al, Chuan et al [71] extended the previously
described approach, and proposed a 2D model that coupled CPFEM with CA
to model DDRX. This model also used two grid spaces, one for the CPFEM
calculations and the other for the CA calculations. The two grid spaces used
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represent the same domain, however they are not equal in resolution. One
square cell is used for the CPFEM grid and an assembly of ten by ten cells
is used for the CA grid.
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Figure 1.10: Flowchart of the topology transformation technique proposed
by Chen et al. [70, 93]. Figure from [70].

In this model, the mapping between the two grids was performed by
considering all cells in the CA assembly to respect the same value that the
corresponding cell in the CPFEM grid. One of the main limitations of this
approach is that the CA model did not affect the CPFEM model, the map-
ping procedure only includes the strain gradients and orientations mapped
from the CPFEM to the CA model. Additionally after deformation, the grids
in the CPFEM model, which were deformed, did not correspond correctly to
the undeformed CA grids, causing errors in the mapping procedure.

To address these mapping issues Popova et al |72] proposed a 2D model
that coupled CPFEM with a CA DDRX model in which only one square grid
was used for both the CPFEM calculations and the CA calculations. Since
the two models use the same cells, no mapping is required. However, using
the same grid for the two models also causes that after deformation, the CA
calculations are performed on a deformed grid. The effect of the deformation
of the grid on the CA calculations was not considered in this model. In this
work the maximal deformation reached was 35%.

The model of Popova et al was further extended to 3D by Li et al [56],
this approach is denominated CACPFE. The CACPFE approach addresses
the issue of the deformation of the grid and its effect on the CA calculations,
illustrated in figure 1.11, by adding a distance criteria to the CA switching
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rules: the higher the distance between a cell and its neighbour, the lower the
probability that this cell will be consumed.

ﬁ GB migration

Before deformation  Ioa=loc>los After deformation  log>loc>loa

Figure 1.11: Schematic representation of the changes between the cell dis-
tances due to plastic deformation in the model of Li et al. [56]. Figure from
[56].

Additionally, in order to prevent the number of neighbours of border cells
to be reduced, destroying the continuity, a periodic boundary condition is
imposed. One additional improvement of this model is that the CPFEM
and CA calculations are actually coupled, the variables used in the CPFEM
calculation are affected by CA calculations. However, even with the described
improvements the maximal deformation reached in this work was 40%.

As an alternative, Madej et al. [94, 95, 73| proposed the coupling of
CPFEM with a random CA (RCA) model. The RCA model does not use a
regular grid, which means that the traditional definition of neighbours used
in CA models can not be used. Instead neighbours are chosen according to
a radius criteria, that selects among the connected cells as shown in figure
1.12.

In this model, two grids are generated at the beginning of the simulation,
each integration point in the CPFEM grid corresponds to one cell in the
RCA grid. After each CPFEM calculation the position of the points are
updated on both grids equally. Thus the two grids keep the same shape and
deform equally during the simulation. So far the authors publications have
addressed mostly the computational developments required to implemented
this approach which seems very promising. One particular limitation of this
approach is that the value of the radius criteria used has an effect on the
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simulation results and on the computational time. Small radius values can
reduce the computational cost but also block the evolution of the ReX, since
a cell can end with very few or no neighbours. Additionally, following the
schematic shown in figure 1.12, in some configurations a cell can interact
with neighbours grouped in one specific direction.

Figure 1.12: Example of a neighbor selection of a green CA cell in the model
of Madej et al [94, 95, 73]. Figure from [73].

To summarize, the coupling of MC and CA models to CPFEM simula-
tions remains difficult due to the requirement of an uniform structured grid
(with the notable exception of the RCA model). The approaches described
to tackle this issue, even though they allow to consider deformation to some
degree, cause distortions in the neighbour definition which can lead to non-
physically results. Also, since grains are represented by squares cells they
present limitations in the description of the grains curvature, so the grains
are considered to be always spherical. Finally the models presented so far are
not able to reach very large deformations, which are classically encountered
in hot metal forming context.
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1.2.3 Full field vertex model

In the 2D vertex model [96, 97, 98| the microstructure is represented by only
considering the grains boundaries. The grain boundaries are described by a
series of line segments connected by nodes, located on the multiple junctions,
and virtual nodes located along the grain boundaries, used to describe the
curvature, as shown in figure 1.13.

Figure 1.13: Example of the grain boundary representation in the vertex
model. Figure from [6].

GBM is calculated by considering the grain boundary energy C on a line
segment a and the dissipation rate R, defined as:

C(z) = /fyGBda , (1.20)
R(z,v) = Ué—Bda , (1.21)
« Mcp
The motion of single segment k is calculated by solving the equation:
oC R

= . 1.22
Oxy, * aUG’BK 0 ( )
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After the calculation of vgp, the position of the nodes for a time step is
updated as:

The changes in the topology of the microstructure are considered by ap-
plying a series of topological operations, as described in [99]. In 3D, a grain
is represented by surfaces, discretized by triangular facets, which describe its
boundaries. This increases the difficulty and computational cost of the topo-
logical operations required [100]. Most vertex models have been proposed to
only model GBM [101, 100, 74|, few have been proposed to model DDRX,
specially in 3D.

Mellbin et al [102, 103, 75| proposed a 2D DDRX model, that couples a
CP Taylor model with a 2D vertex model, along with nucleation laws. The
model uses two meshes. One mesh is used to perform the calculations of the
vertex model, only nodes on the triple junctions are considered. The GBM
calculations include a term related to the stored energy. The second mesh
is generated on top of the vertex mesh, placing one node inside of all the
grains considered in the vertex mesh. The CP calculations are performed
on each node of the second mesh. Figure 1.14 shows the two meshes used.
During deformation the two meshes are updated simultaneously during all
the simulation.

Figure 1.14: Representation of the two meshes used in the model proposed
by Melbin et al [102, 103, 75|. Figure from [102].
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The coupling algorithm uses a staggered approach, in which several CP
time steps are calculated for each vertex time step. This is done since the
CP time step depends on the strain rate and is smaller than the time step
in the vertex model, that is defined according to the segments lengths and
the nodes velocities. One limitation of the current approach is that the CP
Taylor model used, does not consider heterogeneous deformation nor grains
interactions. Additionally in a 2D formulation the ways that the crystal can
deform and rotate to accommodate plastic deformation are reduced. This
increases the deformation and rotation in the available directions, leading to
over predictions.

1.2.4 Phase field model

Phase field (PF) models described the microstructure by PF variables. PF
variables are continuous functions in space and time, that represent a local
structure. Inside each grain, the PF variables keeps a constant value (clas-
sically 1 inside the grain and 0 outside). The GB are represented as diffuse
interfaces through the PF variable. Thanks to this diffuse interface formu-
lation, there is no need to explicitly track the location of the interfaces as
in sharp interface models (e.g., vertex models). Figure 1.15 illustrates a PF
variable along an interface.

Interface

(-

PF - Variable

X

Figure 1.15: PF variable along an interface, diffuse interface representation.
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Considering that the driving force for ReX is the minimization of energy,
in the PF framework the free energy of the system, described as a functional
of the PF variables and their gradients, is minimized. The energy functional
of multiphase system composed of k& PF variables (1) under constant tem-
perature can be described as [104, 105, 106]:

F= /V [f(mHZ%(vW v (1.24)

with V the total volume, f the local energy density function, K} a gradient
energy coefficient that controls the gradients influence. This parameter is
related to the diffuseness and thus to the width of the interface (numerical
width which differs generally from the physical one). The evolution laws are
defined from f as:

oF
N = —Lp—— 1.25
Nk kénk ) ( )

with L; a kinetic coefficient related to the grain boundary mobility. The
evolution law is then solved using finite differences, finite elements or spectral
algorithms (FFT). In order to correctly solve the behaviour at the interfaces,
a fine grid is generally required. This results in high computational cost
which is one of the main limitations of this numerical approach, specially for
domains considering a high number of grains.

Coupling CP calculations with PF-DDRX calculations implies a signifi-
cant increase of computational cost, in a method that is already limited by
its own computational cost. Thus, most of the models found in the literature
performing this coupling use spectral algorithms, so they require structured
meshes and periodic boundary conditions.

Among the models found in the literature we can cite: the model by Zhao
et al [107, 82| that couples the CPFFT model proposed by [108] with the PF-
FFT model for recrystallization proposed by [109]. In the model coupling,
two different grids are used, one for the CPFFT calculations and one for the
PF calculations. The PF grid is constructed by dividing the CPFFT grid
into smaller cells. The values of the variables from the CPFFT calculations
are linearly interpolated to the PF grid, except the orientation values which
uses a nearest neighbour interpolation. In the coupling algorithm the PF
calculations are only performed once a nucleation event occurs.

To define when nucleation occurs, a probability function, which defines
the occurrence of a nucleation event, is associated with the dislocation density
field from the CPFFT calculations. Since nucleation events occur at a smaller
scale than the CPFFT grid, the effect of nucleation only reduces partially
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the dislocation density according to a softening parameter that is calibrated.
After the dislocation density is updated, the stress fields are recalculated by
using the same strain field in order to prevent convergence problems before
performing the next CPFFT calculation. In this work the maximal plastic
deformation reached was 50%, however the authors do not clarify how they
deal with the distortion of the grid, to reach this deformation levels.

The model by Kujirai et al. [83], couples the CPFEM model of [110] with
a PF model based on the works of [111| in 2D. The PF equations in this
work are solved using a finite difference scheme. In this work two grids are
used, the CPFEM model uses a triangular mesh, while PF calculations are
performed on a square grid.

The general coupling procedure is similar to previously described proce-
dures. First, the CPFEM calculation is performed and the state variables
are updated. After, the dislocation density is evaluated and recrystallized
grains are introduced where the dislocation density reaches a critical value
(defined according to a phenomenological law). When a recrystallized grain
is introduced, it is assigned a minimal dislocation density, a random orienta-
tion and its accumulated deformation is set to zero. Once the recrystallized
grains have been introduced, the state variables are interpolated to the PF
grid. The interpolation is done by assigning the value of the element in the
FE mesh, to all the points of the PF grid located inside the element. The
PF calculation is then performed. In this work, the grid used for the PF
calculations has a higher resolution than the FE mesh. However, from the
article it is not clear how the PF grid is deformed and the tests presented do
not describe deformation levels higher than ¢ = 0.30 during simple shear.

1.2.5 Full field level-set method

The level-set (LS) method used in this work, describes grains by using dis-
tance functions that measure the euclidean distance to the grain interface,
the method is described in detail in chapter 3. In this work we extend the
DRX model of Maire |79, 6] that models DRX by coupling a LS framework,
based on works of |77, 78, 112|, with phenomenological laws. One of the
advantages of this model compared to the models found in the literature is
its ability to model DRX up to very large deformation levels. However it is
currently limited by the phenomenological description of plastic deformation.
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1.3 Summary and Discussion

In this chapter we have reviewed the different approaches proposed in the
literature to model DDRX, and the different approaches used to describe
plastic deformation in the context of DDRX modeling. The reviewed works
showed that:

e DDRX models are generally coupled with simplified plasticity or defor-
mation models. A natural perspective is to go toward a coupling with
CP formulations, since CP formulations provide a better description of
dislocation density evolution during plastic deformation.

e Mean field DDRX models have the advantage of having low computa-
tional cost when compared with full field models, however they are not
able to describe heterogeneous deformation, intragranular heterogene-
ity nor local neighbour interactions.

e Due to the complexity of the mechanism involved in DRX, there are
no formulations that fully couple and solve a system of equations con-
sidering appearance of recrystallized grains, GBM and plastic deforma-
tion. Instead a staggered approach is classically used in which for each
DDRX time step the different mechanisms (plastic deformation, GBM,
appearance of recrystallized grains) are considered as acting one after
another in sequence.

e The use of a staggered approach requires the implementation of an
appropriate interpolation framework. One common limitation encoun-
tered is that the effects of GBM are not considered in the CP calcula-
tions.

e The sequence usually used in staggered approaches is defined as: first
compute plastic deformation, next insert recrystallized grains, and last
calculate GBM.

e The time step required to solve correctly the equations describing CP
is usually smaller than the time step required to solve the equations
describing GBM. So, several models use different time steps for the two
steps, meaning that the GBM calculation is not performed at every
mechanical time step. In several models, this step is only performed
when recrystallized grains are introduced.

e Considering deformation and most significant heterogeneous deforma-
tion is not easily considered in DDRX models, since assumptions around
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grain shape or requirements of uniform structured grids are part of nu-
merous DDRX models.

e Computational cost is an important limitation in coupling full field
DDRX models with CP formulations, this aspect has drastically lim-
ited the number of 3D full field coupled models available in the lit-
erature. One common approach used to minimize the computational
cost, specially in PF formulations, is the use of FFT instead of FEM.
However the requirements of structured grids limits drastically their
ability to consider heterogeneous plastic deformation up to high levels,
as encountered in classical hot metal forming simulations.

From this review, none of the proposed models is able to simulate DDRX
up to high deformation levels in 3D considering heterogeneous plastic defor-
mation. This is the main perspective of these works. The first step is the
development of our CP model which will be presented in the next chapter.
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1.4 Résumé en Francais

Dans ce chapitre, nous avons passé en revue les différentes approches pro-
posées dans la littérature permettant de décrire I’évolution des densités de
dislocation due a la déformation plastique en recristallisation dynamique dis-
continue (DDRX). Les travaux examinés ont montré que:

e Les modéles en DDRX sont généralement associés a des modéles de
plasticité ou de déformation simplifiés. Une perspective naturelle est
d’aller vers un couplage avec les formulations CP, car les formulations
CP fournissent une meilleure description de I’évolution de la densité de
dislocation lors de la déformation plastique.

e En raison de la complexité des mécanismes impliqués en DDRX, il n’y a
pas de formulations qui couplent et résolvent complétement un systéme
d’équations considérant ’apparition de grains recristallisés, le migra-
tion des joints de grains (GBM) et la déformation plastique. Au con-
traire, une approche échelonnée est classiquement utilisée dans laquelle
pour chaque pas de temps en DDRX, les différents mécanismes (défor-
mation plastique, GBM, apparition de grains recristallisés) sont con-
sidérés comme agissant les uns aprés les autres de maniere sequentielle.

e [’utilisation d’une approche échelonnée nécessite que les différents champs
variables qui décrivent la microstructure soient affectés par tous les cal-
culs (déformation plastique, GBM, apparition de grains recristallisés).
Cela nécessite la mise en ceuvre d’un cadre d’interpolation approprié.

e La séquence est généralement définie comme suit: calcul de la défor-
mation plastique, insertion des grains recristallisés, puis GBM.

e Le pas de temps requis pour résoudre correctement les équations décrivant
la plasticité cristalline est généralement plus petit que le pas de temps
requis pour résoudre les équations liées a la GBM. Ainsi, en général des
pas de temps différents sont utilisés pour les deux étapes. Dans cer-
tains modéles, 'étape de GBM n’est effectuée que lorsque des grains
recristallisés sont introduits.

e La prise en compte de la déformation et de la déformation hétérogéne
n’est pas facilement prise en compte dans les modéles DRX car les
hypothéses concernant la forme des grains ou les exigences de grilles
structurées uniformes font partie des hypothéses récurrentes dans ’état
de l'art.
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e Le cotlit de calcul est une limitation importante dans le couplage de
modéles DDRX en champ complet avec des formulations CP. Cet aspect
limite considérablement le nombre de modéles couplés 3D en champ
complet disponibles dans la litérature. Une approche utilisée pour min-
imiser le cotit de calcul, en particulier dans les formulations champ de
phases réside a utiliser des résolutions de type transformée de Fourier
rapide sur grilles réguliéres. Cependant, 1'utilisation des grilles struc-
turées limite considérablement la capacité a prendre en compte la dé-
formation plastique hétérogéne jusqu’a des niveaux élevés, comme ren-
contre classiquement dans les conditions thermomécaniques de mise en
forme a chaud.

Afin de répondre & ces besoins et aux limites existantes, une approche de
type CPFEM dans un contexte level-set est envisagé et développé dans la
suite.



Chapter 2

Crystal plasticity library

2.1 Introduction

The first numerical step of this work concerns the development of a crystal
plasticity library, that provides a precise description of the mechanical be-
haviour of polycrystal aggregates. This chapter is dedicate to the description
of the developed CP library and includes the descriptions of: the single crystal
model formulation, the numerical implementation procedure, the polycrystal
models and the tests used to validate these developments.

2.2 Single crystal model kinematics

The single crystal model used follows the work of [113] and is based on
an elasto-viscoplastic formulation. The elasto-viscoplastic formulation is an
extended version of the viscoplastic formulation to include elastic effects.
Considering the generalized Schmidt law:

T =0:(M*®@n%) (2.1)

for slip occurrence on a slip system «a, 7% must be higher than the slip system
strength, represented by its critical resolved shear stress (CRSS) (7&). For
multiple slip the Taylor-Bishop-Hill model [19, 114| considers that a crystal
can accommodate any plastic deformation by activating only five slip sys-
tems. In the Taylor model [19], the slip systems activated are the ones that
minimize the energy dissipated during slip. This approach considers that all
slip systems have the same initial 75 and that they harden at the same rate.

Bishop and Hill [114] proposed an alternative approach that considers
the problem in terms of stress. In this approach, the goal is to find the
stress state that allows for multiple slip. The stress state chosen is the one

35
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that maximizes the plastic work. The Bishop-Hill approach is equivalent to
the Taylor approach if the 7& and their evolution (hardening) are considered
equal for all slip systems. However, one limitation of the Taylor-Bishop-Hill
is that it requires robust numerical procedures to determine the set of slip
systems activated and to prevent the appearance of singular matrices because
of the non-uniqueness of the sets of slip systems.

To avoid the problems derived from determining the active slip systems,
the viscoplastic formulation [115] considers that all slip systems are active
in the crystal. Thus, all slip systems contribute to accommodate plastic
deformation. In the viscoplastic formulation the flow rules that determine the
slip rate (%) of a slip system due to the acting 7, are generally exponential
laws. So, instead of describing ¥ with a heaviside type function, that jumps
from zero to a defined value when 7¢ reaches 7§, ¥* is described by continuous
function with a sharp increasing slope around 78. When 7¢ is smaller than
78, the value of 4* is very close to zero. Viscoplastic flow rules are further
discussed in section 2.3.

Considering slip as the principal deformation mechanism, the single crys-
tal kinematic are described based on the multiplicative decomposition of the
deformation gradient tensor F into: An elastic part F, and a plastic part F,,.
The elastic deformation gradient is further decomposed into the left elastic
stretch tensor V, and the elastic rotation tensor R..

F=F.F,=V.RF, . (2.2)

The plastic deformation gradient leads the body from the initial config-
uration By, to the intermediate configuration B, lattice orientation does not
change. The elastic rotation leads the body to an additional intermediate
configuration B, the lattice orientation changes. Finally the elastic stretch
leads the body to the final configuration B. Figure 2.1 illustrates the men-
tioned transformations.

The configuration B, describes the crystal in a local coordinate system.
In a global coordinate system B is reached by rotating the crystal according
to its initial orientation described by its initial texture. The configuration
B, used to write the constitutive equations in this work, can be obtained
by elastically unloading the crystal form the current configuration, through
v
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A

 J

Figure 2.1: Multiplicative decomposition of the deformation gradient tensor
F. Image modified from [113].

So, following the kinematic decomposition described in Eq. 2.2, the ve-
locity gradient (1) is defined as:

L=FF'=V.V '+ VL'V | (2.3)
L*=R.R! + R.L,RT '

Since in the viscoplastic formulation all slip systems are considered to be
active, the plastic velocity gradient L, in B is:

L,=) 4" (m*®@n°) (2.4)

with N the number of slip systems in the crystal. The orientation of the slip
systems is defined by Z¢ = m® ® n®, the Schmidt tensor.

The velocity gradient is further decomposed into its symmetric and skew-
symmetric parts as: | = d + w, with d = sym(l) and w = skew(l). For a
tensor A, the skew operation is defined as skew(A) = 1/2(A — AT) and the
sym operation is defined as sym(A) = 1/2(A + AT). This decomposition
leads to:

D=E,+D" | (2.5)
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D* = sym(C.Q.) +Z”y sym(C.Z%) (2.6)
D = skew(VIV,) + W* | (2.7)
~ ~ ~ N ~ ~
W* =skew(CeQ) + > 4°skew(C.Z%) | (2.8)
a=1

with Q. = R, R the spin of the lattice, Z* = m®®b” the rotated Schmidt
tensor, m® = R.m® the rotated vector in the slip plane direction, n* = R.n®
the rotated vector normal to the slip plane, C, = = V'V, the elastic right
Cauchy-Green tensor and E, = 1/2(C. — 1) the elastic strain tensor. The
work conjugate of E. is the second Piola-Kirchhof stress §, and the elastic
relationship is given by:

§=%.:E. |, (2.9)

with %, the elasticity tensor, rotated to the lattice current orientation.
Considering that the elastic strains are orders of magnitude lower than the
plastic strains, the infinitesimal strain assumption is introduced:

V.=1+e€ with |e€] <<1 |, (2.10)

with €. the infinitesimal elastic deformation tensor. This causes that the
configurations B and B differ only by an infinitesimal amount, thus V, =
and the following approximations can be introduced: D =~ d, W ~ w,
skew(VTV,) ~ skew(e.e.), C. ~ 1, E, ~ €., § ~ T, with T the Kirchhoff
stress related to the Cauchy stress o by 7 = det(F')o, with det(F') ~ det(1+
€c). These approximations plus:

D* ~ 2sym(e. Q) + 27 sym(Z , (2.11)
~ ~ N ~
W m Q.+ Y 4skew(Z7) | (2.12)
a=1

allow to reduce the single crystal model kinematics to:
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Kinematics
d:ee—l—eeﬂe—ﬂeee—kf)p ,
w = —skew (€é.€.) + Q. + VVP ,
Elasticity
T = cg; ‘€,
Plasticity

Wp = zn:ﬁask:ew (Za) ,

a=1

Schmid law

T =T sym (Za>

Flow and hardening rules

;YOé = f (T(X?Tg) ?

i = §(E.4)
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

The single crystal model is completed by defining the flow rule f and the
hardening rule g. Several flow rules and hardening rules are available in the

literature, some of them will be described in the following.

2.3 Crystal flow rules and hardening rules

As mentioned above flow rules and hardening rules define the magnitude of
the slip rates ¥ caused by applied stress and the material strength and its
evolution. Following the work of [16] they can be classified into phenomeno-
logical models or dislocation based models, depending on weather or not
they consider the evolution of dislocations densities (p) explicitly (disloca-

tion based).
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2.3.1 Phenomenological models
Phenomenological flow rules

In general, viscoplastic phenomenological models define the slip rates ¢ as
function of 7¢ and 75:

¥ = f (1%, 78) , (2.21)
the most common functions found in the literature are power laws of the
form [116, 117, 30, 118, 119]:

1
Q|m

sing(7%) , (2.22)

with m a material parameter, and 5§ the reference slip rate. Or extended

ones [113]:
F al _ Lo\ P49
ool B () T, o

with Fy the Helmholtz free energy of activation p, ¢ material parameters,
k the Boltzmann constant and # the absolute temperature. As mentioned
before, one important characteristic of theses type of flow rules is that any
stress will induce strain rate. However low values of 7* will induce negligible
strain rates. One limitation of this type of description is that the high gra-
dient described around the value 7§, can lead to convergence issues when 7¢
is much higher than 78.

Phenomenological hardening rules

The evolution of the material resistance is defined by the evolution of the
CRSS 78 defined as:

(67

Terss = 9 (7¢57) - (2.24)

The most common functions found in the literature include functions of
the form [116, 117, 30, 118]:

7= has |3 (2.25)
B=1

with h,p the interaction matrix, defined as:
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with hg, a, and 7, material hardening parameters. The parameters ¢,3 which
takes the value of 1 for co-planar slip systems and the value of 1.4 for non
co-planar slip systems, describe latent hardening. Latent hardening describes
how the accumulation of dislocations in one slip system affects the other slip
systems. Thus, it depends on the relations between the slip systems.

One simplification that can be introduced, following the Taylor model
[19], is that all slips systems will have same initial 7& and will harden equally.
This simplification reduces the number of variables that need to be considered
when solving the system, by considering only one 7¢ instead of N (number of
slip systems). By reducing the number of variables, the numerical solution of
the equations is simplified and convergence is more easily achieved. However,
depending of the material, it could be a strong assumption. One example,
are Voce type saturation laws [113, 119]:

. Tsat — TC .
7. = Hy (73@;—_7-0> ; }7/8| ) (227)

with 7, the saturation value and 7y a reference value. Since only one value
of 7¢ is considered, latent hardening and any other interaction between the
slip systems are neglected. Other phenomenological models use the Taylor
hypothesis to defined ¢ as [120, 121]:

, (2.26)

Tc = To + Yuby/p , (2.28)

with 79 = 09/M the initial microscopic yield stress of the material, o the
macroscopic yield stress of the material, 1) a material dependent parameter,
b the burger’s vector magnitude, M the Taylor factor, and p the dislocation
density. The evolution of 7¢ is determined by the evolution of the dislocation
defined by laws of the form of [44]:

dp
L = Kip* — Kyp. 2.29
o 1p 2p (2.29)

As introduced in chapter 1 this law can represent the well known Yoshie-
Laasroui-Jonas equation [45] when & = 0, and the Kocks-Mecking equation
[46, 47] when & = 1/2. The parameter K; describes the accumulation of
dislocations due to plastic strain, and the parameter K5 describes the effect
of dynamic recovery. However, even if these type of laws includes the dis-
location density as a parameter, they are not regarded as dislocation based
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laws. Because, no physical mechanism related to the dislocation motion are
explicitly considered when describing the evolution of the dislocation density.

2.3.2 Dislocation based models

Dislocation based models define the slip rates magnitude 4* as function of the
movement of dislocations, and the hardening rule is defined as the evolution
of dislocations densities. Thus, concepts regarding the physical mechanism
of dislocation motion are explicitly considered. Among the models found in
the literature, we can cite:

Model proposed by Arsenlis et al [32, 122]

In this model four types of dislocations are considered: Edge (e) and screw
dislocations (s) divided by their polarity (4, —)), the flow rule is defined in
terms of the dislocations fluxes:

Y = (Pevey + pe_ve_ + piivey + pe_vg ) b (2.30)

with v the average velocity of the dislocation density and b the burg-
ers vector. The product of the dislocation density and it’s velocity is the
dislocation flux.

The hardening rule is modeled by the evolution of each type of dislocation
density, for a dislocation of type £ € {e+,e—, s+, s—}. The evolution equa-
tion considers generation, annihilation and accumulation /loss by dislocation
flux such as:

p‘§ = pf]en + pgnn + p?lu:p . (231)

Model proposed by Cheong and Busso [123]

The model considers a flow rule similar to equation 2.23:

o F, 7ol = Se\"1" . .
¥4 = Yo exp{—ke {1 - ( . sign(7), (2.32)

with S7 the total athermal slip resistance to dislocation motion and 7 a
function of the shear modulus p:

0 (2.33)
]

with 7y and pg the reference values at a temperature of 0 K.
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The hardening rule is defined as the evolution of S%, as a function of edge
pS and screw p¢ dislocations densities:

Nslip

sg = by | 3 [mo# (5 + 48] (2.34)
5=1

with \ a statistical coefficient that accounts for the deviation from the regular
spatial arrangements of the dislocation, b* the magnitude of the Burgers
vector and h*® the dislocation interaction matrix defined as:

R = w4 (1 — wy) 6%, (2.35)

with w; o the interaction coefficients and 598 the Kronecker function. The
model is completed by defining the rates of generation and annihilation for
the types of dislocations considered.

Model proposed by Ma et al [124, 125, 126]

This model considers that in order for dislocation to glide, they must over-
come the stress field generated by dislocations located on planes parallel to
their slip plane (parallel dislocations p,), and move across dislocations lo-
cated on planes perpendicular to their slip plane (forest dislocations py).
The density of parallel and forest dislocations are calculated as the projected
summation over all the slip systems of statistical stored dislocation density

(SSD) pSsp:

N
pE = ZX"‘ﬁpgSD |cos (n*, m”)| , (2.36)
B=1
N
PP = ZXaﬁp’gSD |sin (n®, m”)| , (2.37)

B=1

with X%’ the interaction strength between slip systems. The flow rule is
defined by the Orowan equation as:

A = prbv® (2.38)

with b the magnitude of the burgers vector, v* the average mobile dislocation
velocity, and p¢, the mobile dislocation density calculated as:

P = BT\/pPp% (2.39)
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with B a combination of physical and numerical parameters. The mobile
dislocation velocity is calculated assuming the cutting of forest dislocations
as the velocity determining mechanism:

Y = A Vgttack €XP <—§ng’> sinh ( eljfT ) sign (79) , (2.40)
B B

with A* the jump width, veuecr the attack frequency, Qg the activation
energy for dislocation glide, V* the effective volume and kg the Boltzmann
constant. The effective shear stress 77, is calculated as function of the RSS,
CRSS and the forest and parallel dislocation densities. This value is 0 when
78] < 7

The hardening rule is calculated as the rate of change of SSD and takes
into consideration mechanism of lock formation, dipole formation, athermal
annihilation and thermal annihilation.

2.3.3 Discussion concerning the crystal flow rules and
hardening rules

Phenomenological models define the flow rule and hardening rule only in
terms of material parameters. Since these parameters do not represent phys-
ical quantities, a limited range of temperatures and strain rates in which they
are valid exist. However their implementation is relatively easy and have low
computational cost compared with the dislocation based models. They are
the most used models in the literature and have been shown to be able to
model correctly the behaviour of FCC metals.

Dislocation based models try to take into account the nature of disloca-
tion densities and their interaction. Then, once the corresponding param-
eters are identified, these models can be usable for a wide range of strain
rates and temperatures. However they tend to include a higher number of
parameters that need to be identified (with generally complex experimental
setup), additionally their implementation is more complex and they have
higher computational cost than phenomenological models, due to the addi-
tional equations introduced. The choice of one model is then dependent on
the intended application, material of interest, available material data and
computational resources.
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2.4 Constitutive Integration procedure

The set of equations that describe the single crystal model constitutes a
coupled system of first order ordinary differential equations for (7, R., 78).
Knowing the configuration of the body at a time ¢, this system of differ-
ential equations must be integrated in order to calculate the configuration
at the time t,,, = t, + At. So, given the configuration at a time time ¢,
(Tn, Ren, 78,,), the loading d,, 41 and w,,,;, the initial orientation and the
material properties, the results of the integration procedure is the configura-
tion at tn—l—l; (Tn+17 Re,n—f—h Tg,n+1)'

One important remark is that the integration procedure is performed on
the sample (fixed) coordinate system. Since the elastic compliance tensor and
the Schmidt tensor are defined on a local coordinate system aligned with
the lattice, they must be transformed. The transformation is done using
a rotation tensor Cjy. C, is defined according the crystal initial texture,
described by means of its Euler angles (1, ¢, ¢2) (Cocks convention [14]):

COS (p1 COS 2 — sin ] cos P sinpa  — COS Y1 COS P2 — sin 1 cos ¢ sin P2 sin 1 sin ¢
Cp = |sini cos p2 + cos p1 cos ¢psina  —sin g sin g + cos @] cos¢pcospa —cosprsing| . (2.41)
sin g cos ¢ COs 3 sin ¢ cos ¢

Additionally, during deformation the orientation evolves and must be
updated according to the lattice rotation. So, for a time t,, the rotation
tensor considering R, ,, is defined as:

C,=R..Co , (2.42)

C,, is used to update the orientation of the elastic tensor and the Schmidt
tensor:

Gim = (Cr,®C,) 6. (C,2Cy)" (2.43)

7% = C,m" ® C,n* . (2.44)

For the particular case of materials with linear elastic isotropic behavior
Can+1 = Ce, 50 there is no need to update the orientation of the elastic
tensor. With that consideration, to integrate the system of equations (Eq.
2.13 to 2.20), the first step is to rewrite Eq. 2.13 as:

) ) o -
é. +e.R.R —R.R'e. = R, {E(RZEGRG)] R'=d-D, , (245)
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from this equation we can write:

%(RET e.R.)=RI(d-D,)R. |, (2.46)

next, we integrate using backward Euler scheme:

RZn+1€e,7L+1Re,n+1 -
Rl € R+ (AORL, ((dor1 — Dyppt)Repsr , (247)

and by reorganizing the terms we get:

€ent1 = Reni1 R €cnRenRE, 1+ (At)(dps1 — Dyprr) (2.48)

The term Re,n+1RZn describes the increase in the elastic rotation tensor
and can be grouped as AR, = Re,nHRT with its transpose defined as

e,n?

AR! = R.,R!, . Next, considering Eq. 2.16, D,..+1 can be expressed as:

f)p,n-H = Z 73+18ym (Zgﬂ) . (2.49)
a=1

According to Eq. 2.19, 45, = f (T,‘:H, rgmﬂ) (it is defined according to the
flow rule). The term Z2 41 1s the Schmidt tensor in the current orientation,

defined with the rotation tensor as ZgH = C,115* ® C,y,ym®. From this
€cnt+1 Can be written as:

€ent1 = DR  ART + Atd — At 42, sym (ZgH) . (2.50)
a=1

For simplicity, in the following we will use €}, = ARc€cn ART + Atd,, 4y

and Pgﬂ = sym (ZgH). So, we can define:

€entl = 6:,m—l — At Zﬁg-s-lf)g-s-l : (2-51)

a=1
From this equation the deviatoric and isochoric parts of €.,.; can be
separated. The deviatoric part is:

deveni1 = dever, | — At Z S S (2.52)
a=1
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Applying the same treatment to Eq. 2.15, the hydro-static part of 7 is not
considered since it does not induce plastic deformation in metals, we get:

devr, 1 = (5:1,n+1 devee i1 , (2.53)

with %,nﬂ the rotated fourth order deviatoric elastic tensor. Finally com-
bining Eq. 2.52 and Eq. 2.53, the equation for the evolution of 7, is defined
as:

Nd_,71+1 devry gy = deve.,  — At Z 754—1155“ : (2.54)

a=1

Next, we consider the evolution of 78 defined by the hardening rule,
Eq. 2.20. The details of the integration procedure depends on the type of
hardening rule used. But, in general a backward Euler scheme can be used
to obtain the evolution equation:

Tg,n+1 = Tg,n + (At)g (Tg,n+17 VSH) ) (2.55)

For simplified hardening rules, that consider only one 7ogrgs for all the
slip systems, a forward Euler scheme can also be used to integrate Eq. 2.20:

T = Tom + (A0)G (78,,7%) (2.56)

Finally, to obtain an equation for the evolution of R,, from Eq. 2.14 and
Eq. 2.17, the spin of the lattice is defined as:

N
Qe,nJrl = Wpi1 — Z "}/g+1Qg+1 ) (2-57)
a=1

with Q2,, the antisymmetric part of Z¢,,. The term skew (é.€.) is not
considered since it is usually small [127]. The integration is then performed
using the exponential map [128]:

Reni1 = exp [(Qe’n+1) At] R.. . (2.58)
with the exponential map defined in Einstein notation as:

sin w 1 —cosw

exp(Qix) g+ " i+ 2 182k (2.59)

with w? = (1/2)Qn Q-
Equations 2.54, 2.55 and 2.58 are a set of coupled nonlinear algebraic
equations that can be written in terms of residuals. A classic N-R (Newton
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- Raphson strategy) could be used to solve the system of equations, however
such a choice would be complex because of the number of variables involved
in the calculation. To simplify this step a staggering scheme is used. The
staggering scheme is a two levels iterative procedure that allows to solve each
equation independently from the others.

In the first level: First Eq. 2.54 is solved using N-R considering only
devT,y1 as a variable, the values of 77 ,; and Re 41 are kept constant at
their best available estimate. To do this, Eq. 2.54 is linearized with respect
to devT,.1. This leads to an algebraic system that is solved iteratively for

AdevrT = devT, 1 — devT,, as described by Eqgs. 2.60 and 2.61:

R, = ‘édjﬂ devr, —dever, ., + At Zﬁﬁﬂf’hl =0 , (2.60)

a=1

N .
o— 3%L+1 = o =
(CKd,r}H - Z At e, (Pn+1 ® Pn+1) t Adevr =
a=1 n

— deve, iy +devel, — Aty 49, PL L (261)

a=1

the iterations are performed until the residual R; is smaller than a defined
tolerance.

In the second step of the first level, Eq. 2.55 is solved considering only
Tt 88 & variable and keeping devT,;; and R, ,; at their best available
estimates. If the hardening rule considers different values of 7% per slip
system, a N-R procedure similar to the previously described one is used. If
considering only one 7¢* for all slip systems, the value of 7., can simply be
updated using the explicit Euler scheme.

In the third step of the first level, the value of R, ,,1; is updated according
to Eq. 2.58. On the second level of the staggered scheme, all the steps of the
first level are repeated until the norms of both A7 and A7® are lower than
a tolerance. The steps of the staggered integration scheme are detailed next:

1. Given:

e The loading (d,, 1, W,41)-
e The initial orientation C,.
e The crystal structure Z% = s ® m®.

e The material properties %..
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e The initial state (7,,, Repn, 72,)-

2. Calculate the rotation matrix C,, = R, ,,Cy .
3. Rotate (Z%,%,) to the current orientation:
¢ Gopi1=(C,®C,):%.: (C,®C,)" .
¢ 72, =C,5*°®C,m".
e AR, =R.,R], =1.

4. Solve for 7,41:

. %;Tnlﬂ :dev (Tyy1) = dev (e:’nﬂ) — At Zgzl ﬁ,‘fb‘ﬂf’ﬁﬂ )

o .
5. Solve for 7,4

® Tl =Tont+ (At)g (Tgn+1:73+1) :

6. Update Re41:

N e’ ~ o
e R.,;1=ecxp [(Wn_H — D a1 7n+1Qn+1> At] R., .
7. Two levels iteration scheme:

(a) Calculate the rotation matrix C,,41 = R ,,41Cy .
(b) Rotate (Z%, %) to the current orientation:
¢ ng,nﬂ = (Cn+1 ® Cn+1) ¢ (Cn+1 ® Cn+1)T :
® Zg+1 = Cn+1S8 X Cn+1m8 .
[ ] ARQ - Re’n+1RZn .
(c) Solve for 7,,1:
o—1 . _ * N : N
¢ ng,n-i-l s dev (T"H) = dev (ee,nﬂ) — Ot Za:l 73+1Pg+1 .
e the NR algorithm uses a sub stepping procedure to improve
convergence velocity.

(d) Solve for 72,
® Tl = Ton T (At)g (Tgn+1>77?+1) :
(e) Update Re i1:
L4 Re,nJrl = €xp [(Wn+1 - Zgzl ;Y;.Lé«HQngl) At] Re,n .

(f) Check convergence ||AT|| < tol and ||ATY|| < tol, if not, return
to step (a), if convergence continue.
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8. If required, calculate material tangent module (gg(nﬂ) .

The material tangent module is required when performing crystal plas-
ticity calculations coupled with the FEM, in this framework the deviatoric
tangent module is given by:

N . -1
> - o— 9 n Do Do
Crni1) = Jﬁﬁ (ng,11+1 + Z At o (Pn+1 ® Pn+1>> ’ (2.62)
a=1

«
ors

with J¢ , = det (1 + €cpp1) -

2.5 Numerical implementation

The implementation of the described crystal plasticity formulation is not
straightforward. In this section, techniques that facilitate the implementation
are described.

2.5.1 Tensor base

One difficulty of the numerical implementation of the crystal plasticity library
is the manipulation and operations of fourth order tensors, such as the elastic
constants matrix (%). In particular, the calculation of the inverse can be
complicated and numerically expensive. Because of this, it can be useful to
rewrite those tensors in a form that facilitates their operation.

The Voigt notation, for example, is frequently used to reduce the fourth
and second order tensors to 6 dimensional matrices and vectors respectively.
However, it does not preserve the tensorial properties of second and fourth
order tensors. For example considering Hooke’s law and the compliance
tensor (.7jx):

€ij = Jijki0Ow , With S = ((é’jkz)*l? (2.63)
and in Voigt notation:

ef = S0y, with A = (€))7, (2.64)

with the indexes I, J = 1...6. If F#" is the operator that transforms a fourth
order tensor to the Voigt notation, the problem encountered is that:

Ly # F M (Figm) (2.65)
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This problem can be solved by performing careful corrections, specially
for terms derived from calculations that include the inverse of the compliance
and elastic stiffness tensors. However it can easily lead to errors, for example
in the calculation of the material tangent module in the crystal plasticity
formulation.

Alternatives notations like the Mandel notation [129] or the notation pro-
posed by [127] are also found in the literature. One can also use averaging
procedures to express twice symmetric fourth rank order tensors (e.g. elastic
constants tensor) in an other tensor possessing the same geometrical proper-
ties [130].

Particular tensor bases can also be used to express fourth order and second
order tensors. These approaches have the advantage to preserve the tensorial
structure. So, for the elastic relation, the inverse of the elastic constants
tensor expressed in these bases correspond to the compliance tensor. The
approach used in this work follows the work of [14, 131].

The second order tensors (T'W) = Ti(jA)) that compose these bases should
be orthonormal and symmetric, presented here using Einstein’s notation for
clarity:

N _ )
Ty =157, (2.66)
T = 6w (2.67)

with {\, X'} € {1,..,6}. Fourth order and second order tensors with
symmetry under index permutation, (e.g. (€ = Ciju = Cjirt = Cijik = Criij)
and (o = 0,; = 0j;)), can be expressed into this base as:

Cijkl = Z CAXT(/\)T : (2.68)
6
oij =Y oI (2.69)
=1

The coefficients Cy» and o, are defined by the products:
Chw = T (ﬁmlekl , (2.70)

or = oy TV . (2.71)

One advantage of this base is that the results of the tensor operations:
addition, contraction and inversion, can be obtained by the corresponding
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operations performed in the base. For example the elastic relation o;; =
Cijki€r becomes:

O\ — C/\)\/E)\ . (272)

Furthermore a particular base formed by the eigentensors T™ that diag-
onalizes C'\y can be found. The eigentensors are defined as:

A A
Gy Ty = COTS . (2.73)
The elastic compliance tensor computation can be performed directly in
the base, as the inverse of C*:

6
Figw = Y _CN TS (2.74)
A=1

For crystal plasticity calculations, the stiffness tensor is equal to the elas-
tic stiffness tensor only in the elastic regime. In the plastic regime the elasto
plastic stiffness tensor is no longer diagonal when expressed in the tenso-
rial base. Nevertheless , this methodology permits both to get simple scalar
equations for the elastic regime and reduce fourth rank tensors as second

order matrices when plastic deformation is active.

2.5.2 Isotropic case

For the particular case of isotropic symmetry (which will be mostly the case
considered in this work), the elastic matrix can be expressed as :

Cijrr = P(0ikdj1 + 60jx) + AN0ijoR (2.75)

where, 1 and A\ are the shear modulus and the Lamé parameter, respectively.
The eigentensors T™ for this symmetry are:

-% 0 0
TW=| 0 -9 0], (2.76)

0 0o =

V6

-5 0.0
T = 0 L 0 (2.77)
V2 ) -

0 0 0

00 0
TO =0 0 S|, (2.78)

0 % 0

V2
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0 0 =
(4) _ v
T =10 0 0], (2.79)
1
7% 0 0
0o L o0
TG = [ L {)ﬁ 0 (2.80)
V2 ’ '
0 0 0
5 0 0
TO =0 & (1) (2.81)
0 0

The first five eigentensors are deviatoric and are associated with shears,
and the eigenvalues associated with them are equal and worth 2u. The
last eigentensor is associated with dilatation strains and its eigenvalue is the
elastic compressibility module 3X = 2u + 3.

Thanks to the characteristics of its eigentensors, in the case of isotropic
elasticity, this base is specially advantageous for the crystal plasticity frame-
work which only considers the deviatoric stresses. Because, only the first five
eigentensors need to be considered in the calculations, simplifying them even
more.

2.5.3 Code structure

The crystal plasticity library was implemented in C++. One of the main
considerations in the implementation was that: depending on the applica-
tion of interest different flow rules, hardening rules, crystal structures, and
material constitutive laws, might be required, as described in section 2.3. So,
the code structure was designed to facilitate the implementation of different
laws. This was done by taking advantage of the C+—+ classes, objects and
class templates, as described in the following.

The structure of the code consists of several classes and class templates
that define the elements required to perform the crystal plasticity calculation.
These are: crystal plasticity class template, which defines the integration
algorithm; the flow rule class template, which describes the calculation of
the strain rate as a function of the stress; the constitutive law class, which
describes the elastic relation; the Crystal class, which describes the crystal
structure (slip systems) and the hardening law class, which describes the
CRSS and their evolution.

The crystal plasticity class template has members that are objects of the
flow rule class template and of the constitutive law class. The flow rule class



o4 CHAPTER 2. CRYSTAL PLASTICITY LIBRARY

template has members that are objects of crystal class and the hardening
law class. Figure 2.2 shows a schematic representation of this structure. To
perform a calculation a crystal plasticity object needs to be defined. The
definition of the crystal plasticity object, requires the definition of a flow rule
object, and a constitutive class object. Subsequently, the definition of a flow
rule object requires the definition of a crystal object and a hardening rule
object.

Crystal Plasticity<Flow Rule<Crystal, Hardening Law>, Constitutive Law> J

[ Flow Rule<Crystal, Hardening Law> }~ Constitutive Law

* Viscous power law

| o Orowan law

* Linear elastic

Crystal Hardening Law

isotropic

* Voce saturation

* Dislocations law

* Linear thermo-elastic

isotropic

gy
[®)
') o

* BCC

« HCP

Figure 2.2: Schematic representation of the code structure, showing the
classes templates, classes and objects.

Thanks to the implemented structure, when defining a crystal plasticity
object any flow rule object can used. Following the example on figure 2.2,
the crystal plasticity object can be defined with either viscous power law or
an Orowan law. In the same way the viscous power law object can be defined
with either a Voce saturation law or with a dislocations based law.

To achieve this, in the classes and class templates virtual methods are
defined. In this definition only the required parameters to perform a calcula-
tion are specified. For example the flow rule class template includes a method
that takes the stress to update the plastic slip rates. This method is called in
the crystal plasticity class when required. However, the specific procedure to
calculate the slip rates is only implemented in each specific flow rule. Since,
all objects of the flow rule class share the same general method to calculate
the slip rates, the call to this method done in the integration procedure is
the same for all the implemented flow rules. So, when implementing a new
flow rule no modifications need be made to the other classes. The described
methodology was used in the definition of all the classes that compose the
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code.

Additionally, to facilitate the passing of parameters and variables, the
integration with external solvers and to reduce the consumption of memory,
the parameters and variables required for the calculations are defined exter-
nally (memory allocation). When a calculation is going to be performed, the
pointers to all the variables and parameters needed in the calculation are
passed to the crystal plasticity object. The crystal plasticity object subse-
quently sets the pointers that it requires and passes them to its members.
The members of the crystal plasticity object repeat the procedure and pass
the pointers to their respective members.

2.6 Polycrystal models

The single crystal model described so far, models the response of individ-
ual crystals subjected to deformation conditions. However, to model the
behaviour of polycrystals, composed of several crystals, an additional as-
sumption must be introduced. This assumption links the macroscopic stress
and strains applied at the polycrystal level to the local strains and stress in
each crystal. Several polycrystal models are presented in the literature [17],
here we will describe the CPFEM used in this work (additionally the VPSC
model is also detailed in chapter 5).

2.6.1 Crystal plasticity finite element method

S
0‘.%
Y

CY/
X
&

Polycrystal Single Finite Slip
Crystal Element Modes
-

\r

Balance Laws Constitutive Model

Figure 2.3: Schematic representation of CPFEM applied to model the be-
haviour of polycrystals. Figure from [14].
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The Crystal plasticity finite element method (CPFEM) [31, 32, 33, 132| cou-
ples the finite element method with crystal plasticity. In the FEM formula-
tion, the stress - strain response of each element will be determined by the
single crystal model. By using FEM, stress equilibrium are ensured at least
in a weak sense as well as compatibility along grain boundaries, grain in-
teractions are also considered and intragranular strain heterogeneity can be
calculated. Figure 2.3 shows a schematic representation of CPFEM applied
to model the behaviour of polycrystals. The main limitation of CPFEM is
it high computational cost, which limits its application to microscale simu-
lations.

FEM formulation used in this work

In order to simulate the mechanical behaviour of a polycrystalline sample, a
FE framework based on a P1+/P1 mixed velocity pressure (v, P) formula-
tion, is used. Considering the momentum conservation equation, in Einstein
notation, written in terms of its deviatoric and spherical components, we
obtain:

aUZ'

PE—Sz‘jJﬂLP,i—bi:U,

KUI"Z' + P =0 R

with p the material density, S;; the deviatoric stress, b; the body forces and

K the bulk modulus. The weak formulation is obtained by integrating over
the domain €2 and multiplying by the test functions w; and ¢:

(2.82)

2% v — / S widV + / PawdV — / bwdV =0,
o Ot Q Q Q

- (2.83)
— | viiqdV — —/ —PqdV =0,
J K
Considering that:
—/SWVJ’LUdeﬁ-/P,ZdeV:
Q Q
@ @ 2 (2.84)

Q

Iy

Sijeij (wL)dV -

T

Q

Swew(wl)dv — Pwde

S— S
S~
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with I'; the boundary of €2 where a traction t; is applied. Equations 2.83 can
be rewritten as:

t

V; V;
= L, dV — L w.d e (ws)d
R, /QpAth V /QpAth V—f—/QSwew(w,) %
Q I Q
1 P 1 Pt
Ry = — ;.iqdV — ——qdV ——qdV =0,
2 /Qv’q /QKAtq +/QKAtq

The term S;; can be linearized as:

9S. .
Sij m S + ——L0é At
’ 97 e M (2.86)

~ Qt dev § -
~ SZ] + ijkl(seklAt s

with C{lﬁ;; the material tangent module provided by the constitutive model,
in this case the single crystal model. In order to solve the system, a N-R
algorithm is used:

OR ov; :
61;41 :/QpA—vtwidV—k/&)Cfﬁ&klﬁzj(wi)ﬁtdvv
0R,

= [ 6Pwav

2P /Q w; ; dV
aRQ = —/ (SU%quV 3
Ov; Q

ORs

1
o5 == JywE

which written in matrix notation is:

va Kvp 51}1’ _ Rl
i kel e =[] 258

(2.87)

To ensure the stability condition of the formulation, the well known mini-
element (P14 /P1) [133] is used. Adding an additional internal degree of
freedom to the velocity ensures the existence and uniqueness of the solution.
In the cases considered in this work, we will consider isothermal, quasi-static
deformation of polycrystals, without considering body forces.
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Also, in order to model large deformation, an updated Lagrangian frame-
work is used. After each time step the configuration of the body is updated,
by updating the nodes position (x) as:

TNt = Ty + 'UtAt (289)

2.6.2 Remeshing

In the Lagrangian framework, the continuous update of the nodes position
causes distortion in the elements, reducing the mesh quality. Having a low
quality mesh can cause serious convergence problems in the FE solution.
So, when performing CPFEM simulations considering large deformations
remeshing operations must be performed to ensure a good mesh quality.

The remeshing procedure in this work is done using MTC. MTC is a P1
automatic remesher based on elements topology improvement developed for
Lagrangian simulations under large strains [134]. MTC allows the creation
of isotropic and anisotropic meshes with variable element size. In addition
to MTC a body fitting remesher (FITZ) was also developed in CEMEF [135]
that in the context of polycrystal simulations allows to fit nodes to the LS
functions 0 isovalue (The 0 isovalue of the LS functions in polycrystal simu-
lations describes the GB, this is further detailed in chapter 3).

However, remeshing operations in 3D have a high computational cost and
can introduce interpolation errors . So, to ensure an adequate mesh quality
during the CPFEM simulations and limit the computational cost, a priori in
this work remeshing operations will be performed at fixed deformation inter-
vals of 25%. An isotropic remeshing strategy with uniform element size will
be used (illustrated in figure 2.4), since we are interest in describing hetero-
geneous intragranular deformation. The meshing and remeshing strategies
will be further discussed in chapter 3.

Figure 2.4: Isotropic remeshing strategy with uniform element size used in
CPFEM simulations.
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2.7 Validation of the crystal plasticity library

To validate the developed library simulations, cases from the literature were
performed and the results compared with the values reported.

2.7.1 Material point simulations

The first test cases considered were material point simulations as presented
in [113]. These cases describe the deformation of a AL7050 polycrystal com-
posed of 256 grains with random initial orientations subjected to different
deformation conditions. For these simulations, the Taylor model was used as
the polycrystal model (the same strain rate is imposed on all grains equal to
the macroscopic strain rate) and the flow rule and hardening rule used were:

S
m

7= | sing(77) , (2.90)

o
o pa | T
c

s <ﬂ) zﬁ: 5] . (2.91)

Tsat — TCO

2B
Tsat = Tsat,0 [M] . (292)

Y50

The material parameters for AL7050 are presented in table 2.1.

m Yo Hy TC0
0.02 | 1.0(s 1) | 240 (MPa) | 205 (MPa)
Tsat,0 m/ 75’0 [7]

290 (M Pa) 0 5.0 %1010 (s71) &

Table 2.1: Flow rule and hardening rule parameters values considered for
material points simulations of AL7050 [113].

For the first case considered, the polycrystal is subjected to plain compres-
sion defined by the velocity gradient (I) asl{=[1.000, 000, 00 —1.0],
and for the second case, the polycrystal is subjected to simple shear defined
by the velocity gradient as I =[002.0, 000, 000 ]. In both cases, the
polycrystal response is studied in terms of its texture evolution (pole figures)
and its stress response (described by normalized average equivalent stress
oeqn) at different strain levels (described by the average equivalent strain

€eq)-
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1 3
Ueq,N - gp Zl 5(0-2 a-z) )
= (2.93)
Y2
€eqg = ZZI 5(62 D €) .

The results in both cases were compared to the results published in [113],
and with the expected behaviour of a polycrystal for these deformations
conditions presented in the literature [14|. For the first case (compression),
the results in terms of stress response are presented in figure 2.5, the results
are plotted along with the results from [113] digitalized from the published
data. Additionally, the poles figures at the deformation levels of €., = 0.5,
€eq = 1.0 and e, = 1.5, are presented in figure 2.6 and as a reference for
comparison, the corresponding pole figures published in [113| are shown in
figure 2.7.

In this case, the simulation results in terms of both stress evolution and
texture evolution show excellent agreement with the results presented by
Marin [113]. The texture evolution also shows qualitative agreement with the
expected texture evolution of a polycrystal subjected to plain compression
as described in [14].

4.5
ARRIRRIAIIA K Ak
a4 ‘
g
]
n 35l F
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© 3’F
-
=
257 MP-Compression
% Marin et al (2006)
2

0.5 1 1.5
Strain

Figure 2.5: Stress response of the deformation of an aggregate of 256 FCC
crystals subjected to plane strain compression, material point (MP) simu-
lations. Data from [113] was obtained by digitalizing the published data.
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For the second case (simple shear), the results in terms of stress response
are presented in figure 2.8, as in the previous case the results are plotted
along with the results from [113] digitalized from the published data. For this
case, the poles figures are presented at the deformation levels of v., = 0.87,
Yeq = 1.73 and 7y, = 2.60 in figure 2.9, and the corresponding poles figures
published in [113] are shown in figure 2.10.
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Figure 2.6: (111) pole figures of the deformation of an aggregate of 256 FCC
crystals subjected to plane strain compression. Model simulation results.
€eq = 0.5 (left side), e, = 1.0 (center), €., = 1.5 (right side).

Figure 2.7: (111) pole figures of the deformation of an aggregate of 256 FCC
crystals subjected to plane strain compression. Results from [113]. €., = 0.5
(left side), €., = 1.0 (center), €., = 1.5 (right side).

For the second case, the stress response shows slight differences between
the simulated results and the results presented by Marin [113] at the begin-
ning of the curves. These differences can be attributed to differences in the
constitutive law. In the model of [113], the elastic behaviour is described by
an anisotropic elastic law, while in this work an isotropic elastic law is used.
The differences only appear in the second case because of the loading con-
figuration. On the other hand the texture evolution shows good agreement
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with the results of Marin [113]. The texture evolution also shows qualitative
agreement with the expected texture evolution of a polycrystal subjected to
simple shear as described by [14].
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Figure 2.8: Stress response of the deformation of an aggregate of 256 FCC
crystals subjected to simple shear. Data from [113] was obtained by digital-
izing the published data.

-.:5;.-'- **Re ‘.:\' s
AEECOMINE, T A
9T TR S A S
frie ',"i-.-.~ Yoog odl
A M PRI

LA >
AP T

Figure 2.9: (111) pole figures of the deformation of an aggregate of 256 FCC
crystals subjected to simple shear. Model simulation results. 7., = 0.87 (left
side), veq = 1.73 (center), 7., = 2.60 (right side).
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Figure 2.10: (111) pole figures of the deformation of an aggregate of 256 FCC
crystals subjected to simple shear. Results from [113]. v, = 0.87 (left side),
Yeq = 1.73 (center), 7., = 2.60 (right side).

2.7.2 CPFEM simulations

To test the crystal plasticity library coupled with FEM, the case of plain
compression of 304L steel polycrystal presented in [121] was reproduced.
The simulations consist of a channel die compression of a 0.5 % 0.5 % 0.5 mm
polycrystal composed of 100 grains.

The flow rule considered is the same power law considered in the material
point test cases. While, the hardening rule used is the Yoshie-Laasroui-Jonas
dislocation law, coupled with the Taylor hypothesis. Two type of dislocations
are considered: pgssp and penyp. The evolution of pgyp is calculated as a
function of the gradient of Fp following the classical definition of [136]. With
the inclusion of pgnp, the set of equations describing the hardening behaviour
is given by:

¢ = To + Yuby/Protal (2.94)
PTotal = PSSD + PGND (2.95)
pssp = K1 — Kapssp (2.96)
. 1 .
Panp = 3V (1*m Fp) (2.97)

PGND = Z norm[pgnp) - (2.98)

[e%
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The boundary conditions imposed are shown in figure 2.11. The velocity
imposed is calculated as the nodes position multiplied by the strain rate in
the specified direction. Additionally, zero velocity in the boundary normal
direction boundary conditions are also imposed to prevent the polycrystal
from collapsing unto himself, at high deformation levels. If the zero velocity
boundary conditions are not imposed, deformation levels higher than 40%
are very difficult to reach, due to the small number of grains considered
in the domain. The material parameters considered for the simulations are
presented in table 2.2.

Tz 'Ifz Tz Tz
| | | |
X //\\xY X /’\\‘Y X ’/ﬁ\\*Y X /’ﬁ\\‘Y
~ -~ ~ e
V y=Y*(L) V z=Z*(-L) V. n=0 V. n=0

Figure 2.11: Schematic of the boundary conditions imposed for the channel
die compression.

E 14 ’.)/0 b M

150 (GPA) 0.3 0.001 (s 1) | 2.5+ 107 (mm) | 3.3
K0 K1 K2 m "

16.06 (M Pa) | 1.1 % 10° (mm~2) 9.57 0.05 0.15

Table 2.2: Flow rule and hardening rule parameters values considered for
CPFEM simulations of 304L steel [121].

The obtained simulation results in term of average stress response were
compared to the experimental measurements reported in [121| and are pre-
sented in figure 2.12. Additionally figure 2.13 shows the simulated dislocation
density distribution. For this case, the results in terms of stress evolution
showed very good agreement with the experimental measurements. Addi-
tionally, when observing the dislocation density distribution in the domain,
the results agree with the results presented in [121] and with the expected
behaviour, with higher accumulation of dislocations around the grain bound-
aries where the plastic deformation gradient is higher.

The good agreement observed between the simulation results and the
reference data in the tests performed, material point simulations and CPFEM
simulations, served to validate the developments presented in this chapter and
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to illustrate the versatility of the developed library in performing different
types of simulations and including different behaviour laws.
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Figure 2.12: Average stress response compared with experimental measure-
ments for channel die compression of 304L steel. Experimental measurements
digitalized from [121].
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Figure 2.13: Simulation results in terms of dislocation density distribution
in the polycrystal.
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2.8 Summary and Discussion

In this chapter, the new crystal plasticity library developed to have a better
description of the plastic deformation in metals was presented. The library
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is based on the formulation of [113].

The library was developed in C+—+ as an external library and is compat-
ible with several solvers. By taking advantage of some C++ features like,
classes templates and pointers, the library was developed with a modular
structure. This structure facilitates the implementation of new features with
minimal modifications to the rest of the code. This aspect ensures that the
library is versatile and easy to update. This is required as depending on the
material and application of interest, different laws are needed.

In order to perform the numerical integration, a two levels N-R algorithm,
that uses a double criteria to define convergence was implemented. The
proposed algorithm was optimized to minimize the computational cost and
to limit numerical errors introduced during the calculation. In this regard,
a tensorial base was used to represent second and fourth order tensors. The
use of the described based simplifies the numerical handling of tensors and
operations over them.

The developed library was tested by reproducing cases found in the litera-
ture. The results were compared to both simulation results and experimental
measurements. The results showed good agreement when compared with the
reference data. The tested cases included the use of different polycrystal
models, flow rules and hardening rules, thus showing the versatility of the
developments.

In the next chapter the developed library is coupled with a LS framework
to model DDRX up to high deformations. As described in chapter 1, the main
advantages of the LS framework when compared to other DDRX models, are
its ability to model complex geometries and to be capable to reach high
deformation levels thanks to remeshing techniques as was illustrated in [6].
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2.9 Résumé en Francais

Dans ce chapitre, la nouvelle bibliothéque de plasticité cristalline dévelop-
pée est présentée. La bibliothéque est basée sur une formulation existante
développée par Marin [113].

La bibliothéque a été développée en C +-+ comme une bibliothéque ex-
terne et se veut générique. En tirant parti de certaines fonctionnalités C ++
comme les modéles de classes et les pointeurs, la bibliothéque a été dévelop-
pée avec une structure modulaire. Cette structure facilite la mise en ceuvre
de nouvelles fonctionnalités avec des modifications minimales du reste du
code. Cet aspect garantit que la bibliothéque est polyvalente et facile & met-
tre & jour. Cela est nécessaire car en fonction des matériaux d’intérét et de
I’application visée, differentes lois peuvent etre necessaires.

Afin de réaliser I'intégration numérique, un algorithme de Newton-Raphson
a deux niveaux, qui utilise un double critére pour définir la convergence, a été
implémenté. L’algorithme proposé a été optimisé pour minimiser le coit de
calcul et pour limiter les erreurs numériques introduites lors de la résolution.
A cet égard, une base tensorielle particuliére a été utilisée pour représenter
des tenseurs de deuxiéme et quatrieme ordre. L’utilisation de la base décrite
simplifie la manipulation numérique des tenseurs et les opérations tensoriels.

La bibliothéque développée a été testée en reproduisant des cas issus de la
littérature. Les résultats ont été comparés aux résultats de simulation et aux
mesures expérimentales. Les résultats ont montré une bonne concordance
par rapport aux données de référence. Les cas testés incluent 'utilisation de
différents modéles polycristallins et de différentes régles d’écoulement et de
durcissement, montrant ainsi la polyvalence des développements.

Dans le chapitre suivant, la bibliothéque développée est couplée a& un
cadre level-set pour modéliser la DDRX jusqu’a des déformations élevées.
Les principaux avantages de 'approche LS sont sa capacité a modéliser des
géométries complexes et & atteindre des niveaux de déformation élevés grace
a des techniques de remaillage [6].
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Chapter 3
Full field model for DDRX

3.1 Introduction

In this chapter the CPFEM presented in chapter 2 is coupled with the level
set finite element method (LS-FEM) and phenomenological laws to model
DDRX. First the LS-FEM framework is presented, followed by the phe-
nomenological models that are used to describe nucleation. Following the
coupling algorithm is described, along with a sensitivity analysis of the model
numerical parameters. Finally, tests of the coupled model are performed.

3.2 The level set method for grain boundary
migration

The LS method was initially developed by Osher and Sethian [137] to trace
the spatial and temporal evolution of evolving interfaces. This front-capturing
approach, usable in FF'T/FE context, enables to manage easily complex topo-
logical events such as appearance or disappearance of the modeled interfaces.
This aspect explains its interest to describe GBM. First applications were
proposed by Merriman [76] and Zhao [138| for few multiple junctions and
by Bernacki et al. for polycrystal computations in context of ReX modeling
[77, 78, 139, 140, 141].

3.2.1 Grain representation

In the context of microstructure modeling, a grain is classically described
thanks to a LS function v defined over a domain 2 as the signed distance to
the grain boundary [77, 78]. So, a GB is defined by the 0 isovalue of the LS
function.

69
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Y(x,t) = +d(z,T'(t)) Ve e, (3.1)

['(t)={z€Q, ¢¥()=0}, (3.2)

with d the minimum euclidean distance from the point z to the interface
['(t). A general adopted convention considers ¢» > 0 inside the grain and
1 < 0 outside the grain. This is an arbitrary convention that does not
have influence in the results, but needs to be keep constant once defined.
In practice and in context of a FE strategy and linear interpolation, the LS
function is estimated in each node of the FE mesh.

A microstructure can be generated and immersed in a FE mesh as LS
functions by using Voronoi tessellation or a Laguerre-Voronoi tessellation
techniques [142]. These generation procedures can lead to the creation of
vacuum regions, nodes with no positive level set value. To correct these
vacuum regions, the LS functions are corrected according to the following
procedure [143]:

60 = 5 (460 - max ) 33

Additionally, to reduce the number of LS functions required to describe
the microstructure, coloring techniques are used. These coloring techniques
allow to define more than one grain per LS function. Grains defined inside
the same LS function are separated by a minimal defined distance. Once
the grains are generated they can be redistributed into different LS functions
using a swapping procedure in order to avoid numerical coalescence [112].
Of course, it is also possible to immerse EBSD or SEM images to generate
representative polycrystals in FE-LS context [144].

3.2.2 Grain boundary migration (GBM)

In the LS framework, GBM is described by solving a transport equation for
a given velocity vgp field:

w +vgp - V(z,t) =0, (3.4)

with V the gradient operator. The velocity field is calculated by considering
capillarity (v.) effects and energy gradients (v,) effects. The GB velocity due
to the capillarity effect requires the calculation of the normal to the grain
boundary n and the grain curvature k (trace of the curvature tensor in 3D),
these terms can be estimated through the following equations:
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n=-Vy , (3.5)

k=V-n=-Ay . (3.6)

This estimation requires that the LS functions remain signed distance func-
tions ||V|| = 1, at least around the GB interfaces. In this condition, Eq.
3.4 can be rewritten as a convective-diffusive equation:

% — MGB'YGBA¢ + MapTan [,0] V@ZJ =0, (37)
with Mgp the mobility of the GB estimated with an Arrhenius type law as
described in chapter 1, 7gp the grain boundary energy, 7¢p the dislocation
line energy, [p] the difference in dislocation density across the boundary. The
term (7gp [p]) describes the difference in stored energy across the boundary.

Eq. 3.7 is solved using FEM for all the LS functions that describe the
microstructure with a particular treatment of the convective part of the mul-
tiple junction [77]. After solving the equation vacuum regions might appear
in FE mesh, thus it is necessary to correct them as was described in Eq.
3.3. Additionally, the minimal distance imposed between grains described
by the same LS functions, is verified in order to avoid numerical coalescence
thanks a swapping algorithm. Finally, after calculating the GBM, the LS
functions lose their metric properties (no longer signed distance functions).
Thus, before the next calculation it is necessary to perform a reinitializa-
tion procedure to restore their distance properties. In this work a direct
geometrical reinitialization procedure is used [145].

3.3 Recrystallized grains

As described in chapter 1, mesoscale DDRX models usually represent nucle-
ation as the appearance of recrystallized grains. The size, conditions and rate
of appearance of recrystallized grains is defined according to phenomenologi-
cal laws. In this work, the LS framework was coupled with phenomenological
laws; this approach has been previously used in the literature to model both
dynamic and static recrystallization [6, 79, 112], and it is further adapted to
work in a CP framework.

3.3.1 Ciritical dislocation density

The critical dislocation density p.., defines when and where recrystallized
grains can appear. Recrystallized grains can only appear on grains with a
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dislocation density equal or higher than p,,., defined as:

Cx 1/2
_ _Q’YGBEZWGBjGBQ (3 8)
Per K ) .
In(1 R

Eq. 3.8 is derived from the critical dislocation density equation intro-
duced by Roberts and Ahlblom [51|. The parameters K; and K, are the
same parameters as in the Yoshie-Laasroui-Jonas equation [45], described in
chapter 2, that represent accumulation of dislocations due to hardening and
the effect of dynamic recovery. When coupling the CP model, the Yoshie-
Laasroui-Jonas equation is used as the hardening rule, to ensure compatibility
between the models and to not introduce many additional parameters that
need to be calibrated. Eq. 3.8 is solved using a fixed point algorithm.

3.3.2 Recrystallized grains Size

The size of the recrystallized grains that are introduced, described by their
radius r*, is calculated according to the Bailey-Hirsch criterion, Eq. 3.9. This
criteria approximates the condition that the stored energy is high enough to
overcome the capillarity forces, ensuring that the recrystallized grain will be
able to grow.

This condition is approximated by assuming the recrystallized grains as
perfect spheres. So, to compensate for errors in the description of the recrys-
tallized grain topology, a numerical safety factor w is generally introduced
|6, 79]:

* 2’.}/GB
ro=w .
PerTGB

(3.9)

The errors in the description of the recrystallized grain topology can be
reduced by reducing the mesh size, as illustrated in figure 3.1. This means,
that the value of this factor will depend on the FE mesh used around the
new ReX grains. Since this factor introduces an artificial increase in the
recrystallized grains size that can affect the results of the model, ideally it
should be kept as close as possible to a value of 1.

3.3.3 Recrystallized grains location

Following classical nucleation models, the criteria used to define sites for
the appearance of recrystallized grains considers different rules: first, ReX
grains can only appear in positions with a dislocation density higher than
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the previously defined critical dislocation density. This combined, with the
recrystallized grain size defined by Eq. 3.9 ensures that the recrystallized
grains will growth. Second, it is initially assumed that recrystallized grains
can only appear near the grain boundaries, this is done by defining a distance
d from the grain boundary which is equal to the recrystallized grain diameter
2r*. The appearance of ReX grains near the boundaries ensures the presence
of misorientation, and is in accordance to necklace nucleation which is quite
classical in DDRX context [1]. However different criteria considering disloca-
tion density gradients, misorientation, and misorientation gradients can also

be defined.

@) &=10,E, = 31%,E, = 21%  (b){=15E, =7.7%, E, = T.1%

(©)&=21,E,=43%E;=4,3% (d)¢=26,E, =2.8%, E, = 2.5%

Figure 3.1: Recrystallized grains described using different FE mesh sizes. ¢
is the ratio between the recrystallized grain radius and the mesh size, E, is
the error between the volume of the recrystallized grain and a sphere of the
same radius, F is the error between the surface of the recrystallized grain
and a sphere of the same radius. Image from |79].

3.3.4 Recrystallized grains appearance rate

The number of recrystallized grains that are going to be introduced is rep-
resented as a volume of recrystallized grains per unit of time V', calculated
with a variation of the proportional model of Peczak and Luton [52]:

AV = k,odt | (3.10)

with %k, a probability coefficient that depends of the strain rate and tempera-
ture, and ¢ the total boundary surface area of grains with dislocation density
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higher than the critical value, for the case of necklace nucleation.

3.4 Models coupling to model DDRX

The coupling of the models involves solving two FE problems, the mechan-
ical, and the GBM migration. Both problems are solved on the same FEM
mesh, which deforms according to the mechanical deformation, this prevent
some of the problems described in chapter 1 associated with using multiple
meshes. Fields corresponding to the variables considered in each FE prob-
lem are generated and associated to mesh nodes (P1 variables fields) or mesh
elements (PO variables fields). In the mechanical problem, the orientation
and dislocation variables are defined as P0 variables, while for the GBM cal-
culation the LS functions and the grains dislocation density are defined as
P1 variables. So, in order to couple the models, it is necessary to define the
initial values of the variables to be coherent for the two problems, plus during
calculation the values need to be interpolated. Additionally the mesh size,
time step, and remeshing operations need to be correctly adapted to ensure
the correct solution of both problems and minimize the computational cost.
Thus, sensibility analyses were performed for the models independently, and
for the coupled model after the coupling algorithm was defined.

3.4.1 Grains generation and fields interpolation

The microstructure is immersed in a unstructured FE mesh as LS functions
as illustrated in figure 3.2 for a Voronoi tessellation example. From the initial
microstructure, the initial grain properties are generated. Most of the initial
material properties can be defined as constants values for all elements and
nodes inside the domain, except for cases of multi-phase materials. However
some properties need to be defined according to the grain structure, one
value defined per grain. These properties are the initial dislocation density
and the initial grains orientation. In this framework both the orientation
and the dislocation density can be defined by assigning specific values to
each grain, or following a defined distribution.

Both the orientation and the dislocation density are generated initially
as P1 variables following the grains description, with one value per grain.
However, to perform the CP calculations they must be interpolated as PO
variables. This is done in the following way: for elements with all nodes
belonging to the same grain, the value assigned to the element corresponds to
the value of the grain. For elements with nodes belonging to different grains,
the orientation value that represents the minimal rotation with respect to
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the reference frame is assigned to the element (this definition constitutes a
first approach, other definitions might be used). For the dislocation density,
a weighted average is performed between the dislocation values of the grains
that the nodes belong to, with the weights being the volume of the element
belonging to each grain.

Max distance level sets (mm)
islocation density (mmA

01000 O

Figure 3.2: Max value of LS functions (left side) and initial dislocation den-
sity constant per grain (right side) in an unstructured finite element mesh
representing 3D microstructure generated using Voronoi tessellation. Con-
tours show the 0 value of the level set functions, i.e. the grain boundary
network.

The PO orientation and dislocation fields are used in the CP calcula-
tions. If CPFEM is used, their evolution will be heterogeneous even inside
the grains. Next, in order to perform subsequent GBM calculations the
dislocation density field must be interpolated back to a P1 field. However
since this dislocation density field is an heterogeneous field, even inside the
grains, the resulting velocity field due to energy gradients will also be highly
heterogeneous.

In other to correctly solve the transport equation with a highly hetero-
geneous velocity field, a very refined mesh can be used, but it increases dra-
matically the computational cost, of the whole simulation [146]. To reduce
the computational cost, the dislocation density field is averaged per grain in
order to calculate the transport velocity as shown in figure 3.3. The averag-
ing of the dislocation density field is an initial approach (classic in PF or LS
frameworks) and it is further discussed in section 3.5.5.

To prevent numerical diffusion by the interpolation and the average pro-
cedure, the PO fields from the CP calculation are kept and the effect of GBM
are applied directly on them. The P1 dislocation density field used in the



76 CHAPTER 3. FULL FIELD MODEL FOR DDRX

GBM calculation is a temporal field that is always calculated from the PO
field and does not directly affect it.

GBM is driven by the reduction of the stored energy which implies a
decrease of the dislocation density field inside the grains. Then, a minimal
or annealed dislocation density py which is material dependent is assigned to
the swept areas. After the GBM calculation, the PO dislocation density field
is updated according to:

Pe = Pe t—dt (]- - fswept) + £o (fswept) ) (311)

with p. the dislocation density in the element after the GBM, p.;_4 the
dislocation density in the element before GBM, and fs,ep: the swept volume
fraction of the element.
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Figure 3.3: PO dislocation density field from CP calculation (left side) and
its corresponding averaged per grain P1 dislocation density field for the cal-
culation of the GBM velocity (right side).

On the other hand, the PO orientation field is only updated when an
element is completely swept into another grain (all the element nodes are
located inside another new grain). The orientation assigned is the orientation
of its closest neighbour that was located in the new grain before the swept
took place.

Post Nucleation treatment

After the introduction of a ReX grain, the P0 dislocation density and orien-
tation fields must be updated in order to reflect the nucleation effect in the
CP calculations. It is done in the following way: for the dislocation density
field, the nucleated grains will have a dislocation density equal to the mini-
mal dislocation density pg. The update procedure for the elements in which
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a recrystallized grain appears follows the one used for the GBM. The new
dislocation field is calculated as:

Pe = Pe t—dt (1 - fnuc) + £0 (fnuc) ; (312)

with f,,. the volume fraction of the element occupied by the recrystallized
grain. For the orientation field, the recrystallized grain orientation can be
defined according to different criteria, in the same way as the initial orien-
tations are generated. The criteria mostly used in this work are assigning
a random orientation to the nucleated grain, or defining the recrystallized
grain orientation as the orientation of the parent grain (grain in which the
center of the recrystallized grain is located), plus a random misorientation of
minimum 15° degrees. For the elements orientation field, only the elements
with all their nodes inside the recrystallized grain are affected. The same
orientation is assigned to all the elements.

The difference in the selection of affected elements, causes that some ele-
ments near the recrystallized grains boundaries will only have their disloca-
tion density field updated. However the orientations field can not be treated
in the same way as the dislocation density field. Figure 3.4 illustrates the
update of the dislocation density field after the appearance of a recrystallized

grains.
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Figure 3.4: 2D view of the elements affected by the introduction of a recrys-
tallized grain: dislocation density field.

Updating the dislocation density fields and orientation fields, creates ad-
ditional localized gradients and breaks the equilibrium state of the CPFEM
calculation. This can affect the convergence of the next CPFEM calculation.
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3.4.2 CPFEM sensitivity analysis

A sensitivity analysis of the numerical parameters of the model was per-
formed in order to ensure the convergence of the results and minimize the
computational cost of the simulations. To perform this study, several sim-
ulations were performed by changing different numerical parameters (mesh
size, time step, domain size) according to the studied cases. As described in
chapter 2, an isotropic remeshing strategy with uniform size is used in the
simulations.

The boundary conditions imposed for the simulations represent a channel
die compression at a constant strain rate of ¢ = 0.01(s™!). Figure 3.5 shows
the schematic of the boundary conditions, the imposed velocity is calculated
for the shown faces as the points coordinates multiplied by the strain rate.
The remaining faces are forced to remain flat by imposing a velocity equal
to 0, in the direction normal to the face.
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Figure 3.5: Schematic of the imposed boundary conditions.

The material parameters for the simulations were obtained from [6, 121],
and the grains orientation follows a random distribution.

CPFEM mesh unstructured isotropic mesh size

For the CPFEM calculation, the number of elements required to ensure con-
vergence in terms of stress (computed as the total force applied on the top
Z face divided by the area) response and average dislocation density evolu-
tion was studied. The analysis is performed in terms of number of elements
per grain (Negems), calculated as the average equivalent grain diameter (D.,)
divided by the average mesh size (My;,.):

D,
Msize

For this analysis, CPFEM simulations on a domain of 200 grains, with a
grain average size of 0.05 mm, with different mesh sizes were performed. The

Nelems =

(3.13)
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simulations were performed up to a deformation of 25% without remeshing
operations. The mesh size range considered was from 4.0 up to 8.0 elements
per grain (The number of elements per grain refers to the relation between the
equivalent grain diameter and the mesh size). The lower value of 4.0 elements
per grain corresponds to the minimum value used in [79] as the number
of elements required to ensure a correct representation of the recrystallized
grains topology. The results in terms of stress and average dislocation density
are presented in figure 3.6. The results showed that 4 elements per grain
ensure a good average response in terms of convergence for the CPFEM
simulations.
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Figure 3.6: Stress vs strain curve (left side) and dislocation density vs strain
curve (right side) for CPFEM simulations for different number of elements
per grain. For a domain of 200 grains, with a grain average size of 0.05 mm.

To check the convergence in terms of local evolution, simulations of the
deformation of a polycrystal with different mesh sizes were compared. To
perform the comparison, the same sites were used in the Voronoi tessellation
algorithm generate the microstructures, and the same initial orientations and
dislocation density were assigned to each grain, ensuring that the initial poly-
crystals are equal for all the cases. The local dislocation density distribution
weighted by the volume of the elements at different deformation levels, for
the considered mesh sizes, are shown in figure 3.7. The mean L? difference
(calculated by interpolating results of each simulation to a common mesh,
Eq. 3.14) with respect to the case with the smaller mesh size were also
calculated and are shown in figure 3.8.
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with /N the number of elements, v; the variable value in the element ¢ and
v; the reference variable value in the element i.
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Figure 3.7: Comparison of the local dislocation density distribution in volume
for the simulations of an identical polycrystal with different mesh sizes, for
different deformation levels (e = 0.10 top, € = 0.15 middle, € = 0.20 bottom).
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The results show moderate differences for the different mesh sizes. Bigger
mesh sizes give a more stiff response of the polycrystal. With the increase
in deformation more elements reach the maximum dislocation density, as
determined by the used hardening law. This reduces the heterogeneity of the
field and causes a reduction in the differences between the answers obtained
for the different mesh sizes.

Since the reduction in the mesh size causes a significant increase in the
computational cost, the choice in the mesh size will finally be a compromise
between the required accuracy and the available computational resources.
Here the initial value of four elements per initial grain will be used as the
minimal value for the CPFEM simulations in which the average response is
analyzed. For the DRX simulations, the mesh size required for the grain
boundary migration calculation, the mesh size required for correct repre-
sentation of the recrystallized grains, and the domain size i.e the number
of grains, also needs to be considered. This is presented in the following
sections.
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Figure 3.8: Mean L2 differences of the local dislocation density for the simu-
lations of an identical polycrystal with different mesh sizes, calculated with
respect to the case with the smaller mesh size, for different deformation levels.

Number of grains

The number of grains in the domain required to obtain convergence in the
homogenized response of the polycrystal was analyzed. For this, simulations
were performed for different domains size i.e. different number of grains, with
an average grain size of 0.05 mm. Figure 3.9 shows the responses in terms
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of stress and dislocation density.
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Figure 3.9: Stress vs strain (left side) and dislocation density vs strain (right
side) response for simulations with different initial number of grains.

The results showed that 50 grains ensure convergence in the polycrys-
tal response. Lower number of grains causes that the average polycrystal
response depends on the orientations assigned to the initial microstructure.
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Figure 3.10: Local dislocation density evolution during CPFEM simulation.
(Left side) Complete domain and (right side) middle plane cut of the domain.
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The number of grains considered in the domain also defines the number of
grains in contact with the boundary. Since the imposed boundary conditions
can affect the evolution of the grains close to it, figure 3.10 shows the local
density evolution of the dislocation density during the CPFEM calculation,
for the case considering 25 grains in which the boundary effect should be
greater. Additionally figure 3.11, shows the comparison of the dislocation
density distributions by number between the elements near the boundary
and the elements in the center of the domain, for the same simulation case.
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Figure 3.11: Local dislocation density evolution during CPFEM simulation.
Distributions by number compared for elements in the center of the domain
and elements near the boundary.

The results show that for the imposed boundary conditions, the elements
near the boundary do not show a significant different behaviour than the rest
of elements in the domain. The differences in the dislocation density evolu-
tion is determined by the orientation. Additionally since the used hardening
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law (Yoshie-Laasroui-Jonas dislocation law, coupled with the Taylor hypoth-
esis) sets a saturation value, after ¢ > 0.2 most of the domain reaches the
maximal dislocation density. When the maximal dislocation density value
is reached the dislocation density does not evolve anymore. This effect con-
tributes to the homogenization of the dislocation density in all the domain
with the increase in deformation.

(001) (110) (111)

No. Grains = 100
Boundaries Plane

No. Grains = 100
Boundaries Free

No. Grains = 350
Boundaries Plane

30 05 1 1.5 2 0 05 1 15 2 25

[8,]

0 05 1 15 2 2.

Figure 3.12: ODF pole figures in the (001) (110) (111) directions. CPFEM
simulations up to € = 0.60 : (Top) 100 grains with plane boundaries, (mid-
dle) 100 grains with free boundaries and (bottom) 350 grains with plane
boundaries.

The effect of the number of grains and the boundaries on the texture
evolution was also analyzed. Simulations were run with: an initial domain
composed of 100 grains, considering the boundary conditions shown on fig-
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ure 3.5; an initial domain composed of 100 grains, leaving the boundaries
in direction of the axis = free; an initial domain composed of 350 grains,
considering the boundary conditions shown on figure 3.5. The simulations
were run up to € = 0.60, the maximal deformation level that can be reached
without encountering numerical convergence problems, due to the distortion
of the domain in the case with free boundaries. The ODF pole figures of the
resulting final orientations are shown in figure 3.12

Comparing both cases with 100 grains shows that, the imposition of an
additional plane boundary leads to the development of a stronger texture
than the case with the free boundary. On the other hand, by comparing
the cases with plane boundaries and different number grains, the results
show that the case of 350 grains shows a stronger texture than the case that
only consider 100 grains. From these results, it is clear than the texture
development is affected by both the boundary conditions and the number of
grains in the domain. However the final choice will be a compromise between
the fact to be able to reach high deformation levels (boundary conditions)
and to limit the computational cost (number of grains in the domain). So,
for the next cases the domain will still be limited to 100 grains and plane
boundary conditions will be used.

Time step

The final parameter studied was the time step, which considering a constant
strain rate translates into a deformation step. Since CP is a highly non-
linear problem, choosing an adequate mesoscopic deformation step is very
important to ensure the convergence of the computation. However the non-
linearity of the problem changes as the material evolves. The elasto-plastic
transition (initial part of the stress-strain curve) being the more complex to
resolve, followed by the plastic-hardening part (the material hardens as it is
deformed), and the saturation part (material no longer hardens) being the
less complex to resolve.

Additionally, in the coupled model, the GBM calculations and the ap-
pearance of recrystallized grains locally modify the dislocation density and
orientation fields. This makes the following calculation more complex to
resolve. So, a very small deformation step is required in order to ensure
converge during all the states of the simulation. However keeping a very
small deformation step during all simulation also increases drastically the
total computational time.

The alternative proposed in this work in order to ensure convergence and
minimize the computational cost, is to dynamically calculate the deformation
time step during the simulation. The criteria used to calculate the deforma-
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tion time step is based on the number of iterations required by the non-linear
FE solver to reach convergence at each time step. This criteria is derived
from the criteria used to adapt the time step in commercial FEM solvers like
Abaqus.

An optimal interval for the number of iterations (1), defined by a minimal
number of iterations I,,;,, = 7 and a maximal number of iterations I,,,, = 15,
was identified. This interval was identified by running several simulations
with different intervals and comparing the simulations times along with the
stability of the solution. So, during the simulation the time is updated ac-
cording to:

Atoa* 1.5 if I <Iln
Atnew = Atold if 7 > [mm and [ < [mam ; (315)
Atald x 0.5 if I > Imax

with ¢,., the new time step and t,, the current time step. In case that
convergence is not achieved, the time step is also reduced and the calculation
is performed again. Figure 3.13 shows the stress vs strain curve and the
deformation step vs strain curve, for a CPFEM simulation. This result shows
that in this interval, the deformation step varies between 0.1% and 1%, and
its value increases with deformation as the material hardens.
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Figure 3.13: Stress vs strain curve (left side) and deformation step vs strain
curve (right side) for CP simulation of 304L steel at a constant strain rate of
0.01s 1.

3.4.3 LS-FEM Sensitivity Analysis

In the previous section the numerical parameters for the CPFEM calcula-
tion were analyzed. Since the GBM requires the FE solution of a different
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equation, the numerical parameters for the GBM calculation must also be an-
alyzed. The parameters analyzed were time step and the mesh size relative to
the grain size. Simulations of the GBM of a single spherical grain, immersed
in an homogeneous matrix were performed. The grain dislocation density
was initialized to py and the matrix was initialized to the maximum disloca-
tion density defined by K1/K2. Additionally the grain dislocation density
follows the YLJ hardening equation for a constant macroscopic strain rate of
0.01(s™'). The material parameters were obtained from [79, 121].

The results were compared with the analytical solution available in [79].
Figure 3.14 shows the error of the simulated GBM in terms of calculated grain
size for different mesh sizes and time steps, with respect to the analytical
solution for the grain size evolution. The mesh sizes considered go from:
4 elements per grain, up to 8 elements per grain. The range of time steps
considered goes from 1 s up to 10 s, for the cases considering different time
steps the mesh size was set to 4 elements per grain.

The results for the different mesh sizes show that: for the case considering
4 elements per grain, the error starts at 20% at the beginning of simulation
and goes down to 10% at the end of the simulation. For the case of 5 elements,
the error remains relatively constant at levels around 10% during all the
simulation. For the case of 7 elements, the error starts around 10% at the
beginning of the simulation and goes down to 7% at the end of simulation.
Finally for the case of 8 elements, the error remains constant around 5%
during all the simulation.

For the different time steps the results show that: for the time step of 1 s
the error starts at 60% at the beginning of the simulation and goes down to
40% at the end of simulation. The cases with time steps of 5 s and of 10 s
show similar behaviours wit errors of 20% at the beginning of the simulation
that go down to levels of 10% at the end of simulation.

The behaviour for the error for the different mesh sizes is consistent with
the behaviour expected of a numerical solution. The error decreasing with
the decrease in mesh size. In the previous section, when considering the effect
of the mesh size in the CP simulations, the mesh size was set to 4 elements.
However this results show that for the GBM calculation this mesh size leads
to high errors (around 20%). So, to ensure the correct solution of the GBM
migration calculation it is necessary to reduce the mesh size, i.e. consider 8
elements per grain. This mesh size leads to errors of 5% that are acceptable
for this type of simulations.

To analyze the behaviour of the error for the different time steps it is nec-
essary to consider that the total error in the calculation has multiple sources.
Part of the error comes from the temporal discretization and part comes from
the resolution methodology. The error related to the discretization can be
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reduced by refining the time step. While, the error related to the numerical
methodology comes from the numerical operations performed, that increase
in number for smaller time steps.

- LS value )

3 w 0 8 - 2 9

o 5 5 8 o o o o}

o 6 o6 o SEEE S S

a4 o o o o @ @ <
| | \ \

Constant time step 10 s 0.8 Inital No. elements 4.0
0.6+ ——NoElems=4.0 ——Time step=1.0 s
NoElems=5.0 Time step=5.0 s
0.5 ——NoElems=7.0 06" —Time step=10.0 s
——NoElems=8.0

2
>

Relative Error
o
w
Relative Error
o
>

o

N
o
N

0 5 0 :
0 20 40 60 0 20 40 60
Time (s) Time (s)

Q
N

Figure 3.14: Error of the simulated GBM in terms of grain size for different
mesh sizes (left side) and time steps (right side) (comparison with against
analytical solution).

As it was previously described, the solution of the GBM with the cur-
rent LS-FE framework requires the performance of several complementary
numerical operations (removal of vacuum regions, transport of and reinitial-
ization of the LS functions). Each numerical operation introduces errors that
accumulate over recurrent iterations. The magnitudes of the introduced nu-
merical errors are related to interpolation of the zero iso-value that defines
the GB. Further details of these errors are precisely described and discussed
in [147]. So, for the case considering a time step of 1 s the errors intro-
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duced by the successive numerical operations (mainly the reinitialization)
accumulate and lead to a very high total error in the simulation.

One alternative to reduce the errors introduced by the operations can be
to use fitted meshes with nodes located along the zero iso-value of the LS
functions. As described in chapter 2, this is one of the remeshing strate-
gies available using the remesher FITZ. However, this alternative requires
constant remeshing operations, as the position zero iso-value changes after
each GBM calculation, that in 3D have currently a prohibitive computational
cost. So, it is not viable option. As an alternative, in this work to minimize
the number of operations performed and ensure the correct solution of the
GBM, the time step range is set between 5 and 10 s.

3.4.4 Coupling Algorithm

The coupling of the models requires several considerations in order to reach
an optimal solution in terms of numerical cost, convergence and accuracy:

e The CPFEM calculation requires a smaller time step for its resolution
than the GBM calculation.

e In order to ensure convergence and minimize the computational cost of
the CPFEM calculation, the time step needs to be adapted during the
simulation.

e The elements quality deteriorates with each iteration as the nodes po-
sitions are updated after each CPFEM iteration (Updated Lagrangian
approach). Therefore remeshing operations must be performed to en-
sure a good mesh quality.

e GBM calculations require several complementary operations making
one time step iteration computational costly than one CPFEM time
step iteration.

e Use of very small time steps in the GBM calculations can lead to nu-
merical errors (mainly due to the reinitialization [147]).

e The insertion of recrystallized grains requires that the mesh size is small
enough to correctly describe the recrystallized grains topology. Since
recrystallized grains have a smaller size than the rest of the original
microstructure, the mesh must be refined before recrystallized grains
are inserted.
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e As the dislocation density increases because of plastic deformation, the
recrystallized grain size defined by Eq.3.9 decreases. Therefore the
mesh size must be refined during deformation.

e Remeshing operations in 3D have a very high computational cost.

e After the insertion of ReX grains, the increase in dislocation density
during just one CPFEM time step is not enough to cause the appear-
ance of new ReX grains.

Taking the previous consideration into account. The implemented cou-
pling algorithm utilizes two different time steps, one for the CPFEM itera-
tions and one for the GBM iterations. Additionally the remeshing and nucle-
ation operations are only performed when the GBM iteration is performed.
For a clearer description the global coupling algorithm is summarized in fig-
ure 3.15.
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Figure 3.15: Coupling algorithm between the CPFEM and the dynamic re-
crystallization model.
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3.5 Coupled model analysis

The sensitivity analysis presented in the previous section were performed
considering each model independently. So, in this section further tests are
performed for the coupled model.

3.5.1 Reference simulation

The presented coupling algorithm allows to perform full field 3D simulations
of dynamic recrystallization. The simulations provide information of the
average state of the microstructure and also describe the local evolution of
the microstructure, including interactions between neighbours. Figure 3.16
shows an example of simulation concerning the compression of a domain
composed of 400 initial grains. The simulation was ran on 4 processors of
24 cores each. The simulation time is shown to illustrate the computational
cost.

"The evolution of the microstructure is described in terms of: recrystallized
fraction X (Eq. 3.16), volume-weighted mean grain size R (Eq.3.17), volume-
weighted recrystallized mean grain size Eq. 3.18 and number of grains.

NRx Q.
X = Zg—;s , (3.16)

with ng, the number of recrystallized grains, S; the volume of the corre-
sponding grain, and St the total volume of the domain.

R= ZS%S , (3.17)

with n the total number of grains and r; the equivalent spherical radius of
each grain.

Ry = M 7 (3.18)
Sx

with Sx the total recrystallized volume.



92 CHAPTER 3. FULL FIELD MODEL FOR DDRX

Dislocation density (mmA(-2))

1.0e+052e+6 4e+6 6e+6 8e+b le+7 1.2e+7 1.4e+7 1.6e+7 1.8e+7 2e+7 2.2e+7 2.4e+7 2.6e+7 3.0e+07
: ‘ ] i | O —
€=0.0 60
<
~ 50 L
[ =t
o
G 40
o
&
8 30
N
T 20
0
2
2 10+
o<
0
0 0.2 0.4 0.6 0.8 il
Deformation (True strain)
e=0.3 0.045
g 0.04
o
L)
"
=
© 0.035
G
0.03
0 0.2 0.4 0.6 0.8 1
Deformation (True strain)
1200
—+—Sim
1000
w
£
i
5 800
o
=
600
400 %—
0 0.2 0.4 0.6 0.8 1
Deformation (True strain)
60
~ | [==sim]
250r
= §
2
=40}
]
S
=30+
=
o
220t
2
S10¢
0
0] 0.2 0.4 0.6 0.8 1

Deformation (True strain)

Figure 3.16: Compression test case of a domain composed of 400 initial
grains.
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3.5.2 Meshing/remeshing scheme for the coupled model

So far, an isotropic meshing/remeshing strategy with homogeneous mesh size
has been used in this work, as described in chapter 2. In the context of DDRX
simulations, Maire [6] used the same strategy to ensure that recrystallized
grains are correctly described no matter where in the domain they are intro-
duced. In this work, this strategy also ensures that intragranular gradients,
that result from the CPFEM calculations, are correctly described.

However, as computational cost is one of the main limitations in the pro-
posed coupled model, an isotropic meshing/remeshing strategy with hetero-
geneous element size, with smaller elements near the boundaries as detailed
by Resk [140] and Fabiano [121], can help to limit the computational cost
by reducing the total number of elements considered in the calculation. So,
in order to define which strategy is more appropriate for the coupled DDRX
model, tests between the two strategies were performed. Figure 3.17 illus-
trates the two meshing/remeshing strategies.
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—0.003
— 0.0025

— 0.002

[0.0015
1.0e-03

Elements size (mm)

Figure 3.17: Example of remeshing strategies: (Left) isotropic mesh with
heterogeneous element size and (right) isotropic mesh with homogeneous el-
ement size.

As previously described, in order to ensure a correct description of the
ReX grains that are introduced, in the coupled model the minimal mesh
size is defined as a function of the ReX grains size to ensure 8 elements per
grain. Since the ReX grains size decreases along the simulation, the minimal
mesh size is also reduced. This means that remeshing operations must be
performed before the introduction of recrystallized grains, as described in
the coupling algorithm. This criteria reduces the previously interval between
remeshing operations, from the 25% value previously used for the CPFEM
simulations, to a 5% value.
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For the case of the isotropic mesh size with homogeneous value, the min-
imal mesh size corresponds to the mesh size in all the domain. While for
the case of the isotropic mesh size with heterogeneous mesh size, the mini-
mal mesh size is set in the zones near the boundaries where ReX grains can
appear. The mesh size increases with the distance from the boundary to a
maximal value of 4 elements per grain (defined according to the presented
sensitivity analyses). In order to prevent convergence problems the increase
in the mesh size is done gradually, as illustrated in figure 3.17. The tests
performed considered an initial domain composed of 100 grains, subjected
to hot compression up to 100% deformation. The results are shown in figure
3.18 in terms of simulation time.
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Figure 3.18: Comparison of computational time of DDRX simulations using
different remeshing methodologies.

The results show that at low deformation levels the simulation time is
similar for the two strategies. But, as strain increases and more recrystal-
lized grains are introduced the isotropic mesh size with homogeneous size is
more efficient. This behaviour can be explained considering that the number
of topological operations required to create the mesh with heterogeneous size
are higher, thus it is more computational costly. This usually can be com-
pensated by the fact that the mesh with heterogeneous size contains fewer
elements in total than the mesh with homogeneous size, since the mesh size
is increased in zones far away from the boundaries. However, this is not ap-
plicable in this case, because the maximal mesh size inside the grains is also
restricted to ensure a correct discretization for the CPFEM calculations. So,
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the resulting total number of elements are similar in both cases. Further-
more, as the number of grains increases the zones in the domain where the
minimal mesh size value is imposed also increases, reducing even more the
difference in total number of elements between the two strategies. So, even
if a more precise study concerning the impact of the thickness of the refin-
ing zone in the heterogeneous strategy could also be realized to enrich this
discussion; for the simulations considered in this work, the homogeneous size
strategy was definitively adopted. This conclusion is also in agreement with
the detailed discussion concerning this topic described in |?|.

3.5.3 Coupled model - Domain Size

Simulations were run to check the number of initial grains required to cor-
rectly describe the general behavior of the polycrystal. For this test, simu-
lations of the coupled model were run considering different initial domains
sizes, ranging from 20 to 200 initial grains. The results were analyzed con-
sidering the average behaviour in terms of X and R, and are shown in figure
3.19.
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Figure 3.19: Results of simulations of dynamic recrystallization with different
domains sizes, ranging from 20 to 100 initial grains, in terms of X (left) and

R (right) .

The results show that the minimal number of grains required to ensure
convergence in the simulation results in terms of both X and R is 150 grains.
Simulations with lower number of grains, 50 and 100, are able to reproduce
the same trends, but the results do not show a smooth behaviour. Simulations
with lower number of initial grains, 25 grains, show divergence in the results
at higher strain levels in terms of X, and more discontinuous behaviour in
terms of R.



96 CHAPTER 3. FULL FIELD MODEL FOR DDRX

3.5.4 Coupled model - Recrystallized grain safety factor

Since the safety factor w is a purely numerical parameter, it was necessary
to analyze its effect on the model results. Simulations with the complete
coupled model for a small domain, 10 grains, were performed for different
values of w. The grains dislocation density was initialized to a value close
to the p.. in order to accelerate the appearance of recrystallized grains. A
small domain was chosen in order to illustrate more clearly the effect of
the nucleated grains in the general behaviour of the microstructure. Figure
3.20 illustrates the evolution the nucleated grains and figure 3.21 shows the
evolution of R and Ryx.

From the tests, the first element that must be mentioned is that in the
current coupled model, contrary to the model of [79], if the mesh is sufficient
small to correctly describe the recrystallized grains topology, it is not neces-
sary to include the parameter w. Even with a value set to 1, recrystallized
grains are able to grow and do not disappear if the mesh size is set in order
to include 8 elements per grain.

>

increase -> ¢

Figure 3.20: 2D view of the evolution of nucleated grains during DRX sim-
ulation of small domain composed of 10 initial grains.

The results also show that the value of w has significant effects on the
simulation results and leads to overestimate R and Ry. The introduction of
bigger recrystallized grains facilitates their grow, leading to a faster increase
in the recrystallized fraction. Additionally since the recrystallized grains in-
troduced are bigger, the average grain size in the microstructure will converge
toward a higher value.
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In the end, the parameter w can be seen as a tool to reduce the com-
putational cost, by increasing the mesh size (calculated as a function of the
recrystallized grains size). However its use is not recommended since it has
an significant impact in the simulation results. For the rest of this work it
will be set to 1.
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Figure 3.21: Results of simulations with different w values of 10 grains ini-
tialized with a dislocation density value close to pe;.

3.5.5 Coupled model - recrystallized grains positions

As described in chapter 1, recrystallization originates from small-volumes
that pre-exist in the deformed microstructure. The positions in which recrys-
tallized grains are introduced in DDRX models is an open question. Different
criteria exist in the literature in order to reproduce behaviours observed in
experimental data, and are generally limited by the type of model used. For
example, the criteria that restricts recrystallized grains appearance to only
near the grain boundaries is valid for necklace type nucleation but does not
correctly describe other nucleation types. So, in this coupled model, the
additional information provided by the CPFEM model can be used to test
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different criteria for the recrystallized grains position.

In the following several simulations were run, each considering different
parameters to define the recrystallized grains position. The different criteria
considered are based on the p field, orientations are not considered since at
the polycrystal scale here, the formation of sub-grain boundaries can not
be correctly predicted. All the criteria tested consider that the dislocation
density must reach p.,. for the appearance of a recrystallized grain, to ensure
that it will growth. In addition the following criteria were tested:

First strategy, recrystallized grains can only appear near the boundary
(necklace nucleation considered as a reference simulation).

e Second strategy, recrystallized grains can appear anywhere on the do-
main.

e Third strategy, recrystallized grains appear on sites with the highest
value of p in the domain.

e Fourth strategy, recrystallized grains appear on sites with highest p
gradient.

For, the third and fourth cases the p field is considered without averaging
it over grains. The simulations are realized in a domain of 150 initial grains
up to € = 1.0. The results are shown in: figure 3.22 in terms of X, R and
Rx. Figure 3.23 in terms of number of neighbours and recrystallized grains
number of neighbours. Additionally figure 3.24 shows the nucleated grains
positions at the end of the simulation.

The results show that, the average response in terms of recrystallized
fraction evolution, mean grain size and average number of neighbours is very
similar for all the considered cases. Differences between the results are only
observed when considering only the behaviour of the recrystallized grains.

For the second case, when the deformation is lower than 0.6, recrystallized
grains grow more than all the other cases, since they can appear in the
interior of grains, their growth is not limited by other grains. But, at higher
deformation levels the behaviour becomes equivalent to that of the reference
case. In terms of number of neighbours since the recrystallized grains have
more places to appear less clusters form, so they have a lower number of
neighbours.
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Figure 3.22: Results of simulations with different criteria for recrystallized
grains position, in terms of X, R and Rx.
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Figure 3.23: Results of the different simulations with different criteria for
recrystallized grains position, in terms of grains number of neighbours and
recrystallized grains number of neighbours.

For the third case, the recrystallized grains show lower sizes during all the
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simulation. Local maximal p values appear first near multiple grain bound-
aries and near the domain boundaries, because the highest deformation in-
compatibilities are located in these positions. This causes that recrystallized
grains tend to be near grains with lower p values than the grain they appear
on, which limits their growth. In terms of neighbours, they show the lowest
number of neighbours in all the cases during all the simulation. At high de-
formation, when most of the domain has reached the maximal p value, less
localized maximal values are found so the behaviour becomes similar to case
2.

Figure 3.24: Recrystallized grains of the different simulations with different
criteria for recrystallized grain position. (Top left) case 1, (top right) case 2,
(bottom left) case 3 and (bottom right) case 4. Red color corresponds to the
recrystallized grains.

The fourth case shows the highest clustering of recrystallized grains, with
the highest number of neighbours during all the simulation, condition that
also causes that clustered recrystallized grains limit each other growth. This
behaviour is the result of the reinitialization of p to py when a recrystallized
grain is introduced, which creates very high gradients of p.

These results show that in all cases the general microstructural behaviour,
remains globally the same. So, in theory each can be used to simulate the
polycrystal evolution. It is necessary to compare the simulations results with
experimental data in order to define which criteria fits better the actual
physical phenomena. Additionally the criteria can be modified by defining



3.5. COUPLED MODEL ANALYSIS 101

limit values instead of just maximal values.

Grain energy

Another approach that was tested relates to the calculation of the grain
energy. So far, the grain energy has been calculated from the average dislo-
cation density in the grain. However, as mentioned before it is possible to
calculate an intragranular heterogeneous energy field from the heterogeneous
dislocation density field that results from the crystal plasticity calculation.
This type of calculation, will lead to a highly heterogeneous energy field, that
requires a very small discretization and significantly increases the computa-
tional cost.

Following the methodology presented in [146] an intermediate approach,
that considers the average energy per grain interface can be used. This
means that instead of calculating an average stored energy per grain, the
grain energy is averaged only around the grain interfaces. In this approach,
the stored energy value is calculated for each interface as the average of all
the nodes on the FE mesh that are closer to a given interface than to the
others. To compare the approaches, simulations considering 100 initial grains
in the microstructure, were run for cases with average homogeneous energy
per grain and energy per grain interface. The results in terms on average
behaviour are presented in figure 3.25 and grains distributions at e = 0.70 in
figure 3.26.

The results considering the homogenized behaviour are very similar for
the two cases. Small differences in behaviour are observed up to € = 0.40.
The case with average energy per interface shows slightly higher recrystallized
grains sizes and lower average non recrystallized grain sizes. However, at
higher deformation levels, since most of the microstructure has reached the
maximal dislocation density, the heterogeneity in the dislocation density field
is greatly reduced, so the behaviour in the two cases is the same. Additionally,
the grain size distributions also show very similar trends between the two
methodologies.

In summary, the interface grain energy calculations does not show a sig-
nificant change in the model results. This is caused in great part by the
behaviour imposed by the chosen hardening law that sets a maximal disloca-
tion density value. As deformation increases, most of the domain reaches the
maximal dislocation density value, causing that the dislocation density field
becomes almost homogeneous in all the domain (except recently introduced
recrystallized grains and areas swept during GBM). Further tests should be
performed considering a different hardening law. However, since in the cur-
rent model, the hardening law is coupled with the phenomenological laws
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describing the appearance of recrystallized grains, this change is not trivial.
Additionally, using the interface methodology requires the performance of
additional sensitivity test specially regarding the mesh size, so it will not be
further considered in this work.
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Figure 3.25: Comparison between simulations with homogeneous energy per
grain and energy per grain interface. Homogenized results concerning the:
recrystallized fraction, dislocation density, average grain sizes, number of
grains.
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Figure 3.26: Comparison between simulations with homogeneous energy per
grain and energy per grain interface. Grain size distributions at € = 0.70.

3.6 Summary and discussion

In this chapter the CPFEM model was coupled with a LS-FE formulation for
GBM and phenomenological laws in order to perform 3D full field simulations
of dynamic recrystallization up to high deformation in metals. The inclusion
of the CPFEM model allows a much better representation of the plastic
deformation phenomena than previous phenomenological approaches [79].

Sensitivity analysis of the different FE models numerical parameters were
performed. The sensibility tests include discussions concerning the time step,
mesh size and domain size. The results in terms of time step show that a
multiple time step is required in order to ensure the convergence of the two FE
problems. By considering the results, a coupling algorithm was developed,
along with the interpolation scheme to take the P0 variables required in the
CPFEM solution to P1 variables considered in the LS-FE problem. The
proposed coupling algorithm minimizes the computational cost, which is one
of the main limitations of the CPFEM model, and ensures the stability and
convergence of both FE solutions.

The coupled model was also tested, for the nucleation parameters re-
garding the recrystallized grains safety factor and the nucleation positions.
Results show that including the safety factor, even though it reduces the
computational cost has significant effect in the model results. Additionally,
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in the proposed model the results show that by ensuring a mesh size of 8
elements per grain, the numerical safety factor is not required in order to
ensure that the nucleated recrystallized grains do not vanish. Considering
its effect on the simulation results, it was not included (w = 1) in the model.

The additional information provided by the crystal plasticity model was
used to define different criteria for the position of recrystallized grains, and
the effect on the simulations results were compared. The results show that
due to continuous deformation and continuous appearance of grains, the ReX
grains position have limited influence on the results. However the necklace
and bulk cases show to be the more favorable for recrystallized grains grow.
This still remains an open question and the criteria chosen greatly depends
on the data available in the model. In this work as considering materials
that show classically necklace nucleation, the grain boundary criteria will be
used.

Finally different approaches to calculated the grains stored energy were
tested. The results show similar behaviour between the chosen methodolo-
gies. This is greatly influenced by the chosen hardening law. Further tests
must be performed by considering different type of laws. The next step is
the comparison of the model with experimental data, this will be presented
in the next chapter.
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3.7 Résumé en Francais

Dans ce chapitre, le modéle CPFEM a été couplé a une formulation LS-FE
pour la prise en compte de la migration des joints de grains. Des simulations
champ complet 3D de recrystallisation dynamique sont considéres avec des
niveaux de déformation potentiellement trés élevés. L’inclusion du modéle
CPFEM permet une bien meilleure représentation des phénoménes de défor-
mation plastique que les précédentes approches a base phénoménologiques
[79].

Une analyse de sensibilité des différents paramétres numériques des mod-
éles EF a été réalisée. Le test de sensibilité inclut des discussions concernant
le pas de temps, la taille de maille et la taille du domaine. Les résultats en
termes de pas de temps ont montré qu'un pas de temps multiple est néces-
saire pour assurer la convergence des deux problémes EF. En considérant
les résultats, un algorithme de couplage et un algorithme d’interpolation été
développé. L’algorithme de couplage proposé minimise le coiit de calcul, qui
est I'une des principales limitations du modéle CPFEM, et assure la stabilité
et la convergence des deux résolutions EF.

Le modéle couplé a également été testé pour les paramétres de nucléation
concernant le facteur de sécurité sur la taille de grain recristallisé [6] et les
positions des germes. Les résultats ont montré que l'inclusion du facteur de
sécurité, méme s’il réduit le cott de calcul, a un effet significatif sur les ré-
sultats du modéle. De plus, dans le modéle proposé, les résultats ont montré
qu’en assurant une taille de maille de 8 éléments par grain, le facteur de sécu-
rité numérique n’est pas nécessaire pour s’assurer que les grains recristallisés
nucléés introduits ne disparaissent pas par diffusion numérique. Compte tenu
de son effet sur les résultats de la simulation, il n’a pas été dans le modéle.

Les informations supplémentaires fournies par le modéle de plasticité
cristalline ont été utilisées pour définir différents critéres pour la position
des grains recristallisés, et l'effet sur les résultats des simulations a été dis-
cuté. Les résultats ont montré qu’en raison de la déformation continue et
de 'apparence continue des grains, la position des grains recristallisés a une
influence limitée sur les résultats. Cette question reste ouverte et les critéres
choisis dépendent largement des données disponibles dans le modéle.

Enfin, différentes approches pour estimer le champ d’énergie stockée par
déformation plastique ont été testées. Les résultats ont montré un comporte-
ment similaire entre les méthodologies choisies. Ceci est fortement influencé
par la loi de durcissement choisie. D’autres tests doivent étre effectués en
considérant différents types de lois.

La prochaine étape est la discussion du modéle comparativement & don-
nées expérimentales, c’est le but du chapitre suivant.
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Chapter 4

DDRX model calibration and
validation

4.1 Introduction

In this chapter the full field model is compared with experimental measure-
ments. First, the experimental tests and results are presented. The proce-
dure to identify and validate the model parameters is detailed. A simplified
model that uses the Taylor model is introduced to reduce the computational
cost and improve the calibration procedure. Next the model results are dis-
cussed along with strategies to improve the model limitations. Finally the
DDRX models using CPFEM, Taylor and phenomenological laws are com-
pared. The experimental tests presented here were realized by Maire, L. in
his Phd work [6]. In this work, only a re-analysis of the raw experimental
data was performed.

4.2 Experimental Methods

Hot-compression tests were performed on 304L steel samples to reproduce
industrial forging processes. The tests were performed for different sets of
conditions in terms of strain rate and temperature.

The thermomechanical path is defined by the following steps: (A) The
sample is put in the pre-heated oven. (B) The sample is kept at high tem-
perature for 30 minutes to homogenize its temperature. (C) The sample is
compressed at constant strain rate up to a given stain level. (D) The sample
is water-quenched with the minimal possible delay (i.e. around 2 seconds) to
stop post-dynamic microstructural evolutions.

107
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The tests were performed in a MTS Landmark 370-25 compression ma-
chine equipped with a 2000 W oven. The lower and upper tools are made of
superalloy Udimet 720, with a silicon nitride (Si3N,) ceramic insert, and
molybdenum disulphide (Mo0S;) as a lubricant. Two sample geometries
(shown in figure 4.1) were tested, cylindrical samples to asses stress-strain
curves and investigate the microstructure at low strain levels, and double-
cone samples to investigate the microstructure at high strain levels.
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Figure 4.1: Sample geometries used in the thermomechanical tests, cylin-
drical samples (a) and double-cone samples (b). Dash-Dot lines indicate
revolution axis.

After the compression tests, the samples were cut along the compression
axis through the diameter, and polished in order to perform EBSD (Electron
Back-Scatter Diffraction) measurements on specific points. On the cylindrical
samples, EBSD measurements were taken at the center of the longitudinal
section, and on the double-cone samples, the measurements were performed
at the center and at distance of R/3 from the center of the longitudinal
section, with R the radius of the deformed sample.

The local strain and strain rate level at the measurement points (given
in table 4.1) were estimated from FEM simulations of the compression tests,
performed using the software Forge@®). The EBSD measurements were done
using a Zeiss Supra 40 FEG SEM (Field Emission Gun Scanning Electron
Microscope) equipped with a Bruker EBSD system. EBSD maps were ac-
quired with a 0.47 pm step size, over an area of 250 um by 330 pum, chosen to
compromise between spatial resolution, measuring time and statistical rep-
resentativity. The EBSD measurements were post-treated using the MTEX
toolbox [148]. On the EBSD maps, a misorientation threshold of 10° was
used to differentiate grains. Additionally, recrystallized grains were identi-
fied following the procedure described in [149]. Grains with size below 1.5
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pm or with grain average misorientation GAM (Eq. 4.1) lower than 1 degree
were considered as recrystallized.

A - Test conditions for stress-strain curves (Cylindrical samples)
Nominal Strain rate é(1/s)

T(K)| 0.008 0.01 0.04 0.05 0.08 0.1
1273 | 0-04 [0-0.7|0-04"|0-0.7]0-0.7]0-0.7
1323 | 0—-04" | 0—0.7
1373 | 0-04 | 0—-0.7

B - Test conditions for EBSD measurements
Cylindrical samples Double-cone samples
Local Strain rate é(1/s) Local Strain rate €(1/s)
T(K) | 0.014 | 0.07 0.14 0.014 0.07 0.14
1273 | 0.65 | 0.65* 0.65 1.00,1.35 | 1.00,1.35* | 1.00,1.35
1323 | 0.65* 1.00, 1.35*
1373 | 0.65 1.00,1.35

Table 4.1: Conditions considered for the experimental test, strain rate, tem-
peratures, strain range (stress-strain curves - Table A) and strain level (EBSD
measurements - Table B). (%) Indicates data sets used for the model valida-
tion.

GAM — iz BAM: (4.1)
n

with n the total number of pixels belonging to the grain and K AM; the
kernel average misorientation of each pixel ¢ of the grain defined as:

L 0:
KAMF%) (4.2)

with m the total number of neighbor pixels of a pixel ¢ and 6;; the mis-
orientation between the pixel ¢ and its neighbor j. Consistently with the
misorientation threshold applied for grain detection, values of misorientation
0;; higher than 10° are not considered.

EBSD data were also used to calculate: the recrystallized area fraction
X, defined by Eq. 4.3; the mean grain size (2D) Dpyap, defined by Eq. 4.4
and the mean grain size weighted by surface Dg, defined by Eq. 4.5.
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X = Zg—lTSX , (4.3)

with Ny the number of recrystallized grains, Sx; the surface (2D) of each
recrystallized grain, and St the total area of the EBSD map.

Zi\il d;

N (4.4)

DN2D =

with N the total number of grains, d; the equivalent circle diameter (2D) of
each grain defined as d; = 2 % /.5, /.

— {\il szz
Dy = 2=t %51
S ST )

(4.5)
with S; the surface (2D) of each grain. Considering that the numerical model
to be tested is a 3D model, 3D data was required in order to calibrate and
validate it. So, 2D grain size distributions by number fraction and surface
fraction were calculated and transformed into equivalent 3D grain size distri-
butions by number fraction using the inverse Saltykov method [150]. The
3D grain size distributions by number fraction were used to calculate the 3D
grain size distributions by volume fraction.

The mean 3D grain size weighted by number fraction Dysp, defined by
Eq. 4.6 and the mean 3D grain size weighted by volume fraction Dy, defined
by Eq. 4.7, were also computed from both 3D distributions.

5
— . d i
£yi=1 3Di (4.6)

with d3p; the equivalent sphere diameter (3D) of each grain, defined as dsp; =
2% (0.75(1/m)V;i) /3.

N
DV _ Zizl dSDi‘/;
Vr

: (4.7)
with V; the volume (3D) of each grain, and V7 the total volume. For the initial

state of the microstructure Dysp = 33.23 (um) and Dy = 86.53 (um). The
X and the Dy values were used for the comparisons with the model results.
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4.3 Experimental Results

4.3.1 Thermomechanical tests

The stress-strain curves obtained from the thermomechanical tests, were
smoothed using high order polynomial interpolation, to reduce the exper-
imental noise (Figure 4.2). In general terms, the curves show the expected
behavior, with the stress increasing with increase in strain rate, and decreas-
ing with the increase in temperature.
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Figure 4.2: Measured (continuous lines) and interpolated (dashed lines)
stress-strain curves for 304L steel cylindrical samples subjected to compres-
sion tests at high temperatures. Curves are grouped by temperature ((a) and
(b)) and strain rate ((c) and (d)). Oscillations are artifacts due to periodic
change in the tool velocity to follow imposed constant strain rate.

The results show that at T" = 1273° K for the considered strain rates,
there is no significant difference between the peak stress (maximum stress
value reached due to the strain hardening) and the steady state stress (stress
value in the steady stress zone). However for the cases at higher tempera-
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tures, specially at T'= 1373° K, the differences between the peak stress and
the steady steady state stress are clearly observed.

The used experimental set up does not allow to obtain accurate mea-
surements at low strain levels. This makes difficult the identification of the
macroscopic yield stress og, so the values were taken from the literature
[151]. The oy values can also be obtained as: the intercept between the line
defined by 0 = E (¢ —0.002) and the curve interpolated on the experimental
measurements without considering the measurements at low strain levels.

The values obtained from both approaches are compared in figure 4.3.
The results for the cases at T' = 1000° C', show that the literature values
have a clear tendency, oy increasing with the increase in the strain rate.
However, this tendency is not clear in the interpolated values. For the cases
¢ = 0.008 s71, both the literature values and the interpolated values show
an almost linear decrease with the increase in the temperature (figure 4.3-
b). For all cases the interpolated values show higher o values than their
corresponding literature values. Since there is clear difference between the
two values, the effect on the model results of using each set of values were
compared in section 4.4.
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Figure 4.3: Comparison between the og values identified by extrapolation of
experimental data procedure and values from the literature [151]. Constant
temperature 7' = 1000° C (a) and constant strain rate ¢ = 0.008 s=! (b).

4.3.2 EBSD Measurements

In order to process the EBSD measurements, grains were detected as groups
of neighbouring points with less than 10° misorientation angle. Twin bound-
aries, identified by 60° rotation around the (1,1,1) axis with a 5° tolerance,
were ignored in the grain detection procedure as they are not considered in
the model. Figure 4.4 shows the EBSD map of the initial microstructure with
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and without twin boundaries, and the pole figures of the (001), (111) and
(110) planes. The pole figures show that no preferred orientation is present
in the initial microstructure.

Figure 4.4: EBSD map of the sample before deformation with (a) and without
twin boundaries (b). Twin boundaries plotted in red and grain boundaries
excluding twins plotted in black. (001), (111) and (110) pole figures (c-e).

However, deformation causes that twin boundaries deviate from the 60°
(1 1 1) ideal misorientation, so that some of them, or some parts of them,
can get out of the tolerance of 5°. As a consequence, on highly deformed mi-
crostructures, it is not possible to correctly identify all the twin boundaries
present in the microstructures. Figure 4.5 shows an EBSD map of a deformed
sample with the twin boundaries plotted in red and grain boundaries exclud-
ing twins plotted in black. The EBSD maps show that twin boundaries are
no longer identified as continuous lines and part of them is considered as a
normal grain boundary, this can cause an artificial reduction in the measured
grain size.
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For the deformed samples figure 4.6 shows the evolution of the microstruc-
ture, with the increase in strain, in terms of GAM values and recrystal-
lized grains for one set of deformation conditions. The evolution of the
microstructure, from the initial state characterized by Dyop = 43.1 (um)
and Dg = 75.6 (um), in terms of recrystallized fraction, average grain size
by number and by surface, are shown in figure 4.7 for the considered defor-
mation conditions.

o 304L steel
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Figure 4.5: EBSD maps of the sample deformed at T' = 1273 K — ¢ =

0.014 s7! — € = 0.65. Twin boundaries plotted in red and grain boundaries
excluding twins plotted in black.

The results show that the change in strain rate does not have significant
effects in the evolution of the recrystallized fraction, while the increase in
temperature causes an increase in the recrystallized fraction. In terms of
grain size, the evolution of the grain sizes by surface shows that neither the
changes in temperature or strain rates, causes a consistent change in the grain
size evolution at all the considered deformation levels. Dg, for the highest
strain rate, shows an unexpected behaviour with significantly higher values
at € = 1.0 than the other strain rates, this behaviour is likely to be due to
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self-heating. In all cases even at low recrystallized fraction levels, there is a
significant reduction of the initial grain sizes, this is caused in part by the
twin identification issue described above.

e = 0.65

e =1.00

e=1.35

Figure 4.6: EBSD maps at different strain levels of the sample deformed at
T =1000 K — ¢ =0.07 s~! with grain boundaries plotted in black. (a,c,e)
Grains colored by GAM value. (b,d,f) Recrystallized grains (yellow) and
non-recrystallized grains (blue).

For the 3D measurements, the evolution of the microstructure in terms
of Dysp and Dy, from the initial state of Dysp = 33.2 um and Dysp =
86.5 um, considering all the grains (the recrystallized grains and the non
recrystallized ones), for the different deformation conditions are shown in
figure 4.8.
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The results show that the behaviour considering all the grains is con-
sistent with the behaviour observed for the 2D data. With the increase in
temperature the final grain size increases, while the different strain rates
show very similar grain size values. For a given deformation condition, there
is no significant change in the mean size of the recrystallized grains for the
different strain levels. There is a small increase in size between the lower
strain level and the middle strain level, but at the higher strain level, the
size shows almost the same value that at the middle strain level. The increase
in temperature also leads to higher mean recrystallized grain sizes, while the
change in strain rate shows little influence. For the non recrystallized grains,
the significant reduction in grain size between the non deformed state and
the first measurement after deformation, is seen clearly.
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Figure 4.7: Evolution of recrystallized fraction X (a), average grain size by

number Dyop (b) and average grain size by surface Dg (c) as a function of
strain for the different deformation conditions.

In terms of distributions, the results for one of the considered deforma-
tion conditions are shown in figure 4.9. Both the distributions by surface
and volume show that the microstructure contains a significant fraction of
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grains with sizes much smaller and much bigger than the mean value. The
distributions do not present a regular shape that can be correctly fitted with
the commonly used normal or log normal mathematical distributions.
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Figure 4.8: Evolution of Dysp (a,c,e) and Dy (b,d,f) as a function of strain,
considering all the grains (a,b), the recrystallized grains (¢,d) and the non
recrystallized grains (e,f) for the different deformation conditions.
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conditions T'= 1273 K — ¢ = 0.07 s7! — e = 1.0.

4.4 Calibration and validation of CPFEM-LS
model

4.4.1 Parameters identification procedure

The model was calibrated by performing inverse analysis, using the optimiza-
tion tool Moopi [152]. The experimental data were divided into one set of
data used for calibration and one other set used for validation, as depicted
in table 4.1. The process was performed in two steps. First, only the crystal
plasticity model parameters were calibrated and validated against the exper-
imental stress-strain curves before DRX onset. Second, with the obtained
parameters for the crystal plasticity part, the coupled model parameters
were calibrated and validated against the recrystallization kinetics obtained
from the EBSD maps.

For the first part, the parameters K1 and K2 were calibrated, these
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parameters represent the generation of dislocations due to plastic deformation
and their disappearance by dynamic recovery respectively, in the dislocation
density (p) evolution law considered, i.e. the Yoshie-Laasroui-Jonas (see
Eq. 2.29). The second part of the calibration procedure was done regarding
the parameter k,, which represents the probability of recrystallized grains
appearance in the nucleation rate law (see Eq. 3.10). The remaining model
parameters are summarized in table 4.2:

Symbol Name Value Units | Source
E Young’s modulus [119 — 125] GPa | [151]
v Poisson’s ratio 0.34 [—] [151]
I shear module [40 — 45] GPa | [151]
Yo Ref. slip rate 0.001 [s7' | [121]
m slip rate sensibility 0.05 [—] |121]
M Taylor factor 3 [—] [153]
0 substructure type 0.15 [—] [154]
b Burgers vector 2.5% 10710 m [155]
o) yield stress 20 — 80] MPa | [151]
M, GB mobility | [0.51 — 347 * 102 | m*/Js | [156]
d. disl. line energy 1.47 % 107Y J/m 6]
Vo GB energy 0.6 J/m [7]
o min disl. density 1+ 10" m~2 | [157]

Table 4.2: Values of the model parameters for the considered thermo-
mechanical conditions.

For the simulations, the imposed boundary conditions represent a chan-
nel die compression with a constant strain rate, as ilustrated in figure 2.11.
As previously mentioned, this type of boundary conditions, without free sur-
faces, are imposed to prevent the polycrystal from collapsing onto itself due
to the rotation of some grains caused by the plastic deformation. For 304L
steel, the deformation resulting from the imposed boundary conditions is an
acceptable representation of the experimental compression tests.

4.4.2 Calibration and validation of the CPFEM model

For the calibration and validation of the CPFEM computations, the data
considered was: up to € = 0.25 for T = 1273(K), and up to € = 0.20 for
T =1323(K) and T' = 1373(K). This is done in order to minimize the effect
of recrystallization in the stress response. Only the effects of strain hard-
ening and dynamic recovery are considered, which are the two phenomena
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related to the parameters K; and K,. Figure 4.10 (a,b) shows the results
of the calibration procedure. In general terms, the model results show good
agreement with the experimental results. The largest differences are seen in
the initial part of the curves, specially for higher temperatures. They are

related to the chosen og value.
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Figure 4.10: Comparisons between the CPFEM model results and the ex-
perimental results for the stress-strain curves. Calibration (a,b), Parameters
evolution (c,d) and Validation(e,f).
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The identified parameter values were used to construct functions that de-
scribe the evolution of model parameters as a function of the Zener Hollomon
parameter, defined as:

Z =éexp(Q/RT) . (4.8)

with ¢ the strain rate, () an apparent activation energy, R the gas constant
and T the absolute the temperature. The identified values and their corre-
sponding functions are also shown in figure 4.10 (c,d). With the constructed
functions, the parameters value for the thermomechanical conditions set for
validation of the model were calculated and simulations were run for these
thermomechanical conditions. The simulated results compared to experi-
mental measurements are presented in figure 4.10 (e,f). The results are con-
sistent with the results observed in the calibration procedure, showing that
the model predictions are in good agreement with the experimental mea-
surements. The largest differences are also observed in the initial part of
the curves, this can be again partially explained by the uncertainty in the
identification of o( in the experimental curves.
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Figure 4.11: Comparison between the CPFEM model results with the ini-
tially identified parameters, the model results with the identified parameters
including the kgvalue, and experimental measurements.



122 CHAPTER 4. DDRX MODEL CALIBRATION AND VALIDATION

Since the biggest errors in the model are related to the identification
of ¢, a second calibration was performed using the oy values identified by
interpolation. However, no significant improvements were observed in the
model results. A third alternative, considering that ky = o¢/M, was to
consider the parameter kg as one of the parameters to be identified in the
calibration procedure and the model was re-calibrated. This was done for the
thermomechanical conditions with the largest errors between the simulated
results and the experimental data. Figure 4.11, shows the simulated results
obtained for both the original calibrated parameters and the new calibrated
parameters plotted along with the experimental measurements.
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Figure 4.12: Comparison of the oy (a), K; (b) and K, (c¢) values identified
with the different approaches.

The results show that by also calibrating the ko value, it is possible to
obtain a better fit to the experimental results. The differences previously
observed at low deformation level are reduced. The new identified ko val-
ues show significant differences with the values obtained from the literature
and the values identified from the extrapolation of the experimental curves.
Additionally the inclusion of the ky value in the calibration procedure has
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an influence on the values of K| and Ks. Figure 4.12 shows the comparison
between oy, K; and K, values identified with the different approaches.

All the identified parameters values fit the ranges previously reported in
the literature 121, 6]. However the general trend of the K values identified
in the second set, constant for different thermomechanical conditions, does
not agree with the trends observed in the literature (the value of K; changing
for different thermomechanical conditions).

Therefore, considering that the parameters K; and K, are also present
in other model equations (they are used to defined the critical dislocation
density Eq. 3.8, which is used to define the start of nucleation and the
recrystallized grains size Eq. 3.9), for this work the first set of identified
parameter values were finally initially used.

4.4.3 Calibration and validation of the coupled model

Using the identified values K and K5, the parameter k, was identified follow-
ing the same methodology previously described. The coupled model results
were compared with the experimental data of the EBSD measurements in
terms of recrystallized fraction and average grain size (Dy). Figure 4.13
(a,b) shows the results of the calibration procedure for the coupled model.
The results show good agreement in terms of recrystallized fraction. For the
average grain size (Dy ), there is an important difference between the model
results and the experimental data at higher strains.

The identified parameter values were used to construct a piece-wise linear
function that describes the evolution of the parameter £, in terms of the
thermomechanical conditions described by the Z parameter. This type of
function was used due to the limited number of experimental points. The
identified values and the interpolated function are shown in figure 4.13 (c).

Following the previously described procedure the interpolated function
is used to calculate the parameter value (figure 4.13 (c)) for the thermo-
mechanical conditions chosen to validate the model. The results are shown
in figure 4.13 (e,f). The results show the same trend as the results observed
in the calibration phase. The model correctly predicts the recrystallized
fraction, but shows some errors in average grain size value predicted at higher
strains.

The disagreement between the model results and the experimental data,
in terms of mean grain size (Dy/), can be explained by several factors related
mainly to the twin boundaries and the size of inserted recrystallized grains.
These limitations of the proposed model and the calibration procedure are
discussed in section 4.5.
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Figure 4.13: Comparison between the coupled model results and the experi-
mental results, recrystallized fraction (a,d) and average grain size (Dy) (b,e).
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4.5 Model discussion

4.5.1 Dislocation density evolution

The main advantage of including CPFEM is to obtain a better description
of the evolution of the dislocation density and the orientations of the grains



4.5. MODEL DISCUSSION 125

during DRX. However the current framework does not consider yet the grains
orientation in the GB migration calculations, they only influence the defor-
mation in the CPFEM model, so the most relevant variable remains the
dislocation density evolution.

In the current framework, the evolution of dislocation density is defined by
a saturation type hardening law, the Yoshie-Laasroui-Jonas law (Eq. 2.29).
This law is a simplified model that was used due to the limited experimental
data available to identify the material parameters. It defines a maximal
value for the dislocation density, thus, at high deformation levels, when a
significant part of the microstructure has reached the saturation value, the
heterogeneity in the microstructure is significantly reduced as illustrated in
figure 4.14. The exceptions are recrystallized grains as they are inserted with
a minimal dislocation density and zones swept during GB migration. Since
these zones are also subjected to deformation, they also harden and later
reach the saturation value.

However, considering that the energy gradient is the dominant force in
GB migration during DDRX, even if the percentage of these grains is low
their effect is significant in the microstructure. So, to better describe the
dislocation density evolution, distributions by volume fraction are presented
in figure 4.15, for one simulation case. Figures 4.14 and 4.15 show that:
at low deformation levels, before nucleation has started ¢ < 0.20, there is
significant heterogeneity in the distribution of the dislocation density in the
microstructure. The effect of the grain orientation is clear with zones in the
microstructure showing low and high dislocation density levels.

At higher deformation levels most of the grains present in the microstruc-
ture (= 80%) have a dislocation density equal to the maximal value. On these
grains that have already reached the maximal dislocation density value, only
zones near boundaries that have been swept due to grain boundary migra-
tion show different dislocation density levels (figure 4.14). Considering only
the case of recrystallized grains, the results show a similar behaviour with
the majority of the grains (=~ 75%) having the maximal dislocation density.
These are the recrystallized grains, that have already hardened and can also
serve as nucleation sites.

However the remaining recrystallized grains show dislocation density lev-
els among a wide spectrum. Figure 4.15 (d) shows dislocation density distri-
bution considering only recrystallized grains with dislocation density lower
than the maximal value. These results show that, of these remaining grains,
only (= 5%) show the minimal dislocation value, these are the grains that
just appeared in the microstructure and have not deformed yet. The other
recrystallized grains show several dislocation levels which result from the
different hardening rates caused by the differences in orientations.



126 CHAPTER 4. DDRX MODEL CALIBRATION AND VALIDATION

e = 0.00 e =0.05

3.4e+07
de+/ A
2.8e+7 S‘/
_ _ 2.6e+7 <
e =0.10 e = 0.25 ey g
— 22e+/ &
—2e+/ 2=
— 1.8e+7 &
— l.6e+7 QO
— 14e+7 2
_ _ — 1.2e+7 ©
e = 0.50 e =0.75 _le+] &
8e+b6 8
be+b &
de+b6 O

1.0e+05

e = 1.00

&

Figure 4.14: Example of the simulation framework.

These results illustrate that with the current hardening law, which is an
important simplification of the dislocation density evolution, and with the
current framework which does not consider the misorientation effect on the
grain boundary energy, replacing CPFEM with a simplified Taylor models
could provide similar results with a reduction in the computational cost. This
alternative is explored and presented next.
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Figure 4.15: Evolution of the dislocation density in terms of volume distribu-
tion during DRX simulation. (a) All grains € = 0.05, (b) All grains e = 0.50,

(c) Recrystallized grains at ¢ = 0.50 ,(d) Zoom to recrystallized grains at
e = 0.50.

4.5.2 Comparison with simplified models

To evaluate the effect of including the CPFEM in our recrystallization model,
the proposed coupled model was compared with simplified full field models:
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e The phenomenological model proposed by Maire [79]: the macroscopic
deformation rate is imposed on all grains. The evolution of the dis-
location density on each grain is calculated according to Eq. 2.29
(Yoshie-Laasroui-Jonas law). In this approach, the mechanical equi-
librium problem is not solved nor satisfied, no grain interactions are
considered, and the crystal structure nor the initial grains orientations
are considered. The evolution of all grains is equal.

e The CP-Taylor model: The macroscopic deformation rate is also im-
posed on all grains. However, instead using Eq. 2.29 to calculate the
evolution of the dislocation density directly, the CP library is used.
Meaning, the evolution of the dislocation density on each grain is cal-
culated according to the algorithm described in chapter 2, section 2.4,
using Eq. 2.29 as the hardening law. In this approach, the mechanical
equilibrium problem is not solved nor satisfied, and no grain inter-
actions are considered. However, the crystal structure and the grains
orientations are considered. Each grain will evolve differently according
to its orientation.

The three models use the same LS framework and phenomenological laws
to model grain boundary migration and recrystallization, the difference be-
tween then is the way that plastic deformation is considered. The same
material and numerical parameters, calibrated for the coupled CPFEM-LS
DDRX model, were used in the three cases.

The simulation case considered consists on 304L steel subjected to com-
pression at a constant strain rate ¢ = 0.014 s~!, a temperature of T =
1323 (K), up to a deformation level of ¢ = 1.0, then hold at the same tem-
perature during 50 (s). The simulation results are shown in figure 4.16 in
terms of average behaviour, in figure 4.17 in terms of dislocation density dis-
tributions by volume and in figure 4.18 in terms of grain size distributions
by volume. The results show that there are clear differences in the behaviour
observed between the three models, the difference in the formulations are
directly related to the evolution of the dislocation density, however since the
evolution dislocation density drives the other mechanisms these differences
are extended to the other variables.

The dislocation density in average increases more quickly in the phe-
nomenological model. This approach shows the higher hardening rate, fol-
lowed by the Taylor model as shown in figure 4.16 (a). However figure 4.17
(a) shows that even if the average dislocation density is higher for the phe-
nomenological model, some specific grain orientations have higher hardening
rates, this phenomena is not seen in the phenomenological model since the
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grains orientations are not considered. This causes that the critical dis-
location density is reached quicker in the Taylor model and subsequently
recrystallized grains appear more quickly.
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Figure 4.16: Comparison between the models results. (a) Average dislocation
density, (b) recrystallized fraction and average grain sizes by volume consid-
ering all grains (c), recrystallized grains (d) and non recrystallized grains (e).

At high deformation levels, the differences are lower since most of the
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microstructure reaches the critical dislocation density. However as seen in
figures 4.17 (b,c), the phenomenological model shows the highest percentage
of completely recrystallized grains. Even if these differences seem small, they
have a significant effect in the evolution of the microstructure, specially for
the recrystallized grains.

The dislocation density gradient between recrystallized grains and their
hardened neighbours is the driving force for recrystallized grain grow. There-
fore, new recrystallized grains will harden much faster and thus have less time
to grow and consume their neighbours. This directly translates in a lower
increase in the recrystallized fraction as shown in figure 4.16 (b), and smaller

decreases in the average grain size of non recrystallized grains as shown in
figure 4.16 (c,e).
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Figure 4.17: Comparison between the models results. Dislocation density
distributions by volume, all grains ¢ = 0.05 (a), all grains ¢ = 0.50 (b) and
recrystallized grains e = 0.50 (c).



4.5. MODEL DISCUSSION 131

This aspect can also be seen in the grain size distributions (figures 4.18
b,c). At both deformation levels, the phenomenological model has a higher
percentage of bigger grains than the other models. The Taylor and CPFEM
models on the other hand show a very similar behaviour, the main differ-
ences being caused by the quicker start in recrystallization in the Taylor
model. Regarding the PDRX phase, the main differences between the be-
haviours observed between the phenomenological model and the Taylor and
CPFEM models is caused by the higher number of recrystallized grains with
low dislocation density at the end of deformation phase. Since no additional
hardening is happening, the recrystallized grains with low dislocation density
have the more favorable conditions to grow.
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Figure 4.18: Comparison between the models results. Grain size distributions
by volume considering all grains € = 0.05 (a), e = 0.50 (b) and ¢ = 0.10 (¢).

The model texture prediction was also compared. Since the phenomeno-
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logical model does not consider orientations, it was not included in this com-
parison. Figure 4.19 shows the final texture predicted by the CPFEM model
and the Taylor model. The results show a clear difference between the model
results, even if some similar pattern can be observed. The texture predicted
by the Taylor model shows very few different orientation points, caused by
the homogeneous rotation imposed by the model formulation. Since all el-
ements inside a grain have the same initial orientation and deform in the
same way, their final orientation will be the same. This is not the case in the
CPFEM model in which each element can deform differently.

(110)

DDRX-CPFEM

DDRX-Taylor

Figure 4.19: Comparison between the CPFEM model and Taylor model tex-
ture prediction.

Comparisons were also performed imposing different orientations for the
introduced recrystallized grains: First, assigning a random orientation to
recrystallized grain; Second assigning an orientation derived from the ori-
entation of the parent grain. The results showed no significant differences
between the two cases, the final texture pattern obtained is almost the same.
This shows that in the current framework the final orientation is mostly de-
fined by the deformation (crystal plasticity). Since recrystallized grains are
also subjected to plastic deformation, their orientation evolution is also de-
termined by the deformation conditions and their evolution is similar to the
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non recrystallized grains.

The models computational cost was also compared, the results are pre-
sented in figure 4.20. The computational cost was normalized by dividing
the total run time of each simulation by the lowest run time (0.50 (h) for
the phenomenological model with the lower number of elements). The initial
number of elements was also normalized by dividing the number of elements
in each case by minimal number of elements of the considered cases (270294
elements).

The computational cost comparison shows that the increase in computa-
tional cost between the phenomenological model and the Taylor model are
not significant, while the differences in the results is. However the increase
in computational cost caused by the inclusion of the CPFEM model is quite
large. So it could be affirm that in order to fully take advantage of the in-
clusion of CPFEM it is necessary to further improve the model to consider
a more complex hardening law and consider heterogeneous grain boundary
energy.
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Figure 4.20: Comparison between the models computational cost for dif-
ferent initial number of elements. All models (a) and zoom showing only
phenomenological and Taylor models.

4.5.3 Recrystallized grains size and twin grain bound-
aries

Two limitations were identified when comparing the model with experimen-
tal data. First, the size of inserted recrystallized grains calculated according
to Eq. 3.9, that depends on the values of the parameters K; and K,, de-
fines a size over the measured recrystallized grains size. Figure 4.21 shows
the modeled recrystallized grains size compared to measured experimental



134 CHAPTER 4. DDRX MODEL CALIBRATION AND VALIDATION

recrystallized grain size at € = 0.65 for the different thermomechanical con-
ditions. This over prediction of the recrystallized grains size introduces errors
in the model predictions.

Second, as mentioned in section 4.2 and illustrated in figure 4.5, the diffi-
culties to identify twin boundaries on deformed microstructures introduce an
artificial reduction in the experimental grain sizes as strain increases. This
effect is illustrated by the evolution of the mean grain size of the non recrys-
tallized grains presented in figure 4.8. The results show a higher reduction in
the grain size between the non deformed state and the first deformed state,
which can not be explained only by the effects of recrystallization at such
low strain.
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Figure 4.21: Model recrystallized grains (r*) size compared with measured
experimental recrystallized grain size at e = 0.65 for the different thermome-
chanical conditions.

To circumvent these two limitations: First a re-calibration of the parame-
ters K and Ky was performed, the objective was to define K; and K5 values
that give the same mechanical behaviour but define a smaller recrystallized
grain size. To do this, the parameter ky = 09/M that defines the initial mi-
croscopic yield stress of the material, and the parameter m that represents
the flow rule sensitivity in the crystal plasticity model, were also introduced
into the calibration parameters.

The initial procedure calibrated the parameters K; and K5, by consid-
ering only the mechanical behaviour without taking into into account their
effect in the other mechanisms included in DDRX. As showed before this
can introduce significant errors in the model. To minimize this error, the
additional calibration step considers the effect of the parameters on all the
mechanisms involved. This means that instead of calibrating the parameters
by separating the mechanical behaviour from the grain size, recrystallized
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grain size and recrystallized grain size, they are considered together.

By re-calibrating the parameters, for the deformation conditions é =
0.014(s7') T = 1273(K), the model recrystallized grain size was reduced
from r* = 24.87 pum with the initial parameters to r* = 11.45 pum with
the new parameters. This reduction in the model recrystallized grain size,
involves a significant increase in the computational cost as the mesh size
is defined according to the r* value. Second, to address the twin bound-
aries identification issue, a second initial digital microstructure was gener-
ated. This microstructure follows the experimental grain size distribution
but considers twin boundary as general grain boundary in the grain detec-
tion procedure. Figure 4.22 shows the grain size distributions for the two
cases. However, the current framework does not consider heterogeneous grain
boundary energy, so the effect is only related to the initial grain size. One
of the perspectives of this work is then to enhance the current framework
to consider heterogeneous (misorientation dependence) and anisotropic (+
inclination dependence) grain boundary energy following the works of [38|.
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Figure 4.22: Grain size (d3p) distributions by volume of the initial digital
microstructures considering and without considering twin boundaries in the
grain detection procedure.

Simulations were run with the new parameters and with the two initial
microstructures, the simulation with the initial microstructure generated ig-
noring twin boundaries is further mentioned as case 1, and the simulation
with the initial microstructure generated considering twin boundaries as reg-
ular grain boundaries is further mentioned as case 2. The results are shown
in terms of average behaviour in figure 4.23, and in terms of grain size dis-
tributions by volume at e = 1.0 in figure 4.24.

The results show that by improving the parameters to define a smaller
recrystallized grain, consistent with the experimental data, the numerical
predictions better fit the experimental data. The average dislocation shows
a very similar behaviour in both cases, meaning that the number of initial
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grains and their sizes do not have significant effect in how the average dislo-
cation density evolves. This will be further discussed in the next section.
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Figure 4.23: Simulation results considering different initial mean grain sizes
compared against experimental data in terms of average behaviour. (a) Re-
crystallized fraction, (b) dislocation density, (¢) number of grains, (d) average
grain size (Dy ), (e) average non recrystallized grain size (Dy gy ), (f) average
recrystallized grain size (Dp,y).

However there are differences in t_he evolution of microstructure. The
evolution of the average grain size (Dy) shows that: the reduction of the
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average grain size is dependent to the difference between the initial grain
size and inserted recrystallized grains size. A bigger difference translates in
a bigger reduction in the average grain size. This is also observed for the non
recrystallized grain size evolution.

For both cases the model correctly reproduces the evolution of the re-
crystallized fraction. The simulation with the smaller initial microstructure
shows a higher recrystallized fraction at high deformation levels, while the
simulation with a bigger initial mean grain size shows a higher recrystallized
fraction at the lower deformation levels. The observed behaviour is con-
sistent with the evolution of the average recrystallized grains size (Dpgyy ),
which at lower deformation levels shows higher values, but with the increase
in deformation, this behaviour inverses.
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Figure 4.24: Comparisons of simulation results for both cases with different
initial microstructure with experimental data. Grain size (dsp) distributions
by volume. All grains (a) and recrystallized grains (b)/

This difference of behaviour is caused by: First, the higher number of
grains boundaries that allow recrystallized grains to appear on more places,
causing less clustering between them, this effect was already discussed. Sec-
ond, the smaller differences in size between the recrystallized grains and non
recrystallized grains, which translates in similar capillarity effects. Thus,
when the recrystallized grains harden, the capillarity effect become the main
driving force in the GB migration. Therefore, the simulation results show
that having bigger grains can favor recrystallization at lower deformation lev-
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els when the recrystallized fraction is lower. But at higher deformation levels,
when there is a higher number of recrystallized grains in the microstruc-
ture, having smaller grains translates in less clustering between them and
smaller differences in the capillarity effect. This aspect allows the recrystal-
lized grains to grow more quickly.

In terms of grain size distributions (figure 4.24), one can summarize the
results as: in case 1, the microstructure shows a higher percentage of big
grains than case 2 and experimental data, even though the sizes and the
percentages of the bigger grains in the microstructure has been significantly
reduced with respect to the initial state. This behaviour is a clear indicator
of the limitations of not including twins in the microstructures, as these big
grains are not consumed in the simulation by the effects of recrystallization.

Regarding the recrystallized grains distributions, which at this deforma-
tion level (e = 1.0) are the majority of grains in the microstructure, the results
show that in both simulations cases the recrystallized grains grow less than in
experimental data. From the initial insertion diameter of 2 x r* = 22.90 um,
most of the simulation recrystallized grains grow to sizes between 30 um and
40 pm while in the experimental data the recrystallized grain sizes reach val-
ues around 50 um. Due to the model formulation, recrystallized grain sizes
smaller than the insertion size are very difficult to capture as recrystallized
grains are inserted with a size that ensures their growth. One alternative to
improve this behaviour is to use a size distribution based on the experimen-
tal data instead of using a constant size for the ReX grains.The simulation
results compared with experimental data in terms of grain size distribution
at € = 1.0 deformation level are shown in figure 4.25.
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Figure 4.25: Comparisons of simulation results for case 1, defining r* as a
size distribution, with experimental data. Grain size (dsp) distribution by
volume.

The results show that with this alternative, the simulation results fit more
closely the experimental data, specially for the smaller grains, however this
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approach is restrictive since it requires additional data to define the grain
size distribution. Additionally, differences in microstructure growth rates
are still observed similar to the other cases. The results show a significant
improvement with respect to the initial calibration procedure, however the
model still present limitations related to GBM. Further works in the defini-
tion of the GB mobility and energy must be performed in order to improve
the model capability.

4.5.4 Models comparison - Optimized parameters

With the optimized parameters, simulations were run for the recrystallization
model coupled with CPFEM, CP Taylor and the phenomenological model.
The simulations were run using the same parameters in all the models. The
results were compared between the models and with the experimental data
and are summarized in figure 4.26 in terms of average behaviour and in figures
4.27 and 4.28 as grain size distributions by volume for ¢ = 0.65 and € = 1.00
respectively.

The results show: For the phenomenological model, most of the recrystal-
lized grains that are introduced disappear. Since the new parameters define
a smaller insertion size, the energy gradient intensity decreases in time and
thus recrystallized grains do not have enough time to reach the required size
to overcome capillarity forces. This causes that the recrystallized fraction
does not continue to increase, but keeps a very low value during all the sim-
ulation. This value is kept by the constant introduction of new recrystallized
grains, as the dislocation density remains at levels above the critical value.
This behaviour can also bee seen in the grain size distributions, which show
very small changes between them for the different deformation levels. This
result shows that the need for safety factor introduced by [79] does not comes
only from the errors in the geometrical description of the grains due to the
mesh size, but also from the accelerated hardening rate caused using the
phenomenological model.

Regarding the CPFEM and the CP Taylor models, similarly to the previ-
ous comparison, the results show that the quicker hardening rate in the CP
Taylor model causes recrystallization to start first. This leads to a higher
increase in the number of grains and recrystallized fraction compared with
the CPFEM model. The CPFEM model shows the closest fit to the experi-
mental data, this is expected since the parameters value used were calibrated
for the CPFEM model. On the other hand, the grain size evolution shows
that, even if the the reduction in size caused by recrystallization starts more
quickly in the CP Taylor model, the values of the two models converge to
a similar value at the highest deformation levels. This result agrees with
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the behaviour previously observed when comparing simulations with differ-
ent initial sizes, showing that the reduction in average grain size depends on
the difference between the initial grain size and the size of the introduced

recrystallized grains.
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Figure 4.26: Comparisons between the models results (optimized parameters)
and experimental data. (a) Average dislocation density, (b) recrystallized
fraction, average grain sizes by volume considering all grains (c¢), recrystal-
lized grains (d) and non recrystallized grains (e), and number of grains (f).
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Figure 4.27: Comparison between the models results (optimized parameters)
and experimental data. Grain size distributions by volume ¢ = 0.65 consid-
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Figure 4.28: Comparison between the models results (optimized parameters)
and experimental data. Grain size distributions by volume ¢ = 1.00 consid-
ering all grains (a), considering only recrystallized grains (b).

The grain size distributions show that either model is able to completely
reproduce the experimental distribution. Even if the models average recrys-
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tallized grain size shows a higher average value than the experimental data,
the volume distributions shows that the experimental data has a higher per-
centage of bigger recrystallized grains than the simulations, and a higher
percentage of smaller recrystallized grains. As mentioned before, further in-
vestigations and improvements need to be performed on the mobility and GB
energy definitions in order to better describe the evolution of the microstruc-
ture.

4.6 Recrystallized grains identification

Comparing simulation data with experimental data for recrystallization mech-
anisms is also limited by the difficulty in identifying recrystallized grains on
experimental samples, specially for full field models that aim to provide a
spatial reproduction of the microstructure evolution. On simulation models,
the recrystallized grains can be clearly tracked and identified, since they ap-
pear following an imposed algorithm. However, this is much more complex
to discuss this aspect on experimental samples. The procedure used in this
work to identify recrystallized grains uses the GAM criteria, following the
work of [149], it corresponds to a commonly used procedure in the literature.
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Figure 4.29: Changes in the recrystallization fraction, for the sample de-
formed at ¢ = 0.014 s7' T = 1323(K) € = 1.0, for different GAM thresholds
and different order of neighbours considered for the calculation of the K AM
value, used in the identification of recrystallized grains.
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This procedure relies on establishing a GAM threshold, and the calcu-
lation of the GAM value depends on the K AM value, whose calculation
depends on the spatial resolution of the measurement and of the order of
neighbours considered. Figure 4.29 shows the changes in the recrystalliza-
tion fraction value, for the sample deformed at ¢ = 0.014 s™! T = 1323 K
and € = 1.0, for different GAM thresholds and different order of neighbours,
considered in the identification of recrystallized grains. These results show
the sensitivity derived from the difficulties in the identification of recrys-
tallized grains on experimental samples. This aspect is also a future topic
of discussion concerning the comparisons of full-field computations of DRX
phenomenon and experimental data.

4.7 Summary and discussion

In this chapter the recrystallization model results were compared with ex-
perimental data for the case of 304L steel subjected to compression at high
temperatures. The raw data from the experimental tests performed during
the PhD of Maire, L. [6] were processed and analyzed.

The experimental data were used to calibrate and validate the model. The
model parameters K, K and K, related to the strain hardening, dynamic
recovery, and nucleation probability were identified, for a range of strain rates
between 0.008 — 0.1 (1/s) and temperatures between 1273 — 1373 K. The
results show that the calibration of the parameters K, Ky considering only
the stress-strain behaviour can lead to the definition of recrystallized grains
sizes that do not agree with the experimental data. Since this calibration
procedure considers only the effect of these two parameters on the mechanical
behaviour, additional calibration steps, that consider also the effect of the
parameters in the recrystallized grain size definition were included in order
to minimize these errors.

The results show that, for the considered deformation conditions, the
model correctly predicts the average behavior of several of the main vari-
ables of interest during dynamic recrystallization. However the grain size
distributions illustrate that the rate of growth of recrystallized grains is still
not correctly modeled.

The evolution of the dislocation density in the current framework was also
analyzed. The results show that, during most of the DRX mechanism, the
dislocation density of the microstructure is not that heterogeneous, as most
of the grains reach the maximal dislocation density value. The grains that are
constantly evolving are only the recrystallized grains, from the time that they
are introduced until they completely hardened. This time window depends
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on the hardening rate, which can change according to the grain orientation
and location. This behaviour is the result of the chosen hardening law, which
is an important simplification concerning the dislocation density evolution.

Additionally not being able to model the behaviour of twin grains bound-
ary presents an important limitation. Since in the current framework the
only alternatives available are ignoring them completely or treat them as
regular grain boundaries. This translates into considering different initial
grain size distributions.

Simulations were run for both cases and the effects were analyzed. the
results show that, smaller grain sizes in the initial microstructures favors
recrystallized grains growth. As having smaller grains translates into higher
number of grain boundaries that serve as nucleation sites. This reduces
clustering between the recrystallized grains which can limit their growth.
Also, when recrystallized grains harden, since the main driving force in their
growth is the capillarity effect, having a similar size than non recrystallized
grains increases the probability that they will not be consumed.

The model was also compared with simplified formulations, that use a
phenomenological law or crystal plasticity with the Taylor hypothesis, to
model plastic deformation. The results show significant differences in the
microstructure evolution between the CPFEM and CP Taylor models when
compared with the phenomenological model, which derives mostly form the
accelerated hardening rate of the grains caused by not considering the grains
orientations.

The models were also compared in terms of computational cost and
showed that using CP Taylor model does not cause a significant increase
in the computational cost comparatively to the phenomenological model. Its
is then an interesting alternative in the current framework. Due to the com-
plexity of the DRX mechanism and the limitations of the current framework,
several perspective improvements can sill be made, in the next chapter some
of them will be presented.
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4.8 Résumé en Francais

Dans ce chapitre, les résultats du modéle de recristallisation ont été comparés
aux données expérimentales pour une acier austénitique de type 304L soumis
a compression a haute température. Les données brutes issues des tests
expérimentaux réalisés lors de la thése de L.Maire [6] ont été traitées et
analysées dans ce sens.

Les données expérimentales ont été utilisées pour calibrer et valider le
modele. Les paramétres du modele K, Ky et K, liés a I’écrouissage, a la
restauration dynamique et a la probabilité de germination ont été identifiés,
pour une plage de taux de déformation entre 0.008 — 0.1 (1/s) et des tem-
pératures entre 1273 — 1373 K. Les résultats montrent que la calibration des
parameétres K, Ky en considérant uniquement le comportement contrainte-
déformation peut conduire a la définition de tailles de grains recristallisés
qui ne sont pas en accord avec les données expérimentales. Etant donné que
cette procédure d’étalonnage ne considére que 'effet de ces deux parameétres
sur le comportement mécanique, des étapes d’étalonnage supplémentaires,
qui prennent également en compte l'effet des paramétres dans la définition
de la taille des germes, ont été incluses afin de minimiser ces erreurs.

Les résultats montrent que, pour les conditions de déformation consid-
érées, le modéle prédit correctement le comportement moyen de plusieurs des
principales variables d’intérét lors de la recristallisation dynamique. Cepen-
dant, les distributions de taille de grains montrent que le taux de croissance
des grains recristallisés n’est pas toujours correctement modélisé.

L’évolution de la densité de dislocation a également été¢ analysée. Les
résultats montrent que, pendant la majeure partie du mécanisme de DRX, la
densité de dislocation de la microstructure n’est pas réellement hétérogeéne,
car la plupart des grains atteignent la valeur de densité de dislocation maxi-
male. Les grains en constante évolution ne sont que les grains recristallisés,
depuis leur introduction jusqu’a leur durcissement complet. Cette fenétre de
temps dépend de la vitesse de durcissement, qui peut évoluer en fonction de
I'orientation et de 'emplacement du grain. Ce comportement est le résultat
de la loi d’écrouissage choisie, qui correspond a une simplification importante
de I’évolution de la densité réelle de dislocation.

De plus, le fait de ne pas pouvoir prendre en compte les macles est une
limitation importante. En effet, de maniére communément répandue, les
macles sont ignoreés ou considéreés comme des joints de grains normaux. Il
est montré que cela a un impact fort sur la discussion concernant la prédiction
des distributions de taille de grains.

Le modéle a également été comparé a des formulations simplifiées, qui
utilisent une loi phénoménologique ou une plasticité cristalline avec I'hypothése
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de Taylor, pour modéliser la déformation plastique. Les résultats montrent
des différences significatives dans I’évolution de la microstructure entre les
modeéles CPFEM et CP Taylor et le modéle phénoménologique [6], ces dif-
férences dérivent principalement de 1'accelération de la vitesse de durcisse-
ment, accéléré des grains provoquée par la non-prise en compte des orienta-
tions des grains.

Les modéles ont également été comparés en termes de cott de calcul.
L’utilisation du modeéle CP Taylor n’entraine pas d’augmentation significa-
tive du cotit de calcul par rapport au modéle phénoménologique. C’est ainsi
une alternative intéressante dans le cadre actuel. Fn raison de la com-
plexité du mécanisme de DRX et des limites actuelles du modele propose,
plusieurs perspectives sont envisagées, certaines d’entre elles sont introduites
au chapitre suivant.



Chapter 5

Perspectives

5.1 Introduction

In this chapter some perspectives concerning applications and improvements
of the model, that could not be completed due to time limitations, are pro-
posed and explored.

5.2 Particle stimulated nucleation

The phenomenological laws describing the appearance of recrystallized grains
used in this work and in most of the models described in chapter 1, consider
only dislocation density as the criteria for nucleation occurrence and disre-
gard the effect of orientation gradients which are also required for nucleation
to occur. In cases of necklace nucleation, when nucleation is observed mostly
near the grain boundaries, the presence of orientation gradients is ensured
by the presence of the grain boundary.

However, this does not apply for other nucleation events like intra gran-
ular nucleation or particle stimulated nucleation (PSN). Further study is
required to derive more general nucleation criteria, to do this one interesting
alternative is to study the conditions for PSN occurrence, since compared to
other nucleation mechanisms the nucleation sites can be more easily identi-
fied.

PSN occurs on material containing coarse hard particles with sizes larger
than 1pm. The presence of the hard particles, when the material is plasti-
cally deformed, creates differentiated deformation zones (Particle deforma-
tion zones PDZ) as shown in figure 5.1, that serve as potential nucleation
sites. The PDZ are characterized by the presence of high stored energy
and high misorientation gradients. Their presence accelerates the recrystal-
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lization mechanism, leading to grain refinement and texture randomization.
Several experimental studies on this subject are present in the literature
[158, 159, 160, 161, 162].

Rotated Zone Distorted Region
\ A

Figure 5.1: Schematic representation of the deformation zone around the
hard particle. Image from [1].

However, there is not enough insight about the preferred nucleation site
inside the deformation zone, because of the difficulties to perform experimen-
tal measurements. Numerical simulation studies, have also been proposed
|31, 163, 164, 165, 166, 162|, but most of them rely on simplified crystal plas-
ticity models, are limited to 2D or only reach low deformation levels. Since
our CPFEM framework can overcome these limitations, simulations of the
PDZ were performed. An initial approximation was done using macroscopic
visco-plasticity FEM, then CPFEM was used with the aim to reproduce ex-
perimental results observed in the literature.

5.2.1 PSN-PDZ visco-plasticity simulations

Initial simulations of the deformation around the hard particles were per-
formed using the Von Mises macroscopic deformation model with a multi-
plicative hardening law [17]:

o, = 0y + Ke"e' | (5.1)

The dislocation density, which translates to stored energy, is represented
at the macro level by the equivalent plastic deformation. Since the model does
not consider grain orientations, the misorientation field was estimated form
the infinitesimal spin tensor w, which can be decomposed into a rotation



5.2. PARTICLE STIMULATED NUCLEATION 149

angle and a rotation vector. The misorientation is then calculated as the
maximal difference in the rotation of an element and its neighbours.

The simulations were performed for a domain of 10um, containing one
hard particle and composed roughly of 300.000 tetrahedral elements. The
elements size is non-uniform but isotropic, with smaller elements in the zone
near the particle, 0.05 um, and larger elements near the boundaries of the
domain, 0.75 um.

In order to simulate the hard particle behaviour, the mechanical prop-
erties were increased so that the particle is almost rigid and no plastic de-
formation occurred. The materials properties are shown in table 5.1 for the
domain and the particle. The coefficients for the multiplicative hardening
law were obtained from [167]. The simulations were performed up to 75%
strain level, and global remeshing was performed every 25% strain level.

Property Domain Particle
E (MPa) 70e3 140e3
v 0.33 0.43
K (MPa) | 68.62%10°% | 333.33 % 10°
oy0 (M Pa) 275 27500

Table 5.1: Material properties for the domain and the particle

Simulations were performed for different loading conditions, shear, com-
pression and tension, and for different particles sizes 1um, 1.5um, and 2um.
The most significant results are detailed next.

Figure 5.2 presents the equivalent plastic deformation and the equivalent
deviatoric stress for a compression case, for a particle size of 1um. It is seen
that the presence of the hard particle creates a specific distribution of the
plastic deformation. Characterized by the appearance of dead zones, zones
with no plastic deformation near the particle located at the top, bottom, left
and right sides. Passing the dead zones, zones with high plastic deformation
are located, creating a cross like pattern. The maximal plastic deformations
are located near the hard particle in a diagonal pattern. The general pattern
of the results obtained, presence of dead zones and localized zones of max
plastic deformation agree with the results found in other simulation studies.

Figure 5.3 shows, for the same case described before, the rotation angle
and the mean misorientation angle. It is seen that only the diagonal zones
around the particle present a significant rotation. The zones located to the
right, left, top and bottom of the particle, in which plastic deformation is
localized, present no rotation. The rotation angles present an homogeneous
behavior with very delimited zones with high rotation or no rotation at all.
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This behavior translates into very small zones with high misorientation lo-
cated in the diagonals of the hard particle, but separated from the vicinity
of the particle.
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Figure 5.2: Equivalent plastic deformation left and equivalent deviatoric
sigma right - Compression case.
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Figure 5.3: Rotation angle left and mean misorientation angle right - Com-
pression case.

1.0e+00
I 09
08

—07

0.6

05

04
03

02

0.1

0.0e+00

Rotation Angle
Mean Mis-Orientation Angle

When looking at the equivalent plastic deformation and the misorienta-
tion, it is seen that only specific zones present both high plastic deformation
and high misorientation, the zones along the diagonals near the surface of the
particle. Next, the equivalent plastic deformation and mean misorientation
were analyzed for different loading cases and different particles sizes. Figures
5.4 and 5.5 show the equivalent plastic deformation and mean misorientation
respectively, for compression, tension, and shear cases.

The results show no significant differences between loading cases, the
same patterns and behavior described previously for the compression case,
are seen for the other two loading conditions. Finally, the results for differ-
ent particles sizes, in context of compression case, were compared. However
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since the macroscopic model used does not consider size dependent effects,
no significant changes were observed. The results show the same distribution
pattern for both particles sizes, with an increase in the equivalent plastic de-
formation magnitude with increase in particle size. While the misorientation
magnitudes keep very similar values for the different particle sizes considered.
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Figure 5.4: Equivalent plastic deformation for different loading cases. Com-
pression (left), tension (center) and shear (right).
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Figure 5.5: Mean misorientation for different loading cases. ompression (left),
tension (center) and shear (right).
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The simulations performed only give an initial approximation due to the
simplicity of the model used. Our CPFEM model is then used in order to
propose a more realistic description of the phenomena, especially for the
orientation and mean misorientation. However this first simple analysis cor-
roborates that the numerical framework can simulate the PDZ up to high
deformation levels.

5.2.2 PSN-PDZ CPFEM simulations

CPFEM simulations were used to simulate a PDZ following the experimental
test performed by Fonseca et al. [162]. This case was selected as detailed
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experimental measurements of the deformation pattern around a hard par-
ticle were available to be compared against the simulation results. In this
work high resolution digital image correlation was used to map the defor-
mation around particles of different sizes in a model Al-Si alloy, and the
deformation maps were compared concerning the local lattice rotation ob-
tained using EBSD. In the experimental set up the samples are deformed in
channel die, the normal direction (ND) corresponds to the loading direction
and the rolling direction (RD) corresponds to the free surface on the channel
die set. An schematic of the experimental set up is presented in [162]. The
deformation maps and rotation maps in the transversal direction (TD), for
the cases of a isolated big particle and a isolated small particle are shown in
figure 5.6. The rotation are calculated with respects to an undeformed point.

-“. 10°
, e ”~ I

(d)

Figure 5.6: Deformation maps (a,c) and TD rotation maps (b,d) for the cases
of a isolated big particle (a,b) and a isolated small particle (¢,d) from the
work of Fonseca et al. [162]. Figures modified from [162].

The results show that the presence of the large particle interrupts the
formation of deformation bands around the particle. The presence of the big
particle also reduces the spacing between the deformation bands around it,
compared to the distance between the further away form the particle. The
small particle on the other hand does not seem to have any effect on the
deformation bands observed. Additionally, the rotation maps show that the
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presence of the small particle does not cause any effect, with layers of gradual
increasing rotation from bottom to top. While, the presence of big particle
clearly disrupts the rotation field and creates zones with a high rotation
gradient around the particle.

In an attempt to reproduce the observed behaviour, CPFEM simulations
were run. The simulation domains were set with a particle mimicking the
shape of the particle seen in the experimental measurements. The harden-
ing law used is the Yoshie-Laasroui-Jonas dislocation law, coupled with the
Taylor hypothesis (presented in chapter 2). To simulate the behaviour of the
hard particle, the same approach used in the macroscopic simulations was
used, the K in the CP hardening law for the particle was set to be signifi-
cantly higher than the rest of the domain. The mesh was generated with a
variable size, with smaller elements around the particle. The mesh was also
generated with nodes located along the surface of the particle. Since only the
2D profile of the particle is known, the 3D shape of the particle was assumed
to be a revolution of the known 2D profile along its middle axis. The general
simulation domain is shown in figure 5.7.
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Figure 5.7: PDZ-CPFEM simulation domain.

From the simulation results presented in [162], it is clear that the CPFEM
simulation setup used in their work was not able to reproduce the formation
of the deformation bands around the particle. To improve this results, differ-
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ent simulations setups were considered that attempt to facilitate the simula-
tion of the deformation bands formation by considering different boundary
conditions, domain shapes and material properties. The simulation set ups
considered are: first, a complete domain with the top and bottom boundaries
as plane faces. Second, half the domain restricting the deformation in the
normal direction on the particle surface with the top and bottom boundaries
as plane faces. Third, half the domain restricting the deformation in the
normal direction on the particle surface with the top and bottom boundaries
as serrated faces; fourth, half the domain restricting the deformation in the
normal direction on the particle surface with the top and bottom boundaries
as plane faces, plus diagonal planes with lower K0 values in the domain.
In all the cases the loading corresponds to a channel die compression. The
different simulations set ups are shown in figure 5.8.

The simulations correspond to a single crystal configuration, the same
initial orientation was assigned to the domain including the particle, the
orientation corresponds to the crystal orientation reported in [162]. The
simulations results were compared in terms of plastic deformation, dislocation
density and rotation in the TD direction. The rotation was calculated using
the same procedure as in the experimental test, as the rotation from the
initial orientation. The results for the considered simulations set ups are
shown in figures 5.9, 5.10, and 5.11 (The second case results are not shown
as the results are quite similar to the third case).

In all cases the plastic deformation shows patterns with zones around
the particle with very high deformation levels along with undeformed zones.
The first case shows the lower deformation levels around the particle with
only 2 very localized high deformation zones. The third case on the other
hand shows the highest deformation levels, with zones with high deformation
around all the particle. The fourth case shows a similar pattern around the
particle as the first case, plus planes with high deformation that correspond
to the weakened zones (planes with lower K0 values). It is interesting that
in the fourth case the amount of plastic deformation in the the weakened
zones is not homogeneous. The weakened bands that cross the particle show
a concentration of plastic deformation on the lower right zone of the domain
while on the upper left zone the amount of plastic deformation is reduced.

Additionally, we can see that restricting the deformation in the normal
direction on the particle surface blocks the possibility of the domain to de-
form and rotate in one direction. This increases the magnitude of plastic
deformation, a similar effect was described in [162]| caused by using 2D simu-
lations. In the fourth case this effect is reduced since the zones with lower K
values help to distribute the plastic deformation. When comparing with the
experimental deformation maps, the results show that the deformation lines
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observed are not reproduced by CPFEM, even in the fourth case in which
attempts are made to artificially introduce this behaviour. The simulation
does not show the same behaviour as in experimental data in terms of loca-
tions and spacing. However there is a clear effect in terms of the magnitude
of the plastic deformation in the weakened zones that cross the particle, this
effect is similar to the interruption of the deformation bands observed in the
experimental data.
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Figure 5.8: PDZ-CPFEM simulations set ups. (a) complete domain with
the top and bottom boundaries as plane faces, (b) half domain restricting
the deformation in the normal direction on the particle surface with the top
and bottom boundaries as serrated faces and (c) half domain restricting the
deformation in the normal direction on the particle surface with the top and
bottom boundaries as plane faces, plus diagonal planes with lower K0 values
in the domain.
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Figure 5.9: PDZ-CPFEM simulations results in terms of plastic deformation.
(a) First set up, (b) third set and (c¢) fourth set up up.

The dislocation density comparison shows that: In all cases the disloca-
tion density in most of the domain has reached the saturation value, prevent-
ing it to evolve any more. Comparing with the previous results the observed
patterns are not exactly the same as the plastic deformation patterns since
zones with deformation levels with €, >= 0.4 show the dislocation saturation
value, so the dislocation density maps are more homogeneous. However there
are still zones around the particle low dislocation levels corresponding to the
zones with the lower deformation levels. Thus the first case shows more zones
with low dislocation density than the third case. While the fourth case, the
zones with lower K, values also present high values of dislocation density.

The rotation maps show that: In all cases there are zones around the
particle with positive rotation and negative rotations. The negative rota-
tions are localized around the top and bottom zones the particle, while the
positive rotations are localized in the front and back of the particle. When
comparing with the experimental rotation maps the simulation patterns show
a qualitative agreement with the experimental data, the differences observed
are related to the differences in shape in the particle. Comparing the sim-
ulations cases, the results show that the first case show the lower rotation
than the other two cases. Also, the fourth case shows that the zones with
low KO values distort the rotation patterns introducing behaviours that are
not observed in the experimental data.
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Figure 5.10: PDZ-CPFEM simulations results in terms of dislocation density.
(a) First set up, (b) third set and (c¢) fourth set up up.
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Figure 5.11: PDZ-CPFEM simulations results in terms of rotation (TD). (a)
First set up, (b) third set and (c) fourth set up up.

The results show that the CPFEM framework is not able to completely
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reproduce the PDZ observed in the experimental data, however some of the
features are correctly reproduced. So, further improvements can be made:
first, the flow rules and hardening rules used rely on important simplifica-
tions, one directly related to the deformation bands formation is the latent
hardening due to slip system interaction that is not considered in the used
hardening law. Second, the available experimental data is very limited, addi-
tional data is required to obtain a better representation of the particle shape
in 3D, and enough tests to be able to calibrate and validate the CPFEM
model. Such works are planned as perspectives of these works.

5.3 CDRX

In the proposed developments, so far only discontinuous dynamic recrystal-
lization has been considered. Since in DDRX, clear stages of appearance and
growth of recrystallized grains can be identified, it can be modeled by intro-
ducing recrystallized grains in the microstructure, as it has been done in this
work. However this is not the case for continuous dynamic recrystallization
(CDRX) mechanism. CDRX is a strain induced phenomena, that occurs by
progressive rotations of subgrains with small grain boundary migration [1].

So, to model CDRX it is necessary to considered how subgrain bound-
aries evolve as plastic deformation occurs. To incorporate subgrain boundary
evolution in our LS framework, an initial approach is proposed in which sub-
grain boundaries are also represented by level set functions. The initial level
sets functions that describe high angle grain boundaries (HAGB) are further
subdivided using additional level set functions. Since both HAGB and low
angle grain boundaries (LAGB) boundaries are described as LS functions, the
difference in their behaviour will be determined by the grain boundary en-
ergy. To consider anisotropic grain boundary energy in the GBM calculation,
the level set framework proposed by Fausty [38] is used. The grain bound-
ary energy is calculated as function of misorientation using a Read—Shockley
equation (described in chapter 1).

The main objective of the test is to observe how LAGB behave and if
during deformation the increase in misorientation will lead to LAGB natu-
rally evolving in HAGB. The initial test proposed considers a single crystal
with subgrain boundaries described by level set functions, compressed at
high temperature. Figure 5.12 shows the considered crystal with its subgrain
boundaries, the color scale shows the KAM value, used to quantify the mis-
orientation. For this initial test the material properties considered are the
same of 304L steel, described in previous chapters. For the simulations only
the CPFEM and subgrain boundary migration calculations are considered,
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no recrystallized grains are introduced.
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Figure 5.12: Single crystal with LS functions used to represent subgrain
boundaries.
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The crystal was deformed up to e = 50%. Simulations were run consid-
ering heterogeneous grain boundary energy (misorientation dependence but
not inclination one) and constant grain boundary energy. Figure 5.13 shows
a side view of the deformed crystal for both cases. The color scales corre-
spond to the subgrain sizes, which are calculated as function of the grain
volume and the KAM values.
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Figure 5.13: Side view of single crystal deformed at high temperature with
LS functions representing subgrain boundaries. GBM calculated considering
constant (top) and variable (bottom) subgrain boundary energy. Color bars
indicate subgrain size (left) and KAM (right).
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The results shows that in both cases the final grain sizes and KAM values
are almost the same. However we can see clear differences in the curvatures
of the subgrain boundaries between the two cases. Additionally the evolution
of the KAM values clearly show a significant increase in misorientation along
the subgrain boundaries. However, the increase in misorientation is not big
enough to consider a new high angle grain boundary, but for this case the
deformation level considered was not very high.

A second test was performed considering a bi-crystal with each grain sub-
divided into five LAGB. The initial properties of the bi-crystal were generated
as: First the dislocation fields and orientation fields are generated consider-
ing only the HAGB, the orientations are generated to ensure a misorientation
higher than 15° between them. Then a small variation between the subgrains
is introduced, the variation is set to be smaller than the variation between
different grains. Figure 5.14 shows the dislocation density field and the KAM
field for the bi-crystal case.
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Figure 5.14: Dislocation density and KAM fields generated considering the
LAGB subdivision.

The bi-crystal was subjected to compression at high temperature. As
in the previous case, we only considered CPFEM and subgrains and grain
boundary migration calculations, recrystallized grains are not introduced.
The evolution of the KAM field is shown in figure 5.15. The results showed
that the motion of the grain boundary is driven by the difference in size be-
tween the subgrain boundaries, leading to a fast disappearance of the smaller
ones. Additionally, as in the previous, case the KAM value shows a clear in-
crease in misorientation. However in this case the zone with the highest
misorientation does not completely overlap with the locations of the zero-
isovalues of the LS functions. This is an important limitation, as there is no
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guarantee that the LS functions describing the subgrain boundaries will be
located on the zones in the highest misorientation increases due to plastic
deformation.

=)

Figure 5.15: Evolution of the KAM field with the deformation of the domain.
3D view (left) and frontal view (right).
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One alternative to overcome this is to include more subgrain boundaries,
however this will also lead to a significant increase of the computational
cost. A more efficient approach can be to not subdivide a grain from the
beginning of the simulation but to do it only when the misorientation has
reached a certain threshold, considering grain fragmentation. Further work
must be performed to determine the best alternative, this initial test were
only intended to illustrate a method proposed to describe CDRX by using
CPFEM and LS-FEM.

5.4 VPSC

One of the main limitations of the proposed model remains the high com-
putational cost of the simulation due to the CPFEM simulations, as dis-
cussed in chapter 4. As an alternative, a CP-Taylor approach was proposed.
However, this approach consists in a strong simplification that does not con-
sider grain interaction at all. An intermediate approach is the VPSC model
|14, 26, 27, 28]. The VPSC model considers a visco-plastic approach in which
the strain rate in an individual grain (r) is defined as:

é(r) =) P, (5.2)

e 53)

cr
Ta

with P® the Schmidt tensor on the slip system «, ¥* the slip rate on the slip
system, ¢ a reference slip rate, 75" the CCRS and o (r) the Cauchy stress
on the grain. In the VPSC formulation the relation between the stress and
the strain inside the domain of a grain can be linearized as:

E(r)=A(r):o(r)+é(r) , (5.4)

with .4 (r) the viscoplastic compliance fourth order tensor with its inverse
L(r) = 4 *(r) and €y(r) the back-extrapolated term of the grain. In the
VPSC formulation .Z(r) is defined from equations 5.2 and 5.3 as:

P P~ (P"‘ : a(r)>”1 (5:5)

cr
TOC

M (1) =gy

cr
TO[

The same linearization is extended to the polycrystal medium level as:

E=1:X+E, , (5.6)
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with E the macroscopic strain rate, ¥ the macroscopic stress, # the macro-
scopic viscoplastic compliance tensor and E, the macroscopic back-extrapolated
term. Each grain is considered as an elliptical inclusion embedded inside the

domain which causes distortions in the macroscopic strain rate €(r) and stress
fields & (r):

&r)=¢étr)— E (5.7)

or)y=oc(r)—% . (5.8)

The distortions are related through the interaction tensor M as:

é(r)=—M:6(r) , (5.9)

M is calculated as function of the symmetric Eshelby tensor . as:
M=1-S"S M, (5.10)
S =sym(T): &L, (5.11)

with I the fourth order identity tensor, .7 the result of the green functions
integration, that solve the mechanical equilibrium equations, over the domain
of ellipsoidal grain (the derivation and integration procedure will be not be
presented here) as (written in index notation for clarity):

b 21T T ) A_<1
Totis = / / N _sinfdode . (5.12)
R [[(aa1)2 + (bag)? + (0043)2]1/2]

with 6 and ¢ the spherical coordinates of the Fourier unit vector «; a, b and ¢
the axis of the grain ellipsoid; A;; = ;02 ;1. From the interaction tensor
A the localization tensors are defined as:

By = (M) +.4) (A +.4) (5.13)

b(r) = () +.4) " (B —&(r) (5.14)

The interaction tensors define the localization equations that relate the macro-
scopic stress to the stress in the grain:

o(r)=%AB(r): X +b(r) . (5.15)
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The polycrystal model imposes the condition that the weighted average
(represented by the symbols ( ) ) of the grains strain rates has to coincide
with the macroscopic behaviour:

E = (é(r)) . (5.16)

With this condition the macroscopic viscoplastic compliance tensor and the
macroscopic back-extrapolated term are defined as, considering that all grains
have the same shape:

M= (M (r): B(r)) , (5.17)

Eo= (i (r): b(r) + &(r)) , (5.18)

and if the grains have different shapes, meaning that their corresponding
Eshleby tensors are different:

M= (M) B(r))  (B(r) ", (5.19)

Eo= (A (r): b(r) + é(r)) — (A (r) : B(r)) : (B(r))~1: (b(r)) . (5.20)

The classical VPSC formulation does not consider elastic effects, the grain
rotations and hardening are not considered in the calculation of stress, they
are calculated only after the stress iteration is finished. To obtain an inter-
mediate approach between the CP-Taylor and CPFEM approaches, we have
tried to couple the CP library presented in chapter 2, with the VPSC ap-
proach. Since the CP library considers elastic effects and the effect of grain
rotations and hardening in the stress calculation, the limitations previously
mentioned can be overcome. Also, since the CP library has a modular struc-
ture the resulting code will be more versatile without a specific flow rule
embedded in the formulation.

The proposed approach is described in the following algorithm. The stress
calculation on each grain is calculated using the CP library described in
chapter 2 and . (r) = £~ 1(r), with L (r) = €p.

1. Assume Taylor approximation — €é(r) = E
2. For all grains using the CP library calculate:

e o(r) and . (r)
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e The calculation also gives the new orientation and CRSS of the
grains, however this values are not updated yet.

3. Approximate:

o M= (M)
o By = (&(r))

(a) Calculate Eshelby tensor for all considered grain shapes

e 7 — numerically integrate Eq. 5.12
e . — compute Eq. 5.11

(b) Compute .#/ — Eq. 5.10

(¢) Compute H(r) and b(r) — Eq. 5.13 and 5.14
(d) Recalculate .# and E, — Eq. 5.17 and 5.18
(e) Calculate change .# value A

o if A/ < tol — continue
e if A# > tol — return to step (a)

4. Compute ¥ — Eq. 5.6
5. For all grains solve Eq. 5.9 for é€(r) — NR algorithm
e Each NR iteration requires a calculation of the CP library
6. Calculate Ao (r)
7. Check conditions Ao (r) < tol and X = (o (1))

e If conditions are full-filled, finish calculation and update state vari-
ables

e If conditions are not full-filled return to step (3).

The code is currently in development and testing. The initial implemen-
tation is done however some convergence problems have not been solved yet,
it constitutes another perspective of theses works.



166 CHAPTER 5. PERSPECTIVES

5.5 Summary and Discussion

In this chapter, perspective works aimed to address some of the limitations
of the current model were presented and explored:

First, the current nucleation criteria only describes necklace type nucle-
ation and relies on criteria that only considers dislocation density. To discuss
a more robust nucleation criteria, FEM plasticity models (including CPFEM)
to study the PDZ present in PSN nucleation has been considered. Initial sim-
ulations were performed using a macroscopic visco-plasticity model to eval-
uate the capability of the FEM framework and the proposed approach, that
represents the particle as a part of the domain with very high mechanical re-
sistance. The macroscopic model results showed a qualitative reproduction of
the PDZ zone with differentiate zones with high and low deformation levels,
and zones with differentiate degrees of rotation. This initial approximation
showed agreement with PDZ descriptions found in the literature, and served
as an initial validation test of the used approach.

Further simulations were performed by using a CPFEM model, to try and
reproduce experimental measurements of a PDZ found in the literature. The
simulation results showed good agreement in reproducing the experimental
rotation pattern around the particle. However, the simulations were not able
to reproduce the deformation bands observed in experimental measurements,
and the effect on them caused by the presence of the hard particle. The plas-
tic deformation patterns along with the dislocation density distributions ob-
served in the simulation results indicate that a more complex hardening law
is required to better reproduce this behaviour and to consider particle size ef-
fect. Also further experimental information is required to better characterize
the particle shape and to calibrate and validate the CPFEM model.

Second, the current framework only considers DDRX by introducing re-
crystallized grains according to discontinuous nucleation rate laws, but does
not consider recrystallization by continuous subgrain rotation due to plastic
deformation. To consider this phenomenom an initial approach was pro-
posed that uses level set functions to describe not only HAGB but also
LAGB. In this approach the grain boundary energy is defined according to
the Read-Shockley equation and the formulation proposed by [38] is used,
since it can consider heterogeneous grain boundary energy.

An initial test was performed considering the deformation of a bi-crystal.
The results showed that the LAGB boundaries migration is mostly dependent
on the initial size, leading to a quick reduction of the smaller LAGB. This
behaviour is related to the material parameters and can be calibrated. The
results also showed that, during the simulation the LAGB location does not
correspond with zones were higher misorientation is developed. This is highly
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dependant on the LAGB initial locations and increasing the number of LAGB
can lead to better results, further tests must be performed.

Third, one of the main limitations of using CPFEM is the computational
cost. On chapter 4 a simplified approach was proposed using the Taylor
simplification along with crystal plasticity, however this is a strong simplifi-
cation. An alternative is the VPSC formulation. Traditional VPSC formula-
tions does not consider elasticity, and the hardening and rotation calculations
are uncoupled from the stress evolution, they are only considered after the
stress calculation is finished.

Thus, to propose an approach that does not include these limitations, a
VPSC formulation based on the crystal plasticity formulation used in this
work was implemented. Instead of using the traditional linearizations pro-
posed in the VPSC formulation, the strain rate - stress relation is defined
according to the tangent module described in chapter 2. Additionally the
stress calculation for each grain is performed according to the CP algorithm
described in chapter 2. However initial tests performed show convergence
problems that need to be solved.
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5.6 Résumé en Francais

Dans ce chapitre, des perspectives visant a aborder certaines des limites du
modéle actuel ont été présentées et explorées:

Premiérement, les critéres de germination actuels ne décrivent que des
modes de germination en collier et reposent sur des lois qui ne prennent en
compte que la densité de dislocation. Pour proposer un critére de germination
plus robuste, des modéles de plasticité FEM (dont CPFEM) pour étudier la
germination aux bords des particules pourrait étre investiguée. Des simula-
tions initiales ont ainsi été réalisées a ’aide d’un modéle de viscoplastique
macroscopique, pour évaluer la capacité du cadre FEM et 'approche pro-
posée, qui représente la particule comme une partie du domaine a trés haute
résistance mécanique, a reproduire des modes de germination réalistes. Les
résultats du modéle macroscopique ont montré une reproduction qualitative
avec des zones différenciées avec des niveaux de déformation élevés et faibles
et des zones avec des degrés de rotation différenciés. Cette premiére ap-
proximation a montré une concordance avec les descriptions trouvées dans la
littérature, et a servi de test de validation initiale de ’approche utilisée.

D’autres simulations ont été effectuées en utilisant un modéle CPFEM,
pour essayer de reproduire des mesures expérimentales d’'une PDZ trouvée
dans la littérature. Les résultats de la simulation ont montré un bon accord
dans la reproduction du mode de rotation autour de la particule. Cepen-
dant, les simulations n’ont pas pu reproduire les bandes de déformation ob-
servées dans les mesures expérimentales, et 'effet sur celles-ci provoqué par
la présence de la particule dure. Les modéles de déformation plastique ainsi
que les distributions de densité de dislocation observées dans les résultats de
la simulation, indiquent qu’une loi d’écrouissage plus complexe est nécessaire
pour mieux reproduire ce comportement. Des informations expérimentales
supplémentaires sont également nécessaires pour mieux caractériser la forme
des particules et pour calibrer et valider le modéle CPFEM.

Deuxiémement, le cadre actuel ne considére la DRX qu’en introduisant
des grains recristallisés selon les lois de la vitesse de germination, mais ne
considére pas la recristallisation par rotation continue des grains due a la dé-
formation plastique. Pour considérer ce phénoméne, une premiére approche
a été proposée qui utilise des fonctions LS pour décrire non seulement les
interfaces fortement désorientés (HAGB) mais également les faiblement dé-
sorientés (LAGB). Dans cette approche, I’énergie des joints de grains est
définie selon 1 ’équation de Read - Shockley et la formulation proposée par
|38] est utilisées. L’idée étant finalement de pouvoir a 'avenir considérer les
mécanismes de germination continue.

Un premier test a ete realise en considérant la déformation d’un bicristal
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constitué de sous-grains. Les résultats initiaux montrent que 'emplacement
des LAGB ne correspond pas aux zones ou une plus forte désorientation
s’installe lors de la déformation. Ce sujet doit clairement étre investigué plus
avant afin d’améliorer la représentativité des critéres de germination de notre
modéle.

Troisiemement, I'une des principales limites des calculs CPFEM reste leur
coiit de calcul. Au chapitre 4, une approche simplifiée a été proposée en util-
isant la simplification de Taylor dans la plasticité cristalline, il s’agit évidem-
ment d’une simplification forte. Une alternative est la formulation VPSC.
Les formulations VPSC traditionnelles ne prennent pas en compte 1’élasticité,
et les calculs d’écrouissage et de rotation sont découplés de I’évolution des
contraintes, ils ne sont pris en compte qu’une fois le calcul des contraintes
terminé. Ainsi, pour proposer une approche qui n’inclut pas ces limitations,
une formulation VPSC basée sur la formulation en plasticité cristalline util-
isée dans ce travail a été mise en ceuvre. Au lieu d’utiliser les linéarisations
traditionnelles proposées dans la formulation VPSC, la relation vitesse de dé-
formation - contrainte est définie selon le module tangent décrit au chapitre
2. De plus, le calcul des contraintes pour chaque grain est effectué selon
I’algorithme CP décrit au chapitre 2. Cependant les premiers tests effectués
montrent des problémes de convergence qui doivent encore étre résolus.
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Chapter 6

Conclusions

Context

The main objective of this work was the development of a new DDRX model
that provides a better description of the local anisotropic behaviour and
evolution of materials subjected to hot forming operations, than the ones
provided by the models currently found in the literature.

Among the different type of DRX models found in the literature, only
full field models are able to describe local behaviour since they explicitly
represent the microstructure. However most full field models present impor-
tant limitations when dealing with high deformation levels as most of them
require uniform structure grids. Additionally, due to the computational cost
and difficulties to represent 3D grains evolution, several models rely on 2D
simplifications.

In the context of the DIGIMU project developed at CEMEF, in the PhD
work of [6] a 3D DRX model was proposed. This model is based on the
Level-Set method in a finite element context. The main advantages of the
LS framework are: Its versatility to include several microstructural mecha-
nisms in a robust numerical framework; the implicit representation of grain
boundaries that allows it to represent complex 3D shapes and their evolu-
tion even at high deformation levels. By coupling the LS framework with
a remeshing framework, also developed in CEMEF, the developed model is
capable to simulate DDRX up to high deformation levels.

This DDRX model includes important simplifications. One of them is the
description of plastic deformation. Plastic deformation is modeled according
to a phenomenological law, that does not consider the grains orientations nor
their crystal structure. Thus, all grains in the model deform equally so no
anisotropy is considered. To propose a more accurate model, in this work we

171
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coupled the LS-FEM model with a compatible CPFEM model, to perform
3D full field DRX simulations up to high deformation levels.

Conclusions and achievements

In the first chapter the DDRX models proposed in the literature were re-
viewed, focusing on models that propose improved descriptions of plastic
deformation. This review showed that CP formulations are the best avail-
able alternative to describe the plastic behaviour in the context of DDRX
mechanisms and several models that incorporate CP formulations in the con-
text of DDRX have been proposed in the literature. However, these models
present several limitations in describing high deformation levels. This aspect
explains the interest and relevance of the model proposed in this work.

The first step considered in order to build the new DDRX model was the
development of a crystal plasticity library. The library was developed as a
versatile tool. The code facilitates the inclusion of different behaviour laws,
can be used by itself or with a FEM solver. The developed library has been
used in this work to model the behaviour of an Al alloy and 304L steel, both
as material points simulations and coupled with FEM. It has also been used
in the work of [168] to model the behaviour of olivine crystals.

In the library, an alternative method to the commonly used Voigt nota-
tion for handling tensorial quantities was implemented. This method, which
derived from a particular tensorial base, simplifies and reduces the compu-
tational cost of the tensorial operations required in CP calculation. From
this work, a modification to the classical mixed velocity pressure finite ele-
ment formulation was proposed, that allows to account for the non isotropic
compressiblity [169].

After the CP library was developed and validated, the CPFEM model
was coupled with the LS-FEM method for GBM and phenomenological laws.
By including the CP model, not only a better description of the plastic defor-
mation phenomena is obtained, but the input data for the GBM and nucle-
ation models are also improved. To couple the models, a coupling algorithm
was developed. The coupling algorithm includes an appropriate interpola-
tion scheme to transfer the information from the PO fields considered in the
CPFEM model to the P1 fields considered in the LS-FEM model and back.
This strategy ensures a coupling of the models in which the effect of all dif-
ferent phenomena are considered in all the models. This aspect is indeed a
limitation found in several of the DDRX-CP models available in the literature
where the effect of nucleation and GBM process are generally not considered
in CP calculations. Another advantage of the proposed coupled model with
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respect to the models found in the literature is the use of a single mesh that
deforms according to the CP calculations. This facilitates the interpolation
process, reduces the computational cost and memory requirements, and does
not present problems of coherence between the calculations’ domains due to
the differences in the way that each mesh is deformed.

The development of coupling algorithm included a detailed sensibility
analysis to determine the numerical parameters that ensure convergence of
the results and minimize the computational cost. The results showed that:
In order to ensure convergence and minimize the computational error, differ-
ent time steps were required. Thus, the CPFEM iterations are subdivided
into smaller time steps. Similar strategies are reported in the literature. In
addition, the time step for the CPFEM calculations is adapted dynamically
during the simulation. This prevents convergence problems in the CPFEM
calculations after nucleation events, this problem is also reported in the mod-
els found in the literature. The analysis also showed that with the inclusion
of the CPFEM model and the use of mesh size adaptation, it is not neces-
sary to include an artificial increase in nucleus size to prevent the collapse of
recrystallized grains, as considered in the model of [6].

Once the numerical parameters were defined, additional test were per-
formed regarding the position of recrystallized grains and the calculation of
the grains energy by the accumulation of dislocations. The tests regard-
ing the recrystallized grains position showed that: Due to the continuous
deformation and continuous appearance of grains, the nucleated grains po-
sition has limited influence on final results. However the necklace and bulk
cases showed to be the more favorable for recrystallized grains grow, when
compared with criteria that consider maximal dislocation density and/or its
gradient. The main factor affecting the evolution of the recrystallized grains
is how clustered they are. The tests regarding the calculation of the grains
accumulated energy showed that: the difference in the results does not justify
the increase in computational cost required by the heterogeneous energy and
energy per interface approaches.

The proposed new CPFEM-LS DDRX model was compared with experi-
mental data. First the material parameters K;, Ky and K, were calibrated
for a range of strain rates between 0.008—0.1 (1/s) and temperatures between
1273 — 1373 K. The calibration procedure proposed by 6] was modified to
consider the effect of the parameters K;, K5 on the microstructural evolu-
tion. This modification was necessary as considering only the mechanical
behaviour can lead to errors in the definition of recrystallized size, that lead
to non-physical results.

The model results compared to experimental showed good agreement for
the average behaviour in the range of temperatures and strain rates consid-
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ered. However the grain size distribution showed that the rate of growth of
recrystallized grains is underestimated. Experimental measurements show
percentages of recrystallized grains with bigger sizes than the ones seen in
the simulation results. Since this behaviour is related to several factors like
the dislocation density evolution, the grain boundary mobility and grain
boundary energy, more detailed studies into these factors must be performed
specially considering that these variables are defined according to simple
phenomenological laws.

The model results also showed that even with CPFEM calculations, the
dislocation density field is not that heterogeneous, as when recrystallization
starts, most of the domain has reached the maximal dislocation density value.
Only zones affected by recrystallization in which the recrystallization density
is reinitialized are constantly evolving. The rate at which this zones hardens
depends on their orientation and neighbours. This behaviour is of course
dependent of the chosen hardening law, which is an important simplifica-
tion. By considering these aspects, a possible simplification of the model was
proposed, by replacing the CPFEM model with a CP Taylor model. With
the CP Taylor model, the interactions between grains are not considered,
however the effect of the crystal structure and orientation are still taken into
account. Comparisons of DRX simulations results were performed using the
phenomenological law, the CP Taylor model and the CPFEM model.

The results showed significant difference in the recrystallization dynam-
ics when using the phenomenological law due to the accelerated hardening,
while the CPFEM and CP Taylor showed similar results. In terms of compu-
tational cost the increase in computational time from the phenomenological
model to CP Taylor model is small. The CPFEM model model on the other
hand implies a significant increase in computational cost. The similarity of
the results between the CPFEM model and the CP Taylor model is caused in
part that much of the information provided by the CPFEM model, the orien-
tations evolution, is not considered, and due to the behaviour of dislocation
density field that depends on the chosen hardening law.

The presented coupled model constitutes a good first approach to improve
dynamic recrystallization modeling and can serve as a reference to evaluate
simplifications and assumptions. For example, with the current formulation
for an industrial context, the CP-Taylor model is a viable alternative to im-
prove the plastic deformation definition in the DIGIMU software framework
that would not cause a significant increase in the computational cost.



175

Additional perspectives

The current framework still includes significant simplifications, some of them
derived from the phenomenological laws used. These simplifications cause
that several of the additional data obtained by using CPFEM, are not con-
sidered. Improvements are required to fully account for the additional infor-
mation obtained by incorporating CPFEM. These simplifications are:

e The CP hardening rule currently used that was adopted from previ-
ous work [6]. This law defines the evolution of the dislocation density
considering only two terms, does not consider interaction between slip
systems, and considers a single critical resolved shear stress for all slip
systems. In chapter 2 several alternatives were described, the main
difficulty with the implementation of a new law is the determination of
the different parameters, specially for complex laws.

e The grain boundary energy defined as homogeneous and independent
of the misorientation. This simplification does not allow the consider-
ation of twin boundaries, limitation that was discussed in chapter 4.
Integrating the work of |38, 170] to improve the grain boundary energy
definition is an interesting perspective that has been initially explored
in chapter 5.

e The grain boundary mobility is also defined as homogeneous, does not
consider anisotropic behaviour and is calculated according to an Arrhe-
nius law. The PhD work of [171] constitutes a interesting perspective
in improving this definition.
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ABSTRACT

Dynamic recrystallization (DRX) is one of the main metallurgical phenomena responsible for the evolution of the mi-
crostructure of metallic materials subjected to hot metal forming processes. Understanding and predicting the subsequent
physical mechanisms is of prime importance as the resulting microstructure will be directly responsible of the final in-use
material properties.

Thus, numerous phenomenological models (JMAK type for example) aiming to describe DRX have been developed in
the state of the art. However, because of the complexity of the mechanisms involved in DRX and their interactions,
phenomenological or mean field models are not able to fully account for the local evolution of the microstructure and full
field approaches are required generally when precise calculations are aimed.

Most DRX full field models have limitations in their ability to model high deformation (which limits their applicability for real
industrial thermomechanical treatments) and in their description of plastic deformation (which is often grossly simplified).
In this PhD, a new full field discontinuous DRX (DDRX) model is proposed by coupling a crystal plasticity finite element
method (CPFEM) with a level-set finite element (LS-FE) framework to describe the grain boundary network motion. The
proposed model considers anisotropic plastic deformation and its impact on grain boundary motion. Combined with a
remeshing methodology, the proposed numerical framework is capable of describing DDRX up to very large deforma-
tion levels. The model is calibrated and compared against experimental measurements of 304L steel. Moreover, the
interest of this strategy (ratio precision/numerical cost) is also discussed comparatively to a simpler approach (CP Taylor
approximation). All these developments are realized in a generic CPFEM module easily usable in any FE code.

KEYWORDS

Dynamic recrystallization, Full field model, Crystal plasticity, Level-set, Finite element method, 304L Steel.

RESUME

La recristallisation dynamique (DRX) est I'un des principaux phénoménes métallurgiques responsable de I'évolution de
la microstructure des matériaux métalliques survenant lors de luer mise en forme a chaud. Comprendre et prévoir
ce phénoméne physique est d’'une importance primordiale car la microstructure résultante est en général directement
responsable des propriétés finales du matériau.

Ainsi, de nombreux modéles phénoménologiques (de type JMAK par exemple) visant a décrire la DRX ont été développés
dans 'état de I'art. Cependant, en raison de la complexité des mécanismes impliqués et de leurs interactions, les modéles
phénoménologiques ou de champ moyen ne sont pas en mesure de rendre pleinement compte de I'évolution locale de la
microstructure et des approches de type champ complet sont nécessaires.

La plupart des modéles DRX en champ complet ont des limites dans leur capacité a modéliser une déformation élevée
(ce qui les rend en général inutilisable pour des chemins thermomécaniques industriels) et dans la description de la
déformation plastique (souvent trés simplifié).

Dans cette thése, un nouveau modele a champ complet pour la recristallisation dynamique discontinue (DDRX) est
proposé en couplant une méthode éléments finis de plasticité cristalline (CPFEM) avec un cadre élément finis - level set
(LS-FE) pour décrire le mouvement des joints de grains. Le modéle proposé prend en compte la déformation plastique
anisotrope et son impact sur le mouvement des joints de grains. Combiné a une méthodologie de remaillage, le cadre
numeérique proposeé est capable de décrire la DDRX jusqu’a des niveaux de déformation trés importants. Le modeéle
est calibré et comparé aux mesures expérimentales de I'acier 304L. De plus, I'intérét de cette stratégie (ratio précision /
colt numérique) est également discuté comparativement & une approche simplifie (approximation CP Taylor). Tous ces
développements sont réalisés dans un module CPFEM générique facilement utilisable dans n’importe quel code EF.

MOTS CLES

Recristallisation Dynamique, Modéle en champ complet, Plasticité Cristalline, Level-set, Méthode des élé-
ments finis, Acier 304L.




