
HAL Id: tel-03406968
https://pastel.hal.science/tel-03406968

Submitted on 28 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programmation en nombres entiers pour les diagrammes
d’influence et les problèmes de maintenance d’une

compagnie aérienne
Victor Cohen

To cite this version:
Victor Cohen. Programmation en nombres entiers pour les diagrammes d’influence et les problèmes
de maintenance d’une compagnie aérienne. Modélisation et simulation. Université Paris-Est, 2020.
Français. �NNT : 2020PESC1034�. �tel-03406968�

https://pastel.hal.science/tel-03406968
https://hal.archives-ouvertes.fr

École doctorale MATHÉMATIQUES ET SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

THÈSE DE DOCTORAT

Spécialité : Mathématiques

Présentée par

Victor COHEN

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS-EST

INTEGER PROGRAMMING FOR
INFLUENCE DIAGRAMS AND

AIRLINE MAINTENANCE PROBLEMS

PROGRAMMATION EN NOMBRES ENTIERS POUR LES DIAGRAMMES D’INFLUENCE ET LES

PROBLÈMES DE MAINTENANCE D’UNE COMPAGNIE AÉRIENNE

Soutenance le 18 décembre 2020 devant le jury composé de :

Patrick JAILLET MIT Rapporteur

Andrea LODI Ecole Polytechnique de Montréal Rapporteur

Georgina HALL INSEAD Examinatrice

Guillaume OBOZINSKI EPFL Examinateur

Vianney PERCHET ENSAE Examinateur

Frédéric MEUNIER École des Ponts ParisTech Directeur de thèse
Axel PARMENTIER École des Ponts ParisTech Encadrant de thèse

À mes parents et mes frères,

À Gabrielle.

Remerciements

Il est difficile d’écrire des remerciements pour tant de personnes qui ont compté dans mon
épanouissement personnel et professionnel durant ces trois belles années de thèse. J’ai appris
de tous ces échanges avec vous, qu’ils soient dans le cadre de la thèse ou en dehors, et j’espère
n’oublier personne dans cette tentative.

En premier lieu, je tiens à remercier mes directeurs de thèse, Frédéric Meunier et Axel Par-
mentier. Merci à toi Frédéric pour m’avoir donné l’envie de faire une thèse et pour ton suivi
rigoureux, notamment pendant la rédaction du manuscrit en plein confinement. Nos discus-
sions étaient toujours enrichissantes pour moi grâce à tes connaissances et la passion que tu
transmets. Aussi c’était un réel plaisir d’avoir avec toi de réjouissantes digressions sur l’histoire
des mathématiques ou sur le jazz, plus particulièrement la discographie de Miles Davis. Merci
à toi Axel pour m’avoir si bien accompagné quotidiennement durant ma thèse. Je souhaite
à tous les doctorants d’avoir un directeur de thèse comme toi. Travailler avec toi est un vrai
bonheur, notamment grâce à ton enthousiaste, ta disponibilité et ta curiosité. Les après-midi
devant un tableau à chercher des preuves me manqueront, tout comme nos déjeuners à dis-
cuter de voyages et randonnées. J’ajoute à cela un excellent souvenir de notre voyage à Tokyo,
avec notamment un fou rire mémorable dans un restaurant.

I thank Andrea Lodi and Patrick Jaillet for being the referees of my thesis and for their helpful
remarks. Merci à toi Patrick pour m’avoir accueilli au MIT pendant quelques semaines qui
ont été très enrichissantes pour moi. Je souhaite également remercier chaleureusement les
examinateurs qui ont accepté de faire partie de mon jury : Georgina Hall, Vianney Perchet et
Guillaume Obozinski.

Je remercie particulièrement Guillaume pour ses précieux conseils sur l’après-thèse. Durant
ma thèse, j’ai eu l’opportunité de collaborer sur un projet avec Axel, Guillaume, ainsi que Vin-
cent Leclère et Joseph Salmon. Je vous remercie tous pour m’avoir accueilli sur ce beau projet,
j’ai beaucoup appris à vos côtés.

Je tiens à remercier les membres du département de Recherche Opérationnelle d’Air France,
avec qui j’ai eu le plaisir de travailler ou d’échanger tout au long de ma thèse. Je remercie parti-
culièrement Paul Louis Vincenti qui a appuyé le projet après mon stage et Solène Richard qui a
suivi ma thèse et mis en avant les résultats auprès du reste du département de RO et des respon-
sables de la maintenance. Merci à Laurent Demeestere, Jules Humbert, Robin Dupont et Patrick
Marshall pour toute leur aide, notamment dans l’utilisation de Spark et Hadoop sur le cluster.
Je remercie aussi Jules Dubois et Léo Pallud pour nos discussions sur l’ordonnancement des
tâches de maintenance, ainsi que tous les membres des l’équipe de maintenance prédictive

i

avec qui j’ai eu l’occasion d’interagir. Je souhaite remercier les responsables du département
Julie Pozzi, Benoit Robillard et Marine Le Touzé. Merci à tous les membres du département
avec qui j’ai eu le plaisir de prendre un café, prendre une bière ou jouer au foot, et en partic-
ulier Pierre, Blaise, Alexandre, Guillaume, Benoît, Valentina, Magdalena, Ferran, Kevin, et tout
ceux que je m’excuse d’oublier.

Merci à tous les chercheurs du Cermics avec qui j’ai eu le plaisir de discuter. Un immense merci
à Isabelle, qui sait toujours être juste et bienveillante avec tout le monde. J’adresse tous mes
remerciements aux doctorants du Cermics. On a vraiment passé de bons moments ensemble,
vous avez rendu les journées agréables grâce à des discussions toujours intéressantes et drôles.
Un merci particulier à vous avec qui j’ai passé des moments privilégiés qui resteront de super
souvenirs : Marion, Alexandre, Benoit, Henri, Adèle, Sébastien, Oumaïma, William, Thomas,
Adrien, Maël et tout ceux que j’oublie !

Je souhaite remercier tous mes amis avec qui je passe des moments exceptionnels et qui sont
toujours là pour moi. Merci à vous pour ces soirées à refaire le monde autour d’une bière, à
rigoler sur des anecdotes qu’on aime se remémorer, à s’écharper dans des débats politiques et
footballistiques, ça me fait toujours autant plaisir de vous voir. Merci Thibault, Eliott, Gaspard,
Alexis, Vincent, Julien, Robinson, Arnaud, Tom, Adrien, Paul, Théo, Cassandre, Camille, Léa,
Jessica, Kathleen, Kim, et tous ceux qui se reconnaîtront.

Merci à ma famille pour tout leur soutien. Ces remerciements mériteraient plus que quelques
lignes tant vous comptez pour moi. Merci à mes parents pour l’éducation qu’ils m’ont donné et
les valeurs qu’ils m’ont transmis, l’ouverture, l’exigence, la bienveillance et la curiosité. Merci
Maman pour ton inaltérable soutien et ton attention à notre bonheur. Merci Papa pour être
ce repère stable, juste et humain sur lequel nous pouvons toujours compter. Merci Raphaël
pour être notre aîné au grand cœur. Merci Dorian pour nous faire toujours rire et d’amener
ton enthousiasme à chaque repas de famille. Merci Joachim pour être toujours présent et un
soutien sans faille de Paris à Montréal, en passant par Bangor.

Et enfin merci à Gabrielle d’avoir été si patiente, si compréhensive et de m’avoir apporté tout
son soutien chaque jour. C’était long et difficile pour nous deux d’être à distance durant ces
trois années, mais comme le dit Albert Camus “C’est cela l’amour, tout donner, tout sacrifier
sans espoir de retour”. Merci de faire partie de ma vie et de me rendre si heureux.

ii

Abstract

This thesis develops algorithms for stochastic optimization problems such as Markov Deci-
sion Processes (MDPs) or Partially Observable Markov Decision Processes (POMDPs), and uses
them to give a solution for the airplane maintenance problem at Air France. The research was
conducted throughout a scientific chair between Air France and École des Ponts ParisTech.

We introduce a generic predictive maintenance problem for systems with several components
evolving over time when a decision maker chooses dynamically which components to main-
tain at each maintenance slot. His actions are based on partial observations of each component
and are linked by capacity constraints. The objective is to find a “memoryless” policy, which is
a mapping from observations to actions, minimizing the expected failure costs and mainte-
nance costs over a finite horizon. We formalize such a problem as a weakly coupled POMDP,
which models each component as a POMDP. Finding an optimal memoryless policy for the
weakly coupled POMDP is difficult for two reasons. First, even when the system has a single
component, the problem is already NP-hard. Second, due to the curse of dimensionality, when
the number of components grows the POMDP becomes quickly intractable. Our main contri-
butions are mixed-integer linear formulations for POMDPs that give an optimal memoryless
policy, as well as valid inequalities that are based on a probabilistic interpretation of the de-
pendences between the random variables. In addition, we introduce an mixed-integer linear
formulation that breaks the curse of dimensionality and that induces a “good” policy for weakly
coupled POMDP.

In fact, the MDPs and POMDPs lie in the broad class of stochastic optimization problems where
the uncertainty is assumed to satisfy a given structure called influence diagram. More precisely,
given random variables considered as vertices of an acyclic digraph, a probabilistic graphical
model defines a joint probability distribution via the conditional probability distribution of
vertices given their parents. In influence diagrams, the random variables are represented by
a probabilistic graphical model whose vertices are partitioned into three types: chance, deci-
sion and utility vertices. The decision maker chooses the probability distribution of the de-
cision vertices conditionally to their parents in order to maximize his expected utility. Our
main contributions are mixed-integer linear formulations for solving the maximum expected
utility problem in influence diagrams, as well as valid inequalities, which lead to a computa-
tionally efficient algorithm. It generalizes our results on POMDPs to any influence diagrams.
We also show that the linear relaxation yields an optimal integer solution for instances that
can be solved by the “single policy update,” the default algorithm for addressing the maximum
expected utility problem in influence diagrams.

iii

The airplane maintenance problem at Air France is a predictive maintenance problem with ca-
pacity constraints. Applying the weakly coupled POMDP policy requires to estimate the weakly
coupled POMDP parameters. Based on a dataset of historical sensor data, we propose a statis-
tical methodology to cast the airplane maintenance problem as a weakly coupled POMDP. Our
approach has the advantage of being interpretable by the maintenance engineers. The numer-
ical experiments show that our maintenance policy give “good” numerical results compared to
those obtained by using Air France’s maintenance policy.

Key words: predictive maintenance, partially observable Markov decision processes, proba-
bilistic graphical models, influence diagrams, stochastic optimization, mixed-integer linear
programming

iv

Résumé

Cette thèse développe des algorithmes pour des problèmes d’optimisation stochastiques tels
que les processus de décision markoviens (MDPs) ou les processus de décision markoviens
partiellement observables (POMDPs) 1, et les utilise pour donner une solution au problème
de maintenance des avions chez Air France. Cette recherche a été menée dans le cadre d’une
chaire scientifique entre Air France et l’École des Ponts ParisTech.

Nous introduisons un problème générique de maintenance prédictive d’un système à plusieurs
composants évoluant dans le temps où un décideur choisit dynamiquement les composants à
réparer à chaque plage de maintenance. Basées sur des observations partielles de chaque com-
posant, ses actions sont couplées par des contraintes de capacité. L’objectif est de trouver une
politique “sans mémoire”, c’est-à-dire une application qui associe à l’observation courante (et
non l’historique des observations et des actions) une action, qui minimise les coûts de panne
et les coûts de maintenance espérés sur un horizon fini. Nous formalisons ce problème sous la
forme de POMDPs faiblement couplés où chaque composant est modélisé comme un POMDP.

Trouver une politique optimale sans mémoire pour les POMDPs faiblement couplés est diffi-
cile pour deux raisons. Premièrement, même lorsque le système ne comporte qu’un seul com-
posant, le problème est déjà NP-difficile. Deuxièmement, en raison de la malédiction de la
dimension, lorsque le nombre de composants augmente, le POMDP devient rapidement insol-
uble. Nos principales contributions sont des formulations linéaires en nombres entiers pour les
POMDPs qui donnent des politiques optimales sans mémoire, ainsi que des inégalités valides
qui sont basées sur une interprétation probabiliste des dépendances entre les variables aléa-
toires du problème. De plus, nous introduisons une formulation linéaire en nombres entiers
qui casse la malédiction de la dimension et qui induit une “bonne” politique pour les POMDPs
faiblement couplés.

En réalité les MDPs et les POMDPs font partie d’une large classe de problèmes d’optimisation
stochastique où l’incertitude satisfait une certaine structure qu’on appelle diagramme d’influence.
Plus précisément, en considérant les variables aléatoires comme les sommets d’un digraphe
acyclique, un modèle graphique probabiliste définit une distribution de probabilité jointe comme
le produit des distributions de probabilités conditionnelles des sommets sachant leurs par-
ents. Dans les diagrammes d’influence, les variables aléatoires sont représentées par un mod-
èle graphique probabiliste dont les sommets sont divisés en trois types : les sommets chances,
décisions et utilités. Le décideur choisit la distribution de probabilité des sommets décisions
conditionnellement à leurs parents afin de maximiser son utilité espérée. Nos principales con-

1Markov Decision Process (MDP) et Partially Observable Markov Decision Process (POMDP) en anglais

v

tributions sont des formulations linéaires en nombres entiers pour résoudre le problème de
l’utilité maximum espérée dans un diagramme d’influence, ainsi que des inégalités valides, qui
conduisent à une formulation efficace. Cela généralise nos résultats sur les POMDPs à tout
diagrammes d’influence. Nous prouvons également que la relaxation linéaire de notre pro-
gramme donne une solution optimale en nombres entiers pour les cas qui peuvent être résolus
par “single policy update”, l’algorithme par défaut pour résoudre le problème de l’utilité maxi-
mum espérée dans un diagramme d’influence.

Le problème de maintenance des avions chez Air France est un problème de maintenance pré-
dictive avec des contraintes de capacité. L’application de notre politique pour les POMDPs
faiblement couplés produite sur le problème de maintenance des avions à Air France nécessite
d’estimer les paramètres des POMDPs faiblement couplés. À partir d’un historique de données
brutes enregistrées par des capteurs, nous introduisons une méthodologie statistique qui per-
met de transformer le problème de maintenance des avions en des POMDPs faiblement cou-
plés. Notre approche a l’avantage d’être interprétable par les ingénieurs de la maintenance. Les
expérimentations numériques montrent que notre politique de maintenance donne de “bons”
résultats numériques comparés à ceux obtenus en utilisant la politique de maintenance d’Air
France.

Mots clés : maintenance prédictive, processus de décision markovien partiellement observ-
able, modèle graphique probabiliste, diagramme d’influence, optimisation stochastique, pro-
grammation linéaire en nombres entiers

vi

Contents

Remerciements i

Abstract ii

Résumé iv

List of figures xi

List of tables xv

1 Introduction 1
1.1 The predictive maintenance problem with capacity constraints 3

1.2 Decision processes with partial observations . 4

1.3 Decision making with structured uncertainty . 7

1.4 Statistical methodology for the airplane maintenance problem 9

2 Introduction (Français) 13
2.1 Le problème de maintenance prédictive avec contraintes de capacité 15

2.2 Processus de décisions avec observations partielles 17

2.3 Prise de décision avec une incertitude structurée 20

2.4 Une méthodologie statistique pour le problème de maintenance des avions . . . 22

I Integer programming for predictive maintenance 25

3 Predictive maintenance with capacity constraints 27
3.1 Background on POMDP . 28

3.1.1 POMDP parameters . 28

3.1.2 POMDP problem . 28

3.1.3 POMDP problem with memoryless policies 29

3.2 Weakly coupled POMDP . 29

3.3 Formalizing the predictive maintenance problem with capacity constraints . . . 31

3.4 Examples modeled as a weakly coupled POMDP 33

3.5 Bibliographical remarks . 35

4 Integer programming for POMDPs 37
4.1 Integer program for POMDPs with memoryless policies 37

vii

Contents

4.1.1 An exact Nonlinear Program (NLP) . 38
4.1.2 Turning the NLP into an MILP . 39

4.2 Valid cuts . 40
4.3 Strengths of the relaxations . 43
4.4 Value functions for POMDPs with memoryless policies 46

4.4.1 An exact NLP . 46
4.4.2 Turning the NLP into an MILP . 48
4.4.3 Computing bounds on the value functions 49
4.4.4 Strengthening the linear relaxation . 50

4.5 Numerical experiments . 53
4.5.1 Random instances . 54
4.5.2 Numerical experiments on instances from the literature 54

4.6 Bibliographical remarks . 57

5 Integer programming for weakly coupled POMDPs 59
5.1 An approximate integer program . 60
5.2 Valid inequalities . 61
5.3 Strengths of the linear relaxation . 62
5.4 An upper bound and a lower bound . 62

5.4.1 The lower bound from an MILP with an exponential number of constraints 62
5.4.2 An upper bound through a nonlinear formulation 64
5.4.3 A tractable upper bound through Lagrangian relaxation 66
5.4.4 Interpretation of the bounds . 69
5.4.5 Benefits and drawbacks of the formulations 71

5.5 Deducing an history-dependent policy from MILP (5.1) 71
5.6 Rolling horizon heuristic . 74
5.7 Numerical experiments . 75

5.7.1 Simulations of the implicit policy . 77
5.8 Bibliographical remarks . 79

II Integer programming for influence diagrams 83

6 Maximum Expected Utility in influence diagrams 85
6.1 The Influence Diagrams . 85

6.1.1 The framework of parametrized influence diagram 86
6.1.2 Examples . 87

6.2 Junction Trees and moments . 88
6.2.1 Junction Trees and Rooted Junction Trees (RJTs) 88
6.2.2 The moments on RJTs . 90
6.2.3 The value functions on RJTs . 91

6.3 Main results . 91
6.3.1 Integer programs using moments on G . 92
6.3.2 Valid cuts for the MILP . 93
6.3.3 Integer programs using value functions . 94

viii

Contents

6.3.4 Polynomial cases of Influence Diagrams . 95
6.3.5 Dual formulations for the linear relaxations. 96

6.4 Bibliographical remarks . 97

7 Graphical models and rooted junction tree properties 99
7.1 Graph notation . 99
7.2 Directed graphical model . 100
7.3 Moments on junction trees . 101
7.4 Moments on rooted junction trees . 102

7.4.1 Main properties . 102
7.5 Building a gradual RJT . 104

7.5.1 An algorithm to build a gradual RJT . 104
7.5.2 Characterizing the built RJT . 106

8 Integer programming on the junction tree polytope 109
8.1 Integer programming using the moments . 110

8.1.1 Notation . 110
8.1.2 An exact Non Linear Program . 110
8.1.3 MILP formulation . 112

8.2 Valid cuts . 113
8.2.1 Constructing valid cuts . 113
8.2.2 Characterization of C⊥⊥ . 115

8.3 McCormick Relaxation . 119
8.3.1 Review of McCormick’s relaxation . 119
8.3.2 Choice of bounds in McCormick inequalities 119
8.3.3 Algorithm to compute good quality bounds 121

8.4 Strength of the relaxations and their interpretation in terms of graph 122
8.5 Integer programming using value functions . 124

8.5.1 An exact nonlinear formulation . 124
8.5.2 Turning the NLP into an MILP . 127
8.5.3 Algorithm to compute good quality bounds 128
8.5.4 Strengthening the linear relaxation . 129

8.6 Numerical Experiments . 134
8.6.1 Experimental settings . 134
8.6.2 Bob and Alice daily chess game . 136
8.6.3 Partially Observable Markov Decision Process with limited memory 136

9 Polynomial cases of influence diagrams 139
9.1 Soluble Influence Diagrams . 140
9.2 Linear program for soluble influence diagrams . 142

9.2.1 Linear relaxations . 142
9.2.2 Characterization using the set of achievable moments 145
9.2.3 Comparison of soluble and linear relaxations 149

9.3 Examples of non-soluble IDs solved by linear programs 150
9.4 Dual formulation for the soluble influence diagrams 151
9.5 Numerical experiments . 155

ix

Contents

III Maintenance problem at Air France 159

10 Data-driven maintenance optimization 161
10.1 About the airplane maintenance problem at Air France 162
10.2 Formalizing the airplane maintenance problem . 165
10.3 Modeling as a weakly coupled POMDP . 166
10.4 Numerical results . 170

10.4.1 Evaluating the policy using a simulator . 170
10.4.2 Evaluating the policy on Air France real data 173

10.5 Bibliographical remarks . 176

Conclusion 179

11 Conclusion 179
11.1 Main contributions . 179
11.2 Research directions . 181

Appendix 183

A Examples where zIP < v∗
ml or zIP > v∗

ml 185
A.1 The inequality zIP6 v∗

ml does not hold in general 185
A.2 The inequality zIP> v∗

ml does not hold in general 186

B Algorithm to build a small RJT 187

C Deteriorating system’s simulator and decision trees 189
C.1 Simulator’s description . 189
C.2 How to reproduce a binary decision tree of AirFrance’s practice. 191

Bibliography 193

x

List of Figures

1.1 The airplane maintenance problem: we want to find a maintenance policy (red
arrows) that takes sensor data from M equipments in input and returns a main-
tenance decision in output. 2

1.2 Degradation state evolution of a component with four states. The component
starts in its most healthy state and evolves stochastically (blue arrows) toward a
more degraded state. At each degradation state, the decision maker has access to
a noisy observation that is randomly emitted (squiggly blue arrows). 4

1.3 Modeling of the predictive maintenance problem with capacity constraints for
a system with M components. The blue and red arrows respectively represent
the stochastic deterioration of the components and the maintenance policy. At
each maintenance slot, each component is in a degradation state and the deci-
sion maker has access to a partial observation on each component. Then, the
decision maker applies a maintenance policy (red arrows) that leads to a mainte-
nance decision that impacts the degradation state of each component. 5

1.4 The two influence diagrams modeling the medical example and the POMDP ex-
ample. The circle, square and diamond vertices respectively represent the chance,
decision and utility vertices. 9

2.1 Le problème de maintenance d’un avion : on cherche une politique de mainte-
nance (flèches rouges) qui prend en entrée les données brutes de M équipements
et retourne la décision de maintenance en sortie. 14

2.2 L’évolution de l’état de dégradation d’un composant avec quatre états. Le com-
posant débute dans son état le plus sain et évolue de manière stochastique (flèches
bleues) vers un état plus dégradé. Pour chaque état de dégradation, le décideur a
accès à une observation bruitée qui est émise de manière aléatoire (flèches bleues
en zigzag). 16

2.3 Modélisation du problème de maintenance prédictive avec contraintes de capac-
ité pour un système de M composants. Les flèches bleues et rouges représentent
respectivement la détérioration stochastique des composants et la politique de
maintenance. À chaque plage de maintenance, chaque composant est dans un
état de dégradation et le décideur a accès à une observation partielle pour chaque
composant. Puis le décideur applique une politique de maintenance (flèches
rouges) qui retourne une décision de maintenance qui impacte l’état de dégra-
dation de chaque composant. 17

xi

List of Figures

2.4 Les deux diagrammes d’influence qui modélisent l’exemple de la décision médi-
cale et le POMDP avec politique sans mémoire. Les sommets en forme de cercles,
carrés et losanges représentent respectivement les sommets chances, décisions et
utilités. 21

5.1 The relaxations of Section 5.4. An arrow from Problem X to a Problem Y indicates
that Y is a relaxation of X in the sense we defined at the beginning of this section.
In each block, we indicate which assumptions (see p. 61) we use to obtain the
formulations. 70

5.2 Scheme of the evaluation of our implicit policy (5.14) in Algorithm 3 at time t = 3
and t = 4. The decision maker observes h3 and takes action Act3

8(h3). Then, the
decision maker observes h4 and takes action Act4

9(h4). The black points indicate
the time steps and the red point corresponds to the time when the decision is
taken. The black hatched lines represent the past at the current time (red). The
red square indicates the horizon taken into account in the optimization problem. 76

6.1 Influence diagram examples, where we represent chance vertices (V s) in circles,
decision vertices (V a) in rectangles, and utility vertices (V r) in diamonds. 89

6.2 influence diagrams of Examples 5 and 6. 89

6.3 a) A directed graph G , b) a junction tree on G , and c) a gradual rooted junction
tree on G , where, for each cluster C , we indicate on the left part of the labels the
vertices of C \offspring(C), and on the right part the vertices of offspring(C). . . . 90

7.1 Example where satisfying (7.4) on junction tree b) is not sufficient to ensure fac-
torization on graph a). 102

7.2 Example of influence diagram whose rooted treewidth is larger than its path-
width. a. Influence diagram. b. Path decomposition with minimum width. c.
RJT with minimum width. 108

7.3 Illustration of the proof of Proposition 7.9. Plain arcs represent arcs, dashed line
trails. 108

7.4 Rooted junction tree produced by Algorithm 4 on the example of Figure 6.2b. The
offspring of a vertex is to the right of symbol -. 108

8.1 influence diagram and its RJT with a non valid cut (6.7) for C = {a,u, v,b} with
C⊥⊥ = {u}. 115

8.2 Example of augmented graph G† on a POMDP. 118

8.3 influence diagrams with useful McCormick inequalities. 120

8.4 Graph relaxations corresponding to linear relaxations for the chess game example. 123

8.5 RJT for the chess game. The element to the right of — is the offspring. 136

8.6 Rooted Junction Tree built by Algorithm (4) for a POMDP with limited memory. . 137

8.7 A bigger Rooted Junction Tree for a POMDP with limited memory. 137

9.1 Illustration of the proof of Lemma 9.3. a) Direct statement, with j = i−1. Trail P is
illustrated by dashed line, trail Q by a dash-dotted line, and other paths by dotted
lines. b) Converse statement, with path Q in plain line, and other paths dotted
lines, and paths in G in dashed lines. 145

xii

List of Figures

9.2 Planar representation of the set of achievable moments M(G), the set of achiev-
able deterministic moments Md(G) and the convex hull of the set of achievable
moments Conv(M(G)) = Conv

(
Md(G)

)
. 147

9.3 Influence diagram and parametrization used in the proof of Theorem 9.5 147
9.4 Influence diagram of Example 7 . 151

10.1 An example of a decision tree that takes as inputs the average (avg) pressure and
the standard deviation (std) of the temperature. It returns a discrete label in
{1,2,3}. Each label corresponds to a cluster. Clusters 1 and 2 correspond to nor-
mal behavior (blue), and cluster 3 corresponds to high-failure risk (red). 162

10.2 The four elements of our approach: the feature extraction (in purple), the predic-
tion model (in blue), the decision tree (in green) and the policy (in red). 164

10.3 A graphical representation of our approach using the notation introduced in Sec-
tion 10.2. First, the feature extractionφ from sensor data is represented by purple
dashed arcs. Second, the probabilistic dependences of our Gaussian HMMs are
represented by blue plain arcs for each equipment. Third, the mapping of our
decision tree f̂ is represented by dotted green arcs. Fourth, the policy of the de-
cision maker is represented by red plain arcs. Dashed arcs indicate a mapping.
Plain arcs indicate the probabilistic dependences as for a Bayesian network. . . . 166

10.4 Scheme of the evaluation of our maintenance policy. The black points indicate
the flight legs. The red point corresponds to a flight leg. 174

10.5 An example of the application of our maintenance policy on two airplanes (one
for each column) of Air France’s dataset. The horizontal axis represents the flights.
The blue (resp. red) plain vertical lines indicate the flights after which a mainte-
nance has been performed on equipment 1 (resp. equipment 2). The blue (resp.
red) dashed lines represent the maintenance suggestion of our maintenance pol-
icy for equipment 1 (resp. equipment 2). The rising edges of the dashed lines indi-
cate when our maintenance policy would have suggested to maintain the equip-
ment. 175

C.1 Example of the crack depth propagation in a component along one dimension.
The simulation is obtained according to Scheme (C.3). Horizontal axis represents
the time in days. The left and right vertical axis respectively represent the crack
depth in cm and the extra-stress level range. The red and blue curves respectively
correspond to the crack depth yi and the noisy crack depth xi . The green curve
represents the evolution of the extra stress level γi over time. The black horizontal
line represents the critical threshold yc. 190

xiii

List of Tables

4.1 POMDP results using MILP (4.7) with and without (4.8), with a time limit of 3600s 55
4.2 Numerical results on benchmark instances. The results written in bold indicate

the best value obtained for each instance. 57

5.1 Comparison of the properties of the formulations. 71
5.2 The values of Gmean(g), G95(g), and Gmax(g) obtained on the small-scale and medium-

scale instances with M ∈ {2,3,5}, n = 4 and solved with different finite horizon
T ∈ {2,5,10}. 78

5.3 Performances of the matheuritic on different rolling horizon Tr ∈ {2,5}: Numeri-
cal values of |νIP|, fIP (and their corresponding standard errors), GLR

IP and GRc

IP ob-
tained on an instance (M ,ω) with M ∈ {3,4,5,10,15,20} and ω ∈ {0.2,0.4,0.6,0.8}.
The values written in bold indicate the best performances of policy δIP regarding
optimality and scalability (computation time). 80

8.1 Mean results on 20 randomly generated instances with a time limit of 3600s. . . . 137

9.1 Average results on 50 instances of the cooperative game. 156

10.1 Numerical results on the simulated system averaged over the 1000 policy evalua-
tions. The figures in bold indicate the best performances. 173

10.2 Numerical values of fm
Tr

for the whole fleet. 176

xv

1 Introduction

This thesis in Operations Research develops several research topics motivated by a mainte-
nance problem that raised within an industrial partnership with Air France.

Motivation. The quantity of data available on industrial systems has dramatically increased
in the last few years. The goal of predictive maintenance is to exploit this data to predict fail-
ures, maintain the equipments before they fail, and reduce the overall maintenance costs. The
key aspects to model in predictive maintenance strongly depend on the industrial context. For
instance, differences in the size of the fleet of components to maintain, the cost of the main-
tenances, the cost of the failures, or the quality of data available may lead to very different
models. In this dissertation, we develop a data-driven optimization framework for the airplane
maintenance problem at Air France.

Predictive maintenance for Air France. Airlines performances largely depend on their abil-
ity to operate their airplanes as much as possible and reliably. As illustrated on Figure 1.1,
airplanes have dense schedules, with several flight legs between each maintenance slot. On
recent generations of airplanes, sensors signals are recorded at 1Hz during flights. For each
equipment, Air France has access to a collection of time series with different kinds of signals
such as pressures, temperatures, intensities, or binary signals. When an airplane arrives in
maintenance, Air France uses this data to decide which equipments it should maintain. Main-
tenance decisions must strike a balance between costs due to over-maintenance and costs due
to equipments failures. Besides, since maintenance slots are a rare resource, Air France must
prioritize between different equipments.

Research topics discussed in this thesis. The airplane maintenance problem at Air France
consists in providing a decision support methodology to derive a maintenance policy (see Fig-
ure 1.1), which takes in input the sensor data available at the beginning of a maintenance slot,
and returns as output which equipments should be maintained. To achieve this goal, we do
not have any model or simulator of the equipments behavior, but we have several years of his-
torical data containing signal values and failure dates. The problem we consider is therefore a
data-driven multistage stochastic optimization problem. It leads us to develop three research
lines at the crossroads of Operations Research and Machine learning.

1

Chapter 1. Introduction

Flight leg

Maintenance
decision

Maintenance
decision

.

Sensor data Sensor dataEquipment 1

. . .

Equipment M

Maintenance
policy

Maintenance
operations

Maintenance
operations

Figure 1.1 – The airplane maintenance problem: we want to find a maintenance policy (red
arrows) that takes sensor data from M equipments in input and returns a maintenance decision
in output.

A first line focuses on the decision-making process of a generic predictive maintenance prob-
lem, which is formalized as a dynamic sequential optimization problem under uncertainty. The
decision maker dynamically chooses a restricted number of components to maintain at each
maintenance slot. The uncertainty comes from the failures, modeled as random events, which
happen during the operating days of the system. Each component is assumed to behave in-
dependently but the maintenance decisions on the different components are weakly linked by
capacity constraints. This problem lies in the broad class of problems that involve many inde-
pendent subprocesses that are only weakly linked at each time step. These problems are called
weakly coupled dynamic programs [2]. A new additional feature from the predictive mainte-
nance problem is the fact that the decisions are based on noisy observations, which makes the
system partially observable. We propose several methods with guarantees to compute “good”
solutions of these optimization problems.

The second line of research that structures this dissertation focuses on the study of stochastic
optimization problems where the uncertainty is known to satisfy some structure called influ-
ence diagram. In particular, this class of problems includes the weakly coupled dynamic pro-
gram under partial observations induced by the airplane maintenance problem. We propose
an exact algorithm, which is based on tools from Operations Research and Machine Learning
and which exploits this uncertainty structure.

Finally, the third line of research addresses some statistical challenges that come from the prac-
tical problem at Air France. Indeed, casting the airplane maintenance problem as a weakly
coupled dynamic program with partial observations requires to learn a hidden Markov model
that captures the evolution of the equipment’s deterioration over time. In addition, Air France’s
requirement is that this statistical model has to be interpretable. Based on the dataset of signal
values and failure dates on the whole fleet of airplanes, we introduce a methodology that learns
such a statistical model that can be interpreted by the maintenance engineers.

Section 1.1 introduces informally the predictive maintenance problem with capacity constraints.

2

1.1. The predictive maintenance problem with capacity constraints

Section 1.2 summarizes our main mathematical contributions to the optimization problem of
weakly coupled dynamic programs with partial observations. Section 1.3 details our theoreti-
cal contributions to the optimization problem in influence diagrams. Section 1.4 describes our
contributions that address the statistical challenges raised by the airplane maintenance prob-
lem.

While this dissertation starts in Part I by investigating solution algorithms for these weakly cou-
pled dynamic programs with partial observations, Part III details how we exploit those in the
airplane maintenance problem at Air France. Part II contains our work on the optimization
problem in influence diagrams. Each chapter of this dissertation contains a section with bibli-
ographical remarks.

1.1 The predictive maintenance problem with capacity constraints

In the industry, planning the maintenance of a system consists in choosing when to intervene
during the system’s operating period and which actions should be carried out during this in-
tervention. In our case, dates of the maintenance are already scheduled by a flight scheduling
tool. Thus, the predictive maintenance problem we consider focuses on the second issue of the
planning problem, i.e., deciding which actions to take at each scheduled maintenance slot.

The system we consider has multiple components, each of them evolving over time. In general,
the systems considered are mechanical, which ensures that each component deteriorates over
time and fails after several operating hours/days. The failures happen during the operating
days of the components of the system between two maintenance slots. At each maintenance
slot, the decision maker chooses which components to maintain and his choices are based on
the observed degradation state of each component. This degradation state characterizes the
different performance rates of the component and is described through a discrete indicator,
whose values range from the state “perfect functioning” to the state “failure.” The deterioration
process of a component is stochastic in the sense that the component transits from a degra-
dation state s to a more critical degradation state s′ according to a probability distribution.
An additional widely used assumption in the industry is to consider that this deterioration is
Markovian, i.e., the state at a time only depends on the state at the previous time. Figure 1.2
illustrates the modeling of the deterioration process of a component.

However, in many practical problems the decision maker has only access to a partial observa-
tion of the degradation state of a component, which is also a discrete noisy indicator. Indeed,
this indicator usually corresponds to error messages resulting from the detection of an abnor-
mal behavior of physical measurements of the components. It makes this partial observation
very sensitive to measurement errors and noisy regarding to the degradation state. Figure 1.2 il-
lustrates these noisy observations by the squiggly blue arrows. Such a stochastic model is called
a Hidden Markov Chain. It follows that at each maintenance slot the decision is taken based
on the partial observations of the components instead of the degradation states as shown in
Figure 1.3.

Between two maintenance slots, the components are assumed to evolve independently, i.e., the
deteriorating process of a component does not influence the deterioration process of the oth-
ers. In an industrial context, the components are linked by the maintenance decisions through

3

Chapter 1. Introduction

Hidden
process

Perfect
functioning

Degradation
level 1

Degradation
level 2

Failure

Noisy indicators observed

Figure 1.2 – Degradation state evolution of a component with four states. The component starts
in its most healthy state and evolves stochastically (blue arrows) toward a more degraded state.
At each degradation state, the decision maker has access to a noisy observation that is ran-
domly emitted (squiggly blue arrows).

capacity constraints. This is the case of our applied problem: To be feasible, the maintenance
decisions of the airplane maintenance problem have to satisfy the following constraint.

The number of maintained components at each maintenance slot is not greater than K .

While considering the maintenance problem of each component independently is easier, these
constraints force the decision maker to consider the evolution of the whole system. If a compo-
nent is maintained, then its degradation state recovers to “perfect functioning.” Otherwise, it
keeps on evolving to a more degraded state. Maintaining a component leads to a maintenance
cost that is significantly lower than the failure cost.

Figure 1.3 summarizes the predictive maintenance problem with capacity constraints. Choos-
ing a maintenance policy consists in choosing at each future maintenance slots, for each pos-
sible partial observation, a maintenance decision satisfying the capacity constraints. Then, the
goal of the decision maker is to choose a maintenance policy that minimizes the expected costs
expressed as the sum of the maintenance costs and the failure cost. Chapter 3 is devoted to for-
malize mathematically the predictive maintenance problem with capacity constraints. It raises
two scientific challenges: How do we cast the airplane maintenance problem as a predictive
maintenance with capacity constraints (Section 1.4), and, how do we find a “good” mainte-
nance policy (Section 1.2)?

1.2 Decision processes with partial observations

We start our discussion on choosing a “good” maintenance policy by introducing an adequate
mathematical model for the predictive maintenance problem with capacity constraints. Since
the deterioration process of the component is Markovian and the decision maker has only ac-
cess to a partial observation, it is natural to formalize the problem within the Partially Observ-

4

1.2. Decision processes with partial observations

Maintenance
decision

Component M

. . .

. . .

Component 2

Degradation
state

Partial
observation

Maintenance policy

Component 1

Figure 1.3 – Modeling of the predictive maintenance problem with capacity constraints for a
system with M components. The blue and red arrows respectively represent the stochastic
deterioration of the components and the maintenance policy. At each maintenance slot, each
component is in a degradation state and the decision maker has access to a partial observation
on each component. Then, the decision maker applies a maintenance policy (red arrows) that
leads to a maintenance decision that impacts the degradation state of each component.

able Markov Decision Process (POMDP) framework.

The POMDP framework. We start by considering a system with one component. In such
problems, at each time step, the component is in a state s in some finite state space XS . The
decision maker does not observe s, but has access to an observation o that belongs to some
finite observation space XO , and is randomly emitted with probability p(o|s). Based on this
observation, the decision maker chooses an action a from some finite action space XA . The
component then transits randomly to a new state s′ in XS with probability p(s′|s, a) and the
decision maker obtains an immediate reward r (s, a, s′). The goal of the decision maker is to
find a policy δt

a|o , which represents a conditional probability of taking action a in XA given the
observation o at time t , maximizing the expected total reward over a finite horizon T .

The problem on which we focus is

max
δ∈∆

Eδ

[T∑
t=1

r (St , At ,St+1)

]
, (1.1)

where St , Ot and At are random variables representing the state, the observation and the action
at time t . The expectation in (1.1) over δ is taken according to the probability distribution Pδ

5

Chapter 1. Introduction

induced by the policy δ chosen in ∆, and defined as follows

Pδ
(
(St = st ,Ot = ot , At = at)16t6T ,ST+1 = sT+1

)= p(s1)
T∏

t=1
p(ot |st)p(st+1|st , at)δt

at |ot
(1.2)

for every
(
(st ,ot , at)16t6T , sT+1

)
in

(
XS ×XO ×XA

)T ×XS .

Problem (1.1) is known as the POMDP problem with memoryless policies, meaning that the
action taken at a time is only based on the current observation instead of the history of ob-
servations and actions. POMDPs generalize the Markov Decision Processes (MDPs), where the
decision maker has access to the state of the system. While MDPs can be solved in polynomial
time, the POMDP problem with memoryless policies is NP-hard. Unless P=NP, the fact that the
decision maker has only access to a partial observation makes the problem harder to solve.

One contribution in this dissertation is an Mixed-Integer Linear Program (MILP), which is a
standard tool in Operations Research, that provides an optimal policy of the POMDP problem
with memoryless policies. It formulates an optimization problem described by a linear objec-
tive function, linear constraints and integer variables with the following canonical form:

min
x

cTx

subject to Ax6 b

x> 0

x ∈Zp ×Rn−p ,

where b and c are real vectors and A is a real matrix. While the MDP maximization problem can
be solved using a linear program (see, e.g., [124]), i.e., by relaxing the integrality constraints,
we use integer variables to address the POMDP maximization problem (1.1). Such integer for-
mulations can be solved efficiently using off-the-shell optimization solvers. Since these solvers
use the Branch-and-Bound algorithm, it is natural to derive valid inequalities that improve the
quality of the bounds obtained when solving the problem without integrality constraints. A
second contribution is a collection of valid inequalities that help the resolution of the MILP
formulation. Numerical experiments show its efficiency.

The POMDP framework for the predictive maintenance problem with capacity constraints.
It is natural to assume that each component behaves as a POMDP. For each component the
degradation state, the partial observation and the maintenance decision (see Figure 1.3) are re-
spectively represented by the state, the observation and the action of a POMDP. For each com-
ponent, all the conditional probabilities p(o|s) and p(s′|s, a) are computed using the parame-
ters of the hidden Markov model. Given a system with M components, the problem consists
in M subproblems that are weakly linked by the capacity constraints that affect the actions
taken on each component. For instance, the capacity constraint “the number of maintained
components at each maintenance slot is not greater than K ” is modeled using the constraint∑M

m=1 am 6K , where am is the action on component m and equal to 1 if component m is main-
tained and 0 otherwise. Since the actions taken on each component are linked, a maintenance
policy has to be considered on the whole system. At each time t , the maintenance policy is of

6

1.3. Decision making with structured uncertainty

the form δt
a|o, where a = (a1, . . . , aM) and o = (o1, . . . ,oM) respectively represent the action and

observation of the system. For each component m, a transition (s, a, s′) leads to an immediate
reward defined as follows

r m(s, a, s′) =−Costm(maintenance)1maintain(a)−Costm(failure)1failure(s′),

where 1x (y) is equal to 1 if x = y and 0 otherwise.

If the decision maker has access to the degradation state of each component, then each sub-
problem reduces to a Markov decision process and the problem on the whole system is a weakly
coupled MDP [105]. In our case, the fact that the decision maker has only access to a partial
observations requires to extend this notion to weakly coupled POMDPs. In addition to the par-
tially observable aspect, a second difficulty when solving such a problem comes from the curse
of dimensionality. Indeed, the size of the system space grows exponentially with the number of
components of the system, which makes the usual algorithms computationally expensive. To
figure out this difficulty, one observes that encoding a maintenance policy δ requires a table of
the size roughly equals to T

∏M
m=1 |Xm

O ||Xm
A |, which is in general intractable.

To get around this difficulty, we introduce the notion of implicit policy. In opposition to ex-
plicit policies that fully encode the policy in the solution of a single optimization problem, the
implicit policies are the ones for which given an observation o, each vector (δt

a|o)a is computed
through a tailored optimization problem. It has a practical interest because the decision maker
does not need to compute the policies for all possible observations. Indeed, once an observa-
tion o is revealed at time t , it only requires to compute the vector (δt

a|o)a. Another contribution
described in Part I of this dissertation is an mixed-integer linear formulation that leverages the
one we introduce for the POMDP problem with memoryless policies and that is used to com-
pute a “good” implicit policy for the weakly coupled POMDP problem. Like the formulations
of Adelman and Mersereau [2] for weakly coupled MDPs, the main advantage of our formula-
tion is to contain a polynomial number of variables and constraints, which breaks the curse of
dimensionality. Again, we improve the formulation by adding a collection of inequalities in our
MILP formulation. In addition, we provide theoretical guarantees about the optimal value of
our MILP formulation by computing a lower bound and an upper bound.

1.3 Decision making with structured uncertainty

MDPs and POMDPs (Section 1.2) are specific cases of discrete stochastic optimization prob-
lems where the probability distribution of the random variables is assumed to satisfy some
structure specified through an influence diagram. Influence diagrams form a flexible tool that
enables to model a large class of stochastic optimization problems where the “nature” is as-
sumed to be structured. We introduce the optimization problem in influence diagrams through
a toy example.

The example is illustrated in Figure 1.4a. Consider a patient who consults a doctor. The patient
suffers from a disease D, which the doctor wants to diagnose. This disease appears on a pa-
tient with probability P(D), and leads to observable clinical symptoms represented by S, which
are randomly emitted with probability P(S|D). Based on the observation of the symptoms S,
the doctor has to decide which treatment T to apply on the patient. The treatment T and the

7

Chapter 1. Introduction

disease D give a response R0 of the patient with probability P(R0|T,D), which leads to a reward
r0(R0) indicating the presence of undesirable side effects. Then, based on the response R0, the
doctor decides if the disease requires a stronger medical intervention I . It finally gives a result
R1 with probability P(R1|I ,D), indicating if the intervention on the disease D was a success,
and it leads to a reward r1(R1). The disease D, the symptoms S, the responses R0 and R1, are
represented by random variables that are not controlled by the doctor. They are called chance
variables because their values are chosen by the “nature,” i.e., everything that is not controlled
by the doctor. In opposition to chance variables, the treatment T and the medical intervention
I are represented by random variables called decision variables, whose values get to be chosen
by the doctor. The functions r0 and r1 are the utility functions that depend respectively on the
responses R0 and R1. The goal of the doctor is to choose a strategy δ= (

δT (T |S),δI (I |R0)
)

max-
imizing his total expected utility Eδ

[
r0(R0)+r1(R1)

]
where the expectation is taken according to

the probability distributionPδ(D,S,T,R0, I ,R1) =P(D)P(S|D)δT (T |S)P(R0|T,D)δI (I |R0)P(R1|I ,D).

This type of problem can be encoded graphically using a directed acyclic graph, whose set of
vertices V contains three types of vertices: chance (V c), decision (V a) and utility vertices (V r)
corresponding respectively to chance variables, decision variables and utility functions. An in-
fluence diagram, introduced by Howard and Matheson [56], is a directed acyclic graph over
these vertices such that there are no outgoing arcs from a utility vertex. Figure 1.4a illustrates
the influence diagram that models the medical decision problem we described. Each chance
variable Xv , represented by a chance vertex v, is associated with a conditional probability dis-
tribution P(Xv |Xpa(v)) of Xv given Xpa(v), where Xpa(v) is the vector of random variables rep-
resented by the parents of v in the influence diagram, the tails of the incoming arcs. Each
utility function rv , represented by a utility vertex v, is associated with a deterministic function
rv that maps each instantiation Xpa(v) to a real value. The choices of the decision maker are
then modeled using a strategy δ= (δv)v∈V a that is a vector of conditional probability distribu-
tions δv (Xv |Xpa(v)) =P(Xv |Xpa(v)). Given a strategy δ, the joint probability distribution over all
the random variables writes down

Pδ(XV c∪V a = xV c∪V a) = ∏
v∈V c

P(Xv = xv |Xpa(v) = xpa(v))
∏

v∈V a

δv (Xv = xv |Xpa(v) = xpa(v)). (1.4)

The problem solved by the decision maker is the Maximum Expected Utility problem

max
δ∈∆

Eδ

[∑
v∈V r

rv (Xpa(v))

]
, (1.5)

where ∆ is the set of possible conditional probability distributions for each decision vertex.

The modeling power of an influence diagram can also be observed on the POMDPs described
in Section 1.2. The chance variables are the states (St)16t6T+1 and observations (Ot)16t6T ,
the decision variables are the actions (At)16t6T , and finally the utility variables are the rewards(
r (St , At ,St+1)

)
16t6T . The probability distribution Pδ of (1.2) can be written as (1.4) using the

influence diagram represented in Figure 1.4b. The goal is to choose δmaximizing the expected
total reward Eδ

[∑T
t=1 r (St , At ,St+1)

]
where the expectation is taken according to the probability

distribution Pδ. This problem can be represented using the influence diagram in Figure 1.4b.

It leads us to the question of finding a strategy that solves the maximum expected utility prob-

8

1.4. Statistical methodology for the airplane maintenance problem

DS

T

R0r0

I

R1r1

(a) The medical decision making problem

s1

o1

r1

a1

s2

o2

r2

a2

s3

o3

r3

a3

s4

(b) A POMDP with memoryless policy

Figure 1.4 – The two influence diagrams modeling the medical example and the POMDP exam-
ple. The circle, square and diamond vertices respectively represent the chance, decision and
utility vertices.

lem in an influence diagram. This question raises two scientific challenges. First, evaluating
a given strategy is already difficult. The difficulty of evaluating a strategy is the difficulty of
solving the inference problem in an influence diagram, whose difficulty is exponential in the
treewidth. Given a feasible strategy δ, a subset of vertices C ⊆V , the inference problem consists
in computing the marginal probability Pδ(XC = xC). Second, optimizing over the set of strate-
gies∆ is also difficult because of the huge number of possible vectors of conditional probability
distributions.

Part II focuses on addressing this second challenge. It generalizes the results obtained for the
POMDPs of Section 1.2 to any maximum expected utility problem in an influence diagram.
We emphasize that the results we obtain are based on the combination of several tools from
probabilistic graphical model theory and integer programming. A first contribution described
in Part II is an mixed-integer linear program that gives an optimal strategy of the maximum ex-
pected utility problem in influence diagrams. While the usual solutions are based on dynamic
programming like algorithms along the graph (see, e.g., [76, 81, 89]), our approach is based on
mathematical programming. A second contribution is a collection of valid inequalities that im-
proves our integer linear formulation. A third contribution is a characterization of the “easy”
case of influence diagrams, i.e., the influence diagrams such that the maximum expected utility
problem becomes tractable. The results in Part II have been partially published in Parmentier
et al. [117] and some of their proofs are based on other technical results in the preprint Cohen
and Parmentier [27]. Several results have been added after the publication of this paper.

1.4 Statistical methodology for the airplane maintenance problem

Finally we wish to use of the policy of weakly coupled POMDP mentioned in Section 1.2 in our
applied problem. However, modeling the maintenance problem of a real-life system as a pre-
dictive maintenance problem as in Section 1.1 is not immediate. It is particularly the case of the
airplane maintenance problem at Air France. Indeed, the available data at each maintenance
slots are the sensors data, which correspond to the signal values recorded during flights. An

9

Chapter 1. Introduction

example of sensor signal is the value of the pressure in an equipment recorded at 1Hz during a
flight. Hence, our dataset contains several years of sensor data and several failure dates. Con-
sequently, expressing the airplane maintenance problem as a predictive maintenance problem
with capacity constraints requires to compute the hidden Markov models of the equipment
deterioration processes from our dataset. We propose a preliminary statistical work to cast the
airplane maintenance problem (Figure 1.1) as a predictive maintenance problem with capacity
constraints (Figure 1.3).

It raises three practical issues. First, in the predictive maintenance problem with capacity con-
straints the decision maker has access to a discrete indicator as partial observation, while the
observations in the airplane maintenance problem correspond to sensor data, which are con-
tinuous and high-dimensional. Hence, it requires to develop a methodology that enables to
transform the signal values into discrete indicators.

The second issue concerns the learning phase. Based on the historical data, the aim is to esti-
mate the parameters that fully define the adequate hidden Markov model for each equipment,
which is required as inputs of the predictive maintenance problem with capacity constraints.

The third issue is about the interpretability of the approach. Indeed, even if they do not impact
the safety of the flights,1 the maintenance decisions we support are not benign. Maintenance
operations such as unmounting the landing gear of a long-haul airplane are expensive and time
consuming. And if a failure happens, Air France will have to cancel the next flights operated by
the airplane, which is even more expensive. Thus, if we want our model to be used in practice,
the predictions of the statistical model, the hidden Markov model, as well as the maintenance
decisions resulting from a maintenance policy, must be trusted by the maintenance engineers.
An additional difficulty in this point is the fact that the dataset we consider contains a small
amount of failures because Air France tries to avoid them as much as possible and we have a
small amount of sensor data of the behavior of an equipment right before it fails. Consequently,
we cannot validate the statical model using experimental validations.

Our approach is described in Chapter 10 and addresses these issues by combining four steps
that use several statistical tools. First, since the data we handle are high-dimensional and noisy,
we transform the collection of time series recorded during a flight by a reasonable number of
relevant features. For instance, if a sensor records the evolution of the pressure in an equipment
during a flight, an example of feature is the average or the standard deviation of the pressure
over the flight length. Second, we learn the parameters of a Gaussian Hidden Markov model
that predicts the evolution of the vector of features. Such a model is a hidden Markov model
where the observations are continuous and are emitted according to a Gaussian probability
distribution. Third, we transform this Gaussian hidden Markov model into a hidden Markov
model with discrete observations using a decision tree. It takes a vector of continuous obser-
vations in input and returns a discrete indicator. The mechanism inside the decision tree is
a combination of binary splitting rules, such as “is the average pressure above 20 bars?,” that
leads to a discrete indicator, whose values correspond to different failure risk levels.

These binary rules can be easily understood and validated by maintenance engineers, which

1A critical equipment fails when it reaches a conservative threshold set by regulation agencies, and beyond which
the airplanes are not allowed to take off again.

10

1.4. Statistical methodology for the airplane maintenance problem

addresses the third issue. Since this indicator is discrete, it also addresses the first issue. Finally,
based on the Gaussian hidden Markov model and the decision tree we compute the parame-
ters of the hidden Markov model with the discrete indicators, which addresses the second issue.
Using this approach enables to cast the airplane maintenance problem at Air France as a pre-
dictive maintenance problem with capacity constraints. The numerical experiments show that
our maintenance policy give “good” numerical results compared to those obtained by using Air
France’s maintenance policy.

11

2 Introduction (Français)

Plusieurs thématiques de Recherche Opérationnelle sont développées dans cette thèse et mo-
tivées par un problème de maintenance de notre partenaire industriel Air France.

Contexte. La quantité de données disponibles sur les systèmes industriels a énormément
augmenté durant les dernières années. Le but de la maintenance prédictive est d’exploiter
ces données afin de prédire les pannes, de réparer les équipements avant qu’ils ne tombent en
panne et de réduire le coûts globaux de maintenance. Les aspects clés de la modélisation d’un
problème de maintenance prédictive dépendent essentiellement du contexte industriel. Par
exemple, les différences dans le nombre d’équipements à entretenir, les coûts de maintenance,
les coûts de panne, ou la qualité des données disponibles peuvent amener des modélisations
très différentes. Dans cette thèse, nous développons un cadre d’optimisation guidée par les
données pour le problème de maintenance des avions chez Air France.

La maintenance prédictive pour Air France. Les performances des compagnies aériennes
dépendent de la capacité à assurer tous les vols avec leurs avions de manière fiable. Comme
on peut l’observer sur la figure 1.1, les planning horaires des avions sont denses, avec plusieurs
vols entre chaque plage de maintenance. Sur les avions de nouvelle génération, des signaux
échantillonnés à 1Hz sont enregistrés par des capteurs durant les vols. Pour chaque équipement,
Air France a accès à un ensemble de séries temporelles qui correspondent à différents types
de signaux comme des températures, des pressions, des intensités, ou des signaux binaires.
Lorsqu’un avion arrive en maintenance, Air France utilise ces données afin de choisir quels
équipements doivent être réparés. Les décisions de maintenance doivent assurer un équilibre
entre les coûts de sur-maintenance et les coûts dus aux pannes sur les équipements. En outre,
comme les plages de maintenance sont rares, Air France doit prioriser entre les équipements.

Les sujets de recherche traités dans cette thèse. Le problème de maintenance des avions
chez Air France est de proposer une méthodologie d’aide à la décision pour trouver une poli-
tique de maintenance (en rouge sur la figure 2.1), qui prend en entrée les données brutes disponibles
au début de la plage de maintenance, et retourne en sortie les équipements à réparer. Pour
cela, nous n’avons pas de modèle ou de simulateur de l’évolution des équipements, mais nous
avons accès à un historique de plusieurs années de données brutes et quelques dates de panne.

13

Chapter 2. Introduction (Français)

Vol

Décision de
maintenance

Décision de
maintenance

.

Données brutes Données brutesÉquipement 1

. . .

Équipement M

Politique de
maintenance

Opérations de
maintenance

Opérations de
maintenance

Figure 2.1 – Le problème de maintenance d’un avion : on cherche une politique de mainte-
nance (flèches rouges) qui prend en entrée les données brutes de M équipements et retourne
la décision de maintenance en sortie.

Le problème que nous considérons est un problème d’optimisation stochastique multi-étapes
guidée par les données. Cela nous mène vers trois axes de recherche au carrefour de la recherche
opérationnelle et l’apprentissage machine.

Un premier axe de recherche s’intéresse au processus de décision d’un problème de mainte-
nance prédictive que nous formalisons comme un problème d’optimisation séquentiel avec
incertitudes. Pour chaque plage de maintenance, le décideur choisit dynamiquement un nom-
bre restreint de composants à réparer. L’incertitude vient des pannes, qu’on modélise comme
des événements aléatoires qui peuvent apparaître durant les jours de fonctionnement du sys-
tème. On suppose que les composants évoluent de manière indépendante mais les décisions
de maintenance prises sur chacun des composants sont liées par des contraintes de capac-
ité. Ce problème appartient à une large classe de problèmes d’optimisation séquentielle avec
plusieurs processus indépendants qui sont faiblement liés à chaque pas de temps par les dé-
cisions. Ces problèmes sont appelés programmes dynamiques faiblement couplés [2]. Une
particularité du problème de maintenance prédictive est que les décisions sont prises à par-
tir d’observations bruitées, ce qui rend le système partiellement observable. Nous proposons
plusieurs méthodes avec des garanties qui calculent de “bonnes” solutions pour ces problèmes
d’optimisation.

Le second axe de recherche qui structure cette thèse se porte sur l’étude des problèmes d’opti-
misation stochastique où l’aléa a une certaine structure appelée diagramme d’influence. Cette
classe de problème contient les programmes dynamiques faiblement couplés avec observa-
tions partielles qui modélisent le problème de maintenance des avions. Nous proposons un
algorithme exact basé sur des outils de recherche opérationnelle et d’apprentissage machine
exploitant la structure de l’aléa.

Enfin, le troisième axe de recherche aborde des questions statistiques qui viennent du prob-
lème pratique d’Air France. En effet, transformer le problème de maintenance des avions
comme des programmes dynamiques faiblement couplés avec observations partielles néces-

14

2.1. Le problème de maintenance prédictive avec contraintes de capacité

site d’apprendre un modèle statistique qui représente l’évolution de la détérioration de chaque
équipement au cours du temps. De plus, les exigences d’Air France imposent que ce mod-
èle statistique soit interprétable. À l’aide d’une base de données brutes et de plusieurs dates
de panne sur l’ensemble de la flotte d’avions, on propose une méthodologie qui apprend un
modèle statistique qui peut être interprété par les ingénieurs de la maintenance.

La section 2.1 introduit de manière informelle le problème de maintenance prédictive avec
contraintes de capacité. La section 2.2 résume nos principales contributions pour le problème
d’optimisation des programmes dynamiques faiblement couplés avec observations partielles.
La section 2.3 détaille nos contributions théoriques au problème d’optimisation dans les di-
agrammes d’influence. La section 2.4 décrit nos contributions pour résoudre les questions
statistiques qui proviennent du problème de maintenance des avions.

Cette thèse commence en partie I par proposer des algorithmes pour les programmes dy-
namiques faiblement couplés avec observations partielles, alors que la partie III explique com-
ment nous les exploitons pour le problème de maintenance des avions chez Air France. Le
contenu de la partie II correspond à nos travaux sur le problème d’optimisation dans les di-
agrammes d’influence. A la fin de chaque chapitre de cette thèse, on trouvera une section
contenant des remarques bibliographiques en rapport avec le sujet du même chapitre.

2.1 Le problème de maintenance prédictive avec contraintes de ca-
pacité

Dans l’industrie, planifier la maintenance d’un système revient à choisir quand on souhaite in-
tervenir sur le système durant ses périodes de fonctionnement et choisir quelles actions réaliser
durant ces interventions. Dans notre cas, les dates de maintenance de chaque avion sont déjà
fixées par le programme de vol. C’est pourquoi le problème de maintenance prédictive que
nous considérons se concentre seulement sur la deuxième problématique : choisir les actions
à prendre durant des plages de maintenance déjà fixées.

Le système que nous considérons contient plusieurs composants qui évoluent chacun au cours
du temps. En général, les systèmes considérés sont mécaniques. Cela nous assure que chaque
composant se détériore au cours du temps et tombe en panne après plusieurs heures/jours
de fonctionnement. Les pannes apparaissent durant les jours de fonctionnement des com-
posants du système entre deux plages de maintenance. À chaque plage de maintenance, le dé-
cideur choisit les composants à réparer et ses choix sont basés sur une observation de l’état de
dégradation de chaque composant. Cet état de dégradation caractérise les différents modes de
performance de chaque composant et est représenté par un indicateur discret dont les valeurs
vont de l’état “fonctionnement optimal” à l’état “panne”. Le processus de détérioration d’un
composant est stochastique dans le sens où un composant passe d’un état de dégradation s à un
état de dégradation plus critique s′ selon une distribution de probabilité. Une hypothèse sou-
vent utilisée dans l’industrie est de supposer que le processus de détérioration est markovien,
c-à-d, l’état actuel ne dépend que l’état au temps précédent. La figure 2.2 illustre la modélisa-
tion du processus de détérioration d’un composant.

Cependant, dans beaucoup de problèmes pratiques le décideur a uniquement accès à une ob-
servation partielle de l’état de dégradation d’un composant, qui est représenté par un indica-

15

Chapter 2. Introduction (Français)

Processus
caché

Fonctionnement
optimal

État de
dégradation 1

État de
dégradation 2

Panne

Indicateurs bruités observés

Figure 2.2 – L’évolution de l’état de dégradation d’un composant avec quatre états. Le com-
posant débute dans son état le plus sain et évolue de manière stochastique (flèches bleues)
vers un état plus dégradé. Pour chaque état de dégradation, le décideur a accès à une observa-
tion bruitée qui est émise de manière aléatoire (flèches bleues en zigzag).

teur discret bruité. En effet, cet indicateur correspond souvent à des messages d’erreurs qui
résultent de la détection d’un comportement anormal des mesures physiques sur les com-
posants. Cela rend l’observation partielle très sensible aux erreurs de mesure, et bruitée par
rapport à l’état de dégradation. Les flèches bleues en zigzag représentent ces observations
bruitées sur la figure 2.2. Ce modèle stochastique est une chaîne de Markov cachée. C’est pour
cela qu’à chaque plage de maintenance, la décision est basée sur les observations partielles des
composants au lieu des états de dégradation comme sur la figure 2.3.

Les composants évoluent de manière indépendante entre deux plages de maintenance, c-à-d,
le processus de détérioration d’un composant n’influence pas le processus de détérioration des
autres composants. Dans un contexte industriel, les composants sont couplés par les décisions
de maintenance qui doivent respecter des contraintes de capacité. C’est le cas de notre prob-
lème : les décisions de maintenance du problème de maintenance des avions doivent satisfaire
la contrainte suivante

Le nombre de composants qu’on peut réparer durant une plage de maintenance ne peut
dépasser K .

Alors qu’il serait plus simple de considérer le problème de maintenance de chacun des com-
posants indépendamment, ces contraintes forcent le décideur à considérer l’évolution du sys-
tème complet. Lorsqu’on répare un composant, on suppose que son état de dégradation re-
tourne à l’état de “fonctionnement optimal”. Sinon, il continue à évoluer vers un état plus dé-
gradé. Réparer un composant amène un coût de maintenance qui est significativement moins
élevé que le coût de panne.

Le problème de maintenance prédictive avec contraintes de capacité est résumé sur la fig-
ure 2.3. Choisir une politique de maintenance revient à choisir pour chaque plage de main-

16

2.2. Processus de décisions avec observations partielles

Décision de
maintenance

Composant M

. . .

. . .

Composant 2

État de
dégradation

Observation
partielle

Politique
de maintenance

Composant 1

Figure 2.3 – Modélisation du problème de maintenance prédictive avec contraintes de capacité
pour un système de M composants. Les flèches bleues et rouges représentent respectivement
la détérioration stochastique des composants et la politique de maintenance. À chaque plage
de maintenance, chaque composant est dans un état de dégradation et le décideur a accès à
une observation partielle pour chaque composant. Puis le décideur applique une politique de
maintenance (flèches rouges) qui retourne une décision de maintenance qui impacte l’état de
dégradation de chaque composant.

tenance, pour chaque observation partielle possible, une décision de maintenance qui satis-
fait les contraintes de capacité. Alors, l’objectif du décideur est de choisir une politique de
maintenance qui minimise l’espérance des coûts qui s’écrivent comme la somme des coûts
de maintenance et des coûts de panne. Dans le chapitre 3 on formalise mathématiquement
le problème de maintenance prédictive avec contraintes de capacité. Cela soulève alors deux
questions scientifiques : Comment transforme-t-on le problème de maintenance des avions
en un problème de maintenance prédictive avec contraintes de capacité (section 2.4), et, com-
ment trouve-t-on une “bonne” politique de maintenance (section 2.2) ?

2.2 Processus de décisions avec observations partielles

Nous débutons notre discussion sur le choix d’une “bonne” politique de maintenance en in-
troduisant une modélisation mathématique adéquate pour le problème de maintenance pré-
dictive avec contraintes de capacité. Comme le processus de détérioration d’un composant
est markovien et que le décideur a seulement accès à une observation partielle, on formalise
de manière naturelle le problème comme un Processus de Décision Markovien Partiellement
Observable (POMDP)1.

1POMDP pour Partially Observable Markov Decision Process en anglais.

17

Chapter 2. Introduction (Français)

Le cadre des POMDPs. On commence par considérer un système avec un composant. Pour
de tels problèmes, à chaque pas de temps, le composant est dans un état s qui appartient à un
espace d’états fini XS . Le décideur n’observe pas s, mais a accès à une observation o qui appar-
tient à un espace d’observation fini XO , et qui est émis aléatoirement avec probabilité p(o|s). À
partir de cette observation, le décideur choisit une action a qui appartient à un espace d’action
fini XA . Le composant évolue aléatoirement vers un nouvel état s′ dans XS avec probabilité
p(s′|s, a) et le décideur reçoit une récompense r (s, a, s′). L’objectif du décideur est de trou-
ver une politique δt

a|o , qui représente la probabilité conditionnelle de prendre une action a
dans XA sachant l’observation o au temps t , qui maximise l’espérance totale de la récompense
jusqu’à un horizon fini T.

Le problème auquel nous nous intéressons est

max
δ∈∆

Eδ

[T∑
t=1

r (St , At ,St+1)

]
, (2.1)

où St , Ot et At sont des variables aléatoires qui représentent l’état, l’observation et l’action au
temps t . L’espérance dans l’expression (2.1) est prise selon la distribution de probabilité Pδ
induite par une politique δ choisie dans ∆, et définie de la manière suivante

Pδ
(
(St = st ,Ot = ot , At = at)16t6T ,ST+1 = sT+1

)= p(s1)
T∏

t=1
p(ot |st)p(st+1|st , at)δt

at |ot
(2.2)

pour tout
(
(st ,ot , at)16t6T , sT+1

)
dans

(
XS ×XO ×XA

)T ×XS .

Le problème (2.1) correspond au problème POMDP avec politique sans mémoire, ce qui sig-
nifie que l’action prise à un certain temps ne dépend que de l’observation courante au lieu
de dépendre de l’historique des observations et des actions passées. Les POMDPs sont une
généralisation des Processus de Décision Markovien (MDPs) où le décideur a accès à l’état courant
du système. Alors que les MDPs peuvent être résolus en temps polynomial, le problème POMDP
avec politiques sans mémoire est NP-difficile [87]. À moins que P=NP, le fait que le décideur ait
seulement accès à une observation partielle rend le problème plus difficile à résoudre.

Une contribution de cette thèse est un Programme Linéaire en Nombres Entiers (PLNE), un outil
standard de recherche opérationnelle, qui donne une politique optimale du problème POMDP
avec politiques sans mémoire. Un tel problème d’optimisation se formule par une fonction
objectif linéaire, des contraintes linéaires et des variables entières avec la forme canonique
suivante :

min
x

cTx

sous les contraintes Ax6 b

x> 0

x ∈Zp ×Rn−p ,

où b et c sont des vecteurs réels et A une matrice réelle.

Alors que le problème de maximisation d’un MDP peut être résolu par un programme linéaire
(voir, p. ex., [124]), c-à-d, sans contraintes d’intégrité, notre PLNE résout le problème de max-
imisation du POMDP (2.1). Ces formulations en nombres entiers peuvent être résolues de

18

2.2. Processus de décisions avec observations partielles

manière efficace avec des solveurs commerciaux. Comme ces solveurs utilisent l’algorithme
de séparation et évaluation2, il est usuel d’introduire des inégalités valides qui améliorent la
qualité des bornes obtenues lorsqu’on résout le problème sans les contraintes d’intégrité. Une
seconde contribution de cette thèse est un ensemble d’inégalités valides qui aident la résolu-
tion de notre PLNE. Plusieurs expérimentations numériques montrent l’efficacité de ces iné-
galités valides.

Le cadre du POMDP pour le problème de maintenance prédictive avec contraintes de ca-
pacité. Il est naturel de supposer que chaque composant se comporte comme un POMDP.
Pour chaque composant l’état de dégradation, l’observation partielle et la décision de mainte-
nance (voir figure 2.3) sont respectivement représentés par l’état, l’observation et l’action d’un
POMDP. Pour chaque composant, toutes les probabilités conditionnelles p(o|s) et p(s′|s, a)
sont calculées à partir des paramètres de la chaîne de Markov cachée. Pour un système de M
composants, le problème se divise en M sous-problèmes qui sont faiblement couplés par les
contraintes de capacité qui affectent les actions prises sur chaque composant. Par exemple, la
contrainte de capacité “le nombre de composants qu’on peut réparer durant une plage de main-
tenance ne peut dépasser K ,” est modélisée par la contrainte

∑M
m=1 am 6 K , où am représente

l’action prise sur le composant m et vaut 1 si le composant m est réparé et 0 sinon. Comme
les actions prises sur chaque composant sont couplées, la politique de maintenance doit être
considérée sur l’ensemble du système. À chaque pas de temps t , la politique de maintenance
est de la forme δt

a|o, où a = (a1, . . . , aM) et o = (o1, . . . ,oM) représentent respectivement l’action
et l’observation du système. Pour chaque composant m, une transition (s, a, s′) amène une
récompense immédiate

r m(s, a, s′) =−Coûtm(maintenance)1réparer(a)−Coûtm(panne)1panne(s′),

où 1x (y) vaut 1 si x = y et 0 sinon.

Si un décideur a accès à l’état de dégradation de chaque composant, alors chaque sous-problème
est un problème de MDP et le problème sur le système complet est un ensemble de MDPs
faiblement couplés [105]. Dans notre cas, le fait que le décideur ait uniquement accès à des ob-
servations partielles nécessite d’introduire la notion de POMDPs faiblement couplés. En plus
de l’aspect partiellement observé, une deuxième difficulté dans la résolution d’un tel prob-
lème vient de la malédiction de la dimension. En effet, les tailles des espaces grandissent
exponentiellement avec le nombre de composants du système, ce qui rend les algorithmes
usuels coûteux en ressources informatiques. Pour comprendre cette difficulté, on peut ob-
server qu’encoder une politique de maintenance δ revient à stocker une table de taille environ
égale à T

∏M
m=1 |Xm

O ||Xm
A |, ce qui est en générale infaisable.

Pour contourner cette difficulté, on introduit la notion de politique implicite. À l’inverse des
politiques explicites qui encodent complètement la politique comme une solution d’un prob-
lème d’optimisation, les politiques implicites sont des politiques telles que, pour chaque ob-
servation o, le vecteur (δt

a|o)a est calculé à l’aide d’un problème d’optimisation adapté. Cela a
notamment un intérêt pratique parce que le décideur n’a pas besoin de calculer les valeurs des

2Branch-and-Bound en anglais

19

Chapter 2. Introduction (Français)

politiques pour toutes les observations. En effet, une fois qu’une observation o est révélée au
temps t , on a seulement besoin de calculer le vecteur (δt

a|o)a. Une autre contribution décrite
dans la partie I de cette thèse est une formulation PLNE basée sur celle qu’on a introduit pour
le problème de POMDP avec politiques sans mémoire et on l’utilise pour calculer une “bonne”
politique implicite pour le problème de POMDPs faiblement couplés. Comme les formulations
de Adelman and Mersereau [2] pour les MDPs faiblement couplés, l’avantage principal de notre
formulation est de contenir un nombre polynomial de variables et de contraintes, ce qui casse
la malédiction de la dimension. Une fois de plus, on améliore notre formulation en ajoutant un
ensemble d’inégalités valides pour notre formulation PLNE. De plus, on donne des garanties
théoriques sur la valeur optimale de notre formulation PLNE en calculant une borne inférieure
et une borne supérieure.

2.3 Prise de décision avec une incertitude structurée

Les MDPs et les POMDPs (voir section 2.2) sont des cas particuliers de problème d’optimisation
stochastique discret où la distribution de probabilité des variables aléatoires satisfait une cer-
taine structure qu’on appelle diagramme d’influence. Le diagramme d’influence est un outil
flexible qui permet de modéliser un grand ensemble de problèmes d’optimisation stochastique
où on suppose que la “nature” est structurée. On introduit le problème d’optimisation dans les
diagrammes d’influence à travers un exemple simple.

Cet exemple est représenté en figure 2.4a. On considère un patient qui va consulter un docteur.
Le patient souffre d’une maladie D, que le docteur souhaite déterminer. Cette maladie apparaît
sur un patient avec la probabilité P(D), et elle donne des symptômes observables S, qui sont
émis aléatoirement avec probabilité P(S|D). À partir de l’observation des symptômes S, le doc-
teur décide quel traitement T appliquer au patient. Le traitement T et la maladie D donnent
une réponse R0 du patient avec probabilité P(R0|T,D), avec une récompense r0(R0) indiquant
la présence ou non d’effets secondaires indésirables. Ensuite, à partir de cette réponse R0 le
docteur décide si la maladie nécessite une opération médicale plus importante I . On obtient
une nouvelle réponse R1 avec probabilité P(R1|I ,D), qui indique si l’opération sur la maladie
D a été un succès ou non, et on modélise cela avec une récompense r1(R1). La maladie D, les
symptômes S, les réponses R0 et R1, représentent les variables aléatoires sur lesquels le doc-
teur n’a pas de contrôle. Elles sont appelées variables chances parce que leurs valeurs sont
choisies par la “nature”, c-à-d, tout ce sur quoi le docteur n’a pas le contrôle. À l’inverse des
variables chances, le traitement T et l’opération médicale I sont représentés par des variables
aléatoires qu’on appelle variables de décision, dont les valeurs sont choisies par le docteur. Les
fonctions r0 et r1 sont appelées fonctions d’utilité qui dépendent respectivement des réponses
R0 et R1. L’objectif du docteur est de choisir une stratégie δ= (

δT (T |S),δI (I |R0)
)

qui maximise
l’espérance de son utilité Eδ

[
r0(R0)+ r1(R1)

]
où l’espérance est prise selon la distribution de

probabilité Pδ(D,S,T,R0, I ,R1) =P(D)P(S|D)δT (T |S)P(R0|T,D)δI (I |R0)P(R1|I ,D).

Ce type de problème peut être encodé graphiquement à l’aide d’un graphe orienté acyclique,
dont l’ensemble de sommets V contient trois sortes de sommets : les sommets chances (V s),
décisions (V a) et utilités (V r) qui correspondent respectivement aux variables chances, de déci-
sion et d’utilité. Le diagramme d’influence, qui a été introduit par Howard and Matheson [56],
est un graphe orienté acyclique sur cet ensemble de sommets et où il n’y a pas d’arcs sortants

20

2.3. Prise de décision avec une incertitude structurée

DS

T

R0r0

I

R1r1

(a) Le problème de décision médicale

s1

o1

r1

a1

s2

o2

r2

a2

s3

o3

r3

a3

s4

(b) Un POMDP avec politique sans mémoire.

Figure 2.4 – Les deux diagrammes d’influence qui modélisent l’exemple de la décision médicale
et le POMDP avec politique sans mémoire. Les sommets en forme de cercles, carrés et losanges
représentent respectivement les sommets chances, décisions et utilités.

des sommets utilités. La figure 2.4a représente le diagramme d’influence qui modélise le prob-
lème de décision médicale qu’on a décrit précédemment. Pour chaque variable chance Xv ,
représenté par un sommet chance v, on associe une probabilité conditionnelle P(Xv |Xpa(v))
de Xv sachant Xpa(v), où Xpa(v) est un vecteur de variables aléatoires qui correspondent aux
parents de v dans le diagramme d’influence, c’est-à-dire l’ensemble de sommets qui ont un
arc sortant vers v. Pour chaque fonction utilité rv , représentée par le sommet utilité v, on as-
socie une fonction déterministe rv qui à chaque valeur instanciée de Xpa(v) retourne un réel.
Les choix du décideur sont modélisés à l’aide d’une stratégie δ = (δv)v∈V a qui est un vecteur
de probabilités conditionnelles δv (Xv |Xpa(v)) = P(Xv |Xpa(v)). Étant donnée une stratégie δ, la
distribution de probabilité jointe sur l’ensemble des variables aléatoires s’écrit

Pδ(XV c∪V a = xV c∪V a) = ∏
v∈V c

P(Xv = xv |Xpa(v) = xpa(v))
∏

v∈V a

δv (Xv = xv |Xpa(v) = xpa(v)). (2.4)

Le problème d’optimisation que le décideur cherche à résoudre est le problème du maximum
d’utilité espérée

max
δ∈∆

Eδ

[∑
v∈V r

rv (Xpa(v))

]
, (2.5)

où ∆ est l’ensemble des probabilités conditionnelles possibles pour chaque sommet décision.

On peut observer la capacité de modélisation des diagrammes d’influence sur l’exemple des
POMDPs décrit dans la section 2.2. Les variables chances sont les états (St)16t6T+1 et les ob-
servations (Ot)16t6T , les variables de décision sont les actions (At)16t6T , et puis les variables
d’utilité sont les récompenses

(
r (St , At ,St+1)

)
16t6T . La distribution de probabilité Pδ en (2.2)

peut être écrite sous la forme (2.4) à l’aide d’un diagramme d’influence représenté sur la fig-
ure 2.4b. L’objectif est alors de choisir une politique δ qui maximise la récompense totale es-
pérée Eδ

[∑T
t=1 r (St , At ,St+1)

]
où l’espérance est prise selon la distribution de probabilité Pδ.

On s’intéresse alors à la question de trouver une stratégie qui résout le problème du maximum

21

Chapter 2. Introduction (Français)

d’utilité espérée dans un diagramme d’influence. Ce problème soulève deux questions scien-
tifiques. Premièrement, évaluer une stratégie est déjà difficile. En effet, cela revient à résoudre
le problème d’inférence dans un diagramme d’influence. Étant donnés une stratégie réalisable
δ et un sous-ensemble de sommets C ⊆V , le problème d’inférence consiste à calculer la proba-
bilité marginalePδ(XC = xC). Deuxièmement, optimiser sur l’ensemble des stratégies possibles
∆ est aussi difficile du fait que le nombre possible de vecteurs de probabilités conditionnelles
est très important.

Dans la partie II, on se focalise sur la deuxième question. On généralise les résultats obtenus
pour les POMDPs de la section 2.2 à tout problème du maximum d’utilité espérée dans un
diagramme d’influence. Nos résultats sont basés sur plusieurs outils de la théorie des mod-
èles graphiques probabilistes et la programmation mathématique en nombres entiers. Une pre-
mière contribution décrite dans la partie II est un PLNE qui donne une stratégie optimale du
problème du maximum d’utilité espérée dans un diagramme d’influence. Alors que les so-
lutions proposées dans la littérature sont basées sur des algorithmes de type programmation
dynamique sur le graphe (voir, p. ex., [76, 81, 89]), notre approche est basée sur la program-
mation mathématique. Une seconde contribution est un ensemble d’inégalités valides pour
notre formulation en nombres entiers. Une troisième contribution est une caractérisation du
cas “simple” de diagramme d’influence, c-à-d, les diagrammes d’influence tels que le problème
du maximum d’utilité espérée est plus facile à résoudre. Une partie des résultats de la partie II
a été publiée dans Parmentier et al. [117]. Plusieurs nouveaux résultats ont été ajoutés après la
publication de cet article.

2.4 Une méthodologie statistique pour le problème de maintenance
des avions

On souhaite utiliser notre politique pour les POMDPs faiblement couplés, mentionnée dans
la section 2.2, pour nôtre problème appliqué. Cependant, modéliser un problème de mainte-
nance d’un système réel comme un problème de maintenance prédictive avec contraintes de
capacité comme dans la section 2.1 n’est pas immédiat. En particulier, c’est le cas de notre
problème de maintenance des avions chez Air France. En effet, les données disponibles à
chaque plage de maintenance sont des données brutes enregistrées par les capteurs sur les
équipements des avions et correspondent aux valeurs de signaux enregistrés durant les vols.
Un exemple de signal enregistré par un capteur est l’évolution de la pression au sein d’un
équipement échantillonnée à 1Hz durant un vol. C’est pourquoi notre base de données con-
tient plusieurs années de données brutes et quelques dates de panne. Par conséquent, ex-
primer le problème de maintenance des avions comme un problème de maintenance pré-
dictive avec contraintes de capacité nécessite le calcul des paramètres des chaînes de Markov
cachées qui modélisent les processus de détérioration des équipements à partir de cette base
de données. Nous proposons une méthodologie statistique préliminaire qui permet de trans-
former le problème de maintenance des avions (figure 2.1) en un problème de maintenance
prédictive avec contraintes de capacité (figure 2.3).

Cela soulève trois questions pratiques. Premièrement, dans le problème de la maintenance
prédictive avec contraintes de capacité, le décideur a accès à un indicateur discret comme
observation partielle, alors que les observations du problème de la maintenance des avions

22

2.4. Une méthodologie statistique pour le problème de maintenance des avions

correspondent à des données brutes, qui sont continues et en grande dimension. Il est donc
nécessaire de développer une méthodologie qui permette de transformer les valeurs des sig-
naux en indicateurs discrets.

La deuxième question concerne la phase d’apprentissage. Sur la base des données historiques,
l’objectif est d’estimer les paramètres qui définissent complètement le modèle de Markov caché
pour chaque équipement, et qui sont nécessaires comme entrées du problème de maintenance
prédictive avec les contraintes de capacité.

La troisième question concerne l’interprétabilité de l’approche. En effet, même si elles n’ont
pas d’impact immédiat sur la sécurité des vols3, les décisions de maintenance que nous sug-
gérons ne sont pas bénignes. Les opérations de maintenance telles que le démontage du train
d’atterrissage d’un avion long-courrier sont coûteuses et prennent du temps. Et si une panne
se produit, Air France devra annuler les prochains vols effectués par l’avion, ce qui est encore
plus coûteux. Alors, si nous voulons que notre modèle soit utilisé dans la pratique, les prédic-
tions du modèle statistique, le modèle de Markov caché, ainsi que les décisions de maintenance
résultant d’une politique de maintenance, doivent être fiables du point de vue des ingénieurs
de maintenance. Une difficulté supplémentaire sur ce point est le fait que la base données que
nous considérons contient un faible nombre de pannes du fait qu’Air France essaie de les éviter
autant que possible et que nous disposons d’un faible nombre de données brutes correspon-
dant à un comportement défaillant d’un équipement avant la panne. Par conséquent, nous ne
pouvons pas valider le modèle statistique à l’aide de validations expérimentales.

Notre approche est décrite dans le chapitre 10 et aborde ces questions en combinant quatre
étapes qui utilisent plusieurs outils statistiques. Premièrement, comme les données brutes que
nous traitons sont en grande dimension et bruitées, nous transformons les séries temporelles
enregistrées pendant un vol par un nombre raisonnable d’attributs pertinents. Par exemple,
si un capteur enregistre l’évolution de la pression dans un équipement pendant un vol, un ex-
emple d’attribut est la moyenne ou l’écart-type de la pression sur la durée du vol. Ensuite,
nous apprenons les paramètres d’un modèle de Markov caché gaussien qui prédit l’évolution
du vecteur des attributs. Un tel modèle est un modèle de Markov caché où les observations
sont continues et sont émises selon une distribution de probabilité gaussienne. Troisième-
ment, nous transformons ce modèle de Markov caché gaussien en un modèle de Markov caché
avec observations discrètes en utilisant un arbre de décision. Il prend un vecteur d’observations
continues en entrée et renvoie un indicateur discret. Le mécanisme au sein d’un arbre de dé-
cision est une combinaison de règles binaires telles que “est-ce que la pression moyenne est
supérieure à 20 bars ?”, qui conduit à un indicateur discret, dont les valeurs correspondent aux
différents niveaux de risques de panne.

Ces règles binaires peuvent être facilement comprises et validées par les ingénieurs de la main-
tenance, ce qui répond au troisième problème. Comme cet indicateur est discret, il répond
également à la première question. Enfin, à partir du modèle de Markov caché gaussien et de
l’arbre de décision, nous calculons les paramètres du modèle de Markov caché avec indica-
teurs discrets, ce qui répond au deuxième problème. L’utilisation de cette approche permet de
considérer le problème de maintenance des avions chez Air France comme un problème de

3Un équipement critique tombe en panne lorsqu’il atteint un seuil conservatif fixé par les agences de régulation,
et au-delà duquel les avions ne sont plus autorisés à décoller.

23

Chapter 2. Introduction (Français)

maintenance prédictive avec contraintes de capacité. Les expérimentations numériques mon-
trent que notre politique de maintenance donne de “bons” résultats numériques comparés à
ceux obtenus en utilisant la politique de maintenance d’Air France.

24

Part IInteger programming for predictive
maintenance

25

3 Predictive maintenance with capacity
constraints

This chapter formalizes the predictive maintenance problem with capacity constraints as a Par-
tially Observable Markov Decision Process (POMDP). We recall the context of such a problem.
We consider a system composed of multiple deteriorating components, which deteriorates
over time. We suppose that there are scheduled decision times, or maintenance slots, where
a decision maker decides which components to maintain. Due to the maintenance capacity,
only a limited number of components can be maintained. At each maintenance slot, the deci-
sion maker has access to a discrete observation of the system. His decision is modeled using a
maintenance policy, which maps an observation to a decision. The goal of the decision maker is
to find a maintenance policy minimizing the costs expressed as the sum of the expected failure
costs and the expected maintenance costs. We use this objective function because in practice
the airline knows the failure costs and the maintenance costs.

The POMDP is a natural way to see the predictive maintenance problem [24]. However, when
the system has several components, the size of its state space becomes exponential in the num-
ber of components, which makes the corresponding POMDP intractable. This issue is known
as the curse of dimensionality [12]. To address this issue, we exploit the fact that the system
can be decomposed into several components. To do so, we formalize the predictive mainte-
nance problem with capacity constraints on a system with multiple components and capacity
constraints using weakly coupled POMDP that we introduce and which is analogs of the weakly
coupled dynamic programs of Adelman and Mersereau [2].1 In this formalization, we assume
that the observations are discrete and all the model parameters are known. In Chapter 10, we
will use the weakly coupled POMDP to address the concrete predictive maintenance problem
of Air France and this assumption will be discussed.

Chapter 3 is organized as follows.

• Section 3.1 recalls the necessary background on POMDPs.
• Section 3.2 introduces the notion of weakly coupled POMDP as a special case of POMDP.
• Section 3.3 describes how we formalize the predictive maintenance problem with capac-

ity constraints using a weakly coupled POMDP.
• Section 3.4 shows examples that can be formalized as a weakly coupled POMDP.
• Finally, Section 3.5 contains bibliographical remarks on maintenance problems, and the

use of POMDPs for maintenance optimization.

1Weakly coupled dynamic programs are also called weakly coupled Markov decision processes in [15].

27

Chapter 3. Predictive maintenance with capacity constraints

3.1 Background on POMDP

In this section, we recall the POMDP problem and the POMDP problem with memoryless poli-
cies. In Section 3.3, we explain why we choose a memoryless policy for the predictive mainte-
nance problem and several numerical experiments in Section 4.5 support our choice.

3.1.1 POMDP parameters

We recall here the definition of a POMDP. A POMDP is a multi-stage stochastic optimization
problem defined as follows. It models on a horizon T in Z+ the evolution of a system. At each
time t in [T], the system is in a random state St , which belongs to a finite state space XS . The
system starts in state s in XS with probability p(s) := P(S1 = s). At time t , the decision maker
does not have access to St , but observes Ot , whose value belongs to a finite state XO . When
the system is in state St = s, it emits an observation Ot = o with probability P(Ot = o|St =
s) := p(o|s). Then, the decision maker takes an action At , which belongs to a finite space XA .
Given an action At = a, the system transits from state St = s to state St+1 = s′ with probability
P
(
St+1 = s′|St = s, At = a

)
:= p(s′|s, a), and the decision maker receives the immediate reward

r (s, a, s′), where the reward function is defined as a real valued function r : XS ×XA ×XS → R,
which we will also view as a vector r = (

r (s, a, s′)
) ∈RXS×XA×XS .

We denote by p the vector of probabilities p = (
p(s), p(o|s), p(s′|s, a)

)
s,s′∈XS ,o∈XO

a∈XA

. A POMDP is

parametrized by the fifth tuple (XS ,XO ,XA ,p,r).

3.1.2 POMDP problem

Let (XS ,XO ,XA ,p,r) be a POMDP. Given a finite horizon T ∈ Z+, the choices made by the de-
cision maker are modeled using a policy δ = (δ1, . . . ,δT), where δt is the conditional proba-
bility distribution of taking action At at time t given the history of observations and actions
Ht = (O1, A1, . . . , At−1,Ot) in X t

H := (XO ×XA)t ×XO , i.e.,

δt
a|h :=P(At = a|Ht = h),

for any a in XA and h in X t
H . We denote by ∆his the set of policies

∆his =
{
δ ∈R

∑T
t=1 X t

H×XA :
∑

a∈XA

δt
a|h = 1 and δt

a|h > 0,∀h ∈X t
H , a ∈XA , t ∈ [T]

}
.

In ∆his, “his” refers to policies that take into account the history of observations and actions by
opposition to memoryless policies which will be introduced below. A policy δ ∈ ∆his leads to
the probability distribution Pδ on (XS ×XO ×XA)T ×XS such that

Pδ
(
(St = st ,Ot = ot , At = at)16t6T ,ST+1 = sT+1

)= p(s1)
T∏

t=1
p(ot |st)p(st+1|st , at)δt

at |ht
,

where ht = (s1,o1, . . . , at−1,ot). We denote by Eδ the expectation according to Pδ. The goal of
the decision maker is to find a policy δ in ∆his maximizing the expected total reward over the

28

3.2. Weakly coupled POMDP

finite horizon T . The POMDP problem is exactly the following:

max
δ∈∆his

Eδ

[T∑
t=1

r (St , At ,St+1)

]
(Phis)

It is known that (Phis) is PSPACE-hard [113].

3.1.3 POMDP problem with memoryless policies

Let (XS ,XO ,XA ,p,r) be a POMDP. Given a finite horizon T ∈Z+, a memoryless policy is a vector
δ= (δ1, . . . ,δT), where δt is the conditional probability distribution at time t of action At given
observation Ot , i.e.,

δt
a|o :=P(At = a|Ot = o)

for any a in XA and o in XO . Such policies are said memoryless because the choice of At only
depends on the current observation Ot , in contrast with the history of observations and actions
Ht . We denote by ∆ml the set of memoryless policies

∆ml =
{
δ ∈RT×XA×XO :

∑
a∈XA

δt
a|o = 1 and δt

a|o > 0,∀o ∈XO , a ∈XA

}
.

In ∆ml, “ml” refers to memoryless. A policy δ ∈ ∆ml leads to the probability distribution Pδ on

(XS ×XO ×XA)T ×XS such that

Pδ
(
(St = st ,Ot = ot , At = at)16t6T ,ST+1 = sT+1

)= p(s1)
T∏

t=1
p(ot |st)p(st+1|st , at)δt

at |ot
. (3.1)

We denote by Eδ the expectation according to Pδ. The goal of the decision maker is to find a
memoryless policy δ in ∆ml maximizing the expected total reward over the finite horizon T .
The POMDP problem with memoryless policy is exactly the following:

max
δ∈∆ml

Eδ

[T∑
t=1

r (St , At ,St+1)

]
(Pml)

The definition of ∆ml ensures that ∆ml ⊆ ∆his. The policy is said to be memoryless because
the decision maker takes its decision given the current observation instead of the full history
of observations and actions. To clarify the distinction between ∆ml and ∆his, we say that a
policy belonging to ∆his is a history-dependent policy. It is known that (Pml) is NP-hard [87]. In
Section 4.5, we provide numerical experiments showing that memoryless policies perform well
on different kind of problems modeled as a POMDP, especially the maintenance problems.

3.2 Weakly coupled POMDP

Like MDPs, the POMDPs suffer from the curse of dimensionality. We can observe this phe-
nomenon when we consider systems that consist of a collection of smaller subsystems or com-
ponents. It is the case of the predictive maintenance problem we want to formalize within the
POMDP framework. In order to catch and leverage the specific structure of systems with sev-

29

Chapter 3. Predictive maintenance with capacity constraints

eral components, we introduce a special case of POMDP, the weakly coupled POMDP. We give
its formal definition in this paragraph.

A weakly coupled POMDP models a system composed of M components, each of them evolv-
ing independently as a POMDP. Let Sm

t and Om
t be random variables that represent respectively

the state and the observation of component m at time t , and that belong respectively to the
state space Xm

S and the observation space Xm
O of component m. Each component is assumed

to evolve individually as a POMDP. We denote by pm and rm respectively the probability distri-
butions and the immediate reward functions of component m. We denote by St =

(
S1

t , . . . ,SM
t

)
and Ot =

(
O1

t , . . . ,OM
t

)
the state and the observation of the full system at time t , which lie re-

spectively in the state space XS =X 1
S ×·· ·×XM

S and the observation space XO =X 1
O ×·· ·×XM

O .
The spaces XS and XO represent the state space and the observation space of the full system.
We assume that the action space XA can be written

XA =
{

a ∈X 1
A ×·· ·×XM

A :
M∑

m=1
Dm(am)6 b

}
, (3.2)

where Xm
A is the individual action space of component m, and Dm : Xm

A → Rq is a given func-
tion for each component m in [M], and b ∈Rq is a given vector for some finite integer q . With-
out loss of generality, we assume that b> 0 in the remaining of this thesis2.

Each component is assumed to evolve independently, hence the joint probability of emission
factorizes as

P(Ot = o|St = s) =
M∏

m=1
pm(om |sm), (3.3)

and the joint probability of transition factorize as

P(S1 = s) =
M∏

m=1
pm(sm) and P(St+1 = s′|St = s,At = a) =

M∏
m=1

pm(s′m |sm , am), (3.4)

for all t in [T]. In addition, the reward is assumed to decompose additively

r (s,a,s′) =
M∑

m=1
r m(sm , am , s′m). (3.5)

Hence, the weakly coupled POMDP problem with memoryless policies is the following:

max
δ∈∆ml

Eδ

[T∑
t=1

r (St ,At ,St+1)

]
(Pwc

ml)

where the expectation is taken according to Pδ defined in (3.1). Note that unless XA =; there
always exists a feasible policy of (Pwc

ml). A weakly coupled POMDP is fully parametrized by(
(Xm

S ,Xm
O ,Xm

A ,pm ,rm ,Dm)m∈[M],b
)
.

(Pwc
ml) is equivalent to (Pml) on the state space XS =X 1

S ×·· ·×XM
S , the observation space XO =

2It suffices to set D′m := Dm − k
M , b′ := b−k where k = mini∈[q] bi and bi indicates the i -th coordinate of vector

b, and X̃A =
{

a ∈X 1
A ×·· ·×XM

A :
∑M

m=1 D′m (am)6 b′}. Then, it follows that XA = X̃A .

30

3.3. Formalizing the predictive maintenance problem with capacity constraints

X 1
O ×·· ·×XM

O , and the action space XA defined in (3.2). This notion of weakly coupled POMDP
is an extension of the weakly coupled dynamic program introduced by Adelman and Mersereau
[2] to the case where the decision maker has only access to a partial observation of the system
state. The definition (3.2) of the action space for weakly coupled POMDP is exactly the same as
Bertsimas and Mišić [15, Eq. (7)] for weakly coupled dynamic programs. Note that we can also
defined the weakly coupled POMDP problem with history-dependent policies (Pwc

his).

Remark 1. In the definition of POMDP, we could have considered a variant where the obser-
vation Ot may depend on At−1 given St and the emission probability distribution becomes
P(Ot = o|At−1 = a′,St = s) := p(o|a′, s). All the mathematical programming formulations and
theoretical results in this thesis can be extended to this case. We choose to consider the case
above to lighten the notation. 4
Remark 2. In many stochastic problems, the action space does not decompose along the com-
ponents, i.e., we can no longer assume that XA ⊆X 1

A ×·· ·×XM
A . It turns out that, using a trans-

formation, we can always convert such a problem into a weakly coupled POMDP. This transfor-
mation is similar to the one introduced by Bertsimas and Mišić [15, Sec 4.3]. We set the individ-
ual action spaces Xm

A =XA for each component m in [M]. For any (a1, . . . , aM) ∈X 1
A ×·· ·×XM

A ,
we enforce the following linking constraints am = am+1 for all m in [M]. Therefore, the action
space can be written

{
a ∈X 1

A × ·· ·×XM
A : am = am+1, ∀m ∈ [M −1]

}
, which has the requested

form (3.2). 4

3.3 Formalizing the predictive maintenance problem with capacity
constraints

In this section we formalize the predictive maintenance problem with capacity constraints us-
ing a weakly coupled POMDP. It requires to define the parameters(
(Xm

S ,Xm
O ,Xm

A ,pm ,rm ,Dm)m∈[M],b
)
.

The system is composed of M components. At each maintenance slot t ∈ [T], the decision
maker receives an observation Om

t from component m, which belongs to a finite space Xm
O .

We model the degradation of component m using a state Sm
t , which belongs to a finite state

space Xm
S and is not observed by the decision maker. We assume that there is a failure state

sm,F in Xm
S for each component m in [M], corresponding to its most critical degradation state.

We denote by St =
(
S1

t , . . . ,SM
t

)
and Ot =

(
O1

t , . . . ,OM
t

)
the state and observation of the full system

at time t , which lie respectively in the state space XS =X 1
S ×·· ·×XM

S and the observation space
XO =X 1

O ×·· ·×XM
O .

Component m starts in state s with probability pm(s). At each time t , component m is in state
Sm

t = s, and it emits an observation Om
t = o with probability pm(o|s). Then, the decision maker

takes an action At =
(

A1
t , . . . , AM

t

)
in a finite space XA , where Am

t is a binary variable equal to 1
when component m is maintained. At each maintenance slot, the decision maker can maintain
at most K components. Hence, we write the action space XA as follows

XA =
{

a = (a1, . . . , aM) ∈ {0,1}M :
M∑

m=1
am 6K

}
. (3.6)

Therefore,XA contains only one scalar constraint (q = 1) and satisfies (3.2) by setting Dm(am) =

31

Chapter 3. Predictive maintenance with capacity constraints

am for every am ∈ {0,1} and m ∈ [M], and b = K . We assume that each component m evolves
independently from state Sm

t = s to state Sm
t+1 = s′ with probability pm(s′|s, a), and the decision

maker receives reward r m(s, a, s′). In addition, we assume that when a component is main-
tained, it behaves like a new one, i.e.,

pm(s′|s,1) = pm(s′), (3.7)

for any s, s′ in Xm
S , and the conditional probabilities factorize as (3.3) and (3.4). Each compo-

nent has a maintenance cost C m
R and a failure cost C m

F at each component m. The individual
immediate reward function can be written

r m(s, a, s′) =−1sm
F

(s′)C m
F −11(a)C m

R , (3.8)

for any s, s′ ∈ Xm
S and a ∈ Xm

A . We assume that the reward decomposes additively as (3.5).
Since our motivation was to find the right framework to formalize the maintenance problem, it
would have been more natural to define (Pml) as a minimization problem. However, we choose
to stick to the practice of using rewards, which is common in the literature on POMDPs.

We model the choices of the decision maker using a memoryless policy. The interest of mem-
oryless policies is threefold. First, maintenance technicians can easily apply them in practice.
Second, even if finding an optimal memoryless policy remains NP-hard [87], the resulting op-
timization problem is more tractable. Third, even if in the general case memoryless policies
are not optimal, there is a broad class of systems for which memoryless policies perform well
[10, 84] and we provide numerical experiments in Section 4.5 on instances from the literature
showing that it is the case for maintenance problems.

Given a finite horizon T , the predictive maintenance problem with capacity constraints con-
sists in finding a policy in ∆ml that solves (Pwc

ml) with XA defined in (3.2), (pm)m∈[M] satisfy-
ing (3.7), and (rm)m∈[M] defined in (3.8).

Remark 3. In fact, we could have modeled the predictive maintenance problem with capac-
ity constraints as a weakly coupled POMDP over an infinite horizon with a discounted re-
ward. Indeed, in practice, the predictive maintenance problem consists in planning the main-
tenances over a large horizon, which can be modeled by an infinite horizon planning prob-
lem. In this case, the predictive maintenance problem with capacity constraints consists in
finding a policy that maximizes the total expected discounted reward over infinite horizon
maxδ∈∆his Eδ

[∑∞
t=1γ

t−1r (St ,At ,St+1)
]

where γ< 1 is a discount factor. However, in practice Air
France would like to modify the maintenance planning over a short horizon without discount-
ing. Since the observations arrive dynamically, Air France would like to modify its planning
in an “on-line” manner due to unexpected changes detected in the behavior of an equipment.
In addition, as we will explain in Chapter 10, the parameters of the POMDPs are estimated
through a statistical methodology and sometime the resulting long term predictions can be
inaccurate. It pushes us to consider POMDP with finite horizon. This choice is supported by
Walraven and Spaan [158, Section 3.1], which showed that casting a finite horizon problem with
infinite horizon problem with discounting can lead to widely suboptimal policies. 4

32

3.4. Examples modeled as a weakly coupled POMDP

3.4 Examples modeled as a weakly coupled POMDP

In this section we describe several multi-stage stochastic optimization problems that can be
formalized as a weakly coupled POMDP. More examples of POMDPs applications can be found
for instance in the survey of Cassandra [24].

Example 1. Multi-armed and Restless Bandit problems are classical resource allocation prob-
lems where there are several arms, each of them evolving independently as a MDP, and at each
time the decision maker has to activate a subset of arms so as to maximize its expected dis-
counted reward over infinite horizon. We can consider regular multi-armed bandit problem,
where only the activated arm states transit randomly and give an immediate reward, or the
restless multi-armed bandit problem, where all the arm states transit randomly and give an im-
mediate reward. When the decision maker has only access to a partial observation on each
arm instead of the arm state, the problem becomes a partially observable multi-armed ban-
dit problem [79]. In this case, each arm evolves individually and independently as a POMDP.
Such a problem enables to model practical applications such as clinical trials. In this setting,
each component represents a medical treatment and activating a component corresponds to
testing the treatment. The state of a medical treatment corresponds to its efficiency and the
observation corresponds to a noisy measure of the efficiency of a medical treatment.

We can formalize the partially observable multi-armed bandit problem within our weakly cou-
pled POMDP framework. Let M be the number of arms. At each time t , the decision maker has
to activate K < M arms. Since each component evolves as POMDP, we use the same notation
to represent the state and the observation of Section 3.2. We define the individual action space
Xm

A = {0,1} of arm m and the full action space is

XA = {
a ∈X 1

A ×·· ·×XM
A :

M∑
m=1

am = K
}
.

In the case of the regular bandit problems, the immediate reward of component m satisfies
r m(s,0, s′) = 0, and the transition probabilities satisfy pm(s′|s,0) equals 1 if s = s′ and 0 other-
wise, for every s, s′ ∈ Xm

S . The goal of the decision maker is to find a policy δ in ∆ml (or ∆his)
maximizing the total expected discounted reward over infinite horizon Eδ

[∑T
t=1 r (St ,At ,St+1)

]
,

where T is a finite horizon.

Note that the the predictive maintenance problem with capacity constraints can also be mod-
eled as a restless partially observable multi-armed bandit problem. Indeed, it suffices to add
a fictive component M +1 corresponding to performing no action, with no reward, and a sin-
gle state coinciding with a single observation. Then, the action space defined in (3.6) can be
written XA = {

a ∈X 1
A ×·· ·×XM

A :
∑M+1

m=1 am = K
}
. 4

Example 2. Consider a supplier that delivers a product to M stores. At each time t , we de-
note by Sm

t the inventory level of store m. Unfortunately, due to ”inventory records inaccu-
racy” [103] from various uncertainties, the supplier does not observe directly this inventory
level. He has instead only access to a noisy observation Om

t of the inventory level of store m.
We assume that the inventory level of store m has a known limited capacity C m . Hence, we set
Xm

S := {0, . . . ,C m}. Then Om
t = o is an noisy observation of the current inventory level, whose

value belongs to Xm
O := Xm

S and is randomly emitted given a current state Sm
t = s according

33

Chapter 3. Predictive maintenance with capacity constraints

to a known probability pm(o|s) = P(
Om

t = o|Sm
t = s

)
. At each time, the supplier has to decide

the quantity to produce and to deliver automatically to each store. We denote by Am
t the deliv-

ered quantity of product to store m, which belongs to the individual action space Xm
A :=Xm

S .
The production has to satisfy resource constraints (raw materials, staff, etc.). Hence, the set of
feasible actions has the form

XA :=
{

a ∈X 1
A ×·· ·×XM

A :
M∑

m=1
hm am 6H

}
,

where hm is the given number of resources used per unit produced and delivered for store m
and H is the given available amount of resource. The quantity of products in store m cannot
exceed capacity C m . Hence, the quantity max(Sm

t +Am
t −C m ,0) is wasted and it induces a waste

cost.

We denote by Dm
t the random variable representing the demand at store m between time t and

t +1. The vector of demand is exogenous and independent identically distributed in each store
with a known probability distribution Pm

D for store m. The inventory level of store m follows
the dynamic

Sm
t+1 = max

(
min

(
Sm

t + Am
t ,C m)−Dm

t ,0
)
,

which gives the transition probability distributionP(St+1|St , At). Now we can define the imme-
diate reward function

r m(s, a, s′) = pricem(s+a−s′)−wastem max
(
s +a −C m ,0

)−shortagemEPm
D

[
max

(
Dm − (s +a),0

)]
,

where pricem is the selling price per unit, wastem is the wastage cost per unit and shortagem is
the shortage cost per unit. It leads us to model this problem as a weakly coupled POMDP. The
goal of the supplier is to find a policy δ in ∆ml (or ∆his) maximizing the total expected reward
over a finite horizon T . This example has been introduced by Kleywegt et al. [74] for fully ob-
servable inventory levels and Mersereau [103] justifies the relevance of the POMDP framework
for the stochastic inventory control problem. 4

Example 3. Consider a nurse assignment problem for home health care. A medical center fol-
lows M patients at home on a daily basis over a given period of time T . On day t , we denote by
Sm

t the health state of patient m, whose value belongs to a finite state space Xm
S . The medical

center does not directly observe the health state of each patient. However, at each time t , the
medical center has access to a partial observation Om

t corresponding to a signal sent by a ma-
chine which diagnoses patient m. We assume that this signal is discrete and noisy. Hence, Xm

O
is a finite space and an observation o is randomly emitted given a state s ∈Xm

S according to the
probability pm(o|s). At each time, the medical center has to assign nurses to patient. There are
K1 available nurses with skill 1 and K2 available nurses with skill 2. On day t , we denote by Am

t

the action taken by the medical center on patient m, whose value belongs to Xm
A = {0,1,2,3}

34

3.5. Bibliographical remarks

and the following meaning.

Am
t =

0 if no nurse is sent to patient m

1 if a nurse with skill 1 is sent to patient m

2 if a nurse with skill 2 is sent to patient m

3 if two nurses, one with each skill, are sent to patient m

Depending on the skill of the nurses sent to patient, the health state of each patient evolves
randomly according to a transition probability pm(s′|s, a), for any s, s′ ∈Xm

S , a ∈Xm
A and m ∈

[M]. Hence, the set of feasible actions has the form

XA =
{

a ∈X 1
A ×·· ·×XM

A :
M∑

m=1
11(am)+13(am)6K1 and

M∑
m=1

12(am)+13(am)6K2

}
.

Now we can define the immediate reward function

r m(s, a, s′) =−costm
1 (11(a)+13(a))−costm

2 (12(a)+13(a))−emergencym1sm
critic

(s′),

where costm
i is the cost induced by sending a nurse with skill i ∈ {1,2} to patient m, sm

critic is the
critical health state of patient m and emergencym is the cost induced by an emergency because
patient m reaches its critical health state. It leads us to model this problem as a weakly coupled
POMDP. The goal of the medical center is to find a policy δ in ∆ml (or ∆his) maximizing its total
expected reward over a finite horizon T . 4

3.5 Bibliographical remarks

In the past decades, the optimization in maintenance problems of deteriorating systems have
been widely studied in academic research. For a complete description of the various types
of maintenance problems, see for instance the surveys of Alaswad and Xiang [3], Valdez-Flores
and Feldman [154], Wang [159]. The predictive maintenance problem with capacity constraints
belongs to the big family of multistage stochastic optimization problems. Since describing such
problems is beyond the scope of this thesis, we refer the interested reader to the tutorial of
Powell [122].

Partially Observable Markov Decision Processes. The POMDP framework can be adapted
for a wide range of various applications such as maintenance problems [42] or clinical decision
making [37]. More decision making problems which can be modeled as a POMDP are described
in the survey by Cassandra [24]. Modeling a deteriorating system using partially observable
continuous time Markov chains has been done in the literature [70, 71, 90, 91]. Kim et al. [72]
showed the efficiency of an optimal policy of such a formalization in the mining industry. In all
these works, the Markov chains have at most three states. Many scientific works show that the
use of POMDPs to model a maintenance problem gives promising results in practice [44, 69].
In particular, it is showed that modeling the maintenance problem as a POMDP instead of a
MDP leads to lower maintenance costs.

35

Chapter 3. Predictive maintenance with capacity constraints

Memoryless policies. As mentioned in Section 3.3, in addition to their practical advantages
(tractability and easy to apply) the memoryless policies perform well on a broad class of sys-
tems in practice [10, 84, 106, 164]. It has been even proved that for contextual MDPs, which are
special cases of POMDPs, there always exists an optimal policy that is memoryless [77]. On the
other hand, Littman [87] identifies some pathological cases where the memoryless policies do
not work well. Memoryless policies have received much interest with the increasing popularity
of reinforcement learning [8, 9, 59, 143]. Indeed, in this context the decision maker does not
have access to the parameters p and r. Hence, he has to optimize his policy and estimate the
parameters at the same time. Azizzadenesheli et al. [7] explain why in this context the memo-
ryless policies are of interest and especially the stochastic memoryless policies, which map an
observation to a probability distribution over the set of decisions, in opposition to determinis-
tic memoryless policies, which map an observation to a decision. In particular, the stationary
policies, i.e., δt = δ1 for all t in [T], are much more appreciated in the reinforcement learning
community [108].

Weakly coupled dynamic programs. As mentioned in Example 1, the predictive maintenance
problem with capacity constraints can also be formalized as a restless partially observable
multi-armed bandits problem, which is a special case of the weakly coupled POMDP problem.

When the decision maker observes the arm states, the problem corresponds to a restless multi-
armed bandit. Such a problem lies in the broad class of multi-stage stochastic optimization
problems that decompose into independent subproblems, which are linked by a collection of
constraints on the action space. Precisely, each subsystem is a MDP on disjoint state spaces
but the actions taken on each subsystem at each time are linked by a collection of constraints.
When these constraints bind weakly, such a problem becomes a weakly coupled dynamic pro-
gram [2, 105]. It enables to model various types of practical problems such as stochastic in-
ventory routing with limited vehicle capacity [74], stochastic multi-product dispatch problems
[112], scheduling problems [162], resources allocation [49], revenue management [152] and
others. More examples can be found for instance in the dissertation of Hawkins [55].

In our case, the decision maker has only access to a partial observation of the arm’s state. If the
arms are rested, such a problem has been introduced as POMDP multi-armed bandit problem
by Krishnamurthy and Wahlberg [79]. If the arms are restless, like in our maintenance problem,
our formalization of the predictive maintenance problem is related to the model considered
in the recent works of Mehta et al. [101], Meshram et al. [104], Mehta et al. [102] and Abbou
and Makis [1]. In these works, the model considered has at most two states and three obser-
vations, which is lower than the number of states and observations we consider in practice
(see Part III). Parizi and Ghate [116] recently proposed a similar framework for weakly coupled
POMDP problem where the decision maker maximizes his expected total discounted reward
over infinite horizon.

36

4 Integer programming for POMDPs

We have seen in Chapter 3 that the POMDP problem with memoryless policies (Pml), which we
recall below, is suitable to formalize the predictive maintenance problem with capacity con-
straints.

max
δ∈∆ml

Eδ

[T∑
t=1

r (St , At ,St+1)

]
(Pml)

Since (Pml) is NP-hard [87], it leaves the question of how to solve it. To the best of our knowl-
edge, there is no integer programming approach in the literature addressing the POMDP prob-
lem with memoryless policies. In this chapter, we introduce an mixed-integer linear program
(MILP) that models (Pml). In addition, we introduce some valid inequalities improving the re-
laxation of the MILP. These valid inequalities come from a probabilistic interpretation of the
dependence between the random variables in the POMDP. In Part II, we will show that we can
extend these valid inequalities to any stochastic optimization problem where we have access
to the probabilistic dependences between the random variables of the problem. The numer-
ical experiments show that the MILP together with the valid inequalities can be solved using
off-the-shell solvers. We also show in this chapter that the linear relaxation of our integer for-
mulation corresponds to the so-called MDP approximation [54], i.e., the fully observed MDP
relaxation of the POMDP. Then, we use this result to give guarantees about the cost of using a
memoryless policy instead of a history-dependent policy. Chapter 4 is organized as follows.

• Section 4.1 introduces an MILP that exactly models (Pml).
• Section 4.2 introduces an extended formulation with new valid inequalities that improve

the resolution of the MILP.
• Section 4.3 shows how our MILP is related to POMDP with history-dependent policies (Phis).

In particular it gives an interpretation in terms of information relaxation.
• Section 4.4 introduces an MILP that also models (Pml).
• Section 4.5 presents numerical results, showing the efficiency of the approach.

4.1 Integer program for POMDPs with memoryless policies

We are given a POMDP (XS ,XO ,XA ,p,r) and a finite horizon T ∈ Z+. We denote by v∗
ml the

optimal value of (Pml).

37

Chapter 4. Integer programming for POMDPs

4.1.1 An exact Nonlinear Program (NLP)

We introduce the following NLP with a collection of variables

µ= (
(µ1

s)s ,
(
(µt

soa)s,o,a , (µt
sas′)s,a,s′

)
t
)
, δ=

((
δt

a|o
)

a,o

)
t .

max
µ,δ

T∑
t=1

∑
s,s′∈XS
a∈XA

r (s, a, s′)µt
sas′

s.t.
∑

o∈XO

µt
soa = ∑

s′∈XS

µt
sas′ ∀s ∈XS , a ∈XA , t ∈ [T]∑

s∈XS ,a∈XA

µt
sas′ =

∑
o∈XO ,a∈XA

µt+1
s′oa ∀s′ ∈XS , t ∈ [T]

µ1
s =

∑
o∈XO ,a∈XA

µ1
soa ∀s ∈XS

µ1
s = p(s) ∀s ∈XS

µt
sas′ = p(s′|s, a)

∑
s′′∈XS

µt
sas′′ ∀s, s′ ∈XS , a ∈XA , t ∈ [T]

µt
soa = δt

a|o p(o|s)
∑

o′∈XO ,a′∈XA

µt
so′a′ ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

δ ∈∆ml

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.1e)

(4.1f)

(4.1g)

(4.1h)

Given a policy δ ∈∆ml, we say thatµ is the vector of moments of the probability distribution Pδ
induced by δwhen

µ1
s =Pδ(S1 = s), ∀s ∈XS

µt
soa =Pδ(St = s,Ot = o, At = a), ∀s ∈XS ,o ∈XO , a ∈XA ,∀t ∈ [T]

µt
sas′ =Pδ(St = s, At = a,St+1 = s′), ∀s, s′ ∈XS , a ∈XA ,∀t ∈ [T].

(4.2)

Thanks to the properties of probability distributions, such vector of moments (4.2) of Pδ satisfy
the constraints of NLP (4.1). Conversely, given a feasible solution of NLP (4.1), Theorem 4.1
ensures that µ is the vector of moments of Pδ. This theorem tells even more. We denote by z∗

the optimal value of NLP (4.1).

Theorem 4.1. Let (µ,δ) be a feasible solution of NLP (4.1). Then µ is the vector of moments of
the probability distributionPδ induced by δ, and (µ,δ) is an optimal solution of NLP (4.1) if and
only if δ is an optimal policy of (Pml). In particular, v∗

ml = z∗.

Proof. Let (µ,δ) be a feasible solution of NLP (4.1). We prove by induction on t that µ1
s =

Pδ
(
S1 = s

)
, µt

soa = Pδ
(
St = s,Ot = o, At = a

)
and µt

sas′ = Pδ
(
St = s, At = a,St+1 = s′

)
. At time

t = 1, the statement is immediate. Suppose that it holds up to t −1. Constraints (4.1g), (4.1c)
and induction hypothesis ensure that

µt
soa = δt

a|o p(o|s)
∑

o′,a′
µt

so′a′ = δt
a|o p(o|s)

∑
s′,a′

µt−1
s′a′s = δt

a|o p(o|s)
∑
s′,a′

Pδ
(
St−1 = s′, At−1 = a′,St = s

)
= δt

a|o p(o|s)Pδ(St = s)

=Pδ(St = s,Ot = o, At = a),

38

4.1. Integer program for POMDPs with memoryless policies

where the last equality comes from the conditional independences and the law of total proba-
bility. Constraints (4.1b),(4.1f) and the induction hypothesis ensure that :

µt
sas′ = p(s′|s, a)

∑
s

µt
sas = p(s′|s, a)

∑
o
µt

soa = p(s′|s, a)
∑
o
Pδ(St = s,Ot = o, At = a)

=Pδ(St = s, At = a,St+1 = s′)

where the last equality comes from the conditional independences and the law of total proba-
bility. Consequently,

T∑
t=1

∑
s,s′∈XS
a∈XA

r (s, a, s′)Pδ
(
St = s, At = a,St+1 = s′

)= Eδ[T∑
t=1

r (St , At ,St+1)

]
,

which implies that δ is optimal if and only if (µ,δ) is optimal for NLP (4.1) and v∗
ml = z∗. It

achieves the proof.

Remark 4. Suppose that the decision maker has access to an initial observation o inXO . Hence,
for any policy δ in ∆ml we have Pδ(O1 = o) = 1. Taking into account the initial observation
requires to slightly modify the constraints of NLP (4.1): We replace constraints (4.1e) and (4.1g)
in NLP (4.1) at time t = 1 by

µ1
s = p(s|o), ∀s ∈XS ,

µ1
soa = δ1

a|o1o(o)
∑

o′∈XO ,a′∈XA

µ1
so′a′ , ∀s ∈XS ,o ∈XO , a ∈XA . (4.3)

This remark will be useful in Chapter 5. 4

4.1.2 Turning the NLP into an MILP

We define the set of deterministic memoryless policies ∆d
ml as

∆d
ml =

{
δ ∈∆ml : δt

a|o ∈ {0,1}, ∀o ∈XO , ∀a ∈XA , ∀t ∈ [T]

}
. (4.4)

The following proposition states that we can restrict our policy search in (Pml) to the set of
deterministic memoryless policies.

Proposition 4.2. [9, Proposition 1] There always exists an optimal policy for (Pml) that is deter-
ministic, i.e.,

max
δ∈∆ml

Eδ

[T∑
t=1

r (St , At ,St+1)

]
= max
δ∈∆d

ml

Eδ

[T∑
t=1

r (St , At ,St+1)

]
. (4.5)

Theorem 4.1 ensures that (Pml) and NLP (4.1) are equivalent, and in particular admit the same
optimal solution in terms of δ. However, NLP (4.1) is hard to solve due to the nonlinear con-
straints (4.1g). By Proposition 4.5, we can add the integrality constraints of ∆d

ml in (4.1), and,
by a classical result in integer programming, we can turn NLP (4.1) into an equivalent MILP
by replacing constraint (4.1g) by its McCormick relaxation [100], without changing its optimal

39

Chapter 4. Integer programming for POMDPs

value. The McCormick’s inequalities for Equation (4.1g) are

µt
soa 6 p(o|s)

∑
o′∈XO ,a′∈XA

µt
so′a′ ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

µt
soa 6 δ

t
a|o ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

µt
soa > p(o|s)

∑
o′∈XO ,a′∈XA

µt
so′a′ +δt

a|o −1 ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T].

(4.6a)

(4.6b)

(4.6c)

For convenience, we denote by McCormick
(
µ,δ

)
the set of McCormick linear inequalities (4.6).

Thus, by using McCormick’s linearization on constraints (4.1g), we get that (Pml) is equivalent
to the following MILP:

max
µ,δ

T∑
t=1

∑
s,s′∈XS
a∈XA

r (s, a, s′)µt
sas′

s.t. µ satisfies (4.1b)− (4.1f)

McCormick
(
µ,δ

)
δ ∈∆d

ml

µ> 0.

(4.7)

4.2 Valid cuts

To introduce our valid cuts in this section, we start by explaining why the linear relaxation of
MILP (4.7) is not sufficient to define a feasible solution of NLP (4.1).

It turns out that given a feasible solution (µ,δ) of the linear relaxation of MILP (4.7), the vec-
tor µ is not necessarily the vector of moments of the probability distribution Pδ induced by δ.
Indeed, since the coordinates of the vector δ are continuous variables, the McCormick’s con-
straints (4.6) are, in general, no longer equivalent to the bilinear constraints (4.1g). Then, (µ,δ)
is no longer a feasible solution of NLP (4.1), which implies that µ is not the vector of moments
of the probability distribution Pδ.

Intuitively, it means that the feasible set of the linear relaxation of MILP (4.7) is too large. Actu-
ally, we can reduce the feasible set of the linear relaxation of MILP (4.7) by adding valid cuts. To
do so, we introduce new variables

(
(µt

s′a′soa)s′,a′,s,o,a
)

t and the equalities

∑
s′∈XS ,a′∈XA

µt
s′a′soa =µt

soa , ∀s ∈XS ,o ∈XO , a ∈XA ,∑
a∈XA

µt
s′a′soa = p(o|s)µt−1

s′a′s , ∀s′, s ∈XS ,o ∈XO , a′ ∈XA ,

µt
s′a′soa = p(s|s′, a′,o)

∑
s∈XS

µt
s′a′soa ,∀s′, s ∈XS ,o ∈XO , a′, a ∈XA ,

(4.8a)

(4.8b)

(4.8c)

where
p(s|s′, a′,o) =P(St = s|St−1 = s′, At−1 = a′,Ot = o),

for any s, s′ ∈XS , a′ ∈XA and o ∈XO . Note that p(s|s′, a′,o′) does not depend on the policy δ
and can be easily computed during a preprocessing using Bayes rules. Therefore, constraints

40

4.2. Valid cuts

in (4.8) are linear.

Proposition 4.3. Equalities (4.8) are valid for MILP (4.7), and there exists solutionµ of the linear
relaxation of (4.7) that does not satisfy constraints (4.8).

The MILP formulation obtained by adding equalities (4.8) in MILP (4.7) is an extended formula-
tion, and has much more constraints than the initial MILP (4.7). Its linear relaxation therefore
takes longer to solve. Equalities (4.8) strengthen the linear relaxation, and numerical experi-
ments in Section 4.5 show that these equalities enable to speed up the resolution of MILP (4.7).

Proof of Proposition 4.3. Let (µ,δ) be a feasible solution of MILP (4.7). We define

µt
s′a′soa = δt

a|o p(o|s)µt−1
s′a′s

for all (s′, a′, s,o, a) ∈XS ×XA ×XS ×XO ×XA , t ∈ [T]. These new variables satisfy constraints in
(4.8) :

∑
a∈XA

µt
s′a′soa =

(∑
a∈XA

δt
a|o

)
p(o|s)µt−1

s′a′s = p(o|s)µt−1
s′a′s

∑
a′∈XA ,s′∈XS

µt
s′a′soa =

(∑
a′∈XA ,s′∈XS

µt−1
s′a′s

)
δt

a|o p(o|s) = δt
a|o p(o|s)

∑
o′∈XO ,a′∈XO

µt
so′a′ =µt

soa

The remaining constraint (4.8c) is obtained using the following observation :

µt
s′a′soa∑

s′′∈XS
µt

s′a′s′′oa

= p(o|s)µt−1
s′a′s∑

s′′∈XS
p(o|s′′)µt−1

s′a′s′′
=

p(o|s)p(s|s′, a′)
∑

s µ
t−1
s′a′s∑

s′′∈XS
p(o|s′′)p(s′′|s′, a′)

∑
s µ

t−1
s′a′s

= p(o|s)p(s|s′, a′)∑
s′′∈XS

p(o|s′′)p(s′′|s′, a′)

By setting p(s|s′, a′,o) = p(o|s)p(s|s′, a′)∑
s∈XS

p(o|s)p(s|s′, a′)
, equality (4.8c) holds.

Now we prove that there exists a solution µ of the linear relaxation of MILP (4.7) that does not
satisfy equalities (4.8). We define such a solution (µ,δ). We set µ1

s = p(s) for all s in XS , and for
all t in [T]:

µ1
soa =

{
p(o|s)µ1

s , if a =φ(s)

0, otherwise
, if t = 1,

µt
sas′ = p(s′|s, a)

∑
o∈XO

µt
soa

µt
soa =

{
p(o|s)

∑
s′∈XS ,a′∈XA

µt−1
s′a′s , if a =φ(s)

0, otherwise
, if t > 2,

δt
a|o =

∑

s∈XS
µt

soa∑
s∈XS ,a∈XA

µt
soa

if
∑

s∈XS ,a∈XA
µt

soa 6= 0

1ã(a), otherwise

(4.9)

(4.10)

where φ : XS →XA is an arbitrary mapping and ã is an arbitrary element in XA . We prove that

41

Chapter 4. Integer programming for POMDPs

µ is a feasible solution of the linear relaxation of MILP (4.7).

First, it is easy to see constraints (4.1e)-(4.1f) are satisfied. It remains to prove that constraints
(4.6a), (4.6b), (4.6c) are satisfied. First, (4.6a) holds because

µt
soa 6max

(
0, p(o|s)

∑
s′∈XS ,a′∈XA

µt−1
s′a′s

)
6 p(o|s)

∑
s′∈XS ,a′∈XA

µt−1
s′a′s ,

Second, (4.6b) holds because

µt
soa 6

∑
s′∈XS

µt
s′oa = δt

a|o
∑

s′∈XS

p(o|s′) ∑
s′′∈XS ,a′′∈XA

µt−1
s′′a′′s′ 6 δ

t
a|o ,

where we used definition (4.10) from the first to second line. Third, (4.6c) holds because

µt
soa −p(o|s)

∑
s′∈XS
a′∈XA

µt−1
s′a′s >

∑
s′′∈XS

60︷ ︸︸ ︷
µt

s′′oa −p(o|s′′) ∑
s′∈XS ,a′∈XA

µt−1
s′a′s′′

= ∑
s′′,s′∈XS ,a′∈XA

p(o|s′′)µt−1
s′a′s′′(δ

t
a|o −1)

> δt
a|o −1,

which yields (4.6c). Therefore, (µ,δ) is a solution of the linear relaxation of MILP (4.7).

Now, we prove that such a solution does not satisfy cuts (4.8). We define the new variables:

µt
s′a′soa =

 µt−1
s′a′s

µt
soa∑

o′∈XO ,a′∈XA
µt

so′a′
if

∑
o′∈XO ,a′∈XA

µt
so′a′ 6= 0

0 otherwise

Hence, µ satisfies constraints (4.8a) and (4.8b). However, constraint (4.8c) is not satisfied in
general. Indeed, since the mapping φ is arbitrary, we can set φ such that p(s|s′, a′,o) > 0 and
µt

s′a′soa = 0. Therefore, there exists a solution µ of the linear relaxation of MILP (4.7) that does
not satisfy cuts (4.8). It achieves the proof.

Probabilistic interpretation. Given a feasible solution (µ,δ) of the linear relaxation of (4.7),
µ can be interpreted as the vector of moments of a probability distributionQµ over

(XS ×XO ×XA)T ×XS . However, as it has been mentioned above, the vector µ does not nec-
essarily correspond to the vector of moments of Pδ, which is due to the fact that (µ,δ) does
not necessarily satisfy the nonlinear constraints (4.1g). Besides, constraints (4.1g) happen to
be equivalent to the property that,

according toQµ, action At is independent from state St given observation Ot . (4.11)

Hence, given a feasible solution (µ,δ) of the linear relaxation of MILP (4.7), the distribution Qµ

does not necessarily satisfy the conditional independences (4.11). Remark that (4.11) implies

42

4.3. Strengths of the relaxations

the weaker result that,

according toQµ, At is independent from St given Ot , At−1 and St−1. (4.12)

Proposition 4.3 says that the independences in (4.12) are not satisfied in general by a feasible
solution (µ,δ) of the linear relaxation of MILP (4.7), but that we can enforce them using linear
equalities (4.8) on (µ,δ) in an extended formulation.

4.3 Strengths of the relaxations

It turns out that the linear relaxation of MILP (4.7) is related to the fully observed POMDP, which
corresponds to the case when the decision maker directly observes the state of the system at
each time. Hence, the problem becomes a MDP and it is called the MDP approximation [54].
We introduce a collection of variablesµ= (

(µ1
s)s , (µt

sas′)s,a,s′)t
)

and the following linear program
which is known to solve exactly a MDP (e.g. d’Epenoux [38]).

max
µ

T∑
t=1

∑
s,s′∈XS
a∈XA

r (s, a, s′)µt
sas′

s.t. µ1
s =

∑
a′∈XA ,s′∈XS

µ1
sa′s′ ∀s ∈XS∑

s′∈XS ,a′∈XA

µt
s′a′s =

∑
a′∈XA ,s′∈XS

µt+1
sa′s′ ∀s ∈XS , t ∈ [T]

µ1
s = p(s) ∀s ∈XS

µt
sas′ = p(s′|s, a)

∑
s′′∈XS

µt
sas′′ ∀s ∈XS , a ∈XA , t ∈ [T]

(4.13a)

(4.13b)

(4.13c)

(4.13d)

(4.13e)

In Linear program (4.13), the variables (µ1
s)s and (µt

sas′)sas′ respectively represent the probabil-
ity distribution of S1 and (St , At ,St+1) for any t in [T]. Theorem 4.4 below states that the linear
relaxation of MILP (4.7) is equivalent to the MDP approximation of (Pml). We introduce the
following quantities:

– z∗
R : the optimal value of the linear relaxation of MILP (4.7).

– z∗
Rc : the optimal value of the linear relaxation of MILP (4.7) with inequalities (4.8).

– v∗
his: the optimal value of (Phis).

– v∗
MDP: the optimal value of linear program (4.13), which is the optimal value of the MDP

approximation.

Theorem 4.4. Let (µ,δ) be feasible solution of the linear relaxation of MILP (4.7). Then (µ,δ) is
an optimal solution of the linear relaxation of MILP (4.7) if and only if µ is an optimal solution
of linear program (4.13). In particular, z∗

R = v∗
MDP. In addition, the following inequalities hold:

z∗6 v∗
his6 z∗

Rc 6 z∗
R . (4.14)

Inequality (4.14) ensures that by solving MILP (4.7), we obtain an integrality gap z∗
R − z∗ that

bounds the approximation error v∗
his − z∗ due to the choice of a memoryless policy instead

of a policy that depends on all history of observations and actions. In addition, Theorem 4.4

43

Chapter 4. Integer programming for POMDPs

ensures that the integrality gap z∗
Rc − z∗ obtained using valid inequalities (4.8) gives a tighter

bound on the approximation error.

Proof of Theorem 4.4. We first prove the equivalence between the linear relaxation of our MILP (4.7)
and its MDP approximation. Note that in both problem, the objective function are the same.
Hence, we only need to prove that we can construct a feasible solution from a problem to an-
other.

Let (µ,δ) be a feasible solution of the linear relaxation of MILP (4.7). Constraints (4.1b)- (4.1f)
ensure that (µ1

s ,µt
sas′)t∈[T] satisfies constraints (4.13d)-(4.13e), which implies that it is a feasible

solution of Linear program (4.13).

Letµ be a feasible solution of Linear program (4.13). It suffices to define variables δt
a|o and µt

soa

for all a in XA , o in XO , s in XS , and t in [T]. We define these variables using (4.9) and (4.10). In
the proof of Proposition 4.3, we proved that (µ,δ) is a feasible solution of the linear relaxation
of MILP (4.7). Consequently, the equivalence holds and z∗

R = v∗
MDP.

Now we prove that inequalities (4.14) hold. Note that Proposition 4.3 ensures that

z∗6 z∗
Rc 6 z∗

R .

It remains to prove the two following inequalities.

z∗6 v∗
his

v∗
his6 z∗

Rc

(4.15)

(4.16)

First, we prove Inequality (4.15). By definition, we have∆ml ⊆∆his. Hence, we obtain v∗
ml6 v∗

his.
Using Theorem 4.1, we deduce that z∗6 v∗

his. Therefore the inequality v∗
ml6 v∗

his6 z∗
R holds.

Now we prove Inequality (4.16). The proof is based on a probabilistic interpretation of the valid
inequalities (4.8). It suffices to proves that for any policy δ in ∆his, the probability distribution
Pδ satisfies the weak conditional independences (4.12). Let δ ∈∆his. The probability distribu-
tion Pδ over the random variables (St , At ,Ot)16t6T according to δ is exactly

Pδ((St = st ,Ot = ot , At = at)16t6T) =Pδ(S1 = s1)
T∏

t=1
Pδ(St+1 = st+1|St = st , At = at)

Pδ(Ot = ot |St = st)δt
at |ht

(4.17)

where ht = {O1 = o1, A1 = a1,O2 = o2, . . . ,Ot = ot } is the history of observations and actions.
Note that the policy at time t is the conditional probability δt

at |ht
= Pδ(At = at |Ht = ht). We

define:
µ1

s =Pδ(S1 = s)

µt
soa =Pδ(St = s,Ot = o, At = a)

µt
sas′ =Pδ(St = s, At = a,St+1 = s′)

µt
s′a′soa =Pδ(St−1 = s′, At−1 = a′,St = s,Ot = o, At = a)

We define the policy δ̃ using (4.10). It is easy to see that constraints of (4.7) are satisfied. Fur-

44

4.3. Strengths of the relaxations

thermore, we have δ̃ ∈ ∆ml. It remains to prove that equalities (4.8) are satisfied. By definition
of a probability distribution, we directly see that constraints (4.8a) are satisfied. We prove (4.8b)
and (4.8c). We compute the left-hand side of (4.8b):∑

a∈XA

µt
s′a′soa = ∑

a∈XA

Pδ(St−1 = s′, At−1 = a′,St = s,Ot = o, At = a)

= ∑
a∈XA

∑
s1,...,st−2

ht−1

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−2,St−1 = s′,Ot−1 = o′, At−1 = a′,St = s,Ot = o, At = a)

= p(o|s)p(s|s′, a′)
∑

s1,...,st−2
ht−1

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−2,St−1 = s′,Ot−1 = ot−1, At−1 = a′)

∑
a∈XA

δa|ht

= p(o|s)p(s|s′, a′)
∑

s1,...,st−2
ht−1

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−2,St−1 = s′,Ot−1 = o′, At−1 = a′)

= p(o|s)p(s|s′, a′)Pδ(St−1 = s′, At−1 = a′)

= p(o|s)µt−1
s′a′s

where we used the definition of the probability distribution (4.17) at the third equation. There-
fore, constraints (4.8b) are satisfied byµ. To prove that constraints (4.8c) are satisfied, we prove
that

Pδ(St = st |St−1 = st−1, At−1 = at−1,Ot = ot , At = at) =Pδ(St = st |St−1 = st−1, At−1 = at−1,Ot = ot)

We compute Pδ(St = st |St−1 = s′, At−1 = a′,Ot = o, At = a):

Pδ(St = st |St−1 = st−1, At−1 = at−1,Ot = ot , At = at)

= Pδ(St−1 = st−1, At−1 = at−1,St = st ,Ot = ot , At = at)

Pδ(St−1 = st−1, At−1 = at−1,Ot = ot , At = at)

=
∑

s1,...,st−2
ht−1

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t)∑
s1,...,st−2,st

ht−1

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t)

=
∑

s1,...,st−2
ht−1

δt
at |ht

p(ot |st)p(st |st−1, at−1)Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−1)∑
s1,...,st−2,s′t

ht−1

δt
at |ht

p(ot |st)p(st |st−1, at−1)Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−1)

=
p(ot |st)p(st |st−1, at−1)

∑
s1,...,st−2

ht−1

δt
at |ht

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−1)∑
s′t p(ot |s′t)p(s′t |st−1, at−1)

∑
s1,...,st−2

ht−1

δt
at |ht

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−1)

= p(ot |st)p(st |st−1, at−1)∑
s′t p(ot |s′t)p(s′t |st−1, at−1)

where the last line goes from the fact that the term δt
at |ht

Pδ((Si = si ,Oi = oi , Ai = ai)16i6t−1)
does not depend on st . Hence, constraints (4.8c) are satisfied by µ. We deduce that µ is a

45

Chapter 4. Integer programming for POMDPs

feasible solution of MILP (4.7) satisfying the valid inequalities (4.8). Therefore,

Eδ

[
T∑

t=1
r (St , At ,St+1)

]
=

T∑
t=1

∑
s,a,s′

Pδ(St = s, At = a,St+1 = s′)r (s, a, s′)6 z∗
Rc

By maximizing over δ the left-hand side, we obtain v∗
his6 z∗

Rc . It achieves the proof.

4.4 Value functions for POMDPs with memoryless policies

The aim of this section is to introduce an MILP that models (Pml) using a new type of variables.
The formulation obtained is related to the linear programming duality and the link with the
linear programming will be describe in Part II.

Like in Section 4.1, we introduce a NLP, then we get an MILP using McCormick inequalities and
finally valid inequalities. In this section, some of the proofs will be written from a probabilistic
point of view. We could have used this kind of proofs in Section 4.1.

4.4.1 An exact NLP

We introduce a collection of variables λ= (
(λs)s ,

(
(λt

soa)s,o,a , (λt
sas′)s,a,s′

)
t
)
, δ=

((
δt

a|o
)

o,a

)
t and

the following NLP.

max
λ,δ

∑
s∈XS

p(s)λs

s.t. λs =
∑

o∈XO ,a∈XA

p(o|s)δ1
a|oλ

1
soa ∀s ∈XS

λt
soa = ∑

s′∈XS

p(s′|s, a)λt
sas′ ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

λt
sas′ = r (s, a, s′)+ ∑

o′∈XO ,a′∈XA

p(o′|s′)δt+1
a′|o′λ

t+1
s′o′a′ ∀s, s′ ∈XS , a ∈XA , t ∈ [T −1]

λT
sas′ = r (s, a, s′) ∀s, s′ ∈XS , a ∈XA

δ ∈∆ml.

(4.18a)

(4.18b)

(4.18c)

(4.18d)

(4.18e)

(4.18f)

Given δ ∈ ∆ml, we say that λ is the vector of value functions of the probability distribution Pδ
induced by δwhen

λs = Eδ
[

T∑
t ′=1

r (St ′ , At ′ ,St ′+1)|S1 = s

]
, ∀s ∈XS

λt
soa = Eδ

[
T∑

t ′=t
r (St ′ , At ′ ,St ′+1)|St = s,Ot = o, At = a

]
, ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

λt
sas′ = Eδ

[
T∑

t ′=t
r (St ′ , At ′ ,St ′+1)|St = s, At = a,St+1 = s′

]
, ∀s, s′ ∈XS , a ∈XA , t ∈ [T].

(4.19a)

(4.19b)

(4.19c)

Thanks to the properties of the conditional expectation, the vector of value functions of Pδ
satisfies the constraints of NLP (4.18). Conversely, given a feasible solution (λ,δ) of NLP (4.18),

46

4.4. Value functions for POMDPs with memoryless policies

Theorem 8.17 below ensures that λ is the vector of value functions of Pδ. This theorem tells
even more. We denote by z∗

vf the optimal value of NLP (4.18).

Theorem 4.5. Let (λ,δ) be a feasible solution of NLP (4.18). Then λ is the vector of value func-
tions (4.19) of the distribution Pδ, and (λ,δ) is an optimal solution of NLP (4.18) if and only if δ
is an optimal policy of (Pml). In particular, v∗

ml = z∗
vf.

Proof. Let (λ,δ) be a feasible solution of NLP (4.18). Then δ is a feasible solution of (Pml).
We now prove that λ satisfies (4.19), from which we can deduce that Eδ

[∑T
t=1 r (St , At ,St+1)

] =∑
s∈XS

p(s)λs . We prove the result using a backward induction from t = T until t = 1, where
the induction hypothesis at time t is that λ satisfies (4.19) for t ′ in Jt ,T K. At time t = T , the
induction hypothesis is true.

We assume that the induction hypothesis is true until t +16 T . At time t , constraints (4.18e)
ensure that

λt
sas′ = r (s, a, s′)+ ∑

o′∈XO ,a′∈XA

p(o′|s′)δt+1
a′|o′λ

t+1
s′o′a′

= r (s, a, s′)+ ∑
o′∈XO ,a′∈XA

p(o′|s′)δt+1
a′|o′Eδ

[∑
t ′=t+1

r (St ′ , At ′ ,St ′+1)|St+1 = s′,Ot+1 = o′, At+1 = a′
]

= r (s, a, s′)+Eδ
[∑

t ′=t+1
r (St ′ , At ′ ,St ′+1)|St+1 = s′

]

= r (s, a, s′)+Eδ
[∑

t ′=t+1
r (St ′ , At ′ ,St ′+1)|St = s, At = a,St+1 = s′

]

= Eδ
[∑

t ′=t
r (St ′ , At ′ ,St ′+1)|St = s, At = a,St+1 = s′

]

for all s, s′ ∈XS and a ∈XA . The fourth equality comes from the fact that all random variables
(St ′ ,Ot ′ , At ′)t ′>t+1 are conditionally independent from (St , At) given St+1. It proves that λ sat-
isfies (4.19c). Constraints (4.18c) ensure that

λt
soa = ∑

s′∈XS

p(s′|s, a)λt
sas′

= ∑
s′∈XS

p(s′|s, a)Eδ

[∑
t ′=t

r (St ′ , At ′ ,St ′+1)|St = s, At = a,St+1 = s′
]

= Eδ
[∑

t ′=t
r (St ′ , At ′ ,St ′+1)|St = s, At = a

]
= Eδ

[∑
t ′=t

r (St ′ , At ′ ,St ′+1)|St = s,Ot = o, At = a

]

for all s ∈XS , o ∈XO , and a ∈XA . It proves thatλ satisfies (4.19b). In addition, constraints (4.18b)
ensure that

λs =
∑

o∈XO ,a∈XA

p(o|s)δ1
a|oEδ

[
T∑

t=1
r (St , At ,St+1)|St = s,Ot = o

]
= Eδ

[
T∑

t=1
r (St , At ,St+1)|St = s

]
.

It proves thatλ satisfies (4.19a). Hence,λ is the vector of value functions of the distribution Pδ
induced by δ.

47

Chapter 4. Integer programming for POMDPs

Therefore, δ is optimal if and only if (λ,δ) is optimal for NLP (4.18) and v∗
ml = z∗

vf.

Remark 5. In fact, we can reduce the number of variables of NLP (4.18). Indeed, Theorem 8.17
ensures that if (λ,δ) is a feasible solution of NLP (4.18), thenλ satisfiesλt

soa = Eδ
[∑T

t ′=t r (St ′ , At ′ ,St ′+1)|St =
s,Ot = o, At = a

]
for every s ∈XS , o ∈XO , a ∈XA and t ∈ [T]. By definition of Pδ, we have that

the variables (St ′ , At ′ ,St ′+1)t ′>t are independent from Ot given (St , At). Therefore, the variables
λt

soa do not depend on o, for any s ∈XS , a ∈XA and t ∈ [T]. Consequently, we can replace the
T |XS ||XO ||XA| variables

(
(λt

soa)s,o,a
)

t , by the T |XS ||XA| new variables
(
(λt

sa)s,a
)

t . 4

4.4.2 Turning the NLP into an MILP

In this section, we assume that we have access to a vector blb and a vector bub such that for
every policy δ in ∆ml,

blb6λ6 bub,

whereλ is the vector of value functions of Pδ. In Section 4.4.3, we explain how we compute blb

and bub. These bounds play a key role because they drive the quality of the linear relaxation of
MILP (4.21).

Theorem 8.17 ensures that NLP (4.18) exactly models (Pml), and in particular both problems
have the same optimal solution in terms of δ. However, NLP (4.18) is hard to solve due to the
nonlinear constraints (4.18d). By Proposition 4.5, we can add the integrality constraints of ∆d

ml
in (4.18), and, by a classical result in integer programming, we can turn NLP (4.18) into an
equivalent MILP by replacing the nonlinear terms in constraint (4.18d) by its McCormick re-
laxation, without changing its optimal value. To do so, we introduce variablesα= (

(αt
soa)s,o,a

)
t

and the following inequalities, which are the McCormick inequalities for constraints (4.18d).

αt
soa 6 bub,t

soa δ
t
a|o ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

αt
soa 6λ

t
soa ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

αt
soa >λ

t
soa +bub,t

soa (δt
a|o −1) ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

αt
soa > blb,t

soaδ
t
a|o ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

(4.20a)

(4.20b)

(4.20c)

(4.20d)

For convenience, we denote by McCormick
(
α,λ,δ

)
the McCormick linear inequalities (4.20).

Thus, we get that (Pml) is equivalent to the following MILP:

max
λ,α,δ

∑
s∈XS

p(s)λs

s.t. λs =
∑

o∈XO ,a∈XA

p(o|s)α1
soa ∀s ∈XS

λt
sas′ = r (s, a, s′)+ ∑

o′∈XO ,a′∈XA

p(o′|s)αt+1
so′a′ ∀s ∈XS , t ∈ [T −1]

λt
soa = ∑

s′∈XS

p(s′|s, a)λt
sas′ ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

McCormick
(
α,λ,δ

)
δ ∈∆d

ml

(4.21)

48

4.4. Value functions for POMDPs with memoryless policies

Remark 6. Let δ be a feasible solution of (Pml). Then, Theorem 4.1 and Theorem 8.17 respec-
tively ensure that there exists a unique vector of momentsµ and a unique vector of value func-
tions λ of the probability distribution Pδ. Furthermore, µ and λ are linked by the following
relation. ∑

s,s′∈XS ,a∈XA

λt
sas′µ

t
sas′ = Eδ

[T∑
t ′=t

r (St ′ , At ′ ,St ′+1)
]
, ∀t ∈ [T].

In Part II, we give another interpretation of the vector of value functions. It turns out that in
some specific cases like MDPs, the value functions represent the variables of some related dual
linear programs. 4

4.4.3 Computing bounds on the value functions

The aim of this section is to explain how we compute the vector of lower bounds blb and the
vector of upper bounds bub of the vector of value functionsλ. We define blb as follows.

blb,T
sas′ = r (s, a, s′), ∀s, s′ ∈XS , a ∈XA

blb,t
sas′ = r (s, a, s′)+ ∑

o′∈XO

p(o′|s′) min
a′∈XA

blb,t+1
s′o′a′ , ∀s, s′ ∈XS , a ∈XA , t ∈ [T −1]

blb,t
soa =∑

s′
p(s′|s, a)blb,t

s,a,s′ , ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

blb
s = ∑

o∈XO

p(o|s) min
a′∈XA

blb,1
s,o,a , ∀s ∈XS

(4.22)

And we define bub as follows.

bub,T
sas′ = r (s, a, s′), ∀s, s′ ∈XS , a ∈XA

bub,t
sas′ = r (s, a, s′)+ ∑

o′∈XO

p(o′|s′) max
a′∈XA

bub,t+1
s′o′a′ , ∀s, s′ ∈XS , a ∈XA , t ∈ [T −1]

bub,t
soa = ∑

s′∈XS

p(s′|s, a)bub,t
s,a,s′ , ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

bub
s = ∑

o∈XO

p(o|s) max
a′∈XA

bub,1
s,o,a , ∀s ∈XS

(4.23)

Proposition 4.6. Letλ be the vector of value functions of the probability distributionPδ induced
by a policy δ. Then, λ satisfies blb6λ6 bub.

Proof. We prove the result for the upper bounds. It suffices to replace the max operator by
min operator for the lower bounds. Let (λ,δ) be a feasible solution of MILP (4.21). We prove
the result by induction on t . The result is true at t = T. Suppose that the induction hypothesis
holds until t . By definition of the vector of value functions, we have:

λt
sas′ = r (s, a, s′)+ ∑

o′,a′
p(o′|s′)δt

a′|o′λ
t+1
s′o′a′ 6 r (s, a, s′)+ ∑

o′,a′
p(o′|s′)δt

a′|o′b
ub,t+1
s′o′a′

6 r (s, a, s′)+∑
o′

p(o′|s′) max
a′∈XA

bub,t+1
s′o′a′ = bub,t

sas′ ,

where the first inequality comes from the induction hypothesis and the second inequality comes

49

Chapter 4. Integer programming for POMDPs

from the fact that the δ is deterministic. In addition, we have:

λt
soa =∑

s′
p(s′|s, a)λt

sas′ 6
∑
s′

p(s′|s, a)bub,t
sas′ = bub,t

soa

It achieves the proof.

4.4.4 Strengthening the linear relaxation

In this section, we introduce an MILP that uses the conditional probabilitiesP(St |St−1, At−1,Ot),
which appear in the valid inequalities (4.8), and leads to a linear relaxation that is tighter in
practice.

Like for MILP (4.7), whenδ is a vector of continuous variables, the McCormick’s constraints (4.20)
do not ensure that the constraints αt

soa =λt
soaδ

t
a|o are satisfied for any s in XS , o in XO , a in XA

and t in [T]. Hence, the constraints (4.18d) are not necessary satisfied in the linear relaxation
of MILP (4.21). Intuitively, it means that the feasible set of the linear relaxation of MILP (4.21)
is too large. Like for MILP (4.7) we wish to reduce the feasible set of the linear relaxation of
MILP (4.21). However, unlike MILP (4.7) we are not able to derive valid inequalities for the vari-
ables of MILP (4.21). Instead of introducing valid inequalities for MILP (4.21), we introduce a
formulation that uses the conditional independences (4.12) and that gives McCormick’s bound
on the variablesλ that are tighter.

We introduce this formulation in three steps to obtain another formulation that uses these in-
dependences. First, we introduce another NLP that gives an optimal strategy of (Pml). Second,
we turn this NLP into an MILP using the McCormick’s inequalities. Third, we compute a vector
of lower bounds blb,c and upper bounds bub,c of any feasible solution and we prove that these
bounds are respectively greater than blb and smaller than bub.

A nonlinear formulation. We introduce the variables (λt
soa) and the following NLP:

max
λ,δ

∑
s∈XS

p(s)λs

s.t. λs =
∑

o∈XO ,a∈XA

p(o|s)δ1
a|oλ

1
soa ∀s ∈XS

λt
soa = ∑

s′∈XS

p(s′|s, a)λt
sas′ ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

λt
sas′ = r (s, a, s′)

+ ∑
s′′∈XS ,o′∈XO ,

a′∈XA

p(o′|s′)p(s′′|s, a,o′)δt+1
a′|o′λ

t+1
s′′o′a′ ∀s, s′ ∈XS , a ∈XA , t ∈ [T −1]

λT
sas′ = r (s, a, s′) ∀s, s′ ∈XS , a ∈XA

δ ∈∆ml.

(4.24a)

(4.24b)

(4.24c)

(4.24d)

(4.24e)

(4.24f)

Note that there always exists a feasible solution of NLP (4.24). The constraints of NLP (4.24) are
similar to the ones of NLP (4.18) except that Constraints (4.24d) differ from Constraints (4.18d).

50

4.4. Value functions for POMDPs with memoryless policies

Indeed, Constraints (4.24d) can be written explicitly:

λt
sas′ = r (s, a, s′)+∑

o′∈XO ,a′∈XA

δt+1
a′|o′Pδ(Ot+1 = o′|St+1 = s′)

∑
s′′∈XS

Pδ(St+1 = s′′|St = s, At = a,Ot+1 = o′)λt+1
s′′o′a′

We replaced λt+1
s′o′a′ by the expected value

∑
s′′∈XS

Pδ(St+1 = s′′|St = s, At = a,Ot+1 = o′)λt+1
s′′o′a′ . It

turns out a feasible solution of NLP (4.24) is not necessarily a vector of value functions. For-
tunately, Proposition 4.7 below ensures that despite the loss of the value function property of
Theorem 8.17, any feasible policy δ gives the same objective value for (Pml) and NLP (4.18).

Proposition 4.7. Let (λ,δ) be a feasible solution of NLP (4.24). Thenλ satisfies

Eδ
[T∑

t ′=t
r (St ′ , At ′ ,St ′+1)

]= ∑
s,s′∈XS
a∈XA

Pδ(St = s, At = a,St+1 = s′)λt
sas′

Eδ
[T∑

t ′=t
r (St ′ , At ′ ,St ′+1)

]= ∑
s∈XS ,o∈XO

a∈XA

Pδ(St = s,Ot = o, At = a)λt
soa .

In particular,
∑

s∈XS
p(s)λ1

s = Eδ
[∑T

t=1 r (St , At ,St+1)
]
.

Proof. Let (λ,δ) be a feasible solution of NLP (4.24). We prove the result by a backward induc-
tion on t . It is immediate for t = T. Suppose that the result holds until t +1. We have∑

s,a,s′
Pδ(St = s, At = a,St+1 = s′)λt

sas′ =
∑

s,a,s′
Pδ(St = s, At = a,St+1 = s′)r (s, a, s′)

+ ∑
s,s′,s′′∈XS ,o′∈XO ,

a,a′∈XA

Pδ(St = s, At = a) p(s′|s, a)p(o′|s′)p(s′′|s, a,o′)︸ ︷︷ ︸
=p(s′|s,a,o′)p(o′|s′)p(s′|s,a)

δt+1
a′|o′λ

t+1
s′′o′a′

= ∑
s,a,s′

Pδ(St = s, At = a,St+1 = s′)r (s, a, s′)

+ ∑
s,s′′,o′,a,a′

Pδ(St = s, At = a)p(s′′|s, a)p(o′|s′′)δt+1
a′|o′

∑
s′

p(s′|s, a,o′)︸ ︷︷ ︸
=1

λt+1
s′′o′a′

= ∑
s,a,s′

Pδ(St = s, At = a,St+1 = s′)r (s, a, s′)

+ ∑
s,s′,o′
a,a′

Pδ(St = s, At = a,St+1 = s′,Ot+1 = o′, At+1 = a′)λt+1
s′o′a′

= ∑
s,a,s′

Pδ(St = s, At = a,St+1 = s′)r (s, a, s′)+ ∑
s′,o′,a′

Pδ(St+1 = s′,Ot+1 = o′, At+1 = a′)λt+1
s′o′a′︸ ︷︷ ︸

=Eδ
[∑T

t ′=t+1
r (St ′ ,At ′ ,St ′+1)

]
= Eδ

[T∑
t ′=t

r (St ′ , At ′ ,St ′+1)
]

It follows that Eδ
[∑T

t ′=t r (St ′ , At ′ ,St ′+1)
] = ∑

s,o,a Pδ(St = s,Ot = o, At = a)λt
soa . Finally, we have

51

Chapter 4. Integer programming for POMDPs

the following computation

∑
s
λ1

s p(s) = ∑
s,o,a

p(s)p(o|s)δ1
a|oλ

1
soa = Eδ

[T∑
t=1

r (St , At ,St+1)
]
,

which achieves the proof.

Now, we are able to write a theorem for NLP (4.24) that is similar to Theorem 8.17. We denote
by z∗

vfc the optimal value of NLP (4.24).

Theorem 4.8. Let (λ,δ) be a feasible solution of NLP (4.24). Then, (λ,δ) is an optimal solution
of NLP (4.24) if and only if δ is an optimal policy of (Pml). In particular, v∗

ml = z∗
vfc .

Proof. The proof is immediate from Proposition 4.7.

Turning NLP (4.24) into an MILP. Again, we can linearize the constraints (4.24d) by intro-
ducing the variablesα and the McCormick’s inequalities (4.20). We obtain the following MILP:

max
λ,α,δ

∑
s∈XS

p(s)λs

s.t. λs =
∑

o∈XO ,a∈XA

p(o|s)α1
soa ∀s ∈XS

λt
sas′ = r (s, a, s′)

+ ∑
s′′∈XS ,o′∈XO

a′∈XA

p(o′|s)p(s′′|s, a,o′)αt+1
s′′o′a′ ∀s ∈XS , t ∈ [T −1]

λt
soa = ∑

s′∈XS

p(s′|s, a)λt
sas′ ∀s ∈XS ,o ∈XO , a ∈XA , t ∈ [T]

McCormick
(
α,λ,δ

)
δ ∈∆d

ml

(4.25a)

(4.25b)

(4.25c)

(4.25d)

Computing bounds. We define blb,c and bub,c as follows: For any s, s′ in XS , o in XO and a in
XA ,

blb,c,T
sas′ = r (s, a, s′),

blb,c,t
sas′ = r (s, a, s′)+ ∑

o′∈XO

p(o′|s′) min
a′∈XA

∑
s′′∈XS

p(s′′|s, a,o′)blb,c,t+1
s′′o′a′ , ∀t ∈ [T −1],

blb,c,t
soa = ∑

s′∈XS

p(s′|s, a)blb,c,t
sas′ , ∀t ∈ [T],

and,
bub,c,T

sas′ = r (s, a, s′),

bub,c,t
sas′ = r (s, a, s′)+ ∑

o′∈XO

p(o′|s′) max
a′∈XA

∑
s′′∈XS

p(s′′|s, a,o′)bub,c,t+1
s′′o′a′ ∀t ∈ [T −1],

bub,c,t
soa = ∑

s′∈XS

p(s′|s, a)bub,c,t
sas′ ∀t ∈ [T].

52

4.5. Numerical experiments

Proposition 4.9. Let (λ,δ) be a feasible solution of NLP (4.24). Then,λ satisfies blb,c6λ6 bub,c.
In addition, the bounds obtained are tighter than blb and bub, i.e., blb6 blb,c and bub> bub,c.

As we will show in the numerical experiments in Section 4.5, the optimal value of the linear
relaxation of MILP (4.25) is always non greater than the optimal value of the linear relaxation of
MILP (4.21).

Proof of Proposition 4.9. We prove the result for bub,c. It will hold for blb,c by reversing the in-
equality symbol and replacing the max operator by the min operator. Let (λ,α,δ) be a feasible
solution of MILP (4.25). It suffices to prove the result for the vector (λt

soa)s,o,a,t because Propo-
sition 4.6 ensures that the other coordinates satisfy the inequality. Again, we prove the result by
induction on t . The result holds for t = T. Suppose that the induction hypothesis holds until t .
It implies that for any s ∈XS , o ∈XO and a ∈XA :

λt
soa =∑

s′
p(s′|s, a)

(
r (s, a, s′)+∑

o′
p(o′|s′) ∑

s′′,a
p(s′′|s, a,o′)δt

a′|o′λ
t+1
s′′o′a′

)
6

∑
s′

p(s′|s, a)
(
r (s, a, s′)+∑

o′
p(o′|s′)∑

a′
δt

a′|o′
∑
s′′

p(s′′|s, a,o′)bub,t+1
s′′o′a′

)
6

∑
s′

p(s′|s, a)
(
r (s, a, s′)+∑

o′
p(o′|s′)max

a′

∑
s′′

p(s′′|s, a,o′)bub,t+1
s′′o′a′

)
= bub,c,t

soa

Now we prove that bub,c,t
soa 6 bub,t

soa . Again, we prove the result by backward induction. It is im-
mediate for t = T. Suppose that the induction hypothesis holds until t +1. We prove the result
for t . By definition we have:

bub,c,t
soa =∑

s′
p(s′|s, a)r (s, a, s′)+ ∑

s′,o′
p(s′|s, a)p(o′|s′)max

a′

∑
s′′

p(s′′|s, a,o′)bub,c,t+1
s′′o′a′

6
∑
s′

p(s′|s, a)r (s, a, s′)+ ∑
s′,s′′,o′

p(s′|s, a)p(o′|s′)p(s′′|s, a,o′)max
a′ bub,c,t+1

s′′o′a′

=∑
s′

p(s′|s, a)r (s, a, s′)+ ∑
s′′,o′

p(s′′|s, a)p(o′|s′′)∑
s′

p(s′|s, a,o′)︸ ︷︷ ︸
=1

max
a′ bub,t+1

s′′o′a′

= bub,t
soa ,

The first inequality comes from the induction hypothesis and by decomposing the maximum
over the sum. The second equality come from the fact that p(s′′|s, a,o′)p(s′|s, a)p(o′|s′) =
p(s′|s, a,o′)p(s′′|s, a)p(o′|s′′). It achieves the proof.

4.5 Numerical experiments

We now provide experiments showing the practical efficiency of our approaches to POMDPs.
In Section 4.5.1, we evaluate on random instances the performances of MILP (4.7) and the ef-
ficiency of the valid inequalities (4.8) to help its resolution. In Section 4.5.2, we evaluate the
performances of MILP (4.7) on instances from the literature on POMDPs. In particular, we

53

Chapter 4. Integer programming for POMDPs

show that memoryless policies perform well on instances from maintenance problem. The in-
stances can be found here.1 All linear programs have been implemented in Julia with JuMP
interface [41] and solved using Gurobi 9.0 [52]. Experiments have been run on a server with
192Gb of RAM and 32 cores at 3.30GHz.

4.5.1 Random instances

The instances are generated by first choosing ks = |XS | = |XO | and ka = |XA|. We then ran-
domly generate the initial probability

(
p(s)

)
s∈XS

, the transition probability
(
p(s′|s, a)

)
s,s′∈XS
a∈XA

, the

emission probability
(
p(o|s)

)
s∈XS
o∈XO

and the immediate reward function
(
r (s, a, s′)

)
s,s′∈XS
a∈XA

. An in-

stance is the tuple (XS ,XO ,XA ,p,r). A way to measure the difficulty of solving an MILP (4.7) for
POMDP (XS ,XO ,XA ,p,r) with horizon T can be characterized by the size of the set of deter-
ministic policies |∆d

ml| = |XA|T |XO |, which only depends on the size of the observation space XO

and the action space XA . We generate instances for different values of the pair (ks ,ka).

Numerical experiments on random POMDP. We solve MILP (4.7) with and without valid
equalities (4.8), MILP (4.7) (basic formulation) and MILP (4.25) (strengthened formulation).
Algorithms were stopped after 3600s. Table 4.1 reports the results on the random instances.
The first four columns indicate the size of state space

∣∣XS
∣∣, observation space

∣∣XO
∣∣, action

space
∣∣XA

∣∣ and time horizon T . The fifth column indicates the mathematical program used
to solve (Pml), ether basic or strengthened. In the last three columns, we report the integrality
gap, the final gap, the percentage of instances solved and the computation time. Note that for
each instance of POMDP (XS ,XO ,XA ,p,r), we solve it with horizon T ∈ {10,20}. For each tuple
(XS ,XO ,XA), the results in Table 4.1 are averaged over 30 instances (XS ,XO ,XA ,p,r) where the
p and r are randomly generated as mentioned above.

Table 4.1 shows that the MILP formulation (4.7) that uses the vector of moments is more effi-
cient than MILP formulation (4.21) that uses the vector of value function. However, for almost
all instances the integrality gap of MILP (4.21) is lower than the one of MILP (4.7), which indi-
cates that the linear relaxation of MILP (4.21) is in general tighter. The results also show that the
valid inequalities introduced for MILP (4.7) and MILP (4.25) are efficient because adding them
significantly reduces the integrality gap. In addition, Inequality 4.14 ensures that the integrality
gaps of (4.7) reported in Table 4.1 are also bounds of the relative gap between v∗

ml and v∗
his.

4.5.2 Numerical experiments on instances from the literature

In this section, we evaluate the efficiency of MILP (4.7) on instances of POMDP drawn from
the literature and we compare its performances with one of the state-of-the-art POMDP solver
SARSOP of Kurniawati et al. [80]. In fact, SARSOP solver gives an approximate history-dependent
policy for the discounted infinite horizon POMDP problem (see Remark 3). To adapt this policy
for the finite horizon POMDP problem, we proceed as Dujardin et al. [40]: We compute a policy
using SARSOP solver with a discount factor γ= 0.999 and we compute the expected sum of re-
wards over the T time steps by simulation of the history-dependent policy. We perform 10000

1http://pomdp.org/examples/index.html

54

http://pomdp.org/examples/index.html

4.5. Numerical experiments

(ks ,ka) T
∣∣∆d

ml

∣∣ Formulation
MILP (4.7) MILP (4.21)

gi gf Opt Time gi gf Opt Time
(%) (%) (%) (s) (%) (%) (%) (s)

(3,3) 10 1014 Basic 6.02 Opt 100 1.49 5.52 Opt 100 202
Strengthened 1.70 Opt 100 0.62 0.22 Opt 100 110

20 1028 Basic 6.04 Opt 100 664 5.80 Opt 100 2621
Strengthened 1.52 Opt 100 466 1.28 Opt 100 1735

(3,4) 10 1024 Basic 9.51 0.34 87 512 8.69 3.06 43 2244
Strengthened 3.16 0.18 87 514.4 2.16 0.79 61 1591

20 1048 Basic 9.64 1.96 43 2221 9.25 8.34 10 3431
Strengthened 2.86 1.13 61 1731 2.38 2.03 21 3132

(3,5) 10 1034 Basic 9.33 0.83 57 1591 8.65 5.49 17 2976
Strengthened 2.35 0.38 70 1113 1.64 1.03 48 2036

20 1069 Basic 9.60 3.30 26 2702 9.23 8.62 9 3287
Strengthened 2.14 1.14 52 1879 1.99 1.80 26 3030

(4,3) 10 1014 Basic 7.39 Opt 100 26 5.63 0.39 90 520
Strengthened 2.28 Opt 100 9.16 1.32 0.18 90 391

20 1028 Basic 6.01 1.01 60 1598 6.02 4.22 35 2407
Strengthened 2.03 0.32 80 987 1.44 1.12 45 1995

(4,4) 10 1024 Basic 12.19 0.98 65 1477 8.80 4.81 40 2178
Strengthened 3.44 0.27 80 967 1.76 1.02 50 1888

20 1048 Basic 12.29 4.66 20 2900 9.26 8.59 20 2880
Strengthened 3.05 1.48 30 2651 1.96 1.80 40 2270

(4,5) 10 1034 Basic 11.64 1.76 35 2427 8.36 5.32 30 2636
Strengthened 3.09 0.62 65 1345 1.74 1.32 55 1819

20 1069 Basic 12.04 5.46 5 3413 9.48 8.81 16 3031
Strengthened 3.20 1.67 32 2490 2.15 2.08 21 3003

Table 4.1 – POMDP results using MILP (4.7) with and without (4.8), with a time limit of 3600s

55

Chapter 4. Integer programming for POMDPs

simulations to compute the expectation. By definition, the objective value zSARSOP obtained by
using this policy is a lower bound of v∗

his. We run the SARSOP algorithm using the Julia library
POMDPs.jl of Egorov et al. [43].

Instances. All the instances can be found at the link http://pomdp.org/examples/ and fur-
ther descriptions of each instance are available in the indicated literature on the same website.
In particular, it contains two instances bridge-repair and machine that model maintenance
problems. The first one, introduced by Ellis et al. [44], consists of the maintenance of a bridge.
The modeling is almost similar to our one in Chapter 3 except that there are more available ac-
tions and they consider only one machine. Instead of just choosing whether or not to maintain
the bridge, the decision maker chooses whether or not to inspect the bridge and, if so, whether
or not to maintain it. The second one, introduced by Cassandra [23, Appendix H.3], consists of
planning the maintenance of a machine with 4 deteriorating components. Again, the decision
maker can choose to inspect before performing a maintenance of the machine. In addition, the
action “maintenance” is distinguished in two different actions: repair, which consists in main-
taining internal components, and replace, which consists in replacing the machine by a new
one. It leads to the set of available actions XA = {operate, inspect,repair,replace}.

Metrics. We give two metrics to evaluate MILP (4.7) against the SARSOP policy. We want
to compare the optimal value z∗ of MILP (4.7) with the value zSARSOP obtained by using the
SARSOP policy. In addition, Theorem 4.4 says that z∗ and zSARSOP are lower bounds of v∗

his.
We also compare these values with z∗

Rc , the optimal value of the linear relaxation of MILP (4.7)
with valid inequalities (4.8). By Theorem 4.4, the value of z∗

Rc is an upper bound of z∗ and v∗
his,

and consequently an upper bound of zSARSOP. It leads to the relative gap g (z) = zRc−z
z∗

Rc
for any z

belonging to {z∗, zSARSOP}.

All the results are reported in Table 4.2. The first column indicates the instance considered. The
three next columns indicate respectively the cardinality of XS , XO and XA of the instance. The
fourth column indicates the algorithm used. The last six columns indicate the total expected
reward (Obj.) and the gap values for different finite horizon T ∈ {5,10,20}.

Numerical results. One may observe that in most cases the optimal value obtained with our
MILP is close to the upper bound zRc . Thanks to Theorem 4.4, it says that memoryless policies
perform well on finite horizon for these instances. In particular, the gap is noticeably small on
the instance of maintenance problem bridge-repair. However, as mentioned in Section 3.5,
one can observe that the memoryless policies fail on instances of navigation problems [87].
We observe this phenomenon on instances of navigation problems, where the goal is to find
a target in a maze, and there are a large number of states relatively to a small number of ob-
servations. It is fairly natural: using a memoryless policy in a maze is misleading because if
the decision maker meets a wall, he will act as it is the first time he meets a wall, and then will
always take the same actions. It seems that on these instances, the SARSOP policies work best
on larger horizons, which is expected since the SARSOP policy is built for an infinite horizon
problem. The results in Table 4.2 support the remark of Walraven and Spaan [158, Section 3]

56

http://pomdp.org/examples/

4.6. Bibliographical remarks

Instances
Size

Algorithms
Horizon

|XS | |XO | |XA| T = 5 T = 10 T = 20
Obj. Gap(%) Obj. Gap(%) Obj. Gap(%)

1d.noisy 4 2 2 MILP 1.56 18.73 2.97 19.18 5.82 18.73
SARSOP 0.57 70.12 0.67 81.76 0.81 88.71

4x5x2∗ 39 4 4 MILP 0.37 58.13 0.75 57.45 1.86 47.58
SARSOP 0.08 90.87 0.08 95.28 0.08 97.50

aircraftID 12 5 6 MILP 5.69 0.00 10.10 0.00 19.76 0.00
SARSOP 3.39 40.46 7.63 24.46 17.32 12.41

aloha.10 30 3 9 MILP 38.04 0.56 62.74 1.66 84.92 13.84
SARSOP 38.15 0.25 63.74 0.20 89.09 9.61

cheng.D3-1 3 3 3 MILP 32.29 1.87 64.38 1.11 128.55 0.72
SARSOP 32.04 2.65 64.16 1.45 128.28 0.93

cheng.D4-1 4 4 4 MILP 33.83 5.20 67.37 4.10 134.45 3.54
SARSOP 32.40 9.1 65.90 6.19 133.05 4.54

cheng.D5-1 5 5 5 MILP 32.89 3.28 65.64 2.25 131.12 1.73
SARSOP 32.47 4.50 65.23 2.86 130.81 1.96

learning.c3 24 3 12 MILP 1.63 45.3 2.20 26.76 2.33 22.48
SARSOP 0.33 88.89 0.33 89.00 0.34 88.67

milos-aaai97∗ 20 8 6 MILP 26.83 10.28 53.41 36.06 92.09 55.06
SARSOP 12.62 57.79 39.52 52.69 97.73 52.31

network∗ 7 2 4 MILP 20.30 2.49 95.06 22.85 203.87 36.02
SARSOP 20.88 0.00 95.78 22.26 245.88 22.98

bridge-repaira 5 5 10 MILP 1992.77 0.15 7801.56 0.44 27937.93 0.13
SARSOP 1514.15 24.13 6832.99 12.80 26568.42 5.03

query.s2 9 3 2 MILP 21.54 0.95 46.25 0.10 96.50 0.11
SARSOP 15.77 27.50 31.68 31.56 64.91 30.66

machinea 256 16 4 MILP 4.90 0.00 9.50 0.81 17.98 0.05
SARSOP 4.90 0.00 9.35 2.38 15.69 12.79

∗ Instances of navigation problem
a Instances of maintenance problem

Table 4.2 – Numerical results on benchmark instances. The results written in bold indicate the
best value obtained for each instance.

saying that the point-based algorithms for infinite discounted POMDP, such as SARSOP, can be
inefficient on finite horizon.

4.6 Bibliographical remarks

POMDP with history-dependent policies. The original POMDP problem (Phis) has received
a lot of interest in the literature, and, the state-of-the-art algorithms solving (Phis) are based on
two fundamental results. First, a POMDP is equivalent to a MDP in the belief state space [42,
Theorem 4]. The belief state is the posterior probability distribution of the state given past de-
cisions and observations and the belief state space corresponds to the unit simplex. It follows
that a POMDP is MDP with a continuous state space and the Bellman’s equation can be written
on the belief state space (see [78, Eq. (2.15)]). The second fundamental result is that the value
function of this Bellman’s equation is piecewise linear and concave. It enables to derive an ex-
act dynamic programming algorithms for POMDPs with finite [144] or infinite horizon [147].
The most important ones are the Witness algorithm [64, 86] and the Incremental Pruning al-
gorithm [22, 168]. However, these exact algorithms become quickly intractable when the size
of the spaces grows. While several heuristics use value function approximations in dynamic

57

Chapter 4. Integer programming for POMDPs

programming [54, 145], point-based algorithms approximate the belief state space with a finite
subset and derive value iteration on its belief points [80, 120, 140, 146]. Aras et al. [6] proposed a
mixed-integer programming approach giving an optimal history-dependent policy that models
exactly Phis. Once again, solving such a program is computationally expensive even for small
state spaces and small observation spaces. For more details on POMDP solutions, see for in-
stance the surveys of Monahan [107], Ross et al. [130], Shani et al. [140] or more recently the
book of Krishnamurthy [78]. In a recent work, Walraven and Spaan [158] point out the reasons
why the existing state-of-the-art algorithms for solving the POMDP problem over infinite hori-
zon with discounted rewards fail to generalize to POMDP problem over a finite horizon without
discounting.

POMDP with memoryless policies. As we explained in Chapter 3, choosing a memoryless
policy restricts the policy space but the resulting problem (Pml) is NP-hard [87]. Littman [87]
proposed a branch-and-bound heuristic that explores the policy space ∆ml and Meuleau et al.
[106] generalized it into an exact greedy algorithm for solving the problem with infinite horizon
and discounted reward. In the reinforcement learning community, several policy iteration like
algorithms have been proposed to find a stationary stochastic policy [59, 84, 143].

In the case of solving the MDP problem, the classical linear programming formulation (4.13)
[38] uses the moments of the distribution as variables. This formulation is called "dual formula-
tion" in the book of Puterman [124] because it is the dual of the well-known linear formulation
of the Bellman equation for finite horizon MDP (see, e.g., [124]).

58

5 Integer programming for weakly cou-
pled POMDPs

The goal of this chapter is to introduce mathematical programming formulations and algo-
rithms to find a “good” policy for a weakly coupled POMDP (Pwc

ml). We recall that (Pwc
ml) has been

introduced in Section 3.2 and can be formulated as

max
δ∈∆ml

Eδ

[
T∑

t=1
r (St ,At ,St+1)

]
(Pwc

ml)

In this chapter, we denote by v∗
ml the optimal value of (Pwc

ml). Since a weakly coupled POMDP
is a POMDP on the state space XS , the observation space XO and the action space XA , we
could in principle apply MILP (4.7) to solve (Pwc

ml). However, the number of constraints and
variables grows exponentially with the number of components M , and becomes quickly in-
tractable. Even the linear relaxation of MILP (4.7) becomes intractable. Indeed, Theorem 4.4
ensures that the linear relaxation of MILP (4.7) is equivalent to its MDP approximation. In the
case of a weakly coupled POMDP, its MDP approximation is equivalent to the weakly coupled
dynamic program of Adelman and Mersereau [2], which is intractable even for small values of
M .

To address this issue, we introduce a new MILP formulation based on the results of Chapter 4.
This formulation is an approximation of (Pwc

ml) and has a tractable number of constraints and
variables. The approximation is based on a relaxation of the linking constraint in the definition
of the action space (3.2). To evaluate the quality of the approximation, we introduce formula-
tions whose optimal values are lower bound and upper bound of (Pwc

ml), which are also bounds
of the optimal value of the integer program. Numerical experiments on medium scale instances
of multi-armed bandits show that these bounds are close. In the previous chapter, MILP (4.7)
gave explicitly an optimal policy. By explicitly, we mean that we had to solve only a single inte-
ger program, and its optimal solution provides the policy δ. This is no more the case here. The
values taken by a solution of our integer formulation do not give policy that is a conditional
probability distribution over the action space (3.2) given an observation. To address this issue,
we introduce the implicit policies, i.e., the policies that are defined through a family of tailored
optimization problems indexed by the possible history of observations and actions. At a given
time step, the corresponding MILP is built, then solved and an action is retrieved from the op-
timal solution. These implicit policies will be used in Part III for the maintenance problem at
Air France. In this chapter, we do not use a formulation with value function variables like in the

59

Chapter 5. Integer programming for weakly coupled POMDPs

previous chapter. Chapter 5 is organized as follows

• Section 5.1 introduces the MILP, which is an approximation of (Pwc
ml).

• Section 5.2 extends the valid inequalities (4.8) of MILP (4.7) to the new MILP.
• Section 5.3 shows how the linear relaxation of our MILP is related to POMDP with history-

dependent policies (Phis).
• Section 5.4 introduces the shared upper bound and the shared lower bound on the opti-

mal value of the approximation and (Pwc
ml).

• Section 5.5 shows how we build an implicit feasible policy for (Pwc
ml) based on our integer

formulation.
• Section 5.6 introduces a rolling horizon heuristic that exploits the history-dependent pol-

icy towards a practical solution.
• Section 5.7 provides several numerical experiments on Multi-armed Bandits which are

partially observable.

For convenience, given a POMDP (XS ,XO ,XA ,p,r) and a finite horizon T , we define respec-
tively the feasible sets of NLP (4.1) and MILP (4.7) asQ(T,XS ,XO ,XA ,p) andQd(T,XS ,XO ,XA ,p).
We write respectively Q and Qd when (T,XS ,XO ,XA ,p) is clear from the context.

5.1 An approximate integer program

Consider a weakly coupled POMDP
(
(Xm

S ,Xm
O ,Xm

A ,pm ,rm ,Dm)m∈[M],b
)
. Based on the results

of Chapter 4, a naive approach is to use MILP (4.7) on the POMDP
(
XS ,XO ,XA ,p′,r′

)
, where

XS = X 1
S × ·· · ×XM

S , XO = X 1
O × ·· · ×XM

O , and, XA , p′, and r′ are respectively defined by (3.2)-
(3.5). As we explained in the introduction, the number of variables and the number constraints
of MILP (4.7) are exponential in the number of components M , which makes its resolution or
the resolution of its linear relaxation intractable. In this section, we propose an approximate
integer program that breaks this curse of dimensionality.

We introduce variables τm =
(
(τ1,m

s)s , (τt ,m
sas′)s,a,s′ , (τt ,m

soa)s,o,a , (τt ,m
a)a

)
t∈[T]

, δm = (δt ,m)t∈[T] for all

m in [M], and the following MILP.

max
τ,δ

T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S
a∈Xm

A

r m(s, a, s′)τt ,m
sas′

s.t.
(
τm ,δm) ∈Qd(

T,Xm
S ,Xm

O ,Xm
A ,pm) ∀m ∈ [M]∑

s∈Xm
S ,o∈Xm

A

τt ,m
soa = τt ,m

a ∀a ∈Xm
A ,m ∈ [M], t ∈ [T]

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a 6 b ∀t ∈ [T]

(5.1a)

(5.1b)

(5.1c)

(5.1d)

By Theorem 4.1, constraints (5.1b) and (5.1c) ensure that the variables τm can still be inter-
preted as the vector of moments of the probability distribution Pδm induced by the determin-
istic policy δm for each component m in [M]. Constraint (5.1d) is a surrogate modeling of the
linking constraints in the definition ofXA (3.2). However, given a feasible solution (τm ,δm)m∈[M]

there is no guarantee that there exists a feasible policyδof (Pwc
ml) such that the variables (τm)m∈[M]

60

5.2. Valid inequalities

represent the moments of the distribution Pδ on the whole system. It is the reason why we de-
note by τ the approximate vector of moments instead of µ, which we used in Chapter 4.

In fact, the optimal value of MILP (5.1), denoted by zIP, is neither an upper bound, nor a lower
bound of v∗

ml in general. A feasible solution (τm ,δm)m∈[M] of MILP (5.1) defines a policy δm on
each component m in [M]. Unfortunately, in general, we are not able to derive from it a feasible
policy of (Pwc

ml). Indeed, for any observation o, an element a satisfying δt ,m
am |om = 1 for any m in

[M] and t in [T] does not necessary belong to XA . Conversely, a feasible solution δ of (Pwc
ml)

does not define unambiguously a deterministic policy for each component m. In Appendix A,
we provide numerical examples of this phenomenon. However, zIP is a good approximation for
v∗

ml : in Section 5.4 we introduce a common lower bound and a common upper bound of zIP

and v∗
ml and numerical experiments in Section 5.7 show that these bounds turn out to be close

in some practical applications.

In fact, going from MILP (4.7) to MILP (5.1) we performed three approximations:

(A) Consider “local” variables (τm ,δm) in Q
(
T,Xm

S ,Xm
O ,Xm

A ,pm
)

for each component m,
(B) Consider deterministic policies δm ∈∆d,m ,
(C) Transform the linking constraint

∑M
m=1 Dm(Am

t)6 b, which is almost sure, into the con-
straint in expectation

∑M
m=1Eδm

[
Dm(Am

t)
]
6 b.

The size of MILP (5.1) is tractable for two reasons. First, there is a polynomial number of con-
straints. Indeed, the number of constraints of MILP (5.1) is O

(
T

∑M
m=1 |Xm

S ||Xm
O ||Xm

A |). Second,
the number of binary variables in MILP (5.1) is linear in M . Indeed, the number of binary vari-
ables of MILP (5.1) is T

∑M
m=1 |Xm

O ||Xm
A |. Furthermore, using the definition of the “local” policy

set and the fact that Xm
A = {0,1} in the predictive maintenance problem with capacity con-

straints, a “local” policy δm can be encoded using only the binary variables δt ,m
1|o for o ∈ Xm

O ,

m ∈ [M] and t ∈ [T]. Hence the number of binary variables is T
∑M

m=1 |Xm
O | in that content.

5.2 Valid inequalities

Since Equalities (4.8) are valid for MILP (4.7), we can naturally derive similar equalities to
tighten the linear relaxation of MILP (5.1). We introduce new variables τt ,m

s′a′soa and the fol-
lowing linear inequalities.∑

s′∈Xm
S ,a′∈Xm

A

τt ,m
s′a′soa = τt ,m

soa , ∀s ∈Xm
S ,o ∈Xm

O , a ∈Xm
A ,

∑
a∈Xm

A

τt ,m
s′a′soa = pm(o|s)pm(s|s′, a′)τt−1,m

s′a′ , ∀s, s′ ∈Xm
S ,o ∈Xm

O , a′ ∈Xm
A ,

τt ,m
s′a′soa = pm(s|s′, a′,o)

∑
s∈Xm

S

τt ,m
s′a′soa

, ∀s, s′ ∈Xm
S ,o ∈Xm

O , a, a′ ∈Xm
A .

(5.2)

Proposition 5.1. Inequalities (5.2) are valid for MILP (5.1), MILP (5.3) and NLP (5.5), and there
exists solution of the linear relaxation of (5.1) that does not satisfy constraints (5.2).

Proof. Proposition 4.3 ensures that equalities (5.2) are valid on each component. Hence, these
inequalities are valid for MILP (5.1), MILP (5.3) and NLP (5.5). Proposition 4.3 also ensures that
there are solutions of the linear relaxation of (4.7) that do not satisfy constraints (4.8) on each

61

Chapter 5. Integer programming for weakly coupled POMDPs

component.

In practice, inequalities (5.2) help the resolution of MILP (5.1). However, since the extended
formulation obtained by adding inequalities (5.2) in MILP (5.1) has a large number of variables
and constraints when the number of components is large (M > 15), the linear relaxation takes
longer to solve.

5.3 Strengths of the linear relaxation

While in Section 4.3 we showed that the linear relaxation of MILP (4.7) is equivalent to the MDP
approximation, one may ask the question: How do we relate the linear relaxation of MILP (5.1)
with the MDP approximation of a weakly coupled POMDP? As stated the theorem below, we
are able to link the value of the linear relaxation of MILP (5.1) (with and without valid inequali-
ties (5.2)) with the optimal value v∗

ml and v∗
his. We denote respectively by zRc and zR the optimal

values of the linear relaxations of MILP (5.1) with and without valid inequalities (5.2).

Theorem 5.2. The linear relaxation of MILP (5.1) is a relaxation of the MPD approximation of
the weakly coupled POMDP. Furthermore, the inequalities v∗

MDP6 zR and v∗
his6 zRc hold.

It turns out the linear relaxation of MILP (5.1) is equivalent to the fluid formulation of Bertsimas
and Mišić [15], which is a relaxation of the MDP approximation of a weakly coupled POMDP.

5.4 An upper bound and a lower bound

We show that (Pwc
ml) and MILP (5.1) share a lower bound zLB and an upper bound zUB :

zLB6 v∗
ml6 zUB

zLB6 zIP6 zUB

The aim of this section is to introduce the mathematical programs that give zLB and zUB by play-
ing with the approximations (A), (B) and (C). In Section 5.4.4, we propose an interpretation of
the bounds obtained. The upper bound zUB is difficult to compute in practice. Instead of com-
puting zUB, we propose to compute another upper bound which is based on the Lagrangian
relaxation of the linking constraints (5.1d). This upper bound is much easier to compute for
larger instances.

In this section, we need to compare MILP formulations that do not share the same set of vari-
ables. We therefore say that a problem P is a relaxation of problem P’ when given a feasible
solution of P’ we can build a feasible solution of P with the same value.

5.4.1 The lower bound from an MILP with an exponential number of constraints

Using the same notation as in MILP (5.1), we introduce the following MILP.

62

5.4. An upper bound and a lower bound

zLB := max
τ,δ

T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S
a∈Xm

A

rm(s, a, s′)τt ,m
sas′

s.t.
(
τm ,δm) ∈Qd(

T,Xm
S ,Xm

O ,Xm
A ,pm) ∀m ∈ [M]

M∑
m=1

∑
a∈Xm

A

Dm(a)δt ,m
a|om 6 b ∀o ∈XO , t ∈ [T]

(5.3a)

(5.3b)

(5.3c)

MILP (5.3) is obtained by using approximations (A) and (B). Note that the difference between
MILP (5.1) and MILP (5.3) is that we replace the moments τm in constraints (5.1d) by the policy
δm in constraints (5.3c). While constraints (5.1d) ensure that

∑M
m=1Eδm

[
Dm(Am

t)
]
6 b, con-

straints (5.3c) ensure that
∑M

m=1Eδm
[
Dm(Am

t)|Om
t = om

]
6 b for any o ∈XO . Consequently, the

linking constraint of XA is satisfied almost surely in MILP (5.3). We denote by zLB the optimal
value of MILP (5.3).

Theorem 5.3. (Pwc
ml) and MILP (5.1) are both relaxations of MILP (5.3). In particular, zLB 6 v∗

ml
and zLB6 zIP.

It follows from Theorem 5.3 that MILP (5.3) gives a policy δ that is feasible for (Pwc
ml), which is

interesting in itself. Theorem 5.3 tells us even more: MILP (5.3) restricts to the “decomposable”
deterministic policies, i.e., policies δ that can be written δ=∏M

m=1δ
m . However, MILP (5.3) has

a exponential number of constraints, which makes it intractable for a large number of compo-
nents. Indeed, there are T ×∏M

m=1 |Xm
O | constraints (5.3c).

Proof of Theorem 5.3. Let (τm ,δm)m∈[M] be a feasible solution of MILP (5.3). We prove that
(τm ,δm)m∈[M] is a feasible solution of MILP (5.1) and (Pwc

ml). First, we show that (τm ,δm)m∈[M]

is a feasible solution of MILP (5.1). We define the variables τt ,m
a for any a ∈ Xm

A , m ∈ [M],
and t ∈ [T] such that

∑
s∈Xm

S ,o∈Xm
O
τt ,m

soa = τt ,m
a . In addition, we introduce the variables τt ,m

o =∑
s∈Xm

S ,o∈Xm
O
τt ,m

soa for any o ∈ Xm
O , any m ∈ [M] and t ∈ [T]. It suffices to show that inequal-

ity (5.1d) holds. We compute the left-hand side of (5.1d).

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a =

M∑
m=1

∑
a∈Xm

A ,o∈Xm
O

Dm(a)δt ,m
a|o τ

t ,m
o =

M∑
m=1

∑
a∈Xm

A

Dm(am)Eτt ,m [δt ,m
am |Om

t
]6 b

The first equality is a consequence of the tightness of the McCormick constraints (4.6a)-(4.6c).
The second equality comes from the fact that the variables (τt ,m

o)o∈Xm
O

define a probability dis-
tribution over Xm

O . Finally, the last inequality results from

M∑
m=1

∑
a∈Xm

A

Dm(a)Eτt ,m [δt ,m
a|Om

t
]6

M∑
m=1

∑
a∈Xm

A

Dm(a) max
o∈Xm

O

(δt ,m
a|o)6 b

Therefore, the inequality holds (5.1d) and MILP (5.1) is a relaxation of MILP (5.3).

Second, we show that (τm ,δm)m∈[M] is a feasible solution of (Pwc
ml). We define a policy over

XA ×XO .

δt
a|o =

M∏
m=1

δt ,m
am |om (5.4)

63

Chapter 5. Integer programming for weakly coupled POMDPs

for all a ∈XA , o ∈XO and t ∈ [T]. It suffices to prove that δ belongs to ∆. Let o ∈XO and t ∈ [T].

∑
a∈XA

δt
a|o = ∑

a∈XA

M∏
m=1

δt ,m
am |om = ∑

a∈XA

M∏
m=1

δt ,m
am |om = 1

The second equality comes from the fact that for any a ∈ XA such that
∑M

m=1 Dm(am) > b,∏M
m=1δ

t ,m
am |om = 0 because of Constraints (5.3c). Therefore, δ is a feasible policy of (Pwc

ml).

Since the objective functions are the same, the inequalities zLB6 v∗
ml and zLB6 zIP hold.

5.4.2 An upper bound through a nonlinear formulation

Using the same notation as in MILP (5.1), we introduce the following NLP.

zUB := max
τ,δ

T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S
a∈Xm

A

rm(s, a, s′)τt ,m
sas′

s.t.
(
τm ,δm) ∈Q(

T,Xm
S ,Xm

O ,Xm
A ,pm) ∀m ∈ [M]∑

s∈Xm
S ,o∈Xm

A

τt ,m
soa = τt ,m

a ∀a ∈Xm
A ,m ∈ [M], t ∈ [T]

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a 6 b ∀t ∈ [T]

(5.5a)

(5.5b)

(5.5c)

(5.5d)

NLP (5.5) is obtained by using approximations (A) and (C). Once again, variables τm can be
interpreted as the vector of moments of the probability distribution Pδm on component m but
there is no guarantee that it defines a joint probability distribution over the whole system. How-
ever, Theorem 5.4 ensures that it gives a relaxation of (Pwc

ml). We denote by zUB the optimal value
of NLP (5.5).

Theorem 5.4. NLP (5.5) is a relaxation of (Pwc
ml) and MILP (5.1). In particular, v∗

ml 6 zUB and
zIP6 zUB.

NLP (5.5) is a Quadratically Constrained Quadratic Program (QCQP) due to constraints (5.5b)
and is in general non-convex. Hence, it is hard to solve NLP (5.5) in practice because it requires
to use a Spatial Branch-and-Bound However, the number of variables and the number of con-
straints are polynomial. Thanks to the recent advances of QCQP solvers such as Gurobi 9.0

[52], we are able to solve NLP (5.5) to optimality in a reasonable computation time for small
instances. For larger instances, the solver is no longer efficient because it reaches the limits of
a Spatial Branch-and-Bound [85].

Proof of Theorem 5.4. First, we prove that NLP (5.5) is a relaxation of MILP (5.1). Let (τm ,δm)m∈[M]

be a feasible solution of MILP (5.1). We prove that (τm ,δm)m∈[M] is a feasible solution of NLP (5.5).
It suffices to prove that for all m ∈ [M], (τm ,δm) satisfies constraints (4.1g). It comes from the
tightness of the McCormick inequalities (4.6a)-(4.6c) when the policy is deterministic. Hence,
it is a relaxation with the same objective function. Therefore, the inequality zIP6 zUB holds.

Second, we prove that NLP (5.5) is a relaxation of (Pwc
ml). Let δ be a feasible policy of (Pwc

ml). We

64

5.4. An upper bound and a lower bound

want to define a solution of the non-linear program (5.5). We extend the domain of δ to XA by
setting δt

a|o = 0 when
∑

m∈[M] Dm(am) > b, for all o ∈XO . It is easy to see that δ is still a policy in
XA . Theorem 4.1 ensures that there exists µ such that (µ,δ) is a feasible solution of MILP (4.7).
We define the variables τm on component m ∈ [M] by induction

τ1,m
s = ∑

s−m∈X−m
S

µ1
s , τ1,m

soa =
(∑

s−m∈X−m
S

o−m∈X−m
O

a−m∈X−m
A

δt
a|o

∏
m′ 6=m

pm′
(om′ |sm′

)τ1,m′

sm′

)
pm(o|s)τ1,m

s ,

τt ,m
sas′ =

∑
o′∈Xm

O ,a′∈Xm
A

τt ,m
s′o′a′ , τt+1,m

soa =
(∑

s−m∈X−m
S

o−m∈X−m
O

a−m∈X−m
A

δt
a|o

∏
m′ 6=m

pm′
(om′ |sm′

)τt ,m′

sm′

)
pm(o|s)

∑
s′∈Xm

S ,a′∈Xm
A

τt ,m
s′a′s ,

and the policy δm

δt ,m
a|o = ∑

s−m∈X−m
S

o−m∈X−m
O

a−m∈X−m
A

δt
a|o

∏
m′ 6=m

pm′
(om′ |sm′

)τt ,m′

sm′ ,

for all a ∈Xm
A , o ∈Xm

O and t ∈ [T]. By definition of τm , ifδm is in∆m , then the constraints (5.5b)
are satisfied by (τm ,δm)m∈[M]. We prove that δm is in ∆m

ml.∑
a∈Xm

A

δt ,m
a|o = ∑

a∈Xm
A

∑
s−m∈X−m

S
o−m∈X−m

O
a−m∈X−m

A

δt
a|o

∏
m′ 6=m

pm′
(om′ |sm′

)τt ,m′

sm′ = ∑
s−m∈X−m

S
o−m∈X−m

O

∏
m′ 6=m

pm′
(om′ |sm′

)τt ,m′

sm′ = 1

for all o ∈Xm
O , m ∈ [M] and t ∈ [T]. The last equality comes from the fact that by induction we

have that
∑

s∈Xm
S
τt ,m

s = 1. Therefore, δm ∈∆m
ml.

It remains to prove that constraints (5.5d) are satisfied by (τm ,δm)m∈[M]. We compute the left-
hand side of constraint (5.5d).

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a =

M∑
m=1

∑
a∈Xm

A

Dm(a)

(∑
s∈XS ,o∈XO

a′∈XA :a′m=am

δt
a′|o

M∏
m′=1

pm′
(om′ |sm′

)τt ,m′

sm′

)

= ∑
s∈XS ,o∈XO

a′∈XA

δt
a′|o

M∏
m′=1

pm′
(om′ |sm′

)τt ,m′

sm′

M∑
m=1

∑
a∈Xm

A

Dm(am)

=

=1︷ ︸︸ ︷∑
s∈XS ,o∈XO

a∈XA

δt
a|o

M∏
m′=1

pm′
(om′ |sm′

)τt ,m′

sm′

M∑
m=1

Dm(am)︸ ︷︷ ︸
6b

6 b

Therefore, constraints (5.5d) are satisfied. Consequently, NLP (5.5) is a relaxation of (Pwc
ml). In

addition, the objective functions are equal. We deduce that v∗
ml6 zUB.

65

Chapter 5. Integer programming for weakly coupled POMDPs

5.4.3 A tractable upper bound through Lagrangian relaxation

When the number of components increases, computing the upper bound zUB becomes quickly
intractable. Fortunately, we can obtain a weaker upper bound of v∗

ml and zIP that is more
tractable to compute. To do so, we use the Lagrangian relaxation technique on constraints (5.5d)
of NLP (5.5). This technique has already been used in the literature on weakly coupled dynamic
programs to compute upper bounds [2, 55, 165].

We denote by β = (βt)t∈[T] the dual variables associated with constraints (5.5d). If we relax
constraints (5.5d), then we obtain the Lagrangian function We introduce a collection of non-
negative variables β= (βt)t∈[T] with βt ∈ Rq

+ for any t ∈ [T] and the following Lagrangian func-
tion

L
(
τ,δ,β

)= T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S
a∈Xm

A

r m(s, a, s′)τt ,m
sas′ +

T∑
t=1

(βt)T

(
b−

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a

)
,

for any (τm ,δm)m∈[M]. Then, we introduce the dual function G :RT×q
+ →R, with values

G
(
β

)
:= max

τ,δ

T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S
a∈Xm

A

r m(s, a, s′)τt ,m
sas′ +

T∑
t=1

(βt)T

(
b−

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a

)

s.t.
(
τm ,δm) ∈Q(

T,Xm
S ,Xm

O ,Xm
A ,pm) ∀m ∈ [M]

(5.6)

By weak duality, for any β, the dual function (5.6) provides an upper bound obtained by using
Approximation (A).

We now explain how to compute the dual function. As it is usually the case for Lagrangian relax-
ation, for every β ∈RT×q

+ , the maximum in the computation of G(β) decomposes over the sum
of the maximum over each component. However, the formulations obtained for each compo-
nent are still nonlinear. Fortunately, the following proposition ensures that we can linearize the
formulation without changing the value of the dual function.

Proposition 5.5. For all β ∈RT×q
+ , the dual function can be written as

G
(
β

)= T∑
t=1

(βt)Tb+
M∑

m=1
Gm(β) (5.7)

where Gm(β) is the quantity

Gm(
β

)
:= max

τm ,δm

T∑
t=1

∑
s,s′∈Xm

S
a∈Xm

A

(
r m(s, a, s′)− (βt)TDm(a)

)
τt ,m

sas′

s.t.
(
τm ,δm) ∈Qd(

T,Xm
S ,Xm

O ,Xm
A ,pm)

66

5.4. An upper bound and a lower bound

Proof. Let β ∈RT q
+ . Then, the value function G in β can be written:

G
(
β

)= max
(τm ,δm)m∈[M]

T∑
t=1

M∑
m=1

∑
s,s′∈Xm

S
a∈Xm

A

(
r m(s, a, s′)− (βt)TDm(a)

)
τt ,m

sas′ +
T∑

t=1
(βt)Tb

s.t.
(
τm ,δm) ∈Q(

T,Xm
S ,Xm

O ,Xm
A ,pm) ∀m ∈ [M]

Since the second term does not depend on (τm ,δm)m∈[M], we only consider the maximization
on the first term. In such a problem, there are no linking constraints between the components,
which enables to decompose the maximization operator along the components as follows.

G
(
β

)= M∑
m=1

max
τm ,δm

T∑
t=1

∑
s,s′∈Xm

S
a∈Xm

A

(
r m(s, a, s′)− (βt)TDm(a)

)
τt ,m

sas′ +
T∑

t=1
(βt)Tb

s.t.
(
τm ,δm) ∈Q(

T,Xm
S ,Xm

O ,Xm
A ,pm)

Theorem 4.1 ensures that the optimization subproblem above on component m corresponds to
a POMDP problem with memoryless policies of POMDP

(
Xm

S ,Xm
O ,Xm

A ,pm , r̃
)

where r̃ m(s, a, s′) =
r m(s, a, s′)−(βt)TDm(a) for any s, s′ ∈Xm

S and a ∈Xm
A . Thanks to Proposition 4.2, the subprob-

lem on component m can be solved using deterministic policies. Therefore, we can replace
Q

(
T,Xm

S ,Xm
O ,Xm

A ,pm
)

by Qd
(
T,Xm

S ,Xm
O ,Xm

A ,pm
)

for any component m and we obtain

G
(
β

)= T∑
t=1

(βt)Tb+
M∑

m=1
Gm(β),

which achieves the proof.

It follows from Proposition 5.5 that the dual function can be computed by solving MILP (4.7)
on each component of the system, which is in general easier than solving NLP (5.5). As stated
in the following proposition, it gives us an upper bound that is not worse than the optimal
value of the linear relaxation of MILP (5.1). We denote respectively by zR and zRc the optimal
values of the linear relaxation of MILP (5.1) and the linear relaxation of MILP (5.1) with valid
inequalities (5.2), and we define the Lagrangian relaxation zLR := min

β∈RT q
+
G(β).

Proposition 5.6. The value of the Lagrangian relaxations of MILP (5.1) and NLP (5.5) are equal
and the following inequalities hold:

zUB6 zLR6 zRc 6 zR

Proof. Thanks to Proposition 5.5, the dual functions of MILP (5.1) and NLP (5.5) are equal. It
follows that the value of the Lagrangian relaxations are equal.

First, the inequality zUB 6 zLR comes from weak duality (see e.g. Bertsekas [13, Proposition
5.1.3]). Second, to show the second inequality zLR 6 zR, it suffices to observe that the dual
function G(β) of NLP (5.5) is also the dual function of MILP (5.1). Indeed, in the expression of
Gm(β) we can replace Q

(
T,Xm

S ,Xm
O ,Xm

A ,pm
)

by Qd
(
T,Xm

S ,Xm
O ,Xm

A ,pm
)

because the re always
exists an optimal policy that is deterministic on the POMDP

(
Xm

S ,Xm
O ,Xm

A ,pm ,rm −βT Dm
)
. A

67

Chapter 5. Integer programming for weakly coupled POMDPs

classical result in operations research (see e.g. Geoffrion [48, Theorem 1]) states that the bound
of the Lagrangian relaxation of an integer program is not worse than the bound of the linear
relaxation. It shows that zLR6 zR.

It remains to prove that zLR 6 zRc and zRc 6 zR. The second one comes from the fact that we
have a smaller feasible set in the linear relaxation by adding the valid inequalities. The first one
comes by adding valid inequalities (5.2) in the expression of Gm(β), which is possible since the
inequalities are valid, and by using the same arguments (weak duality and Geoffrion’s Theorem)
we conclude that zLR6 zRc .

Now we propose two methods to compute the value of the Lagrangian relaxation zLR: the sub-
gradient algorithm and a column generation algorithm. Depending on the user preferences,
both approaches have their advantages and drawbacks. In this thesis, we choose to use the
column generation algorithm, which turns to be efficient on numerical experiments (see Sec-
tion 5.7).

Subgradient algorithm. Since the dual function G(β) is convex in β, we can apply the classi-
cal subgradient methods (see e.g. Bertsekas [13]), which is known to converge to min

β∈RT q
+
G(β)

for a step length carefully chosen. Note that each step requires to solve M times MILP (5.1) to
evaluate the dual function. Even if the convergence to the optimum of such an algorithm can
be slow, we obtain quickly an upper bound that is tighter than zR and zRc .

Column generation algorithm. Thanks to Geoffrion’s Theorem [29, Theorem 8.2], the value
of the Lagrangian relaxation MILP (5.1) satisfies the following Dantzig-Wolfe reformulation:

zLR = max
(τm ,δm)m∈[M]

M∑
m=1

T∑
t=1

∑
s,s′∈Xm

S
a∈Xm

A

r m(s, a, s′)τt ,m
sas′

s.t. (τm ,δm) ∈ Conv
(
Qd(T,Xm

S ,Xm
O ,Xm

A ,pm)
)
, ∀m ∈ [M]

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a 6 b, ∀t ∈ [T],

(5.11)

where we included the constraints
∑

s∈Xm
S ,o∈Xm

A
τt ,m

soa = τt ,m
a in the set Qd(T,Xm

S ,Xm
O ,Xm

A ,pm)
and Conv(X) denotes the convex hull of a set X . We can compute this formulation using an
exact column generation algorithm.

Using the definition of the convex hull, we can reformulate MILP (5.11) as the following master

68

5.4. An upper bound and a lower bound

problem:

zLR = max
(ωm ,τm ,δm)m∈[M]

M∑
m=1

T∑
t=1

∑
s,s′∈Xm

S
a∈Xm

A

r m(s, a, s′)τt ,m
sas′

s.t. (τm ,δm) = ∑
(τ,δ)∈Qd,m

ωm
τ,δ(τ,δ) ∀m ∈ [M]∑

(τ,δ)∈Qd,m

ωm
τ,δ = 1 ∀m ∈ [M]

M∑
m=1

∑
a∈Xm

A

Dm(a)τt ,m
a 6 b ∀t ∈ [T]

ωm
τ,δ> 0 ∀(τ,δ) ∈Qd,m ,∀m ∈ [M]

(5.12a)

(5.12b)

(5.12c)

(5.12d)

(5.12e)

where Qd,m =Qd(T,Xm
S ,Xm

O ,Xm
A ,pm) for every m in [M]. It follows that the pricing subprob-

lem on component m writes down:

zm := max
(τ,δ)

T∑
t=1

∑
s,s′∈Xm

S
a∈Xm

A

(
r m(s, a, s′)−βT

t Dm(a)
)
τt

sas′

s.t. (τ,δ) ∈Qd,m ,

(5.13)

where β = (βt)t∈[T] ∈ RT q
+ is the vector dual variables of the linking constraint (5.12d). We de-

note by π = (πm)m∈[M] the vector of dual variables of Constraints (5.12c). It follows that the
reduced cost can be written c =∑M

m=1 zm +πm .

Now we are able to derive the column generation algorithm. We assume thatXA 6= ; (otherwise
the decision maker cannot choose any action). Hence, there exists at least one element a ∈
X 1

A ×·· ·×XM
A such that

∑M
m=1 Dm(am)6 b. Let ae be such an element in XA .

Algorithm 1 returns an optimal solution of the master problem (5.12) and the value of the La-
grangian relaxation zLR. We omit the proof in this thesis.

5.4.4 Interpretation of the bounds

In this section, we summarize the links between the feasible sets of MILP (5.3), MILP (5.1),
NLP (5.5) and (Pwc

ml). It enables to give a probabilistic interpretation of the bounds zLB and zUB.
Figure 5.1 illustrates Theorems 5.3, 5.4 and the Lagrangian relaxation property.

First, MILP (5.3) corresponds to a restriction of (Pwc
ml) because we choose policies that are de-

terministic on each component and all the actions induced by the feasible policy satisfies the
linking constraints (3.2) almost surely.

Second, NLP (5.5) allows stochastic policies, and constraint (5.5b) ensures that the linking con-
straints in (3.2) are satisfied in expectation. Therefore, zLB and zUB are respectively a “deter-
ministic” approximation and a “in expectation” approximation of (Pwc

ml).

69

Chapter 5. Integer programming for weakly coupled POMDPs

Algorithm 1 Column generation to compute zLR.

1: Input: T , weakly coupled POMDP
(
(Xm

S ,Xm
O ,Xm

A ,pm ,rm ,Dm)m∈[M],b
)

2: Output: An optimal solution of the master problem (5.12) and the value zLR

3: Initialize z ←−∞, Q′m ←;
4: for m = 1, . . . , M do
5: Define δm such that δt ,m

a|o =1am
e

(a) for every a ∈Xm
A , o ∈Xm

O and t ∈ [T]

6: Compute τm such that (τm ,δm) ∈Qd,m

7: zm ←∞ and πm ←∞
8: end for
9: while

∑M
m=1 zm +πm > 0 do

10: Add column: Q′m ←Q′m ∪ {(τm ,δm)}
11: Solve master problem (5.12) restricted to (Q′m)m∈[M] to obtain dual variables (β,π)
12: z ← Optimal value of the restricted master problem
13: for m = 1, . . . , M do
14: Set reward r̃ m

t (s, a, s′) := r m(s, a, s′)−βT
t Dm(a) for every s, s′ ∈Xm

S and a ∈Xm
A

15: Solve MILP (4.7) with valid inequalities (4.8) for POMDP (Xm
S ,Xm

O ,Xm
A ,p, r̃) to obtain

(τm ,δm) and zm

16: end for
17: end while
18: Set τm :=∑

(τ′,δ′)∈Q′m ωm
τ′,δ′τ

′ for every m ∈ [M]

19: return (τm)m∈[M] and z

(Pwc
ml)

Lower bound (5.3):
(A) and (B)

MILP (5.1):
(A), (B) and (C)

Upper bound (5.5):
(A) and (C)

Dual function (5.6): (A)

Figure 5.1 – The relaxations of Section 5.4. An arrow from Problem X to a Problem Y indicates
that Y is a relaxation of X in the sense we defined at the beginning of this section. In each
block, we indicate which assumptions (see p. 61) we use to obtain the formulations.

70

5.5. Deducing an history-dependent policy from MILP (5.1)

5.4.5 Benefits and drawbacks of the formulations

Figure 5.1 summarizes the links between the feasible sets of the different formulations they
have been established in the theorems. Table 5.1 highlights the benefits and the drawbacks of
the different formulations. It reports the behavior of the formulations regarding several crite-
ria formulated as questions: are the numbers of variables (Pol. variables) and constraints (Pol.
constraints) polynomial? Does the formulation have linking constraints between the compo-
nents (Link. constraints)? Is the formulation linear (Linearity)? Are there integer variables in
the formulation (Int. variables)? Does the formulation provide a feasible policy (Feas. pol.)? Is
the optimal value an upper bound or a lower bound regarding v∗

ml? Is the formulation tractable
regarding the size of the instances (small with |XS |6 102, medium with 102 6 |XS |6 104 and
large with |XS |> 104)? The tractability criteria should be understood as an advice on the for-
mulation to choose and the scale order is only one indicator among others.

Formulations Po
l.

va
ri

ab
le

s

Po
l.

co
ns

tr
ai

nt
s

Li
nk

. c
on

st
ra

in
ts

Li
ne

ar
ity

In
t.

va
ri

ab
le

s

Fe
as

. p
ol

ic
y

Lo
w

er
bo

un
d

U
pp

er
bo

un
d

Small
Tractability
Medium Large

MILP (5.1) X X X X X X X
Lower bound (5.3) X X X X X X X
Upper bound (5.5) X X X X X
Lagrangian Relaxation X X X X X X X X
Linear Relaxation of (5.1) X X X X X X X X

Table 5.1 – Comparison of the properties of the formulations.

All the formulations we propose have a polynomial number of variables. Each formulation
has benefits and drawbacks. While MILP (5.3) is an MILP with an exponential number of con-
straints, NLP (5.5) is a NLP with a polynomial number of constraints. The presence of linking
constraints between the components in the MILP (5.3), MILP (5.1), and the NLP (5.5), increases
the difficulty to solve a linear or nonlinear formulation. Indeed, these constraints are also called
“complicating constraints” [28] because it prevents of solving a single POMDP problem on each
component individually. Since there are no linking constraints in the integer program (5.7) that
computes the dual function, it is the easiest to solve.

5.5 Deducing an history-dependent policy from MILP (5.1)

In MILP (5.1), we consider “local” policies δm on each component m in [M]. However, in
general, given a vector of “local” policies (δm)m∈[M], there is no guarantee that there exists a
policy δ that coincides with δm for every components m in [M]. In this section we describe
how we build an implicit policy that is feasible for (Pwc

his). We recall that an implicit policy
of (Pwc

his) is a policy δ such that each value δt
a|h is computed using an tailored optimization

problem. Consider a weakly coupled POMDP (Xm
S ,Xm

O ,Xm
A ,pm ,rm ,Dm)m∈[M],b) and a history

h = (o1,a1, . . . ,ot−1,at−1,ot) available at time t . Conditionally to h, the vectors of state compo-
nent

(
Sm

t ′
)

16t ′6t for all m in [M] become independent, i.e.,

Pδ(St = s|Ht = h) =
M∏

m=1

pm (sm |hm)︷ ︸︸ ︷
Pδ

(
Sm

t = sm |H m
t = hm)

.

71

Chapter 5. Integer programming for weakly coupled POMDPs

In the POMDP literature, the probability distribution Pδ
(
Sm

t |H m
t

)
is the belief state of com-

ponent m. We can use the belief state update (see Remark 7) on each of the components to
compute the belief state pm(sm |hm). We introduce the following algorithm:

Algorithm 2 History-dependent policy Actt
T(h)

1: Input An history of observations and actions h ∈ (XO ×XA)t−1 ×XO

2: Output An action a ∈XA

3: Compute the belief state pm(s|hm) according to the belief state update (see remark below)
for every state s in Xm

S and every component m in [M]
4: Remove constraints and variables indexed by t ′ < t in MILP (5.1) and solve the resulting

problem with horizon T − t , initial probability distributions
(
pm(s|hm)

)
s∈Xm

S
for every com-

ponent m in [M] and initial observation o (see Remark 4) to obtain an optimal solution
(τm ,δm)m∈[M]

5: Return a = (a1, . . . , aM) for which δt ,m
am |om = 1 for every m in [M]

Then we define the implicit history-dependent policy δIP as follows:

δt ,IP
a|h =

{
1, if a = Actt

T (h)

0, otherwise
, ∀h ∈X t

H ,a ∈XA , t ∈ [T] (5.14)

It is not clear that the policy (5.14) is a feasible policy of (Pwc
his) because it is not immediate to

see that the action returned by Algorithm 2 belongs to XA . The theorem below ensures that the
implicit policy (5.14) is a feasible policy of (Pwc

his) giving a higher expected reward than zIP. We
denote by νIP the total expected reward induced by policy δIP.

Theorem 5.7. The implicit policy δIP defined in (5.14) is a feasible policy of (Pwc
his) and the in-

equality zIP6 νIP6 v∗
his holds.

Theorem 5.7 has a strong interest in practice because it enables to exploit the implicit pol-
icy (5.14) in an rolling horizon heuristic, which we describe in Section 5.6. Theorem 5.7 enables
to deduce a feasible policy of (Pwc

his) from MILP (5.1).

Remark 7. Given a POMDP (XS ,XO ,XA ,p,r), at each time t , the belief state (p(s|Ht))s∈XS is a
sufficient statistic of the history of actions and observations Ht [42, Theorem 4]. Given the
action at taken at time t an the observation ot+1 received at time t +1, the belief state can be
easily updated over time according to the belief state update [86, Eq. (1)]:

p(st+1|Ht+1) = p(st+1|Ht , at ,ot+1) = ∑
s∈XS

p(ot+1|s)p(s|st , at)∑
s′∈XS

p(ot+1|s′)p(s′|st , at)
p(s|Ht)

4

Proof of Theorem 5.7. It suffices to prove that at each time t ∈ [T], for every observation h ∈X t
H

the element Actt
T(h) belongs toXA , i.e.,

∑M
m=1 Dm

(
Actt,m

T (h)
)
6 b. Let (τm ,δm)m∈[M] be a feasible

solution of MILP (5.1) at step 4. Since Om
t = om

t almost surely, τt ,m
soa is equal to 0 when o 6= om

t .

72

5.5. Deducing an history-dependent policy from MILP (5.1)

Hence, we obtain
τt ,m

a = ∑
s∈Xm

S ,o∈Xm
O

τt ,m
soa = ∑

s∈Xm
S

τt ,m
som

t a = δt ,m
a|om

t

It ensures that τt ,m
a ∈ {0,1} for any a ∈ Xm

A and m ∈ [M]. Let a∗ be the action taken at step 5.
Therefore, τt ,m

a = 1 when a = am∗ and 0 otherwise. Now we compute the linking constraint
of (3.2).

M∑
m=1

Dm(am∗) =
M∑

m=1
Dm(am∗)τt ,m

am∗ =
M∑

m=1

∑
a∈Xm

A

Dm(a)τt ,m
a 6 b

The last inequality comes from the fact that (τm ,δm)m∈[M] satisfies constraint (5.1d).

Now we prove the inequalities. The inequality νIP6 v∗
his holds because δIP ∈∆his. It remains to

show that zIP 6 νIP. We do it using a backward induction. Let (τ∗m ,δ∗m)m∈[M] be an optimal
solution of MILP (5.1). We denote by Pt (ht) the feasible set of the optimization problem solved
in ActIP,t

T (ht), for every t in [T]. We consider the following induction hypothesis at time t :

max
(τm ,δm)m∈[M]∈Pt (ht)

M∑
m=1

Eδm

[
T∑

t ′=t
r m(Sm

t , Am
t ,Sm

t+1)|H m
t = hm

t

]
6 EδIP

[
M∑

m=1

T∑
t ′=t

r m(Sm
t , Am

t ,Sm
t+1)|Ht = ht

]

If t = T , then consider left-hand side is exactly equal to the right-hand side.

max
(τm ,δm)m∈[M]∈PT (hT)

M∑
m=1

Eδm
[
r (Sm

T , Am
T ,Sm

T+1)|H m
T = hm

T

]
= max

(τm ,δm)m∈[M]∈PT (hT)

M∑
m=1

Eδm
[
r (Sm

T , Am
T ,Sm

T+1)|Sm
T ∼ pm(·|hm

T)
]= Eδm,IP

[
M∑

m=1
r m(Sm

T , Am
T ,Sm

T+1)|HT = hT

]

The first equality comes from the fact that the belief state is a sufficient statistic of the history.
It proves the induction hypothesis for t = T .

73

Chapter 5. Integer programming for weakly coupled POMDPs

Suppose that the induction hypothesis holds from t +1. We compute the term in t :

max
(τm ,δm)m∈[M]∈Pt (ht)

M∑
m=1

Eδm

[
T∑

t ′=t
r m(Sm

t ′ , Am
t ′ ,Sm

t ′+1)|H m
t = hm

t

]

= max
(τm ,δm)m∈[M]∈Pt (ht)

M∑
m=1

Eδt ,m

[
r m(Sm

t , Am
t ,Sm

t+1)|H m
t = hm

t

]
+

M∑
m=1

∑
am

t ,om
t+1

(
Pδt ,m

(
Om

t+1 = om
t+1, Am

t = am
t |H m

t = hm
t

)

×

does not depend on δt ,m︷ ︸︸ ︷
Eδm

 T∑
t ′=t+1

r m(Sm
t ′ , Am

t ′ ,Sm
t ′+1)|H m

t = hm
t , Am

t = am
t ,Om

t+1 = om
t+1︸ ︷︷ ︸

H m
t+1=hm

t+1

)

6 Eδt ,IP

[
M∑

m=1
r m(Sm

t , Am
t ,Sm

t+1)|Ht = ht

]
+

(∑
at ,ot+1

Pδt ,IP(Ot+1 = ot+1,At = at |Ht = ht)

×

induction hypothesis︷ ︸︸ ︷
max

(τm ,δm)∈Pt+1(ht+1)

M∑
m=1

Eδm

[
T∑

t ′=t+1
r m(Sm

t ′ , Am
t ′ ,Sm

t ′+1)|H m
t+1 = hm

t+1

])

6
M∑

m=1
Eδm,IP

[
r m(Sm

t , Am
t ,Sm

t+1)|H m
t = hm

t

]
The first inequality above comes from the fact that there exists an optimal solution whereδt ,IP is
the policy at time t by definition of δIP and by decomposing the maximum operator in the sum
of the second term. This latter operation can be done since Eδm

[∑T
t ′=t+1 r m(Sm

t ′ , Am
t ′ ,Sm

t ′+1)|H m
t+1 = hm

t+1

]
does not depend on the policy δt ′,m for t ′ < t + 1. It proves the backward induction. Finally,
given an optimal feasible solution (τ∗m ,δ∗m)m∈[M] of MILP (5.1), we get that:

zIP =
M∑

m=1
Eδ∗m

[∑
t=1

r m(Sm
t , Am

t ,Sm
t+1)

]
= E

[
Eδ∗m

[
M∑

m=1

T∑
t=1

r m(Sm
t , Am

t ,Sm
t+1)|Om

1 = om
1

]]

6 E

[
max

(τm ,δm)m∈[M]∈P1(h1)

M∑
m=1

Eδm

[∑
t=1

r m(Sm
t , Am

t ,Sm
t+1)|Om

1 = om
1

]]

6
M∑

m=1
Eδm,IP

[∑
t=1

r m(Sm
t , Am

t ,Sm
t+1)

]
= νIP

The first inequality comes from the inversion of the maximum operator and the expectation. It
achieves the proof.

5.6 Rolling horizon heuristic

When the horizon T is long it is computationally interesting to embed the implicit policy (5.14)
in a rolling horizon heuristic, which consists in repeatedly solving an optimization problem
with a shorter horizon at each time step and to take action at the current time.

74

5.7. Numerical experiments

Indeed, in theory, computing the implicit feasible policy (5.14) requires to compute Actt
T (h)

for every history h ∈ X t
H and every time t in [T]. It leads to two computational difficulties.

First, since the size of X t
H is exponential, computing the feasible policy becomes quickly pro-

hibitive. Second, if the finite horizon T is too large, then solving MILP (5.1) in Step 4 becomes
intractable.

In practice, at each time t the decision maker receives an observation ot in XO and takes an
action at in XA . Hence, it only requires to compute Actt

T (ht) where ht = (ht−1,at−1,ot), which
addresses the first issue. To address the second issue, we compute MILP (5.1) using a smaller
rolling horizon Tr < T . The following algorithm shows how we use the feasible policy in prac-
tice:

Algorithm 3 Rolling horizon heuristic.

1: Input: T , Tr,
(
(Xm

S ,Xm
O ,Xm

A ,pm ,rm ,Dm)m∈[M],b
)

2: for t = 1, . . . ,T do
3: Receive observation ot

4: Take action Actt
t+Tr

(ht)
5: end for

Figure 5.2 illustrates two consecutive iterations of Algorithm 3 with a rolling horizon Tr = 5.
This type of rolling horizon heuristic is commonly used for multistage optimization problems
in Operations Research [92, 127, 128, 136]. Numerical experiments in Chapter 10 show the
efficiency of the implicit policy (5.14).

5.7 Numerical experiments

In this section, we provide numerical experiments on the partially observable multi-armed
bandits problem introduced in Example 1. All mathematical programs have been written in
Julia [18] with the JuMP [41] interface and solved using Gurobi 9.0. [52] with the default set-
tings. Experiments have been run on a server with 192Gb of RAM and 32 cores at 3.30GHz. We
show the quality of the approximation (5.1) by comparing the values of zLB, zIP, zUB, zLR, zRc

and zR. The results on a predictive maintenance problem with capacity constraints are reported
in Part III.

Instances. We consider instances where the state space and observation space of each bandit
have the same cardinality n, i.e., n := |Xm

S | = |Xm
O | for any m in [M]. The resulting system’s

state space and system’s observation space have the size |XS | = |XO | = nM . In each bandit state
space, the states and observations are numbered from 1 to n, i.e., Xm

S = Xm
O = {1, . . . ,n}. Like

Bertsimas and Mišić [15], we generate different set of 10 instances: regular (REG.SAR), restless
(RSTLS.SAR and RSTLS.SBR) or deterministic (RSTLS.DET.SBR) multi-armed bandits. For each
set of instance, the emission probability vector (pm(o|s))o∈Xm

O ,s∈Xm
S

is uniformly drawn from
[0,1] and renormalized. Each set contains 10 instances. The sets of instances are generated as
follows.

• REG.SAR consists of regular partially observable multi-armed bandits. The reward func-

75

Chapter 5. Integer programming for weakly coupled POMDPs

Tr = 5

Take action Act3
3+Tr

(h3)

Past

Timet = 1 t = 3 T

(a) Iteration t = 3 of Algorithm (3)

Tr = 5

Take action Act4
4+Tr

(h4)

Past

Timet = 1 t = 4 T

(b) Iteration t = 4 of the Algorithm 3

Figure 5.2 – Scheme of the evaluation of our implicit policy (5.14) in Algorithm 3 at time t = 3
and t = 4. The decision maker observes h3 and takes action Act3

8(h3). Then, the decision maker
observes h4 and takes action Act4

9(h4). The black points indicate the time steps and the red
point corresponds to the time when the decision is taken. The black hatched lines represent
the past at the current time (red). The red square indicates the horizon taken into account in
the optimization problem.

tion is defined by r m(s,1, s′) := (10/n) · s and r m(s,0, s′) := 0 for every state s, s′ ∈Xm
S and

every arm m ∈ [M]. Each active transition probability vector (pm(s′|s,1))s,s′∈Xm
S

is drawn
uniformly from [0,1] and renormalized, for every arm m ∈ [M]. Each passive arm m stays
in the same state, i.e., pm(s′|s,0) =1s(s′) for every s, s′ ∈Xm

S .
• RSTLS.SAR consists of restless partially observable multi-armed bandits. The reward

function is the same as REG.SAR. Each active and passive transition probability vec-
tor (pm(s′|s, a))s,s′∈Xm

S
a∈{0,1}

is drawn uniformly from [0,1] and renormalized, for every arm

m ∈ [M].
• RSTLS.SBR consists of restless partially observable multi-armed bandits. The reward

function is defined by r m(s,1, s′) := (10/n) · s and r m(s,0, s′) := (1/M) · (10/n) · s for ev-
ery state s, s′ ∈Xm

S and every arm m ∈ [M]. The transition probability is randomly drawn
as RSTLS.SAR.

• RSTLS.DET.SBR consists of restless partially observable multi-armed bandits. The re-
ward function is the same as RSTLS.SBR. Each active and passive transition probability
vector (pm(s′|s, a))s,s′∈Xm

S
a∈{0,1}

is randomly drawn and deterministic, for every arm m ∈ [M].

Bertsimas and Mišić [15] explained the benefits of using such transition probabilities and re-
ward functions. We generate small-scale instances with M ∈ {2,3} arms and n = 4 states, and
medium-scale instances with M = 5 arms and n = 4 states.

76

5.7. Numerical experiments

Metrics. For each instance, we compute the value zIP, the lower bound zLB and the upper
bounds zUB, zLR, zRc and zR. Given an instance, we define the relative gaps with the largest

upper bound zR: gLB = zR−zLB

zRc
, gIP = zR−zIP

zRc
, gUB = zRc−zUB

zRc
and gLR = zRc−zLR

zRc
. Then, we define

respectively the metrics Gmean(g), G95(g) and Gmax(g) as the mean, the 95-th percentile and the
maximum over a set of instances, for each gap g in

{
gLB,gIP,gUB,gLR

}
. In general, the lower the

values of the metrics, the closer the bound is to the upper bound zRc . In particular, thanks
to Theorem 5.4 and Proposition 5.6the metrics gLB and gLR tell how close are the values of zIP

and v∗
ml. Since the computation of zUB becomes quickly difficult when the sizes of the instance

increase, we only compute the values of gUB on small instances. We also report the mean com-
putation time over the

Table 5.2 summarizes the results averaged over the 10 instances of each set. For all the math-
ematical programs, we set the computation time limit to 3600 seconds. If the resolution has
not terminated before this time limit, then we keep the best feasible solution obtained at the
end of the resolution. It explains why for some instances we obtain a smaller gap with lower
bound (5.3) than with MILP (5.1). The Lagrangian relaxation value zLR is computed using a
column generation approach.

One can observe in Table 5.2 that for almost a large part of the instances, the values of zLB,
zIP, zUB, and zLR are close in general. It shows that our formulations have optimal values that
are close to the optimal value v∗

ml of (Pwc
ml). In addition, the best bound obtained on the value

of zIP is very close to the value of the lower bound zLB. Thanks to Theorem 5.3, it means that
most of the multi-armed bandit instances admit optimal policies that are “decomposable” (see
Section 5.4).

5.7.1 Simulations of the implicit policy

The aim of this section is to show how the value returned by matheuristic 3 is close to the op-
timal value v∗

his, and that policy δIP can be computed in a reasonable amount of time on large-
scale instances of a practical problem. We evaluate the performances of the history-dependent
policy (5.14) by running Algorithm 3 on a maintenance problem taken from the literature. Like
Walraven and Spaan [157, Section 5.2], we consider a road authority that performs mainte-
nance on M bridges, each of them evolving independently over a finite horizon H . Each bridge
is modeled as a POMDP [44], and the authority must chooses at most K bridges to maintain
at each decision time. As mentioned in Section 3.3, this problem can be modeled as a weakly
coupled POMDP.

Instances Like Walraven and Spaan [157], we build our instances of weakly coupled POMDP
from the bridge-repair instance of Ellis et al. [44] in which the decision maker has to perform
maintenance on a bridge. In our problem, there are only two actions available on each bridge:
either structural repair or keep. For each bridge m, the sizes of state space, observation space
and action space are respectively |Xm

S | = 5, |Xm
O | = 5 and |Xm

A | = 2. Each bridge starts almost
surely in its most healthy state. We add noises to the transition probabilities and emission
probabilities of the bridges to ensure that they have slightly different parameters pm for all m
in [M]. For every bridge m in [M], we set C m

F = 1000 and C m
R = 100. The bridges are inspected

every months and evolve until the horizon of H = 24 months. One instance consists in the value

77

Chapter 5. Integer programming for weakly coupled POMDPs

Instance set T g M = 2 M = 3 M = 5
Gmean(g) G95(g) Gmax(g) Time(s) Gmean(g) G95(g) Gmax(g) Time(s) Gmean(g) G95(g) Gmax(g) Time(s)

REG.SAR 2 gLB 9.91 15.13 15.62 0.03 15.72 21.51 22.87 0.08 17.42 25.08 26.53 0.21
gIP 9.91 15.13 15.62 0.14 15.72 21.51 22.87 0.64 17.42 25.08 26.53 2.57
gUB 7.54 10.54 10.70 0.16 11.18 17.89 19.40 0.36 − − − −
gLR 7.02 10.21 10.33 9.55 10.86 16.97 18.73 14.08 13.00 18.41 18.64 15.52

5 gLB 6.06 9.23 9.57 0.39 10.34 13.01 13.26 1.32 14.51 18.45 18.48 3.43
gIP 6.06 9.23 9.57 17.14 10.34 13.01 13.26 1525.63 17.10 27.03 27.04 2907.11
gUB 4.59 6.07 6.19 1260.58 7.18 9.89 9.99 3247.98 − − − −
gLR 4.04 5.89 5.95 43.00 6.79 9.36 9.42 54.66 10.46 13.15 13.61 51.17

10 gLB 3.36 5.45 5.85 2.86 6.27 8.91 9.15 39.76 8.04 11.14 11.55 349.00
gIP 3.38 5.55 6.04 1283.79 10.08 18.86 19.93 3205.30 15.53 23.63 24.08 > 3600
gUB 5.08 9.41 9.51 3248.01 − − − − − − − −
gLR 2.13 3.27 3.46 946.01 3.90 5.74 5.84 1536.79 5.98 7.52 7.67 661.04

RSTLS.SAR 2 gLB 12.73 16.84 17.04 0.03 17.96 22.67 22.77 0.07 15.13 16.83 17.03 0.17
gIP 12.73 16.84 17.04 0.14 17.96 22.67 22.77 0.62 15.13 16.83 17.03 2.28
gUB 8.33 13.09 15.56 0.07 12.01 18.18 18.93 0.06 − − − −
gLR 8.16 12.71 14.99 9.22 11.99 18.15 18.91 14.44 9.94 11.20 11.28 15.79

5 gLB 10.77 13.61 14.22 0.44 14.54 18.64 18.86 1.40 13.85 16.46 17.00 3.91
gIP 10.77 13.61 14.22 12.50 14.54 18.64 18.86 358.36 18.31 21.51 21.66 3030.09
gUB 6.55 8.51 8.73 171.29 8.14 12.43 13.86 1716.52 − − − −
gLR 6.32 8.16 8.35 41.99 7.92 12.01 13.67 36.89 7.92 9.86 10.19 59.57

10 gLB 10.39 13.73 14.32 3.20 13.18 16.36 16.83 29.58 14.55 17.85 18.18 312.76
gIP 10.86 15.35 17.28 1896.65 14.42 17.97 18.07 > 3600 18.83 26.05 27.44 > 3600
gUB 5.99 8.44 9.28 > 3600 − − − − − − − −
gLR 5.44 7.29 7.83 > 3600 5.74 6.93 7.05 1669.80 7.34 9.42 9.68 > 3600

RSTLS.SBR 2 gLB 6.14 8.70 9.06 0.02 8.50 11.51 11.67 0.03 9.07 10.98 11.54 0.07
gIP 6.14 8.70 9.06 0.04 8.50 11.51 11.67 0.14 9.07 10.98 11.54 0.72
gUB 3.54 5.63 6.00 0.02 5.39 7.60 7.75 0.02 − − − −
gLR 3.47 5.49 5.75 6.72 5.32 7.56 7.71 7.74 6.39 7.63 7.99 7.90

5 gLB 4.65 7.58 7.84 0.18 6.77 9.13 9.24 0.66 8.61 10.38 10.51 1.72
gIP 4.65 7.58 7.84 4.27 6.77 9.13 9.24 311.29 10.84 14.81 16.37 3291.89
gUB 2.61 4.80 5.78 18.55 3.61 5.26 5.43 500.43 − − − −
gLR 2.33 4.16 4.85 14.43 3.43 5.14 5.27 21.78 5.10 5.89 5.91 19.59

10 gLB 4.27 7.82 8.52 1.29 6.00 8.86 9.20 16.71 7.99 10.75 11.28 127.66
gIP 4.37 7.90 8.52 890.65 9.87 15.37 15.70 3265.16 15.84 17.97 18.01 > 3600
gUB 2.31 4.96 6.48 1836.06 − − − − − − − −
gLR 1.86 3.42 3.86 3168.63 2.77 4.69 4.76 3494.95 4.73 5.65 5.80 1443.62

RSTLS.DET.SBR 2 gLB 6.08 11.58 13.78 0.02 8.52 13.94 14.43 0.03 9.74 13.54 13.57 0.11
gIP 6.08 11.58 13.78 0.05 8.52 13.94 14.43 0.26 9.74 13.54 13.57 1.76
gUB 4.70 8.33 9.45 0.02 6.54 9.24 9.59 0.03 − − − −
gLR 4.67 8.31 9.42 12.44 6.35 9.22 9.56 14.00 7.43 10.17 10.60 13.76

5 gLB 2.99 7.26 8.87 0.12 6.15 10.06 10.98 0.68 5.88 8.21 8.95 1.76
gIP 2.99 7.26 8.87 0.17 6.24 10.06 10.98 6.47 5.88 8.21 8.95 32.56
gUB 2.72 6.86 8.66 2.97 5.01 8.11 9.52 77.43 − − − −
gLR 2.45 6.31 8.15 17.40 4.58 7.26 8.62 21.58 4.95 7.41 7.58 26.48

10 gLB 2.39 6.94 7.50 0.59 4.29 8.36 10.01 3.90 4.70 7.54 8.25 43.95
gIP 2.39 6.94 7.50 4.79 4.29 8.36 10.01 514.32 6.38 13.10 13.87 1148.11
gUB 2.23 7.04 7.60 816.32 − − − − − − − −
gLR 1.89 6.12 7.22 76.55 3.10 5.92 6.70 197.00 3.98 6.68 7.02 116.91

Table 5.2 – The values of Gmean(g), G95(g), and Gmax(g) obtained on the small-scale and
medium-scale instances with M ∈ {2,3,5}, n = 4 and solved with different finite horizon T ∈
{2,5,10}.

78

5.8. Bibliographical remarks

of the tuple (M ,K , (pm)m∈[M]). We build an instance as follows: first we choose a value of M in
{3,4,5,10,15,20}, second we build the probabilities pm by adding a random real in [0,0.1] to
each non-zero value of the probabilities of Ellis et al. [44], and finally we choose K = max(bω×
Mc,1), where ω is a scalar belonging {0.2,0.4,0.6,0.8} (when M = 3, then K belongs to {1,2}).
The range of values of K is chosen in such a way that it goes from highly restrictive constraints
(smallest values ofω) to more flexible constraints (largest values ofω), with respect to the value
of M . When K > M , the decision maker can consider the subproblems separately, which is
much easier. We enforce K to be non smaller than 1 because if K = 0, the authority cannot
maintain the bridges.

We evaluate the performances of matheuristic 3 for rolling horizon Tr in {2,5}. For each instance
(M ,K , (pm)m∈[M]), we perform 103 runs of matheuristic 3. We compute the average total cost
|νIP|, the average number of failures fIP over the 103 simulations. We compare νIP with the
upper bound zRc and the Lagrangian bound zLR by evaluating the average gap GRc

IP = zRc−νIP
|zRc |

and GLR
IP = zLR−νIP

|zLR| . Thanks to Theorem 5.2, the value of GRc

IP indicates how far is νIP from v∗
his

because νIP 6 v∗
his 6 zRc . The lower the value of GRc

IP , the better is the performance of policy
δIP. In addition, for each simulation, we compute the average computation time in seconds of
the underlying formulation over all steps of the simulation. We then consider the average value
over all the N simulations. For the quantities |νIP| and fIP we also report the standard deviations
over all simulations.

Table 5.3 summarizes the results. For all the mathematical programs, we set the computation
time limit to 3600 seconds and a final gap tolerance (MIPGapparameter in Gurobi) of 1%, which
is enough for the use of our matheuristic. If the resolution has not terminated before this time
limit, then we keep the best feasible solution at the end of the resolution.

One may observe that for all instances, the matheuristic involving our MILP (5.1) delivers promis-
ing results even in the most challenging instance (M = 20). In particular, the values of GRc

IP show
that the policy δIP gives an optimality gap (in the set of history-dependent policies) of at most
10% on the large-scale instance, which is satisfying regarding the complexity of the optimiza-
tion problem. In Table 5.3, the negative values of GRc

IP result from error approximations due to
the Monte-Carlo simulations. It can also be noted that the gap GLR

IP is takes negative values for
some instances, which shows that νIP can take larger values than the Lagrangian relaxation for
some instances. It highlights the benefit of using the belief state updates in the definition of
δIP. In addition, even for the largest instances (M = 15 or M = 20) and for T = 5, the average
time per action of ActIP,t

t+Tr
(ht) is on the order of 1.0 second; this amount of time is still feasible

even if the 24 decision times are close together.

5.8 Bibliographical remarks

(Pwc
ml) lies in the broad class of multi-stage stochastic optimization problems with high-dimensional

state spaces. As mentioned in Section 3.5, (Pwc
ml) is a weakly coupled dynamic program where

the decision maker has only access to partial observations of the system.

When the decision maker has access to the system’s state, (Pwc
ml) becomes a weakly coupled

dynamic program. It is well known that such a problem can be solved using dynamic pro-
gramming approach by writing the Bellman’s equation. Since the size of the state space and

79

Chapter 5. Integer programming for weakly coupled POMDPs

M ω Tr
|νIP| Std. err. fIP Std. err. GLR

IP GRc

IP Time
(×103) (×103) (%) (%) (s)

3 0.2 2 5.71 2.32 4.6 2.2 11.60 14.09 0.004
5 5.45 2.16 4.0 2.1 6.51 8.88 0.055

0.4 2 5.71 2.32 4.6 2.2 11.60 14.09 0.005
5 5.45 2.16 4.0 2.1 6.51 8.88 0.062

0.6 2 5.71 2.32 4.6 2.2 11.60 14.09 0.006
5 5.45 2.16 4.0 2.1 6.51 8.88 0.064

0.8 2 5.17 1.90 4.0 1.8 0.95 3.21 0.005
5 5.11 1.86 3.5 1.8 -0.12 2.12 0.056

4 0.2 2 8.81 2.87 6.5 2.9 -1.77 13.79 0.007
5 8.64 2.92 6.3 2.9 -3.64 11.62 0.116

0.4 2 8.81 2.87 6.5 2.9 -1.77 13.79 0.007
5 8.64 2.92 6.3 2.9 -3.64 11.62 0.118

0.6 2 7.70 1.96 4.3 1.9 -0.94 0.46 0.006
5 7.62 1.89 4.0 1.9 -2.05 -0.66 0.067

0.8 2 7.70 1.91 4.1 1.8 -0.94 0.45 0.006
5 7.61 1.81 3.6 1.7 -2.16 -0.79 0.060

5 0.2 2 13.78 4.77 11.5 4.8 -41.47 30.24 0.008
5 13.38 4.58 11.1 4.6 -43.18 26.44 0.250

0.4 2 10.43 2.50 6.4 2.5 0.76 2.13 0.007
5 10.27 2.39 5.7 2.4 -0.77 0.58 0.124

0.6 2 10.26 2.31 5.7 2.2 0.00 0.80 0.006
5 10.22 2.26 5.2 2.2 -0.44 0.35 0.071

0.8 2 10.24 2.28 5.6 2.2 -0.27 0.58 0.006
5 10.20 2.22 5.1 2.2 -0.65 0.20 0.070

10 0.2 2 22.63 5.45 18.0 5.5 -34.20 17.71 0.012
5 22.06 5.24 17.5 5.2 -35.85 14.74 0.384

0.4 2 19.19 3.38 11.5 3.3 1.32 3.07 0.012
5 18.91 3.26 10.6 3.2 -0.16 1.57 0.196

0.6 2 19.10 3.28 10.8 3.1 0.92 2.60 0.011
5 18.81 3.06 9.7 2.9 -0.62 1.03 0.138

0.8 2 19.09 3.27 10.8 3.1 0.86 2.53 0.011
5 18.82 3.08 9.6 2.9 -0.56 1.09 0.137

15 0.2 2 31.54 6.03 25.0 6.0 -22.56 12.73 0.017
5 30.89 5.88 24.0 5.9 -24.14 10.43 0.591

0.4 2 28.18 4.22 19.1 4.1 0.45 1.93 0.016
5 27.67 3.97 16.8 3.9 -1.39 0.06 0.232

0.6 2 28.12 4.16 18.8 4.0 0.10 1.70 0.016
5 27.67 3.84 16.3 3.7 -1.51 0.05 0.225

0.8 2 28.12 4.16 18.8 4.0 0.11 1.71 0.015
5 27.65 3.86 16.2 3.7 -1.57 -0.01 0.226

20 0.2 2 45.06 7.01 35.9 7.1 -20.37 8.67 0.022
5 44.28 6.90 35.1 6.9 -21.74 6.80 0.660

0.4 2 41.18 4.72 23.0 4.7 0.35 1.50 0.020
5 40.83 4.66 22.7 4.7 -0.49 0.66 0.469

0.6 2 40.96 4.25 18.4 4.1 0.32 1.22 0.020
5 40.72 4.19 17.9 4.0 -0.28 0.62 0.316

0.8 2 40.96 4.24 18.3 4.0 0.29 1.21 0.019
5 40.76 4.09 17.8 3.9 -0.19 0.73 0.313

Table 5.3 – Performances of the matheuritic on different rolling horizon Tr ∈ {2,5}: Numerical
values of |νIP|, fIP (and their corresponding standard errors), GLR

IP and GRc

IP obtained on an in-
stance (M ,ω) with M ∈ {3,4,5,10,15,20} and ω ∈ {0.2,0.4,0.6,0.8}. The values written in bold
indicate the best performances of policy δIP regarding optimality and scalability (computation
time).

80

5.8. Bibliographical remarks

action space are exponential in the number of components of the system, the main challenge
of solving weakly coupled dynamic programs is the curse of dimensionality as mentioned in
Chapter 3, which makes, in general, the exact dynamic programming approaches intractable.
To address this challenge, several approximate dynamic programming methods have been pro-
posed [14, 46, 105, 123]. These approaches are mainly based on an approximation of the value
functions. Other approaches to solve weakly coupled dynamic program consist in deriving
heuristic policies from relaxations. These relaxations are of two types: Lagrangian relaxations
of the linking constraints in the definition (3.2) of XA [2, 55, 165], and relaxations of the non-
anticipativity constraints [20], which assume that the decision maker has access to the future
outcomes. Recently, Bertsimas and Mišić [15] gives the tightest upper bound for decompos-
able MDPs with discounted rewards over infinite horizon, which is a more general case where
the action space does not necessary decompose along the component action spaces (see re-
mark 2). Their approach and our approach are both based on the linear formulation in terms
of moments for Markov Decision Process (4.13).

When the decision maker has access to the system’s state, the predictive maintenance prob-
lem with capacity constraints corresponds to the restless multi-armed bandit problem in finite
horizon, which is a special case of weakly coupled dynamic program. Such problem is known to
be PSPACE-hard [114]. The usual heuristic policies to solve restless multi-armed bandit prob-
lem are the index policies introduced by Gittins [50]. An index policy consists in computing
an index for each arm separately and selecting the arms with the highest indices. It enables to
decompose the computation. Whittle index policy [162] is the most used policy, which is prac-
tically efficient in various applications. Other index policies based on polyhedral approaches
have been proposed [16, 17, 111].

In fact, the predictive maintenance problem with capacity constraints is at least as difficult
as the restless multi-armed bandit problem. In addition to the curse of dimensionality, the fact
that the system is partially observable represents a second challenge. To address this challenge,
new index policies have been proposed [1, 67, 104]. Their approach are based on the fact that
restless partially observable multi-armed bandit is restless multi-armed bandit where the state
space of each component is its belief state space. However, the results proposed hold when the
state spaces and observation spaces contain at most two elements.

81

Part IIInteger programming for influence
diagrams

83

6 Maximum Expected Utility in influ-
ence diagrams

This chapter introduces Influence Diagrams, which form a flexible tool that enables to model
discrete stochastic optimization problems, including Markov Decision Processes (MDPs) and
Partially Observable MDPs (POMDPs) as standard examples. More precisely, given random
variables considered as vertices of an directed acyclic graph, a directed probabilistic graphi-
cal model defines a joint distribution via the conditional distributions of vertices given their
parents. In influence diagrams, the random variables are represented by the set of vertices
of an acyclic directed graph that is partitioned into three types of vertices: chance, decision
and utility vertices. It is assumed that the probability distributions of the chance and utility
vertices conditionally to their parents are known. The decision maker chooses the probability
distribution of the decision vertices conditionally to their parents in order to maximize the ex-
pected utility. Through examples, we show the modeling power of the influence diagrams and
we describe the main results and solution algorithms we propose to solve such a maximization
problem. These results have been partially published in Parmentier et al. [117]. Several results
have been added in this dissertation after the publication of the paper.

Chapter 6 is organized as follows:

• Section 6.1 recalls the definition of directed graphical model and the maximum expected
utility problem in influence diagrams. We also provide examples of discrete stochastic
optimization problem that can be modeled using influence diagrams.

• Section 6.2 introduces the key notions required to read the main results of Part II.
• Section 6.3 states the main results of Part II. First, we present an mixed-integer linear

formulation for solving exactly the maximum expected utility problem. Second, we in-
troduce valid inequalities for our formulation, which lead to a computationally efficient
algorithm. Third, we show that the linear relaxation of our integer formulation yields op-
timal integer solutions for instances that can be solved by the “single policy update,” the
standard algorithm for addressing influence diagrams.

6.1 The Influence Diagrams

Now we recall the framework of influence diagrams (more details can be found in Koller and
Friedman [75, Chapter 23]). We choose to use the terminology and notation of the probabilistic
graphical model literature [156] instead of that of graph theory or combinatorial optimization.

85

Chapter 6. Maximum Expected Utility in influence diagrams

Let G = (V , A) be a directed graph with a set of vertex V and a set of oriented arcs A. A parent
(resp. child) of a vertex v is a vertex u such that (u, v) (resp. (v,u)) belongs to A; we denote
by pa(v) the set of parents vertices (resp. ch(v) the set of children vertices). The family of v ,
denoted by fa(v), is the set {v}∪pa(v).

6.1.1 The framework of parametrized influence diagram

Let G = (V , A) be an acyclic directed graph, and, for each vertex v in V , let Xv be a random vari-
able taking value in a finite state space Xv . For any C ⊆V , let XC denote (Xv)v∈C and XC be the
Cartesian product XC = ∏

v∈C Xv . A directed probabilistic graphical model (or more concisely
directed graphical model) is an acyclic directed graph G and the collection of probability distri-
butions P of the random vector XV such that there exists a collection of conditional probability
distributions

{
pv |pa(v)

}
v∈V satisfying

P(XV = xV) = ∏
v∈V

pv |pa(v)(xv |xpa(v)). (6.1)

When a probability distribution P satisfies (6.1), we say that P factorizes according to G . When
P factorizes according to G , then P

(
Xv = xv |Xpa(v) = xpa(v)

) = pv |pa(v)(xv |xpa(v)). The follow-
ing fundamental property holds: Given a collection of conditional distributions

{
pv |pa(v)

}
v∈V ,

Equation (6.1) uniquely defines a probability distribution on XV .

Let (V a,V c,V r) be a partition of V where V c is the set of chance vertices, V a is the set of de-
cision vertices, and V r is the set of utility vertices. The utility vertices have no descendants.
For ease of notation we denote by V s the union of V c and V r. Letters a, r, and s respectively
stand for action, reward, and stochastic in V a, V r, and V s. An influence diagram is a directed
acyclic graph G = (V , A) together with a partition V = V a ∪V c ∪V r. For convenience, we will
sometimes denote an influence diagram by G = (V s,V a, A). Consider a set of conditional prob-
ability distributions p= {

pv |pa(v)
}

v∈V c∪V r , and a collection of reward functions r = {rv }v∈V r , with
rv : Xv → R. We define a Parametrized Influence Diagram (PID) as the quadruplet (G ,XV ,p,r).
This notion has not been introduced in the literature. We introduce it to distinguish properties
due to the parametrization from properties due to the graph itself. We will sometimes refer the
parameters (XV ,p,r) as ρ for conciseness.

Let∆v denote the set of conditional probability distributions δv |pa(v) on Xv given Xpa(v). Given
a collection of conditional probability distributions p, a strategy δ in ∆ = ∏

v∈V a∆v uniquely
defines a probability distribution Pδ on XV through

Pδ(XV = xV) = ∏
v∈V s

pv |pa(v)(xv |xpa(v))
∏

v∈V a

δv |pa(v)(xv |xpa(v)). (6.2)

The vector δv |pa(v) of vertex v in V a is the policy in v . Note that the probability Pδ factorizes
according to G since it satisfies (6.1). Let Eδ denote the expectation of XV according to Pδ.
We denote by MEU(G,ρ) the Maximum Expected Utility problem associated to the PID (G ,ρ),
which is defined as follows:

max
δ∈∆

Eδ

[∑
v∈V r

rv (Xv)

]
. MEU(G ,ρ)

86

6.1. The Influence Diagrams

A strategy δ ∈ ∆d ⊂ ∆ is deterministic if, for every v ∈ V a, and every xv , xpa(v) ∈ Xv ×Xpa(v),
δv |pa(v)(xv |xpa(v)) is a Dirac measure. Hence, every strategies δ in ∆d satisfies

δv |pa(v)(xfa(v)) ∈ {0,1}, ∀xfa(v) ∈Xfa(v), ∀v ∈V a. (6.3)

It is well known that there always exists an optimal solution to MEU(G ,ρ) that is deterministic
[88, Lemma C.1].

Solving MEU(G ,ρ) is difficult for two reasons. First, evaluating a given strategy is already diffi-
cult. The difficulty of evaluating a strategy is the difficulty of solving the inference problem on
the underlying probabilistic graphical model. Given a feasible strategy δ, a subset of vertices
C ⊆ V and xC in XC , the inference problem consists in computing the marginal probability of
xC according to Pδ, i.e., Pδ(XC = xC). This a special case of the inference problem in a directed
graphical model and it is well-known that such a problem is NP-hard [30]. A good indicator of
the difficulty of solving the inference problem is the treewidth of the graph [129]. Mauá et al.
[98] showed that when the underlying graph has a bounded treewidth, the inference problem
becomes polynomial, and then evaluating a strategy becomes also polynomial.

Second, optimizing over the set of strategies ∆ is also difficult. Mauá et al. [98, Theorem 4]
showed that even with a treewidth of 2, MEU(G ,ρ) is NP-hard. It means that even when the
inference problem is polynomial, MEU(G ,ρ) is NP-hard.

Remark 8. A common practice in the literature is to define the reward function of the utility
vertices v ∈ V r as deterministic functions f (xpa(v)) of their parents. This case can of course be
modeled in our setting: for each v in V r, it suffices to define state spaces Xv = Xpa(v), condi-
tional probabilities pv |pa(v)(xv |xpa(v)) to be equal to 1 if xv = xpa(v) and 0 otherwise, and reward
functions r (xv) := f (xv). 4
Remark 9. In an influence diagram G = (V s ∪V a, A), one says that there is perfect recall of pre-
vious actions, when, there exists an ordering of V a, say {v1, . . . , vm}, consistent with the par-
tial order defined by the directed acyclic graph G , such that the set of parents of each deci-
sion vertex contains the preceding decision vertices and their parents in this ordering, that is,
fa(v j) ⊆ pa(vi) for any j < i . In the absence of perfect recall, many authors have used the
expression Limited Memory Influence Diagram (LIMID) to characterize the corresponding in-
fluence diagram [81]. In this thesis, we consider the general case of LIMIDs but we refer to them
as Influence Diagrams throughout the thesis, following the convention adopted in Koller and
Friedman [75, Chapter 23]. Many natural situations such as POMDPs have the perfect-recall
property. 4

6.1.2 Examples

Now we introduce some examples, shown in Figure 6.1, and Figure 6.2, which illustrate how
we can model stochastic optimization problems using influence diagrams. In particular, the
POMDPs with memoryless policy presented in Chapter 4 is a special case of influence diagrams
and Pml can be read as MEU(G ,ρ) on POMDPs.1 To represent an influence diagram we use
the convention of Koller and Friedman [75]: the chance vertices, decision vertices and utility

1While δ is called (memoryless) policy in the literature on POMDPs, δ is called strategy in the literature on influ-
ence diagrams (see e.g. [75, Chap. 23])

87

Chapter 6. Maximum Expected Utility in influence diagrams

vertices are respectively represented by circles, squares and diamond.

Example 4. Consider a maintenance optimization problem in which at time t a machine is in
degradation state St . The action At taken by the decision maker according to the current state
is typically a binary decision that is to either perform maintenance on it or not. The problem is
considered over a finite horizon with scheduled maintenance slots. State and decision together
lead to a new (random) state St+1, and the triple (St , At ,St+1) induces a reward Rt . This is an
example of an MDP which is probably the simplest type of influence diagram, represented in
Figure 6.1a. In Part I, we described a more complex problem, where the actual state St of the
machine is often not known, and the decision maker has access instead to an observation Ot

that only carries partial information about the state, which leads to a POMDP. As illustrated
in Figure 6.1b, we model the decision using a memoryless policy, i.e., the decision At is taken
based on observation Ot . 4
Example 5. Figure 6.2a depicts an influence diagram modeling the media investment strategy
of a political party for the next elections. The national committee starts in an by deciding how
much to invest into national media coverage and which budget it gives to regional committees.
Based on the national popularity rating vn after the interventions on national media, regional
committees i decide which fraction ar i of their funds they allocate to regional media and local
committees. Based on regional popularity rating vr i after the interventions on regional media,
each local committee j decides how much to invest in local meetings and local media a` j . The
goal consists in maximizing the expected total number of local elections r` j won. 4
Example 6. Consider two chess players : Alice and Bob. They are used to play chess and for
each game they bet a symbolic coin. However, they can decline to play. Suppose that Alice
wants to play chess every day.2 In this context, the decision maker is Bob. On day t , Alice has a
current confidence level St . The day of the game, based on her current confidence level, Alice
has a certain level of motivation denoted by Mt . When Bob meets with Alice, Bob makes the
decision to play depending on Alice’s demeanor, denoted Ut , which depends on her current
level of motivation. Then Bob can accept or decline the challenge, and his decision is denoted
by At . We denote by Vt the winner (getting a reward rt). If Bob declines the challenge, there
is no winner and no reward. Then, Alice’s next confidence level is affected by the result of the
game and her previous confidence level. This stochastic decision problem can be modeled as
the maximum expected utility problem in the influence diagram shown in Figure 6.2b. 4

6.2 Junction Trees and moments

6.2.1 Junction Trees and Rooted Junction Trees (RJTs)

In order to state the main results of Part II, we recall the notion of junction tree and we introduce
the new notion of Rooted Junction Tree (RJT). The moralized graph G ′ = (V ′,E ′) of a directed
graph G = (V , A) is the undirected graph defined by V ′ =V and (u, v) ∈ E ′ if (u, v) ∈ A or ch(u)∩
ch(v) 6= ;. We denote by M(G) = (V , M(A)) the moralized graph of G . By definition, the families
of G are cliques of M(G).

2 If Alice did not want to play every day, we would also need to model her decisions. In that case, Bob and Alice
would have different objectives and we would need to use a Multi Agent Influence Diagram [76]. However, since
Alice wants to play chess every day, her decisions do not need to be taken into account, and we can model the
problem as an influence diagram.

88

6.2. Junction Trees and moments

s1

r1

a1

s2

r2

a2

s3

r3

a3

s4

(a) A Markov decision process (MDP)

s1

o1

r1

a1

s2

o2

r2

a2

s3

o3

r3

a3

s4

(b) A Partially Observable Markov Decision
Process (POMDP) with memoryless policy

Figure 6.1 – Influence diagram examples, where we represent chance vertices (V s) in circles,
decision vertices (V a) in rectangles, and utility vertices (V r) in diamonds.

an vn

ar 1
vr 1

ar 2 vr 2

a`1

a`2

a`3

r`1

r`2

r`3

(a) Investment for local elections

s1

o1

u1 a1

v1

r1

s2

o2

u2 a2

v2

r2

s3

o3

u3 a3

v3

r3

s4

(b) Bob and Alice chess game

Figure 6.2 – influence diagrams of Examples 5 and 6.

Junction tree. Let G = (V , A) be a directed acyclic graph. An undirected graph T = (V ,E) with
V ⊆ 2V is a junction tree on G if:

(i)
⋃

C∈V C =V .
(ii) For every edge in (u, v) ∈ M(A), there is C ∈V such that {u, v} ⊆C .

(iii) T is a tree.
(iv) T satisfies the running intersection property, i.e., given two vertices C1 and C2 in V , any

vertex C on the unique undirected path from C1 to C2 in T satisfies C1 ∩C2 ⊆C

Rooted Junction Tree. Let G = (V , A) be a directed acyclic graph and let T = (V ,E) be a junc-
tion tree on G together with a root. For any v ∈ V , let Tv be the subgraph of T induced by the
vertices C of V , which are also called clusters, containing v . The running intersection property
ensures that Tv is a tree. Let G = (V ,A) be the directed rooted tree obtained by orienting the
edges of the tree T from the root to the leafs. It also defines a rooted subtree Gv = (Vv ,Av)
whose underlying graph is the subtree Tv . Let Cv denote the root of Gv .

Definition 6.1. A Rooted Junction Tree (RJT) on a directed acyclic graph G = (V , A) is a directed
rooted tree with vertices in 2V , such that

89

Chapter 6. Maximum Expected Utility in influence diagrams

a)

s

t

u

v

w

x

y

z
b)

su

t v

uv w

uv x

w y

xz

c)

-s s-t st-u tu-v

uv-x

uv-w w-y

x-z

Figure 6.3 – a) A directed graph G , b) a junction tree on G , and c) a gradual rooted junction
tree on G , where, for each cluster C , we indicate on the left part of the labels the vertices of
C \offspring(C), and on the right part the vertices of offspring(C).

(i) its underlying undirected graph is a junction tree on G,
(ii) for all v ∈V , we have fa(v) ⊆Cv .

Let G be an RJT on G , and v a vertex of V . Given C ∈ V , let the offspring of C be defined by
offspring(C) = {v ∈V : Cv =C }, where Cv is the above-defined root-cluster of v, and let Č denote
C \offspring(C). We say that an RJT is a gradual RJT if for all v in V , offspring(Cv) = {v}. Note
that by adding vertices to an RJT, we can always turn it into a gradual RJT. Indeed, suppose that
offspring(C) = {v1, . . . , vk }, where v1, . . . , vk are listed in a topological order. It suffices to replace
the vertex C by C1 →C2 →···→Ck where Ci =C \{vi+1, . . . , vk }, with an arc from the parent of C
to C1 and arcs from Ck to the children of C . All the results in this thesis are more simply written
with gradual RJTs even though they could have been written with RJTs. See Figure 6.3 for an
example of junction tree and RJT. Given a vertex C in V , we refer as GC = (VC ,AC) the directed
subtree of G rooted at vertex C .

In Chapter 7, we will describe the main properties of the RJT and the benefits of introducing it
to model MEU(G ,ρ).

The width of a junction tree T = (V ,A) corresponds to its maximal cluster size minus one and is
denoted by w(T), i.e., w(T) = maxC∈V |C |−1. The width of a rooted junction tree G is the width
of its underlying undirected graph and is also denoted by w(G). The treewidth (resp. rooted
treewidth) of a graph G is the minimum width over all possible junction trees (resp. RJTs) of G .
We denote respectively by w∗(G) and w∗

rt(G) the treewidth of G and the rooted treewidth of G .
Although ({V },;) is an RJT and many others gradual RJTs can be build easily, the concept of RJT
has only practical interest if it is possible to construct RJTs with small width. In Section 7.5.1,
we introduce an heuristic algorithm that builds an gradual RJT with a controlled width.

6.2.2 The moments on RJTs

To solve MEU(G ,ρ) we introduce the notion of moments on a rooted junction tree of an in-
fluence diagram. This moments will be use as variables in the next sections. Let G = (V , A) be

90

6.3. Main results

an influence diagram, and ρ a parametrization on G . Let δ be a feasible strategy on G . The
moment µC of a subset of variables XC with C ⊆ V corresponds to the expected value of the
indicator function of a value xC in XC according to Pδ, i.e.,

µC (xC) := Eδ
[
1{XC=xC }(xC)

]=Pδ(XC = xC).

We introduce the notationµ= (
µC (xC)

)
xC∈XC ,C∈V . Given an RJTG = (V ,A) of G and a parametriza-

tion ρ on G , we introduce the set of achievable moments on G of G by a strategy in ∆:

MG
(
G ,ρ

)= {
µ ∈R

∏
C∈V XC : ∃δ ∈∆, ∀C ∈V , µC (xC) =Pδ(XC = xC)

}
.

Similarly, we introduce the set of achievable deterministic moments Md
G
(
G ,ρ

)
where we re-

placed ∆ by ∆d above. When ρ and G are clear from the context, we write more compactly
M

(
G

)
and Md

(
G

)
.

6.2.3 The value functions on RJTs

We introduce new variables to build an alternative integer program. Let G = (V , A) be an influ-
ence diagram, G = (V ,A) a gradual RJT of G , and ρ a parametrization on G . For convenience
we extend the definition of the reward function on G as follows

rC (xC) =
{

rv (xv) if C =Cv and v ∈V r,

0 otherwise.
(6.4)

Let δ be a feasible strategy on G . The value function λC of a subset of variables XC with C ⊆ V
corresponds to the expected reward on the subtree GC induced by root C given a value xC in
XC according to Pδ, i.e.,

λC (xC) := Eδ
[∑

C ′∈VC

rC ′(xC ′)|XC = xC
]
.

We introduce the notationλ= (λC (xC))xC∈XC ,C∈V . Given an RJTG = (V ,A) of G and a parametriza-
tionρ on G , we introduce the set of achievable value functions onG by a strategy in∆ asFG(G ,ρ)
as follows:

FG
(
G ,ρ

)= {
λ ∈R

∏
C∈V XC : ∃δ ∈∆, ∀C ∈V ,λC (xC) = Eδ

[∑
C ′∈VC

rC ′(xC ′)|XC = xC

]}
.

Similarly, we introduce the set of achievable deterministic value functions Fd
G
(
G ,ρ

)
where we

replaced ∆ by ∆d above. When ρ and G are clear from the context, we write more compactly
F

(
G

)
and Fd

(
G

)
.

6.3 Main results

Now we state the main results of Part II. In this section, we consider a PID (G ,ρ). We denote
by G = (V ,A) an gradual RJT on G . To keep notations light in this chapter, we write the type of
sum

∑
xC \C ′ µC (xC) more compactly as

∑
xC \C ′ µC for any vertex C ,C ′ in V and xC \C ′ ∈ XC \C ′ . In

addition, we introduce the notation 〈rv ,µv 〉 =∑
xv∈Xv

rv (xv)µv (xv) for any vertex v in V r.

91

Chapter 6. Maximum Expected Utility in influence diagrams

6.3.1 Integer programs using moments on G
Non linear program for MEU(G ,ρ). We now introduce the following non linear program.

max
µ,δ

∑
v∈V r

〈rv ,µv 〉

s.t.
∑
xC

µC = 1, ∀C ∈V∑
xC \C ′

µC = ∑
xC ′\C

µC ′ , ∀(
C ,C ′) ∈A

µČv
=∑

xv

µCv ∀v ∈V

µCv =µČv
pv |pa(v) ∀v ∈V s

µCv =µČv
δv |pa(v) ∀v ∈V a

µ> 0,δ ∈∆

(6.5a)

(6.5b)

(6.5c)

(6.5d)

(6.5e)

(6.5f)

(6.5g)

In Program (6.5), all the equalities should be understood functionally, e.g., µCv =µČv
pv |pa(v) for

all v ∈ V s means that µCv (xCv) = µČv
(xČv

) pv |pa(v)(xv |xpa(v)), ∀xCv ∈XCv , for all v ∈ V s. We will
use such functional (in)equalities throughout this dissertation.

Now we state the first result of Part II which will be proved in Chapter 8. Thanks to the prop-
erties of probability distributions, given a strategy δ, the vector of moments of Pδ satisfies the
constraints of NLP (6.5). Conversely, given a feasible solution of NLP (4.1), Theorem 6.1 ensures
that µ is the vector of moments of Pδ.

Theorem 6.1. Let (µ,δ) be a feasible solution of NLP (6.5). Then µ is the vector of moments of
Pδ induced by δ. Furthermore,

(
µ,δ

)
is an optimal solution of NLP (6.5) if and only if δ is an

optimal strategy of MEU(G ,ρ). In particular, NLP (6.5) and MEU(G ,ρ) have the same optimal
value.

As an immediate consequence, Theorem 6.1 ensures that: a vector µ belongs to the set of
achievable moments M(G) if and only if there exists a strategy δ in ∆ such that (µ,δ) is a feasi-
ble solution of NLP (6.5). As we will see in Chapter 7, the key assumption ensuring the validity
of Theorem 6.1 is the fact thatG is an RJT. Note that Theorem 6.1 extends Theorem 4.1 (in Chap-
ter 4), to any influence diagrams. If we write the NLP (6.5) on POMDP with memoryless policy
of Chapter 4 we obtain NLP (4.1).

Mixed-integer linear formulation for MEU(G ,ρ). The nonlinearity of NLP (6.5) comes from
bilinear constraints (6.5f). Given two continuous variables z, y > 0 and x ∈ {0,1}, we intro-
duce the notation McCormick

(
z = x y

)
which indicates that we replace the bilinear constraint

z = x y by the McCormick’s linear inequalities [100]. Since there always exists an optimal strat-
egy of MEU(G ,ρ) that is deterministic, we can turn NLP (6.5) into the following MILP using

92

6.3. Main results

McCormick’s inequalities without changing its optimal value.

max
µ,δ

∑
v∈V r

〈rv ,µv 〉

s.t. µ satisfies (6.5b)− (6.5e)

McCormick
(
µCv =µČv

δv |pa(v)
) ∀v ∈V a

δ ∈∆d

(6.6)

It follows from Theorem 6.1 that (µ,δ) is a feasible solution of MILP (6.6) if and only ifµ belongs
to Md(G). Note that MILP (6.6) generalizes MILP (4.7) described in Section 4.1.2 to any influ-
ence diagrams. To write the McCormick’s inequalities, we have to compute lower and upper
bounds on the moments µ, that only depend on ρ. The natural lower and upper bounds on
the moments induced by any strategy δ are respectively 0 and 1. In Chapter 8, we describe an
approach to derive tighter bounds on the moments of a distribution that strengthen the linear
relaxation of MILP 6.6.

The approach obviously has limitations. Indeed, any exact method to solve MEU(G ,ρ) must
compute the exact value of Eδ

[∑
v∈V r rv (Xv)

]
when it evaluates a strategy δ. Since the exact

algorithms to solve the inference problem are exponential in the treewidth w∗(G), this type
of method is limited in practice to graphs with moderate treewidth. The approach to solv-
ing MEU(G ,ρ) relies on the rooted junction trees that we introduced, and is therefore practi-
cally limited to influence diagrams with moderate rooted treewidth w∗

rt(G). This is an addi-
tional limitation since w∗

rt(G) can be significantly larger than w∗(G). Indeed, even if w∗(G) is
bounded, w∗

rt(G) can be unbounded. We however show that the approach works well on appli-
cations for which w∗

rt(G) is of the same order of magnitude as w∗(G) like those considered in
Examples 4, 5 and 6.

6.3.2 Valid cuts for the MILP

Now we introduce valid inequalities for MILP (6.6). The technique we introduce here system-
atizes our approach in Section 4.2 to construct valid inequalities for MILP (4.7). Actually using
a suitable gradual RJT for POMDP with memoryless policies we could recover exactly the valid
inequalities (4.8).

Let G = (V , A) be an influence diagram and C a subset of vertices in V . A set of variables XD

such that D ⊆C is strategy independent set in C if it satisfies the following property:

For every parametrization ρ such that (G ,ρ) is a PID, Pδ(XD |XC \D) does not depend on δ.

For convenience, we say that D is strategy independent in C when XD is strategy independent
in C . It turns out the following lemma establishes a fundamental stability property.

Lemma 6.2. Let D,D ′ ⊆ C . If D and D ′ are strategy independent in C , then D ∪D ′ is strategy
independent in C .

Lemma 6.2 ensures the existence and uniqueness of the largest inclusion-wise strategy inde-
pendent set. We denote by C⊥⊥ such a subset of C . We denote by C 6⊥⊥ the set C \C⊥⊥. The set

93

Chapter 6. Maximum Expected Utility in influence diagrams

C⊥⊥ can be empty. In Section 8.2.2, we give a full characterization of the set C⊥⊥ from which we
obtain the following Proposition:

Proposition 6.3. Given a set C in V , C⊥⊥ can be computed in O
(|C |(|V |+ |A|)).

Let G = (V ,A) be a gradual RJT of G . We introduce the following linear equalities:

µC =µC 6⊥⊥pC⊥⊥|C 6⊥⊥ , ∀C ∈V , (6.7)

Now, we state the second result of Part II.

Proposition 6.4. Equalities (6.7) are valid for MILP (6.6).

In addition, we will show in Chapter 8 that the valid cuts (6.7) are the strongest linear equalities
we can obtain of the form µC = µC \D pD|C \D where D ⊆ C . Again, note that Proposition 6.4
extends Proposition 4.3 to any influence diagrams. Given a carefully chosen RJT on POMDP
with memoryless policies, equalities (6.7) correspond to equalities (4.8).

6.3.3 Integer programs using value functions

Without loss of generality, we assume that G has a single root vertex. Otherwise, we add an
isolated dummy vertex v0 to the original influence diagram, which we allow us to extend the
RJT by adding the cluster vertex C0 = {v0}. If v0 ∉ V s, then we can add a vertex v ′

0 and a cluster
vertex C ′

0 = {v ′
0}, the random variable Xv ′

0
equals to 1 almost surely, and an arc (C ′

0,C0). Hence,
without loss of generality, we assume that v0 ∈V s. For simplicity, we denote by x0 := xv0 .

Non linear program for MEU(G ,ρ). We now introduce the following non linear program.

max
λ,δ

〈p0,λC0〉

s.t. λCv = rCv +
∑

u∈V s :
Cu∈V s∩ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈V s∩ch(Cv)

∑
xu

λCuδu|pa(u), ∀v ∈V

δ ∈∆

(6.8a)

(6.8b)

(6.8c)

Now we state the third result of Part II, which will be proved in Chapter 8. Thanks to the proper-
ties of the conditional expectation, the vector of value functions of Pδ satisfies the constraints
of NLP (6.8). Conversely, given a feasible solution (λ,δ) of NLP (6.8), Theorem 6.5 ensures that
λ is the vector of value functions of Pδ.

Theorem 6.5. Let (λ,δ) be a feasible solution of NLP (6.8). Then λ is the vector of value func-
tions of the probability distribution Pδ induced by δ. Furthermore, (λ,δ) is an optimal solu-
tion of NLP (6.8) if and only if δ is an optimal policy of MEU(G ,ρ). In particular, NLP (6.8)
and MEU(G ,ρ) have the same optimal value.

As an immediate consequence, Theorem 6.5 ensures that: a vector λ belongs to the set of
achievable value functions F (G) if and only if there exists a strategy δ in ∆ such that (λ,δ)

94

6.3. Main results

is a feasible solution of NLP (6.8). Theorem 6.5 extends Theorem 8.17 (in Chapter 4) to any
influence diagrams. If we write the NLP (6.8) on POMDP with memoryless policy of Chapter 4,
we obtain NLP (4.18).

Mixed-integer linear formulation for MEU(G ,ρ). The nonlinearity of NLP (6.8) comes from
the bilinear terms λCuδu|pa(u) in constraints (6.8b). Since there always exists an optimal strat-
egy of MEU(G ,ρ) that is deterministic, we can turn NLP (6.8) into a MILP using McCormick’s
inequalities. To do so we introduce variablesα= (αC (xC))xC∈XC ,C∈V and the following MILP.

max
λ,α,δ

〈p0,λC0〉

s.t. λCv = rCv +
∑

u∈V s :
Cu∈V s∩ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈V s∩ch(Cv)

∑
xu

αCu , ∀v ∈V

McCormick
(
αCv =λCvδv |pa(v)

)
, ∀v ∈V a

δ ∈∆d

(6.9)

Given a strategy δ ∈∆, it follows from Theorem 6.5 that (λ,δ) is a feasible solution of MILP (6.6)
if and only if λ belongs to Fd

(
G

)
. Note that MILP (6.9) generalizes MILP (4.21) described in

Section 4.1.2 to any influence diagrams. To write McCormick’s inequalities, it requires to com-
pute lower and upper bounds on the value functions that only depend on parameters ρ. The
natural lower and upper bounds on the value function induced by any strategy δ are respec-
tively

∑
v∈V r minxv rv (xv) and

∑
v∈V r maxxv rv (xv). In Chapter 8 we show how to improve these

bounds.

6.3.4 Polynomial cases of Influence Diagrams

Soluble influence diagrams. The third result in Part II is based on the notion of soluble in-
fluence diagrams. To define a soluble influence diagram, we need to introduce the notion of
local optimum strategy. Consider a PID (G ,ρ) with G = (V , A), V = V s ∪V a and a parametriza-
tion ρ. Given a strategy (δu)u∈V a and a decision vertex v , we denote by δ−v the partial strategy
(δu)u∈V a\v . A strategy δ is a local optimum if

δv ∈ argmaxδ′v∈∆v
Eδ′v ,δ−v

(∑
u∈V r

ru(Xu)

)
for each vertex v in V a.

It is a global optimum if it is an optimal solution of MEU(G ,ρ). The problem of finding a local
optimum is "easy" in the following sense: Suppose that we have an oracle that gives us the
result of the inference problem in polynomial time, then a local optimum can be computed in
polynomial time [75, Proposition 23.2].

Definition 6.2. An influence diagram G is soluble if for every parametrizationρ of G, every local
optimum is a global optimum.

Because of the remark above, MEU(G ,ρ) is “easy” to solve when G is soluble. Alternate def-
initions of soluble influence diagrams are available in the literature (see Section 6.4). In the

95

Chapter 6. Maximum Expected Utility in influence diagrams

literature, soluble influence diagrams are also defined using tools of graphical models, which
are introduced in Chapter 7. Thanks to these definitions, the following proposition is common
knowledge in the literature.

Proposition 6.6. Deciding if an influence diagram G is soluble can be done in polynomial time.

Now, we state our fourth result, which provides a link between a soluble influence diagrams
and MILP (6.6).

Theorem 6.7. If G is soluble, then there exists an RJT, such that, for every parametrization ρ, an
optimal solution of the linear relaxation of MILP (6.6) with the valid inequalities (6.7) induces
an optimal solution of MEU(G ,ρ) and both problems have the same optimal values. Such an
RJT can be computed in polynomial time.

Theorem 6.7 confirms that, when the inference problem is tractable (small rooted-treewidth),
solving MEU(G ,ρ) is tractable for every parametrization ρ when G is soluble.

As mentioned for Theorem 6.1, given a parametrization ρ and a RJT G the set of achievable
momentsMG(G ,ρ) fully characterizes the solutions of NLP (6.5), which is a Quadratically Con-
strained Quadratic Program (QCQP). Hence, the convexity of the set MG

(
G ,ρ

)
is a measure of

the ability to solve (6.5). Our fifth result provides a characterization of soluble influence dia-
grams in terms of convexity of the set MG

(
G ,ρ

)
.

Theorem 6.8. An influence diagram G is soluble if and only if there exists an RJT G such that
for every parametrization ρ on G, the set of achievable moments MG

(
G ,ρ

)
is a polytope. In this

case, such an rooted junction tree G can be computed in polynomial time.

While Theorem 6.8 provides a necessary and sufficient condition on influence diagrams for
being soluble, Theorem 6.7 gives only a necessary condition. In fact, it turns out the linear
relaxation of MILP (6.6) with valid inequalities (6.7) provides optimal solutions for a slightly
larger class of influence diagrams, including some PID with a non-convex set of achievable
moments. In Chapter 9, we describe an example showing this phenomenon.

6.3.5 Dual formulations for the linear relaxations.

The linear relaxations of MILP (6.6) with and without valid inequalities (6.7) play a key role
to derive bounds. It turns out the dual of these relaxations can be formulated using value
functions variables in a linear formulation which is closely related to a linear formulation of
dynamic programming algorithm Using the variables representing the value functions we in-
troduce the two following linear programs:

min
λ

〈λC0 , p0〉
s.t. λCv > rCv +

∑
u∈V s :

Cu∈ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈ch(Cv)

λCu ∀v ∈V. (6.10)

96

6.4. Bibliographical remarks

min
λ

〈λC0 , p0〉
s.t. λCv > rCv +

∑
u∈V s :

Cu∈ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈ch(Cv)

∑
xC⊥⊥u

λCu pC⊥⊥
u |C 6⊥⊥

u
∀v ∈V. (6.11)

Now, we state the sixth main result of Part II.

Theorem 6.9. The following properties hold:

(i) Linear program (6.10) is the dual of the linear relaxation of MILP (6.6) where variable δ
has been removed.

(ii) Linear program (6.11) is the dual of the linear relaxation of MILP (6.6) with valid inequal-
ities (6.7) where variable δ has been removed.

Furthermore, the strong duality holds in both cases.

Theorem 6.9 says that there is a duality relation between the moments variables and value func-
tions variables. In addition, it follows from Theorem 6.9 that if G is soluble, then by Theorem 6.7
the linear program (6.11) induces also an optimal solution of MEU(G ,ρ). Linear program (6.11)
is equivalent to the linear formulation of dynamic programming approach on the RJT G. In the
case of MDPs, by writing linear program (6.11) we recover exactly the well-known linear formu-
lation of dynamic programming on MDP (see, e.g., Puterman [124]).

6.4 Bibliographical remarks

Influence diagrams were introduced by Howard and Matheson [56] [see also 57] to model stochas-
tic optimization problems using a probabilistic graphical model framework. Originally, the de-
cision makers were assumed to have perfect recall [62, 137, 141] of the past actions.

Lauritzen and Nilsson [81] relaxed this assumption and provided a simple (coordinate descent)
algorithm to find a good strategy: the Single Policy Update (SPU) algorithm. By relaxing the
perfect recall assumption, these authors referred the resulting influence diagrams as limited
memory influence diagrams. However, we follow the convention of Koller and Friedman [75]
who still call them influence diagrams. In general, SPU finds a locally optimal strategy in a fi-
nite number of iterations, and requires to perform exact inference, so that it is therefore limited
by the treewidth [25]. Lauritzen and Nilsson [81] also introduced a notion of soluble influence
diagram using tools of directed graphical models. In particular, the authors proved that being
soluble is a sufficient condition for SPU to converge to an optimal solution in a finite and poly-
nomial number of iterations. Koller and Milch [76] generalized their notion of soluble influence
diagram to make this condition necessary and sufficient.

More recently, Mauá and Campos [95] and Mauá and Cozman [96] have introduced a new al-
gorithm, Multiple Policy Update, which has both an exact and a heuristic version and relies
on a concept of dominance to discard partial solutions. It can be interpreted as a general-
ization of SPU where several decisions are considered simultaneously. Later on, Khaled et al.
[68] proposed a similar approach, in the spirit of Branch-and-Bound, while Liu [88] introduced
heuristics based on approximate variational inference. Usually, inference computations in in-
fluence diagrams are done within ”valuation algebra” on the pair probability-utility [35, 62],
which is an abstract framework that facilitates computations in graphical models [139]. Lee

97

Chapter 6. Maximum Expected Utility in influence diagrams

et al. [83] propose an inference algorithm providing upper bounds on the MEU which uses the
same "valuation algebra" for influence diagrams [35]. Even if the inference computations in
influence diagrams are commonly done using valuation algebra, we use instead the marginal
polytope because it is useful for mathematical programming approaches [148, 156].

Finally, the problem of solving an influence diagram can be polynomially transformed into a
"maximum a posteriori" (MAP) problem, which is well-known in the graphical model commu-
nity. Hence, it can be solved using popular MAP solvers such as toulbar2 [58]. For further
details about the transformation, see Antonucci and Zaffalon [4], Cano et al. [21] and Maua
[94].

Finding an optimal strategy for an influence diagram has been shown to be NP-hard even when
restricted to influence diagrams of treewidth no greater than two, or to trees with binary vari-
ables [97, 99]. Note that even obtaining an approximate solution is also NP-hard [97].

Beyond the classical linear programming formulation for MDPs, mathematical programming
formulations have been proposed for some special cases of influence diagrams, including de-
composable or weakly coupled MDPs [2, 15, 17, 34, 55] and POMDP with perfect recall and
short horizon [5]. As noted in the first part, the special case of POMDP with memoryless poli-
cies extends the work of Bertsimas and Mišić [15] to POMDPs since it also relies on variables
that corresponds to moments or distributions. The variables of the other formulations cor-
respond to time averages [17] or value functions [2, 34, 55], which makes these formulations
harder to generalize to influence diagrams.

Credal networks are generalizations of probabilistic graphical models where the parameters of
the model are not known exactly. MILP formulations for credal networks that could be applied
to influence diagrams have been introduced by de Campos and Cozman [32], de Campos and
Ji [33]. However, the number of variables they require is exponential in the pathwidth, which is
non-smaller and can be arbitrarily larger than the width of the tree we are using [133, Theorem
4], and the linear relaxation of their MILP is not as good as the one of the MILP we propose, and
does not yield an integer solution on soluble influence diagrams.

Examples 4, 5 and 6 are sequential decisions problems in stochastic optimization. Many dif-
ferent solution approaches have been proposed for these kinds of problems under different
names in different academic communities. While describing these approaches is beyond the
scope of this thesis, we refer the interested reader to the tutorial of Powell [122]. In particular,
the literature on the POMDP example 4 has been detailed in Part I.

98

7 Graphical models and rooted junction
tree properties

This chapter is dedicated to introduce first the tools and the intermediate results to prove The-
orem 6.1, and second the algorithm mentioned in Section 6.2.1 to build a gradual RJT with a
controlled width. As mentioned above, to evaluate a strategy δ in an influence diagram, we
need to encode the probability Pδ using a vector of moments. It raises the problem of char-
acterizing the probability distributions factorizing on a directed graph. Once such a problem
has been addressed the proof of Theorem 6.1 will be eased. Given a probability factorizing on a
directed graphical model, we can derive the corresponding vector of moments and such a vec-
tor necessary satisfies some properties that we will describe in this chapter. However, the main
difficulty in proving Theorem 6.1 is to understand how a vector of moments satisfying such
properties is sufficient to encode a probability distribution factorizing on a directed graphical
model.

This chapter is organized as follows:

• Section 7.1 introduces basic notation from graph theory.
• Section 7.2 recalls the main theorem characterizing a probability distribution factoriz-

ing on a directed graphical model, in terms of conditional independences between the
random variables.

• Section 7.3 recalls the notion of junction tree and a “local” version of the conditional
independences that is necessarily satisfied by a vector of moments in the marginal poly-
tope of a junction tree. We show that these independences are not sufficient on a junction
tree to ensure the factorization of the probability distribution.

• Section 7.4 introduces several properties of RJTs. In particular, we show that the local
independences on a RJT of Section 7.3 are sufficient to ensure a global factorization on a
directed graphical model.

• Section 7.5 introduces an algorithm that builds a gradual RJT with a controlled width. In
addition, it provides a characterization of the gradual RJT built by the algorithm. This
characterization will be useful for the proofs of Theorem 6.7 and Theorem 6.8.

7.1 Graph notation

This section introduces notation for graphs, which are mostly those one commonly used in
the combinatorial optimization community [135]. A (simple) directed graph G is a pair (V , A)

99

Chapter 7. Graphical models and rooted junction tree properties

where V is the set of vertices and A ⊆ V 2 the set of arcs. We write u → v when (u, v) ∈ A. Let
[k] := {1, . . . ,k}. A path is a sequence of vertices v1, . . . , vk such that vi → vi+1, for any i ∈ [k−1]. A

path between two vertices u and v is called a u-v path. We write u
G

v to denote the existence
of a u-v path in G , or simply u v when G is clear from context. We write u
 v if there is
an arc u → v or v → u. A trail is a sequence of vertices v1, . . . , vk such that vi
 vi+1, for all
i ∈ [k −1].

A vertex u is an ancestor (resp. a descendant) of v if there exists a u-v path (resp. a v-u path).
We denote respectively by anc(v) and des(v) the set of ancestors and descendants of v . Finally,
let anc(v) = {v}∪anc(v), and des(v) = {v}∪des(v). For a set of vertices C , the parent set of C ,
again denoted by pa(C), is the set of vertices u that are parents of a vertex v ∈ C . We define
similarly fa(C), ch(C), anc(C), anc(C), des(C), and des(C). Note that we sometimes indicate
in subscript the graph according to which the parents, children, etc., are taken. For instance,
paG (v) denotes the parents of v in G .

A cycle is a path v1, . . . , vk such that v1 = vk . The underlying undirected graph is connected if
there exists a path between any pair of vertices. An acyclic graph is a graph which has no cycle.
An undirected graph is a tree if it is connected and acyclic. A directed graph is a directed tree
if its underlying undirected graph is a tree. A rooted tree is a directed tree such that all vertices
have a common ancestor referred to as the root of the tree.1 In a rooted tree, all vertices but the
root have exactly one parent.

7.2 Directed graphical model

In this thesis, given three random variables X , Y , Z , the notation (X ⊥⊥Y |Z)P stands for “X is
independent from Y given Z ” according to the probability distribution P of the random vector
(X ,Y , Z). We underline that (·)P corresponds to independence according to the probability
distribution P, and should not be confused with the notation (·)G that is more frequently used
in the literature and stands for d-separation according to the graph G .

As mentioned in Chapter 6, evaluating a strategy in an influence diagram requires to solve the
inference problem in a directed graphical model, which is equivalent to compute the prob-
ability distribution Pδ given a strategy δ. Since an influence diagram is a directed graphical
model, we consider more generally probability distributions that factorize according to a di-
rected graphical model. A well-known sufficient condition for a distribution to factorize as a
directed graphical model is that each vertex is independent from its non-descendants given its
parents as stated in the following fundamental proposition.

Theorem 7.1. [75, Theorem 3.1, p. 62]. Let XV be a random variable onXV . Then its distribution
P factorizes according to a directed acyclic graph G = (V , A), i.e., P satisfies (6.1) if and only if

(
Xv ⊥⊥XV \desG (v)|Xpa(v)

)
P

for all v in V. (7.1)

Note that this result is sometimes considered as the counterpart of the theorem of Hammersley

1The probabilistic graphical model community sometimes calls a directed tree what we call here a rooted tree,
and a polytree what we call here a directed tree.

100

7.3. Moments on junction trees

and Clifford [75, Theorem 4.2, p. 116] for directed graphical models. Theorem 7.1 plays a key
role in the subsequent results of this chapter.

7.3 Moments on junction trees

The goal of this section is to recall a result of probabilistic graphical model theory that explains
the role of the vector of moments in directed graphical models. Such a result is key in proving
Theorem 6.1. We start by introducing useful definitions required to present this result.

Given a probability distributionPonXV , we define the vector of momentsµ= (µC (xC))xC∈XC ,C∈V
of P as follows:

µC (xC) = ∑
xV \C

P(XV = xV) ∀xC ∈XC , C ∈V , (7.2)

where V is a subset of 2V . Given V ⊆ 2V , we say that a vector µ derives from a probability
distribution on XV if there exists P defined on XV such that µ satisfies (7.2). We denote by Pµ
such a probability distribution on XV . Given a junction tree T = (V ,E), we define its associated
marginal polytope

M0(T) =

µ :

∣∣∣∣∣∣∣
µC > 0 and

∑
xC

µC (xC) = 1, ∀xC ∈XC , ∀C ∈V ,

and
∑

xC1\C2

µC1 =
∑

xC2\C1

µC2 , ∀(
C1,C2

) ∈ E ,

, (7.3)

where, as before,
∑

xC1\C2
µC1 is the vector

(∑
xC1\C2∈XC1\C2

µC1 (xC1\C2 , xC1∩C2)
)

xC1∩C2∈XC1∩C2
. The

constraints
∑

xC1\C2
µC1 =

∑
xC2\C1

µC2 in the definition M0(T) are usually called local consistency
constraints [156]. Proposition 7.2 below states that the marginal polytope of a junction tree
characterizes the vector of moments deriving from a probability distribution on XV . For con-
venience, we introduce the set of separators S = {

C1 ∩C2 | (C1,C2) ∈ E}
.2

Proposition 7.2. [156, Proposition 2.1] Let G = (V , A) be a directed graphical model and T =
(V ,E) a junction tree of G. A vector of moments µ belongs to M0

T if and only if µ derives from a
probability distribution Pµ on XV . Moreover, this probability distribution is unique and defined
by

Pµ(XV = xV) =
∏

C∈V µC (xC)∏
S∈S µS(xS)

.

In fact, M0(T) is usually called the local polytope (see e.g. Wainwright and Jordan [156]) and
the marginal polytope is the set of vector of moments deriving from a probability distribution
over all the random variables. Thanks to Proposition 7.2, when T is a junction tree, the local
polytope coincides with the marginal polytope.

2The separators are often included in the definition of the junction tree and their associated moments τS in the
definition of the marginal polytope. We do not include them in this work, because we do not need them in our
mathematical programming formulations. Adding them would increase the size of the mathematical program and
downgrade the performance of the solver.

101

Chapter 7. Graphical models and rooted junction tree properties

a)

s

t

u

v
w

b) su t vuv w

Figure 7.1 – Example where satisfying (7.4) on junction tree b) is not sufficient to ensure factor-
ization on graph a).

7.4 Moments on rooted junction trees

7.4.1 Main properties

Thanks to Theorem 7.1, a necessary and sufficient condition for a probability distribution to
factorize is to satisfy global independences (7.1). In this section, we show that we still have
such a necessary and sufficient condition when we replace the global independences (7.1) by
“local” independences introduced on an RJT G = (V ,A) as follows: We say that a vectorµ in the
marginal polytope M0(G) satisfies “local” independences on G if for all C ∈V , we have(

Xv ⊥⊥XC \des(v)|Xpa(v)

)
µC

, for all v in V such that fa(v) ⊆C . (7.4)

Theorem 7.3. Letµ be a vector of moments in the marginal polytope of an RJT G = (V ,A) of G =
(V , A). If µ satisfies (7.4), then the unique probability distribution Pµ on XV factorizes according
to G.

An important remark is that Theorem 7.3 is not true when we consider a junction tree instead
of an RJT. Consider a probability distribution P factorizing according to a directed graphical
model G = (V , A). Given a junction tree T = (V ,E), we obtain that: The vector of moments of P
necessarily belongs to the marginal polytope M0(T) and satisfies (7.4). However, the reverse is
not true. Indeed, a vectorµbelonging to the marginal polytopeM0(T) and satisfying (7.4) does
not ensure that the unique probability distribution Pµ from which µ is derived factorizes ac-
cording to G . For instance, on the junction tree of Figure 7.1.b, Equation (7.4) does not enforce
the independence of u and v , which is required on the graph of Figure 7.1.a. But Theorem 7.3
ensures that property (7.4) becomes a sufficient condition under the additional assumption
that G = (V ,A) is an RJT.

In this section we present further technical results on RJT that are useful to prove Theorem 7.3.
We start with generic properties of RJT.

Proposition 7.4. Let G be an RJT on G.

1. If there is a path from u to v in G, then there is a path from Cu to Cv in G.
2. If desG (u)∩desG (v) 6= ;, then either there is a unique path from Cu to Cv or from Cv to Cu

in G.

Proof. Let G be an RJT on G . Consider a vertex v of G and a vertex C of G containing v . Recall
that Gv is the subtree of G induced by the vertices containing v . Since C is a vertex of Gv , and
by definition of Cv , there exists a Cv -C path in G. Now consider u ∈ pa(v). Since fa(v) ⊆Cv , we

102

7.4. Moments on rooted junction trees

have u ∈Cv . Thus there exists a Cu-Cv path in G. The first statement follows by induction along
a u-v path in G .

We now show the second statement. Let w be a vertex in desG (u)∩desG (v), then by the first
statement there exists both a Cu-Cw and a Cv -Cw path in G. As G is a rooted tree, this implies
the existence of either a Cu-Cv path or of a Cv -Cu path in G.

The following lemma is key in proving Theorem 7.3.

Lemma 7.5. Let C ,D be subsets of V such that fa(D) ⊆C and des(D)∩C = D. Consider a distri-
bution µC on C . Suppose that for each v in D, Xv is independent from its non-descendants given
its parents according toµC . Then, µC factorizes asµC =µC \D

∏
v∈D

qv |pa(v) whereµC \D =∑
xD

µC and

qv |pa(v) is defined as
∑

xC \fa(v)
µC∑

xC \pa(v)
µC

when the denominator is non-zero, and as 0 otherwise.

Proof. Let 4 be a topological order on C such that u ∈ C \D and v ∈ D implies u 4 v . Such a
topological order exists since des(D)∩C = D . We have

µC =µC \D
∏

v∈D
Pµ(Xv |Xu ,u ∈C ,u ≺ v) =µC \D

∏
v∈D

Pµ(Xv |Xpa(v)),

where the first equality is the chain rule and the second follows from the hypothesis of the
lemma.

Proof of Theorem 7.3. Let G be an RJT on G . Let C1, . . . ,Cn be a topological ordering on G, let
C6i =⋃

j6i C j , and C<i =C6i \Ci . Let τ be a vector of moments satisfying the hypothesis of the

theorem, and for each v in V , let qv |pa(v) be equal to
∑

xC \fa(v)
τCv∑

xC \pa(v)
τCv

if the denominator is non-zero,

and to 0 otherwise. We show by induction on i that

µC6i =
∏

v∈C6i

qv |pa(v) is such that τCi ′ =
∑

xC6i \Ci ′
µC6i for all i ′6 i .

Suppose the result true for all j < i , with the convention that µ0 = 1. We immediately deduce
from the induction hypothesis that τCi ′ =

∑
xC6i \Ci ′

µC6i for all i ′ < i . There only remains to prove
that τCi =

∑
xC<i

µC6i . By definition of an RJT, we have fa(offspring(Ci)) ⊆ Ci . Proposition 7.4
implies that des(offspring(Ci))∩Ci ⊆ offspring(Ci). Indeed let u be in des(offspring(Ci))∩Ci .
Then there is a Ci -Cu path as u ∈ des(Ci), and a Cu-Ci path as u ∈ Ci . Hence Cu = Ci and
u ∈ offspring(Ci). In addition, τ satisfies (7.4). Hence, τCi is a distribution on Ci such that each
vertex in offspring(Ci) is independent from its non-descendants given its parents. By applying
Lemma 7.5 with D = offspring(Ci), we have τCi = τCi \offspring(Ci)

∏
v∈offspring(Ci) qv |pa(v). Let C j

be the parent of Ci in G, we have τCi \offspring(Ci) =
∑

xC j \Ci
τC j =

∑
xC<i \Ci

µC<i , the first equality
coming from the fact that (τC)C∈V belongs to the marginal polytope, and the second from the

103

Chapter 7. Graphical models and rooted junction tree properties

induction hypothesis. Thus,∑
xC<i

µC6i =
∑

xC<i

∏
v∈V6i

qv |pa(v) =
(∑

xC<i \Ci

µC<i

) ∏
v∈offspring(Ci)

qv |pa(v)

= τCi \offspring(Ci)

∏
v∈offspring(Ci)

qv |pa(v)

= τCi ,

which gives the induction hypothesis, and the theorem.

When the RJT is gradual, Theorem 7.3 together with Lemma 7.5 gives the following corollary.

Corollary 7.6. Letµ be a vector of moments in the marginal polytope of a gradual RJT G = (V ,A)
on G = (V , A). The probability distribution Pµ on XV factorizes according to G if and only if for
all v ∈V , all xpa(v) in Xpa(v) such that µpa(v)(xpa(v)) 6= 0, and all xCv \pa(v), we have

µCv (xCv) =µv |pa(v)(xv |xpa(v))µČv
(xČv

), where µv |pa(v)(xv |xpa(v)) := µfa(v)(xfa(v))

µpa(v)(xpa(v))
.

Jensen et al. [62, beginning of Section 4] introduced the concept of strong junction tree which
is similar to our concept of RJT, but they do not have the suitable properties for our approach.3

7.5 Building a gradual RJT

As mentioned in Chapter 6, the concept of rooted junction tree has only practical interest if
it is possible to construct RJTs with a small width. In this section, we introduce an algorithm
that builds a gradual RJT with a controlled width. Such a gradual RJT is minimal in a certain
sense we describe here. In particular, we give a characterization of the gradual RJT built by the
algorithm.

7.5.1 An algorithm to build a gradual RJT

We start by introducing a necessary condition of the RJTs. Any RJT must satisfy, for all u, v ∈V ,
the implication

∃w ∈V s.t . Cv Cw and u ∈ fa(w)

and Cu Cv

}
⇒ u ∈Cv , (7.5)

where C C ′ denotes the existence of a C -C ′ path in the RJT G considered. This notation
will be used throughout this section. Indeed, since u ∈ Cu and fa(w) ⊂ Cw by definition, and

3 The concept of strong junction tree relies on the notion of elimination ordering for a given influence diagram
with perfect recall. The main difference is that a strong junction tree is a notion on an influence diagram, where the
set of decision vertices and their orders play a role, while RJTs rely on the underlying digraph. The notion of strong
junction tree is obtained by replacing (ii) in the definition of an RJT by: “given an elimination ordering, if (Cu ,Cv)
is an arc, there exists an ordering of Cv that respects the elimination ordering such that Cu ∩Cv is before Cv \Cu in
that ordering.” An RJT is a strong junction tree. Conversely, a strong junction tree is not necessary an RJT. Indeed,
Jensen et al. [62, Figure 4] shows an example of strong junction where there is v ∈V such that fa(v)(Cv . As strong
junction trees is a notion on influence diagram and not on graphs, Theorem 7.3 has no natural generalization for
strong junction trees.

104

7.5. Building a gradual RJT

since Cu Cv Cw , the running intersection property implies u ∈ Cv . This motivates Al-
gorithm 4, a simple gradual RJT construction algorithm which propagates iteratively elements
present in each cluster vertex to their parent cluster vertex, and which thereby produces an RJT
which is minimal in the sense that the implication in (7.5) is strengthened to an equivalence, as
stated in Proposition 7.7. It turns out that the RJT produced by Algorithm 4 has been considered
in the literature under the name bucket tree [66, Definition 5.2].4

Algorithm 4 Build a minimal gradual RJT given a topological order

1: Input G = (V , A) and a topological order4 on G
2: Initialize C ′

v =; for all v ∈V and A′ =;
3: for each vertex v of V taken in reverse topological order4 do
4: C ′

v ← fa(v)∪⋃
w :(v,w)∈A′ Čw

5: if Č ′
v 6= ; then

6: u ← max4
(
Čv

)
B u is the maximal element of Čv ⊂V according to4

7: A′ ←A′∪ (u, v)
8: end if
9: end for

10: A← {(C ′
u ,C ′

v) | (u, v) ∈A′}
11: Return G = (

(C ′
v)v∈V ,A

)
The algorithm proceeds as follows: Let 4 be an arbitrary topological order on G , and max4C
denote the maximum of C for the topological order 4. The algorithm maintains a set C ′

v for
each vertex v , which coincide at the end of the algorithm with the vertices Cv in the RJT pro-
duced. We recall that Č ′

v is the set C ′
v \{v}. As an illustration, for any topological order on the

graph of the chess example of Figure 6.2b, Algorithm 4 produces the RJT represented on Fig-
ure 7.4. Algorithm 4 runs in polynomial time since there are |V | iterations, whose individually
have a time complexity in the worst case of |V |. The following proposition shows that Algo-
rithm 4 produces an RJT G = (V ,A) which is minimal for4, in the sense that it satisfies a con-
verse of (7.5).

Proposition 7.7. Algorithm 4 produces an RJT such that the root vertex Cv of v is C ′
v , satisfying

offspring(Cv) = {v}, that admits 4 as a topological order, and such that (u ∈ Cv) ⇒ (u 4 v).
Moreover, its cluster vertices are minimal in the sense that

u ∈Cv ⇐⇒
{∃w ∈V s.t . Cv Cw and u ∈ fa(w),

Cu Cv .
(7.6)

Although Proposition 7.7 does not give a guarantee about the width of the RJT built by Algo-
rithm 4, the equivalence (7.6) ensures that given a topological ordering the cluster vertices
contain only the required vertices to ensure the running intersection property.

Remark 10. Algorithm 4 takes in input a topological order on G . For a practical use, we rec-
ommend to use Algorithm 7 in Appendix B, which builds simultaneously the RJT and a “good”
topological order. 4

4 Although the particular RJT obtained by Algorithm 4 is a bucket tree, considering RJTs that are not bucket trees
is also useful. Figure 8.7 shows an application where it is interesting to use an RJT that is not a bucket tree.

105

Chapter 7. Graphical models and rooted junction tree properties

Proof of Proposition 7.7. Algorithm 4 obviously converges given that it has only a finite number
of iterations. If G is not connected, the algorithm is equivalent to its separate application on
each of the connected components, which each yield a tree. W.l.o.g., we prove properties of the
algorithm under the assumption that G is connected. To simplify notations, we denote C ′

v by
Cv , and check that it indeed corresponds to the root vertex of v .

We first prove that4 is a topological order on G. First, remark that (u ∈Cv) ⇒ (u 4 v). Indeed,
if u ∈ Cv , then either Step 4 of the algorithm ensures that u ∈ fa(v) and u 4 v or u ∉ fa(v)
and there exists x such that u ∈ Cx and Cv → Cx . But by Step 6 of Algorithm 4, the fact that
Cv →Cx entails that v is the maximal element of Cx \{x} for the topological order, so that u ≺ v .
Furthermore, Step 6 ensures that (Cu ,Cv) ∈ A implies u ∈ Cv . We deduce from the previous
result that (Cu ,Cv) ∈A implies u4 v , and4 is a topological order on G.

Then we show that (7.6) holds. We first show that (u ∈ Cv) ⇒ Cu Cv and u ∈ C ′ for any C ′

on path Cu Cv . Either u = v and this is obvious, or u ∈ paG(Cv); and by recursion either
Cu Cv or u ∈Cr with Cr the root of the tree which is also the first element in the topological
order. But, unless u = r , this is excluded given that u ∈ Cr implies u 4 r . Note that this shows
that Cu is indeed the unique minimal element of the set {C : u ∈C } for the partial order defined
by the arcs of the tree. To show the first part of (7.6), we just need to note that either u ∈ fa(v)
and the result holds, or there must exist x such that Cv →Cx and u ∈Cx and by recursion, there
exists w such that Cv Cw and u ∈ fa(w).

Finally, we prove that we have constructed an RJT. Indeed, if two vertices Cv and Cv ′ contain u
then since G is singly connected, the trail connecting Cv and Cv ′ must be composed of vertices
on the paths Cv Cu and Cu Cv ′ , and we have shown in the previous paragraph that that
u belongs to any C ′ on Cv Cu and Cu Cv ′ , and so the running intersection property
holds. Finally, property (ii) of Definition 6.1 must holds because the fact that Cu is minimal
among all cluster vertices containing u together with the running intersection property entails
that the cluster vertices containing u are indeed a subtree of G with root Cu .

7.5.2 Characterizing the built RJT

Proposition 7.7, in addition to proving the correctness of Algorithm 4, provides the benefit of
using Algorithm 4, but it characterizes the content of the cluster vertices based on the topology
of the obtained RJT, which is itself produced by the algorithm (note that the composition of
cluster vertices depends only on4 via the partial order of the tree). The cluster vertices of any
RJT and those produced by Algorithm 4 admit however more technical characterizations using
only 4 and the information in G , which we present this section. These characterizations will
be useful in the proofs of Chapter 9. For each vertex v in V , we introduce

T<v = {w ∈V<v | there is a v-w trail in V<v }.

Proposition 7.8. Let G = (V ,A) be an RJT satisfying offspring(Cv) = {v}, and4 be a topological

106

7.5. Building a gradual RJT

order on G. Then4 induces a topological order on G and

w ∈ T<v =⇒ Cv Cw ,

ch(u)∩T<v 6= ;
and u4 v

}
=⇒ u ∈Cv .

(7.7a)

(7.7b)

Proof of Proposition 7.8. Let G = (V ,A) be an RJT satisfying offspring(Cv) = {v}, and 4 be a
topological order onG. Property 1 in Proposition 7.4 ensures that4 induces a topological order
on G .

We start by proving (7.7a). Let v and w be vertices such that w Â v and that there is a v-w trail
Q in V<v . Let s0, . . . , sk be the vertices where Q has a v-structure5 and t1, . . . , tk the vertices with
diverging arcs in Q. Note that, since the trail is included in V<v , the first vertices of the trail
have to be immediate descendants of v in G so that the trail takes the form v s0 t1

s1 . . . tk sk w, where possibly sk = w and the last arc is not present. Then, given that
v ≺ s0, and that4 is topological forG, Proposition 7.4.2 implies that Cv Cs0 . But by the same
argument, Property 2 in Proposition 7.4 implies Ct1 Cs0 , but since G is a tree and v ≺ t1, we
must have Cv Ct1 Cs1 . By induction on i , we have Cv Csi and thus Cv Cw , which
shows Equation (7.7a).

We now prove (7.7b). Let u and v be two vertices such that u4 v and there is a u-v trail P with
P\{u} ⊆V<v . Let w be the vertex right after u on P . We have u ∈ fa(w), w < v and there is a v-w
trail in V<v , which implies Cv Cw by (7.7a). But, since u 4 v , the u-v trail is also in V<u ,
which similarly shows that Cu Cv . So by (7.5) we have proved (7.7b).

Proposition 7.9. The graph G = (V ,A) produced by Algorithm 4 is the unique RJT satisfying
offspring(Cv) = {v} such that the topological order4 on G taken as input of Algorithm 4 induces
a topological order on G and the implications in (7.7) are equivalences.

Proof. Note that some visual elements of the proof are given in Figure 7.3. It is sufficient to
prove the following inclusions

desG(Cv) ⊆ {Cw : w ∈ T<v },

Cv ⊆ {u4 v : ∃w ∈ T<v , u ∈ fa(w)}.

(7.8a)

(7.8b)

Indeed, note that by Proposition 7.7, the obtained tree is an RJT so that, by Proposition 7.8, the
reverse inequalities hold.

We prove the result by backward induction on (7.8b) and (7.8a). For a leaf Cv of G, desG(Cv) =
{Cv } so that (7.8a) holds trivially and Cv = fa(v) so that (7.8b) holds because u ∈ fa(v) implies
u4 v . Then, assume the induction hypothesis holds for all children of a vertex Cv .

We first show (7.8a) for Cv , i.e. that (Cv Cw) ⇒ (w ∈ T<v) (see Figure 7.3). Let Cx be the
child of Cv on the path Cv Cw . By Proposition 7.7, we have v ≺ x, so that V<x ⊂V<v . Then,
using the induction hypothesis, by (7.8b), (v ∈ Cx) implies that there is a v-x trail in V<v , and

5We say that there is a v-structure at vi on a trail Q = (v1, . . . , vk) if 1 < i < k and vi−1 → vi ← vi+1.

107

Chapter 7. Graphical models and rooted junction tree properties

a.

v11 v12 v13 v14

v21 v22

v31
b.

v11v12v21

v21v22v31

v13v14v22 c.

-v11v12v21

v21-v13v14v22

v21v22v31

Figure 7.2 – Example of influence diagram whose rooted treewidth is larger than its pathwidth.
a. Influence diagram. b. Path decomposition with minimum width. c. RJT with minimum
width.

u

w

x

v V<v

V<x

Cv

Cx

Cw

Figure 7.3 – Illustration of the proof of Proposition 7.9. Plain arcs represent arcs, dashed line
trails.

by (7.8a), Cx Cw implies there is a trail x-w in V<x , so there is a v-w trail in v ≺ x in V<v ,
which shows the result.

We then show (7.8b) for Cv (see Figure 7.3). Indeed if u ∈Cv , either u ∈ fa(v) and u is in the RHS
of (7.8b), or there exists a child of Cv , say Cx such that u ∈Cx and u ≺ v , because the algorithm
imposes v = max4(Cx \{x}). Since Cv Cx there exists a path v-x in V<v , and using induction,
by (7.8b), (u ∈ Cx) implies that ∃w such that u ∈ fa(w) and there exists a trail w-x in T<v . But
we have shown in Proposition 7.7 that (v ∈Cx) ⇒ (v 4 x), so T<x ⊂ T<v and we have shown that
there exists a v-w trail in T<v with u4 v and u ∈ fa(w), which shows the result.

Finally we conclude this section with Figure 7.2, which shows an example of influence diagram
whose rooted-treewidth is equal to 3 and larger than its pathwidth, which is equal to 2. Fig-
ure 7.2 also provides the path decomposition of width 2 and the RJT of width 3. This kind of
v-shaped graphs are especially challenging for our approach.

st−1vt−1-st st -ot st ot -ut st ot ut -at st ot at -vt

vt -rt

st vt -st+1

Figure 7.4 – Rooted junction tree produced by Algorithm 4 on the example of Figure 6.2b. The
offspring of a vertex is to the right of symbol -.

108

8 Integer programming on the junction
tree polytope

The main goal of this chapter is to prove Theorem 6.1 and Proposition 6.4. It requires to encode
the probability distribution Pδ of a strategy δ using a set of constraints satisfied by a vector of
moments µ. In Chapter 7, we introduced some local independences (7.4), which are sufficient
to ensure that the probability distribution Pµ of a vector of moments µ in the marginal poly-
tope of a RJT, factorizes on G . The key aspect in this chapter is to show that given a strategy
δ, any vector of moments µ satisfying the constraints of (6.5) will satisfy (7.4), ensuring that
the probability distribution Pµ factorizes according to the directed acyclic graph. The proof of
Theorem 8.1 then follows.

This chapter is organized as follows:

• Section 8.1 gives a proof of Theorem 6.1, which is based on showing that the probability
distribution from which derives the feasible vector of moments of MILP (6.6), factorizes
according to the influence diagram. Using notation of Chapter 7 we prove that NLP (6.6)
models exactly MEU(G ,ρ).

• Section 8.2 is dedicated to prove Proposition 6.4. Using notation of Chapter 7, we prove
the validity of inequalities (6.7) for MILP (6.6). To the best of our knowledge, such “inde-
pendence cuts” have not been proposed in combinatorial optimization. We believe that
this idea of leveraging conditional independence to obtain valid cuts is fairly general and
could be extended to other contexts.

• Section 8.3 details basic knowledge about the McCormick’s relaxation. It introduces a dy-
namic programming like algorithm that computes “good” bounds on the moments of any
probabilistic distribution of a PID. Incorporating these new bounds in the McCormick
linear inequalities tighten the linear relaxation of MILP (6.6).

• Section 8.4 provides an interpretation of the linear relaxation of MILP (6.6) and the valid
inequalities (6.7) in terms of graphs.

• Section 8.5 proves that NLP (6.8) that models MEU(G ,ρ). Such NLP is based on the value
functions. Using McCormick’s linearization technique, this NLP can be turned into an
MILP.

• Section 8.6 illustrates the mathematical programs of this chapter and their properties on
some simple numerical examples.

109

Chapter 8. Integer programming on the junction tree polytope

8.1 Integer programming using the moments

For convenience, we start by introducing notation that is useful in this section. Then we obtain
NLP (6.5) in Section 8.1.2, and then linearize it into MILP (6.6) in Section 8.1.3.

8.1.1 Notation

In this section, we introduce two sets to lighten the writing of the mathematical programs in-
troduced in Section 6.1. Consider an influence diagram G = (V s,V a, A). Let ρ = (XV ,p,r) be
a parametrization of G such that XV = ∏

v∈V Xv the support of the vector of random variables
attached to all vertices of G , p = {pv |pa(v)}v∈V s is the collection of fixed and assumed known
conditional probabilities, and r = {rv }v∈V r is the collection of reward functions1 rv : Xv → R.
The reward functions r will also be viewed as vectors rv ∈ RXv . Given a gradual RJT G of G , we
introduce the following variant of the marginal polytope M0(G) defined in (7.3).

M̃0(G) =
{

(µCv ,µČv
)v∈V : (µCv)v∈V ∈M0(G) and µČv

=∑
xv

µCv

}
,

where moments µČv
have been introduced. This is for convenience, and all the results could

have been written usingM0(G). By abuse of notation, we say thatµ ∈M(G) instead of (µCv ,µČv
)v∈V ∈

M̃0(G). We also introduce the polytope

P(G ,ρ) = {
µ ∈M̃0(G) : µCv =µČv

pv |pa(v) for all v ∈V s}. (8.1)

We omit the dependence of P in ρ when it is clear from the context.

8.1.2 An exact Non Linear Program

Using the notation introduced in Section 8.1.1 we write NLP (6.5) more concisely as follows

max
µ,δ

∑
v∈V r

〈rv ,µv 〉

s.t. µ ∈P
δ ∈∆
µCv = δv |pa(v)µČv

, ∀v ∈V a.

(8.2a)

(8.2b)

(8.2c)

(8.2d)

Note that the constraints δ ∈∆, which are being positive and summing to 1, are implied by the
other ones in NLP (8.2) (or (6.5)).2 We have Theorem 6.1 which we recall here with the notation
introduced above:

Theorem 8.1. Let (µ,δ) be a feasible solution of NLP (8.2). Then µ is the vector of moments of
Pδ induced by δ. Furthermore,

(
µ,δ

)
is an optimal solution of NLP (8.2) if and only if δ is an

optimal policy of MEU(G ,ρ). In particular, NLP (8.2) and MEU(G ,ρ) have the same optimal

1We remind the reader that V r is the set of utility vertices as introduced in Section 6.1.
2Indeed, constraint µ ∈ P(G ,X ,p,G) ensures that, for each v ∈ V a, µCv is a distribution. And con-

straint µCv = δv |pa(v)µČv
ensures that, if xpa(v) has non-zero probability according to that distribution, i.e.,∑

xČv \xpa(v)
µČv

(xČv \xpa(v)
, xpa(v)) > 0., then δv |pa(v)(·|xpa(v)) is a conditional probability.

110

8.1. Integer programming using the moments

value.

Theorem 8.1 gives the following corollary:

Corollary 8.2. Given any gradual RJT G and any parametrization ρ on G, the set of achievable
moments MG(G ,ρ) can be written:

MG(G ,ρ) = {
µ ∈P : ∃δ ∈∆,µCv =µČv

δv |paG (v) for all v in V a}.

Corollary 8.2 enables to write Problems (6.5) and (8.2) as

max
µ∈M(G)

∑
v∈V r

〈rv ,µv 〉,

and it will be useful in the proofs Chapter 9 because it characterizes the set of achievable mo-
ments by the set of constraints of (8.2).

Proof of Corollary 8.2. We denote the set
{
µ ∈P : ∃δ ∈∆,µCv =µČv

δv |paG (v), ∀v ∈V a
}

by S(G).

Let µ ∈ S(G). Then, there exists a strategy δ such that (µ,δ) is a feasible solution of NLP (8.2).
Theorem 8.1 ensures that µ is the vector of moments of the probability distribution Pδ. There-
fore, µ ∈M(G).

Let µ ∈ M(G). By definition, there exists δ ∈ ∆ such that µC (xC) = Pδ(XC = xC) for any xC ∈
XC and any C ∈ V . First, Proposition 7.2 ensures that µ belongs to M(G). Second, since Pδ
factorizes according to G , Corollary 7.6 ensures that µCv = µv |pa(v)µČv

for any v ∈ V , where
µv |pa(v)(xfa(v)) = Pδ

(
Xv = xv |Xpa(v) = xpa(v)

)
for any xfa(v) ∈ Xfa(v). By definition of Pδ in (6.2),

we deduce that µv |pa(v) = δv |pa(v) if v ∈ V a and µv |pa(v) = pv |pa(v) otherwise. Therefore, µ ∈
SG(G). It achieves the proof.

Proof of Theorems 6.1 and 8.1. Let (µ,δ) be an admissible solution of NLP (8.2). Then δ is an
admissible solution of MEU(G ,ρ). We now prove that µ corresponds to the vector of mo-

ments of the distribution Pδ induced by δ, from which we can deduce that Eδ
(∑

v∈V r rv (Xv)
)
=∑

v∈V r〈rv ,µv 〉. The following remark is the a key argument. Let A, P , and D be three disjoint
subsets of V , P a distribution on XV , µA∪P∪D the distribution induced by P on XA∪P∪D , and
pD|P the conditional distribution of D given P . If µA∪P∪D =µA∪P pD|P , then

(XD ⊥⊥X A | XP)P. (8.3)

By (8.3), we have that the vector µ satisfies the conditions of Theorem 7.3, and hence it derives
from a distribution Pµ that factorizes on G . Furthermore, constraints in the definition (8.1) of
P ensure that Pµ(Xv |Xpa(v)) = pv |pa(v) for all v ∈V s, which yields the result.

Conversely, let δ be an admissible solution of MEU(G ,ρ), and µ be the vector of moments
induced byPδ. We haveµCv =µČv

pv |pa(v) for v in V s andµCv =µČv
δv |pa(v) for v in V a, and (µ,δ)

is a solution of (8.2). Furthermore, Eδ
(∑

v∈V r rv (Xv)
)
= ∑

v∈V r〈rv ,µv 〉, and (8.2) is equivalent
to MEU(G ,ρ).

111

Chapter 8. Integer programming on the junction tree polytope

8.1.3 MILP formulation

Now we detail how we turn NLP 8.2 (or equivalently NLP (6.5)) into MILP (6.6). We recall that
there always exists at least one optimal strategy which is deterministic (and therefore integral)
for MEU(G ,ρ). Therefore, we can add integrality constraint (6.3) to (8.2). With this integrality
constraint, Equation (8.2d) becomes a logical constraint, i.e., a constraint of the form λy = z
with λ binary and continuous y and z. Note that constraints can be handled by modern MILP
solvers such as CPLEX or Gurobi, that can solve NLP (8.2) with integrality constraints (6.3).
Alternatively, by a classical result in integer programming, we can turn NLP (8.2) into an equiv-
alent MILP by replacing constraint (8.2d) by its McCormick relaxation [100]. For a given p, let

b =
(
bČv

(xČv
)
)

xČv ∈XČv ,v∈V a be a vector of upper bounds satisfying

Pδ′
(
XČv

= xČv

)
6 bČv

(xČv
) ∀δ′ ∈∆, ∀v ∈V a, ∀xČv

∈XČv
. (8.4)

For such a vector b, we say that, for a given vertex v , (µCv ,δv |pa(v)) satisfies McCormick’s in-
equalities (see Section 8.3) if

µCv >µČv
+ (δv |pa(v) −1)bČv

,

µCv 6 δv |pa(v) bČv
,

µCv 6µČv
.

(McCormick(v,b))

Note that the last inequalityµCv 6µČv
can be omitted in our case as it is implied by the marginal-

ization constraint µČv
=∑

xv
µCv in the definition of M̃0(G). Given the upper bounds provided

by b, we introduce the polytope of valid moments and decisions satisfying all McCormick con-
straints:

Qb(G ,XV ,p,G) =
{

(µ,δ) ∈M̃0(G)×∆ : McCormick(v,b) is satisfied for all v ∈V a
}

. (8.5)

For convenience, we write Qb when (XV ,p,G) is clear from the context. Thus by using Mc-
Cormick on Constraints (8.2d), we get that MEU(G ,ρ) is equivalent to the following MILP, which
is a rewriting of MILP (6.6):

max
µ,δ

∑
v∈V r

〈rv ,µv 〉

s.t. µ ∈P
δ ∈∆d

(µ,δ) ∈Qb .

(8.6)

Remark 11. The strength of the McCormick constraints (McCormick(v,b)) depends on the
quality of the bounds bČv

on µČv
. As for a solution µ of MILP (8.6), µČv

corresponds to a prob-
ability distribution, the simplest admissible bound over µČv

is just b = 1, leading to the poly-
tope Q1. Unfortunately, McCormick’s constraints are loose in this case: we show in Section 8.3
that, for any µ in P , there exists δ in ∆ such that (µ,δ) satisfies those McCormick constraints.
Hence, when b = 1, McCormick constraints fail to retain any information about the conditional
independence statements encoded in the associated nonlinear constraints. Since δ does not
appear outside of the McCormick constraints, their sole interest in that case is to enable the

112

8.2. Valid cuts

branching decisions on δ to have an impact on µ. Section 8.3.2 gives an example showing that
McCormick constraints do retain information about the conditional independence if bounds
bČv

smaller than 1 are used. Finally, Section 8.3.3 provides a dynamic programming algorithm
that efficiently computes such a b. 4

8.2 Valid cuts

Classical techniques in integer programming, such as branch-and-bound algorithms, rely on
solving the relaxation of the MILP to obtain a lower bound on the value of the objective. For
MILP (8.6) the relaxation is likely to be poor, and so the MILP is not well solved by off-the-
shelf solvers. Indeed as explained in Remark 11, when b = 1, the McCormick inequalities com-
pletely fail to capture, in the linear relaxation of the MILP (8.6), the conditional independence
encoded by the nonlinear constraints (8.2d). Further, improving the bound b does not com-
pletely address the issue. In this section, our goal is to prove Proposition 6.4. We introduce
the inequalities (6.7) and we prove their validity for MILP (8.6). It strengthens the relaxation
and ease the MILP resolution in practice (see Section 8.6). Recall that a valid cut for an MILP
is an (in)equality that is satisfied by any solution of the MILP, but not necessarily by solutions
of its linear relaxation. A family of valid cuts is stronger than another when the former yields a
polytope strictly included in the latter.

8.2.1 Constructing valid cuts

By restricting ourselves to vectors of moments µ ∈P , we have imposed

Pµ(Xv |XČv
) = pv |pa(v) for all v in V s,

becauseµ ∈P must satisfyµCv =µČv
pv |pa(v). It turns out that in the linear relaxation of MILP (8.6),

the equality µCv = µČv
δv |pa(v) for v ∈ V a does not longer hold in general because the Mc-

Cormick’s relaxation is not exact. Hence, in the linear relaxation of MILP (8.6), we do not longer
have Pµ(Xv |Xpa(v)) =Pδ(Xv |Xpa(v)) = δv |pa(v) for v ∈V a.

A key question is therefore whether we can enforce some conditional probabilities implied by
the nonlinear constraints, and thus lost in the linear relaxation of MILP (8.6), through linear
constraints. This seems possible because, as an indirect consequence of setting the conditional
distributions pv |pa(v) for v ∈ V s, there are other conditional probability distributions whose
value does not depend on δ. We characterize such conditional probability distributions using
the notion of strategy independent set introduced in Chapter 6, 3 which we recall here: Let C
be a subset of vertices in V . A set of variables XD such that D ⊆C is strategy independent set in
C if it satisfies the following property:

For all parametrization ρ such that (G ,ρ) is a PID, Pδ(XD |XC \D) does not depend on δ.

For such a subset D , the following proposition ensures that we can add linear constraints in

3This type of property is well known in the literature on causality in graphical models, where the policies are
viewed as interventions and some conditional probabilities are shown to be invariant under interventions; see,
e.g., Koller and Friedman [75, Definition 21.3, p. 1019] or Peters et al. [119, Remark 6.40, p. 113].

113

Chapter 8. Integer programming on the junction tree polytope

MILP (8.6).

Proposition 8.3. Let C be a subset of vertices and D a strategy independent set in C . The follow-
ing equalities are valid for MILP (8.6) and are linear in µ:

µC =µC \D pD|C \D . (8.7)

Proof. Let (µ,δ) be a feasible solution of MILP (8.6). Theorem 8.1 ensures that there exists
δ ∈∆d such that µ is the vector of moments of Pδ. Hence, it follows that

µC (xC) =Pδ
(
XC = xC

)=Pδ(XD = xD |XC \D = xC \D
)
Pδ

(
XC \D = xC \D

)
= pD|C \D

(
xD |xC \D

)
µC \D (xC \D)

These equalities are linear because pD|C \D does not depend on δ.

Lemma 6.2, which will be proved in Section 8.2.2, ensures that the largest inclusion-wise strat-
egy independent set C⊥⊥ in C exists and is unique. Then, Proposition 6.4 follows immediately
from Proposition 8.3 by setting D =C⊥⊥. In addition, we will give a full characterization of C⊥⊥ in
Section 8.2.2. Such a characterization is key in proving Proposition 6.3, ensuring that C⊥⊥ can be
computed in O(|C |(|V |+ |A|)). We believe that this complexity can be improved. To compute
(C⊥⊥

v)v∈V a , the total complexity is in the worst case in O(|V a|w(G)(|V |+|A|)). In the experiments
of Section 8.6, the time to compute all the C⊥⊥ and all pC⊥⊥|C 6⊥⊥ was negligible compared to the
time needed to solve an LP or the MILP.

Finding the largest inclusion-wise strategy independent set is motivated by the fact that the
large D the stronger the valid cuts (8.7) in the following sense: Given a strategy independent
set D in C , for any set D ′ ⊆ D , the equalities µC = µC \D ′pD ′|C \D ′ are valid for MILP (6.6) and are
linear in µ. This fact comes from the following stability property of the strategy independent
sets.

Lemma 8.4. Let D be a strategy independent set in C , and consider D ′ ⊆ D. Then, D ′ is a strategy
independent set in C .

Proof. It suffices to prove that Pδ
(
XD ′ = xD ′ |XC \D ′ = xC \D ′

)
does not depend on δ. We compute

the conditional probability using Bayes law:

Pδ
(
XD ′ = xD ′ |XC \D ′ = xC \D ′

)= Pδ
(
XD = xD |XC \D = xC \D

)
Pδ

(
XD\D ′ = xD\D ′ |XC \D = xC \D

)
= Pδ

(
XD = xD |XC \D = xC \D

)∑
x ′′

D′ Pδ
(
XD\D ′ = xD\D ′ , XD ′ = x ′′

D ′ |XC \D = xC \D
)

The numerator and the denominator in the last fraction above do not depend on δ because D
is strategy independent set in C , which achieves the proof.

Consider a PID (G ,ρ) with G = (V s,V a, A) and ρ = (XV ,p,r). Let G be a gradual RJT on G . We

114

8.2. Valid cuts

a u v b w a a-u au-v auv-b aub-w

Figure 8.1 – influence diagram and its RJT with a non valid cut (6.7) for C = {a,u, v,b} with
C⊥⊥ = {u}.

define P⊥⊥ as the polytope we obtain when we strengthen P with the valid cuts:

P⊥⊥(G ,XV ,p,G) =
{
µ ∈P : µCv = pC⊥⊥

v |C 6⊥⊥
v

∑
xC⊥⊥v

µCv for all v ∈V a

}
. (8.8)

Given a vector b satisfying (8.4) we introduce the following strengthened version of the MILP (8.6).

max
µ,δ

∑
v∈V r

〈rv ,µv 〉 subject to µ ∈P⊥⊥, δ ∈∆d, (µ,δ) ∈Qb. (8.9)

Figure 8.1 provides an example of an influence diagram where the introduction of valid cut
of the form (6.7) reduces the size of the initial polytope. Indeed the cluster C = {a,u, v,b}
leads to C⊥⊥ = {u}, and the resulting cut (6.7) is not implied by the linear inequalities of (8.6).
Indeed, suppose that Xa = Xv = {0}, while Xu = Xb = {0,1}. Then the solution defined by
µauvb(0, i ,0, i) = 0.5 andµauvb(0, i ,0,1−i) = 0 for i ∈ {0,1} is in the linear relaxation of MILP (8.6)
but does not satisfy (6.7). To compute C⊥⊥, we have used the characterization provided in Sec-
tion 8.2.2.

Remark 12. In the definition of P⊥⊥, we decided to introduce valid cuts of the form (8.7) only for
sets of vertices C of the form Cv with v ∈V a. This is to strike a balance between the number of
constraints added and the number of independences enforced. This choice is however heuris-
tic, and it could notably be relevant to introduce constraints of the form (6.7) for well chosen
C (Cv . 4

8.2.2 Characterization of C⊥⊥

In this section, we show the existence of C⊥⊥ by giving its closed form. In order to characterize
C⊥⊥, we need some concepts from graphical model theory. The first notions make it possible
to identify conditional independence from properties of the graph. Let D ⊆ V be a subset of
vertices. Let P be a trail v1
 · · ·
 vn . We say that vi is a v-structure on P if 1 < i < n and
the subtrail vi−1
 vi
 vi+1 is of the form vi−1 → vi ← vi+1. A trail v1
 · · ·
 vn is active
given D if, for all v-structure vi−1 → vi ← vi+1 on P , vi or one of its descendant is in D , and
any vertex of the trail that is not a v-structure is not in D . Two sets of vertices B1 and B2 are
said to be d-separated by D in G , and we will denote this property by B1⊥B2 | D , if there is no
active trail between B1 and B2 given D . We have XB1 ⊥⊥XB2 | XD for any probability distribution
factorizing on G if and only if B1 and B2 are d-separated by D [75, Theorem 3.4].

The other notion we need is the one of augmented model [75, Chapter 21]. Informally, the idea
behind augmented models is as follows: the strategies specify some conditional distributions

115

Chapter 8. Integer programming on the junction tree polytope

in the model; the statement that some conditional probabilities do not depend on the strat-
egy is a priori to be understood for a functional notion of independence which is different from
probabilistic independence. However, and somewhat surprisingly, by considering a random-
ized version of the strategy (and thus of the corresponding conditional distribution) the two
notions of independence actually coincide. This motivates to “augment” the graph G with ad-
ditional vertices associated with policies themselves, viewed as random variables, and which
are each a parent of the vertex whose conditional distribution they define. The fact that the
set of introduced policy variables are conditionally independent of a set of variables XD given
XC \D in the augmented graph turns out to be equivalent to the fact that the value Pδ(XD |XC \D)
does not depend on the choice of δ.

Formally, consider (G ,ρ), a PID with G = (V s,V a, A), and let V = V a ∪V s. For each v ∈ V a, we
introduce a vertexϑv and a corresponding random variable θv . The variable θv takes its value in
the space ∆v of conditional distributions on Xv given Xpa(v). Let G† be the digraph with vertex
set VG† =V ∪ϑV a , whereϑV a = {ϑv }v∈V a , and arc set AG† = A∪{(ϑv , v),∀v ∈V a}. Such a graph G†,
called augmented graph, is illustrated on Figure 8.2, where vertices in G†\G are represented as
rectangles with rounded corners. The augmented model of (G ,ρ) is the collection of probability
distributions factorizing on G† such that Xv is defined as in ρ for each v in V , Xϑv =∆v , and

PG†

(
Xv = xv |XpaG† (v) = xpaG† (v)

)
=

{
θo

v (xv |xpa(v)) if v ∈V a,

pv |pa(v)(xv |xpa(v)) if v ∈V s,

where xpaG† (v) = (xpaG (v),θo
v) for v ∈V a, and xpaG† (v) = xpaG (v) for v ∈V s.

A probability distribution of the augmented model is specified by choosing the marginal dis-
tributions of the θv , for v ∈ V a. In the rest of the thesis, we denote by PG† the distribution of
the augmented model with uniformly distributed θv (·|xpa(v)) for each v in V a, and each value
of xpaG (v) ∈XpaG (v).

With these definitions, a strategy δ can now be interpreted as a value taken by θV a , and we have

Pδ(XD = xD |XM = xM) =PG† (XD = xD |XM = xM ,θV a =δ), (8.10)

for any set D, M ⊆V . Note that in generalPG† (XD = xD |XM = xM) is the expected value over θV a

of PθV a (XD = xD |XM = xM). The following result, which is an immediate consequence of (8.10),
characterizes the pairs (D, M) such that for any parametrization ρ the conditional probability
distribution Pδ(XD |XM) does not depend on strategy δ.

Proposition 8.5. We havePδ(XD |XM) =PG† (XD |XM) for any parametrization ρ on G, any strat-
egy δ, and any M such that Pδ(XM) > 0 if and only if D is d-separated from ϑV a given M in G†.

Note that this is a particular case of a result known in the causality theory for graphical mod-
els [see, e.g. 75, Proposition 21.3]. The following corollary gives a new characterization of the
strategy independent sets:

Corollary 8.6. Given a set C , a subset D of C is strategy independent in C if and only if D is
d-separated from ϑV a given C \D in G†.

116

8.2. Valid cuts

Proof. If D is a strategy independent set in C . Then, the property (8.10) ensures that for any
parametrization ρ, PG† (XD = xD |XM = xM ,θV a = δ) does not depend on δ. Hence, for any
parametrization ρ and any strategy δwe obtain Pδ(XD |XC \D) =PG† (XD |XC \D). Proposition 8.5
ensures that D is d-separated from ϑV a given C \D in G†.

If D is d-separated from ϑV a given M in G†. Then, Koller and Friedman [75, Theorem 3.3]
ensures that for any probability distribution P factorizing on G†, we have (XD ⊥⊥ϑV a |XC \D)P.
Hence, we obtain PG† (XD |XC \D ,θV a) = PG† (XD |XC \D) for any probability distribution factoriz-
ing on G†. Using (8.10), we get that Pδ(XD |XC \D) = PG† (XD |XC \D) for any parametrization ρ
and any strategy δ, which concludes the proof.

The characterization of Corollary 8.6 allows us to define the strategy independent sets in C us-
ing the notion of d-separation, which is a pure graphical property. Now we can prove Lemma 6.2
which we recall here:

Lemma 6.2. Let D,D ′ ⊆ C . If D and D ′ are strategy independent in C , then D ∪D ′ is strategy
independent in C .

Proof. It suffices to prove that ϑV a 6⊥D ∪D ′|C \(D ∪D ′). Suppose that it is not true, i.e., there
exists an active trail between ϑV a and D ∪D ′ that is active given C \(D ∪D ′). Let P be such a
trail. Hence, there exist two vertices u, v ∈ V such that u ∈ D ∪D ′ and v ∈ V a, and P is active
between u and ϑv given C \(D ∪D ′). Without loss of generality, we suppose that P is minimal
in the sense that P ∩ (D ∪D ′) = {u}. Indeed, otherwise we consider the nearest vertex of P that
belongs to D ∪D ′ and the trail from this vertex to ϑv is also active given C \(C ∪C ′). Suppose
that u ∈ D . Since D is a strategy independent set in C , we have ϑv 6⊥u|C \D . Hence, the trail P is
not active given C \D . Therefore, either there is a v-structure of P with no descendant in C \D or
there is a vertex on P that is not a v-structure and that belongs to C \D . Since P is active given
C \(D ∪D ′), it means that in all the v-structures of P , there is at least one descendant that is in
C \(D ∪D ′) ⊆C \D . Therefore, all the v-structures are active given C \D .

We deduce that there is a vertex on P that is not a v-structure and that belongs to C \D . Since P
is active given C \(D ∪D ′), we have x ∈ D ′\D . It contradicts the fact that P is minimal.

Given a set C , the stability property of Lemma 6.2 enables to define C⊥⊥ as the largest inclusion-
wise strategy independent set in C . In fact, we can give a full characterization of C⊥⊥ as stated
in the following theorem.

Theorem 8.7. C⊥⊥ is equal to
{

v ∈C : v ⊥ϑV a |C \{v}
}

.

With this characterization, the reader can check the value of C⊥⊥ on the example of Figure 8.1.

If we want to use the valid cuts in (8.8) in practice, we must compute C⊥⊥ and pC⊥⊥|C 6⊥⊥ efficiently.
Theorem 8.7 ensures that C⊥⊥ is easy to compute using any d-separation algorithm (and more
efficient algorithms are presumably possible), and Proposition 8.5 ensures that, if we solve the
inference problem on the RJT for an arbitrary strategy, e.g., one where decisions are made with
uniform probability, we can deduce pC⊥⊥|C 6⊥⊥ from the distribution µC obtained. Theorem 8.7 is
an immediate corollary of the following lemma.

117

Chapter 8. Integer programming on the junction tree polytope

G s1

o1

r1

a1

ϑ1

s2

o2

r2

a2

ϑ2

s3

o3

r3

a3

ϑ3

s4

Figure 8.2 – Example of augmented graph G† on a POMDP.

Lemma 8.8. Let B and C be two sets of vertices. Then the smallest inclusion-wise subset M ⊆C
such that

B ⊥ (
C \(B ∪M)

) | M (8.11)

is M∗ :=
{

v ∈ C \B : v 6⊥B |C \(B ∪ {v})
}

. Furthermore, a set M ⊆ C satisfies (8.11) if and only if
M∗ ⊆ M.

Lemma 8.8 has been recently proven by two of the authors [27, Theorem 1]. Using their termi-
nology, M∗ is the Markov blanket of B in C . Note that if C =V this is the usual Markov blanket.

Proof of Theorem 8.7. We first prove that C 6⊥⊥ =C \C⊥⊥ corresponds to the Markov Blanket of ϑa
V

in C . It suffices to show that ϑa
V ⊥ C \(B ∪C 6⊥⊥)|C 6⊥⊥. Since C⊥⊥ is strategy independent, Corol-

lary 8.6 ensures that ϑa
V ⊥ C⊥⊥|C 6⊥⊥ which is equivalent to ϑa

V ⊥ C \C 6⊥⊥|C 6⊥⊥. Since ϑa
V ∩C =;, we

obtain
ϑa

V ⊥C \
(
ϑ∪C 6⊥⊥)|C 6⊥⊥.

It ensures that C 6⊥⊥ satisfies (8.11). By definition of C⊥⊥, C 6⊥⊥ is the smallest inclusion-wise sub-
set of C satisfying (8.11). Therefore, Lemma 8.8 ensures that C 6⊥⊥ is the Markov Blanket ofϑa

V in C
and can be written C 6⊥⊥ = {

v ∈C : v 6⊥ϑa
V |C \{v}

}
. We conclude that C⊥⊥ =C \C 6⊥⊥ = {

v ∈C : v ⊥ ϑa
V |C \{v}

}
.

The characterization of Theorem 8.7 gives a closed form of C⊥⊥, which helps to compute C⊥⊥. In
addition, it is key in proving Proposition 6.3 which we recall here:

Proposition 6.3. Given a set C in V , C⊥⊥ can be computed in O
(|C |(|V |+ |A|)).

Proof. Theorem 8.7 ensures that computing C⊥⊥ requires to find all vertices v in C that are d-
separated from ϑa

V given C \{v}. Given a vertex v ∈ C , computing the set {u ∈ C : ϑa
V ⊥ u|C \{v}

can be done in O(|V | + |A|) using the Bayes-Ball algorithm [138, Theorem 4]. By running the
algorithm for each vertex v in C , the total complexity is in O(|C |(|V |+ |A|)), which achieves the
proof.

118

8.3. McCormick Relaxation

8.3 McCormick Relaxation

McCormick inequalities allow to turn NLP (8.2) into MILP (8.6). Further good bounds b on
the vector of moments ease the resolution of MILP (8.6). In this section we first discuss these
relaxation, show that in the NLP loose bounds are useless while tight bounds improve the MILP
formulation. Finally, we give an algorithm to compute good quality bounds.

8.3.1 Review of McCormick’s relaxation

For the sake of completeness we briefly recall McCormick’s relaxation, and condition for exact-
ness if all of the variables but one are binary.

Proposition 8.9. Consider the variables (x, y, z) ∈ [0,1]3 and the following constraint

z = x y (8.12)

Further, assume that we have an upper bound y 6 b. We call McCormick(8.12) the following set
of constraints

z > y +xb −b

z 6 y

z 6 bx

(8.13a)

(8.13b)

(8.13c)

If x, y and z satisfy Equation (8.12), then they also satisfy Equation (8.13). If x is a binary variable
(that is x ∈ {0,1}) and Equation (8.13) is satisfied, then so is Equation (8.12).

Proof. Consider x ∈ [0,1], y ∈ [0,b] and z ∈ [0,1], such that z = x y . Noting that (1 − x)(b −
y) > 0 we obtain Constraint (8.13a). Constraints (8.13b) and (8.13c) are obtained by upper
bounding by bounding one variable. Now assume that x ∈ {0,1}, y ∈ [0,b] and z ∈ [0,1] satisfy
Equation (8.13). Then, if x = 1, constraints (8.13a) and (8.13b) yield z = y . Otherwise, as z > 0,
we have z = 0 by (8.13c).

8.3.2 Choice of bounds in McCormick inequalities

Using bČv
= 1 leads to loose constraints

Since µČv
is a probability distribution, 1 is an immediate upper bound on µČv

. Let Q1 be the
polytope Qb obtained using bounds vector b defined by bČv

= 1 for all v in V a.

Proposition 8.10. Letµ be inP (resp. P⊥⊥). Then there existsδ in∆ such that (µ,δ) belongs toQ1,
and the linear relaxation of MILP (8.6) (resp. MILP (8.9)) with b = 1 is equal to max

µ∈P

∑
v∈V r

〈rv ,µv 〉
(resp. max

µ∈P⊥⊥

∑
v∈V r

〈rv ,µv 〉).

Proof. We write the proof with µ ∈ P and it is exactly the same if µ ∈ P⊥⊥. Let v be a vertex in
V a, and let

δv |pa(v)(xfa(v)) =
{

µfa(v)(xfa(v))
µpa(v)(xpa(v))

if µpa(v)(xpa(v)) 6= 0,

1ev (xv) otherwise,

119

Chapter 8. Integer programming on the junction tree polytope

a/

s t a w

b/

b

r

s t a w

Figure 8.3 – influence diagrams with useful McCormick inequalities.

where ev is an arbitrary element of Xv . To prove the result, we show that McCormick(v,b) is
satisfied for this well-chosen δv |pa(v) and bČv

= 1.

We have

µCv (xCv)−µČv
(xČv

)>
∑

x ′
Cv \fa(v)

µCv (x ′
Cv \fa(v), xfa(v))−µČv

(x ′
Cv \fa(v), xpa(v))︸ ︷︷ ︸

60

=µfa(v)(xfa(v))−µpa(v)(xpa(v))

= 1

µpa(v)(xpa(v))
(δv |pa(v)(xfa(v))−1)

> δv |pa(v)(xfa(v))−1

which yields µCv >µČv
+ (δv |pa(v) −1)bČv

.

Besides, if µCv (xCv)> 0, following the definition of δ and given that µpa(v)(xpa(v))6 1, we have

δv |pa(v)(xfa(v))>µfa(v)(xfa(v))>µCv (xCv),

and the constraint µCv 6 δv |pa(v)bČv
is satisfied.

Finally, µCv 6 µČv
follows from the marginalization constraint µČv

= ∑
xv
µCv in the definition

of the marginal polytope.

McCormick inequalities with well-chosen bounds are useful

This section provides examples of influence diagrams where inequalities McCormick(v,b) im-
proves the linear relaxation of MILPs (8.6) and (8.9). Consider the influence diagram on Fig-
ure 8.3.a, and assume that we have a bound µst 6 bst . Then, the McCormick relaxation of
µst a =µstδa|t reads {

µst a >µst +bst (δa|t −1)

µst a 6 bstδa|t

Suppose that all variables are binary, that s is Bernoulli with parameter 1
2 , that P(X t = 1|Xs) =

1+εXs −ε(1− Xs), that Xw indicates if Xs = Xa , and that the objective is to maximize Eδ(Xw),
and has value 1

2 +ε. An optimal policy consists in choosing Xa = X t . An optimal solution of the
linear relaxation of MILP (8.6) on P without McCormick inequalities, has value 1. Whereas an
optimal solution with McCormick inequality and bst (xs , xt) = 1

2 +ε1xs=xt has value 1
2 +ε. How-

ever, on this simple example, the McCormick inequalities are implied by the valid inequalities
of Section 8.2.

120

8.3. McCormick Relaxation

This is no more the case on the influence diagram of Figure 8.3.b, where r is a Bernoulli of
parameter 0.5 and Xs = Xr Xb+(1−Xr)(1−Xb), and the remaining of the parameters are defined
as previously. Using the same bounds, this new example leads to exactly the same results as
before.

8.3.3 Algorithm to compute good quality bounds

This section provides a dynamic programming equation to compute bounds bČv
on µČv

that
are smaller than 1. Let G be a RJT, and C1, . . . ,Cn be a topological order on G. Let Ck be a vertex
in G, C j be the parent of Ck and Ci the parent of C j (i < j < k). If k = 1, then Ci =C j =Ck =C1.
We introduce the notation C a

j = (C j \(Ci ∪Ck))∩V a. We define inductively on k the functions

b̃k :XCk → [0,1] as follows.
b̃1(xC1) = ∏

v∈C1∩V s

p(xv |xpa(v))

b̃k (xCk) =
(∑

xpa(C a
j

)

max
xC a

j

∑
x(Ci ∪C j)\(Ck∪C a

j
)

b̃i (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v))

)
for k > 1

Proposition 8.11. Let µ be in M(G). We have µCk (xCk)6 b̃k (xCk) for all i and xCk in XCk .

As a consequence, bČv
defined as

∑
xv

b̃Cv provides an upper bound on µČv
that can be used in

McCormick constraints.

Proof of Proposition 8.11. We prove the result by induction. Let (µ,δ) be a feasible solution of
NLP 8.2 and C j be the parent of Ck in G, and Ci the parent of C j (i < j < k).

If k = 1, then the result is obtained by using δv 6 1 for all v ∈V a.

We assume now that the induction is true until k > 1. We have

µCk (xCk)

= ∑
x(Ci ∪C j)\Ck

µCi (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v))
∏

v∈((C j∪Ck)\Ci)∩V a

δv (xv |xpa(v))

6 max
δ(C j ∪Ck)\Ci

∑
x(Ci ∪C j)\Ck

µCi (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v))
∏

v∈((C j∪Ck)\Ci)∩V a

δv (xv |xpa(v))

6 max
δC j \(Ci ∪Ck)

∑
x(Ci ∪C j)\Ck

µCi (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v))
∏

v∈(C j \(Ci∪Ck))∩V a

δv (xv |xpa(v))

6 max
δC j \(Ci ∪Ck)

∑
x(Ci ∪C j)\Ck

bCi (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v))
∏

v∈(C j \(Ci∪Ck))∩V a

δv (xv |xpa(v))

(8.14)

(8.15)

(8.16)

(8.17)

From (8.14) to (8.15), we maximize over the policies in (Ci ∪C j)\Ck . From (8.15) to (8.16), we
bound all policies in Ck ∩V a by 1. Then (8.17) is obtained by using the induction assumption.
Let α :Xfa(C a

j) →R be such that for all xC a
j
∈XC a

j
,

α(xC a
j
) = ∑

x(Ci ∪C j)\(Ck∪fa(C a
j

))

b̃Ci (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v)).

121

Chapter 8. Integer programming on the junction tree polytope

Then, (8.17) becomes

µCk (xCk)6max
δC a

j

∑
xfa(C a

j
)

α(xfa(C a
j))

∏
v∈C a

j

δv (xv |xpa(v))

Now, we can suppose that offspring(Cv) = {v}. Therefore, |C a
j |6 1 and the maximum above can

be decomposed into the sum.

µCk (xCk)6
∑

xpa(C a
j

)

max
δC a

j

∑
xC a

j

α(xfa(C a
j))

∏
v∈C a

j

δv (xv |xpa(v))

6
∑

xpa(C a
j

)

max
xC a

j

α(xfa(C a
j))

(8.18)

(8.19)

where from (8.18) to (8.19) we use a local maximization. Therefore, we obtain the result

µCk (xCk)6
∑

xpa(C a
j

)

max
xC a

j

∑
x(Ci ∪C j)\(Ck∪fa(C a

j
))

b̃Ci (xCi)
∏

v∈((C j∪Ck)\Ci)∩V s

p(xv |xpa(v))

Note that b̃k (xCk) is computed via an order two recursion from b̃i (xCi) where i is the grand-
parent of k, which can be generalized to higher order if stricter bound are needed.

8.4 Strength of the relaxations and their interpretation in terms of
graph

In this section we provide interpretations of the linear relaxations of MILP (8.6) and MILP (8.9)
in terms of graphs. Given an influence diagram G = (V , A), we introduce the sets of arcs and
influence diagrams

A = A∪{
(u, v) : v ∈V a and u ∈Cv \fa(v)

}
, G = (V , A),

A⊥⊥= A∪{
(u, v) : v ∈V a and u ∈C 6⊥⊥

v \fa(v)
}

and G⊥⊥= (V , A⊥⊥).

Figure 8.4 illustrates G and G⊥⊥ on the influence diagram of Figure 6.2b. Note that A ⊆ A⊥⊥ ⊆ A,
and remark the three following facts on G and G⊥⊥. First, the definition of both influence dia-
grams depends on G and G. Second, G is still an RJT on G and G⊥⊥. And third, any parametriza-
tion (XV ,p,r) of G is also a parametrization of G and of G⊥⊥. The second and third results are
satisfied by any influence diagram G ′ = (V , A ∪ A′), where A′ contains only arcs of the form
(u, v) with v ∈ V a and u ∈ Cv . Denoted by ∆G ′ the set of feasible strategies for (G ′,XV ,p,r), we
can extend the definition of MG(G ,ρ) in Corollary 8.2 to such G ′ with

MG(G ′,ρ) = {
µ ∈P : ∃δ ∈∆G ′ ,µCv =µČv

δv |paG′ (v) for all v in V a}.

Using this definition, the following theorem gives an interpretation of the linear relaxations
of (8.6) and (8.9).

122

8.4. Strength of the relaxations and their interpretation in terms of graph

si

oi

ui ai

vi

ri

si+1

G

si

oi

ui ai

vi

ri

si+1

G⊥⊥

si

oi

ui ai

vi

ri

si+1

G

Figure 8.4 – Graph relaxations corresponding to linear relaxations for the chess game example.

Theorem 8.12. We have

P =M(G) and max
µ∈P

∑
v∈V r

〈rv ,µv 〉 = MEU(G ,ρ),

and
P⊥⊥ =M(G⊥⊥) and max

µ∈P⊥⊥

∑
v∈V r

〈rv ,µv 〉 = MEU(G⊥⊥,ρ).

Hence, if (µ,δ) is a solution of the linear relaxation of (8.6), then δ is a strategy on G , while if
(µ,δ) is a solution of the linear relaxation of (8.9), then δ is a strategy on G⊥⊥. To prove Theo-
rem 8.12, we will need the following lemma.

Lemma 8.13. Let v be a vertex in V a. Then xCv 7→ pC⊥⊥
v |C 6⊥⊥

v
(xC⊥⊥

v
|xC 6⊥⊥

v \v , xv) is a function of
(xC⊥⊥

v
, xC 6⊥⊥

v \v) only. Hence, if a distribution µCv satisfies µCv = µC 6⊥⊥
v

pC⊥⊥
v |C 6⊥⊥

v
, then C⊥⊥

v ⊥ v |C 6⊥⊥
v \{v}

according to µCv .

Proof. Consider the augmented model PG† . Let P be a C⊥⊥
v -v trail. Let Q be the trail P followed

by the arc (v,ϑv). Given that v has no descendants in Cv (because we consider the case of a
gradual RJT so that offspring(Cv) = {v}), the vertex v is a v-structure of Q. As v ∈C 6⊥⊥

v , if P is active
given C 6⊥⊥

v \{v}, then P is active given C 6⊥⊥
v , which contradicts the definition of C⊥⊥

v . Hence, C⊥⊥
v ⊥ v |

C 6⊥⊥
v \{v} according to PG† , and xCv 7→ pC⊥⊥

v |C 6⊥⊥
v

(xC⊥⊥
v
|xC 6⊥⊥

v \v , xv) is a function of (xC⊥⊥
v

, xC 6⊥⊥
v \v) only.

The second part of the lemma is an immediate corollary.

We can now prove Theorem 8.12.

Proof of Theorem 8.12. First, remark that, once we have proved P =M(G) and P⊥⊥ =M(G⊥⊥),
the result follows from Theorem 6.1.

We now prove P =M(G). Let µ be in P . Then µ is a vector of moments in the marginal poly-
tope of the RJT G on G . We now prove by disjunction of cases that, according to µCv , Xv is
independent from its non-descendants in G that are in Cv given paG (v). If v ∈ V a, we have
faG (v) = Cv and the result is immediate. If v ∈ V s, we have µCv = µČv

pv |paG (v), for v ∈ V s, and
paG (v) = paG (v) for v in V s then gives the result. Theorem 7.3 then ensures thatµ is a vector of
moments of a distribution that factorizes on G , which yields P ⊆M(G). The inclusion M(G) ⊆

123

Chapter 8. Integer programming on the junction tree polytope

P is immediate. Consider now a vector of moments µ in P⊥⊥. Given v ∈ V a, Lemma 8.13 and
the definition of G⊥⊥ ensure that, according to µCv , variable Xv is independent from its non-
descendants in G⊥⊥ in Cv , i.e., C⊥⊥

v \{v}, given its parents in G⊥⊥, i.e., C 6⊥⊥
v \v . If v ∈ V s, constraints

µCv = µČv
pv |pa(v) still implies that Xv is independent from its non-descendants in Cv given its

parents according to µCv , because by definition of G⊥⊥, for v ∈ V s, we have paG⊥⊥(v) = paG (v).
Theorem 7.3 again enables to conclude that P⊥⊥ ⊆M(G⊥⊥). Inclusion M(G⊥⊥) ⊆P⊥⊥ is immedi-
ate.

Remark furthermore that M(G ′) is generally not a polytope. Indeed, when G ′ = G , this is the
reason why (8.2) is not a linear program. An important result of the theorem is that M(G)
and M(G⊥⊥) are polytopes, and MEU(G ,ρ) and MEU(G⊥⊥,ρ) can therefore be solved using the
linear programs max

µ∈P
∑

v∈V r

〈rv ,µv 〉 and maxµ∈P⊥⊥
∑

v∈V r

〈rv ,µv 〉 respectively. In Chapter 9, we

will characterize the influence diagrams for which the set of achievable moments is a polytope.

8.5 Integer programming using value functions

The aim of this section is to show the formulation that models MEU(G ,ρ) and involving the
value functions introduced in Section 6.2.3. While the approach of Section 8.1 is based on a rep-
resentation of the set of achievable moments M(G) using linear programs, we propose in this
section a representation of the set of achievable value functions F (G) using linear programs.
We start by proving how NLP (6.8) models MEU(G ,ρ) in Section 8.5.1, and then linearize it into
MILP (6.9) in Section 8.5.2. This formulation has been introduced for the POMDP example in
Section 4.4. The proofs are simpler than the ones using the vector of moments. However, the
numerical experiments in Section 4.5 show that, in general, it takes longer to solve MILP (6.9)
than MILP (6.6). These formulations using value functions will play a key role in Chapter 9.

8.5.1 An exact nonlinear formulation

Consider an influence diagram G = (V s,V a, A). Let ρ = (XV ,p,r) be a parametrization such
that XV = ∏

v∈V Xv the support of the vector of random variables attached to all vertices of G ,
p = {pv |pa(v)}v∈V s is the collection of fixed and assumed known conditional probabilities, and
r = {rv }v∈V r is the collection of reward functions rv : Xv → R. We recall that unless G has two
disjoint connected components, without loss of generality we can assume that G has a single
root vertex Cv0 with v0 ∈V s.

We recall NLP (6.8)

max
λ,δ

∑
x0∈X0

p0(x0)λC0 (x0)

s.t. λCv = rCv +
∑

u∈V s :
Cu∈V s∩ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈V s∩ch(Cv)

∑
xu

λCuδu|pa(u), ∀v ∈V.

We have Theorem 6.5 which we recall here with the notation introduced above:

Theorem 6.5. Let (λ,δ) be a feasible solution of NLP (6.8). Then λ is the vector of value func-
tions of the probability distribution Pδ induced by δ. Furthermore, (λ,δ) is an optimal solu-

124

8.5. Integer programming using value functions

tion of NLP (6.8) if and only if δ is an optimal policy of MEU(G ,ρ). In particular, NLP (6.8)
and MEU(G ,ρ) have the same optimal value.

Theorem 6.5 gives the following corollary:

Corollary 8.14. Given any gradual RJT G and any parametrization ρ on G, the set of achievable
value functions FG(G ,ρ) can be written:

FG(G ,ρ) =

λs.t. ∃δ ∈∆ :

∣∣∣∣∣∣∣∣∣∣
λCv = rCv +

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

λCu pu|pa(u)

+ ∑
u∈V a:

Cu∈ch(Cv)

∑
xu

λCuδu|pa(u), ∀xCv ∈XCv , ∀v ∈V

Corollary 8.14 enables to write NLP (6.8) as

max
λ∈F (G)

∑
v∈V r

〈r0,λ0〉,

and it will be useful in the proofs Chapter 9 because it characterizes the set of achievable value
functions by the set of constraints of (6.8).

Proof of Corollary 8.14. Letλ be a vector such that there exists δ ∈∆ and

λCv = rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a:
Cu∈ch(Cv)

∑
xu

λCuδu|pa(u).

Hence, (λ,δ) is a feasible solution of NLP (6.8). Theorem 6.5 ensures that λ is the vector of
value functions of Pδ. Therefore, λ ∈F (G).

Letλ ∈F (G). Hence, there exists δ ∈∆ such that for any v ∈V and xCv ∈XCv we have:

λCv (xCv) = Eδ
[∑

C∈des(Cv)

rC (XC)|XCv = xCv

]
= rCv (xCv)+Eδ

[∑
C∈des(Cv)

rC (XC)|XCv = xCv

]
= rCv (xCv)+ ∑

u∈V :
Cu∈ch(Cv)

Eδ
[∑

C∈des(Cu)

rC (XC)|XCv = xCv

]
= rCv (xCv)+ ∑

u∈V :
Cu∈ch(Cv)

∑
xu∈Xu

Pδ(Xu = xu |XCv = xCv)Eδ
[∑

C∈des(Cu)

rC (XC)|XCv = xCv , Xu = xu
]

= rCv (xCv)+ ∑
u∈V :

Cu∈ch(Cv)

∑
xu∈Xu

Pδ(Xu = xu |Xpa(u) = xpa(u))Eδ
[∑

C∈des(Cu)

rC (XC)|XCu = xCu

]

where the last equality comes from the fact that
(
Xu ⊥⊥XV \des(u)|Xpa(u)

)
Pδ

and
(
Xdes(Cu)⊥⊥XCv |XCu

)
Pδ

.
Since Pδ

(
Xv |Xpa(v)

) = pv |pa(v) if v ∈ V s and Pδ
(
Xv |Xpa(v)

) = δv |pa(v) if v ∈ V a, we obtain that
(λ,δ) satisfies

λCv = rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a:
Cu∈ch(Cv)

∑
xu

λCuδu|pa(u),

125

Chapter 8. Integer programming on the junction tree polytope

which achieves the proof.

Proof of Theorem 6.5. Let now (λ,δ) be a feasible solution of 6.8. Then δ is a feasible solution
of MEU(G ,ρ). We now prove thatλ corresponds to the vector of value functions of the distribu-
tion Pδ induced by δ, from which we can deduce that Eδ

[∑
v∈V r rv (Xv)

] = ∑
xv0

p(xv0)λC0 (xv0).

We prove by induction that for each vertex C ∈ V , λC (xC) = Eδ
 ∑

C ′∈des(C)

∑
xC ′\C

rC ′(XC ′)|XC = xC

.

Let ÂG be a topological ordering on the RJT G. We denote the set of vertices by V = {C1, . . . ,Cn}
where Ci 4 C j if, and only if, i 6 j . We want to prove the induction hypothesis λCi (xCi) =
Eδ

[∑
C ′∈des(Ci)

∑
xC ′\Ci

rC ′(XC ′)|XCi = xCi

]
for i ∈ {1, . . . ,n}. If i = n, then Cn is a leaf of G, and

des(Cn) = ;. Hence, constraints (6.8b) ensure that λCn (xCn) = rCn (xCn). Now we assume the
induction hypothesis is true until i +1 for 1 < i < n. By definition of a topological ordering if
Ck ∈ des(Ci), then k > i . Constraints (6.8b) ensure that

λCi = rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

∑
xk

fk (xk |xpa(k))λCk (xCk),

where fk (xk |xpa(k)) = δk (xk |xpa(k)) when k ∈ V a and fk (xk |xpa(k)) = pk (xk |xpa(k)) otherwise.

The induction hypothesis ensures that λCk (xCk) = Eδ
 ∑

C ′∈des(Ck)

rC ′(xC ′)|XCk = xCk

 for all k > i .

Therefore, we obtain

λCi (xCi) = rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

∑
xk

fk (xk |xpa(k))Eδ

 ∑
C ′∈des(Ck)

rC ′(XC ′)|XCk = xCk

= rCi (xCi)+ ∑

k>i :
Ck∈ch(Ci)

∑
xk

fk (xk |xpa(k))
∑

xdes(Ck)

Pδ

(
Xdes(Ck) = xdes(Ck)|XCk = xCk

) ∑
C ′∈des(Ck)

rC ′(xC ′).

We compute the conditional probabilities Pδ
(

Xdes(Ck) = xdes(Ck)|XCk = xCk

)
as follows

Pδ

(
Xdes(Ck) = xdes(Ck)|XCk = xCk

)
=
Pδ

(
Xdes(Ck) = xdes(Ck)

)
Pδ

(
XCk = xCk

)
=

∏
j>k:C j∈des(Ck) f j (x j |xpa(j))Pδ

(
XČk

= xČk

)
fk (xk |xpa(k))Pδ

(
XČk

= xČk

)
= ∏

j>k:C j∈des(Ck)
f j (x j |xpa(j))

126

8.5. Integer programming using value functions

Therefore, we have

λCi (xCi) = rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

∑
xk

fk (xk |xpa(k))
∑

xdes(Ck)

∏
j>k:C j∈des(Ck)

f j (x j |xpa(j))
∑

C ′∈des(Ck)

rC ′(xC ′)

= rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

∑
xdes(Ck)\Ci

∏
j>k:C j∈des(Ck)

f j (x j |xpa(j))
∑

C ′∈des(Ck)

rC ′(xC ′)

= rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

∑
xdes(Ck)\Ci

Pδ

(
Xdes(Ck) = xdes(Ck)|XČk

= xČk

) ∑
C ′∈des(Ck)

rC ′(xC ′)

= rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

Eδ

 ∑
C ′∈des(Ck)

rC ′(xC ′)|XČk
= xČk

= rCi (xCi)+ ∑
k>i :

Ck∈ch(Ci)

Eδ

 ∑
C ′∈des(Ck)

rC ′(xC ′)|XCi = xCi

= Eδ
 ∑

C ′∈des(Ci)

rC ′(xC ′)|XCi = xCi

where the fifth equality comes from the fact that Xdes(Ck)⊥⊥XCi |XČk

for any distribution Pδ

factorizing on G . The last equality proves the result for Ci . Consequently, λ is the vector of
value functions of Pδ.

8.5.2 Turning the NLP into an MILP

Like NLP (8.2), NLP (6.8) is hard to solve due to the nonlinear terms λCvδv |pa(v) in the con-
straints. We recall that there always exists at least one optimal strategy which is deterministic
(and therefore integral) for MEU(G ,ρ), that is a strategy δ satisfying (6.3). Like the approach in
Section 8.1, we can therefore add integrality constraints (6.3) to (6.8). Then we replace the term
λCv (xCv)δv |pa(v)(xfa(v)) by a variable αCv (xCv) satisfying

αCv (xCv) =λCv (xCv)δv |pa(v)(xfa(v)), ∀xCv ∈XCv , ∀v ∈V. (8.22)

We assume that we have access to a vector of upper bound bub and a vector of lower bound blb

of λ which do not depend on λ. In Section 8.5.3, we will explain how to compute bub and blb

Now we linearize constraints (8.22) using the following McCormick inequalities

αCv (xCv)6λCv (xCv), ∀xCv ∈XCv ,∀v ∈V

αCv (xCv)>λCv (xCv)−bub
Cv

(xCv)(1−δv |pa(v)(xfa(v))), ∀xCv ∈XCv ,∀v ∈V

αCv (xCv)6 bub
Cv

(xCv)δv |pa(v)(xfa(v)), ∀xCv ∈XCv ,∀v ∈V

αCv (xCv)> blb
Cv

(xCv)δv |pa(v)(xfa(v)), ∀xCv ∈XCv ,∀v ∈V

(8.23)

127

Chapter 8. Integer programming on the junction tree polytope

As explained in Section 8.3, these inequalities are equivalent to the bilinear constraints (8.22).
Hence, the problem we obtain the following MILP

max
λ,δ

∑
xv0∈Xv0

pv0 (xv0)λC0 (xv0)

s.t. λCv (xCv) = rCv (xCv)+ ∑
u∈V s :

Cu∈ch(Cv)

∑
xu

λCu (xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V s :

Cu∈ch(Cv)

∑
xu

αCu (xCu), ∀xCv ∈XCv , ∀v ∈V

(
αCv ,λCv ,δv |pa(v)

)
satisfies (8.23)

(8.24)

The tightness of the linear relaxation of MILP (6.9) depends on the quality of the bounds bub
Cv

(xCv)

and blb
Cv

(xCv).

8.5.3 Algorithm to compute good quality bounds

This section provides a dynamic programming equation to compute the vector of upper bounds
bub and lower bounds bub of λ. Let G = (V ,A) be a gradual RJT on G = (V , A). We denote by LG
be the set of leafs of G, i.e., LG = {C ∈V , ch(C) =;}. We define inductively on v the functions
bub

Cv
,blb

Cv
:XCv →R as follows.

bub
C (xC) = blb

C (xC) = rC (xC), ∀xC ∈XC ,∀C ∈ LG
bub

Cv
(xCv) = rCv (xCv)+ ∑

u∈V s :
Cu∈ch(Cv)

∑
xu

bub
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a :

Cu∈ch(Cv)

max
xu∈Xu

bub
Cu

(xCu), ∀xCv ∈XCv ,∀v ∈V

blb
Cv

(xCv) = rCv (xCv)+ ∑
u∈V s :

Cu∈ch(Cv)

∑
xu

blb
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a : Cu∈ch(Cv)

min
xu∈Xu

blb
Cu

(xCu), ∀xCv ∈XCv ,∀v ∈V

Proposition 8.15. Ifλ belongs to F (G), then blb6λ6 bub.

Thanks to Theorem 6.5 for any feasible solution (λ,δ) of MILP (8.24), λ belongs to Fd(G) ⊆
F (G). Hence, we can incorporate these bounds in MILP (8.24).

Proof of Proposition 8.15. We prove the result by induction. We use the notation of the proof
of Theorem 6.5. If i = n, then bub

Cn
(xCn) = bub

Cn
(xCn) = rCn (xCn) = λCn (xCn) and the result is true.

We assume that for k > i , blb
Ck

(xCk)6 λCk (xCk)6 bub
Ck

(xCk) for all xCk in XCk . Since λ ∈R(G), we

128

8.5. Integer programming using value functions

have the following recursion equation

λCv (xCv) = rCv (xCv)+ ∑
u∈V s:

Cu∈ch(Cv)

∑
xu

λCu (xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a:

Cu∈ch(Cv)

∑
xu

λCu (xCu)δu|pa(u)(xu |xpa(u))

6 rCv (xCv)+ ∑
u∈V s :

Cu∈ch(Cv)

∑
xu

bub
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a:

Cu∈ch(Cv)

∑
xu

bub
Cu

(xCu)δu|pa(u)(xu |xpa(u))

6 max
δu∈∆u :u∈V a

Cu∈ch(Cv)

rCv (xCv)+ ∑
u∈V s:

Cu∈ch(Cv)

∑
xu

bub
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a:

Cu∈ch(Cv)

max
δu|pa(u)∈∆u

∑
xu

bub
Cu

(xCu)δu|pa(u)(xu |xpa(u))

= rCv (xCv)+ ∑
u∈V s:

Cu∈ch(Cv)

∑
xu

bub
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a:

Cu∈ch(Cv)

max
xu

∑
xu

bub
Cu

(xu , xČu
)

By replacing the max operator with min operator and by reversing the inequalities, we obtain
thatλ> blb.

8.5.4 Strengthening the linear relaxation

The aim of this section is to introduce an MILP, which is similar to MILP (6.9), that uses the set
C⊥⊥ defined in Section 8.2 and gives tighter linear relaxation in practice.

In this section, we introduce an MILP that uses the conditional probabilities P(XC⊥⊥
v
|XC 6⊥⊥

v
),

which appear in the valid inequalities (6.7), and leads to a linear relaxation that is tighter in
practice.

Like for MILP (6.6), sinceδ are continuous variables, the McCormick’s inequalities (8.23) do not
longer ensure that the nonlinear constraints αCv = λCvδv |pa(v) are satisfied. Hence, the vector
λ of a feasible solution (λ,δ) of the linear relaxation of MILP (6.9) is not necessary the vector
of value function induced by Pδ. Actually, like for MILP (6.6) we wish to reduce the feasible
set of the linear relaxation of MILP (6.9). However, unlike MILP (6.6) we are not able to derive
valid inequalities for the variables of MILP (6.9). Instead of introducing valid inequalities for
MILP (6.9), we introduce a formulation that uses the conditional independences of XC⊥⊥ from
θV a given XC 6⊥⊥ , and that gives McCormick’s bound on the variablesλ that are tighter.

We introduce this formulation in three steps to obtain another formulation that uses these in-
dependences. First, we introduce another NLP that gives an optimal strategy of MEU(G ,ρ).
Second, we turn this NLP into an MILP using the McCormick’s inequalities. Third, we compute
a vector of lower bounds blb,c and upper bounds bub,c of any feasible solution and we prove that

129

Chapter 8. Integer programming on the junction tree polytope

these bounds are respectively greater than blb and smaller than bub. This approach generalizes
the one we use for the POMDP with memoryless policies in Section 4.4.4.

A nonlinear formulation. We introduce the following NLP:

max
λ,δ

∑
xv0∈Xv0

pv0 (xv0)λC0 (xv0)

s.t. λCv = rCv +
∑

u∈V s :
Cu∈ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈ch(Cv)

∑
xC⊥⊥u

,xu

λCu pC⊥⊥
u |C 6⊥⊥

u
δu|pa(u),

∀xCv ∈XCv , ∀v ∈V

δ ∈∆

(8.25a)

(8.25b)

(8.25c)

The constraints of NLP (8.25) are similar to the ones of NLP (6.8) except that Constraints (8.25b)
differ from Constraints (6.8b). Indeed, we replacedλCv (xCv) by the expected value

∑
xC⊥⊥v

Pδ(XC⊥⊥
v
=

x ′
C⊥⊥

v
|XC 6⊥⊥

v
= xC 6⊥⊥

v
)λCv (xC 6⊥⊥

v
, x ′

C⊥⊥
v

). It turns out a feasible solution of NLP (8.25) is not necessary
a vector of value functions. Fortunately, Proposition 8.16 below ensures that despite the loss
of the value function property of Theorem 6.5, any feasible strategy δ gives the same objective
value for MEU(G ,ρ) and NLP (8.25).

Proposition 8.16. Let (λ,δ) be a feasible solution of NLP (8.25). Then, (λ,δ) satisfies

Eδ
[∑

C ′∈des(C)

rC ′(XC ′)
]=∑

xC

Pδ(XC = xC)λC (xC), (8.26)

for any C in V . In particular,
∑

x0∈Xv0
p(x0)λv0 (x0) = Eδ

[∑
v∈V r rv (Xv)

]
.

Proof. Let (λ,δ) be a feasible solution of NLP (8.25). Using the notation of the proof of The-
orem 6.5, we prove that (8.26) holds by induction from i = n to i = 1. For i = n, we have
λCn (xCn) = rCn (xCn). Therefore, we obtain∑

xCn

Pδ(XCn = xCn)λCn (xCn) = ∑
xCn

Pδ(XCn = xCn)rCn (xCn) = Eδ
[
rCn (XCn)

]
,

which proves the case i = n. Now we assume that the induction hypothesis is true until i +1 for
1 < i < n. By definition of a topological ordering if Ck ∈ des(Ci), then k > i . We compute the

130

8.5. Integer programming using value functions

right-hand side of Equation (8.26) using constraints (8.25b)∑
xCv

Pδ(XCv = xCv)λCv (xCv) = ∑
xCv

Pδ(XCv = xCv)rCv (xCv)+ ∑
u∈V s :

Cu∈ch(Cv)

∑
xu ,xCv

Pδ(XCv = xCv)λCu pu|pa(u)

+ ∑
u∈V a :

Cu∈ch(Cv)

∑
xCv

Pδ(XCv = xCv)
∑

xC⊥⊥u
,xu

λCu pC⊥⊥
u |C 6⊥⊥

u
δu|pa(u)

= ∑
xCv

Pδ(XCv = xCv)rCv (xCv)+ ∑
u∈V s :

Cu∈ch(Cv)

∑
xCu

Pδ(XČu
= xČu

)pu|pa(u)λCu

+ ∑
u∈V a :

Cu∈ch(Cv)

∑
xCu

Pδ(XČu
= xČu

)
∑

xC⊥⊥u
,xu

λCu pC⊥⊥
u |C 6⊥⊥

u
δu|pa(u)

= ∑
xCv

Pδ(XCv = xCv)rCv (xCv)+ ∑
u∈V s :

Cu∈ch(Cv)

Eδ
[∑

C ′∈des(Cu)

rC ′(XC ′)
]

+ ∑
u∈V a :

Cu∈ch(Cv)

∑
x ′

Ču
,xC⊥⊥u

,xu

Pδ(XČu
= xČu

)pC⊥⊥
u |C 6⊥⊥

u
δu|pa(u)λCu

Now we compute separately the last term above∑
u∈V a :

Cu∈ch(Cv)

∑
x ′

Ču
,xC⊥⊥u

,
xu

Pδ(XČu
= xČu

)pC⊥⊥
u |C 6⊥⊥

u
δu|pa(u)λCu

= ∑
u∈V a :

Cu∈ch(Cv)

∑
x ′

Ču
,xC⊥⊥u
xu

Pδ(XČu
= x ′

Ču
)
Pδ(XC⊥⊥

u
= xC⊥⊥

u
, XČ 6⊥⊥

u
= x ′

Č 6⊥⊥
u

)

Pδ(XČ 6⊥⊥
u
= x ′

Č 6⊥⊥
u

)
δu|pa(u)λCu

= ∑
u∈V a :

Cu∈ch(Cv)

∑
x ′

Ču
,xC⊥⊥u
xu

Pδ(XC⊥⊥
u
= x ′

C⊥⊥
u

, XČ 6⊥⊥
u
= x ′

Č 6⊥⊥
u

)

Pδ(XČ 6⊥⊥
u
= x ′

Č 6⊥⊥
u

)
Pδ(XC⊥⊥

u
= xC⊥⊥

u
, XČ 6⊥⊥

u
= x ′

Č 6⊥⊥
u

)δu|pa(u)λCu

= ∑
u∈V a :

Cu∈ch(Cv)

∑
x ′

Č 6⊥⊥
u

,xC⊥⊥u
xu

∑
x ′

C⊥⊥u

Pδ(XC⊥⊥
u
= x ′

C⊥⊥
u
|XČ 6⊥⊥

u
= x ′

Č 6⊥⊥
u

)

︸ ︷︷ ︸
=1

Pδ(XC⊥⊥
u
= xC⊥⊥

u
, XČ 6⊥⊥

u
= x ′

Č 6⊥⊥
u

)δu|pa(u)λCu

= ∑
u∈V a :

Cu∈ch(Cv)

∑
xCu

Pδ(XČu
= xČu

)δu|pa(u)λCu

= ∑
u∈V a :

Cu∈ch(Cv)

∑
xCu

Pδ(XCu = xCu)λCu =
∑

u∈V a :
Cu∈ch(Cv)

Eδ
[∑

C∈des(Cu)

rC (XC)
]

The last equality comes from the induction hypothesis. Therefore, we deduce that∑
xCv

Pδ(XCv = xCv)λCv (xCv) = Eδ
[∑

C∈des(Cv)

rC (XC)
]

It follows that given a strategy δ, for C = C0, the equality (8.26) says that the objective values
of MEU(G ,ρ) and NLP (8.25) are equal.

Now, we are able to write a theorem for NLP (8.25) that is similar to Theorem 6.5. We denote by

131

Chapter 8. Integer programming on the junction tree polytope

z∗
vfc the optimal value of NLP (4.24).

Theorem 8.17. Let (λ,δ) be a feasible solution of NLP (8.25). Then, (λ,δ) is an optimal solution
of NLP (8.25) if and only if δ is an optimal strategy of MEU(G ,ρ). In particular, the optimal
values of MEU(G ,ρ) and NLP (8.25) are equal.

Proof. The proof is immediate from Proposition 8.16.

Turning NLP (8.25) into an MILP. Again, we can linearize the constraints (8.25b) by intro-
ducing the variablesα and the McCormick’s inequalities (8.23). We obtain the following MILP:

max
λ,α,δ

∑
xv0∈Xv0

pv0 (xv0)λC0 (xv0)

s.t. λCv = rCv +
∑

u∈V s :
Cu∈ch(Cv)

∑
xu

λCu pu|pa(u) +
∑

u∈V a :
Cu∈ch(Cv)

∑
xC⊥⊥u

,xu

pC⊥⊥
u |C 6⊥⊥

u
αCu ,

∀xCv ∈XCv , ∀v ∈V

McCormick(α,λ,δ)

δ ∈∆d

(8.27a)

(8.27b)

(8.27c)

(8.27d)

Computing the bounds Using the McCormick’s inequalities requires to compute a vector
of lower bound blb,c and upper bound bub,c of the feasible vectors λ of NLP (8.25). Let G =
(V ,A) be a gradual RJT on G = (V , A). We denote by LG be the set of leafs of G, i.e., LG =
{C ∈V , ch(C) =;}. We define inductively on v the functions blb,c

Cv
,bub,c

Cv
:XCv →R as follows.

blb,c
C (xC) = blb

C (xC) = rC (xC), ∀xC ∈XC ,∀C ∈ LG
blb,c

Cv
(xCv) = rCv (xCv)+ ∑

u:Cu∈ch(Cv)
u∈V s

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u:Cu∈ch(Cv)

u∈V a

min
xu∈Xu

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu), ∀xCv ∈XCv ,∀v ∈V

bub,c
Cv

(xCv) = rCv (xCv)+ ∑
u:Cu∈ch(Cv)

u∈V s

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u:Cu∈ch(Cv)

u∈V a

max
xu∈Xu

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu), ∀xCv ∈XCv ,∀v ∈V

Proposition 8.18. Let (λ,δ) be a feasible solution of NLP (8.25). Then, λ satisfies blb,c 6 λ 6
bub,c. In addition, the bounds obtained are tighter than blb and bub, i.e., blb 6 blb,c and bub >
bub,c.

As we showed in the numerical experiments in Section 4.5 for the POMDP example, the optimal
value of the linear relaxation of MILP (8.27) is not greater than the optimal value of the linear
relaxation of MILP (6.9).

Proof of Proposition 8.18. Let (λ,δ) be a feasible solution of NLP (8.25). We prove the result

132

8.5. Integer programming using value functions

by induction. We use the notation of the proof of Theorem 6.5. If i = n, then blb,c
Cn

(xCn) =
bub,c

Cn
(xCn) = rCn (xCn) = λCn (xCn) and the result is true. We assume that for k > i , blb,c

Ck
(xCk) 6

λCk (xCk)6 bub,c
Ck

(xCk) for all xCk in XCk . Since λ satisfies constraints (8.27b), we have the fol-
lowing recursion equation

λCi (xCi) = rCi (xCi)+ ∑
u∈V s:

Cu∈ch(Ci)

∑
xu

λCu (xCu)pu|pa(u)(xfa(u))

+ ∑
u∈V a:

Cu∈ch(Ci)

∑
xu ,xC⊥⊥u

λCu (xCu)δu|pa(u)(xfa(u))pC⊥⊥
u |C 6⊥⊥

u
(xČu

)

6 max
δu : u∈V a

Cu∈ch(Ci)

rCi (xCi)+ ∑
u∈V s :

Cu∈ch(Ci)

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xfa(u))

+ ∑
u∈V a:

Cu∈ch(Ci)

∑
xu ,xC⊥⊥u

δu|pa(u)(xfa(u))pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu)

6 rCi (xCi)+ ∑
u∈V s:

Cu∈ch(Ci)

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xu |xpa(u))

+ ∑
u∈V a:

Cu∈ch(Ci)

max
xu

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu)

The first inequality comes by using the induction hypothesis and the last inequality comes from
the fact that

max
δu

∑
xu

δu|pa(u)(xfa(u))
∑

xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu) = max
xu

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu),

because an optimum is reached on a vertex of the simplex ∆u . By replacing the max operator
with min operator and by reversing the inequalities, we obtain thatλ> blb,c.

Now we prove that bub,c> bub. We prove the result by induction. It holds for i = n. We assume
that the induction hypothesis holds for every k > i . By definition of blb,c, we have:

bub,c
Ci

(xCi)

= rCi (xCi)+ ∑
u∈V s :

Cu∈ch(Ci)

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xu |xpa(u))+
∑

u∈V a :
Cu∈ch(Ci)

max
xu∈Xu

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)bub,c
Cu

(xCu)

6 rCi (xCi)+ ∑
u∈V s :

Cu∈ch(Ci)

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xu |xpa(u))+
∑

u∈V a :
Cu∈ch(Ci)

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
(xČu

)

︸ ︷︷ ︸
=1

max
xu∈Xu

bub,c
Cu

(xCu)

6 rCi (xCi)+ ∑
u∈V s :

Cu∈ch(Ci)

∑
xu

bub,c
Cu

(xCu)pu|pa(u)(xu |xpa(u))+
∑

u∈V a :
Cu∈ch(Ci)

max
xu∈Xu

bub
Cu

(xCu) = bub
Ci

(xCi)

Again, by replacing the max operator with min operator and by reversing the inequalities, we
obtain that blb,c> blb.

133

Chapter 8. Integer programming on the junction tree polytope

8.6 Numerical Experiments

In this thesis, we have introduced the MILP formulation (8.6) for MEU(G ,ρ), and shown with
Corollary 9.9 that, when strengthened with valid inequalities and well-chosen bounds in the
McCormick constraints, the bounds provided by the linear relaxation of our formulations are
better than the ones obtained by the soluble relaxations used in the literature. In this section,
we study how these formulations with moment variables and value function variables behave
numerically on instances of Examples 4 and 6.

Our formulations should not be seen as an alternative to SPU (introduced p. 140) since they
have different objectives. SPU is a heuristic that enables to find quickly a good solution, which
is generally a local optimum on our instances because these are not soluble influence diagrams.
Our exact approaches are order of magnitude slower than SPU but find better solutions than
SPU and prove small optimality gaps. It is therefore natural to use the two approaches sequen-
tially and warm start the MILP solver with the solution returned by SPU, which we do in all our
numerical experiments.

Given their importance to reduce the optimality gaps, we study carefully the impact of our valid
inequalities on the linear relaxation bound. For notational simplicity, and since it is unambigu-
ous, in the rest of this section, we use the same notation to refer to a given vertex of the graph
and to refer to the random variable associated with this vertex.

8.6.1 Experimental settings

Experiments performed on each instance. We have introduced two elements to strengthen
the linear relaxation of our MILP formulation. We remind the reader that we introduced in
Equation (8.5) on page 112 the polytope Qb obtained using the vector of bounds b in Mc-
Cormick constraints. Also, recall from Remark 11 that, in the special case of the polytope Q1

obtained with b = 1, McCormick constraints are loose. To study the impact of McCormick con-
straints and valid inequalities, we solve the problems max

{ ∑
v∈V r〈rv ,µv 〉 | (µ,δ) ∈Q,δ ∈∆d

}
with four different sets Q: Q1 =

(
P ×∆d

)
∩Q1 (no cuts), Qb =

(
P ×∆d

)
∩Qb (McCormick only),

Q⊥⊥,1 = (
P⊥⊥×∆d

)∩Q1 (independence cuts only), and Q⊥⊥,b = (
P⊥⊥×∆d

)∩Qb (McCormick and
independence cuts). Also, we denote respectively by Qvf and Qvf,⊥⊥ the feasible set of MILP (6.9)
and (8.27), where vf means “value functions.”

Instances considered. Examples 4 and 6 are multistage models. Let T denote the number of
time steps of an instance. Once T has been chosen, the influence diagram G is known, and
all that is left to do is to choose a parametrization ρ. We consider instances such that, for all
v ∈ fa(V a), Xv has ka elements, and, for all v ∈ V \fa(V a), Xs has ks elements. As we explain in
the next paragraph, ks ,ka and T control how hard the problem is. To generate a PID instance,
we start by choosing (ks ,ka ,T), which also sets the influence diagram, and then we draw uni-
formly on [0,1] the conditional probabilities pv |pa(v) for all v ∈ V \V a and xfa(v) ∈Xfa(v) and we
normalize, and we draw uniformly on [0,10] the rewards rv (xv) for all v ∈ V r and all xv ∈ Xv .
For our results to be representative of any instance with parameters (ks ,ka ,T), we generate 50
instances for each triplet, and report averaged results over these 50 instances.

134

8.6. Numerical Experiments

Intrinsic difficulty of the instances considered. Solving an influence diagram requires to
find an optimal strategy, which is difficult because evaluating a given strategy is already dif-
ficult in the first place, and because optimizing on the set of strategies is then also difficult. The
difficulty of evaluating a strategy is the difficulty of solving an inference problem on the under-
lying graph. A good indicator of this difficulty is therefore the treewidth of the graph. There
is no measure that characterizes the intrinsic complexity of the problem of finding an optimal
strategy, but the cost of the naive approach is the number of feasible deterministic strategies
[98], i.e.,

∣∣∆d
∣∣. Our instances have a moderate treewidth, 2 for Example 4 and 3 for Example 6,

and are therefore not difficult from an inference point of view. But they could be a priori diffi-

cult from an optimization point of view, because
∣∣∆d

∣∣=∏
v∈V a

∣∣Xv
∣∣∏u∈pa(v)

∣∣Xu

∣∣ = kT ks
a is large.

Size of our MILP formulations on the instances considered. The number of constraints and
variables in our MILP4 is in O(|V |κωr+1), where ωr is the rooted treewidth of the influence dia-
gram, and κ = maxv∈V |Xv |.. Our MILP formulations can therefore only deal with instances of
moderate rooted treewidth, which can be arbitrarily larger than the treewidth. In our examples,
the rooted treewidth is equal to the treewidth and no greater than 3, while κ= max(ks ,ka), and
so the size of the MILPs remains tractable for instances with large |∆d|.

Experimental settings. All MILPs have been written in Julia [18] with the JuMP [41] interface
and solved using Gurobi 9.0[52] with the default settings. Experiments have been run on a
server with 192Gb of RAM and 32 cores at 3.30GHz.

Reported results. The numerical results obtained on Examples 4 and 6 are reported in Ta-
ble 8.1. We denote by z, zLR, and zB the value of the best integer solution found, the optimal
value of the linear relaxation, and the best upper bound found, respectively. We define the inte-
grality gap gi as zLR−z

zLR , and the final gap gf as zB−z
zB . Let zSPU be the value obtained using SPU. We

define the improvement with respect to SPU iSPU as iSPU = z−zSPU

zSPU . Each line in Table 8.1 pro-
vides average values of different quantities on 20 instances with identical parameter (ks ,ka ,T).
The first column specifies the value of (ks ,ka ,T) for the instances considered, the second the
approximate number of admissible strategies. The third column indicates the cuts used. In the
next three columns, we report the average value of gi, gf, iSPU on the 20 instances considered.
Column “Opt” provides the percentage of instances solved to optimality, and column “Time”
the average computing time. All gaps are given in percent, and computing times are given in
seconds. Sometimes, the time limit is reached only for some of the 20 instances, and we end
up with a non-zero average final gap together with an average computing time that is smaller
than the time limit.

4 The number of constraints defining polytopesQ1
andQb

is
∑

v∈V s |XCv |+3
∑

v∈V a |XCv |+
∑

(Cu ,Cv)∈A |XCu∩Cv |,
where |XCv | =

∏
u∈Cv |Xu | for all v in V . If we use valid cuts, then the number of constraints of polytopes Q⊥⊥,1 and

Q⊥⊥,b is 2
∑

v∈V s |XCv |+4
∑

v∈V a |XCv |+
∑

(Cu ,Cv)∈A |XCu∩Cv |.

135

Chapter 8. Integer programming on the junction tree polytope

—s1 s1—o1 s1o1—u1 s1o1u1—a1 s1o1a1—v1

v1—r1

s1v1—s2

Figure 8.5 – RJT for the chess game. The element to the right of — is the offspring.

8.6.2 Bob and Alice daily chess game

We consider the chess game example represented in Figure 6.2b. The beginning of the RJT built
by Algorithm 4 for this example is represented in Figure 8.5. The rooted treewidth of this prob-
lem is 3. Table 8.1 reports results on the generated instances. We can tackle large instances
of this problem: We can reach optimality in less than one hour for a strategy set of size 10171,
and find a small provable gap on even bigger instances. Moreover, we see that the indepen-
dence cuts enables to strongly reduce the gaps and the computing time, while the improved
McCormick bounds yield more minor improvements. However, on this problem, our MILP
formulation only marginally improves the results returned by SPU, and its main value is the
bound obtained. One can observe that the results obtained using the value function formu-
lations produce in general poorer results. In particular, the solver does not improve the best
bound computed during the resolution, which is outlined by the small difference between the
integrality gap and the final gap values.

8.6.3 Partially Observable Markov Decision Process with limited memory

We now consider our POMDP instances. Figure 6.1b provides the graph representation of the
POMDP with limited information. The rooted treewidth of this problem is 2. This influence
diagram is not soluble5. Figure 8.6 represents the RJT built by Algorithm 4. On this RJT, G⊥⊥=G ,
and thus P⊥⊥ = P , which is also the constraint set of the classical MDP relaxation of a POMDP,
in which the decision maker knows the state st when he makes the decision at . This MDP re-
laxation leads to poor lower bounds. We therefore use instead the larger RJT represented in
Figure 8.7. In that RJT, C⊥⊥

at
= {

st
}
, so that G⊥⊥ is not anymore equal to G and the valid cuts en-

able to enforce the independence of st and at given (st−1, at−1,ot) for t > 1. Table 8.1 provides
the numerical results on our instances. This example is harder to solve to optimality. SPU has
worse performance as well on this example, and our formulations manage to improve the so-
lution found by SPU. Once again the valid cuts significantly reduce the linear relaxation gap
and the solving time, even on large instances. Again, one can observe that the value function
formulations give poorer results in general. For large instances, we encourage to use the for-
mulations with moment variables rather than the value function formulations.

5This follows from the characterization of soluble influence diagrams in Section 9.1 and the fact that
ϑat−1 6⊥G† des(at)|pa(at) for all t ∈ [T]

136

8.6. Numerical Experiments

(ks ,ka ,T) |∆d| Polytope
Example 6: Chess game Example 4: POMDP

gi gf iSPU Opt Time gi gf iSPU Opt Time
(%) (%) (%) (%) (s) (%) (%) (%) (%) (s)

(3,5,20) 1069 Qvf 4.81 4.80 0.07 5 3421 9.25 8.61 0.66 15 3061
Qvf,⊥⊥ 1.00 0.91 0.07 20 2895 1.88 1.77 0.56 30 2558

Q1
5.02 0.40 0.07 65 1353 8.33 4.31 0.69 25 2852

Qb
4.60 0.42 0.07 65 1415 7.82 4.03 0.64 25 2788

Q⊥⊥,1 1.05 0.21 0.07 70 1109 2.02 1.08 0.67 60 1679
Q⊥⊥,b 0.97 0.19 0.07 70 1110 1.68 1.09 0.67 60 1568

(3,6,20) 1093 Qvf 4.36 4.32 0.04 0 >3600 10.64 10.06 2.22 5 3420
Qvf,⊥⊥ 0.72 0.65 0.04 15 3094 2.21 2.15 2.11 5 3422

Q1
4.55 0.42 0.04 25 2731 9.68 6.13 2.30 5 3420

Qb
4.21 0.38 0.02 35 2508 9.13 5.80 2.32 5 3420

Q⊥⊥,1 0.75 0.22 0.04 50 1886 2.35 1.48 2.32 20 3005
Q⊥⊥,b 0.70 0.22 0.02 50 2122 1.93 1.45 2.32 25 2792

(3,9,20) 10171 Qvf 7.20 7.20 0.11 0 >3600 8.85 8.36 1.96 0 >3600
Qvf,⊥⊥ 1.92 1.92 0.12 10 3249 3.55 3.52 1.96 5 3426

Q1
7.52 2.29 0.12 5 3441 8.26 6.19 2.00 0 >3600

Qb
6.91 2.41 0.11 5 3470 7.80 5.87 2.03 0 >3600

Q⊥⊥,1 1.99 1.13 0.12 15 3061 2.28 1.75 1.96 10 3258
Q⊥⊥,b 1.89 1.13 0.11 15 3061 1.93 1.64 1.95 15 3161

(3,10,20) 10200 Qvf 5.93 5.93 0.02 0 >3600 12.75 12.20 1.89 0 >3600
Qvf,⊥⊥ 1.23 1.21 0.02 10 3276 4.56 4.55 1.89 5 3440

Q1
6.21 1.83 0.02 5 3449 11.56 9.26 1.71 0 >3600

Qb
5.78 1.73 0.02 15 3151 19.95 9.14 1.72 0 >3600

Q⊥⊥,1 1.27 0.79 0.02 15 2882 3.48 2.91 1.64 10 3243
Q⊥⊥,b 1.21 0.78 0.02 20 2882 2.97 2.88 1.68 10 3243

(4,9,20) 10171 Qvf 7.12 7.12 0.04 0 >3600 11.18 10.72 0.81 0 >3600
Qvf,⊥⊥ 1.67 1.66 0.04 10 3289 3.31 3.31 0.81 0 >3600

Q1
7.44 4.04 0.04 0 >3600 10.27 7.95 0.98 0 >3600

Qb
6.99 4.15 0.04 0 >3600 9.57 7.78 1.04 0 >3600

Q⊥⊥,1 1.74 1.15 0.04 10 3240 2.85 2.18 0.94 10 3274
Q⊥⊥,b 1.64 1.15 0.04 10 3240 2.27 2.14 0.97 10 3263

(4,10,20) 10200 Qvf 7.50 7.50 0.08 0 >3600 14.78 14.33 0.55 0 >3600
Qvf,⊥⊥ 1.76 1.76 0.08 0 >3600 4.16 4.16 0.55 0 >3600

Q1
8.07 4.20 0.08 0 >3600 12.80 10.52 0.81 0 >3600

Qb
7.62 4.65 0.04 0 >3600 12.05 10.41 0.86 0 >3600

Q⊥⊥,1 1.88 1.31 0.07 5 3411 4.07 3.51 0.41 0 >3600
Q⊥⊥,b 1.76 1.29 0.08 5 3410 3.44 3.38 0.51 0 >3600

Table 8.1 – Mean results on 20 randomly generated instances with a time limit of 3600s.

—s1 s1—o1 s1o1—a1

s1a1—s2

s1a1s2—r1

s2—o2 s2o2—a2

Figure 8.6 – Rooted Junction Tree built by Algo-
rithm (4) for a POMDP with limited memory.

—s1 s1—o1 s1o1—a1

s1a1—s2

s1a1s2—r1

s1a1s2—o2 s1a1s2o2—a2

Figure 8.7 – A bigger Rooted Junction Tree for a
POMDP with limited memory.

137

9 Polynomial cases of influence dia-
grams

This chapter is devoted to prove Theorems 6.7, 6.8 and 6.9. We recall the definition of a soluble
influence diagram introduced in Section 6.3.

Definition 9.1. An influence diagram G is soluble if for any parametrization ρ of G, any local
optimum is a global optimum.

Roughly speaking, a soluble influence diagram is an influence diagram that is “easy” to solve,
where “easy” means that “if the inference problem is tractable, then solving the maximum ex-
pected utility problem is tractable”. In the literature on influence diagrams, the soluble influ-
ence diagrams have received several characterizations. One of them is based on the notion of d-
separation in directed graphical model introduced in Section 8.2.2, which enables to decide in
polynomial time whether an influence diagram is soluble or not. Another characterization says
that the standard SPU algorithm of Lauritzen and Nilsson [81] converges to a global optimum
in a finite and polynomial number of time steps, ensuring that given an oracle solving the infer-
ence problem in polynomial time, the SPU algorithm returns an optimal solution of MEU(G ,ρ)
in polynomial time. In this chapter, we provide a new characterization of soluble influence di-
agrams in terms of moments. The main result consists in saying that the convexity of the set
of achievable moments is a necessary and sufficient condition of being soluble. Furthermore,
we show that, for soluble influence diagrams, the linear relaxation of MILP (8.9), which is the
linear relaxation of MILP (6.6) with valid cuts (6.7), gives an optimal solution of MEU(G ,ρ). We
have even more: there are IDs which are not soluble that can be solved using the linear relax-
ation of MILP (8.9). In addition, we propose a linear program formulated using value functions
that gives an optimal solution of MEU(G ,ρ) for any soluble influence diagrams G . Such a linear
program turns out to be the dual of the linear relaxation of MILP (8.9).

Chapter 9 is organized as follows:

• Section 9.1 introduces several notions that are required to give the characterizations of
the soluble IDs in the literature.

• Section 9.2 is devoted to prove Theorem 6.7. First, it recalls the characterizations of the
soluble influence diagrams. In particular, it describes how we use the relevance graph,
which is a notion of Koller and Friedman [75, Definition 23.9], to model the strategic
dependences between the decision variables. Second, leveraging this notion, we prove
Theorems 6.7 and 6.8.

139

Chapter 9. Polynomial cases of influence diagrams

• Section 9.3 gives an example showing that there are influence diagrams that are not sol-
ubles and such that the linear relaxation of MILP (8.9) gives an optimal strategy for MEU(G ,ρ).

• Section 9.4 introduces the linear formulations (6.10), (6.11) based on the value functions
variables and it proves Theorem 6.9.

• Section 9.5 presents some numerical experiments on an example of non-soluble influ-
ence diagrams that can be solved by the linear relaxation of MILP (8.9). In particular,
the value obtained by running the SPU algorithm is significantly lower than the optimal
value.

In this chapter, we make the assumption that influence diagrams are such that any vertex v ∈V
has a descendant in the set of utility vertices V r, i.e., V s ∪V a = anc(V r). The following remark
explains why we can make this assumption without loss of generality.

Remark 13. Consider a PID (G ,ρ) where G = (V , A) and V s is the union of chance vertices V c

and utility vertices V r. Let (G ′,ρ′) be the influence diagram obtained by removing any vertex
that is not in V r and has no descendant in V r and restrict ρ accordingly. If a random vector
XV factorizes as a directed graphical model on (V , A) and V ′ ⊆ V is such that anc(V ′) = V ′,
then XV ′ factorizes as a directed graphical model on the subgraph induced by V ′ with the same
conditional probabilities pv |pa(v). Hence, given a strategy δ on (G ,ρ) and its restriction δ′ to
(G ′,ρ′), we have Eδ

[∑
v∈V r rv (Xv)

] = Eδ′
[∑

v∈V r rv (Xv)
]

where the first expectation is taken in
(G ,ρ) and the second in (G ′,ρ′), and the two influence diagrams model the same MEU(G ,ρ).

4

9.1 Soluble Influence Diagrams

The aim of this section is to introduce some notions and results, whose proofs can be found in
the book of Koller and Friedman [75, Chapter 23.5], and that are key in proving Theorems 6.7
and 6.8.

Consider an influence diagram G = (V , A) with V =V s∪V a. Three notions, strategic relevance, s-
reachability and relevance graph, have been introduced in the literature to characterize when
a local minimum is also global; see, e.g. [75, Chapter 23.5]. A decision vertex v strategically
relies on u if the choice of a locally optimal policy δv given (δw)w 6=v depends on δu for some
parametrization ρ. A decision vertex u is s-reachable from a decision vertex v if ϑu is not d-
separated from des(v) given fa(v):

ϑu 6⊥G† des(v) | fa(v), (9.1)

where G† is the augmented graph defined in Section 8.2.2 and d-separation is defined in the
same section. The usual definition is ϑu 6⊥G† des(v)∩V r | fa(v), but these definitions coincide
in our setting, since we have assumed that des(v)∩V r 6= ; for any v ∈V a. The relevance graph
of G is the digraph H with vertex set V a, and whose arcs are the pairs (v,u) of decision vertices
such that u is s-reachable from v . Finally, the single policy update algorithm (SPU) [81] is the
standard coordinate ascent heuristic for influence diagrams. It iteratively improves a strategy

argmaxδ′v∈∆v
Eδ′v ,δ−v

[∑
u∈V r ru(Xu)

]
. Koller and Friedman [75, Proposition 23.3] ensure that this

local optimum can be directly derived after performing inference on the influence diagram. In
particular, given an oracle solving the inference problem in polynomial time, an iteration of the

140

9.1. Soluble Influence Diagrams

SPU algorithm runs in polynomial time.

The following proposition states that the notions of strategy relevance and s-reachability coin-
cide in a certain sense.

Proposition 9.1. [75, Theorems 23.2 and 23.3] Let G = (V , A) be an influence diagram with V =
V s ∪V a, and u and v be two decision vertices in V a. If u is not s-reachable from v, then v does
not strategically rely on u, while if u is s-reachable from v, there exists a parametrization ρ such
that v strategically relies on u.

Proposition 9.1 ensures that the relevance graph fully represents the strategic dependencies
between local policies on each decision vertex. This result is key in understanding the theorem
that characterizes the soluble influence diagrams, which are easily solved, and provides several
equivalent criteria to identify them.

Theorem 9.2. [75, Theorem 23.5] Given an influence diagram G, the following statements char-
acterize a soluble influence diagram.

1. For any parametrization ρ of G, any local optimum is a global optimum.
2. For any parametrization ρ of G, SPU converges to a global optimum in a finite and poly-

nomial number of steps.1

3. The relevance graph of G is acyclic.

In the literature, the soluble influence diagrams are defined using the third characterization[81].
Since at each iteration of SPU algorithm, the complexity of local maximization operation only
depends on the complexity of solving the inference problem, Theorem 9.2 ensures that the
difficulty of solving soluble influence diagrams reduces to the difficulty of solving the infer-
ence problem on the underlying directed graphical model. In addition, the characterizations
in Theorem 9.2 are key in determining if an influence diagram is soluble. In particular, it gives
the following proof of Proposition 6.6.

Proof of Proposition 6.6. Thanks to Theorem 9.2, determining if an influence diagram is soluble
is equivalent to determine if the relevance graph is acyclic. Building the relevance graph con-
sists in determining for each decision vertex u, the set {v ∈ V a : ϑv 6⊥des(u)|fa(u)}. The Bayes-
Ball algorithm determines such a set in polynomial time O(|V |+ |A|) [138, Theorem 4]. Hence,
we can build the relevance graph in O

(|V a|(|V |+ |A|)). Checking if a directed graph is acyclic
can be done in polynomial time using Kahn’s algorithm [65]. Therefore, the time complexity is
polynomial, which achieves the proof.

Note that Proposition 6.6 is never mentioned or proved in the literature. However, it is common
knowledge that the d-separation can be checked in polynomial time, an thus deciding if a graph
is soluble can be done in polynomial time.

1In fact, if the graph is soluble, and if the decision vertices are ordered in reverse topological order for the rele-
vance graph, then SPU converges after exactly one pass over the vertices.

141

Chapter 9. Polynomial cases of influence diagrams

9.2 Linear program for soluble influence diagrams

The aim of this section is to prove Theorem 6.7 (Section 9.2.1) and Theorem 6.8 (Section 9.2.2).
In addition, we show that the linear relaxation of MILP (8.9) is always better than a “soluble
relaxation” on the RJT, a notion we introduce in Section 9.2.3.

9.2.1 Linear relaxations

While Theorem 9.2 characterizes the soluble influence diagrams using the relevance graph, we
relate this notion to the integer programs of Chapter 8 using Theorem 6.7 which we recall here:

Theorem 6.7. If G is soluble, then there exists an RJT, such that, for every parametrization ρ, an
optimal solution of the linear relaxation of MILP (6.6) with the valid inequalities (6.7) induces
an optimal solution of MEU(G ,ρ) and both problems have the same optimal values. Such an
RJT can be computed in polynomial time.

Theorems 6.7 and 8.1 imply that, if G is soluble, then MILP (8.9) reduces to the linear program

max
µ∈P⊥⊥

∑
v∈V r

〈rv ,µv 〉.

However, it is not a sufficient condition for being soluble. Indeed, we will show in Section 9.3
that there are some influence diagrams that are not soluble and such that the linear relaxation
of MILP (8.9) induces an optimal strategy of MEU(G ,ρ).

Theorem 6.7 is a corollary of Theorem 8.12 and the following lemma.

Lemma 9.3. There exists an RJT G such that G⊥⊥ =G if and only if G is soluble. Such an RJT can
be computed using Algorithm 5.

The proof of this lemma is postponed at the end of the section because of the length of its
proof. Note that based on a topological order of the relevance graph, Algorithm 5 proceeds by
computing a larger graph (satisfying perfect recall) that contains the graph G and that assigns
the same parent sets to elements of V s as in G , then uses a topological order of this graph to
order the vertices of G for the computation of a rooted junction tree.

Algorithm 5 Build a “good” RJT for a soluble graph G

1: Input: An ID G = (V , A).
2: Initialize: A′ =;.
3: Compute the relevance graph H of G
4: Compute an arbitrary topological order4H on V a for the relevance graph H
5: A′ ← A∪ {(u, v) ∈V a ×V a : u4H v}
6: G ′ ← (V , A′)
7: A′′ ← A∪ {(u, v) ∈V s ×V a : u ∉ desG ′(v)}
8: A′′ = (V , A′′)
9: Compute an arbitrary topological order4 on G ′′

10: Return the result of Algorithm 4 for (G ,4)

142

9.2. Linear program for soluble influence diagrams

Proof of Theorem 6.7. Note that by definition for any feasible solution (µ,δ) of the linear relax-
ation of MILP (8.9), we have µ ∈ P⊥⊥. If G is a soluble influence diagram, then Lemma 9.3 en-
sures that there exists an RJT G such that G =G⊥⊥. Consider such an RJT G built by Algorithm 5.
Since G =G⊥⊥, we obtain MG(G) =MG(G⊥⊥). On the other hand, Theorem 8.12 ensures that for
every parametrization ρ, we have MG(G⊥⊥,ρ) =P⊥⊥. We deduce that for such an RJT, we obtain
MG(G ,ρ) =P⊥⊥. Therefore, for any optimal (µ,δ) solution of the linear relaxation of MILP (8.9),
there exists a strategy δ′ ∈∆ such that µ is the vector of moments of Pδ′ and the optimal values
are equal because

max
µ∈P⊥⊥

∑
v∈V r

〈rv ,µv 〉 = max
µ∈MG (G ,ρ)

∑
v∈V r

〈rv ,µv 〉 = MEU (G ,ρ).

Algorithm 5 runs in polynomial time because each step is polynomial in the size of the graph.
It achieves the proof.

For any set C and binary relation R, we denote by CRv the set of vertices u in C such that u R v .
The following lemma will be useful in the proof of Lemma 9.3. Let H denote the relevance
graph of G .

Lemma 9.4. In general, if u ∈ des(v), then (v,u) ∈ H. If G is soluble, then it becomes an equiva-
lence.

As an immediate consequence of Lemma 9.4, if G is soluble and4 is a topological order on G ,
then its restriction4H to V a is a topological order on the relevance graph H .

Proof. Assume that u is s-reachable from v , that is (v,u) is an arc in H . We first show that this
implies that u and v have descendants in common. Indeed, by definition of s-reachability, this
means that there exist w ∈ des(v) and an active trail T from ϑu to w . Either, T is a directed path
and w is also a descendant of u or T must have a -̌structure. In the latter case, let x be the vertex
with the -̌structure closest to ϑu on T ; since the trail is active, we must have x ∈ fa(v) but since
x is a descendant of u, in that case, v must be a descendant of u. In both cases considered u
and v have descendants in common. Now, if u is not a descendant of v , then v is s-reachable
from u, which is not possible as H is acyclic. Hence u ∈ des(v).

Proof of Lemma 9.3. Let G be a soluble influence diagram. We start by proving that Algorithm 5
with G as an input returns an RJTG. It suffices to show that it is possible to compute topological
orderings in step 9, that is, to prove that H , G ′ and G ′′, defined in Algorithm 5, are acyclic. H is
acyclic because the influence diagram is soluble. We now prove that G ′ is acyclic. As G is acyclic
and by definition of G ′, a cycle in G ′ contains necessarily two vertices of V a. Let u and v thus
be two distinct elements of V a. Remark that, if there exists a path from u to v in G , then v is
strategically reachable from u, and u 4H v . Hence, by definition of G ′, the indexes of vertices
in V a for4H can only increase along a path in G ′. There is therefore no cycle in G ′ containing
two vertices in V a, and thus no cycle in G ′. We now prove that G ′′ is acyclic. Suppose that there
is a cycle in G ′′. Let 4G ′ be a topological order on G ′, and let vh be the smallest vertex v for
4G ′ in the cycle such that there is an arc (u, v) in E ′′\E ′ in the cycle. And let (uh , vh) be the
corresponding arc in the cycle. Let (ul , vl) be the arc of A′ right before (uh , vh) in the cycle such

143

Chapter 9. Polynomial cases of influence diagrams

that vl ∈ V a. Arc (ul , vl) is possibly identical to (uh , vh). By definition of G ′, given two disjoint
vertices u and v in V a, either (u, v) ∈ A′ or (v,u) ∈ A′. Since vh 4G ′ vl by definition of vh , we
have either vh = vl or (vh , vl) ∈ A′. And since all the arcs in the vl -uh subpath of the cycle are
in A′, we have uh ∈ desG ′(vl). Hence uh ∈ desG ′(vh), which contradicts the definition of E ′′ in
Step 7. Hence, Algorithm 5 always returns an RJT, which we denote by G.

It remains to prove that G is such that C 6⊥⊥
v ⊆ fa(v) for each decision vertex v ∈V a. We start with

two preliminary results. Remark that A ⊆ A′ implies that4 is a topological order on G . Let4H

denotes its restriction to V a. Lemma 9.4 ensures that 4H is a topological order on H . Hence,
we have

ϑV a≺v
⊥ des(v) | fa(v), for all v ∈V a. (9.2)

Furthermore, if u ∈ V a and v ∈ V s
<u , the definition of G ′ implies the existence of a path from u

to v in G , and hence the existence of a path from V a
<u to v in G .

We now prove C 6⊥⊥
v ⊆ fa(v) for each v ∈V a. This part of the proof is illustrated on Figure 9.1.a. Let

v be a vertex in V a, let u ∈Cv \fa(v), and let b ∈V a≺u . We only have to prove that u is d-separated
from ϑb given fa(v). We start by proving that u and v have common descendants. Proposi-
tion 7.9 guarantees that (7.7b) is an equivalence. Hence, there exists a u-v trail in VÂv . Con-
sider such a u-v trail Q with a minimum number of -̌structures. Suppose for a contradiction
that Q has more than one -̌structure. Starting from v , let w1 be the first -̌structure of Q and u1

bet its first vertex with diverging arcs u1. Using the result at the end of the previous paragraph,
we have u1 ∈ des(V a

<v). Since Q has been chosen with a minimal number of v-structures, we

obtain u1 ∈ des(V aÂv). Let a1 denote an ancestor of u1 in V aÂv . Since w1 ∈ des(v), Equation (9.2)
ensures that w1 ⊥ ϑv | fa(a1). Hence, the v-wi path is not active given fa(a1), and it therefore
necessarily intersects pa(ai). Hence, u1 ∈ des(v), and Q there exists a u-v trail Q with fewer
-̌structures than Q, which gives a contradiction. Trail Q therefore has a unique v-structure, and
u and v have a common descendant w . Hence, if ϑb-u trail P is active given fa(v), then P fol-
lowed by a u-w path is active given fa(v). The fact that des(v) ⊥ ϑb |fa(v) ensures that there is
no-such path P , and we have proved that u is d-separated from ϑb given fa(v).

Conversely, let G be a non-soluble influence diagram, and G an RJT on G . Let u and v be two
vertices in V a such that des(v) 6⊥ϑu |pa(v) and des(u) 6⊥ϑv |pa(u). Without loss of generality, we
assume that if there is a path between Cu and Cv , it is from Cv to Cu . To prove the converse,
we prove that C 6⊥⊥

u 6= fa(u). This part of the proof is illustrated on Figure 9.1.b. There exists an
active trail Q from w ∈ des(u) to ϑv given pa(u). Starting from w , let x be the first vertex with
diverging arcs of Q if Q contains such a structure, and be equal to v otherwise. And let P be the
w-x subtrail of Q. Remark that P must be an x-w path in G , because any passing -̌structure
on P cannot be at a descendant of w , for it would then be a descendant of u which could not
have any descendant in fa(u) as G is acyclic. The path P contains no -̌structure, and is active
given fa(u). Hence, it does not intersect fa(u). Since x and u have w as common descendant,
Proposition 7.4 ensures that Cx and Cu are on the same branch of G. If v = x, x ∈ anc(w) and
there is a path in G from Cx to Cw , moreover, since we assumed Cu is a descendant of Cv in
G, and since u ∈ anc(w), then the path from Cx to Cw contains Cu and all the vertices of P .
Now, if x 6= v , then x is the first vertex with diverging arcs, and in that case it belongs to anc(u),
because Q \ P must contain at least one -̌structure and any such -̌structure can only be at a
vertex in anc(u). So, again, there is a path in G from Cx to Cw which contains Cu and all the

144

9.2. Linear program for soluble influence diagrams

a)

V<v

b

u v

w

u1

ai

w1

Q

pa(v)
P

b)

vx

pa(u)
y

u
z

w Cw

Cz

Cu

Cy

Cx

Figure 9.1 – Illustration of the proof of Lemma 9.3. a) Direct statement, with j = i −1. Trail P
is illustrated by dashed line, trail Q by a dash-dotted line, and other paths by dotted lines. b)
Converse statement, with path Q in plain line, and other paths dotted lines, and paths in G in
dashed lines.

vertices of P . Starting from x, let y be the last vertex of P such that Cy is above Cu in G, and z
be the child of y in P . But since Q is active, the y-ϑv subtrail of Q is active given fa(u), and we
therefore have C 6⊥⊥

u 6= fa(u).

9.2.2 Characterization using the set of achievable moments

In this section, we give another characterization of soluble influence diagrams using Theo-
rem 6.8 which we recall here:

Theorem 6.8. An influence diagram G is soluble if and only if there exists an RJT G such that
for every parametrization ρ on G, the set of achievable moments MG

(
G ,ρ

)
is a polytope. In this

case, such an rooted junction tree G can be computed in polynomial time.

In fact, Theorem 6.8 is a corollary of the following stronger result:

Theorem 9.5. If G is not soluble then there exists a parametrization ρ such that, for every rooted
junction tree G, the set of achievable moments MG(G ,ρ) is not convex.

If G is soluble, then there exists an rooted junction tree G such that for every parametrization ρ,
the set of achievable moments MG(G ,ρ) coincides with P⊥⊥. Such an rooted junction tree can be
computed using Algorithm 5.

The set of achievable moments fully characterizes the soluble influence diagrams. To visualize
the form of the set of achievable moments, we introduce the following the lemma:

Lemma 9.6. For every parametrization ρ and every rooted junction tree G, the convex hull of
the set of achievable moments coincides with the convex hull of the set of achievable determinis-

tic moments, i.e., Conv
(
MG(G ,ρ)

)= Conv
(
Md

G(G ,ρ)
)
, where the notation Conv(A) denotes the

convex hull of a set A.

145

Chapter 9. Polynomial cases of influence diagrams

Proof. Since Md(G) ⊆M(G), we have Conv
(
Md(G)

)⊆ Conv(M(G)).

Now it suffices to prove that M(G) ⊆ Conv
(
Md(G)

)
. Let µ ∈M(G). Corollary 8.2 ensures that

there exists δ ∈∆ such that µCv = δv |pa(v)µCv \{v} for all v ∈V a. Since δ ∈∆ and by definition

∆= ∏
v∈V a

∏
xpa(v)∈Xpa(v)

{
δv |pa(v)(.|xpa(v)) ∈RXv+ :

∑
xv

δv |pa(v)(xv |xpa(v)) = 1
}

︸ ︷︷ ︸
∆v (xpa(v))

.

In addition, for any v ∈V a and xpa(v) ∈Xpa(v), we have:

∆v (xpa(v)) = Conv
({
δv |pa(v)(.|xpa(v)) ∈ {0,1}Xv :

∑
xv

δv |pa(v)(xv |xpa(v)) = 1
}

︸ ︷︷ ︸
∆d

v (xpa(v))

)
.

Therefore, we obtain that ∆ = ∏
v∈V a

∏
xpa(v)∈Xpa(v)

Conv(∆d
v (xpa(v))). It is known that the convex

hull of a Cartesian product is the Cartesian product of the convex hulls. Therefore,

∆= Conv
(∏

v∈V a

∏
xpa(v)∈Xpa(v)

∆d
v (xpa(v))

)
.

On the other hand, we have
∏

v∈V a
∏

xpa(v)∈Xpa(v)
∆d

v (xpa(v)) =∆d. We deduce that ∆= Conv(∆d).

Hence, there exists a finite set I of deterministic strategiesδi ∈∆d for any i ∈ I and non-negative
scalars (λi)i∈I such that

∑
i∈I λ

i = 1 and δ=∑
i∈I λ

iδi . Therefore,

µCv =
∑
i∈I
λiδ

i
v |pa(v)µCv \{v}.

Let ˜µCv
i = δi

v |pa(v)µCv \{v} for all i ∈ I . Then for all v ∈ V a, µCv = ∑
i∈I λi ˜µCv

i . For all v ∈ V s, we

set ˜µCv
i = µCv . We deduce that µ = ∑

i∈I λi µ̃
i and µ̃i ∈Md(G). Therefore µ ∈ Conv

(
Md(G)

)
,

which achieves the proof.

Since Conv
(
Md(G)

)
is a polytope, Lemma 9.6 gives the following corollary:

Corollary 9.7. The set of achievable moments is convex if and only if it is a polytope.

Although we do not use this corollary in the remainder of this thesis, it enables to provide an
abstract representation of the set of achievable moments. Figure 9.2 illustrates Lemma 9.6 and
gives a planar representation of the set of achievable moments.

Proof of Theorem 6.8 and Theorem 9.5. If G is soluble, Lemma 9.3 ensures that Algorithm 5 builds
an RJT G such that G⊥⊥=G , and Theorem 8.12 ensures that P⊥⊥ =M(G).

Consider now the result for non-soluble influence diagrams. Let G be a non-soluble influence
diagram. Let a and b be two decision vertices that are both strategically dependent on the other
one.

First, we suppose that a ∉ anc(b) and b ∉ anc(a). Let P be a path from a to w ∈ des(b) with
a minimum number of arcs, and Q be a b-w path with a minimum number of arcs. Then w

146

9.2. Linear program for soluble influence diagrams

Md(G)

Conv(M(G))

M(G)

Figure 9.2 – Planar representation of the set of achievable moments M(G), the set of achiev-
able deterministic moments Md(G) and the convex hull of the set of achievable moments
Conv(M(G)) = Conv

(
Md(G)

)
.

ϑa a

sk−1

s1

s0

a′

s′k−1

s′1

s′′k−1

s′′1

s′′0

tk

t2

t1

pk

p2

p1

b wb

ws0

w

Xs0 =Xs′′0 =Xws0
= {1,2,e}

Xs` =Xs′
`
=Xs′′

`
= {1,2}, ∀`> 0

Xt` =Xp`
= {0,1}, ∀`> 0

Xb =Xwb = {1,2, j}
Xw = {−10,0,1,2}

P Q
ps0 (x) = 1/3 for x in {1,2,e}
ps`(x) = 1/2 for `> 0 and x ∈ {1,2}
X t` =1(Xs′′k−1

6= Xs′
`
), ∀`

Xs′′
`
= Xs` , Xs′

`
= Xsi , ∀`

Xp`
= X t` , Xwb = Xb , ∀`

Xws0
= Xs0

Xw =

0 if Xwb = j
i if Xwb = Xws0

= i for i ∈ {1,2}
−10 otherwise.

Figure 9.3 – Influence diagram and parametrization used in the proof of Theorem 9.5

147

Chapter 9. Polynomial cases of influence diagrams

is the unique vertex in the intersection of P and Q. Let u and v be the parents of w in P and
Q respectively. Consider a parametrization where all the variables that are not in P or Q are
unary, all the variables in P and Q are binary, all the variables in the a-u subpath of P are
equal to Xa , all the variables in the b-v subpath of P are equal to Xb , and pw |pa(w) is defined
arbitrarily. Let G be an arbitrary junction tree, C be its cluster containing fa(w). Then choosing
a distribution µa as policy δa and a distribution µb as policy δb implies that the restriction of
µC to Xuv is µuv = µaµb . Hence, the marginalization on Xuv of the set of distributions µC that
can be reached for different policy is the set of independent distributions, which is not convex.
Hence, M(G) is not convex.

We now consider the case where a ∈ anc(b) or b ∈ anc(a). W.l.o.g., we suppose a ∈ anc(b).
There exists a trail from ϑa to w in des(b) that is active given pa(b). Let Q be such a trail with
a minimum number of v-structures. And let P be a b-w path. W.l.o.g., we suppose that w
is the only vertex in both P and Q. Let wb be the parent of w on P and ws0 its parent in Q.
Starting from w , let s0, . . . , sk−1 denote the vertices with divergent arcs in Q, let t1, . . . , tk the v-
structures, and p` denote the parent of b that is below t`. Finally let s′

`
(resp. s′′

`
) denote the

parent of t` (resp t`+1) on the s`-t` subpath (resp. s`-ti+1 subpath) of Q. The structures that
we have just exhibited entail that G contains a subgraph of the form represented on Figure 9.3.
Each dashed arrows correspond to a path whose length may be equal to 0, in which case the
vertices connected by the path are the same.

We now introduce a game that we will be able to encode on the graph of Figure 9.3 and hence
on G . This game is a dice game with two players a and b. Before rolling a uniform die with three
faces, player a chooses to play 1 or 2, where “playing i " means observing if the die is equal to
i , and passing this information to player b. The die s0 is rolled. If a has played 1 (resp. 2),
he passes the information true to b if the die s0 is equal to 1 (resp. 2), and false if it is equal
to 2 (resp. 1), or something else e. Player b does not know what a has played. Based on the
information he receives, player b decides to play 1, 2, or joker, that we denote j. If he plays j,
then none of the player either earns or loses money. If he plays i in {1,2}, then both players earn
i euros if die s0 is equal to i , and lose 10 euros otherwise. The goal is maximize the expected
payoff. This game has two locally optimal strategies δ1 and δ2. In strategy δi , player a plays i
and b plays i if he receives true and j otherwise. Both strategies are locally optimal: each players
decision is the best possible given the other ones. But only strategy δ2 is globally optimal.

It changes nothing to the game if we add k −1 coin tosses Xs1 , . . . , Xsk−1 , and player b observes
the k equality tests X t1 , . . . , X tk−1 , where X t` = 1(Xs`−1 = Xs`). Indeed, player b can compute∑k
`=1 xp`

and knows that Xa = Xs0 if and only if this sum is even. The parameterization of the
influence diagram that enables to encode this game is specified on the right part of Figure 9.3.
For any x, the mapping 1x (·) is the indicator function of x. All the variables that are not on
Figure 9.3 or on the paths on Figure 9.3 are unary. All the variables along paths represented by
dashed arrows are equal. Strategies δi can therefore be defined as

δi
a =1i and δi

b(xp1 , . . . , xpk) =
{

i if
∑k
`=1 xp`

= 0 mod 2,
0 otherwise.

where 1i is the Dirac in i . A technical case to handle is the one where a = a′ = tk . In that case,
we define Xa = {0,1} and δi

a =1i (X ′′
sk−1

).

148

9.2. Linear program for soluble influence diagrams

Consider now an RJT G on G . Let C be a vertex of G that contains fa(w). Then C contains
both wb and ws0 . Let µ1

C and µ2
C be the distributions induced by δ1 and δ2 on XC , and µ1

bs0

and µ2
bs0

their marginalization on Xwb ws0
. Since Xwb = Xb and Xws0

= Xs0 , µ1
bs0

and µ2
bs0

are the

distributions induced by δ1 and δ2 on Xbs0 . Let µbs0 =
µ1

bs0
+µ2

bs0
2 . Denoting again 1x the Dirac at

x, we have

µ1
bs0

= 111 +1j2 +1je
3

, µ2
bs0

= 1j1 +122 +1je
3

, and µbs0 =
111 +1j1 +1j2 +122 +21je

6
.

We claim that there is no policy δ that induces distribution µbs0 on Xbs0 . Indeed, in a distri-
bution induced by a policy δ, it follows from the parametrization that if P(Xa = 1) < 1 and
P(Xb = 1) > 0, then P(Xb = 1, Xu = e) > 0. And, if P(Xa = 2) < 1 and P(Xb = 2) > 0, then P(Xb =
2, Xu = e) > 0. (In both claims, “if P(Xa = 1) < 1” must be replaced by “if δa(xsk−1) 6= 1i (xsk−1)”
when a = tk). As µub is such that P(Xb = 1) > 0, P(Xb = 2) > 0, and P(Xb = 1, Xu = e) = 0, it
cannot be induced by a policy. Hence, MG(G ,ρ) is not convex. Therefore, MG(G ,ρ) is not a
polytope.

9.2.3 Comparison of soluble and linear relaxations

MILP solvers are based on (much improved) branch-and-bound algorithms that use the lin-
ear relaxation to obtain bounds. Their ability to solve formulation (8.9) therefore depends on
the quality of the bound provided by the linear relaxation. The following lemma ensures that
adding arcs with head in the decision vertices gives an upper bound.

Lemma 9.8. Let G = (V , A) be an influence diagram with V = V a ∪V a. If G ′ = (V , A′) is such
that A′ is the union of A′ and a set of arcs with head in V a, then for every parametrization ρ,
MEU (G ′,ρ) is a relaxation of MEU (G ,ρ).

Proof. It is immediate since ∆G ⊆∆G ′ .

Since SPU solves efficiently soluble influence diagrams, we could imagine alternative branch-
and-bound schemes that use bounds computed using SPU on an influence diagram larger than
G which is soluble. To formalize this idea, we introduce the following notion: A soluble graph
relaxation of an influence diagram G = (V , A) with V = V s ∪V a is a soluble influence diagram
G ′ = (V , A′) where A′ is the union of A and a set of arcs with head in V a. In this section, we
show that the linear relaxation of MILP (8.9) is always at least as good as the ones obtained
from soluble relaxations on our RJT.

Note that Theorem 8.12 can be reinterpreted as the link between soluble graph relaxation and
linear relaxations. And since M(G) =P and M(G⊥⊥) =P⊥⊥, by Theorem 9.5, G⊥⊥ and G are solu-
ble, and therefore soluble graph relaxations of G . Theorem 6.8 together with Corollary 8.2 en-
sure that being soluble is equivalent to the convexity of the set of achievable moments. Hence,
a soluble relaxation corresponds to a convex relaxation of MEU(G ,ρ).

Since any feasible strategy for the influence diagram G is a feasible strategy for a soluble graph
relaxation G ′, for any parametrization ρ, provides a bound on MEU(G ,ρ). Since G ′ is soluble,
this bound is tractable because it can be computed using the SPU algorithm. Soluble relax-

149

Chapter 9. Polynomial cases of influence diagrams

ations can therefore be used in branch-and-bound schemes for influence diagrams, as pro-
posed in Khaled et al. [68]. To compare the relevance of such a scheme to our MILP approach
we need to compare the quality of the soluble graph relaxation and linear relaxation bounds.

Corollary 9.9. Let G ′ be a soluble graph relaxation of G, and G the RJT obtained by running
Algorithm 5 on G ′. Then the linear relaxation of (8.9) applied to G with RJT G provides a bound
at least as good as the one provided by the soluble relaxation G ′.

Note that this bound can sometimes be strictly better thanks to constraints (µ,δ) ∈Qb.

Remark 14. In the literature, soluble relaxations have already been used to obtain bounds in
different settings. For example Yuan et al. [166] used them in a branch and bound scheme.
Their bounds rely on the notion of sufficient information set (SIS) for a decision vertex v [110].2

SIS are set of vertices that have the following property: If, given an influence diagram G , we have
a SIS Dv for each decision vertex v , then the influence diagram we obtain when we add arcs u, v
for each u in Dv is a soluble relaxation of G . Different SIS may be available for a given decision
vertex. Poh and Horvitz [121, Theorem 2] show that, the closer the SIS is to the descendant of
the vertex, the worse the bound is; but the easier the inference is. Yuan et al. [166] make the
choice of an easy inference and propose to use a SIS of minimum cardinality. An alternative
option would be to add the perfect recall arcs, which would lead to a much harder inference
problem but to better bounds. Using our G⊥⊥ corresponds the following choice: among the SIS
that enable to use our RJT for inference, use the one that leads to the best relaxation. 4

Proof of Corollary 9.9. Let G be the RJT obtained by running Algorithm 5 on G ′. By Lemma 9.3,
v is d-separated from Cv \faG ′(v) given paG ′(v) in G ′. Since G ′ is obtained by adding arcs to G ,
vertex v is therefore also d-separated from Cv \faG ′(v) given paG ′(v) in G . We therefore obtain
implies A⊥⊥ ⊆ A′. Thus, by Theorem 8.12, the bound provided by the linear relaxation of the
MILP (8.9) is at least as good as the soluble graph relaxation bound.

9.3 Examples of non-soluble IDs solved by linear programs

As mentioned in Section 9.1, the fact that the linear relaxation of MILP (8.9) gives an optimal
solution of MEU(G ,ρ) is not a sufficient condition to be a soluble ID. In this section, we in-
troduce some examples that can be solved by an optimal solution of the linear relaxation of
MILP (8.9) and that are not soluble. In fact, we are able to characterize this class of influence
diagrams, which is slightly larger than the soluble ones. However, describing this class of in-
fluence diagrams is beyond the scope of this thesis. In this section, we introduce an example
of influence diagram that is not soluble and such that for every parametrization ρ, the linear
relaxation of MILP (8.9) gives an optimal solution of MEU(G ,ρ). The numerical experiments
in Section 9.5 illustrate that the SPU algorithm, whose the exactness characterizes the soluble
IDs, badly performs on these examples.

Example 7. Consider a game with M players. The game is cooperative in the sense that all the
players share the same goal. At each time t , all the players have access to the state of a game,

2When Nilsson and Höhle [110] wrote their paper, the notion of soluble influence diagram was still not known,
and they used a weaker version. Their terminology is also different.

150

9.4. Dual formulation for the soluble influence diagrams

S1 S2 S3 S4

A1
1

A2
1

...

AM
1

A1
2

A2
2

...

AM
2

A1
3

A2
3

...

AM
3

Figure 9.4 – Influence diagram of Example 7

denoted by St . Based on a state St = s, each player m in [M] plays simultaneously an indi-
vidual decision (or action) Am

t = am and the game’s state transits randomly to state St+1 = s′

according to transition probability p(s′|s,a) where a = (am)m∈[M] and this transition leads to
an immediate reward r (s,a, s′). The choice of player m is modeled using individual policies
δm in ∆m where ∆m is the set of strategies of player m. A strategy is the vector of player poli-
cies, i.e., δ = (δm)m∈[M]. We want to find the best policies for each player. Given a horizon
T , the goal is to find a strategy δ maximizing the total expected reward over the horizon T :
maxδ∈∆E

[∑T
t=1 r (St ,At ,St+1)

]
. Such a problem can be represented by the influence diagram in

Figure 9.4. It can be checked that this influence diagram is non-soluble. 4

The reason why the SPU algorithm does not provide a strategy performing well on Example 7
is not clear. However, we believe that SPU algorithm fails when there are “parallel” decision
vertices, i.e., pair of decision vertices such that there is no path on to each other. Indeed, the
“parallel” decisions in Example 7 correspond to simultaneous decisions and the SPU algorithm
optimizes the strategy by considering it sequentially.

9.4 Dual formulation for the soluble influence diagrams

The aim of this section is to prove Theorem 6.9, which we recall here:

Theorem 6.9. The following properties hold:

(i) Linear program (6.10) is the dual of the linear relaxation of MILP (6.6) where variable δ
has been removed.

(ii) Linear program (6.11) is the dual of the linear relaxation of MILP (6.6) with valid inequal-
ities (6.7) where variable δ has been removed.

Furthermore, the strong duality holds in both cases.

This theorem helps to understand how the vector of moments and the vector of value functions
are related. While Theorem 6.7 ensures that there exists an RJT such that the linear relaxation
of MILP (8.9) gives an optimal solution of MEU(G ,ρ) for a soluble influence diagram, the fol-
lowing corollary ensures that this result can be extended to formulation (6.11).

151

Chapter 9. Polynomial cases of influence diagrams

Corollary 9.10. If G is soluble, then there exists an RJT such that Linear program (6.11) induces
an optimal solution of MEU(G ,ρ) and both problems have the same optimal values. Such an
RJT can be computed in polynomial time.

Proof. Since G is soluble, there exists an RJT G such that G⊥⊥=G . Theorem 6.9 ensures that the
strong duality holds with the linear relaxation (8.9). Hence, by Theorem 6.7 the optimal value
of the linear program (6.11) is equal to the optimal value of MEU(G ,ρ). Now we build a feasible
strategy of MEU(G ,ρ) from an optimal solution of Linear program (6.11). We define δ such that
δv (xv |xpa(v)) = 1 when xv belongs to argmaxx ′

v

∑
xC⊥⊥v

pC⊥⊥
v |C 6⊥⊥

v
(xCv)λCv (x ′

v , xČv
) for any xC 6⊥⊥

v
and

v ∈ V a. Since C 6⊥⊥
v = fa(v), it follows that the δv depends on xfa(v), ensuring that δ is a feasible

strategy of MEU(G ,ρ). Since we consider an minimization problem, an optimal solution of
Linear Program (6.11) satisfies for any vertex v ∈V ,

λCv = max
xu :u∈V a,

Cu∈ch(Cv)

rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

∑
xC⊥⊥u

pC⊥⊥
u |fa(Cu)λCu

= rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu + max
xu :u∈V a,

Cu∈ch(Cv)

∑
u∈V a:

Cu∈ch(Cv)

∑
xC⊥⊥u

pC⊥⊥
u |fa(u)λCu

= rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

max
xu

∑
xC⊥⊥u

pC⊥⊥
u |fa(u)λCu

ensuring thatδ reaches the optimal value of (6.11), which is the optimal value of MEU(G ,ρ).

Remark 15. Note that linear program (6.11) can be read as a linear formulation of the SPU al-
gorithm on the corresponding RJT. If G is soluble, then the SPU algorithm builds an optimal
strategy of MEU(G ,ρ) by sequentially optimizing the individual policies on each decision ver-
tex. The constraints of linear program (6.11) can be read as an iteration of the SPU algorithm
by maximizing locally on each decision vertex u ∈V a as maxxu

∑
xC⊥⊥u

pC⊥⊥
u |fa(u)λCu . 4

Proof of Theorem 6.9. We can remove the variables δ from the linear relaxation of MILP (8.6) or
MILP (8.9) because it does not play a role. Let G = (V ,A) be an gradual RJT of G . We prove (i).
We first reformulate the linear relaxation of MILP (8.6):

max
µ

∑
v∈V

〈rCv ,µCv 〉

s.t. µCv = pv |pa(v)
∑

xpa(Cv)\Cv

µpa(Cv)∀v ∈V s

∑
xv

µCv =
∑

xpa(Cv)\Cv

µpa(Cv) ∀v ∈V a

µ> 0

(9.3a)

(9.3b)

(9.3c)

(9.3d)

where the reward function rCv is defined in (6.4). This reformulation comes from the fact that
the consistency constraints (6.5c) and the normalization constraints (6.5b) are induced by the
constraints of (9.3). Now it remains to prove that the linear program (6.10) is the dual of the
linear program (9.3). To do so, we compute the Lagrangian relaxation of Linear program (9.3).
Let λ = (λCv (xCv))xCv ,v∈V be the dual variables associated to the constraints (9.3b). Let π =

152

9.4. Dual formulation for the soluble influence diagrams

(πCu∩Cv (xCu∩Cv))xCu∩Cv ,(Cu ,Cv)∈A be the dual variables associated to the constraints (9.3c). Then,
the Lagrangian is

L(µ,λ,π)

= ∑
v∈V

∑
xCv

rCv (xCv)µCv (xCv)+ ∑
v∈V s

∑
xCv

λCv (xCv)

(
µCv (xCv)−pv |pa(v)(xfa(v))

∑
xpa(Cv)\Cv

µpa(Cv)(xpa(Cv))

)

+ ∑
v∈V a

∑
xČv

πCv∩pa(Cv)(xCv∩pa(Cv))

(∑
xv

µCv (xCv)− ∑
xpa(Cv)\Cv

µCv (xCv)

)

= ∑
v∈V s

∑
xCv

µCv (xCv)

(
rCv (xCv)+λCv (xCv)

)
− ∑

v∈V s

∑
xCv

µCv (xCv)

(∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)(xfa(u))λCu (xCu)+ ∑
u∈V a:

Cu∈ch(Cv)

πCv∩Cu (xCu∩Cv)

)

+ ∑
v∈V a

∑
xCv

µCv (xCv)

(
rCv (xCv)− ∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)(xfa(u))λCu (xCu)− ∑
u∈V a:

Cu∈ch(Cv)

πCv∩Cu (xCu∩Cv)

+πpa(Cv)∩Cv (xpa(Cv)∩Cv)

)
The dual problem of the linear program (9.3) is minλ,πmaxµ>0L(µ,λ,π). Hence, the dual
problem can be written as follows:

min
λ

−〈λC0 , p0〉
s.t. rCv +λCv −

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu −
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu 6 0 ∀v ∈V s

rCv −
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +πpa(Cv)∩Cv −
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu 6 0 ∀v ∈V a

This linear program can be reformulated as follows:

min
λ

〈λC0 , p0〉
s.t. λCv > rCv +

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu ∀v ∈V s

πpa(Cv)∩Cv > rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu ∀v ∈V a

By introducing variables λCv for v ∈V a such that

πpa(Cv)∩Cv >λCv > rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu ,

153

Chapter 9. Polynomial cases of influence diagrams

we finally obtain the following formulation:

min
λ

〈λC0 , p0〉
s.t. λCv > rCv +

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

λCu ∀v ∈V

It achieves the proof since the last formulation corresponds exactly Linear Program (6.10).

Now we prove (ii). Like for the proof of (i), we reformulate the linear relaxation of MILP (8.9):

max
µ

∑
v∈V

〈rCv ,µCv 〉

s.t. µCv = pv |pa(v)
∑

xpa(Cv)\Cv

µpa(Cv)∀v ∈V s

µCv = pC⊥⊥
v |C 6⊥⊥

v

∑
xC⊥⊥v

µCv ∀v ∈V a

∑
xv

µCv =
∑

xpa(Cv)\Cv

µpa(Cv) ∀v ∈V a

µ> 0

(9.7a)

(9.7b)

(9.7c)

(9.7d)

(9.7e)

Now it remains to prove that the linear program (6.11) is the dual of the linear program (9.7).
Again, we compute the Lagrangian relaxation of linear program (9.7). Letλ= (λCv (xCv))xCv ,v∈V

be the dual variables associated to the constraints (9.7b) and constraints (9.7c). Let
π = (πCu∩Cv (xCu∩Cv))xCu∩Cv ,(Cu ,Cv)∈A be the dual variables associated to the constraints (9.7d).
Using the previous calculus, the Lagrangian L can be written:

L(µ,λ,π)

= ∑
v∈V s

∑
xCv

µCv (xCv)

(
rCv (xCv)+λCv (xCv)− ∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)(xfa(u))λCu (xCu)

)

− ∑
v∈V s

∑
xCv

µCv (xCv)
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu (xCu∩Cv)

+ ∑
v∈V a

∑
xCv

µCv (xCv)

(
rCv (xCv)− ∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)(xfa(u))λCu (xCu)− ∑
u∈V a:

Cu∈ch(Cv)

πCv∩Cu (xCu∩Cv)

+πpa(Cv)∩Cv (xpa(Cv)∩Cv)+λCv (xCv)− ∑
xC⊥⊥v

pC⊥⊥
v |C 6⊥⊥

v
(xČv

)λCv (xCv)

)

Hence, the dual problem is the following:

min
λ

−〈λC0 , p0〉
s.t. rCv +λCv −

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu −
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu 6 0 ∀v ∈V s

rCv +λCv −
∑

xC⊥⊥v

pC⊥⊥
v |C 6⊥⊥

v
λCv −

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +πpa(Cv)∩Cv −
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu 6 0∀v ∈V a

154

9.5. Numerical experiments

This linear program leads to the following one:

min
λ

〈λC0 , p0〉
s.t. λCv > rCv +

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu ∀v ∈V s

πpa(Cv)∩Cv +λCv −
∑

xC⊥⊥v

pC⊥⊥
v |C 6⊥⊥

v
λCv > rCv +

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu∀v ∈V a

For any optimal solution of Linear Program (9.10), we have:

πpa(Cv)∩Cv >
∑

xC⊥⊥v

pC⊥⊥
v |C 6⊥⊥

v
λCv

λCv > rCv +
∑

u∈V s:
Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

πCv∩Cu

Indeed, otherwise it can be showed that we can obtain an optimal solution with a lower value.
Hence it follows that linear program (9.10) becomes

min
λ

〈λC0 , p0〉
s.t. λCv > rCv +

∑
u∈V s:

Cu∈ch(Cv)

∑
xu

pu|pa(u)λCu +
∑

u∈V a:
Cu∈ch(Cv)

∑
xC⊥⊥u

pC⊥⊥
u |C 6⊥⊥

u
λCu ∀v ∈V

It proves (ii). The strong duality holds in both case because there always exist an optimal solu-
tion of the primal problems (e.g. [93]). It achieves the proof.

9.5 Numerical experiments

In this section, we give numerical results on random instances of Example 7. As mentioned
in section 9.3, this example is represented by an influence diagram that is non-soluble and
such that an optimal solution of MEU(G ,ρ) can be found by solving the linear relaxation of
MILP (8.9). All linear programs have been implemented in Julia with JuMP interface [41] and
solved using Gurobi 9.0 [52]. Experiments have been run on a server with 192Gb of RAM and
32 cores at 3.30GHz.

The instances are generated by first choosing ks =
∣∣XS

∣∣ and ka = ∣∣X 1
A

∣∣ = ·· · = ∣∣XM
A

∣∣. We then
randomly generate the initial probability distributions

(
p(s)

)
s∈XS

, the transition probability dis-
tributions

(
p(s′|s, a1, . . . , aM)

)
s∈XS

a1∈X 1
A ,...,aM∈XM

A

, and the immediate reward functions(
r (s, a1, . . . , aM , s′)

)
s∈XS

a1∈X 1
A ,...,aM∈XM

A

. An instance is the tuple (M ,ks ,ka ,p,r). We choose (M ,ks ,ka) ∈

{3,5}3 and we generate 50 instances (M ,ks ,ka ,p,r).

Metrics. We denote respectively by z∗ and z∗
R the optimal values of MEU(G ,ρ), which is com-

puted by solving MILP (8.9), and the optimal value of the linear relaxation of MILP (8.9). We
compare these values with the value zSPU obtained by running the SPU algorithm. To do so, for

155

Chapter 9. Polynomial cases of influence diagrams

(M ,ks ,ka) T
∣∣∆d

ml

∣∣ Alg. Gap (%) Time (s)
(3,3,3) 10 1042 MILP (8.9) Opt. 0.05

SPU −5.08 7.96
Lin. Relax. MILP (8.9) 0.00 0.05

20 1084 MILP (8.9) Opt. 0.12
SPU −5.09 15.92

Lin. Relax. MILP (8.9) 0.00 0.10
(3,5,5) 10 1084 MILP (8.9) Opt. 0.24

SPU −7.06 8.42
Lin. Relax. MILP (8.9) 0.00 0.28

20 10168 MILP (8.9) Opt. 0.62
SPU −7.06 16.84

Lin. Relax. MILP (8.9) 0.00 0.57
(5,3,3) 10 1071 MILP (8.9) Opt. 2.25

SPU −11.38 7.59
Lin. Relax. MILP (8.9) 0.00 1.07

20 10142 MILP (8.9) Opt. 7.52
SPU −11.37 15.17

Lin. Relax. MILP (8.9) 0.00 2.92
(5,5,5) 10 10174 MILP (8.9) Opt. 29.67

SPU −13.71 7.85
Lin. Relax. MILP (8.9) 0.00 16.89

20 10348 MILP (8.9) Opt. 1374.61
SPU −13.75 15.68

Lin. Relax. MILP (8.9) 0.00 1311.62

Table 9.1 – Average results on 50 instances of the cooperative game.

each value z ∈ {zSPU, z∗
R} we compute the relative gaps with respect to the value of optimal value

g (z) = z−z∗
z∗ and we report it as well as the computation time of each mathematical program in

Table 9.1. All the mathematical programs have been solved optimally. The results are averaged
over the set 50 generated instances and reported in Table 9.1 The first column indicates the
value of the triplet (M ,ks ,ka). The second column indicates the value of the finite horizon T.
The third column indicates the size of the set of deterministic strategies

∣∣∆d
ml

∣∣. Finally, the last
three columns indicate the algorithms used (Alg.), the average gap value over the 50 instances,
and the averaged computation time.

The results in Table 9.1 show that the linear relaxation of MILP (8.9) gives the same optimal
value as that of MILP (8.9). It validates the fact that there are non-soluble influence diagrams
for which the linear relaxation of MILP (8.9) gives an optimal strategy. Since the SPU strategy is
a local optimum, the value of the gap zSPU−z∗

z∗ is non-positive as shown in Table 9.1. One can also
observe that, as we expected, the SPU algorithm gives a strategy with an objective value which
can be far from the optimal value. In particular these gaps are significantly larger than those
of the numerical experiments in Section 8.6. Note that when the number of players increases,

156

9.5. Numerical experiments

the gap g (zSPU) decreases also. It supports our intuition that when the influence diagram has
“parallel” decision vertices, the SPU algorithm fails to give a good strategy.

157

Part IIIMaintenance problem at Air France

159

10 Data-driven maintenance optimization

In this chapter, we focus on the airplane maintenance problem at Air France, which we recall
here. Given an airplane planning with scheduled maintenance slots, the decision maker re-
ceives sensor data at each maintenance slot on M equipments of an airplane and chooses at
most K equipments that should be maintained during this maintenance slot. The objective is
to choose a maintenance policy maximizing the expected costs, which correspond to the sum
of the maintenance costs and the failure costs.

The sensor data correspond to a collection of time series recorded at 1Hz during flights. In
Chapter 3, we introduced a generic predictive maintenance problem and we formalized it as
a weakly coupled POMDP problem to build a policy for the maintenance of the components
of a system. We wish to use such a maintenance policy in the airplane maintenance problem
at Air France. This requires to cast the airplane maintenance problem as an instance of the
generic predictive maintenance problem described in Chapter 3. However, this raises three
practical issues. First, in the airplane maintenance problem, at each maintenance slot the de-
cision maker has access to sensor data, which are continuous and high dimensional, instead
of discrete observations. Consequently, it requires to create a discretization method that trans-
forms the sensor data recorded during a flight into a discrete observation for each equipment.
Second, Air France’s requirement is that the resulting discrete observations be interpretable.
Third, the parameters of the POMDPs, which compose the weakly coupled POMDP, are not
available in practice. This requires to estimate these parameters. In this chapter, we describe
a statistical methodology that addresses these three issues and that casts the airplane mainte-
nance problem as a weakly coupled POMDP problem. This chapter is organized as follows:

• Section 10.1 describes the current Air France’s approach and the main steps of our ap-
proach to address the three issues mentioned above. In particular, we argue about our
choices of statistical tools.

• Section 10.2 formally introduces the problem of finding a maintenance policy given sen-
sor data.

• Section 10.3 describes how we transform such a maintenance problem into a weakly cou-
pled POMDP. In particular, we detail how we estimate the parameters of the weakly cou-
pled POMDP.

• Section 10.4 provides numerical experiments on a simulated system on which we apply
the policy of Chapter 5, which is a feasible policy of the weakly coupled POMDP. We com-

161

Chapter 10. Data-driven maintenance optimization

(avg pressure,std temperature)

avg pressure> 1.5

std temperature6 90

3 2

1

Yes

Yes No

No

Figure 10.1 – An example of a decision tree that takes as inputs the average (avg) pressure and
the standard deviation (std) of the temperature. It returns a discrete label in {1,2,3}. Each label
corresponds to a cluster. Clusters 1 and 2 correspond to normal behavior (blue), and cluster 3
corresponds to high-failure risk (red).

pare the results of this policy against a maintenance policy reproducing Air France’s one
on the simulated system. Although we are not able to simulate the airplane’s sensor data,
we also provide numerical experiments on Air France’s dataset by comparing the past
failures and what our maintenance policy would have suggested.

• Section 10.5 contains bibliographical remarks.

10.1 About the airplane maintenance problem at Air France

In this section, we describe the current approach at Air France to address the airplane mainte-
nance problem and the main steps of our approach. We recall that we have access to a dataset
containing sensor data that correspond to a collection of time series over several years on the
whole fleet of airplanes.

Current approach at Air France and its limits. Air France already uses predictive mainte-
nance for a few failure prone equipments. In their current practice, the maintenance engineers
use fault trees to support their decisions. Using machine learning terminology, fault trees are
equivalent to decision trees, generally hand-designed and of small size. In this dissertation,
we will always designate the tool used in Air France as decision tree. A decision tree is illus-
trated on Figure 10.1. It takes in input a vector of features extracting relevant information from
the time series. Using a succession of binary rules splitting the features space in two, it par-
titions this feature space into a small number of clusters. Each of the clusters is informative
from an engineering point of view: some correspond to normal behavior (blue labels in Fig-
ure 10.1), some to high failure risk (red labels in Figure 10.1). The engineers then maintain the
equipment if the decision tree returns a label corresponding to a high failure risk cluster. This
approach is a diagnosis-based [3] heuristic and is blind about the failure risk for each equip-
ment over the remaining of the horizon. It is easy to understand why this approach enabled to
drastically reduce the failures and the maintenance costs of the small number of failure-prone
equipments considered. Indeed, when only very few equipments are considered, prioritizing

162

10.1. About the airplane maintenance problem at Air France

between equipments is not an issue, and this heuristic makes perfect sense. In addition, even
if the decision trees usually provide a diagnosis, Air France designs their decision tree in such
a way that it detects the first symptoms of deterioration. This characteristic ensures that the
heuristic is more preventive than corrective, i.e., an equipment is maintained before it fails.
Furthermore, the decision tree used can make these diagnosis very accurately because it lever-
ages a physical understanding of the equipment.

However, such an approach cannot be extended to a large number of equipments. The first rea-
son is mathematical. When there are many equipments and scarce maintenance resources, an-
ticipating the future on several decision steps becomes crucial, and a diagnosis-based heuris-
tic cannot work anymore. We therefore need a richer multistage stochastic optimization ap-
proach, which itself requires a richer prediction model. The second reason is industrial: Build-
ing manually a good decision tree requires several months of work of an expert. Given that
experts are also a scarce resource, such an investment cannot be scaled to dozens of equip-
ments, and we therefore need to use prediction models that require less expert time.

How to build a prediction model trusted by maintenance engineers. There are two ways of
building trust in models: experimental testing, or validation by experts who understand the
model. A specific difficulty comes from the fact that the data is censored. Indeed, taking main-
tenance decisions requires to be able to predict the behavior of the system just before it fails.
But since failures are costly, airlines try to avoid them as much as possible. If we have much
data on the system when it works well, we have a small amount of data on the behavior of
the system right before it fails: On the whole history, the number of failures observed on one
equipment never exceeds 10. Given the small number of failures in our dataset, and that we
do not have access to a simulator, experimental validation is not possible. We must therefore
propose a model that maintenance experts can validate, but whose design and validation do not
require too much of their time. We solve that conundrum as follows: our model makes decisions
using only information that maintenance experts can easily understand. Since decision trees
form the standard method used by the engineers of Air France to take maintenance decisions,
we interpret “information that maintenance experts can easily understand” as “the result of a
small size decision tree.”1 To reduce our need of expert time, the decision trees are learned
from historical data, and experts only check that the classification they produce makes sense
from an engineering point of view. An additional difficulty to build a decision tree given our
dataset is that the data are not labeled. Since we do not know when an equipment exactly fails,
we are not able to assign a label on each flight indicating if the equipment has an abnormal
behavior due to a failure.

Main steps of our approach. The goal of our approach is to cast the airplane maintenance
problem as a weakly coupled POMDP and the decision maker chooses which equipments to
maintain at each maintenance slot according to a feasible policy of this weakly coupled POMDP.
To do so, we proceed in several steps which are summarized in Figure 10.2. We first extract for
each monitored equipment a vector of features in Rd from the sensor data. We then use a de-

1Since decision trees are widely used for maintenance across several industries [26, 131, 150], this assumption is
not specific to Air France.

163

Chapter 10. Data-driven maintenance optimization

Flight leg

Maintenance
operations

Maintenance
operations

System’s evolution

Sensor data

Features in Rd

(non interpretable)

Interpretable
information

Maintenance decision

prediction

Feature extraction

Evolution:

Gaussian HMM structure

Decision tree (1 for each component)

POMDP Policy

Figure 10.2 – The four elements of our approach: the feature extraction (in purple), the predic-
tion model (in blue), the decision tree (in green) and the policy (in red).

cision tree to turn this vector of features into a label that can be interpreted by experts. Finally,
based on the labels of all equipments, our policy chooses which equipments should be main-
tained in such a way that the number of equipments to maintain does not exceed the main-
tenance capacity. This maintenance is then performed, and the airplane operates flights until
the next maintenance slot. Using the discrete labels as observations at each maintenance slot,
the resulting problem is a predictive maintenance problem as the one described in Chapter 3.

Learning to predict the evolution of sensor data would make little sense since it is very noisy
and high dimensional. We therefore learn a Gaussian Hidden Markov model (HMM) that pre-
dicts the evolution of the vector of features. Learning such a statistic model consists in esti-
mating its parameters, which are the transition probability distributions and the Gaussian law
parameters. We must specify how we extract the features, how we learn the Gaussian HMM pa-
rameters and the decision tree that transforms the Gaussian HMM into a HMM with discrete
observations. If the way we extract features and learn the Gaussian HMM parameters is rela-
tively standard, the way we learn the decision tree is less so. Indeed, in predictive maintenance
the decision trees are generally hand-designed for maintenance diagnosis, and not automat-
ically learned to provide the input of a policy. The Gaussian HMM parameters together with
the learned decision tree lead to the parameters of a HMM with discrete observations, which
are the outputs of the decision tree. These HMM parameters are learned for each equipment,
which is sufficient to define the weakly coupled POMDP parameters.

Once the weakly coupled POMDP parameter have been set, we can use the maintenance policy
proposed in Part I. It raises a practical issue: Evaluating the performance of our approach re-

164

10.2. Formalizing the airplane maintenance problem

quires to evaluate the policy it returns on the true system, and not only according to the model
we learned. Since we do not have a simulator for the sensor data of the airplanes equipments,
we evaluate the performance of our approach using a simple simulator of a system with mul-
tiple deteriorating components. To evaluate our maintenance policy on the airplane mainte-
nance problem, we compare the maintenance times in the historical dataset against what our
maintenance policy would have done.

We emphasize that all the steps of our approach are relatively easy to implement.

10.2 Formalizing the airplane maintenance problem

We consider a system on a horizon T ∈Z+. This system is composed of M equipments indexed
by m ∈ [M]. These equipments are subject to failures, and for τ ∈ [T], we denote by F m

τ the
binary random variable equal to 1 if a failure happens on equipment m at date τ. The sensor
signals are recorded, and we denote by Z m

τ the signals in Rk ×{0,1}k ′
with k,k ′ ∈N, recorded on

equipment m at date τ ∈ [T]. There are T maintenance slots scheduled on given (deterministic)
dates τt , with τt < τt+1 for every t ∈ [T]. On each maintenance slot, the decision maker chooses
to maintain at most K equipments. We denote by Am

t the binary random variable equal to 1 if
equipment m is maintained on slot t . At each maintenance slot, at most K equipments can be
maintained. Hence, the action

(
Am

t

)
m∈[M] on slot t belongs to the action space XA defines as

follows

XA =
{

a = (am)m∈[M] ∈ {0,1}M :
∑

m∈[M]
am 6K

}
. (10.1)

Maintaining equipment m costs cm
m , while a failure on this equipment costs cm

f . A maintenance

policy d is a conditional distribution of
(

Am
t

)
m∈[M] given

(
(Z m

τ ,F m
τ)τ6τt ,m∈[M], (Am

t ′)t ′<t ,m∈[M]

)
.

We denote byD the set of maintenance policies. The objective is to find a policy that minimizes
the expected cost

min
d∈D

E

(M∑
m=1

(
cm

f

T∑
τ=1

F m
τ + cm

m

T∑
t=1

Am
t

)∣∣∣d). (10.2)

The approach is data-driven: we do not have access to any model of the system, nor to any
simulator of the component, and we do not know if sensor signals provide enough information
to model the dynamic of the system. In particular, we do not have access to the probability
distribution on (Z m

τ)m∈[M], (F m
τ)m∈[M], and (Am

t)m∈[M], and therefore have no way to evaluate
the objective function of (10.2). We only have access to historical values taken by these random
variables on a previous horizon. As mentioned in Section 10.1, the historical dataset contains
a small number of failures. Hence, the probability distributions cannot be learned precisely.
Furthermore, since we cannot evaluate a policy using a simulator, such a policy must be inter-
pretable. Since Problem (10.2) is hard to solve, we propose to restrict the set of policies.

165

Chapter 10. Data-driven maintenance optimization

X 1
1

A1

X 1
2

A2

X 1
3

X 1
1

A1

X 1
1

A2

X 1
1

X 1
1

A1

X 1
2

A2

X 1
3

Comp. M

Z M
τ6τ1

Z M
τ6τ2

Z M
τ6τ3

. . .

.

Comp. 2

Z 2
τ6τ1

Z 2
τ6τ2

Z 2
τ6τ3

Comp. 1

S1
1

X 1
1

O1
1

A1

Z 1
τ6τ1

S1
2

X 1
2

O1
2

A2

Z 1
τ6τ2

S1
3

X 1
3

O1
3

A3

Z 1
τ6τ3

Mapping

Bayesian

φ1
φ2

. . .
φM

f̂ 1

. . .

δ

Figure 10.3 – A graphical representation of our approach using the notation introduced in Sec-
tion 10.2. First, the feature extractionφ from sensor data is represented by purple dashed arcs.
Second, the probabilistic dependences of our Gaussian HMMs are represented by blue plain
arcs for each equipment. Third, the mapping of our decision tree f̂ is represented by dotted
green arcs. Fourth, the policy of the decision maker is represented by red plain arcs. Dashed
arcs indicate a mapping. Plain arcs indicate the probabilistic dependences as for a Bayesian
network.

10.3 Modeling as a weakly coupled POMDP

In this section, we explain how to model the general maintenance problem (10.2) as a weakly
coupled POMDP and how to learn the weakly coupled POMDP parameters. Hence, using no-
tation of 3, we have to set

the value of Xm
S ,Xm

O ,Xm
A ,pm ,rm for m ∈ [M], and the value of XA . (10.3)

In the usual POMDP methodology, the observations Om
t are the outputs of the system directly

observed by the decision maker on the system, and the POMDP parameters p are learned from
a history of trajectories on Om

t , Am
t on each equipment m. On the contrary, in the content of

Problem (10.2), the decision maker observes time series Z m
τ in Rkm × {0,1}k ′m

and not observa-
tions in a finite set Xm

O . In order to turn the sensor data into observations in a finite set Xm
O , we

166

10.3. Modeling as a weakly coupled POMDP

use two successive mappings φm and f̂ m as follows.

(Rkm × {0,1}k ′m
)[0,τt] φm

−→ Rd m f̂ m

−→ Xm
O

(zm
τ)τ6τt 7−→ xm

t 7−→ om
t

First, we extract features X m
t in Xm

X := Rd m
from the times series (Z m

τ)τ6τt using a manually
defined φ (represented with dashed purple arcs in Figure 10.3). Second, we turn these fea-
tures into observations in a finite set Xm

O using a decision tree f̂ m (represented with dashed
green arcs on Figure 10.3) that we learn from the data. We will explain later how we define
Xm

O . We define the observation at time t as Om
t := (

f̂ m ◦φ)(
(Z m

τ)τ6τt

)
. To obtain a policy d for

Problem (10.2), we then proceed as follows. We learn the parameters θm of a weakly coupled
POMDP based on the history of the observations, and we compute an approximate policy δ for
the weakly coupled POMDP (see Chapter 5), and then retrieve a maintenance policy d for the
initial problem (10.2) using

d :=δ◦ f̂◦φ (10.4)

where f̂ = (f̂ 1, . . . , f̂ M) and φ= (φ1, . . . ,φM). In the remaining of this section, we explain how to
choose φm , and how to learn f̂ m , and finally how to set the weakly coupled POMDP parame-
ters (10.3).

Choice of features vector φm . We take in input the sensor signals time series that have been
selected by the maintenance experts as the most relevant ones. We then compute a moder-
ate number of features standardly used in predictive maintenance such as peak values, mean,
standard deviation, etc [63, 153]. We then select the most relevant features using the mainte-
nance expert knowledge. We end up with 10 to 50 features per equipment. Note that due to
the large amount of historical sensor data manipulated (typically for one flight and one equip-
ment there are 20 time series each containing 20000 data points), big data technologies must
be used. We use Spark [167].

Learning f̂ and the POMDP is more challenging, as we now detail.

Learning the decision tree f̂ m . We introduce a methodology to learn f̂ m , in such a way that
the partition of the feature spaceRd m

it realizes is informative about the dynamic of the system.
Our methodology is in two steps.

1. Learning HMM to predict the evolution of the feature vector X m
t . We compute X m

t =
φm

(
(Rm

τ)τ6t
)

on our learning dataset to obtain the trajectories followed by the different
features, and then we learn a Gaussian HMM (represented with blue arcs in Figure 10.2)
with nm

S hidden states to predict the evolution of the features X m
t using standard algo-

rithms. The number of states nm
S is chosen carefully.

2. Learning the decision tree f̂ m . On our learning dataset, we recompute the most probable
hidden state Ŝt

m
according to the HMM learned at the previous step, and we choose f̂ m

as follows: We train a decision tree to predict the most probable state Ŝm
t given X m

t . Since
we have a dataset of labeled data (X m

t , Ŝm
t), we do this by learning a decision tree using

standard CART algorithms [19].

167

Chapter 10. Data-driven maintenance optimization

We now provide details on each of these steps.

1. Learning the Gaussian HMM that models the features evolution. Following well-established
practice in the maintenance literature [51, 82] we use a Gaussian left-right HMM. Kim et al. [73]
show that Gaussian models are appropriate to predictive maintenance. Denote by p̃m the tran-
sition probability distribution of the Gaussian HMM of equipment m. We choose a number of
hidden states nm

S , and we set Xm
S := [nm

S]. The hidden state corresponds to the degradation
level. A left-right HMM is a HMM such that there exists an total ordering ≺ on Xm

S and for all
s, s′ ∈Xm

S , p̃m(s′|s) = 0 when s′ ≺ s. Left-right HMMs [125, Fig. 6] enable to model deteriorating
systems, since the assumptions on the transition probability distribution enable to model the
fact that a equipment cannot repair itself. We assume that the failure state sm

F is the maximal
element with respect to order ≺. Following the literature, we use the Baum-Welch Algorithm
[11] to learn the HMM parameters.

Remark 16. The number of hidden states nm
S is also a parameter. Like Le et al. [82], we choose

the value of nm
S that leads to the minimal value of the Bayes Information Criterion (BIC) [53,

Sec 7.7]. 4

2. Learning the decision tree f̂ m . Learning algorithms for decision trees require labeled data
input. We describe here how we label a sequence of features in Rd m

, x1, x2, . . . , xN . We use our
Gaussian HMM to predict the most probable sequence of hidden states ŝ1, ŝ2, . . . , ŝT using the
Viterbi algorithm [155]. This gives us a label ŝt to data point xt , for all t in [T]. Finally, we learn a
decision tree that predicts the value of the hidden state ŝt given the observation xt . We choose
to learn such a decision tree because each state inXm

S corresponds to a degradation state of the
equipment. Hence, our decision tree predicts the deterioration of the equipment. Let f̂ m be the
learned decision tree. It maps any continuous features to discrete states, i.e., f̂ m : Rd m → Xm

O
where Xm

O :=Xm
S is a finite space. We choose to use the CART (Classification And Regression

Trees) algorithm [19] to learn f̂ m . Numerical experiments show that the learned decision tree
has a satisfying accuracy.

Having estimated a Gaussian HMM and a decision tree for each equipment, we finally describe
how we set the weakly coupled POMDP parameters (10.3).

Setting the weakly coupled POMDP parameters (10.3). We already have defined Xm
S and

Xm
O on each equipment m. We use the action space XA ⊆ {0,1}M defined in (10.1), which has

the form (3.2) by setting Dm(a) = a for all a in {0,1} and b = 1.

Now we set the parameters pm for any equipment m. From step 1, we already have the probabil-
ity distributions P(S1), P(St+1|St) and the Gaussian law parameters of the emission probability
distributions. From step 2, we already have the learned decision tree f̂ . We set the following

168

10.3. Modeling as a weakly coupled POMDP

probability distributions.

pm(s′|s, a) :=P(
Sm

t+1 = s′|Sm
t = s, Am

t = a
)={

p̃m(s) if a = 1

p̃m(s′|s) otherwise

pm(o|s) :=P(
Om

t = p|Sm
t = s

)= E[1{ f̂ (X m
t)=o}|Sm

t = s
] (10.5)

(10.6)

for all s, s′ ∈ Xm
S , o ∈ Xm

O , a ∈ {0,1} and m ∈ [M]. Note that we assumed in (10.5) that when
a equipment has been maintained, the equipment is new. The right-hand side of (10.6) is an
integral over Rd m

, which is difficult to compute since the vector of features is not independent.
Therefore, we compute it using Monte-Carlo simulation.

Now we set the reward function. We associate a maintenance cost cm
m and a failure cost cm

f to
each equipment m. The individual immediate reward function can be written

r m(s, a, s′) =−1s′=sm
F

cm
f −1a=1cm

m ,

for all s, s′ ∈Xm
S , a ∈ {0,1} and m ∈ [M].

We solve Problem (10.2) using a maintenance policy d := δ◦ f̂ ◦φ, where δ is a solution of Pwc
ml

(see Section 3.2).

Discussion. When we cast Problem (10.2) as a weakly coupled POMDP we restrict ourselves
to maintenance policies of the form (10.4). This restriction enables to address several chal-
lenges.

First, due to the large dimension of the sensor data recorded on each flight we are not able to
manipulate it in machine learning algorithms. Hence, it requires the use of a feature function
φ to aggregate the collected time series Z m

τ into a vector of features X m
τ . Second, while model-

ing a maintenance problem using a POMDP with discrete observations is a common practice
in the literature, a major difficulty of our problem lies in the choice of f̂ m to make the ob-
servations interpretable and discrete. Indeed, since the policy of our weakly coupled POMDP
uses only the information in Om

t = (
f̂ m ◦φm

)(
(Z m

τ)τ6t
)
, this policy can be relevant only if f̂ m

is chosen in such a way that Om
t provides relevant information on how the system evolves. But

since the partition of Rd m
into nm

O subspaces realized by f̂ m does not correspond to a ground-
truth, there is no data from which it can be learned in a supervised learning way. Indeed, our
dataset is not labeled. One way to learn f̂ m would therefore be to use unsupervised learning
algorithms, but doing so, we have no way to indicate to the unsupervised learning algorithm
that f̂ m should partition Rd m

in such a way that the different clusters are informative on the
dynamic of the system. Therefore, we use the left-right HMM’s predictions that assign an in-
formative label to each feature vector X m

τ . Learning a decision tree based on this labeling then
make our approach combines interpretability and clustering.

An commonly used metric in predictive maintenance is the Remaining Useful Life (RUL), i.e.,
the time left before the next failure. We can evaluate the efficiency of our statistical model by
measuring the accuracy of the predictions of the RUL within a validation methodology, which
is commonly used in machine learning. However, our statistical approach is not a contribution

169

Chapter 10. Data-driven maintenance optimization

to machine learning. What matters is the efficiency of the maintenance policy in terms of re-
sulting saving costs and computation time. Nevertheless, as mentioned in the introduction of
this chapter, in addition to the Gaussian HMM predictions building automatically a decision
tree which gives an indicative label for each equipment corresponding to its degradation state
is a useful contribution for Air France.

10.4 Numerical results

At Air France, the maintenance decision leverages a manually designed decision tree, that takes
a continuous observation in input and returns a binary output {0,1}. A failure is diagnosed on
an equipment when the decision tree returns 1 and then a maintenance of the equipment is
suggested. We would like to compare our approach against this current practice. However,
we cannot evaluate it on real airline data for two reasons. First, we do not have an airplane’s
equipment simulator. Second, the historical dataset is censored, i.e., many equipments have
been maintained before failing [132]. Since we do not have an airplane’s component simulator,
we cannot evaluate the performance of our policy on real data. We evaluate our methodology
on a simulator of a deteriorating system with multiple components. Therefore, we construct
a simulator of a deteriorating system based on the predictive maintenance literature and we
reproduce the current practice on such a system. Then, we present the benefits of using our
policy over the current practice on such system.

We also give several results on the real dataset of Air France. We compare the past decisions
made by the current approach at Air France and what our policy would have done on the his-
torical dataset. Even if the results have to be analyzed cautiously, one can observe a significant
improvement over the current practice.

We use the library scikitlearn [118] for all machine learning algorithms. All linear programs
have been implemented in Julia with package JuMP [41] and solved using Gurobi 9.0 [52].
Experiments have been run on a server with 192GB of RAM and 32 cores at 3.30GHz. The code
used to perform the numerical results on simulated data can be found at the following link
https://github.com/Victor2175/maintenance_system.

10.4.1 Evaluating the policy using a simulator

System’s description

We want to simulate a mechanical system composed of M deteriorating components. Several
cracks are present in each component of the system. The deterioration of the component cor-
responds to the propagation of the cracks. Denote by Z m

τ ∈ Rd m
the noisy observation of the

crack depth in component m at time τ. We suppose that for each component m, the dimen-
sion d m has a moderate value (typically 36 d m 6 5) such that it does not require to perform
feature extraction or feature selection. It means that our feature vector is equal to the sensor
data at any time, i.e., X m

t := Z m
τt

. We assume that the crack depth in each component evolves
independently. A complete description of how we simulate the crack depth propagations in the
M components of a system is available in Appendix C.

170

https://github.com/Victor2175/maintenance_system

10.4. Numerical results

Evaluation of a policy on the simulated system. We simulate the system over a time-period
T with Tsim scheduled maintenance slots. We assume that the Tsim maintenance slots are pe-
riodically scheduled with interval time h, i.e., τt = t ×h is the time of maintenance slot t and
T = Tsim ×h. Each component starts at time τ= 0. At each maintenance slot t ∈ [Tsim], the de-
cision maker receives the observation Z m

τt
= X t ∈ Rd m

on each component m ∈ [M]. According
to a policy, if the decision maker maintains component m, then he pays the maintenance cost
cm

m . Otherwise, we let the system evolve until the next maintenance slot. If a failure happens
between two maintenance slots, we suppose that the failure is observed. Then, the decision
maker pays a failure cost cm

f . We assume that when a component fails, the decision maker pays
a failure cost and the component has been maintained.

Links with the Air France’s maintenance problem. The simulated system aims at reproduc-
ing the airplane’s maintenance problem. Indeed, the monitored equipments evolve indepen-
dently. Between two maintenance slots the airplane is used to operate flights as shown in Fig-
ure 1.1. At each flight τ, the airline has access to some sensor data corresponding to Z m

τ ∈ Rkm

for each equipment m ∈ [M]. These continuous observations are in practice very noisy. We
reproduce it in our simulator by adding a large noise to the crack depth measurements; see
Appendix C. When the airplane goes into maintenance slot t , the airline decides to maintain
at most K equipments. When a failure happens on an equipment between two maintenance
slots, the equipment has to be maintained. Otherwise, the airplane is not able to take off again,
which is what we mentioned in the last paragraph.

The system we simulate is a mechanical system. In the literature, the predictive maintenance
is much more used on mechanical systems than electrical systems. Most of the equipments
tracked by the airline are mechanical. It seems that there is no apparent reason that prevents
the methodology of working in practice on electrical components of airplane. However, it re-
quires a deeper work on the feature extraction step.

Reproducing the airline’s maintenance policy. The airline’s practice in industry is based on
a decision tree with a binary output {0,1}. A component is maintained when the output of the
decision tree is 1. We reproduce here such a policy for our system. Let g m be a decision tree that
takes as input a continuous observation xm in Rd m

for all component m in [M], and returns a
binary output in {0,1}. The decision maker computes the vector (g m(xm))m∈[M]. We maintain
at most K components satisfying g m(xm) = 1. Thus, we introduce the set of components that
should be maintained M r ,

M r = {m ∈ [M] : g m(xm) = 1}.

If |M r | < K , then we maintain all component m in M r . Otherwise, we select the component m
in M r with the K highest failure cost cm

f . Algorithm (6) describes how we reproduce the airline’s
current practice.

171

Chapter 10. Data-driven maintenance optimization

Algorithm 6 Airline’s maintenance policy at a given time t

1: Input Decision trees g m , observations xm for all m in [M].
2: Compute vector

(
g m(xm)

)
m∈[M].

3: Compute Mr = {m ∈ [M], s.t. g m(xm) = 1}.
4: if |M r |>K then
5: Sort the components m1, . . . ,m|M r | such that cm1

f > . . .> c
m|Mr |
f .

6: Maintain components m1, . . . ,mK .
7: else
8: Maintain all components in M r .
9: end if

In Appendix C, we explain how we reproduce the airline’s binary decision trees g m for all m in
[M], using our simulator.

Numerical results. We apply our approach on the simulated system and we evaluate our pol-
icy against the current practice corresponding to Algorithm 6. We consider:

• our implicit policy (5.14) embed in the rolling horizon heuristic detailed in Algorithm 3
(Alg. 3) for different rolling horizons Tr = 1,2,5

• the current practice in industry (Alg. 6)

Note that when Tr = 1, Algorithm 3 becomes a greedy heuristic because the decision maker
takes the action minimizing the expected costs over one time step. We evaluate each policy on
different number of components M ∈ {3,5,10,15,20}. For each value of M , we set the mainte-
nance capacity K := bM+1

3 c. This choice is arbitrary but it enables to keep a fixed proportion
regarding to the number of components M . We set the interval maintenance time between the
maintenance slots h = 30∆t , where ∆t = 1 is the discretization time step of our simulator. We
also set the number of scheduled maintenance slots Tsim = 200. For each value of M , we ran-
domly draw 10 instances as described in Appendix C, where an instance corresponds to a set
of parameters that fully describe a system. For each instance, we evaluate a policy 100 times,
each time over the 200 time steps. In total, for each value of M , a policy is evaluated 1000 times.
For each policy evaluation, we count the total cost and the number of failures at the end of the
period. In addition, we calculate the mean time to take a decision during the evaluation, i.e.,
the mean computation time over the 200 time steps. As mentioned in Remark 16, the number
of states |Xm

S | of the learned Gaussian HMMs is carefully chosen using the Bayes Information
Criterion. For every instances, we obtain 36 |Xm

S |6 10 for each component m.

Table 10.1 summarizes the results obtained. The first column indicates the number of com-
ponents M . The second column indicates the policies used. Finally, the last three columns
provide the policy computation time (Time), the value of objective function (Obj.) expressed
as the percentage of cost saving over the airline’s policy, and the number of failures (Fail.). All
these quantities are averaged over the 1000 policy evaluations.

The results in Table 10.1 show that the maintenance policy of Algorithm 3 outperforms the air-
line’s maintenance policy in terms of costs or failures, which is what we expected. In addition,
we observe that using Algorithm 3 with Tr = 1 already strongly outperforms the Air France’s

172

10.4. Numerical results

M K Policy Time (s) Obj (%) Fail.
3 1 Airline - - 10.0

Alg. 3, Tr = 1 0.001 54.2 2.3
Alg. 3, Tr = 2 0.010 54.8 1.6
Alg. 3, Tr = 5 0.100 57.9 1.0

5 2 Airline - - 19.6
Alg. 3, Tr = 1 0.003 55.7 4.0
Alg. 3, Tr = 2 0.020 52.8 2.5
Alg. 3, Tr = 5 0.290 57.3 1.6

10 3 Airline - - 35.2
Alg. 3, Tr = 1 0.004 53.5 7.9
Alg. 3, Tr = 2 0.030 50.6 5.4
Alg. 3, Tr = 5 1.200 53.3 4.3

15 5 Airline - - 49.7
Alg. 3, Tr = 1 0.008 49.2 12.6
Alg. 3, Tr = 2 0.050 42.8 8.7
Alg. 3, Tr = 5 2.000 47.5 6.1

20 7 Airline - - 69.4
Alg. 3, Tr = 1 0.006 55.1 14.4
Alg. 3, Tr = 2 0.040 47.2 9.3
Alg. 3, Tr = 5 4.700 49.7 5.2

Table 10.1 – Numerical results on the simulated system averaged over the 1000 policy evalua-
tions. The figures in bold indicate the best performances.

maintenance policy, and using a larger horizon gives almost the same total costs as Algorithm 3
with Tr = 5. Unfortunately, we are not able to explain precisely this phenomenon. But we try to
give some explanations.

This phenomenon can be due to the fact that the weakly coupled POMDP parameters can be
not well estimated for some instances. Indeed, the Gaussian HMM parameters are obtained by
running the Baum-Welch algorithm, which usually reaches an local optimum of the likelihood
instead of an global optimum. Depending on the initial conditions of the algorithm, this local
optimum may lead to bad predictions. When we use Algorithm 3, the larger the rolling horizon
Tr, the worse the predictions. Informally, it means that “if the predictions are not good for the
next time step, then they will be worse over 2 or more time steps.” However, one can observe
that the number of failures is significantly lower when we use a larger rolling horizon Tr, which
means that the resulting maintenance policy is more preventive than with Tr = 1. These results
emphasize that our maintenance policy strongly depend of the quality of the estimation of the
HMM parameters. When the number of components grows, if more than one component has
HMM parameters giving poor predictions, the maintenance policy can be worse.

10.4.2 Evaluating the policy on Air France real data

We present here some numerical results on data of Air France’s maintenance problem. Since
we cannot simulate the equipment’s evolution over time, we propose an alternative method to
evaluate our maintenance policy (5.14). We compare the past maintenance decisions against
what our policy would have done. In our case, we have access to the sensor data of two equip-
ments (M = 2) and the corresponding maintenance dates.

173

Chapter 10. Data-driven maintenance optimization

Maintenance date

Apply our policy

Figure 10.4 – Scheme of the evaluation of our maintenance policy. The black points indicate
the flight legs. The red point corresponds to a flight leg.

Handling the dataset, which contains all the sensor data, requires to use a Big Data processing
engine. We choose to use Spark [167].

Evaluation of the maintenance policy. We compare what our maintenance policy would
have done on the historical dataset against the past maintenance decisions of Air France. The
available information are the maintenance dates of each equipment. When an equipment has
been maintained, we know if the equipment has failed or not. However, as mentioned before,
the data do not contain the exact failure dates.

At each flight τ, we compute what our policy would have suggested on (Z m
τ)m∈[M]. We com-

pare the maintenance dates and the first flight when our policy would have suggested a main-
tenance. Figure 10.4 shows the scheme of the evaluation of our policy on the dataset. If the
maintenance is a consequence of a failure, then we expect that the first maintenance sugges-
tion would have appeared before the maintenance slot.

Numerical results on the AirFrance’s dataset. By applying the policy evaluation scheme 10.4,
we compare the maintenance dates and the dates where our maintenance policy would have
suggested to maintain the equipment. Figure 10.5 illustrates our maintenance evaluation scheme
on two different airplanes. After each flight, we apply our maintenance policy and the rising
edges of the blue (resp. red) dashed line indicate when it suggests to maintain the equipment 1
(resp. 2). The sizes of the state space and the observation space we obtain by using the method-
ology of Section 10.3 are |Xm

S | = |Xm
O | = 8 for every m in {1,2}. Hence, the sizes of the state space

and of the observation space of the full system are |XS | = |XO | = 64 and the size of the action
space is |XA| = 3.

A maintenance date of an equipment (vertical plain line in Figure 10.5) does not necessary in-
dicate that the equipment failed. Indeed, in most of the cases the maintenances are preventive
and the equipment has not failed when it it maintained. When a failure has been diagnosed
in maintenance, it means that Air France’s approach did not predict it in advance. To evaluate
our maintenance policy, we count the percentage of failures such that our maintenance pol-
icy would have suggested to maintain the equipment before the corresponding maintenance
dates, among those that have been diagnosed in maintenance. We denote by fm

Tr
such a percent-

age for equipment m and obtained by using Algorithm 3 with rolling horizon Tr. On the whole
fleet, we count 10 diagnosed failures for each equipment. Table 10.2 reports all the values of
fm
Tr

obtained on the whole fleet. The first column indicates the rolling horizon Tr we use in our
policy. The second and third columns indicate respectively the values of f1

Tr
and f2

Tr
. Finally, the

last column indicates the averaged computation time (Comp. Time) to take a decision at each
flight.

174

10.4. Numerical results

(a) Algorithm 3 with Tr = 2. (b) Algorithm 3 with Tr = 2.

(c) Algorithm 3 with Tr = 5. (d) Algorithm 3 with Tr = 5.

(e) Algorithm 3 with Tr = 10. (f) Algorithm 3 with Tr = 10.

Figure 10.5 – An example of the application of our maintenance policy on two airplanes (one for
each column) of Air France’s dataset. The horizontal axis represents the flights. The blue (resp.
red) plain vertical lines indicate the flights after which a maintenance has been performed on
equipment 1 (resp. equipment 2). The blue (resp. red) dashed lines represent the maintenance
suggestion of our maintenance policy for equipment 1 (resp. equipment 2). The rising edges of
the dashed lines indicate when our maintenance policy would have suggested to maintain the
equipment.

175

Chapter 10. Data-driven maintenance optimization

Rol. horizon f1
Tr

(%) f2
Tr

(%) Comp. Time (s)

Tr = 1 00 10 0.006
Tr = 2 30 20 0.030
Tr = 5 30 20 0.620
Tr = 10 30 40 2.700

Table 10.2 – Numerical values of fm
Tr

for the whole fleet.

Note that these results have to be considered carefully because we do not know when the failure
happens exactly, which means that our maintenance policy could have suggested to maintain
an equipment that has already failed. Table 10.2 shows that our policy would have avoided
several failures and outperforms Air France’s policy. Since the results obtained are at least as
good as Air France’s results, we can reasonably say that the learned decision tree that predicts
the state of the equipment is efficient. It is also a contribution for Air France. In addition, one
can observe that the computation time is always below several seconds, which is an advantage
for Air France.

10.5 Bibliographical remarks

A data-driven maintenance optimization approach learns a statistical model from the available
data, and, leverages it to derive an optimized maintenance decision when new data becomes
available. The tools we used to build the statistical model, feature extraction, HMMs and deci-
sion trees, are known in the predictive maintenance literature. Kim et al. [72] proposed a similar
data-driven methodology on the maintenance of heavy hauler truck used in mining industry
and they showed that their approach enables to save 34% of the cost with respect to the current
practice.

Since our approach uses some tools from different research areas, we divide the literature re-
view in two sections. First, we review the current practice on the feature extraction, the HMMs
and the decision trees in predictive maintenance. Second, we review the use of POMDP in
maintenance. We add here bibliographical remarks about the three steps to build the statisti-
cal model described in this chapter: features extraction, Hidden Markov Model and decision
tree.

Features extraction is a common technique in machine learning to reduce the dimension
of data by aggregating the input data in a finite set of features. The resulting dimension is the
number of features. For an overview of feature extractions and signal processing with main-
tenance sensor data, see for instance Tsui et al. [153, Sec 2.1], Jouin et al. [63, Sec 4.1.2] or
Gouriveau and Zerhouni [51, Chapter 3]. In order to keep the most relevant features, Javed
et al. [61] propose an approach based on the notion of feature predictability, i.e., the ability of a
feature to be predicted by a state-of-the-art time series prediction algorithm. In particular they
show that the more predictable the features, the better the failure predictions. We choose to
stick to the predictive maintenance literature. We compute a moderate number of simple fea-
tures for time series [153, Table 1] such that we obtain observations in Rd , where d is between
10 and 50.

176

10.5. Bibliographical remarks

Hidden Markov Model (HMM) is one of the main tools to model a component’s evolution
with observations in Rd . The component’s degradation is modeled as a hidden Markov chain
in a finite state space, and we assume that at each time the continuous observation in Rd de-
pends on the current hidden state. An HMM is parameterized by its conditional probability
distributions. This modeling has been widely used in maintenance industry [82, 142, 151, 160].
In particular, HMMs are appreciated in such a context due to their ability to predict the Remain-
ing Useful Life (RUL) [161]. It is for this reason that HMMs lie in the broad class of prognostic
methods [60]. Like Le et al. [82], we model the evolution of the continuous observations in Rd

using a Gaussian HMM. However, an expert cannot interpret the RUL’s predictions made by
the HMM. Hence, it requires to make the HMM’s observations interpretable by a maintenance
expert using a decision tree.

Decision trees are widely used in the industry to detect failures. Given a vector of features
in Rd in input, it returns a discrete label, which corresponds to a failure risk cluster of the sys-
tem. As mentioned before, the decision trees are appreciated in the industry because they are
interpretable [39, 47]. While in the airline industry the decision trees are hand designed by
maintenance experts, machine learning algorithms allow to learn decision trees that can be in-
terpreted as decision trees [134]. Decision tree learning approaches have been used in various
maintenance applications [26, 131, 150]. In all of them, the decision trees are learned using a
training dataset with labeled data, and algorithm C4.5 or CART [19, 53]. For each observation
in the dataset, a label indicates the presence of a failure and the decision tree aims at predicting
this label.

177

11 Conclusion

As a conclusion, we summarize the main contributions of this thesis, and outline some research
directions suggested by our results. Our work was applied to the case of Air France, which was
our partner during the thesis.

11.1 Main contributions

In this dissertation, we have developed algorithms for stochastic optimization problems in-
cluding the Partially Observable Markov Decision Process problem and the maximum expected
utility problem in influence diagrams. The first and second parts are mainly theoretical and in-
troduce mathematical programming formulations to solve these stochastic optimization prob-
lems. The third part applies one of these algorithms to solve the airplane maintenance problem
at Air France.

Part I introduces a generic predictive maintenance problem with capacity constraints. We
consider a system with several components, each of them evolving independently over time.
At each maintenance slot, based on an observation of each component the decision maker
chooses which components to maintain. The actions taken on each component are linked by
the capacity constraints. This choice is modeled using a memoryless policy that maps a vector
of observations to an action. The objective is to choose a memoryless policy minimizing the
expected failure costs and maintenance costs over a finite horizon. This problem lies in the
broad class of weakly coupled dynamic programs [2, 55]. An additional feature of our problem
comes from the fact that the components are partially observable. While modeling the deterio-
ration of a component using a POMDP is standard in the literature [1, 42, 91], we introduce the
weakly coupled POMDP that models a system with several components, each of them evolving
independently as a POMDP. We emphasize the modeling power of the weakly coupled POMDP
on several practical problems.

To provide a good policy for the weakly coupled POMDP, we made several contributions for the
POMDP problem with memoryless policies, which is NP-hard. First, we proposed an mixed-
integer linear program that gives an optimal memoryless policy for POMDP. The variables of
this MILP are the marginal probability distributions of the random variables, and the con-
straints are the ones satisfied by a joint probability distribution over the random variables. Sec-
ond, based on a probabilistic interpretation of the dependences between the random variables,

179

Chapter 11. Conclusion

we introduced valid inequalities for our MILP that improve its resolution. The numerical re-
sults in Chapter 4 show that these valid inequalities tighten significantly the linear relaxation.
Third, we show how to relate the value of our MILP to the value of the usual POMDP where
the actions are taken based on the history of actions and observations. We evaluate the per-
formances of memoryless policies on several POMDP instances from the literature over finite
horizon. The numerical results show that the memoryless policies perform well on a large part
of the instances, including those corresponding to maintenance problems.

Like weakly coupled dynamic programs, the weakly coupled POMDPs suffer from the curse
of dimensionality because the sizes of the state space and the observation space of the full
system are exponential in the number of components. Even encoding a memoryless policy is
intractable. To overcome this issue, we introduce an MILP containing a polynomial number
of variables and constraints, which breaks the curse of dimensionality, and we give theoretical
guarantees on its optimal value by playing with different “probabilistic” approximations. In
particular, like [2] for the weakly coupled dynamic programs (or weakly coupled MDPs) we use
the Lagrangian relaxation approach to derive a tractable upper bound. In Chapter 5, we illus-
trate the quality of our approximation on instances of multi-armed bandit problems. Leverag-
ing this MILP, we define a feasible policy of the weakly coupled POMDP that provides satisfying
results for the predictive maintenance problem with capacity constraints in Chapter 10.

Part II focuses on stochastic optimization problems including MDPs and POMDPs where the
uncertainty satisfies some structure of influence diagram. Chapter 6 describes our main results
for influence diagrams, which generalize the integer programs of Part I on POMDPs to influence
diagrams. We introduce linear programming and MILP approaches for the maximum expected
utility problem in influence diagrams. The variables of the programs correspond to the collec-
tion of vector of moments of the distribution on subsets of the variables that are associated to
vertices of a new kind of junction tree, which we call an rooted junction tree. We have also pro-
posed algorithms to build rooted junction trees tailored to our linear and integer programs. In
Chapter 8 we proposed an MILP approach to solve the maximum expected utility problem on
influence diagrams together with valid cuts. Again, these valid cuts are based on a probabilistic
interpretation and the numerical experiments in Chapter 8 show that the bound obtained with
this linear relaxation is indeed better in practice than without these inequalities.

In Chapter 9, we study soluble influence diagrams [81], which are influence diagrams whose
maximum expected utility problem is easy, in the sense that it can be solved by the algorithm
“single policy update”(SPU). We show that for soluble influence diagrams the maximum ex-
pected utility problem can also be solved exactly via our linear programs. Furthermore, we
characterized soluble influence diagrams as the influence diagrams for which there exists a
junction tree such that the set of possible vectors of moments on the vertices of the tree is
convex for any parameterization of the influence diagram. The bound provided by the linear
relaxation is better than the bound that could be obtained using SPU on a soluble relaxation.

Part III focuses on the airplane maintenance problem at Air France. While the predictive main-
tenance problem with capacity constraints formalized in Part I considers discrete observations,
the decision maker of the airplane maintenance problem has access to sensor data recorded
during flights. We describe a statistical methodology to cast this airplane maintenance prob-
lem as a weakly coupled POMDP problem. In particular, based on a dataset of sensor data we

180

11.2. Research directions

explain how we estimate the POMDP parameters of each equipment of the airplane. One of the
main advantages of our approach is that all its steps are interpretable by maintenance experts,
which means that the observations of the POMDPs are the output of a decision tree. Since we
do not have access to a simulator of the sensor data, we evaluate our weakly coupled POMDP
policy using a simulator of a system with several deteriorating components, which is built from
the literature. In addition, we compare what our maintenance policy would have suggested in
the historical dataset against Air France’s decisions. In both cases, the numerical experiments
show that our weakly coupled POMDP policy outperforms the one used by Air France.

Along this thesis, we developed the ideas on influence diagrams and detailed them in the fol-
lowing published paper.

Axel Parmentier, Victor Cohen, Vincent Leclère, Guillaume Obozinski and Joseph Salmon. In-
teger Programming on the Junction Tree Polytope for Influence Diagrams. INFORMS Journal
on Optimization, 2(3):209–228, 2020

All the mathematical programs with the value function variables came later, and Part II extends
the content of this paper. Some of the results on POMDPs in Chapter 4 have been partially
detailed in the following preprint.

Victor Cohen and Axel Parmentier. Linear Programming for Decision Processes with Partial
Information. arXiv preprint arXiv:1811.08880, 2018

Articles based on the results of Part I and Part III are currently being finalized.

11.2 Research directions

We now highlight some research directions raised by our work on POMDPs and the influence
diagrams.

In Chapter 5, we introduced different integer programs with theoretical guarantees for the
weakly coupled POMDP. In particular, most of these approximations are based on a surro-
gate modeling of the linking capacity constraints. However, as we observe in the numerical
experiments of multi-armed bandit instances, the integer programs become difficult to solve
when the size of the state spaces and observation spaces increase. We could investigate a
Branch-and-price algorithm based on the Dantzig-Wolfe decomposition of the integer pro-
grams. Leveraging the column generation approach, this algorithm would give an optimal so-
lution of MILP (5.1) and could be efficient on large scale instances.

We are currently working on an approximate integer formulation for (Pwc
ml) using the value func-

tion variables. The resulting formulation could be a generalization of the ones of Adelman and
Mersereau [2] to weakly coupled POMDPs.

In Part II, we proposed mathematical programming approaches for solving the maximum ex-
pected utility problem in influence diagrams. Two elements limit the scale of the problems that
can be dealt with using our approach. First, we use exact inference, which limits the applicabil-
ity to models with small treewidth. Second, rooted junction trees may contain clusters larger
than those of standard junction trees. A possible way to overcome these limitations in future
works would be to develop mathematical programming heuristics for influence diagrams that

181

Chapter 11. Conclusion

use variational inference instead of exact inference. Several works in graphical models that pro-
pose linear programming approaches for variational inference could be investigated [148, 149].
We are working on a method to use inference techniques such as Bethe entropy approxima-
tion [156, Chapter 4] for influence diagrams.

We are also working on a distributionally robust version of the maximum expected utility prob-
lem in influence diagrams. In Part II, we assumed that the conditional probability distributions
of the chance vertices p = (pv |pa(v))v∈V s are known by the decision maker. However, in prac-
tice these parameters are not always available. Indeed, the decision maker has usually access
to N realizations of the random variables of the influence diagrams (X i

V)i=1,...,N . Based on this
dataset, the usual approach we used for the airplane maintenance problem at Air France is to
compute approximate parameters p̂ and then to find a feasible strategy δ of the maximum ex-
pected utility problem. However, as we observe in the numerical experiments of Section 10,
such an approach may give misleading strategies with poor results. To overcome this issue, we
suggest to study the following distributionally robust optimization problem

max
δ

min
p∈N (p̂)

Ep,δ
[∑

v∈V r

rv (Xv)
]
,

where the expectation is taken according to the probability distribution Pp,δ and N (p) de-
fines a neighborhood around the estimate p̂. This type of distributionally robust optimization
problems have received interest in the last decades [36, 45, 126] for problem with exogenous
noises. In influence diagram problems, the decisions and the “nature” are not independent.
Recently, several works have proposed theoretical studies for robust MDPs [163] and robust
POMDPs [163]. We wish to extend our mathematical programming approaches for this robust
version of the maximum expected utility problem with theoretical guarantees.

182

PartAppendix

183

A Examples where zIP < v∗
ml or zIP > v∗

ml

In this section, we describe two instances showing respectively that MILP (5.1) is neither an
upper bound nor a lower bound. We denote by zIP the optimal value of MILP (5.1).

A.1 The inequality zIP6 v∗
ml does not hold in general

Consider a weakly coupled POMDP with M = 2, K = 1, X 1
S =X 2

S = {1,2,3}, and X 1
O =X 2

O = {1,2}.
We set the following initial probability data,

p1(·) =
[

0.0286 0.4429 0.5284
]

, p2(·) =
[

0.5328 0.2202 0.2469
]

,

the following transition probability data,

p1(·|·,0) =

0.3149 0.2598 0.4253
0.2542 0.5195 0.2263
0.2016 0.7551 0.0433

, p2(·|·,0) =

0.6833 0.1797 0.1371
0.0398 0.9207 0.0394
0.1422 0.2202 0.6376

,

p1(·|·,0) =

0.3849 0.2891 0.3260
0.4462 0.1346 0.4192
0.0418 0.5297 0.4285

, p2(·|·,1) =

0.4665 0.0956 0.4379
0.4510 0.5168 0.0322
0.5864 0.2903 0.1234

,

the following emission probability data,

p1(·|·) =

0.6823 0.3177
0.0806 0.9194
0.5018 0.4982

, p2(·|·) =

0.4389 0.5611
0.6657 0.3343
0.1207 0.8793

,

and the following reward data

r 1(·,0, ·) =

3.3101 7.8198 6.9773
2.0722 2.6782 3.5715
8.4428 2.6010 3.2765

, r 2(·,0, ·) =

2.9600 8.1503 4.5911
2.2638 6.0290 2.5511
8.0789 7.9927 5.0259

,

r 1(·,1, ·) =

1.9315 9.3614 2.8927
4.8769 5.3131 7.3626
3.7944 4.5557 8.6462

, r 2(·,1, ·) =

6.2647 6.6832 1.1263
9.9182 9.0278 5.9492
9.8333 0.4466 4.3798

.

185

Appendix A. Examples where zIP < v∗
ml or zIP > v∗

ml

Solving Pwc
ml with T = 4 using MILP (4.7) on XS , XO and XA , we obtain an optimal value of

v∗
ml = 44.7122, while the optimal value of our MILP (5.1) is zIP = 44.2834. Hence, we obtain

zIP < v∗
ml. Therefore, v∗

ml6 zIP does not hold in general.

A.2 The inequality zIP> v∗
ml does not hold in general

Consider a weakly coupled POMDP with M = 2, K = 1, X 1
S =X 2

S = {1,2,3}, and X 1
O =X 2

O = {1,2}.
We set the following initial probability data,

p1(·) =
[

0.4311 0.5255 0.0434
]

, p2(·) =
[

0.4835 0.1745 0.3421
]

,

the following transition probability data,

p1(·|·,0) =

0.1517 0.3481 0.5002
0.1639 0.0922 0.7439
0.3395 0.2385 0.4220

, p2(·|·,0) =

0.3435 0.3291 0.3274
0.5964 0.1653 0.2383
0.3968 0.2626 0.3406

,

p1(·|·,1) =

0.3467 0.2733 0.3800
0.5027 0.3548 0.1425
0.2530 0.5466 0.2003

, p2(·|·,1) =

0.3160 0.4210 0.2630
0.3583 0.3882 0.2535
0.3611 0.4308 0.2081

,

the following emission probability data,

p1(·|·) =

0.2052 0.7948
0.8296 0.1704
0.5330 0.4670

, p2(·|·) =

0.6273 0.3727
0.0392 0.9608
0.4024 0.5976

,

and the following reward data

r 1(·,0, ·) =

7.0075 6.2135 8.4122
9.7198 9.5152 2.6182
1.8522 7.4390 4.9132

, r 2(·,0, ·) =

8.7418 2.6682 2.5227
8.7673 6.1198 6.4814
6.4971 3.8810 0.3476

,

r 1(·,1, ·) =

2.8154 7.0215 1.6752
7.8149 0.7849 4.3722
5.9378 9.1273 1.1657

, r 2(·,1, ·) =

7.4528 8.5013 9.1925
4.3003 2.0946 4.2973
4.2865 0.8470 9.5848

.

Solving Pwc
ml with T = 4 using MILP (4.7) on XS , XO and XA , we obtain an optimal value of

v∗
ml = 47.3693, while the optimal value of our MILP (5.1) is zIP = 47.7356. Hence, we obtain

v∗
ml < zIP. Therefore, v∗

ml> zIP does not hold in general.

186

B Algorithm to build a small RJT

In this appendix we present an algorithm to build a RJT without considering a topological or-
dering on the initial graph G = (V , A).

The only difference between Algorithms 4 and 7 is that the for loop along a reverse topological
ordering of Algorithm 4 is replaced in Algorithm 7 by a breadth first search that computes on-
line this reverse topological ordering. Hence, if we denote 4 this ordering, Algorithm 7 builds
the same RJT as the one we obtain when we use Algorithm 4 with4 in input. Therefore, the RJT
built by Algorithm 7 satisfies 7.6, and is such that the implications in (7.7) are equivalence.

Furthermore, Steps 5 and 6 enable to ensure that, when there is no path between a vertex u ∈V a

and a vertex v ∈ V s, then u is placed before v in the reverse topological ordering computed by
the breadth first search. Therefore, 4 is a topological ordering on the graph G ′′ used as Step 9
of Algorithm 5. Hence, if G is soluble, Algorithm 7 builds a RJT such that G⊥⊥=G .

Remark that on non-soluble IDs, Steps 5 and 6 are a heuristic aimed at minimizing the size of
C⊥⊥

v for each v in V s. Such a heuristic is not relevant if valid cuts (6.7) are not used. In that case,
an alternative approach could be to add as few variable as possible to Cv for v in V a to improve
the quality of the soluble relaxation G . This could be done by putting vertices u in V s unrelated
to v ∈V a after in this topological order, i.e., by replacing V a by V s in Steps 5 and 6.

187

Appendix B. Algorithm to build a small RJT

Algorithm 7 Build a RJT

1: Input G = (V ,E)
2: Initialize C =; and A′ =;
3: L = {v s.t chG (v) =;}
4: while L 6= ; do
5: if V a ∩L 6= ; then
6: Pick v ∈V a ∩L
7: else
8: Pick v ∈ L
9: end if

10: Cv ← fa(v)
11: for Cx ∈ C : v ∈Cx do
12: Cv ←Cv ∪ (Cx \{x})
13: Remove Cx from C
14: Add {v, x} in A′

15: end for
16: Add Cv to C
17: Remove v from G and recompute L
18: end while
19: A← {(Cu ,Cv) | (u, v) ∈A′}
20: Return G = ((Cv)v∈V ,A)

188

C Deteriorating system’s simulator and
decision trees

In Section C.1 of this appendix we describe the system we simulate to evaluate the perfor-
mances of our maintenance policy in Chapter 10. In Section C.2, we explain how we reproduce
the Air France’s practice for the system we simulate.

C.1 Simulator’s description

Fatigue Crack Growth (FCG) models the appearance and propagation of a crack within a
bearing. It is a widely used model in the predictive maintenance literature [31, 82, 109, 161] to
simulate a deteriorating system. Each coordinate k ∈ [d] of the crack depth yk evolves accord-
ing to the following Paris-Erdogan differential equation [115]

dyk

dt
=C (βeγ

√
yk)n (C.1)

where C and n are parameters depending on the material property, β is the base stress level of
the component and γ determines the extra stress level of the component. This latter parameter
depends on the environment state. The greater γ is, the faster the crack propagates.

Simulation We simulate the cracks in a component with FCG model where the extra stress
level is a random variable. Let Γi be such random variable at time i . The system’s extra stress
level transits randomly from Γi = γ to Γi+1 = γ′ with probability pΓ(γ′|γ) for all γ,γ′ ∈ XΓ. We
assume that the crack propagation rate stagnates or increases:

pΓ(γ′|γ) = 0 if γ′ < γ (C.2)

We combine this model with the discretization scheme detailed in Le et al. [82] of Equation (C.1).
Let γi and (yk

i)16k6d be respectively the extra stress level and the crack length at time i :

Γi+1 ∼ pΓ(.|γi)

yk
i+1 = yk

i +eWi+1C

(
βeΓi+1

√
yk

i

)
n∆t

(C.3)

189

Appendix C. Deteriorating system’s simulator and decision trees

Figure C.1 – Example of the crack depth propagation in a component along one dimension.
The simulation is obtained according to Scheme (C.3). Horizontal axis represents the time in
days. The left and right vertical axis respectively represent the crack depth in cm and the extra-
stress level range. The red and blue curves respectively correspond to the crack depth yi and
the noisy crack depth xi . The green curve represents the evolution of the extra stress level γi

over time. The black horizontal line represents the critical threshold yc.

where Wi ∼N (0,Σw), Σw ∈Rd×d , and ∆t represents the discretization time step of the scheme.
Note that the stochasticity of scheme (C.3) comes from Wi and Γi . We assume that the compo-
nent fails when the crack length reaches a critical threshold yc. Hence, a failure happens at i
when there is at least one coordinate k ∈ [d] such that Y k

i > yc.

Since we have noisy measurements Xi of the crack depth Yi , we add a white noise:

Xi = Yi +ξ

where ξ ∼ N (0,Σξ) with Σξ ∈ Rd×d is a measurement error. Figure C.1 shows an example of
trajectory generated using the discretization Scheme (C.3) with parameters selected as detailed
below.

Parameter settings of a simulation Given a number of component M , the maintenance ca-
pacity K and the interval time between two maintenance slots h, we describe how we set the
parameters of a simulation. First we set the maintenance costs C m

R and the failure costs C m
F

such that C m
F = 10 ×C m

R for each component m ∈ [M]. Second, we set the parameters of
Scheme (C.3): yc, ∆t , C , n, β, Σw , Σξ, the transition probabilities pΓ and the space XΓ. For
each component, we choose the same critical threshold yc = 100cm and same discretization
time step ∆t = 1 as Le et al. [82]. Since each component m ∈ [M] evolves independently, we
set a combination of parameters C m , nm , βm , Σm

w , Σm
ξ

, Xm
Γ and pm

Γ . We randomly draw scalar
parameters in their respective range C m ∈ [0.001,0.1], nm ∈ [1,2], βm ∈ [0.5,1.5]. Then, we set
the parameters of probability distributions. Like Le et al. [82], we randomly draw a covariance
matrix Σm

w such that
∣∣Σm

w

∣∣= 1.7. As mentioned above the data are in practice very noisy, hence
we set a large Frobenius norm value for Σm

ξ
. We randomly draw a covariance matrix Σm

ξ
such

190

C.2. How to reproduce a binary decision tree of AirFrance’s practice.

that
∣∣∣Σm

ξ

∣∣∣= 100. Finally, we randomly draw the size of the finite space |Xm
Γ | in {5, . . . ,15} and the

transition probabilities pm
Γ satisfying (C.2). Then we split interval [0,1.2] into |Xm

Γ |−1 intervals

and we set Xm
Γ =

{
1.2k

|Xm
Γ |−1 , k = 0, . . . , |Xm

Γ |−1
}

.

C.2 How to reproduce a binary decision tree of AirFrance’s practice.

Now, we describe how we learn the binary decision trees g m used in Algorithm 6, for any com-
ponent m ∈ [M]. For convenience, we omit the index m in the rest of this section.

Labeling the data. Let y1, . . . , yT ∈Rd be the crack depth evolution generated according to (C.3)
until a failure. Therefore, y i

T > ycr i t i c for at least one i in [d]. Let q i be the 90-th percentile of
the i-th coordinate of the crack depth. For each data point yt , we affect a binary label zt ∈ {0,1}
as follows

zt =
d∏

i=1
1y>qi (y i

t) (C.4)

Hence, zt indicates the early stages of a failure.

Learning the decision tree. Given a sequence y1, . . . , yT in Rd generated according to (C.3),
we compute the corresponding sequence of labels z1, . . . , zT in {0,1} using (C.4). We generate
a large number of sequences and we compute the corresponding sequence of labels. Then,
we use the CART Algorithm [19] to learn a decision tree g : Rd → {0,1} that takes in input the
observation xt ∈Rd and in output the label zt ∈ {0,1}.

191

Bibliography

[1] Abderrahmane Abbou and Viliam Makis. Group maintenance: A restless bandits ap-
proach. Journal on Computing, 31:719–731, 2019.

[2] Daniel Adelman and Adam J. Mersereau. Relaxations of weakly coupled stochastic dy-
namic programs. Operations Research, 56:712–727, 2008.

[3] Suzan Alaswad and Yisha Xiang. A review on condition-based maintenance optimization
models for stochastically deteriorating system. Reliability Engineering & System Safety,
157:54 – 63, 2017.

[4] Alessandro Antonucci and Marco Zaffalon. Decision-theoretic specification of credal
networks: A unified language for uncertain modeling with sets of Bayesian networks.
International Journal of Approximate Reasoning, 49:345 – 361, 2008.

[5] Raghav Aras and Alain Dutech. An investigation into mathematical programming for
finite horizon decentralized POMDPs. Journal of Artificial Intelligence Research, 37:329–
396, 2010.

[6] Raghav Aras, Alain Dutech, and François Charpillet. Mixed integer linear programming
for exact finite-horizon planning in decentralized POMDPs. In Proceedings of the Seven-
teenth International Conference on International Conference on Automated Planning and
Scheduling, pages 18–25, 2007.

[7] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Open prob-
lem: Approximate planning of POMDPs in the class of memoryless policies. In Proceed-
ings of Machine Learning Research, volume 49, pages 1639–1642, 2016.

[8] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforce-
ment learning of POMDPs using spectral methods. In Proceedings of Machine Learning
Research, volume 49, pages 193–256, 2016.

[9] J. Andrew Bagnell, Sham M. Kakade, Jeff G. Schneider, and Andrew Y. Ng. Policy search by
dynamic programming. In Advances in Neural Information Processing Systems 16, pages
831–838. 2004.

[10] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive ele-
ments that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, 13:834–846, 1983.

193

Bibliography

[11] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions of finite
state Markov chains. The Annals of Mathematical Statistics, 37:1554–1563, 1966.

[12] Richard Bellman. Adaptive control processes—a guided tour. Princeton University Press,
8:315–316, 1961.

[13] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[14] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 3rd
edition, 2007.

[15] Dimitris Bertsimas and Velibor V Mišić. Decomposable Markov decision processes: A
fluid optimization approach. Operations Research, 64:1537–1555, 2016.

[16] Dimitris Bertsimas and José Niño Mora. Conservation laws, extended polymatroids and
multiarmed bandit problems; a polyhedral approach to indexable systems. Mathematics
of Operations Research, 21:257–306, 1996.

[17] Dimitris Bertsimas and José Niño Mora. Restless bandits, linear programming relax-
ations, and a primal-dual index heuristic. Operations Research, 48:80–90, 2000.

[18] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59:65–98, 2017.

[19] Leo Breiman, Jerome Friedman, Richard A. Olshen, and Charles J. Stone. Classification
and Regression Trees. Wadsworth and Brooks, 1984.

[20] David B. Brown, James E. Smith, and Peng Sun. Information relaxations and duality in
stochastic dynamic programs. Operations Research, 58:785–801, 2010.

[21] Andrés Cano, José E. Cano, and Serafín Moral. Convex sets of probabilities propagation
by simulated annealing. In Proceedings of the Fifth International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems, pages 4–8,
1994.

[22] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremental pruning: A
simple, fast, exact method for partially observable Markov decision processes. In Pro-
ceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 54–
61, 1997.

[23] Anthony R. Cassandra. Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes. PhD thesis, Brown University, 1998.

[24] Anthony R. Cassandra. A survey of POMDP applications. In Working note of AAAI 1998
Fall Symposium on Planning with Partially Observable Markov Decision Processes., pages
17–24, 1998.

[25] Venkat Chandrasekaran, Nathan Srebro, and Prahladh Harsha. Complexity of inference
in graphical models. In Proceedings of the Twenty-Fourth Conference on Uncertainty in
Artificial Intelligence, pages 70–78, 2008.

194

Bibliography

[26] Mike Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, and Eric Brewer. Failure diagno-
sis using decision trees. In Proceedings of the First International Conference on Autonomic
Computing, 2004.

[27] Victor Cohen and Axel Parmentier. Two generalizations of Markov blankets.
arXiv:1903.03538, 2019.

[28] A.J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand. Decomposition Techniques
in Mathematical Programming: Engineering and Science Applications. Springer, 2006.

[29] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli. Integer Programming.
Springer Publishing Company, Incorporated, 2014.

[30] Gregory F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42:393 – 405, 1990.

[31] Alexandra Coppe, Matthew J. Pais, Raphael T. Haftka, and Nam H. Kim. Using a simple
crack growth model in predicting remaining useful life. Journal of Aircraft, 49:1965–1973,
2012.

[32] Cassio P. de Campos and Fabio Gagliardi Cozman. Inference in credal networks through
integer programming. In Proceedings of the 5th International Symposium on Imprecise
Probability: Theories and Applications, pages 145–154, 2007.

[33] Cassio P. de Campos and Qiang Ji. Strategy selection in influence diagrams using impre-
cise probabilities. arXiv:1206.3246, 2012.

[34] Daniela Pucci De Farias and Benjamin Van Roy. The linear programming approach to
approximate dynamic programming. Operations research, 51:850–865, 2003.

[35] Rina Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact
Algorithms. Morgan & Claypool Publishers, 2013.

[36] Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncer-
tainty with application to data-driven problems. Operations Research, 58:595–612, 2010.

[37] Brian T. Denton. Optimization of Sequential Decision Making for Chronic Diseases: From
Data to Decisions, chapter 13, pages 316–348. 2018.

[38] F. d’Epenoux. A probabilistic production and inventory problem. Management Science,
10:98–108, 1963.

[39] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning.
Communications of the ACM , 63:68–77, 2019.

[40] Yann Dujardin, Tom Dietterich, and Iadine Chades. α-min: A compact approximate
solver for finite-horizon POMDPs. In International Joint Conferences on Artificial Intelli-
gence, pages 2582–2588, 2015.

[41] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for mathe-
matical optimization. SIAM Review, 59:295–320, 2017.

195

Bibliography

[42] James E. Eckles. Optimum maintenance with incomplete information. Operations Re-
search, 16:1058–1067, 1968.

[43] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K. Gupta,
and Mykel J. Kochenderfer. POMDPs.jl: A framework for sequential decision making
under uncertainty. Journal of Machine Learning Research, 18:1–5, 2017.

[44] Hugh Ellis, Mingxiang Jiang, and Ross B. Corotis. Inspection, maintenance, and repair
with partial observability. Journal of Infrastructure Systems, 1:92–99, 1995.

[45] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust opti-
mization using the wasserstein metric: performance guarantees and tractable reformu-
lations. Mathematical Programming, 171:115–166, 2018.

[46] Daniela P. De Farias and Benjamin V. Roy. The linear programming approach to approxi-
mate dynamic programming. Operations Research, 51:2003, 2001.

[47] Alex A. Freitas. Comprehensible classification models: A position paper. SIGKDD Explo-
ration Newsletter, 15:1–10, 2014.

[48] Arthur M. Geoffrion. Lagrangian relaxation for integer programming. Mathematical Pro-
gramming Study, 2, 1974.

[49] J. C. Gittins and D. M. Jones. A dynamic allocation index for the discounted multiarmed
bandit problem. Biometrika, 66:561–565, 1979.

[50] John C. Gittins. Multi-armed Bandit Allocation Indices. Wiley, 1989.

[51] Medjaher K. Gouriveau, R. and N. Zerhouni. PHM and Predictive Maintenance, chapter 1,
pages 1–13. 2016.

[52] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019.

[53] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing. Springer, 2001.

[54] Milos Hauskrecht. Value-function approximations for partially observable Markov deci-
sion processes. Journal of Artificial Intelligence Research, 13, 2000.

[55] Jeffrey Thomas Hawkins. A Lagrangian decomposition approach to weakly coupled dy-
namic optimization problems and its applications. PhD thesis, Massachusetts Institute
of Technology, 2003.

[56] Ronald A. Howard and James E. Matheson. Influence diagrams. In Readings on the Princi-
ples and Applications of Decision Analysis, volume II, pages 721–762. Strategic Decisions
Group, 1984.

[57] Ronald A Howard and James E Matheson. Influence diagrams. Decision Analysis, 2:127–
143, 2005.

196

Bibliography

[58] Barry Hurley, Barry O’Sullivan, David Allouche, George Katsirelos, Thomas Schiex,
Matthias Zytnicki, and Simon De Givry. Multi-language evaluation of exact solvers in
graphical model discrete optimization. Constraints, 21:413–434, 2016.

[59] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learning algo-
rithm for partially observable Markov decision problems. In Proceedings of the Seventh
International Conference on Neural Information Processing Systems, page 345–352, 1994.

[60] Andrew K.S. Jardine, Daming Lin, and Dragan Banjevic. A review on machinery diagnos-
tics and prognostics implementing condition-based maintenance. Mechanical Systems
and Signal Processing, 20:1483 – 1510, 2006.

[61] Kamran Javed, Rafael Gouriveau, Ryad Zemouri, and Noureddine Zerhouni. Improving
data-driven prognostics by assessing predictability of features. In Proceedings of the An-
nual Conference of the Prognostics and Health Management Society, pages 555–560, 2011.

[62] Frank Jensen, Finn V Jensen, and Søren L Dittmer. From influence diagrams to junction
trees. In Proceedings of the Tenth international conference on Uncertainty in artificial
intelligence, pages 367–373, 1994.

[63] Marine Jouin, Rafael Gouriveau, Daniel Hissel, Marie-Cécile Péra, and Noureddine Zer-
houni. Prognostics and Health Management of PEMFC - state of the art and remaining
challenges. International Journal of Hydrogen Energy, 38:15307–15317, 2013.

[64] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[65] Arthur B. Kahn. Topological sorting of large networks. Communications of the ACM , 5:
558–562, 1962.

[66] Kalev Kask, Rina Dechter, Javier Larrosa, and Avi Dechter. Unifying tree decompositions
for reasoning in graphical models. Artificial Intelligence, 166:165–193, 2005.

[67] Kesav Kaza, Rahul Meshram, Varun Mehta, and Shabbir N. Merchant. Sequential deci-
sion making with limited observation capability: Application to wireless networks. IEEE
Transactions on Cognitive Communications and Networking, 5:237–251, 2019.

[68] Arindam Khaled, Eric A. Hansen, and Changhe Yuan. Solving limited-memory influence
diagrams using branch-and-bound search. In Proceedings of the Twenty-Ninth Confer-
ence on Uncertainty in Artificial Intelligence, 2013.

[69] Jong Woo Kim, Go Bong Choi, and Jong Min Lee. A POMDP framework for integrated
scheduling of infrastructure maintenance and inspection. Computers & Chemical Engi-
neering, 112:239–252, 2018.

[70] Michael Jong Kim and Viliam Makis. Optimal control of a partially observable failing
system with costly multivariate observations. Stochastic Models, 28:584–608, 2012.

[71] Michael Jong Kim and Viliam Makis. Joint optimization of sampling and control of par-
tially observable failing systems. Operations Research, 61:777–790, 2013.

197

Bibliography

[72] Michael Jong Kim, Rui Jiang, Viliam Makis, and Chi-Guhn Lee. Optimal Bayesian fault
prediction scheme for a partially observable system subject to random failure. European
Journal of Operational Research, 214:331 – 339, 2011.

[73] Michael Jong Kim, Viliam Makis, and Rui Jiang. Parameter estimation for partially ob-
servable systems subject to random failure. Applied Stochastic Models in Business and
Industry, 29:279–294, 2013.

[74] Anton J. Kleywegt, Vijay S. Nori, and Martin W. P. Savelsbergh. The stochastic inventory
routing problem with direct deliveries. Transportation Science, 36:94–118, 2002.

[75] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[76] Daphne Koller and Brian Milch. Multi-agent influence diagrams for representing and
solving games. Games and economic behavior, 45:181–221, 2003.

[77] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning
with rich observations. In Proceedings of the Twenty-Ninth Advances in Neural Informa-
tion Processing Systems, 2016.

[78] Vikram Krishnamurthy. Partially observed Markov decision processes: From filtering to
controlled sensing. Cambridge University Press, 2016.

[79] Vikram Krishnamurthy and Bo Wahlberg. Partially observed Markov decision process
multiarmed bandits—structural results. Mathematics of Operations Research, 34:287–
302, 2009.

[80] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces. In Proceedings of the
Fourth Conference on Robotics: Science and Systems, 2008.

[81] Steffen L Lauritzen and Dennis Nilsson. Representing and solving decision problems
with limited information. Management Science, 47:1235–1251, 2001.

[82] Thanh Trung Le, Florent Chatelain, and Christophe Bérenguer. Hidden Markov Mod-
els for diagnostics and prognostics of systems under multiple deterioration modes. In
Proceedings of the Twenty-fourth Conference on European Safety and Reliability, 2014.

[83] Junkyu Lee, Alexander T. Ihler, and Rina Dechter. Join graph decomposition bounds for
influence diagrams. In Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence, pages 1053–1062, 2018.

[84] Yanjie Li, Baoqun Yin, and Hongsheng Xi. Finding optimal memoryless policies of
POMDPs under the expected average reward criterion. European Journal of Operational
Research, 211:556 – 567, 2011.

[85] Leo Liberti. Introduction to global optimization. Technical report, 2008.

[86] Michael L. Littman. The witness algorithm: Solving partially observable Markov decision
processes. Technical report, 1994.

198

Bibliography

[87] Michael L. Littman. Memoryless policies: Theoretical limitations and practical results.
In Proceedings of the Third International Conference on Simulation of Adaptive Behavior:
From Animals to Animats 3: From Animals to Animats 3, pages 238–245, 1994.

[88] Qiang Liu. Reasoning and Decisions in Probabilistic Graphical Models–A Unified Frame-
work. University of California, Irvine, 2014.

[89] Qiang Liu and Alexander Ihler. Belief propagation for structured decision making. In
Uncertainty in Artificial Intelligence, pages 523–532, 2012.

[90] Viliam Makis. Multivariate Bayesian control chart. Operations Research, 56:487–496,
2008.

[91] Viliam Makis and Xiamei Jiang. Optimal replacement under partial observations. Math-
ematics of Operations Research, 28:382–394, 2003.

[92] Mohammad Marufuzzaman, Ridvan Gedik, and Mohammad S. Roni. A benders based
rolling horizon algorithm for a dynamic facility location problem. Computers & Indus-
trial Engineering, 98:462 – 469, 2016.

[93] Jirí Matouek and Bernd Gärtner. Understanding and Using Linear Programming.
Springer, 2006.

[94] Denis D. Maua. Equivalences between maximum a posteriori inference in Bayesian net-
works and maximum expected utility computation in influence diagrams. International
Journal of Approximate Reasoning, 68:211–229, 2016.

[95] Denis D. Mauá and Cassio P. Campos. Solving decision problems with limited informa-
tion. In Proceedings of the Twenty-fifth Conference on Advances in Neural Information
Processing Systems, pages 603–611, 2011.

[96] Denis D. Mauá and Fabio Gagliardi Cozman. Fast local search methods for solving limited
memory influence diagrams. International Journal of Approximate Reasoning, 68:230–
245, 2016.

[97] Denis D. Mauá, Cassio P. de Campos, and Marco Zaffalon. The complexity of approxi-
mately solving influence diagrams. In Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, pages 604–613, 2012.

[98] Denis D. Mauá, Cassio P. de Campos, and Marco Zaffalon. Solving limited memory influ-
ence diagrams. Journal of Artificial Intelligence Research, 44:97–140, 2012.

[99] Denis D. Mauá, Cassio P. De Campos, and Marco Zaffalon. On the complexity of solv-
ing polytree-shaped limited memory influence diagrams with binary variables. Artificial
Intelligence, 205:30–38, 2013.

[100] Garth P. McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part i – convex underestimating problems. Mathematical Programming, 10:147–
175, 1976.

199

Bibliography

[101] Varun Mehta, Rahul Meshram, Kesav Kaza, and Shabbir N. Merchant. Multi-armed ban-
dits with constrained arms and hidden states. 2017.

[102] Varun Mehta, Rahul Meshram, Kesav Kaza, and Shabbir N. Merchant. Sequential deci-
sion making with limited observation capability: Application to wireless networks. IEEE
Transactions on Cognitive Communications and Networking, 5:237–251, 2019.

[103] Adam J. Mersereau. Information-sensitive replenishment when inventory records are
inaccurate. Production and Operations Management, 22:792–810, 2013.

[104] Rahul Meshram, D. Manjunath, and Aditya Gopalan. On the whittle index for restless
multiarmed hidden Markov bandits. IEEE Transactions on Automatic Control, 63:3046–
3053, 2018.

[105] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack Kael-
bling, Thomas Dean, and Craig Boutilier. Solving very large weakly coupled Markov de-
cision processes. In Proceedings of the Fifteenth National/Tenth Conference on Artificial
Intelligence/Innovative Applications of Artificial Intelligence, page 165–172, 1998.

[106] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra. Solv-
ing POMDPs by searching the space of finite policies. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, page 417–426, 1999.

[107] George E. Monahan. A survey of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science, 28:1–16, 1982.

[108] Guido Montufar, Keyan Ghazi-Zahedi, and Nihat Ay. Geometry and determin-
ism of optimal stationary control in partially observable Markov decision processes.
arXiv:1503.07206, 2015.

[109] Eija Myötyri, Urho Pulkkinen, and Kaisa Simola. Application of stochastic filtering for
lifetime prediction. Reliability Engineering & System Safety, 91:200–208, 2006. Selected
Papers Presented at QUALITA 2003.

[110] Dennis Nilsson and Michael Höhle. Computing bounds on expected utilities for optimal
policies based on limited information. Technical Report 94, Danish Informatics Network
in the Agriculture Sciences, 2001.

[111] José Niño-Mora. Dynamic allocation indices for restless projects and queueing admis-
sion control: a polyhedral approach. Mathematical Programming, 93:361–413, 2002.

[112] Katerina P. Papadaki and Warren B. Powell. An adaptive dynamic programming algorithm
for a stochastic multiproduct batch dispatch problem. Naval Research Logistics, 50:742–
769, 2003.

[113] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12:441–450, 1987.

[114] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of optimal queuing
network control. Mathematics of Operations Research, 24:293–305, 1999.

200

Bibliography

[115] Paul Paris and Fazil Erdogan. A Critical Analysis of Crack Propagation Laws. Journal of
Basic Engineering, 85:528–533, 1963.

[116] Mahshid Salemi Parizi and Archis Ghate. Weakly coupled Markov decision processes
with imperfect information. In Proceedings of the Winter Simulation Conference, pages
3609–3602, 2019.

[117] Axel Parmentier, Victor Cohen, Vincent Leclère, Guillaume Obozinski, and Joseph
Salmon. Integer programming on the junction tree polytope for influence diagrams. IN-
FORMS Journal on Optimization, 2:209–228, 2020.

[118] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[119] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
foundations and learning algorithms. MIT press, 2017.

[120] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value iteration: An any-
time algorithm for POMDPs. In Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence, pages 1025–1030, 2003.

[121] Kim Leng Poh and Eric Horvitz. A graph-theoretic analysis of information value. In Pro-
ceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence,
pages 427–435, 1996.

[122] Warren B. Powell. Clearing the Jungle of Stochastic Optimization, chapter 4, pages 109–
137.

[123] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimension-
ality. Wiley, 2nd edition, 2011.

[124] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1st edition, 1994.

[125] Lawrence R. Rabiner and Biing H. Juang. An introduction to hidden Markov models. IEEE
ASSP Magazine, 1986.

[126] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review.
arXiv:1908.05659, 2019.

[127] Jørgen Glomvik Rakke, Magnus Stålhane, Christian Rørholt Moe, Marielle Christiansen,
Henrik Andersson, Kjetil Fagerholt, and Inge Norstad. A rolling horizon heuristic for cre-
ating a liquefied natural gas annual delivery program. Transportation Research Part C:
Emerging Technologies, 19:896 – 911, 2011.

[128] Alistair R.Clark. Rolling horizon heuristics for production planning and set-up schedul-
ing with backlogs and error-prone demand forecasts. Production Planning & Control, 16:
81–97, 2005.

201

Bibliography

[129] Neil Robertson and Paul D. Seymour. Graph minors. V. excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41:92 – 114, 1986.

[130] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa. Online plan-
ning algorithms for POMDPs. Journal of Artificial Intelligence Research, 32:663–704, 2008.

[131] Natarajan Sakthivel, V. Sugumaran, and S. Babudevasenapati. Vibration based fault di-
agnosis of monoblock centrifugal pump using decision tree. Expert Systems with Appli-
cations, 37:4040–4049, 2010.

[132] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, and M. Schwabacher. Metrics
for evaluating performance of prognostic techniques. In 2008 International Conference
on Prognostics and Health Management, pages 1–17, 2008.

[133] Petra Scheffler. A linear algorithm for the pathwidth of trees. In Topics in combinatorics
and graph theory, pages 613–620. 1990.

[134] W. G. Schneeweiss. Fault-tree analysis using a binary decision tree. IEEE Transactions on
Reliability, 34:453–457, 1985.

[135] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

[136] Suresh Sethi and Gerhard Sorger. A theory of rolling horizon decision making. Annals of
Operations Research, 29:387–416, 1991.

[137] Ross D. Shachter. Evaluating influence diagrams. Operations Research, 34:871–882, 1986.

[138] Ross D. Shachter. Bayes-ball: Rational pastime (for determining irrelevance and requisite
information in belief networks and influence diagrams). In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, pages 480–487, 1998.

[139] Glenn Shafer and Prakash P. Shenoy. Probability propagation. Annals of Mathematics
and Artificial Intelligence, 2:327–351, 1990.

[140] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers.
Autonomous Agents and Multi-Agent Systems, 27:1–51, 2013.

[141] Prakash P. Shenoy. Valuation-based systems for Bayesian decision analysis. Operations
research, 40:463–484, 1992.

[142] Xiao-Sheng Si, Wenbin Wang, Chang-Hua Hu, and Dong-Hua Zhou. Remaining useful
life estimation – a review on the statistical data driven approaches. European Journal of
Operational Research, 213:1 – 14, 2011.

[143] Satinder P. Singh, Tommi S. Jaakkola, and Michael I. Jordan. Learning without state-
estimation in partially observable Markovian decision processes. In Proceedings of the
Eleventh International Conference on International Conference on Machine Learning,
pages 284–292, 1994.

202

Bibliography

[144] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21:1071–1088, 1973.

[145] Trey Smith and Reid Simmons. Heuristic search value iteration for POMDPs. In Proceed-
ings of the Twentieth Conference on Uncertainty in Artificial Intelligence, pages 520–527,
2004.

[146] Trey Smith and Reid Simmons. Point-based POMDP algorithms: Improved analysis and
implementation. In Proceedings of the Twenty-First Conference on Uncertainty in Artifi-
cial Intelligence, pages 542–549, 2005.

[147] Edward J. Sondik. The optimal control of partially observable Markov processes over the
infinite horizon: Discounted costs. Operations Research, 26:282–304, 1978.

[148] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to dual decomposi-
tion for inference. Optimization for Machine Learning, 1, 2011.

[149] David Sontag, Do Kook Choe, and Yitao Li. Efficiently searching for frustrated cycles in
MAP inference. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artifi-
cial Intelligence, pages 795–804, 2012.

[150] Weixiang Sun, Jin Chen, and Jiaqing Li. Decision tree and PCA-based fault diagnosis of
rotating machinery. Mechanical Systems and Signal Processing, 21:1300 – 1317, 2007.

[151] Diego Alejandro Tobon-Mejia, Kamal Medjaher, Noureddine Zerhouni, and Gerard
Tripot. A data-driven failure prognostics method based on mixture of gaussians hidden
Markov models. IEEE Transactions on Reliability, 61:491–503, 2012.

[152] Huseyin Topaloglu. Using Lagrangian relaxation to compute capacity-dependent bid
prices in network revenue management. Operations Research, 57:637–649, 2009.

[153] Kwok-Leung Tsui, Nan Chen, Qiang Zhou, Yizhen Hai, and Wenbin Wang. Prognostics
and health management: A review on data driven approaches. Mathematical Problems
in Engineering, 2015:1–17, 2015.

[154] Ciriaco Valdez-Flores and Richard M. Feldman. A survey of preventive maintenance
models for stochastically deteriorating single-unit systems. Naval Research Logistics, 36:
419–446, 1989.

[155] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

[156] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1:1–305, 2008.

[157] Erwin Walraven and Matthijs Spaan. Column generation algorithms for constrained
POMDPs. The Journal of Artificial Intelligence Research, 62:489–533, 2018.

[158] Erwin Walraven and Matthijs T. J. Spaan. Point-based value iteration for finite-horizon
POMDPs. Journal of Artificial Intelligence Research, 65:307–341, 2019.

203

Bibliography

[159] Hongzhou Wang. A survey of maintenance policies of deteriorating systems. European
Journal of Operational Research, 139:469 – 489, 2002.

[160] Mei Wang and Jie Wang. Chmm for tool condition monitoring and remaining useful life
prediction. The International Journal of Advanced Manufacturing Technology, 59:463–
471, 2012.

[161] Yiwei Wang, Christian Gogu, Nicolas Binaud, Christian Bes, and Jian Fu. A model-based
prognostics method for fatigue crack growth in fuselage panels. Chinese Journal of Aero-
nautics, 32:396 – 408, 2019.

[162] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied
Probability, 25:287–298, 1988.

[163] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes.
Mathematics of Operations Research, 38:153–183, 2013.

[164] John K. Williams and Satinder P. Singh. Experimental results on learning stochastic mem-
oryless policies for partially observable Markov decision processes. In Proceedings of the
Eleventh Conference on Advances in Neural Information Processing Systems, pages 1073–
1080. 1999.

[165] Fan Ye, Helin Zhu, and Enlu Zhou. Weakly coupled dynamic program: Information and
Lagrangian relaxations. IEEE Transactions on Automatic Control, 63:698–713, 2018.

[166] Changhe Yuan, Xiaojian Wu, and Eric Hansen. Solving multistage influence diagrams
using branch-and-bound search. In Proceedings of the Twenty-sixth Conference on Un-
certainty in Artificial Intelligence, pages 691–700, 2010.

[167] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, and et al.
Apache spark: A unified engine for big data processing. Communications of the ACM , 59:
56–65, 2016.

[168] Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Problem characteristics
and approximation. Technical report, The Hong Kong University of Science and Tech-
nology, 1996.

204

	Remerciements
	Abstract
	Résumé
	Contents
	List of figures
	List of tables
	Introduction
	The predictive maintenance problem with capacity constraints
	Decision processes with partial observations
	Decision making with structured uncertainty
	Statistical methodology for the airplane maintenance problem

	Introduction (Français)
	Le problème de maintenance prédictive avec contraintes de capacité
	Processus de décisions avec observations partielles
	Prise de décision avec une incertitude structurée
	Une méthodologie statistique pour le problème de maintenance des avions

	I Integer programming for predictive maintenance
	Predictive maintenance with capacity constraints
	Background on POMDP
	POMDP parameters
	POMDP problem
	POMDP problem with memoryless policies

	Weakly coupled POMDP
	Formalizing the predictive maintenance problem with capacity constraints
	Examples modeled as a weakly coupled POMDP
	Bibliographical remarks

	Integer programming for POMDPs
	Integer program for POMDPs with memoryless policies
	An exact Nonlinear Program (NLP)
	Turning the NLP into an MILP

	Valid cuts
	Strengths of the relaxations
	Value functions for POMDPs with memoryless policies
	An exact NLP
	Turning the NLP into an MILP
	Computing bounds on the value functions
	Strengthening the linear relaxation

	Numerical experiments
	Random instances
	Numerical experiments on instances from the literature

	Bibliographical remarks

	Integer programming for weakly coupled POMDPs
	An approximate integer program
	Valid inequalities
	Strengths of the linear relaxation
	An upper bound and a lower bound
	The lower bound from an MILP with an exponential number of constraints
	An upper bound through a nonlinear formulation
	A tractable upper bound through Lagrangian relaxation
	Interpretation of the bounds
	Benefits and drawbacks of the formulations

	Deducing an history-dependent policy from MILP (5.1)
	Rolling horizon heuristic
	Numerical experiments
	Simulations of the implicit policy

	Bibliographical remarks

	II Integer programming for influence diagrams
	Maximum Expected Utility in influence diagrams
	The Influence Diagrams
	The framework of parametrized influence diagram
	Examples

	Junction Trees and moments
	Junction Trees and Rooted Junction Trees (RJTs)
	The moments on RJTs
	The value functions on RJTs

	Main results
	Integer programs using moments on G
	Valid cuts for the MILP
	Integer programs using value functions
	Polynomial cases of Influence Diagrams
	Dual formulations for the linear relaxations.

	Bibliographical remarks

	Graphical models and rooted junction tree properties
	Graph notation
	Directed graphical model
	Moments on junction trees
	Moments on rooted junction trees
	Main properties

	Building a gradual RJT
	An algorithm to build a gradual RJT
	Characterizing the built RJT

	Integer programming on the junction tree polytope
	Integer programming using the moments
	Notation
	An exact Non Linear Program
	MILP formulation

	Valid cuts
	Constructing valid cuts
	Characterization of C

	McCormick Relaxation
	Review of McCormick's relaxation
	Choice of bounds in McCormick inequalities
	Algorithm to compute good quality bounds

	Strength of the relaxations and their interpretation in terms of graph
	Integer programming using value functions
	An exact nonlinear formulation
	Turning the NLP into an MILP
	Algorithm to compute good quality bounds
	Strengthening the linear relaxation

	Numerical Experiments
	Experimental settings
	Bob and Alice daily chess game
	Partially Observable Markov Decision Process with limited memory

	Polynomial cases of influence diagrams
	Soluble Influence Diagrams
	Linear program for soluble influence diagrams
	Linear relaxations
	Characterization using the set of achievable moments
	Comparison of soluble and linear relaxations

	Examples of non-soluble IDs solved by linear programs
	Dual formulation for the soluble influence diagrams
	Numerical experiments

	III Maintenance problem at Air France
	Data-driven maintenance optimization
	About the airplane maintenance problem at Air France
	Formalizing the airplane maintenance problem
	Modeling as a weakly coupled POMDP
	Numerical results
	Evaluating the policy using a simulator
	Evaluating the policy on Air France real data

	Bibliographical remarks

	Conclusion
	Conclusion
	Main contributions
	Research directions

	Appendix
	Examples where zIP < vml* or zIP > vml*
	The inequality zIP vml* does not hold in general
	The inequality zIP vml* does not hold in general

	Algorithm to build a small RJT
	Deteriorating system's simulator and decision trees
	Simulator's description
	How to reproduce a binary decision tree of AirFrance's practice.

	Bibliography

