Advances in automating analysis of neural time series data - Archive ouverte HAL Access content directly
Theses Year : 2018

Advances in automating analysis of neural time series data

Contributions pour l'analyse automatique de signaux neuronaux

(1)
1

Abstract

Electrophysiology experiments has for long relied upon small cohorts of subjects to uncover statistically significant effects of interest. However, the low sample size translates into a low power which leads to a high false discovery rate, and hence a low rate of reproducibility. To address this issue means solving two related problems: first, how do we facilitate data sharing and reusability to build large datasets; and second, once big datasets are available, what tools can we build to analyze them ? In the first part of the thesis, we introduce a new data standard for sharing data known as the Brain Imaging Data Structure (BIDS), and its extension MEG-BIDS. Next, we introduce the reader to a typical electrophysiological pipeline analyzed with the MNE software package. We consider the different choices that users have to deal with at each stage of the pipeline and provide standard recommendations. Next, we focus our attention on tools to automate analysis of large datasets. We propose an automated tool to remove segments of data corrupted by artifacts. We develop an outlier detection algorithm based on tuning rejection thresholds. More importantly, we use the HCP data, which is manually annotated, to benchmark our algorithm against existing state-of-the-art methods. Finally, we use convolutional sparse coding to uncover structures in neural time series. We reformulate the existing approach in computer vision as a maximuma posteriori (MAP) inference problem to deal with heavy tailed distributions and high amplitude artifacts. Taken together, this thesis represents an attempt to shift from slow and manual methods of analysis to automated, reproducible analysis.
Les expériences d’électrophysiologie ont longtemps reposé sur de petites cohortes de sujets pour découvrir des effets d’intérêt significatifs. Toutefois, la faible taille de l’échantillon se traduit par une faible puissance statistique, ce qui entraîne un taux élevé de fausses découvertes et un faible taux de reproductibilité. Deux questions restent à répondre : 1) comment faciliter le partage et la réutilisation des données pour créer de grands ensembles de données; et 2) une fois que de grands ensembles de données sont disponibles, quels outils pouvons-nous construire pour les analyser ? Donc, nous introduisons une nouvelle norme pour le partage des données, Brain Imaging Data Structure (BIDS), et son extension MEG-BIDS. Puis, nous présentons un pipeline d’analyse de données électrophysiologie avec le logiciel MNE. Nous tenons compte des différents choix que l’utilisateur doit faire à chaque étape et formulons des recommandations standardisées. De plus, nous proposons un outil automatisé pour supprimer les segments de données corrompus par des artefacts, ainsi qu’un algorithme de détection d’anomalies basé sur le réglage des seuils de rejet. Par ailleurs, nous utilisons les données HCP, annotées manuellement, pour comparer notre algorithme aux méthodes existantes. Enfin, nous utilisons le convolutional sparse coding pour identifier les structures des séries temporelles neuronales. Nous reformulons l’approche existante comme une inférence MAP pour être atténuer les artefacts provenant des grandes amplitudes et des distributions à queue lourde. Ainsi, cette thèse tente de passer des méthodes d’analyse lentes et manuelles vers des méthodes automatisées et reproducibles.
Fichier principal
Vignette du fichier
TheseJas.pdf (20.33 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03411539 , version 1 (02-11-2021)

Identifiers

  • HAL Id : tel-03411539 , version 1

Cite

Mainak Jas. Advances in automating analysis of neural time series data. Neuroscience. Télécom ParisTech, 2018. English. ⟨NNT : 2018ENST0021⟩. ⟨tel-03411539⟩
56 View
23 Download

Share

Gmail Facebook Twitter LinkedIn More