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Abstract

Louise DA COSTA RAMOS

Numerical study of an unstable premixed laminar flame and
numerical Luenberger observers

La combustion et les instabilités thermo-acoustiques sont des phénomènes centraux dans
le développement de turbines. Ces instabilités peuvent endommager, voire mener à la de-
struction de ces machines. Leur construction repose donc sur la simulation numérique
dynamique (CFD), afin de prévenir et d’éviter les régimes de fonctionnement potentielle-
ment instables. La modélisation de ces systèmes complexes est toutefois lourde en calculs,
puisqu’elle nécessite la résolution d’un grand nombre d’équations nonlinéaires couplées, à
paramètres distribués, et présentant une grande variété d’échelles spatiales et temporelles.
Ce manuscrit est dédié à la modélisation d’une Flamme Conique Inversée (ICF) pauvre,
prémélangée, laminaire et axisymétrique, à l’aide de CFD et de méthodes d’apprentissage
artificiel. La flamme présente des instabilités auto-entretenues et, malgré sa relative simplic-
ité, est porteuses d’enseignements sur la modélisation de systèmes plus complexes.

Un modèle CFD est d’abord présenté, qui servira de bases aux développements futurs.
Il est constitué d’équations de conservation, couplées à un modèle de cinétique chimique
méthane / air (DRM19). Ce dernier permet l’étude d’une grande variété d’échelles tem-
porelles et spatiales de la flamme. La recherche d’un état d’équilibre du modèle couplé se
révèle infructueuse, la solution stationnaire calculée numériquement présentant systéma-
tiquement des oscillations résiduelles.

Le comportement dynamique de la flamme est ensuite analysé, en particulier (1) l’impact
du gradient de température sur l’adaptation de maillage, (2) le comportement dynamique
autonome de la flamme, (3) sa réponse dynamique à un forçage et (4) la fonction de transfert
de la flamme. Le premier point révèle un compromis entre le temps de calcul et la précision
de la solution. L’analyse du comportement dynamique permet la caractérisation détaillée du
comportement du front de flamme à différentes échelles.

Ensuite, un Modèle d’Ordre Réduit (ROM) est mis au point afin de permettre le calcul
efficace de certains champs à l’équilibre, pour différentes valeurs du débit volumique d’entrée.
Le ROM prédit les champs de vitesses axiale et radiale, ainsi que de température. Construit
par interpolation entre différents points de fonctionnement, il prédit ces champs avec une
précision relative inférieure à 3%.

Enfin, une méthode permettant la synthèse numérique d’observateurs pour les systèmes
dynamiques non-linéaires et présentée. Elle s’appuie sur la théorie des observateurs non-
linéaires de Luenberger, qui consiste à trouver un changement de coordonnées vers un sys-
tème dynamique linéaire stable. Sous de faibles hypothèses d’observabilité, l’existence de
cette transformation est garantie, et celle-ci peut être calculée en utilisant des outils de ré-
gression non-linéaire. Deux approches sont présentées pour les systèmes autonomes et non-
autonomes, et sont aussi discutées plusieurs stratégies d’échantillonnage de l’espace d’état.

Combustion and thermo-acoustic instabilities are major topics of interest in the
development of combustion engines since such instabilities can cause damage or
even failure of these machines. For this reason, the design of combustion engines



viii

highly relies on computational fluid dynamic models (CFD). However, the model-
ing of such complex systems involves a high computational burden since it involves
computing the solution to a large number of nonlinear coupled partial differential
equations over different time and spatial scales. This manuscript is devoted to mod-
eling a laminar, axisymmetric, lean premixed inverted conical flame, anchored at a
central bluff-body, in an unconfined burner configuration, with CFD and machine
learning (ML). This flame feature self-excited instabilities and, despite its relatively
simple configuration, gives insight into more complex flame configurations, such as
in aeronautical engines combustion chambers.

First, a CFD model used as the basis for further developments is described, con-
sisting of the species mass, momentum, and energy transport equations, coupled
with a skeletal methane/air chemical kinetic mechanism. This kinetic mechanism
enables to capture of a plethora of time and length scales linked to the flame. This
model is first used to investigate the characteristics of the steady-state of the studied
flame, showing that it does not present a static convergence behavior and, rather,
oscillates over a pseudo-steady state point.

Second, the dynamic behavior of the flame is analyzed, characterizing the fol-
lowing points: (1) the impact of the temperature gradient threshold for the mesh
adaption process, (2) the flame natural dynamic response, (3) the forced flame dy-
namic response, and (4) the flame transfer function. The analysis of the impact of
the adaption threshold on the model reveals a trade-off between the model accuracy
and computational burden, which can be adjusted by changing the temperature gra-
dient threshold. The flame response analysis gives a detailed characterization of the
flame front behavior in its different scales, both in time and space.

Third, a reduced-order model is designed to efficiently compute the averaged
flame properties field at steady-state. The volume flow rate of the combustible mix-
ture is the variable parameter, and the fields of the axial and radial velocity com-
ponents and the temperature fields are the predicted outputs. The results present
great agreement with the original CFD results, presenting an average relative error
smaller than 3 %. The extension of this work to other combustion processes is a per-
spective of this work, willing to model all the flame properties available from the
CFD models.

Last, a method to numerically design observers for nonlinear systems is pre-
sented. The method relies on the theory of nonlinear Luenberger observers, which
maps the nonlinear dynamics of a system of interest to a linear stable system, for
which observer design is easy. Relying on mild assumptions of observability and
results guaranteeing the existence of such mappings, a methodology is proposed
to approximate them by performing a nonlinear regression on sample data that is
simply generated by solving the system and observer dynamics. Two approaches
are detailed for autonomous and excited systems, where the first one is based on
general hypotheses, whereas the second relies on stronger assumptions. Validation
is developed over different systems, for which several issues related to state-space
sampling are discussed.
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Introduction

Combustion is a chemical reaction process present in almost all social sectors, through-
out the world, independent of the socioeconomic situation of the country. This pro-
cess has a major part in the worldwide economy, since combustion is still the main
source of energy [1], being responsible for more than 80% of the energy primary
conversion. Hydrocarbon combustion involves a series of chemical reactions, where
carbon is oxidized to carbon dioxide, and hydrogen is oxidized to water. This pro-
cess is present in several practical systems, for example, domestic stoves, car engines
or aircraft gas turbines and as heating source for buildings. Therefore, combustion
processes are associated to a high impact on the industrial sectors of power gener-
ation and transport. Furthermore, glass, mining, chemical and steel mill industries
are the main users of the combustion of biogas and hydrocarbons in their manufac-
turing processes.

However, the combustion process has an associated harm, which is the environ-
mental pollution. Some of the substances produced by the combustion can cause
harm to the human and environment. For instance, the carbon monoxide (CO) is
highly toxic for animals and humans, and soot is one of the major air pollutants [1].
Moreover, the production of the carbon dioxide (CO2) by combustion process con-
tributes to global warming, being responsible for the observed increase of the levels
of the substance in the atmosphere.

In the context of this thesis, the combustion process involved in aeronautical
engines combustion chambers is the major topic of interest. These engines are es-
sential for the aviation industry, however, there are several combustion and reactive
effects that decrease their efficiency. The soot formation inside of engines, for exam-
ple, creates deposits within the combustor, leading to a decreased efficiency or even
harming the integrity [2]. In these engines, the combustion and acoustic coupling is
a major issue since the interactions of the reactions with flow perturbations lead to
thermo-acoustic instabilities that may damage the engines, causing even failures.

Moreover, in the past years, the emission regulations for these engines have been
steadily tightened, making it even more difficult to avoid thermo-acoustic instabil-
ities. Thereby, the design of combustion engines heavily relies on computational
models, enabling the optimization of combustors and forecasting instabilities. How-
ever, research dedicated to understanding thermo-acoustic instabilities over the last
decades [3]–[6] have shown that the high sensitivity of this phenomenon with re-
spect to several poorly known combustion parameters hamper their prediction and
control.

The high uncertainty involved in predicting and controlling thermo-acoustics is
addressed by the MAGISTER ITN Project, applying methods originally developed
in computer sciences to the multi-disciplinary engineering problem. The project is
composed of several early-stage researchers (ESR’s) working at the intersection of
combustion engineering and Machine Learning. This thesis has been conducted as
part of this project.

This manuscript focuses on the modeling, characterization and control of com-
bustion instabilities, through computational approaches. More precisely, in a first

https://www.magister-itn.eu/
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part, an unconfined laminar lean premixed flame is modeled and simulated, en-
abling characterization of its combustion instabilities. In a second part, a Reduced
Order Model (ROM) of a few steady-state of its properties is constructed. Finally
a novel method for designing state observers for nonlinear dynamical systems is
proposed and applied to a dynamic ROM of a simpler flame.

Lean premixed flames are vastly studied because of their unstable behavior, which
typifies those of complex combustion chambers. For instance, the dynamical be-
havior of laminar conical premixed flames due to incoming perturbations has been
characterized with a transfer function, relating the incoming velocity excitation and
heat release fluctuations [7]. A comparison between the transfer function obtained
with experimental data and a first order analytical model shows good agreement
for low frequency only. The response of a conical laminar rich premixed flame has
been also characterized by a flame transfer function, experimentally and on a flame
model [8]. The flame dynamics are based on the level set approach, which cannot
account for the complexity of the behavior, but highlight the main features when the
model takes in account the phase shift between the mean flow and the flame front [8].
This manuscript studies a laminar premixed Inverted Conical Flames (ICF). It is not
only susceptible to thermo-acoustic instabilities, but also presents a self-sustained
unstable behavior. Experiments on such flames, anchored on a bluff-body, have
shown that the flame is self-excited under certain conditions. Studies also shown
that there is a strong influence of the shear layer dynamics on the flame response [9],
[10]. Moreover, the flame instabilities are mainly seen at the vicinity of tip of the ICF,
such that this flame region is of major importance for the heat release and transfer
function computations [9], [10]. This is an important point, which justifies the use of
a detailed chemical model in our study, as detailed later.

There are few attempts to construct detailed computational models of the ICF in
the literature. Low-order models are proposed in [11] and unsteady 2D numerical
simulations with a skeletal C1 chemical mechanism are derived in [12]. The mod-
eling the ICF relying on the widespread G-equation framework, combined with a
convective velocity model, has shown that the heat-release is proportional to the
flame tip movement [11]. However, the flame response leads to static gain values
exceeding the expected unity [11]. Besides, the unsteady 2D model with detailed
chemistry and species transport, with coupled heat transfer to the bluff-body has
been used to analyze the dynamics of the flame leading edge in an ICF [12]. The
study applies a Cartesian structured grid, with the coarsest level of 196 µm and one
additional levels of grid refinement [12]. Such choice relies on the analysis in which
it is shown that a fine grid resolution of 100 µm can capture the lean premixed flame
flow properties and the major species behavior, however, the minor species are not
perfectly captured [12], [13]. Results have shown that the motion is mainly due to
the advection of appropriate ignition conditions because of the excitement of the
wake recirculating flow. The impact of varying the bluff-body material, equivalence
ratio and inlet velocity is studied [12]. In this work, we propose a detailed model of
the flame with a focus on quantitatively reproducing its self-sustained instabilities.

Combustion instabilities, which are a major topic of interest on the design of air-
craft combustors, are thus present in several reactive systems. However, different
mechaniscms may lead to this undesirable behavior. Studies have shown that annu-
lar combustors tend to present significant instabilities linked to the natural acoustic
modes of the system, usually coupling with azimuthal modes, with a spinning or a
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standing structure [14], [15]. Moreover, studies carried on laminar premixed flames
have shown that, when a tube is coupled with a flame, the dynamic behavior of the
flame is governed by the natural resonance of the tube [4].

On the other hand, fewer studies have been developed on self-excited instabil-
ties. The study of the behavior of self-excited round jet diffusion flames has shown
that hydrodynamic instabilities are caused by the action of buoyancy [16]. When the
flame is under forcing, is has been shown that the absolute self-sustained frequency
remains robust, even under high frequency forcing. However, to the best of the au-
thors knowledge, no studies regarding self-excited laminar premixed flames (i.e. in
the absence of acoustic coupling) and their response due to external excitation were
yet developed.

Machine learning (ML) methods have also been recently applied to the model-
ing and analysis of combustion systems. Surveys on the use of Machine Learning
methods for combustion modeling and analysis can be found in [17], [18]. The liter-
ature focuses on both qualitative and quantitative and applications. Contributions
mainly rely on Neural networks [19] to classify stable and unstable regimes [20] or
assess combustion performance [21] and emission intensity [19]. On other hand,
there is an abundant literature on Reduced Order Models (ROM) focusing on mod-
eling the whole combustion process or only its dominant features. More specifically,
Galerking methods [22], [23] and physics-based reduction [24] are used to analyt-
ically decrease the complexity of high-fidelity models. Data-driven methods have
also emerged based on simulation data, either relying on POD [25], Bayesian meth-
ods [26] or Deep Learning and Neural Networks [27]. Also, expansion in modal
or basis functions [28] have been applied to design ROMs from experimental data.
Moreover, the combustion representative data used for learning process often in-
cludes time-series of physical quantities of interest [5], [29], 3D fields [30] or im-
ages [31].

Objective: In this work, the detailed modeling of lean premixed inverted conical
flames is proposed, using a skeletal chemical kinetic mechanism. The main goal
of this work is to accurately model the ICF, its different time and space scales, its
self-excited behavior and characterize its dynamic response due to incoming fluc-
tuations. Our method consists in, first, developing a CFD model of such flames,
enabling the detailed characterization of the flame dynamics. Second, the character-
ization of the flame behavior due to external forcing is developed is terms of flame
transfer function. It is, however, challenging to achieve an accurate model of the
ICF under acceptable computational burden, and for that a mesh adaptation tool
is applied, and its impact on the simulation results is discussed. Third, a reduced
order model is applied to predict the steady-state equilibrium profiles of various
properties of the ICF, based on averaged CFD data. Finally, a novel approach to de-
signing state observers for nonlinear dynamical systems is presented. The approach
relies on the nonlinear Luenberger approach [32]–[35], which consists in designing a
change of coordinates from the original system dynamics to a stable linear filter hav-
ing the measurement as an input. We propose to numerically compute the associ-
ated mappings, rather than find its closed-form analytical expression. The approach
is illustrated on a ROM describing the heat release dynamics of a simple flame.
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Outline

The chapters of this thesis is organized as follows.

Part I focuses on the description of the studied steady and dynamic flame.

Chapter 1 introduces the CFD modelling of a laminar axisymmetric lean premixed
inverted conical flame, both for the steady state equilibrium and dynamic be-
havior. The necessary equations and discretization method are presented first,
followed by the geometry, boundaries conditions and chemical kinetic mecha-
nism used for the combustion. The software and setup used for the simulations
are also given. Finally, results of the steady state simulations of the flame are
analyzed and discussed. Part of the content presented in this chapter appeared
in [36].

Chapter 2 first presents the impact of varying the mesh adaption temperature gra-
dient on the dynamic of an ICF, under a forcing of 100 Hz. Second, the analy-
sis of the ICF natural behavior is given, showing the benefits of using skeletal
chemical kinetic mechanism to the combustion process, and the power and
disadvantages of using CFD for such detailed and complex models. In this
chapter, the flame is shown to be self-excited under the chosen setup, with a
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strong dynamic oscillating response. Then, the detailed impact of forcing the
flame with different excitations is given, followed by the characterization of
the flame transfer function. Part of the content presented in this chapter has
been submitted to publication in [37].

Part II focuses on the use of machine learning techniques for model reduction and
obsevrer design purposes.

Chapter 3 Presents the development of a ROM of the steady state equilibrium of
ICF. Steady ROM, from Twin Builder (Ansys), is used to develop a simplified
model of the ICF based on averaged CFD data, presented in Chapter 1. The
reduced models have the fuel/air mixture inlet velocity as input, and the fields
of the velocity components and temperature obtained with Fluent as output.

Chapter 4 presents a numerical observer design for nonlinear systems. The ap-
proach consists in the approximation of the Luenberger observer mappings
with a neural network used as nonlinear regression. Two methodologies are
proposed; one for autonomous systems and one for excited systems, and both
are presented in detail. The two methodologies are then applied to different
test cases, and the results are presented and discussed. Part of the content
presented in this chapter is being published in [38].
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Part I

Computational Fluid Dynamic
Modeling
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Chapter 1

Inverted Conical Flame

Dans ce chapitre, une introduction sur la combustion, les flammes coniques inversées et la
simulation numérique dynamique est donnée, suivie de la description mathématique du mod-
èle CFD de la ICF. Le modèle s’appuie sur des principes physiques, tels que la conservation
de la masse et de la quantité de mouvement, les équations de transport de l’énergie et des
réactifs, pour un écoulement laminaire axisymétrique sur un brûleur Bunsen. Il intègre des
conditions aux limites, des conditions initiales et un allumage numérique, liés à la modéli-
sation de la combustion, ainsi que l’utilisation d’un outil d’adaptation du maillage. Comme
illustré dans la Section 1.4.3, le modèle stable est capable de prédire le comportement global
d’un système réactif aussi complexe que l’ICF, et sert de base aux Chapitres 2 et 3.

This Chapter describes the inverted conical flames under study in this manuscript,
as well as the CFD model used to compute its steady-state properties and dynamic
behavior. The model relies on first principles, such as mass and momentum conser-
vation, energy and reactive transport equations, for a axisymmetrical laminar flow
on a Bunsen burner. It incorporate boundary conditions, initial conditions and nu-
merical ignition, linked to the modeling of combustion. As illustrated in Section
1.4.3, the model is capable of predicting the overall steady-state behavior of the com-
plex reactive system that is the ICF, and serves as a basis for Chapters 2 and 3.

1.1 Introduction

The design of industrial systems involving combustion heavily relies on Computa-
tional Fluid Dynamics (CFD) simulations, enabling to predict and avoid instabilities.
In cases where these may arise, three-dimensional, unsteady simulations which in-
volve dozens of chemical species are often necessary to provide an adequate system
characterization [39]–[41]. Even with an ever increasing computational power, per-
forming a large number of such detailed simulations remains unfeasible in the de-
sign phase of novel combustors. As a consequence, instability identification could
occur late in the design phase, thus leading to expensive reviews.

Lean premixed flames exhibit unstable behaviors in low emission systems [10],
[42], hence these instability are reflected into more complex combustion systems,
such as turbulent flames. To understand the physics of flame response to incoming
velocity/pressure perturbations, several studies have been performed, both in com-
bustors and laboratory flames [43]. Accordingly, investigations on flame instabilities
carried on complex combustors [3], [44], show that mechanisms involving fluel/air
equivalence ratio fluctuations are triggered by pressure oscillations at the injector
exhaust, vortical/flame roll up, and that these interactions with hydrodynamic in-
stability modes might be driving sources of unsteady motion [36], [44].

Nevertheless, laminar premixed inverted conical flames, which are anchored on
a central bluff-body, feature such instability phenomena with a rather simple flow
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field framework. Accordingly, there exists several studies on these flames, either
based on laboratory [9], [10], or on CFD models [36]. Thereby, the inverted conical
flame is also representative of more complex situations, such as aircraft gas combus-
tors, enabling the further understanding of the combustion process in rather simpler
system.

Therefore, in this chapter a laminar axisymmetric premixed inverted conical flame
(ICF) is modeled and analyzed on a burner which has cylindrical rod on its center.
In Figure 1.1 this flame position is represented by the computed instantaneous mass
fraction field of OH, enabling the verification of the flame anchoring point on the
central rod, and the overall inverted conical shape. Classically, the premixed flame
front separates the fuel/air mixture from the combustion products.

More specifically, the experiment studied an unconfined configuration [9] which
typifies more complex situations where thermo-acoustic instabilities are driven by
the flame interaction with a convective vorticity mode. This ICF exhibits self-sustained
oscillations for certain operating conditions, involving the sudden annihilation of
flame surface area, caused by a strong interaction between the flame and vortices
created at the shear layer that develops at the burner outer edge. The experimental
transfer functions between the flow velocity and heat release fluctuations are depen-
dent on the velocity perturbation amplitude and frequency, and the time delay is
determined by the convection of the large scale vortices.

FIGURE 1.1: Representative view of OH mass fraction for the un-
steady inverted conical flame. Mean velocity of vd = 2.05 m/s
and metane/air equivalence ratio φ = 0.92, T∞ = 300 K and p =

1 atm [36].

The flame modeled here is based on the experimental study by [9], where a
burner outlet diameter of Db = 22 mm is used, represented on Figure 1.5, fed with
a lean methane-air mixture, with equivalence ratio φ = 0.92. The flame is anchored
by a central cylindrical rod with a diameter of d = 6 mm, and it is 2 mm higher than
the burner outlet. All the model main equations, numerical methodology, domain
and measures and other features used for the developing computational model are
discussed in Sections 1.3 and 1.4. A discussion and analysis of the steady model
simulation results are presented in Section 1.6.



1.2. 1D Flame Model 11

1.2 1D Flame Model

In this section the chemical kinetic mechanism used to describe the combustion pro-
cess is presented. It is followed by the presentation of a preliminary 1D Chemkin
model used to define important parameters that are necessary to properly create the
a base combustion model.

1.2.1 Skeletal chemical kinetic flame model

To model the combustion process of premixed methane/air, the chemical kinetic
process is described by a skeletal model. Different from global kinetic models, the
skeletal chemical model also includes the production of intermediate species, before
the major species formation. Skeletal kinetic models can follow different paths be-
tween the oxidation steps, such that the analytic understanding of those becomes
extremely complex. Figure 1.2 presents an example of steps used to describe the
combustion process for methane or ethylene [45].

In Figure 1.2, the paths of the leftmost vertical group are the ones that do not have
substances with two carbon atoms (C2), important for reactions in high pressure or
rich combustion. The chemistry involving C2 is initiated through the recombination
of CH3 with other species. It is worth to note that, in this scheme, the initial step
needs a high activation energy to remove the hydrogen from the molecules.

FIGURE 1.2: Simplified representative scheme of a detailed kinetic
model for methane combustion [45].

The skeletal model used is the DRM19, which is a reduced GRI-Mech 1.2 kinetic
model. It is developed by truncation of the original GRI-Mech, with the objective
of developing a smallest set of reactions [46]. The GRI-Mech 1.2 model is composed
of 32 species and 177 reactions, which yields a large computational cost. Because of
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this, a reduced model is used in this work. The DRM19 skeletal kinetic model is com-
posed of 19 (plus N2) species and 84 reactions [46]. Previous assessment of skeletal
model accuracy in the context of combustion supports this choice [47]. The use of
such a detailed model enables the analysis of a variety of chemical species during
the combustion process, and the DRM19 reproduces closely the main combustion
characteristics predicted with the original GRI-Mech, with a lower computational
cost.

One may note that, since a lean premixed flame is modeled, it does not present
soot formation and thermal radiation is neglected. The radiation medium emission
relies on CO2 and H2O at the burnt gases only, which is significantly smaller than
the convective heat transfer contribution. As a consequence, the flame may also be
considered transparent regarding the absorption process.

1.2.2 Preliminary model: definition of flame scales

In order to develop a computational model of premixed laminar flames, it is neces-
sary to define the flame associated scales, which must be known beforehand, such
as the laminar flame front speed and the thickness for the specific modeled flame.
Accordingly, the software CHEMKIN-Pro, which enables the modeling of kinetic
mechanism used on combustion, is applied to create a one dimensional model of a
steady premixed methane-air flame, with an skeletal kinetic chemical model for the
combustion (DRM19 kinetic model [46]).

The main features obtained as solution are: (1) fluid domain spanning from −2
to 5 cm, (2) an adaptive grid control based on the solution curvature and gradient
threshold of 0.7 and 0.2 respectively, and (3) the laminar flame front speed SL = 40
cm/s. The minimum mesh size found is 5.6 µm. This simple CHEMKIN-Pro model
using the DRM19 kinetic model enables the analysis of diverse flame properties and
its different scales. For the sake of brevity, only three properties are discussed here;
OH and CH2 mass fraction, and temperature. These three properties are used to
characterize the large difference between the scales of each flame property, both in
terms of magnitude and characteristic length. Indeed, the OH mass fraction is often
used for experimental flame measurements, and CH2 is a good indicator of the flame
front position and thickness. In order to examine these properties, the fields of the
mass fraction of CH2, OH and the temperature are depicted in Figures 1.3 and 1.4.

Figure 1.3 shows that CH2 and OH are absent upstream to 0 cm, where the tem-
perature is 300 K. The temperature then increases up to approximately 800 K and
gives rise to the combustion, such that significant amounts of CH2 and OH are seen
because of the combustion process has started. The position of the flame front is
highlighted by the increase in CH2 and OH mass fraction. The CH2 is consumed
immediately downstream and its mass fraction decreases to zero, indicating ther-
modynamic equilibrium. The OH mass fraction, however, presents a maximum at
the flame front, then gradually tends to an equilibrium concentration as x → 5 cm.
The temperature increases along the flame until it reaches the adiabatic flame tem-
perature Tad = 2, 200 K.

A focus on the flame front location is depicted on Figure 1.4. It emphasizes
the large difference between the different flame properties length and time scales,
such as temperature and mass fraction of OH. Indeed, the length scales varies from
300 µm to 40 mm until equilibrium is achieved. Also, the mass fraction profiles indi-
cates that the flame reaction zone thickness is around 120 µm, based on the OH and
CH2 gradients. Also, it may be inferred that the smaller mesh size required to obtain



1.3. Computational Fluid Dynamics Model 13

-2 -1 0 1 2 3 4 5

Distance (cm)

0

1

2

3

4

5

6

7

8

M
a

s
s
 F

ra
c
ti
o

n
 o

f 
C

H
2
 ·

 1
0

-3
 a

n
d

 O
H

 ·
 1

0
-5

×10
-8

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

T
e

m
p

e
ra

tu
re

 [
K

]

CH
2

OH

Temperature

FIGURE 1.3: Fields of mass fraction of CH2 and OH, and temper-
ature (K) obtained for the 1D freely propagating laminar premixed
methane/air flame, with equivalence ratio of φ = 0.92, T∞ = 300 K

and p = 1 atm [36].
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FIGURE 1.4: Zoom on the fields of mass fraction of CH2 and OH,
and temperature (K) obtained for the 1D freely propagating lami-
nar premixed methane/air flame, with equivalence ratio of φ = 0.92,

T∞ = 300 K and p = 1 atm [36].

a well resolved gradient and curvature of the laminar premixed flame properties is
of the order 5 µm, which is ≈ 25 times smaller than the flame reaction thickness.

1.3 Computational Fluid Dynamics Model

In this section, equations describing the Fluent software solver used to model the
combustion process of the burner is described, followed by the domain, boundaries
and mesh used for the CFD model.
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1.3.1 Governing equations

The model consists of the conservation laws of mass, momentum and energy of all
species in an axisymmetric 2D reference frame. In the combustion process no mass
is created or destroyed, which yields the following total mass conservation law [45]

∂ρ

∂t
+∇ · (ρ~v) = 0, (1.1)

where ρ is the mixture density and ~v is the flow velocity vector ant t represents the
time.

In this work, the chemical kinetic process is described by a skeletal model, as
presented in Section 1.2.1, composed by a total of I species. The species mass trans-
port equation, then, is solved accounting for the multi-species diffusion coefficients,
the Soret diffusion effects, but neglecting the barodiffusion effects since the flame is
nearly isobaric. This way, the mass balance of each one of the I substances is defined
by [45]

∂ρYi

∂t
+∇ · (ρ~vYi) = ∇ · (ρDi∇Yi) + ω̇i i = (1, · · · , I), (1.2)

where Di is the mass diffusion coefficient of the species i in relation to the gas mix-
ture, ω̇i the mass production rate of the species i due to the chemical reactions and
Yi is the mass fraction of each species.

Assuming the chemical expression of a general elementary reaction is

∑
j

aj,iMj → products, (1.3)

where aj,i are the stoichiometric coefficients of speciesMj in reaction i. The corre-
sponding rate of reaction is expressed as

ω̇i = πi[Xj]
aj, (1.4)

where [Xj] are the molar concentration of speciesMj. The constant of proportional-
ity Ki, also called the Arrhenius rate constant, is of he following form [45]

Ki = A0,iTβi exp
(

Ea,i

RT

)
, (1.5)

where A0,i is the frequency factor, βi temperature exponent, Ea its the activation
energy, and R = 1.987 cal/mol − k is the universal gas constant.

In Equation (1.2), the Fick’s law of diffusion accounts for the rate equation for
mass diffusion [48], as

~ji = −ρDi∇Yi, (1.6)

where ji is defined as the diffusive mass flux of species i.
The conservation of momentum reads

∂ρ~v
∂t

+∇ · (ρ~v ∗~v) = −∇p +∇ ∗ τ + ρ~g, (1.7)

where p is pressure, ~g is the vector of gravity acceleration and τ is the viscous stress
tensor, i.e.
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τ = −
(

2
3

µ− η

)
∇ ·~vI + µ

(
∇~v +∇(~vT)

)
, (1.8)

where µ is the dynamic viscosity which is discussed bellow, η volumetric viscosity
and I the identity tensor. The energy transport equation accounts for the non unity
Lewis number effects, but thermal radiation is neglected since the modeled flame is
a lean premixed flame, which does not presents soot formation. The energy equation
[45] reads

∂ρh
∂t

+∇ (ρ~vh) = ∇ · (ρα∇h) + ∑
i
{∇ · [(hi) (ρDi − α)]∇Yi}+

∂p
∂t

+~v · ∇p, (1.9)

where α is the thermal diffusion coefficient of the mixture, h is the enthalpy, hi is
the enthalpy of the chemical species i and Di is the mass diffusion coefficient of the
species i with respect to the gas mixture.

1.3.2 Equations of state and constitutive relations

All gas are assumed to satisfy the ideal gases law as follows

p = ρRT ∑
i

(
Yi

Mi

)
, (1.10)

where Mi is the molecular mass of the species i and R the universal gas constant.
The temperature can then be determined with the heat state equation, as follows

h =
∫ T

Tstd

CpdT + ∑
i

Yih0
i , (1.11)

with Cp = ∑I
i=1 YiCp,i the specific heat at constant pressure of the mixture, Tstd the

standard temperature where the enthalpy is defined (usually Tstd = 25oC), and h0
i is

the enthalpy of formation at the standard state. The specific heat of the mixture
at constant pressure

(
Cp,i
)

is obtained with the JANAF database [49]. The mix-
ture properties, such as the viscosity (η) and and the diffusion coefficient (Di) are
computed base on the pure substance properties, such that a polynomial fitting in
function of physical parameters, e.g., temperature and pressure, is applied to com-
pute the properties for each mixture. For more information about computations, the
reader must refer to [50].

1.3.3 Domain, boundary conditions and mesh

Since the flame is axisymmetric, the spatial domain here is composed of a 2D slice.
The system has eleven boundaries, where six are walls, two inlets, one outlet, one
axis and one slip boundary, as presented on Figure 1.5. The physical assumptions
for each of these boundaries are presented in Tab. 1.1.

One may note that the boundary B7 is an open to the environment, but it repre-
sented here as slip, adiabatic non catalytic wall. Also, the axis (boundary B9) repre-
sents the symmetry of the system. All the other walls (B5, B10 and B10) are no-slip
adiabatic non catalytic walls. Moreover, the two inlets represent the inlet of the fuel
air mixture (B1) and of air (B6). The first one, where the premixed gases enters, is
represented by the velocity inlet boundary B1, whereas at the second one, the ve-
locity inlet boundary B6, air enters with a small constant velocity of vair = 0.3 m/s.
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(A) Boundaries references. (B) Dimensions used to specify the computa-
tional domain.

FIGURE 1.5: Representation of the axisymetric computational domain
with corresponding boundary conditions and dimensions labels. The
boundary conditions setups and measures are given at Tabs. 1.1 and

1.2 respectively.

This air flux is imposed such that the air flow in the domain moves downstream.
One may note that the value (vair = 0.3 m/s) is chosen based on the Froude number

Fr = vair/
√

gL̄, (1.12)

where g is the acceleration due to gravity and L is the flame length. Considering
L̄ = 10 mm leads to a Fr = 0.96. The Froude number might be less or equal one
(Fr ≤ 1) to allow for neglecting outer convective effects. Imposing a positive air
velocity helps the simulation convergence, whereas using a zero air velocity was
found to leads to backward flow at the outlet boundary.

The domain dimensions, represented on Figure 1.5b, are given in Tab. 1.2. It is
worth to note that the length L7 controls the extension of the domain, which needs
to be large enough to ensure that the flow is developed when reaching the outlet
boundary. In addition, the L6 distance between the flame and the lateral boundary
(L7) must be large enough so that the flame does not interfere with the wall, since
the model approximates a non confined flame.

Finally, three distinct regions are defined with different mesh properties. The
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TABLE 1.1: Boundary conditions of the CFD model.

Setup Boundary (Bi)
Velocity Inlet B1, B6

Pressure Outlet B8

No-slip Wall B2, B5, B10, B11
Slip Wall B3, B4, B7

Axis B9

TABLE 1.2: Dimensions Li, characteristic of the CFD domain, in [mm].

Label (Li) L1 L2 L3 L4 L5 L6 L7

Measures [mm] 3 141 11 2 14 135.5 650

internal region (M1) includes the fuel/air inlet tube and the flame region. The two
external regions (M2 and M3), account for the air flow and the dilution of the burned
gases in air. These have initial mesh sizes of 1 mm and 5 mm, respectively: such
coarse values ease the computational burden.

In (M1), it is necessary to account for the boundary layers along the bluff-body
and the burner walls and, also, the reactions that arise at the flame. Then, the initial
mesh size is chosen to be smaller then 100 µm, which is of the order of the flame front
thickness and ensures the existence of at least a mesh node inside of the reactive
region. A mesh adaptation tool, briefly described in Section 1.4.4, is then used to
compute a grid that ensures a proper resolution of the flame front in M1, consistently
with the results of Section 1.2.2.

1.4 Numerical Methodology

The model described in the previous section is numerically solved with a finite vol-
ume method using Ansys Fluent. First, the finite volume formulation is given, fol-
lowed by the physical solver methodology. Then, the necessary changes to develop
a steady model are presented, followed by the mesh adaption methodology.

1.4.1 Transient finite volume method

To model the transient ICF, a temporal discretization is applied, involving the inte-
gration of all terms in the differential equations, over a variable time step ∆t. This
way, the general discretized form is obtained from the generic conservation equation
of transport of a scalar quantity ϕ;∫

V

∂ρϕ

∂t
dV +

∮
ρϕ~v · d~A =

∮
Γϕ∇ϕ · d~A +

∫
V

SϕdV, (1.13)

where ρ is the density, ∂ρϕ
∂t is the conservative form of transient derivative of trans-

ported variable, ~v is the velocity vector, ~A is the surface area vector. The Γϕ is diffu-
sion coefficient of the variable ϕ, ∇ϕ is the gradient of ϕ and Sϕ is the source of ϕ
per unit volume. This formulation is then applied for each cell, in this case, of a 2D
axisymmetric domain, such that the discretization of Equation (1.13) on a given cell
yields the following equation
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M3

M2

M1

FIGURE 1.6: Axisymmetric computational domain blocks division.
M1: is the block where the flame is encountered; M2, M3: are the

blocks where the air and burned gases flow.

∂ρϕ

∂t
V +

N f aces

∑
f c

ϕ f cρ f c~v f c ~A f c =
N f aces

∑
f c

Γϕ∇ϕ f c · ~A + SϕV, (1.14)

where N f aces is the number of faces enclosing cell, f c is the face index and ρ f~v f ~A f is
the mass flux through the face. More precisely, to compute the time dependent ∂ρϕ

∂t ,
an implicit second order transient scheme is applied with a constant time step, as
following

∂ϕ

∂t
=

3ϕ(n+1) − 4ϕn +ϕ(n−1)

2∆t
. (1.15)

Since the simulation time step is constant and equal to 100 µs, the flow Courant
number is only used to stabilize the convergence behavior, and its maximum value
is 0.41. The relaxation factor for momentum and pressure is 0.75, and it defines
the explicit relaxation of variables between sub-iterations for momentum and pres-
sure [51]. The density, body forces, species and energy equation under relaxation
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factor (URF) is 1, and for species all URFs are set together, which means that the
same under-relaxation factors are used for all the species.

1.4.2 Solver methodology

In this work a pressure based solver is used, employing an projection algorithm
where the constraint of mass conservation of the velocity field is found by solving
a pressure or pressure correction equation. The pressure equation is derived from
the continuity and the momentum equations, such that the velocity field, corrected
by the pressure, satisfies the continuity [52]. A coupled algorithm is used to solve
the governing equations (i.e., velocity ~v, pressure p, etc.) simultaneously, and the
solution cycle is carried out iteratively until a threshold of numerical convergence
is reached. The pressure based coupled solution scheme is given on Figure 1.7. The
steps of the solver are

1. Update the fluid chemical properties, e.g., viscosity, density and specific heat,
based on the current solution.

2. Solve the momentum (i.e., velocity, mass flux, etc) and pressure correction
based continuity equations using the updated properties.

3. Correct the faces pressure, velocity components and mass fluxes with the pres-
sure correction obtained at the previous step.

4. Sequentially, solve the energy, species and additional equations, with the cur-
rent solution variable values.

5. Check if convergence is achieved.

This process iterates until the convergence criterion is achieved. In this case,
two convergence criteria are used; first, the simulation has converged if the residual
off each equation is less than or equal to 10−3, and second, if the loop achieves 20
iterations. Such values are the default values from Fluent transient models [51].

Moreover, the mixing and transport of chemical species are computed by solving
the conservation equations describing convection, diffusion, and reaction sources
for each component species, as shown in Section 1.3.1. Simultaneously, multiple
chemical reactions are modeled, such that the reactions occur in the fluid phase,
described by volumetric reactions, and are solved with the stiff chemistry solver
[51], [53], at step 4 of the process. One may note that here an mesh adaption tool is
also used during the simulation, being applied for a specific period, as explained in
Section 1.4.4. The modeling of stiff chemistry systems, such as flames with finite-rate
kinetics, approximates the reaction rate (ω̇∗) in the species transport equation (1.2)
as;

ω̇∗i =
1

∆t

∫ ∆t

0
ω̇idt, (1.16)

where ∆t is the time-step. It is worth to note that as ∆t → 0, the approximation be-
comes exact but the stiff numeric will cause the pressure-based solver to diverge [52].
On the other hand, as ∆t tends to infinity, the approximated reaction rate tends to
zero and, while the numerical stiffness is alleviated, there is no reaction.

In addition, to compute the chemical species properties, which depends on the
flow dynamic states, the In-Situ Adaptive Tabulation (ISAT) table is applied to in-
tegrate the stiff chemistry (Equation (1.16)) during the simulation [51]. ISAT is a
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Update Properties

Solve simutaneously the equations:
Continuity (1.1)
Momentum (1.7)

Update mass flux

Solve energy equation (1.9)

Solve chemical species
transport equations (1.2)

Converged? StopYesNo
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FIGURE 1.7: Flow chart representation for Fluent solution process.

method to tabulate the accessed composition space region on the fly, with error con-
trol, i.e., adaptive tabulation. This method accelerates the simulation in two to three
orders of magnitude. ANSYS Fluent employs ISAT table to dynamically tabulate
the chemical properties, mapping the species properties in such table and acceler-
ating the time to solution [54]. In this work, the stiff integration parameters are the
absolute and relative error tolerance of 1−10 and 1−5, respectively, while the ISAT
parameters are the error tolerance of 1−5, maximum storage of 400 Mb and zero
verbosity, all set based on [51], [55], [56]. In addition, no Turbulence Chemistry
Interaction (TCI) is used, such that only the Arrhenius rate (1.5) is computed and
turbulence-chemistry interaction is neglected, and diffusion energy source and ther-
mal diffusion (Soret effects) are assumed.

To solve the equations, the flow properties gradient is necessary to discretize
convection and diffusion terms in the conservation equations, and here the spa-
tial discretization scheme used is least square cell based [51], [52]. The pressure
interpolation applied is the PRESTO! scheme (PREssure STaggering Option), which
uses the discrete continuity balance for a staggered control volume about the face to
compute the face pressure. Such procedure is similar to the staggered-grid schemes
used with structured meshes [57]. The pressure-velocity coupling scheme used here
is COUPLE, which solves momentum and pressure-based continuity equations to-
gether [51]. The full implicit coupling is achieved through an implicit discretization
of pressure gradient terms in the momentum equations, and an implicit discretiza-
tion of the face mass flux. For momentum, species and energy, the second order
upwind scheme is applied for spatial discretization, which gives a second-order ac-
curacy and the quantities at cell faces are computed with multidimensional linear
reconstruction approach [58]. In this approach, second-order accuracy is achieved
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at cell faces through a Taylor series expansion of the cell-centered solution about the
cell centroid. The second order upwind then gives the value at the face (ϕ f ) as;

ϕ f = φ +∇ϕ ·~r, (1.17)

where ϕ and∇ϕ are the cell-centered value and its gradient at the upstream cell for a
flow property, and~r is the displacement vector from the upstream cell centroid to the
face centroid, as presented by [51], [52]. This formulation requires the determination
of the gradient in each cell, as discussed in Section 1.4.1.

1.4.3 Steady-state model

When performing a steady-state calculation, the governing equations (Section 1.3.1)
for the pressure-based solver do not contain time-dependent terms. Moreover, the
general dicretized form given at equation (1.14) then, loses its time dependent term
( ∂ρϕ

∂t ), as shown in Equation (1.18), describing then the control volume based dis-
cretization of the steady-state transport equation.

N f aces

∑
f

ϕ f ρ f~v f ~A f =
N f aces

∑
f

Γϕ∇ϕ f · ~A + SϕV, (1.18)

The same transient process and parameters for the CFL number and relaxations
are are applied for the steady state simulations.

1.4.4 Mesh adaption methodology

Mesh adaption is a tool that enables continuous or batch refinement and/or coarsen-
ing of the mesh characteristic size based on the properties of the current numerical
solution [59]. In this work, the mesh adaption tool is applied to decrease the char-
acteristic mesh size at the regions where a small size is needed, i.e., the combustion
region, which is discussed in Section 1.2.2. More precisely, here the mesh adap-
tion is controlled by the gradient of temperature, such that, in the regions where
the temperature gradient is higher than a threshold value ∆Tre f ine (K/m), the mesh
is refined, and at the regions of the mesh where the temperature gradient is lower
than a second threshold ∆Tcoarse (K/m), the mesh is coarsened [51]. The value of the
thresholds is determined through a trial-and-error procedure, trading-off accuracy
with computational burden. This point is further illustrated in Section 2.2, at the
light of transient simulations.

To visualize the impact of the mesh adaption, Figure 1.8 shows a representation
of the mesh changes in the region M1 due to the adaption using a temperature gra-
dient threshold of ∆Tre f ine = 10 K/m and ∆Tcoarse = 300 K/m. On the left side, the
figure shows the base mesh, with a characteristic mesh size of 100 µm and, in the cen-
ter, a representation of an adapted mesh after the flame is developed. On the right,
a zoom on the adapted mesh is represented. A comparison between Figures 1.1 and
1.8, shows that the mesh is refined in the flame front region, where the temperature
gradient is high and the combustion process occurs. The initial regular mesh, on the
left of Figure 1.8, is composed of 509, 473 cells, whereas the mesh, at the last instant
of the simulation, presents 2, 427, 310 cells.

The mesh adaption can be applied to either steady state or transient simulation.
In the first case, this approach enables the mesh to refine and vary with the flame
position before a permanent state is achieved, such as between when the flame is
ignited and when it is completely developed and converged to its equilibrium state.
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FIGURE 1.8: Representation of the mesh adaptation due to tempera-
ture gradient (obtained using Fluent). Left: base mesh with a size of
100 µm; center: mesh already adapted after the flame is developed;

right: zoom on the adapted mesh.

For the steady simulation, the mesh adaption is set to adapt the mesh at every 25th

step. For the transient simulation, the mesh adaption process is every 5 time steps.
For all cases, the maximum level of refinement is 12, which means that the mesh
characteristic size (∆x) can be divided ∆x/212.

1.4.5 Numerical ignition

The computation of the steady-state of the ICF constitutes a nonconvex, nonlinear
optimization, and therefore requires a proper initialization procedure. To avoid local
optima, where no combustion happen, an appropriate initial guess is constructed, re-
lying on physical considerations. This process is referred to as ’ignition’ and follows
the following steps:

• Define appropriate initial conditions for species concentrations by filling the
burner with premixed methane/air fuel and the rest of the domain with air.

• Inquire the flame at the burner outlet by imposing a high temperature in a
small region of the domain.

The first step is done by initializing the domain by patches, such that the first
patch is defined by the rectangle region inside the mixture feed tube, with lateral
and radial measures equal to 141 mm and 11 mm, respectively, corresponding to
the red region on Figure 1.9a. The second patch is initialized only with air, which
corresponds to the blue region on Figure 1.9a. Then, the corresponding steady equi-
librium is computed, for the purpose of an isotherm computation, where no flame is
present, such that the field of species concentrations converge to reasonable values.

The next step is to ignite the flame. This is done by increasing the temperature
on the region where the premixture. The high temperature which is imposed there
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(A) Premixed fuel and air patch for the purpose of
an isotherm computation.

(B) Ignition patch for the purpose of a flame com-
putation.

FIGURE 1.9: Representation of the computation initialization patches.

is chosen based on the preliminary analysis presented in Section 1.2.2, where it is
shown that the reactive process starts around a temperature of 1200 K. Then, a patch
with lateral and radial measures 8 and 5 mm, respectively, placed tangential to the
top of the centralized rod, and with a distance of 1.5 mm from the axis is created, and
the 1200 K temperature is imposed on it. Such setup is represented on Figure 1.9b,
where the temperature of 1200 K corresponds to the red region, and the blue region
corresponds to the ambient temperature.

Ignition is developed with a mesh adaption refinement threshold of 10 K/m,
which was was chosen by trial and error. Higher thresholds have shown to be inef-
ficient to the flame ignition, not being enough to stabilize the flame anchored at the
centralized rod, causing then, the flame blow-off. The ignition process is performed
only once, on a Linux-64 SuSE, at ANSYS cluster, Intel(R) Xeon(R) E5-2660 v3, us-
ing 108 nodes on 9 machines, taking about 1 month for the flame to be completely
developed, and once the flame is developed and stabilized on the bluff body, this
instant and its respective properties profiles are used as initial conditions for other
ICF simulations.

1.5 Outputs of interest

To better understand and analyze the CFD results, this section presents the defini-
tion of important variables and properties that are crucial for the comprehension of
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this work. First, the definition of the probe points used to extract data from the sim-
ulation is given, then, the flame surface area definition for the CFD model of the ICF
is given.

1.5.1 Properties measurement probes

To study the evolution of some of the computed reactive flow properties, twenty
analysis points are set in the flame fluctuation region. These points span four hor-
izontal lines along the flame height (z =constant), each containing five points, as
shown on Figure 1.10. These points coordinates are empirically chosen such that, at
any time and for any shape of the ICF, there is at least one measurement in each of
the following important regions: the fresh gases, the reactive region or flame front
and the burned gases. In Figure 1.10, the placement of the points of data extraction
are superimposed on the flame front, each labeled from A to T. The coordinates of
these points in the normalized (z, r) plane are presented in Tab. 1.3.

FIGURE 1.10: Data extraction points in the flame region and outline
of fluctuation flame surface.

These points are used as measurement probes, to analyze various flame proper-
ties and its transient behavior. It is worth to note that the flame position and dynam-
ics, as well as the mesh adaption during simulation do not interfere on the probes
position, which are fixed on the geometry.

1.5.2 Flame surface area

The flame surface area is obtained from the CFD species results, enabling the charac-
terization of the flame front position and dynamic behavior. It should be noted that
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TABLE 1.3: Point name and corresponding (z∗, r∗) non dimensional
coordinates of each point shown on Figure 1.10. These are no dimen-
sional axial and radial coordinates, such that z∗ = z/D and r∗ = r/D,

where Db = 22 mm is the mixture− inlet tube outlet diameter.

A B C D E
(0.41, 0.20) (0.41, 0.32) (0.41, 0.41) (0.41, 0.61) (0.41, 0.82)

F G H I J
(0.82, 0.20) (0.82, 0.41) (0.82, 0.50) (0.82, 0.61) (0.82, 0.82)

K L M N O
(1.43, 0.20) (1.43, 0.41) (1.43, 0.61) (1.43, 0.73) (1.43, 0.82)

P Q R S T
(2.05, 0.20) (2.05, 0.41) (2.05, 0.61) (2.05, 0.82) (2.05, 0.91)

a flame surface area is not unambiguously defined from the reactive flow properties.
Indeed, the experimental results available consider that the OH∗ chemiluminescence
represents the reaction rate and thus the flame surface area. Here, to compute the
flame surface area, it is necessary to, first, chose which of the modeled flame proper-
ties better approximates the flame front. For the ICF model computed with a DRM19
kinetic model, the CH2 mass fraction is assumed to yield a fair representation of the
flame front shape and thickness, since it is a substance produced and consumed in
the reactive region, as show in section 1.2.2. Thus, to define the flame surface from
the CH2 mass fraction field (YCH2), a binary variable ι is defined, such that ι = 1
denotes the flame front location. At each location x and time t, ι(x, t) is defined as
follows

ς(x, t) = YCH2(x, t)−
Ymax

CH2

σ
, ι(x, t) =

1
2

(
ς(x, t)
(|ς|+ ε)

+ 1
)

, (1.19)

Here, ε = 10−16 is the machine zero, Ymax
CH2

= 6.25× 10−7 is the computed maximum
CH2 mass fraction and σ controls the resultant thickness of the flame front. In this
case, σ = 10 is used to obtain the necessary flame thickness of 120 µm. The result
of this transformation is depicted on Figure 1.11. Different choices of the parame-
ters defining ι in Equation (1.19) have been explored. The choice of parameters for
Equation (1.19), such as Ymax

CH2
, is finally made enabling the binary flame surface area

to achieve a flame front thickness approximately of 120 µm, the same value encoun-
tered at section 1.2.2.

The isosurface of each of the ι(x, t) fields is then extracted, to obtain the flame
surface. For that, a search for every cell of the computational domain which has a
value of ι = 1 is done, and the values found characterize the borders of the flame
front. Then, the surface coordinates are integrated radially and axially to compute
the area of the flame surface, and this value is further used to approximate the flame
front surface area (A). One may note that, since a two dimensional model is used,
the isoline ι = 1 is obtained.

1.6 Inverted Conical Flame Steady-State Model

In this section, the analysis of the steady ICF model is developed. The aim is to
model the averaged converged state of the flame, and characterize its structure by
means of flame properties, and the model boundary values are set in agreement with
[9]. Two methods are used to characterize the laminar flame; the first one is based
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FIGURE 1.11: Comparison of the
instantaneous flame front iden-
tified with the CH2 mass frac-
tion (left) and with the binary

field ι (right).

on the properties results given by the steady model (section 1.6.1), and the second
one is based on the properties averaged values over a number of iterations (section
1.6.2).

The steady simulation result presented here follow the methodology explained
in sections 1.3.1 and 1.4.3. In order to capture the flame in detail, the adaption refine-
ment threshold gradient chosen is of 10 K/m, being adapted at every 25 iterations.

The simulation takes about 30 to 40 days to complete on a Linux-64 SuSE, at
ANSYS cluster, Intel(R) Xeon(R) E5-2660 v3, using 108 nodes on 9 machines, with
the ignition of the flame.

1.6.1 Laminar Flame Structure

In order to discuss the ICF structure, the steady axisymmetric laminar premixed
ICF is modeled with a constant volume flow rate of ∀̇3 = 180.3 cm3/s, such that
vd = 2.05 m/s, and a methane/air equivalence ratio of φ = 0.92. Under such reac-
tive mixture flow conditions, experimental results shown that a classical premixed
laminar flame is anchored at the central rod tip [9]. This flame exhibits an inverted
conical shape and gradually consumes the fuel-air mixture. Upon encountering the
external air, combustion is depleted. Figure 1.12 presents the model results of a va-
riety of the flame properties, e.g., temperature, axial and radial velocity components
and several species mass fractions. The first three figures (Figures 1.12a, 1.12b and
1.12c) exhibit the temperature and velocity components fields, whereas the remain-
ing (Figures 1.12d, 1.12e, 1.12f, 1.12g, 1.12h and 1.12i) show the mass fraction fields
of selected chemical species described by the DRM19 kinetic model. These species
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are shown in order to highlight the overall flame structure and, in particular, the
multiple length scales that arise within the studied premixed flame.

(A) Temperature (K). (B) Axial Velocity component
(m/s).

(C) Radial Velocity component
(m/s).

(D) CH4 mass fraction. (E) N2 mass fraction. (F) CO mass fraction.

(G) OH mass fraction. (H) CH2 mass fraction. (I) H2 mass fraction.

FIGURE 1.12: Structure of the laminar premixed inverted coni-
cal flame, with a volume flow rate of ∀̇d = 180.3 cm3/s and a

methane/air equivalence ratio of φ = 0.92 [36].

The shape of the flame front, when characterized by the temperature, which is
anchored at the centered bluff body, exhibits an open form, with a distinct conical
shape as depicted on Figure 1.12a. At figure, the maximum temperature of 2, 200
K, is consistent with the flame adiabatic temperature (Tad = 2, 200 K) determined in
section 1.2.2. One may note that the temperature at the top of the rod is constant and
equal to the ambient temperature (T∞ = 300 K). This value is chosen because, after
a study of the impact of varying the boundary condition at the top of the rod, using
different temperature values, it was concluded that the heating of the rod, caused
by the flame, does not affect the flame anchor point nor its angle with respect to the
incoming flow.
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Figures 1.12b and 1.12c underscore the inverted conical shape of the flame, since
the axial component of the velocity varies along the flame front, being approximately
vz = 2.05 m/s upstream the flame front. Due to thermal expansion, it increases
immediately downstream the flame front, and the radial component increases in the
region immediately upstream the flame front.

Concerning the mass fraction of CH4, on Figure 1.12d, since there is ambient air
flowing in the external region of the mixture feed tube, at the side of the flame that
is farther away from the symmetry axis, the fuel air mixture is progressively diluted
by the ambient air, whereas it is consumed by the combustion reactions when it is
closer to the symmetry axis. Figure 1.12e gives the field of N2 mass fraction, which
is present in the air and in the air-fuel mixture, with a mass fractions of Yair

N2
= 0.7899

and Ymix
N2

= 0.7203. respectively. Also, farther away from the symmetry axis of the
burner, the N2 mass fraction is the same of the air stream (Yair

N2
= 0.7899), and as it

gets closer to the flame front, the mass fraction decreases due to the presence of CH4.
In the burned gases region, the air-fuel mixture has a mass fraction of N2 equal to
Ymix

N2
= 0.7203. Downstream the flame front, the N2 present in the fuel/air mixture is

diluted by the burned gases, such that its mass fraction decreases. Moreover, Figure
1.12f exhibits the CO mass fraction, which underscores the shape and the position
of the flame front, and gives an approximation of the flame thickness. Indeed, this
substance is produced as the reactive region of the flame develops, and decreases
downstream the flame front, gradually tending to the equilibrium mass fraction of
YCO = 0.0038. One may note that the field of CO gives just an approximation of the
flame front thickness, since this substance is not completely produced and consumed
the combustion region, mixing and reacting with other burned gases downstream
the flame, which gives a thickness measurement larger than other representations.

Figure 1.12g depicts the field of OH mass fraction, which is produced in the re-
action region and thus, is also a possible identifier for the position and shape of the
flame front. Figure 1.12h shows the field of CH2 mass fraction, that is an species
produced and consumed within the combustion region, hence giving a sharp rep-
resentation of the flame thickness. Finally, Figure 1.12i shows the field of H2 mass
fraction, which is produced in the combustion and part of it is consumed in the re-
active region. The model results indicates a flame thickness of approximately 130
µm, measure obtained with the CH2 mass fraction field and Fluent scaled rule. This
flame thickness value agrees with the size of 120 µm presented at section 1.2.2, pre-
senting an error of 8.34 %.

On a global view, all the properties presented on Figure 1.12 present a V-shape,
associated to the flame anchored in the central rod, but also, some wrinkles arise
along the flame front. These wrinkles, underscored by the squares green marks on
Figures 1.12b and 1.12h, represent a flame inherent instability. Indeed, the analysis
of the development of some flame properties, which are not shown here for the sake
of brevity, show that the wrinkles at the flame front actually tend to move as the
iterations proceed. This movement never tends to a permanent state or an strict
convergence, but oscillates over a pseudo-transient state point. One may note that
this effect could also be caused by computation error, and further research should be
developed over the topic.

The previous analysis illustrates the various length scales that results of choosing
a kinetic model that accounts for different species and the importance of the adaptive
mesh. Indeed, the above discussed chemical species results exhibit different spatial
scales, which have been accounted for by the chemical reactions represented by the
DRM19 chemical kinetic model. One may also note that the the well resolved flame
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results, specially the flame front, have been achieved thanks to the adaptive mesh
procedure, which enables the refinement of the mesh from a size of 100 µm to a
minimum size at the flame region (5 µm), as discussed in Sections 1.4.4 and 2.2. This
mesh size is able to capture the flame scales since it is a mesh ≈ 25 times smaller
than the flame thickness.

1.6.2 Averaged Laminar Flame Structure

Willing to obtain a better approximation of the ICF in its statistical steady state, the
ensemble average of the results is computed, in belief that this average might have
a convergent behavior. Figure 1.13 gives the comparison between a steady and the
ensemble averaged results, for the axial and radial velocity components, and tem-
perature, for the same model previously shown. The purpose here is to illustrate the
effect of ensemble averaging on the results. Each of these contours plots exhibit a
steady result on the left, and the ensemble averaged result − over 1000 iterations −
on the right side.

(A) Axial velocity component
[m/s].

(B) Radial velocity component
[m/s].

(C) Temperature [K].

FIGURE 1.13: Comparison of the flame front structure between Fluent
and its average: fields of velocity components and temperature, for
two different fuel/air mixture flow rates. Fluent steady field on the
left and ensemble average on the right side, for ∀̇3 = 180 cm3/s. [36]

On Figure 1.13a, the axial velocity component (left side) and its ensemble aver-
age (right side) are presented. These figures show that the average flame front tip,
i.e., where the fuel/air mixes with the ambient air, is smeared when compared to the
steady field. Indeed, the wrinkles associated to this region are smaller and smoother
than those of the steady field, shown at the left side of Figure 1.13a. On Figure 1.13b,
a similar behavior is seen. The radial velocity component presents a rather abrupt
change of value on steady field, whereas the averaging has an smoothing effect, ren-
dering the wrinkles weaker and smaller. The temperature fields, on Figure 1.13c,
underscores that these wrinkles at the flame front tip computed by ensemble av-
eraging the results become smother than those encountered on steady results. The
temperature field also highlights that, even though these wrinkles at the flame tip
are smeared by the averaging procedure, the flame front still preserves the overall
characteristic behavior at the reactive region, such as its anchor point at the bluff-
body, the flame front position, shape and length.

The results given on Figure 1.13 indicate that the adopted averaging procedure
enables a smoother approximation of the ICF equilibrium state when a qualitative
image comparison is performed with the experimental results [9] presented on Fig-
ure 1.14. It should be stressed that the flame photograph shown on Figure 1.14 ex-
hibits the natural flame luminosity, which could be associated to CH∗ radicals. Such
a chemical species is not presented at the DRM19 chemical mechanism, therefore,
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FIGURE 1.14: Experimental steady inverted conical flame, with
equivalent ratio φ = 0.92 and nominal volume flow rate ∀̇d = 180

cm3/s [9].

a qualitative comparison is possible only. These examples illustrate the importance
and capacity of computing the average of CFD steady results, ensuring that the ob-
tained model result represents the long term behavior of a system.

1.7 Synthesis

The steady modeling of the inverted conical flame presented in this work, developed
with Fluent 2019/2020, computing such complex reactive system enables the study
of a diverse quantity of species by modeling the chemical of the system with skele-
tal kinetic models. One may note that the ICF modeling enables to delve in to the
mechanics of flames, thorough an analysis of different physical properties, such as
miscellaneous reactive substances from the combustion process (i.e., CH2, OH and
H2), which can not be achieved experimentally.

However, modeling the steady ICF remains a difficult challenge, since the flame
does not tend to a equilibrium state. The ICF flame setup is highly sensible, since
the model does not converge to a equilibrium state, but oscillates around a pseudo-
steady state point. Indeed, the ICF model presents a better approximation of the
steady behavior when the ensemble average of the steady results is computed, but
convergence to such a state is still not ensured. To further understand this oscillatory
behavior of the steady flame, the modeling of the non forced dynamic ICF, under the
same set up of the steady model, is the subject of study of the next chapter.

Moreover, the primary steady model of the ICF enables the use of the developed
flame as a base case to initialize other simulations, either steady or dynamic, of the
flame. Such initialization remarkably decreases the burden linked to the ignition
process of the ICF, which takes a month to fully develop. Such model presented
in this chapter represents significant advance on the study of combustion, since it
yields a full characterization of reactive flows. However, this kind of model has a
large inherent cost, that is expressed on the large amount of time required to solve
complex physical system, such that its research and application of other type of mod-
els is still envisioned.
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Chapter 2

Unsteady Inverted Conical Flame
and Thermo-acoustic Coupling

Ce chapitre s’intéresse au comportement dynamique de la flamme conique inversée a travers
l’étude de simulations du modèle presenté dans le chapitre précédent. Nous évaluons, dans
un premier temps, l’impact de l’adaptation de maillage sur la qualité de la solution numérique,
en particulier sur la présence d’instabilité auto-entretenues. Puis, nous proposons une car-
actérisation du comportement dynamique naturel de la flamme, en particulier des variables
d’intérêts suivantes : températures, fraction massique de OH, et surface de flamme. Enfin,
nous étudions la réponse de la flamme à des perturbations sinusoïdales de la vitesse d’entrée
du mélange en balayant une gamme de fréquence, ce qui nous permet le calcul de la fonction
de transfert de la flamme.

2.1 Introduction

Combustion and acoustic coupling can lead to severe dysfunction in a variety of
combustion system including gas turbines combustors. The combustion interac-
tions with flow perturbations may lead to unstable behavior that cause structural
vibrations and high heat flux to the engine walls, regularly leading to failure[43].
Laminar premixed inverted conical flames (ICF) are combustion systems that feature
instability phenomena with a rather simple flow field framework when compared
to complex combustion systems [60]. Accordingly, based on experimental studies
developed on these flames [9], [10], focusing on the characterization of the flame re-
sponse due to incoming excitation, we investigate here the self-sustained instabilites
of an ICF, as well as its response to forcing.

More specifically, the thermo-acoustic instabilities characterizing combustion pro-
cesses are caused by flow velocity fluctuations that couple with the flame and gener-
ate thermo-acoustic instabilities. These phenomena may be studied by exciting the
flame with forced velocity oscillations at a specific frequency and magnitude [9]. A
synthetic description of the flame response to velocity fluctuation is the Flame De-
scribing Function, which can be experimentally characterized [9], [10] and can be
used to predict instabilities.

Standard laminar conical flame dynamical instabilities have been extensively
studied [7], [8], [61], [62]. The flame front dynamics of a inverted conical flame
has been analyzed for a confined flame [61], and the non-linear response of ducted
flames anchored on a central rod has also been addressed [62]. However, to the
best of the authors knowledge, few modeling studies exist concerning laminar pre-
mixed inverted conical flames anchored on a bluff-body [9], [36]. The studied flame
has been shown to be susceptible to thermo-acoustic instabilities, mainly driven by
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flame convective vorticity mode [9]. Such instability is seen at the vicinity of tip of
the flame on Figure 1.1, and the coupling of these with combustion is the subject of
this chapter.

The characterization of the response of flames to incoming excitation is an active
research topic. For instance, the analytical study of a model of a transversely forced
flame on a two-dimensional Bunsen flame under transverse mean flow underscored
the influence of several effects, such as frequency, transverse mean flow velocity and
vertical mean flow velocity on the Flame Transfer Functions (FTFs) [63]. Studies
of laminar premixed V-flame forced with high frequency showed that the acoustic
transverse standing wave response depends on the acoustic condition [64], having
two response patterns; pairing process where multiple-vortex interact in the jet outer
layer, or a helical mode in the inner layer behind the rod. The analysis of the dynamic
response of premixed flames was also experimentally studied with chemilumines-
cence cross-correlation maps [12], [65]. Moreover, the results of the first work [65]
showed consistency with physical interpretation proposed for the cross-correlation
maps, confirming its potential for diagnosing the effective contribution of different
flame regions to the global dynamic response [65], whereas the results of the second
work [12] showed the dynamics of the flame leading edge in a laminar premixed
flame stabilized on a bluff body in a channel [12]. The identification of FTFs in
the presence of intrinsic thermoacoustic feedback and noise by applying LES and
system identification approach was used to model turbulent reacting flow under
broadband excitation [66]. A coupled FDF with a neural network thermoacoustic
approach, over an LES model of a turbulent and partially premixed flame led to the
prediction of combustion instability limit cycle oscillations [67]. By applying steady
flamelet model and the flamelet/progress variable approach, a computational anal-
ysis of the coupling of transient flame dynamics, such as the local extinction and the
thermoacoustic instability, in self-excited resonance combustor, enabled the identi-
fication of mechanisms of thermoacoustic instability [6]. Recent studies on the FTF
in premixed flame dynamics analyzed the significant impact of the flame geometry
into its acoustic response [11], and modeled the premixed flame linear dynamics in
terms of time delays [68], thus characterizing an acoustically compact flame by its
impulse response, enabling for the development or control techniques in the com-
bustion and thermoacoustic domain.

The general resonant coupling mechanism of combustion and acoustics is repre-
sented by the scheme on Figure 2.1. The flames dynamic response to an incoming
upstream velocity fluctuations (v′) present flame speed and burning area perturba-
tions, thus causing heat release rate oscillations which then cause velocity fluctua-
tion on the flow. This resulting heat release rate fluctuations (Q′) induces unsteady
gas expansion which, in return, leads to pressure acoustic oscillations (P′). The pres-
sure fluctuations travel along the domain, including upstream the burner, linking
the the pressure and velocity fluctuations at the outlet. This flame response due to
incoming velocity perturbation is extensively studied with Flame Transfer Function
(FTF) analysis, and here a similar study is presented based on previous analysis [43],
[69], [70].

In this Chapter, we investigate the dynamic behavior of the ICF by studying
simulations of the model presented in the previous Chapter. First, we evaluate the
impact of mesh adaptation on the accuracy of the simulations and, in particular, on
the presence of self-sustained instabilities. Then, we propose a characterization of
the flame natural dynamic behavior in terms of temperature, OH mass fraction and
flame surface area. Finally, we study the flame response to sinusoidal perturbations
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FIGURE 2.1: Resonant coupling mechanisms through which flow ve-
locity oscillations lead to combustion heat release oscillations [71].

of the inlet mixture velocity over a range of frequencies, which enables the compu-
tation of the Flame Transfer Function (FTF).

2.2 Mesh Adaption Influence

In this Section, we discuss the impact of the temperature gradient mesh adaption
threshold on the accuracy of the dynamic simulations. Wee consider a situation
where the flame is excited by an external mean velocity forcing, of the following
form

vmix(t) = vd + vacos(2π f t) = vd + v′, (2.1)

where vd is the nominal fuel/air mean inlet velocity of 2.05 m/s, va is the excitation
amplitude, and f its frequency in Hz. More specifically, the forced case which is
here described has va,rms = 0.14 m/s and a frequency ( f = 100 Hz). The values are
chosen based on the results of [9], which indicate that this set yields the maximum
response gain for the inverted conical flame.

The mesh adaption strategy described in Section 1.4.4 comprises two degrees of
freedom. Here, the characterization of their impact on the accuracy of the compu-
tations is developed by performing four different simulations. These two degrees
of freedom are the temperature gradients thresholds for coarsening and refining, re-
spectively. The values used for each simulations are presented in Table 2.1. This
particular set of threshold values is chosen to encompass a poorly refined mesh up
to an excessively refined mesh. Indeed, a typical value for the laminar flame thick-
ness is ≈ 100 µm, and the corresponding temperature increase is 1, 500 K, to which
implies a maximum temperature gradient of ∼ 10 · 106 K/m. Considering that the
maximum number of refinement steps is 12, the typical minimum resulting mesh
spacing that can be obtained is 0.7 µm, which is less than the minimum mesh size
necessary to modeling the steady state steady state ICF, as discussed in Section 1.2.2.
Also, note that the base mesh has 512, 612 nodes in its initial state, which increases
as the mesh is adapted.

A qualitative appraisal of the adaption strategy on the resulting mesh is achieved
by examining Figure 2.2, which shows the refined mesh in red, for one arbitrary in-
stant of the simulation. The refined region span decreases as the temperature gra-
dient refinement threshold increases. The adapted mesh, which is controlled by the
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TABLE 2.1: Mesh adaption temperature gradients thresholds influ-
ence.

-
Adaption
thresholds
[K/m]

Resulting mesh characteristics

Case Refine Coarse
Added
nodes

Wall clock
time cost
[days/s]

Harmonic
[Hz] charac-
teristic

1 10 300 162,838 64 40; 100
2 25 400 86,016 21 100
3 50 500 43,332 11 100
4 100 600 23,146 9 100

temperature gradient, has its nodes positioned only at the regions of high tempera-
ture gradient, which characterizes the combustion region. The typical thickness of
the refined region decreases from 3, 100 µm to 900 µm as the refinement threshold
increases from 10 to 100 K/m. Besides this increase of the mesh adapted region, the
typical number of mesh points along the flame thickness increases from 2 at the base
mesh, to 16 at the most refined mesh. Indeed, the number of added mesh nodes af-
ter the first adaption is given in Table 2.1, as well as the wall clock time necessary to
compute 1 s of the flame model. The characteristic frequencies encountered at each
ICF flame surface fluctuation dynamic response are also are given in Table 2.1.

The sheer influence of the refinement threshold on the computational time is ev-
ident in Table 2.1. Halving this threshold from 100 to 50 K/m induces a cost increase
of 33%, whereas the subsequent halving doubles the cost. The final threshold vari-
ation attempted, i.e., from 25 to 10 K/m corresponds to a three fold increase in the
computational cost. Moreover, the increasing wall clock time cost effect is directly
linked to the increase of the number of mesh nodes during the simulation, since the
smallest refinement gradient of 10 K/m demands the addition of four times more
nodes at the first mesh adaption step than when a gradient of 50 K/m is used.

(A) 10 K/m. (B) 25 K/m. (C) 50 K/m. (D) 100 K/m.

FIGURE 2.2: Mesh adaption region for different refinement tempera-
ture gradient threshold values.

It is also worth to note that the number of refinement levels is practically con-
stant as the refinement threshold decreases. For instance, the mesh actual number



2.2. Mesh Adaption Influence 35

of levels varies between four and five, for both the coarsest (100 K/m) and the finest
(10 K/m) meshes. This consequently impacts on the minimum mesh spacing and
thus, on the maximum time step allowed, such that the minimum mesh size de-
creases from 100 µm at be characteristic mesh to 3.7 µm at the refined mesh at level
5. Nevertheless, the decrease of the mesh temperature refinement gradient thresh-
old leads to an increased computational burden mostly linked to the increase of the
size of the region of mesh adaption. Moreover, one must keep in mind that the num-
ber of added nodes to the base mesh varies during the simulation, depending of the
threshold and the flame dynamics.

To further characterize the mesh adaption influence on the computed ICF, Figure
2.3 depicts the flame front position, at an identical arbitrary instant, but distinct from
that of Figure 2.2, using the different thresholds given in Table 2.1. In this figure the
flame front is defined as explained in Section 1.5.2, Equation (1.19). Figure 2.3 in-
dicates that the temperature gradient threshold used for mesh refinement yields a
similar flame front behavior. Indeed, the flame base exhibits a wide V-shape and the
flame tip shows a similar roll-up, which is underscored by comparing Figures 2.3b,
2.3c and 2.3d. Note that when using the largest refinement threshold, 100 K/m, de-
picted on Figure 2.3d, a few discontinuities along the flame front are seen, as shown
by the square yellow mark. These are artifacts of the binarization procedure and do
not represent physical behavior, but indicate that such a large refinement threshold
is insufficient to describe the flame surface. However, when a temperature gradient
refinement threshold of 10 K/m is used, the flame front presents a somewhat differ-
ent behavior, as depicted on Figure 2.3a. In this particular case, the tighter adaption
modifies the flame base shape, tip and roll up behavior, i.e., the flame shows a nar-
row V-shaped base and a premature rolling up a this specific instant in time. This
analysis then, suggests that the adaption spanning from 10 to 50 K/m is capable to
describe the overall flame structure, in particular the flame base shape, but some
attention must be taken in relation to the impact of using different thresholds.

(A) 10 K/m. (B) 25 K/m. (C) 50 K/m. (D) 100 K/m

FIGURE 2.3: Instantaneous of the flame front for different mesh re-
finement temperature gradient threshold values.

The flame surface area fluctuations, computed as explained in Section 1.5.2, is
depicted on Figure 2.4 illustrating the impact of the thresholds on the flame front. In
addition, the stronger frequency present on the spectrum of each of the thresholds
signals is given in Table 2.1, since the frequency analysis and characterization of the
ICF is discussed later in Chapter 2. This figure and Table 2.1 underscore the trade-
off between flame surface features representation and the corresponding cost. It is
clear that choosing the tighter refinement approach of 10 K/m leads to a richer flame
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surface area behavior, but at the expense of a significant computational cost. As the
refinement threshold increases, the flame surface variations are certainly less com-
plex. More precisely, for the refinement threshold of 10 K/m, the flame surface fluc-
tuations present a maximum oscillation amplitude of approximately ±0.5 (Figure
2.4a), and the fluctuation behavior corresponds to two main frequencies of 100 Hz
and 40 Hz, the first of which corresponds to the forcing frequency. The smaller fre-
quency (40 Hz) is absent from the flame surface fluctuations observed for the three
larger refinement thresholds, which retain the forcing frequency only, with a smaller
surface area amplitude, of ±0.4. Thus, even if the 100 K/m adaption approach has
been seen not to reproduce the flame surface details adequately, the overall forcing
frequency response is obtained. Note that the flame frequency response and struc-
ture is discussed in Section 2.4.
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FIGURE 2.4: Flame surface area fluctuations results for each of the
cases presented in Table 2.1, i.e., different mesh refinement thresh-

olds.

As seen in this Section, the most detailed model is the one with a temperature re-
finement gradient threshold of 10 K/m. However, as already seen in Table 2.1, three
months are necessary to compute 1.5 s of the dynamics of the ICF using a refinement
gradient of 10 K/m, which is around six times the time necessary to perform the
same computation but using 50 K/m. As a consequence, the choice of the threshold
is based on the objective of the simulation. For example, a model with the intention
of characterizing the flame complete physics for one scenario, such as species, veloc-
ity and temperature, should be simulated with the finer mesh refinement threshold.
However, a model which wishes to study the impact of several parametric variables
into the flame dynamic response, should be simulated with a larger threshold, since
the cost and time to simulate the impact of varying parameters is reduced. The
trade-off between cost and precision is an important point that should be taken into
account for every combustion process simulated with adaptive mesh refinement.
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2.3 Flame dynamics

To anticipate potential instabilities due to thermo-acoustic coupling, the model de-
scribed in Chapter 1 is used to compute the dynamical behavior of the flame. The
dynamics is studied under both a constant inlet mixture velocity and a sinusoidal
forcing, given by Equation (2.1). The forcing frequency, f , varies between 50 Hz and
300 Hz, whereas the magnitude is constant va = 0.14 m/s. These values are based
on the experimental study [9], which indicate that higher frequencies are entirely
filtered by the flame dynamics. In Section 2.4, the flame behavior is characterized in
the two following ways

• A qualitative description of the evolution of the fields of various physical quan-
tities, in particular those identifying the flame front;

• A quantitative evaluation of the heat release harmonics, in the form of a Flame
Transfer Function, discussed in the next Section.

2.3.1 Flame Transfer Function (FTF)

Although flames dynamics are the result of complex distributed phenomena, acous-
tically compact flames can be considered pointwise with respect to the environment
they interact with. In this regard, it is reasonable to try and approximate their behav-
ior using an input-output dynamical model. This has been the object of a number of
contributions [7], [8], [43], [72], [73] which focus on experimental identification of the
heat release harmonic response to incoming velocity fluctuations. The investigation
of nonlinear models is differed to Chapter 3, and the focus here is on linear ones, in
particular the so-called Flame Transfer Function (FTF). The FTF F is defined in the
frequency domain as follows

F (ω) =
Q̇′(ω)/ ¯̇Q
v′(ω)/v̄

, (2.2)

where Q̇ denotes heat release rate, v is the mixture inlet velocity, ·̄ denotes steady-
state values while ·′ denotes perturbations around the steady-state, i.e. v = v̄ + v′.
For premixed combustion, such as that studied here, the heat release fluctuations
(Q̇′) are directly proportional to the flame surface area fluctuation (A′), and thus to
the flame chemilumonescence [74], [75]. In this work, the flame surface area is used
to compute the FTF, such that it is now defined as:

F (ω) =
A′(ω)/Ā
v′(ω)/v̄

. (2.3)

One should note that such an approximation is similar to the one performed in
the experiments, where CH* chemiluminescence is assumed to represent the heat
release rate [9]. The FTF may also be expressed in terms of gain (G = |F |) and
phase (γ = arg(F )), such that the gain reflects the magnitude flame response and
the phase defines the lag between the velocity and flame surface area fluctuation, i.e,

F (ω) = G(ω)eiγ(ω). (2.4)

2.3.2 Computation of the Flame Transfer Function

Since the dynamics of the flame are inherently nonlinear, several approximations
must be made in order to compute the FTF. The following process is made here
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1. Fix the frequency f of the excitation.

2. Compute approximate steady-state values v̄, Ā.

3. Apply a bandpass filter of bandwith ∆ f around f to the output A′.

4. Compute the gain and the phase of the FTF.

Each of these steps is now briefly detailed.

Excitation frequencies Several simulations are performed with mono-frequency
excitation signals, with frequencies ranging from 50 to 300 Hz. Other classical op-
tions for system identification include exciting the system with broadband signals
or chirps. Since the flame response is nonlinear, its characteristics in a certain fre-
quency band cannot be entirely attributed to the excitation in the same band. For
this reason, broadband signals are ill-suited to FTF identification. Besides, to avoid
transient effects, chirp signals are avoided as well.

Steady-state values As detailed in Section 1.6, the equilibrium of the flame is dif-
ficult to compute. As a consequence, the steady-state ·̄ values in (2.3) are unknown.
Averaging the signals over several periods of the excitation signal is thus used to
approximate ·̄.

Bandpass filter As mentioned above, the flame has a nonlinear response to sinu-
soidal excitation. This point is illustrated on Figure 2.5 where the Fourier spectrum
of the heat release corresponding to a mono-frequent excitation at f = 100 Hz is
depicted. The frequency components are isolated around the excitation frequency
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FIGURE 2.5: Spectrum of the heat release response for a mono-
frequent excitation at f = 100 Hz.

by applying a square window filter with a 10 Hz bandwidth on the Discrete Fourier
Transform of the response.
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Gain and phase computation After filtering, the gain of the FTF is computed as

G =
|Ã′|/Ā
|ṽ′|/v̄

, (2.5)

where |A′| and |v′| are computed by the RMS in the frequency domain as follows

Ã′ =

√√√√ N

∑
i=1

∣∣∣∣∣ Ã′i
N

∣∣∣∣∣
2

,

ṽ′ =

√√√√ N

∑
i=1

∣∣∣∣ ṽ′iN

∣∣∣∣2,

(2.6)

where Ã′i (resp. ṽ′i), i = 1, .., N are the Discrete Fourier Transform (DFT) coefficients
of the filtered flame surface area (resp. velocity).

2.4 Results and Discussion

In this section, the description and discussion of the numerical simulations corre-
sponding to the non forced and excited scenarios are given, respectively in Sections
2.4.1 and 2.4.2.

All the simulation presented here were developed in parallel, with Linux-64
SuSE, Intel(R) Xeon(R), at Ansys cluster, using between 100 to 180 nodes to run Flu-
ent.

2.4.1 Unforced ICF

All the simulation presented here were developed with Fluent 2019R2/2020R1. The
analysis of the dynamic of the unforced inverted conical flame is first presented.
The characterization of the flame structure, as well as the surface area and pressure
fluctuations in such a naturally unsteady case is developed. Since a single unforced
case is analyzed, and in order to capture the flame dynamics in detail, the adaption
refinement threshold gradient chosen is of 10 K/m.

Overall flame structures

The unsteady flame model is able to describe several instantaneous flow properties,
since the used chemical kinetics model involves diverse species. Here, in order to
assess the ICF unforced unsteady behavior, the flame front position is depicted using
the field of α defined by Equation (1.19). Accordingly, Figure 2.6 shows the instanta-
neous flame front at different times, regularly spaced by 100 µs, during 0.8 ms. This
particular set of images is chosen such that a full cycle of natural flame oscillation
is presented. For the sake of the flame structure discussion, the flame is divided in
three different regions, from upstream to downstream. The flame surface exhibits
distinct behaviors at each of these three regions; one at the the vicinity of the central
rod stabilization, one at the second third, where the roll up begins, and the last at
the freely standing flame tip, influenced by the flame pinch off. Indeed, at the first
of these regions the flame surface area is nearly invariant in time, whereas at the
second and third regions an unsteady behavior arises. In particular, on Figure 2.6
the ICF initially exhibits an increasing flame surface area, Figures 2.6a-2.6e, due to
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the rolling up of the flame tip. However, on Figure 2.6f, the rolled up flame front
collapses, leading to a fast annihilation of the flame surface. This phenomena, in
turn, leads to fluctuations of surface area, associated to the rapid consumption of
the fresh reactant pocket, as seen on Figures 2.6f-2.6i. Even if this annihilation is
cyclic, it is worth to note that that this cycle period is not deterministic and exhibits
some degree of randomness, as it will be later discussed.

(A) (0 ms) 170.3 ms (B) (0.1 ms) 170.4 ms (C) (0.2 ms) 170.5 ms

(D) (0.3 ms) 170.6 ms (E) (0.4 ms) 170.7 ms (F) (0.5 ms) 170.8 ms

(G) (0.6 ms) 170.9 ms (H) (0.7 ms) 171.0 ms (I) (0.8 ms) 171.1 ms

FIGURE 2.6: Unforced flame front position at different equally spaced
(by 100 µs) instants in time.

In order to further characterize the unforced flame behavior, the flame surface
area A(t) is computed as described in Section 1.5.2 and the relative fluctuations
A′/Ā, are plotted on Figure 2.7a, as well as their frequency spectrum on Figure
2.7b. The flame surface oscillating behavior is clearly seen. The large (±50%) fluc-
tuations of the flame surface area underscore that at some instants the flame front
has an abrupt reduction which are preceded by a relatively slower increase. These
abrupt periodic variations, are indeed directly linked with the annihilation of the
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flame front surface, seen on Figure 2.6. Moreover, the maximum observed when
170 ≤ t ≤ 180 ms at the flame surface fluctuation (Figure 2.7a), lies at the exact
moment when the flame surface annihilation begins. Figure 2.7b shows that the
corresponding spectrum features a distinct peak at the frequency of 35 Hz. This sug-
gests that the flame behavior features self-excited oscillations at this frequency. This
further illustrates the finding that the ICF does not have an equilibrium steady state,
or has an unstable one, as discussed in Section 1.6.
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FIGURE 2.7: Unforced ICF surface area response history and fre-
quency behavior.

The spectrogram of the non forced ICF surface area fluctuation, shown on figure
2.8, agrees with the FFT result, where a broadband low frequency response is seen.
However, on this figure, the characteristic frequency fluctuates along the time, hav-
ing a maximum energy clearly oscillating around 35 Hz. For instance, when time
≤ 200 ms, the frequencies that have more energy are found between 20 and 35 Hz.
Later in time, when 300 ≤ time ≤ 400 ms, tree frequencies are remarked; 20, 35 and
55 Hz. Subsequently, the behavior mainly due to a frequency of 35 Hz is seen. Such
flame response seems to be inherent of the flame unforced dynamic. However, due
to the costs linked to running such simulations, more extensive analysis is yet not
possible, but it is definitely a perspective for the research on self-excited flames.

The complete Fourier spectrum of the pressure data obtained for the ICF is given
on Figure 2.9, and it presents a high energy concentrated into a high frequency
( f = 2000 Hz). This high frequency perturbation is actually a computational ef-
fect created by the mesh adaption, that is updated at every 500 µs, thus having a
characteristic frequency of 2000 Hz. Moreover, this non-physical frequency does not
seem to interfere with the flame dynamic behavior, since no significant energy is
found in this frequency range for other physical quantities, such as the flame surface
area. A low-pass filter with a cut-off frequency of 1000 Hz is therefore applied to the
pressure signal.

Figure 2.10a depicts the Fourier spectrum of pressure data obtained at point O
(Table 1.3), for a frequency range f ∈ [0, 300] Hz. Figure 2.7b depicts the correspond-
ing reconstructed response in time. It should be stressed that this result is similar for
all the points of data extraction presented in Table 1.3 and, for the sake of brevity,
only the results for point O are given. Indeed, all the pressure fluctuation curves are
superimposed, inducing that the ICF response modeled in this work is acoustically
compact [68].
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FIGURE 2.8: Spectogram of the ICF surface area fluctuation, for the
final 1 s of simulation.
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FIGURE 2.9: Complete pressure history frequency analysis for the
data extracted at point O ( ), presented in Table 1.3.

Fluctuating Temperature and OH Mass Fraction

Here, an unsteady analysis of temperature (T) and OH mass fraction (YOH) evolu-
tion in a period of time is presented.The analysis of the temperature, enables the
identification of the position of the flame front since, at this region, the temperature
increases from ambient T∞ = 300 K to the flame adiabatic temperature Tad = 2, 200
K. On the chemical kinetic side, the analysis of OH mass fraction, an intermedi-
ate species on the combustion process, enables an alternative characterization of the
flame front, since this property has its higher concentration on the reactive region,
but non-zero values at equilibrium. This methodology is inspired by the experimen-
tal study [9], where the flame front is characterized based on the CH∗ radical.

Accordingly, Figure 2.11 depicts the evolution of temperature and OH mass frac-
tion in time, for various probes locations, at points points G ( ), I ( ), M ( )
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FIGURE 2.10: Unforced ICF pressure history frequency analysis and
signal reconstruction. The depicted results are relative to the data

extracted at point O ( ), presented in Table 1.3.

and O ( ) from Table 1.3. The unsteady motion of the flame front presents enough
temporal resolution to adequately capture the passage of fresh to burned gases, i.e.,
when the temperature varies from T = 300 to 2, 200 K. Meanwhile, the flame fluc-
tuates across a given position of measurement. Indeed, Figure 2.11a shows that the
temperature varies between T∞ = 300 K at the fresh gases to Tad = 2, 200 K at the
burned gases and vice-versa, e.g., when 30 ≤ t ≤ 42 ms for point M ( ), which
also indicates the passage of the flame front over the probe point, where the tem-
perature presents fast variations. The evolution depicted on Figure 2.11 gives an
accurate temporal and spatial characterization of the ICF. The time step 100 µs is
adequate in regard to the time scale of the temperature dynamics, particularly when
a high gradient is characteristic of the passage from burned to fresh gases, such as
at the period of 2 ms. Therefore, the model is able to capture even the intermediary
states of the flame, i.e., within the flame front thickness.

Similarly, the evolution of the OH mass fraction at point M features complete
passages of the flame front, characterized by a non-monotonic behavior, whereas
points G and O show incomplete passages. Point I ( ) has a constantly zero OH
mass fraction, thus being positioned in the fresh gases region.

Moreover, Figure 2.11a features incomplete passages of the flame front over the
point M, e.g. around t = 17 ms or t = 50 ms, since the temperature curve has
extremes in intermediate stages of the temperature (T∞ < T < Tad). Such dy-
namic characterization of the flame front is indeed distinct from other methodolo-
gies, such as the level-set technique which consists in modeling the flame surface
with a Damköhler value that tends to infinity, thus separating the burned from the
fresh gases [76]. The temperature extracted with points G ( ) and O ( ) exhibits
similar trends, since both temperatures varies in between T∞ < T < Tad over the
time. However, for both probe points, the temperature does not fully increases
across the flame surface, hence not reaching the burned gases region and staying
at intermediate values most of the time.

Furthermore, when the burned gases are over the measurement point, e.g., point
M when 30 ≤ t ≤ 50 ms on Figure 2.11a, the temperature presents a nearly steady be-
havior, around the adiabatic flame temperature of 2, 200 K, until the flame crosses the
probe, passing from burned to fresh gases. However, the OH mass fraction, on Fig-
ure 2.11b, has a non monotonic behavior when the burned gases are over the probe.
The OH mass fraction reaches a maximum value at the beginning of the reactive



44 Chapter 2. Unsteady Inverted Conical Flame and Thermo-acoustic Coupling

0 20 40 60 80 100
time [ms]

500

1000

1500

2000

T
 [k

]

(A) Temperature.

0 20 40 60 80 100
time [ms]

0

1

2

3

4

Y
O

H

10-3

(B) OH mass fraction.

FIGURE 2.11: Unforced ICF temporal fluctuations obtained at 4 dif-
ferent positions, points G ( ), I ( ), M ( ) and O ( ), given

in Table 1.3.

region, but this species continues to react with others products, consequently de-
creasing its mass fraction until the equilibrium is nearly achieved, around 3× 10−3,
which agrees with what was discussed in Section 1.2.2.

2.4.2 Forced flame analysis

This section presents a parametrical study of the harmonically excited ICF. A temper-
ature gradient mesh refinement threshold of 50 K/m is applied, as described in Sec-
tion 2.2. Based on the results of the model with a tighter mesh adaption criteria, one
may expect mainly the forcing response to be recovered, such that the natural behav-
ior is seen with less strength. The harmonic excitation is defined by Equation (2.1),
with a root mean square magnitude of 0.14 m/s, as previously discussed in Section
2.2. Different situations are simulated, varying the excitation frequency from 50 Hz
to 250 Hz. Such a choice is based on the experimental studies [9], [10], which have
shown that the flame presents a harmonic response to a incoming velocity excitation
in the frequency range f < 400 hz. The Strouhal number (Std = f · (d/v̄)) varies
between minimum and maximum values of 0.476 and 2.37, respectively, which are
linked to the minimum and maximum exciting frequency of 50 and 250 Hz. In this



2.4. Results and Discussion 45

section, the fluctuation flame structures and the flame surface analysis is presented
first, then, the flame transfer function is determined.

All the simulations presented here span at least 400 ms, which is the window
used for computing the results for the Fast Fourier Transform and the flame transfer
function.

Fluctuating flame structures

Figure 2.12 gives the flame surface area instantaneous position for the forcing of 50,
75, 100, 125, 150, 172 and 200 Hz. Each row corresponds to a different frequency,
whereas the elapsed time labels the image at each column. The starting time (zero
ms) corresponds to the beginning of a cycle, defined by the instant when a wrinkle
starts developing at the anchor point. A time span of 20 ms is presented, with the
flame front depicted at equally spaced intervals of 2.5 ms, thus presenting at least
one flame response period for each excitation. It is worth to note, however, that this
image interval choice does not permit to follow flame front behavior corresponding
to higher frequencies. A longer sample interval, which enables to follow the flame
front behavior more completely, is presented in Appendice A. Similarly to what has
been observed for the unforced flame (section 2.4.1), the excited flame response is
analyzed separated in three regions; (a) the first closer to stabilizing rod, (b) the
second one downstream along the flame, where the roll up is seen, and (c) the third
at the flame tip, where the pinch-offs are seen.

The flame base response gives an inverted conical shape for all incoming exci-
tations seen on Figure 2.12, however, different patterns are seen. In the first three
rows (for 50, 75 and 100 Hz), the flame base oscillates between two different posi-
tions; a narrow and a wide V-shape are seen. At the first line, e.g., where the ICF is
under a forcing of 50 Hz, the instant 0 ms presents a narrow V-shaped, while instant
12.5 ms presents a wide shape. For a forcing of 100 Hz, instant 5 ms shows narrow
V-shaped, whereas at instant 10 ms a wide V-shape is seen. Moreover, when the
forcing frequency increases f > 100 Hz, at the following four rows (125 Hz, 150 Hz,
172 Hz and 200 Hz), this oscillatory behavior is not remarked, i.e., the ICF presents
a wide V-shape. However, the flame front is wrinkled along its base, as seen clearly
at the sixth and seventh row, where f = 172, 200 Hz, respectively, for all instants.
These wrinkles are linked to the incoming velocity excitation, and begin at the an-
chor point of the ICF, at the centered bluff-body, propagating then along the flame
front.

The wrinkles development along the ICF lead to the flame front roll up, which
dominate the second and the third regions of the flame. The roll up effect is clearly
seen for all excited flames, such as seen for an excitation of 100 Hz, at the sequence of
instants t = 0 to 10 ms, however, it presents different shapes due to different forcings.
At the flames where the incoming forcing frequency varies from 50 ≤ f ≤ 125 Hz
(0.48 ≤ Std ≤ 1.19), the roll up is easily remarked, e.g., instants 2.5 ms to 5 ms for
the incoming forcing of 125 Hz, where the wrinkle starts bending the flame, forming
a small bulge which subsequently develops into a roll up. The ICF with incoming
forcing ranging from 125 < f ≤ 200 Hz (1.19 ≤ Std ≤ 1.9), however, shows a
different roll-up development, since the wrinkles are present along the whole flame
front, the roll up starts in a later state. It should be stressed that, at the seventh row,
for 200 Hz, the flame has a combined behavior, such that the bulge start forming
along the flame front and it can be seen initially, as in instants 0 to 5 ms, but not
subsequently (at instants 15 to 20 ms).
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(A) 0 (B) 2.5 (C) 5 (D) 7.5 (E) 10 (F) 12.5 (G) 15 (H) 17.5 (I) 20

FIGURE 2.12: Flame front surface at different, equally spaced instants
(by 2.5 ms), for different forcing frequencies. Each row presents a
different forcing frequency, in the following order: 50, 75, 100, 125,
150, 172 and 200 Hz, corresponding to Strouhal numbers of 0.48, 0.71,

0.95, 1.19, 1.43, 1.63 and 1.9.

Eventually, the roll-up effect at the flame front evolves until the tip of the flame
is completely bent, such that two sections of the flame collapse into each other, caus-
ing the annihilation of the respective section of the flame front and creating a pinch
off. This phenomenon is seen at the ICF for all incoming excitations frequencies,
characterizing the last third of the ICF, however some variations are seen. The forc-
ing frequencies ranging from 50 to 125 Hz yield a well defined pinch off, e.g., as
shown at the second row ( f = 75 Hz), instant 15 ms. Nonetheless, the ICF response
to higher frequencies (125 to 200 Hz) presents a slightly smaller and less intensive
pinch off, when compared to lower frequencies, as seen at the sixth row ( f = 172 Hz,
Std = 1.63) for the sequence of instants t = 12.5 to 15 ms. Again, the flame response
to 200 Hz (seventh row) presents a mixed behavior, which is linked to the fact that
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this forcing is an harmonic of the 100 Hz frequency.
Moreover, Figure 2.12 also suggests a general classification of the ICF response

in terms of similar behavior; the behavior (1) due to low frequency forcing, at the
first to the fourth rows, 50 ≤ f ≤ 125 Hz (0.48 ≤ Std ≤ 1.19), and (2) due to high
frequency excitation, from the fifth to the seventh row, f > 125 Hz (Std > 1.19).
For instance, the first class is characterized by a strong flame response due to the
incoming excitation, and all phenomena are linked to the frequency of the forcing.
The second class corresponds to a mixed response, such that the flame behavior due
to the incoming forcing and the flame natural behavior interact.

It should be stressed that the ICF response to incoming velocity excitation of
125 Hz (Std = 1.19) has a smaller flame length (and thus surface area) when com-
pared to response due to other forcing frequencies. This effect is caused by the in-
teraction between the wrinkle velocity propagation and the pinch off. Indeed, the
wrinkles travel along the flame front, causing the roll up and pinch off, faster than
the velocity which the flame takes to naturally develop. For instance, at the fourth
row of Figure 2.12 ( f = 125 Hz) the wrinkle travels from the flame anchor point,
e.g. the red box at 0 ms, to the instant where it interferes with the bulge formation,
e.g. the red box at 12.5 ms, with a propagation time of ≈ 12.5 ms. Moreover, while
the first wrinkle (red box) propagates, a new wrinkle starts forming (yellow box at
7.5 ms), due to the excitation frequency. The second wrinkle (yellow box) then trav-
els along the flame, until it interferes with a second bulge, as shows the yellow box
at 20 ms. In effect, the wrinkle propagation time is 14 ms, such that its frequency is
≈ 62.5 Hz, which is also an harmonic of the forcing frequency of 125 Hz, creating
a constructive interference between both phenomena and causing the flame front
length reduction.

Flame surface area fluctuation frequency analysis

To quantify the dynamic behavior of the flame, similarly to the analysis performed
for the unforced case 2.4.1, the flame surface area fluctuations are analyzed for differ-
ent incoming velocity excitations frequencies, as described by Equation (2.1) and de-
picted on Figure 2.13. Four different flame behaviors are found to arise, depending
on the incoming excitation frequency. First, the ICF response presents an oscillating
behavior associated to the forcing, and some of its harmonics, as suggests the two
different type of excursions seen on Figure 2.13a. The second behavior is marked
only by the forcing frequency, such as when f = 125 Hz, as Figure 2.13b depicts. It
is worth to stress that some noise in seen on Figure 2.13b, and this high frequency
excursion correspond to a computational error, as discussed in Section 2.4.1. The
third behavior, given on Figure 2.13c, is marked by a flame response at the incoming
forcing frequency and some other unknown frequencies. The flame surface response
due to higher incoming frequencies excitation ( f > 150 Hz), corresponding to the
fourth ICF behavior, is not disturbed by the forcing frequency, but presents a nonlin-
ear response that does not suggests any visual classification, as depicted on Figure
2.13d where f = 200 Hz. The corresponding frequency spectra results of the flame
surface area fluctuations are presented on Figure 2.14.

As expected from the experimental results, the ICF is characterized by a remark-
able harmonic response to the incoming excitation, and its behavior depends on the
forcing frequency, which underscores the validity of the model. It is noteworthy
that the incoming velocity forcing is harmonic immediately upstream to the flame,
for all forcing frequencies. The flame surface area response at frequencies f = 50 and
125 Hz (Std = 0.48 and1.19), Figures 2.14a and 2.14d respectively, are marked by the
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FIGURE 2.13: Flame surface area fluctuation due to four different
incoming forcing frequencies, underscoring the flame different re-

sponses.

incoming excitation and also by a few harmonics of the forcing. Energy is indeed
concentrated at the respective forcing frequency of Figures 2.14a and 2.14d ( f = 50
and 125 Hz) and at its harmonics, i.e., at f = 100 Hz for the former excitation and
250 Hz (Std = 2.37) for the latter. Others ICF responses also exhibit harmonics of the
forcing excitation, but with a significantly smaller amplitude, such as for an excita-
tion of f = 100 Hz (Std = 0.95) (Figure 2.14c), where the highest gain is expected
from experiments [9]. Moreover, when the forcing frequency increases to f = 150 Hz
(Std = 1.43), significantly different behavior arises: a mix between the forcing and
low frequencies is seen on Figure 2.14e, with a remarkable flame response around
f = 35 Hz and one at f = 150 Hz, where the first frequency marks the natural be-
havior of the ICF. Then, for f ≥ 172 Hz (Std ≤ 1.63), depicted on Figures 2.14f-2.14h,
the flame response to the incoming excitation is characterized by a low magnitude,
around 35 Hz, which is also associated be the flame natural harmonic behavior, and
also by a broadband amplitude signal.

Unfortunately, the available experimental results [10], [72] does not include such
detailed flame surface area data as those presented here, nor the full spectral analy-
sis. However, since the flame spectral response seems to significantly vary with the
forcing frequency, it would be interesting to revisit this flame with diagnostics able
to perform a time and spatial resolution of the flame surface.

Flame transfer function

Given the ICF frequency response, it is now possible to characterize the thermo-
acoustic response of such flames, enabling a direct comparison between the exper-
imental and numerical results. The FTF is here calculated as expressed in Section
2.3.1. Figure 2.15 depicts the root mean square of the velocity (v′rms) and flame sur-
face area fluctuations (A′rms), followed by the mean of the flame surface area (Ā) as a
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FIGURE 2.14: Harmonic response of the flame surface area fluc-
tuation for different forcing frequencies ( f ).

function of frequency [Hz]. The corresponding gain and phase of the FTF are given
and compared to experimental data on Figure 2.16.

The RMS of the velocity fluctuation immediately upstream to the flame, shown
on Figure 2.15a exhibits a decreasing trend with frequency. Such a decrease is as-
sociated to the boundary layer thickness decrease with frequency predicted by the
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FIGURE 2.15: Dependency of the RMS of the inlet velocity fluctua-
tion, RMS and mean of the flame surface area fluctuation with the

forcing frequency ( f ).

solution of the second Stokes problem [77]. Conversely, the larger flow cross section
blockage due to thicker boundary layers at lower forcing frequencies leads to larger
core flow velocity fluctuations.

The RMS of the flame surface area fluctuation (Figure 2.15b) presents its maxi-
mum value at the frequency of 75 Hz, and it decreases until it achieves ≈ 0.01, and
also, a sudden drop close to 125 Hz. The mean surface area also varies remarkably
(Figure 2.15c), such that its maximum is around 60 Hz, and it decreases for frequen-
cies 75 < f < 150 Hz (0.71 ≤ Std ≤ 1.43), where it stabilizes, remaining almost
constant ≈ 0.014 m2. This sudden decrease is linked to the length of the inverted
conical flame front, which decreases due to the interference between the forcing fre-
quency and the wrinkle propagation time, as already discussed in Section 2.4.2.



2.5. Synthesis 51

0 50 100 150 200 250 300
0

0.5

1

1.5

2

(A) Gain.

0 50 100 150 200 250 300
0

2

4

6

(B) Phase.

FIGURE 2.16: Gain and phase difference between velocity and flame
surface area fluctuation of the ICF as a function of the incoming forc-
ing frequency. The results for experiment [10] and CFD are compared.
Also, the values for the gain and phase at 100 Hz for different mesh
adaption temperature gradients are given for the following gradients;

10 K/m ( ), 25 K/m ( ), 50 K/m ( ) and 100 K/m ( ).

Moreover, the impact of changing the mesh adaption gradient for a forcing fre-
quency of 100 Hz is clearly seen on Fig. 17 also. As discussed in Section 2.5, when
refinement thresholds of 10 and 25 Hz ( and ) are used, the gain matches the
experimental result, which is 1.5. When the threshold is larger ( and ), the gain
increases to 2 and 2.3, respectively. Concerning the phase, no remarkable difference
is seen between the thresholds choices, all results agreeing with the experiments.

The gain, plotted on Figure 2.16a, presents a qualitative behavior similar to the
experimental results [9]. The gain tends to 1 for low frequencies ( f ≤ 60 Hz, Std ≤
0.57), and it increases when forcing between 75 ≤ f ≤ 100 Hz (0.71 ≤ Std ≤ 0.95),
reaching a maximum at f = 100 Hz. It is worth to stress that this computed value is
higher than the experimental one, which is associated to the mesh refinement thresh-
old choice, that balances the computational cost with respect to model accuracy, as
shown in Appendices B. Furthermore, the gain decreases between 100 < f ≤ 125 Hz
(0.95 ≤ Std ≤ 119), achieving its minimum value of 0.7 at f = 125 Hz, which is
linked to the flame surface area fluctuations suppression due to the wrinkle and
pinch off interference. For higher frequencies, f ≥ 150 Hz (Std ≤ 1.43), the model
and experiments yield a remarkably close agreement, one for which the gain de-
creases with frequency. Finally, the phase, on Figure 2.16b, presents a similar behav-
ior to experimental results, where the phase difference between velocity and flame
surface area fluctuation increases linearly with frequency.

2.5 Synthesis

The mesh adaption influence analysis shows that the variation of the adaption tem-
perature gradient threshold enables the characterization of the ICF natural and forced
behavior. However, the choice of these gradients depend on the objective of the
study. For instance, the use of a tight refinement adaption threshold of 10 K/m
permits the complete characterization of the flame front, such that even the flame
tip behavior is seen, but at the expense of a prohibitive computational cost (at least
2 months for calculation). Also, using a thigh threshold enables the identification of
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a flame natural behavior, at a frequency of 35 Hz, in addition to the external forc-
ing of 100 Hz. Enlarging the refinement threshold to 50 K/m, nevertheless, enables
the modeling of the flame overall behavior (base, pinch off and wrinkles) and with
acceptable reduced computational burden (at least 11 days), but precision is some-
what lost. Indeed, the flame extremities exhibit a different behavior, and the natural
flame response is not seen to interact with the external forcing. Moreover, the use of
a threshold of 100 K/m also gives an overall flame response that is similar to the one
obtained with a threshold of 50 K/m, however, the flame front becomes non-linear,
ans thus, is not representing a physical phenomena. Thus, the trade-off between the
computational burden and the precision of the results must be kept in mind when
using such mesh adaption methods to model thermo-acoustic sensible systems.

The unsteady model of the unforced ICF, also developed with Fluent 2019/2020,
enables the further understanding of the flame dynamic behavior with such de-
tailed skeletal mechanisms. The use of the skeletal kinetic chemical model, DRM19,
enables the characterization of the instantaneous flame front and of its surface by
means of mass fraction of CH2 and OH. The analysis of the flame structures shows
that the behavior of ICF is marked by instabilities in the unforced situation and the
roll up of the flame front until the annihilation of a section of the flame, agreeing
with previous experimental results. From the fluctuation analysis of temperature,
pressure and OH mas fraction, the ICF computational model enables the detailed
characterization of the flame front dynamic behavior. Moreover, the CFD results
present a well defined solution for different time and space scales, being able to de-
scribe the flow of the substances within the fast dynamic movement of the flame
front, improving from other standard techniques. For instance, the level-set mod-
eling approaches permits to compute the FTF also. However, the skeletal kinetic
mechanism used here enables also to determine the internal flame structure in de-
tail, such as the different species on the flame front and the associated time and space
scales.

The studied ICF experiment is surrounded by ambient air. Even though most of
flame the burns a homogeneous mixture, at the flame tip the premixed gases equiv-
alence ratio decreases. It was seen that this flame tip plays an important role on the
flame dynamic response, since this is where the pinch-off occurs. Correctly describ-
ing such a variable equivalence ratio region seems crucial to predict the flame insta-
bilities. Nevertheless, it would be interesting to compare the results of this model
with a simulation using one-step or four-step kinetic mechanism in the future, such
as using optimized single-step (OSS) chemistry models [78].

The forced unsteady inverted conical flame model studied enable the detailed
characterization of the forcing on the flame front dynamic response. The ICF has
three main regions; (1) the base that has a conical V-shape that oscillates from narrow
and wide, and where the development of the wrinkles are seen, (2) the roll up section
at the downstream of the flame and (3) the flame tip, where the flame annihilation
happens. Each of these regions is impacted differently by the incoming excitations,
i.e., the flame base presents oscillating behavior between wide and narrow V-shape
when forced with frequencies between 50 ≤ f < 125 Hz (0.48 ≤ Std ≤ 0.1.19),
and it switches to a steady wide shape when f ≥ 150 Hz (Std ≥ 1.43). The roll
up section exhibits a similar response to the various forcing frequencies. The flame
rolls up until annihilation in all cases, however, the position where the roll up occurs
along the flame front varies with the forcing, being in a earlier stage for f ≤ 125 Hz
(Std ≤ 1.19), and in a later stage for f ≥ 150 Hz (Std ≥ 1.43). The third region,
where the pinch off happens, also has shown a similar behavior for most cases, i.e.,
all forced ICFs present the annihilation of the flame front at a given instant. This
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phenomenon is seen at the forcing period when the excitation frequency is smaller
than 125 Hz, but not in synchronized time when f ≥ 150 Hz. This loss of the syn-
chronization is associated to the interaction between the flame natural behavior and
the ICF response due to the excitation. Moreover, when a excitation frequency of
f = 125 Hz is used, a remarkable reduction on the flame length is caused by the
interaction of the wrinkle and the pinch off, impacting also in the flame surface area
fluctuation, and therefore on the gain.

The excited ICF frequency analysis of flame surface area fluctuation underscores
the multiple behaviors of the flame due to forcing with different frequencies. The
response when f = 50 Hz has a strong response due to forcing and its second har-
monic (100 Hz), however, for higher frequencies (75 ≤ f ≤ 100 Hz, 0.71 ≤ Std ≤
0.95), the response is only due to the forcing. Moreover, when the excitation fre-
quency is around 150 Hz, the flame presents a mixed response due to the incoming
velocity fluctuation, which interacts with the flame low frequency natural behavior
( f = 35 Hz). At higher frequency excitation, i.e., f > 150 Hz, the flame does not
respond to the forcing, but has a strong natural response, characterized by a broad-
band frequency around 35 Hz. Furthermore, the frequency analysis enables the char-
acterization of ICF thermo-acoustic response by means of FTF gain and phase.

The computed gain agrees with the experimental results, however, two main dis-
crepancies are seen; first, the maximum gain has higher value (G ≈ 2) then expected
at frequencies f = 75, 100 Hz, as a result of the choice of mesh adaption refinement
gradient threshold of 50 K/m to model the excited flame. Besides, a decrease on the
gain is obtained for 100 < f ≤ 125 Hz, reaching G = 0.8, which is a consequence
of the interference between wrinkles and pinch offs at the flame front. Furthermore,
the FTF phase shows remarkable agreement with the experiments.

One may note that this study enabled a detailed characterization of the ICF and
its surface area and its full spectral analysis, which has not been included by exper-
imental analysis [7], [9]–[11]. In this chapter it was shown that the flame response
due to different excitations significantly varies with the forcing, presenting different
behaviors. Therefore, would be interesting to revisit the experiments with method-
ologies that enable a more detailed flame characterization.

The successful modeling and characterization of the ICF response to incoming
velocity excitations open doors to the prediction of thermo-acoustic instabilities, by
means of Flame Transfer Function, with different approaches. Even though the CFD
modeling presents remarkable results, its computational cost is high, and other mod-
eling methodologies, such as Reduced Order Models (ROM), could enable to char-
acterize the flame thermo-acoustic response with smaller computational burden.
However, since the ICF presents a naturally unstable dynamical behavior, achiev-
ing a ROM that is representative of the flame complete dynamics requires a deeper
study, which is the subject of future works.

Willing to estimate a steady-state equilibrium for the ICF for different premixed
fuel inlet velocity, under feasible computational time, the next chapter is dedicated
to developing a steady ROM, based on CFD averaged data of the inverted conical
flame. This work is a first step towards the ROM of the dynamical behavior of un-
stable premixed flames.
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Part II

Machine Learning
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Chapter 3

Steady Reduced Order Model

Dans ce chapitre, la construction et la caractérisation d’une ROM de flammes laminaires
prémélangées ICF avec une dilution variable par l’air est développée. Le logiciel StaticROM,
de Twin Builder(Ansys) est utilisé pour développer un modèle simplifié de la CIF basé sur
des données CFD stables, modélisées comme indiqué dans le Chapitre 1. Cette ROM a la
vitesse d’entrée du mélange carburant/air comme entrée, et les champs des composantes de
la vitesse de la flamme et de la température obtenus avec Fluent comme sortie. Comme le
montre le chapitre 3.3, une ROM prometteuse de l’ICF laminaire prémélangé est obtenue.

In this chapter, a ROM of laminar premixed flames ICF with variable dilution
by air is developed. The software StaticROM, from Twin Builder(Ansys) is used to
develop a simplified model of the ICF based on steady CFD data. This ROM is able
to predict the temperature steady-state fields for a range of values of the fuel/air
mixture inlet velocity. Only a small number of data points in this range is used to
train the ROM, which still shows promising results.

3.1 Introduction

The use of machine learning techniques to model complex system has been subject of
study for several fields in the past decades. Traditionally, the study of such systems
depends on a massive amount of data from experiments, numerical simulations and
field measurements [79]. Machine learning techniques are used to model systems in
a modular and agile way, with low computational cost, e.g., to address many prob-
lems in fluid mechanics [79], image processing [80] or bio-mechanics [81]. Reduced
order models (ROM), for instance, have also been recently used coupled with ma-
chine learning processes, significantly decreasing the cost of parametric exploration
for complex systems. Reduced models are built over a few well chosen data points
in the design space, which, in turn, enable the reduced model to accurately describe
the system of interest, even when large parametric excursions arise [81].

Several machine learning techniques have been proposed for modeling differ-
ent physical systems, such as online and offline models. Online models, which
have their learning process developed while the corresponding measurements are
undertaken, were previously studied, for example, as Neural Network applied to
image recognition [80] or as nonlinear Autoregressive Exogenous (NARX) Neural
Network applied to solar radiation [82], and include statistic models as well. Of-
fline models, which are developed over measurements already obtained, involve,
for instance, the decomposition of the available data to retain its important features,
first using compression techniques, such as proper order decomposition (POD) or
singular value decomposition (SVD). Then a machine learning approach is applied
to learn the studied system. Offline models coupled with SVD have been applied to
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several physical systems, such as on the modeling of pressure ulcer prevention [81],
and with POD, such as the thermal behavior of fluid-cooled battery [83].

The computational fluid dynamics (CFD) modeling of combustion processes,
which are high-fidelity complex model, demand a significant computational cost
due to the complexity of the solved equations, as discussed in Chapter 1. It is of-
ten impracticable to develop a parametric study using CFD generated data. For this
reason this chapter is devoted to building and characterizing a reduced order model
of steady axisymmetrical, laminar premixed flames with variable dilution by air. In
this reduced order model takes the fuel/air mixture inlet velocity is taken as input
variable, and outputs are the flame velocity components and temperature field.

This chapter is organized as follows; first the reduced order model numerical
methodology is presented, followed by the ICF data generation procedure overview.
Then, the steady state ICF available CFD data is presented, and the ROM results
based on CFD data are discussed.

3.2 Numerical Methodology

In this section, a steady-state Reduced Order Model (ROM) of the ICF is constructed.
The construction relies on CFD model presented in Section 1.6 and uses model re-
duction tools from Ansys TwinBuilder to characterize the flame response to changes
in the inlet velocity. The tools used to create the steady ROM are described in Sec-
tion 3.2.1, followed by the characterization and presentation of the learning dataset
in Section 3.2.2.

3.2.1 Reduced Order Model

A reduced order model is a simplification of a high-fidelity steady or dynamical
model, which reduces the computational cost or the storage capacity of complex
models. The goal is to preserve the essential behavior and dominant effects of the
system. Here, a model enabling the efficient computation of the fields of several
physical quantities of interest, at steady-state, for a range of inlet velocities is de-
signed. The approach relies on the solution of the CFD model described in 3.2.2, for
several values of the inlet velocity. An interpolation between the CFD data is done
using a methodology described below, and summarized on Figure 3.1.

As shown on Figure 3.1, the first step in developing a steady state ROM is to set
the samples (or snapshots) to the training, which are representative data points of
the complete modeled system. A snapshot set is defined by an ensemble of samples
used for training the ROM. The training set is then divided into two; the learning
and validation snapshot sets. The learning set consists of approximately 60 % of the
training snapshots, distributed throughout the whole training set. It is important to
stress that the learning set must ensure that the boundaries of the parametric input
variables are included in the system learning process, in order to avoid validation
through extrapolation. The validation snapshots consist of the remaining 40 % of the
original set.

The second step is the application of a Singular Value Decomposition (SVD) on
the learning snapshots. Each of the learning snapshots corresponds to a small set of
modes coefficients when projected to the reduced SVD base [81]. The third step is the
feature extraction, which compresses the learning set by retaining only its most im-
portant characteristics, i.e., its larger singular values. Then, the learning process of
the ROM, the fourth step, is done by using a Genetic Aggregation Response Surface
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Set trainig data sample

60% learning snapshots
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Singular Value Decomposition
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when projected to the SVD base

Retain higher order modes
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Apply the learned model to
predict the validation points

Comsumption

FIGURE 3.1: Flowchart representing the learning methodology for
steady ROMs.

(GARS) to interpolate the system retained coefficients with respect to the calculation
parameters [84]–[87]. The fifth step is the validation, which consists of the applica-
tion of the model obtained by the interpolation over the validation snapshots and by
computing the Euclidean Norm error between a given validation snapshots and the
ROM interpolation results.

To create the training snapshot set for a random system, it is necessary to define
the parametric space of interest. For instance, here a ROM is computed describing
the ICF relation between the burner mean inlet velocity (or, equivalently, volume
flow rate) and the flame properties fields at steady state. Other possibilities for the
parametric space could be applied, such as using the burner outlet mean inlet ve-
locity or the equivalence ratio as input value, but, for the sake of brevity, only one
possibility is studied here.
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3.2.2 ICF training data

The steady-state flame flow field is computed using the model described in Section
1.6. Seven ICF samples are modeled with CFD, with a varying burner outlet mean
inlet velocity. All simulations are obtained with Fluent 2019 R2, each taking about
15 to 20 days to complete on a Linux-64 SuSE, at ANSYS cluster, Intel(R) Xeon(R)
E5-2660 v3, using 108 nodes on 9 machines.

Moreover, each simulation has the nominal mean inlet velocity, vi, of the pre-
mixed combustible gases varied according to the values presented in Table 3.1. Such
values are chosen based on the nominal mean velocity of vd = 2.05 m/s = v3, which
has been studied in the experimental work [9], by varying the burner outlet mean
inlet velocity of the fuel/air mixture in 5 % multiples of the nominal velocity, vd. In
what follows the nominal mixture volume flow rate and the mean velocity values
are denoted as ∀̇d and vd, respectively.

TABLE 3.1: Fuel/air mixture parameters setup for the Fluent mod-
eling of the Inverted Conical Flame. The values given represent the

mean value at the burner outlet.

Sample (i) 0 1 2 3 [9] 4 5 6
∀̇i/∀̇d 0.85 0.9 0.95 1 1.05 1.10 1.15
∀̇i [cm3/s] 153.3 162.3 171.3 180.3 189.3 198.4 207.4
vi [m/s] 1.7 1.85 1.95 2.05 2.15 2.26 2.36

It should be recalled that the analysis of the steady simulations showed that
model does not converge strictly, but oscillates around a pseudo-steady state point,
as discussed in Section 1.6.1. For this reason the data used to compute the ROM of
the ICF is the statistically averaged, as seen in Section 1.6.2, since this provides a
better approximation of the laminar premixed lean ICF steady state.

3.3 Results and Discussion

In this section results for the ROM of the lean premixed laminar ICF computed with
Fluent are presented. First, an overview of the training sample is given in Section
3.3.1. Then, the ROM results are analyzed in Section 3.3.2.

3.3.1 Learning and Validation dataset generation

Here, the training set that is used to create the ROM of the ICF is discussed. Note
that, as addressed in Section 1.6.2, a qualitative comparison of the average field
yielded a smother flame front, with a shape resembling that of the steady exper-
imental results [9]. Figure 3.2 shows training samples for the averaged axial and
radial velocity components and temperature fields, for i = 0, 2, 6, given in Table 3.1.

For the sake of brevity, only three samples are shown on Figure 3.2, such that a
mapping sample of the parametric space related to the ROM training is covered. It
is worth to stress that the averaged fields of velocity components and temperature
present a smooth flame front, underscoring what is discussed in Section 1.6.2 for the
nominal scenario (scenario 3 on Table 3.1). Moreover, the impact of increasing on the
mixture inlet flow rate is evident on Figure 3.2: the flame lengthens with the flow
rate, as can be seen by comparing Figures 3.2b and 3.2h. Furthermore, the averaged
field linked to the minimum flow rate presents a slightly different behavior when
compared to the others. Indeed, the fields exhibits some smooth wrinkles at the
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(A) Axial velocity for ∀̇0 =
153.3 cm3/s.

(B) Radial velocity for ∀̇0 =
153.3 cm3/s.

(C) Temperature for ∀̇0 =
153.3 cm3/s.

(D) Axial velocity for ∀̇2 =
171.3 cm3/s.

(E) Radial velocity for ∀̇2 =
171.3 cm3/s.

(F) Temperature for ∀̇2 =
171.3 cm3/s.

(G) Axial velocity for ∀̇6 =
207.4 cm3/s.

(H) Radial velocity for ∀̇6 =
207.4 cm3/s.

(I) Temperature for ∀̇6 =
207.4 cm3/s.

FIGURE 3.2: ICF training samples for the fields of velocity compo-
nents and temperature, for three different fuel/air mixture flow rates.
The colormap is defined as black an light blue at minimum values, re-
spectively, i.e., vy ∈ [−1, 6] m/s, vr ∈ [−2, 3] m/s and T ∈ [298, 2200]

K.

flame tip (Figure 3.2c), whereas no wrinkle is visible for the cases with ∀̇ = 171.3
and 207.37 cm3/s, presented on Figures 3.2f and 3.2i, respectively.

The samples presented in this section are those used to develop the steady ROM
of the ICF, which is presented at the following section.

3.3.2 ROM Analysis

A reduced order model is created to predict the ICF using some of the flame proper-
ties obtained from the ICF Fluent model results. A total of seven samples are avail-
able for the ROM training, such that the number of data points used on the learning
set of this system is varied between four or five points, to show the impact of the
dataset size on this process. Here, the ROM input parameter is the fuel/air mixture
mean inlet velocity, vi, which values are given, for each of the data points, in Table
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3.1. The ROM then predicts two properties: the flame averaged axial and velocity
components and the averaged temperature fields.

In this study, two models are created for each of the ICF studied properties. The
first ROM (denoted ROM4) is composed by a learning set of four samples (scenarios
1, 3, 4, 6 in Table 3.1), whereas the second one (denoted ROM5) uses five samples for
learning (scenarios 0, 1, 3, 4, 6 in Table 3.1). For each ROM, scenarios 2 and 5 of Table
3.1 are used as the validation set. Once built, such ROMs should give an accurate
approximation of the solution that can be obtained with the CFD solver, but for a
different set of volume flow rates.

The model resulting accuracy depends on the number of samples in the training
set, the number of modes used in the field compression of the learning dataset, the
statistical reduction targeted precision for the flame fields and the interpolation er-
ror. Figure 3.3 compares the Fluent averaged model results with the ROM prediction
of these results, with either four or five learning points, and four SVD modes, for the
velocity components and temperature fields. Table 3.2 reports the errors resulting
from the construction of each ROM.

Figures 3.3a, 3.3b and 3.3c depict the average axial and radial velocity compo-
nents, as well as temperature of the ICF for a volume flow rate of ∀̇5 = 198.35 cm3/s,
modeled with Fluent. The corresponding steady state ROM results of the averaged
ICF are given on Figures 3.3d, 3.3e and 3.3d for ROM4, and on Figures 3.3g, 3.3h and
3.3g for the ROM5.

Firstly, a qualitative comparison between the ROM and Fluent results, on Figure
3.3, enables to verify that the overall flow structure is captured by both ROM4 and
ROM5. The important flow structures used to analyze the system results are; (1)
the flame anchoring point at the top of the rod, (2) the angle of the ICF, which is
directly related to the laminar flame speed, (3) the location of the smeared flame
wrinkles, which indicates the dilution region and (4) the outer plume region. More
precisely, on Figures 3.3d and 3.3g, the axial velocity, vy , upstream and downstream
to the flame front are equal for both cases, with a value of 2.34 m/s and to 4.2 m/s,
respectively. However, at the dilution region, the ROM determined velocity goes
from 2.34 m/s to 4.6 m/s. At this region the flame front is smoother and thicker.

Concerning the radial velocity component, vr, on Figures 3.3e and 3.3h, abrupt
changes are seen on the reactive region, varying from 0.9 m/s upstream the flame, to
−0.9 m/s immediately after the flame front, and then slowly increasing, achieving a
value of 0 m/s further downstream. Moreover, all ROMs have a smeared flame tip,
which is similar to the Fluent averaged flame tip, on Figure 3.3b, presenting small
differences on the smeared region size and shape only.

The averaged temperature ROM results, given on Figures 3.3f and 3.3i, increases
from T∞ = 300 K, to Tad = 2200 K on the fresh and burned gases regions respec-
tively. Furthermore upstream and downstream the flame front, similar Fluent and
ROM behaviors are observed. However, on the dilution region, the ROM flame front
differs slightly from the Fluent model, exhibiting a smoother flame tip at the upper
region when compared with Figure 3.3c.

The analysis of the ICF fields predicted by the ROM underscores that the temper-
ature is the considered flame property that enables the identification the flame front
position. Indeed, the interface between T∞ = 300 K and Tad = 2200 K is a well de-
fined surface, both for the averaged Fluent and the ROM. Therefore, the temperature
contour of the ROM5 result, which uses 5 learning samples, for ∀̇5 = 198.35 cm3/s,
presented on Figure 3.4, is used to further understand and compare the flame front
position and angle with respect to the fresh gases. Figure 3.4 depicts the tempera-
ture contour for the Fluent average in red, and the ROM5 prediction in yellow. Both



3.3. Results and Discussion 63

(A) Axial velocity component
obtained with Fluent.

(B) Radial velocity component
obtained with Fluent.

(C) Temperature obtained
with Fluent.

(D) Axial velocity component
obtained with ROM for 4

training data points.

(E) Radial velocity compo-
nent obtained with ROM for 4

training data points.

(F) Temperature obtained
with ROM for 4 training data

points.

(G) Axial velocity component
obtained with ROM for 5

training data points.

(H) Radial velocity compo-
nent obtained with ROM for 5

training data points.

(I) Temperature obtained
with ROM for 5 training data

points.

FIGURE 3.3: Comparison between the Fluent averaged results with
ROM prediction for the averaged steady ICF, for a fuel inlet volume
flow rate of ∀̇5 = 198.4 cm3/s. The colormap is defined as black
an light blue at minimum values, respectively, i.e., vy ∈ [−1, 6] m/s,

vr ∈ [−2, 3] m/s and T ∈ [298, 2200] K.

curves are anchored at the same position, i.e., at the top of the bluff-body, and the
flame front overlaps for the Fluent and ROM results on the flame base. However, the
steady state ROM model is not capable of fully predicting the flame front position
without error. Indeed, at the dilution by external air region, further along the flame,
the red and yellow lines do not overlap, and exhibit different angles. The angle with
the vertical axis has been approximated by a protractor and are 28.13° and 30.38°, for
the Fluent (red) and the ROM (yellow curves), respectively. This discrepancy corre-
sponds to a total error of 8 % for the ROM result of the front angle at the air diluted
flame tip.

To summarize the ROM prediction capabilities, Table 3.2 gives the quantitative
prediction error for the ROM developed in this work. For each property field, the
corresponding average RMS error of the SVD decomposition of the training set, and
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FIGURE 3.4: Comparison of the contour of the flame temperature for
the ensemble averaged steady Fluent result (red) and the StaticROM
(yellow) prediction for the ICF case 5, with a volume flow rate of ∀̇5 =

198.4 cm3/s. [36]

Euclidean norm error of the ROM prediction is computed. In Table 3.2, the predic-
tion of the velocity components and temperature show that the reduction error is
zero for the all the properties predicted by ROM4 (ensemble average velocity v̄ and
temperature T̄). This is evident, since the SVD is done over four learning samples,
and the number of modes used for the ROM is the maximum available, which is
four also. Upon increasing the number of points, one may verify that the reduction
error increases, since the SVD is computed over five learning data points, but only
the four largest modes are used on the ROM.

TABLE 3.2: RMS errors of the SVD and ROM Euclidean norm errors
of the learning using 4 modes, for each of the developed models.

SVD ROM
Number of learning data points v̄error (%) T̄error (%) v̄error (%) T̄error (%)

4 0 0 2.56 1.03
5 0.558 0.762 2.47 1.26

Regarding the errors for the velocity components, the average ROM Euclidean
norm error decreases from 2.56 % to 2.47 % when one point is added to the learn-
ing set, which underscores the flame similarities discussed previously for the com-
parison between ROM4 (Figures 3.3d and 3.3e) and ROM5 (Figures 3.3g and 3.3h).
The temperature ROM prediction, however, slightly increases from 1.03 % to 1.26 %
when changing from four to five learning samples, which also agrees with the high
degree of similarity encountered on Figures 3.3f and 3.3i, since the error is smaller
than 2 % for both cases.

Each of the ROM results presented above is computed in real time, taking around
30 s for the learning step of each created of the ROM. Nevertheless, as underscored
in Section 1.6.1, a steady CFD simulation of the ICF takes about 15 days to compute.
This represents a significant advance on the modeling of flames with an accessible,
fast and less expensive method. Furthermore, all the obtained ROM exhibit a rather
small error, i.e., less than 3 %, even though a set of 5 samples ii used for the learning
only.



3.4. Synthesis 65

3.4 Synthesis

The analysis of the reduced order model of the averaged steady inverted conical
flame showed that it is not only possible, but also beneficial, to apply such modeling
techniques to predict the behavior of laminar premixed combustion. Using ROM
provides a substantial reduction on the computational burden linked to the model-
ing of combustion. The ROM developed in this work lead to less than 3 % Euclidean
norm ROM error, thus meaning that a correct prediction is achieved. One may note
that these models are developed using a reduced amount of samples for learning
and validation of the ROM. Since the ICF is a complex and sensible to the variation
of the velocity inlet, the increase of the number of points on the training sample set
could provide even better results.

It is worth to stress that the same methodology can be applied to model other
flow properties, but in this work the focus was chosen the velocity components and
temperature. It would be interesting to delve deeper in the chemical properties, such
as modeling the field of species mass fraction, enabling to characterize not only the
flow filed of the ICF, but also the chemical behavior.
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Chapter 4

Luenberger Observers

Ce chapitre propose une conception numérique d’observateur de Luenberger pour les sys-
tèmes non linéaires, consistant en l’approximation des mappings impliqués dans une telle
méthodologie d’observateur. Cette conception repose sur des simulations numériques de la
dynamique d’un système d’intérêt et sur l’utilisation de réseaux neuronaux pour trouver
les correspondances. L’approche diffère en fonction de la classification de la dépendance du
système, comme autonome ou non-autonome. Pour les systèmes autonomes, une approche
connue est utilisée [34]. Pour les systèmes excités, l’approche consiste à calculer les mappings
correspondant à une excitation spécifique et bien choisie, de telle sorte que ces mappings puis-
sent ensuite être utilisés avec d’autres entrées. Les résultats sont prometteurs, même pour
des systèmes complexes, comme la combustion, comme l’illustre la section 4.4.4.

In this chapter, a numerical Luenberger observer design for nonlinear systems
is proposed, consisting on the approximation of the mappings involved in such ob-
server methodology. Such design relies on numerical simulations of the dynamics
of a system of interest and the use of neural networks to find the mappings. The ap-
proach differs depending on the system dependency classification, as autonomous
or non-autonomous. For autonomous systems, a known approach is used [34]. For
excited systems, the approach consists in computing the mappings corresponding
to a specific, well-chosen excitation, such that this mappings can then be used with
other inputs. Results show promising results, even for complex system, such as
combustion, as illustrated in Section 4.4.4.

4.1 Introduction

State observers are dynamical systems that combine a model and real-time measure-
ments to estimate unmeasured states of a process. These estimates can then be used,
e.g., for feedback control. As described in the previous Chapters, the combustion
process is high-dimensional, featuring a large number of states, particularly when
CFD models are involved. There is an important effort devoted to designing Re-
duced Order Models (ROM) capturing the essential dynamics of the process while
keeping model complexity as low as possible. In [88], a ROM of a thermo-acoustic
system is studied, where computational fluid dynamics (CFD) simulation is com-
bined with tools from system identification to characterize a ROM representation of
the dynamic of a sub-system, to incoming flow perturbations. The difficulty of plac-
ing sensors in combustion systems makes it impossible to measure all the states of
these ROMs during a combustion process, let alone those of a CFD model. In this
context, state observers can provide estimates of unmeasured quantities, provided
the model they rely on is reliable.
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More precisely, the state observers enable the estimation of the states of the
thermo-acoustic response of flames. Such methodology achieves a state estimation
based on a given training trajectory and measure. For instance, in the combustion
experiments often measures of pressure are obtained through probes, and accessing
other combustion properties is more complicated. In closed combustion chambers,
the measure of pressure can then, coupled with a dynamic model of the combustion
process and an observer, be used to estimate the heat release of the reactive system,
enabling the estimation of thermo-acoustic instabilities, and also the control of such
unstable systems.

4.1.1 Context

Observers are dynamical systems used to estimate the unmeasured states of a pro-
cess, combining real-time data obtained from sensors with a dynamical model of
the studied process. A few general observers design approaches for nonlinear sys-
tems exists. For instance, the popular Extended Filter [89] relies on the linearization
around the current estimate, yielding local guarantees of convergence only. High-
gain observers [90], in turn, rely on the strong assumptions on the observability of
the system to map it to a triangular form, in which the design is eased. A review of
generic observer design methods for nonlinear systems is given in [91].

In a seminal paper [92], the original Luenberger observer design for linear sys-
tems is presented. It is shown that observable linear dynamics can be mapped using
an invertible variable change, which transforms into a linear, stable dynamical sys-
tem, having the measurement as input. In other words, changing to a stable linear
filter of the output. Then, implementing such filter from any initial condition enables
to recover a state estimate of the process by inversion of this mapping. In [32], [93],
the same idea of mapping the plant dynamics to a linear filter of its outputs is pro-
gressively extended to more general classes of nonlinear systems. In [34], a general
notion of observability, backward distinguishability, has been shown to be sufficient to
guarantee the existence of such an injective mapping. In [94], applications on non-
autonomous nonlinear systems give similar result. Even if these results guarantee
the existence of the mapping and its (pseudo-)inverse, they are not constructive, and
the mapping has no tractable analytical expression.

This a chapter presents a numerical observer design for nonlinear systems that
consists in the approximation of such mappings involved in the Luenberger method-
ology. The design relies on numerical simulations of the dynamics and the use of
nonlinear regression. The proposed approach is as follows. For any stable chosen
linear observer dynamics, numerical solutions are computed to both the system to
be observed and the observer, fed by the corresponding output. Then, a nonlinear
regression is performed on the data to compute an approximation of the problem
corresponding mapping and its inverse. Different methodologies are proposed, de-
pending on the system dependency classification. In the case of autonomous sys-
tems, the method straightforwardly uses the existent result from [34]. For a system
with input, the approach consists in computing the mappings corresponding to a
specific, well-chosen excitation, and guaranteed to exist [94]. Indeed, such mappings
can then be used with other inputs, such that stronger observability assumptions are
made and the observer dynamics are appropriately modified.

The nonlinear regression relies on Neural Networks methods. This machine
learning approach enables the representation of a problem in multiple complexibility
levels, obtained by composing and connecting simple but non-linear modules, also
called neurons. These modules enable to transform the representation at one level
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into a representation at a higher and more complex and abstract level [80]. Studied
neural networks architectures composed by a sufficient number of these transforma-
tion modules show a high learning capability for diverse non-linear problems. For
instance, different neural network methodologies have been extensively applied for
image recognition [80], [95]–[97], for language processing [98], self-learning control
systems [99], for the prediction of chaotic series [100], or for the predictive modeling
of nonlinear dynamical systems [101].

This chapter is organized as follows. In Section 4.1.2, the formulation the ob-
server design problem is presented. In Section 4.2, the proposed approach is de-
scribed for both autonomous and excited systems. In Section 4.3, the architecture
and learning approach of the neural network are presented. In Section 4.4, the pro-
posed approach is exemplified through numerical simulations on toy examples of
autonomous and non-autonomous systems.

4.1.2 Problem Statement

Consider a system of general form{
ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

, (4.1)

where x ∈ Rdx is the system state, y(t) ∈ Rdy is the measured output, f is a continu-
ously differentiable function (C1), h is a continuous function, and u ∈ Rdu an input.
For any input u of interest, the online estimation of x(t) from the knowledge of the
past values of the output y and input u is the subject of interest, under the following
two assumptions.

Assumption 1

There exists a compact set X such that for any solutions x to (4.1) of interest,
x(t) ∈ X for all t ≥ 0.

Assumption 2

For any input u of interest, there exists an open bounded set O containing X ,
such that (4.1) is backwardO-distinguishable on X . Namely there exists t̄ > 0 such
that for any trajectories xa and xb of (4.1), with input u and any t ≥ t̄, such that
(xa(t), xb(t)) ∈ X ×X and xa(t) 6= xb(t), there exists s ∈ [t− t̄, t] such that

h(xa(s)) 6= h(xb(s)),

and (xa(τ), xb(τ)) ∈ O × O for all τ ∈ [s, t]. In other words, their respective
outputs become different in backward finite time and before leaving O.

Remark 1. For non-autonomous systems, the time t̄ within which the outputs are distin-
guishable to be uniform with respect to the initial conditions in X is required. This is relaxed
for autonomous systems, as seen in [34, Definition 2].

Under these mild assumptions, it was shown in [94] that, for any input u of
interest, and for almost any controllable pair (D, F) of dimension dz := dy(dx + 1)
with D a Hurwitz matrix, there exists a map T ∗u such that the following system is an
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observer for (4.1)

ż(t) = Dz(t) + Fy(t) (4.2a)
x̂(t) = T ∗u (t, z(t)). (4.2b)

In other words, any trajectory of (4.2) verifies

lim
t→+∞

|x̂(t)− x(t)| = 0,

and implementing (4.2) with any initial condition provides an estimate of the plant’s
state after a certain time.

The existence of T ∗u relies on the existence and injectivity of a direct transforma-
tion Tu : R × Rdx → Rdz such that, for any solution x to (4.1), the image z(t) =
Tu(t, x(t)) evolves according to the dynamics (4.2a). Straightforward computations
show that Tu must satisfy

∂Tu

∂x
(t, x) f (x, u(t)) +

∂Tu

∂t
(t, x) = DTu(t, x) + Fh(x, u(t)), (4.3)

for all (t, x) ∈ [0,+∞) × X . According to [94], a solution to (4.3) always exists,
however, it is difficult to show that Tu(t, ·) becomes injective after t̄ defined in As-
sumption 2. For t ≥ t̄, T ∗u (t, ·) can then be designed as a left-inverse of Tu(t, ·). It is
worth to stress that, in the particular case where the system (4.1) is autonomous,
the transformation can also be taken autonomous, namely T : Rdx → Rdz and
T ∗ : Rdz → Rdx .

Although the observer existence is proven for a wide category of systems, its
implementation requires the knowledge of the map T ∗u . Unfortunately, an explicit
expression is rarely available, unless a solution Tu to (4.3) is known, and building its
left-inverse is possible. The goal of this chapter is therefore to develop a numerical
methodology to compute this map T ∗u and, when needed, Tu and its Jacobian, for
both autonomous and excited cases. This work relies on precise theoretical results
of existence that are recalled in the next section.

4.2 Methodology

4.2.1 Learning Procedure: Autonomous Systems

Consider an autonomous system of the general form

{
ẋ(t) = f (x(t))
y(t) = h(x(t))

. (4.4)

The existence of an autonomous transformation T ∗ is shown in the following
Theorem, derived from [34].

Theorem 4.2.1 ([34]). Suppose Assumptions 1 and 2 hold. Define dz = dy(dx + 1). Then,
there exists ` > 0 and a set S of zero measure in Cdz such that for any D ∈ Rdz×dz with
eigenvalues (λ1, . . . , λdz) in Cdz \ S with <λi < −`, and any F ∈ Rdz×dx such that (D, F)
is controllable, there exists an injective mapping T : Rdx → Rdz and a pseudo-inverse T ∗ :
Rdz → Rdx , such that the trajectories of (4.4) remaining in X and any trajectory of

ż = Dz + Fy, (4.5)
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satisfy

|z(t)− T (x(t))| ≤ M |z(0)− T (x(0))| e−λmint, (4.6)

for some M > 0 and with

λmin = min {|<λ1|, . . . , |<λdz |} , (4.7)

and

lim
t→+∞

|x(t)− T ∗(z(t))| = 0. (4.8)

Remark 2. Notice that, if the observer is perfectly initialized, i.e. z(0) = T (x(0)), then
one has z(t) = T (x(t)) and, consequently, x(t) = T ∗(z(t)), ∀t.

The existence of the mappings being guaranteed by the previous theorem, a nu-
merical computation is proposed to estimate T and T ∗ by generating a large set
of (x, z) values, and using a nonlinear universal approximator. More precisely, the
procedure is according to the following steps

1. choose of D and F matrix for the observer system (4.5) ;

2. choose a set of initial conditions (x0, z0) ;

3. simulate Equations (4.2a) and (4.4) in forward time, generating a set of (x, z)
pairs ;

4. perform nonlinear regression to find the mapping x = T ∗(z).
The detailed specific methods applied for each step and the rationale behind them
is explained as follows.

Initial conditions The initial conditions affect the distribution in the (x, z)-space
of the data used for performing the regression. Ideally, the sampling should be re-
fined where the functions T and T ∗ are not smooth. However, in the absence of
a priori knowledge on the transformations regularity, standard statistical sampling
methods are used, such as Gaussian distributed sampling. It is worth to stress that
the dynamics of the system of interest strongly modifies the initial distribution, in
ways that cannot be predicted in advance. Therefore, the distribution of the actual
(x(t), z(t)) data is expected to be very different from that of the initial condition.

Selection of data points The second step is the generation of simulation data with
a numerical ODE solver over a finite time interval [0, t f ], from the initial conditions
chosen at the previous step. Such data must be pre-processed before it can be used
on the nonlinear regression. Indeed, since T is unknown, it is impossible to initial-
ize the observer exactly as suggested in Remark 2. Rather, the method relies on the
stability of the observer and the fact that z “forgets” its initial condition. Then, in-
equality (4.6) suggests that it is reasonable to eliminate from the dataset the pairs
(x(t), z(t)) for t < k

λmin
with k = 3 or 5.

Nonlinear regression To learn the mappings T and T ∗, any nonlinear regression
methodology could a priori be chosen. A neural network is proposed and further
discussed in section 4.3, due to the simplicity of implementation and its ability to
represent complex nonlinearities with a low number of parameters when compared
to other methodologies [80].
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4.2.2 Learning Procedure: system with an excitation

To account for excited systems, Theorem 4.2.1, in [94], was extended to general non-
autonomous systems (4.1).

Theorem 4.2.2 ([94]). Supposing Assumptions 1 and 2 hold with t̄ ≥ 0. Define dz =
dy(dx + 1). Then, for any input u of interest, there exists a set S of zero measure in Cdz

such that for any Hurwitz matrix D ∈ Rdz×dz with eigenvalues (λ1, . . . , λdz) in Cdz \ S
with <λi < 0, and any F ∈ Rdz×dx such that (D, F) is controllable, there exist mappings
Tu : R×Rdx → Rdz and T ∗u : R×Rdz → Rdx such that

1. Tu(t, ·) and T ∗u (t, ·) depend only on the past values of u on [0, t],

2. Tu(t, ·) is injective for all t ≥ t̄ with T ∗u (t, ·) a left-inverse on X ,

and any trajectory of equations (4.4)-(4.5) with x(t) remaining in X satisfies

|z(t)− Tu(t, x(t))| ≤ M |z(0)− Tu(0, x(0))| e−λmint, (4.9)

for some M > 0 and λmin defined as in (4.7) and

lim
t→+∞

|x(t)− T ∗u (t, z(t))| = 0. (4.10)

Theorem 4.2.2 differs from Theorem 4.2.1 only through the fact that Tu is time-
varying and the eigenvalues no longer have to be sufficiently large. Quite expect-
edly, the time t̄ after which T (t, ·) becomes injective is the same as the backward-
distinguishability time of Assumption 2.

Estimating the map T ∗u is now more difficult, since it depends on the input u. In
the favorable case where u is known in advance (time-varying systems), it is suffi-
cient to learn the map T ∗u associated to such input u. Otherwise, consider the partic-
ular case of an input-affine system{

ẋ(t) = f (x(t)) + g(x(t))u(t)
y(t) = h(x(t))

, (4.11)

and a nominal input u0, such that Assumptions 1 and 2 hold. According to Theorem
4.2.2, there exists a map Tu0 which is solution to the PDE (4.3), with u = u0 and T ∗u0

its left-inverse after a certain time. Then, straightforward computations show that
along solutions to (4.11), z(t) = Tu0(t, x(t)) evolves according to

ż(t) = Dz(t) + Fy(t) + Ψ(t, z(t))(u(t)− u0(t)), (4.12)

where
Ψ(t, z) =

∂Tu0

∂x
(
t, T ∗u0

(t, z)
)

g
(
T ∗u0

(t, z)
)

. (4.13)

Similarly to the previous design, managing to estimate z(t) = Tu0(t, x(t)), enables
then an estimation of x(t), thanks to T ∗u0

(t, z(t)). Moreover, when the term Ψ(t, z) is
absent, the dynamics of z are contracting, and it is sufficient to simulate z with any
initial condition to obtain an estimate asymptotically. Unfortunately, this no longer
holds when Ψ(t, z) exists, and the new result is explained in the following

Corollary 4.2.1. Suppose Assumptions 1 and 2 hold and pick u0 among the inputs of inter-
est. Assume D, Tu0 and T ∗u0

given by Theorem 4.2.2 are such that ∀ t, ∀ za, zb,

|Ψ(t, za)−Ψ(t, zb)| ≤ L|za − zb| .
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If λmin > L|u− u0|∞, then any solution to (4.1)–(4.12) with x remaining in X verifies

lim
t→+∞

∣∣x(t)− T ∗u0
(t, z(t))

∣∣ = 0 . (4.14)

Proof : Denoting e(t) = Tu0(t, x(t))− z(t), compute the derivative of e>e along trajecto-
ries. Then, apply the left-inverse T ∗u0

.

However, such contraction condition comes with the setback that Tu0 , and thus
λmin depend on the matrix D. Therefore, it may not be sufficient to chose D with λmin
sufficiently large. Indeed, if satisfying this condition is possible for a given input u,
the plant can be observed for any other input u′, such that |u′ − u0|∞ ≤ |u− u0|∞.
Therefore, the plant should be observable or at least detectable for any input. For
instance, in [94, Theorem 4] it has been shown that when the plant is observable for
any input and the drift system ẋ = f (x) is differentially observable of order dx, L
can be bounded independently from λmin and therefore, this observer also works
with u0 = 0 if λmin is sufficiently large.

The proposed numerical methodology is as follows;

1. choose D and F for the observer system (4.5);

2. choose one initial condition (x0, z0);

3. choose an excitation u = u0 to excite (4.11), such that ẋ = f (x) + g(x)u0(t) ;

4. simulate (4.2a),(4.11) with input u0 in forward time, generating a set of (z, x, t)
data points;

5. apply nonlinear regression to find the mapping z = Tu0(x, t), and the associ-
ated left-inverse x = T ∗u0

(z, t);

6. compute ∂Tu0 /∂x to find Ψ(t, z) in Equation (4.12) ;

7. then, for validation, simulate (4.12), (4.11) in forward time with a different
input u(t) 6= u0(t).

The specific details of the numerical methodology for each step and the rationale
behind them are as follows.

Initial conditions and input signal For non-autonomous systems, the initial con-
dition choice is not dominant on the distribution along the (x, z)-space of the data
used to perform the regression. Indeed, the perturbation u has a much more sig-
nificant impact. The question of finding an open-loop control u that generate ‘rich’
data is a classical question in system identification, and highly depends on the con-
sidered system. The objective, as in the autonomous case, is a priori to have many
samples where the functions T and T ∗ are likely to be non-smooth. In the absence
of intuition or a priori knowledge on these, the excitation should be chosen such that
the system is led to explore as uniformly as possible the compact of interest.

Selection of data points and nonlinear regression The generation and preprocessing
of data and the nonlinear regression methodology are identical as specified in sec-
tion 4.2.1. In the next section, the regression method used to numerically learn the
mappings is presented.
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FIGURE 4.1: Neural network simplified flow chart.

4.3 Neural Networks

Here, a Neural Networks is applied to perform the nonlinear regression. It is worth
to stress that any nonlinear regression method can potentially be applied to approx-
imate the mappings. The basic architecture of the Neural Network is composed of
one input layer with li + bias neurons, multi-hidden layers with lh + bias neurons
each, and one output layer with lo neurons, as shown on Figure 4.1. The output
value computed by the network is denoted hΘ(x), and it depends on the input train-
ing values (x) and of the network weights (Θ). As base methodology to implement-
ing a neural network model, this work refers to [80], [102], [103].

More specifically, each neuron of the neural network has some input and out-
put data, which are balanced on means of importance of each characteristic of the
learned system. Such nodes consider each input on a weighted form, balancing the
importance of each for the prediction, and an activation function (g(ΘX)) is used to
decide to decide to fire or not the neuron.

x1
bias

...

...

xn

neuron
Φ = ΘTX g(Φ)

θ0

θ1

θn

FIGURE 4.2: Neuron representation.

Mathematically, a neuron is expressed as follows. Let X and Θ be the vector form
of all xi, θi, ∀i = 1 . . . n, where n is the number of inputs of the neuron. Then, the
weighted inputs fire or not the node by passing trough the activation function g.

ΘT = [θ0, θ1, θ2, · · · , θn]

XT = [bias, x1, x2, · · · , xn]

a = g(ΘTX)

. (4.15)

One may note that, in one layer, there are several nodes, and each has a different
related collection of weights. That being said, for a layer k, with lk neurons, the ΘT

k
is represented by the following matrix;

θ
(1)
0 θ

(2)
0 · · · θ

(lk)
0

θ
(1)
1 θ

(2)
1 · · · θ

(lk)
1

...
... · · ·

...
θ
(1)
n θ

(2)
n · · · θ

(lk)
n

 , (4.16)
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were each row corresponds to the weights related to a specific neuron on the layer k,
and each column corresponds to an input, including the bias term which is expressed
on the first column.

Moreover, given a training dataset with input and output values, the “learning”
of the neural network weights is then performed. A cost function (J in R) is used
to provide a quantitative measure of the efficiency of the neural network with re-
spect to a given training dataset [102]. This function can have different forms, and
depend on the neural network weights (Θ), the training dataset output (Y), and the
values predicted by the neural network (hΘ(X)). The objective here is to find a set
of weights that minimizes the cost function, and better fits the training data. To that
end, the back-propagation algorithm is applied. The back-propagation methodology
and algorithm is detailed elsewhere [102], [103].

The goal of the back-propagation is to determine how changing of the weights
of the neural network interferes on the cost function, and this is done by computing
the partial derivatives of the cost function, J(Θ, hΘ(X), Y), with respect to any unit
weight (j) at any layer (k) [102]. More precisely, ∂J/∂θ

(k)
j ∀ j = 0 . . . lk. For the back-

propagation algorithm, if the neural network has NL layers, k = NL is the output
layer, and that the number of training examples is m. The algorithm is the following;

1. Define δ(k) the error vector on the layer k, for all j.

• For each output k = NL:

δ(NL) = (a(NL) − y)� g′(Φ(k)).

• For all the other layers k = [NL − 1, NL − 2, · · · , 2]:

δ(k) = (Θ(k))Tδ(k+1) � g′(Φ(k)),

where Φ(k) = Θ(k)ak and g′(Φ) is the derivative of the activation function.

2. then, for each layer weights Θ(k) ∀ k ≤ NL, compute the partial derivatives;

∂

∂Θ(k)
J(Θ, hΘ(X), Y) =

1
m

a(k)δk+1.

It is worth to stress that, for the back-propagation to work, some assumptions on
the cost function are needed [102]; (1) it can be written as an average J = 1/m ∑m

i=1 Ji
of cost functions (Ji) for individual training examples, which enables the computa-
tion of partial derivatives for each single training example, and (2) it can be written
as a function of the outputs from the neural network, and thus is a function of the
output activation.

4.3.1 Proposed Neural Network Methodology

In this work, the neural network architecture is composed of four layers (NL = 4):
one input (layer (1)), two hidden layers (layers (2, 3)), and one output (layer (4)).
The number of nodes of the input and output layers depends on the transforma-
tion of interest, which are, respectively, dx and dy when the the approximation of T
is needed, and the opposite when T ∗ is needed. Both hidden layers have 25 units
each, which was chosen by trial-and-error, trading-off computational effort against
accuracy. For the sake of brevity, this trade of study is not detailed here. The follow-
ing quadratic cost function is used
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Jθ =
1

2m

m

∑
i=1

l4

∑
k=1

(hθ(xi
k)− yi

k)
2, (4.17)

where m is the number of training data, l4 is the number of nodes on the output layer
(NL = 4), and hθ is the neural network predicted value. Again, one must keep in
mind that this particular choice has been made on a trial-and-error analysis, and is
by no means optimal in any sense.

The activation function varies for each layer k. For instance, the activation of the
first layer is the input value (x) for the system of interest, plus a bias (a0 = 1), such
that; a(1) = [a0, x1, · · · , xn]

T. The hidden layers have the hyperbolic tangent (tanh)
as activation function g(Φ), where Φ is the layer weighted input, as shown in (4.18).
However, a linear function is used at the output, i.e., each of the fourth neurons layer
has the value multiplied by its respective weight.

g(Φ) = 2
(

1
1 + e−2Φ

)
− 1, g′(Φ) = 1− g(Φ)2. (4.18)

More precisely, the training methodology is:

1. randomly initialize the weights of each layer k, where Θk ∈ Rlk+1×(lk+1), ∀k ≤
(NL − 1), and define the three Θ matrices necessary for computation, Θ(1) ∈
Rl1×26, Θ(2) ∈ R25×26 and Θ(3) ∈ Rl4×26;

2. effect forward propagation to compute first prediction for hΘ(x), as follows;

a(1) → inputs + bias,

Φ(2) = Θ(1)a(1),

a(2) = [a0, g(Φ(2))],

Φ(3) = Θ(2)a(2),

a(3) = [a0, g(Φ(3))],

Φ(4) = Θ(3)a(3),

hΘ(x) = Φ(4).

. (4.19)

3. compute the cost function (4.17) with respect to hΘ(x), and the training output
values Y.

4. use the back-propagation methodology to compute the partial derivatives of
the cost function; ∂

∂Θ(k)
i

J(Θ, hΘ(X), Y).

5. apply the optimization method ( f mincg ©1) with the back-propagation to min-
imize the cost function and determine the optimal neural network weights Θ.

Optimization method The f mincg function ©2 is an optimization routine to mini-
mize a continuous differentiable multivariate function. The initial condition is given
by the ensemble of weight values of the neural network, arranged at a (nw × 1)
vector, where nw is the number of weights. The optimization is performed over

1Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
2Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
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such weights, by minimizing the cost function (Equation (4.17)). The Polack-Ribiere
method of conjugate gradients is applied to define search directions. A quadratic
and cubic polynomial approximations is used for line search and the Wolfe-Powell
stopping criteria coupled with the slope ratio method is used to guess the initial step
sizes. It is worth to stress that other optimization methods could be used here, but
impact of those is not the object of study of this work, as so, only f mincg is applied.

In the next section, such methodology is applied to compute the transformation
Tu and T ∗u of the previously presented Luenberger observer. Two neural networks
are learned to solving the system of interest; (a) one to solve z = Tu(x), with the
nonlinear system x as input and the observer system z as output, and (b) one other
with the observer as input and the nonlinear system as output, solving x = T ∗u (z).

4.4 Numerical simulation

In this section, the proposed approach is illustrated via numerical simulations on
toy problems. The main goal is to qualitatively highlight how the data selection and
processing impacts the observer performance for autonomous and excited systems.

4.4.1 Autonomous System

Lets consider the following system

f (x) =

{
ẋ1 = x3

2,
ẋ2 = −x1

y = x1 (4.20)

which admits bounded trajectories (where x2
1 + x4

2 is constant). This system is weakly
differentially observable of order 2 in R2, since the mapping x → H2(x) = (x1, x3

2)
is injective on R2, and so, it is considered a fortiori instantaneously backward distin-
guishable [34], [94]. Applying the Luenberger’s methodology presented in section

4.2.1, for the observer (4.2) in R3, with D = diag([λ1, λ2, λ3]) and F =
(

1
1
1

)
, the

necessary mappings are computed.
The training data is generated for several sets of initial conditions, chosen with

different sampling methods. The system and observer dynamics are solved over a
time interval [0, t f ], with t f = 50 s and a time step ∆t = 10−2 s. In order to improve
the neural network behavior, the data is centered around zero and normalized. The
approximation of the transformation x = T ∗(z) is then computed with the neural
network methodology presented in Section 4.3.1, where the input is z = (z1, z2, z3),
and the output is x = (x1, x2). A maximum of 1000 iterations is used.

The impact of varying the design choices for the solution is highlighted in the
following paragraphs.

Impact of the size of the set O

One of the critical design choices lies on the size of the state-space subset where the
mappings are approximated, such that all the subset might contain training data
samples to train the neural network. Nevertheless, an inherent trade-off exists: ide-
ally, the choice of set should be as large as possible, but this requires more training
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data and, most importantly, a more accurate nonlinear approximator for the map-
pings. Such choice is therefore linked to the complexity of the neural network and
to the number of points in the training dataset. For a fixed architecture, covering
a larger set usually has a negative impact on accuracy. The trade-off between the
set size and the number of training data samples is illustrated on Figure 4.3, where
the same number of points in the training dataset are used for two different sets O.
Each figure presents the plot of the training dataset and the asymptotic logarithmic
relative error

lim
t→∞

log
(x1(t)− x̂1(t))2 + (x2(t)− x̂2(t))2

x2
1 + x2

2
. (4.21)

Unsurprisingly, both learned mappings have a better qualitative performance in
the regions where more training data points are placed. As already known from clas-
sic regression methodologies, the extrapolation capabilities are extremely limited, as
illustrated by the high error region far from the origin, on Figure 4.3b. This figure
also illustrates the difficulty of estimating the mapping T ∗ around two symmetrical
points close to the origin. This phenomena, in theory, is linked to a small modulus
of injectivity for T , which is depicted on Figure 4.4, around (x1, x2) = (0, 0).

Moreover, as an attempt to increase the efficiency of the prediction over the larger
set, the increase of the number of neurons at the neural network hidden layers,
or/and the number of hidden layers would be suggested. Accordingly, an architec-
ture with a larger (50) number of neurons has been tested, however, no remarkable
difference has been found on the tested case, such that, for the sake of brevity, the
results are not shown here.

Impact of the initial condition sampling

Regarding the distribution of the initial conditions, this section compares and dis-
cuss the impact of using different statistic methods to choose the initial condition
distribution, and the impact of varying the number of data points in the training set
given for the learning.

Distribution Different well known standard methods for sampling distribution
can be used to choose the initial conditions for the neural network training set of
data. Here, in a fixed [x1, x2] range of [−10, 10], the impact of using a Gaussian dis-
tributed and a regular spaced distribution are shown. Figures 4.3c and 4.3d present
the Gaussian distribution trajectory and resultant error, whereas Figures 4.5a, 4.5b,
present the regular spaced results. Both methods are applied for a training sample
of 20 initial conditions.

Regarding the different distribution methods used to fill the parametric space of
initial conditions, small differences are encountered. Comparing the trajectories for
Gaussian distribution with the regular partitioning (Figures 4.3c and 4.5a, respec-
tivelly), it is visible that the training trajectories have different distribution on the
space; the first one presents several trajectories that better fill the space, whereas the
second one presents dynamics that seem to converge to a similar trajectory, such
that empty gaps are seen in the parametric space. Regarding the logarithmic rela-
tive error, in general, the same behavior from the Gaussian distribution, Figure 4.3b,
is seen in the regular partition, Figure 4.5b. Both distributions result presents high
error when predicting trajectories closer to (x1, x2) = (0, 0), however, the regular
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(A) Trajectory for training IC ∈ (−1, 1). (B) Logarithmic relative error mapping for train-
ing IC ∈ (−1, 1).

(C) Trajectory for training IC ∈ (−10, 10). (D) Logarithmic relative error mapping for train-
ing IC ∈ (−10, 10).

FIGURE 4.3: Impact of the size of the compact: Comparison of the
autonomous system (Equation (4.20)) solutions for an observer de-
fined in R3, with a different range for the Gaussian distributed initial
conditions. The prediction test is over 100 equally distributed initial

condition (x1,0, x2,0) ∈ [−10, 10].

distribution presents a slightly smaller region of high error when compared to the
Gaussian method.

Number of points The impact of the initial conditions sampling is here tested by
comparing the Luenberger proposed methodology with a training set computed
over 20 and over 100 different initial condition, with x0,1 ∈ [−10, 10], chosen with
a Gaussian distribution, and x2 = 0. The corresponding result for 100 initial condi-
tions is depicted in Figure 4.6.
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FIGURE 4.4: Transformation T .

The use of a larger number of initial conditions better fills the training domain,
as show on Figure 4.6a. However, this does not result in a significant quantitative
accuracy improvement, only on a small reduction of the region of high error around
(x1, x2) = (0, 0). This point illustrates the need of further research on such neural
network design options, i.e., for either a smarter way to chose the training trajecto-
ries of interest, e.g. by using mesh refining methods, or for larger scale brute force
methods.

Impact of the observer eigenvalues

Another critical design choice lies in the value of eigenvalues of the Huirwtz ma-
trix D on Equation (4.2). Those values are linked to the convergence speed of the
observer, although they do not determine it entirely, as the mappings highly depend
on their values. An study of the effect of D on, the noise filtering properties of the
observer is given in [104], and can be taken for further information on the subject.

Here the study of the impact of the eigenvalues on the learning process is dis-
cussed. The comparison of the results obtained with, first, ‘arbitrarily’ chosen eigen-
values (−5,−6,−7) and, second, eigenvalues corresponding to a third-order Bessel
filter, with a cut-off frequency of 2π rad/s. The results for either cases are depicted
on Figure 4.7. Although these results are very partial, and a deeper study should
be developed, they indicate that a physically sound choice of eigenvalues eases the
learning process, for a similar convergence speed, since the dynamic of the observer
is imposed by the frequency.

Is is worth to stress that a future works should include a deeper study of the im-
pact of the choice of the eigenvalues on the transformation and the learning process,
and how it affect the observer convergence speed. Also, another interesting research
direction for this topic would be to perform nonlinear regression, in the state space,
observer variables and on the eigenvalues, such that no eigenvalue choice would be
necessary. For example, one could envision finding an approximation of T ∗(z, ωc),
where ωc is the cut-off frequency of the Bessel filter.
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(A) Trajectory for IC ∈ (−10, 10). (B) Logarithmic relative error mapping for IC ∈
(−10, 10).

FIGURE 4.5: Solution for the autonomous system (eq. (4.20)) with an
observer z defined in R3, with regular partition used for choosing the

20 initial conditions (x1,0, x2,0) ∈ (−10, 10).

4.4.2 Non-autonomous System: Van der Pol

For the non-autonomous system, lets consider the following Van der Pol oscillator as
a first example, which is a non-conservative oscillator with nonlinear damping [105]

f (x) =

{
ẋ1 = x2

ẋ2 = ε(1− x2
1)x2 − x1 + u(t)

, y = x1, (4.22)

where ε = 1. When unforced, its trajectories quickly converge to a single asymp-
totically stable limit cycle, but it exhibits chaotic behavior under sinusoidal forcing.
These properties perfectly illustrate how the approach described in Section 4.2.2 sig-
nificantly improves on the result presented in [94, Section IV]. In that paper it is
suggested that, for systems of the form (4.11), the autonomous transformation cor-
responding to f only, should be used for an observer with sufficiently fast conver-
gence3. This strategy is extremely difficult to apply to the Van der Pol oscillator,
since the generated data without forcing would be clustered around the attractive
limit cycle. Rather, here a linear chirp function is applied to generate the train-
ing set, with ω0(t) = 10−3 + 9.99 × 10−5t , such that the system extensively ex-
plores the (x1, x2)-plane. Then, the corresponding transformation T ∗u0

is used in an
observer of the form (4.12) to estimate the states under a different harmonic forc-
ing u(t) = 0.44 cos (0.5t). The results corresponding to an observer z evolving in R3

and R5, respectively, are shown in Figure 4.8.
On Figure 4.8 one may note that the corresponding plots show the system and the

observer trajectories at a period of time between 5, 000 and 5, 050 s. This time span
was chosen since the results for both observers show an asymptotic convergence
performance, taking a long time to achieve convergence. Moreover, the prediction

3Which corresponds to taking u0 = 0 in the approach here proposed.
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(A) Trajectory for 100 IC ∈ (−10, 10). (B) Logarithmic relative error mapping for 100
IC ∈ (−10, 10).

FIGURE 4.6: Solution for the autonomous system (Equation (4.20))
with an observer z defined in R3, with regular partition used for

choosing the 100 initial conditions (x1,0, x2,0) ∈ (−10, 10).

obtained for an observer in R3 (Figure 4.8a) presents an almost perfect fit for the
prediction of trajectories, and increasing the observer to a dimension in R5 (Figure
4.8b) does not show remarkable improvements.

4.4.3 Non-autonomous System: Adding an input to (4.20)

For a second non-autonomous example, the same approach is applied to generate
training data for system (4.20), by adding an excitation as

f (x) =

{
ẋ1 = x3

2

ẋ2 = −x1 + u(t)
, y = x1. (4.23)

Then, the methodology presented in Section 4.2.2 is applied. First, the training data
is generated for one initial condition and, again, the linear chirp function used in
Section 4.4.2 as forcing u(t). In this case, the observer is in R3, the Huirwtz matrix D
corresponds to a third-order Bessel filter, with cut-off frequency ω = 2π rad/s, and

F =
(

1
1
1

)
. The dynamics (4.20) are then solved using a built-in Matlab variable-step

solver over 104 s. Nonlinear regression is applied to determine the transformations
(Tu0 , T ∗u0

), as described in Section 4.3.1, which are then used with an observer of the
form (4.12) for u = 0. The trajectories and error results for the pulsed and not pulsed
systems are depicted in Figures 4.9 and 4.10, respectively.

The use of the linear chirp to pulsate the system has a large impact on the distri-
bution of training sample, such that the dynamic of the system vastly explores the
set of system, as seen on Figure 4.9a. When compared to the autonomous solution, in
Section 4.4.1, the chirp excitation makes the system better fill up the regions of inter-
est (Figure 4.9a), than when a Gaussian distribution is used, for example, as shown
on Figure 4.6a. Moreover, when comparing the logarithmic relative error, the forced
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(A) States for (λ1, λ2, λ3) = −(5, 6, 7).
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(B) Error for (λ1, λ2, λ3) = −(5, 6, 7).
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(C) States for (λ1, λ2, λ3) the eigenvalues of a
Bessel filter with cut-off frequency 2π rad/s.
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(D) Error for (λ1, λ2, λ3) the eigenvalues of a
Bessel filter with cut-off frequency 2π rad/s.

FIGURE 4.7: Evolution of the true and estimated states over time of
the autonomous system (Equation (4.20)) for an observer defined in

R3, with different eigenvalues.

system (Figure 4.9b) presents a smoother field than the autonomous case, e.g., given
on Figure 4.6b. Also, a remarkable decrease on the size of high error region, around
[x1, x2] = [0, 0], is seen when the system is pulsed.

To validate the model, the system was also simulated for u(t) = 0, i.e., without
excitation. Figure 4.10 shows that the observer has an asymptotic convergence for
both states (x1, x2), after a transient period of 100 s, obtaining a 0 average error after
that, as Figure 4.10b depicts. This behavior is an improvement on the observer, when
compared to the autonomous result, e.g., presented in Section 4.4.1, since here the
prediction of state x2 is achieved with low error, giving a much better performance.
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(A) Observer z ∈ R3.
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(B) Observer z ∈ R5.

FIGURE 4.8: Evolution of the true and predicted states, showing the
impact of the number of states of the observer on the performance of

the design for the Van der Pol oscillator.

(A) Training trajectories. (B) Logarithmic relative error mapping for sys-
tem with no excitation and IC ∈ (−10, 10).

FIGURE 4.9: Training trajectories and estimation error for the artifi-
cially excited nonlinear oscillator.

4.4.4 Non-autonomous System: laminar flames

Now, for a more realistic application, the methodology is used to design an observer
to predict the dynamic behavior of laminar flames. More precisely, we consider a
model describing the dynamical behavior of a flame heat release h(t) when subjected
to inlet velocity variations u(t).

Unfortunately, no such model could be found for the premixed flame of the pre-
vious chapters. This is most likely due to the small amount of input-data available
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(A) Trajectories of system (4.23).
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(B) Prediction error.

FIGURE 4.10: Comparison and error of the prediction for trajectory
with initial condition (x1, x2) = (1, 0) and input u(t) = 0.

(due to the high computational burden of the CFD model) as well as the complexity
of that flame. In particular, the presence of self-excited oscillations with a chaotic
behavior makes the identification of a model of reasonable size a difficult problem,
outside of the scope of this manuscript.

Nevertheless, we design an observer for a model of another laminar flame, with
an equivalence ratio φ = 0.8, anchored on a multi-slit burner, known as the Kornilov
flame [106]. A ROM, based on data generated via computational fluid dynamics, is
described in the next section. The data was generated with OpenFOAM [106], using
a time step of 1 µs and a sampling time of 1 s. Figure 4.11 depicts the sample data,
composed by the velocity and the heat release fluctuation.

Now, a brief description of the modeling process is given.

Reduced Order Model of the Kornilov flame heat release dynamics

The model is derived by Ansys Twin Builder 2020 R2, a tool which performs input-
output system identification for nonlinear systems. More precisely, given time-series
of input and output data, the software relies on Deep Learning methods, standing
between ARMAX [107] and NARX [108], to construct a dynamical system, taking the
form of a set of Ordinary Differential Equations (ODE), that represents the data [109].
Figure 4.11 depicts the signals used as input (velocity fluctuations and their delayed
version) and output (heat release from the flame). The input signal (Figure 4.11a)
corresponds to a broadband signal. Similar to the ICF behavior, the Kornilov heat
release fluctuation has sharp excursions in time domain, representing the nonlinear
response of the flame due to the incoming excitation.

The model identified by Twin Builder, schematically represented in Figure 4.12,
takes the following form

ẋ(t) = f (x(t)) + g(x(t))U(t)n, h(t) = x5(t), (4.24)
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(A) v(t).

(B) h(t).

FIGURE 4.11: Kornilov flame training samples [106].

where f and g are non linear functions, h is the heat release, the state x ∈ R5 has
five components, given as Dynamic ROM result, and the input has two components
U = (u(t), u(t− τ)), where τ = 150 µs is imposed, as explained following.

Remark 3. The choice of defining the input of the model as both the velocity fluctuations
and a delayed version of it is based on flame models from the literature that feature similar
terms, such as the n-tau model [110], the Neural Network model of [29] or the distributed
delay model of [68]. The value of the delay is defined based on a trial-and-error study, not
shown here for the sake of brevity.

Generating training trajectories

Now the methodology presented in Section 4.2.2 can be applied coupled with the
Dynamic ROM of the Kornilov flame. For that purpose it is necessary to choose the
training trajectories such that the system travels over the whole compact of inter-
est. However, this is not an easy task for such complex systems. Since the original
Dynamic ROM is of high order (R5), classical visualization approaches become un-
feasible. Then, the following sampling methodology is proposed;
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Input excitations U = (u(t), u(t− τ)

Dynamic ROM

ẋ = f (x) + g(x)×U

h(t)

FIGURE 4.12: Dynamic ROM scheme.

1. Choose excitations (U(t)) to force the original system;

• Single frequency harmonic signals

• Broadband signals

2. Integrate ẋ forward in time with the chosen excitations and extract the states
x;

3. Integrate f (x) backwards in time, using points along the obtained trajectory
(x) as initial contrition and extract the states xb;

4. Obtain the states xb at the last instant of the backward simulation;

5. Simulate the system (g(x)) and the observer (ż from Equation (4.11)) forward
in time, with the last instant of the states xb as initial condition;

Moreover, the trajectories obtained at step 5 for the system and the observer (x, z)
are then used as training trajectories for the forced observer methodology. Here, five
different forcing frequencies and amplitudes are used as single frequency excitation,
equally split between [25, 300] Hz and [0.5, 1.5], generating a total of 25 pulses. For
the broadband excitation, 25 pulses are used, also varying from [25, 300] Hz.

Validation

To validate the observer, the system is simulated for u(t) = 0.4 · sin(2π100t) + 0.8 ·
sin(2π150t) and for a linear chirp excitation, with ω = 155 + 158t2, and the results
are depicted on Figures 4.13 and 4.14, respectively.

As shown on Figure 4.13, the observer is able to predict the states of the system,
but some states are harder than other. More precisely, the estimated states x̂1, x̂2
and x̂3 present higher error when compared to the trajectories, whereas the two last
states presents an almost perfect fitting. It is worth to stress that, for this case, h(t)
depends only of x̂5, which means that the prediction of the system due to this pulse
excitation has a good agreement.

The estimates due to a chirp excitation, however, have a larger error for states x̂1,
x̂2 and x̂3, as shown in Figures 4.14a, 4.14b, 4.14c. It is seen that a close estimation is
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FIGURE 4.13: Comparison of the prediction for the trajectories with
u(t) = 0.4 · sin(2π100t) + 0.8 · sin(2π150t).

obtained for the beginning of the simulate (t < 1), but after that the error increases
and the estimation derivatives from the original trajectories. This large error might
happen because the chirp forcing takes the dynamic of the system out of the do-
main which was used for training the transformations. However, further research
on this subject must be developed to fully understand such effect. Nevertheless, the
estimations for x̂4, x̂5 also present an almost perfect agreement.
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FIGURE 4.14: Comparison of the prediction for the trajectories with a
linear chirp forcing.

4.5 Synthesis

This chapter presented a first step towards the usage of Luenberger observer the-
ory coupled with simulation data-based Machine Learning to systematically design
observers for complex nonlinear systems.

The application of the methodology proposed in this work for autonomous sys-
tems relies on the very mild assumption of backward distinguishability, which makes
it quite general. The application of the methodology showed promising results, but
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there are remaining questions which are two-fold. First, the generation of relevant
data, which is briefly discussed in Section 4.2.1, should deserve further attention
and study. For instance, a research on the impact of resampling the state-space after
a first estimation of the mappings should be envisioned, that is similar to dynamic
mesh refining techniques currently used in numerical simulations. However, this
raises several issues regarding the refinement criteria. Second, the choice of method
for nonlinear regression remains a fully open question, and here it was shown that
the proposed Neural Network gives promising results, but it is by no means a defini-
tive one.

When non-autonomous systems are of interest, the proposed methodology relies
on stronger observability assumptions, somewhat equivalent to differential observ-
ability of the state order. This might be undesirable, however, it is necessary to
ensure that the learning can be performed for a single nominal excitation, and that it
can be extrapolated for other inputs. Indeed, it was shown in Sections 4.4.2 and 4.4.3
that choosing an appropriate nominal excitation that makes the system dynamic to
completely explore the set of interest enables to obtain an observer that predicts the
response for other different (or none) excitations. Relaxing such assumptions is a
topic of future research. Another important aspect is the selection of the appropri-
ate nominal excitation. Indeed, analogously to the autonomous case, the selection
criterion used is paramount, with the added possibility here of steering the system
towards regions of uncertainty. This problem is linked to active learning [111] and,
more generally, input selection for identification [107], [112].
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Chapter 5

Conclusions and Perspectives

This work presented the modeling of thermo-acoustic instabilities in a unstable lam-
inar lean premixed flame. First, a high-fidelity CFD model was developped and
used to compute the behavior of an inverted conical flame, both in steady-state and
transient simulations. To incorporate methane-air combustion dynamics into Ansys
Fluent, a 19 species skeletal kinetic mechanism was used. Then, a Reduced Order
Model of the steady-state characteristics of steady ICF was derived based on CFD
data, which enables the computation of various flame characteristics for a range of
inlet velocities. Finally, a method to numerically design Luenberger observers for
general non-linear systems was proposed.

The comparison of CFD simulation results with experimental results from the
literature illustrates the accuracy of the model and its predictive capabilities. The
use of a skeletal chemical kinetic mechanism resulted on a detailed model of the
ICF time and space scales. However, to achieve precise results, an extremely refined
mesh must be used, highly increasing the computational cost of simulations. It is,
thus, unfeasible to use a linear regular mesh on the computational domain. Then a
domain divided on different blocks is used, coupled with a mesh adaption tool, such
that the characteristic mesh size varies for each block. The mesh refinement based on
the temperature gradient enabled to decrease the mesh size on the reactive regions,
where the flame front and tip are positioned, dynamically changing the mesh. How-
ever, the study of the refinement/coarsening adaption thresholds showed that there
is a trade-off between reducing the simulation computational burden and the accu-
racy of the simulations. A flame dynamical analysis showed that a tight refinement
threshold enables the characterization of the flame natural unstable behavior, even
under external forcing, but still under high computational cost. If the refinement
threshold is increased, the flame naturally unstable behavior is not evident when the
flame is under external forcing, but the computational burden decreases. Although
the mesh adaption tool decreases the burden linked to such simulations, it is still a
remarkable computational cost, and other ways of optimizing such simulations are
in the perspective of this work.

Moreover, the CFD model of ICF shows that the flame is naturally unstable, ex-
hibiting self-excited oscillations under the simulated operating conditions. For this
reason, the equilibrium computation fails to converge to a steady-state profile, and
rather oscillates around a pseudo-steady state. To achieve an approximation of the
equilibrium state of the ICF, statistic tools, such as ensemble averaging, and tech-
niques as feedback control are considered for future work.

In view of predicting thermo-acoustic instabilities the computation of the Flame
Transfer Function is achieved through a series of simulations under single frequency
excitation. These presents satisfying results, since the computational and experimen-
tal results have an overall agreement. However, there is a high computational bur-
den linked to simulating the flame response due to several excitations. To overcome
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this problem, the modeling of the flame response due to a broadband excitation, such
as a linear chirp, is envisaged, which could enable the of the FTF and the derivation
of dynamical Reduced Order Models from a limited set of simulations, similarly to
results from the literature [29]. The unstable nature of the flame dynamics makes
this task a difficult one and is left for future work.

The steady ROM based on CFD data of the averaged steady-state of the ICF, how-
ever, yields less than 3% RMS error on the prediction of the velocity components and
temperature. The ROM model presented a much lower computational cost when
compared with the CFD models. Increasing the complexity of ROM of combustion
systems based on CFD data is a perspective of this work. For instance, including
other combustion properties into the modeling is envisaged, such as species mass
fractions, providing a representation of all flame scales involved on the reactive pro-
cess. An study of ROM of methane laminar diffusion flames is being developed in
collaboration with the combustion laboratory at PUC-Rio. The analysis of adding
different flame properties together and developing a ROM is on development, and
will be soon published.

Regarding the Luenberger observer design, promising results were seen, both
for autonomous and excited systems. The application of the methodology to esti-
mate the states of thermo-acoustic instabilities on the so-called Kornilov flame gives
low error for single frequency or simple excitations. When multi-frequency exci-
tations are applied, the estimations present higher error. Such effect is caused by
the state trajectories that leave the compact where the Luenberger transformations
were trained, leading the observer design to a central question: How to properly
choose the training data? There is a problem linked to the application of the de-
signed observer to excitations that are different from the training one, since there
is no guarantee that the new trajectories are inside of the training compact. This
question becomes quickly more complex when non-autonomous systems of large
dimension are of interest, since it is difficult to predict and visualize the transforma-
tions. A deeper study of such effect is envisaged.

Moreover, the Luenberger methodology is dependent of a dynamic formulation
of the system of interest, which is often not available. The usage of the Dynamic
ROM enables to obtain a set of ODE that represents the data, but the process is not
straight forward and more research is envisaged. More specifically, the development
of a Dynamic ROM of the ICF is now on search, but, since the behavior of the flame
is unstable, such model is even more challenging, being then, the main perspective
of this research.
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Appendix A

ICF Flame Front Complete
Response Cycles

Ce chapitre présente des images supplémentaires de l’ICF excité modélisé, permettant la vi-
sualisation d’une période ou plus de tous les comportements harmoniques observés sur de
telles flammes.
This chapter presents additional images of the modeled excited ICF, enabling the
visualization of a period or more of all the harmonic behaviors seen on such flames.

Here a full cycle of the flame front response of the ICF under forcing is presented.
Equally spaced instants of the flame front are shown, for a sampling period of 0.5 ms.
The ICF response is depicted for the frequency excitations of 50, 75, 100, 125, 150, 172,
200 and 250 Hz. On these figures, the image interval enables to follow the complete
flame front behavior, during several cycles, even for the high frequency excitation.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.1: Forcing of 50 Hz with adaptation 50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.2: Forcing of 75 Hz with adaptation 50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.3: Forcing of 100 Hz with adaptation
50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.4: Forcing of 125 Hz with adaptation
50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.5: Forcing of 150 Hz with adaptation
50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.6: Forcing of 172 Hz with adaptation
50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.7: Forcing of 200 Hz with adaptation
50 K/m.
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(A) 0 ms (B) 2.5 ms (C) 5 ms (D) 7.5 ms

(E) 10 ms (F) 12.5 ms (G) 15 ms (H) 17.5 ms

(I) 20 ms (J) 22.5 ms (K) 25 ms (L) 27.5 ms

(M) 30 ms (N) 32.5 ms (O) 35 ms (P) 37.5 ms

(Q) 40 ms (R) 42.5 ms (S) 45 ms (T) 47.5 ms

FIGURE A.8: Forcing of 250 Hz with adaptation
50 K/m.





103

Appendix B

FTF Gain and Phase for the Mesh
Adaption Different Refinement
Thresholds

Dans ce chapitre, une analyse de l’impact du seuil d’adaptation du maillage du gain FTF
de l’ICF est présentée pour souligner la relation des seuils d’adaptation avec les divergences
constatées sur le modèle CFD de l’ICF par rapport aux expériences.

In this Chapter, an analysis of the impact of the mesh adaption threshold of the
FTF gain of the ICF is presented to underscore the relation of the adaption thresh-
olds with the discrepancies found on the CFD model of the ICF with respect to the
experiences.

To provide a CFD and experimental [9] comparison, the Root-Mean-Square (RMS)
of the flame surface area fluctuations and the corresponding FTF gain are given on
Figure B.1, which are computed as described in Section 2.3, as a function of the
refinement threshold. This figure shows that both these quantities decrease simulta-
neously when the mesh adaption is tighter. Indeed, when the temperature gradient
refinement threshold is either 50 or 100 K/m, RMS(A′) ≈ 0.3 m2 and the gain is
close to 2.1. The gain has a value of around 1.5 for the thresholds of 10 and 25 K/m,
and and the corresponding RMS(A′) ≈ 0.15 m2. The computed mean flame surface
area, the RMS velocity and mean velocity have a constant dependency of the refine-
ment gradient, and its corresponding values are 0.0132 m, 0.2 m/s and 2.31 m/s,
respectively.

Concerning the phase, no remarkable difference has been observed between the
thresholds choices, all results agree with experiments, with a value of ≈ 1.5π. For
the sake of brevity these are not shown here. Note that since the CFD model uses a
second order upwind discretization, the mesh coarsening introduces some level of
artificial dissipation, and thus smooths the solution, which in turn increases the gain.
This smoothing is linked to the discontinuities of the flame front, identified with the
α parameter, as discussed above. However, such smoothing does not interfere on
the phase lag between the forcing and the flame surface fluctuation.

The experimental results [9], obtained for identical forcing, present a gain of 1.5,
which is the same value obtained here for the refinement threshold of 10 K/m or
25 K/m. However, as already seen at Tab. 2.1, at least three months are necessary
to model 1.5 s of the dynamics of the ICF using a refinement gradient of 10 K/m,
which is around six times the time necessary to perform the same computation but
using 50 K/m. As a consequence, a parametrical analysis of the frequency influence
on the flame behavior could not be performed using the tighter refinement approach
of 10 K/m. For this reason, a threshold value of 50 K/m is used in what follows for



104
Appendix B. FTF Gain and Phase for the Mesh Adaption Different Refinement

Thresholds

FIGURE B.1: RMS values of the flame surface area fluctuation [m2]
and the corresponding FDF gain as a function of the temperature gra-

dient refinement threshold.

the forced ICF. Although this result is an overestimation of the gain, the qualitative
response of the flame can still be assessed.



105

Bibliography

[1] A. Demirbas, “Combustion systems for biomass fuel,” Energy Sources, Part
A: Recovery, Utilization, and Environmental Effects, vol. 29, no. 4, pp. 303–312,
2007. DOI: 10.1080/009083190948667.

[2] R. Mishra and S. Chandel, “Soot formation and its effect in an aero gas turbine
combustor,” International Journal of Turbo and Jet-Engines, vol. 36, 2016. DOI:
10.1515/tjj-2016-0062.

[3] T. Lieuwen and K. McManus, “Combustion dynamics in lean-premixed pre-
vaporized (lpp) gas turbines,” Journal of Propulsion and Power, vol. 19, no. 5,
pp. 721–721, 2003. DOI: 10.2514/2.6171.

[4] D. Zhao and Z. Chow, “Thermoacoustic instability of a laminar premixed
flame in rijke tube with a hydrodynamic region,” Journal of Sound and Vibra-
tion, vol. 332, no. 14, pp. 3419–3437, 2013.

[5] G. Waxenegger-Wilfing, U. Sengupta, J. Martin, W. Armbruster, J. Hardi, M.
Juniper, and M. Oschwald, “Early detection of thermoacoustic instabilities in
a cryogenic rocket thrust chamber using combustion noise features and ma-
chine learning,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31,
no. 6, p. 063 128, 2021. DOI: 10.1063/5.0038817.

[6] T. Pant, C. Han, and H. Wang, “Computational investigations of the coupling
between transient flame dynamics and thermo-acoustic instability in a self-
excited resonance combustor,” Combustion Theory and Modelling, vol. 23, no. 5,
pp. 854–884, 2019. DOI: 10.1080/13647830.2019.1599444.

[7] S. Ducruix, D. Durox, and S. Candel, “Theoretical and experimental deter-
minations of the transfer function of a laminar premixed flame,” Proceedings
of the Combustion Institute, vol. 28, no. 1, pp. 765 –773, 2000, ISSN: 1540-7489.
DOI: https://doi.org/10.1016/S0082-0784(00)80279-9.

[8] T. Schuller, S. Ducruix, D. Durox, and S. Candel, “Modeling tools for the pre-
diction of premixed flame transfer functions,” Proceedings of the Combustion
Institute, vol. 29, pp. 107–113, 2002. DOI: 10.1016/S1540-7489(02)80018-9..

[9] D Durox, T Schuller, and S Candel, “Combustion dynamics of inverted coni-
cal flames,” Procedings of the Combustion Institute, vol. 30, pp. 1717–1724, 2005.
DOI: 10.1016/j.proci.2004.08.067.

[10] A. L. Birbaud, D Durox, S Ducruix, and S Candel, “Dynamics of confined
premixed flames submited to upstream acoustic modulations,” Procedings of
the Combustion Institute, vol. 31, pp. 1257–1265, 2007. DOI: 10.1016/j.proci.
2006.07.122.

[11] T. Steinbacher, A. Albayrak, A. Ghani, and W. Polifke, “Consequences of
flame geometry for the acoustic response of premixed flames,” Combustion
and Flame, vol. 199, pp. 411 –428, 2019, ISSN: 0010-2180. DOI: https://doi.
org/10.1016/j.combustflame.2018.10.039.

https://doi.org/10.1080/009083190948667
https://doi.org/10.1515/tjj-2016-0062
https://doi.org/10.2514/2.6171
https://doi.org/10.1063/5.0038817
https://doi.org/10.1080/13647830.2019.1599444
https://doi.org/https://doi.org/10.1016/S0082-0784(00)80279-9
https://doi.org/10.1016/S1540-7489(02)80018-9.
https://doi.org/10.1016/j.proci.2004.08.067
https://doi.org/10.1016/j.proci.2006.07.122
https://doi.org/10.1016/j.proci.2006.07.122
https://doi.org/https://doi.org/10.1016/j.combustflame.2018.10.039
https://doi.org/https://doi.org/10.1016/j.combustflame.2018.10.039


106 Bibliography

[12] D. Michaels and A. F. Ghoniem, “Leading edge dynamics of lean premixed
flames stabilized on a bluff body,” Combustion and Flame, vol. 191, pp. 39 –52,
2018, ISSN: 0010-2180. DOI: https://doi.org/10.1016/j.combustflame.
2017.12.020.

[13] K. S. Kedia and A. F. Ghoniem, “The anchoring mechanism of a bluff-body
stabilized laminar premixed flame,” Combustion and Flame, vol. 161, no. 9,
pp. 2327–2339, 2014, ISSN: 0010-2180. DOI: https://doi.org/10.1016/j.
combustflame.2014.02.005.

[14] K. Prieur, D. Durox, T. Schuller, and S. Candel, “A hysteresis phenomenon
leading to spinning or standing azimuthal instabilities in an annular com-
bustor,” Combustion and Flame, vol. 175, pp. 283–291, 2017, Special Issue in
Honor of Norbert Peters, ISSN: 0010-2180. DOI: https://doi.org/10.1016/
j.combustflame.2016.05.021.

[15] Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and
Longitudinal Acoustic Modes, vol. Volume 1B: Combustion, Fuels and Emis-
sions, Turbo Expo: Power for Land, Sea, and Air, Jun. 2013. DOI: 10.1115/
GT2013-95010.

[16] “Forcing of self-excited round jet diffusion flames,” Proceedings of the Combus-
tion Institute, vol. 32, no. 1, pp. 1191–1198, 2009, ISSN: 1540-7489. DOI: https:
//doi.org/10.1016/j.proci.2008.05.065.

[17] A. Khan, M. Zihaib Khan, and S. Ansari, “Machine learning and soft com-
puting techniques for combustion system diagnostics and monitoring: A sur-
vey,” in. Feb. 2021, pp. 172–186, ISBN: 978-981-16-0418-8. DOI: 10.1007/978-
981-16-0419-5_14.

[18] V. Michelassi, C. Allegorico, S. Cioncolini, A. Graziano, L. Tognarelli, and M.
Sepe, “Machine learning in gas turbines,” Mechanical Engineering, vol. 140,
S54, Sep. 2018. DOI: 10.1115/1.2018-SEP5.

[19] W. Yan and L. Yu, “On accurate and reliable anomaly detection for gas tur-
bine combustors: A deep learning approach,” arXiv preprint arXiv:1908.09238,
2019.

[20] K. Wan, S. Hartl, L. Vervisch, P. Domingo, R. S. Barlow, and C. Hasse, “Com-
bustion regime identification from machine learning trained by raman/rayleigh
line measurements,” Combustion and Flame, vol. 219, pp. 268–274, 2020, ISSN:
0010-2180. DOI: https://doi.org/10.1016/j.combustflame.2020.05.024.

[21] O. Choi, J. Choi, N. Kim, and M. Lee, “Combustion instability monitoring
through deeplearningbased classification of sequential highspeed flame im-
ages,” Electronics, vol. 9, p. 848, May 2020. DOI: 10.3390/electronics9050848.

[22] B. Cockburn, “Discontinuous galerkin methods,” ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik:
Applied Mathematics and Mechanics, vol. 83, no. 11, pp. 731–754, 2003.

[23] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, Discontinuous Galerkin meth-
ods: theory, computation and applications. Springer Science and Business Media,
2012, vol. 11.

[24] N. Peters and M. Dekena, “Combustion modeling with the g-equation,” Oil
and Gas Science and Technology-revue De L Institut Francais Du Petrole, vol. 54,
pp. 265–270, 1999.

https://doi.org/https://doi.org/10.1016/j.combustflame.2017.12.020
https://doi.org/https://doi.org/10.1016/j.combustflame.2017.12.020
https://doi.org/https://doi.org/10.1016/j.combustflame.2014.02.005
https://doi.org/https://doi.org/10.1016/j.combustflame.2014.02.005
https://doi.org/https://doi.org/10.1016/j.combustflame.2016.05.021
https://doi.org/https://doi.org/10.1016/j.combustflame.2016.05.021
https://doi.org/10.1115/GT2013-95010
https://doi.org/10.1115/GT2013-95010
https://doi.org/https://doi.org/10.1016/j.proci.2008.05.065
https://doi.org/https://doi.org/10.1016/j.proci.2008.05.065
https://doi.org/10.1007/978-981-16-0419-5_14
https://doi.org/10.1007/978-981-16-0419-5_14
https://doi.org/10.1115/1.2018-SEP5
https://doi.org/https://doi.org/10.1016/j.combustflame.2020.05.024
https://doi.org/10.3390/electronics9050848


Bibliography 107

[25] S. A. McQuarrie, C. Huang, and K. E. Willcox, “Data-driven reduced-order
models via regularised operator inference for a single-injector combustion
process,” Journal of the Royal Society of New Zealand, vol. 51, no. 2, pp. 194–211,
2021. DOI: 10.1080/03036758.2020.1863237.

[26] U. Sengupta, M. Croci, and M. Juniper, “Real-time parameter inference in
reduced-order flame models with heteroscedastic bayesian neural network
ensembles,” Oct. 2020.

[27] G. Aversano, M. Ferrarotti, and A. Parente, “Digital twin of a combustion fur-
nace operating in flameless conditions: Reduced-order model development
from cfd simulations,” Proceedings of the Combustion Institute, vol. 38, no. 4,
pp. 5373–5381, 2021, ISSN: 1540-7489. DOI: https://doi.org/10.1016/j.
proci.2020.06.045.

[28] N. Anathkrishnan, S. Deo, and F. E. C. Culick, “Reduced-order modeling and
dynamics of nonlinear acoustic waves in a combustion chamber,” Combus-
tion Science and Technology, vol. 177, no. 2, pp. 221–248, 2005. DOI: 10.1080/
00102200590900219.

[29] N. Tathawadekar, N. A. K. Doan, C. F. Silva, and N. Thuerey, “Modeling
of the nonlinear flame response of a bunsen-type flame via multi-layer per-
ceptron,” Proceedings of the Combustion Institute, vol. 38, no. 4, pp. 6261–6269,
2021, ISSN: 1540-7489. DOI: https://doi.org/10.1016/j.proci.2020.07.
115.

[30] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot, “Training
convolutional neural networks to estimate turbulent sub-grid scale reaction
rates,” Combustion and Flame, vol. 203, pp. 255–264, 2019, ISSN: 0010-2180. DOI:
https://doi.org/10.1016/j.combustflame.2019.02.019.

[31] R. Roncancio, J. Kim, A. El Gamal, and J. P. Gore, “Data-driven analysis of
turbulent flame images,” in AIAA Scitech 2021 Forum, 2021, p. 1787.

[32] N. Kazantzis and C. Kravaris, “Nonlinear observer design using lyapunov’s
auxiliary theorem,” Systems & Control Letters, vol. 34, no. 5, pp. 241–247, 1998.

[33] A. Krener and M. Xiao, “Nonlinear observer design in the siegel domain,”
SIAM J. Control and Optimization, vol. 41, pp. 932–953, 2003. DOI: 10.1137/
S0363012900375330.

[34] V. Andrieu and L. Praly, “On the existence of a kazantzis–kravaris/luenberger
observer,” SIAM J. Control and Optimization, vol. 45, pp. 432–456, 2006. DOI:
10.1137/040617066.

[35] P. Bernard, “Luenberger observers for nonlinear controlled systems,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC), 2017, pp. 3676–
3681. DOI: 10.1109/CDC.2017.8264200.

[36] L. da Costa Ramos, F. Di Meglio, L. F. Figueira Da Silva, and V. Morgen-
thaler, “Reduced order model of laminar premixed inverted conical flames,”
in AIAA Scitech 2020 Forum. 2020. DOI: 10.2514/6.2020-0416.

[37] ——, “Modeling of pulsating inverted conical flames: A numerical instability
analysis,” in Combustion and Theory Modeling. 2021.

[38] L. d. C. Ramos, F. Di Meglio, V. Morgenthaler, L. F. F. da Silva, and P. Bernard,
“Numerical design of luenberger observers for nonlinear systems,” in 2020
59th IEEE Conference on Decision and Control (CDC), 2020, pp. 5435–5442. DOI:
10.1109/CDC42340.2020.9304163.

https://doi.org/10.1080/03036758.2020.1863237
https://doi.org/https://doi.org/10.1016/j.proci.2020.06.045
https://doi.org/https://doi.org/10.1016/j.proci.2020.06.045
https://doi.org/10.1080/00102200590900219
https://doi.org/10.1080/00102200590900219
https://doi.org/https://doi.org/10.1016/j.proci.2020.07.115
https://doi.org/https://doi.org/10.1016/j.proci.2020.07.115
https://doi.org/https://doi.org/10.1016/j.combustflame.2019.02.019
https://doi.org/10.1137/S0363012900375330
https://doi.org/10.1137/S0363012900375330
https://doi.org/10.1137/040617066
https://doi.org/10.1109/CDC.2017.8264200
https://doi.org/10.2514/6.2020-0416
https://doi.org/10.1109/CDC42340.2020.9304163


108 Bibliography

[39] J Shinjo, Y Mizobuchi, and S Ogawa, “Numerical simulation of flame behav-
ior in a lean premixed gas turbine combustor,” in Combustion and Noise Con-
trol, G. D. Roy, Ed., Cranfield, UK: Cranfield University Press, 2003, p. 9.

[40] P. Gobbato, M. Masi, A. Lazzaretto, and A. Toffolo, “Analysis of the natural
acoustic modes of a gas turbine combustor using isothermal cfd simulations,”
Applied Thermal Engineering, vol. 126, pp. 489–499, 2017, ISSN: 1359-4311. DOI:
https://doi.org/10.1016/j.applthermaleng.2017.07.076.

[41] J. van Oijen, A. Donini, R. Bastiaans, J. ten Thije Boonkkamp, and L. de Goey,
“State-of-the-art in premixed combustion modeling using flamelet generated
manifolds,” Progress in Energy and Combustion Science, vol. 57, pp. 30–74, 2016,
ISSN: 0360-1285. DOI: https://doi.org/10.1016/j.pecs.2016.07.001.

[42] A. Coimbra and L. Silva, “Modelling of a turbulent lean premixed combustor
using a reynolds-averaged navier–stokes approach,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 42, 2020. DOI: 10.1007/
s40430-020-2273-y.

[43] N Noiray, D Durox, T Schuller, and S Candel, “A unified framework for non-
linear combustion instability analysis based on the flame describing func-
tion,” Journal of Fluid Mechanics, vol. 615, pp. 139–167, 2008. DOI: 10.1017/
S0022112008003613.

[44] V. D. Milosavljevic, “Pertubation in combustor near-field aerodynamics as a
main source of thermoacoustic instabilities in modern industrial dry low nox
gas turbine combustion systems,” in Combustion and Noise Control, G. D. Roy,
Ed., Cranfield, UK: Cranfield University Press, 2003, pp. 55–60.

[45] S. McAllister, J.-Y. Chen, and A. C. Fernandez-Pello, “Fundamentals of com-
bustion processes,” in, 2nd ed. USA: Springer, 2011.

[46] “Reduced reaction sets based on gri-mech 1.2,” in, A. Kazakov and M. Fren-
klach, Eds. Berkeley, USA: <http://combustion.berkeley.edu/drm/>, 1984.

[47] C. Celis and L. F. Figueira da Silva, “Computational assessment of methane-
air reduced chemical kinetic mechanisms for soot production studies,” Jour-
nal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, no. 8,
pp. 2225–2244, 2016, ISSN: 1806-3691. DOI: 10.1007/s40430-016-0494-x.

[48] F. P. I. Theodore L. Bergman Adrienne S. Lavine and D. P. Dewitt, “Funda-
mentals of heat and mass trasfer,” in, 7th ed. USA: John Wiley and Sons, 2011.

[49] M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C.
Walker, “Janaf thermochemical tables, 1974 supplement,” Journal of Physical
and Chemical Reference Data, vol. 3, no. 2, pp. 311–480, 1974. DOI: 10.1063/1.
3253143.

[50] I. ANSYS, Chemkin-pro theory manual, English, version Release 2020 R2, AN-
SYS, Inc., Published.

[51] ——, Fluent user’s guide, English, version Release 2020 R2, ANSYS, Inc., Pub-
lished.

[52] ——, Fluent theory guide, English, version Release 2020 R2, ANSYS, Inc., Pub-
lished.

[53] D. E. Salane, “A stiff ode solver for use in solving two-dimensional reaction-
diffusion problems,” Mathematical and Computer Modelling, vol. 11, pp. 850–
854, 1988, ISSN: 0895-7177. DOI: https://doi.org/10.1016/0895-7177(88)
90613-9.

https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.07.076
https://doi.org/https://doi.org/10.1016/j.pecs.2016.07.001
https://doi.org/10.1007/s40430-020-2273-y
https://doi.org/10.1007/s40430-020-2273-y
https://doi.org/10.1017/S0022112008003613
https://doi.org/10.1017/S0022112008003613
https://doi.org/10.1007/s40430-016-0494-x
https://doi.org/10.1063/1.3253143
https://doi.org/10.1063/1.3253143
https://doi.org/https://doi.org/10.1016/0895-7177(88)90613-9
https://doi.org/https://doi.org/10.1016/0895-7177(88)90613-9


Bibliography 109

[54] S. Pope, “Computationally efficient implementation of combustion chemistry
using in situ adaptive tabulation,” Combustion Theory and Modelling, vol. 1,
no. 1, pp. 41–63, 1997. DOI: 10.1080/713665229.

[55] A. Cunha Jr and L. F. Figueira da Silva, “Assessment of a transient homo-
geneous reactor through in situ adaptive tabulation,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 36, pp. 377–391, 2014. DOI:
10.1007/s40430-013-0080-4.

[56] C. Celis and L. F. F. da Silva, “Computational assessment of methane-air re-
duced chemical kinetic mechanisms for soot production studies,” Journal of
the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, pp. 2225–
2244, 2016.

[57] S. V. Patankar, Numerical heat transfer and fluid flow, ser. Series on Computa-
tional Methods in Mechanics and Thermal Science. Hemisphere Publishing
Corporation (CRC Press, Taylor & Francis Group), 1980, ISBN: 978-0891165224.

[58] T. BARTH and D. JESPERSEN, “The design and application of upwind schemes
on unstructured meshes,” in 27th Aerospace Sciences Meeting, 1989. DOI: 10.
2514/6.1989-366.

[59] L. F. Figueira da Silva, J. L. Azevedo, and H. Korzenowski, “Unstructured
adaptive grid flow simulations of inert and reactive gas mixtures,” Journal of
Computational Physics, vol. 160, pp. 522–540, 2000. DOI: 10.1006/jcph.2000.
6470.

[60] Y. Huang and V. Yang, “Dynamics and stability of lean-premixed swirl-stabilized
combustion,” Progress in Energy and Combustion Science, vol. 35, no. 4, pp. 293–
364, 2009, ISSN: 0360-1285. DOI: https://doi.org/10.1016/j.pecs.2009.
01.002.

[61] L. Boyer and J. Quinard, “On the dynamics of anchored flames,” Combustion
and Flame, vol. 82, no. 1, pp. 51 –65, 1990, ISSN: 0010-2180. DOI: https://doi.
org/10.1016/0010-2180(90)90077-5.

[62] A. P. Dowling, “A kinematic model of a ducted flame,” Journal of Fluid Me-
chanics, vol. 394, 51–72, 1999. DOI: 10.1017/S0022112099005686.

[63] C. Li, M. Zhu, and J. P. Moeck, “An analytical study of the flame dynamics
of a transversely forced asymmetric two-dimensional bunsen flame,” Com-
bustion Theory and Modelling, vol. 21, no. 5, pp. 976–995, 2017. DOI: 10.1080/
13647830.2017.1327677.

[64] F. Baillot and F. Lespinasse, “Response of a laminar premixed v-flame to
a high-frequency transverse acoustic field,” Combustion and Flame, vol. 161,
no. 5, pp. 1247 –1267, 2014, ISSN: 0010-2180. DOI: https://doi.org/10.1016/
j.combustflame.2013.11.009.

[65] E. Luciano and J. Ballester, “Analysis of the dynamic response of premixed
flames through chemiluminescence cross-correlation maps,” Combustion and
Flame, vol. 194, pp. 296 –308, 2018, ISSN: 0010-2180. DOI: https://doi.org/
10.1016/j.combustflame.2018.05.005.

[66] S. Jaensch, M. Merk, T. Emmert, and W. Polifke, “Identification of flame trans-
fer functions in the presence of intrinsic thermoacoustic feedback and noise,”
Combustion Theory and Modelling, vol. 22, pp. 1–22, 2018. DOI: 10.1080/13647830.
2018.1443517.

https://doi.org/10.1080/713665229
https://doi.org/10.1007/s40430-013-0080-4
https://doi.org/10.2514/6.1989-366
https://doi.org/10.2514/6.1989-366
https://doi.org/10.1006/jcph.2000.6470
https://doi.org/10.1006/jcph.2000.6470
https://doi.org/https://doi.org/10.1016/j.pecs.2009.01.002
https://doi.org/https://doi.org/10.1016/j.pecs.2009.01.002
https://doi.org/https://doi.org/10.1016/0010-2180(90)90077-5
https://doi.org/https://doi.org/10.1016/0010-2180(90)90077-5
https://doi.org/10.1017/S0022112099005686
https://doi.org/10.1080/13647830.2017.1327677
https://doi.org/10.1080/13647830.2017.1327677
https://doi.org/https://doi.org/10.1016/j.combustflame.2013.11.009
https://doi.org/https://doi.org/10.1016/j.combustflame.2013.11.009
https://doi.org/https://doi.org/10.1016/j.combustflame.2018.05.005
https://doi.org/https://doi.org/10.1016/j.combustflame.2018.05.005
https://doi.org/10.1080/13647830.2018.1443517
https://doi.org/10.1080/13647830.2018.1443517


110 Bibliography

[67] X. Han, J. Li, and A. S. Morgans, “Prediction of combustion instability limit
cycle oscillations by combining flame describing function simulations with
a thermoacoustic network model,” Combustion and Flame, vol. 162, no. 10,
pp. 3632 –3647, 2015, ISSN: 0010-2180. DOI: https://doi.org/10.1016/
j.combustflame.2015.06.020.

[68] W. Polifke, “Modeling and analysis of premixed flame dynamics by means
of distributed time delays,” Progress in Energy and Combustion Science, vol. 79,
p. 100 845, 2020, ISSN: 0360-1285. DOI: https://doi.org/10.1016/j.pecs.
2020.100845.

[69] T Schuller, D Durox, and S Candel, “Self-induced combustion oscillations
of laminar premixed flames stabilized on annular burners,” Combustion and
Flame, vol. 135, no. 4, pp. 525–537, 2003, ISSN: 0010-2180. DOI: https://doi.
org/10.1016/j.combustflame.2003.08.007.

[70] N. Noiray, D. Durox, T. Schuller, and S. Candel, “Self-induced instabilities of
premixed flames in a multiple injection configuration,” Combustion and Flame,
vol. 145, no. 3, pp. 435–446, 2006, ISSN: 0010-2180. DOI: https://doi.org/
10.1016/j.combustflame.2006.01.006.

[71] T. C. Lieuwen, Unsteady Combustor Physics. Cambridge University Press, 2012.
DOI: 10.1017/CBO9781139059961.

[72] S. Ducruix, T. Schuller, D. Durox, and S. Candel, “Combustion dynamics
and instabilities: Elementary coupling and driving mechanisms,” Journal of
Propulsion and Power, vol. 19, no. 5, pp. 722–734, 2003. DOI: 10.2514/2.6182.

[73] M. Fleifil, A. Annaswamy, Z. Ghoneim, and A. Ghoniem, “Response of a lam-
inar premixed flame to flow oscillations: A kinematic model and thermoa-
coustic instability results,” Combustion and Flame, vol. 106, no. 4, pp. 487–510,
1996, ISSN: 0010-2180. DOI: https://doi.org/10.1016/0010- 2180(96)
00049-1.

[74] J. O. Keller and K. Saito, “Measu rements of the combusting flow in a pulse
combustor,” Combustion Science and Technology, vol. 53, no. 2-3, pp. 137–163,
1987. DOI: 10.1080/00102208708947024.

[75] B. Lewis and G. Von Elbe, Combustion, Flames, and Explosions of Gases. Aca-
demic Press, 1987, ISBN: 9780124467514.

[76] T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. Edwards,
2005, ISBN: 9781930217102.

[77] H. Schlichting and K. Gersten, Boundary-Layer Theory. 2017, ISBN: 978-3-662-
52917-1. DOI: 10.1007/978-3-662-52919-5.

[78] A. Er-raiy, Z. Bouali, J. Réveillon, and A. Mura, “Optimized single-step (oss)
chemistry models for the simulation of turbulent premixed flame propaga-
tion,” Combustion and Flame, vol. 192, pp. 130–148, 2018, ISSN: 0010-2180. DOI:
https://doi.org/10.1016/j.combustflame.2018.01.038.

[79] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid
mechanics,” Annual Review of Fluid Mechanics, vol. 52, pp. 477–508, 2020.

[80] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–
44, 2015. DOI: 10.1038/nature14539.

https://doi.org/https://doi.org/10.1016/j.combustflame.2015.06.020
https://doi.org/https://doi.org/10.1016/j.combustflame.2015.06.020
https://doi.org/https://doi.org/10.1016/j.pecs.2020.100845
https://doi.org/https://doi.org/10.1016/j.pecs.2020.100845
https://doi.org/https://doi.org/10.1016/j.combustflame.2003.08.007
https://doi.org/https://doi.org/10.1016/j.combustflame.2003.08.007
https://doi.org/https://doi.org/10.1016/j.combustflame.2006.01.006
https://doi.org/https://doi.org/10.1016/j.combustflame.2006.01.006
https://doi.org/10.1017/CBO9781139059961
https://doi.org/10.2514/2.6182
https://doi.org/https://doi.org/10.1016/0010-2180(96)00049-1
https://doi.org/https://doi.org/10.1016/0010-2180(96)00049-1
https://doi.org/10.1080/00102208708947024
https://doi.org/10.1007/978-3-662-52919-5
https://doi.org/https://doi.org/10.1016/j.combustflame.2018.01.038
https://doi.org/10.1038/nature14539


Bibliography 111

[81] V. Luboz, M. Bailet, C. Boichon Grivot, M. Rochette, B. Diot, M. Bucki, and
Y. Payan, “Personalized modeling for real-time pressure ulcer prevention in
sitting posture,” Journal of Tissue Viability, vol. 27, pp. 1571–1583, 2007. DOI:
10.1002/fld.1365.

[82] Z Boussaada, O Curea, R Ahmed, H Camblong, and N Mrabet-Bellaaj, “A
nonlinear autoregressive exogenous (narx) neural network model for the pre-
diction of the daily direct solar radiation,” Energies, vol. 11, p. 620, 2018. DOI:
10.3390/en11030620.

[83] S Asgari, X Hu, M Tsuk, and S Kaushik, “Application of pod plus lti rom to
battery thermal modeling: Siso case,” SAE International Journal of Commercial
Vehicles, vol. 7, pp. 278–285, 2014. DOI: 10.4271/2014-01-1843.

[84] E. Acar, “Various approaches for constructing an ensemble of metamodels
using local measures,” Structural and Multidisciplinary Optimization, vol. 42,
no. 6, pp. 879–896, 2010. DOI: 10.1007/s00158-010-0520-z.

[85] F. A. C. Viana, R. T. Haftka, and V. Steffen, “Multiple surrogates: How cross-
validation errors can help us to obtain the best predictor,” Structural and Mul-
tidisciplinary Optimization, vol. 39, no. 4, pp. 439–457, 2009. DOI: 10.1007/
s00158-008-0338-0.

[86] M. B. Salem and L. Tomaso, “Automatic selection for general surrogate mod-
els,” Structural and Multidisciplinary Optimization, vol. 58, pp. 719–734, 2018.
DOI: 10.1007/s00158-018-1925-3.

[87] M. Ben Salem, O. Roustant, F. Gamboa, and L. Tomaso, “Universal prediction
distribution for surrogate models,” SIAM/ASA Journal on Uncertainty Quan-
tification, vol. 5, no. 1, pp. 1086–1109, 2017.

[88] W. Polifke, “Black-box system identification for reduced order model con-
struction,” Annals of Nuclear Energy, vol. 67, pp. 109–128, 2014, Advanced sta-
bility analysis for nuclear reactors, ISSN: 0306-4549. DOI: https://doi.org/
10.1016/j.anucene.2013.10.037.

[89] A. H. Jazwinski, Stochastic processes and filtering theory. Courier Corporation,
2007.

[90] J Gauthier and G Bornard, “Observability for any u (t) of a class of nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 26, no. 4, pp. 922–926,
1981.

[91] P. Bernard, Observer design for nonlinear systems. Springer, 2019, vol. 479.

[92] D. Luenberger, “Observers for multivariable systems,” IEEE Transactions on
Automatic Control, vol. 11, no. 2, pp. 190–197, 1966.

[93] A. Shoshitaishvili, “On control branching systems with degenerate lineariza-
tion,” Proc. IFAC Symp. Nonlinear Control Syst., pp. 495–500, 1992.

[94] P. Bernard and V. Andrieu, “Luenberger observers for nonautonomous non-
linear Systems,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp. 270–
281, 2019. DOI: 10.1109/TAC.2018.2872202.

[95] M. I. Quraishi, J. P. Choudhury, and M. De, “Image recognition and process-
ing using artificial neural network,” in 2012 1st International Conference on Re-
cent Advances in Information Technology (RAIT), IEEE, 2012, pp. 95–100.

https://doi.org/10.1002/fld.1365
https://doi.org/10.3390/en11030620
https://doi.org/10.4271/2014-01-1843
https://doi.org/10.1007/s00158-010-0520-z
https://doi.org/10.1007/s00158-008-0338-0
https://doi.org/10.1007/s00158-008-0338-0
https://doi.org/10.1007/s00158-018-1925-3
https://doi.org/https://doi.org/10.1016/j.anucene.2013.10.037
https://doi.org/https://doi.org/10.1016/j.anucene.2013.10.037
https://doi.org/10.1109/TAC.2018.2872202


112 Bibliography

[96] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent attention
convolutional neural network for fine-grained image recognition,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 4438–4446.

[97] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, 84–90,
2017, ISSN: 0001-0782. DOI: 10.1145/3065386.

[98] Y. Goldberg, “A primer on neural network models for natural language pro-
cessing,” J. Artif. Int. Res., vol. 57, no. 1, 345–420, 2016, ISSN: 1076-9757.

[99] D. H. Nguyen and B. Widrow, “Neural networks for self-learning control
systems,” IEEE Control Systems Magazine, vol. 10, no. 3, pp. 18–23, 1990.

[100] E. Diaconescu, “The use of narx neural networks to predict chaotic time se-
ries,” WSEAS Transactions on Computer Research, vol. 3, 2008.

[101] S. Pan and K. Duraisamy, “Long-time predictive modeling of nonlinear dy-
namical systems using neural networks,” Complexity, vol. 2018, 2018.

[102] M. A. Nielsen, Neural networks and deep learning, misc, 2018.

[103] Hecht-Nielsen, “Theory of the backpropagation neural network,” in Interna-
tional 1989 Joint Conference on Neural Networks, 1989, 593–605 vol.1.

[104] N. Henwood, “Estimation en ligne de paramètres de machines électriques
pour véhicule en vue d’un suivi de la température de ses composants,” Ph.D.
dissertation, MINES ParisTech, PSL University, 2014.

[105] T. Kanamaru, “Van der Pol oscillator,” Scholarpedia, vol. 2, no. 1, p. 2202, 2007,
revision #138698. DOI: 10.4249/scholarpedia.2202.

[106] S. Jaensch and W. Polifke, “Uncertainty encountered when modelling self-
excited thermoacoustic oscillations with artificial neural networks,” Interna-
tional Journal of Spray and Combustion Dynamics, vol. 9, no. 4, pp. 367–379, 2017.
DOI: 10.1177/1756827716687583.

[107] L. Ljung, System Identification: Theory for the User, ser. Prentice Hall informa-
tion and system sciences series. Prentice Hall PTR, 1999, ISBN: 9780136566953.

[108] H. T. Siegelmann, B. G. Horne, and C. L. Giles, “Computational capabilities
of recurrent narx neural networks,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 27, no. 2, pp. 208–215, 1997.

[109] I. ANSYS, Twin builder help, English, version Release 2021 R2, ANSYS, Inc.,
2021, Published.

[110] L. Crocco, “Theoretical studies on liquid-propellant rocket instability,” Sym-
posium (International) on Combustion, vol. 10, no. 1, pp. 1101–1128, 1965, Tenth
Symposium (International) on Combustion, ISSN: 0082-0784. DOI: https://
doi.org/10.1016/S0082-0784(65)80249-1.

[111] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, Actively learning gaussian pro-
cess dynamics, 2019. arXiv: 1911.09946 [cs.LG].

[112] E. Walter and L. Pronzato, “Identification of parametric models,” Communi-
cations and control engineering, vol. 8, 1997.

https://doi.org/10.1145/3065386
https://doi.org/10.4249/scholarpedia.2202
https://doi.org/10.1177/1756827716687583
https://doi.org/https://doi.org/10.1016/S0082-0784(65)80249-1
https://doi.org/https://doi.org/10.1016/S0082-0784(65)80249-1
https://arxiv.org/abs/1911.09946


 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Combustion is a chemical reaction process present in almost all social sectors, being responsible 

for more than 80% of the energy primary conversion. For instance, in aircraft engines, the 

combustion and acoustic coupling may lead to thermoacoustic instabilities that could damage the 

engines, causing failures. This work focuses on the modelling, characterization and control of 

combustion instabilities, through computational approaches. More precisely, reactive 

computational fluid dynamic models, reduced order models and state observer design are used. 

The unstable combustion processes studied were shown to exhibit a rich frequency spectrum, 

and the corresponding gain and phase were favourably compared to experiments. An observer 

was designed using artificial neural network techniques, and its application to non linear systems 

evidenced the low error estimation of systems states. 

MOTS CLÉS 

 

Combustion, acoustique, instabilités, CFD, machine learning, observateurs d'état 

RÉSUMÉ 

 

La combustion est un processus réactif présent dans presque tous les secteurs sociaux, étant 

responsable de plus de 80% de la conversion primaire de l'énergie. Par exemple, dans les 

moteurs d'avion, le couplage entre la combustion et l'acoustique peut conduire à des instabilités 

thermo-acoustiques qui peuvent endommager les moteurs, conduisant à l'échec. Ce travail se 

concentre sur la modélisation, caractérisation et contrôle des instabilités de combustion, à travers 

des approches computationnelles. Plus précisément, des modèles réactifs de dynamique des 

fluides numériques, des modèles d'ordre réduit et la conception d'observateurs d'état sont 

utilisés. Les processus de combustion instables étudiés présentent un riche spectre de 

fréquences, et le gain et la phase correspondants sont comparés favorablement aux expériences. 

Un observateur a été conçu en utilisant des techniques de réseaux neuronaux artificiels, et son 

application à des systèmes non linéaires a mis en évidence la faible erreur d'estimation des états 

des systèmes. 

 

KEYWORDS 

 

Combustion, acoustic, instabilities, CFD, machine learning, state observers 
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