
HAL Id: tel-03512432
https://pastel.hal.science/tel-03512432

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing recommendation data in large scale
Modou Gueye

To cite this version:
Modou Gueye. Managing recommendation data in large scale. Information Retrieval [cs.IR]. Télécom
ParisTech, 2014. English. �NNT : 2014ENST0083�. �tel-03512432�

https://pastel.hal.science/tel-03512432
https://hal.archives-ouvertes.fr

2014-ENST-0083

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et réseaux »

présentée et soutenue publiquement par

Modou GUEYE
le 15 Décembre 2014

Gestion de données de recommandation

à très large échelle

Directeur de thèse : Talel ABDESSALEM
Encadrant de thèse : Hubert NAACKE

Jury
M. Hubert KADIMA, Directeur de Recherches, EISTI Rapporteur
Mme Rokia MISSAOUI, Professeur, Université du Québec en Outaouais Rapporteur
Mme Salima BENBERNOU, Professeur, Université Paris Descartes Examinateur
M. Samba NDIAYE, Maître de Conférences, Université Cheikh Anta Diop Examinateur
M. Hubert NAACKE, Maître de Conférences, LIP6, Université Pierre et Marie Curie Encadrant
M. Talel ABDESSALEM, Professeur, INFRES, Télécom ParisTech Directeur

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Abstract

In this thesis, we address the scalability problem of recommender systems. We propose
accurate and scalable algorithms. We first consider the case of matrix factorization tech-
niques in a dynamic context, where new ratings are continuously produced. In such case,
it is not possible to have an up to date model, due to the incompressible time needed to
compute it. This happens even if a distributed technique is used for matrix factoriza-
tion. At least, the ratings produced during the model computation will be missing. Our
solution reduces the loss of the quality of the recommendations over time, by introducing
some stable biases which track users’ behavior deviation. These biases are continuously
updated with the new ratings, in order to maintain the quality of recommendations at
a high level for a longer time.

We also consider the context of online social networks and tag recommendation. We
propose an algorithm that takes into account the popularity of the tags and the opinions
of the users’ neighborhood. But, unlike common nearest neighbors’ approaches, our algo-
rithm does not rely on a fixed number of neighbors while computing a recommendation.
It uses a heuristic that bounds the network traversal in a way that enables computing
the recommendations on the fly, with a limited computation cost, while preserving the
quality of the recommendations.

Finally, we propose a novel approach that improves the accuracy of the recommen-
dations for top-k algorithms. Instead of a fixed list size, we adjust the number of items
to recommend in a way that optimizes the global accuracy of the recommendations. We
other words, we optimize the likelihood that all the recommended items will be chosen by
the user, and find the best candidate sub-list (i.e., the most accurate one) to recommend
to the user.

Keywords
Recommender systems, Scalability, Dynamicity, Collaborative filtering, Matrix Factor-
ization, Social networks, Tag recommendation.

Contents

Contents v

List of Figures viii

List of Tables ix

General Introduction 1

I A survey of recommender systems 3

1 Introduction to Recommender Systems 5
1.1 Formal Definition of Recommendation Task 5
1.2 Recommender Systems Function . 6
1.3 Classification of Recommender Systems 7

1.3.1 Content-based Recommender Systems 7
1.3.1.1 Item Representation . 8
1.3.1.2 User Profile . 9
1.3.1.3 Advantages and limitations 12

1.3.2 Collaborative Filtering Systems . 13
1.3.2.1 Memory-based CF . 14
1.3.2.2 Model-based CF . 16
1.3.2.3 Advantages and limitations 20

1.3.3 Hybrid Systems . 21
1.4 Conclusion . 22

2 Challenges and Evaluation of Recommender Systems 23
2.1 Challenges of Recommender Systems . 23

2.1.1 Data Sparsity . 23
2.1.2 Scalability . 24
2.1.3 Diversity vs. accuracy . 25
2.1.4 User interface . 25
2.1.5 Vulnerability to attacks . 26
2.1.6 Some other Challenges . 26

v

vi CONTENTS

2.2 Evaluating Recommender Systems . 27
2.2.1 Evaluation approaches . 27

2.2.1.1 Offline evaluation . 27
2.2.1.2 User studies . 28
2.2.1.3 Online Evaluation . 28

2.2.2 Evaluation measures . 29
2.2.2.1 Prediction Accuracy . 29
2.2.2.2 Coverage . 32
2.2.2.3 Diversity . 33
2.2.2.4 Novelty . 34

2.3 Conclusion . 34

II The contributions of the thesis 37

3 Using Cluster-based Biases for Dynamic Recommendations 39
3.1 Preliminaries . 40
3.2 The Dynamicity Problem . 43
3.3 Related Work . 44

3.3.1 Distributed MF techniques . 45
3.3.2 Online-updating approaches . 46

3.4 Making Dynamic Recommendations . 47
3.4.1 Biased MF . 48
3.4.2 The interest of cluster-based local biases 48
3.4.3 The CBMF model . 50
3.4.4 Integration of incoming ratings . 51

3.5 Complexity analysis . 53
3.6 Experimental Results . 54

3.6.1 Implementation and experimental setup 54
3.6.2 Datasets . 55
3.6.3 Initial quality . 55
3.6.4 Large training sets improve the quality of the model 56
3.6.5 Quantifying the need for online integration 58
3.6.6 Robustness over time of our online integration model 58
3.6.7 Quality vs. Performance tradeoff for online integration 59
3.6.8 Benefit of refactorization . 60

3.7 Conclusion . 62

4 Making Social and Popularity-based Tag Recommendations 65
4.1 Preliminaries . 66

4.1.1 Similarity propagation . 67
4.1.2 Extended neighborhood opinion . 68

4.2 Social and Popularity-based Tag Recommendation 69
4.2.1 Score model and tag relevance . 69

CONTENTS vii

4.2.2 The FasTag Algorithm . 70
4.2.3 Handling the Network Partitioning 73

4.3 Related Work . 73
4.4 Experimentation . 74

4.4.1 Datasets . 74
4.4.2 Evaluation Measures and Methodology 74
4.4.3 Effectiveness of FasTag . 75
4.4.4 Comparison with the result of ECML PKDD challenge 09 76
4.4.5 Scalability of FasTag . 78

4.5 Conclusion . 79

5 Optimizing Tag Recommendation List Size 81
5.1 Preliminaries . 82

5.1.1 Factor Models for Tag Recommendation 83
5.1.2 FolkRank - A Topic-Specific Ranking 83
5.1.3 Recommending the Most Popular Tags 84
5.1.4 Social and popularity-based Recommender 84

5.2 Adjusted Recommendation list size . 85
5.2.1 Linear combination models . 85
5.2.2 The blsC algorithm . 86

5.2.2.1 Simple relevance measure 87
5.2.2.2 Refining the relevance measure 87

5.3 Experimentation . 89
5.3.1 Datasets . 89
5.3.2 Evaluation Measures and Methodology 89
5.3.3 Experimental Results . 90

5.3.3.1 Effectiveness of our proposal 90
5.3.3.2 Giving up some recall for more precision 91
5.3.3.3 Distribution of optimal list sizes 92

5.4 Conclusion . 92

Research Perspectives 97

Self References 99

Bibliography 101

Appendices 115

A Résumé en Français 117

List of Figures

1.1 A romance-and-action space of movies and users 17
1.2 Graphical presentation of neuron . 18
1.3 A multi-layer perceptron for collaborative filtering 19

3.1 Amazon’s five star widget . 40
3.2 Patterns of independent blocks for a 3-by-3 gridded matrix 45
3.3 Training sets partitioning . 57
3.4 Quality improvement for increasing training sets sizes 57
3.5 Offline quality (RMSE) with increasing delays (# million of ratings) 59
3.6 Quality of online integration for increasing delay 60
3.7 Quality vs. Performance tradeoff . 61
3.8 Refactorization benefit . 62

4.1 Social link propagation leads to better decisions 68
4.2 Results about the scalability of FasTag . 79

5.1 Relative relevance vs tag position in a recommendation list 88
5.2 Quality increases vs recommendation list sizes 91
5.3 Recall vs Precision . 94
5.4 Distribution of the proposed optimal list sizes 94

viii

List of Tables

1.1 An example of polysemy and synonymy in natural language 9

3.1 Caracteristics of the datasets . 55
3.2 Initial quality of the three models in terms of RMSE score 56
3.3 Percentage of quality improvement . 56
3.4 Quality vs. Performance tradeoff . 60

4.1 Definitions from folksonomy . 67
4.2 Characteristics of the datasets . 75
4.3 Comparison of FasTag with some baselines 76
4.4 Comparison of the qualities gained by the four strategies 76
4.5 Result of the task 2 of ECML PKDD Discovery Challenge 2009 77

5.1 Characteristics of the datasets . 90
5.2 Comparison of the three methods . 92
5.3 Comparison of the three methods in twos . 92
5.4 Average optimal list length with 10 tags at maximum 93

ix

General Introduction

Overview

Recommender systems (RS) become increasingly popular both in online applications
and in the research community, where many algorithms have been proposed. The aim
of RS is to predict user preferences on a large selection of items. Recommender systems
try to find items that are likely to be of interest for a given user. Because the user
is often overwhelmed to face the considerable amount of items provided by electronic
retailers and service providers, the predictions are a salient function of all types of e-
commerce [121, 14]. For this reason, recommender systems attract a lot of attention due
to their great commercial value [30, 66, 82, 35]. Books suggestion on Amazon, or movies
on Netflix, are perfect examples of use in online stores.

Although it is obvious that the major goal of a recommender system is to gener-
ate meaningful recommendations , there are several challenges that RS have to face in
addition to suggesting interesting items. They are, for example, concerned about the
presentation of the recommendations in order to maximize their acceptance and the
users’ willingness to buy some items and reuse the recommender system later. However
they often must manage large and growing amount of information. Therefore, the need
of scalable algorithms is as important as the quality of recommendation. Indeed users
are generally impatient and can not wait so long for some recommendations. As exam-
ple, the most-known VoD provider, Netflix, offered a grand prize of US $1 million for
an algorithm that is 10% more accurate than theirs [14], but they never used it despite
they spent so much money, because they found the proposal not scalable [8].

The purpose of this thesis is to investigate and design scalable recommender systems.
We aim to improve existing techniques and propose new ones that help on improving
the scalability of recommender systems.

Thesis Contributions

We propose and implement two ways to face the scalability issue in different recom-
mendation contexts. To enumerate, we study incremental methods as well as distributed

1

2 List of Tables

and heuristics-based techniques. In addition, we introduced a new algorithm which im-
proves the quality of recommendation lists by optimizing their sizes.
Our contributions can be divided into three parts as listed below:

– Explicit feedback context refers to cases where users can explicitly give their opin-
ions on items. Usually ratings are used (e.g., from 1 to 5 stars as in Amazon or
Netflix). In such a context, recommending amounts to predicting the ratings a
user would give to items, then classifying the items according to the predicted
ratings.
Matrix factorization (MF) is considered as the best of them in terms of accu-
racy [76, 70, 86]. However, one drawback of MF is that it lacks of scalability. The
models generated by matrix factorization are static. Once model is generated, it
delivers recommendations based on a snapshot of the incoming ratings frozen at
the beginning of the generation. Therefore, it has to be computed periodically in
order to take into account the new ratings. Although distributed MF techniques
were proposed [110, 5, 161], it is not realistic to carry out the model frequently,
because of the high cost of its computation.
In this thesis, we propose a way to dynamically integrate new ratings without
recomputing all the prediction model. We implement it, and our experimenta-
tions point out its efficiency to maintain the accuracy of the predictions at a good
level [54, 51, 47].

– We also design a popularity and social-based tag recommender, we call FasTag.
Unlike common nearest neighbors approaches, it has not a fixed number of neigh-
bors to consider when making recommendations. It uses as it deems necessary
based on a heuristic method. Moreover, Fastag is not limited to a user’s vicin-
ity, it exploits the transitivity of the users’ similarity to enlarge the neighborhood
circle. Thus, it enhances the quality of the recommendations, while limiting the
social network traversal as short as possible.

– Finally, we study a novel way to improve recommendation accuracy. Instead of
seeking for the best size-fixed list of items, we investigate how to optimize the list
size. We also present a method for extracting the best candidate sublist, i.e., the
most accurate one to recommend to the user.

Thesis Organization

We organized this dissertation in two major parts. The first one is a survey on recom-
mender systems. It presents in two chapters their classification, the main challenges, and
the methods and measures used to evaluate and compare some recommender systems.
This part may be not essential for those who are familiar to the field of recommender
systems.
The second part is dedicated to our contributions. It contains three chapters. Each of
them tackles either a different problem. The contributions are somehow linked, so we
recommend the reader to read them in the given order.

Finally, in the conclusion, we discuss some perspectives.

Part I

A survey of recommender systems

3

1 | Introduction to Recommender
Systems

Recommender systems (RS) are increasingly popular in the research community,
where many algorithms have been suggested for providing recommendations. Their prin-
cipal purpose is to predict user preferences on a large selection of items. Recommender
systems try to find items 1 that are likely to be of interest for a given user. Because the
user is often overwhelmed to face the considerable amount of items provided by elec-
tronic retailers, the predictions are a salient function of all types of e-commerce [121, 14].
For this reason, recommender systems attract increasingly a lot of attention due to their
great commercial value [30, 66, 82, 35]. Making suggestions of books on Amazon, or
movies on Netflix, are real world examples of the operation of industry-strength recom-
mender systems.

In this chapter, we give an overview of RS. We present a classification of RS technol-
ogy and some popular algorithms. We start by formally defining the main task of any
recommender system in Section 1.1, then we discuss about their utility in a global view
(Section 1.2). We end by introducing the most-accepted classification by the researchers
in Section 1.3 [127, 3, 1, 22, 58], and present a state-of-the-art of the algorithms used by
each class of recommender systems.

1.1 Formal Definition of Recommendation Task

A recommender system is an application which usually takes in input three classes
of entities. We refer to them as users, items and the contexts in which we make rec-
ommendation. A context is additional information to take account that describes the
specific situation in which the items will be recommended to a user (e.g., the location
of the user when recommending close restaurants; the time for suggesting an itinerary
that minimizes certain traffic tailbacks to a driver). In order to give a formal definition
of recommendation task, we first introduce some notations. Let us denote by:

– U : the set of all users,

1. In this dissertation, we choose to use the term “item” to design the objects to be recommended
to the users. However there are equivalent terms in the literature like “product”, “resource” or “object”
itself.

5

6 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

– I: the set of all possible items that can be recommended, such as songs, movies,
books or restaurants,

– C: the set of contexts for making recommendation,
– f : a utility function which measures the interest of a given item for a user in a

specific context, i.e., f : U × I × C → R, where R is is a totally ordered set. For
instance this interest may reflect the probability a user will buy a specific book or
watch a movie.

The recommendation task can be summarized to find the top-K highest interesting
items for a user u ∈ U in the context c ∈ C and recommend them. Indeed whatever the
approach we used (rating prediction or purchase-likelihood estimation, for example), we
always end to suggest a list of items to users, what matters the list size. Thus we can
formally define the task of RS as follows

Top(u, c) =
K

argmax
i∈I

f(u, i, c) (1.1)

Most of the existing approaches of recommender systems focus on recommending the
most relevant items to users and do not consider any contextual information, such as
time, place and the company of other people (e.g., for watching movies or dining out).
In other words, they deal with applications having only two types of entities, users and
items, and do not put them into a context when providing recommendations [116].

In this chapter, we mainly focus on the recommendation generalities. Thus we do
not consider context-aware recommender systems. For more details about the latter, we
refer the reader to [116, 11]. The utility function may then be reduced to f : U × I → R
and the highest interesting items to

Top(u) =
K

argmax
i∈I

f(u, i) (1.2)

Let us notice that each user may be defined with a profile that includes user properties
like age, gender, occupation etc. and also for the items using their characteristics. For
example, in a movie recommender system, a movie can be defined by its id, genre, release
date, director, actors etc.

1.2 Recommender Systems Function

In one hand, recommender systems are expected to suggest useful items to users
by supporting them in various decision-making processes, such as what items to buy,
what news to read, or which restaurants to try. On the other hand, electronic retailers
and online service providers which use RS hope to increase their profits. For example,
a travel intermediary wants to sell more hotel rooms by the increase the number of
tourists to some destinations, while tourists wish to find a suitable hotel and interesting
attractions when visiting a destination. Recommender systems aim to come up to these
expectations. Thus they have to play a variety of functions. We list below some of them.

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 7

– Increase the conversion rate is probably the most important function of any RS,
particularly for commercial RS where it amounts to raise the number of items sold.
The conversion rate is the percentage of users who accept the recommendations
and consume some items. This is the main function for which someone would want
to exploit a recommender system.

– Increase satisfaction and fidelity of users through their experiences with the sys-
tem. By relevant recommendations, and perhaps a properly designed human-
computer interaction, the users could better evaluate the system and enjoy using
it. This in turn will increase the system usage and the likelihood that the recom-
mendations will be accepted. The first consequence of the users’ enjoyment to use
a system is their fidelity. The latter comes into more effect for a Web site with
the recognition of users when they are visited the site and treated as a valuable
visitor. This is fully carried out by RS with gradually refined suggestions as they
can leverage the information acquired from the users in previous interactions.

– Sell more diverse items is another major function of a RS. Indeed while giving to
users the possibility to get some hard-to-find items, it allows to bring to front all
the items, not just the most popular ones, and then to reduce the long tail [129, 35].
This could be difficult without a RS.

1.3 Classification of Recommender Systems

Recommendation systems are usually classified on the basis of their approaches to
estimate the interests of users [116, 127]. The authors usually agree on two broad classes.

– Content-based filtering recommend similar items to the ones a user was interested
in the past. Their basic process consist in matching up the attributes of an item
and the description of a user profile in which preferences and interests are stored.

– As for collaborative filtering (CF) systems, they recommend items to users based on
the interests the other users expressed for those items. In practice, these interests
may be expressed by the ratings users give to items (e.g., 1-5 stars) or the purchases
they made. CF focuses on the relationship between users and items. It is the most
widely used prediction technique in recommendation.

The major difference between collaborative filtering and content-based approaches
is that CF mainly uses the interest of users on items to make predictions and recom-
mendations, while content-based recommender systems rely on the features of users and
items for predictions [127].

A third type of recommendation are hybrid systems which combine both above ap-
proaches in some manner. They allow to overcome their limitations, as we will present
shortly.

1.3.1 Content-based Recommender Systems

Content-based recommendation systems (CbRS) share in common a means of rep-
resenting the items that may be recommended, a way for creating a user’s profile that

8 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

contains information about its tastes, preferences and needs. Users can construct such
a profile explicitly, but it can also be learned from the user’s interaction with the sys-
tem [105, 83]. CbRS rely on matching methods in order to determine which items may
interest the most the user and recommend them.

Let us notice here that, in some applications, it can be appropriate to recommend
an item that the user has already seen (i.e., purchased or rated) while in some others
it is not interesting. Thus some items may be discarded from a recommendation list
depending on the application. For example, a system should continue to recommend
items that wear out (e.g., a razor blade) or are expended (e.g., print cartridge), while
there is little value in recommending a movie that a user watched.

Furthermore, because the representation of items differs from a context to another,
matching functions change according to that. In this section, we present alternative rep-
resentations of items and some matching functions depending on each of these represen-
tations. We then discuss the strengths and weaknesses of content-based recommendation
systems.

1.3.1.1 Item Representation

Items can be represented by a set of features and its description stored in structured
data. For example, in a movie recommendation application, each movie can be described
by the actors and directors involved in it, its genre and release year. In this case, many
machine learning algorithms can learn a user profile from the ones of the items which
interested him before, or a menu interface can be created to allow a user to easily
create his profile. Section 1.3.1.2 discusses some approaches to learn a user profile from
structured data.

In most content-based filtering systems, all item features are not available in or-
ganized form. Some information is extracted from free text (e.g., web pages, news
articles or product descriptions). Thus unlike structured data, they are not attributes
with well-defined values. In this case, term-based profiles may be used to represent the
users [119, 142]. Each user is then represented by a vector of terms (i.e., words) selected
from the free text describing the items he saw. In other words, each term is viewed
as an attribute to which we can assign a weight depending on its popularity for the
user. Moreover the root forms of terms are typically used thanks to some stemming
processes [107, 101, 100].

term frequency-inverse document frequency (tf-idf) is generally used to compute the
weight of each term. It originates from text search and is defined as follows:

tf -idf (t, d) =
ft,d

max
z

fz,d
︸ ︷︷ ︸

tf

× log
N

nt
︸ ︷︷ ︸

idf

(1.3)

where N denotes the number of documents 2 in the collection, and nk denotes the number

2. Note that we used the word “document” in the description because it is traditionally the case due
to original motivation of tf-idf to retrieve documents. In practice, we refer to items.

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 9

of them in in which the term t occurs at least once. The tf part computes the relative
popularity of term t compared with the most one inside the document d, ft,d is its
frequency. As for the idf part, it estimates the specificity of the term for the document.

Cosine normalization is usually used to normalize the tf -idf (t, d) values computes in
the [0,1] interval. Thus the weight w(t, d) of a term t for a document d is given by

w(t, d) =
tf -idf (t, d)

√
∑

z
tf -idf (z, d)2

(1.4)

Let us say that free text data may lead to some complications when learning a user
profile, due to the natural language ambiguity [116, 105]. The problem is that traditional
term-based profiles are unable to capture the semantics of user interests since they are
often driven by a string matching operation. If a term is found in both the users profile
and the item, a match is made and the item is considered as relevant. Indeed the
matching of string-based terms suffers from problems of polysemy 3 and synonymy 4.
For example, in Table 1.1 we give a part of news article. In this example that we take
from [105], “Gray” is a given name rather than a color, and “power” and “electricity”
refer to the same underlying concept.

Table 1.1: An example of polysemy and synonymy in natural language

With California’s energy reserves remaining all but depleted, lawmakers pre-
pared to work through the weekend fine-tuning a plan Gov. Gray Davis says
will put the state in the power business for "a long time to come." The pro-
posal involves partially taking over California’s two largest utilities and signing
long-term contracts of up to 10 years to buy electricity from wholesalers.

1.3.1.2 User Profile

In simple words, a user profile gathers his interests. It may consist of different types
of information as we introduced above. This data can include the items that explicitly
interest the user (i.e., the items the user purchased, liked or rated) and the ones that
implicitly draw his attention. They typically correspond to the items the user searched
or viewed (e.g., the mouse moves, for a certain time, over a picture of a book in a
web page of electronic retailer). Of course, implicit data have to be taken with some
uncertainty. Therefore, one has to mind transparent methods which can collect a large
amount of implicit data in order to reduce the uncertainty. In contrast, there is little
noise in the collected data when the user explicitly rates items. But, in practice, only a
small percentage of items receives explicit feedback from the users [105].

There are mainly two means to create a user profile.

3. the presence of multiple meanings for one word
4. multiple words with the same meaning

10 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

– A first means, rather simple, is to provide an interface to a user that allows him
to set his own interests. And from these data, the recommender system creates
a representation of the user, i.e., his profile. Often check and combo boxes with
known values of attributes are presented to users, e.g., genres of preferred movies,
the names of favorite sports teams, or favorite news types. The users can also type
some keywords in case of free text descriptions of items, e.g., the name of author
or hotel chain that interests the user. Once the user has entered this information,
a simple database matching process is used to find items that meet the specified
criteria and display them to the user. However this approach although simple has
several limitations. First, it requires effort from the user and it is difficult to get
many users making this effort. This is particularly true as the user’s interests are
not necessary fixed. Second, the used user interfaces do not always provide a way
to determine the order in which to classify and present items.

– An alternative to asking a user to construct his personal profile is to learn it from
the history of the user’s interactions with the recommendation system, i.e., his
past transactions, actions or searches. Indeed this history may serve as training
data for a machine learning algorithm which creates the user profile. The creation
of the user profile can be seen as a form of classification learning where it consists
in learning and dividing the items into a list C of classes. For instance, as two
classes, one can consider the binary categories “user-likes” and “user-dislikes”. We
can consider that a user who purchased an item liked it but if the user purchased
and returned an item, we take it as a sign that the user does not like the item. The
process of classification becomes here to build a model for the user profile which
may determine which items he should like or not.

Below we review some of the most used learning algorithms in the context of content-
based recommender systems.

1.3.1.2.1 Probabilistic Methods and Naïve Bayes

Naïve Bayes is a probabilistic approach to inductive learning, and belongs to the
general class of Bayesian classifiers. These approaches generate a probabilistic model
based on previously observed data. In the literature there are two commonly used
variant of naïve Bayes, the multivariate Bernoulli and the multinomial model [80, 94].
Empirically, the former outperforms the latter [94].

The model that they learnt estimates the a posteriori probability, P(c|i), of item
i ∈ I belonging to class c ∈ C. This estimation is based on the a priori probability,
P(c), the probability of observing an item in class c, P(i|c), the probability of observing
the item i given c, and P(i), the probability of observing the item i. Using these
probabilities, the Bayes theorem is applied to calculate P(c|i):

P(c|i) =
P(c)P(i|c)
P(i)

(1.5)

As P (i) is equal for all c ∈ C, it may be removed from Equation 1.5. To classify the

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 11

item i, the class ci with the highest probability is chosen:

ci = argmax
c∈C

P(c|i) (1.6)

Here, the problem is that we do not know the values for P(i|c) and P(c), but we can
estimate them from the observed data. However the estimation is problematic as it is
very unlikely to see a user interested by an item more than once 5. Thus the observed
data is generally not enough for generating good probabilities.

The naïve Bayes classifier overcomes this problem by simplifying the model through
the independence assumption: all the attributes (e.g., words or tokens of document in
text classification) of the observed item i are conditionally independent of each other
given a class. Because of this, one can estimate individual probabilities for the attributes
of an item one by one rather than the complete item as a whole. Even if the naïve Bayes
assumption of the independence of class-conditional attribute is clearly violated in the
context of text classification, naïve Bayes performs very well [116, 105].

The assumption of independence allows to express P(i|c) as follows:

P(i|c) = P(c)
∏

a∈Ai

P(a|c)N(i,a) (1.7)

where Ai is the list of attributes of the item i and N(i, a) is defined as the weight of the
attribute a ∈ Ai for the item. For example, in text classification it is taken as the number
of times a word or token appeared in a document. Generally, a smoothing method is used
to assess the probabilities P(a|c) of the attributes computed by simple event counting
beforehand. For further details about naïve Bayes methods for recommendations, we
refer the reader to [116, 105].

Naïve Bayes has the advantage to be efficient and easy to implement but it is not as
good as some other statistical learning methods like nearest-neighbor classifiers that we
present in the following section.

1.3.1.2.2 Nearest Neighbor Classifiers

For the classification of an unseen item, nearest neighbor classifiers, also called lazy
learners, rely on a similarity function for the comparison of items in order to retrieve
a number nearest neighbors to consider for a given item. They begin to determine the
k-nearest neighbors of the item thanks to the similarity function, then they derive its
class from the ones of these neighbors. A simple way is to take the class which occurs
the most among the neighbors. However it can be useful to weight the contributions of
the neighbors, so that the nearer neighbors contribute more to the final decision than
the more distant ones.

The similarity function used to obtain the the nearest neighbors depends on the
type of data [1]. For example, a Euclidean distance metric is often used in the case

5. Let us notice again that this depends on the application. For example, a system should continue
to recommend items that wear out (e.g., a razor blade) or are expended (e.g., print cartridge), while
there is little value in recommending a movie that a user watched.

12 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

of structured data, and the cosine similarity measure is the mostly used when using a
term-based vector space model. The latter is defined as follows:

sim(i, j) =

∑

t∈T
w(t, i) · w(t, j)

√∑

t∈T
w(t, i)2 ·

√∑

t∈T
w(t, j)2

(1.8)

where T represents the list of possible terms.

1.3.1.2.3 Decision Trees and Rule Induction

Decision trees, as their name indicates, are trees in which internal node represents a
“test” on an attribute of profiles (e.g. whether a coin flip comes up heads or tails), each
branch represents the outcome of the test and each leaf node represents a class label
(i.e., decision taken after computing all attributes).

The process of trees’ learning is done by recursively partitioning training data into
subgroups, until the subgroups contain only instances of a single class. The splits are
generally decided by maximizing the information gain on each attribute a/ The infor-
mation gain, defined in terms of entropy H, is given by the next formula:

IG(a) = H(Parent)−
∑

v∈vals(a)

H(pv)
N(pv)

N
(1.9)

where vals(a) is the list of existing values of the attribute a, N the size of the training
set and N(pv) the one of the partition pv which contains objects having v as value for
attribute a. Let us note that in addition to Entropy, Gini Index and misclassification
error are the most common used[12, 9, 42]. Decision trees may be used with model-based
approaches for recommendation 6 by using content features to build a decision tree that
models all the variables involved in the user preferences [19].

Before discussing the advantages and disadvantages of content-based RS, we empha-
size that there are, in the literature, a lot of algorithms that may be used like Linear
Classifiers, Relevance Feedback and Rocchio’s Algorithm. We refer the reader to [83, 105]
for broader surveys.

1.3.1.3 Advantages and limitations

Among the advantage of using a content-based RS, one can cite the user indepen-
dence. Indeed the system exploits only the active user’s preferences to build his own
profile. What is not the case of collaborative filtering (see Section 1.3.2). Moreover, ex-
planations on how the recommender system works can be provided by pointing out why
a given item is recommended. for example, one can list content features or descriptions

6. we see this type of Collaborative filtering RS in Section 1.3.2.2

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 13

that caused its recommendation. Clear explanations help users to trust the system and
thus can increase the recommendations’ conversion rate [83].

Content-based recommenders do not suffer from the cold-start problem. This is the
difficulty of recommending items not yet viewed by any user or to suggest items to a user
who has not yet viewed any item. The use of content allows them to face this problem.

However, content-based filtering is limited by the features that are explicitly associ-
ated with the items that these systems recommend. Although some information retrieval
techniques work well in extracting features from text document, it is hard to apply them
to multimedia data (e.g., graphical images, audio and video). In this case, one can have
recourse to assigning manually features to items, but that is often not practical due to
limitations of resources.
In addition, with content analysis, if two different items are represented by the same set
of features, they are indistinguishable. For example, since text-based items are usually
represented by their most important keywords, content-based filtering can not differen-
tiate between a well-written article and a badly written one, if they happen to use the
same terms [3].

Another drawback of content-based filtering is that the system can only recommend
items that suit the user’s profile 7. Therefore, the user is limited to receive items similar
to those he already prefers.

Finally, content-based RS are known to be less accurate than collaborative filtering
systems. We talk about the latter in the next section.

1.3.2 Collaborative Filtering Systems

collaborative filtering (CF) is the most successful approach for building recommender
systems. It uses the known preferences of the other users to predict the unknown pref-
erences of a given user, then it makes its recommendations. Collaborative filtering takes
account of the fact that, in real life, people rely on recommendations from other people,
and above all from those who share “common things” with them like friends or family.
It assists and augments this natural and social process to help people sift through a
collection of items (e.g., books, articles, news articles, music, restaurants, and so forth)
and find the most interesting and valuable items for them.

Collaborative filtering algorithms can be further categorized into model-based CF
and memory-based CF. The former group try to learn and build predictive models which
reflect the behavior and interests of the users. From these models, it is possible to
estimate what items might be relevant to recommend to a user. Memory-based CF
algorithms try to represent directly the shared “common things” by users. They typically
rely on correlation or similarity measure to put in obvious the relations between users.
Their fundamental assumption is that if users X and Y have similar behaviors (e.g.,
buying, watching, listening or rating), they will act on other items similarly. Thus, all

7. This is the over-specialization problem

14 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

we have to do is to find the most similar users of a given one when we want to make
recommendation for him.

1.3.2.1 Memory-based CF

Memory-based CF algorithms refer generally to neighborhood-based approaches [127].
Each user belongs to a group of people with similar interests. Once the so-called neigh-
bors of a user are identified, a prediction of his preferences on new items can be done.

The key idea of neighbor based approaches is that the interest of a user u in an item
i is likely close to the one of another user v, if u and v have similar interest in other
items. From another point of view, u is likely to have close interests in two items i and
j, if other users have given similar interest in these two items.

Neighbor based approaches automate the common principle of word-of-mouth, where
one relies on the opinion of trusted sources or other like-minded people to evaluate
the value of an item according to his own preferences. Therefore such methods are
characterized to be simple, justifiable, efficient and stable [116, 127].

Due to relying on the opinion of like-minded people neighbor based approaches need
to compute the nearest neighbors and then assign a similarity value to each item pair or
to each user pair of their training data. The first variant is referred as the item neighbor
and the second as the user neighbor method. Assuming the user neighbor method, the
interest f(u, i) of the user u in item i can be estimated as

f(u, i) =
1

∑

v∈N k
i

(u)

suv

∑

v∈N k
i

(u)

suvρuv(rvi)

 (1.10)

where N k
i (u) represents the k nearest neighbors of u who already saw, i.e., purchased

or rated, the item i and suv the similarity or proximity between the users u and v. rvi

stands for the interest that v stated in i and ρuv a uni-variate predictor function (e.g.,
the identity function).

In case the user interests are just given by transactions where we only know what
the users purchased, the Jaccard or Dice index, or the Hausdorff metric may be used
to compute the similarities [1]. When the user interests are formulated with ratings,
correlation-based similarities are generally taken. A popular correlation-based similarity
measure is the Cosine Vector similarity. It is defined as follows:

suv =

∑

i∈Iuv

ruirvi

√ ∑

i∈Iu

r2
ui

∑

j∈Iv

r2
vj

(1.11)

where rui is the rating that u assigned to i and Iu the set of items that u have rated.
Iuv represents the set of common items rated by both u and v.

As someone may remark, a problem with this measure is that it does not consider
the differences in the mean and variance of the ratings made by users u and v. The

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 15

Pearson Correlation similarity, another popular measure, allows to take account of that
by discarding the effects of mean and variance when comparing ratings with the next
equation:

suv =

∑

i∈Iuv

(rui − r̄u)(rvi − r̄v)
√ ∑

i∈Iuv

(rui − r̄u)2
∑

i∈Iuv

(rvi − r̄v)2
(1.12)

In this equation, r̄u (resp. r̄v) is the mean of ratings of u (resp. v). When the Pearson
Correlation similarity is used, ρuv(rvi) is set to rvi− r̄v + r̄u and Equation 1.10 becomes

f(u, i) = r̄u +
1

∑

v∈N k
i

(u)

|suv|

∑

v∈N k
i

(u)

suv(rvi − r̄v)

 (1.13)

There are other similarity measures like the Mean Squared Difference which evaluates
the similarity between two users u and v as the inverse of the average squared difference
between the ratings given by u and v on the same items. A list of similarity measures
for neighbor based approaches are discussed in [1].

Let us notice that user correlations are unreliable, since there are typically very few
common item between two arbitrary users. Therefore item neighbor methods are pre-
ferred in practice [82]. Moreover the latter scales more than user neighbor methods
although reductional techniques may be used to improve performance of systems by
decreasing data. An exhaustive enough survey about reductional techniques like Con-
densed k-Nearest Neighbor, Model Based k-Nearest Neighbor or Clustered k-Nearest
Neighbor is presented in [1].

Computing the similarity of users or items from the user-item database have limited
scalability for large datasets. Furthermore the computed similarities must be updated
when users submit new interests. This may explain the passion for “social recommenda-
tion” where users’ friends from an online social network can be used instead of computing
some similarities.

Online social networks present new opportunities for neighbor based approaches. In-
deed in real life, people often ask to their social networks for advice before purchasing
a product or consuming a service. Research in the fields of sociology and psychol-
ogy indicates that people tend to associate and bond with similar others, also known
as homophily [96]. They are more willing to share their personal opinions with their
friends, and typically trust recommendations from their friends more than those from
strangers and vendors. Popular online social networks, such as Facebook 8, Twitter 9,
and Youtube 10, provide novel ways to communicate and build virtual communities. On-
line social networks do not only make easier the sharing of opinions with other persons,
but they also serve as platforms for developing new RS algorithms which automate the
manual and anecdotal social recommendations in real life [144, 84].

8. https://www.facebook.com
9. https://twitter.com/

10. https://www.youtube.com

16 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

1.3.2.2 Model-based CF

Model-based CF algorithms learn a model from previous user activities and use this
model to classify items according to their interestingness. They are able to recognize
complex patterns based on data and can make intelligent predictions.

The algorithms used to learn models are the same than those used in machine learning
and data mining. For instance Bayesian models, clustering models, and diffusion meth-
ods, have been investigated [116, 127, 18]. Among all the propositions, dimensionality
reduction techniques are the most popular. They model the user-item interactions with
factors representing latent features of users and items. Matrix Factorization, one of these
technique, is today considered as giving the most powerful predictive model. However
more recently neural networks have been introduced for the task of recommendation,
and researchers are particularly hopeful in boltzmann machines [108, 118].

We present in the following a short review of some popular model-based CF algo-
rithms.

1.3.2.2.1 Dimensionality reduction techniques

It is common in RS to have not only a data set with features that define a high-
dimensional space, but also very sparse information in that space. Therefore, dimen-
sionality reduction comes in naturally. Dimensionality reduction techniques allow to
downsize the amount of relevant data while preserving the major information content.
They are very used a domains like data mining, machine learning and cluster analysis.

In the following, we summarize two relevant dimensionality reduction techniques in
the context of RS which are Matrix Factorization (MF) and probabilistic Latent Semantic
Analysis (pLSA).

Matrix Factorization (MF) Matrix Factorization is one of the most popular
dimensionality reduction techniques for RS. It gives good scalability while allowing re-
markable prediction accuracy. In the literature, matrix factorization is well investigated
and many types of factorization have been proposed [76, 70, 86]. In its basic form, matrix
factorization characterizes both items and users by vectors of factors (also called latent
features) inferred from user feedback patterns. The correspondence degree between user
and item determines the position of the latter in the final list of recommendations.

As illustration, one can consider the context of movie recommendation and a two-
dimensional space where the x-axis gives the romance’s degree of a movie and the y-axis
action’s one. We can plot into this space users according to the extend they like romance
movies or action movies. Figure 1.1 presents an example of this space where Arthur has
a preference in action movies while Bob prefers romance ones. Thus one can recommend
movie1 to Arthur and movie2 to Bob. To classify the items when recommending to a
user, the inner product of the user vector of factors and the ones of items is generally
used as a scoring function. Let us take pu as the vector of factors of user u and qi the

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 17

Romance

Action

Movie2

Movie1

Arthur

Bob

Figure 1.1: A romance-and-action space of movies and users

one of item i, the interest f(u, i) of u in i is defined by

f(u, i) = pu · q
T
i =

K∑

k

pukqki (1.14)

Hence the main task of factorization engines is obviously to compute reliable vectors
of factors. We discuss more widely this point in Chapter 3. Another advantage of
matrix Factorization is that it is particularly suitable for large data sets which are costly
to store and manipulate. Indeed if K latent features are used for each user or item, with
a dataset of M users and N items, only K(M + N) elements have to be stored and not
MN .

Probabilistic latent semantic analysis (pLSA) pLSA uses hidden variables
to explain the co-occurrence pairs of data. But unlike MF, it is a statistical technique
based on a probabilistic model. Well developed inference methods including likelihood
maximization and Gibbs sampling can be employed in pLSA [59, 39]. pLSA models the
relations between users and items through the implicit overlap of genres, as compared
to the two-sided Bayesian clustering where each user and item belong to a single specific
category. In pLSA, the co-occurrence probability P(u, i) of user u and item i is expressed
using the conditional probability given a hidden variable k

P(i|u) =
K∑

k

P(i|k)P(k|u) (1.15)

Some variational approaches allow to obtain P(i|k) and P(k|u) by maximizing the per-
link log-likelihood of the observed dataset, as proposed in [64] and shown in the following:

L(P, Q) =
1
E

∑

(u,i)

logP(i|u) =
1
E

∑

(u,i)

log

(
K∑

k

P(i|k)P(k|u)

)

(1.16)

18 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

with respect to vectors P and Q which parametrize P(i|k) and P(k|u) by P(i|k) = qki

and P(k|u) = puk . Here E is the total number of user-item links. We remark that the
sum over (u, i) includes only the observed user-item pairs. The expectation maximization
(EM) algorithms can be used to find the value of Q that maximize L(P, Q).

1.3.2.2.2 Artificial Neural Networks (ANNs)

In recent years, Artificial Neural Networks are being increasingly recognized in the
area of classification and prediction, where regression models and other related statistical
techniques have traditionally been employed [117, 116, 108, 138].

ANNs are non-linear mapping structures based on the functioning of the human
brain. They can identify and learn correlated patterns between input data and corre-
sponding target values with great capacity in predictive modeling.

ANNs imitate the learning process of the human brain. Therefore, they can pro-
cess problems involving non-linear and complex data, even if the latter are imprecise
and noisy. An artificial Neural Network consists of simple functional and highly inter-
connected units called neurons. Figure 1.2 gives a graphical presentation of a neuron.

∑

.

.

.

x1
Activation
Function

Output

Summing
Junction

w1k

x2

x3

xn

yk

w2k

w3k

wnk θk

Figure 1.2: Graphical presentation of neuron

The activation of a neuron, i.e. its output, depends on the amount of signals it
received, typically summation is used (e.g.,

∑

i xiwik) and some threshold θk over which
the neuron becomes activated. The output of the activation function can be expressed
by

yk =

1, if
n∑

i=1

xiwik ≥ θk

0, else

The neural networks are built from layers of neurons connected so that on layer of
neurons receives its input from the previous layer and gives its output on the subsequent
layer. In other words, the activation of a neuron means that in its turn it sends a signal
to its outbound links (i.e., synapses).

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 19

There are various types of ANNs like multilayer perceptron and Kohonen networks.
The reader can have a large discussion about the variety of existing ANN types with
[78, 81, 149, 79].

The most widely used learning algorithm in an ANN is the Backpropagation 11 al-
gorithm. It is a common method for training artificial neural networks. It is used in
conjunction with an optimization method such as gradient descent. The latter calculates
the gradient of a loss function by considering all the weights in the network.

Hence let us notice that some matrix factorization models can be considered as
the learning of a multi-layer perceptron with the identity activation function in each
neuron [131]. Figure 1.3 is an example of such a multi-layer perceptron. It has the users
as inputs, the items as outputs and K hidden neurons. The weights represent the factors
introduced above for MF. To make recommendation for a user, only its corresponding

z1

i1
u1

um

u2

u3

in

i2

i3

z2

zk

Input Layer Hidden Layer Output Layer

.

.

.

.

.

.

.

.

.

Figure 1.3: A multi-layer perceptron for collaborative filtering

input neuron has to be activated and all the rest of inputs taken off. Then the output
neurons (i.e., the items) are classified and recommended according to their degree of
activation.

1.3.2.2.3 Diffusion-based methods

PageRank is perhaps the most popular diffusion-based algorithm with Google’s ad-
vent [21]. Almost all diffusion-based algorithms exploit item-item networks, they can
always use specific transformations, like projections, on their input data if the latter are
not so suited. In the network, the links between items represent their similarity degrees.
For example, Zhang et al. consider in [151] that the items are either similar or dissimilar,

11. an abbreviation for "backward propagation of errors"

20 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

and used 1 and 0 to reflect that.
Generally a symmetric adjacency matrix A is used to model the network. Making some
recommendations to a user comes to use his past preferences (i.e., the items that interest
him before) as starting points in the network and propagate the weight of links towards
yet unevaluated items by the user.

In [151], Zhang et al. recommend items to a user by a process motivated by heat
diffusion: they represent the items liked and those disliked by this user respectively
by hot and cold spots, and recommendation is made according to the stability of the
“equilibrium temperature” of the network nodes. The discrete Laplace operator 12 of the
network takes the form L = 1N −D−1A where D is the diagonal degree matrix of the
network, with elements Dαβ = kαδαβ . The resulting temperature vector hu for a user u,
is the solution of the heat diffusion equation

Lhu = fu (1.17)

The fixed elements of hu correspond to items already evaluated by user u; they are
set to 1 for the items liked by the user (which act as heat sources) or 0 for those disliked
by him (they act as heat sinks). This mathematically corresponds to the Dirichlet
boundary condition. The external flux vector fu is non-zero only for items evaluated by
user u and allows for fixed values attributed to sources and sinks. Equation 1.17 can be
solved by using the Green’s function method and the involved computational cost can
be lowered by the use of various algebraical properties of L [151]. Let us note that it is
straightforward to find the equilibrium hu iteratively by setting the initial temperature
vector h0

u to contain only the fixed heat sources and sinks and then iterate

hn+1
u = L′hn

u (1.18)

where L′ is the same as the above Laplace operator, but it keeps unchanged the elements
in hu corresponding to u’s evaluated items.

Many types of diffusion-based algorithm are in the literature. From multilevel to
probabilistic spreading methods, the reader is spoiled for choice [154, 152].

Next, we talk about the most-known advantages of CF and its main drawbacks.

1.3.2.3 Advantages and limitations

Collaborative filtering work generally better than content-based one. As it uses other
users’ preferences, it can deal with any kind of content and then recommend different
items, even the ones that are dissimilar to those seen in the past. This is one of its
greatest strength.

Nonetheless, collaborative filtering has its own drawbacks due to the fact that it
relies solely on users’ preferences to make recommendations. It is affected by the cold-
start problem. Indeed, until a new item received a substantial number of users’ feedback

12. It is a discrete analog of the heat diffusion operator −∇2 which is well-used in physics.

1.3. CLASSIFICATION OF RECOMMENDER SYSTEMS 21

(e.g., purchases or ratings), the system would not be able to recommend it, so it is for a
new user. Furthermore, CF techniques do not work well for the so-called “gray sheep”,
which refers to users to whom the opinions do not consistently agree or disagree with
any group of people and thus do not benefit from other users’ expressed preferences [127].

To overcome all these limitations, hybrid systems which can mix collaborative and
content-based filtering have been proposed.

1.3.3 Hybrid Systems

As we said above, a third type of recommendation uses at a time several recommender
systems[22, 56, 43, 28, 109]. Commonly called hybrid RS, they help to avoid certain
limitations of collaborative and content-based filtering as described above. For instance,
content-based recommendation systems can provide recommendations for “cold-start”
items (i.e., those for which little or no training data is available), but typically have
lower accuracy than collaborative filtering systems. Conversely, CF techniques often
provide accurate recommendations, but fail on cold start items. Hybrid systems are
then more-suited for real world context in order to yield better recommendations across
the board. A study of Good et al. asserts that a hybridized recommender system is
better than any single algorithm [45].

In [23], Burke listed seven hybridization methods to combine collaborative and
content-based filtering that we report below:

1. Weighted: The scores of several recommendation techniques are combined together
to produce a single recommendation.

2. Switching: The system switches between recommendation techniques depending
on the current situation. It chooses one of them and applies it.

3. Mixed: Recommendations from several different recommenders are presented at
the same time.

4. Cascade: One recommender refines the recommendations given by another.

5. Meta-level: The model learned by one recommender is used as input to another.

6. Feature combination: Features from different recommendation data sources are
thrown together into a single recommendation algorithm.

7. Feature augmentation: The output from one technique is used as an input feature
to another.

Hybridization is not limited to combine different recommendations classes. Some
hybrid systems combine different implementations of the same class of technique like
switching between two different content-based recommenders.

There are few studies about comparing hybridization methods. We refer the reader
to [23, 22, 106] for more details.

22 CHAPTER 1. INTRODUCTION TO RECOMMENDER SYSTEMS

1.4 Conclusion

We presented in this chapter a survey on recommender systems. We discussed their
most-known classification and techniques. In the next chapter, we will talk over their
main challenges, methods and measures that researchers usually use to evaluate them.

2 | Challenges and Evaluation of
Recommender Systems

It is obvious that the major goal of a recommender system is to generate meaningful
recommendations to users for items that might interest them. However there are sev-
eral challenges than RS have to face in addition to suggesting interesting items. They
are, for example, concerned about the presentation of the recommendations in order to
maximize the acceptance of recommendations and the users’ willingness to buy some
items and reuse the recommender system. They have often to manage growing amount
of information, therefore scaling algorithms are also well-sought.

We expose below a not-exhaustive list of challenging research topics in recommender
systems. Indeed it never cease to come new emerging topics in the literature. We refer
the reader to [116] for a discussion on these coming topics. We tackle also the evaluation
of recommender systems. We discuss the approaches and some popular measures which
are used.

The sequel of this chapter is organized as follows. Section 2.1 lists some challenges
of RS. In Section 2.2, we review evaluation approaches and measures used to compare
different recommendation algorithms, and how they fulfill a task of interest. We conclude
in Section 2.3.

2.1 Challenges of Recommender Systems

As we said above, the first concern of recommender systems is to give recommen-
dations which satisfied the most the users. Users’ satisfaction may depend on a lot of
aspects like the accuracy of the recommendations, their presentation or the RS response
time. Researchers in the field of recommender systems face several challenges on which
result the use and performance of their algorithms. We expose here a list of challenging
research topics for researchers.

2.1.1 Data Sparsity

Data sparsity is one of the major problems encountered by recommender system.
Online retailers often face exceedingly large pool of items. For instance, the world’s

23

24
CHAPTER 2. CHALLENGES AND EVALUATION OF RECOMMENDER

SYSTEMS

largest online retailer, Amazon.com, has more than 244 million customers 1 and sells
over 200 million products in the USA 2.

From this very large range of items, overlap between two users is often very small or
non-existing. Users do not rate most of the items and the available user feedback (e.g.,
ratings) are usually sparse. This is the main reason that data sparsity has great influence
on the quality of recommendation. New items cannot be recommended until some users
rate them, and new users are unlikely given good recommendations because of the lack of
ratings or purchase history. Furthermore, it may be difficult to identify users with similar
tastes as such if they have not both rated/brought any of the same items. This could
reduce the effectiveness of a recommendation system which relies on comparing users in
pairs and therefore generating predictions[127, 3]. Dimensionality reduction techniques
are more suited to alleviate the data sparsity problem. Our proposal in Chapter 3 relies
on such techniques.

2.1.2 Scalability

Scalability indicates the ability of a system to handle growing amount of information
in a graceful manner. In the last year, Amazon added 30 million customers1. This is
not an exception for e-commerce sites. The number of users and items of major sites is
tremendously growing. To attract and keep purchasing their customers, these sites need
to react immediately to online client requirements and make recommendations for all
users according to their purchases and ratings history, which demands a high scalable
recommendation solution. For comparison, Amazon sold 426 items per second in run-up
to last Christmas 3, therefore it had to make so many recommendations as they usually
do after each sale.

In practice, a solution that works fine when tested offline on relatively small data
sets may become inefficient or even totally inapplicable on very large datasets [116].
It is therefore essential to consider the computational cost issues and search for rec-
ommender algorithms that are little demanding, easy to parallelize or both. A third
option is to rely on incremental techniques which allow to not globally recompute
the recommendations but slightly adjust them in accordance with the newly arrived
data [85, 145, 143, 103, 120].
Dimensionality reduction techniques such as Matrix Factorization deal well with the
scalability problem at the moment of recommendation, but they have to undergo expen-
sive factorization steps. Incremental approaches were proposed in [143, 112, 120]. There
are also some solution for memory-based CF as the ones presented in [85, 145, 103].
Let us remind here that the precise subject of our thesis is to face the scalability problem
of recommender systems. We tackle it in Chapters 3 and 4.

1. http://bit.ly/VKAdh5

2. http://bit.ly/VO2kMi

3. http://bit.ly/1dRIXF3

http://bit.ly/VKAdh5
http://bit.ly/VO2kMi
http://bit.ly/1dRIXF3

2.1. CHALLENGES OF RECOMMENDER SYSTEMS 25

2.1.3 Diversity vs. accuracy

In order to satisfy and positively surprise the users, a recommender system needs
to recommend items the users will like and most probably would not have found on
their own. This requires the recommender system to suggest a broader range of items
including niche items as well. Indeed recommending only popular and highly rated items
has very little value for the users, since popular items are easy to find.

Thus, a key feature of a recommender system is its ability to (i) satisfy and (ii)
positively surprise the users with less obvious items that are unlikely to be reached by
the users. The majority of the algorithms proposed in the literature focus on the first
point by improving recommendation accuracy. To achieve the second point, the use of
diversity among the recommendation is the main way. Indeed it is more likely that the
users will find a suitable item if there is a certain degree of diversity among the suggested
items. The problem here is how to combine the diversity goal with the accuracy of the
recommendation. From the study of the items’ usage contexts [99] to the introduction
of some item ranking techniques [2] or hybrid algorithms [153], several propositions exist
in the literature. In Chapter 5, we propose a novel parameter-free algorithm that can
deal with this dilemma.

2.1.4 User interface

Recommendation goes beyond telling to users what items they might like. The user
interface (UI) of a recommender system can have a critical and decisive effect on factors
such as the overall system usability, system acceptance, item rating behavior, selection
behavior, trust, willingness to buy, willingness to reuse the recommender system, and
willingness to promote the system to others [34]. Two main points of UI are the expla-
nations of the recommendations and their presentation. Indeed users appreciate when
it is clear why a particular item is recommended for them. Furthermore, since the list
of potentially interesting items may be very long, it needs to be presented in a simple
way. Indeed it should be easy to navigate through it, and browse different recommen-
dations which are often obtained by distinct approaches [84]. The presentation of the
recommendations and the interactions with the users are limited in the case of particular
devices like smartphones [115].

Explanations summarize the reasons why a specific item is proposed. They can have
many advantages, from inspiring user trust to helping users make good decisions [147,
135, 93]. [147] made an online experiment on a real-world platform indicating that
explanations are an essential component of recommendation systems, that significantly
increases users’ perception of the utility of a recommender system, the intention to use
it repeatedly as well as the commitment to recommend it to others. [126] conducted a
user study on five music Recommender Systems. It shows that users like and feel more
confident about recommendations that they perceive as transparent. Explanations can
be made though a variety of means like a list of tags, informative text (e.g., “80% of the
people who bought this also bought that”) or social explanations (e.g., “Alice, Bob and
2 friends like this”) [140, 129, 124].

26
CHAPTER 2. CHALLENGES AND EVALUATION OF RECOMMENDER

SYSTEMS

2.1.5 Vulnerability to attacks

In cases where anyone can provide recommendations, it is desirable for recommender
systems to introduce precautions that discourage malicious actions. Collaborative filter-
ing (CF) algorithms are capable of generating personalized recommendations. However,
they are vulnerable to shilling attacks, where a group of spam users collaborate to manip-
ulate the recommendations by inserting malicious user profiles into the system to push
or nuke the reputations of targeted items. Robustness is the aptitude of recommender
systems to face these attacks. Several attack detection algorithms have been devel-
oped, in recent years, to detect spam users and remove them from the system [26, 162].
They may rely on a panel of solutions like belief propagation [162], supervised learning
method [26] or abnormal profiles detection [155]. In [148], the author argues that trust-
based recommender systems are facing novel recommendation attack which is different
from the profile injection attacks in traditional recommender system. It proposes a data
provenance method to trace malicious users.

Another vulnerability is due to power users. The latter are those who can exert
considerable influence over the recommendation outcomes presented to other users in
Collaborative Filtering (CF). RS operators encourage the existence of “power user” 4

communities and leverage them to help “fellow users”4 make informed purchase decisions.
Thus, RS research in this area has focused on power user selection and utilization to
address challenges such as data sparsity for new items or users. But, it remains a
potential for corruption by power users who can provide biased opinions. Because of
the influence that power users wield, biased opinions they provide can have significant
impacts on RS accuracy and robustness. [122, 141] investigate the impact of biased
opinions on RS accuracy. The results show that the in-degree centrality is a good criteria
to identify the power users. Their influence was measured by comparing the accuracy
and robustness of RS before and after attacks of power users [141].

2.1.6 Some other Challenges

Besides the above well-investigated challenges, there are some additional ones that
are discussed in the literature [62, 127, 116, 84]. Among the latter, one can list:

– Time Value. Most recommendation algorithms neglect the time stamps of the
evaluations. In some item spaces, such as books or movies, the relationships be-
tween users and items changes slowly over time. But in other item spaces, such
as daily news, items’ relevance change rapidly. Also some users might value above
all the most recent information, while other users might prefer the deeper insights
of careful reporting that takes days or weeks to complete.

– User Action Interpretation. Explicit ratings are a valuable signal of user
interest. However, in most systems much more information is available in implicit
signals of user interest, such as what items he clicked on, how long he read them,
which items were added to a wish list or shopping cart, etc. One deep challenge
in these data is the interpretation of negative choices in addition to positive ones.

4. It is the term used in the literature [122, 141]

2.2. EVALUATING RECOMMENDER SYSTEMS 27

For example, what we can conclude if a user does not choose to click on or rate a
news item [92].

– Privacy. In the attempt of making increasingly better recommendations, recom-
mender systems collect as much user data as possible. This will clearly have a
negative impact on the privacy of the users. Therefore the users might start feel-
ing that the system knows too much about their true preferences. The problem
here is how to develop recommender systems that use protected data.

Another problem, and not the last, is the evaluation of the ability of a RS to face a
challenging problem. Our next section tackle this point.

2.2 Evaluating Recommender Systems

Evaluation is a key factor to reflect the quality of a recommendation algorithm.
Indeed many algorithms have been suggested for the recommendation task. Therefore,
as they typically perform differently in various domains and tasks, it is very important
to be able to decide what algorithm matches the best a domain and a task of interest.

We review in this section the approaches for evaluating recommender systems and
different quality measures used by researchers in this field.

2.2.1 Evaluation approaches

One can evaluate RS by using three approaches: offline analysis, user studies or
reality-closed experiments. Furthermore, a combination of these approaches is also pos-
sible [123, 29].

In the following subsections, we begin with offline approaches. They are typically
easy to conduct, as they require no interaction with real users. We then describe user
studies, where a small group of persons uses the system in a controlled environment. The
studies allow to collect both quantitative and qualitative information about the systems,
but we may have to consider various biases in the experimental design. The recourse
of a pool of real users, preferably unaware of the experiment, is perhaps the the most
trustworthy approach. However, it allows to collect only certain types of data.

2.2.1.1 Offline evaluation

Offline approaches rely on pre-collected dataset that contain a history of interac-
tions (e.g., ratings, purchases or votes) between a set of users and items. Demographic
information about the users and some properties of the items are often available also.
The dataset is split in a test and a training set. Thus to evaluate a recommendation
algorithm, we ask it to predict some hidden interactions in the test set and measure its
ability to satisfy certain target objectives like the accuracy of its predictions.

K-fold cross validation is a common approach. It consists in partitioning the dataset
into K subsets. Each subset is retained as test set by turns, and the rest is used as
training set. The leave-one-out cross-validation is a special case of the K-fold cross
validation where K equals the number of users in the data set.

28
CHAPTER 2. CHALLENGES AND EVALUATION OF RECOMMENDER

SYSTEMS

Offline approaches have the advantage of being quick, economical and easy to conduct
on a large amount of data, several data sets, and with multiple algorithms. They require
no interaction with real users. Moreover, when the dataset includes timestamps about
the actions, it is even possible to repeat all the interactions. Among the downsides of
offline approaches, we can first cite the fact that they can only answer a very narrow set
of questions, typically the ones about the prediction power of an algorithm. Shany and
Gunawardana led a large discussion about this point in [123].

2.2.1.2 User studies

A user study is conducted by recruiting a set of test subjects, and asking them to
perform several tasks requiring an interaction with the recommendation system. While
they perform the tasks, a reporting of their behavior is done which gives quantitative
and qualitative measures. Quantitative measures can refer to what portion of task a
subject completed and the time he took to perform it, while the qualitative ones are
indirect observations like the satisfaction for the user interface or the perception of the
recommendations by a subject.

Compared to offline evaluation, user studies can answer a wider set of questions while
allowing to test the behavior of users during their interacting with the recommendation
system. It is the only approach for collecting qualitative data, which are often crucial for
interpreting the quantitative ones. User studies however have some disadvantages. First
they are very expensive to conduct in terms of financial compensation. Choosing a large
set of subjects and asking them to perform a large enough set of tasks is also costly from
the viewpoint of user time. Moreover, each chosen scenario has to be repeated several
time in order to expect reliable conclusions, what may limit the range of distinct tasks
that can be tested.

Let us notice that, even when the subjects may represent properly the true population
of users, the results can still be biased because they are aware that they are participating
in an experiment. For example, it is well known that paid subjects tend to satisfy
the person or company conducting the experiment. If the subjects are aware of the
hypothesis that is tested, they may unconsciously provide evidence that supports it. To
accommodate that, it is typically better not to disclose the goal of the experiment prior
to collecting data [123].

2.2.1.3 Online Evaluation

In an online evaluation, real users interact with a running recommender system.
Many real word systems wish to positively influence the behavior of their users with the
recommendations they give. This is why online testing systems are employed to compare
different algorithms [73, 123]. Typically, such systems redirect, usually randomly, a small
percentage of the traffic to different alternative recommendation engine, and record the
users interactions with the systems.

Online evaluation is time consuming and difficult, and it may be risky in some sit-
uations. Shany and Gunawardana mention the fact that a test system that provides

2.2. EVALUATING RECOMMENDER SYSTEMS 29

irrelevant recommendations may discourage the test users from using the real system
ever again [123]. Thus, the experiment can have a negative effect on the system, which
may be unacceptable in commercial application. They argued that for all these reasons,
it is best to run an online evaluation last, after an extensive offline study provides evi-
dence that the candidate approaches are reasonable, and perhaps after a user study that
measures the user’s attitude towards the system. In their opinion such a gradual process
reduces the risk in causing significant user dissatisfaction.

2.2.2 Evaluation measures

According to what challenging topic or task of interest we want to evaluate a RS,
many quality measures have been proposed. We give here a brief state-of-the-art of the
measures relative to the following challenging topics:

– the accuracy of predictions
– the coverage over all the items
– the diversity of the recommendations
– their novelty for the users

Let us notice that we only present the measures commonly-used by the research commu-
nity. Furthermore, the decision on the proper evaluation measure to use is often critical,
as each of them may favor a particular algorithm.

2.2.2.1 Prediction Accuracy

Prediction accuracy is by far the most discussed property in the recommendation
system literature. Basically, the majority of recommender systems try to predict user
opinions over items (e.g. ratings of movies) or the probability of usage (e.g. purchase).
The main purpose of recommender systems is to predict users’ future likes and interests.
A basic assumption is that a recommender system that provides more accurate predic-
tions will be preferred by the user (although other properties like scalability have to be
considered too). Providing better predictions is the most-faced challenge as the million
dollar programming prize showed [14].

Prediction accuracy is typically independent of the user interface, and can thus be
measured in an offline experiment. There are three broad classes of prediction accuracy
measures: (i) measuring the accuracy of ratings predictions, (ii) measuring the accuracy
of usage predictions, and (iii) measuring the accuracy of rankings of items [62, 57, 123].
We discuss here these classes of prediction accuracy measures.

2.2.2.1.1 Predictive accuracy measures

Many online retailers like Amazon.com or Netflix allow their users to rate the items
they offer (e.g. 1-star through 5-stars). These ratings may help to discover which items
would be well-suited for a user. Thus, given a user and the ratings that he gave to some
items, RS have to predict the rating he would give to a new item.

30
CHAPTER 2. CHALLENGES AND EVALUATION OF RECOMMENDER

SYSTEMS

In such cases, some measures of predictive accuracy of a RS were proposed. The Mean
Absolute Error (MAE) is perhaps the most popular measure. It is used to measure the
closeness of predicted ratings to the true ratings. The lower it is, better is the predictions
of a recommender system. If rui is the true rating on item i by user u, f(u, i) the predicted
rating and T the set of all hidden user-item ratings (i.e., a set of triples (u, i, rui)), the
MAE is defined as

MAE =
1
|T |

∑

(u,i)∈T

|rui − f(u, i)| (2.1)

Another popular measure is the Root Mean Squared Error (RMSE). It becomes
specially popular with the Netflix prize [127, 74, 15]. The RMSE is defined by the
following formula:

RMSE =

√
√
√
√

1
|T |

∑

(u,i)∈T

(rui − f(u, i))2 (2.2)

One special effect of RMSE, with the use of the square function, is that it penalizes large
errors.

There are also some normalized versions of these measures. We can cite the Nor-
malized MAE (NMAE) and the one of RMSE (NRMSE). They use the range of the
ratings (i.e. rmax − rmin) as the normalization value. Let us notice that since they are
simply scaled versions of RMSE and MAE, the resulting ranking of algorithms remains
the same. As these measures focus only on the predicted ratings and do not matter of
the positions of items in the recommendation list, they are not optimal for some common
tasks such as finding a small number of items that are likely to be appreciated by a given
user. Moreover, ratings do not always exist in all recommendation applications.

2.2.2.1.2 Usage measures

As we said above, in many applications the recommendation system does not predict
the user’s preferences of items, such as movie ratings in Netflix, but tries to recommend
to users items that they may use. Let us take the case of Amazon. When a user add
an item to its basket, their system suggests a list of items that may interest the user for
purchase, and then increase their profit and customer loyalty. In this case, the interest is
whether their system properly predicts that the user will add these items to his basket.

Offline evaluation of usage prediction consists in hiding a test set T of items used by
some users 5, then asking the recommender system to suggest sets of items that these
users will use. When the predictions are made, their usage by the users are measured.
Let Tu be the set of items that a user u has used (a part of the test set) and Su the set of
items that the system recommended for him. Three measures are widely used for usage
evaluation:

5. We keep this definition of T for all the rest of this chapter

2.2. EVALUATING RECOMMENDER SYSTEMS 31

– precision, which indicates the proportion of relevant recommended items from the
total number of recommended items

precision =
1
|T |

∑

u∈T

|Tu ∩ Su|

|Su|
(2.3)

– recall, which indicates the proportion of relevant recommended items from the
number of relevant items

recall =
1
|T |

∑

u∈T

|Tu ∩ Su|

|Tu|
(2.4)

– and the Fα-measures, a family of measures which are a combination of precision
and recall

Fα = (1 + α2)×
precision× recall

(α2 × precision) + recall
(2.5)

F1-measure is the most used among the Fα-measures.

2.2.2.1.3 Ranking measures

When the list of recommendations is large, users usually tend to give greater impor-
tance to the first items because of their limited patience. Thus, the mistakes incurred
with the first items may be considered more serious than those with the last items on
the list. Indeed, many applications impose to their users a certain natural browsing
order with the presentation of their lists of recommendations, typically as vertical or
horizontal list.

In such application cases, it is very important to ensure a good ranking of the items
of the list in order to allow users to find as soon as possible the interesting items.
Furthermore, users may become impatient after leafing through a certain number of
uninteresting items, and thus leave off the navigation.
Some ranking measures take account of this situation. Among the most often used
ranking measures, there are the following standard information retrieval measures: (a)
Half-life utility [20], which assumes an exponential decrease in the interest of users as they
move away from the first recommendations; and (b) Discounted cumulative gain [67],
wherein decay is logarithmic.

Half-life utility (HL) was firstly introduced by Breese et al [20]. It attempts to
evaluate the utility of a recommendation list to a user. Breese et al define the expected
utility of a list as the probability of viewing a recommended item times its utility. They
rely on the assumption that the likelihood that a user examines a recommended item
decreases exponentially with the item’s ranking and then, for lists of N items, they
formulate HL as follows:

HL =
1
T

∑

u∈T

N∑

p=1

max(ruip − d, 0)
2(p−1)/(h−1)

(2.6)

32
CHAPTER 2. CHALLENGES AND EVALUATION OF RECOMMENDER

SYSTEMS

Here, ruip represents the true vote of the user u for the item ip (i.e., at the pth position
of the list) and d the default or neutral vote. Their difference stands for the utility of
the item for the user. In the case of ratings prediction, ruip denotes the rating given by
the user to the item (e.g. 4 stars), and d is the default vote (e.g. 3 stars). In the case
of usage prediction, ruip is typically 1 if the user selects (e.g., purchase) the item and 0
otherwise, while d is 0.

h is called the “half-life”. It is the rank of the item on the list for which there is a
50% chance that the user will eventually examine it. For example, if h is set to 5, the
first five items have 50% chance to be considered y the user.

The basic idea of Discounted cumulative gain (DCG) is that highly relevant items
appearing lower in a ranked list should be penalized as the graded relevance value is
reduced logarithmically and proportional to the position of the item. The DCG of a
ranked list of N items is defined as:

DCG =
1
T

∑

u∈T

relu,1 +
N∑

p=2

relu,p

log2(p)

 (2.7)

where relu,p is the graded relevance of the item at position p. It may be set to 1 for a
relevant item and zero otherwise.

Besides accuracy there are a number of other dimensions that can be measured. We
present below some of them that are important to consider.

2.2.2.2 Coverage

Most commonly, the term coverage refers to the proportion of items that the rec-
ommendation system can recommend, the item space coverage. However it can also
designate the proportion of users for which the system can recommend items. Indeed in
some applications, the recommender may not provide recommendations for some users
due to, e.g. low confidence in the accuracy of predictions for that user. In such cases
one may prefer RS that can provide recommendations for a wider range of users [38, 62].
Of course, we should evaluate such recommenders on the tradeoff between coverage and
accuracy.

In this section we speak about item space coverage. A simplest measure is to compute
the percentage of all items that can ever be recommended. Therefore denoting the total
number of distinct items in the top K places of all recommendation lists as NK , the
K-dependent coverage is defined as

COVK =
NK

N
(2.8)

Low coverage indicates that the algorithm can access and recommend only a small num-
ber of distinct items, usually the most popular ones. This quite often results in little
diverse recommendations and leads to the long tail effect 6. For instance, in music, the

6. http://en.wikipedia.org/wiki/Long_tail

http://en.wikipedia.org/wiki/Long_tail

2.2. EVALUATING RECOMMENDER SYSTEMS 33

Long Tail is composed of a small number of popular items, the well-known hits, and the
rest are located in the heavy tail, those that do not sell as well. On the other hand, al-
gorithms with high coverage are more likely to provide diverse recommendations. From
this point of view, coverage can be also considered as a diversity metric [84].

In some cases it may be desirable to weight the items (e.g., their popularity or util-
ity). Although this method tends to discard some items which are very rarely used
anyhow, it has the advantage of keeping high profile items whose absences may be less
tolerable. The sales diversity of Fleder and Hosanaga [35] belongs to such coverage mea-
sures. It evaluates how unequally different items are chosen by users when a particular
recommender system is used. Let ρ(i) be the proportion of user choices that the item i
accounts. The Gini Index is defined as follows:

G =
1

K − 1

K∑

p=1

ρ(ip) (2j −K − 1) (2.9)

where ip denotes the item at position p in the list. The items are ordered according
to an increasing ρ(i). The index is 0 when all items are chosen equally often, and 1
when a single item is always chosen. Another measure of distributional inequality is the
Shannon Entropy:

H = −
K∑

p=1

ρ(ip) log(ρ(ip)) (2.10)

The choice of a particular measure to evaluate some recommender systems depends
on the goals that the system is supposed to fulfill. One may specify different goals which
further complicates the evaluation process. For a better overview, we refer the reader to
[62, 29, 38, 123].

2.2.2.3 Diversity

From the fact that there is a little value in recommending a notorious item (al-
though it is expected to be relevant), the consideration of novelty and diversity in rec-
ommendation becomes increasingly present [95]. Let us note that, currently, novelty and
diversity measures do not have standard definition an measures. Therefore, different ap-
proaches are proposed in the literature. We present here some of the most-quoted of
them [137, 153, 84, 18].

The diversity quality measure evaluates how much are different, with respect to
each other, the items of a recommendation list. Two levels of diversity can be taken:
(i) the inter-user diversity which estimates the diversity between recommendation lists
presented to users and (ii) the intra-user diversity which evaluates the diversity within
a recommendation list.

The inter-user diversity measures allow to compare the ability of various algorithms
to return different lists to different users. Given two users u and v and K items to
recommend, the difference between their recommendation lists, here Lu and Lv, can be

34
CHAPTER 2. CHALLENGES AND EVALUATION OF RECOMMENDER

SYSTEMS

measured by the Hamming distance as

Huv = 1−
|Lu ∩ Lv|

K
(2.11)

The hamming distance is equals to zero if the two lists are identical, and 1 if they are
completely different. An average over all the users gives the mean Hamming distance of
a recommendation algorithm.

As for intra-user diversity measures, they estimate the extent to which an algorithm
can provide diverse items to each user separately. Notably, they can be used to en-
hance improve recommendation lists by avoiding recommendation of excessively similar
items [160]. As a measure, one can rely to the average similarity of items in a recom-
mendation list given by

IUDu = 1−

∑

i∈Lu

∑

j∈Lu,i6=j
sim(i, j)

K(K − 1)
(2.12)

These measures can be also averaged over all users to get a mean diversification value
of a recommender system. The higher is the obtained value, the more diverse items the
system can recommend together.

2.2.2.4 Novelty

The novelty amounts to the factor to agreeably surprise the users. In practice,
authors take it as the degree of difference between the recommended items and the
ones that the users have already know. The simplest way to quantify the ability of an
algorithm to generate novel and unexpected items is to measure the average popularity
(e.g., the ratio of the number of users who see the items before) of the recommended
items

Nov = 1−
1

K |T |

∑

u∈T

∑

i∈Lu

pop(i) (2.13)

In this equation, pop(i) is the popularity of the item i. Lower popularity leads to higher
novelty in recommendation. Another way is to assume the chance that a randomly-
selected user collects an item i is close to pop(i)/ |U |, with U is the set of users. The
item’s self-information of novelty is log2(|U | /pop(i)). From this, we can take the novelty
of a recommended list as the average of those of its items and then we have

Nov =
1

K |T |

∑

u∈T

∑

i∈Lu

log2

(
|U |

pop(i)

)

(2.14)

2.3 Conclusion

In this chapter, we talked over numerous challenges of recommender systems and
evaluation methods and measures. Recommendation accuracy is known as the most

2.3. CONCLUSION 35

studied RS problem. In the literature, researchers propose more and more complex
techniques in order to improve recommendations. However the ratio between the com-
putation time and the yielded improvement is often not acceptable. For instance, Netflix
offered a grand prize of US $1 million for an algorithm that is 10% more accurate than
the one they use to predict customers’ movie preferences (aka, Cinematch [14]), but
despite they spent so much money, they never used the final proposed solution due to
its lack of scalability [8].

Part II

The contributions of the thesis

37

3 | Using Cluster-based Biases for
Dynamic Recommendations

The main purpose of recommender systems is to predict user preferences on a large
selection of items. They try to find items that are likely to be of interest for the user.
Because the user is often overwhelmed by the considerable amount of items provided by
electronic retailers, the predictions are a salient function of all types of e-commerce [121,
14].

In Chapter 1, we introduced collaborative filtering which is a widely-used category
of recommender systems. It consists in analyzing relationships between users and in-
terdependencies among items to identify new user-item associations [127, 76, 104], and
based on these associations, recommendations are inferred.

We described briefly Matrix Factorization (MF), one of the most popular dimension-
ality reduction techniques in recent years. In the literature, it is well investigated and
many types of factorization have been proposed [76, 70, 86]. In its basic form, matrix
factorization characterizes both items and users by vectors of factors (also called “latent
factors”) inferred from user feedback patterns. Thus both users and items are mapped
into a latent factor space. Figure 1.1 in Subsection 1.3.2.2.1 presents an illustration
of such a space of factors. The affinity degree between a user’s factors and an item’s
ones determines the position of the latter in the final list of recommendations for the user.

Although matrix factorization is very popular because it gives good scalability at the
time of recommending while allowing remarkable prediction accuracy, some shortcomings
remain. One of these is the fact that the model generated by MF is static. Once it has
been generated, the model delivers recommendations based on a snapshot of the incoming
ratings frozen at the beginning of the generation. To take into account the missing ratings
(that arrived after the last model generation), the model has to be computed periodically.
We propose here a solution that reduces the loss of quality of the recommendations over
time. We include into our matrix factorization model some stable biases which track
users’ behavior deviation [104, 132]. The biases are continuously updated with the new
ratings, in order to maintain a satisfactory quality of recommendations for a longer
time. Our solution is based on the observation that the rating tendency of a user is
not uniform, and can change from one set of items to another. A set of biases is then
associated with each user, one bias for each set of similar items. Thus, the integration of

39

40
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

Figure 3.1: Amazon’s five star widget

a new rating is provided by recomputing a local user bias (a bias of a user for a specific
cluster of items), which may be done with a very low computation cost.

Our approach improves the scalability of recommender systems by reducing the fre-
quency of model recomputations. The experiments we conducted on the Netflix dataset
and the largest MovieLens dataset confirmed that our technique is well adapted for dy-
namic environments where ratings happen continuously. The cost of the integration of
new ratings is very low, and the quality of our recommendations does not decrease very
fast between two successive matrix factorizations. Also our idea of refining the user
biases is orthogonal to the factorization models. It can be used in fully-fledged models
with weights, temporal dynamics and so on [75, 76, 132, 13]. Morever our factorization
model is easily parallelizable as we will describe shortly.

In the remainder of this chapter, we give some preliminaries in Section 3.1. Then we
state the problem more so in Section 3.2 before summarizing related work in Section 3.3.
In Section 3.4, we detail our cluster-based matrix factorization solution. We present an
experimental analysis of our proposal in Section 3.6, and conclude this chapter in Section
3.7.

3.1 Preliminaries

Recommender systems learn the affinities from the users’ expressed interests in items.
These interests are often given through ratings which measure how much a user likes a
rated item. Most of the time, this interest is represented by numerical values from a
fixed range. A set of interfaces, e.g. widgets, are used to allow the users to rate the
items. The ones used to enter ratings at a 1-to-5 star scale are still very popular on the
web. Figure 3.1 shows the one of the well-known online retailer Amazon.com. Hence we
can formalize the prediction problem as follows. Let us consider a set U of users and a
set I of items. User ratings can be seen as tuples (u, i, rui, tui), where u denotes a user,

3.1. PRELIMINARIES 41

i denotes an item, rui the rating of user u for the item i, and tui is a timestamp. We
assume that a user rates an item at most once.

The challenge is to predict the future ratings such that the difference between an
estimated rating f(u, i) and its true value rui is the lowest possible.

The ratings can be arranged into a sparse matrix R where its columns represent the
users and its rows the items. The value of each not empty cell cui of R, corresponding to
user u and item i, is a pair of values (rui, tui) with rui the rating given by u to the item
i at time tui

1. An empty, i.e. missing, cell cui in R indicates that user u has not yet
rated item i. Hence, the task of recommender system is to predict these missing rating
values. The table below represents such a matrix.

u1 u2 . . . un

i1 3 . . . 1
i2 2 . . . 5
i3 1 . . .
i4 . . .
...

...
...

...
...

im 4 . . . 2

In its basic form (Basic MF), matrix factorization techniques try to capture the factors
that produce the different rating values. They approximate the matrix R of existing
ratings as a product of two matrices P and Q which contain vectors of factors for the
profiling of the users and the items respectively

R ≈ P ·Q (3.1)

Let us note that these matrices of factors are much more smaller than R. Thus, we
gain in dimension while getting predictive ratings simply by the following formula

f(u, i) = pu · q
T
i (3.2)

with pu and qi the vectors of factors corresponding to user u and item i respectively in
P and Q.

In practice, it is very difficult to obtain exactly R with the product of P and Q.
Usually, some residuals remain. These latter constitute the reconstruction error, i.e. its
inaccuracy, which can be represented by a matrix E of errors having the same size than
R. Then Equation 3.1 can be changed to

R = P ·Q + E (3.3)

We can see that the more the matrix E is close to a zero matrix, the more accurate
will be the prediction. The process of training looks for the better values of P and Q such

1. In practice, more sophisticated data structures are used in order to alleviate the memory consump-
tion.

42
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

that the matrix E is the closest possible to a zero matrix. Thus, it tries to adjust all the
values eui of the matrix E to zero using a stochastic gradient descent (SGD) algorithm.
The SGD algorithm computes a local minimum where the total sum of error values is
one of the lowest according to initial ratings. In other words, it tries to minimize as
small as possible the sum of quadratic errors

∑

ui
e2

ui between the predictive ratings f(u, i)

and the real ones rui. Errors are squared in order to avoid the effects of negative values
in the sum, and increase the weights of abnormal values. The fact of minimizing

∑

ui
e2

ui

amounts to minimize each e2
ui.

We have eui
def
= rui − f(u, i). By using the vectors of factors pu and qi, we get

eui
def
= rui − pu · q

T
i . If we denote by K the number of considered factors, we can avoid

overfitting the observed data by regularizing the squared error of known ratings. Thus
we have the next regularized sum of squared errors

∑

ui

e2
ui =

∑

ui

(rui − pu · q
T
i)2 + β · (‖pu‖

2 + ‖qi‖
2) (3.4)

β is a regularization parameter which serves to prevent large values of puk and qki. More
precisely, we have

∑

ui

e2
ui =

∑

ui

(rui −
K∑

k

pukqki)2 + β · (‖pu‖
2 + ‖qi‖

2) (3.5)

Then to minimize the quadratic errors, in order to get better predictions, we compute
the differential (i.e., the gradients) of the squared error e2

ui to determine the part of
change due to each factor (puk and qki):

∂e2
ui

∂puk
= −2 · eui · qki ,

∂e2
ui

∂qki
= −2 · eui · puk (3.6)

We update puk and qki in the opposite direction of the gradients in order to decrease the
errors and thus obtain a better approximation of the real ratings.

puk ← puk + α · (2 · eui · qki − β · puk) (3.7)

qki ← qki + α · (2 · eui · puk − β · qki) (3.8)

α is a learning rate. The SGD algorithm iterates on Equations 3.4, 3.7 and 3.8 until
the regularized sum of the quadratic errors in Equation 3.4 does not decrease any more.
This process corresponds to the training step.
After this training, the predictions f(u, i) are computed through the products pu · q

T
i of

both vectors of factors. A sorting step allows to find the most relevant items to recom-
mend to each user, i.e. the items with the greatest product values.

3.2. THE DYNAMICITY PROBLEM 43

3.2 The Dynamicity Problem

As mentioned earlier, the model generated by matrix factorization is static. Once
it has been generated, the model delivers recommendations based on a snapshot of the
incoming ratings frozen at the beginning of the generation. Therefore, it has to be com-
puted periodically in order to take into account the missing ratings which arrived after
its generation. However, it is not realistic to run the model frequently, because of the
high cost of its computation. The latter is O(|T | ·K · n) where T is the set of user-item
ratings and n the number of iterations for minimizing the quadratic errors. Real-word
applications like Amazon or Netflix handle several billions ratings from millions of users
and hundred of thousands items, thus the factorization model can not be recomputed
every time. In the conclusion of our previous chapter, we gave the example of Netflix
which offered a grand prize of US $1 million for an algorithm that is 10% more accurate
than the one they use to predict customers’ movie preferences, called Cinematch [14].
However despite they spent so much money, they never used the final proposed solution
due to its lack of scalability [8]. Therefore, the quality of the recommendations will
decrease gradually until a new model is computed.

In real-world contexts where new ratings happen continuously, users profile evolve
dynamically. Consider, for instance, a costumer of an online music-store looking for good
pop songs. He asks the application for some recommendations and the system proposes
to him a short list of songs with high probability of interest (based on the latest available
model). The costumer selects and rates the songs he already knows or he just listened
to, and asks for new recommendations. Since the preferences of the customers evolve
accordingly to the songs they have listened to, it is important to be able to integrate
the new ratings for the subsequent recommendations. Otherwise, the accuracy of these
recommendations will be low.
Online shops attempt to keep their customers loyalty and thus search to better satisfy
them by providing relevant recommendations. This accounts for all attention brought to
the evolution of user preferences. Indeed it has been claimed that even an improvement
as small as 1% of the accuracy leads to a significant difference in the ranking of the top-K
most recommended items for a user [74, 31]. Thus the decreasing of the accuracy of pre-
dictions is no longer acceptable. To face it, recommender systems must either regularly
recompute their models, which represents an expensive task in terms of computation
time, but can be alleviated by distributing computation, or by using online-updating
methods which allow to take account of new ratings with a low cost of computation.
Hence, the dynamicity problem can be defined as follows: how to integrate new ratings
in the prediction model as fast as possible? The goal is to consistently maintain the
accuracy of the predictions at a good level.

We present in the following some important requirements that any solution for the
dynamicity problem has to satisfy.

1. Recommendation quality Assuming some fixed sets of users and items. We
consider users continuously asking for items, and rating them. For instance, a

44
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

user asks for a short list of items with high probability of interest (i.e. high
predicted rating), then selects and rates some of them, and so on. In such online
recommendation scenario, the user expects the recommended items to be of high
interest. We measure the quality of service in terms of the Root Mean Square
Error (RMSE) between the predicted and the real ratings. We express the user
requirement for quality, as a constraint on the RMSE, which value must be greater
than a given threshold ǫ.

RMSE < ǫ (3.9)

2. Response time Another requirement for online recommendation is the response
time tolerated by the end users. When a user asks for a recommendation, he
expects to receive it almost immediately. Such requirement for online user demand
is usually described by an upper bound along with a ratio of appliance [136]: 90% of
the demands must be served in less than 5 seconds. This response time constraint
forces us (1) to generate the model in advance, in order to anticipate the future
demands, and (2) to limit the computational cost needed for the integration of the
ratings that arrived after the model generation.

We can summarize the performance requirements into the following challenge: de-
sign a recommendation system which provides sufficient quality, when generating
the “top-quality” model takes a long time, when the predictions quality is de-
creasing over time, featuring fast recommendation delivery on user demand, and
reducing the overall computation cost.

Our solution to tackle this challenge is based on the following process:

a) Combine clustering, MF and bias adjustment, to take into account the speci-
ficity of each user and start with a high quality model.

b) Continuously update the biases (with a low computation cost), in order to
maintain as long as possible the quality of the predictions at satisfactory level.

In the following we will present related work, then we detail our solution for the first
two points.

3.3 Related Work

In the literature, two approaches can be used to face in a certain manner the dy-
namicity problem. The first approach adresses distributed 2 matrix factorizations, and
studies how to alleviate the factorization’s computation cost. Many techniques have
been proposed [110, 41, 111, 156, 146]. They allow to significantly reduce the cost of
factorizing. However the generated models remain static and take into account only
the ratings available at the beginning of their generation. Furthermore, the ability of

2. Let us note that we use the term “distribution” and its derivatives but it implies both par-
allel and distributed computing. The reader can get more information about these notions on
http://en.wikipedia.org/wiki/Distributed_computing

http://en.wikipedia.org/wiki/Distributed_computing

3.3. RELATED WORK 45

distributing the factorization process do not always allow to carry out up-to-date models
frequently.

The second approach which may be considered as complementary of the first one,
is to online-update users’ factors (sometimes items’ factors also, like in [112]) in order
to dynamically follow the trends. Moreover this approach allows, in case of limited
computational resources, to postpone as far as possible the need of recomputing the
model.

We present below some popular state-of-the-art techniques of these two approaches.

3.3.1 Distributed MF techniques

By distributing the matrix factorization, we try to improve the computation time
needed to learn a model. The main difficulty here is how to make parallelized-update on
factors puk and qki (as in Equations 3.7 and 3.8) while ensuring potential access conflicts.

Niu et al. propose in [110] a lock-free algorithm called HogWild. Based on the
intuition that the probability of updating the same factor in P or Q is small when
the matrix R is very sparse, they assume that the overwriting issue can be ignored.
From this viewpoint, they have just to randomly select a subset of ratings rui instances
and apply updates simultaneously in all the threads (without synchronization between
them). HogWild is very efficient compared to delayed-updating approach like in [5, 161].
However, it is designed only for shared-memory systems.

The distributed SGD (DSGD for short) investigated in [41, 111] partitions the matrix
R of ratings into blocks as illustrated in Figure 3.2. Independent blocks constitute a

Figure 3.2: Patterns of independent blocks for a 3-by-3 gridded matrix

stratum (in gray color). In Figure 3.2, we represent such strata from a 3-by-3 gridded
matrix. Due to the fact that the blocks of the same stratum do not share neither any
row (i.e., item) nor a column (i.e., user), they can be updated in parallel at the same
time. Thus, DSGD can be regarded as an exact SGD implementation with a specific
ordering of updates.

One drawback of DSGD is that it suffers from the locking problem. For a parallel
algorithm aiming to maximize computation performances, always keeping all execution
nodes (e.g., threads) busy is important. The locking problem occurs if an execution node
idles because of waiting for others. As DSGD has a stratum-by-stratum execution model,
the execution nodes are synchronized. Thus, when an execution node ends earlier its
computation on a block of the current stratum, it has to wait for the other nodes before

46
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

starting together on another stratum. This naturally follows from the varying of their
running time specially if R is unbalanced. Moreover, execution nodes must exchange
the factors’ values they computed when they pass from a stratum to another.

More recently, Zhuang et al. present in [156] some ways to overcome these short-
comings. First they target shared-memory systems, hence the threads do not have to
exchange some data. They access concurrently to data. In addition to the use of some
methods to balance more R like random shuffling 3, their main idea may be summarized
as using less threads than there are blocks in a stratum. Therefore, when a thread earlier
finishes processing a block, a scheduler can assign it a new block that meets some defined
criteria. Among the latter we can cite the fact that this block is free and its number of
past updates is the smallest among all free blocks.

With such an approach Zhuang et al. developped a fast parallel SGD method for
matrix factorization, but as Niu et al., they are restricted to shared-memory systems.
Only the initial DSGD approach avoids this limitation.

Let us notice that our proposition that we will present in Section 3.4, can be easily
adapted to all these techniques of distributed computing.

3.3.2 Online-updating approaches

The problem of the integration of the incoming ratings is not well investigated in the
literature. We can cite Sarwar et al. in [120]. They deal with “new user/item” problem,
which aims at integrating newly registered users and items (and their ratings). Even
though this problem includes the integration of new rating, its special nature requires
specific solutions. In our approach, we only deal with the new ratings of known users
and items.

Rendle et al. focus on users (and items) which have small rating profiles [112].
They present an approximation method that updates the matrices of an existing model
(previously generated by MF). The proposed UserUpdate and ItemUpdate algorithms
retrain the factor vector for the concerned user, or item, and keep all the other entries
in the matrix unchanged. The time complexity of this method is O(|V (u, .)| .k.t), where
k is the given number of factors and t the number of iterations. The whole factor vector
of the user is retrained (i.e. his rating profile for all the items). In Section 3.5 we will
discuss and compare our solution with theirs. We show also that our solution is faster.

Agarwal et al. propose in [6] a fast online bilinear factor model called FOBFM. It
uses an offline analysis of item/user features to initialize the online models. Moreover,
it computes linear projections that reduces the dimensionality and, in turn, allows to
learn fast both user and item factors in an online fashion. Their offline analysis uses a
large amount of historical data (e.g., keywords, categories, browsing behavior) and their
model needs to online learn both user and item factors in order to integrate the new
ratings. So, their technique is much more costly than ours. Furthermore, our approach

3. Randomly permuting users’ columns and items’ rows before processing in order to have a better
balanced matrix. The interest is to have blocks with closer amount of ratings.

3.4. MAKING DYNAMIC RECOMMENDATIONS 47

can work even in applications where no item/user features are available which is not
proven in the experimentations of the FOBFM model.

Cao et al. [25] point the problem of data dynamicity in latent factors detection ap-
proaches. They propose an online nonnegative matrix factorization (ONMF) algorithm
that detects latent factors and tracks their evolution when the data evolves. Let us
remind that a nonnegative matrix factorization is a factorization where all the factors
in both matrices P and Q are positive. They base their solution on the Full-Rang De-
composition Theorem, which states that: for two full rank decompositions P1.Q1 and
P2.Q2 of a matrix R, there exists one invertible matrix X satisfying P1 = X.P2 and
Q1 = X−1.Q2. They use this relation to integrate the new ratings. Although the pro-
cess seems to be relatively fast, its computation time is greater than ours. This is due
to the fact that their technique updates the whole profiles of all the users where our
solution limits the computations to the bias of the concerned user.

3.4 Making Dynamic Recommendations

As we said above, we focus on dynamic contexts where new ratings are continuously
produced. In such case, it is not possible to have an up to date model, due to the incom-
pressible time needed to compute the recommendation model even if we use distributed
matrix factorization. At least, the ratings produced during the model computation will
be missing. After each generation of a new model, the situation can degrade quickly
enough since the number of non processed ratings may increase very fast. Then, a grow-
ing loss of quality can be observed in the recommendations, as long as the static model
is used.

To tackle this problem, our model relies on biases which are among the most over-
looked components of recommender models [70]. Biases allow to capture a significant
part of the observed rating behavior. We first cluster the items according to their sim-
ilarities. For that, one can either rely on clustering algorithms as we did in [54, 51]
or, if they are available, on items’ categories given by certain of their attributes. We
combine global user biases with local user biases defined on each set of similar items.
The local user biases allow to refine user’s tendency on small sets of items, whether the
global biases capture the general behaviors of the users. In case where the local user
bias has not enough information (i.e., ratings) to be sound, the global user bias plays a
role of balance. It ensures, in the worst case, that user’s tendency will follow his general
behavior.

In the following, we explain how to integrate users’ biases in a matrix factorization’s
model. Then we highlight the importance of using local biases, then we detail our
proposed solution which combines global biases and cluster-based local biases. And
lastly, we present the algorithm that integrates the new ratings by adjusting the local
biases in the recommendation model.

48
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

3.4.1 Biased MF

Several improvements of the basic matrix factorization technique that we presented
above are proposed in the literature. One of them assumes that much of the observed
variations in the rating values is due to some effects associated with either the users or
the items, independently of any interactions [133, 76, 104]. Indeed, there are always
some users who tend to give higher (or lower) ratings than others, and some items may
be higher (or lower) rated than others, because they are widely perceived as better (or
worse) than the others. Basic MF can not capture these tendencies, thus some biases
are introduced to highlight these rating variations. We call such techniques Biased MF.
The biases reflect users or items tendencies. A first-order approximation of the biases
involved in rating rui is as follows:

bui = µ + bu + bi (3.10)

bui is the global effect of the considered biases, it takes into account users tendencies
and items perceptions. µ denotes the overall average rating (for all the items, by all the
users). bu and bi indicate the observed deviations from the average of user u and item
i, respectively. Hence, Equation 3.2 becomes

f(u, i) = pu · q
T
i + bui (3.11)

Since biases tend to capture much of the observed variations and can bring significant
improvements, we consider that their accurate modeling is crucial [104, 76]. As for the
factors puk and qki (Equations 3.7 and 3.8), the biases have to be refined through a
training step using the following equations:

bi ← bi + α · (2 · eui − λ · bi) (3.12)

bu ← bu + α · (2 · eui − λ · bu) (3.13)

where λ is a regularization parameter. It plays the same role as β in equations 3.7 and
3.8. λ allows us to assign different contributions to the user’s biases and factors.

Let us notice that this definition of users’ biases assumes their global behaviors are
uniform, which is not the case. In our observation, and this is not surprising, the behavior
of a user can change from one set of items to another. Hence it would be interesting to
associate a set of local biases to each user with one bias per set of similar items. Our
next section formalizes more the relation between the similarity of a set of items and the
variance of users biases.

3.4.2 The interest of cluster-based local biases

We argued above that the accuracy of local user biases depends on the degree of
similarity between the items in each set (i.e. cluster). We show here that the more similar
are the items in each cluster, the more the variance of the local user biases is small. A
smaller variance means stable users’ behaviors, in other words, a lower prediction error

3.4. MAKING DYNAMIC RECOMMENDATIONS 49

and then a more accurate recommendation. We first assert and demonstrate the next
lemma:

Lemma 3.4.1. Given a set of items, more they are similar, lesser varying are the users’
ratings about them.

Proof. Let U be a set of users, I a set of items, rui a rating of a user u ∈ U for an item
i ∈ I, and µ the overall average of rating. Consider Iu ⊂ I, the set of items rated by a
user u, then the bias bu of the user u is defined as follows:

bu =
1

card(Iu)

∑

i∈Iu

(rui − µ) (3.14)

For a given item i ∈ Iu, the local deviation of the user u relative to the overall average
of rating µ is:

bui = rui − µ (3.15)

Then, Equation 3.14 can be simplified as:

bu =
1

card(Iu)

∑

i∈Iu

bui (3.16)

To measure the user bias variation, we compute for each user u his bias variance
V aru as follows:

V aru =
1

card(Iu)

∑

i∈Iu

(bui − bu)2 (3.17)

Then, equations 3.15, 3.16 and 3.17 lead to the following formula:

V aru =
1

card(Iu)3

∑

i∈Iu

∑

j∈Iu

(rui − ruj)

2

(3.18)

To compute the variance, the user must have at least two ratings. Then, the variance
can be bound as shown in the following equation:

V aru ≤
1
23

∑

i∈Iu

∑

j∈Iu

(rui − ruj)

2

≤
1
8

∑

i∈Iu

∑

j∈Iu

|rui − ruj |

2
(3.19)

Then, considering all the users we obtain:

0 ≤
∑

u∈U

V aru ≤
1
8

∑

u∈U

∑

i∈Iu

∑

j∈Iu

|rui − ruj |

2

(3.20)

50
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

Measuring the dissimilarity of items.
Consider two items (i, j) ∈ I2, and let Uij ⊂ U be the set of users having rated both of
them. The dissimilarity of the items i and j can be measured according to the difference
of the ratings rui and ruj given to them by each user u. Hence, we define the dissimilarity
of two items (i, j) ∈ I2 as follows:

dissimij =
∑

u∈Uij

|rui − ruj | (3.21)

dissimij tends to zero when all the users in Uij have close ratings for both items. The
sum of the dissimilarities of all the couples of items is:

∑

(i,j)∈I2

dissimij =
1
2

∑

i∈I

∑

j∈I

∑

u∈Uij

|rui − ruj | (3.22)

Since dissimij = dissimji, we divide by 2 the sum in the right part of the previous
equation.
Equations 3.20 and 3.22 lead to the following ascertainment on the dissimilarity of the
items and the user bias variances:

0 ≤
∑

u∈U

V aru ≤

∑

(i,j)∈I2

dissimij

2

(3.23)

For a given set of items, the less dissimilar (i.e., more similar) they are (i.e.
∑

(i,j)∈I2

dissimij → 0), the less varying are the user biases (i.e.
∑

u∈U V aru → 0). In other
words, the users tend to have uniform behaviors on such a set of similar items.

Corollary 3.4.2. Defining a local bias per user and on each set of similar items leads
to a small variance in their behaviors and, consequently, a better accuracy in prediction.

3.4.3 The CBMF model

Our cluster-based matrix factorization model (CBMF) is based on the observation
that many users usually tend to underestimate (or overestimate) the items they rate. A
user may have a tendency to rate above (or beyond) the average. We aim to quantify
such tendency. A simple way to take it into account is to assign a single bias per user (as
shown in section 3.4.1). However, the user’s tendency is generally not uniform: it can
change from one item to another. For some sets of items, a user can tend to rate close
to the average. While for some other items (e.g., those she really likes/dislikes), the user
fails to rate objectively, either using extreme ratings, or keeping moderated ratings.

To take into account this discrepancy, we define several biases per user, instead of
a single one. We assign one bias bC

u for each user u and each set C of similar items.
We expect as demonstrated above that handling finer-grained biases will lead to more
accurate recommendation. Once the clusters are built, we assign a vector of biases to
each user. One bias for each group of items. Then, we apply our matrix factorization
(CBMF) on the ratings to generate the recommendation model.

3.4. MAKING DYNAMIC RECOMMENDATIONS 51

Thus, we come down to observe local ratings variation instead of a single global
ratings variation as used in previous approaches [104, 76, 132]. We derive the local bias
bC

u of a user u for a cluster C from the ratings of the items in this cluster. For each item
j ∈ C that he rated, we define his deviation bj

u as the difference between his rating for j
and the sum of his global bias bu and the average users’ rating µ. The local bias of the
user bC

u , at the level of the cluster, is obtained by taking his average deviation as shown
in Equation 3.24.

bC
u =

1
|C|

∑

j∈C

ruj − (µ + bu) (3.24)

Thus, our prediction formula is the following:

f(u, i) = pu · q
T
i + µ +

(

bu +
1
|ςi|

∑

C∈ςi

bC
u

)

+ bi (3.25)

where ςi denotes the sets of all clusters to which the item i belongs. Indeed when
considering the properties of the items for the clustering, it often happens that an item
appears in many clusters. For instance, if we consider movies, one can belong to several
genres like Action, Fantasy and Drama. Thus the movie has to be put into these three
classes/clusters.

Our regularized global sum of squared errors becomes:

∑

ui

e2
ui =

∑

ui

rui − (pu · q
T
i) + µ +

(

bu +
1
|ςi|

∑

C∈ςi

bC
u

)

+ bi

2

+β · (‖pu‖
2 + ‖qi‖

2 +

1
|ςi|

∑

C∈ςi

bC
u

2

+ bu
2 + bi

2)

(3.26)

Like the global biases bu and bi, the user’s local biases bC
u have to be refined using the

formula:
bC

u ← bC
u + α · (2 · eui − γ · bC

u) (3.27)

Algorithm 1 details the steps of our CBMF process. In Line 1, we compute the
initial bias value of each item, the global bias of each user and his local biases. Line 2
initializes the matrices of factors P and Q. This is done with random low values. Lines
3 to 13 correspond to the main part of the learning process. At each iteration (lines 4
to 11), the error of prediction eui is computed for each rating. Then, the matrices of
factors, the biases (global and local ones) are adjusted accordingly (lines 6 to 10), using
equations 3.7, 3.8, 3.12, 3.13, and 3.27. Line 12 measures the global error as indicated
in Equation 3.26. The training process ends when the regularized global squared error
does not decrease any more or when the maximum number of iterations is reached.

3.4.4 Integration of incoming ratings

After the generation of the recommendation model, the incoming ratings continue
to be added to the ratings matrix R. Their integration in the model is done simply

52
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

Algorithm 1: Cluster-based MF
Data: R: matrix of ratings, K: number of factors to consider, {C}: the list of

clusters, α, β, λ and γ

Result: P , Q, µ, {bi}, {bu} and
{

bC
u

}

1 For each item i and each user u, calculate the biases bi, bu and
{

bC
u

}

;

2 Randomly initialize the matrices P and Q;
3 repeat
4 foreach rui ∈ R do
5 Compute eui;
6 for k ← 1 to K do
7 Update puk ∈ P , qki ∈ Q;
8 end
9 Update bi and bu;

10 Update also bC
u , ∀C ∈ ςi;

11 end
12 Calculate the global error

∑

ui e2
ui;

13 until terminal condition is met;

14 return P , Q, µ, {bi}, {bu} and
{

bC
u

}

by adjusting the local user biases, hence the importance of local biases. Indeed, the
top-K item recommendation is constituted generally of items from different clusters (in
our experimentations in [54], for three clusters, we observed that 58.47% of the users of
Netflix have at least two clusters represented in their top-5, and 55.12% for MovieLens).
When we adjust the local user biases with the new ratings, the recommendations can be
affected in the composition of the recommended list of items or in the ranking (top-K)
of these items.

Let us denote by V the set of known ratings in matrix R, including the newly added
ones.

V = {rui ∈ R/u ∈ U, i ∈ I} (3.28)

where U and I are the sets of referenced users and items, respectively. Then, we denote
by V (u, .) the set of all known ratings of a given user u ∈ U .

V (u, .) = {rvi ∈ V/v = u} (3.29)

The subset of ratings of user u in a cluster C ∈ ςi to which a specific item i belongs
is denoted by V (u, C).

V (u, C) = {ruj ∈ V (u, .)/j ∈ C} (3.30)

The bias adjustment done when a new rating rui is obtained, requires only the ratings
V (u, C) of each cluster C to which i belongs. A gradient descent is performed to update
the local bias of user u in the cluster C, using Equation 3.27. Algorithm 2 details

3.5. COMPLEXITY ANALYSIS 53

the steps of the ratings integration process. As in Algorithm 1, the training process
ends when the regularized global squared error does not decrease any more or when the
maximum number of iterations is reached. Obviously, when the item belongs to several

Algorithm 2: Incoming ratings integration

Data: P , Q, V (u, C), bi, bu, bC
u , α, β and γ

1 repeat
2 foreach ruj ∈ V (u, C) do
3 Compute euj ;
4 Update bC

u ;
5 end
6 Calculate the locally-limited global error

∑

j∈C e2
uj ;

7 until terminal condition is reached;

clusters at the same time, this action has to be done on each of them, but it is easily
parallelizable.

3.5 Complexity analysis

The cost of our cluster-based matrix factorization solution (see Algorithm 1) can be
separated in two parts: the cost of matrix factorization and the cost of the clustering
step. The time complexity of the training of the whole model (matrix factorization)
is O(|V | · k · t), where V denotes the set of known ratings, k is the number of factors
and t the maximum number of iterations. The time complexity of the clustering step
depends on the chosen clustering algorithm. When additional information on the items is
available (metadata on the items), it may be used for clustering [70, 159]. Such methods
can greatly reduce the clustering execution time. If no metadata is available, there are
still many possible clustering techniques, only based on item ratings, each one having
its own cost: projected K-means, PDDP and so on [72, 71, 128].

The strength of our technique lies in the low computation cost needed for the inte-
gration of the ratings received after the generation of the model. So that the integration
can be done on the fly and the loss of quality of the recommendations slowed. The time
complexity of the integration of a new rating rui is O(|V (u, C)| · t). Note that in the
worst case this cost is equal to O(|V (u, .)| · t), when all the ratings of the considered user
are related to the same group of items. Let us stress that V (u, .) is usually small. For
instance, for Netflix the average size of V (u, .) is 200 [15]. The more the user ratings
are distributed in different groups, the more the cost of updating the user bias is small.
Still for Netflix, we have 98.4, 48.7, and 70.3 ratings in average per user with our three
clusters of items.

54
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

3.6 Experimental Results

In Section 3.2 we proposed to enhance the widely used MF model, coupling it with
two techniques that tend to improve the quality of predictions: the preliminary cluster-
ing of the ratings before factorization, and the final adjustment of the predicted ratings
using biases. This section presents the experiments we settled, in order to validate our
approach. We remind that our approach consists of generating a high quality recommen-
dation model based on incoming ratings. Then, we use that model for recommending
items, as long as possible (provided that quality remains sufficient) up to next generated
model is ready, and so on. Thus, the quality of our approach depends on two factors (i)
the initial quality of the generated model, and (ii) the loss of quality over time. Accord-
ingly, we validate each factor independently, proceeding in two separated steps. Step 1
focuses on the initial quality of the model that has just been generated. Step 2 focuses
on the loss of quality, of our approach, over time.

– Step 1: Validation of the initial quality We plan to show that our model
yields good initial predictions compared to other commonly used models. We
setup a fully informed environment, meaning that the model is aware of all the
ratings that precede the prediction. This environment is optimal since it provides
the maximal input to the model generation. Although this environment is rarely
met in practice (it implies that no new ratings have occurred during the model
generation), it ensures the most favorable conditions for every model. Thus it
allows us comparing several models when they expose their best strength. Our
objective is to quantify the quality of our model that combines factorization with
clustering and bias adjustment. To this end, we compare the accuracy of our model
with two commonly used models: (i) the MF alone, and (ii) the biased MF (see
Section 3.4.1). Note that, we do not compare our solution with the case of MF
preceded by clustering without bias adjustment, since clustering does not improve
the accuracy directly in its own. Actually, clustering allows finer biases (one bias
per cluster), which in turns yields better accuracy.

– Step 2: Validation of the loss of quality over time In the second valida-
tion step, we check that the accuracy of prediction decreases over time after each
factorization. This aims to justify the relevance of our investigation to provide
predictions whose accuracy lasts longer. Then, we will measure the benefits of our
approach (continuous bias update, based on new ratings) for keeping up the accu-
racy of prediction longer than others. In other words, our solution should expose a
smaller quality decrease (i.e. a flatter slope) than other solutions. In consequence,
it will imply less frequent model re-regeneration, saving a lot of computation work.

3.6.1 Implementation and experimental setup

We implemented our proposition in C++ and ran our experiments on a 64-bits
linux computer (Intel/Xeon x 8 threads, 2.66 Ghz, 16 GB RAM). We used a LIL matrix
structure to store the dataset of ratings. To cluster the items, we ran a basic factorisation
with some iterations and a K-Means algorithm on the items factors.

3.6. EXPERIMENTAL RESULTS 55

Table 3.1: Caracteristics of the datasets

Dataset # of ratings # of users # of movies
MovieLens@100K 100K 943 1,682
MovieLens@1M 1M 6,040 3,900

MovieLens@10M 10M 71,567 10,681
Netflix 100M 480,189 17,770

We did preliminary tests to calibrate the parameters of the model and the number of
clusters: λ = 0.001, β = 0.02, γ = 0.05, Nc = 3. The λ, β, and γ values are close to the
ones suggested in [104]. We limit training to 120 iterations at most and use 40 factors
for both matrices P and Q.

3.6.2 Datasets

We conduct the experiments on the Netflix dataset [15] and the ones of MovieLens 4.
These datasets are very often used by the recommendation system community [127].
These datasets report ratings that users assign to some movies. Table 3.1 shows their
characteristics. The ratings are represented by integers ranging from 1 to 5 for all the
datasets except the largest one of Movielens where we have real numbers. Each dataset is
ordered by ascending date. With the two smallest datasets, we used the movie’s genres
to clusters them. Movies having several genres are in several clusters. With the two
biggest datasets, we rely only on the available ratings to cluster them. Thus we consider
different clustering approaches in our experimentations. Let us remark that any item’s
property is not available in the Netflix dataset.

3.6.3 Initial quality

The objective of this experiment is to compare the initial qualities of the three models.
We split the two biggest datasets into two parts : a training set representing 98% of the
set of ratings and a test set which keeps the rest (the 2% most recent ratings to predict).
As comparison, the test set from the Netflix dataset contains 1.88M ratings. This number
of ratings is greater than the one of the Netflix Prize which has 1.4M ratings [15]. We
did the same for the others but with a training set of 80%. As the latter are small, this
percentage allows us to have enough data in the training set.

Table 3.2 reports the different RMSE errors obtained for the three models named
Basic MF, Biased MF, and CBMF. We remark that CBMF outperforms the other mod-
els. It reaches 1.12% of improvement over the biased MF with the Netflix dataset. Let
us remind that even an improvement as small as 1% of the accuracy leads to a significant
difference in the ranking of the top-K most recommended items for a user [74, 31]. As

4. http://www.grouplens.org/node/73

http://www.grouplens.org/node/73

56
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

Table 3.2: Initial quality of the three models in terms of RMSE score

Dataset Basic MF Biased MF CBMF
MovieLens@100K 0.9370 0.9361 0.9289

MovieLens@1M 0.9129 0.9102 0.9024

MovieLens@10M 0.7743 0.7608 0.7578

Netflix 0.9599 0.9312 0.9208

Table 3.3: Percentage of quality improvement

Dataset Basic MF Biased MF CBMF
Movielens 2.56 5.15 6.09

Netflix 4.46 4.39 5.67

we target large scale datasets, from here we consider only the Netflix dataset and the
biggest one of Movielens in our experimentations.

3.6.4 Large training sets improve the quality of the model

The objective of this experiment is to measure the quality of the model according to
the size of the training set. We check the intuitive rule stating that the more ratings we
take as input, the best quality we get.

To realize this experiment, we first sort the ratings of each user according to their
timestamps. Then, we split the training set (98% of the initial dataset) into 10 chunks
(c1 to c10) of equal size: 10% each. Thus, the number of ratings of a user is almost the
same in each chunk. From that, we generate 10 training sets (T1 to T10) of increasing size
by assembling the chunks such that we always use the most recent ratings to generate
the model. More precisely, T1 = {c10}, T2 = {c9}

⋃
{c10}, T3 =

⋃

i∈[8−10] {ci}, ... T10 =
⋃

i∈[1−10] {ci}. (cf. Figure 3.3).
Figure 3.4 reports the RMSE evolution of the three models, for the two datasets:

MovieLens (3.4a), and Netflix (3.4b). We see that the three models are affected by the
size of the training set. The more ratings they have, the better quality they tend to
propose. Table 3.3 shows the quality improvements of these three models from T1 to
T10. The CBMF model shows 5.7% and 6% of quality improvements respectively for
Netflix and MovieLens, thanks to the finer-grained cluster-based bias adjustment. This
confirms the ability of local biases to better capture user tendencies over large training
sets.

We observe on Figure 3.4 that on the range 10%-60% (training sets T1 to T6), the
Biased MF model outperforms the CBMF model. Indeed, with the first training sets we
do not have a lot of data to compute enough discriminative clusters. Also the fact that
the users do not have yet rated a lot of items harms the local biases adjustment.

3.6. EXPERIMENTAL RESULTS 57

Figure 3.3: Training sets partitioning

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

Training sets with increasing size (10% to 100%)

Basic MF
Biased MF

CBMF (3 clusters)

(a) MovieLens

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

Training sets with increasing size (10% to 100%)

Basic MF
Biased MF

CBMF (3 clusters)

(b) Netflix

Figure 3.4: Quality improvement for increasing training sets sizes

We also see different RMSE error ranges between the datasets. This difference be-
tween the RMSE errors is due to the data characteristics. For instance, the 10M Movie-
Lens dataset has decimal ratings while the Netflix dataset uses only integer values.
Adomavicius and Zhang mention this phenomenon in [4]. They point out consistent and

58
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

significant effects of several data characteristics on recommendation accuracy. Finally,
we note the importance of the biases. The basic MF suffers from that, it never catches
up the other models whatever the dataset.

3.6.5 Quantifying the need for online integration

Basically, we need online integration when offline solutions fail to provide sufficient
quality. The objective here is to measure the impact of missing ratings on the quality
that offline models can deliver. We wonder to what extent the most up-to-date ratings
influence the recommendation. Given a training set containing a fixed amount of ratings,
we investigate the quality variation when the ratings become less and less recent. More-
over, we target the ‘input intensive’ scenarios where a lot of new ratings are produced in
a short period of time, thus million ratings are potentially missing. For instance Netflix
company receives 4 million ratings per day [8]. To reflect this, we must consider several
millions of missing ratings in our experimentations. Therefore, we experiment only with
the Netflix dataset which is the largest one, the MovieLens dataset does not have enough
ratings to setup an enough number of missing ratings. Indeed 10M Movielens dataset
does not match the experimental requirements, because we risk to reduce drastically the
training set size, which becomes too small to produce meaningful results (i.e., few items
are rated in both the test set and the training set).

We define the test set and the training set as follows. We keep in the test set 10% of
the ratings, the most recent ones. The training set contains the 90% remaining ratings.
To better observe the impact of the delay on the RMSE, we balance the delay of each
user. More precisely, we order the ratings by arrival position, such that the ith ratings
of any user precede the i + 1th ratings of any of them, and so on. We measure the
evolution of the prediction quality along the ordered test set by computing the RMSEs
over a sliding window of 200K ratings as size. Thus two consecutive windows share the
half of their ratings (for smoother results).

Figure 3.5 shows the evolutions of the prediction quality for the three models : Basic
MF, Biased MF, and CBMF. Figure 3.5 shows that the error is increasing with the
number of missing ratings. We observe a 5% RMSE increase for long delays (from 5M
to 7M missing ratings). Such quality loss might not be acceptable for recommendation
systems. This confirms the need for online integration.

3.6.6 Robustness over time of our online integration model

The goal is to show that our model is robust over time, i.e., it still yields good quality
predictions even when many ratings have been produced since the last factorization.
Using the same training and test sets, we now take into account the missing ratings to
adjust on the fly the local users’ biases (cf. Algorithm 2). More precisely, we sequentially
scan the test set and consider the ratings one by one. For each rating, we calculate the
prediction error, then we immediately integrate the rating in order to improve the next
predictions. The average time to integrate one rating is 0.4 millisecond. It is fast and
adds few overhead on the online recommendation task.

3.6. EXPERIMENTAL RESULTS 59

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 1 2 3 4 5 6

R
M

S
E

 (
w

in
do

w
 s

iz
e

of
 2

00
K

 r
at

in
gs

)

Delay since last MF (in million of ratings)

Basic MF
Biased MF

CBMF (3 clusters)

Figure 3.5: Offline quality (RMSE) with increasing delays (# million of ratings)

In Figure 3.6, we report the new evolution of CBMF prediction quality when we
integrate the incoming ratings taken from the test set. We first analyze the CBMF
errors in Figure 3.6, and compare it with the static (offline) case, to figure out the
importance of online integration. The benefit of online integration is up to 13.97% for
the largest delay (close to 7M missing ratings), which is a significant improvement for
recommendation purpose. This makes our solution quite robust.

3.6.7 Quality vs. Performance tradeoff for online integration

We conducted further experimentations to validate our choice about what part of
the model is worth being updated during the online integration phase. We investigated
three possible methods to integrate a new rating: (i) update the user factors only, (ii)
update the user local biases only, and (iii) update both the user factors and local biases.
Naturally, processing more updates comes at a cost. We wondered if the computation
time spent in more integration would be eventually amortized by the benefit of postpon-
ing the next model re-computation. Figure 3.7 shows the quality improvements brought
by these three methods of integration. We reported, on Table 3.4 the update time and
the respective mean quality gain (in terms of RMSE) for each of the three above men-
tioned integration methods. We deduced that integrating both the local biases and the
factors bring a relative benefit of 7% compared to integrating the local biases only. On
the other hand, it adds up to 151% relative overhead on the computation cost. Given

60
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6

R
M

S
E

 (
w

in
do

w
 s

iz
e

of
 2

00
K

 r
at

in
gs

)

Delay since last MF (in million of ratings)

CBMF static
CBMF + update biases

Figure 3.6: Quality of online integration for increasing delay

Table 3.4: Quality vs. Performance tradeoff

Update Improvement (%) Average update time
user factors 0.84 3.11 ms
local biases 7.18 1.24 ms
both 7.69 3.75 ms

a tolerated RMSE value, and the absolute values of the matrix factorization cost and
the integration cost, we were able to decide which method yields the minimum overall
cost. Table 3.4 shows that the local biases-only update method provided the optimal
performance (best balance between quality improvement and update cost).

3.6.8 Benefit of refactorization

The objective of this experiment is to quantify the benefit of recomputing the CBMF
model. Intuitively, one wish to recompute the model when its quality moves away beyond
the expected quality level. On the other hand, in order to save computation resources,
we wish to recompute the model id needed only. With this in mind, we set up an
experiment which consists of five successive factorizations. We begin with the same test
set and training set as in the previous experiment: the 10% most recent ratings are in

3.6. EXPERIMENTAL RESULTS 61

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6

R
M

S
E

 (
w

in
do

w
 s

iz
e

of
 2

00
K

 r
at

in
gs

)

Delay since last MF (in million of ratings)

CBMF static
CBMF + update factors
CBMF + update biases

CBMF + update factors and biases

Figure 3.7: Quality vs. Performance tradeoff

the test set, the remaining 90% are in the training set. We generate five models resulting
from five successive factorizations, scattered in time as described in the following. Let
M0 denote the initial model resulting from the training set factorization. Then, we
sequentially scan the test set, integrating the incoming ratings into M0, on the fly, until
we reach 20% of the test set. At this point, we trigger the re-factorization and generate
a new model, denoted M1, which replaces M0 to become the current model. Then, we
repeat the sequence “scan next 20%, refactorize and replace model” until we reach the
end of the test set. We end up generating M2, M3, and M4 which integrate respectively
40 %, 60%, and 80% of the test set in addition to the initial training set. We report
the resulting RMSE, on Figure 3.8, while iterating over the test set and using the most
current model, namely M0 to M4, for prediction. We compute each RMSE value based
on all the ratings that occur between the current factorization and the next one. We
first globally observe that re-factorization outperforms CBMF online at any point in
time. Indeed, whatever is the amount of information, a globally optimized model (i.e.,
factorization) is more accurate than a locally adjusted model (i.e., bias update). Second,
we measure that re-factorization slightly improves CBMF online up to 1% for M4. This
is mainly because CBMF online performs quite well all along the run. Hopefully, this
offers enough time to recompute the model. In our case, M1 took 8 hours to compute
which is the equivalent time to receive 1.33 million ratings (according to the Netflix
rate [8]). We observe that CBMF online yields low RMSE during a longer time than
the time required for re-factorization. This make our solution practical. Furthermore, a

62
CHAPTER 3. USING CLUSTER-BASED BIASES FOR DYNAMIC

RECOMMENDATIONS

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

0-20 20-40 40-60 60-80 80-100

R
M

S
E

Refactorization triggered at every 20% chunk of the test set

CBMF static
CBMF + update bias

CBMF + refactorization

Figure 3.8: Refactorization benefit

longer run, could serve to measure the maximum “validity time” of the CBMF online.
In turn, this would allow to deduce the optimal date to trigger the refactorization, while
keeping the RMSE bounded.

3.7 Conclusion

In this chapter, we tackled the collaborative filtering problem of accurately recom-
mending items to users, when incoming ratings are continuously produced and when
the only available information is several millions of user/item ratings. Through years of
experimentation campaigns, the recommendation systems community has demonstrated
that the model-based solutions achieve the best quality, however such solutions suffer
from a major drawback: they remain static. They take as input a snapshot of the ratings
at the time the model computation starts. They simply ignore the more recent ratings,
skipping possibly meaningful information for better recommendation.

Our goal was then to find a way to enable the integration of the incoming ratings for
a well-know model-based recommendation solution requiring heavy computation with
billions of ratings [8]. To this end, we refined the matrix-factorization model that fea-
tures very good offline quality, by introducing personalized biases that capture the user
subjectivity for different groups of items. Items are grouped basing on their ratings.

We proposed a detailed algorithm to update the fine grained (i.e. per item cluster)

3.7. CONCLUSION 63

user biases, which is fast enough to integrate the incoming ratings as soon as they
are produced. We implemented the algorithms and performed extensive experiments
on two real large datasets containing respectively 10M and 100M ratings, in order to
validate both quality and performance of our cluster-based matrix factorization (CBMF)
approach. We compared our solution with two state-of-the-art matrix factorization
solutions that support 0 and 1 bias respectively. Qualitative results place our solution
better to its competitors in the offline case. Our solution demonstrates an improvement
of accuracy up to 13.97% (relatively to the offline case) for highly dynamic scenario
where millions of incoming ratings are injected into the model. Moreover, performance
results expose fast integration of the incoming ratings; which makes our solution viable
for online recommendation systems that need to scale up to a higher throughput of
incoming ratings.

4 | Making Social and Popularity-
based Tag Recommendations

The current Web is full of social media sites which focus on sharing various item
types, e.g. pictures (Flickr), or URLs (del.icio.us). These sites massively use metadata
(i.e., tags) to enrich their item description and thereby provide better user experiences
through applications like item search that relies on tag-based similarity between items
and/or users.

For tagging, media sites can rely on expert groups but they fail to face a large num-
ber of items. There are also automatic annotation methods based on a predefinied set
of classified tags but they lack of evolutivity. Moreover these approaches do not capture
the user perception of the items and tags [7].

Social tagging is the practice of allowing users to freely annotate shared content.
The users can organize and search content based on annotations, more commonly called
tags. While allowing users to apply tags for personal aims 1, social tagging applications
give them the possibility to rely on the classification applied by others to browse and
get interesting items. However, due to the flexibility of social tagging systems the clas-
sification process is not rigorous, hence the need of recommending tags to the users in
order to improve the homogeneity of the tags and ease the access to classified items.

Tag recommendation aims to recommend the most suited tags a user can assign to
a given item. The popularity of social media sites has made it an active and growing
topic of research [69, 97, 61].

In this chapter, we target online social applications dealing with large networks,
composed of tens of thousands of users and more. The objective is to provide these
applications with a very fast and scalable solution to compute recommendation. In this
context, we investigate methods that match both the quality and scalability require-
ments, and tackle the challenge of delivering tag recommendations which yield good
quality in a short time.

1. For example, a user may use some tags to summarize the content of an item like in Bibsonomy,
when another uses them to locate a picture like in Flick or Instagram. [27], Dattolo et al. present a
useful survey about the role of tags for recommendation

65

66
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

One key aspect of tag recommendation systems is the scoring function that is used to
measure the relevance of the recommended tags. In [50] we proposed a scoring function
that combines a global tag relevance (i.e., for all the users) with a local relevance limited
to the neighborhood of the requesting user. We present here a wisely chosen tag scoring
function which strives to improve the accuracy of recommendations. It combines the
reputation of the tags with the opinion of the requester’s neighborhood. We assume that
the users are organized in a weighted graph representing, for instance, the similarity or
trust between them. Thus we introduce a 3-components scoring function that captures
the tag relevance locally (for the requesting user), socially (for the user neighborhood)
and globally (for all the users). The recommended tags are computed on-the-fly using
an optimal navigation technique inspired from previous works on aggregation and search
algorithms [33, 89, 88]. We exploit the transitivity of the users’ similarity to enlarge the
neighborhood circle, and thus enhance the quality of the recommendations while limiting
the traversal of the graph to a small number of neighbors.
We present also a method to control the number of tags to recommend such that it
provides the requesting user with a better relevance. We performed extensive quality
and performance experiments, and compared our technique with the state-of-the-art
solutions. The obtained results show a significant quality improvement.

For a better understanding of the sequel, we first begin with some preliminaries before
discussing related works in Section 4.3. Sections 4.2 details our proposal. In Section 4.4,
we present the experiments we have done, and conclude this work in Section 4.5.

4.1 Preliminaries

Social resource sharing systems are central elements of the Web 2.0. They use the
same kind of lightweight knowledge representation, called folksonomy [16].
A folksonomy S is a system of classification that allows its users to create and manage
tags to annotate and categorize content. It is related to social bookmarking and can be
defined formally as a set of users U , a set of tags T , a set of items I, and a ternary relation
between them S ⊆ U × I × T . Each triple (u, i, t) ∈ S indicates the tagging of an item
i, by a user u, using a tag t. We denote by a post, T (u, i), the list of tags assigned by a
user u to an item i. We assume that a user can tag an item with a given tag at most once.

In order to simplify the rest of this chapter, let us consider the following definitions:
For a given user u and a given item i, we denote by score(t|u, i) the estimated relevance
of tag t. The K highest scores are obtained as follows:

Top(u, i, K) =
K

argmax
t∈T

score(t|u, i) (4.1)

Beside this, we consider that the users are organized in a weighted graph G = (U, E, θ),
where U represents the set of vertices, E the set of edges and θ is a function that
associates to each edge e = (u, v) ∈ E a value θ(u, v) ∈ [0, 1] corresponding to a proximity
(or similarity) measure between the users u and v.

4.1. PRELIMINARIES 67

Table 4.1: Definitions from folksonomy

T (u) ≡ {t ∈ T | ∃i ∈ I : (u, i, t) ∈ S}
T (i) ≡ {t ∈ T | ∃u ∈ U : (u, i, t) ∈ S}
T (u, i) ≡ {t ∈ T | (u, i, t) ∈ S}
I(u) ≡ {i ∈ I | ∃t ∈ T : (u, i, t) ∈ S}
I(u, t) ≡ {i ∈ I | (u, i, t) ∈ S}
U(i) ≡ {u ∈ U | ∃t ∈ T : (u, i, t) ∈ S}
U(i, t) ≡ {u ∈ U | (u, i, t) ∈ S}

4.1.1 Similarity propagation

As stated above, the weighted graph G represents the observed similarity between
the users, and can be inferred from the tagging behavior of the users. However, the lack
of direct link between two users, does not necessarily mean that they can not be similar
to some extent. For instance, two users u1 and u2 may have different areas of interest
and yet share a common neighbor v who may be, for some aspects, similar to u1 and
u2. Many works addressed the problem of social link propagation, mainly in the case
of trust networks [130, 32]. In this work, we consider transitivity as a key element for
similarity propagation, and we compute it by multiplying the similarity values observed
at each step.

Figure 4.1 shows an example where the propagation of similarity may lead to better
recommendations. Here, we suppose that Arthur wants to tag item i1 and the system
is expected to propose to him some relevant tags. By ρ(tn, Arthur) we refer to the
popularity of tag tn, as seen by Arthur (i.e., the number of times Arthur uses this tag).
We assume that in the direct neighbors of Arthur only Celine has tagged i1. Thus, he/she
is the only user, among the similar neighbors of Arthur, who can give us an idea about
what tags to recommend (i.e., t1 and t2). However, using the similarity propagation,
one can easily see that the opinions of Helen and Frank, who already tagged i1, may
be more relevant than the one of Celine. Indeed, the inferred similarity values are 0.54
(0.9 × 0.6) between Arthur and Frank, and 0.504 (0.9 × 0.8 × 0.7) between Arthur and
Helen.

Therefore, the similarity function θ defined above, can be extended to deal with
propagation, following a natural interpretation that, as trust, similarity is transitive
at least to some extent [130, 158]. This allows to yield an overall tag scoring scheme
that depends on the entire network instead of only the user’s vicinity. We infer the
similarity value between two users u1 and un, connected through a path p = (u1, ..., un),
by multiplying the similarity values observed at each step [158, 130]. In the following,
we denote this extended similarity by θ+.

θ+(p) =
n−1∏

i=1

θ(ui, ui+1) (4.2)

The inferred similarity decreases gradually at each new step of a path. Thus, given a
social network G and a path p = (u1, ..., un) ∈ G, we always have θ+(u1, ..., un−1) ≥

68
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

Figure 4.1: Social link propagation leads to better decisions

θ+(u1, ..., un). When two users u and v are connected through different paths in the
network, the extended similarity between u and v corresponds to the highest similarity
value computed from all the paths. More precisely, we define the extended similarity,
θ+(u, v), as follows:

θ+(u, v) = max
p∈G

{

θ+(p)|u
p
→ v

}

(4.3)

For instance, consider the example of Figure 4.1. Helen and Arthur are connected by
two paths, and their extended similarity is evaluated to 0.5 (0.9× 0.8× 0.7).

4.1.2 Extended neighborhood opinion

We denote by η(t|u, i) the opinion of the neighbors of user u about the relevance of
tag t for the annotation of item i, and define it as follows:

η(t|u, i) =
1
|U(i)|

×
∑

v∈U(i,t)

θ+(u, v) (4.4)

We sum the similarity values between u and his/her neighbors who already annotated
the item i by t. Then, we normalize this sum by dividing it with the number of users
who tagged this item (η(t|u, i) ∈ [0, 1]). For instance, considering the example of Figure
4.1, η(t3|Arthur, i1) = 0.52 and η(t2|Arthur, i1) = 0.41. Our normalization aims to

4.2. SOCIAL AND POPULARITY-BASED TAG RECOMMENDATION 69

emphasize two aspects of the tags: their popularity (i.e., frequency) and the similarity
with the users who used them.

In order to compute the opinion of the neighborhood of a user, we need to explore
the weighted graph starting from the considered user. A naive approach may lead
to a prohibitive navigation cost, especially for real world setting. Thus, we use an
optimal navigation technique based on previous works on optimal aggregation and search
algorithms [37, 33, 89, 50], as we will shortly explain.

4.2 Social and Popularity-based Tag Recommendation

We present in this section our tag recommender system, called FasTag, which enables
recommending the most relevant (top-k) tags to be associated with an item. FasTag com-
bines the popularity of the tags with the opinions of the neighbors, while recommending
a tag to a user. The right balance between these elements allows a good quality of rec-
ommendations, as we show in the experiments. The number K of tags to propose to the
user is adjusted by the system in order to maintain a good quality of recommendation.

We present below the score model used by FasTag, in Section 4.2.1. We detail our
algorithm in Section 4.2.2.

4.2.1 Score model and tag relevance

Intuitively, when a tag t is popular (i.e., frequently used), it may be relevant to
recommend it to the users. That is why tag recommendation models try to take into
account the popularity of the tags. However, different users may have different pref-
erences while tagging the same item. Thus, obtaining reliable opinions about the tags
from the closest neighbors may be of great help. Let us consider again the example
shown in Figure 4.1. The tag t1 is more popular than t2 (t1 is used nine times while t2

is used only four times). If we consider the popularity of the tags, we will first recom-
mend the tag t1 to Arthur, despite the fact that this tag may be not used to tag the
considered item (i1). On the other hand, if we consider the opinions of Arthur ’s neigh-
borhood as formulated in Equation 4.4, the tag t2 appears more relevant to recommend
(η(t2|Arthur, i1) = 0.41 > η(t3|Arthur, i1) > η(t1|Arthur, i1)). However, Arthur has
never used the tag t3. A good balance between popularity and neighborhood opinions
seems to be more appropriate.

For a given user u and a given item i, FasTag computes a score for each tag t as
follows:

score(t|u, i) =
(

α× ρ(t, i) + (1− α)× ρ(t, u)
)

×
(

1 + η(t|u, i)
)

(4.5)

Here, ρ(t, i) (resp. ρ(t, u)) denotes the popularity of the tag t for the item i (resp. for
the user u) and η(t|u, i) is a measure of the opinion of the user’s neighbors, as already
defined in our preliminaries. Thus, our scoring model combines the popularity of the tag
with the opinions of the users’ neighborhood about the use of this tag to annotate the
considered item. The more a neighbor is close (similar) to the user, the more his/her
opinion is important in our scoring model. The sum 1 + η(t|u, i) allows to take into

70
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

account isolated users. More precisely, we compute the values of ρ(t, i) and ρ(t, u) as
follows:

ρ(t, i) =
|U(i, t)|
|U(i)|

, ρ(t, u) =
|I(u, t)|
|I(u)|

The parameter α in Equation 4.5 allows to tune the relative importance of each compo-
nent of the sum (item-related tag popularity versus user-related tag popularity).

4.2.2 The FasTag Algorithm

Considering social link between users is an additional contribution in top-k retrieval
process but it may have computing costs in a real-world setting [89, 10]. To face this
issue we can apply four strategies:

– FasTag1: We do not consider similarity propagation on the network and then we
restrict the user’s neighborhood to his/her direct neighbors only.

– FasTag: Of course, the above strategy lacks efficiency when the indirectly con-
nected users are relevant to the recommendation. Obviously, the closest neighbors
should contribute more than the others. The extended similarity we introduced in
our preliminaries reflects this vision. Moreover, while enabling similarity propa-
gation we can use some algorithms of approximation in order to estimate as soon
as possible that the current top-k tags will not change anymore [33]. Therefore,
we are able to stop the recommendation process earlier without investigating the
whole network (see below for details about this approximation).

– FasTag++: It extends the previous strategy. It consists in permanently adding
new edges in the network, i.e, making some shortcuts between indirectly connected
users. We add shortcuts on the fly during the recommendation process [50, 89].
Each traversal may add new edges which are useful to the next recommendations
as it saves the cost to recompute the extended similarities.

– FasTag∞: We also consider the baseline strategy which investigates the whole
social network for retrieving the exact score of each tag. This strategy still adds
new edges as FasTag++ but does not optimize the traversal. We use it, for
comparison purpose, to measure the impact of the early stop strategy.

We now detail how FasTag saves computation time (early stop strategy) while taking
into account the opinion of neighbors whatever they are directly or indirectly connected.
The idea is to stop the computation as soon as the current top-k tags to recommend will
no more change, even if we have not yet got their exact scores.

At any step of the traversal, we estimate the maximal score a tag may reach in order
to know if it may enter into the top-k list. We assume that we have an inverted list
ILi of the popularities of the tags used to tag the item i, (ρ(t, i)), sorted in descending
order. Thus, starting from the top most tag, we explore the list one tag at a time.
The consumed tag becomes candidate for the top-k result. We consider as unknown the
popularity of a tag which is not yet used. We denote by toptag(i) the tag currently at
the top of ILi and topρ(i) as its popularity.

Let us remind that we maintain a max-priority queue H whose top element top(H)
will be at any time the most relevant yet unvisited neighbor on the network. At each step

4.2. SOCIAL AND POPULARITY-BASED TAG RECOMMENDATION 71

of the network traversal, we extract (visit) the top of the queue, and we add its unvisited
neighbors to the queue. Moreover if the aggregated similarity of the path between the
neighbor and the user is greater than the already known similarity between them, we
update the similarity value according to Equation 4.3.

In the sequel, for the sake of clarity, we introduce some definitions.

Definition 1. We define the minimal possible score of a tag t by a user u for an item
i, MinScore(t|u, i), as its pessimistic overall score by only setting the item’s share to

MinScore(t|u, i) =
(

α×max
(
ρ(t, i), partial_ρ(t)

)

+ (1− α)× ρ(t, u)
)

×
(

1 + η(t|u, i)
)

(4.6)

where partial_ρ(t) represents the current percent of visited users who tagged i with t. It
is a lower-bound value of ρ(t, i), when it is not yet known.

Hence, let D denote the list of all the candidate tags, sorted in descending order of
their minimal possible scores. The first K tags of D are the current top-k elements to
recommend.

Let also unseen_users(t, i) denote the maximum number of yet unvisited users who
may have tagged the item i with t. During the neighborhood exploration, each time we
visit a user v who tagged item i with t, we (i) update η(t|u, i) (initially set to 0) by
adding to it θ+(u, v), then (ii) we decrement unseen_users(t, i).
We obtain the final neighborhood opinion, η(t|u, i), when unseen_users(t, i) reaches 0.
For more details about this process see [50, 89].

Definition 2. Symmetrically to the minimal possible score, we define the maximal pos-
sible score of a tag t, MaxScore(t|u, i), that has already been seen in D (an optimistic
overall score) by

MaxScore(t|u, i) =
(

α× ρ(t, i) + (1− α)× ρ(t, u)
)

×
(

1 +

η(t|u, i) + θ+(u,top(H))×unseen_users(t,i)
|U(i)|

)

(4.7)

The maximal possible score of a tag is an estimation of the greatest score it may
reach if all the yet unvisited neighbors have annotated item i with it.
From these two definitions, we can introduce the former condition of our computation
termination. It occurs when the maximal optimistic scores of tags already in D, but
not in the top-k (i.e., the K first tags of D), are less than the minimal score of the last
element in the current top-k (i.e., D[k]).

Definition 3. We estimate also an upper-bound score, MaxScoreUnseen, on the yet
unseen tags using as overall score for all the unseen tags as follows:

MaxScoreUnseen =
(

α× topρ(i) + (1− α)× topρ(u)
)

×
(

1 +
θ+(u, top(H))× U i

|U(i)|

)

(4.8)

72
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

As for topρ(i), topρ(u) is the highest tag popularity for user u. We maintain a sorted
list of these popularities in order to get topρ(u) at any time. The first time a tag is met
during the network traversal, we drop it from this list. Therefore it does not count for
unseen tags.
U i represents the current number of unvisited users who tagged the item i. At the start,
we initialize it to |U(i)| and then we decrement it each time we meet an unvisited user
who tagged the item.
This upper-bound score allows us to determine if a yet unseen tag might be in the top-k.
Thus it introduces the second condition of termination of FasTag that is to say no yet
unseen tag can change the current top-k, MaxScoreUnseen < MinScore(D[k]|u, i).

As already mentioned we keep and maintain the top candidate tags in the list D
sorted in descending order by their minimal possible scores. Thus at any moment we
can retrieve the top-k tags to recommend. This list D is updated each time we meet a
tag which is not already in. We add this new tag as candidate. When the two conditions
of termination presented above occur the execution terminates.

Algorithm 3 presents the functioning of FasTag as we introduced it in the above
subsections.

Algorithm 3: FasTag algorithm
Input: (u, i) ∈ U × I
Output: D[1], . . . , D[k]

1 /* Initialization */
2 foreach t ∈ T do
3 Compute ρ(t, u) and ρ(t, i)
4 η(t|u, i)← 0
5 end
6 D ← ∅ /* The sorted list of candidate tags */
7 H ← max-priority queue of the neighbors of u sorted by their assigned similarity

values
8 Compute ILi and ILu

9 /* H is sorted by θ+(u, v)) */
10 while H 6= ∅ do
11 v ← EXTRACT_MAX(H) /* Extract top(H) */
12 /* Then extend the opinion process to the neighbors of v */
13 NEIGHBORHOOD_OPINIONS_PROCESS(u, v, i)
14 if Conditions of termination occur then
15 break /* Early stopping */
16 end

17 end
18 Return D[1], . . . D[k]

4.3. RELATED WORK 73

4.2.3 Handling the Network Partitioning

To further optimize the network traversal, we try to find the unreachable users who
tagged an item. This case may happen when we have a partitioned network. We improve
our stop condition at Line 10 of Algorithm 3 to reduce the computation time. We proceed
in two steps:

1. detecting the network partitions: when our computation leaves the WHILE in-
struction at Line 10 of Algorithm 3 and that is due to H = ∅, we evaluate the
number of visited neighbors. If the number is lower than the size of the network
and the user u not yet assigned to an already discovered network partition, we
report a new partition into which we put u and all the visited neighbors during
the current recommendation task.

2. using the network partitions: if the user u belongs to a network partition, we count
the number of users in this partition who already tagged the item i. This number
may be lower than the one on the whole network. For each iteration of our WHILE
instruction, we decrement the value of this number. When it reaches zero, we end
the iterations and return the first tags of D.

The step 1 (detection) occurs only once per partition, during the first recommenda-
tion related to a partition. The step 2 (saving computation) improves greatly the next
recommendations.

4.3 Related Work

Finally, in [50] we proposed STRec, a social-based tag recommender which optimizes
the social network traversal. In this first work, we did not consider the user-related tag
popularity (i.e., ρ(t, u)) in the scoring function. Thus the recommendations we made
are not so personalized despite we used the users’ neighborhood. FasTag remedies this
and gives better results. Moreover the network partitions were not handled by STRec
in order to further optimize its network traversal (see Section 4.2.3). FasTag includes in
its optimization the handling of network partitioning. There are two important points
which distinguish it from STRec. FasTag improves both the recommendation quality of
STRec and its computation time in case of network partitioning.

There are a lot of investigations on graph-based tag recommenders which rely on links
between users (e.g., social relation, tagging behavior),items and/or tags [68, 77, 40, 98].
One of the first developed is FolkRank [68]. It relies on a user-item-tag tripartite hyper-
graph. FolkRank gives good recommendations but has scalability problems. In [150],
Zhang et al. combine FolkRank with a collaborative filtering technique which considers,
like us, the similarities between users. As a FolkRank-based solution, their approach
lacks scalability. Kubatz et al. introduced in 2011 a tag recommender algorithm called
LocalRank which works as FolkRank but can make real-time recommendation [77]. Lo-
calRank focuses on the local neighborhood of a given user and resource. It considers only
a small part of the tripartite hypergraph and can thus generate tag recommendations

74
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

in real-time. However their recommendation quality is nearly the same as the one of
FolkRank and then is lower compared to FasTag (see Table 4.3).

In [98] and [40], the authors combine some simple recommenders (e.g., popular
tags used to annotate an item, the ones by a user and those of his neighborhood). In
the experimentation in [40], Gemmell et al. showed that their proposition gives better
results. However they extracted some post-cores from the datasets they used in order
to focus on the dense core of the folksonomy graph. Therefore, they completely change
the character of the tag recommendation problem.

Unlike these cited works, FasTag takes into account the proximity between the users
whether they are directly or indirectly connected. Thus it allows a broader consideration
of a user’s neighborhood. Furthermore it faces scalability problems by controlling the
network traversal.

4.4 Experimentation

4.4.1 Datasets

We chose five datasets from four online systems (delicious 2, Movielens 3, Last.fm 4,
and BibSonomy 5) and a larger one from delicious.We took the first fives datasets from
HetRec 2011 [24] and Bibsonomy. For the latter, we have a post-core at level 5 and
a one at level 2 (more precisely, the dataset of the Task 2 of ECML PKDD Discovery
Challenge 2009). Let us remind that a post-core at level p is a subset of a folksonomy
with the property, that each user, tag and item has/occurs in at least p times. For
more information regarding post-core have a look at [68]. We call these two datasets
respectively bibson5 and dc09 6).

We use the larger dataset specially for large scale experiments, in order to demon-
strate the efficiency of our approximation approach. It is the same one in [46]. Table
4.2 presents the characteristics of the datasets.

4.4.2 Evaluation Measures and Methodology

To evaluate FasTag, we used a variant of the leave-one-out hold-out estimation called
LeavePostOut [69]. In all datasets except dc09, we randomly picked, for each user u, one
item i, which he had tagged before. Thus we created a test set and a training one. The
task of our recommender was then to predict the tags the user assigned to i. Moreover
for each training set we inferred a social network between users (i.e., their similarities) by
computing the Dice coefficient between their posts. Therefore in our experimentations,
the user proximity refers to their similarity and not trust relationship. We could not
find a tagging dataset with a trust network. However the notions of similarity and trust

2. http://www.delicious.com

3. http://www.grouplens.org

4. http://www.lastfm.com

5. http://www.bibsonomy.org

6. http://www.kde.cs.uni-kassel.de/ws/dc09/

http://www.delicious.com
http://www.grouplens.org
http://www.lastfm.com
http://www.bibsonomy.org
http://www.kde.cs.uni-kassel.de/ws/dc09/

4.4. EXPERIMENTATION 75

Table 4.2: Characteristics of the datasets

Dataset |U | |I| |T | |T (u, i)|

bibson5 116 361 412 2,526
dc09 1,185 22,389 13,276 64,406
delicious 1,867 69,226 53,388 104,799
last.fm 1,892 17,632 11,946 71,065
movielens 2,113 10,197 13,222 27,713

Large scale datasets (LS)
delicious(LS) 533K 3,636K 2,442K 46,475K

are not so far. The more similar two users are, the greater their likely established trust
would be considered [134, 102]. We can cite studies like [134, 17, 157, 44] which suggest
that there is a strong correlation between both trust and users’ profile similarity. They
pointed out a significant correlation between the expressed trust between the users and
their similarity based on the recommendations they made in the system.

As performance measures we use F1-measure which is standard in such scenarios [91].
Thus for each dataset, we compute the average F1-measure of the top-5 recommenda-
tions for all the couples (u, i) in its test set. We repeat this process ten times for each
dataset (except dc09), each time with another item per user, to further minimize the
variance. Thus in the sequel, the listed F1-measure values are always the averages over
all ten runs.

We set the parameter α to 0.5 for our experimentation. We kept this value as it is a
compromise one for both the user and the item. Of course this may be not optimal for
all our datasets but it allows us to avoid seeking its best value for all the training sets
we have. We ran our experiments on a linux computer (Intel/Xeon x 24 threads, 2.93
GHz, 64 GB).

4.4.3 Effectiveness of FasTag

The purpose of this section is to evaluate the recommendation quality of FasTag in
comparison with existing tag recommendation techniques. We compare it with three
baseline tag recommenders. As first baseline we took the most popular mix algorithm,
score(t|u, i) = α×ρ(t, i)+(1−α)×ρ(t, u), which is a component of the scoring function of
FasTag (see Equation 4.5). We chose this baseline in order to highlight the contribution
of its social component. We refer to it by ρ(t|u, i). As second baseline we took the well-
known tag recommender FolkRank, a tripartite graph-based tag recommender designed
in the spirit of PageRank [68]. Finally we took as last baseline STRec. The latter uses
similar optimization as FasTag but differs from it in term of the scoring function (see
[50] for more details). On Table 4.3, we can see that FasTag outperforms these baselines
except on the dataset of delicious where it fails to give the best recommendations. We
can first explain it by the fact that on this dataset 92% of the items are tagged by at

76
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

most two users and 65% by only one user.What is very small and might lead to very low
similarity values inferred from this dataset. This in turn decreases the performance of
the neighborhood-related component of the FasTag model in Equation 4.5. Second, we
have not looked for the best values for the parameter α on all the datasets. We set the
parameter α to 0.5 for all the datasets as a compromise between the two popularities of
tags to merge (i.e., ρ(t, u) and ρ(t, i)), which is of course not necessary optimal for each
dataset. In second step, we compare our four strategies for FasTag that we presented

Table 4.3: Comparison of FasTag with some baselines

Dataset
F1-value

FasTag ρ(t|u, i) FolkRank STRec

bibson5 0.468 0.463 0.411 0.389
movielens 0.179 0.170 0.167 0.146
delicious 0.170 0.187 0.192 0.103
last.fm 0.313 0.311 0.298 0.274
dc09 0.315 0.308 0.285 0.305

in Subsection 4.2.2. Let us notice that we compare them only in term of F1’s measure.
Table 4.4 presents the results. For the ones of scalability we used the largest dataset,
see Subsection 4.4.5. We note that similarity propagation leads to some improvements.

Table 4.4: Comparison of the qualities gained by the four strategies

Dataset
F1-value

FasTag1 FasTag FasTag++ FasTag∞

bibson5 0.430 0.468 0.468 0.467
movielens 0.175 0.179 0.180 0.181
del.ici.ous 0.181 0.170 0.170 0.170
last.fm 0.289 0.312 0.313 0.313
dc09 0.111 0.313 0.315 0.315

Indeed the lack of similarity propagation (i.e., the strategy FasTag1) gives the worst
recommendation quality except on the dataset of delicious. We have above explained
this fact by the characteristics of this dataset.

4.4.4 Comparison with the result of ECML PKDD challenge 09

The Task 2 of ECML PKDD Discovery Challenge 2009 was especially intended for
methods relying on a graph structure of the training data only. To the best of our
knowledge, this is the most recent challenge focusing on tag recommendation. It is well
adopted by the tag recommendation community as a reference. The other challenges

4.4. EXPERIMENTATION 77

that occur from 2010 to 2013 are useless for tag recommendation 7. The user, item, and
tags of each post in the test data are all contained in the training data. The latter is a
post-core at level 2. According to the rules of the challenge, the F1-score is measured
over the Top-5 recommended tags, even though one is not forced to always recommend
five tags as the first two winners did [114, 90]. We set the parameter α to 0.85 after a
calibration over the training set of the dataset dc09. Table 4.5 below shows our obtained
scores compared to the final results. FasTag reaches the fifth place with a score of 0.3204.

Table 4.5: Result of the task 2 of ECML PKDD Discovery Challenge 2009

Rank Method F1-value

1 PITF 0.35594
- FasTag + blsC 0.34791

2 Relational Classification 0.33185
3 Content-based 0.32461
4 Content-based 0.32230
- FasTag 0.32044

5 Content-based 0.32039
6 Personomy translation 0.31396
...

...
...

Furthermore, to get a more fair comparison with the first two winners, we adjust our
recommendations using an optimization algorithm that we proposed in [52]. We called
it blsC. The latter is able to optimize the size of recommendation lists in order to get
more accuracy. It improves noticeably our score, placing us at the second position. We
measure an improvement of 8.57%, which demonstrates the efficiency of blsC. We present
this algorithm in our next section.
Let us emphasize that FasTag targets online applications where recommendations must
be fast and good. This discards many model-based approaches that require prohibitive
computation to learn the model parameters like those from non-distributed matrix fac-
torization [8]. For comparison, in our experimentation the tensor factorization model,
which is non-distributed, and which won the first place takes 89 seconds for each learn-
ing step. Thus it needs around 12 hours to achieve 500 iterations while FasTag make
all its recommendations in real time and in 120 seconds. Furthermore FasTag uses less
parameters to tune and the use of the blsC method improves a lot its efficiency.
Let us notice that FasTag outstrips the other graph-based approaches proposed during
this challenge.

7. They respectively focus on web content quality (2010), recommendation of video lectures (2011),
hierarchical text classification (2012) and recommendation of given names (2013)

78
CHAPTER 4. MAKING SOCIAL AND POPULARITY-BASED TAG

RECOMMENDATIONS

4.4.5 Scalability of FasTag

The objectives of these experiments is to demonstrate the scalability of FasTag in
case of large user networks. We used the large dataset delicious(LS). We aim to show
that our approach is tractable at large scale. In other words, we check if accessing only
a small number of neighbors (wrt. to the size of the network) is sufficient to deliver
recommendations. To measure the impact of our new edge addition strategy, we build a
scenario where a user will request up to 3 recommendations during the test. We expect
the second and third recommendation to benefit from the new edges. To this end, we
build a test set containing 50,000 posts from three groups of users, denoted G1, G2 and
G3. The number of posts per user is respectively 1, 2, and 3 for the groups G1, G2, and
G3. We schedule the posts in the test set into three phases such as the first posts of all
the users come first (phase 1), followed by the second posts of the users in G2 and G3

(phase 2), followed by the third posts of the G3 users (phase 3).

For each recommendation process, we measure the percentage of visited neighbors,
the traversal depth and the computation time. We report the respective average values
(for each phase 1, 2, and 3 on the x-axis) on Figures 4.2b, 4.2c and 4.2a. In Figure 4.2a,
we observe that the recommendation average computation time is decreasing from phase
1 to phase 3. FasTag speeds up when it recommends the same user (for different items).
Moreover, the computation time of all the strategies is decreasing. This is because the
overhead of detecting partitions only impacts recommendations made at the beginning
of phase 1. The recommendations made during phase 2 and phase 3 are aware of the
partitions, thus they can stop earlier. Figure 4.2b confirms this fact. The percentage
of neighbors visited during a recommendation process is also decreasing from phase 1
to phase 3. Furthermore, the FasTag++ strategy still remains better than FasTag∞.
That validates the interest of the approximation of tag scores to bound the network
traversal.
However at the beginning FasTag++ may be more costly than FasTag (due to the cost
of new edges addition) but we observe that it seems to catch up with it, as it goes along.
Besides, Figure 4.2c confirms that. It shows that the average depth of network traversal
of FasTag++ is lesser thanks to the new edges that directly connect most of the relevant
users. These three experiments demonstrate the contribution of the approximation of
tag scores, the detection of partitions and new edge addition. Although the latter brings
an additional cost, it becomes beneficial when enough users are connected. Moreover we
use it in a lesser extent as we make recommendations.

Finally, we validate FasTag scalability when it is facing an increasing demand. FasTag
is able to handle several simultaneous recommendation requests, and process them in
parallel. In 4.2d, we show that FasTag recommendation throughput is linearly increasing
with respect to the degree of parallelism (i.e. the number of parallel instances). This
makes FasTag a sound candidate for large scale use cases.

4.5. CONCLUSION 79

 0

 2

 4

 6

 8

 10

 12

1 2 3

R
ec

om
m

en
da

tio
n

av
er

ag
e

tim
e

(s
)

Phase number

fastag
fastag++
fastag∞

(a) Recommendation average time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3

A
ve

ra
ge

 v
is

ite
d

ne
ig

hb
or

s
(%

)

Phase number

fastag
fastag++
fastag∞

(b) Percentage of involved neighbors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3

A
ve

ra
ge

 tr
av

er
sa

l d
ep

th

Phase number

fastag
fastag++
fastag∞

(c) Depths of network traversals

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10

re

co
m

m
en

da
tio

ns
 /

se
co

nd

Degree of parallelization

del.icio.us(LS)

(d) Parallelization degree vs throughput evo-
lution

Figure 4.2: Results about the scalability of FasTag

4.5 Conclusion

In this chapter, we presented FasTag, a tag recommender which combines the popu-
larity of tags and the similarity between users. It considers a user’s neighbors as a circle
of trusted experts, which allows to better understand the user’s tagging behavior. Our
implementation on different datasets showed the efficiency of this approach.
Moreover, an important aspect of FasTag is its ability to bound the network traversal
while considering the whole network. This reduces significantly the computation time
of the recommendations as our experimentation pointed out.

5 | Optimizing Tag Recommenda-
tion List Size

As we showed in the previous chapter, tag recommenders aim to suggest the most
suitable tags to a user when tagging an item. Therefore, one of their main challenges
is the effectiveness of their recommendations. People generally focus on techniques that
enable retrieving the best suitable tags to give beforehand, with a fixed number of tags
at each recommendation.

In this chapter, we follow another direction in order to improve tag recommendation
accuracy. We aim to dynamically adjust the number of tags to recommend. In other
words, consider LN = {t1, t2, . . . , tN} the list of N tags to be recommended to a user,
the goal is to substitute LN by one of its sublists that is more accurate, and provide a
better quality of recommendation.

We consider all the sublists of LN in increasing size (i.e., the prefixes : L1, L2,
. . . LN−1 and LN) so as to keep the tag order as illustrated below 1.

t1
︸︷︷︸

L1

t2

︸ ︷︷ ︸

L2

t3

︸ ︷︷ ︸

...

. . .

︸ ︷︷ ︸

LN−2

tN−1

︸ ︷︷ ︸

LN−1

tN

︸ ︷︷ ︸

LN

We introduce a relevance measure for the recommended lists Rel(LN |u, i), which esti-
mates the probability that a user u will use all the recommended tags in LN for the
tagging of an item i. Based on this measure, we compute the best list (the one having
the optimal size, bls) that will be finally recommended to the user. We define the optimal
size as follows:

bls = max (s | s ∈ S) (5.1)

with
S =

{

s | s ≤ N ∧ ∀n ≤ N, Rel(Ln|u, i) ≤ Rel(Ls|u, i)
}

1. LN = LN−1 ∪ {tN } = LN−2 ∪ {tN−1, tN } . . .

81

82 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

Existing approaches use linear combinations to compute the global average number of
tags per post, the one related to a user and/or the one specific to an item [90, 113, 114].
These combinations are then used to infer a fixed list size. Such approaches need some
calibrations which are generally difficult to set, and they lack of dynamicity which limits
their accuracy.
The algorithm we propose here enables adjusting dynamically the size of the recom-
mended list of tags, and then increases the accuracy of the recommendations. It is a
parameter-free algorithm that adjusts the list of recommended tags by discarding those
which are estimated irrelevant to the user for the tagging of the item. Our method looks
like an add-on filter on top of a tag recommender. It estimates the sublist which gives
the best accuracy. We present in this chapter two relevance measures and the algorithm
that we use to retrieve the optimal sublist from a given tag recommendation list.

To evaluate the efficiency of our approach we implement it on top of four tag recom-
menders, from different approaches. One of our candidates is the pairwise interaction
tensor factorization model (PITF) of Rendle and Schmidt-Thieme which won the task
2 of the ECML PKDD Discovery Challenge 2009 [114]. It is still considered in the lit-
erature as one of the best tag recommenders. We took also the well-known tripartite
graph-based algorithm FolkRank [65] and the “Most Popular Tag”recommendation ap-
proach [69]. As last candidate we chose FasTag, network-based tag recommender we
proposed in Chapter 4. It computes the list of tags based on the opinions of the users’
neighborhood and their tagging posts.
The experiments we did on the same five datasets that in the previous chapter demon-
strate the efficiency of our optimization technique.

The remainder of this chapter is organized as follows. In Section 5.1 we present
some preliminaries and describe briefly the four tag recommender candidates. Section
5.2 details the related work and presents our approach for finding the best size of a tag
recommendation list to keep. In Section 5.3, we present our experiments and conclude
in Section 5.4.

5.1 Preliminaries

We rely on the same notations and definitions as in Section 4.1 of Chapter 4. Thus
we consider a folksonomy F := (U, I, T, S) and its collection of a set of users U , set of
tags T , set of items I, and the ternary relation between them S ⊆ U × I × T . We still
assume that a user can tag an item with a given tag at most once.

The interest of a tag t for a given user u to annotate an item i is estimated by its
score score(t|u, i). Hence, the purpose of a tag recommender is to compute the top-K
highest scoring tags for a post (u, i) which represents its recommendations.

Top(u, i, K) =
K

argmax
t∈T

score(t|u, i) (5.2)

In the following we describe how our four tag recommender candidates model the scores
associated with the tags.

5.1. PRELIMINARIES 83

5.1.1 Factor Models for Tag Recommendation

Factorization models are known to be among the best performing models. They are
a very successful class of models for recommender systems where they outperform the
other approaches.
We chose the pairwise interaction tensor factorization model (PITF) of Rendle and
Schmidt-Thieme in our experimentation due to its efficiency [114]. Indeed it took the
first place of the ECML PKDD Discovery Challenge 2009 for graph-based tag recom-
mendation.

PITF proposes to infer pairwise ranking constraints from the set of tagging triples S.
It captures the interactions between users and tags as well as between items and tags.
The equation of PITF’s model is given by:

score(t|u, i) =
∑

f

Ûu,f · T̂
U
t,f +

∑

f

Îi,f · T̂
I
t,f (5.3)

Where Û , Î, T̂ U and T̂ I are feature matrices which capture the latent interactions.
The main assumption of PITF is that within a post T (u, i), a tag t can be preferred

over another tag t′ iff the tagging triple (u, i, t) ∈ S (i.e., has been observed) and not
(u, i, t′). PITF models these preferences in Equation 5.3 such that the score of a tag
which is more preferred than another one is greater.

5.1.2 FolkRank - A Topic-Specific Ranking

FolkRank is a tripartite graph-based tag recommender designed in the spirit of
PageRank [65, 68]. Its assumes that a tag becomes important when it is used by impor-
tant users or for tagging important items. It also takes the same principle for users and
items. Therefore FolkRank represents a folksonomy F as a graph where the vertices are
mutually reinforcing each other by spreading their weights.

Let GF = (V, E) be this graph. Its vertices are the users, items and tags (i.e.
V = U∪I∪T) and the edges defined between them such as if a tagging triple (u, i, t) ∈ S
then

{
{u, i}, {u, t}, {i, t}

}
⊂ E.

Let vi be a vertex of this graph, i.e. vi ∈ V . We denote by N (vi) the set of neighbors
of vi and by w(vi, vj) the weight of the edge between the vertices vi and vj . The weight
of an edge is here the number of times its two vertices appear together in the tagging
triples in S. From that, the degree of a vertex vi is defined as follows:

w(vi) =
∑

vj∈N (vi)

w(vi, vj) (5.4)

FolkRank ranks the vertices according to their importance computed as follows:

PR(vi) = λ
∑

vj∈N (vi)

w(vi, vj)
w(vj)

· PR(vj) + (1− λ) · p(vi) (5.5)

where PR(vi) is the PageRank value and p(vi) the preference value of the vertex vi.
Hence a straightforward idea for tag recommendation is to set more preference to the

84 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

user and item to be suggested for, and then compute ranking values using PageRank as
in Equation 5.5. The parameter λ determines the influence of p(vi). Its value is between
0 and 1.

To recommend some tags for a user u and an item i, FolkRank uses two random
surfer models on the graph, s(0) and s(1), to infer the importance of each vertex of the
graph.
The first surfer, s(0), set the same preference value to all the vertices (p(v) = 1,∀v ∈ V)
while the second, s(1), set their preference values to 0 except for the user u and the item
i for which p(u) = 1 and p(i) = 1.

After the execution of the two surfers, the difference s := s(1) − s(0) is computed.
Then the tags are ranked according to their importance values in s (what represent their
scores) and the first recommended to user u for tagging the item i.

5.1.3 Recommending the Most Popular Tags

The rational of Most Popular Tags’ Recommenders (MPTR) is that when a tag
is popular (i.e., frequently used) for an item and/or by a user, it may be relevant to
recommend to the user when tagging the item. Hence MPTR models these popularities in
their scoring models. A well-known MPTR model consists in adding the tag popularities
(i.e. the ones of the user with those of the item) after normalizing and weighting them
as follows:

score(t|u, i) = α ·
|U(i, t)|
|U(i)|

+ (1− α) ·
|I(u, t)|
|I(u)|

(5.6)

The parameter α in Equation 5.6 allows to tune the relative importance of the item or
user-related tag popularity with respect to the second. When α = 1 we keep only the
tags which are most specific to the item. On the other hand, when we set it to 0, we
consider only the user’s popular tags. By default we fix α to 0.5 in our experimentation.
Thus, we consider the user tags as much important as those associated to the item. The
advantage of MPTR is that they are fast to compute, while giving good predictions [69].

5.1.4 Social and popularity-based Recommender

One weakness of MPTR (which entirely relies on popularity measures) is that it is
not able to decide between tags with close popularities. Furthermore, some particular
users can have their own vocabulary (i.e., tags) and the popular tags of the item may not
be relevant for them. Thus, having reliable opinions about the tags from some trusted
neighbors, in addition to the popularities of tags, may be a great asset to make better
recommendations.
FasTag [53], we presented in Chapter 4, uses such an approach. It models the relevance
score of a tag t for a user u and an item i (i.e. score(t|u, i)) as a popularity-dependent
component, based on a user’s proximity with her neighbors in the network. Let us denote
by scoreMP T R(t|u, i) the scoring model of MPTR in Equation 5.6, the scoring one of

5.2. ADJUSTED RECOMMENDATION LIST SIZE 85

FasTag is defined as

score(t|u, i) = scoreMP T R(t|u, i) ·
(

1 + η(t|u, i)
)

(5.7)

where η(t|u, i) represents the opinion of the user’s neighbors about tag t. It is a normal-
ized sum of the user’s proximity values associated to her neighbors who already tagged
this item with t. The rationale of this score function is to estimate a relative popularity
of a tag depending in the vicinity of a user: i.e., the more a user is similar to a neighbor,
the more this neighbor’s opinion contributes in the user recommendations. The sum
1 + η(t|u, i) enables taking into account the isolated users (when η(t|u, i) = 0).

We chose FasTag as a candidate for network-based tag recommenders, since it is fast
and efficient as shown in [53]. Its scoring model is not only based on the proximity
associated to the direct neighbors of the user, it also considers proximity propagation,
following a natural interpretation that it is, at some extent, transitive. See [130, 158]
for more details on propagation models.

5.2 Adjusted Recommendation list size

In this section, we present two ways to choose the best recommendation list size.
The first one is based on existing works employing linear combination techniques, and
the second one is our proposal to optimize dynamically the size of the recommended list.

5.2.1 Linear combination models

To choose the best list size (bls) of tags to recommend, usual approaches use some
linear combinations of the global average number of tags per post, the one related to a
user and/or the one specific to an item [114, 113, 90]. Therefore, we take as baseline the
following general linear combination model

bls = min (K, ⌊λ + (βG · µG) + (βu · µu) + (βi · µi)⌋) (5.8)

where K stands for the maximum number of tags to recommend, i.e. the maximal list
size; µG the global average number of tags per post; µu the average number of tags
per user and per post, and µi the average number of tags per item and per post. The
rest stands for parameters which allow us to make a lot of possible combinations. For
instance, if we set the parameter βu to 1 and all the other parameters to zero, we obtain
as a list size the average number of tags per user and post. We denote in the following
the linear combination method by LC_bls.
For our experiments, we apply a grid search in order to find optimal parameters to keep.
We test K × 1, 000 combinations of these parameters each time a top-K query is asked
(i.e., each time we look for a list of at maximum K tags). For instance, we make 10,000
combinations for the top-10 query and 5,000 for the top-5 one. We vary the parameter
λ from 0 to K−1, each time by a step of 1. And using nested loops, we vary each of the
other parameters from 0 to 1 by a step of 0.1. Thus, we test enough combinations with

86 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

different values of parameters. At the end, we keep the combination that gives the best
result (in terms of reached F1-measure). For our experiments, we apply a grid search
in order to find optimal parameters to keep. We test K × 1, 000 combinations of these
parameters each time a top-K query is asked (i.e., each time we look for a list of at
maximum K tags). For instance, we make 10,000 combinations for the top-10 query and
5,000 for the top-5 one. We vary the parameter λ from 0 to K−1, each time by a step of
1. And using nested loops, we vary each of the other parameters from 0 to 1 by a step of
0.1. Thus, we test enough combinations with different values of parameters. At the end,
we keep the combination that gives the best result (in terms of reached F1-measure).

5.2.2 The blsC algorithm

blsC denotes the algorithm we propose to find the best list size. Let Rel(t|u, i)
be the relevance of a tag t, according to a user u, for the tagging of an item i. And
LN = {t1, t2, . . . , tN} is an ordered list of N tags. We define the relevance of the list
LN , for both a user u and an item i, as follows:

Rel(LN |u, i) = ω(LN |u, i) ·

∑

t∈LN
Rel(t|u, i)
N

(5.9)

In this formula, ω(LN |u, i) stands as a weight for the adjustment of the list relevance.
It allows us to promote longer lists than the others. We will give its definition shortly
in Subsection 5.2.2.2. Rel(t|u, i) is the relevance of a tag t for a user u and an item i.
Intuitively, it measures the probability that user u will tag the item i with the tag t.

Let Max be a maximal list size and Rel(LMax|u, i) the relevance of this list (LMax).
We look for the best list size starting from Max down to 1. At each step, we compute
the relevance of the current list and update the best list size as shown in Algorithm 4.
In case we obtain the same relevance for two different lists, we choose the longest one.

Algorithm 4: blsC : Best list size Computation
Input: Max, LMax /* Initial recommended tags list*/
Output: bls /* Suggested number of tags to keep */

1 bls←Max /* bls : Best list size */
2 blR← Rel(LMax|u, i) /* blR : Best list relevance */
3 for N = (Max− 1) to 1 do
4 if Rel(LN |u, i) > blR then
5 bls← N
6 blR← Rel(LN |u, i)
7 end

8 end
9 return bls

To compute the relevance of a tag, we propose two solutions. In the first one, we
distinguish the known tags from the others and assign them different relevance values.

5.2. ADJUSTED RECOMMENDATION LIST SIZE 87

In the second solution, we link the relevance values of the tags to some statistics we
obtain from the available data (our training sets).

5.2.2.1 Simple relevance measure

Making a distinction between the known tags (those already used by the user and
already associated to the item) from the others may be a great factor to determine the
relevance of a recommended list of tags. Our intuition is that the tags already linked to
the user u and also the item i are more relevant to be recommended than the others.

Let PN = LN ∩ T (u) ∩ T (i) be the sublist of LN containing the known tags. We
assign a unique high relevance value, Relevmax

, to the tags in PN and an unique low one,
Relevmin

, to the other tags. By setting the weight of each list to one, we can rewrite the
Equation 5.9 as follows:

Rel(LN |u, i) =

∑

tj∈PN

Relevmax
+

∑

tj∈{LN \PN }

Relevmin

N
(5.10)

After simplification it becomes:

Rel(LN |u, i) =

(
|PN | ·Relevmax

+ (N − |PN |) ·Relevmin

)

N
(5.11)

From Equation 5.11, one can see that the relevance of a recommendation list depends
mainly on the ratio between |PN | and N . The relevance is an increasing function, having
its input from the interval [0, N]. It reaches its maximum when |PN | = N . Thus we can
simply consider the relevance of a recommendation list as follows:

Rel(LN |u, i) =
|PN |

N
(5.12)

With this formula, we can easily adjust the list size in order to obtain the best relevance
value. One can see Rel(LN |u, i) as a density measure of known tags in the recommended
list. Then, the blsC is just seeking for the best density.

5.2.2.2 Refining the relevance measure

Among the weaknesses of the relevance measure given in Equation 5.12 we can men-
tion the fact that it fails to give a sublist when all the tags in the recommendation
list are known (in PN). We propose here a second relevance measure which faces the
drawbacks of the previous solution by taking into account the popularity of the tags for
both the user and the item. The latter is our very proposal for optimizing the size of
recommendation lists.

Rel(t|u, i) =
|U(i, t)|
|U(i)|

×
|I(u, t)|
|I(u)|

(5.13)

Naturally, we expect that the relevance of a tag decreases according to its rank in a
recommended list (high relevance for the first tag and low relevances for the last ones).
This intuition is confirmed by our experimentations, on all the datasets we used and for

88 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

all the tag recommenders we tested, as shown in Figure 5.1. We draw the evolution of
the relative relevances of tags according to both their positions in a recommendation list
and the relevance of the first tag of the list.
We limit our tests to the top-10 lists of recommended tags.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

T
ag

’s
 r

el
ev

an
ce

Tag’s rank

Movielens
dc09

Bibson5
del.icio.us

Last.fm

(a) MPTR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10
T

ag
’s

 r
el

ev
an

ce

Tag’s rank

Movielens
dc09

Bibson5
del.icio.us

Last.fm

(b) FasTag

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

T
ag

’s
 r

el
ev

an
ce

Tag’s rank

Movielens
dc09

Bibson5
del.icio.us

Last.fm

(c) PITF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

T
ag

’s
 r

el
ev

an
ce

Tag’s rank

Movielens
dc09

Bibson5
del.icio.us

Last.fm

(d) FolkRank

Figure 5.1: Relative relevance vs tag position in a recommendation list

From these observation, one can see the necessity to use weighted means when evalu-
ating the relevance of recommended lists. Indeed, since a recommendation list is ordered,
the first tag is generally more relevant than the rest, then the second one and so on.
Thus, using the average of the relevances of the tags contained in a list may still lead to
a singleton, i.e. L1 as the best list.
Thus to take into account this natural decrease of the relevance of tags according to
their positions, we model the weight ω(LN |u, i) of a recommendation list LN with a

5.3. EXPERIMENTATION 89

Zipf-Mandelbrot law 2 and define it as follows:

ω(LN |u, i) =
N

√
1
2 (N + Max)

(5.14)

Our weight function estimates the importance of a list size compared to the maximal
possible list size. It allows us to penalize short recommendation lists while promoting
the long lists. Therefore, from Equation 5.9 we introduce a new list relevance measure:

Rel(LN |u, i) =

∑

t∈LN
Rel(t|u, i)

√
1
2 (N + Max)

(5.15)

As we can see, we do not compute the mean of the relevances of tags but a relative list
relevance according to the greatest possible list size. The comparison of the relevance of
all the sublists is done as described in Algorithm 4. We just compute the most relevant
list size from Max down to 1 by using this new relevance measure given in Equation
5.15. We denote this second proposal blsC_v2. The latter can overcome the weak points
of blsC. Indeed, even if all the tags in a recommendation list are in PN , blsC_v2 does
not rely on their presence or not but only on their relevance. Thus, it is able to decide
when blsC fails.

5.3 Experimentation

We demonstrate in this section the effectiveness of our proposal. We led a set of
experiments with four tag recommender candidates on five publicly available datasets. In
the next two subsections, we describe shortly these datasets and the evaluation measures
and methodology we used. Then we present the results we obtained.

5.3.1 Datasets

We chose the same five datasets as in Chapter 4. Table 5.1 presents some details of
these datasets.

5.3.2 Evaluation Measures and Methodology

To evaluate our proposal, we used a variant of the leave-one-out hold-out estimation
called LeavePostOut [69]. In all datasets except dc09, we picked randomly and for each
user u, one item i, which he had tagged before. Thus we create a test set and a training
one. The task of our recommender was then to predict the tags the user assigned to the
item.

2. The Zipf-Mandelbrot law is a power-law distribution on ranked data. It is well-known for its
statement that given some corpus of natural language utterances, the frequency of any word is inversely
proportional to its rank in the frequency table

90 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

Table 5.1: Characteristics of the datasets

dataset |U | |I| |T | |T (u, i)|

dc09 1,185 22,389 13,276 64,406
Last.fm 1,892 17,632 11,946 71,065
delicious 1,867 69,226 53,388 104,799

Movielens 2,113 10,197 13,222 27,713
Bibson5 116 361 412 2,526

On each dataset, we run the four tag recommenders. We asked them to give succes-
sively a top-1, then a top-2 and so on up to a top-10. Then we apply LC_bls, blsC and
blsC_v2 on their tag recommendation lists in order to get a better sublist. We use the
F1-measure as performance measure.

Let us notice that for all the experiments, we set the parameter α of MPTR and
FasTag to 0.5 (see Equation 5.6). Similarly we set the parameter λ of FolkRank to 0.7
(see Equation 5.5) as in [68]. For PITF we use the software 3 and the parameters given
by the winners of the task 2 of the ECML PKDD Discovery Challenge 2009 but we do
not rely on ensembling factor models as they did in [113]. We only compute one model
with 64 factors as the dimensionality and a regularization of 5 · 10−5. We stop learning
after 2, 000 iterations.

5.3.3 Experimental Results

We present in this part the results of our experimentation. We aim to point out that
our proposal outstrips the methods based on linear combinations.

5.3.3.1 Effectiveness of our proposal

We show here the effectiveness of our proposal. We implemented them on top of the
four tag recommenders. Figure 5.2 shows the average F1’s values over the five datasets
of the original recommendation lists given by each tag recommender and the ones of
each optimization method (i.e., blsC, blsC_v2 and LC_bls). On each of these figures,
the x-axis gives the original number of tags to recommend before length optimization.
In almost all these figures we see that the quality of the size-adjusted recommendation
lists is increasing while the one of those with fixed sizes decreases when they exceed a
certain size. This demonstrates the importance of giving optimal recommendation list
size.

Second, in the most cases blsC_v2 outperforms blsC and linear combinations. For
instance, it outstrips the results of the task 2 of the ECML PKDD Discovery Challenge
2009. Indeed with the same tag recommender than the winners, we reach an F1 measure
of 0.366 while they got 0.356 despite they used linear combinations to adjust the sizes of

3. http://bit.ly/1qL6NeF

http://bit.ly/1qL6NeF

5.3. EXPERIMENTATION 91

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 1 2 3 4 5 6 7 8 9 10

F
1-

m
ea

su
re

Top-K

blsC_v2
blsC

LC_bls
Fixed size

(a) MPTR

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 1 2 3 4 5 6 7 8 9 10

F
1-

m
ea

su
re

Top-K

blsC_v2
blsC

LC_bls
Fixed size

(b) FasTag

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 1 2 3 4 5 6 7 8 9 10

F
1-

m
ea

su
re

Top-K

blsC_v2
blsC

LC_bls
Fixed size

(c) FolkRank

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 1 2 3 4 5 6 7 8 9 10

F
1-

m
ea

su
re

Top-K

blsC_v2
blsC

LC_bls
Fixed size

(d) PITF

Figure 5.2: Quality increases vs recommendation list sizes

the recommendation lists [113]. blsC_v2 yields 3% of improvement over their F1 score
on this dataset.

Let us notice that linear combinations surpass blsC and blsC_v2 on only 9.19%
of cases. On all the rest blsC_v2 dominates with more than 60% of cases, then blsC
follows with 30%. Tables 5.2 and 5.3 give their comparison in term of percentage of
cases where each of them give the best contribution. In our experimentations, linear
combinations are specifically better on the Movielens’ dataset which is the worst among
our five datasets for computing sound tag relevances. In this dataset, around 65% of the
users have in average one tag in their posts indeed. What is very small and this is also
the case of 41,76% of its items [52].

5.3.3.2 Giving up some recall for more precision

The underlying idea of blsC is to make a tradeoff between the precision and recall
of the recommendation. We measured their evolution with and without size-fixed lists.
Figure 5.3 points out the results that we obtained. One can see in this figure that size-
fixed lists can gain more in recall with longer list, but they lose so more in precision.

92 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

Table 5.2: Comparison of the three methods

Method % of cases with the best size

blsC_v2 60.34

blsC 30.45
LC_bls 9.19

Table 5.3: Comparison of the three methods in twos

Method % of cases with the best size

blsC_v2 90.85

LC_bls 9.14

Method % of cases with the best size

blsC 76.96

LC_bls 23.03

Method % of cases with the best size

blsC_v2 65.34

blsC 34.09

Our proposal allows a better tradeoff. blsC_v2 gives particulary the best ratio in terms
of precision and recall.

5.3.3.3 Distribution of optimal list sizes

Table 5.4 shows the average optimal list size given by each of the methods blsC_v2,
blsC and LC_bls. From these results, we can say that blsC_v2 proposes longer lists
than LC_bls in 80% of the cases, in addition to giving the best size for 90.85% of the
cases compared to LC_bls (see Table 5.3).
In Figure 5.4, we drawed the distribution of the proposed list sizes of blsC_v2 and
LC_bls. One can see over it that linear combination tend to remain near to the mean
size, while, in a lot of cases, blsC_v2 can detect that the list size is already optimal
and leaves it unchanged. All these experimentations show the ability of our proposal to
optimize the size of recommendation lists.

5.4 Conclusion

In this chapter, we presented a new proposal that improves the accuracy of the rec-
ommendations delivered by a tag recommender system. Our solution optimizes the size
of the recommended list in order to obtain a better recommendation quality. The ex-

5.4. CONCLUSION 93

Table 5.4: Average optimal list length with 10 tags at maximum

Dataset
FasTag

LC_bls blsC blsC_v2

bibsonomy 3.28 3.73 4.91

movielens 1.96 6.51 6.56

delicious 7.17 2.92 3.08
lastfm 5.94 4.22 4.72
dc09 4.56 3.93 4.86

Dataset
MPTR

LC_bls blsC blsC_v2

bibsonomy 3.21 3.85 5.00

movielens 1.90 8.23 8.28

delicious 7.23 7.12 7.35

lastfm 5.53 4.81 5.34
dc09 4.56 4.57 5.51

Dataset
FolkRank

LC_bls blsC blsC_v2

bibsonomy 3.49 3.70 4.94

movielens 2.37 8.23 8.29

delicious 6.75 7.18 7.51

lastfm 5.91 4.76 5.28
dc09 4.41 4.44 5.46

Dataset
PITF

LC_bls blsC blsC_v2

bibsonomy 3.50 6.89 7.70

movielens 1.67 9.37 9.41

delicious 5.25 9.36 9.47

lastfm 6.08 7.51 7.97

dc09 4.53 6.35 7.38

94 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

blsC_v2
blsC

LC_bls
Fixed size

(a) MPTR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

blsC_v2
blsC

LC_bls
Fixed size

(b) FasTag

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

blsC_v2
blsC

LC_bls
Fixed size

(c) FolkRank

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

blsC_v2
blsC

LC_bls
Fixed size

(d) PITF

Figure 5.3: Recall vs Precision

FasTag

M
PTR

FolkRank

PITF

 (
%

)
of

 o
cc

ur
en

ce
s

1
2
3
4
5
6
7
8
9
10

(a) blsC_v2

FasTag

M
PTR

FolkRank

PITF

 (
%

)
of

 o
cc

ur
en

ce
s

1
2
3
4
5
6
7
8
9
10

(b) LC_bls

Figure 5.4: Distribution of the proposed optimal list sizes

perimentations we did show the effectiveness of our approach.

5.4. CONCLUSION 95

Our proposal, blsC can also be implemented for item context-aware recommenda-
tion where the user and some other parameters of the recommendation’s context have
to be taken into account. Furthermore, our approach suits well for recommendation
diversity. Since it shortens the number of relevant tags to recommend, it frees some
space to include extra tags in the response, while keeping constant the total number of
tags presented to the user. This allows for the selection of extra tags that maximize
another score function. For instance, a diversity function would bring diversity within
the recommendation process.

More generally, our solution brings new opportunities to aggregate recommendations
from various recommenders while keeping recommendation list size above an given limit.

Research Perspectives

In this final chapter, we discuss some open issues and promising extensions of our
work that it would be interesting to address in the future.

Making dynamic recommendation with local biases
adjustment

In Chapter 3, we tackled the collaborative filtering problem of accurately recommend-
ing items to users in dynamic contexts, where new ratings are continuously produced.
We proposed a matrix factorization model which incorporates cluster-based biases. We
demonstrated also its efficiency to fasten the integration of new ratings without recom-
puting the recommendation model. It just updates some local biases. However, the need
of recomputing the model will arise sooner or later. This will depend on the tradeoff
between the loss in recommendation quality and the cost of learning a new model. Hav-
ing the ability to determine the ideal moment to recompute the model would be a great
asset. It is an interesting problem that can complement our proposal.

Using proximities propogation for better recommendations

FasTag as we presented it in Chapter 4, uses only positive relationships between
users, we referred by their proximities. In practice, these proximities correspond to
similarities deducted from users’ behavior patterns or trust they have to each other.
Trust and similarity are close in a certain way. [134, 17, 157, 44] assert that there is a
strong correlation between both trust and users’ profile similarity.
In the literature, some researchers have investigated the use of dissimilarity between
users and distrust to improve the recommendations [36, 139, 87, 55]. They showed
that user negative relation (e.g., distrust) information can be beneficial to recommender
systems. We think that FasTag can be extended by taking account negative relationships
between users. That could improve its accuracy. Furthermore, as we use heuristics to
bound the network traversal, the incorporation of negative relationships may allows us
to stop earlier the network traversal and then optimise the time needed to compute the
recommendation.

97

98 CHAPTER 5. OPTIMIZING TAG RECOMMENDATION LIST SIZE

Parameter-free methods for optimizing tag
recommendation list size

In Chapter 5, we presented a new proposal that improves the accuracy of the rec-
ommendations delivered by a tag recommender system. It optimizes the sizes of recom-
mended lists in order to increase the likelihood that all the tags are relevant for the user.
In fact, tag recommendation relates back to context-/item-aware tag recommendation.
Therefore, by transposition, blsC can also be implemented for context-aware item rec-
ommendation where both the user and some other dimensions (i.e., the context) have to
be taken into account. Context-/time-aware movie recommendations is a common case
study.
In this context, movies occupy more space in a web page than tags. Therefore, with the
use of blsC, we have several possibilities to occupy the freed space. For instance, some
ads may be added instead, or we can integrate a second recommmender system to fill
this freed space while diversifying our suggesting. But, which impact these decisions will
have on the users? What will be their reactions compared to the case where blsC is not
used?
One may wonder to know if the conversion rate is increased, users’ satisfaction and fi-
delity improved or is it now possible to sell more diverse items with blsC. In short, it
seems that it still remains a lot of interesting things to do with this method.

List of Publications

In Proceedings of International Conferences and
Workshops

– [49] Modou Gueye, Talel Abdessalem and Hubert Naacke. FoldCons: A Simple
Way To Improve Tag Recommendation. In Recsys@RSWeb ’13.

– [50] Modou Gueye, Talel Abdessalem and Hubert Naacke. STRec: An Improved
Graph-based Tag Recommender. In Recsys@RSWeb ’13.

– [52] Modou Gueye, Talel Abdessalem and Hubert Naacke. A Parameter-free Al-
gorithm for an Optimized Tag Recommendation List Size. In Recsys ’14.

– [53] Modou Gueye, Talel Abdessalem and Hubert Naacke. A Social and Popularity-
based Tag Recommender. In SocialCom ’14.

In Proceedings of National Conferences

– [47] Modou Gueye, Talel Abdessalem and Hubert Naacke. A cluster-based matrix-
factorization for online integration of new ratings. In BDA ’11.

– [48] Modou Gueye, Talel Abdessalem and Hubert Naacke. Factorisation multi-
biais pour de meilleures recommandations. In CNRIA ’13.

– [51] Modou Gueye, Talel Abdessalem and Hubert Naacke. Technique de factori-
sation multi-biais pour des recommandations dynamiques. In EGC ’13.

Book Chapters

– [54] Modou Gueye, Talel Abdessalem and Hubert Naacke. Dynamic recommender
system : using cluster-based biases to improve the accuracy of the predictions. In
AKDM ’15.

99

Bibliography

[1] M. R. Abbasifard, B. Ghahremani, and H. Naderi. A survey on nearest neighbor
search methods. International Journal of Computer Applications, 95(25):39–52,
June 2014. Published by Foundation of Computer Science, New York, USA.

[2] G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity
using ranking-based techniques. IEEE Trans. on Knowl. and Data Eng., 24(5):896–
911, May 2012.

[3] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on
Knowl. and Data Eng., 17:734–749, 2005.

[4] G. Adomavicius and J. Zhang. Impact of data characteristics on recommender
systems performance. ACM Trans. Manage. Inf. Syst., 3(1):3:1–3:17, 2012.

[5] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In
Shawe-Taylor et al. [125], pages 873–881.

[6] D. Agarwal, B.-C. Chen, and P. Elango. Fast online learning through offline
initialization for time-sensitive recommendation. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’10, pages 703–712, New York, NY, USA, 2010. ACM.

[7] S. Alag. Collective intelligence in action. Manning, Greenwich, Conn., 2008.

[8] X. Amatriain et al. Netflix recommendations: Beyond the 5 stars.
bitly.com/Hu482Q, 2012.

[9] X. Amatriain, A. Jaimes*, N. Oliver, and J. Pujol. Data mining methods for
recommender systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 39–71. Springer US, 2011.

[10] S. Amer-Yahia et al. Efficient network aware search in collaborative tagging sites.
PVLDB, 1(1):710–721, 2008.

[11] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.
Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, June 2007.

101

bitly.com/Hu482Q

102 BIBLIOGRAPHY

[12] R. Barros, M. Basgalupp, A. C. P. L. F. De Carvalho, and A. Freitas. A survey
of evolutionary algorithms for decision-tree induction. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on, 42(3):291–312,
May 2012.

[13] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’07, pages 95–104, New York, NY, USA, 2007. ACM.

[14] R. M. Bell, J. Bennett, Y. Koren, and C. Volinsky. The million dollar programming
prize. IEEE Spectr., 46:28–33, 2009.

[15] J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In In KDD Cup and
Workshop in conjunction with KDD, 2007.

[16] D. Benz et al. The social bookmark and publication management system BibSon-
omy. The VLDB Journal, 19(6):849–875, 2010.

[17] T. Bhuiyan. A survey on the relationship between trust and interest similarity
in online social networks. Journal of Emerging Technologies in Web Intelligence,
2010.

[18] J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. Recommender systems
survey. Know.-Based Syst., 46:109–132, July 2013.

[19] A. Bouza, G. Reif, A. Bernstein, and H. Gall. Semtree: Ontology-based decision
tree algorithm for recommender systems. In C. Bizer and A. Joshi, editors, In-
ternational Semantic Web Conference (Posters & Demos), volume 401 of CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[20] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive al-
gorithms for collaborative filtering. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, UAI’98, pages 43–52, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc.

[21] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7):107–117, Apr. 1998.

[22] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12:331–370, 2002.

[23] R. D. Burke. Hybrid web recommender systems. In The Adaptive Web, Methods
and Strategies of Web Personalization, pages 377–408, 2007.

[24] I. Cantador et al. Workshop on Information Heterogeneity and Fusion in Recom-
mender Systems (HetRec 2011). In ACM RecSys, 2011.

[25] B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and Z. Chen. Detect and track
latent factors with online nonnegative matrix factorization. In Proceedings of the
20th international joint conference on Artifical intelligence, pages 2689–2694, San
Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 103

[26] J. Cao, Z. Wu, B. Mao, and Y. Zhang. Shilling attack detection utilizing semi-
supervised learning method for collaborative recommender system. World Wide
Web, 16(5-6):729–748, Nov. 2013.

[27] A. Dattolo, F. Ferrara, and C. Tasso. The role of tags for recommendation: a
survey. In Proc. of the 3rd International Conference on Human System Interaction
- HSI’2010, pages 548–555, Rzeszow, Poland, May 2010. IEEE press.

[28] L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, and M. A. Rueda-Morales.
Combining content-based and collaborative recommendations: A hybrid approach
based on bayesian networks. Int. J. Approx. Reasoning, 51(7):785–799, Sept. 2010.

[29] J. de Wit. Evaluating recommender systems. Master’s thesis, University of Twente,
May 2008.

[30] M. B. Dias, D. Locher, M. Li, W. El-Deredy, and P. J. Lisboa. The value of
personalised recommender systems to e-business: a case study. In Proceedings of
the 2008 ACM conference on Recommender systems, RecSys ’08, pages 291–294,
New York, NY, USA, 2008. ACM.

[31] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! music dataset
and kdd-cup’11. In Proceedings of KDDCup 2011, 2011.

[32] T. DuBois, J. Golbeck, and A. Srinivasan. Predicting trust and distrust in so-
cial networks. In PASSAT/SocialCom 2011, Privacy, Security, Risk and Trust
(PASSAT), 2011 IEEE Third International Conference on and 2011 IEEE Third
International Conference on Social Computing (SocialCom), Boston, MA, USA,
9-11 Oct., 2011, pages 418–424, 2011.

[33] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’01, pages 102–113, New York, NY, USA,
2001. ACM.

[34] A. Felfernig, R. Burke, and P. Pu. Preface to the special issue on user interfaces for
recommender systems. User Modeling and User-Adapted Interaction, 22(4-5):313–
316, 2012.

[35] D. M. Fleder and K. Hosanagar. Recommender systems and their impact on sales
diversity. In Proceedings of the 8th ACM conference on Electronic commerce, EC
’07, pages 192–199, New York, NY, USA, 2007. ACM.

[36] R. Forsati, M. Mahdavi, M. Shamsfard, and M. Sarwat. Matrix factorization with
explicit trust and distrust relationships. CoRR, abs/1408.0325, 2014.

[37] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[38] M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: Evaluating
recommender systems by coverage and serendipity. In Proceedings of the Fourth

104 BIBLIOGRAPHY

ACM Conference on Recommender Systems, RecSys ’10, pages 257–260, New York,
NY, USA, 2010. ACM.

[39] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–
741, Nov. 1984.

[40] J. Gemmell, T. Schimoler, B. Mobasher, and R. Burke. Hybrid tag recommenda-
tion for social annotation systems. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM ’10, pages 829–
838, New York, NY, USA, 2010. ACM.

[41] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix fac-
torization with distributed stochastic gradient descent. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’11, pages 69–77, New York, NY, USA, 2011. ACM.

[42] A. Gershman, A. Meisels, K.-H. L uke, L. Rokach, A. Schclar, and A. Sturm. A
decision tree based recommender system. In G. Eichler, P. G. Kropf, U. Lechner,
P. Meesad, and H. Unger, editors, IICS, volume 165 of LNI, pages 170–179. GI,
2010.

[43] M. Ghazanfar and A. Prugel-Bennett. An improved switching hybrid recommender
system using naive bayes classifier and collaborative filtering. In The 2010 IAENG
International Conference on Data Mining and Applications, April 2010. Event
Dates: 17-19 March, 2010.

[44] J. Golbeck. Trust and nuanced profile similarity in online social networks. ACM
Transactions on the Web (TWEB), 2009.

[45] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker,
and J. Riedl. Combining collaborative filtering with personal agents for better
recommendations. In Proceedings of the Sixteenth National Conference on Artifi-
cial Intelligence and the Eleventh Innovative Applications of Artificial Intelligence
Conference Innovative Applications of Artificial Intelligence, AAAI ’99/IAAI ’99,
pages 439–446, Menlo Park, CA, USA, 1999. American Association for Artificial
Intelligence.

[46] O. Görlitz et al. PINTS: Peer-to-Peer Infrastructure for Tagging Systems. In Intl
Conf. on Peer-to-Peer Systems (IPTPS), 2008.

[47] M. Gueye, T. Abdessalem, and H. Naacke. A cluster-based matrix-factorization for
online integration of new ratings. In 27-èmes journées Bases de Données Avancées
(BDA’11), Rabat, Maroc, 2011.

[48] M. Gueye, T. Abdessalem, and H. Naacke. Factorisation multi-biais pour de
meilleures recommandations. In Actes du 5ème Colloque National sur la Recherche
en Informatique et ses Applications (CNRIA’13), Ziguinchor, Sénégal, 2013.

BIBLIOGRAPHY 105

[49] M. Gueye, T. Abdessalem, and H. Naacke. Foldcons: A simple way to improve
tag recommendation. In Proceedings of the Fifth ACM RecSys Workshop on Rec-
ommender Systems and the Social Web co-located with the 7th ACM Conference
on Recommender Systems (RecSys 2013), Hong Kong, China, October 13, 2013.,
2013.

[50] M. Gueye, T. Abdessalem, and H. Naacke. Strec: An improved graph-based tag
recommender. In Proceedings of the Fifth ACM RecSys Workshop on Recommender
Systems and the Social Web co-located with the 7th ACM Conference on Recom-
mender Systems (RecSys 2013), Hong Kong, China, October 13, 2013., 2013.

[51] M. Gueye, T. Abdessalem, and H. Naacke. Technique de factorisation multi-biais
pour des recommandations dynamiques. In C. Vrain, A. Péninou, and F. Sèdes,
editors, Extraction et gestion des connaissances (EGC’2013), Actes, 29 janvier
- 01 février 2013, Toulouse, France, volume RNTI-E-24 of Revue des Nouvelles
Technologies de l’Information, pages 365–376. Hermann-Éditions, 2013.

[52] M. Gueye, T. Abdessalem, and H. Naacke. A parameter-free algorithm for an
optimized tag recommendation list size. In Proceedings of the 8th ACM Conference
on Recommender Systems, RecSys ’14. ACM, 2014.

[53] M. Gueye, T. Abdessalem, and H. Naacke. A social and popularity-based tag
recommender. In Proceedings of the 7th IEEE International Conference on Social
Computing and Networking (SocialCom 2014). December 3-5, Sydney, Australia.
IEEE, 12 2014.

[54] M. Gueye, T. Abdessalem, and H. Naacke. Dynamic recommender system : us-
ing cluster-based biases to improve the accuracy of the predictions. In F. Guillet,
G. Ritschard, D. Zighed, and H. Briand, editors, Advances in Knowledge Dis-
covery and Management, Studies in Computational Intelligence. Springer Berlin
Heidelberg, 2015.

[55] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In Proceedings of the 13th international conference on World Wide Web,
2004.

[56] A. Gunawardana and C. Meek. A unified approach to building hybrid recommender
systems. In Proceedings of the Third ACM Conference on Recommender Systems,
RecSys ’09, pages 117–124, New York, NY, USA, 2009. ACM.

[57] A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of rec-
ommendation tasks. J. Mach. Learn. Res., 10:2935–2962, Dec. 2009.

[58] M. Gupta et al. Survey on social tagging techniques. SIGKDD Explorations, 12(1),
2010.

[59] M. R. Gupta and Y. Chen. Theory and use of the em algorithm. Found. Trends
Signal Process., 4(3):223–296, Mar. 2011.

106 BIBLIOGRAPHY

[60] I. Guy, A. Jaimes, P. Agulló, P. Moore, P. Nandy, C. Nastar, and H. Schinzel.
Will recommenders kill search?: Recommender systems - an industry perspective.
In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys
’10, pages 7–12, New York, NY, USA, 2010. ACM.

[61] S. Hamouda and N. M. Wanas. Put-tag: personalized user-centric tag recommen-
dation for social bookmarking systems. Social Netw. Analys. Mining, 1(4):377–385,
2011.

[62] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collab-
orative filtering recommender systems. ACM Trans. Inf. Syst., 22:5–53, 2004.

[63] Y. Hijikata, K. Iwahama, and S. Nishida. Content-based music filtering system
with editable user profile. In Proceedings of the 2006 ACM Symposium on Applied
Computing, SAC ’06, pages 1050–1057, New York, NY, USA, 2006. ACM.

[64] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst., 22(1):89–115, Jan. 2004.

[65] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Folkrank: A ranking algorithm
for folksonomies. In Fachgruppe Information Retrieval (FGIR), 2006.

[66] D. Jannach and K. Hegelich. A case study on the effectiveness of recommendations
in the mobile internet. In L. D. Bergman, A. Tuzhilin, R. D. Burke, A. Felfernig,
and L. Schmidt-Thieme, editors, RecSys, pages 205–208. ACM, 2009.

[67] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst., 20(4):422–446, Oct. 2002.

[68] R. Jäschke et al. Tag recommendations in folksonomies. In PKDD, pages 506–514,
2007.

[69] R. Jäschke et al. Tag recommendations in social bookmarking systems. AI Com-
mun., 21(4):231–247, 2008.

[70] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recommendations: modeling
music ratings with temporal dynamics and item taxonomy. In Proceedings of the
5th ACM conference on Recommender systems, RecSys ’11, pages 165–172, New
York, NY, USA, 2011. ACM.

[71] J. Kogan. Introduction to Clustering Large and High-Dimensional Data. Cam-
bridge University Press, New York, NY, USA, 2007.

[72] J. Kogan, C. Nicholas, and M. Teboulle. Grouping Multidimensional Data: Recent
Advances in Clustering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[73] R. Kohavi, R. Longbotham, D. Sommerfield, and R. Henne. Controlled exper-
iments on the web: survey and practical guide. Data Mining and Knowledge
Discovery, 18(1):140–181, 2009.

[74] Y. Koren. How useful is a lower rmse?, 2007. Netflix Prize Forum.

BIBLIOGRAPHY 107

[75] Y. Koren. Collaborative filtering with temporal dynamics. Commun. ACM,
53(4):89–97, 2010.

[76] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42:30–37, 2009.

[77] M. Kubatz, F. Gedikli, and D. Jannach. Localrank - neighborhood-based, fast
computation of tag recommendations. In C. Huemer and T. Setzer, editors, E-
Commerce and Web Technologies, volume 85 of Lecture Notes in Business Infor-
mation Processing, pages 258–269. Springer Berlin Heidelberg, 2011.

[78] M. Kumar and N. Yadav. Multilayer perceptrons and radial basis function neural
network methods for the solution of differential equations: A survey. Comput.
Math. Appl., 62(10):3796–3811, Nov. 2011.

[79] L. G. Landau and J. G. Taylor. Concepts for Neural Networks: A Survey. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1997.

[80] D. D. Lewis. Naive (bayes) at forty: The independence assumption in information
retrieval. In Proceedings of the 10th European Conference on Machine Learning,
ECML ’98, pages 4–15, London, UK, UK, 1998. Springer-Verlag.

[81] Y. Li and W. Ma. Applications of artificial neural networks in financial economics:
A survey. In Proceedings of the 2010 International Symposium on Computational
Intelligence and Design - Volume 01, ISCID ’10, pages 211–214, Washington, DC,
USA, 2010. IEEE Computer Society.

[82] G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommenda-
tions: Item-to-item collaborative filtering. IEEE Distributed Systems Online, 4(1),
2003.

[83] P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems:
State of the art and trends. In Ricci et al. [116], pages 73–105.

[84] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou. Recom-
mender systems. Physics Reports, 519(1):1 – 49, 2012. Recommender Systems.

[85] X. Luo, Y. Xia, Q. Zhu, and Y. Li. Boosting the k-nearest-neighborhood based
incremental collaborative filtering. Knowledge-Based Systems, 53(0):90 – 99, 2013.

[86] H. Ma et al. Recommender systems with social regularization. In WSDM, pages
287–296, 2011.

[87] H. Ma, M. R. Lyu, and I. King. Learning to recommend with trust and distrust
relationships. In Proceedings of the Third ACM Conference on Recommender Sys-
tems, RecSys ’09, pages 189–196, New York, NY, USA, 2009. ACM.

[88] S. Maniu and B. Cautis. Network-aware search in collaborative tagging applica-
tions: Instance optimality versus efficiency. In CIKM, pages 939–948, 2013.

[89] S. Maniu, B. Cautis, and T. Abdessalem. Efficient top-k retrieval in online social
tagging networks. CoRR, abs/1104.1605, 2012.

108 BIBLIOGRAPHY

[90] L. Marinho et al. Relational classification for personalized tag recommendation.
In ECML PKDD Discovery Challenge, 2009.

[91] L. Marinho et al. Social tagging recommender systems. In Recommender Systems
Handbook. Springer, 2011.

[92] B. M. Marlin and R. S. Zemel. Collaborative prediction and ranking with non-
random missing data. In Proceedings of the Third ACM Conference on Recom-
mender Systems, RecSys ’09, pages 5–12, New York, NY, USA, 2009. ACM.

[93] P. Marx, T. Hennig-Thurau, and A. Marchand. Increasing consumers’ understand-
ing of recommender results: A preference-based hybrid algorithm with strong ex-
planatory power. In Proceedings of the Fourth ACM Conference on Recommender
Systems, RecSys ’10, pages 297–300, New York, NY, USA, 2010. ACM.

[94] A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification, 1998.

[95] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: How
accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’06, pages 1097–1101, New
York, NY, USA, 2006. ACM.

[96] M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in
social networks. ANNUAL REVIEW OF SOCIOLOGY, 27:415–444, 2001.

[97] A. K. Milicevic et al. Social tagging in recommender systems: a survey of the
state-of-the-art and possible extensions. Artif. Intell. Rev., 33(3):187–209, 2010.

[98] J. Mrosek et al. Content- and graph-based tag recommendation: Two variations.
In ECML PKDD Discovery Challenge, 2009.

[99] K. Niemann and M. Wolpers. A new collaborative filtering approach for increas-
ing the aggregate diversity of recommender systems. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’13, pages 955–963, New York, NY, USA, 2013. ACM.

[100] J. H. Paik, D. Pal, and S. K. Parui. A novel corpus-based stemming algorithm
using co-occurrence statistics. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’11,
pages 863–872, New York, NY, USA, 2011. ACM.

[101] J. H. Paik, S. K. Parui, D. Pal, and S. E. Robertson. Effective and robust query-
based stemming. ACM Trans. Inf. Syst., 31(4):18:1–18:29, Nov. 2013.

[102] M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the sparsity problem
of collaborative filtering using trust inferences. In iTrust. Springer, 2005.

[103] M. Papagelis, I. Rousidis, D. Plexousakis, and E. Theoharopoulos. Incremental col-
laborative filtering for highly-scalable recommendation algorithms. In M.-S. Hacid,
N. Murray, Z. Raś, and S. Tsumoto, editors, Foundations of Intelligent Systems,

BIBLIOGRAPHY 109

volume 3488 of Lecture Notes in Computer Science, pages 553–561. Springer Berlin
Heidelberg, 2005.

[104] A. Paterek. Improving regularized singular value decomposition for collaborative
filtering. In Proc. KDD Cup Workshop at SIGKDD’07, 13th ACM Int. Conf. on
Knowledge Discovery and Data Mining, pages 39–42, 2007.

[105] M. Pazzani and D. Billsus. Content-based recommendation systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The Adaptive Web, volume 4321
of Lecture Notes in Computer Science, pages 325–341. Springer Berlin Heidelberg,
2007.

[106] M. J. Pazzani. A framework for collaborative, content-based and demographic
filtering. Artif. Intell. Rev., 13(5-6):393–408, Dec. 1999.

[107] M. F. Porter. Readings in information retrieval. In K. Sparck Jones and P. Wil-
lett, editors, Readings in Information Retrieval, chapter An Algorithm for Suffix
Stripping, pages 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1997.

[108] M. N. Postorino and G. M. L. Sarne. A neural network hybrid recommender sys-
tem. In Proceedings of the 2011 Conference on Neural Nets WIRN10: Proceedings
of the 20th Italian Workshop on Neural Nets, pages 180–187, Amsterdam, The
Netherlands, The Netherlands, 2011. IOS Press.

[109] S. Ray and A. Mahanti. Weighted class based hybrid algorithm for top-n recom-
mender systems. In Proceedings of the 26th IASTED International Conference on
Artificial Intelligence and Applications, AIA ’08, pages 245–251, Anaheim, CA,
USA, 2008. ACTA Press.

[110] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In Shawe-Taylor et al. [125], pages 693–
701.

[111] B. Recht and C. Recht. Parallel stochastic gradient algorithms for large-scale
matrix completion. Mathematical Programming Computation, 5(2):201–226, 2013.

[112] S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix
factorization models for large-scale recommender systems. In P. Pu, D. G. Bridge,
B. Mobasher, and F. Ricci, editors, RecSys, pages 251–258. ACM, 2008.

[113] S. Rendle and L. Schmidt-Thieme. Factor models for tag recommendation in
bibsonomy. In ECML PKDD Discovery Challenge, Bled, Slovenia, 2009.

[114] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for
personalized tag recommendation. In WSDM, pages 81–90, 2010.

[115] F. Ricci. Mobile recommender systems. Information Technology & Tourism,
12(3):205–231, 2010.

[116] F. Ricci et al., editors. Recommender Systems Handbook. Springer, 2011.

110 BIBLIOGRAPHY

[117] F. Rosenblatt. Neurocomputing: Foundations of research. In J. A. Anderson
and E. Rosenfeld, editors, Neurocomputing: Foundations of Research, chapter The
Perception: A Probabilistic Model for Information Storage and Organization in
the Brain, pages 89–114. MIT Press, Cambridge, MA, USA, 1988.

[118] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, pages 791–798, New York, NY, USA, 2007. ACM.

[119] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1989.

[120] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental singular value
decomposition algorithms for highly scalable recommender systems. In Proceedings
of the 5th International Conference in Computers and Information Technology,
2002.

[121] J. B. Schafer, J. Konstan, and J. Riedi. Recommender systems in e-commerce.
In Proceedings of the 1st ACM conference on Electronic commerce, EC ’99, pages
158–166, New York, NY, USA, 1999. ACM.

[122] C. E. Seminario. Accuracy and robustness impacts of power user attacks on col-
laborative recommender systems. In Proceedings of the 7th ACM Conference on
Recommender Systems, RecSys ’13, pages 447–450, New York, NY, USA, 2013.
ACM.

[123] G. Shani and A. Gunawardana. Evaluating recommendation systems. In Ricci
et al. [116], pages 257–297.

[124] A. Sharma and D. Cosley. Do social explanations work?: Studying and modeling
the effects of social explanations in recommender systems. In Proceedings of the
22Nd International Conference on World Wide Web, WWW ’13, pages 1133–1144,
Republic and Canton of Geneva, Switzerland, 2013. International World Wide Web
Conferences Steering Committee.

[125] J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q. Wein-
berger, editors. Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12-14 December 2011, Granada, Spain, 2011.

[126] R. Sinha and K. Swearingen. The role of transparency in recommender systems.
In CHI ’02 Extended Abstracts on Human Factors in Computing Systems, CHI EA
’02, pages 830–831, New York, NY, USA, 2002. ACM.

[127] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv.
in Artif. Intell., 2009:4:2–4:2, 2009.

[128] Y. Sun, G. Liu, and K. Xu. A k-means-based projected clustering algorithm. In
Proceedings of the 2010 Third International Joint Conference on Computational

BIBLIOGRAPHY 111

Science and Optimization - Volume 01, CSO ’10, pages 466–470, Washington, DC,
USA, 2010. IEEE Computer Society.

[129] N. Sundaresan. Recommender systems at the long tail. In Proceedings of the Fifth
ACM Conference on Recommender Systems, RecSys ’11, pages 1–6, New York,
NY, USA, 2011. ACM.

[130] M. Tahajod et al. Trust management for semantic web. In ICCEE, pages 3–6,
2009.

[131] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Major components of the gravity
recommendation system. SIGKDD Explor. Newsl., 9:80–83, 2007.

[132] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various matrix
factorization methods for large recommender systems. In Proceedings of the 2nd
KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Com-
petition, NETFLIX ’08, pages 6:1–6:8, New York, NY, USA, 2008. ACM.

[133] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering
approaches for large recommender systems. J. Mach. Learn. Res., 10:623–656,
2009.

[134] M. Tavakolifard. Similarity-based techniques for trust management. Web Intelli-
gence and Intelligent Agents, 2010.

[135] N. Tintarev. Explanations of recommendations. In Proceedings of the 2007 ACM
Conference on Recommender Systems, RecSys ’07, pages 203–206, New York, NY,
USA, 2007. ACM.

[136] TPC-Council. Tpc benchmark c, rev 5.11. Technical report, Transaction Process-
ing Performance Council, 2010.

[137] S. Vargas and P. Castells. Rank and relevance in novelty and diversity metrics for
recommender systems. In Proceedings of the Fifth ACM Conference on Recom-
mender Systems, RecSys ’11, pages 109–116, New York, NY, USA, 2011. ACM.

[138] S. Vembu and S. Baumann. A self-organizing map based knowledge discovery for
music recommendation systems. In U. Wiil, editor, Computer Music Modeling
and Retrieval, volume 3310 of Lecture Notes in Computer Science, pages 119–129.
Springer Berlin Heidelberg, 2005.

[139] P. Victor, N. Verbiest, C. Cornelis, and M. D. Cock. Enhancing the trust-based
recommendation process with explicit distrust. ACM Trans. Web, 7(2):6:1–6:19,
May 2013.

[140] J. Vig, S. Sen, and J. Riedl. Tagsplanations: Explaining recommendations us-
ing tags. In Proceedings of the 14th International Conference on Intelligent User
Interfaces, IUI ’09, pages 47–56, New York, NY, USA, 2009. ACM.

112 BIBLIOGRAPHY

[141] D. C. Wilson and C. E. Seminario. When power users attack: Assessing impacts
in collaborative recommender systems. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 427–430, New York, NY, USA, 2013.
ACM.

[142] H. Wu and H. Fang. Relation based term weighting regularization. In Proceedings
of the 34th European Conference on Advances in Information Retrieval, ECIR’12,
pages 109–120, Berlin, Heidelberg, 2012. Springer-Verlag.

[143] H. Wu, Y. Wang, and X. Cheng. Incremental probabilistic latent semantic analysis
for automatic question recommendation. In Proceedings of the 2008 ACM Confer-
ence on Recommender Systems, RecSys ’08, pages 99–106, New York, NY, USA,
2008. ACM.

[144] X. Yang, Y. Guo, Y. Liu, and H. Steck. A survey of collaborative filtering based
social recommender systems. Comput. Commun., 41:1–10, Mar. 2014.

[145] X. Yang, Z. Zhang, and K. Wang. Scalable collaborative filtering using incremental
update and local link prediction. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages 2371–
2374, New York, NY, USA, 2012. ACM.

[146] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Parallel matrix factorization for
recommender systems. Knowledge and Information Systems, pages 1–27, 2013.

[147] M. Zanker. The influence of knowledgeable explanations on users’ perception of
a recommender system. In Proceedings of the Sixth ACM Conference on Recom-
mender Systems, RecSys ’12, pages 269–272, New York, NY, USA, 2012. ACM.

[148] F.-G. Zhang. Preventing recommendation attack in trust-based recommender sys-
tems. J. Comput. Sci. Technol., 26(5):823–828, Sept. 2011.

[149] G. P. Zhang. Neural networks for classification: A survey. Trans. Sys. Man Cyber
Part C, 30(4):451–462, Nov. 2000.

[150] Y. Zhang, N. Zhang, and J. Tang. A collaborative filtering tag recommendation
system based on graph. In ECML PKDD Discovery Challenge, Bled, Slovenia,
2009.

[151] Y.-C. Zhang, M. Blattner, and Y.-K. Yu. Heat conduction process on community
networks as a recommendation model. Physical Review Letters, 99(15):154301,
2007.

[152] Y.-C. Zhang, M. Medo, J. Ren, T. Zhou, T. Li, and F. Yang. Recommendation
model based on opinion diffusion. EPL (Europhysics Letters), 80(6):68003, 2007.

[153] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang. Solving
the apparent diversity-accuracy dilemma of recommender systems. Proceedings of
the National Academy of Sciences, 107(10):4511–4515, 2010.

BIBLIOGRAPHY 113

[154] T. Zhou, J. Ren, M. c. v. Medo, and Y.-C. Zhang. Bipartite network projection
and personal recommendation. Phys. Rev. E, 76:046115, Oct 2007.

[155] W. Zhou, Y. S. Koh, J. Wen, S. Alam, and G. Dobbie. Detection of abnormal
profiles on group attacks in recommender systems. In Proceedings of the 37th
International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval, SIGIR ’14, pages 955–958, New York, NY, USA, 2014. ACM.

[156] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix
factorization in shared memory systems. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 249–256, New York, NY, USA, 2013.
ACM.

[157] C.-N. Ziegler and J. Golbeck. Investigating interactions of trust and interest sim-
ilarity. Decision Support Systems, 2007.

[158] C.-N. Ziegler and G. Lausen. Propagation models for trust and distrust in social
networks. Information Systems Frontiers, 7(4-5):337–358, 2005.

[159] C.-N. Ziegler, G. Lausen, and J. A. Konstan. On exploiting classification tax-
onomies in recommender systems. AI Commun., 21(2-3):97–125, Apr. 2008.

[160] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen-
dation lists through topic diversification. In Proceedings of the 14th International
Conference on World Wide Web, WWW ’05, pages 22–32, New York, NY, USA,
2005. ACM.

[161] M. Zinkevich, A. J. Smola, and J. Langford. Slow learners are fast. In Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances
in Neural Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009. Proceedings of a meeting held 7-10 December
2009, Vancouver, British Columbia, Canada., pages 2331–2339. Curran Associates,
Inc., 2009.

[162] J. Zou and F. Fekri. A belief propagation approach for detecting shilling attacks in
collaborative filtering. In Proceedings of the 22Nd ACM International Conference
on Conference on Information & Knowledge Management, CIKM ’13, pages
1837–1840, New York, NY, USA, 2013. ACM.

Appendices

115

A | Résumé en Français

La recherche d’information dans le contexte de l’augmentation du nombre des res-
sources sur Internet demeure un défi à relever. Les utilisateurs doivent souvent choisir
parmi un très grand nombre de ressources. De ce fait, ils rencontrent beaucoup de diffi-
cultés pour prendre une décision appropriée. Par exemple, dans les moteurs de recherche
comme Google, Yahoo et autre, un utilisateur formule son besoin par une requête, en
utilisant des mots-clés qui seront comparés avec le contenu des ressources (c-à-d., les
documents web, dans ce cas). Le résultat retourné à l’utilisateur contient souvent un
grand nombre de documents dont l’ordre de tri n’est pas forcément pertinent pour lui
qui est ainsi obligé de sélectionner manuellement les documents l’intéressant le plus. Ce
qui peut être perçu comme une tâche pénible et ennuyeuse pour l’utilisateur.

Les utilisateurs étant souvent submergés par le nombre d’objetsqu’ils peuvent choisir,
ils peinent à trouver les objets qui les intéressent et finissent souvent désorientés et
déconcertés. C’est le phénomène de surcharge d’information ! Ce problème de surcharge
d’information peut être pallié par la personnalisation de l’accès aux informations [60] :
c’est tout l’intérêt de la recommandation de contenu.

La recommandation, dans ses principes élémentaires, se base sur les antécédents des
utilisateurs (lectures, achats, consultations, etc.). Elle peut utiliser des profils représenta-
tifs des intérêts, relativement stables, des utilisateurs (filtrage de contenu [105, 83]) [105,
63] ou les notes d’un groupe d’utilisateurs pour faire une suggestion à un autre (filtrage
collaboratif [127, 76, 70, 86]) [127]. Ce dernier est le plus utilisé. Cependant on note
assez souvent des approches mixtes [22, 56, 43, 28, 109].

L’objectif des systèmes de recommandation (recommander Systems en anglais, RS
en abrégé) est de déterminer, parmi une grande quantité de contenu lesquels intéresse-
ront le plus un utilisateur donné (les objets, livres, films, etc. qui sont susceptibles de
l’intéresser, les utilisateurs d’un réseau social avec qui il pourrait tisser des liens, etc.).
Ils ont une valeur commerciale capitale pour tout type de e-commerce [121, 35, 66].
Tout en subvenant au problème de surcharge d’informations et donc en assurant d’une
certaine manière la satisfaction et fidélité des clients, un RS vise à assurer plus de profit
à tout commerce ou fournisseur de données l’utilisant. D’après le directeur marketing
de la société Strands recommander 1, un leader dans la mise en place de systèmes de
recommandation, la recommandation participerait en moyenne à hauteur de 8 à 12%

1. http://bit.ly/1rpbM5L

117

http://bit.ly/1rpbM5L

118 ANNEXE A. RÉSUMÉ EN FRANÇAIS

dans les ventes d’un site commercial. Et d’après certains dires, 35% des ventes du lea-
der du e-commerce qu’est Amazon sont dues à son système de recommandation 2 3. La
recommandation représente des dizaines de milliards de dollars de chiffre d’affaire. Tous
ces chiffres expliquent l’engouement actuel autour de ces systèmes.

Un RS peut être évalué sur la qualité de ses recommandations. Plus ces dernières sont
intéressantes pour les utilisateurs, plus elles sont de qualité. Cependant, la qualité n’est
pas le seul critère pour évaluer un système de recommandation. Le temps de traitement
nécessaire pour fournir des suggestions aux utilisateurs est un second critère à prendre
en compte. En effet, un RS doit traiter des volumes de données très importants et qui
augmentent continuellement, ce qui peut poser des problèmes de passage à l’échelle.

Dans cette thèse, nous nous sommes consacrés au développement d’algorithmes de
recommandation offrant de bonne qualité de recommandation, tout en étant capables
de s’adapter au volume de données à prendre en charge. Pour cette tâche, principa-
lement deux directions peuvent être suivies : d’une part, l’optimisation d’algorithmes
existants, et d’autre part, la réduction du temps de calcul en adaptant ces algorithmes
à des infrastructures distribuées (ex : de type Cloud) offrant une capacité de traitement
extensible.

Nous avons étudié et fait des propositions dans deux contextes de recommandation,
à savoir la recommandation de contenu noté par les utilisateurs et la recommandation
de tags (c-à-d., la suggestion de termes pour annoter un objet donné). Les sections qui
suivent décrivent chacun de ces deux contextes et présentent les approches que nous
avons proposées afin d’optimiser le temps de calcul tout en assurant une bonne qualité
de recommandation.

Factorisation multi-biaisée pour des recommandations
dynamiques

Dans le cadre de la recommandation, un RS a besoin d’estimer l’intérêt qu’un utilisa-
teur aurait sur un objet afin de lui proposer les objets les plus susceptibles de l’intéresser.
Pour ce faire, les systèmes de recommandations ont besoin de savoir les notes que les
utilisateurs ont données aux objets qu’ils connaissent déjà. La plupart du temps, ces
notes (ou intérets) des utilisateurs sur les objets sont récupérés sous forme de valeurs
numériques (ex : 1 à 5 étoiles comme sur beaucoup de sites web). La figure A.1 montre
le widget d’Amazon qui permet à ses utilisateurs de donner leur notes sur ses objets.
Plus la valeur donnée est élevée, plus l’utilisateur s’intéresse à l’objet.

Considèrons un ensemble d’utilisateurs U , un ensemble de objets I et une liste de
notes (u, i, rui, tui) où chaque valeur rui représente l’intérêt de l’utilisateur u pour le
objet i, tui étant le moment où la note a été soumise, la recommandation repose sur la
prédiction des futures notes des utilisateurs telles que l’écart entre une note prédite f(u, i)

2. http://bit.ly/1tFcThk

3. http://glinden.blogspot.fr/2006/12/35-of-sales-from-recommendations.html

http://bit.ly/1tFcThk
http://glinden.blogspot.fr/2006/12/35-of-sales-from-recommendations.html

119

Figure A.1 – Widget à 5 étoiles sur Amazon.com

et celle réellement donnée ultérieurement rui, soit le plus petit possible. Cela permet
de proposer à l’utilisateur les objets présentant les plus grandes valeurs de prédiction.
Ainsi, la qualité d’un système de recommandation peut-être rattachée à la précision de
ses prédictions. En pratique, pour estimer cette précision (c-à-d les écarts), l’ensemble
des notes existantes est subdivisé en deux parties : la plus grande pour l’apprentissage et
la seconde pour l’évaluation. La mesure appelée RMSE est l’une des plus utilisées pour
l’évaluation. RMSE est la racine carré de la moyenne des carrés des écarts [62, 127].
Nous l’avons utilisée dans nos experiences.

RMSE =

√
√
√
√

1
n

∑

u,i

(rui − f(u, i))2 (A.1)

n représente le nombre total de notes à prédire. Plus petit est le RMSE, meilleures sont
les prédictions.

La factorisation de matrices (FM) est une technique de filtrage collaboratif apportant
une qualité très satisfaisante [127, 76, 104, 133, 76]. Elle consiste à construire des profils
caractérisant les utilisateurs et les objets, au moyen de vecteurs de facteurs. Ces profils
sont déduits des notes que les utilisateurs attribuent aux objets. Ainsi, il est possible
d’estimer l’intérêt d’un utilisateur pour un objet en combinant le profil de l’utilisateur
avec celui de l’objet. Le produit scalaire est généralement utilisé. Puis, les objets avec
les estimations les plus grandes sont recommandés.

Les systèmes de recommandation utilisant la factorisation de matrices représentent,
le plus souvent, les notes des utilisateurs dans une matrice R creuse. Les colonnes repré-
sentent les utilisateurs et les lignes les objets. Ainsi la note rui ∈ R est celle donnée par
l’utilisateur u à l’objet i. R est généralement très creuse.
L’objectif de la factorisation est de prédire les valeurs manquantes dans R. Dans sa forme

120 ANNEXE A. RÉSUMÉ EN FRANÇAIS

basique (FM basique), elle cherche à approximer R comme le produit de deux autres
matrices

R = P ·Q (A.2)

Les deux matrices P et Q contiennent respectivement les vecteurs de facteurs représen-
tatifs des utilisateurs et ceux des objets. Ce sont les matrices de facteurs. Pour prédire
la note f(u, i) que l’utilisateur u donnerait à l’objet i, il suffit simplement d’appliquer la
formule

f(u, i) = pu · q
T
i (A.3)

pu et qi étant respectivement les vecteurs de facteurs de l’utilisateur u et de l’objet i
dans P et Q.

Le processus d’apprentissage qu’effectue la factorisation détermine les valeurs dans
P et Q telles qu’on s’approche le plus des notes rui existantes dans R. Il utilise une
descente de gradient stochastique (DGS) qui calcule un minimum local tel que la somme

des erreurs (c-à-d des écarts), eui
def
= rui − f(u, i) entre les notes prédites f(u, i) et

celles réelles rui données par les utilisateurs, soit la plus faible possible. DGS minimise
la somme des erreurs quadratiques

∑

ui
e2

ui en ajustant les facteurs dans P et Q jusqu’à ce

que cette somme ne diminue plus :

puk ← puk + λ · (2 · eui · qki − β · puk)

qki ← qki + λ · (2 · eui · puk − β · qki)
(A.4)

Ceci permet de diminuer les erreurs et par conséquent d’avoir une meilleure approxima-
tion des notes réelles. Le paramètre λ introduit dans l’ajustement des facteurs représente
un taux d’apprentissage. β est un paramètre de régularisation.

Après cette phase, les prédictions f(u, i) sont calculées comme les objets pu · q
T
i . Un

tri est effectué par la suite pour trouver les objets les plus intéressants (ceux avec les
plus grandes notes de prédiction) et les recommander à l’utilisateur concerné.

L’une des améliorations en termes de qualité de la FM basique suppose que la plupart
des variations observées sur les notes des utilisateurs sont dues principalement à des effets
associés soit aux utilisateurs, soit aux objets [133, 76, 104]. Autrement dit, certains
utilisateurs ont tendance à donner des notes plus élevées ou plus faibles que les autres
utilisateurs. Et certains objets aussi sont plus ou moins appréciés que les autres. La
factorisation basique (FM basique) présentée précédemment ne prend pas en compte ces
tendances. La factorisation biaisée de matrices (FBM) introduit des biais pour tenir en
compte ces variations de notation. Les biais reflètent les tendances des utilisateurs et des
objets. On a la formule de prédiction suivante :

f(u, i) = pu · q
T
i + µ + bu + bi (A.5)

où µ dénote la moyenne de toutes les notes confondues, bu et bi sont respectivement le
biais de l’utilisateur et celui de l’objet (i.e, la tendance de l’utilisateur et la perception
de l’objet par rapport à la moyenne). Une bonne approximation de ces biais est cruciale

121

pour avoir des prédictions de bonne qualité [104, 76]. Ainsi, ils doivent être ajustés durant
la phase d’apprentissage en utilisant

bi ← bi + λ · (2 · eui − γ · bi)

bu ← bu + λ · (2 · eui − γ · bu)
(A.6)

γ est un paramètre de régularisation. Il joue un rôle comparable à β dans l’équation A.4.
Bien que très utilisée, la factorisation présente des limites. Un inconvénient majeur

est que le modèle résultant de la factorisation, reste statique. Le modèle ne tient pas
compte des nouvelles notes que les utilisateurs produisent continuellement. Ces nouvelles
notes ne seront prises en compte qu’à une prochaine factorisation. Ainsi, le modèle a
besoin d’être régénéré fréquemment. Bien qu’il existe des approches pour paralléliser
le calcul [110, 41, 111], ceci n’est pas toujours possible à cause du coût prohibitif de
la factorisation. De ce fait, la qualité des recommandations décroît graduellement entre
deux générations du modèle.

Nos travaux considèrent les contextes dynamiques où de nouvelles notes sont conti-
nuellement soumises. Dans de tels contextes, il n’est pas possible d’avoir un modèle à
jour à cause du temps nécessaire pour le calculer. Au minimum, les notes soumises du-
rant la génération d’un modèle ne sont pas prises en compte. Après la génération d’un
modèle, la situation peut se dégrader assez rapidement puisque le nombre de notes non
prises en compte augmente rapidement. De ce fait, une perte de qualité grandissante
peut être observée dans les recommandations aussi longtemps qu’un nouveau modèle
n’est pas généré (ce que nous démontrons dans nos expérimentations). Pour y faire face,
nous proposons un modèle combinant des biais globaux à des biais locaux.

Nous nous basons sur l’observation que beaucoup d’utilisateurs tendent à sur-apprécier
ou sous-apprécier les objets qu’ils notent. Une manière simple de quantifier cette tendance
est d’assigner un biais global à chaque utilisateur comme avec la FBM [76, 104, 132].
Cependant, la tendance d’un utilisateur n’est généralement pas uniforme : elle peut chan-
ger d’un groupe de objets à un autre. Pour certains groupes de objets, un utilisateur
peut avoir tendance à noter comme tout le monde alors qu’il surestime ou sous-estime
d’autres groupes par manque d’objectivité. Cette tendance devient uniforme pour un
ensemble de objets similaires ; ce que nous avons formalisé dans nos travaux [51, 54] à
travers l’équation bornant la variance de notation des utilisateurs par la dissimilarité des
objets notés :

0 ≤
∑

u∈U

V aru ≤

∑

(i,j)∈I2

dissimij

2

(A.7)

Pour prendre en compte cette diversité de notation, nous attribuons un biais local
δ

c(i)
u à chaque utilisateur u pour chaque groupe C de objets similaires ou proches. Cette

multitude de biais par utilisateur permet d’avoir un modèle plus raffiné et vise à une
meilleure qualité de recommandation. Nous appelons ce modèle par CBMF et sa formule
de prédiction est la suivante

f(u, i) = pu · q
T
i + µ +

(

bu +
1
|ςi|

∑

C∈ςi

bC
u

)

+ bi (A.8)

122 ANNEXE A. RÉSUMÉ EN FRANÇAIS

où ςi représente la liste des groupes auquels appartient l’objet i. Ce modèle permet
de prendre les cas où objet pourrait convenir à plusieurs groupes ou catégories. C’est
l’exemple d’un film catalogué sous plusieurs genres. Nous affinons les biais locaux bC

u

durant la phase d’apprentissage.
Les biais locaux étant calculés sur des groupes d’objets similaires, leur coût de calcul

faible permet de les ajuster à la volée lorsque de nouvelles notes arrivent. Ils assurent
ainsi la robustesse du modèle dans un contexte dynamique en maintenant une meilleure
qualité dans le temps.

Nos expérimentations sont faites sur les jeux de données de Netflix [15] et MovieLens 4

dont les tailles respectives sont de 100 et 10 millions de notes . Ces jeux de données sont
très utilisés dans la littérature [127].

Nos résultats montrent que notre modèle est plus performant que la FBM et la
FM basique. CBMF donne de plus petites erreurs dans ses prédictions. La table A.1
présente les différents résultats que nous avons obtenus sur les deux jeux de données.
Nous démontrons aussi la perte de qualité encourue dans un contexte où le modèle n’est

Jeu de données FM basique FBM CBMF
Movielens 0,7743 0,7608 0,7578

Netflix 0,9599 0,9312 0,9208

Table A.1 – RMSE des trois modèles (FM basique, FBM et CBMF).

pas mis à jour et que de nouvelles notes arrivent en continue. Pour cela, nous simulons un
cadre réel où les utilisateurs soumettent une quantité importante de notes (i.e. plusieurs
millions de notes par jour). La compagnie Netflix, par exemple, reçoit jusqu’à 4M de
notes par jour [8]. Pour mettre en place cette situation, l’utilisation d’un jeu de données
de grande taille s’impose et seul celui de Netflix contient suffisamment de notes. Le jeu
de données de MovieLens étant petit.

Nous observons l’impact global des nouvelles notes provenant de tous les utilisateurs
sans exception. Ainsi, nous construisons le jeu de test de telle sorte que chaque utilisateur
y soit présent. Le jeu de test contient 10% des notes les plus récentes de chaque utilisateur,
le reste (c-à-d., les 90%) servant à l’apprentissage. Plus précisément, nous alignons dans
l’échantillon de test la séquence d’arrivée des notes de sorte qu’à la date Di, i notes sont
déjà arrivées pour chaque utilisateur.

Nous mesurons ensuite l’évolution de la qualité des prédictions pour des dates Di

successives lorsqu’on progresse à travers le jeu de test. Nous utilisons une fenêtre glissante
de 200.000 notes (dont la moitié est partagée avec la fenêtre précédente afin de lisser
les résultats). La figure A.2 montre l’évolution de la qualité pour les trois modèles :
MF basique, FBM et CBMF. L’erreur de prédiction (i.e., le RMSE) augmente, ce qui
confirme la perte de qualité au fil du temps. Nous observons une augmentation de 5% du
RMSE lorsque 5M à 7M de nouvelles notes n’ont pas été prises en compte. En pratique,
cela signifie que les trois modèles deviennent rapidement obsolètes.

4. http://www.grouplens.org/node/73

http://www.grouplens.org/node/73

123

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 1 2 3 4 5 6

R
M

S
E

 (
w

in
do

w
 s

iz
e

of
 2

00
K

 r
at

in
gs

)

Delay since last MF (in million of ratings)

Basic MF
Biased MF

CBMF (3 clusters)

Figure A.2 – Croissance de l’erreur RMSE lorsque le nombre de nouvelles notes non
prises en compte augmente.

Nous montrons aussi la robustesse de notre modèle dans le temps. Autrement dit,
qu’il maintient une bonne qualité dans le temps. Utilisant toujours les jeux d’apprentis-
sage et de test de l’expérimentation précédente, nous prenons en compte l’intégration en
ligne des nouvelles notes des utilisateurs en ajustant leurs biais locaux.

Nous parcourons une à une les nouvelles notes dans le jeu de test. Chaque nouvelle
note est comparée par rapport à la prédiction qui aurait été faite (on calcul l’écart),
puis elle est automatiquement intégrée afin d’améliorer les futures prédictions. Le temps
moyen d’intégration est de 1,24 millisecondes. L’intégration est rapide et ne constitue
qu’un léger calcul.

La figure A.3 présente la nouvelle évolution de la qualité des prédictions pour le
modèle FMBM lorsqu’on intègre les nouvelles notes des utilisateurs. On y voit l’impor-
tance de la prise en compte de ces nouvelles notes avec un bénéfice de 13,97% lorsqu’on
atteint 7M de nouvelles notes intégrées. C’est une amélioration significative pour des
recommandations. Ce qui prouve que notre solution est robuste. Nous avons effectué des
expériences supplémentaires démontrant le bénéfice de mettre à jour les biais plutôt que
les facteurs. Nous renvoyons le lecteur au chapitre 3.

124 ANNEXE A. RÉSUMÉ EN FRANÇAIS

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5 6

R
M

S
E

 (
w

in
do

w
 s

iz
e

of
 2

00
K

 r
at

in
gs

)

Delay since last MF (in million of ratings)

CBMF static
CBMF + update biases

Figure A.3 – Évolution du RMSE avec l’intégration en ligne

Une méthode de voisinage étendu et optimisé pour la
recommandation de tags

En deuxième partie de nos travaux, nous nous sommes intéressés à la recommanda-
tion de tags. Il s’agit de la suggestion aux utilisateurs de mots-clés à utiliser lorsqu’ils
veulent annoter une ressource tel que cela est proposé dans Delicious 5ou sur Bibso-
nomy 6.

Nous nous sommes concentré sur le célèbre algorithme des plus proches voisins (K-
Nearest neighbors en anglais, KNN en abrégé) dans le cadre de l’utilisation des réseaux
sociaux pour améliorer la qualité des recommandations. Un défaut de cet algorithme
tel qu’utilisé est que le nombre de voisins à considérer est fixé à priori, ou tout au plus
limité au voisinage direct. Ceci à pour conséquence que la qualité des recommandation
n’est pas constante car elle est dépendante du nombre de voisins utilisé.

Nous proposons une adaptation de la méthode d’optimisation de Fagin et al [33] à
l’algorithme KNN, dans le cadre de la recommandation de tags. A travers cette adapta-
tion, il nous est possible de ne plus fixer le nombre de voisins à consulter en vue de faire
des suggestions. Nous choisissons dynamiquement le nombre optimal de voisins à consi-
dérer. De plus, notre approche prend en compte les voisins éloignés (c-à-d., indirects) en

5. http://www.delicious.com

6. http://www.bibsonomy.com

http://www.delicious.com
http://www.bibsonomy.com

125

étendant la relation de proximité entre les utilisateurs. Si un utilisateur u est connecté à
un utilisateur v avec une valeur de proximité θ+(u, v) et que ce dernier à une proximité
θ+(v, z) avec un autre utilisateur z, nous pouvons inférer, par transition, une proximité
θ+(u, z) entre u et z en utilisant la multiplication des deux précédentes proximités. Nous
nous basons sur les études effectuées dans ce sens et accréditant cette possibilité [130, 32].

Pour recommander des tags à un utilisateur u pour annoter une ressource i, notre
algorithme combine les popularités des tags avec les avis du voisinage de u. Il assigne à
chaque tag t deux scores :

– un score courant, score(t|u, i), tenu à jour durant la navigation dans le graphe
d’utilisateurs (ex. un réseau social). Nous définissons ce score comme suit :

score(t|u, i) =
(

α× ρ(t, i) + (1− α)× ρ(t, u)
)

×
(

1 + η(t|u, i)
)

avec ρ(t, i) et ρ(t, u) étant les pourcentages d’utilisation du tag t respectivement
pour la ressource i et par l’utilisateur u. η(t|u, i) représente l’avis du voisinage de
u sur l’annotation de la ressource i avec le tag t. Nous le prenons comme le rapport
du nombre de ses voisins qui ont annoté i par t et le nombre total de personnes
ayant annoté i.

– et un score maximal, MaxScore(t|u, i), que le tag ne peut dépasser. Le score
maximale prend en compte la probable contribution des voisins ayant annoté la
ressource et qui ne sont pas encore visités durant le parcours du graphe d’utilisa-
teurs.

En plus de ces deux valeurs de score, un score maximal et global MaxScoreUnseen
est attribué à tous les tags non encore rencontrés durant le parcours du graphe.
Durant toute l’exécution, une liste D des k tags avec les plus grands scores est mainte-
nue ordonnée et mise à jour. Nous arrêtons le parcours lorsque le plus faible des scores
courants des tags de la liste D est supérieur aux scores maximaux MaxScore(t|u, i) de
tous les autres tags qui n’y sont pas encore et aussi celui des tags qu’on n’a pas encore
rencontrés, MaxScoreUnseen. Ceci nous permet de borner le temps d’exécution tout
en optimisant la qualité finale des recommandations.

Nous avons expérimenté notre proposition sur 6 jeux de données disponibles et large-
ment connus de la communauté. Nous avons mené une série d’expériences montrant les
gains en qualité et l’adaptation de notre proposition à de larges graphes d’utilisateurs.
Plus de détails sont disponible au chapitre 4.

Optimisation du nombre d’objets à recommander

En troisième partie de nos travaux, nous nous sommes exclusivement focalisés sur
l’amélioration de la qualité des recommandations, spécialement dans le cadre de la re-
commandation de tags. La recommandation de liste d’objets est courante sur le web,
elle consiste à proposer une liste classée d’objets comme nous l’avons précédemment vu.

126 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Généralement la taille des listes proposées est constante quel que soit l’utilisateur à qui
ont fait la recommandation. Même si certains objets peuvent ne pas être pertinents pour
l’utilisateur, ils sont inclus dans la liste afin de respecter une taille fixée à priori. Ceci
peut avoir un mauvais impact sur la qualité des listes recommandées.

Dans nos expériences, nous montrons l’effet négatif qui peut découler de la fixation
de la taille des listes de recommandations. Nous avons utilisé quatre algorithmes de
recommandation de tags sur cinq jeux de données différents. La figure A.4 rapporte
l’évolution moyenne de la qualité des listes recommandées, en termes de valeurs F1, pour
des tailles de liste allant de 1 à 10. Elle démontre l’existence d’une taille de liste optimale
dépendant des jeux de données. Nous voyons aussi que de longues listes n’apportent pas
forcément de meilleures recommandations. D’où l’intérêt de pouvoir personnaliser la
taille des listes de recommandations selon le contexte de la recommandation, c-à-d.,
en prenant en compte l’utilisateur à qui on souhaiterait faire la recommandation et la
ressource qu’il voudrait annoter.

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 1 2 3 4 5 6 7 8 9 10

F
1-

m
ea

su
re

Top-K

FasTag
MPTR

FolkRank
PITF

Figure A.4 – Pertinence relative des tags en fonction de leurs rangs et du premier

Nous proposons (voir le chapitre 5) une méthode permettant de déterminer une taille
de liste optimale à utiliser lors d’une recommandation. Autrement dit, étant donnée une
liste LN de tags recommandés, nous souhaitons trouver parmi toutes ses sous-listes,
celle qui optimiserait la plus la qualité globale de la recommandation comme illustré

127

ci-dessous :
t1
︸︷︷︸

L1

t2

︸ ︷︷ ︸

L2

t3

︸ ︷︷ ︸

...

. . .

︸ ︷︷ ︸

LN−2

tN−1

︸ ︷︷ ︸

LN−1

tN

︸ ︷︷ ︸

LN

Plus formellement, nous introduisons une mesure de pertinence Rel(LN |u, i) d’une
liste LN de recommandations qui estime la probabilité que l’utilisateur u prenne tous
les tags de la liste pour annoter la ressource i. Nous calculons la sous-liste offrant la
meilleure pertinence et considérons sa taille – que nous notons par bls 7 – comme celle
optimale à prendre.

bls = max (s | s ∈ S) (A.9)

avec
S =

{

s | s ≤ N ∧ ∀n ≤ N, Rel(Ln|u, i) ≤ Rel(Ls|u, i)
}

Notre approche fonctionne comme un module indépendant qu’on peut utiliser avec
n’importe quel algorithme de recommandation de tags. Il reçoit en entrée une liste de
recommandations dont il optimise la taille en enlevant les tags qu’il juge impertinents.
Ceci à un double avantage. Premièrement, on peut espérer plus de confiance chez l’uti-
lisateur à travers sa satisfaction tout en ne le submergeant pas de propositions inutiles.
Deuxièment, l’espace des tags enlévés peut être occupé par d’autres suggérés par un
autre système de recommandation ayant un fonctionnement différent, afin d’avoir une
plus grande diversité dans les recommandations.

Nous définissons d’abord la pertinence Rel(t|u, i) d’un tag t du point de vue d’un
utilisateur u qui voudrait annoter une ressource i comme suit :

Rel(t|u, i) = ρ(t, u)× ρ(t, i) (A.10)

De là, notre proposition se base sur le fait que, dans les annotations des utilisateurs, la
pertinence des tags diminue en fonction de leurs rangs. Nous observons cette tendence
sur l’ensemble de nos cinq jeux de données. La figure A.5 montre l’évolution décroissante
de la pertinence des tags en fonction de leurs rangs et relativement à la pertinence du
premier tag de la liste.

Nous proposons deux modèles de mesure de pertinence pour les listes de recomman-
dations :

1. Le premier modèle que nous appelons blsC définit la pertinence d’une liste à tra-
vers son pourcentage de tags déjà utilisés par l’utilisateur et aussi pour annoté la
ressource. Quoique assez simpliste, il donne de bonnes performances.

7. bls pour « best list size »

128 ANNEXE A. RÉSUMÉ EN FRANÇAIS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

T
ag

’s
 r

el
ev

an
ce

Tag’s rank

Movielens
dc09

Bibson5
del.icio.us

Last.fm

Figure A.5 – Pertinence relative des tags en fonction de leurs rangs et du premier

2. Comme second modèle de pertinence, nous traduisons la décroissance de la perti-
nence des tags en fonction de leurs rangs dans la liste à travers une loi de Zipf-
Mandelbrot 8. Ainsi, nous établissons la pertinence d’une liste ou sous-liste de re-
commandations comme suit :

Rel(LN |u, i) =

∑

t∈LN
Rel(t|u, i)

√
1
2 (N + Max)

(A.11)

A travers cette définition, nous sommes capables de trouver une sous-liste de taille
optimale à conserver tout en promouvant celles qui sont de longues tailles. En
outre, lorsque plusieurs sous-listes sont toutes optimales, nous prenons la plus
longue d’entre elles. Nous appelons ce deuxième modèle par blsC_v2.

Nos expériences confirment la supériorité de blsC_v2 par rapport aux autres ap-
proches que sont blsC et les combinaisons linéaires généralement utilisées dans la litté-
rature. La figure A.6 met en évidence le maintient de la qualité des recommandations
apporté par l’optimisation de la taille des listes. Sur l’ensemble des expériences que nous
avons menées, les combinaisons linéaires (LC_bls sur la figure) ne surpassent nos deux
modèles que sur 9,19% des cas. Pour tout le reste, blsC_v2 propose les meilleures tailles
à garder pour 60% des cas. Il s’en suit blsC avec 30% des cas. Ceci confirme l’efficacité
de notre approche qui, en plus, ne dépend d’aucun paramètre.

8. C’est une loi de puissance sur des données ordonnées

129

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 1 2 3 4 5 6 7 8 9 10

F
1-

m
ea

su
re

Top-K

blsC_v2
blsC

LC_bls
Fixed size

Figure A.6 – Evolution de la qualité selon la taille des listes de recommandations

Conclusion

Durant notre thèse, nous avons étudié différents cadres de recommandation : de la
prédiction de notes d’utilisateurs à la recommandation de tags.

Toutes nos contributions prennent en compte à la fois la passage à l’échelle de la
méthode proposée et la qualité de ses recommandations. Pour ce faire, et à défaut de
proposer une nouvelle approche, nous avons à chaque fois étudié l’état de l’art et choisi
un candidat, parmi les meilleures solutions du moment et reconnu comme tel, que nous
avons essayé d’améliorer. Ainsi, pour chacun de cadres cités ci-dessus, nous avons pro-
posé et évalué des approches distribuées ou au moins optimisant le temps d’exécution.

Dans toutes nos expérimentations, nous nous sommes comparés à des techniques
reconnues de recommandation. En dernière étape, nous avons proposé une méthode
permettant d’épurer une liste d’objets recommandés et de n’en conserver que les éléments
pouvant maximiser la satisfaction de l’utilisateur. Cette nouvelle méthode est adaptable
à beaucoup de systèmes de recommandation.

	Contents
	List of Figures
	List of Tables
	General Introduction
	A survey of recommender systems
	Introduction to Recommender Systems
	Formal Definition of Recommendation Task
	Recommender Systems Function
	Classification of Recommender Systems
	Content-based Recommender Systems
	Item Representation
	User Profile
	Advantages and limitations

	Collaborative Filtering Systems
	Memory-based CF
	Model-based CF
	Advantages and limitations

	Hybrid Systems

	Conclusion

	Challenges and Evaluation of Recommender Systems
	Challenges of Recommender Systems
	Data Sparsity
	Scalability
	Diversity vs. accuracy
	User interface
	Vulnerability to attacks
	Some other Challenges

	Evaluating Recommender Systems
	Evaluation approaches
	Offline evaluation
	User studies
	Online Evaluation

	Evaluation measures
	Prediction Accuracy
	Coverage
	Diversity
	Novelty

	Conclusion

	The contributions of the thesis
	Using Cluster-based Biases for Dynamic Recommendations
	Preliminaries
	The Dynamicity Problem
	Related Work
	Distributed MF techniques
	Online-updating approaches

	Making Dynamic Recommendations
	Biased MF
	The interest of cluster-based local biases
	The CBMF model
	Integration of incoming ratings

	Complexity analysis
	Experimental Results
	Implementation and experimental setup
	Datasets
	Initial quality
	Large training sets improve the quality of the model
	Quantifying the need for online integration
	Robustness over time of our online integration model
	Quality vs. Performance tradeoff for online integration
	Benefit of refactorization

	Conclusion

	Making Social and Popularity-based Tag Recommendations
	Preliminaries
	Similarity propagation
	Extended neighborhood opinion

	Social and Popularity-based Tag Recommendation
	Score model and tag relevance
	The FasTag Algorithm
	Handling the Network Partitioning

	Related Work
	Experimentation
	Datasets
	Evaluation Measures and Methodology
	Effectiveness of FasTag
	Comparison with the result of ECML PKDD challenge 09
	Scalability of FasTag

	Conclusion

	Optimizing Tag Recommendation List Size
	Preliminaries
	Factor Models for Tag Recommendation
	FolkRank - A Topic-Specific Ranking
	Recommending the Most Popular Tags
	Social and popularity-based Recommender

	Adjusted Recommendation list size
	Linear combination models
	The blsC algorithm
	Simple relevance measure
	Refining the relevance measure

	Experimentation
	Datasets
	Evaluation Measures and Methodology
	Experimental Results
	Effectiveness of our proposal
	Giving up some recall for more precision
	Distribution of optimal list sizes

	Conclusion

	Research Perspectives
	Self References
	Bibliography
	Appendices
	Résumé en Français

