Multiphysics mesoscopic numerical simulation of the Laser Powder Bed Fusion process : Application to aeronautical metallic alloys - Archive ouverte HAL Access content directly
Theses Year : 2021

Multiphysics mesoscopic numerical simulation of the Laser Powder Bed Fusion process : Application to aeronautical metallic alloys

Simulation numérique multiphysique du procédé de fusion laser de lit de poudre : Application aux alliages métalliques d'intérêt aéronautique

(1)
1

Abstract

The Laser Powder Bed Fusion (LPBF) additive manufacturing process applied to metallic materials has been developed to manufacture parts from the selective fusion of powder bed layers which are successively built. This innovative process enables the manufacture of complex parts, which are lighter and therefore more efficient. However, the application of this technology, particularly in aeronautics, is limited by the large number of process parameters and complex physical phenomena that make its control challenging. It is necessary to get a better understanding of the physical mechanisms during laser-matter interaction, governing both heat transfer and melt pool dynamics. Consequently, a multiphysics numerical model of the LPBF process applied to metallic materials, based on previous achievements of a similar model applied to ceramic materials, is developed. This finite element model is performed at the melt pool scale where the powder bed is modeled as an equivalent continuous medium to find a balance between reasonable computation time and modeling fidelity. The Level Set method is used to follow the displacement of the interface between the metal domain and the protective gas. The phenomena related to the partial vaporization of the melt pool such as energy loss and recoil pressure are introduced to get a fine description of their consequences on heat transfer and melt pool dynamics. These implementations were validated through a collaborative benchmark. The model handles the simulation of the building of a single track, adjacent tracks to the building of several layers. The model demonstrates its ability to predict the influence of process parameters such as laser power, scan speed, laser beam diameter, building strategy and as well as material properties on heat transfer, melt pool dynamics and molten zones morphology. The model has been validated on multiple configurations (single track, adjacent tracks, multi-layers), highlighting the interest of developing such numerical approach to better understand the influence of the process parameters on the melting conditions and melted zones morphology. Thus, the model can help to define process windows guaranteeing good material soundness.
Le procédé de fusion laser de lit de poudre (LPBF) appliqué aux matériaux métalliques permet de fabriquer des pièces à partir de la fusion sélective de couches de lit de poudre empilées successivement. Ce procédé innovant permet la fabrication de pièces complexes plus légères comme les structures fines (lattice). Cependant, l'exploitation de cette technologie, notamment dans le domaine de l'aéronautique, est limitée par la multitude de paramètres procédé et de phénomènes physiques complexes ne permettant pas sa maîtrise complète. Plus précisément, il est nécessaire de mieux comprendre les mécanismes ayant lieu lors de l'interaction laser-matière puisqu'ils conditionnent les transferts thermiques et la dynamique du bain de fusion. Dans le cadre de ces travaux de recherche, un modèle multiphysique du procédé LPBF appliqué aux matériaux métalliques, sur la base de précédents développements dans le cadre des matériaux céramiques, est proposé. Ce modèle éléments finis est développé à l'échelle du bain de fusion où le lit de poudre est modélisé comme un milieu continu équivalent, offrant un très bon compromis entre temps de calcul raisonnable et fidélité de modélisation. La méthode Level Set est utilisée afin de suivre le déplacement de l'interface entre le domaine métallique et le gaz protecteur. Les phénomènes liés à la vaporisation partielle du bain liquide tels que la perte d'énergie et la force de recul, sont introduits dans le modèle afin d'avoir une description fine de leurs conséquences sur les transferts thermiques ainsi que la dynamique du bain. Ces implémentations ont été validées dans le cadre d'un benchmark collaboratif. Le modèle permet la simulation de la fabrication de monocordons, cordons juxtaposés (draps) jusqu'à la fabrication de quelques couches. Le modèle démontre qu'il est capable de prédire l'influence de paramètres procédé tels que la puissance du laser, la vitesse de scan, le diamètre du faisceau laser, de la stratégie de construction ainsi que des propriétés matériau sur les transferts thermiques, la dynamique du bain et la morphologie des zones fondues. Le modèle a été validé sur de multiples configurations (monocordons, draps, multicouches), soulignant l'intérêt de ce type d'approche numérique pour mieux comprendre l'influence des paramètres procédé sur l'interaction laser-matière. Au final, le modèle permet la détermination de fenêtres de fabricabilité garantissant une bonne santé matière.
Fichier principal
Vignette du fichier
2021UPSLM037_archivage.pdf (260.84 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03521575 , version 1 (11-01-2022)

Identifiers

  • HAL Id : tel-03521575 , version 1

Cite

Alexis Queva. Simulation numérique multiphysique du procédé de fusion laser de lit de poudre : Application aux alliages métalliques d'intérêt aéronautique. Mécanique des matériaux [physics.class-ph]. Université Paris sciences et lettres, 2021. Français. ⟨NNT : 2021UPSLM037⟩. ⟨tel-03521575⟩
177 View
31 Download

Share

Gmail Facebook Twitter LinkedIn More