
HAL Id: tel-03523671
https://pastel.hal.science/tel-03523671

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protecting data confidentiality combining data
fragmentation, encryption, and dispersal over a

distributed environment
Katarzyna Kapusta

To cite this version:
Katarzyna Kapusta. Protecting data confidentiality combining data fragmentation, encryption, and
dispersal over a distributed environment. Cryptography and Security [cs.CR]. Télécom ParisTech,
2018. English. �NNT : 2018ENST0061�. �tel-03523671�

https://pastel.hal.science/tel-03523671
https://hal.archives-ouvertes.fr

T

H

È

S

E

2018-ENST-0061

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

Katarzyna Kapusta

Protecting data confidentiality combining data fragmentation,
encryption, and dispersal over a distributed environment.

Directeur de la thèse : Prof. Gérard MEMMI

Jury

M. Frédéric CUPPENS, Prof., Télécom Bretagne Rapporteur
M. Roberto DI PIETRO, Prof., Hamad Bin Khalifa University Rapporteur
M. Louis GOUBIN, Prof.,University of Versailles-St-Quentin-en-Yvelines Rapporteur
Mme Samia BOUZEFRANE, Dr., Conservatoire National des Arts et Métiers Examinateur
Mme Nora CUPPENS, Prof., Télécom Bretagne Examinateur
M. Artur JANICKI, Dr., Warsaw University of Technology Examinateur
M. Jean LENEUTRE, Dr., Télécom ParisTech Examinateur

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Contents

1 Introduction 31

1.1 Background and Motivation 31

1.2 Contributions and Dissertation Overview 37

Bibliography . 40

2 Relevant work 45

2.1 Introduction . 45

2.2 Data Concepts and Notation 47

2.3 Bitwise Fragmentation . 49

2.3.1 Bitwise Fragmentation Techniques 50

2.3.2 System characteristics 67

2.3.3 Systems Overview . 73

2.4 Exploiting data structures . 84

2.4.1 Object-oriented Data Fragmentation 86

2.4.2 Database Fragmentation 86

2.5 Issues and Recommendations 91

2.6 Summary . 93

Bibliography . 95

i

ii CONTENTS

3 Protecting data against key exposure 107

3.1 Introduction and Motivation 107

3.2 Secure Fragmentation and Dispersal 110

3.2.1 Data Concepts, Notation, and Prerequisites 111

3.2.2 Description of the Scheme 114

3.2.3 Comparison with Relevant Works 119

3.3 Circular All-Or-Nothing . 124

3.3.1 Data Concepts and Notation 124

3.3.2 Description of the Algorithm 126

3.3.3 Comparison with Relevant Works 129

3.4 Selective All-Or-Nothing . 133

3.4.1 Data Concepts, Notations, and Prerequisite 133

3.4.2 Description of the Scheme 135

3.4.3 Comparison with Relevant Works 141

3.5 Summary . 143

Bibliography . 145

4 Accelerating fragmentation 149

4.1 Introduction and Motivations 149

4.1.1 Data Concepts, Notation, and Prerequisites 151

4.2 Description of the Scheme . 153

4.2.1 Step 1: Partial Encryption and Fragmentation 153

4.2.2 Step 2: Blending Plaintext and Ciphertext Blocks . . . 154

4.2.3 Step 3: Dispersing Fragments 156

4.3 Comparison With Relevant Works 158

4.3.1 Theoretical Comparison with Relevant Works 158

CONTENTS iii

4.3.2 Performance Benchmark 159

4.4 Summary . 160

Bibliography . 161

5 Lightweight fragmentation 163

5.1 Introduction and Motivations 163

5.2 Data Concepts, Prerequisites, and Notation 165

5.2.1 Prerequisites and Index Notations 166

5.2.2 Definitions . 167

5.3 Forming Fragments . 168

5.3.1 Data Distribution over Fragments 169

5.3.2 Generating Permutations 170

5.3.3 Encoding Fragments 171

5.3.4 Dispersing Fragments 174

5.4 Security Analysis . 174

5.5 Complexity Analysis and Storage Requirements 177

5.6 Comparison with Relevant Works 180

5.7 Summary . 182

Bibliography . 183

6 Fragmentation inside UWSN 185

6.1 Introduction and Motivations 185

6.2 Related Work . 187

6.2.1 Moving Data around the Network 187

6.2.2 HybridS . 188

6.2.3 Homomorphic Key-evolution Scheme 189

iv CONTENTS

6.2.4 Homomorphic Encryption and Homomorphic Secret Shar-

ing . 190

6.3 Problem Formulation . 190

6.3.1 Network Model . 191

6.3.2 Threat Model . 193

6.4 The Proposed Scheme . 194

6.4.1 System Initialization 195

6.4.2 Processing Round Data 196

6.4.3 Fragments Aggregation 198

6.4.4 Data Defragmentation 199

6.5 Comparison with Relevant Works 200

6.5.1 Storage Overhead . 202

6.5.2 Transmission Costs . 203

6.5.3 Performance Benchmark 204

6.6 Summary . 206

Bibliography . 207

7 Conclusions and Future Work 211

7.1 Summary of contributions . 211

7.2 Future Work . 215

Bibliography . 219

A Empirical Analysis of FSFA 221

Bibliography . 225

B Publications and Talks 227

CONTENTS v

List of Figures 231

List of Tables 235

List of Abbreviations 238

vi CONTENTS

Acknowledgements

Firstly, I would like to express my most sincere gratitude to my supervisor

Prof. Gérard Memmi for the tremendous support of my PhD study and

research, for his patience, motivation, immense knowledge, and dedication

to students. Thank you for leading me through such a splendid journey.

With your leading, the past four years have been a fantastic adventure that

will be unique and important in my life.

I am grateful to all the jury members: Prof. Frédéric Cuppens, Prof.

Roberto di Pietro, Prof. Louis Goubin, Dr Samia Bouzefrane, Prof. Nora

Cuppens, Dr Artur Janicki, and Dr Jean Leneutre for attending my disser-

tation, and, in particular, the reviewers of the manuscript: Prof. Frédéric

Cuppens, Prof. Roberto di Pietro, Prof. Louis Goubin, for their important

suggestions and comments.

Thanks also to all the colleagues and staffs in Télécom ParisTech for all

help and collaboration in technical knowledge and administrative tasks.

Last but not least, I would like to express my gratitude to my family for

encouraging and supporting me so many years. Thanks to my friends I met

in France for the memorable moments we shared.

1

2

Abstract

Combining data encryption, fragmentation, and dispersal is a proven but not

widely used way of reinforcing data confidentiality, availability, and integrity

in distributed storage environments. Nowadays, it is being reconsidered with

the emergence of the cloud storage and the growing interest in internet-of-

things. Multiple questions arise within these two new contexts: How to

guarantee data protection even in a situation when the attacker acquired the

encryption key? How to protect outsourced data against a curious storage

provider and malicious attackers? How to provide data confidentiality in a

sensor network where real-time data collection is not possible?

This thesis dissertation revisits state-of-the-art fragmentation techniques

making them faster and cost-efficient. The main focus is put on increasing

data confidentiality without deteriorating the processing performance. The

ultimate goal is to provide a user with a set of fast fragmentation meth-

ods that could be directly applied inside an industrial context to reinforce

the confidentiality of the stored data and/or accelerate the fragmentation

processing.

First, a rich survey on fragmentation as a way of preserving data con-

fidentiality is presented. It introduces two new definitions dividing frag-

3

4

mentation into bitwise and structurewise. Relevant techniques are described

in details and compared in terms of data protection level, storage overhead,

and complexity. Performance benchmarks confirm the theoretical complexity

evaluation. Not only techniques, but also relevant academic and commercial

systems are presented. Their main characteristics are described. The aca-

demic and commercial approaches are compared. Several recommendations

are given on the design of an efficient fragmentation system.

Second, the family all-or-nothing transforms is extended with three new

proposals. They all aim at protecting encrypted and fragmented data against

the exposure of the encryption key but are designed to be employed in three

different contexts: for data fragmentation in a multi-cloud environment, a

distributed storage system, and an environment composed of one storage

provider and one private device. Complexity evaluation and performance

benchmark show that they are the fastest of all of the relevant techniques.

Third, a way of accelerating fragmentation is presented that achieves bet-

ter performance than data encryption using the most common symmetric-key

encryption algorithm. This gain in performance is achieved by limiting the

encryption processing, applying an all-or-nothing transform over partially en-

crypted data, and relying on the protection provided by data dispersal. This

contribution addresses the need of users disposing of access to independent

storage sites and prioritizing the speed of processing.

Fourth, a lightweight fragmentation scheme based on data encoding, per-

muting, and dispersing is introduced. It totally gets rid off data encryption

allowing the fragmentation to be performed even faster; up to twice as fast as

data encryption. The proposal revisits the use of the perfect secret sharing,

5

trading its security for scalability. In contrast to other contributions, this

proposal comes with an alternative to symmetric encryption. It was moti-

vated by the fact that in some cases a lightweight data protection combined

with dispersal may be sufficient.

Finally, fragmentation inside sensor networks is revisited, particularly in

the Unattended Wireless Sensor Networks. The main focus in this case is

put not solely on the fragmentation performance, but also on the reduction

of storage and transmission costs by using the data aggregation. This is

motivated by the fact that contrary to fragmentation in the cloud, fragmen-

tation inside a sensor networks has to take into account the limited energy

capacities of the sensors’ batteries. When compared with relevant state-of-

the art techniques, the proposed scheme reduces by at least half the number

of stored and transmitted bits.

6

Résumé

Dans cette thèse de doctorat, les méthodes classiques de protection de don-

nées sont revisitées au vu de l’émergence du cloud public d’une part et de

l’intérêt croissant pour l’Internet des Objets (IoT) d’autre part. Plusieurs

questions se posent dans ces deux nouveaux contextes. Comment garan-

tir la protection des données même dans le cas où l’attaquant a acquis la

clé de chiffrement? Comment protéger ses données externalisées contre non

seulement des attaquants malveillants, mais aussi contre un fournisseur de

stockage curieux qui voudrait utiliser les données pour ses propres intérêts

ou applications? Comment assurer la confidentialité des données dans un

réseau constitué de capteurs pour lequel la collecte de données en temps réel

n’est pas possible?

La combinaison du chiffrement, de la fragmentation et de la dispersion

des données constitue un moyen éprouvé mais peu répandu de renforcer la

confidentialité, l’intégrité et la disponibilité des données dans des environ-

nements de stockage distribués. Pendant longtemps, la non-popularité de

cette solution a essentiellement été liée à deux causes. Premièrement, avant

l’introduction du cloud public, l’utilisation de la fragmentation était limité

aux centres de données privés. Hors, la fragmentation n’est efficace en terme

7

8 RÉSUMÉ

de protection que par l’usage de plusieurs nœuds de stockage indépendants.

Aujourd’hui, l’architecture distribué du cloud et de l’Internet des Objets ou-

vrent de nouvelles possibilités de dispersion: un simple utilisateur peut se

permettre de disperser ses données sur plusieurs serveurs localisés dans le

monde entier. Deuxièmement, les techniques de fragmentation classiques

détériorent notablement les performances du système et souvent augmentent

le volume de la donnée stockée de façon importante.

La thèse a commencé dans le cadre du projet européen ITEA2 CAP. Elle

se concentre sur l’étude des techniques de fragmentation et de dispersion en

se proposant de les rendre plus rapides et/ou moins gourmandes en mémoire.

Le but ultime est de fournir à un utilisateur un ensemble de méthodes de

fragmentation rapide pouvant être directement appliqué dans un contexte in-

dustriel afin de renforcer la confidentialité des données stockées ou d’accélérer

le processus de protection.

Sur la fragmentation comme moyen de protec-

tion de données

Une étude approfondie sur la fragmentation en tant que moyen de préserver

la confidentialité des données a été effectuée et a donné comme résultat une

vaste analyse et organisation de l’état de l’art. Cet état d’art commence par

la description du processus de fragmentation. Par fragmentation de données

on comprend le processus de transformation quelconque d’une donnée en un

ensemble de fragments comprenant un seuil c’est à dire un nombre mini-

mal de fragments nécessaires pour la reconstruction de la donnée initiale.

9

Ainsi définie, la fragmentation inclut les méthodes ayant pour but d’assurer

la résilience de la donnée (utilisant la réplication ou les codes correcteurs

d’erreurs). Ensuite, les descriptions des travaux pertinents sont organisés

en discernant les méthodes de fragmentation qui utilisent ou non des in-

formations sur la structure de donnée. Dans le premier cas, les données

sont divisées en sous-ensembles de bits de différents niveaux de confidential-

ité qui seront protégés de différentes manières, c’est-à-dire dispersés sur des

serveurs physiques caractérisés par différents niveaux de fiabilité. Ce type de

fragmentation sera surtout appliqué pour fragmenter des bases de données.

Dans le second cas, les données sont simplement traitées comme un ensemble

de bits consécutifs, chacun ayant un niveau de confidentialité égal. Ce type

de fragmentation peut être appliqué sur tous types de données.

Les techniques de fragmentation sans considération de la structure de

données pertinentes sont décrites en détail et comparées en termes de niveau

de protection des données, de surcharge de stockage et de complexité. Des

évaluations expérimentales ont confirmé les estimations théoriques. Parmi

les techniques présentées on retrouve le partage de secret (notamment le

schéma de partage de secret proposé par Shamir), les algorithmes de dis-

persion d’information (notamment celui de Rabin), ainsi que les schémas de

fragmentation basé sur le chiffrement symétrique (entre autres la modifica-

tion du partage de secret de Krawczyk, les méthodes de type "tout-ou-rien" et

la technique AONT-RS). On peut observer que même si le partage de secret

garantit un haut degré de confidentialité de données, il reste peu pratique

pour la fragmentation de grandes volumes de données puisqu’il mène à une

augmentation considérable de la taille de la donnée fragmentée. Les méth-

10 RÉSUMÉ

odes basées sur le chiffrement permettent de limiter la surcharge de mémoire

en garantissant un niveau de confidentialité suffisant contre un attaquant lim-

ité en terme de puissance de calcul. De plus, contrairement aux algorithmes

de dispersions, ils passe à l’échelle en terme de nombre de fragments.

Non seulement les techniques, mais aussi six systèmes académiques ap-

pliquant la fragmentation sans regard de la structure des données (Delta-

4 (1991), PASIS (2000), GridSharing (2005), POTSHARDS (2009), Dep-

Sky (2013) et CDStore (2016)) et trois systèmes commerciaux (Unisys’s Se-

cureParser (2005), IBM Cloud Storage (précédemment Cleversafe, 2011) et

Symform (2011)) ont été analysés et comparés. L’accent est mis sur la façon

de renforcer la confidentialité des données utilisée par ces systèmes. Cepen-

dant, d’autres caractéristiques propre à un système basé sur la fragmentation

de donnée sont également décrites, comme la résilience des données, la ges-

tion de placement des clés et des fragments, l’intégrité et l’authentification

des données, la fiabilité des nœuds de stockage, la taille des fragments, ainsi

que la déduplication des fragments. On peut observer que l’utilisation de la

fragmentation a changé au cours des années et diffère selon l’origine du pro-

jet. Il y a encore dix ans, les solutions reposaient presque exclusivement sur

le partage de secrets pour la confidentialité et la réplication pour la résilience

des données, tandis que les systèmes récents remplacent le partage de secret

par le chiffrement et la réplication par les codes correcteurs d’erreurs. A la

différence des produits commerciaux, les propositions académiques ont ten-

dance à être plus originales, même au prix d’une augmentation excessive du

volume des données stockées et d’une diminution drastique des performances.

Les techniques de fragmentation exploitant la structure de données sont

11

divisés en deux groupes. La première groupe réunit les travaux autour de la

fragmentation orientée objets: une approche de conception de logiciel décom-

posant l’architecture d’une application en plusieurs fragments de différents

niveaux de confidentialité et favorisant le placement des objets confidentiels

sur des machines de confiance. Le deuxième groupe applique la fragmentation

au base de données relationnelles. Cet approche est majoritairement réalisée

dans un environnement de type multi-cloud. Les n-uplets de la base de

données sont segmentés en plusieurs fragments pour séparer les valeurs non-

confidentielles qui, une fois associées, pourraient dévoiler de l’information

confidentielle, notamment qui dé-anonymiseraient l’information stockée dans

la base. Les valeurs contenant de l’information confidentielle sont ensuite

chiffrées.

Pour conclure, quelques recommandations sont données sur la conception

d’un système de fragmentation efficace. On recommande notamment la façon

de disperser la données selon son niveau de confidentialité et selon son volume

(voir Figure 1).

Protection des données chiffrées contre

l’exposition de la clé de chiffrement

L’externalisation du stockage de données dans le cloud constitue sans doute

un défi en terme de sécurité. D’une part, les fournisseurs doivent faire face

quotidiennement à un grand nombre d’attaques externes. Chaque fuite de

données majeure risque d’être signalée dans les médias en nuisant à leur répu-

tation. D’autre part, du point de vu d’un utilisateur du service, la menace

12 RÉSUMÉ

Figure 1: Dispersion des données selon leurs niveaux de confidentialité.

peut venir non seulement d’un attaquant externe, mais aussi du fournisseur

lui même. En effet, un fournisseur malhonnête pourrait être tenté d’exploiter

les données stockées, par exemple pour des raisons économiques ou politiques

ou même par pure malveillance. Ainsi, la solution recommandée (entre autres

par le Règlement européen Général sur la Protection des Données (RGPD))

est de chiffrer les données avant de les confier à un service de stockage.

D’un autre point de vu, grâce à sa nature hautement distribuée, le cloud

ouvre de nouvelles possibilités pour renforcer la protection des données qui,

en plus d’être protégées par le chiffrement, peuvent être maintenant facile-

13

ment et efficacement dispersées sur un grand nombre de serveurs situés sur

des sites de stockage différents. Un tel traitement non seulement ralentit

un attaquant externe (qui doit accéder à plusieurs sites de stockage protégés

par des mécanismes de sécurité différents), mais protège également contre une

utilisation abusive des données stockées par un seul fournisseur (qui ne pos-

sédera pas la données complète sans une coalition avec tous les fournisseurs).

Le renforcement de la protection des données en utilisant une combinaison

de chiffrement, de fragmentation et de dispersion a déjà été proposé par

plusieurs solutions de stockage durant les dernières années. Cependant, la

majorité d’entre eux ne prêtent pas beaucoup d’attention à la manière dont

les fragments sont construits à partir de la donnée chiffrée. La fragmentation

est généralement effectuée de manière simple, les fragments étant formés à

partir de gros morceaux consécutifs de donnée. Un tel traitement ne protège

pas contre des adversaires qui, en plus d’avoir accès à un sous-ensemble des

domaines de stockage, ont réussi d’obtenir la clé de chiffrement. Ce type

d’adversaire sera en effet capables de déchiffrer une partie des informations

dispersées.

De nos jours, l’accès par l’attaquant à la clé de chiffrement (on parlera

d’exposition à la clé de chiffrement) est une menace réelle surtout pour des

données de long cycle de vie ou des données partagées par de nombreux

utilisateurs. D’une part, cette exposition peut être le résultat d’une mauvaise

génération de clé résultant en une clé facilement concevable ou reproductible.

D’autre part, elle peut être due à l’utilisation par les attaquants de portes

dérobées dans les logiciels de génération de clé, ou encore due à une forme de

corruption ou de coercition. De plus, lorsque nous considérons des données

14 RÉSUMÉ

ayant de longs cycles de vie, la longueur de la clé de chiffrement utilisée peut

devenir insuffisante après plusieurs années en raison des progrès réalisés dans

le développement de nouvelles machines toujours plus puissantes ainsi que

dans le domaine de la cryptanalyse.

Afin d’empêcher un attaquant en possession de la clé de chiffrement de

déchiffrer même une petite partie de l’information, la donnée sera première-

ment transformée avec une méthode dite "tout-ou-rien" (all-or-nothing) et

ensuite fragmentée en plusieurs fragments puis dispersée. La transformation

"tout-ou-rien" produit un texte chiffré déchiffrable seulement s’il est complet.

Ainsi, la totalité des fragments est nécessaire pour la défragmentation. Une

fois que les fragments sont dispersés sur au moins deux sites de stockage in-

dépendants, la donnée est protégée contre un attaquant incapable de collecter

tous les fragments. Cela est vrai même si l’attaquant parvient à obtenir la clé

de chiffrement car un déchiffrement partiel des données (déchiffrer unique-

ment la partie des données contenues dans un seul fragment) est impossible.

Plusieurs algorithmes de type "tout-ou-rien" ont déjà été proposés dans

la littérature. Cependant, nécessitant un traitement créant des liens en-

tre les blocs du texte chiffré, ils restent moins rapides que le chiffrement

symétrique combiné avec une fragmentation simple de la donnée chiffrée.

Dans le Chapitre 3 de la thèse, la famille des algorithmes de type "tout-ou-

rien" se voit agrandie de trois propositions visant à atteindre un surcoût de

performance optimisé voire négligeable: le "Secure Fragmentation and Dis-

persal" (SFD), le "Circular all-or-nothing" (CAON), et le "Selective all-or-

nothing" (SAON). Ayant le même but, chacune des propositions est conçue

pour être utilisée dans un contexte différent.

15

SFD est une méthode de fragmentation et de dispersion d’un texte obtenu

en exploitant les propriétés d’un chiffrement symétrique par blocs. Elle ne

nécessite aucune transformation de la donnée chiffrée, juste une simple seg-

mentation. En effet, les bits de la donnée sont dispersés sur plusieurs frag-

ments. Cependant, cette dispersion n’est pas faite d’une façon aléatoire mais

suit des règles précises exploitant les propriétés d’un chiffrement par bloc et

ayant pour but de renforcer la confidentialité des fragments. Premièrement,

les blocs consécutifs du texte chiffré sont séparées entre différents fragments.

Cela est motivé par le fait que le déchiffrement d’un bloc nécessite dans la

plus part des cas la présence du prédécesseur de ce bloc. Ainsi, la sépara-

tion des blocs consécutifs renforce la protection et il n’est plus possible de

déchiffrer un seul fragment, même si la clé de chiffrement est connue. Deux-

ièmement, les bits d’un seul bloc sont aussi répartis entre différents fragments

qui seront dispersés sur plusieurs serveurs. Cela est motivé par le fait que le

déchiffrement d’un bloc incomplet n’est pas possible. Les fragments finaux

sont dispersés sur plusieurs serveurs dans plusieurs clouds. Les fragments

contenant des blocs consécutifs de la donnée chiffrée sont séparés entre dif-

férent clouds préférablement indépendants. Cette forme de fragmentation et

de dispersion renforce la confidentialité de la donnée en forçant un attaquant

de connaitre la liste des serveurs et d’obtenir l’accès aux services de stock-

age utilisés. Un attaquant ayant obtenu l’accès à un seul cloud ne peut pas

déchiffrer les données qu’il a obtenu même s’il possède la clé utilisée pendant

le chiffrement (cela est vrai pour un fournisseur de stockage malhonnête qui

voudrait déchiffrer les données qui lui ont été confiées). SFD ne nécessite au-

cun traitement de données spécifique juste une simple dispersion de bits qui

16 RÉSUMÉ

peut être implémentée d’un façon très rapide en rendant le surcout provenant

de la dispersion négligeable. Cette technique est particulièrement adaptée

aux environnements multi-clouds permettant une dispersion des fragments

sur des sites de stockage indépendants.

Contrairement au SFD, CAON peut être appliqué sur tou type de chiffre-

ment. Cet algorithme crée des dépendances entre les blocs consécutifs du

texte chiffré en les xorant entre eux. Ainsi, une chaîne de dépendances en-

tre blocs du texte chiffré est créée. Après cette transformation, la donnée

est fragmentée en plusieurs fragments qui vont être ensuite dispersés sur

plusieurs serveurs ou sites de stockage indépendants. Pour défragmenter la

donnée initiale, il est nécessaire de rassembler la totalité ces fragments. En

conséquence, un attaquant n’ayant pas obtenu tous les fragments ne peut pas

procéder aux déchiffrement de la donnée et cela même s’il possède la bonne

clé. En comparaison avec l’algorithme le plus rapide de l’état de l’art, la

transformation utilisée par CAON réduit de moitié le nombre de XOR exigé

en plus du chiffrement de la donnée. L’étude de la complexité théorique a

été confirmée par des tests de performance (voir Figure 2).

SAON vise à protéger les données chiffrées contre l’exposition de la clé

de chiffrement même si l’utilisateur a accès à un seul service de stockage.

La donnée chiffrée est transformée en deux fragments: un grand fragment

public et un petit fragment privé. Les deux fragments sont nécessaires au

déchiffrement de la donnée initiale. Un utilisateur conserve le fragment privé

et externalise le fragment public. Ainsi, l’utilisateur peut profiter des avan-

tages du cloud public sans se soucier de l’exposition de la clé de chiffrement.

En effet, sans le fragment privé, la donnée contenue dans le fragment public

17

Figure 2: Tests de performance de l’algorithme CAON.

reste inutilisable. La transformation de la donnée en fragments est composée

d’une combinaison de SFD et d’une transformation rapide de type "tout-ou-

rien" appliquée seulement à une partie de la donnée. En conséquence, SAON

est plus rapide qu’une transformation "tout-ou-rien" appliquée à la totalité

de la donnée. Les performances dépendent de la taille du fragment privé qui

est un paramètre de SAON à la main de l’utilisateur.

En conclusion, les schémas présentés dans le Chapitre 3 résolvent efficace-

ment le problème de la protection des données chiffrées contre l’exposition

de la clé de chiffrement. Chacun de ces schémas correspond à un contexte

de stockage différent. Le renforcement de la confidentialité se traduit par

un surcoût de performance presque négligeable. Les propositions présentées

18 RÉSUMÉ

restent les plus rapides de la famille des algorithmes de type "tout-ou-rien"

publiés: cela a été démontré par une analyse de complexité et confirmé par

des tests de performance (voir Figure 3).

Figure 3: Tests de performance de l’algorithme SAON.

Accélération de la fragmentation

Le renforcement de la confidentialité des données entraîne inévitablement un

surcoût en termes de performances (même s’il peut être réduit au point d’être

négligeable, comme dans le cas des algorithmes présentés dans le Chapitre 2).

Pour certains cas d’usage, même une petite surcharge s’avère inacceptable

car la rapidité de traitement est critique. Le choix de la bonne technique de

fragmentation est souvent un compromis entre les performances souhaitées,

le niveau de protection des données et la surcharge de stockage. Le Chapitre

3 introduit le schéma PE-AON permettant d’accélérer le processus de frag-

mentation en le rendant plus rapide que le chiffrement symétrique de la don-

19

née combiné à une simple fragmentation. Il transforme les données en un

ensemble de fragments, qui sont tous nécessaires à la reconstruction des don-

nées. Contrairement aux algorithmes présentés précédemment, seulement

une partie (la quantité exacte dépend du niveau de protection souhaité) de

la donnée initiale est chiffrée. Les blocs de la donnée sont ensuite mélangés à

l’aide d’une transformation de type "tout-ou-rien". Les fragments finaux sont

formés à partir de ce mélange. La protection des données est assurée par la

dispersion. Une reconstruction complète de la donnée initiale n’est possible

qu’une fois tous les fragments rassemblés.

Éviter partiellement le chiffrement améliore les performances, car une

partie des opérations de chiffrement par blocs est remplacée par des XORs.

Par conséquent, PE-AON est plus rapide que le chiffrement symétrique com-

biné à une fragmentation simple (où les données sont simplement divisées

en gros morceaux de bits consécutifs). Lorsque le rapport entre le nombre

de fragments chiffrés et non chiffrés est judicieusement choisi, les données

contenues dans les fragments sont protégées contre l’exposition de la clé de

chiffrement. Intuitivement, de meilleures performances se font au détriment

d’une protection plus faible que celle fournie par le chiffrement complet com-

biné à une transformation "tout-ou-rien". Dans les schémas présentés dans le

Chapitre 2, un attaquant est censé pouvoir compromettre tous les emplace-

ments de stockage sauf un. En revanche, PE-AON n’est efficace que contre

un attaquant plus limité, notamment résidant sur un seul site de stockage.

Ainsi, PE-AON doit être traité comme une méthode de fragmentation rapide

pour une protection de données légère, permettant un gain de performance

considérable (voir les résultats de performance sur la Figure 4). Cela est

20 RÉSUMÉ

particulièrement utile dans les cas où l’utilisateur dispose d’un obstacle de

dispersion important, par exemple, il peut séparer les données sur plusieurs

clouds notoirement indépendants.

Figure 4: Tests de performance de l’algorithme PE-AON.

Protection des données par une combinaison

de chiffrement, fragmentation et dispersion de

données

La solution habituelle pour assurer la confidentialité des données externalisées

consiste à chiffrer les données avant de les envoyer au fournisseur de stockage.

L’utilisation d’un algorithme de chiffrement symétrique assure normalement

de fortes garanties de confidentialité. Cependant, le chiffrement a toujours

un coût. Grâce aux récents progrès réalisés dans le domaine du matériel,

comme l’intégration du jeu d’instructions AES (AES-NI) dans de nombreux

processeurs Intel, la vitesse de chiffrement doit être considérée comme une

21

variable qui évolue avec les progrès technologiques. Cependant, suivre cette

progression est coûteuse et l’ensemble des utilisateurs doit être considéré

comme étant hétérogène dans son comportement et, par conséquent, une

quantité non négligeable de données n’est pas chiffrée avant d’être envoyée

dans le cloud.

Le Chapitre 4 introduit le Fast and Scalable Fragmentation Algorithm

(FSFA), un algorithme de fragmentation léger basé sur l’encodage, la per-

mutation et la dispersion des données. Il élimine totalement le chiffrement des

données, ce qui permet une fragmentation encore plus rapide: jusqu’à deux

fois plus rapide que le chiffrement des données en utilisant l’algorithme de

chiffrement le plus répandu (AES-NI) (voir les résultats présenté sur la Fig-

ure 5). Contrairement à d’autres contributions présentées dans cette thèse,

cette proposition constitue une alternative au chiffrement symétrique. Elle

était motivée par le fait que, dans certains cas (ex. transmission temps réel),

le temps d’exécution du chiffrement n’est pas acceptable et qu’une fragmen-

tation de données peut-être suffisante. Elle est destinée à être utilisée dans

un environnement multi-clouds dans lequel les fournisseurs des données sont

considérés comme curieux - ils essaieront d’examiner les données qui leur

ont été confiées - mais ne feront pas l’effort de collaborer avec d’autres four-

nisseurs. Le but de l’algorithme est de fragmenter les données entre les clouds

de manière à ce que les fragments reçus par un seul fournisseurs soient pra-

tiquement inutiles.

Dans un premier temps, FSFA disperse la donnée initiale sur plusieurs

fragments. Les données sont ensuite encodées en utilisant une version mod-

ifiée de l’algorithme de partage de secret de Shamir. L’encodage crée des

22 RÉSUMÉ

(a) (b)

Figure 5: Tests de performance de l’algorithme FSFA pour deux configura-

tions: 2 clouds utilisés (gauche) et 3 clouds utilisés (droite).

dépendances entre les fragments. Au final, les données encodées sont per-

mutées en utilisant des permutations pseudo-aléatoires pour complexifier le

décodage.

FSFA pourrait être considéré comme un cas particulier d’une méthode

plus générale de protection de données. En effet, on peut imaginer différentes

variantes de chaque étape de l’algorithme. Du point de vue de la mise en

œuvre, les performances pourraient être améliorées en exploitant pleinement

diverses possibilités de parallélisation du traitement.

23

Fragmentation dans les réseaux de capteurs

Dans le monde de l’Internet des Objets, les réseaux de capteurs sans fil

sont largement utilisés pour rassembler toutes sortes d’informations environ-

nementales. Dans une approche classique, ils fonctionnent en mode temps

réel où, juste après l’acquisition de la donnée, les capteurs la déplacent vers

un nœud statique du réseau appelé "sink". Cependant, dans certaines sit-

uations, la présence de ce nœud statique ne peut pas être assurée, par ex-

emple, lorsque des capteurs sont déployés dans des zones vastes ou hostiles

telles que des parcs nationaux, des zones frontalières, etc. Par conséquent, le

terme Unattended Wireless Sensor Networks a été introduit pour définir une

classe de réseaux de capteurs où les données sont stockées dans les capteurs

en attendant d’être ramassées par un sink mobile (par exemple un drone)

qui visite périodiquement les noeuds du réseau.

Figure 6: Fragmentation dans les UWSN.

Les données conservées à l’intérieur des nœuds peuvent être exposées à

divers types d’attaquants désirant lire, détruire ou corrompre les informa-

tions stockées. Plusieurs stratégies de protection de données ont déjà été

proposées. Par exemple, pour assurer la survie des données, celles-ci peuvent

24 RÉSUMÉ

être répliquées et dispersées sur différents nœuds. Une approche différente

assurant, en outre, la confidentialité des données consiste à faire en sorte

que les capteurs chiffrent, fragmentent et dispersent les données sur leurs

voisins (voir le schéma d’architecture présenté Figure 6). La reconstruction

des données est alors impossible à moins qu’un seuil donné de fragments soit

rassemblé. Ainsi, les données sont protégées contre un attaquant incapable

de compromettre le nombre requis de capteurs entre les visites consécutives

du sink mobile.

(a) SO - fragmentation techniques. (b) SO - homomorphic techniques.

Figure 7: Occupation de mémoire et cout de transmission par capteur.

Plusieurs schémas de fragmentation aux UWSN ont été introduits dans

la littérature. Ils proposent un processus basé sur le partage de secret ou

une combinaison de chiffrement et de codes correcteurs d’erreurs. Étant

donné que la consommation d’énergie est un problème important au sein

d’UWSN, certaines propositions utilisent des schémas homomorphes afin de

réduire les coûts de stockage et de transmission. Le schéma Additively Ho-

momorphic Encryption and Fragmentation (AHEF) présenté au Chapitre 6

25

revient sur le schéma HEHSS. Dans les deux schémas, les données fragmen-

tées et chiffrées sont agrégées dans les nœuds des voisins. Cependant, AHEF

améliore considérablement le schéma HEHSS - au lieu d’utiliser le partage

de secrets pour la fragmentation des données, AHEF utilise un algorithme

de dispersion d’informations homomorphe. Cette modification a un impact

considérable sur les coûts indirects de stockage et les coûts de transmission

qui en résultent. En comparaison avec le schéma de fragmentation le plus

proche de l’état de l’art, ces coûts son divisés par au moins deux (voir les ré-

sultats de la comparaison présentés sur la Figure 7). En effet, les fragments

obtenus à l’aide du partage de secret ont la même taille que les données

elles-mêmes. La dispersion des informations produit des fragments de taille

réduite grâce à l’utilisation des propriété homomorphes. Ainsi, une aug-

mentation des données à protéger est évitée. En outre, AHEF permet deux

méthodes d’agrégation de fragments: l’agrégation de fragments provenant du

même capteur et l’agrégation de fragments provenant du même groupe de

capteurs.

Conclusion et travaux futurs

Après la réalisation d’un état de l’art détaillé, six schémas ont été proposés

pour améliorer les techniques de pointe en matière de protection des données

par fragmentation dans deux types d’environnements distribués. Ils ouvrent

la porte à plusieurs pistes de recherche et soulèvent quelques questions en

suspens qu’il convient de traiter dans les travaux futurs.

26 RÉSUMÉ

Sommaire des contributions

Au Chapitre 2, une enquête approfondie sur la fragmentation en tant que

moyen de préserver la confidentialité des données a été effectué et a donné

comme résultat une vaste analyse de l’état de l’art. Cet état de l’art a été or-

ganisé en discernant les méthodes de fragmentation prenant en considération

ou non la structure de données. Les techniques pertinentes ont été décrites

en détail et comparées en termes de niveau de protection des données, de

surcharge de stockage et de complexité. Les algorithmes de fragmentation

ont été implémentés et comparés pour valider leur complexité théorique. Non

seulement les techniques, mais aussi les systèmes académiques et commerci-

aux pertinents ont été analysés et comparés. Au final, plusieurs recomman-

dations ont été données sur la conception d’un système de fragmentation

efficace.

Au Chapitre 3, la famille des algorithmes de type ‘all-or-nothing’ (tout-

ou-rien) a été agrandie avec trois nouvelles propositions. Elles visent toutes

à protéger les données chiffrées et fragmentées contre l’exposition de la clé de

chiffrement. Ils sont conçus pour être utilisés dans trois contextes différents:

pour la fragmentation des données dans un environnement multi-cloud, un

système de stockage distribué quelconque et un environnement composé d’un

seul fournisseur de stockage et un dispositif privé. L’évaluation de la com-

plexité et les critères de performance montrent que les algorithmes présentés

sont les plus rapides de toutes les techniques pertinentes connues.

Au Chapitre 4, une manière d’accélérer la fragmentation a été présentée,

qui offre de meilleures performances que le chiffrement de données en utilisant

l’algorithme de chiffrement à clé symétrique le plus courant (AES-NI). Ce

27

gain de performances est obtenu en limitant le traitement de chiffrement:

avant la fragmentation une transformation tout-ou-rien est appliquée sur les

données partiellement chiffrées qui crée des liens entre les données claires et

les données chiffrées. Les fragments sont ensuite dispersés de façon à renforcer

leur protection. Cette contribution répond au besoin des utilisateurs donnant

la priorité à la vitesse de traitement.

Au Chapitre 5, un schéma de fragmentation léger basé sur le codage, la

permutation et la dispersion des données a été introduit. Il élimine totale-

ment le chiffrement des données, ce qui permet une fragmentation encore

plus rapide: jusqu’à deux fois plus rapide que le chiffrement de données.

La proposition revisite l’utilisation du partage de secret. Contrairement à

d’autres contributions, cette proposition est une alternative au chiffrement

symétrique. Elle était motivée par le fait que, dans certains cas (ex. trans-

missions temps réel), le temps d’exécution du chiffrement peut ne pas être

acceptable et que la dispersion peut-être suffisante.

Au Chapitre 6, la fragmentation au sein des réseaux de capteurs a été

réexaminée, en particulier dans les réseaux de capteurs sans fils. Dans ce cas,

l’accent est mis non seulement sur la performance en matière de fragmenta-

tion, mais également sur la réduction des coûts de stockage et de transmission

grâce à l’agrégation de données. Ceci est motivé par le fait que, contraire-

ment à la fragmentation dans le cloud, la fragmentation au sein d’un réseau

de capteurs doit prendre en compte les capacités énergétiques limitées des

batteries des capteurs. Par rapport aux techniques pertinentes, le schéma

proposé réduit d’au moins la moitié le nombre de bits stockés et transmis.

28 RÉSUMÉ

Travaux futurs

Plusieurs travaux futurs peuvent être envisagés, entre autres:

• L’intégration des algorithmes proposés avec les librairies standards util-

isés pour le chiffrement des données améliorerait encore plus les perfor-

mances de la fragmentation. De plus, les performances pourraient être

améliorées en exploitant pleinement diverses possibilités de parallélisa-

tion du traitement.

• Transformation du Fast and Scalable Fragmentation Algorithme (FSFA)

en une méthodologie plus générale combinant plusieurs mécanismes

légers afin de protéger les données fragmentées. En effet, diverses mod-

ifications pourraient être apportées, par exemple le schéma de partage

de secret de Shamir utilisé pendant l’encodage des données pourrait

être remplacé par un autre algorithme.

• Sécurisation de la transmission des fragments. Il a été supposé que

l’utilisateur avait accès à un nombre suffisant d’emplacements de stock-

age séparés physiquement ou indépendants, c’est-à-dire différents cen-

tres de données du même fournisseur de stockage ou de différents four-

nisseurs de stockage. Cependant, la question de savoir comment as-

surer la séparation des fragments n’est pas triviale. Par conséquent, les

travaux futurs viseront à garantir une distribution sécurisée des frag-

ments de données de la zone de confiance où la fragmentation se produit

jusqu’à leur destination de stockage.

• Traitement des fragments. La question d’un traitement sécurisé est

29

inévitable dans le cas de données externalisées. Le chiffrement homo-

morphe constitue un moyen théorique de résoudre ce problème, mais

trouve que des domaines d’applications limités vu son manque de per-

formance. Le calcul multiparti et le chiffrement interrogeable semblent

une direction beaucoup plus prometteuse pour les années futures. Une

piste de recherche adapterait les techniques de calcul multiparti et de

chiffrement interrogeables existantes à la nature fragmentée des don-

nées.

• Conception d’une solution complète de stockage. À l’avenir, les algo-

rithmes de fragmentation présentés pourraient être intégrés aux sys-

tèmes existants afin de les enrichir d’un mécanisme de protection de

données supplémentaire ou d’une alternative de fragmentation rapide

et légère. Par exemple, ils pourraient être intégrés au système HAIL,

offrant une haute disponibilité et une intégrité optimale pour le stock-

age sur le cloud ou le projet multi-cloud DepSky. De plus, les schémas

tout-ou-rien présentés au Chapitre 3 pourraient être utilisés comme

moyen de créer des dépendances entre des données dans des systèmes

de gestion d’accès rapide.

• Évaluation des coûts de distribution (en terme d’énergie) des fragments

dans un environnement de type UWSN. De plus, la distribution des

fragments pourrait être développer, par exemple les fragments pour-

raient être distribués d’une façon multi-hop.

Une partie de ces travaux a déjà commencé.

30 RÉSUMÉ

Chapter 1

Introduction

This chapter introduces the motivation behind this dissertation and an-

nounces the presented contributions.

1.1 Background and Motivation

Efficient protection of data confidentiality is not a recent challenge. Ac-

tually, the first methods aiming at obfuscating or encoding sensitive infor-

mation date back to antiquity, like the scytale transposition or the Cae-

sar’s cipher [Kah67]. For centuries, humanity has been developing various

techniques of data protection until the invention of cryptography in its re-

cent form in the last few decades. Although historical and currently applied

methods obviously differ from each other, they share the same principle: they

transform some sensitive input data using a secret known as the key and/or

a secret method (in modern cryptography only the key is secret, according

to the Kerckhoff’s principle [Ker83]). In order to reconstruct the initial in-

31

32 CHAPTER 1. INTRODUCTION

formation, two elements are required: the transformed data and the key that

allows the data to revert to its original state. In symmetric-key algorithms,

being currently the most common way of providing data confidentiality, the

secret required during the data reconstruction corresponds to the one used

during data transformation. As data confidentiality is only achieved when

the secret key is separated from the transformed data, it is crucial to keep

the key in a secure place that belongs to the data owner or people to the

data was entrusted to. Clearly, data becomes vulnerable once the secret key

is compromised. Thus, the main difficulty that a potential attacker has to

overcome consists in obtaining the secret, which in practice is equivalent to

accessing the storage location that keeps it, performing a brute-force search

over all possibilities of the secret (or guessing it knowing some additional

information if the secret is far from being pseudo-random).

Several questions arise: How can the security of the storage location

keeping the secret key be guaranteed? What if an attacker can guess the

secret without compromising the place that stores it? What will happen if

the secret key is lost or destroyed? Currently, key management solutions try

to address these questions by creating secure key stores accessible only to

authorized users. As an alternative, the key can be fragmented into several

fragments and spread over several separate locations or distributed among

several shareholders. Therefore, an attacker has to compromise not only one

key store but several of them. However, even the most sophisticated key

management system may not help if the key was generated in an incorrect

way, is easily guessable, or the attacker is able to bribe or coerce the holder

of the secret.

1.1. BACKGROUND AND MOTIVATION 33

The problem of secure data protection could be approached from a differ-

ent perspective. Instead of basing the protection solely on the secure storage

of the key, data can be in addition fragmented and dispersed, in a way that

all of its fragments are needed for the initial data reconstruction. Such pro-

cessing makes the importance of the data fragments comparable to a secret

key and obliges the attacker to compromise not a single key store, but mul-

tiple storage locations. Such data fragmentation could be divided into two

categories. In the first one, there is no other way to reconstruct the initial

data apart of gathering all of the data fragments as dependencies are created

between fragments of data. In the second one, the knowledge of the secret

key allows to reconstruct a part of the information from a single fragment;

fragmentation is performed in a simple way that does not create dependen-

cies between data fragments. In both types of data fragmentation, in order

to make data resilient to intentional or accidental fragments loss, only a

threshold of the fragments can be required for the data reconstruction.

Fragmentation as a way of providing or reinforcing data confidentiality is

not a recent idea. It can be found in Shamir’s [Sha79] and Blakley’s [Bla79]

seminal papers from late 70s , addressing the problem of secure storage and

management of an encryption key. Few years later, a more architectural

technique was proposed with a design separating sensitive data from non-

confidential fragments and dispersing them over separated devices[DBF91].

In the following decades, the idea of fragmentation was applied to self-

securing and archival storage [SGMV09, SGS+00], as well as to relational

database systems [ABG+05, CVF+10] as a way of ensuring user’s data pri-

vacy. Recently, it is revisited in the context of multi-cloud architectures

34 CHAPTER 1. INTRODUCTION

allowing an easy and efficient data separation [BCCBF13, BGJ+13, HIK+13,

DCdVEF+14]. A more detailed insight into those techniques and systems is

given in Chapter 2 containing a detailed survey on fragmentation as a way

of data protection.

Apart of the reinforcement of data protection, several arguments come out

in favour of applying data fragmentation inside distributed storage. First,

fragmentation allows to reduce, and in some cases event remove, the costs

usually dedicated to the key management. A centralized secure key store is

not needed anymore or becomes less critical as the dispersal plays a major

role in the data protection process. Second, fragmentation is already widely

used for other purposes. Indeed, it is currently applied in systems using

the RAID storage technology or error-correction codes. Moreover, it was

demonstrated that when applied in a multi-cloud environment it improves not

only data confidentiality, but also availability and integrity [BCQ+13]. Third,

fragmentation enables a more efficient data deduplication and thus can be

successfully employed inside systems for version control or storage of backup

data [LQLL16]. Last but not least, fragmentation techniques of the all-or-

nothing type may be used in fast access management systems [BDCdVF+16].

Access revocation of outsourced data shared between multiple users is slow

as it requires to re-encrypt the data using a fresh key. Re-encrypting only a

fragment of data in order to revoke the access accelerates the process.

Although data fragmentation presents multiple benefits, it also comes

with several limitations that can discourage from its deployment. First, the

majority of secure data fragmentation techniques is slower than symmetric

encryption performed over the whole data, which is the recommended tech-

1.1. BACKGROUND AND MOTIVATION 35

nique for protection of the data confidentiality [SSS+07]. Some of them, like

perfect secret sharing or XOR-splitting, lead in addition to a huge increase

in the volume of the stored data and/or terribly lack of scalability. More-

over, dispersing data using not one but several communication channels may

increase the latency. Second, an efficient protection based on fragmentation

requires the access to at least several physically separated servers and thus

may lead to an increase of costs.

Nevertheless, what was seen as a major obstacle not more than ten years

ago, becomes less restrictive with the recent technology development. On

the one hand, even mere users have access to devices with spectacular capac-

ities in terms of computing power. Data processing can be accelerated using

parallelization and new hardware is adapted to improve the speed of encryp-

tion operations (see the AES intrinsic instruction set AES-NI 1). Moreover,

the transmission capacities enormously improved since the time when frag-

mentation was being introduced. On the other hand, fragmentation is not

anymore solely related to private data centers composed of multiple servers

as other architectures also enable data dispersal. First, even mere users have

access to a multitude of storage devices distributed across the word as stor-

age providers offer solutions that are cost-efficient and easy to use. Second,

in a world of internet-of-things, we are surrounded by networks composed of

thousands of sensor nodes used for measuring and storing all kind of envi-

ronmental variables.

The complexity of the fragmentation processing or the accessibility of

1https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-

encryption-standard–aes-/data-protection-aes-general-technology.html

36 CHAPTER 1. INTRODUCTION

a distributed architecture are old issues that nowadays become less signif-

icant. However, at the same time new challenges are raised. Especially,

preserving data confidentiality and privacy in the presence of sophisticated

attackers is becoming a serious and relevant problem [KSLC17]. Users wit-

ness data breaches leading to exposure of sensitive data and consequently

start to doubt into the capacity of their providers to protect the stored data

(see cases like the data theft of 3 billions of Yahoo users 2, the infamous

Equifax data breach that exposed the sensitive information of 143 millions

of Americans 3, or the late SingHealth theft of personal information of 1.5

millions patients 4). Moreover, cases of misusing of personal data were re-

cently revealed (see Facebook, Cambridge Analytica case 5). International

regulations, like the recently introduced European General Data Protection

Regulation [VVdB], recommend to at least encrypt the data before outsourc-

ing them, making the data owners (and not the storage providers) responsible

for the key management. Still, mere users are anxious that they private data

could be exposed or misused for commercial or political reasons. Moreover,

enterprises of all size fear that a data breach will inevitably make them loose

their reputation. For both categories of users, fragmentation as a way of

reinforcing the data protection seems to be a promising track.

2https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-

accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
3https://www.ftc.gov/equifax-data-breach
4https://www.straitstimes.com/singapore/personal-info-of-15m-singhealth-patients-

including-pm-lee-stolen-in-singapores-most
5https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal

1.2. CONTRIBUTIONS AND DISSERTATION OVERVIEW 37

1.2 Contributions and Dissertation Overview

This dissertation revisits known fragmentation techniques, particularly the

Rivest’s all-or-nothing transform [Riv97] or Shamir’s secret sharing [Sha79],

making them usable for users looking for secure but at the same time cost-

efficient and fast storage solutions. The main focus is put on increasing data

confidentiality without deteriorating fragmentation performance. This is es-

pecially motivated by the fact that a detailed survey on data fragmentation

(presented in Section 2) demonstrated that although multiple fragmentation

techniques were proposed since the late 70s, they are not widely used for

storage of large data as they are slow, difficult to integrate, or lead to an

increase in overall data volume.

The ultimate goal of this thesis is to provide a set of methods that could be

directly applied inside an industrial context to reinforce the confidentiality

of the stored data. As current standards imply the use of symmetric en-

cryption for protection of data confidentiality, the majority of the proposed

methods leave symmetric encryption as its core component and reinforces

the protection by using additional mechanisms. Thus, the contributions are

not in contrast with the usual process but rather inherit from it. Issues of

data availability or integrity are not treated in this thesis as separate re-

search tracks provide solutions that could be integrated within the proposed

methods.

Chapter 2 contains a rich survey on data fragmentation as a way of pre-

serving data confidentiality. It introduces two new definitions dividing frag-

mentation into bitwise and structurewise. Relevant fragmentation techniques

are divided according to these definitions and described in detail. They are

38 CHAPTER 1. INTRODUCTION

compared in terms of data protection levels, storage overhead, and complex-

ity. Performance benchmarks confirm the theoretical complexity evaluation.

In addition to techniques, academic and commercial systems applying data

fragmentation are presented. The main characteristics of the systems are

described and the academic and commercial approaches are compared. Fi-

nally, recommendations are given on the design of an efficient fragmentation

system.

In Chapter 3, the family of all-or-nothing transforms is extended with

three new proposals. They all aim at protecting encrypted data against

the exposure of the encryption key; encrypted data are transformed into

fragments so the decryption of even a single ciphertext block is impossible

unless all the fragments are gathered. The proposed schemes are the fastest

of all the state-of-the-art techniques as they require a very low number of

operations in addition to data encryption. Moreover, a fast fragmentation

solution is introduced addressing the needs of users that do not want or

cannot afford to use of a multitude of storage sites (like those using using

a basic account inside a public cloud). It allows them to protect their data

against the curiosity of the cloud or potential external attackers.

Chapter 4 modifies some of the schemes presented in Chapter 3 mak-

ing their fragmentation processing even faster than data encryption using

the most common symmetric-key encryption algorithm. This gain in per-

formance is achieved by limiting encryption processing and relying on the

protection provided by data dispersal. This contribution addresses the need

of users prioritizing the speed of processing.

Chapter 5 introduces a lightweight fragmentation scheme based on data

1.2. CONTRIBUTIONS AND DISSERTATION OVERVIEW 39

encoding, permutation, and dispersal that totally gets rid of data encryp-

tion. This allows the fragmentation processing to be performed even faster

- up to twice as fast as data encryption. The proposal revisits the use of

the Shamir’s secret sharing, trading its perfect security for scalability. In

contrast to other contributions, this proposal comes with an alternative to

symmetric encryption. It was motivated by the fact that in some cases, a

lightweight data protection combined with dispersal may be sufficient as sug-

gested in [CBHK15, BLU+15]. It should be considered as a first sketch of

a fragmentation methodology that would have to be investigated in more

detail before being deployed in an industrial context.

Chapter 6 revisits data fragmentation inside sensor networks, particularly

in the Unattended Wireless Sensor Networks. The main focus in this case is

put not solely on the fragmentation performance but also on the reduction of

storage and transmission costs by using the data aggregation. This is moti-

vated by the fact that, contrary to fragmentation in the cloud, fragmentation

inside a sensor network has to account for the limited energy capacities of

the sensors’ batteries. When compared with relevant state-of-the art tech-

niques, the proposed scheme reduces by at least half the number of stored

and transmitted bits.

Chapter 7 contains a summary of the research contributions as well as a

detailed insight into future work. It opens the way to several new research

tracks.

40 BIBLIOGRAPHY

Bibliography

[ABG+05] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina,

K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and

Y. Xu. Two can keep a secret: A distributed architecture for

secure database services. In In Proc. CIDR, 2005.

[BCCBF13] Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia,

and José M. Fernandez. Confidentiality-Preserving Query

Execution of Fragmented Outsourced Data, pages 426–440.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando

André, and Paulo Sousa. Depsky: Dependable and secure

storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33,

November 2013.

[BDCdVF+16] Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti,

Stefano Paraboschi, Marco Rosa, and Pierangela Samarati.

Mix&slice: Efficient access revocation in the cloud. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’16, pages 217–228, New

York, NY, USA, 2016. ACM.

[BGJ+13] J. M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono, and

N. Marnau. Security and privacy-enhancing multicloud ar-

chitectures. IEEE Transactions on Dependable and Secure

Computing, 10(4):212–224, July 2013.

BIBLIOGRAPHY 41

[Bla79] George R. Blakley. Safeguarding Cryptographic Keys. In

Proceedings of the 1979 AFIPS National Computer Confer-

ence, volume 48, pages 313–317, June 1979.

[BLU+15] William J. Buchanan, David Lanc, Elochukwu Ukwandu,

Lu Fan, Gordon Russell, and Owen Lo. The future internet:

A world of secret shares. Future Internet, 7(4):445, 2015.

[CBHK15] P. Cincilla, A. Boudguiga, M. Hadji, and A. Kaiser. Light

blind: Why encrypt if you can share? In 2015 12th Inter-

national Joint Conference on e-Business and Telecommuni-

cations (ICETE), volume 04, pages 361–368, July 2015.

[CVF+10] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara

Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati. Combining fragmentation and encryption to pro-

tect privacy in data storage. ACM Trans. Inf. Syst. Secur.,

13(3):22:1–22:33, July 2010.

[DBF91] Y. Deswarte, L. Blain, and J. C. Fabre. Intrusion tolerance in

distributed computing systems. In Proceedings. 1991 IEEE

Computer Society Symposium on Research in Security and

Privacy, pages 110–121, May 1991.

[DCdVEF+14] Sabrina De Capitani di Vimercati, Robert F. Erbacher, Sara

Foresti, Sushil Jajodia, Giovanni Livraga, and Pierangela

Samarati. Encryption and Fragmentation for Data Confiden-

42 BIBLIOGRAPHY

tiality in the Cloud, pages 212–243. Springer International

Publishing, Cham, 2014.

[HIK+13] Aleksandar Hudic, Shareeful Islam, Peter Kieseberg, Sylvi

Rennert, and Edgar R. Weippl. Data confidentiality using

fragmentation in cloud computing. International Journal

of Pervasive Computing and Communications, 9(1):37–51,

2013.

[Kah67] David Kahn. The codebreakers: the story of secret writing.

1967.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire, volume 9.

Journal des sciences militaires, 1883.

[KSLC17] G. O. Karame, C. Soriente, K. Lichota, and S. Capkun. Se-

curing cloud data under key exposure. IEEE Transactions on

Cloud Computing, pages 1–1, 2017.

[LQLL16] M. Li, C. Qin, J. Li, and P. P. C. Lee. Cdstore: Toward re-

liable, secure, and cost-efficient cloud storage via convergent

dispersal. IEEE Internet Computing, 20(3):45–53, May 2016.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package

transform. In In Fast Software Encryption, LNCS, pages

210–218. Springer-Verlag, 1997.

[SGMV09] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and

Kaladhar Voruganti. Potshards: a secure, recoverable, long-

BIBLIOGRAPHY 43

term archival storage system. Trans. Storage, 5(2):5:1–5:35,

June 2009.

[SGS+00] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,

Craig A. N. Soules, and Gregory R. Ganger. Self-securing

storage: Protecting data in compromised system. In Pro-

ceedings of the 4th Conference on Symposium on Operat-

ing System Design & Implementation - Volume 4, OSDI’00,

Berkeley, CA, USA, 2000. USENIX Association.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM,

22(11):612–613, November 1979.

[SSS+07] Karen Scarfone, Murugiah Souppaya, Matt Sexton, et al.

Guide to storage encryption technologies for end user devices.

NIST Special Publication, 800:111, 2007.

[VVdB] Paul Voigt and Axel Von dem Bussche. The EU General

Data Protection Regulation (GDPR), volume 18. Springer.

44 BIBLIOGRAPHY

Chapter 2

Data protection by means of

fragmentation in distributed

storage systems

2.1 Introduction

Protecting data confidentiality using a combination of data fragmentation

and dispersal is not a recent idea. In fact, one of the first secret sharing

techniques can be found in Adi Shamir’s [Bla79] or George Blakley’s [Bla79]

seminal papers from the late 70s. In these still timely proposals, fragments

of the encryption key are distributed over several collaborators. The key

reconstruction is only possible when a given threshold of the fragments is

being gathered. Around the same time, the French LAAS-CNRS labora-

tory designed an architecture for secure data storage and processing that

distributed data fragments over multiple physical devices of different trust-

45

46 CHAPTER 2. RELEVANT WORK

worthiness levels [DBF91]. During the following decades, data fragmentation

and dispersal were considered in a multitude of various contexts: protection

of archival data [SGMV09], proactive data storage [SB05], preserving pri-

vacy of relational database systems [ABG+05, BCCBF13, CVF+10], secur-

ing commercial object storage solutions [RP11, SJH05, TG11a], and rein-

forcing data confidentiality, integrity, or availability in multi-cloud environ-

ments [BCQ+13, BGJ+13, DCdVEF+14, HIK+13]. Nowadays, a new gener-

ation of solutions based on data fragmentation and dispersal is emerging 1.

They address the concerns of users who fear the exposure of their outsourced

data but still want to store data in public areas for obvious reasons of cost

reduction.

This chapter presents relevant fragmentation techniques that aim to en-

sure confidentiality or privacy of stored data. It also gives an overview of

the historical as well as current distributed storage systems applying the

described techniques. In order to better organize the descriptions, two defi-

nitions of two different types of data fragmentation are introduced:

Definition 1 Bitwise fragmentation is defined as the process of data

fragmentation without regards to the data structure; data is just treated as

set of consecutive bits, each of which is of equal confidentiality level.

Definition 2 Structurewise fragmentation is defined as the process of

data fragmentation with regards to the data structure; data is divided into

subsets of bits of different confidentiality levels that will be protected in dif-

1http://wikibon.org/wiki/v/3_Tenants_of_Security_and_the_Role_of

_Information_Dispersal

2.2. DATA CONCEPTS AND NOTATION 47

ferent ways, i.e. dispersed over physical devices characterized by different

trustworthiness levels.

Presented techniques and systems are divided into two groups according

to those two definitions. The first group addresses the user’s need for storing

data without making any assumptions about its type. Typically, it will

include all kinds of object storage methods and systems. The second group

gathers mainly applications of data fragmentation inside relational database

storage systems.

2.2 Data Concepts and Notation

Different terminology is applied in different works; for instance, fragments

are sometimes called chunks, shards, or shares. The following data concepts,

notation, and terminology are introduced in order to unify and facilitate the

description of relevant works.

Data Concepts

The presented fragmentation techniques perform two kind of operations on

their input data: they can segment the data into physically separate frag-

ments or they can transform the data (i.e. encrypt or encode). Therefore,

data concepts will be divided into two groups corresponding to those two

kind of operations.

Concepts connected with data fragmentation:

48 CHAPTER 2. RELEVANT WORK

• Data (D or d): An initial vector of data bits of size |D| bits. When

the data is represented as an integer it is denotes as d.

• Fragment (F): The final fragment, a vector of bits of size |F | bits, a

result of the data fragmentation.

• Share (SHARE): an intermediary fragment of size |SHARE| bits

in the case when the data fragmentation process is performed in two

steps.

Concepts connected with data transformation:

• Block (B, P or C): a sequence of |B| bits corresponding to the

classical concept of a data block. When referring to a plaintext block,

the block is denoted as P and, when referring to a ciphertext, the block

is denoted as C. When it is not specified if the block is a plaintext or

a ciphertext block, it is referred to as simply B.

• Plaintext (PLAIN): when the data D is designed to be encrypted,

it is denoted as plaintext PLAIN composed of p plaintext blocks (the

plaintext is already padded if needed).

• Ciphertext (CIPH): encrypted plaintext composed of c ciphertext

blocks. The number of blocks inside the ciphertext is equal to c = p+1

as an initialization vector is added at the beginning of the ciphertext.

• Transformed ciphertext (CIPH ′): when an additional processing

is applied to the ciphertext after the data encryption, CIPH ′ denotes

the transformed ciphertext.

2.3. BITWISE FRAGMENTATION 49

• Key (K): An encryption key of size |K| bits in the case when a sym-

metric encryption algorithm is used.

Notation

• n: The total number of final data fragments obtained after the frag-

mentation process.

• k: In the case when a threshold scheme (in which not all the fragments

are required for data reconstruction) is applied, k denotes the threshold:

the minimum number of fragments out of the n final fragments that is

required for the reconstruction of the data. When a scheme has kmax

different thresholds, they are denoted as k1, . . . , kkmax.

2.3 Bitwise Fragmentation

This section presents an overview of most notable bitwise fragmentation tech-

niques and systems providing data confidentiality. First, it will describe the

fragmentation techniques. Second, it will portray important characteristics

and elements proper to bitwise fragmentation systems: data resilience, key

and fragments’ location management, integrity authentication, trustworthi-

ness of the storage nodes, fragment size and decoys, and data deduplication.

Finally, it will explain individual descriptions of nine selected bitwise frag-

mentation storage systems: six academic and three commercial solutions.

50 CHAPTER 2. RELEVANT WORK

2.3.1 Bitwise Fragmentation Techniques

During bitwise fragmentation, initial data D is transformed into n fragments

F0, . . . , Fn−1 that are later dispersed over n different physical locations over

multiple physically separated storage servers inside of a data center or several

independent storage providers. Data reconstruction is only possible when a

threshold of k of the fragments is reached. Therefore, protection provided

by the data fragmentation depends mainly on the two parameters k and n

defining the dispersion scope. On the one hand, a value of k close to n makes

the fragments gathering harder as it gives less choice to an attacker. In a

particular case, when k equals n, all fragments are needed for data recovery

and the attacker has to compromise all of the chosen storage sites. On the

other hand, a lower value of k increases data availability as it makes data

reconstruction feasible even if some of the fragments are lost or corrupted.

Therefore, a wise choice of the k and n setting has to take into consideration

the characteristics of the environment in which the fragments will be stored

(the issue of providing data resilience inside a distributed storage system is

described in more details in Section 2.3.2).

Fragmentation algorithms can be very roughly organized in three groups

with a decreasing confidentiality level. The first group includes secret shar-

ing schemes providing the highest level of secrecy - no information can be

deduced from a single data fragment. The second group contains computa-

tionally secure algorithms that are usually based on symmetric encryption.

In this case, an attacker with enough time and computational resources may

deduce some information from fewer fragments than the minimum amount re-

quired for data reconstruction. The last group gathers all kind of lightweight

2.3. BITWISE FRAGMENTATION 51

fragmentation techniques replacing encryption with data shredding and dis-

persal in order to improve the fragmentation performance.

The following subsections describe in detail the most relevant fragmen-

tation techniques used for data protection inside historical and modern dis-

tributed systems.

Secret Sharing Schemes and Information Dispersal Algorithms

The perfect (or information-theoretically secure) secret sharing schemes trans-

form data D into n fragments, each of a size equal to the size of D. Any k

of those fragments are sufficient to recover original information while k − 1

fragments do not provide any information about the initial data. This is true

even if an attacker possesses unlimited computational resources. However,

information-theoretical security comes at the price of a large storage overhead

as the size of a single data fragment is equal to the size of the data. There-

fore, secret sharing schemes are often judged too impractical for voluminous

data and are rather used for protection of small data, typically encryption

keys. Nevertheless, three of five academic systems proposals described later

in Section 2.3.3, adopt perfect secret sharing for data protection, judging

the increase of storage as an acceptable cost. POTSHARDS and GridShar-

ing chose XOR-splitting because of its fast performance. PASIS in some

situations also accepts the use of perfect security.

In contrast to perfect secret sharing schemes, information dispersal al-

gorithms are space-efficient. They fragment data D into n of size |D|
k

each.

Like in secret sharing, any k of such fragments is needed for the data re-

construction. Nevertheless, the gain in storage is at the cost of secrecy as

52 CHAPTER 2. RELEVANT WORK

initial data patterns are preserved inside the data fragments resulting in a

low confidentiality level. Thus, information dispersal algorithms are mainly

used for resilience purpose (as they can resist a loss of n− k fragments) and

more rarely are considered as a way of data protection [BLU+15].

Ramp schemes are somehow hybrid (k1, k2, n)-threshold schemes situated

between secret sharing and information dispersal. Data fragments are pro-

tected like in the case of secret sharing, but only until k1 fragments are

gathered. A complete data reconstruction is possible when k2 fragments are

gathered.

Following paragraphs describe in detail two relevant secret sharing schemes

(Shamir’s secret sharing and XOR-splitting), the Rabin’s information disper-

sal algorithm, as well as linear ramp schemes.

Shamir’s secret sharing (SSS) In his seminal work from the late 70s,

Shamir introduced a perfect secret sharing scheme [Sha79] that 40 years

later still finds multiple applications in the data protection domain. A (k,n)-

threshold SSS takes as input data d (represented as an integer) and trans-

forms it into n fragments F0, . . . , Fk−1, any k of which are needed for data

reconstruction. SSS is based on polynomial interpolation; it exploits the fact

that given k unequal points x0, . . . , xk−1 and arbitrary values y0, . . . , yk−1

there is at most one polynomial y(x) of degree less or equal to k − 1 such

that y(xi) = yi, i = 0, . . . , k−1. More precisely, Shamir’s scheme uses modu-

lar arithmetic. The set of integers modulo a prime number m forms a field in

which interpolation is possible. In order to encode data d, a prime number

m greater than d and n is picked. A polynomial y(x) of degree k − 1 is

2.3. BITWISE FRAGMENTATION 53

constructed where k − 1 coefficients coeff 0,. . . ,coeffk−2 are randomly cho-

sen from a uniform distribution over the integers in [0,m). yi values are

computed modulo m. The n computed points Fi = (xi, yi), i = 0, . . . , k − 1

are the final fragments that will be distributed over n different locations or

owners.

In SSS, fragmentation consists in evaluating n times a polynomial of

degree k − 1. The complexity of computing a value at a single point is O(k)

when the Horner’s scheme is applied. Therefore, it takes O(kn) to compute

a polynomial of degree k − 1 at n points. During data defragmentation,

the constant term of the interpolating polynomial is computed using, for

instance, the Lagrange interpolation. Unlike the fragmentation, this is an

operation quadratic in function of k.

When the data is large, Shamir’s advice is to break it into smaller chunks

and apply the fragmentation process to each of the chunks separately. Im-

plementations of the scheme usually optimize its performance by performing

the operations in the finite field GF (28) as it is adapted to the nature of byte

computations2.

SSS was primarily designed to protect secret keys - an encryption key is

fragmented and the fragments are distributed among shareholders. In this

case, quadratic complexity and n-fold increase in storage are acceptable but,

in the context of distributed storage of larger data, they may be a serious

obstacle.

Around the same time that Shamir presented his scheme, Blakley [Bla79]

published his own scheme relying on the fact that any n nonparallel (n-1)-

2http://manpages.ubuntu.com/manpages/xenial/man7/gfshare.7.html

54 CHAPTER 2. RELEVANT WORK

dimensional hyperplanes intersect at only one specific point. However, it did

not find wide application inside distributed storage systems.

XOR-splitting XOR-splitting is an information-theoretically secure scheme

relying on the one-time pad encryption technique [Sha49]. During fragmen-

tation of data D, k − 1 random fragments F0, . . . , Fk−2 of size |D| bits each

are generated. The last fragment, Fk−1, is obtained by exclusive-oring all the

fragments with the the data Fk−1 = (⊕k−2
0 Fi)⊕D. In contrast to Shamir’s

scheme, xor-split does not provide data redundancy in addition to secrecy

and the loss of a single fragment makes the data unrecoverable. Therefore,

in order to achieve resilience of protected data, it has to be combined with

a complementary technique like data replication (the combination of tech-

niques used in the GridSharing system) or a (k, n)-threshold secret sharing

scheme (the combination of techniques chosen by the POTSHARDS system).

Like in the case of all perfect secret sharing schemes, XOR-splitting leads to

a n-fold increase in storage as the fragments are of the size of the data itself.

Its advantages are the high confidentiality level. XOR-splitting processing

is theoretically very fast as exclusive-or is one of the quickest operations to

implement. However, the increase in storage connected with the generation

of k − 1 random fragments can make it slow and not scalable in practice.

The idea behind XOR-splitting is very similar to the one behind the Karnin-

Greene-Hellman method [DKWGH83, KK03].

Information Dispersal Algorithms (IDA) Rabin introduced the con-

cept of an information dispersal algorithm (IDA) [Rab89] at the end of the

80s. An IDA divides data D of size |D| bits into n fragments. Each fragments

2.3. BITWISE FRAGMENTATION 55

contains |D|
k

bits of the data. Any k fragment of those n fragments suffices

for reconstruction. More precisely, data D is represented as a collection of

k-element vectors. Each of those vectors is transformed into an n-element

vector by being multiplied by a k×n nonsingular dispersal matrix DM . The

n-elements of each transformed vector are then dispersed over n fragments

F0, . . . , Fn−1. The n rows of the dispersal matrix DM are usually attached

within the fragments. Data reconstruction consists of multiplying any k of

the fragments by the inverse of a k × k matrix built from any k rows of the

matrix DM .

Rabin’s IDA is mainly used for fault-tolerant storage and information

transmission as its confidentiality level is too low. Indeed, fragmented data

cannot be explicitly reconstructed from fewer than the k required fragments

[Li12] though some information about the content of the initial data is leaked.

Data patterns are preserved inside fragments when the same matrix is reused

to encode different data vectors. A similar problem occurs when using the

Electronic Code Book block cipher mode for block cipher encryption [Dwo01].

Even with this weakness, IDA is still sometimes being considered as one the

techniques that could be applied in a multi-cloud environment [BLU+15].

When applied to already encrypted data, IDA adds redundancy and rein-

forces confidentiality.

Data parsing [CBHK15, SJH05] is sometimes seen as a subcategory of

information dispersal. Data (encrypted or not) are shredded and distributed

with a bit granularity over k fragments. A dispersal key is required to define

the parsing pattern. A relative drawback of this solution resides in the fact

that it operates at bit level while in many high level programming languages

56 CHAPTER 2. RELEVANT WORK

the byte is the smallest addressable unit of memory. Therefore, an efficient

implementation of this kind of solution is a challenge at the programming

level and may necessitate the use of a dedicated hardware element (like in

[SJH05]).

Ramp schemes Ramps schemes, first introduced in [BM85], are situated

between perfect secret sharing and information dispersal. They break data

into n fragments, such that any k2 of them allow data recovery and fewer than

k1 reveal no information at all. The main idea is to gain storage efficiency by

relaxing security requirements. One of the simplest ramp schemes modifies

the Shamir’s scheme by using only k1 random coefficients inside the encoding

polynomial. Data D is used to generate the remaining coefficients of the

polynomial. A different way of implementing a linear ramp scheme consists

of modifying the Rabin’s information dispersal algorithm. Each data vector

is composed of k2 elements, k1 of which are random and k2 − k1 belong to

the initial data.

In distributed storage, ramp schemes have been considered in the con-

text of distributed storage by the authors of PASIS and CDStore systems.

In [LQLL14], a modification of the linear ramp scheme designed for data

dispersal in a cloud-of-clouds was introduced: the Convergent Ramp Secret

Sharing Scheme (CRSSS). CRSSS replaces random information inside a clas-

sical ramp scheme with deterministic hashes generated from the initial data.

Such processing allows further fragment deduplication.

Fast and Scalable Fragmentation Algorithm (FSFA) The fast and

scalable fragmentation Algorithm (FSFA) is situated somewhere between se-

2.3. BITWISE FRAGMENTATION 57

Table 2.1: A comparison between relevant techniques in terms of the number

of operations required during data fragmentation and defragmentation. (add.

- additions, sub. - subtractions, mult. - multiplications, div. - divisions, xors

- exclusive-ors)

Algorithm Fragmentation Defragmentation

Shamir’s SS Dn(k − 1) add. D(k − 1) add.

Dn(k − 1) mult. D2(k − 1)2 + 2n sub.

D2(k − 1)2 + 2n− 1 mult.

Dn+ 1 div.

XOR-splitting Dn xors Dn xors

Rabin’s IDA Dn mult. Dk mult.

Dn add. Dk add.

Ramp scheme D(1 + k1
k2

)n mult. D(1 + k1
k2

)k add.

D(1 + k1
k2

)n add. D(1 + k1
k2

)k mult.

FSFA D(k − 1) add. D(k − 1) add.

D(k − 1) mult. D(k − 1) mult.

cret sharing and information dispersal. It is introduced in detail in Chapter 5.

It transforms data into k interdependent fragments that all have to be gath-

ered in order to reconstruct the initial information. Its process is a mix of

data encoding based on a modification of the Shamir’s scheme, data permu-

tation, and data dispersal. A performance comparison with related works

demonstrates it can be much faster than fragmentation techniques based on

58 CHAPTER 2. RELEVANT WORK

Table 2.2: A comparison between relevant techniques in terms of overall re-

quired storage, integrated resilience, and provided data confidentiality level.

A low confidentiality level preserves data patterns inside the fragments. A

lightweight protection does not preserve patterns.

Algorithm Storage Resilience Confidentiality

Shamir’s SS |D|n Yes Perfect

XOR-splitting |D|n No Perfect

Rabin’s IDA |D| Yes Low

Ramp scheme |D|(1 + k1
k2

) Yes Perfect up to k1,

then low

FSFA |D|+ |B|, |D| � |B| No Lightweight

symmetric encryption while producing reasonable storage overhead.

Comparison between presented techniques Table 2.1 and Table 2.2

contain a comparison of the techniques in terms of complexity, storage, re-

silience and confidentiality level. The following algorithms are compared:

Shamir’s secret sharing, XOR-splitting, Rabin’s information dispersal algo-

rithm, the linear ramp scheme based on an information dispersal algorithm,

and the fast and scalable fragmentation algorithm. Figure 2.1 shows a perfor-

mance benchmark confirming the theoretical evaluation. All techniques were

implemented in JAVA language using GF(28) which allows for multiplications

using look-up tables and replaces addition/subtraction with exclusive-ors.

2.3. BITWISE FRAGMENTATION 59

Figure 2.1: Performance comparison between Shamir’s secret sharing (SSS),

Rabin’s information dispersal algorithm (IDA), and the fast and scalable frag-

mentation scheme (FSFA, presented in two configurations, a more precise

comparison of FSFA with relevant techniques is presented in Chapter 5).

SSS and IDA are slow and not scalable while FSFA achieves a good perfor-

mance that does not decrease with the growing numbers of fragments. A linear

ramp scheme based on Shamir’s scheme will have a similar or slightly faster

performance compared to SSS depending on the chosen threshold. A linear

ramp scheme based on IDA will have a performance similar or slightly slower

than the IDA depending on the chosen threshold. XOR-splitting in practice

achieves the same performance as well implemented SSS. In presented con-

figuration k = n.

Fragmentation Techniques Using Symmetric Encryption

A different group of fragmentation techniques reunites methods based on

symmetric encryption. Such techniques first encrypt the data using a sym-

60 CHAPTER 2. RELEVANT WORK

metric encryption algorithm (like AES). Then, they fragment data into n

fragments, k of which are needed for data reconstruction. Finally, the en-

cryption key is securely fragmented and transmitted withing the fragments.

The big advantage of such techniques is that they provide data confidentiality

without leading to an increase of storage.

Secret Sharing Made Short (SSMS) Krawczyk was the first one to in-

troduce a fragmentation scheme combing data encryption and dispersal [Kra94]

at the beginning of the 90s. In his proposal named Secret Sharing Made Short

(SSMS), data D are first encrypted using a symmetric encryption algorithm

with a random encryption key K. Encrypted data are then fragmented us-

ing an information dispersal algorithm like the Rabin’s IDA into n fragments

any k of which are sufficient for data reconstruction. The random key K

used during data encryption is fragmented using a (k, n)-threshold perfect

secret sharing scheme (usually Shamir’s secret sharing) and fragments of the

encryption key are attached to the n data fragments. In contrast to the per-

fect secret sharing, the storage overhead of SSMS does not depend on data

size |D| but is only equal to the size of the key |K| per data fragment: Such

storage overhead is negligible when larger data are being fragmented.

SSMS defines a fragmentation methodology, leaving implementation de-

tails to the user. In modern implementations [BCQ+13], systematic error-

correction Reed-Solomon codes [RS60] are used during the information dis-

persal step. They fragment data in a way that k fragments are formed from

large chunks of encrypted data (data are just fragmented in a straightforward

way) and n − k fragments are added for data resilience. Systematic error-

2.3. BITWISE FRAGMENTATION 61

correction codes are faster than classic information dispersal algorithm, but

they leave large chunks of encrypted data inside the fragments. Therefore

an attacker in possession of the encryption key is able to decrypt a portion

of information from less than k fragments.

AONT-RS Like SSMS, the AONT-RS method [CLM17, RP11] combines

symmetric encryption with data dispersal. The main difference between these

two methods lies in the key management. Similarly to SSMS, in AONT-RS

data D are first encrypted using a random encryption key and a symmet-

ric encryption algorithm. In a next step, encrypted data are fragmented

into k fragments in a straightforward way (data are just divided into chunks

composed of consecutive bits) and n − k additional fragments are gener-

ated using systematic Reed-Solomon codes [RS60]. In contrast to SSMS, in

AONT-RS the encryption key is not fragmented using Shamir’s scheme but

exclusive-ored with the hash of the encrypted data (so it is unrecoverable

in the absence of the complete ciphertext). AONT-RS was clearly inspired

by the all-or-nothing transform (AONT) introduced by Rivest [Riv97] (de-

scribed in detail in Section 2.3.1). However, unlike Rivest’s proposal, it does

not protect data against the exposure of the encryption key.

CAONT-RS [LQLL16] slightly modifies AONT-RS in order to allow a

fragments’ deduplication. It replaces the random key used during data en-

cryption with a key generated from the cryptographic hash of the initial

data.

62 CHAPTER 2. RELEVANT WORK

All-Or-Nothing Family of Algorithms

An all-or-nothing process mainly aims at protecting encrypted data against

the exposure of the encryption key. It creates dependencies inside the ci-

phertext in a way that its partial decryption is infeasible. Therefore, once

the ciphertext is being fragmented and dispersed, encrypted data contained

inside the fragments is protected against the key exposure.

Historical (introduced by Rivest [Riv97]) all-or-nothing processing is com-

posed of two steps: an all-or-nothing transform (denoted as AONT) pre-

processing applied before data encryption and the data encryption. The

whole two step process is denoted in the literature as all-or-nothing (AON)

[KSLC17]. The majority of recent all-or-nothing schemes operate differently:

they are first encrypting the data and then applying a transform over it to

create dependencies. Thus, they avoid the data re-encryption. The following

paragraphs present the most relevant all-or-nothing schemes.

Rivest’s and Desai’s all-or-nothing transforms Rivest was the first

one to propose an all-or-nothing process [Riv97]. In his proposal, data are

encrypted twice: first during the pre-processing step named the all-or-nothing

transform (AONT) and second after the transformation. During this pre-

processing step, the plaintext composed of p input blocks is transformed into

a sequence of c = p+1 output blocks. First, each input block Pi is encrypted

using a random key K: Ci = Pi ⊕ E(K, i), where 0 ≤ i ≤ p − 1 (E is

a symmetric encryption function). Second, a hash of each output block is

computed: Hi = hash(Kpub, Ci ⊕ i), where 1 ≤ i ≤ c − 1 using a publicly

known key Kpub (H is a keyed hash function). Third, the last output block

2.3. BITWISE FRAGMENTATION 63

is computed as an exclusive-or of K and of all hashes: Cc−1 = K
⊕n

i=1 Hi.

Such transformed plaintext is then encrypted using a key Kenc. Rivest’s

pre-processing protects against the exposure of the key Kenc which was used

during the second step of processing. However, it does not protect against

a situation where an attacker managed to acquire the random key K used

during the pre-processing AONT in addition to the encryption key used after

the pre-processing. Rivest’s proposal requires two rounds of encryption (one

during pre-processing and one after) that could be a burden for performance.

Desai [Des00] proposed a modification to Rivest’s proposal replacing the

round computing hashes. The last output block Cc−1 is obtained as an

exclusive-or of the random key and of all previously obtained p output blocks:

Cc−1 = K
⊕c−2

i=0 Ci. Such processing improves the performance.

Bastion Among the latest developments, Bastion [KSLC17] is an AON

composed of the data encryption step and of a linear transform applied to

the encrypted data. It ensures that the initial ciphertext blocks cannot be

recovered as long as the adversary has access to all but two output blocks.

More specifically, the ciphertext CIPH is multiplied by a square matrix A of

dimensions c× c, such that: (i) all diagonal elements are set to 0 and (ii) the

remaining off-diagonal elements are set to 1 (such a matrix is invertible and

A = A−1 so the inverse transform: CIPH = A−1 · CIPH ′ = A · CIPH ′).

The multiplication CIPH ′ = A · CIPH ensures that each output block C ′i
will depend on all output blocks C ′j except from C ′i,i = j. Bastion achieves

much better performance than AONs as it does not require an additional

encryption round. Thanks to a wise implementation, the transform applied

64 CHAPTER 2. RELEVANT WORK

after the encryption uses only 2c exclusive-or operations (3c−1 exclusive-ors

are made in total, counting c− 1 exclusive-ors from the CTR mode).

Mix&Slice Mix&Slice [BDCdVF+16] is an approach to enforce access re-

vocation on data stored at external cloud providers. Dependencies are cre-

ated inside encrypted data so re-encrypting even a small portion of the out-

sourced data with a fresh key revokes the access to a user who does not

possess the new key. The algorithm used for the data transformation could

be seen as a particular case of an all-or-nothing scheme as it is characterized

by the same property: data decryption is not possible without the possession

of the whole ciphertext. In Mix&Slice, the transformation into final output

messages is performed using multiple encryption rounds - each encryption

round re-encrypts (and thus creates dependencies between) a different sub-

set of the input data.

Figure 2.2: Performance comparison between techniques based on symmetric

encryption. In light blue: techniques that do not provide protection against

key exposure. In dark blue: techniques that provide protection against key

exposure.

2.3. BITWISE FRAGMENTATION 65

Table 2.3: Comparison between relevant techniques in terms of number of op-

erations required for data fragmentation (encryption is measured in the num-

ber of block operations b.o.), number of exclusive-ors (including those used

during encryption), operations used for key management, and data defrag-

mentation. n - total number of fragments, k-number of fragments required

for data reconstruction, p- number of plaintext blocks, C- ciphertext block,

K- encryption key, rMS- (in Mix&Slice) number of encryption rounds, e- (in

PE-AON) number of fragments on which encryption will be applied

Algorithm Enc. [b.c.] xors Key m. K.E.P.

SSMS p p SSS(K) No

SSMS + IDA p np+ p+ n SSS(K) Yes

AONT-RS p p Hash(D)⊕K No

Rivest’s AON 3p+ 1 3p - Yes

Desai’s AON 2p+ 1 2p - Yes

Bastion p 3p+ 1 - Yes

Mix&Slice prMS prMS - Yes

SFD p p - Yes

CAON p 2p+ k − 1 Cp+1 ⊕K Yes

SAON p from p to 2p - Yes

PE-AON e
k
p e

k
p+ 2(p+ 1) - Yes

Secure fragmentation and dispersal Presented in detail in Chapter 3,

the Secure Fragmentation and Dispersal scheme (SFD) [KM18a] can be also

66 CHAPTER 2. RELEVANT WORK

seen as a form of an all-or-nothing fragmentation. Instead of creating de-

pendencies between the ciphertext blocks, it fragments the data along the

dependencies created during a block cipher encryption.

Circular all-or-nothing (CAON) The Circular All-Or-Nothing (CAON)

[KM18b] algorithm presented in detail in Chapter 3 improves the Bastion

proposal by reducing the complexity of the linear transform applied after the

data encryption by a factor of 2.

Selective All-Or-Nothing (SAON) The Selective All-Or-Nothing (SAON)

[KM18c] scheme, presented in detail in Chapter 3, is a fast way of protecting

data against key exposure in a single cloud environment. It achieves good

performance thanks to combining the SFD with the Bastion scheme.

Partial encryption and all-or-nothing (PE-AON) The partial en-

cryption and all-or-nothing (PE-AON) scheme, presented in detail in Chap-

ter 4, improves the fragmentation performance of encryption based fragmen-

tation schemes: it applies encryption only to a subset of the data and then

exclusive-ors encrypted and non-encrypted data fragments.

Comparison between presented techniques A comparison between

techniques presented in the section is presented in Table 2.3. A performance

benchmark is shown in Figure 2.2. All relevant schemes were implemented in

similar ways. AES was used as the symmetric encryption algorithm. SHA256

was used as the hash function inside the AONT-RS. More detailed bench-

marks comparing algorithms presented in this thesis (SFD, CAON, SAON,

2.3. BITWISE FRAGMENTATION 67

and PE-AON) with the state-of-the-art techniques are shown in Chapter 3

and Chapter 4.

2.3.2 Characteristics of bitwise fragmentation systems

The previous section gave an overview of existing techniques providing data

protection by means of fragmentation. This section focuses on other aspects

intrinsically connected with fragmentation that will be later analyzed in Sec-

tion 2.3.3 during the description of the storage systems.

Data Resilience

Any kind of distributed storage system should ensure data resilience as it

has to be prepared for the loss or alteration of a part of its data in case of an

attack or an incident. In a system applying fragmentation, the ratio between

the total number of fragments (n) and the number of fragments required

for the data reconstruction (k) should depend mainly on two factors: the

trustworthiness of the storage devices and the estimated longevity of the

system. Indeed, data dispersed over unreliable machines (i.e. inside a peer-

to-peer storage system) are more likely to be lost or altered. At the same

time, it is easier to ensure data survival if the longevity of the system is

measured in years rather than decades.

Several techniques may be applied to ensure data resilience, like data

replication, threshold secret sharing, information dispersal, and systematic

error-correction codes. The choice of a suitable technique is not straightfor-

ward as multiple factors like the performance of the technique or its impact

on the confidentiality and storage requirements have to be taken into account.

68 CHAPTER 2. RELEVANT WORK

Replication is the easiest and fastest solution but also quite inefficient in

terms of memory occupation. Its main advantage is that it ensures high data

availability as the replicas of fragments are immediately ready to be used and

no special processing is required in case of data recovery. Among systems

presented in Section 2.3.3, it can be found in GridSharing, DepSky (only as

an option), and IBM Object Cloud Storage (only for small data, for which

the gain in performance prevails over storage blow-up).

Threshold schemes, like the previously presented Shamir’s scheme, pro-

vide not only data protection but also resilience. However, in this case re-

silience comes at an extremely high cost as not only does the performance of

such schemes drastically decrease with the increasing number of fragments,

but their storage overhead is comparable to data replication. Therefore, they

are almost exclusively used for the protection of small data, especially en-

cryption keys. One of the rare uses of secret sharing for ensuring the resilience

of larger data can be found in the POTSHARDS system, designed to protect

archival data for decades.

Information dispersal algorithm adds resilience without leading to an ex-

cessive storage overhead. They perform better than threshold schemes but

similarly lack of scalability (performance decreases with the increasing num-

ber of fragments). Therefore, recent systems use rather systematic error-

correction codes (especially Reed-Solomon codes [RS60]). The principle of

systematic error-correction codes is similar to the one of an information dis-

persal algorithm (both can be seen as matrix multiplication). However, they

allow users to save computations by only generating resilient n−k fragments

while keeping k fragments as direct chunks of the data.

2.3. BITWISE FRAGMENTATION 69

Key and Fragments’ Location Management

The use of a classical key management store may not be necessary inside a

bitwise fragmentation system. Indeed, data fragmentation method do not

require any encryption key (i.e. when secret sharing is used to create the

fragments) or disperses the key within the data fragments (i.e when SSMS

or AONT-RS techniques are applied). Thus, of all the systems described

later in Section 2.3.3, only Delta-4 and Symform store encryption keys in a

separate trusted area.

In systems based on fragmentation, the encryption key is somehow re-

placed by a map - a piece of information mapping information about the

stored data with the corresponding fragments’ locations and ordering. Even

if the map is less critical than a key, its possession clearly facilitates the work

of an attacker. Thus, it should be stored in a trusted location, fragmented

over independent nodes, or given to the user. The last solution is risky as

the probability that the user will loss the map increases with the supposed

data longevity [SGMV09]. In order to increase the protection level, the map

may be also encrypted or fragmented [PBL91].

The loss of the map is a critical situation. A straightforward solution

to this problem would be to broadcast a request to all of the storage nodes

in order to discover fragments location. However, this will work only if

fragments have a piece of information attached to them describing their origin

and order.

An interesting design was proposed by POTSHARDS system, where a

user possesses a primary map of their data fragments and a secondary dis-

tributed map, named approximate pointers, is attached to the fragments.

70 CHAPTER 2. RELEVANT WORK

Therefore, this make the data reconstruction possible even if the user lost

their map. However, the secondary map includes a sort of honeypot mak-

ing the emergency recovery much more time consuming than the standard

procedure.

Data Integrity and Authentication

Dispersed fragments may be altered, especially when they are stored on a

multitude of untrusted devices. The most common solution addressing the

data integrity issue is to compute a digest of the data that will be transmitted

to the client within the fragments. The client can then verify the integrity

of the defragmented data by computing its hash and comparing it with the

one that was received within the fragments. When authentication of the

fragments is also required, a keyed-hash message authentication code can be

used or the data can be signed using public-key cryptography.

An alternative way of ensuring data integrity was implemented in Grid-

Sharing using a voting system. It makes the system resilient to a Byzantine

fault; even if a certain amount of storage nodes are corrupted, the system still

behaves correctly. GridSharing replicates fragments and distributes them of

multiple storage nodes. During data retrieval, several replicas of the same

fragments are sent to the client and the most frequent among the set of

replicas is considered to be the right one. On one hand, such a technique

is very inefficient in terms of storage capacity and transmission costs. On

the other hand, over-requesting of the fragments may slightly improve the

defragmentation performance. Even if the GridSharing approach does not

directly require the computation of cryptographic hashes, it still demands a

2.3. BITWISE FRAGMENTATION 71

comparison between data fragments.

PASIS presented an interesting approach against unauthorized data changes.

It audits the storage nodes in order to detect data modifications and restore

the data from backup when necessary. Storage nodes are recording any kind

of data modifications. In the case of a data loss or undesired data modifica-

tion, the state of the node will be reverted.

Trustworthiness of the Storage Nodes

Roughly, three principal levels of device trustworthiness can be distinguished:

trusted, curious-but-honest, and untrusted. Trusted devices are used for the

processing (fragmentation, defragmentation, mapping) of data. They also

store maps and encryption keys if necessary. In any kind of system there must

be at least one such trusted device (often it is the user’s device). Intuitively,

communication to and from this component must be appropriately secured

as a man-in-the-middle attack would expose fragments to an attacker making

the dispersal obstacle useless (it is recommended to use separate channels for

the distributions of distinct fragments). Commercial solutions apply TLS to

secure communication between the trusted zone and the storage nodes. In

the historical Delta-4 project, a less typical approach was proposed where

fragments belonging to different data are mixed together during the trans-

mission and thus obfuscate the communication.

Curious-but-honest (or semi-honest) devices try to learn as much as pos-

sible about the stored data. However, they behave correctly, do not modify

the data, and execute protocols as specified. A storage provider like a cloud

is often assumed to be curious-but-honest. The category of untrusted devices

72 CHAPTER 2. RELEVANT WORK

gathers all kind of storage nodes that will not only look at the stored data,

but can also deviate from the defined protocols.

Fragment Size and Decoys

Knowledge of the fragments’ size opens the door to a potential side-channel

attack. Not only does it give an attacker information about the estimated size

of the data, but it can also help identify fragments belonging to the same

data as most likely they will be equal in size. A possible countermeasure

could be having a fixed fragment size inside the whole storage system. This

implies pre-processing data - segmenting larger data into smaller chunks while

padding smaller data. Such a solution has already been applied, for instance,

in the Symform peer-to-peer storage system. Data could also be divided into

chunks of various sizes that would obfuscate the size of the data.

Decoys can be defined as fragments aiming to mislead an intruder. They

may be implemented in two ways. The first way, consists in generating

random fragments that do not belong to any initial data and mixing them

with valid fragments. The randomly-generated portion of data obfuscates the

exact amount of stored data but inevitably increases storage requirements. A

more efficient way of proceeding would be to inject invalid entries to the map

with fake locations of the data fragments. These pre-existing fragments (but

matching different data files) are now decoys. This technique was adopted

by POTSHARDS where, in its secondary map, only one entry out of four

lead to a valid fragment.

2.3. BITWISE FRAGMENTATION 73

Data Deduplication

Data deduplication exploits content similarity in order to reduce the over-

all storage volume [LQLL14, QD02a]. It is especially efficient in the case

of archival systems storing large amounts of similar data like backup or log

files. Applied inside a bitwise fragmentation system, deduplication prohibits

the use of randomness during data fragmentation. Therefore, usual bitwise

fragmentation techniques have to be modified in order to produce the same

output fragments for same input data. To make a technique deduplica-

ble, the random element used during fragmentation (typically the encryp-

tion key) is replaced by deterministic data constructed from the hash of the

data [LQLL14].

A naive implementation of data deduplication opens the door to side-

channel attacks. Indeed, an attacker eavesdropping the communication be-

tween a user and the system nodes may deduce if the user’s data exists

already inside the system. A two stage deduplication, like the one proposed

by CDStore, provides a solution to this problem.

2.3.3 Systems applying bitwise fragmentation

Nine bitwise fragmentation systems were selected among relevant works: six

academic solutions and three commercial products. Their main focus is to

protect data confidentiality using fragmentation. Systems applying fragmen-

tation solely for a data resilience purpose were put aside. The particularities

of each of the systems are described and a comparison between the academic

and commercial approaches can be found at the end of this section.

74 CHAPTER 2. RELEVANT WORK

Academic Systems

Six academical systems were described in chronological order: Delta-4, Grid-

Sharing, POTSHARDS, PASIS, Depsky, and CDStore.

Delta-4 (LAAS-CNRS, INRIA, and Univerisity of Newcastle upon

Tyne) [PBL91] Delta-4 was a European project - one of the first to ad-

dress the need for a dependable distributed storage system that could resist

not only accidental faults but also intentional intrusions. In this proposal,

the storage environment is composed of three different sites: a user site per-

forming data fragmentation, an archive site storing the fragmented data, as

well as a security site handling authentication, authorization, and key man-

agement. The user and security site have to be trusted. Individual nodes

of the archive site are not trusted and can be a subject to accidental faults

and malicious intrusions. However, the archive site overall is supposed to be

trusted.

Delta-4 transforms data using the fragmentation-redundancy-scattering

(FRS) technique [DBF91, FDP86]. In a pre-processing step data are cut

into chunks of equal size and chunks are encrypted with a block cipher.

Encrypted data are then distributed over k fragments using decimation at

the byte level; consecutive bytes of data are distributed over separate frag-

ments. Final fragments are then replicated and the replicas are sent to the

archive site that distributes them over its storage nodes using a randomized

algorithm obfuscating the fragments’ locations. Data replication was chosen

because of performance reasons as, thirty years ago, CPU cycles were too

scarce to efficiently execute error-correction or information dispersal. During

2.3. BITWISE FRAGMENTATION 75

the transmission to the archive site, fragments belonging to different data

are mixed, forming a single data flow (if necessary such data flow may be

artificially created by injecting decoys).

After two decades, the FRS technique was implemented inside two dis-

tributed systems: one peer-to-peer [BSL+06] and one using a central server

[CP11].

PASIS (Carnegie Mellon University [WBS+00, GKB+01, SGS+00])

PASIS shares the same objective as Delta-4: designing a storage system

capable of handling node failures and activities of malicious users. In or-

der to achieve its goal, it combines data fragmentation with dynamic self-

maintenance. Its architecture is composed of storage nodes (vulnerable to

attacks and intrusions) equipped with repair agents and agents integrated

within client devices (supposed to be inside trusted areas). Agents fragment

and disperse data over the storage nodes. A fragment is identified by the

name of its storage node and its local name on that node. A dedicated di-

rectory service maps the name of data stored over storage nodes to their

fragments. Therefore, a careful naming of stored files can obfuscate relations

between fragments.

In PASIS, the data fragmentation method is not predefined, but adapted

to the type of stored data (details of the right fragmentation choice are

presented in [WBP+01]). A wide range of techniques and their combinations

is taken into account: secret sharing, encryption, ramp schemes etc. The

choice of the right fragmentation technique is a compromise between the

desired performance, data availability, and data confidentiality.

76 CHAPTER 2. RELEVANT WORK

Self-securing storage nodes are the PASIS particularity. Each node im-

plements a repair agent that internally keeps track of all changes at the node

during a given interval of time. Keeping historical information allows the

detection of intrusions and prevents intruders from destroying or tampering

with stored data. Systems administrators have a window of time to recognize

malicious activity and rebuild the system using the history pool.

PASIS comes up with two interesting suggestions aimed at improving the

speed of data retrieval. The first suggestion consists of over-requesting data

fragments: asking storage nodes for more than the k fragments during the

data retrieval. This way, only the k first fragments that arrived first are

defragmented. However, at the same time, the bandwidth usage is increased.

The second suggestion is to prioritize nodes that have responded first during

recent retrievals.

GridSharing (Georgia Institute of Technology [SB05]) GridSharing

proposes a distributed system architecture that organizes storage nodes in

the form of a logical grid of k × n dimensions. It can handle up to cr of

node crashes and will behave correctly even if le of the nodes are honest-

but-curious and by are Byzantine faulty. The exact values of cr, le, and by

depend on the grid dimensions and the data distribution technique.

GridSharing combines XOR-splitting with replication. First, data are

fragmented into k fragments, all of which are required for data reconstruction.

Each row of the k rows receives a single fragment and replicates it n times

over its columns. During defragmentation, a client broadcasts their request

to the grid. As an answer, they will receive multiple replicas of the same

2.3. BITWISE FRAGMENTATION 77

fragments from which they will choose the most frequent answers. Such

processing leads to a very high overhead of storage and transmission costs

(in the example presented in the paper, data are replicated more than 60

times).

An original concept of renewal of data fragments is described. Indeed,

the random fragments generated using XOR-splitting could be replaced with

a new set after some time. Therefore, an attacker would dispose of less time

to gather the required fragments.

POTSHARDS (University of California [SGMV09]) POTSHARDS

is a proposal for an archival storage architecture able to last years or even

decades. Its basic concept is to distribute fragmented data over several co-

operating providers (named organizations).

POTSHARDS fragments data in a two steps process. First, data are frag-

mented using XOR-splitting into a set of shards. All shards are then required

for data reconstruction. To add resilience, each shard is fragmented using

Shamir’s secret sharing (this results in a considerable increase of storage over-

head as secret sharing is applied twice). The final fragments are distributed

across independent storage providers. POTSHARDS assures data integrity

by the use of algebraic signatures.

Authors motivate the choice of secret sharing with two reasons. First, key

management can be expensive over the years as it requires key replacements.

Moreover, an encryption key may be lost making the data unrecoverable.

Second, even the strongest encryption is only computationally secure and

may become become insufficient over a finite period of time taking into ac-

78 CHAPTER 2. RELEVANT WORK

count the fast development of new technologies.

After data fragmentation and dispersal, a user receives a primary map

containing the locations of the data fragments. Because it is possible that

this primary map will be lost after decades, a secondary map is attached to

the fragments in the form of approximate pointers. Each fragment contains

four pointers to other fragments, but not all of them point at the fragments

of the same data. This allows data reconstruction even if the primary map

is not anymore available. However, data reconstruction using approximate

pointers is time consuming and requires access to multiple different storage

providers and nodes.

In the event of a partial data loss, a special protocol allows the providers

to reconstruct the lost data without revealing too much of their content

where data used during the reconstruction are encrypted and only the fail-

over archive receives the corresponding encryption keys.

DepSky (University of Lisbon [BCQ+13]) DepSky is an academic sys-

tem built on commercial clouds. It fragments and disperses data over several

providers in a way that only a subset of the fragments is required in or-

der to reconstruct the initial data. This cloud-of-clouds aims at improving

data availability, confidentiality, and integrity, as well as protecting against

a vendor lock-in problem. Its architecture is composed of clients (a software

installed at the user site) reading and writing data stored over four com-

mercial clouds (Amazon S3, Windows Azure, Nirvanix, and Rackspace). To

deal with the heterogeneity of cloud interfaces, data are encapsulated inside

special data units, the exact implementation of which depends on the archi-

2.3. BITWISE FRAGMENTATION 79

tecture of the storage provider. Each data unit contains information about

its content including the data version or signature.

Two protocols for the distribution of data units are proposed: DepSky-A

and DepSky-CA. DepSky-A does not provide any data confidentiality but just

disperses replicas of data over the clouds in order to increase the data avail-

ability. As data are replicated, the overall storage blowup is equal to number

of the replicas. DepSky-CA is a secure and space efficient improvement of

the DepSky-A. Data processing follows the Krawczyk’s Secret Sharing Made

Short method. First, data are encrypted using symmetric encryption (AES).

They are then encoded into n fragments by the use of an optimal erasure

code (Reed-Solomon). The encryption key is partitioned into n fragments

using secret sharing (via the Shoenmakers’ Publicly Verifiable Secret Sharing

scheme [Sch99]) and these key fragments are attached to data. Data integrity

is ensured by the use of n digests (one digest for each cloud) stored inside of

the metadata (SHA-1 was used for cryptographic hashes and RSA for signa-

tures). The system allows for the replacement of secret sharing by a more

traditional key distribution infrastructure.

Depsky’s authors demonstrated an improvement of the perceived avail-

ability and (in most cases) of the access latency when compared to cloud

providers individually. The monetary cost of the data dispersal was esti-

mated at twice the cost of using a single data storage provider.

CDStore (The Chinese University of Hong Kong [LQLL16]) CD-

Store deduplicates backup-data stored in a multi-cloud environment. The

system architecture is composed of CDStore clients integrated with users’ ser-

80 CHAPTER 2. RELEVANT WORK

vices and CDStore servers belonging to the cloud storage providers. Data are

first divided into shares of variable size that are then transformed into frag-

ments. CDStore keeps only the fragments that are different from those that

have already been archived. In order to enable such deduplication process-

ing, fragmentation of two identical input data has to result in two identical

sets of fragments [QD02b] (as already described in Section 2.3.2). Therefore,

authors of CDStore introduces two fragmentation techniques allowing data

deduplication: CAONT-RS and CRSSS [LQLL14]. Both modify existing

fragmentation techniques (AONT-RS and RSSS) by replacing their random

elements with deterministic data generated from the data hash. Moreover,

for performance reasons, CAONT-RS uses an all-or-nothing transformation

based on optimal asymmetric encryption padding (OAEP) [BR95, Boy99]

instead of the one initially proposed in [RP11].

CDStore comes with a two stage deduplication method to resist side-

channel attacks. When deduplication is implemented in a naive way, an

attacker can deduce information about the stored data by observing frag-

ments being updated to the cloud. With CDStore, produced fragments are

deduplicated at the client side between themselves as a first step. Then,

the remaining fragments are transferred to the CDStore servers that perform

the second deduplication step: they will keep only the fragments that are

different from those already inside the clouds.

2.3. BITWISE FRAGMENTATION 81

Commercial Systems

Three commercial systems were chosen for the survey: the IBM Cloud Object

Storage (existing3), the Symform peer-to-peer system (discontinued4), and

Unisys’s Secure Parser R© (existing5). All of them reinforce the protection

provided by symmetric encryption using data fragmentation.

IBM Cloud Object Storage [RP11] IBM Cloud Object Storage6 was

one of the first commercial products to use fragmentation and dispersal for re-

inforcing data confidentiality. Created by the Cleversafe startup as a private

cloud storage solution aimed at achieving petabyte scalability and reliability,

it was acquired by IBM and adapted to be integrated within a hybrid cloud

storage 7.

Data inside IBM Cloud Storage are fragmented into around 20-30 frag-

ments using the AONT-RS technique combining symmetric encryption with

Reed-Solomon codes (presented in detail in Section 2.3.1). Such fragments

are dispersed over random storage nodes. AES-256 is used as the algorithm

for symmetric encryption and SHA-256 is used to compute the hash of the

data that will be exclusive-ored with the encryption key. Data resilience is

achieved as, thanks to the Reed-Solomon error correction codes, not all of

the data fragments are required for the data reconstruction. A canary is

dispersed within the fragments in order to ensure data integrity. For per-
3https://www.ibm.com/cloud/object-storage
4https://www.theregister.co.uk/2016/06/17/quantum_file_sync_and_share_sinks/
5https://www.unisys.com/offerings/security-solutions/news%20release/latest-release-

unisys-stealth-security-extends-protection-to-include-medical-iot-devices
6https://www.ibm.com/cloud-computing/products/storage/object-storage/
7http://www.pcworld.com/article/3130792/ibms-cleversafe-storage-platform-is-becoming-a-cloud-service.html

82 CHAPTER 2. RELEVANT WORK

formance reasons, in the case of smaller data, the fragmentation process is

replaced with data encryption and replication.

AONT-RS does not require the use of a key store as the encryption key

is exclusive-ored with the data hash and dispersed within the fragments.

Therefore, the storage costs can be reduced by the costs of the key manage-

ment. However, the key is somehow replaced by a map that allows users

(and attackers who find it) to obtain the location of the fragments.

Symform peer-to-peer storage Symform8 was a peer-to-peer solution

offering distributed storage space. It used the distributed nature of its ar-

chitecture to enhance the confidentiality of the stored data. Symform’s frag-

mentation method was based on the RAID-96TM patented [TG11a, TG11b,

TG14] technology. RAID-96TM first divides data into 64MB shares com-

posed of consecutive data bits. It then encrypts the shares using the AES

algorithm with a 256-bits key. The encryption key is generated from the hash

of the data inside the share, allowing deduplication. In the next step, each

of the encrypted shares is shredded into 64 fragments of size 1MB each and

32 additional fragments are generated using Reed-Solomon codes. Finally,

the 96 fragments are dispersed across 96 randomly chosen devices. Data

reconstruction is possible if any 64 out of 96 fragments are gathered.

Symform was one of the rare fragmentation systems to use a centralized

key store situated in a trusted element. The store kept not only encryption

keys but also the information about the locations of the data fragments.

8http://www.symform.com

2.3. BITWISE FRAGMENTATION 83

Unisys’s SecureParserR© Unisys’s SecureParser R© [Joh07, SJH05] aims

at improving classical data protection techniques using a combination of

encryption, data shredding, and error-correction codes. It is composed of

software and hardware components.

First, data are encrypted using the AES algorithm with a random key.

Second, encrypted data are fragmented at bit level using a random splitting

key (the splitting key parses data and disperses its bits over fragments).

Therefore, final fragments are composed of random bits of encrypted data.

Both keys, encryption and splitting, are transformed using an all-or-nothing

transform and distributed within the fragments. Resilience is added to the

data using error-correction codes. An authentication value is also added to

the data fragments.

SecureParser R© introduces the interesting concept of the mandatory frag-

ment: a fragment that is necessary for a correct reconstruction of the data

regardless of the k and n specification. It can be useful in a situation when

the user would like to quickly refresh the fragmented data as they will only

have to replace the mandatory fragment. Such processing proposal od data

refreshment was already proposed by GridSharing (for a description of Grid-

Sharing, see Section 2.3.3). Nevertheless, a mandatory fragment should be

seen as especially sensitive data. Indeed, in a situation when an attacker

will want to make the data unavailable, they will most probably target the

mandatory fragment.

84 CHAPTER 2. RELEVANT WORK

Academic Approach vs. Commercial Products

It can be observed that the approach to data fragmentation changed over

the years. First, solutions based their protection almost solely on secret

sharing for confidentiality and replication for data resilience while recent

systems apply data encryption for confidentiality and error-correction for

data resilience.

In contrast to commercial products, academic proposals tend to be more

original even at the cost of an excessive (like in GridShard or POTSHARDS)

increase of storage volume or a drastic decrease of fragmentation perfor-

mance. They introduce novel solutions, such as repair agents in PASIS, or

approximate pointers in POTSHARDS, which deserve more experimenting

and probing. They look to the future by trying to be prepared for the pos-

sibility that the currently recommended size of the encryption key will no

longer be enough.

Commercial products hold to recommended NIST encryption standards

(AES with a key size of 128 or 256 bits) that they combine with some ad-

ditional fragmentation and dispersal processing. They tend to avoid data

replication, caring about the storage costs.

2.4 Exploiting data structures, multi-level con-

fidentiality, and machine trustworthiness

In a case where the data structure is known, the fragmentation process can

proceed by taking into account the varying need for secrecy along different

2.4. EXPLOITING DATA STRUCTURES 85

subsets of the input data. Confidential data can be separated from the non-

sensitive part of the information and consequently different type of process-

ing can be applied to these two data subsets; for instance only confidential

data could be encrypted saving computations. Moreover, such fragmentation

could allow a reduction in storage costs as there is no need to provide a spe-

cific secure architecture (often expensive) in order to store a piece of data that

does not reveal anything confidential to an attacker. The idea of structure-

wise fragmentation was first proposed at the end of the last century by the au-

thors of the object-oriented fragmentation-redundancy-scattering [FDRR92]

technique. It was later modified to suit database storage [ABG+05, CVF+10]

and cloud computing technology [BCCBF13, DCdVEF+14, HIK+13].

Separating data along its confidentiality levels is simple to imagine but

not easy to implement. The decomposition process often requires user inter-

action and cannot be automatized. It is the users’ responsibility to provide

the rules of confidentiality for each set of data types. It is still possible, how-

ever, that even after a careful data fragmentation, a combination of two or

more non-confidential data fragments will reveal some confidential informa-

tion [CVF+10]. Moreover, information from outside could be used to exploit

the non-confidential data (for instance, de-anonymizing it). Therefore, a re-

cent research track aims at automatizing the data separation; new ways of

separating data in two fragments, confidential and non-confidential, without

user interaction were recently developed and presented in [QM15, Han18].

These were inspired by selective encryption and use the discrete cosine and

discrete wavelet transforms.

86 CHAPTER 2. RELEVANT WORK

2.4.1 Object-oriented Data Fragmentation

In the 90s, authors of the fragmentation-redundancy-scattering (FRS) tech-

nique (described in Section 2.3.3) introduced an object-oriented version that

could be used to fragment applications composed of objects [FDRR92, FP95].

Confidential objects are fragmented using a recursive algorithm until they are

broken into fragments that do not reveal any confidential information about

the functions of the application. Resilience is then added through the use

of error processing techniques (like error correcting codes). According to the

authors, adding resilience to objects could also be done by anticipating the

application design at the early stage of design. At the end, the fragmented

data is scattered over various workstations. Leftover fragments, still holding

confidential information (even after being fragmented inside the first step),

are encrypted or stored on trusted devices. All remaining pieces are dis-

tributed over untrusted sites. Obviously, data processing or defragmentation

are performed only on trusted sites.

The object-oriented FRS is hard to implement and thus was not later

developed. Indeed, decomposing an application into confidential and non-

confidential objects raises a challenge for the developers. Its distribution over

multiple nodes may very probably slow down the execution performance.

2.4.2 Database Fragmentation

A database as a service 9 delivers similar functionality to a classic, rela-

tional, or NoSQL database management systems while providing flexibility

9https://www.technologyreview.com/s/414090/designing-for-the-cloud/

2.4. EXPLOITING DATA STRUCTURES 87

and scalability of a hosted in a cloud on-demand platform. The DBaaS user

does not have to be concerned with database provisioning issues; it is the

cloud provider’s responsibility to maintain, backup, upgrade and handle the

physical failures of the database system. Therefore, it is easy to see that sim-

plicity and cost effectiveness are the biggest advantages of such a solution.

At the same time, owners lose control over their outsourced data. Such

situations create new security and privacy risks, especially when the stored

data contains sensitive information like health or financial records. Conse-

quently, securing database services has become a need of paramount impor-

tance. A straightforward solution to the problem lies in the encryption of

the whole database, successfully implemented in [PRZB12]. However, per-

formance overhead and query processing limitations may be the drawbacks

of such a blunt approach. Moreover, the ability of encrypted databases to

provide provable security guarantees is sometimes questioned [GRS17].

A way of protecting the privacy of a database without using encryption is

seen in anonymization techniques aimed at guaranteeing the k-anonymization

[Swe02], t-closeness [LLV07] and l-diversity [MKGV07] of records inside a

database. They allow the release of a non-encrypted database containing

personal information while ensuring some degree of individual privacy. Some

progress on this subject, mainly for health data, has recently been performed

among others in [BCBC+14].

Database fragmentation promises an interesting alternative to full database

encryption or full anonymization. One of the first works on the subject

[ABG+05], introduces a distributed architecture for preserving data privacy.

End users communicate through a trusted client (as all of the presented sys-

88 CHAPTER 2. RELEVANT WORK

tems must include at least one trusted element in their architecture - the

one in which the fragmentation and defragmentation processes will occur)

with two non-trusted servers belonging to two different storage providers

(as presented in Figure 2.3). The use of different storage providers ensures

the physical separation of the information being protected. By construction,

storage providers do have access to the information that users entrust them

with. Even if they are well aware that they should not incorrectly interact

with the user’s data and its integrity without endangering their own busi-

ness, it is a common assumption to suppose them to be honest-but-curious;

they have the ability to observe, move, and replicate stored data, especially

behind the virtualization mechanism. In [ABG+05], the outsourced data is

partitioned among the two untrusted servers in a way that content at any one

server does not breach data privacy. In order to obtain valuable information,

an adversary must gain access to both databases. By analogy, the system is

also protected from insider attacks and the curiosity of the providers as long

as they do not ally together. On top of that, queries involving only one of

the fragments are executed much more efficiently than on encrypted data.

Another work [CVF+10, DCdVEF+14] protects sensitive information by

mixing encryption and fragmentation. It defines confidentiality constraints

as a subset containing one or more relation attributes. A constraint involving

only one attribute implies that the value of the attribute is sensitive and the

only way of protecting it is the use of encryption. On the other hand, multi-

attribute constraints specify that only associations between attributes of a

given constraint are sensitive. In that case, there is no need to encrypt all the

attributes values because confidentiality can be ensured by fragmentation.

2.4. EXPLOITING DATA STRUCTURES 89

Figure 2.3: Fragmentation of the database is performed inside a trusted

area [ABG+05] and database fragments are then dispersed over two inde-

pendent storage providers.

In [CVF+10, DCdVEF+14], three scenarios of fragmenting a relation are

presented. In the first one, a relation is divided into two fragments which

does not contain sensitive combination of unencrypted attributes. In the sec-

ond scenario, the relation is split into multiple fragments in a way that any

query can always be evaluated on one of the fragments; each fragment con-

tains unencrypted attributes that do not violate confidentiality constraints,

as well as the encrypted representation of all other attributes. The last frag-

mentation scenario avoids the use of encryption by introducing a trusted area

(belonging to the data owner) for the storage of sensitive portion of data.

For each scenario, the authors present fragmentation metrics supporting

the definition of an appropriate fragmentation algorithm. Fragmentation

metrics can aim at minimizing the number of fragments, maximizing affinity

90 CHAPTER 2. RELEVANT WORK

between attributes stored in one fragment or minimizing querying costs.

Recently, Bkakria [BCCBF13] generalized this approach to a database

containing multiple relations. It introduced a new confidentiality constraint

for the protection of relationships between two tables. Sensitive associa-

tions between relations are secured by the protection of primary key/foreign

key relationships and the separation of the involved relations. Relations are

transformed into secure fragments in which subsets of attributes respecting

confidentiality constraints are stored in plaintext while all others are en-

crypted. Bkakria introduced a parameter for evaluating the query execution

cost and proposed a query transformation and optimization model for ex-

ecuting queries on distributed fragments. He also focuses on the issue of

preserving data unlinkability while executing queries on multiple fragments.

Indeed, providers have to build a coalition and then deduct information by

observing query execution. To avoid such situations, he proposes the use of

an improved Private Information Retrieval (PIR) [OG10] technique which al-

lows querying a database without revealing query results to service providers.

Results of implementation of the proposed approach are presented. Although

the modified PIR solution is much faster than its predecessor, the process-

ing time of record retrieval from multiple fragments is considerably slower in

comparison with querying a single fragment.

The idea of splitting a database into fragments stored at different cloud

providers was also proposed by Hudic [HIK+13]. In his approach, a database

is first normalized and then several security levels (high, medium, low) are

attributed to relations. Based on these three levels and specific user re-

quirements, data is encrypted, stored at local domain or distributed between

2.5. ISSUES AND RECOMMENDATIONS 91

providers.

Database fragmentation methods presented in this thesis remain limited

by the fact that the number of fragments does not exceed a few dozen. More-

over, in each case, the proposed fragmentation algorithms require user inter-

action in order to define the data confidentiality level.

2.5 Issues and Recommendations

Several issues have to be taken into account while designing a storage sys-

tem basing its data protection on fragmentation and dispersal. First, a right

separation of the fragments has to be ensured. A situation where data is

fragmented but there is no control over the fragments locations is a weak so-

lution as it does not guarantee that the dispersal will constitute a sufficient

obstacle for an attacker. Indeed, the majority of cloud providers use virtual-

ization which prevents the end user from such control. Dispersing data over

independent providers is a rapid solution but it can entail an increase in la-

tency costs [BCQ+13, HIK+13]. A single provider possessing several storage

sites, like the Amazon S3, may also be used. Such coarse-grained solutions

are suitable for users looking for simplicity. A more sophisticated means

of data dispersion would use bare-metal clouds like Rackspace OnMetal 10,

that abandoned virtualization and thus allows full control over the physical

location of the stored data.

A suggested dispersal strategy is presented in Figure 2.4. A small amount

of confidential information is stored inside trusted devices. Fragments of data

10https://www.rackspace.com/cloud/servers/onmetal

92 CHAPTER 2. RELEVANT WORK

that are not confidential but could reveal some information are gathered

and dispersed over several physically separated servers or independent cloud

providers. A large amount of non-confidential data then goes to a public

cloud as it this the most cost efficient solution.

Fragmentation may increase latency inside the storage system as it usu-

ally requires additional data processing, multiple transmission channels, and

in some cases it increases the amount of data to be stored and transmit-

ted. However, parallelization of the processing may be applied in order to

compensate for the performance overhead coming from the fragmentation.

Fragments over-requesting as well as keeping track of the most responsive

nodes also help to accelerate the data reconstruction process. When per-

formance becomes a critical issue, lightweight fragmentation techniques like

the FSFA (proposed in the Chapter 5) could be applied. A pre-processing

step consisting in structurewise fragmentation may also help to speed up

the overall processing as it allows the extraction and protection solely of the

confidential portion of the stored information.

Last but not least, structurewise fragmentation strongly depends on user

guidance for the definition of the confidentiality levels and consequently

on the data nature. Designing an algorithm for automatically or semi-

automatically separating confidential data from non-sensitive pieces would

make the structurewise fragmentation process much faster and easier to use.

This last idea has been successfully developed by Qiu [QM15] for the selec-

tive encryption of images using a general purpose GPU.

2.6. SUMMARY 93

Figure 2.4: Dispersing data according to the trustworthiness of the storage

devices. First, a small portion of sensitive data is kept inside a private area.

Second, fragments of data are dispersed over a multi-cloud environment or

physically separated servers. Such fragments do not leak confidential infor-

mation unless the are gathered. Third, a large amount of non-confidential

data is stored inside a public untrusted area..

2.6 Summary

In this chapter, related works from the domain of data protection by means

of fragmentation were presented. Fragmentation is divided into two cate-

94 CHAPTER 2. RELEVANT WORK

gories: bitwise and structurewise. Bitwise fragmentation regroups all kind

of data fragmentation techniques operating on data without regards for the

data structure. Structurewise fragmentation gathers methods that fragments

data into fragments of different confidentiality levels by analyzing their struc-

ture. Relevant works are organized into two groups according to those two

definitions.

The first section of the survey focuses on bitwise fragmentation. Relevant

techniques are presented including secret sharing, information dispersal, as

well as multiple schemes based on symmetric encryption used in recent dis-

tributed systems. They are compared in terms of storage requirements, per-

formance, and provided level of data confidentiality. Performance benchmark

help the positioning of the techniques. Several elements proper to bitwise

fragmentation systems are portrayed like data resilience, key and fragments’

location management, integrity, data defragmentation, trustworthiness of the

machines, the concept of decoys, fragment size, and data deduplication. Fi-

nally, descriptions of eight selected storage systems applying bitwise frag-

mentation techniques are presented.

The second section gathers works applying structurewise fragmentation:

the historical object-oriented fragmentation-redundancy-scattering and vari-

ous proposals connected with fragmentation of relational databases, including

database anonymization and private information retrieval.

BIBLIOGRAPHY 95

Bibliography

[ABG+05] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina,

K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and

Y. Xu. Two can keep a secret: A distributed architecture for

secure database services. In In Proc. CIDR, 2005.

[BCBC+14] Maxime BERGEAT, Nora CUPPENS-BOULAHIA, Frédéric

Cuppens, Noémie JESS, Françoise DUPONT, Said Oul-

makhzoune, and Gaël De Peretti. A French Anonymization

Experiment with Health Data. In PSD 2014 : Privacy in

Statistical Databases, Eivissa, Spain, September 2014.

[BCCBF13] Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia,

and José M. Fernandez. Confidentiality-Preserving Query

Execution of Fragmented Outsourced Data, pages 426–440.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando

André, and Paulo Sousa. Depsky: Dependable and secure

storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33,

November 2013.

[BDCdVF+16] Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti,

Stefano Paraboschi, Marco Rosa, and Pierangela Samarati.

Mix&slice: Efficient access revocation in the cloud. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer

96 BIBLIOGRAPHY

and Communications Security, CCS ’16, pages 217–228, New

York, NY, USA, 2016. ACM.

[BGJ+13] J. M. Bohli, N. Gruschka, M. Jensen, L. L. Iacono, and

N. Marnau. Security and privacy-enhancing multicloud ar-

chitectures. IEEE Transactions on Dependable and Secure

Computing, 10(4):212–224, July 2013.

[Bla79] George R. Blakley. Safeguarding Cryptographic Keys. In

Proceedings of the 1979 AFIPS National Computer Confer-

ence, volume 48, pages 313–317, June 1979.

[BLU+15] William J. Buchanan, David Lanc, Elochukwu Ukwandu,

Lu Fan, Gordon Russell, and Owen Lo. The future internet:

A world of secret shares. Future Internet, 7(4):445, 2015.

[BM85] George Blakley and Catherine Meadows. Security of Ramp

Schemes, pages 242–268. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1985.

[Boy99] Victor Boyko. On the security properties of oaep as an all-

or-nothing transform. In Proceedings of the 19th Annual In-

ternational Cryptology Conference on Advances in Cryptol-

ogy, CRYPTO ’99, pages 503–518, London, UK, UK, 1999.

Springer-Verlag.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric en-

cryption, pages 92–111. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1995.

BIBLIOGRAPHY 97

[BSL+06] Rudi Ball, Vicki Spurrett, Rogério De Lemos, Rudi Ball,

Vicki Spurrett, and Rogério De Lemos. Dependable and se-

cure storage in pervasive peer-to-peer systems, 2006.

[CBHK15] P. Cincilla, A. Boudguiga, M. Hadji, and A. Kaiser. Light

blind: Why encrypt if you can share? In 2015 12th Inter-

national Joint Conference on e-Business and Telecommuni-

cations (ICETE), volume 04, pages 361–368, July 2015.

[CLM17] Liqun Chen, Thalia M. Laing, and Keith M. Martin. Re-

visiting and extending the aont-rs scheme: A robust com-

putationally secure secret sharing scheme. In Marc Joye

and Abderrahmane Nitaj, editors, Progress in Cryptology -

AFRICACRYPT 2017, pages 40–57, Cham, 2017. Springer

International Publishing.

[CP11] A. B. Chougule and G.A. Patil. Implementation & analysis of

efrs technique for intrusion tolerance in distributed systems.

International Journal of Computer Science Issues, 8(1), July

2011.

[CVF+10] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara

Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati. Combining fragmentation and encryption to pro-

tect privacy in data storage. ACM Trans. Inf. Syst. Secur.,

13(3):22:1–22:33, July 2010.

[DBF91] Y. Deswarte, L. Blain, and J. C. Fabre. Intrusion tolerance in

98 BIBLIOGRAPHY

distributed computing systems. In Proceedings. 1991 IEEE

Computer Society Symposium on Research in Security and

Privacy, pages 110–121, May 1991.

[DCdVEF+14] Sabrina De Capitani di Vimercati, Robert F. Erbacher, Sara

Foresti, Sushil Jajodia, Giovanni Livraga, and Pierangela

Samarati. Encryption and Fragmentation for Data Confiden-

tiality in the Cloud, pages 212–243. Springer International

Publishing, Cham, 2014.

[Des00] Anand Desai. The security of all-or-nothing encryption: Pro-

tecting against exhaustive key search. In Proceedings of

the 20th Annual International Cryptology Conference on Ad-

vances in Cryptology, CRYPTO ’00, pages 359–375, London,

UK, UK, 2000. Springer-Verlag.

[DKWGH83] Ehud D. Karnin, Jonathan W. Greene, and Martin Hellman.

On secret sharing systems. Information Theory, IEEE Trans-

actions on, IT-29:35 – 41, 02 1983.

[Dwo01] Morris J. Dworkin. Nist sp 800-38a, recommendation for

block cipher modes of operation: Methods and techniques.

Technical report, United States, 2001.

[FDP86] J. M. Fray, Y. Deswarte, and D. Powell. Intrusion-tolerance

using fine-grain fragmentation-scattering. In 1986 IEEE Sym-

posium on Security and Privacy, pages 194–194, April 1986.

BIBLIOGRAPHY 99

[FDRR92] Jean-Charles Fabre, Yves Deswarte, Brian Randall, and

Brian R. Designing secure and reliable applications using

fragmentation-redundancy-scattering: an object-oriented ap-

proach, 1992.

[FP95] J. C. Fabre and T. Perennou. Fragmentation of confidential

objects for data processing security in distributed systems. In

Proceedings of the Fifth IEEE Computer Society Workshop

on Future Trends of Distributed Computing Systems, pages

395–403, Aug 1995.

[GKB+01] G. R. Ganger, P. K. Khosla, M. Bakkaloglu, M. W. Bigrigg,

G. R. Goodson, S. Oguz, V. Pandurangan, C. A. N. Soules,

J. D. Strunk, and J. J. Wylie. Survivable storage systems.

In DARPA Information Survivability Conference amp; Ex-

position II, 2001. DISCEX ’01. Proceedings, volume 2, pages

184–195 vol.2, 2001.

[GRS17] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov.

Why your encrypted database is not secure. In Proceedings

of the 16th Workshop on Hot Topics in Operating Systems,

HotOS ’17, pages 162–168, New York, NY, USA, 2017. ACM.

[Han18] Qiu Han. An efficient data protection architecture based on

fragmentation and encryption. CoRR, abs/1803.04880, 2018.

[HIK+13] Aleksandar Hudic, Shareeful Islam, Peter Kieseberg, Sylvi

Rennert, and Edgar R. Weippl. Data confidentiality using

100 BIBLIOGRAPHY

fragmentation in cloud computing. International Journal

of Pervasive Computing and Communications, 9(1):37–51,

2013.

[Joh07] R. Johnson. The unisys stealth solution and secureparser:

A new method for securing and segregating network data.

Unisys Corporation white paper, 2007.

[KK03] Kamil Kulesza and Zbigniew Kotulski. On automatic se-

cret generation and sharing for karin-greene-hellman scheme.

In Artificial intelligence and security in computing systems,

pages 227–238. Springer, 2003.

[KM18a] K. Kapusta and G. Memmi. Enhancing data protection with

a structure-wise fragmentation and dispersal of encrypted

data. In The 17th International Joint Conference on Trust,

Security and Privacy in Computing and Communications

(IEEE TrustCom), August 2018.

[KM18b] Katarzyna Kapusta and Gerard Memmi. Poster: Circular

aon: A very fast scheme to protect encrypted data against

key exposure. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, CCS

’18. ACM, 2018.

[KM18c] Katarzyna Kapusta and Gerard Memmi. Selective all-or-

nothing transform: Protecting outsourced data against key

exposure. In Proceedings of the 10th International Sympo-

BIBLIOGRAPHY 101

sium on Cyberspace Safety and Security, CSS ’18. Springer,

2018.

[Kra94] Hugo Krawczyk. Secret sharing made short. In Proceedings

of the 13th Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO ’93, pages 136–146, Lon-

don, UK, 1994. Springer-Verlag.

[KSLC17] G. O. Karame, C. Soriente, K. Lichota, and S. Capkun. Se-

curing cloud data under key exposure. IEEE Transactions on

Cloud Computing, pages 1–1, 2017.

[Li12] Mingqiang Li. On the confidentiality of information dispersal

algorithms and their erasure codes. CoRR, abs/1206.4123,

2012.

[LLV07] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Pri-

vacy beyond k-anonymity and l-diversity. In 2007 IEEE 23rd

International Conference on Data Engineering, pages 106–

115, April 2007.

[LQLL14] Mingqiang Li, Chuan Qin, Patrick P. C. Lee, and Jin Li.

Convergent dispersal: Toward storage-efficient security in a

cloud-of-clouds. In Proceedings of the 6th USENIX Confer-

ence on Hot Topics in Storage and File Systems, HotStor-

age’14, pages 1–1, Berkeley, CA, USA, 2014. USENIX Asso-

ciation.

102 BIBLIOGRAPHY

[LQLL16] M. Li, C. Qin, J. Li, and P. P. C. Lee. Cdstore: Toward re-

liable, secure, and cost-efficient cloud storage via convergent

dispersal. IEEE Internet Computing, 20(3):45–53, May 2016.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke,

and Muthuramakrishnan Venkitasubramaniam. L-diversity:

Privacy beyond k-anonymity. ACM Trans. Knowl. Discov.

Data, 1(1), March 2007.

[OG10] Femi Olumofin and Ian Goldberg. Privacy-preserving queries

over relational databases. In Proceedings of the 10th In-

ternational Conference on Privacy Enhancing Technologies,

PETS’10, pages 75–92, Berlin, Heidelberg, 2010. Springer-

Verlag.

[PBL91] D. Powell, I. Bey, and J. Leuridan, editors. Delta Four: A

Generic Architecture for Dependable Distributed Computing.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1991.

[PRZB12] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zel-

dovich, and Hari Balakrishnan. Cryptdb: Processing queries

on an encrypted database. Commun. ACM, 55(9):103–111,

September 2012.

[QD02a] Sean Quinlan and Sean Dorward. Venti: A new approach to

archival storage. In Proceedings of the Conference on File

and Storage Technologies, FAST ’02, pages 89–101, Berkeley,

CA, USA, 2002. USENIX Association.

BIBLIOGRAPHY 103

[QD02b] Sean Quinlan and Sean Dorward. Venti: A new approach to

archival storage. In Proceedings of the Conference on File

and Storage Technologies, FAST ’02, pages 89–101, Berkeley,

CA, USA, 2002. USENIX Association.

[QM15] Han Qiu and Gerard Memmi. Fast selective encryption meth-

ods for bitmap images. Int. J. Multimed. Data Eng. Manag.,

6(3):51–69, July 2015.

[Rab89] Michael O. Rabin. Efficient dispersal of information for secu-

rity, load balancing, and fault tolerance. J. ACM, 36(2):335–

348, April 1989.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package

transform. In In Fast Software Encryption, LNCS, pages

210–218. Springer-Verlag, 1997.

[RP11] Jason K. Resch and James S. Plank. Aont-rs: Blending se-

curity and performance in dispersed storage systems. In Pro-

ceedings of the 9th USENIX Conference on File and Stroage

Technologies, FAST’11, pages 14–14, Berkeley, CA, USA,

2011. USENIX Association.

[RS60] I. S. Reed and G. Solomon. Polynomial Codes Over Cer-

tain Finite Fields. Journal of the Society for Industrial and

Applied Mathematics, 8(2):300–304, 1960.

[SB05] Arun Subbiah and Douglas M. Blough. An approach for

fault tolerant and secure data storage in collaborative work

104 BIBLIOGRAPHY

environments. In Proceedings of the 2005 ACM Workshop

on Storage Security and Survivability, StorageSS ’05, pages

84–93, New York, NY, USA, 2005. ACM.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret shar-

ing scheme and its application to electronic. In Proceedings

of the 19th Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO ’99, pages 148–164, Lon-

don, UK, UK, 1999. Springer-Verlag.

[SGMV09] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and

Kaladhar Voruganti. Potshards: a secure, recoverable, long-

term archival storage system. Trans. Storage, 5(2):5:1–5:35,

June 2009.

[SGS+00] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,

Craig A. N. Soules, and Gregory R. Ganger. Self-securing

storage: Protecting data in compromised system. In Pro-

ceedings of the 4th Conference on Symposium on Operat-

ing System Design & Implementation - Volume 4, OSDI’00,

Berkeley, CA, USA, 2000. USENIX Association.

[Sha49] C. E. Shannon. Communication theory of secrecy systems.

The Bell System Technical Journal, 28(4):656–715, Oct 1949.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM,

22(11):612–613, November 1979.

BIBLIOGRAPHY 105

[SJH05] Sabre A. Schnitzer, Robert A. Johnson, and Henry Hoyt.

Secured storage using secureparserTM. In Proceedings of the

2005 ACM Workshop on Storage Security and Survivability,

StorageSS ’05, pages 135–140, New York, NY, USA, 2005.

ACM.

[Swe02] Latanya Sweeney. K-anonymity: A model for protecting

privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,

10(5):557–570, October 2002.

[TG11a] B. Tabbara and P. Garg. Shared community storage net-

work. patent application number: 20100020718, patent num-

ber: 7869383, Jan 2011.

[TG11b] B. Tabbara and P. Garg. Shared community storage network.

continuation patent application number: 20110246652, Oct

2011.

[TG14] B. Tabbara and P. Garg. Shared community storage network.

continuation patent application number: 20140143425, May

2014.

[WBP+01] Jay J Wylie, Mehmet Bakkaloglu, Vijay Pandurangan,

Michael W Bigrigg, Semih Oguz, Ken Tew, Cory Williams,

Gregory R Ganger, and Pradeep K Khosla. Selecting the

right data distribution scheme for a survivable storage sys-

tem (cmu-cs-01-120). 2001.

106 BIBLIOGRAPHY

[WBS+00] Jay J. Wylie, Michael W. Bigrigg, John D. Strunk, Gre-

gory R. Ganger, Han Kiliççöte, and Pradeep K. Khosla. Sur-

vivable information storage systems. Computer, 33(8):61–68,

August 2000.

Chapter 3

Fragmentation as a way of

protecting encrypted data

against key exposure

3.1 Introduction and Motivation

The rapid growth of the cloud data storage market raises both security chal-

lenges and opportunities. On the one hand, cloud providers deal with a large

number of external attacks on a daily basis. Each major data leak is loudly

reported in the media, damaging their reputation. On top of that, the threat

from a user point of view may not only come from the outside but also from

a curious, malicious, or careless insider. On the other hand, never before

could users access so many storage devices at such a low cost. This highly

distributed nature of cloud storage opens up new possibilities for strength-

ening data protection: data can be fragmented and dispersed over a large

107

108 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

number of servers on independent sites [BCQ+13, BLU+15]. Such processing

not only slows down an external attacker but also enhances users’ privacy

against the misuse of their personal data (as with the infamous Facebook

and Cambridge Analytica case 1) as it limits the possibility of data exploita-

tion by a malicious insider or of compromising data confidentiality by an

honest-but-curious storage provider.

As presented in Chapter 2, several recent storage solutions already frag-

ment and disperse encrypted data to reinforce the protection level [KM15].

However, the majority of them do not pay much attention to the way the

fragments are constructed from encrypted data. Fragmentation is usually

performed in a straightforward manner where fragments are formed from

large consecutive chunks of encrypted data. Such processing does not pro-

tect against powerful adversaries in possession of encryption keys with access

to a subset of the storage domains (and thus able to decrypt a part of the

dispersed information).

Nowadays, key exposure becomes a real threat [KSLC17]. It may be the

result of an easily guessable or reproducible key generation but even relying

on secure mechanisms may be insufficient as a secure key may be acquired in

various ways, e.g., using backdoors, bribes, or coercion. Moreover, when we

consider data with long life cycles (like archive data that are supposed to be

kept for decades or even more), the length of the encryption key which may

be recommended when data are first stored may not be sufficient anymore a

decade later due to progress in hardware development and cryptanalysis.

In order to prevent an attacker in possession of the encryption key from

1https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal

3.1. INTRODUCTION AND MOTIVATION 109

decrypting even part of a ciphertext, data can be fragmented into a set of k

fragments (needed for data reconstruction). Once the fragments are dispersed

over two or more independent storage sites, the data is protected against an

attacker unable to gain access to the totality of the storage sites. This is true

even if the attacker managed to obtain the encryption key as a partial data

decryption (decrypting just the portion of data contained inside a single

fragment) is impossible.

To make the decryption of less than the totality of data fragments im-

possible, an all-or-nothing transform can be applied as a pre-processing step

[Riv97] before data encryption. Alternatively, an information dispersal algo-

rithm can be used to form the final fragments from encrypted data [Rab89]

or a linear transform may be applied over the encrypted data to create de-

pendencies between the ciphertext blocks [KSLC17]. These three methods

reinforcing data protection come with a performance cost. The all-or-nothing

transform in particular leads to a considerable decrease in performance (as it

requires at least two rounds of block cipher encryption). A linear transform

achieves better performance but still requires some operations in addition to

data encryption. Finally, information dispersal lacks terribly in scalability.

Motivated by recent attacks on user’s privacy, this chapter treats the

problem of protecting outsourced data against cryptographic material ex-

posure. It introduces three fast schemes reinforcing confidentiality of frag-

mented data: the Secure Fragmentation and Dispersal (SFD), the Circular

All-or-Nothing (CAON), and the Selective All-or-Nothing (SAON) scheme.

The Secure Fragmentation and Dispersal scheme is a method applied af-

ter data encryption in order to create fragments resistant to the exposure of

110 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

the encryption key. It operates on a ciphertext obtained with block cipher

encryption with a mode of operation creating dependencies between consec-

utive ciphertext’s blocks. In contrast to SFD, the Circular All-or-Nothing

(CAON) can be applied over any kind of ciphertext. Both SFD and CAON

significantly increase the computational effort that an attacker would have to

apply in order to recover even a single block from an incomplete set of data

fragments. In contrast to similar techniques, they do not compromise per-

formance or scalability in processing. Finally, the Selective All-or-Nothing

(SAON) scheme adresses the needs of users that cannot or do not want to use

multiple storage providers. It has similar properties with SFD and CAON

but in a single cloud scenario.

3.2 Secure Fragmentation and Dispersal

The main idea behind Secure Fragmentation and Dispersal (SFD, published

in [KM18a]) is to derive from known properties of block ciphers (and more

particularly from their chaining modes of operation), a new method for the

fragmentation and dispersal of encrypted data that could produce fragments

resistant to the exposure of the cryptographic material. In SFD, encrypted

data are organized into a set of fragments in two steps. Each step increases

the difficulty of a brute-force search that an attacker in the possession of the

encryption key and some of the fragments would have to perform in order to

decrypt even part of the initial data. SFD is an easy and efficient alternative

to the family of information dispersal algorithms and to the all-or-nothing

transform pre-processing. It can be seen as a generalized methodology of

3.2. SECURE FRAGMENTATION AND DISPERSAL 111

data parsing [SJH05]. When integrated within existing techniques, it enriches

them with an additional layer of data protection by securing encrypted data

in a situation of key exposure.

3.2.1 Data Concepts, Notation, and Prerequisites

The proposed approach identifies the following basic data structures that

mostly correspond to classical concepts concerning a symmetric block ci-

pher [Dwo01]:

• Block (P or C): a sequence of bits of size |B| corresponding to the

classical concept of block. A plaintext block is denoted as P while a

ciphertext block is denoted as C.

• Sub-block (SB): a sequence of bits of size |SB| contained in a block.

• Plaintext (PLAIN): initial data composed of p plaintext blocks (al-

ready padded if needed).

• Ciphertext (CIPH): encrypted plaintext composed of c ciphertext

blocks. c = p + 1 as an initialization vector is added at the beginning

of the ciphertext.

• Share (SHARE): result of the first fragmentation step in the SFD

method. An intermediary fragment; it is composed of c
k1

blocks.

• Fragment (F): result of the final fragmentation step. Each fragment

is composed of c
k1

sub-blocks.

112 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

Notations

Plaintext PLAIN is composed of p input blocks P1, ..., Pp. It is encrypted

into ciphertext CIPH composed of c = p + 1 blocks C0, C1, ..., Cc−1, where

C0 corresponds to the initialization vector. A ciphertext block Ci comes

from the encryption of the plaintext block Pi (except for the pseudo-random

initialization vector that is just appended as the first block C0). In the

first fragmentation step, blocks of the ciphertext CIPH are dispersed over

k1 shares SHARE0, ..., SHAREk1−1. In the second fragmentation step, a

share SHAREj is fragmented into k2 fragments F j
0 , ..., F

j
k2−1. Each block is

composed of k2 sub-blocks. A sub-block l inside a block Ci is denoted as

Ci (l) , l = 0, . . . , k2 − 1.

Prerequisites

The ciphertext CIPH is to be obtained using a block cipher with a mode of

operation creating dependencies between consecutive blocks (like the widely

used Cipher Block Chaining). The motivation behind this requirement will

be detailed in Section 3.2.2.

Simply put, it is supposed that k1 is a divisor of the number of blocks

inside the ciphertext c and that the size of the sub-block |SB| is a divisor of

the size of the block |B|. This way, all the fragments will be of equal size.

If this requirement is not fulfilled, two possibilities could be applied. One

would consist in having fragments of different sizes. Another would require

the use of padding. This would guarantee that the fragments are of equal

size.

3.2. SECURE FRAGMENTATION AND DISPERSAL 113

Figure 3.1: Data fragmentation, example for k1 = 2 and k2 = 4. Plain-

text blocks are encrypted into corresponding ciphertext blocks using the CBC

mode. Consecutive ciphertext blocks are dispersed over k1 different shares.

Each of the k2 sub-blocks of a block is dispersed to a different final fragment.

114 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

3.2.2 Description of the Scheme

A pseudo-code of the SFD scheme is presented in Figure 3.2. The goal of

this process is to shred data into fragments making data recovery from an

incomplete set of fragments as hard as possible without leading to decreased

performance. The difficulty of the recovery is measured in the feasibility of

a brute-force search attack with less than the required number of fragments.

Splitting Ciphertext into Shares

A symmetric block cipher transforms (encrypt or decrypt) a fixed-length

group of bits called block. To operate on data larger than a single block, an

operation that repeatedly applies the single-block procedure - named mode of

operation - has to be defined. The simplest mode of operation, the Electronic

Code Book, encrypts each of the ciphertext blocks separately. Such process-

ing was proven to be insecure as it transforms identical plaintext blocks into

identical ciphertext blocks. One way of dealing with this lack of diffusion is

re-using the output of the encryption of a block for the encryption of the next

block (for the first block that does not have a predecessor, an initialization

vector is generated that plays the role of the previous block). In such mode

of operation, e.g., in Cipher Block Chaining, it is infeasible for an adversary

in possession of the encryption key to decrypt Ci without possessing Ci−1.

Indeed, Ci−1 can take on any possible values in {0, 1}|b| as it is an output of a

secure block cipher (or a pseudo-random initialization vector); consequently,

Pi could take any of the 2|b| possibilities depending on Ci−1. Therefore, it

is infeasible for the adversary to recover a set of non-consecutive ciphertext

blocks without possessing their predecessors. This leads to the definition of

3.2. SECURE FRAGMENTATION AND DISPERSAL 115

the following dispersal property:

Property 1 (Dispersal of blocks) If a ciphertext was obtained using a

mode of operation implying chaining between blocks, then dispersing its con-

secutive blocks over separate shares makes the data recovery infeasible for an

adversary that does not have access to consecutive shares.

The first step of the SFD scheme disperses the ciphertext blocks over

shares to comply with the Dispersal Property 1. More precisely, c blocks

of the ciphertext c are distributed over k1 shares share0, . . . , sharek1−1 in

a way that Ci is assigned to the share sharej ⇐⇒ i mod k1 = j. A share

SHAREj contains all the predecessor blocks of those contained in share

SHARE(j+1) mod k1 and it is therefore necessary for recovering blocks inside

SHARE(j+1) mod k1 . This proves that the fragmentation function presented

in Figure 3.2 verifies our Dispersal Property 1.

1: function Fragmentation(CIPH, k1, k2)

2: for each block Ci inside the ciphertext CIPH do

3: Compute share index j = i mod k1

4: Disperse Ci to SHAREj

5: for l = 0, . . . , k2 − 1 do

6: Disperse Ci (l) to fragment F j
l

Figure 3.2: Pseudo-code of the fragmentation function transforming a cipher-

text CIPH into k = k1k2 fragments in a single pass. For each block a share

index is computed indicating to which of k1 shares the block belongs. Then,

sub-blocks of the block are dispersed over k2 fragments.

116 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

Splitting Shares into Fragments

A symmetric cryptographic function operating on blocks guarantees that a

ciphertext block depends on every bit of the corresponding plaintext block.

Moreover, modern symmetric encryption functions, like AES, guarantee that

the absence of i bits from the plaintext block and of o bits from the ciphertext

block does not permit to easily recover the plaintext (or the ciphertext)

block. A brute-force search generating and verifying all the 2min(i,o) possible

configurations for the missing bits would have to be performed [ABM14,

BDCdVF+16]. Therefore, the following property can be formulated:

Property 2 (Dispersal of sub-blocks) Dispersing sub-blocks of ciphertext

blocks contained inside a share over separate fragments increases the difficulty

of the ciphertext decryption for an adversary possessing an incomplete set of

fragments belonging to consecutive shares.

This property is behind the motivation of the second step of the SFD

scheme. A block Ci belonging to the share SHAREj and composed of k2

sub-blocks is dispersed over the k2 fragments F j
0 , . . . , F

j
k2−1 in a way that a

sub-block Ci (l) is assigned to the fragment F j
l . Thus, each single ciphertext

block inside a share is uniformly spread over k2 fragments. After the splitting

of the shares, k = k1k2 fragments are obtained that will be dispersed over k

different physical locations.

The size of a sub-block does not necessarily have to be a divisor of the size

of the block. A solution could be imagined, similar to the data parsing found

in [SJH05], where a block is composed of several sub-blocks of different sizes

or where bits are spread unevenly over fragments without taking into account

3.2. SECURE FRAGMENTATION AND DISPERSAL 117

the block structure of the ciphertext. However, this would lead to fragments

of different sizes (as well as of different importance since larger fragments

would contain more information). Moreover, such processing would require

a sort of dispersal key similar to the splitting key used by the Unisys’s Secure

Parser R© (described in Section 2.3.3).

The SFD scheme is particularly adapted for dispersal of data obtained

using block cipher encryption with a mode of operation like the Cipher

Block Chaining (CBC), the Output Feedback (OFB) or the Cipher Feedback

(CFB). Such modes of operation creates dependencies between consecutive

data blocks that are exploited by SFD. Indeed, when SFD is applied within

the Counter (CTR) mode (that is closer to a stream cipher than to a block

cipher), the two dispersal properties are not fully satisfied. Nevertheless, the

dispersal of the ciphertext sub-blocks will still slow an attacker from the re-

covery of consecutive sub-blocks of plaintext. Moreover, a special dispersal

procedure could be imagined for the CTR. In the CTR mode, it is not pos-

sible to decrypt the ciphertext without possessing the right pseudo-random

initialization vector that is used as the counter during the encryption process

and is usually appended at the beginning of the ciphertext. Thus, dispersing

the initialization vector over the fragments, using, for instance, the Shamir’s

secret sharing, would slow down an attacker that managed to obtain the

encryption key but not the right initialization vector.

Fragment Dispersal

After fragmentation, the ciphertext is transformed into k = k1k2 final frag-

ments. The data protection provided by fragmentation is fully enabled only

118 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

when the fragments are stored in k different physical locations: without the

data dispersal, an attacker needs only resolve the fragment order, which is

not a significant obstacle.

The simplest fragment distribution is to disperse each fragment to a ran-

dom location. It is also the only possible way when a user dispose of k

physical storage devices that are equally hard to access (like k servers inside

the same cluster). Nowadays, a user has the opportunity to disperse data

over multiple servers on several independent sites. They can maximize the

degree of data protection by following two recommendations:

Recommendation 1 (Dispersing fragments of consecutive shares)

Every two sets of fragments allowing the recovery of consecutive shares (con-

taining consecutive ciphertext blocks) should be dispersed over independent

storage sites - e.g., over different cloud providers.

Recommendation 2 (Dispersing fragments of the same share)

A set of fragments allowing the reconstruction of a share should be dispersed

over separate storage locations - e.g., multiple physical servers.

Figure 3.3 presents an example secure fragment dispersal that follows the

two recommendations. In a trivial case when k1 = 1, the scheme becomes

identical to a data parsing solution. A choice of k2 = 1 is suitable when a

user would like to limit the number of fragments (for instance because they

dispose of a limited number of storage locations or they fear latency costs).

3.2. SECURE FRAGMENTATION AND DISPERSAL 119

z

Figure 3.3: Dispersal of fragments presented in the example from Figure 3.1.

Fragments are dispersed over k1 = 2 independent storage sites. Each storage

site spreads its fragments over k2 = 4 physically separated servers.

3.2.3 Comparison with Relevant Works

The SFD scheme was implemented and compared with relevant works: Secret

Sharing Made Short (implemented in two versions: with and without Rabin’s

Information Dispersal Algorithm), AONT-RS, and Rivest’s All-or-nothing

scheme.

Implementation Details

All schemes were implemented in JAVA using the following resources: JDK

1.8 on DELL Latitude E6540, X64-based PC running on Intel R© CoreTM i7-

4800MQ CPU @ 2.70 GHz with 8 GB RAM, under Windows 7. The standard

javax.crypto library was used. Data samples of 200MB were used for each

measurement. AES-NI was enabled.

During benchmark tests, relevant algorithms were compared in a k = n

120 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

configuration (all fragments are necessary for data recovery) as the genera-

tion of redundant fragments would have the same impact on each method’s

performance. In each method, Reed-Solomon systematic error correction

codes could be applied to obtain additional n − k fragments. Details of the

implementation of each algorithm are as follows:

SSMS: Data are encrypted using AES-CBC with a 128 bits key and frag-

mented in a straightforward way into k consecutive data chunks. The en-

cryption key is fragmented into k fragments using Shamir’s secret sharing

and attached to the fragments. For larger data, the time taken on key frag-

mentation has a negligible impact on the overall performance. Thus, the

performance of SSMS is practically equivalent to symmetric data encryp-

tion.

SSMS with Rabin’s IDA: Data are encrypted using AES-CBC with a

128 bits key and divided into vectors of k bytes. Each data vector is then

multiplied by a k × k dispersal matrix. Fragments are formed from the

results of vector multiplication by the dispersal matrix. The encryption key

is fragmented using Shamir’s scheme and attached to the fragments.

Rivest’s AON: Data are first encrypted using an inner cipher: AES-CBC

with a 128 bits. A SHA-256 hash of the encrypted data is calculated and

exclusive-ored with the encryption key. Data fragments are then re-encrypted

using an outer cipher: AES-ECB with a 128 bits key (such insecure mode of

operation can be used as the data was already encrypted).

AONT (AONT-RS without the use of RS): Data are encrypted using

AES-CBC with a 128 bits key. A SHA-256 hash of the encrypted data

is calculated, exclusive-ored with the encryption key, and attached to the

3.2. SECURE FRAGMENTATION AND DISPERSAL 121

data. Encrypted data are then fragmented in a straightforward way into k

consecutive chunks. The processing is similar to the Rivest’s AON but skips

the second encryption round.

Bastion scheme: Data is encrypted using AES-CBC with a 128 bits key.

Bastion’s linear transform is then applied over the data, exclusive-oring each

ciphertext blocks with all other blocks. Encrypted and transformed cipher-

text is then fragmented in a straightforward way into k fragments composed

of large chunks of consecutive data bits.

Secure Fragmentation and Dispersal: The SFD scheme was integrated

within SSMS and AONT. It replaced the straightforward fragmentation of

these two methods. This integration was done in a coarse-grained manner

where data encryption and data fragmentation are performed in two differ-

ent steps. A fine-grained integration would directly interface fragmentation

steps after each block encryption. Moreover, it is clear from the algorithm’s

description that the fragmentation can be parallelized. Fragmentation perfor-

mance was measured in various configuration of k1 and k2. The configuration

choice had no visible impact on the scheme’s performance.

Comparison with Relevant Works

The performance benchmark presented in Figure 3.4 shows that replacing

straightforward fragmentation with the proposed SFD scheme leads to a rea-

sonable constant performance overhead (around 6% percent for the AONT-

RS scheme and 11% for SSMS) given the chosen coarse-grained integration.

The SFD scheme’s was compared to Rivest’s all-or-nothing and a SSMS ver-

sion using Rabin’s information dispersal algorithm for data fragmentation.

122 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

Figure 3.4: Performance benchmark: throughput of different fragmentation

methods in function of the number of fragments k. SSMS and AONT are

treated as baseline; they do not provide protection against key exposure.

Adding the SFD to the AONT method decreases the performance of the orig-

inal technique by 5.5%. Adding the SFD to SSMS decreases the performance

of the original technique by ∼11%. SFD method is ∼27% faster than the

Rivest’s all-or-nothing transform and ∼10% faster than the Bastion scheme.

In contrast to Rabin’s information dispersal, its performance does not de-

crease with the growing number of fragments.

SFD is much faster than Rivest’s all-or-nothing proposal. Unlike an infor-

mation dispersal algorithm, SFD is scalable with the number of fragments.

3.2. SECURE FRAGMENTATION AND DISPERSAL 123

Figure 3.5: Performance comparison of relevant fragmentation algorithms in

an end-to-end scenario (data fragmentation and dispersal over 4 indepen-

dent Amazon S3 storage sites, k1 = 2 and k2 = 4 for all the algorithms).

Tests performed using 200 MB data samples. For the end user, replacing

straightforward fragmentation in SSMS or AONT-RS with SFD has an neg-

ligible impact on the performance. Strengthening data protection using SFD

is faster than using an IDA or the Rivest’s all-or-nothing method.

Impact on the Performance on the Client Side

The performance of relevant techniques was measured in an end-to-end sce-

nario where data was not only fragmented but also dispersed over several

independent storage locations. More precisely, algorithms presented in Fig-

ure 3.4 were integrated within the DepSky multi-cloud environment [BCQ+13].

Data were fragmented and dispersed over 4 independent Amazon S3 storage

sites 2. Figure 3.5 shows the performance result of the experiment. The

2https://aws.amazon.com/s3

124 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

performance cost of replacing straightforward fragmentation with SFD is

negligible in an end-to-end scenario and therefore unnoticeable for the end

user. Indeed, no performance overhead was observed when applying secure

dispersal in addition to the AONT-RS technique. Applying secure dispersal

in addition to SSMS resulted in a negligible decrease of performance of ∼1%.

In contrast to SFD, applying an IDA in combination to SSMS decreases the

performance twice as much (∼ 95% performance overhead in a k = 8 con-

figuration) while the Rivest’s pre-processing transform is 12% slower than

AONT-RS.

3.3 Circular All-Or-Nothing

The Circular All-or-Nothing (CAON, published in [KM18b]) algorithm ad-

dresses the same problem of data protection against key exposure as the

Secure Fragmentation and Dispersal (SFD) scheme but in a different way. In

contrast to SFD, it is compatible with all kinds of symmetric encryption algo-

rithms. Similar to the Bastion scheme presented in [KSLC17], it transforms

the encrypted data by creating dependencies between ciphertext blocks. It

improves the Bastion’s scheme by reducing the number of exclusive-or oper-

ations required in addition to the data encryption to half.

3.3.1 Data Concepts and Notation

The CAON algorithm identifies the following basic data structures that

mostly correspond to the classical concepts concerning a symmetric block

cipher [Dwo01]:

3.3. CIRCULAR ALL-OR-NOTHING 125

• Block (P or C): a sequence of bits of size |B| corresponding to the

classical concept of block. A plaintext block is denoted as P and a

ciphertext block is denoted as C.

• Transformed ciphertext block (C ′): a transformed ciphertext block

after CAON was applied to the ciphertext.

• Plaintext (PLAIN): initial data composed of p plaintext blocks (al-

ready padded if needed).

• Ciphertext (CIPH): encrypted plaintext composed of c ciphertext

blocks. c = p + 1 as an initialization vector is added at the beginning

of the ciphertext.

• Ciphertext (CIPH ′): the ciphertext CIPH after being transformed

using CAON.

• Fragment (F): a fragment, the result of the final fragmentation step.

Each fragment is composed of c
k
blocks.

Notations

Plaintext PLAIN is composed of p input blocks P1, . . . , Pp. It is encrypted

into ciphertext CIPH composed of c = p+ 1 blocks C0, C1, . . . , Cc−1, where

C0 corresponds to the initialization vector. A ciphertext block Ci comes from

the encryption of the plaintext block Pi (except for the initialization vector

that is appended as the first block C0). The CAON transform transforms

the ciphertext CIPH into CIPH ′ composed of c blocks C ′0, C ′1, . . . , C ′c−1.

CIPH ′ is then fragmented into k fragments F0, . . . , Fk−1.

126 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

3.3.2 Description of the Algorithm

CAON operates on a ciphertext CIPH = C0, . . . , Cc−1 coming from the en-

cryption of a plaintext PLAIN = P1, . . . , Pp using an encryption keyK. The

ciphertext CIPH is transformed into CIPH ′ = C ′0, . . . , C
′
c−1 inside the func-

tion TransformCAON and then fragmented into k fragments F0, . . . , Fk−1

in a way that the decryption of a single fragment is not possible unless all the

fragments are gathered. An example illustrating the whole process is shown

in Figure 3.9.

Linear transform

The pseudo-code of the linear transform applied to the ciphertext CIPH is

presented in Figure 3.6. The processing is done block by block and starts

from the last ciphertext block Cc−1. Each ciphertext block Ci is transformed

into C ′i by being exclusive-ored with its predecessor Ci−1. The first block

C0 does not possess a predecessor. Instead, it is exclusive-ored with k − 1

already processed blocks. Such circular chaining makes the reconstruction of

any block Ci, i = 1, . . . , c− 1 from C ′i impossible without the reconstruction

of Ci−1.

C0 is a special block as it is found at the beginning of the chain of blocks.

Once reconstructed, it allows the user to "break" the chain and starting from

C1, begin the reconstruction of other blocks. Therefore, C0 is exclusive-ored

with k − 1 pre-transformed special blocks. The indices of the special blocks

i1, . . . , ik−1 are chosen (i) with gaps at least 1 between them, (ii) and such

that, in the next step, the k blocks C ′0, C ′i1 , . . . , C
′
ik−1

all end up in k pairwise

different fragments.

3.3. CIRCULAR ALL-OR-NOTHING 127

Pseudo-code of the inverse transform ReconstructCAON is presented

in Figure 3.7. It starts after the ciphertext CIPH ′ was reassembled from

the k fragments. First, C0 is obtained by exclusive-oring C ′0 with the k − 1

special blocks. Remaining blocks are then reconstructed by exclusive-oring

each block with its already recovered predecessor Ci = C ′i ⊕ Ci−1 starting

from C1.

1: function TransformCAON(CIPH, k)

2: for each i = c− 1, . . . , 1 do

3: Compute C ′i = Ci ⊕ Ci−1

4: First block: C ′0 = C0
⊕k−1

j=1 C
′
ij

Figure 3.6: Pseudo-code of the linear transform creating dependencies be-

tween consecutive blocks of the ciphertext and between the first block C0 and

k − 1 pre-transformed blocks that will be later dispersed over different frag-

ments (here we choose the k−1 special blocks with indices ij, chosen (i) with

gaps at least 1 between them, (ii) and such that, during dispersal, C ′0 and the

C ′ij
all end up in k pairwise different fragments.

1: function ReconstructCAON(CIPH ′, k)

2: First block: C0 = C ′0
⊕k−1

j=1 C
′
ij

3: for each block Ci, i = 1, . . . , n do

4: Compute Ci = C ′i ⊕ Ci−1

Figure 3.7: Pseudo-code of the function reconstructing the initial ciphertext.

No block can be reconstructed without first reconstructing C0.

128 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

1: function DisperseBlocks(CIPH ′, k)

2: Disperse shares of the block C0 over k different fragments

3: for i = 1, . . . , c− 1 do

4: Disperse C ′i to fragment Fj, j = i (mod k)

Figure 3.8: Pseudo-code of the function dispersing the transformed ciphertext

CIPH ′ over k fragments FRAG = F0, . . . , Fk−1.

Managing the Key

A variation of the CAON transform hides the encryption key K inside an

additional ciphertext block (like in Desai’s AONT presented in Section 2.3.1).

An additional ciphertext block is computed as C ′c = Cc−1 ⊕K. Once a user

possesses the whole transformed ciphertext, they can not only reconstruct

the blocks but also the encryption key. This variation could be applied

to facilitate key management in distributed storage systems, as it does not

require the use of a separate key store (similar solutions are already used in

the AONT-RS technology [RP11] of the IBM Cloud Object Storage and in

multiple systems using secret sharing for managing keys).

Fragmentation and Dispersal of the Transformed Ciphertext

In order to fully enable the protection against key exposure, transformed

ciphertext CIPH ′ has to be fragmented into at least two fragments that will

be stored over independent storage locations. Fragmentation of CIPH ′ has

to follow one rule: k cipher blocks required for the reconstruction of C0 have

to be dispersed over separate fragments. A straightforward fragmentation

can be applied where the ciphertext is cut into k chunks of equal sizes,

3.3. CIRCULAR ALL-OR-NOTHING 129

Figure 3.9: Example for k = 2. A ciphertext composed of c = 6 blocks

is transformed using CAON transform and then dispersed over two storage

sites. The block C ′3 was chosen as the special block. Therefore, C ′0 and C ′3 are

separated over different fragments. The fragmentation process presented in

the Figure, reinforces data protection by dispersing consecutive blocks (con-

secutive blocks are stored on different sites).

each containing one of the critical blocks. It can be shown that when the

fragments are wisely created, CAON behaves like an all-or-nothing; it forces

an adversary to gather all the fragments in order to decrypt even a single

ciphertext block.

3.3.3 Comparison with Relevant Works

CAON was compared with relevant works in terms of the amount of computa-

tions and ability to protect against key exposure. Results of the comparison

are shown in the Table 3.1. As a baseline, the CTR block cipher encryp-

130 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

Table 3.1: Comparison with relevant works in terms of the number of block

cipher operations (block op.), number of exclusive-ors, and the ability to pro-

vide a key exposure protection (K.E.P). For Bastion and CAON, the number

of exclusive-ors coming only from the linear transforms applied after encryp-

tion is pointed out. p - number of blocks in the plaintext. c - number of blocks

in the ciphertext.

Algorithm Block op. Exclusive-ors K.E.P.

CTR Enc. c-1 b.c. c-1 No

Rivest AONT 2(c-1) b.c. 3(c-1) No

Desai AONT c-1 b.c. 2(c-1) No

Rivest AON 3c-2 b.c. 3(c-1) Yes

Desai AON 2c-1 b.c. 2(c-1) Yes

Bastion c-1 b.c. 3c-1 [Transform: 2c] Yes

CAON c-1 b.c. 2c+k-3 [Transform: c+k-2] Yes

tion requires c− 1 block cipher operations and c− 1 exclusive-or operations.

Rivest and Desai apply encryption during their AONT pre-processing step

that comes before the proper encryption. Thus, the complete AON pro-

cessing composed of AONT and actual encryption doubles (Desai) or triples

(Rivest, as the hash of data is computed) the number of block ciphers op-

erations in comparison to normal data encryption. By contrast, the Bastion

scheme only applies a linear transform over the encrypted data without in-

creasing the number of block cipher operations. Bastion’s transform uses 2c

3.3. CIRCULAR ALL-OR-NOTHING 131

exclusive-or operations. Counting with the encryption step, Bastion scheme

requires 3c− 1 exclusive-ors. Similarly to Bastion, CAON applies only a lin-

ear transform on the ciphertext. However, its transform uses only c+ k − 2

exclusive-ors (almost 50% less, as k is usually a small number). This results

in a total of 2c+ k − 3 exclusive-ors.

Rivest and Desai AONTs do not protect against key exposure; an attacker

possessing the key is able to decrypt the transformed data. AONs encrypt

data already preprocessed with AONT making them resistant to key expo-

sure unless the random key used during the pre-processing is also exposed.

Bastion protects transformed ciphertext against key exposure unless all but

two blocks are exposed. CAON protects data against key exposure unless all

the k fragments are being exposed.

Performance Results

Implementation details: Relevant algorithms were implemented using the

same programing style in JAVA with JDK 1.8 on DELL Latitude E6540, X64-

based PC running on Intel R© CoreTM i7-4800MQ CPU @ 2.70 GHz with 8

GB RAM, under Windows 7. A standard javax.crypto library was used.

A random data sample was used for each measurement and each presented

result is an average of 30 measurements. AES-CTR-128 was used as the algo-

rithm for symmetric encryption. AES-NI was enabled. Results are somewhat

consistent with those presented in [KSLC17] when taking into account the

difference between AES and AES-NI (factor of 3 in performance) as well as

differences between hardware platforms.

The comparison is presented in Figure 3.10. CAON is the fastest of the

132 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

Figure 3.10: Performance comparison. CAON achieves the best performance

among techniques protecting fragmented data against key exposure. AES-

CTR-128 was used for encryption. Rivest’s and Desai’s are presented in

AON configurations.

four schemes, protecting encrypted data against key exposure. Protection

against key leakage is achieved with an overhead of only 7% against a simple

data encryption. The second fastest scheme, Bastion, results in an overhead

of around 19% in comparison to data encryption. It could be assumed that

a fine-grained implementation of CAON could make its overhead negligible.

3.4. SELECTIVE ALL-OR-NOTHING 133

3.4 Selective All-Or-Nothing

The Secure Fragmentation and Dispersal (SFD) scheme and the Circular

All-or-Nothing (CAON) algorithm are only efficient when data are equally

distributed over at least two independent storage sites. Such solutions may

not be acceptable for casual users as dispersing data over independent storage

providers may increase storage costs: A study on the cost of using multiple

storage providers show that dispersing data over multiple providers is twice

the cost of using a single cloud [BCQ+13]. The Selective All-or-Nothing

(SAON, published in [KM18c]) scheme addresses the needs of users that

would like to benefit from a single cost-efficient storage solution but fear the

exposure of their data.

To be specific, SAON transforms a ciphertext into two fragments: a small

confidential private fragment that will be kept on the user’s private device

and a large public fragment that will be uploaded to an inexpensive storage

site. This separation into two fragments is remotely inspired by selective en-

cryption. Decryption of the public fragment is infeasible without the private

fragment. Consequently, outsourced data are protected against key exposure.

3.4.1 Data Concepts, Notations, and Prerequisite

The following key data components are introduced:

• (Input or Output) Block (P or C): a sequence of bits of size |B|

corresponding to the classical concept of a block. When referring to

a plaintext block, the block is denoted as P , and when referring to a

ciphertext the block is denoted as C.

134 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

• Plaintext (PLAIN): initial data composed of p plaintext blocks.

• Ciphertext (CIPH): encrypted plaintext composed of c ciphertext

blocks. c = p + 1 as an initialization vector is added at the beginning

of the ciphertext.

• Share (SHARE): intermediary result of the fragmentation of the

ciphertext (it corresponds to the concept of share in the Secure Frag-

mentation and Dispersal scheme).

• Private Fragment (Fpriv): a small data fragment that will be stored

at user chosen device.

• Public Fragment (Fpub): a large data fragment that will be uploaded

to a public cloud.

Notations

Plaintext PLAIN is composed of p input blocks P1, ..., Pp. It is encrypted

into ciphertext CIPH composed of c blocks C0, C1, ..., Cc−1 (c = p + 1),

where C0 corresponds to the initialization vector of the cipher. A ciphertext

block Ci comes from the encryption of the plaintext block Pi (except for

the initialization vector C0). In a first step, blocks of the ciphertext CIPH

are separated into two shares SHAREpub
0 and SHARE1 of size c

2 each. A

ciphertext block Ci that was attributed to the share SHAREj is also de-

noted as Cj
i . In a second step, SHARE1 is fragmented into SHAREpriv

10 and

SHARE11. SHARE11 is then transformed using an all-or-nothing trans-

form and fragmented into SHAREpriv
110 and SHAREpub

111 . The upper index

3.4. SELECTIVE ALL-OR-NOTHING 135

of a share denotes if a share will be stored at a private or public storage

location. Final data stored at a private location are denoted as Fpriv and

data stored at a public storage site are denoted as Fpub.

Prerequisite

SAON uses the first fragmentation step of the Secure Fragmentation and

Dispersal (SFD) scheme. Therefore, as in SFD, the ciphertext CIPH should

be obtained as a result of symmetric encryption using a block cipher with

a mode of operation creating dependencies between consecutive ciphertext

blocks, (for instance the Cipher Block Chaining mode).

3.4.2 Description of the Scheme

The SAON scheme is composed of three steps. The first step includes the

encryption of the plaintext and its transformation into two interdependent

shares. The second step operates only on one of the obtained shares. In the

final phase, private and public fragments are formed.

Step 1: Encryption and Blocks Separation

Step 1 of the scheme directly applies the first fragmentation step of the SFD

scheme for k = 2. Plaintext PLAIN is encrypted into ciphertext CIPH

using a symmetric block cipher with a mode of operation that reuses the

output of the encryption of a previous block during the encryption of the

current block, for instance the Cipher Block Chaining or the Cipher Feedback

mode. Consecutive blocks of the ciphertext are then separated over two

shares, SHAREpub
0 and SHARE1. Both shares are necessary in order to

136 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

1: function Fragmentation(PLAIN)

2: Step 1: Encryption and blocks dispersal

3: Encrypt plaintext PLAIN into ciphertext CIPH

4: for each pair (Ci−1, Ci) such that i is odd do

5: Ci−1 goes to SHAREpub
0 and Ci goes to SHARE1

6: Step 2: All-or-nothing transform on a subset of SHARE1

7: Fragment SHARE1 into SHAREpriv
10 and SHARE11

8: Apply a linear all-or-nothing transform over AON(SHARE11)

9: Fragment SHARE11 into SHAREpriv
110 and SHAREpub

111

10: Step 3: Forming the final public and private fragments

11: Form the private fragment Fpriv = SHAREpriv
10 + SHAREpriv

110

12: Form the public fragment Fpub = SHAREpub
0 + SHAREpub

111

Figure 3.11: Pseudo-code of the fragmentation algorithm transforming a

plaintext into a public and a private fragment.

decrypt the ciphertext CIPH. Therefore, an attacker in possession of the

encryption key and only one of these two shares will not be able to decrypt

even one ciphertext block.

Remark 1 After Step 1, a user could already save SHARE1 as the private

fragment and upload SHAREpub
0 to the cloud as the public fragment. How-

ever, it would oblige them to keep 50% of the total ciphertext on their private

storage device. The second step goes further by transforming SHARE1 into

a private and a public fragment and by consequence, increasing the size of

the data that can be safely stored in the cloud.

3.4. SELECTIVE ALL-OR-NOTHING 137

Figure 3.12: Transformation of SHARE1 into public and private fragments.

SHARE1 is first fragmented into SHAREpriv
10 and SHARE11. An all-or-

nothing transform is applied to SHARE11 before fragmenting it into a private

SHAREpriv
110 and a public SHAREpub

111 . By choosing a larger SHAREpriv
10 a

user improves the performance of the algorithm at the cost of an increase of

storage on the private device.

Step 2: All-or-Nothing Transform of a Subset of Data Contained

inside SHARE1

Step 2 operates only on data of SHARE1 (SHARE0 equally could be chosen

for further processing instead of SHARE1). It transforms SHARE1 into two

small private shares (SHAREpriv
10 and SHAREpriv

110) and one public share

SHAREpub
111 . The transformation process is illustrated in Figure 3.12.

Fragmenting SHARE1 into SHAREpriv
10 and SHARE11 SHARE1 is

fragmented into SHAREpriv
10 and SHARE11. SHAREpriv

10 will not be pro-

cessed but directly stored at a private storage device. SHARE11 will be

138 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

transformed using an all-or-nothing transform and then fragmented into a

private and a public part. The choice of the size of both shares is left to the

user. The only requirement is an even number of blocks inside SHARE11

(this is necessary for the correctness of the all-or-nothing linear transform

that will be later applied). On the one hand, a larger SHAREpriv
10 will lead to

an increased occupation of the private device’s memory. On the other hand,

a larger SHARE11 will increase the computation overhead as the complexity

of the all-or-nothing transform depends on the size of the data on which it

is applied.

1: function AON(SHARE11)

2: SUM = 0

3: for each block Ci inside the share SHARE11 do

4: SUM = SUM ⊕ Ci

5: for each block Ci inside the share SHARE11 do

6: C ′i = SUM ⊕ Ci

Figure 3.13: Pseudo-code of the linear all-or-nothing transform applied to the

share SHARE11. Each block Ci of the ciphertext is transformed into C ′i =⊕m−1
0 Cl, l 6= i, where m is the number of blocks contained in the SHARE11.

In order to achieve linear complexity, the processing is performed in two

passes. In the first pass, all ciphertext blocks are exclusive-ored together in

order to obtain the value SUM . In the second pass, each block is exclusive-

ored with the value SUM .

3.4. SELECTIVE ALL-OR-NOTHING 139

Transforming SHARE11 using an all-or-nothing transform An all-

or-nothing linear transform (the Bastion’s all-or-nothing transform was cho-

sen) is applied over SHARE11. The goal of this process is to create depen-

dencies between every sub-block of data contained in that share in a way

that a correct reconstruction of the share is impossible even if all but two

sub-blocks are missing. The pseudo-code of the processing is presented in

Figure 3.13.

Fragmenting SHARE11 into SHAREpriv
110 and SHAREpub

111 After the

all-or-nothing transformation, the absence of any two sub-blocks inside SHA-

RE11 makes the correct reconstruction of this share impossible. In the next

step, SHARE11 is fragmented into a private share SHAREpriv
110 and a public

share SHAREpub
111 . SHAREpriv

110 will be stored in the user’s private device as

a part of the private fragment and SHAREpub
111 will be uploaded to a public

storage service. Without SHAREpriv
110 , data contained inside SHAREpub

111 are

useless to an attacker. Indeed, without SHAREpriv
110 , the SHARE1 cannot

be reconstructed. Consequently, as even a block of ciphertext data cannot be

decrypted without the SHARE1, it is impossible to decrypt the ciphertext

without SHAREpriv
110 . Obviously, one could imagine a brute-force search over

the possible values of SHAREpriv
110 . Therefore following recommendation is

being formulated:

Recommendation 3 (Recommendation for the size of SHAREpriv
110)

SAON applies the Bastion’s all-or-nothing transform on data inside the SHA-

RE11 at the level of sub-blocks. Therefore, it efficiently protects SHARE11

against a situation of key exposure unless an attacker acquires all but two

140 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

blocks of AON(share11). Therefore, the size of SHAREpriv
110 should be twice

as large as a sub-block. However, the size of SHAREpriv
110 should also be

large enough to prevent a brute-force search of all possible values. Therefore,

SHAREpriv
110 should contain at least 32 bytes of transformed data: Such a

choice leaves all but two data blocks in the public share. The space of the

brute-force search is then the same as for a 256-bits encryption key (2256

possible values).

Figure 3.14: Dispersing private and public fragments (here, on a smartphone

with limited capacity and a public cloud) coming from the SFD fragmentation

(white and grey shares) and the all-or-nothing transform (red shares).

Step 3: Forming the Private and the Public Fragment

In a final step, private and public fragments are formed. As shown in Fig-

ure 3.14, public fragment is composed of SHAREpub
0 (coming from the sep-

aration of consecutive blocks) and of SHAREpub
111 (coming from the all-or-

nothing transformation). The private fragment is composed of SHAREpriv
10

3.4. SELECTIVE ALL-OR-NOTHING 141

(coming from the fragmentation of SHARE1) and of SHAREpriv
110 (coming

from the all-or-nothing transformation). The public fragment is resistant

to a key exposure attack. Indeed, a block inside SHAREpub
0 cannot be de-

crypted without a predecessor that is either stored as a part of SHAREpriv
10

or transformed inside SHAREpub
111 which in turn is unrecoverable without

SHAREpriv
110 .

3.4.3 Comparison with Relevant Works

Theoretical Comparison

One can combine block-wise fragmentation of the ciphertext with the ap-

plication of an all-or-nothing transform on just a part of the ciphertext in

order to minimize the amount of computations. In a case where the all-or-

nothing transform is applied on the totality of the ciphertext at the level of

blocks, 2× |CIP H|
|B| exclusive-or operations have to be performed. In the case

of the proposed algorithm, the all-or-nothing transform is applied only over

SHARE11, a subset of SHARE1. Thus, it requires 2× |SHARE11|
|B| exclusive-

or operations. As the size of SHARE11 is smaller or equal than the size of

SHARE1 (which is half of the total size of the ciphertext), it saves at least

half of the operations by applying the block-wise fragmentation.

Performance Benchmark

Implementation details Relevant algorithms were implemented in JAVA

using the following resources: JDK 1.8 on DELL Latitude E6540, X64-based

PC running on Intel R© CoreTM i7-4800MQ CPU @ 2.70 GHz with 8 GB RAM,

142 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

Figure 3.15: Performance results for various sizes of the data sample and for

two sizes of the private fragment. AES-CBC with 128 bit key was used for

data encryption. SAON was compared with simple encryption and with the

Bastion scheme (where the all-or-nothing transform is applied over the whole

ciphertext). For the smallest amount of data stored as a private fragment

(16 bytes), the performance overhead of SAON is two times better than Bas-

tion’s. The gain becomes greater with the increase of the private fragment (the

larger the private fragment, the smaller the data on which the all-or-nothing

transform is applied).

under Windows 7. The standard javax.crypto library was used. AES-NI was

enabled. A random data sample was used for each measurement.

Results of the performance comparison are presented in Figure 3.15. The

processing time for two configurations of SAON is shown:

1. where the size of the private fragment is minimized and only 16 bytes

are stored at the user’s device.

3.5. SUMMARY 143

2. where the private fragment is 25% the size of the ciphertext and where

75% of the data is outsourced to the cloud.

The performance overhead of the SAON is 13% for configuration 1 and of

6% for configuration 2 in comparison to a simple encryption of a plaintext.

By contrast, Bastion’s scheme (where the whole ciphertext is transformed

using an all-or-nothing transform) leads to an overhead of approximately

20%. Increasing the size of the private fragment improves the performance

of SAON as it decreases the size of data on which the AONT is applied.

However, the performance gain becomes less interesting when the private

fragment is larger than 25% of the ciphertext. Indeed, a private fragment

containing 25% of the ciphertext already results in a negligible performance

overhead of 6%.

The presented performance results were obtained using AES in the Ci-

pher Block Chaining (AES-CBC) mode of operation. We also compared the

performance of Bastion’s scheme using AES in Counter Mode (AES-CTR)

with SAON using AES-CBC. Results were similar to the comparison with

Bastion’s scheme using AES-CBC.

3.5 Summary

This chapter presented three fast novel ways of protecting encrypted data

against key exposure: the Secure Fragmentation and Dispersal Scheme, the

Circular All-or-nothing algorithm, and the Selective All-Or-Nothing scheme.

All of them fragment a ciphertext in two or more fragments, all of which are

needed to be gathered in order to start the decryption process. The difference

144 CHAPTER 3. PROTECTING DATA AGAINST KEY EXPOSURE

between them lies in the context of their application.

Secure Fragmentation and Dispersal (SFD) operates on data encrypted

using block ciphers with a mode of operation creating dependencies between

consecutive ciphertext blocks. It breaks data into a set of fragments, all of

which are needed for data reconstruction: Consecutive blocks are dispersed

over different shares who are then shredded over different final fragments.

The exact protection level will depend on the number of storage locations

that an attacker is able to compromise. SFD was integrated within two

known fragmentation methods: Secret Sharing Made Short and AONT-RS.

Benchmark tests show an acceptable impact on overall performance. In con-

trast to similar techniques, the scheme is scalable with the growing number

of fragments and does not require any additional operations apart from data

dispersal.

The Circular all-or-nothing (CAON) algorithm operates on all kinds of en-

crypted data. It creates dependencies between consecutive ciphertext blocks.

Each block is exclusive-ored with its predecessor forming a sort of chain. Such

transformed ciphertext is securely broken into at least two fragments that will

be dispersed over independent storage sites. Inverting the chaining transform

and recovering the initial ciphertext is only possible once all the fragments are

gathered. CAON improves the state-of-the art linear transform by halving

the number of required exclusive-or operations in addition to data encryp-

tion. The performance evaluation, confirming theoretical results, shows that

CAON is the fastest of relevant schemes.

Selective All-or-nothing (SAON) aims at protecting encrypted data that

will be outsourced to only a single storage provider. A ciphertext is trans-

BIBLIOGRAPHY 145

formed into two fragments: a large public fragment and a small private frag-

ment. Both fragments are necessary for the decryption of the ciphertext. A

user keeps the private fragment on an independent device of their choice and

uploads without fear the larger fragment to a public (inexpensive) cloud.

Results show good performance: SAON achieves better performance than

simply applying the fastest of the known all-or-nothing transforms over the

whole ciphertext. Moreover, a user may vary the size of the private fragment

in order to balance memory occupation and performance overhead.

In conclusion, the schemes presented in this chapter efficiently address

the problem of encrypted data protection against key exposure. Each of

these schemes corresponds to a different storage context. The reinforcing of

confidentiality comes at a price of an almost negligible performance overhead.

They are the fastest of the existing family of all-or-nothing algorithms.

Bibliography

[ABM14] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. To-

wards understanding the known-key security of block ciphers.

In Shiho Moriai, editor, Fast Software Encryption, pages 348–

366, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando

André, and Paulo Sousa. Depsky: Dependable and secure

storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33,

November 2013.

[BDCdVF+16] Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti,

146 BIBLIOGRAPHY

Stefano Paraboschi, Marco Rosa, and Pierangela Samarati.

Mix&slice: Efficient access revocation in the cloud. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’16, pages 217–228, New

York, NY, USA, 2016. ACM.

[BLU+15] William J. Buchanan, David Lanc, Elochukwu Ukwandu,

Lu Fan, Gordon Russell, and Owen Lo. The future internet:

A world of secret shares. Future Internet, 7(4):445, 2015.

[Dwo01] Morris J. Dworkin. Nist sp 800-38a, recommendation for

block cipher modes of operation: Methods and techniques.

Technical report, United States, 2001.

[KM15] K. Kapusta and G. Memmi. Data protection by means of

fragmentation in distributed storage systems. In 2015 In-

ternational Conference on Protocol Engineering (ICPE) and

International Conference on New Technologies of Distributed

Systems (NTDS), pages 1–8, July 2015.

[KM18a] Katarzyna Kapusta and Gérard Memmi. Enhancing

data protection in a distributed storage environment using

structure-wise fragmentation and dispersal of encrypted data.

In 17th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications / 12th

IEEE International Conference On Big Data Science And En-

gineering, TrustCom/BigDataSE 2018, New York, NY, USA,

August 1-3, 2018, pages 385–390, 2018.

BIBLIOGRAPHY 147

[KM18b] Katarzyna Kapusta and Gerard Memmi. Poster: Circular

aon: A very fast scheme to protect encrypted data against

key exposure. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, CCS

’18. ACM, 2018.

[KM18c] Katarzyna Kapusta and Gerard Memmi. Selective all-or-

nothing transform: Protecting outsourced data against key

exposure. In Proceedings of the 10th International Sympo-

sium on Cyberspace Safety and Security, CSS ’18. Springer,

2018.

[KSLC17] G. O. Karame, C. Soriente, K. Lichota, and S. Capkun. Se-

curing cloud data under key exposure. IEEE Transactions on

Cloud Computing, pages 1–1, 2017.

[Rab89] Michael O. Rabin. Efficient dispersal of information for secu-

rity, load balancing, and fault tolerance. J. ACM, 36(2):335–

348, April 1989.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package

transform. In In Fast Software Encryption, LNCS, pages

210–218. Springer-Verlag, 1997.

[RP11] Jason K. Resch and James S. Plank. Aont-rs: Blending se-

curity and performance in dispersed storage systems. In Pro-

ceedings of the 9th USENIX Conference on File and Stroage

148 BIBLIOGRAPHY

Technologies, FAST’11, pages 14–14, Berkeley, CA, USA,

2011. USENIX Association.

[SJH05] Sabre A. Schnitzer, Robert A. Johnson, and Henry Hoyt.

Secured storage using secureparserTM. In Proceedings of the

2005 ACM Workshop on Storage Security and Survivability,

StorageSS ’05, pages 135–140, New York, NY, USA, 2005.

ACM.

Chapter 4

Accelerating fragmentation by

combining partial encryption

with an all-or-nothing

transform

4.1 Introduction and Motivations

In the previous chapter, it was demonstrated that the protection of encrypted

data against key exposure will always require some additional pre- [Riv97]

or post-processing [KSLC18, KM18a, KM18b, KM18c]. Therefore, such

data confidentiality reinforcement inevitably leads to a performance overhead

(that for some algorithms can be reduced to the point of being negligible).

For some users, even a small overhead may not be acceptable as they are

looking for the quickest solutions. Indeed, the choice of the right fragmenta-

149

150 CHAPTER 4. ACCELERATING FRAGMENTATION

tion technique is often a compromise between the desired performance, data

protection level, and storage overhead [WBP+01].

This short chapter introduces a solution for accelerating the fragmenta-

tion process, making it faster than symmetric data encryption: the Partial

Encryption and All-Or-Nothing (PE-AON) scheme. It transforms data into a

set of fragments, all of which are required for data reconstruction. In contrast

to previously presented schemes, the PE-AON does not fully encrypt data.

Instead, it encrypts only a part of the plaintext and then fragments it into

k fragments. Plaintext and ciphertext blocks inside the fragments are then

blended using an all-or-nothing linear transform applying only exclusive-ors

operations. Data protection is provided by dispersal as a complete recon-

struction of the initial plaintext and ciphertext blocks is only possible once

the fragments are gathered.

Partially avoiding encryption ameliorates the performance as a part of

the block cipher operations is replaced by exclusive-ors. Therefore, PE-AON

is faster than symmetric encryption combined with straightforward fragmen-

tation (where data are just divided into large chunks of consecutive bits).

When the ratio between the number of encrypted and non-encrypted frag-

ments is wisely chosen, data inside the fragments are protected against the

exposure of the encryption key. Intuitively, better performance comes at the

cost of weaker protection than the one provided by full encryption combined

with an all-or-nothing transformation. In previously presented schemes, an

attacker is presumed to be able to compromise all but one storage location.

By contrast, PE-AON is efficient only against an attacker presumed to be,

depending on the configuration, at all but three storage sites or just at a

4.1. INTRODUCTION AND MOTIVATIONS 151

single location. Thus, PE-AON should be treated as a fast fragmentation

method for lightweight data protection, allowing for a gain in performance.

It is especially useful in a situation where the user can combine PE-AON

with a significant dispersal obstacle, for instance they can separate data over

multiple non-colluding clouds.

4.1.1 Data Concepts, Notation, and Prerequisites

The proposed approach identifies the following basic data structures that

mostly correspond to the classical concepts concerning a symmetric block

cipher [Dwo01]:

• Block (P or C or B): a sequence of bits of size |B| corresponding to

the classical concept of block. When referring to a plaintext block, the

block is denoted as P , and when referring to a ciphertext the block is

denoted as C. When a block can be a ciphertext or a plaintext, it is

referred to as simply B.

• Transformed block (B′): a block B (P or C) transformed using the

all-or-nothing transform.

• Plaintext (PLAIN): initial data composed of p plaintext blocks (al-

ready padded if needed).

• Partially encrypted plaintext (PCIPH): partially encrypted plain-

text composed of p+ 1 blocks in total. It is one block longer than the

plaintext as an initialization vector is added during the block cipher

encryption. It contains ef ciphertext blocks and (k − e)f plaintext

152 CHAPTER 4. ACCELERATING FRAGMENTATION

blocks. e is the value defining the number of encrypted blocks inside

the ciphertext. f denotes the number of blocks inside a fragment.

• Fragment (F): result of data fragmentation. Each fragment is com-

posed of f = p+1
k

blocks.

Notations

Plaintext PLAIN is composed of p input blocks P1, . . . , Pp. It is partially

encrypted into PCIPH composed of p + 1 blocks B0, . . . , Bp+1 (one block

is appended at the beginning of the PCIPH and corresponds to the initial

vector). ef first blocks of PCIPH are ciphertext blocks and the remaining

blocks are plaintext. PCIPH is fragmented into k fragments F0, . . . , Fk−1

of size f = p+1
k

blocks each. A block B inside the fragments is transformed

using an all-or-nothing processing into B′.

Prerequisites

It is assumed that the number of fragments k is a divisor of the number of

blocks p+1 inside PCIPH, so the produced fragments will be of equal sizes.

This prerequisite can be easily satisfied using a padding solution.

The recommended value of e should be close to k. Intuitively, the lower it

is, the lower is the data protection level. The minimum possible value of e is

3; this ensures that each plaintext block will be exclusive-ored with at least

two ciphertext blocks and thus protected against key exposure. Exclusive-

oring a plaintext block with only one ciphertext block would be a weaker

solution, somehow similar to a one-time pad.

4.2. DESCRIPTION OF THE SCHEME 153

4.2 Description of the Scheme

PE-AON is composed of two steps. The first step comprises partial encryp-

tion of the plaintext and its fragmentation. The second step blends encrypted

and non-encrypted data inside the fragments. Both steps are described in

detail in following subsections.

1: function PartiallyEncryptAndFragment(PLAIN, e, k)

2: Transform PLAIN into PCIPH:

3: for each plaintext block Pi, where i = 1, . . . , ef − 1 do

4: Encrypt block Pi

5: Fragment PCIPH composed of B0, . . . , Bp blocks into k fragments

composed of f consecutive blocks each:

6: for j = 0, . . . , k − 1 do

7: Disperse blocks from Bj×f to Bj×f+f to fragment Fj

Figure 4.1: Pseudo-code of the first step. Plaintext is partially encrypted

(only the first ef blocks are encrypted) and then fragmented into k fragments.

4.2.1 Step 1: Partial Encryption and Fragmentation

Pseudo-code of the first step - PartiallyEncryptAndFragment- is pre-

sented in Figure 4.1. Initial data PLAIN composed of p plaintext blocks

are partially encrypted into PCIPH. Only the first ef blocks are encrypted

using a symmetric block cipher. PCIPH is composed of one block more

than PLAIN as, during the encryption process, an initial vector is gener-

ated and appended as the first block. PCIPH is then fragmented into k

154 CHAPTER 4. ACCELERATING FRAGMENTATION

Figure 4.2: Example for a plaintext composed of p = 7 blocks, k = 4 frag-

ments, and the number of encrypted fragments e = 3. First step of PE-AON

partially encrypts a plaintext PLAIN composed of p blocks into PCIPH

composed of p + 1 blocks. First block of PCIPH, C0, corresponds to the

ciphertext block containing the initial vector. Later, PE-AON fragments

PCIPH into k fragments of size f = 2 blocks each.

fragments F0, . . . , Fk−1: e of the fragments contain ciphertext blocks and

k − e of the fragments contain plaintext blocks. An example illustrating the

whole process is shown in Figure 4.2.

4.2.2 Step 2: Blending Plaintext and Ciphertext Blocks

Pseudo-code of the second step - the all-or-nothing transform AON - is pre-

sented in Figure 4.3. Blocks inside of the k fragments formed during the first

step are processed in a "row by row" fashion. Sets composed of k blocks are

formed, where each of the k blocks belongs to a different fragment. Each set is

composed of e ciphertext blocks and of k−e plaintext blocks. Blocks inside a

set are transformed using Bastion’s all-or-nothing linear transform [KSLC18]

(this transform could be replaced in the future by a different method apply-

ing the same all-or-nothing principle). As a result, each block inside the

4.2. DESCRIPTION OF THE SCHEME 155

1: function AON(F0, . . . , Fk−1)

2: Proceed in a ’row’ by ’row’ fashion:

3: for i = 0, . . . , f − 1 do

4: Compute the exclusive-or of all blocks in a ’row’:

5: SUM = ⊕j=k−1
0 Bf×j+i

6: for j = 0, . . . , k − 1 do

7: Exclusive-ors it with each value inside the current ’row’:

8: B′f×j+i = Bf×j+i ⊕ SUM

Figure 4.3: Pseudo-code of the second step of the PE-AON. An all-or-nothing

transform is applied over the k fragments exclusive-oring plaintext and ci-

phertext blocks. Blocks are processed by ’rows’ of k blocks (each block in a

row comes from a different fragment). For each ’row’ of k blocks a SUM

value containing the exclusive-or of the k blocks is first computed. The SUM

value is then exclusive-ored with each value in the row. As a result, a block

inside the ’row’ is exclusive-ored with all k − 1 other blocks from the same

’row’.

set is exclusive-ored with all other blocks. Therefore, plaintext blocks are

exclusive-ored with pseudo-random ciphertext blocks that will protect them.

When the minimum possible value of e is 3 (as suggested in the prereq-

uisites), each of the plaintext blocks will be exclusive-ored with at least 2

ciphertext blocks. An example illustrating the result of the all-or-nothing

process applied on the fragments is presented in Figure 4.4.

156 CHAPTER 4. ACCELERATING FRAGMENTATION

Figure 4.4: Fragments after applying the all-or-nothing transform, example

for k = 4 and e = 3. Each of the plaintext blocks is exclusive-ored with two

ciphertext blocks. All fragments have to be gathered in order to reconstruct

the initial data. However, some information is leaked when k − 1 fragments

are gathered. Therefore, it is important to ensure a secure separation of the

fragments.

4.2.3 Step 3: Dispersing Fragments

In a final step, transformed fragments are dispersed over independent storage

sites. The dispersal technique depends on the values of e and k. Two cases

may be distinguished.

• For e = k− 1: Fragments should be dispersed in a way that no more than

k−2 of the fragments are stored at a single storage site. This requirement

comes from the property of the chosen all-or-nothing transform [KSLC18],

which applied on a set of blocks protects them unless all but two blocks are

gathered. When exactly k − 1 fragments are gathered, some information

about the data is being leaked (it is possible to reconstruct some of the

ciphertext or plaintext blocks). An alternative solution to the problem

would perform the all-or-nothing exclusive-ors at the level of sub-blocks

and not blocks.

• For e < k−1: all fragments have to be dispersed over independent storage

4.2. DESCRIPTION OF THE SCHEME 157

sites. As the number of plaintext fragments increases, it is possible that

same combinations of ciphertext blocks will be used to protect different

plaintext blocks. Therefore, the data protection level is lower in such a

configuration and fragments are only secure when the attacker is assumed

to be present only within a single storage site. This is the price that must

be payed for acceleration of the fragmentation processing.

Table 4.1: Comparison with relevant works in terms of the number of block

cipher operations (block op.), number of exclusive-ors, the number of storage

sites that an attacker is assumed to be able to compromise, and the ability to

provide a key exposure protection (K.E.P). All the operations are presented

in function of the number of plaintext blocks p.

Algorithm Block op. Exclusive-ors Compromised Sites K.E.P.

Encryption p b.c. p - No

Bastion p b.c. 3p+ 1 k − 1 Yes

CAON p b.c. 2p+ k − 1 k − 1 Yes

SFD p b.c. p k − 1 Yes

PE-AON ef b.c. ef + 2(p+ 1) k − 2 if e = k − 1 Yes

1 if e < k − 1 Yes

158 CHAPTER 4. ACCELERATING FRAGMENTATION

4.3 Comparison with RelevantWorks and Per-

formance Evaluation

PE-AON was compared with relevant works in terms of complexity and data

protection levels. A performance benchmark confirmed the complexity eval-

uation.

4.3.1 Theoretical Comparison with Relevant Works

The PE-AON scheme was compared with relevant works in terms of the

amount of computations, the number of storage sites where the attacker is

assumed to be present, and the ability to protect against key exposure. Re-

sults are shown in Table 4.1. Symmetric encryption is used as a baseline; it

requires p block cipher operations and p exclusive-or operations when applied

on a plaintext composed of p blocks. Bastion’s scheme applies only a linear

transform over the encrypted data without increasing the number of block

cipher operations. Its transform uses 2(p+1) exclusive-or operations. Count-

ing with the encryption step, the Bastion scheme requires 3p+1 exclusive-ors.

Similarly to Bastion, CAON requires some additional exclusive-ors in addi-

tion to encrypting data. Secure Fragmentation and Dispersal (SFD) does

not require additional operations to data encryption since it just disperses

data over fragments.

PE-AON requires only ef block cipher operations as it does not encrypt

the totality of the data contained inside the fragments. It performs cf +

2(p+1) exclusive-or operations: ef during the encryption of part of the data

and 2(p+ 1) during the all-or-nothing transform applied in the second step.

4.3. COMPARISON WITH RELEVANT WORKS 159

Encryption and straightforward fragmentation does not protect against

key exposure; an attacker possessing the key is able to decrypt the trans-

formed data. Bastion, CAON, and SFD protects fragments unless all of the

storage sites are being compromised. The level of data protection in PE-

AON is lower since data protection level was traded for better performance.

Indeed, it is assumed that the attacker is only present in a single storage site.

The only exception is when e = k−1, then the attacker may be present in up

to k−2 storage sites. This could easily be reinforced by making the fragments

resistant to an attacker present in up to k − 1 locations. The only change

that would have to be done would be to make the all-or-nothing transform

preform exclusive-ors at the sub-block and not the block level. This will be

a part of the future work.

4.3.2 Performance Benchmark

Implementation details Relevant algorithms were implemented using the

same programming style in JAVA with JDK 1.8 on DELL Latitude E6540,

X64-based PC running on Intel R© CoreTM i7-4800MQ CPU @ 2.70 GHz with

8 GB RAM, under Windows 7. Standard javax.crypto library was used.

A random data sample was used for each measurement and each presented

result is an average of 30 measurements. AES-NI with 128 bits key was used

for encryption.

Performance comparisons between relevant algorithms are presented in

Figure 4.5. The performance of PE-AON is shown in 4 configurations. In all

configurations, PE-AON outperforms encryption and straightforward frag-

mentation. Therefore, it is also faster than all schemes presented in Chapter 3

160 CHAPTER 4. ACCELERATING FRAGMENTATION

Figure 4.5: Performance benchmark. PE-AON was measured in different

configurations of (k, e). In all of them, it is faster than encryption and

straightforward fragmentation. It is also faster than two other fragmentation

schemes selected for the comparison: Secure Fragmentation and Dispersal

(SFD) and the Bastion’s scheme. The protection level of PE-AON is lower

but still may be sufficient in some situations. For instance, for PE-AON(6,5)

fragments are protected (even against key exposure) unless the attacker is

present in 4 or more storage sites, which seems a reasonable attack model.

(as they all perform full data encryption).

4.4 Summary

This short chapter presented the Partial Encryption and All-Or-Nothing (PE-

AON) scheme; a novel algorithm for fast and secure data fragmentation.

Initial data are partially encrypted and fragmented. Further, fragments are

transformed using an all-or-nothing transform that blends encrypted and

non-encrypted fragments. Each plaintext block is protected by at least two

BIBLIOGRAPHY 161

ciphertext blocks. In PE-AON, the desired performance and protection level

can be adjusted by varying the number of encrypted blocks. However, the

speed up of the fragmentation process comes at the cost of a decrease in data

protection levels. Fragments are protected, even against key exposure, but

only when the presumed attacker is present in one of the storage sites at most.

For a particular configuration, this dispersal requirement is relaxed and the

attacker may be present in up to all but two fragments storage locations (in

the future, this could easily be changed to all but one by slightly modifying

the all-or-nothing transform).

Bibliography

[Dwo01] Morris J. Dworkin. Nist sp 800-38a, recommendation for block

cipher modes of operation: Methods and techniques. Technical

report, United States, 2001.

[KM18a] Katarzyna Kapusta and Gérard Memmi. Enhancing data pro-

tection in a distributed storage environment using structure-

wise fragmentation and dispersal of encrypted data. In 17th

IEEE International Conference On Trust, Security And Pri-

vacy In Computing And Communications / 12th IEEE Interna-

tional Conference On Big Data Science And Engineering, Trust-

Com/BigDataSE 2018, New York, NY, USA, August 1-3, 2018,

pages 385–390, 2018.

[KM18b] Katarzyna Kapusta and Gerard Memmi. Poster: Circular aon:

A very fast scheme to protect encrypted data against key expo-

162 BIBLIOGRAPHY

sure. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’18. ACM, 2018.

[KM18c] Katarzyna Kapusta and Gerard Memmi. Selective all-or-nothing

transform: Protecting outsourced data against key exposure. In

Proceedings of the 10th International Symposium on Cyberspace

Safety and Security, CSS ’18. Springer, 2018.

[KSLC18] G. O. Karame, C. Soriente, K. Lichota, and S. Capkun. Securing

cloud data under key exposure. IEEE Transactions on Cloud

Computing, pages 1–1, 2018.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package

transform. In In Fast Software Encryption, LNCS, pages 210–

218. Springer-Verlag, 1997.

[WBP+01] Jay J Wylie, Mehmet Bakkaloglu, Vijay Pandurangan,

Michael W Bigrigg, Semih Oguz, Ken Tew, Cory Williams, Gre-

gory R Ganger, and Pradeep K Khosla. Selecting the right data

distribution scheme for a survivable storage system (cmu-cs-01-

120). 2001.

Chapter 5

A fast and scalable

fragmentation algorithm for

lightweight data protection

5.1 Introduction and Motivations

The usual solution to ensuring outsourced data confidentiality is to encrypt

data before sending it to the storage provider. Using a good symmetric en-

cryption algorithm ensures strong confidentiality guarantees. At the same

time, encryption comes at a performance price. Thanks to recent advance-

ments in the hardware development like the integration of the AES instruc-

tion set (AES-NI) in many processors, the speed of encryption is being im-

proved. Nevertheless, the overhead is still too important for some users (one

reason could be that not all possess powerful devices) and, consequently, a

non-negligible amount of data is stored insecurely in the cloud. Data frag-

163

164 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

mentation and dispersal enables a different type of protection mechanism that

does not necessarily require classical cryptographic techniques [CBHK15].

Indeed, data shredding and dispersal over different storage sites intuitively

provides some data protection as an attacker on a single storage site is un-

able to obtain the totality of the information. Combined with data permuting

and encoding, it can be considered a lightweight method for providing data

confidentiality.

This chapter introduces the Fast and Scalable Fragmentation Algorithm

(FSFA), a novel approach for data protection in an environment (composed

of several independent storage sites) that takes full advantage of the possi-

bilities that lie within data fragmentation and dispersal. It transforms user’s

data into multiple interdependent fragments. Recovery of even the smallest

part of a single fragment depends on an equivalent size of content inside one

or more different fragments. In addition, data are shredded before and per-

muted after the encoding to increase the difficulty of data recovery from an

incomplete set of data fragments. FSFA achieves better performance than

relevant techniques (including data encryption and straightforward fragmen-

tation) and does not make use of a key. It addresses the needs of a user fearing

the disclosure of their outsourced data but desiring the storage solution to

be as fast, scalable, and inexpensive as possible.

In the considered threat model, a single cloud provider is honest-but-

curious - they will try to look at the data they were entrusted with but will

not make the effort to contact other cloud providers (who are supposed to

be unknown) in an attempt to recover the data. A cloud site may also be

vulnerable to external attacks leading to data leakage. In such a situation,

5.2. DATA CONCEPTS, PREREQUISITES, AND NOTATION 165

the goal of the algorithm is to fragment the data between the clouds in a way

that the fragments received by a single cloud are practically useless.

Another assumption is that in a situation where the choice of an appro-

priate fragmentation method is a compromise between performance, memory

overhead, and data protection, the user favors the performance. Indeed, if

the data are very sensitive or even critical, additional protection methods

could be applied like perfect secret sharing or symmetric encryption (obvi-

ously this would decrease the performance of the solution). In such a case,

some fragments could be stored in a private and trusted site, leading to an

increased storage cost.

5.2 Data Concepts, Prerequisites, and Nota-

tion

The following key data components are introduced with their size in number

of bits and their dimensions in terms of the number of elements of which they

are directly composed (i.e., a structure S is |S| bits long and composed of s

elements):

• Sub-block (SB): a sequence of size |SB| bits.

• (Input or Encoded) Block (B): a sequence of bits of size |B| composed

of b = |B|
|SB| sub-blocks; an input block belongs to the original input data;

an encoded block is a result of encoding of an input block.

• Data (D): an input data of size |D| bits composed of d = |D|
|B| data blocks

166 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

• Permutation array (PA): an array of size |PA| bits containing b values:

all natural numbers in range [0, ..., b− 1] appearing in a random order.

• Initial Pseudo-Random Block (IPB): pseudo-random block used as

a first block of a fragment. It comes from the xor-split of a permutation

array.

• Fragment (F): a fragment composed of f = |F |
|B| = d

k
input blocks at

the beginning of the algorithm; then composed of the same number f of

encoded blocks plus one IPB at the end of the algorithm.

5.2.1 Prerequisites and Index Notations

Size of data: The number of blocks inside the data d should be a multiple

of the number of fragments k. This can be achieved using padding.

Number of sub-block inside a block: When the number of sub-blocks

inside a block is greater than the maximum value that can be encoded on

|SB| bits, the size of permutation arrays is greater than the block size. To

keep the size of permutation arras equal to the size of a block, the maximum

size of the block should not be greater than the maximum value that can be

represented on |SB| bits, max(#b) = 2|sb|.

Parameters k and c: In order to facilitate computation, the number of

fragments k should be chosen as a multiple of c.

Notation

A fragment is denoted by Fj where j is an integer in [0, . . . , k − 1]. A block

inside a fragment Fj is denoted by Bj
i , where i is an integer in [0, . . . , f]. A

5.2. DATA CONCEPTS, PREREQUISITES, AND NOTATION 167

sub-block at the position v inside a block Bj
i is denoted by Bj

i (v), where v

is an integer in [0, ..., b − 1]. A value at the position t inside a permutation

array PAr is denoted by PAr (t). An initial pseudo-random block is denoted

as IPB and comes from the split of a permutation array. IPBz coming from

the split of a permutation array PAr is denoted by IPBr,z, where z is an

integer in [0, ..., c− 1] such that j (mod c) = z. By convention, an IPBr,z is

also the first block Bj
0 of the fragment j = r × c+ z.

5.2.2 Definitions

FSFA creates dependencies between fragments at the level of data blocks and

sub-blocks using a modified version of Shamir’s secret sharing. Dependencies

are not equally strong between all the fragments but each fragment is directly

dependent on c−1 other fragments. To create such dependencies, each block

of a fragment is encoded using c − 1 previously encoded blocks from c − 1

fragments. In order to facilitate the description of the algorithm, the defini-

tions of neighbor fragments and parents blocks are introduced, defining data

structures used during the encoding of a fragment and a block respectively.

Definition 3 Neighbor fragments A fragment Fj from the set of k frag-

ments F0, . . . , Fk−1 possesses c− 1 neighbor fragments used during its encod-

ing:

F(j+1) mod k, .., F(j+c−1) mod k

Definition 4 Parent blocks A block Bj
i belonging to a fragment Fj such

that i > 0 possesses c− 1 parent blocks inside its neighbor fragments:

B
(j+1) mod k
i−1 , . . . , B

(j+c−1) mod k
i−1

168 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

Dependencies between blocks are created in the form of a chain where

an encoded block is re-used as a parent block during the encoding of the

next block. Input blocks do not possess natural predecessors. Instead, initial

pseudo-random blocks (IPBs) are used as their parent blocks.

(a) (b)

Figure 5.1: Illustration for c = 2 and k = 4. Left: Dispersal of input data.

Each fragment receives 1
4 of the input data d. Any pair of adjacent blocks is

distributed to different fragments. Right: Splitting k
c

= 2 permutation arrays

into k IPBs (each permutation array is split into c IPBs). As an example,

IPB1,0 will be appended to the fragment F2.

5.3 Forming Fragments

This section details how data are encoded into k fragments and how these k

fragments are dispersed over c independent storage locations. A pseudo-code

summarizing the encoding can be found in Figure 5.2. The defragmentation

process is not described as it is the direct inverse of the fragmentation (it is

also characterized by the same performance).

5.3. FORMING FRAGMENTS 169

1: function FragmentData(D, c, k)

2: F0, . . . , Fk−1=FormFragments(D, k)

3: PA0, . . . , PA k
c
−1 =GeneratePermutations(c, k, b)

4: B0
0 , . . . , B

k−1
0 =SplitPermutationsIntoIPBs

(
PA0, . . . , PA k

c
−1

)
5: while all f blocks of each fragment are not processed do

6: for each block Bj
i of a fragment Fj do

7: x=PickEvaluationPoint

8: ParentBlocks =SelectParents
(
Bj

i

)
9: EncodeAndPermuteBlock

(
ParentBlocks, PAj mod k

c
, x, Bj

i

)
Figure 5.2: Pseudo-code of the function transforming input data D into a set

of k fragments, that will be dispersed over k separate locations belonging to

at least c independent storage sites.

5.3.1 Data Distribution over Fragments

In a first step , data D = B1, . . . , Bd are distributed over k fragments

F0, . . . , Fk−1 in such a way that Bi is assigned to Fj ⇐⇒ i mod k = j

(FormFragments function). The number of blocks inside the data is a

multiple of k so each fragment receives exactly |D|
k

of the input data (illus-

trated in Figure 5.1). This method of proceeding was chosen as it allows

to start the encoding of first distributed data blocks before the whole data

are distributed over fragments in a pipelined manner. Data distribution over

fragments could also be performed more simply by just dividing data into k

consecutive chunks of size |D|
k

each.

170 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

5.3.2 Generating Permutations

Before beginning to encode data, permutation arrays have to be generated

and split into initial pseudo-random blocks (IPBs). GeneratePermuta-

tions function generates k
c
random permutation arrays PA0, . . . , PA k

c
−1 of

length b containing all natural numbers from the range [0, ..., b−1] appearing

in a pseudo-random order. The role of a permutation array is to mix up

the positions of sub-blocks after block encoding. This is done in order to

slow down the recovery of the relationships between encoded sub-blocks (see

Section 5.4 for more explanation).Multiple permutation arrays are needed as

a fragment has to use a different permutation array than its neighbors.

Function SplitPermutationsIntoIPBs xor-splits each permutation

array into c IPBs (illustrated in Figure 5.1). Obtained k (because k
c
× c = k)

IPBs are distributed over k fragments in a way that IPBrz is assigned to

Fj ⇐⇒ r × c + z = j. IPBr,z becomes the first block Bj
0 of a fragment

j, when j = r × c + z. Recovery of each permutation array requires all c

corresponding IPBs. Therefore, the following dispersal recommendation is

formulated:

Recommendation 4 (Dispersing IPBs) Fragments containing IPBs al-

lowing the recovery of a permutation array should be dispersed over indepen-

dent storage locations.

Remark 2 (Generating initial pseudo-random blocks (IPBs)) In or-

der to minimize memory overhead, IPBs are used as shares allowing the

recovery of permutation arrays while, at the same time, being initial pseudo-

random blocks used during the encoding of fragments. A different solution

5.3. FORMING FRAGMENTS 171

would consist in having both permutation shares and IPBs separated.

Figure 5.3: Encoding fragments, example for c = 2 and k = 4. Fragments

are encoded simultaneously, block by block. Input blocks (white) are encoded

into encoded blocks (light grey). A current input block (dark grey) is encoded

using c − 1 parent blocks (red) from its neighbor fragments. A current sub-

block (dark grey, striped) is encoded using c− 1 sub-blocks from parent blocks

(red, striped). After encoding, sub-blocks are permuted according to a given

permutation. When c = 2, each fragment possesses one neighbor (as an

example, F1 is the neighbor of F0).

5.3.3 Encoding Fragments

Encoding processing is sequential and performed on all fragments simulta-

neously, block by block (illustrated in Figure 5.3). It creates dependencies

between a fragment and its neighbors. More precisely, a block Bj
i inside a

fragment Fj is encoded using c− 1 parent blocks from neighbor fragments of

Fj. The processing is sequential and its philosophy could be roughly com-

pared to the Cipher Block Chaining mode - once a block is encoded it becomes

172 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

a parent block to another input block. The first input block of each of the

fragments does not posses natural parents (a similar problem occurs in CBC

mode, where an initialization vector is introduced as the first block). Thus,

the k first blocks (IPBs) are used as parent blocks. As they are composed of

pseudo-random values, they introduce pseudo-randomness to the fragments’

encoding. In order to increase the ratio of pseudo-randomness inside encoded

data, fresh IPBs could be generated after encoding a portion of input data.

Encoding and Permuting Blocks

Input blocks are encoded and permuted inside the EncodeAndPermute-

Block function (illustrated in Figure 5.3, pseudo-code in Figure 5.4), tak-

ing as input an input block Bj
i (where j = 0, . . . , k and i = 1, . . . ,#f) to

be encoded, its parent blocks, an evaluation point x, and the permutation

array paj mod c that will be used to permute sub-blocks of the block. Par-

ent blocks are selected from neighbor fragments inside the SelectParent-

Blocks function according to Definition 4. Parent blocks are the last c− 1

encoded (or permutation) blocks from neighboring fragments. The evalua-

tion point x is selected inside the PickEvaluationPoint function. It is

an integer in range of [2, . . . , 2|SB|−1] (2|SB|−1 being the maximum value that

can be encoded on |SB| bits). It is considered as a known value.

An input block is encoded sub-block by sub-block. The encoding proce-

dure is based on a modification of Shamir’s secret sharing. For each sub-block

Bj
i (v), where v = 0, . . . , b− 1, an encoding polynomial is being constructed.

c − 1 sub-blocks from parent blocks positioned at the same index v to the

currently encoded sub-block are selected as the coefficients of this polyno-

5.3. FORMING FRAGMENTS 173

1: function EncodeAndPermuteBlock(ParentBlocks,PermArray,x,Bj
i)

2: for v = 0 : b− 1 do

3: a0, . . . , ac−2=SelectCoefficients(ParentBlocks)

4: Bj
i (v) = bj

i (v) + xa0 + ...+ xc−1ac−2
PermuteSubBlocks

(
PermArray,Bj

i

)
Figure 5.4: Pseudo-code of the function EncodeAndPermuteBlock.

mial (function SelectCoefficients). The result of the evaluation of the

polynomial at the evaluation point x is the encoded sub-block. In contrast

to Shamir’s scheme, the encoding polynomial is evaluated at only one point

as just one point in addition to c−1 coefficients is sufficient for the decoding.

Intuitively, an encoded block and its parent blocks should be stored over

separated locations as, reunited together, they allow the decoding of the

input block (in presence of the right permutation array). The following

recommendation on blocks dispersal is formulated:

Recommendation 5 (Dispersing blocks) A block and its c − 1 parent

blocks should be dispersed over c independent storage locations.

Encoded sub-blocks within a block are permuted using one of the permu-

tation arrays. An encoded sub-blockBj
i (v) goes to position w = PermArray (v).

Permuting sub-blocks mixes up relationships between sub-blocks inside a

block increasing the difficulty of data recovery from an incomplete set of

fragments.

174 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

5.3.4 Dispersing Fragments

Fragmentation produces k final fragments F0, ..., fk−1 of size f + 1 each (f

input blocks and one IPB). Such final fragments should be dispersed over

at least c independent storage sites, e.g. independent cloud providers. The

dispersal procedure is defined by a single rule: a fragment and its neighboring

fragments cannot be stored at a single site. The total number of fragments k

is the choice of the user - a higher value of k reinforces data protection as it

allows for multiple fragments dispersed over a single site. A weaker variation

of the dispersal algorithm where only one storage location is used could be

also considered; instead of misleading a curious provider, a user can upload

the data fragments from c different accounts. In the considered scenario,

it is assumed that the user does not have to care about data availability

or integrity as they are usually guaranteed while signing the Service-Level

Agreement.

5.4 Security Analysis

Each storage site receives k
c
non-neighbor fragments containing uniform and

independent data (resistance to frequency analysis was confirmed by an ex-

tended empirical analysis not presented in this paper). An attacker situated

in less than the totality of the sites can undertake two actions: decode a

portion of data from obtained fragments or verify if data inside received

fragments match some presumed data. To satisfy their curiosity, they have

to overcome a combination of three obstacles: data fragmentation and dis-

persal, permutation, and encoding.

5.4. SECURITY ANALYSIS 175

Data Dispersal The first and simplest obstacle is data dispersal. A single

provider receives k fragments containing only a portion of encoded input

data of size |D|
c

in total. Even decoded, information contained inside the

fragments is sampled (result of FormFragments function) and incomplete.

Moreover, if the cloud does not receive any information about the ordering

of the fragments, there are
(

k
c

)
! possibilities of fragments reassembling.

Data encoding Data encoding creates dependencies between blocks of

fragments and introduces pseudo-randomness to the data transformation

thanks to IPBs. The following lemma is formulated where, by infeasible

decoding, it is understood that for an encoded sub-block of size |SB|, an

attacker must consider 2|SB| possible values of the input sub-block:

Lemma 1 (Sub-block encoding) Decoding of an encoded sub-block Bj
i (v),j =

0, . . . , k,i = 1, . . . ,#f , without any knowledge about the input data and the

c− 1 values of sub-blocks used during its encoding is infeasible.

Proof 1 The procedure encoding sub-blocks of first input blocks directly ap-

plies Shamir’s secret sharing scheme where c − 1 pseudo-random sub-blocks

from IPBs are used as coefficients of encoding polynomials. Encoding re-

sults are outputs of an information-theoretically secure scheme so they may

be considered pseudo-random since it is supposed that an adversary has no

knowledge about the input data. They can be reused as encoding coefficients.

The value of an encoded sub-block of size |SB| depends on the c− 1 pseudo-

random values of size |SB|. An adversary possessing an incomplete set of

coefficients has 2|SB| possibilities for each of the coefficients to consider. De-

176 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

pending on these coefficients, the input sub-block may take any of the 2|SB|

values.

Data permuting Permutations were introduced in order to protect against

a powerful adversary that possessed a fragment and all but one of its neigh-

boring fragments, as well as acquired partial or total knowledge about the

input data to which the fragments belong. Such an attacker may undertake

two actions: to recover the missing data part or to verify if the fragments

correspond to the data. Without block permutations, they would be able to

recover the first pseudo-random block of the missing fragments by reversing

the encoding procedure. They can then proceed to the verification or to a

partial data recovery. Permuting blocks increases the difficulty of reversing

the encoding procedure. Indeed, to recover values of a missing block, an ad-

versary has to check all the combinations of permutations of the sub-blocks.

The following lemma is formulated:

Lemma 2 (Defragmentation of permuted data) For an adversary pos-

sessing some knowledge about the input data contained inside a fragment, the

difficulty of defragmentation or verification of a fragment without the pres-

ence of all of its neighbors increases with the number of sub-blocks inside a

block and decreases with the knowledge of neighboring fragments.

Proof 2 Let’s first consider a situation where blocks are not permuted, but

just encoded. For each encoded sub-block of a block it is possible to construct

one polynomial equation of degree c− 1, where known or unknown sub-blocks

from parent blocks are used as coefficients. Recursively, these coefficients

may also be represented as polynomial equations so, at the end, all sub-blocks

5.5. COMPLEXITY ANALYSIS AND STORAGE REQUIREMENTS 177

may be represented in function of previously encoded sub-blocks as well as of

the first pseudo-random sub-blocks coming from IPBs. For a single block of

b sub-blocks, a system of b equations is obtained. The difficulty of solving

this system of equations depends on the amount of knowledge about input

data and the amount of possessed IPBs. When data are permuted, b! possible

permutations exist, and as do many equally probable systems of equations.

For a permutation array of size b, b! possible permutations exist. If the

blocks are composed of few sub-blocks, a brute-force search over all permu-

tation possibilities is feasible. However, a b = 34 results in 2.95 × 1038 per-

mutation array possibilities, which is comparable to the number of tries that

are required to perform a brute-force attack on a 128-bit symmetric encryp-

tion key (2128 gives 3.4 × 1038 possibilities). An increase of the size of the

block slightly affects the storage space but also improves the performance of

the fragmentation process (performance results presented in Section 5.6).

5.5 Complexity Analysis and Storage Require-

ments

Table 5.1 shows an overview of complexity considerations and storage re-

quirements of concerned fragmentation schemes and of our proposal (FSFA).

Algorithms can be divided into two groups. The first group relies on sym-

metric encryption for data protection and combines it with a key hiding or

dispersal method that prevents the key (and therefore the initial data) re-

covery until k fragments have been gathered. It includes all variations of

the all-or-nothing-transform and Secret Sharing Made Short. The second

178 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

Table 5.1: Runtime and storage requirements of relevant algorithms.

Poly (n, k, d): cost of encoding data d into n fragments using a polynomial of

degree k−1. Matrix (n, k, d): cost of multiplying data d by a dispersal matrix

DM of dimension n × k. Encrypt (d): cost of using symmetric encryption.

Hash: cost of data hashing. RS: cost of applying a Reed-Solomon error

correction codes. FragmentData (d, c, k): cost of data processing in FSFA.

(D - initial data, |D| - size of d, |K| - symmetric key size, |B| - block size in

FSFA, |DM | - dispersal matrix in IDA, k - required number of fragments, n

- total number of fragments)

Scheme Runtime Runtime Storage Storage

Fragmentation Redundancy Without Red. With Red.

SSS Poly(n,k,D) - k|D| n|D|

IDA Matrix(n,k,D) - |D|+ |DM | n
k
|D|+ |DM |

SSMS Enc(D) + Poly(n,k,K) RS(n,k,D) |D|+ k|K| n
(
|D|
k

+ |K|
)

AONT-RS Enc(D) + Hash(D) RS(n,k,D) |D|+ |K| n
k
(d+ |K|)

FSFA FragmentData(d,c,k) RS(n,k,D) |D|+ k|PA| n
k

(|D|+ k|B|)

group, comprising of Shamir’s secret sharing and information dispersal, en-

codes data using a system of equations which is incomplete when less than

k−1 fragments are present. Their big problem is the lack of scalability when

the number of fragment k is growing, as a growing k entails a growing poly-

nomial degree (SSS) or a growing dimension of the dispersal matrix (IDA).

FSFA overcomes the scalability issue by introducing the c parameter. Data

are dispersed over k fragments, but encoded using a polynomial of degree c.

5.5. COMPLEXITY ANALYSIS AND STORAGE REQUIREMENTS 179

The following subsections give more detail about the complexity and storage

requirements of analyzed algorithms. A precise evaluation is hard because of

the variety of implementations.

SSS and IDA: SSS computes n values of a polynomial (Poly) for data d of

size |D|. Its performance depends on the values of k, n, and |D|. Evaluating

a polynomial is usually done using the Horner’s scheme, which is a O (k)

operation. The cost of an IDA equals to the cost of multiplying data D by a

k×n dispersal matrix (DM). In both cases, data are usually first divided into

smaller chunks and processed in a chunk by chunk fashion. They strongly

benefit from an implementation in finite field arithmetic of the field GF (28).

SSMS and AONT-RS: Performance of AONT-RS depends on the chosen

encryption (Encrypt) and hash (Hash) algorithms, as well as on the data size

and Reed-Solomon implementation. Wisely implemented, SSMS applies the

same mechanisms as AONT-RS: symmetric encryption (Encrypt) and Reed-

Solomon (RS) codes for redundancy. Instead of hiding the key inside the hash

of the whole data, SSMS disperses it within the fragments using Shamir’s

scheme (Poly) applied only on the key. When SSMS is applied on data

much larger than a symmetric key, the time taken by the key fragmentation

is negligible.

FSFA: FragmentData (d, c, k) is composed of several steps: generating and

splitting permutations, data distribution, data encoding, and data permu-

tation. The most consuming operation is the sub-blocks encoding. It takes

c − 1 additions and c − 1 multiplications to encode a single sub-block, as

the Horner’s scheme for evaluating a polynomial is used. The procedure

is repeated for all the sub-blocks inside the data, so at the end db (c− 1)

180 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

additions and the same number of multiplications are needed to encode all

of the data. Because a GF (28) finite field is used (like for SSS and IDA),

a lookup table is used to replace the multiplications and the additions are

replaced by exclusive-ors. Permuting sub-blocks may be implemented as a

constant time operation. Data dispersal function FormFragments is an

O (k) operation. Being very simple and applied only once, data dispersal

and permutations generation and splitting have a negligible effect on the

algorithm performance. Additional fragments (if needed) are generated in-

side an optional procedure RS, which is exactly the same as the one used

for SSMS and AONT-RS. FSFA produces k|B| bits of storage overhead (k

pseudo-random IPBs). A larger data block increases this overhead, but

at the same time improves data protection and performance, as it allows a

better parallelization of encoding. The defragmentation procedure is fully

parallelizable, as a block may be decoded without waiting for decoding of

predecessors.

5.6 Comparison with Relevant Works

The proposed algorithm was compared with the state-of-the art fragmen-

tation techniques presented in Chapter 2. All schemes were implemented

in JAVA using following resources: JDK 1.8 on DELL Latitude E6540, X64-

based PC running on Intel R© CoreTM i7-4800MQ CPU @ 2.70 GHz with 8 GB

RAM, under Windows 7. javax.crypto library was used to implement cryp-

tographic mechanisms. Throughput was measured on random data samples

of 100MB.

5.6. COMPARISON WITH RELEVANT WORKS 181

Implementation Details Similarly to SSS and IDA, the proposed algo-

rithm can be implemented in any Galois Field GF
(
2Q
)
. Q is usually se-

lected according to the word size of processors and can be 8, 16, 32 or 64-bit.

The presented version was implemented in GF (28) enabling the use of only

logical operations. The same field was used for the implementations of SSS

and IDA. The AES-128 in the CTR mode was used as the symmetric en-

cryption algorithm inside AONT-RS and SSMS. The AES-NI instruction set

was enabled. SHA256 was used as the hash algorithm inside AONT-RS.

The performance of FSFA was measured for four different configurations:

for two different values of c (2 and 3) and two different choices of block

size (34, and 250 bytes: a block size of 34 bytes makes the recovery of a

permutation array similar to performing a brute-force search on a 128-bits

key, a block size of 250 optimizes the performance). Results are shown in

Figure 5.5. FSFA achieves much better performance than the state-of-art

techniques. It is up to 200% (for c = 2) faster than the fastest of the relevant

works (SSMS with AES). As the cost of fragmentation and key splitting is

negligible in SSMS, the performance of SSMS is equivalent to the performance

of the algorithm used to encrypt the data. Thus, FSFA achieves better

performance than data encryption with AES. AONT-RS is slower than SSMS

(as hashing data is more costly than applying Shamir’s scheme to split the

key). In contrast to other algorithms, IDA and SSS do not scale with the

number of fragments k.Presented techniques were integrated within the DepSky multi-cloud envi-

ronment [BCQ+13]. Replacing symmetric encryption with FSFA resulted in

a gain of 2̃0-30% in performance on the client side. The results of an end-to-

end performance comparison depend on multiple factors including the SLA

182 CHAPTER 5. LIGHTWEIGHT FRAGMENTATION

(a) (b)

Figure 5.5: Performance benchmark for c = 2 (left) and c = 3 (right).

and the data size.

5.7 Summary

In this chapter, the Fast Scalable Fragmentation Algorithm (FSFA) for data

protection through fragmentation, encoding, and dispersal was introduced

and analyzed. Data transformation into fragments relies on a combination of

secret sharing and data permutation. It produces a small storage overhead

proportional to the number of fragments, which is negligible in relation to

larger data. Defragmentation of dispersed data requires the gathering of

all fragments, which is possible only by acquiring locations and different

access rights of several independent storage sites. Being keyless, the scheme

may be used by a user fearing key exposure. Unlike variations of the all-

BIBLIOGRAPHY 183

or-nothing transform, the scheme is adapted for data streaming use cases.

Performance benchmarks show that the scheme can be more than 200% faster

than state-of-the art comparable and widely renown techniques. The scheme

is particularly well adapted for data dispersal in a multi-cloud environment

where non-colluding cloud providers ensure the physical separation between

data fragments.

FSFA could be seen as a particular case of a more general method for

data protection combining fragmentation, encryption, and data dispersal

[MKQ15]. Modifications in the way of data dispersal over fragments, data

encoding, or data permuting could be done (i.e., initial encoded blocks could

be generated in a separated step, Shamir’s secret sharing could be replaced

with a different secret sharing scheme). From an implementation point of

view, performance could be improved by fully exploiting various possibilities

of parallelization of the processing.

Bibliography

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando An-

dré, and Paulo Sousa. Depsky: Dependable and secure storage

in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33, November

2013.

[CBHK15] P. Cincilla, A. Boudguiga, M. Hadji, and A. Kaiser. Light blind:

Why encrypt if you can share? In 2015 12th International Joint

Conference on e-Business and Telecommunications (ICETE), vol-

ume 04, pages 361–368, July 2015.

184 BIBLIOGRAPHY

[MKQ15] G. Memmi, K. Kapusta, and H. Qiu. Data protection: Combining

fragmentation, encryption, and dispersion. In 2015 International

Conference on Cyber Security of Smart Cities, Industrial Control

System and Communications (SSIC), pages 1–9, Aug 2015.

Chapter 6

Data protection by means of

fragmentation in unattended

wireless sensor networks

6.1 Introduction and Motivations

In a world of the internet of things, wireless sensor networks are widely

employed to capture all kinds of environmental information. In a classic

approach, they operate in real-time mode where, right after the acquisition,

sensors move data to a network static node named the sink. However, in some

situations, the presence of the sink may not be ensured. For instance, this

may happen when sensors are deployed over huge or hostile areas like national

parks, battlefields, international border zones etc. Therefore, the term Unat-

tended Wireless Sensor Networks (UWSN) was introduced in [DPMS+08]

to define a class of sensor networks where data is stored inside the sensors

185

186 CHAPTER 6. FRAGMENTATION INSIDE UWSN

waiting to be collected by a mobile sink (for instance a drone) periodically

visiting the network.

UWSNs raise security challenges as data kept inside the nodes may be

exposed to various types of attackers wanting to read, destroy, or corrupt

the stored information. Several strategies for data protection were already

proposed. For instance, in order to achieve data survivability, data may be

replicated and moved around the network like in [DPMS+09]. A different

approach ensuring, in addition, data confidentiality, consists in making the

sensors encrypt, fragment, and disperse data over their neighbors. Data

reconstruction is then impossible unless a given threshold of k out of n data

fragments is gathered. Data are protected against an attacker unable to

compromise the required amount of sensors between consecutive visits of the

sink.

Several fragmentation schemes adapted to be used inside UWSN were

introduced. They propose a process based on secret sharing ([ROL09a])

or a combination of data encryption and error-correction codes ([KMN17,

RRZ08, WRLZ09]). As energy consumption is an important issue inside

UWSN, some of the proposals use additively homomorphic schemes in or-

der to reduce storage and transmission costs ([ROL09b, ROL09a]). The

Additively Homomorphic Secure Fragmentation Scheme (AHEF) presented

in this chapter revisits the HEHSS scheme by [ROL09a]. In both schemes,

fragmented and encrypted data are aggregated inside the neighbors’ nodes.

However, AHEF significantly improves the HEHSS scheme - instead of using

additively homomorphic secret sharing for data fragmentation, AHEF uses

an additively homomorphic information dispersal algorithm. This change

6.2. RELATED WORK 187

has a big impact on the resulting storage overhead and transmission costs.

Indeed, fragments obtained using secret sharing has the same size as the

data itself. Information dispersal produces fragments of optimal size (see

the explanation in [Rab89]). Thus, an increase in the data to be protected

is avoided. In addition, AHEF allows two means of fragment aggregation:

aggregation of fragments from the same sensor and aggregation of fragments

coming from the same cluster of sensors.

6.2 Related Work

This section gives an overview of relevant works from the domain of data

protection and secure aggregation inside UWSN. It especially focuses on

fragmentation schemes used inside UWSN to ensure data confidentiality and

availability. During the descriptions, the following terminology is used: A

sensor sensori, i = 0, . . . , s− 1, captures data during events named rounds,

denoted as round. rmax denotes the number of rounds between consecutive

visits of the mobile sink. Dr
i denotes the data of size |Dr

i | bits captured by

a single sensor Si during the round event r. When a fragmentation scheme

is used, data Dr
i is fragmented into n fragments, k of which are needed for

data reconstruction.

6.2.1 Moving Data around the Network

As presented in [DPMS+08, DPMS+09], attackers come in different flavors.

A curious attacker will try to learn as much as possible about the stored

data. A polluter will try to mislead the sink by introducing fraudulent data.

188 CHAPTER 6. FRAGMENTATION INSIDE UWSN

A search-and-erase or search-and-replace will destroy or modify certain target

data. Finally, an eraser will erase as much data as possible.

The right defense strategy has to take into account the type of attacker. In

[DPMS+09] three non-cryptographic strategies were introduced and analyzed

in the context of a search-and-erase and eraser attackers: DO-NOTHING

(DN), MOVE-ONCE (MO), and KEEP-MOVING (KM). In DN, captured

data are just waiting inside the sensor for the mobile sink. In MO, a sensor

offloads newly captured data to some other randomly picked sensor right after

capture. In KM, data are moved continuously; each sensor moves each data

item individually to another sensor at each round. Moreover, MO and KM

may be combined with data replication in order to increase the probability

of data survival. For an attacker of type search-and-replace, the choice of

strategy will depend on the frequency of sink visits (MO or KM). MO is

more efficient than KM when rmax <
s

k−1 . When no replication is applied,

DN is the best strategy against an eraser. However, data migration becomes

better than DN even with a single replica. More works on ensuring data

survivability in UWSN using replication were done in [DPV11, ADPG17].

6.2.2 HybridS

HybridS [RRZ08, WRLZ09] is a scheme for secure and dependable storage in-

side UWSN combining secret sharing with erasure coding. A sensor encrypts

round data using a random key. Then, the Reed-Solomon scheme is used to

encode the encrypted data into n fragments, k of which are needed for data

reconstruction. The secret key is also fragmented into n fragments using a

secret sharing scheme like Shamir’s scheme presented in [Sha79]. Finally,

6.2. RELATED WORK 189

the sensor distributes the produced data and key fragments over n randomly

selected neighbors. Such processing achieves lower storage and transmission

costs than simple data replication. Indeed, the only overhead comes from

the key fragments that are the size of the encryption key (typically 128 bits).

When the round data is large, the HybridS achieves lower storage and trans-

mission costs than fragmenting data using secret sharing. However, when the

round data is very small, the overhead coming from key fragments may be

significant. In ([WRLZ09]) a similar scheme (RSSS) combining secret shar-

ing with data encryption was presented. The main difference with HybridS is

that it provides data integrity by including algebraic signatures within data

fragments.

6.2.3 Homomorphic Key-evolution Scheme

The Homomorphic Key-evolution Scheme (HKS) [ROL09b] provides back-

ward and forward secrecy of data stored inside the sensors by combining

dynamic key generation with data aggregation. At each round, a sensor

updates the encryption key Kr
i by hashing the key used during the previ-

ous round: Kr
i = h(Kr−1

i). As previous keys cannot be obtained from the

current key, forward secrecy is provided. HKS encrypts data using addi-

tively homomorphic encryption presented in [CMT05] and thus significantly

reduces the volume of data stored inside the sensors. Moreover, to decrypt

the aggregated data, an attacker is obliged to have all the dynamic keys used

to encrypt them. Thus, backward secrecy is provided. The goal of HKS it

to protect the network from curious intruders - those who want to read the

stored data. It is inefficient against attackers who want to erase data as no

190 CHAPTER 6. FRAGMENTATION INSIDE UWSN

data resilience is provided.

6.2.4 Homomorphic Encryption and Homomorphic Se-

cret Sharing

The Homomorphic Encryption and Homomorphic Secret Sharing (HEHSS) [ROL09a]

scheme improves the HKS scheme by providing data reliability in addi-

tion to forward and backward secrecy. Round data is first fragmented into

a set of fragments n using an additively homomorphic scheme (Shamir’s

scheme [Sha79]). Fragments are then encrypted using additively homomor-

phic encryption. Finally, fragments are distributed over n sensor neighbors

where they can be aggregated with fragments coming from previous rounds.

Thanks to data aggregation, storage overhead, as well as the cost of data

transmission to the mobile sink, it is lower than in RSSS. However, the use

of secret sharing increases the size of the data fragments, as Shamir’s scheme

produces fragments of size |Dr
i | (leading to an n-fold increase in data volume).

Therefore, the transmission costs during communication with neighbors are

increased.

6.3 Problem Formulation

This section presents assumptions about the considered sensor network ar-

chitecture and the anticipated adversaries.

6.3. PROBLEM FORMULATION 191

6.3.1 Network Model

A scheme of the network architecture is presented in Figure 6.1. In the

considered scenario, the network is composed of s sensor nodes. Each sensor

node has a fixed location and is denoted as sensori, where i = 0, 2, . . . , s−1.

Data captured by the sensors is collected by one or more authorized mobile

sinks visiting the network periodically. To simplify the description of the

proposed approach, it is considered that only one mobile sink is present inside

the network. We assume that a sensor captures data rmax times between

consecutive visits of the sink (this is a simplified approach as sensors could

have different intervals between rounds, i.e. when the data capture would be

triggered by an event). The event of data capture by the sensor is denoted

as a round r, where r = 0, 1, . . . , rmax − 1. At a round r, a sensor sensori

captures data denoted as Dr
i .

Sensors are limited in terms of computational power and memory. Apart

from capturing and processing data, it is assumed that the sensors are able

to communicate with at least n others sensors that are located in their neigh-

borhood. It is a simplified approach as not all sensors may have n other nodes

in their neighborhood. Two solutions may be adopted in a situation of lack

of neighbors. First, n can be variable and dependent on the sensor location

(an example is shown in Figure 6.1). The same solution could be applied in

a situation of loss of neighbors due to interferences, obstacles, or issues of

sensor mobility. Second, a multi-hop transmission may be used for sensors

without enough neighbours. In the worst case scenario, a sensor could func-

tion without neighbors for some period of time and then re-transmit collected

data with the reappearance of neighbors. In order to save energy, a classic

192 CHAPTER 6. FRAGMENTATION INSIDE UWSN

sleep and live technique can be applied as sensors are alive only during and

shortly after each round.

The mobile sink is assumed to be a trusted party that cannot be com-

promised. It is also assumed that the collected data is processed in an en-

vironment not limited in terms of computation power, memory constraints,

or energy consumption. For instance, once collected, data could be sent to a

cloud for further processing.

Static configuration is a simplified approach. A more sophisticated scheme

would include a dynamic selection of neighbors. Such a dynamic network

topology would be motivated by two factors. First, the sensors’ nature may

be mobile, leading their neighbors to continuously change. Second, in a static

configuration, attackers who know the topology of the network will first try

to compromise the set of sensors they know are their neighbors. A mobile

network makes the fragment distribution complicated, but increases the level

of data protection. Indeed, moving sensors naturally add randomness to the

fragment distribution, confusing the attacker about the location of the frag-

ments. Some works on data fragmentation using secret sharing inside mobile

UWSN have already been done in [RG13], showing how parameters of the

secret sharing should be chosen in function of the mobility degree of the

network.

During the system’s initialization, each sensor receives information about

the location of its n neighbor’s node (as at each round, the sensor will produce

n data fragments and disperse them over its neighbors). Information about

the network topology should be transmitted securely as it can provide hints

to an attacker about the groups of sensors that will store fragments of the

6.3. PROBLEM FORMULATION 193

data.

Figure 6.1: Simplified scheme of the network architecture. Each sensor com-

municates with its neighbors (during each round, this is shown for just two

sensors) and with the mobile sink (during data collection). Depending on

the network density, some sensors may have less neighbors than the others;

sensor1 has three neighbors but sensor6 only two.

6.3.2 Threat Model

The threat model presumes that a roaming adversary is present inside the

network, and has the ability to compromise most k − 1 sensors during con-

secutive visits of a mobile sink. The setting of k and rmax must be carefully

chosen during the network’s dimensioning whilst also considering an estima-

tion of the system’s vulnerability. Once the attacker compromises a sensor,

they are able to fully control it and consequently obtain the data collected

during their occupation of the sensor. However, unless they manage to com-

promise a set of k sensors storing fragments of the same round data, they

are not able to obtain the data collected before the compromise. There is

no way for a sensor to distinguish if its neighbor is currently under attack or

194 CHAPTER 6. FRAGMENTATION INSIDE UWSN

not.

An attacker is assumed to not be able to compromise k sensors between

consecutive visits of the sink. However, an additional countermeasure may

be established, reducing this time interval to the time until initial data col-

lection is done. It would consist of encrypting the first round data fragments

stored at the sensor with a temporary key distributed during the system ini-

tialization and known to the end user. This temporary key would be deleted

from the sensor’s memory after the first round. This way, an attacker would

only have time until the first round to compromise k sensors and obtain the

temporary keys.

The attacker is assumed to be curious - they want to read the stored

data. Therefore, the AHEF scheme presented in this chapter focuses mainly

on providing data confidentiality and does not treat the problem of fragments

authentication or integrity verification. However, it could be complemented

with a different scheme treating these two issues, for instance the solution

presented in [BPVW11].

6.4 The Proposed Scheme

The goal of the scheme is to protect the data stored inside the sensors until the

arrival of the mobile sink while minimizing storage overhead, the complexity

of processing, as well as the transmission costs.

6.4. THE PROPOSED SCHEME 195

6.4.1 System Initialization

During system initialization, a secure hash function (for instance SHA-512)

denoted as h (.) is chosen and preloaded to the sensors along with a sym-

metric cipher algorithm (for instance AES). In accordance with Kerckhoffs’s

principle, the hash and the cipher function are publicly known. Moreover,

each sensor sensori receives its own initial key denoted as K0
i (key distri-

bution protocol may be based on one of the several solutions proposed in

[GC15]). Initial key K0
i is refreshed after each visit of the mobile sink by

being exclusive-ored with a nonce produced using a secure cryptographic

Deterministic Pseudo Random Generator (DPRG) ([BK11]). The seed of

the employed DPRG can be constructed by hashing the secret key.

Fragments Distribution and Aggregation

Two configurations of fragment distribution and aggregation are possible. In

the first configuration, only data coming from the same sensor is aggregated.

At each round, a sensor captures round data, fragments it into a set of

n fragments, and disperses the fragments over its neighbors where they are

aggregated with fragments distributed during previous rounds. In the second

configuration, sensors are organized into clusters of n nodes. At each round

each sensor from the cluster sends its data to the neighbors (that are also

belonging to the cluster). Then, the data coming from the different nodes of

the cluster is aggregated.

196 CHAPTER 6. FRAGMENTATION INSIDE UWSN

Key Evolution

At the beginning of each round, the round index r and the sensor’s round key

Kr
i are updated. The current round key is obtained by hashing the previous

round key: Kr
i = h

(
Kr−1

i

)
, where r = 0, . . . , rmax − 1 and K0

i is the initial

key. Thanks to the one-way property of the hash function, attackers who

compromise a sensor and obtain its current round key will not be able to

derive the previously used round keys. Thus, forward security is provided.

The mobile sink stores the initial key Ki of each sensor, allowing it to derive

the round keys as needed.

6.4.2 Processing Round Data

At each round, data captured by a sensor is processed using the Additively

Homomorphic Encryption and Fragmentation scheme (AHEF) composed of

two steps: data fragmentation and data encryption.

Step 1 - Fragmentation of Round Data into Data Points

In the first step, round data is fragmented into n fragments, k of which are

needed for data reconstruction. Instead of the additively homomorphic secret

sharing that was applied in HEHSS, an additively homomorphic dispersal

algorithm - similar to the one presented in [Kra94] - is used. More precisely,

the first step consists of following operations:

1. Represent collected data Dr
i as a vector of k integers Dr

i (j), where

j = 0, . . . , k − 1 and Dr
i (j) ∈ [0, . . . , dmax − 1]. The size of a each of

the k data values is of |D
r
i |

k
bits.

6.4. THE PROPOSED SCHEME 197

2. Choose integer m in function of the predicted number of rounds rmax,

aggregation configuration (only sensor or between cluster), and dmax:

m = 2dlog2(rmaxdmax)e when the aggregation is performed only on data

coming from the same sensor or m = 2dlog2(nrmaxdmax)e when the data

will be aggregated inside a cluster of n sensors.

The proposed scheme uses the additively homomorphic encryption scheme

(AHE) presented in [CMT05]. In AHE, encryption/decryption opera-

tions are modified. Normally, encryption consists of exlusive-oring the

data with a random keystream. In AHE, the exclusive-or operation is

replaced with addition (encryption) or subtraction (decryption) mod-

ulo an integer m. The value of m has to be not only larger than the

size of the data to be encrypted, but also has to take into account the

number of rounds rmax and numbers of fragments that will be aggre-

gated together at each round in order to prevent the overflow coming

from the addition of multiple fragments. Indeed, with each round, the

sum of the round data increases. Therefore, data fragments have to be

large enough to contain the sum of all round data.

3. Construct an encoding polynomial yr
i (x) =

k−1∑
j=0

Dr
i (j)xj (mod m). The

k data values are used as the coefficients of this encoding polynomial.

4. Evaluate the polynomial yr
i (x) at n different evaluation points xl, xl > 0

and l = 0, . . . , n− 1 in order to obtain n different data points P l
i,r =

(xl, y
r
i (xl)) that are the result of the fragmentation of round data Dr

i .

The round data can be obtained back by interpolating the polynomial

using any k of the n points.

198 CHAPTER 6. FRAGMENTATION INSIDE UWSN

Step 2 - Transforming Points into Fragments using Additively Ho-

momorphic Encryption

Fragments from the first step have to be encrypted in order to be protected.

The second step therefore encrypts each fragment using additively homomor-

phic encryption:

1. Generate a set of n pseudo-random keystreams Ti,r using a stream

cipher and the current round key Kr
i . Each of the n keystream Ti,r(l),

l = 0, . . . , n− 1 is a value from in range [0,m− 1].

2. Transform the point P l
i,r into the final fragment Fm

i,r by encrypting the

y-axis values of the point. The encryption process entails the modu-

lar addition of the y-axis value of the point and of its corresponding

keystream:

F l
i,r = (xl, AHE(yl, Ti,r(l))) = (xl, yl + Ti,r(l) (mod m))

6.4.3 Fragments Aggregation

AHEF allows the aggregation of fragments not only between different rounds

but also between different sensors. Indeed, any two fragments may be aggre-

gated if they were obtained using the same evaluation points (x-axis values).

This is possible because of the additively homomorphic properties of both

fragmentation and encryption. Additively homomorphic fragmentation al-

lows the addition of multiple points of different polynomials evaluated within

the same set of evaluation points. Furthermore, additively homomorphic en-

cryption allows the addition of multiple encrypted points even if they were

encrypted using different keys.

6.4. THE PROPOSED SCHEME 199

In the proposed simplified architecture described in Section 6.3.1, it is pre-

sumed that during the static configuration of the network each sensor receives

information about its n neighbors. The sensor is then constantly transmit-

ting fragments evaluated at the same x-axis value to the same neighbor so

fragments coming from a same sensor but from different rounds can be easily

aggregated.

It is also possible to aggregate fragments coming from different rounds of

the same sensor but also fragments coming from different rounds of different

sensors. In order to enable the aggregation of fragments coming from different

sensors, sensors should be organized in clusters of n sensors. Inside such a

cluster, each sensor will receive fragments obtained using the same x-axis

evaluation point in order to enable a correct data aggregation. Thus, an

information about the evaluation points to be used during fragmentation

along with a map associating sensors with those points should be given during

the initialization phase.

6.4.4 Data Defragmentation

Data reconstruction is performed after the collection of at least k final frag-

ments by the mobile sink. Each fragment is a sum of rmax component frag-

ments (or nrmax when cluster aggregation is used): F l
AggSensor = ∑rmax

1 F l
i,r

or F l
AggCluster = ∑rmax

1
∑n

1 F
l
i,r. First, fragments are individually decrypted

to obtain the aggregated points. Then, the sum of round data is interpolated

from the aggregated points.

200 CHAPTER 6. FRAGMENTATION INSIDE UWSN

Step 1: Decryption of Fragments

In the additively homomorphic encryption (AHE), data decryption consists

of subtraction modulo m of the keystream from the encrypted data. Thus,

decryption of a final fragment consists in performing rmax (or nrmax when

cluster aggregation is used) subtractions modulom of all the keystreams that

were used during the encryption of single fragments components of the final

sum.

Step 2: Interpolation

After decryption of the k fragments, k points containing aggregation of rmax

(or nrmax) points are obtained. The next step consists in interpolating a

polynomial using those k points and reconstructing the polynomial’s coeffi-

cients. This can be done using one of the standard interpolating methods,

for instance the Lagrange interpolation. The interpolation is a more com-

plex operation than the evaluation used during the fragmentation step (it

has an arithmetic operational complexity of O(k2) that can be reduced to

O(klog2k); the Horner’s scheme can be used to reduce the complexity of

polynomial evaluation to O(k)). However, interpolation is not a problem as

long it is performed outside the sensors and there is no real-time constraint

(which is the case of the presented scenario).

6.5 Comparison with Relevant Works

AHEF was analyzed in terms of storage overhead and transmission costs as

well as in terms of performance of data processing. Results were compared

6.5. COMPARISON WITH RELEVANT WORKS 201

Table 6.1: Quantitative analysis of relevant schemes. (*) - A version of

RSSS where the key is fragmented and transmitted among the data. (1) -

Aggregation is performed only on fragments coming from the same sensor. (2)

- Sensors are organized into clusters of n nodes and corresponding fragments

from the n sensors are being aggregated.

Scheme Storage Overhead Transmission Costs Resilience Agg.

Data M.
rmax∑
r=1
|Dr

i | DN:
rmax∑
r=1
|Dr

i | No No

[DPMS+08] MO: 2
rmax∑
r=1
|Dr

i |

[DPMS+09] KM:
rmax∑
j=1

j∑
r=1
|Dr

i |

RSSS n
k

rmax∑
r=1
|Dr

i |
(n+k)

k

rmax∑
r=1
|Dr

i | Yes No

[RRZ08]

[WRLZ09]

RSSS (*) n
k

rmax∑
r=1

(|Dr
i |+ k|key|) (n+k)

k

rmax∑
r=1

(|Dr
i |+ k|K|) Yes No

HKS |Dr
i |+ log2(rmax) |Dr

i |+ log2(rmax) No Yes

[ROL09b]

HEHSS (1) n(|Dr
i |+ log2(rmax)) (n+ k)(|Dr

i |+ log2(R)) Yes Yes

[ROL09a]

HEHSS (2) (|Dr
i |+ log2(rmaxn)) (n+ k)(|Dr

i |+ log2(rmaxn)) Yes Yes

AHEF (1) n(|D
r
i |

k
+ log2(rmax)) n(|D

r
i |

k
+ log2(rmax)) Yes Yes

AHEF (2) 1
k
(|Dr

i |+ log2(rmaxn)) (n+ k)(|D
r
i |

k
+ log2(rmaxn)) Yes Yes

202 CHAPTER 6. FRAGMENTATION INSIDE UWSN

with relevant works.

6.5.1 Storage Overhead

A comparison of storage overhead (SO) and transmission costs (TC) of rel-

evant schemes was done. Table 6.1 presents a summary of the quantitative

analysis. To better illustrate the difference between algorithms, simulations

of SO and TC are presented in Figures 6.2 and 6.3. During simulations, a

data sample of 1000 bits was created at each round. It was supposed that

the end user is interested by the average value of the captured data as well

as by their variance.

Intuitively, for all schemes, the storage overhead depends on the size

of round data |Dr
i | and the number of rounds rmax. As presented in Fig-

ure 6.2, data aggregation allows a significant saving of SO. Indeed, for Basic

Scheme and RSSS at each round, the SO increases by the size of round data

|Dr
i |. HKS, HEHSS, and AHEF allow data aggregation. For each of these

schemes, at each round, the storage overhead increases only by the value

coming from the bits added to avoid overflow during aggregation of data

fragments. HEHSS applies secret sharing in addition to encryption which, in

contrast to encryption, increases the size of the data (the size of each data

fragment is equal to the size of the round data, so it leads to a n-fold increase

of SO during the first round). AHEF deals with this problem by replacing

Shamir’s scheme with Krawczyk’s information dispersal.

6.5. COMPARISON WITH RELEVANT WORKS 203

(a) SO - fragmentation techniques. (b) SO - homomorphic techniques.

Figure 6.2: Storage cost per sensor. Data aggregation allows a significant

reduction in storage cost. (a) HKS does not provide data resilience and it

also comes with limited data protection. AHEF achieves a lower storage cost

per sensor (factor ≈ 1
k
) than HEHSS since it replaces secret sharing with

information dispersal (b).

6.5.2 Transmission Costs

Transmission costs are expressed as the sum of bits transmitted from the

sensor to its neighbors (during fragmentation) and of bits of stored data

transmitted to the sink during data collection. As presented in Figure 6.3,

TC for the Basic Scheme in the KEEP-MOVING mode are much higher

than for the rest of the schemes (for which the increase is linear in function

of the number of rounds). When k = n, RSSS and Basic Scheme in the mode

MOVE-ONCE have equal TC. Schemes allowing data aggregation comes with

a significantly lower TC. HKS has the lowest TC; it does not spread data

over the sensor’s node since its only TC is the cost of uploading data to the

204 CHAPTER 6. FRAGMENTATION INSIDE UWSN

(a) TC - fragmentation techniques. (b) TC - homomorphic techniques.

Figure 6.3: Transmission costs (TC) per sensor. Fragmenting data instead of

replicating and applying error correction codes helps limit the transmission

costs while providing data resilience (a). AHEF significantly reduces TC

in comparison to HEHSS as its data fragments are k-times smaller than in

HEHSS. HKS does distribute data to its neighbors (and thus does not provide

data resilience) so the only TC is the transmission to the sink (b).

sink. For AHEF, the cost is twofold: in addition to the sink’s transmission,

at each round, data are diffused over neighbors. Fragment size in HEHSS is

k times larger than in AHEF (due to the use of Shamir’s scheme). Therefore,

at each round, its TC are k times larger than these of AHEF.

6.5.3 Performance Benchmark

Implementation details Relevant algorithms were implemented in JAVA

using the following resources: JAVA 1.8 and Matlab 2011b on DELL Latitude

E6540, X64-based PC running on Intel R© CoreTM i7-4800MQ CPU @ 2.70

6.5. COMPARISON WITH RELEVANT WORKS 205

(a) Storage overhead. (b) Transmission costs.

Figure 6.4: Comparison of two aggregation variants: (1) Aggregation of frag-

ments only coming from a single sensor and (2) Aggregation of data coming

from a single sensor and some of its neighbors. This demonstrates that aggre-

gating fragments from multiple sensors leads to an increase in transmission

costs but a decrease of storage costs.

GHz with 8 GB RAM, under Windows 7. AES-CTR with 128-bits key was

used to generate the pseudo-random keystreams and SHA256 as the hash

function.

Benchmark results Execution time for data processing for rmax = 10000

rounds was measured for each algorithm in two configurations: when all

the fragments are required for data recovery (n = k) and when redundant

fragments are generated (n = 1.5k). The time between consecutive rounds

was not taken into account as it is the time when a sensor rests in sleep mode.

Results are shown in Figure 6.5. The proposed scheme (AHEF) achieves

better performance than HEHSS and RSSS. The performance’s gain increases

with the number of fragments. The clear lack of scalability of HEHSS and

206 CHAPTER 6. FRAGMENTATION INSIDE UWSN

Figure 6.5: Performance benchmark. AHEF achieves a better performance

than HEHSS and RSSS. It comes with a slightly higher performance over-

head than HKS as it adds fragmentation to the encryption. HKS does not

provide data resilience, which is why it was not included in the comparison

for n=1.5k.

RSSS is mainly caused by the use of Shamir’s secret sharing. In contrast to

HKS, AHEF provides resilient data and generates interdependent fragments.

Thus, it comes with a slightly larger performance overhead.

6.6 Summary

This chapter focuses on a different kind of data fragmentation - the one

performed inside Unattended Wireless Sensor Networks. It introduces an

Additively Homomorphic Encryption and Fragmentation (AHEF) scheme.

The scheme allows the preservation of the backward and forward secrecy

BIBLIOGRAPHY 207

of data collected inside the sensors during multiple collecting rounds. It

combines dynamic key evolution with additively homomorphic encryption

and additively homomorphic fragmentation.

AHEF replaces additively homomorphic secret sharing used in state-of-

the-art techniques with additively homomorphic information dispersal. This

change has a significant impact on the volume of data stored inside the sensors

as well as on the transmission costs. Both are reduced by a factor of at least

2 (the exact gain will depend on the number of fragments and consequently

on the chosen number of neighbors of each of sensors). Two configurations of

data aggregation are presented: aggregating data produced by a single sensor

and aggregating data produced by a cluster of several sensors. The storage

overhead and the transmission costs are compared in both configurations.

AHEF considerably reduces the number of required computations allowing

sensors to limit the use of their energy not only because of the decreased

amount of transmission in comparison to state-of-the-art techniques, but

also because of a less energy consuming data fragmentation procedure.

Bibliography

[ADPG17] Giulio Aliberti, Roberto Di Pietro, and Stefano Guarino. Epi-

demic data survivability in unattended wireless sensor networks.

J. Netw. Comput. Appl., 99(C):146–165, December 2017.

[BK11] Elaine B Barker and John Michael Kelsey. Recommendation

for random number generation using deterministic random bit

generators (revised). US Department of Commerce, Technology

208 BIBLIOGRAPHY

Administration, National Institute of Standards and Technol-

ogy, Computer Security Division, Information Technology Lab-

oratory, 2011.

[BPVW11] J. Bohli, P. Papadimitratos, D. Verardi, and D. Westhoff. Re-

silient data aggregation for unattended wsns. In 2011 IEEE 36th

Conference on Local Computer Networks, pages 994–1002, Oct

2011.

[CMT05] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggre-

gation of encrypted data in wireless sensor networks. In The

Second Annual International Conference on Mobile and Ubiq-

uitous Systems: Networking and Services, pages 109–117, July

2005.

[DPMS+08] Roberto Di Pietro, Luigi V. Mancini, Claudio Soriene, Angelo

Spognardi, and Gene Tsudik. Catch me (if you can): Data sur-

vival in unattended sensor networks. In Sixth Annual IEEE

International Conference on Pervasive Computing and Commu-

nications (PerCom 2008), 17-21 March 2008, Hong Kong, pages

185–194, 2008.

[DPMS+09] Roberto Di Pietro, Luigi V. Mancini, Claudio Soriente, Angelo

Spognardi, and Gene Tsudik. Data security in unattended wire-

less sensor networks. IEEE Trans. Comput., 58(11):1500–1511,

November 2009.

[DPV11] Roberto Di Pietro and Nino Vincenzo Verde. Epidemic data

BIBLIOGRAPHY 209

survivability in unattended wireless sensor networks. In Pro-

ceedings of the Fourth ACM Conference on Wireless Network

Security, WiSec ’11, pages 11–22, New York, NY, USA, 2011.

ACM.

[GC15] Danilo de Oliveira Gonçalves and Daniel G. Costa. A survey of

image security in wireless sensor networks. Journal of Imaging,

1(1):4–30, 2015.

[KMN17] Katarzyna Kapusta, Gerard Memmi, and Hassan Noura. Secure

and resilient scheme for data protection in unattended wireless

sensor networks. In 1st Cyber Security in Networking Confer-

ence, CSNet 2017, Rio de Janeiro, Brazil, October 18-20, 2017,

pages 1–8, 2017.

[Kra94] Hugo Krawczyk. Secret sharing made short. In Proceedings of

the 13th Annual International Cryptology Conference on Ad-

vances in Cryptology, CRYPTO ’93, pages 136–146, London,

UK, UK, 1994. Springer-Verlag.

[Rab89] Michael O. Rabin. Efficient dispersal of information for security,

load balancing, and fault tolerance. J. ACM, 36(2):335–348,

April 1989.

[RG13] Di Pietro Roberto and Stefano Guarino. Data confidentiality

and availability via secret sharing and node mobility in uwsn.

In 2013 Proceedings IEEE INFOCOM, pages 205–209, April

2013.

210 BIBLIOGRAPHY

[ROL09a] Y. Ren, V. Oleshchuk, and F. Y. Li. A distributed data storage

and retrieval scheme in unattended wsns using homomorphic

encryption and secret sharing. In 2009 2nd IFIP Wireless Days

(WD), pages 1–6, Dec 2009.

[ROL09b] Y. Ren, V. Oleshchuk, and F. Y. Li. Secure and efficient data

storage in unattended wireless sensor networks. In 2009 3rd In-

ternational Conference on New Technologies, Mobility and Se-

curity, pages 1–5, Dec 2009.

[RRZ08] W. Ren, Y. Ren, and H. Zhang. Hybrids: A scheme for secure

distributed data storage in wsns. In 2008 IEEE/IFIP Inter-

national Conference on Embedded and Ubiquitous Computing,

volume 2, pages 318–323, Dec 2008.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–

613, November 1979.

[WRLZ09] Q. Wang, K. Ren, W. Lou, and Y. Zhang. Dependable and

secure sensor data storage with dynamic integrity assurance. In

IEEE INFOCOM 2009, pages 954–962, April 2009.

Chapter 7

Conclusions and Future Work

This chapter summaries the research contributions presented in this thesis

dissertation. It also gives a detailed insight into future work.

7.1 Summary of contributions

This dissertation addresses the problem of preserving data confidentiality

using a combination of data fragmentation, encryption, and dispersal.

Chapter 2 contains a detailed survey of data fragmentation as a way

of preserving data confidentiality. Two types of fragmentation categories

were introduced: bitwise and structurewise. We observe that fragmentation

techniques can be divided into these two categories. The bitwise fragmen-

tation category includes techniques like secret sharing, information disper-

sal, and various schemes based on symmetric encryption. The structurewise

fragmentation category gathers the historical object-oriented fragmentation-

redundancy-scattering approach together with multiple schemes fragmenting

211

212 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

relational databases in order to preserve user’s privacy. Described techniques

are compared in terms of performance, storage overhead, and provided data

protection level. Performance benchmarks give an empirical comparison in

order to confirm theoretical evaluations. In addition to data fragmentation

techniques, systems applying data fragmentation are presented. Included

here are not only academic but also commercial systems, demonstrating the

growing interest of industries in fragmentation as a way of providing data

protection. Elements proper to such solutions like the management of frag-

ments’ locations are pointed out and portrayed. Recommendations on the

design of a secure fragmentation architecture are given at the end of the

chapter.

Chapter 3 extends the all-or-nothing family of algorithms with three

schemes that are the fastest among known state-of-the-art schemes: Secure

Fragmentation and Dispersal (SFD), Circular-All-Or-Nothing (CAON), and

Selective All-Or-Nothing (SAON). All of them encrypt then transform and

disperse data over multiple storage locations. The main goal is to protect the

obtained fragments against the exposure of the cryptographic material, espe-

cially the encryption key, without compromising fragmentation performance.

They achieve a very moderate performance overhead (between 6 and 10%)

in comparison to simple data encryption. This is possible as they require

only few operations in addition to data encryption. As SFD does not per-

form any operation apart from data fragmentation and CAON uses only one

exclusive-or per one bit of data, it is actually hard to imagine a fragmentation

algorithm that would achieve the same properties with less operations. The

three schemes share the same main goal but are dedicated to be applied in

7.1. SUMMARY OF CONTRIBUTIONS 213

three different contexts. Both SFD and CAON transform data into multiple

fragments of equal size. They could be applied in a data center composed of

a multitude of servers or by users having access to several storage sites. The

difference between the two schemes lies in the fact that they are designed

to be applied on different kinds of encrypted data. SFD operates on data

encrypted using block ciphers with a mode of operation applying chaining

between ciphertext blocks. CAON can be employed on any kind of encrypted

data and thus may be applied on data encrypted using streamciphers. SAON

differs from SFD and CAON, in that it fragments the transformed data into

only two fragments: a small fragment designated to be stored on a trusted

device and a large fragment meant to be outsourced. SAON suits the needs

of users having access to only a single storage site, i.e. a public cloud.

Schemes presented in Chapter 3 are fast but cannot be faster than their

key component - symmetric data encryption applied over the whole input

data. Consequently, accelerating the fragmentation process even more re-

quires limiting the number of block cipher operations. This is the main

idea behind the Partial Encryption and All-Or-Nothing (PE-AON) scheme

presented in Chapter 4. In a first step, PE-AON encrypts only a part of

the plaintext. In a second step, it blends the encrypted and non-encrypted

data using an all-or-nothing transform based solely on exclusive-ors opera-

tions. The speed up of the processing comes at the cost of tightened dispersal

requirements; fragments are protected (even against key exposure) but only

when an attacker is assumed to have access to at most one of the storage sites.

The only exception from this rule is when the amount of non-encrypted data

is equal to a size of a single fragment. In such configurations, the attacker

214 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

has to compromise the totality of the storage sites in order to reconstruct

the initial data and is able to recover some information about the data when

accessing all but two storage locations. It is an especially interesting config-

uration as it allows a fragmentation processing faster than encryption while

protecting the fragments against key exposure.

Chapter 5 introduces the Secure and Scalable Fragmentation (FSFA)

scheme - a lightweight fragmentation method that, instead of symmetric en-

cryption uses a combination of data encoding, permutation, and dispersal. It

produces a small storage overhead proportional to the number of fragments,

which is negligible in relation to larger data. Performance benchmarks show

that the scheme can be more than two times faster than symmetric encryp-

tion. The scheme is particularly well adapted for data dispersal in a multi-

cloud environment, where non-colluding cloud providers ensure the physical

separation between data fragments. It could be seen as a particular case of

a more general method of lightweight data protection combining fragmenta-

tion, data encoding, and data dispersal.

Nowadays, the internet-of-things enables data fragmentation and distri-

bution within a different type of architecture - the one composed of a multi-

tude of sensors nodes with tight energy and memory constraints. Chapter 6

treats the problem of providing data confidentiality by means of fragmen-

tation inside Unattended Wireless Sensor Networks. It introduces the Ad-

ditively Homomorphic Encryption and Fragmentation Scheme (AHEF) that

can be used to fragment data inside a sensor before dispersing them over a

number of the sensor’s neighbours. By replacing additively homomorphic se-

cret sharing used in state-of-the-art techniques with additively homomorphic

7.2. FUTURE WORK 215

information dispersal, AHEF considerably reduces the volume of data stored

inside the sensors (more at least 50%), as well as the transmission costs. In

addition, it decreases the number of required computations allowing sensors

to save the energy of the sensors.

7.2 Future Work

Six schemes were proposed improving the state-of-the-art techniques for data

protection by means of fragmentation in two kinds of distributed environ-

ments. They open the door to several research tracks and raise a few open

questions which need to be addressed in future work.

Fine-grained implementation of the algorithms

The presented schemes were evaluated not only in terms of theoretical com-

plexity but also in terms of execution time. The implementation was realized

in a coarse-grained manner as the libraries containing basic algorithms (like

the block cipher AES) were not modified. Integrating the proposed schemes

within standard mechanisms would improve their performance. For instance,

the block dispersal performed by the SFD could be directly implemented in-

side the function encrypting data using a block cipher and not in a second

step after the data encryption (the way it is currently implemented). More-

over, performance could be improved by fully exploiting various possibilities

for parallelization of the processing.

216 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Transforming FSFA into a methodology

The Fast and Scalable Fragmentation Algorithm (FSFA) presented in Chap-

ter 5 could be transformed into a more general methodology combining sev-

eral lightweight mechanisms in order to protect the fragmented data. Indeed,

various modifications for methods of data dispersal over fragments, data en-

coding, or data permutation could be done. First, instead of Shamir’s se-

cret sharing, another secret sharing scheme could be applied. Second, the

amount of employed pseudo-random data (in FSFA, presented as the Initial

Pseudo-random Blocks) could be adjusted to the desired level of data pro-

tection. Third, a more sophisticated means of data permutation could be

imagined. Although some preliminary cryptanalysis work was performed, a

more detailed security analysis comparing it with the state-of-the-art should

be performed before its deployment in a industrial context.

The dispersal obstacle

During the descriptions of the dispersal of the fragments, it was assumed

that the user has the access to a sufficient number of physically separated or

independent storage locations, i.e. different data centers of the same storage

provider or different storage providers. However, the question of how to en-

sure the separation of the fragments is not trivial. First, fragments should

not be distributed using a single channel in order to make the man-in-the-

middle attack inefficient. Ideally, a separate encrypted communication chan-

nel should be established between the trusted user’s device and each of the

storage locations. Second, the dispersal obstacle is enabled by the difficulty

to access the selected number of storage location. Therefore, even a coarse-

7.2. FUTURE WORK 217

grained dispersal over different storage providers may be not challenging for

the attacker, for instance if the user uses the same credentials to access each

of storage sites. The same situation will occur if the data are dispersed over

virtually separated but physically identical storage servers. Therefore, future

work will focus on ensuring a secure distribution of the data fragments from

the trusted area where the fragmentation occurs to their final destinations.

Processing of fragmented data

The question of a secure processing is unavoidable in the case of outsourced

data. A theoretical way of addressing this issue could be seen in the use

of homomorphic encryption [Gen09]. However, Fully Homomorphic Encryp-

tion is currently impractical and Somewhat Homomorphic Encryption has

limited applications areas. Multi-party computation and searchable encryp-

tion seems a much more promising direction for following years [ABB+15]. A

research track would adapt existing multi-party computation and searchable

encryption techniques to the fragmented nature of the data.

Designing a complete bitwise fragmentation storage systems

In the future, presented fragmentation algorithms could be integrated inside

existing systems in order to enrich them with an additional data protection

mechanism or with a fast and lightweight fragmentation alternative. For

instance, they could be integrated within the HAIL system providing high-

availability and integrity for cloud storage [BJO09] or the DepSky multi-

cloud project [BCQ+13]. Moreover, the all-or-nothing schemes presented in

Chapter 3 could be used as a way of creating dependencies between data in

218 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

fast access management systems, like the Mix&Slice [BDCdVF+16].

Fragments Distribution and Energy Cost Evaluation of Fragmen-

tation in UWSN

The schemes presented in Chapter 6 were evaluated in terms of storage over-

head, transmission costs, as well as performance. In the future, an analysis of

the energy consumption should be performed. Indeed, energy optimization

plays a crucial role inside UWSN as sensors are powered by batteries. Thus,

theoretical results showing that the AHEF scheme requires less computa-

tions than other techniques should be confirmed by an empirical measure-

ment of the sensors’ energy consumption. Such measurements should take

into account not only the energy required for the data fragmentation, but

also the energy required to disperse the fragments. The first works on this

subject, addressing the optimal distribution of data fragments, are already

in progress [CKL18].

A static configuration of the UWSN where the sensor sends data only to

its closest neighbors facilitates the description and evaluation of the AHEF

scheme. However, this network model could be extended in several aspects.

First, the proposed fragmentation scheme could be adapted to a dynamic

network model where the nodes are mobile and thus neighbors of a node

are constantly changing. Second, a multi-hop data dispersal protocol could

be established that would wisely balance between the dispersal scope of the

data fragments and the energy consumption of the sensors. A work on this

subject is already in progress [LKMJ19].

BIBLIOGRAPHY 219

Bibliography

[ABB+15] Dave Archer, Dan Bogdanov, Sasha Boldyreva, Seny Ka-

mara, Florian Kerschbaum, Yehuda Lindell, Steve Lu, Jes-

per Buus Nielsen, Rafail Ostrovsky, Jakob I. Pagter, Ahmad-

Reza Sadeghi, and Adrian Waller. Future directions in com-

puting on encrypted data, 2015.

[BCQ+13] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando

André, and Paulo Sousa. Depsky: Dependable and secure

storage in a cloud-of-clouds. Trans. Storage, 9(4):12:1–12:33,

November 2013.

[BDCdVF+16] Enrico Bacis, Sabrina De Capitani di Vimercati, Sara Foresti,

Stefano Paraboschi, Marco Rosa, and Pierangela Samarati.

Mix&slice: Efficient access revocation in the cloud. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’16, pages 217–228, New

York, NY, USA, 2016. ACM.

[BJO09] Kevin D Bowers, Ari Juels, and Alina Oprea. Hail: A high-

availability and integrity layer for cloud storage. In Proceed-

ings of the 16th ACM conference on Computer and commu-

nications security, pages 187–198. ACM, 2009.

[CKL18] Hong-Beom Choi, Young-Bae Ko, and Keun-Woo Lim.

Energy-aware distribution of data fragments in unattended

wireless sensor networks. In Proceedings of the Third Inter-

220 BIBLIOGRAPHY

national Conference on Security of Smart Cities, Industrial

Control System and Communications, SSIC ’18, 2018.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme, 2009.

[LKMJ19] Keun-Woo Lim, Katarzyna Kapusta, Gerard Memmi, and

Woo-Sung Jung. Multi-hop data fragmentation in unat-

tended wireless sensor networks. In Submitted to the In-

ternational Conference on Information Processing in Sensor

Networks (IPSN 2019), 2019.

Appendix A

Empirical Analysis of FSFA

This appendix presents an empirical security evaluation of the Fast and Scal-

able Fragmentation Algorithm (FSFA) introduced in Chapter 5. Results

show that data inside fragments produced by FSFA achieve a good level of

uniformity and independence. Contrary to an information dispersal algo-

rithm, this scheme does not preserve patterns inside data fragments.

All tests were performed using Matlab environment on textual data sam-

ples provided by the French post office LaPoste1. An example of one of

such data sample is shown in Figure A.1a. Its corresponding fragment is

presented in Figure A.1c and compared to the one obtained using an IDA

(Figure A.1b).

Probability Density Function. Frequency counts close to a uniform dis-

tribution testify data have a good level of mixing. This means that each

byte value inside a fragment should have an occurrence probability close to
1
v

= 0.0039, where v is the number of possible values (256 for a byte). In

1http://www.laposte.fr/

221

222 APPENDIX A. EMPIRICAL ANALYSIS OF FSFA

Original data IDA Proposed scheme

Figure A.1: Byte value distribution of a textual data sample (a) and distri-

bution of one of its fragment after applying an IDA (b) and after applying

the proposed approach (c), k=2. Data patterns are preserved after the use of

an IDA. Fragment (c) contains all possible byte values and does not contain

visible data patterns. The x-axis shows the byte position inside the sample,

the y-axis shows the byte value at position x.

Figure A.2a, the probability density function (PDF) of a data sample and

two of its fragments are shown. Results for the fragments are spread over

the space and have a distribution close to uniform. It demonstrates that the

occurrence probability of byte values is close to 0.0039.

Entropy. Information entropy is a measure of unpredictability of informa-

tion content [Cac97]. In a good fragmentation scheme the entropy of the

fragments should be close to ideal. Figure A.2b shows the entropy value

for three different fragmented data samples for different fragmentation al-

gorithm. The entropy value of the fragments generated using FSFA was

comparable with the entropy of fragments generated using SSMS and much

223

Figure A.2: Left: Probability density function comparison for data and their

two different fragments. The x-axis shows possible byte values in the sample,

the y-axis shows the probability of occurrence of a value. For fragmented

data, the occurrence probability is close to the one of a uniform distribution

(0.039). Right: Entropy comparison for three data samples (text, image).

The maximum entropy value is equal to 8. Entropy of fragments obtained

using IDA depends strongly on the entropy of the input data.

higher than the one obtained using an IDA.

Chi-squared test. The uniformity of byte values of data inside fragments

was validated by applying a chi-squared test [Coc52]. For a significance

level of 0.05, the null hypothesis is not rejected and the distribution of the

fragment data is uniform if χ2
test ≤ χ2

theory(255, 0.05) ≈ 293. The test was

applied on fragmentation results of 15 different data samples for a fragment

size of 1000 bytes. For all samples, the tests was successful.

224 APPENDIX A. EMPIRICAL ANALYSIS OF FSFA

(a) Original data (b) IDA (c) Proposed scheme

Figure A.3: Recurrence plots for data from Figure A.1. The x-axis shows

data values, the y-axis shows data values with a delay t = 1.

Recurrence. A recurrence plot serves to estimate correlation inside data

[RN88]. Considering data vector x = x1, x2, ..., xm a vector with delay t ≥ 1 is

constructed x(t) = x1+t, x2+t, ..., xm+t. A recurrence plot shows the variation

between x and x(t). In Figure A.3, such plots for a data sample and its

fragments obtained by applying an IDA and the proposed scheme are shown.

Using the proposed scheme, data inside the fragments are more uniformly

distributed.

Correlation. Correlation coefficients between fragments were measured

and were close to 0. This demonstrates that even neighboring fragments are

not correlated with each other and thus confirms the independence property

of the scheme.

Difference. Each fragment should be significantly different from the initial

data and from other fragments of the same fragmentation result. Bit differ-

ence between a data sample and each of its fragments was measured and

BIBLIOGRAPHY 225

(a) (b)

Figure A.4: Correlation between fragments. Measured for c = 2 (a) and c = 3

(b). Block size was equal to 34 bytes. Correlation coefficients are close to 0,

even between neighbor fragments.

was close to 50%. The same result was obtained for the difference between

fragments themselves.

Bibliography

[Cac97] Christian Cachin. Entropy measures and unconditional security in

cryptography, 1997.

[Coc52] William G. Cochran. The χ2 test of goodness of fit. Ann. Math.

Statist., 23(3):315–345, 09 1952.

[RN88] Joseph L. Rodgers and Alan W. Nicewander. Thirteen Ways to Look

226 BIBLIOGRAPHY

at the Correlation Coefficient. The American Statistician, 42(1):59–

66, 1988.

Appendix B

Publications, Talks, and

Student Projects

This appendix lists the publications that were published during the work on

this dissertation. It also contains a list of relevant talks (seminars, poster’s

presentations). Several student projects were also realized in the framework

of this work, they are listed out at the end.

The work presented in this dissertation was partially founded by the

ITEA2-CAP WP3 European project.

Publications:

1. Katarzyna Kapusta, Gérard Memmi, and Hassan Noura: Additively

Homomorphic Encryption and Fragmentation Scheme for Data Aggre-

gation inside UnattendedWireless Sensor Networks, Annals of Telecom-

munications, 2018. [accepted to be published, selected among the best

papers of the CSnet’18 conference]

227

228 APPENDIX B. PUBLICATIONS AND TALKS

2. Keun-Woo Lim, Katarzyna Kapusta, Gérard Memmi, and Woo-Sun

Jung, Multi-hop Data Fragmentation in Unattended Wireless Sensor

Networks, the International Conference on Information Processing in

Sensor Networks (IPSN), Montreal, Canada 2019. [submitted]

3. Katarzyna Kapusta and Gérard Memmi: POSTER: CAON:A Very

Fast Scheme to Protect Encrypted Data against Key Exposure. ACM

Conference on Computer and Communications Security (CCS), Toronto,

Canada, 2018.

4. Katarzyna Kapusta and Gérard Memmi: Selective All-Or-Nothing Trans-

form: Protecting Outsourced Data Against Key Exposure. 10th Inter-

national Symposium on Cyberspace Safety and Security (CSS), Amalfi,

Italy, 2018. [paper invite by the General Chair for the special issue of

International Journal of High Performance Computing and Network-

ing]

5. Katarzyna Kapusta and Gérard Memmi: A Fast and Scalable Frag-

mentation Algorithm for Data Protection Using Multi-storage over In-

dependent Locations. Security and Trust Management (STM, Esorics’

workshop), Barcelona, Spain, 2018.

6. Katarzyna Kapusta and Gérard Memmi: Enhancing Data Protection

in a Distributed Storage Environment Using Structure-Wise Fragmen-

tation and Dispersal of Encrypted Data. TrustCom/BigDataSE, New

York, USA, 2018.

7. Katarzyna Kapusta, Gérard Memmi, and Hassan Noura: Secure and

229

resilient scheme for data protection in unattended wireless sensor net-

works. 1st Cyber Security in Networking Conference (CSNet), Rio de

Janeiro, Brazil, 2017.

8. Katarzyna Kapusta, Gérard Memmi, and Hassan Noura: POSTER: A

Keyless Efficient Algorithm for Data Protection by Means of Fragmen-

tation. ACM Conference on Computer and Communications Security

(CCS), Vienna, Austria, 2016.

9. Katarzyna Kapusta and Gérard Memmi: Data protection by means of

fragmentation in distributed storage systems. International Conference

on Protocol Engineering and International Conference on New Tech-

nologies of Distributed Systems (ICPE/NTDS), Paris, France, 2015 .

10. Gérard Memmi, Katarzyna Kapusta, Patrick Lambein, and Han Qiu:

Data Protection: Combining Fragmentation, Encryption, and Disper-

sion, ITEA2-CAP WP3 Final Report, arXiv:1512.02951, 2016.

Talks:

1. Accelerating all-or-nothing transforms. ETH, Zurich, December 2018.

2. Secure Data Fragmentation and Dispersal. Warsaw University of Tech-

nology, Warsaw, June 2018.

3. A Keyless Efficient Algorithm for Data Protection by Means of Frag-

mentation. SnT, Luxembourg, January 2017.

4. Fragmentation for data protection. LINCS, Paris, March 2016.

230 APPENDIX B. PUBLICATIONS AND TALKS

5. (Poster presentation) Fragmentation for data protection. The Inter-

national Symposium on Research in Attacks, Intrusions and Defenses

(RAID), Paris, September 2016.

Student Projects:

1. Recherche sur la Protection des Données par Fragmentation, Nathalie

ENFRIN, professional thesis, 6 months, 2018.

2. Protection des données dans les réseaux de capteurs de type UWSN,

Alexandre GUICHANDUT, Matteo BROWANG, and Paul-Ernest MAR-

TIN, 2 weeks, 2018.

3. Protection des données dans les environnements distribués (Cloud),

Yohan CHALIER, Gauthier CHATAING, and Antoine URBAN, 2 weeks,

2017.

4. Protection des données dans les environnements distribués (Cloud),

Selim BEN AMAR, Abdessalam BOULAHDID, Faycal FASSI-FEHRI,

Cedric OSORNIO GLEASON, Quentin LUTS, and Arnaud DUBESSAY,

2 weeks, 2018.

List of Figures

1 Dispersion des données selon leurs niveaux de confidentialité. . 12

2 Tests de performance de l’algorithme CAON. 17

3 Tests de performance de l’algorithme SAON. 18

4 Tests de performance de l’algorithme PE-AON. 20

5 Tests de performance de l’algorithme FSFA. 22

6 Fragmentation dans les UWSN. 23

7 Occupation de mémoire et cout de transmission par capteur. . 24

2.1 A performance comparison between Shamir’s secret sharing

(SSS), Rabin’s information dispersal algorithm (IDA), and the

fast and scalable fragmentation scheme (FSFA). 59

2.2 Performance comparison between fragmentation techniques based

on symmetric encryption. 64

2.3 Fragmentation with the use of two storage providers. 89

2.4 Dispersing data according to the trustworthiness of the storage

devices. 93

3.1 (Secure Fragmentation and Dispersal) Example of data trans-

formation into shares and fragments. 113

231

232 LIST OF FIGURES

3.2 (Secure Fragmentation and Dispersal) Pseudo-code of the data

fragmentation function. 115

3.3 (Secure Fragmentation and Dispersal) Example of fragments

dispersal. 119

3.4 (Secure Fragmentation and Dispersal) Performance benchmark.122

3.5 (Secure Fragmentation and Dispersal) Performance compari-

son in an end-to-end scenario. 123

3.6 Pseudo-code of the linear transform creating dependencies be-

tween consecutive blocks of the ciphertext and between the first

block C0 and k − 1 pre-transformed blocks that will be later

dispersed over different fragments (here we choose the k − 1

special blocks with indices ij, chosen (i) with gaps at least 1

between them, (ii) and such that, during dispersal, C ′0 and the

C ′ij
all end up in k pairwise different fragments. 127

3.7 Pseudo-code of the function reconstructing the initial cipher-

text. No block can be reconstructed without first reconstructing

C0. 127

3.8 Pseudo-code of the function dispersing the transformed cipher-

text CIPH ′ over k fragments FRAG = F0, . . . , Fk−1. 128

3.9 (Circular All-or-nothing) Ciphertext dispersal. 129

3.10 (Circular All-or-nothing) Performance benchmark. 132

3.11 (Selective All-or-nothing) Pseudo-code of the fragmentation. . 136

3.12 (Selective All-or-nothing) Transformation of SHARE1 into

public and private fragments. 137

LIST OF FIGURES 233

3.13 (Selective All-or-nothing) Pseudo-code of the linear all-or-nothing

transform applied to the share SHARE11. 138

3.14 (Selective All-or-nothing) Dispersing private and public frag-

ments. 140

3.15 (Selective All-or-nothing) Performance results. 142

4.1 (PE-AON) Pseudo-code of the first step. 153

4.2 (PE-AON) Illustration of the partial encryption and fragmen-

tation of a plaintext. 154

4.3 (PE-AON) Pseudo-code the second step. 155

4.4 (PE-AON) Fragments after applying the all-or-nothing trans-

form. 156

4.5 (PE-AON) Performance benchmark. 160

5.1 (FSFA) Illustration for c = 2 and k = 4. 168

5.2 FSFA - Pseudo-code of the function transforming data into

fragments. 169

5.3 (FSFA) Illustration of encoding. 171

5.4 (FSFA) Pseudo-code of the function EncodeAndPermute-

Block. 173

5.5 (FSFA) Performance benchmark. 182

6.1 Simplified scheme of the network architecture. 193

6.2 Storage cost per sensor. 203

6.3 Transmission costs per sensor. 204

6.4 Comparison of two aggregation variants. 205

6.5 AHEF - Performance benchmark. 206

234 LIST OF FIGURES

A.1 Empirical analysis, byte value distribution. 222

A.2 Probability density function and entropy comparison for dif-

ferent data samples. 223

A.3 Recurrence plots. 224

A.4 Correlation between fragments. 225

List of Tables

2.1 A comparison between relevant bitwise fragmentation tech-

niques in terms of performance. 57

2.2 A comparison between relevant bitwise fragmentation tech-

niques in terms of volume of stored data, resilience, and data

confidentiality. 58

2.3 Comparison between fragmentation techniques based on sym-

metric encryption. 65

3.1 (Circular All-or-nothing) Comparison with relevant works. . . 130

4.1 (PE-AON) Complexity comparison with relevant techniques. . 157

5.1 FSFA: Runtime and storage requirements of relevant fragmen-

tation algorithms. 178

6.1 Quantitative analysis of relevant schemes providing data pro-

tection inside UWSN. 201

235

236 LIST OF TABLES

List of Abbreviations

AHEF Additively Homomorphic Encryption and Fragmentation scheme

AHE Additively Homomorphic Encryption

AONT-RS All-Or-Nothing Transform and Reed-Solomon codes

AONT All-Or-Nothing Transform

AON All-Or-Nothing

CAON Circular All-Or-Nothing

FRS Fragmentation-Redundancy-Scattering

FSFA Fast and Secure Fragmentation Algorithm

HEHSS Homomorphic Encryption and Homomorphic Secret Sharing

IDA Information Dispersal Algorithm

PE-AON Partial Encryption and All-Or-Nothing

RSSS Reed-Solomon codes and Secret Sharing based scheme

237

238 LIST OF TABLES

SFD Secure Fragmentation and Dispersal

SO Storage Overhead

SSS Shamir’s Secret Sharing

TC Transmission Costs

UWSN Unattended Wireless Sensor Network

WSN Wireless Sensor Network

XOR-splitting eXclusive-or splitting

