
HAL Id: tel-03525700
https://pastel.hal.science/tel-03525700

Submitted on 14 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning for nonlinear model order reduction
Thomas Daniel

To cite this version:
Thomas Daniel. Machine learning for nonlinear model order reduction. Mechanics of materials
[physics.class-ph]. Université Paris sciences et lettres, 2021. English. �NNT : 2021UPSLM039�. �tel-
03525700�

https://pastel.hal.science/tel-03525700
https://hal.archives-ouvertes.fr

Préparée à MINES ParisTech

Machine learning for nonlinear model order reduction

Apprentissage statistique pour la réduction de modèle

non-linéaire

Soutenue par

Thomas DANIEL
Le 24/09/2021

Ecole doctorale n° 621

Ingénierie des Systèmes,

Matériaux, Mécanique,

Energétique (ISMME)

Spécialité

Mécanique

Composition du jury :

Yvon MADAY

LJLL – Sorbonne Université Président du Jury

Virginie EHRLACHER

CERMICS – Ponts ParisTech Rapporteuse

Ioannis STEFANOU

GeM – Centrale Nantes Rapporteur

Stefanie REESE

IFAM – RWTH Aachen University Examinatrice

Kathrin SMETANA

Stevens Institute of Technology Examinatrice

Fabien CASENAVE

SafranTech – Safran Group Examinateur

Nissrine AKKARI

SafranTech – Safran Group Examinatrice

David RYCKELYNCK

Centre des Matériaux – Mines ParisTech Directeur de thèse

École Doctorale ISMME

THÈSE

présentée pour l’obtention du diplôme de

DOCTEUR

de l’École des Mines ParisTech

Spécialité : Mécanique

par

Thomas DANIEL

intitulée

Machine learning for nonlinear model order

reduction

soutenue le 24/09/2021, devant le jury composé de :

Yvon MADAY Président du Jury LJLL - Sorbonne Université
Virginie EHRLACHER Rapporteuse CERMICS - Ponts ParisTech
Ioannis STEFANOU Rapporteur GeM - Centrale Nantes
Stefanie REESE Examinatrice IFAM - RWTH Aachen University
Kathrin SMETANA Examinatrice Stevens Institute of Technology
Mickaël ABBAS Invité EDF R&D
Cédric LEBLOND Invité Naval Group & JLMT

David RYCKELYNCK Directeur de thèse Mines ParisTech
Fabien CASENAVE Encadrant SafranTech - Safran Group
Nissrine AKKARI Co-encadrante SafranTech - Safran Group

Remerciements

Tout d’abord, je souhaite remercier mon directeur de thèse David Ryckelynck et mes
encadrants Fabien Casenave et Nissrine Akkari pour l’opportunité qu’ils m’ont offerte de
travailler avec eux sur ce sujet de thèse, et pour l’excellent encadrement dont j’ai bénéficié
tout au long de ces trois années. Vous m’avez transmis votre passion pour vos sujets de
recherche, et avez su me guider tout en me donnant de l’autonomie et des libertés dans mon
travail. Je garderai un très bon souvenir de nos nombreuses discussions scientifiques, et
je vous suis très reconnaissant de votre accompagnement ainsi que de votre bienveillance
à mon égard. Les résultats présentés dans ce mémoire de thèse sont le fruit d’un vrai
travail d’équipe auquel je suis fier d’avoir participé. Cette expérience n’aurait pas été la
même sans vous. Merci aussi à Fabien pour les nombreux outils de programmation qu’il
a développés et qui m’ont été très utiles pour l’implémentation de nos idées, notamment
la librairie Python Mordicus pour la réduction de modèle non-intrusive. Je remercie aussi
Ali Ketata, que j’ai eu le plaisir d’encadrer pendant son stage à SafranTech pour creuser
de nouvelles idées et explorer différentes pistes en lien avec ma thèse.

Un grand merci à Virginie Ehrlacher et Ioannis Stefanou d’avoir accepté de relire ce
mémoire en tant que rapporteurs, ainsi que pour leurs précieux commentaires. Merci
également à Yvon Maday, Stefanie Reese, Kathrin Smetana, Mickaël Abbas et Cédric
Leblond d’avoir accepté de faire partie de mon jury de thèse. C’est un honneur pour moi
d’avoir pu présenter mes travaux devant un jury aussi prestigieux.

J’ai eu plaisir à venir travailler à SafranTech où j’ai rencontré des personnes exception-
nelles, tant sur le plan humain que sur le plan scientifique. Travailler auprès de docteurs-
ingénieurs experts dans leurs domaines, sur des thématiques de recherche motivées par de
réels besoins en lien avec les activités du Groupe Safran, a été un vrai privilège. J’ai beau-
coup appris à vos côtés, et ai largement bénéficié de votre savoir-faire et de vos outils pour
mener à bien ma thèse. À ce sujet, je souhaite tout particulièrement mentionner Felipe,
Julien et Fabien pour la superbe librairie Python BasicTools1 dont je me suis beaucoup
servi pour traiter des données de simulations, ainsi que Christian, Sébastien, Clément et
Frédéric pour leurs précieux conseils. Je pense aussi à toute l’équipe du projet auquel ma
thèse était rattachée, qui m’a permis de découvrir les thématiques passionnantes associées
à la modélisation d’une aube de turbine haute pression dans un turboréacteur : merci
à Augustin, Oana, Romain, Teddy, et Tonya. Je remercie aussi Ayoub, Brian, Grégory,
Mohamed, Nicolas, Pierre et Xavier, avec qui j’ai eu plaisir à discuter, et garde un souvenir
ému du passage malheureusement trop court d’Alexandros à SafranTech.

Je garderai un très bon souvenir de la bonne ambiance entre doctorants, à SafranTech
comme au Centre des Matériaux de Mines ParisTech. Côté Safran, je me rappellerai du
co-voiturage avec Martin accompagné des chansons de Dire Straits après les séances de
sport, des bons conseils de mon voisin et compatriote nissart Adrien, de la bonne pastilla
marocaine chez Mouad, des blagues d’Anthony, et des bons moments partagés avec eux
et Clément, Florian, Hamza, Maxence, William, et Yannis. Côté Centre des Matériaux,
je me souviendrai de l’excellente cohésion parmi les doctorants, et je tiens en particulier à
remercier Laurent et Hugo pour leur aide précieuse sur le logiciel Zset.

Je tiens également à remercier le département GMM (Génie Mécanique et Matériaux)
de l’École des Ponts ParisTech pour m’avoir donné l’opportunité de créer un nouveau

1https://gitlab.com/drti/basic-tools.

iii

https://gitlab.com/drti/basic-tools

cours avec mon directeur de thèse sur l’application du machine learning à la simulation
numérique en mécanique. En tant qu’ancien étudiant du département, j’ai été ravi de
participer à ce projet et enseigner aux élèves-ingénieurs de l’école.

J’ai une pensée aussi pour toutes les personnes du Centre des Matériaux qui font en
sorte que les thèses se déroulent au mieux, soutiennent les doctorants, leur proposent des
formations, et les accompagnent dans les tâches administratives. Merci à elles.

Sur un plan plus personnel, ces dernières années marquées par la crise du Covid m’ont
amené à redéfinir mes projets pour l’après-thèse. Je remercie chaleureusement toutes
les personnes qui m’ont aidé dans cette réflexion et dans ma recherche d’emploi. J’ai
aujourd’hui l’immense bonheur de retourner dans le sud de la France, et c’est un peu
grâce à chacun d’entre vous que je concrétise ce projet qui m’était devenu si cher.

Enfin, je remercie Amal et ma famille pour leur soutien inconditionnel, dans les bons
moments comme dans les moins bons. Plus généralement, je pense à toute ma famille au
sens large, en France et au Maroc, et à mes amis, pour tous les moments agréables que
nous avons partagés ensemble. Avec les nombreux événements qui ont rythmé ces trois
dernières années, je mesure la chance que j’ai de vous avoir.

À vous tous, ce mémoire de thèse est dédié.

∗ ∗
∗

iv

Table of Contents

Table of Contents

I Introduction 1

1 Introduction 3

1.1 Motivations . 3

1.2 Computational physics assisted by artificial intelligence 5

1.3 Main contributions . 7

II Machine learning methods 11

2 General and theoretical concepts 15

2.1 What is machine learning? . 16

2.2 Basic concepts . 18

2.2.1 Probability theory . 18

2.2.2 Estimation theory . 21

2.2.3 Information theory . 21

2.3 Mercer kernels . 22

2.3.1 Mercer’s theorem and Karhunen-Loève expansion 22

2.3.2 Application to random field simulation 24

2.3.3 The kernel trick . 25

3 Uncertainty quantification in high-fidelity models 27

3.1 The concept of nonparametrized variabilities 28

3.2 Design of numerical experiments . 29

3.3 Monte Carlo simulations . 31

3.4 Uncertainty propagation example in nonlinear solid mechanics 32

v

Table of Contents

4 Unsupervised learning 37

4.1 The curse of dimensionality . 38

4.2 Dimensionality reduction . 38

4.3 Cluster analysis . 39

4.3.1 Clustering algorithms . 39

4.3.2 K-medoids clustering . 40

5 Supervised learning 43

5.1 Empirical risk minimization . 44

5.2 Regression algorithms . 46

5.2.1 Penalized linear regression and kriging 46

5.2.2 Hyperparameters tuning . 47

5.3 Classification algorithms . 48

5.3.1 Generative classifiers . 48

5.3.2 Logistic regression . 49

5.3.3 k-nearest neighbors classifier . 50

5.3.4 Tree-based classifiers . 50

5.3.5 Support vector classifiers . 51

5.3.6 Artificial neural networks . 53

5.4 Ensemble learning . 57

5.4.1 Voting and averaging . 57

5.4.2 Other ensemble methods . 58

5.5 Classification in computational physics . 59

5.6 Feature selection based on mutual information 60

5.6.1 Introduction to feature selection . 60

5.6.2 mRMR feature selection . 61

III Nonlinear model order reduction 63

6 Projection-based model order reduction 67

6.1 Parametrized partial differential equations 68

6.2 Model order reduction techniques . 68

6.3 Data compression . 69

6.3.1 The Proper Orthogonal Decomposition 69

6.3.2 The POD Galerkin method . 72

vi

Table of Contents

6.4 Operator compression . 73

6.4.1 Hyper-reduction . 73

6.4.2 The Empirical Cubature Method . 73

6.4.3 Dual variable reconstruction . 74

7 Non-reducible problems 77

7.1 Kolmogorov widths . 78

7.2 Strategies for non-reducible problems . 80

IV ROM-nets 83

8 Preliminaries about ROM-nets 89

8.1 ROM-nets . 90

8.2 Dictionary-based ROM-nets . 91

8.3 Overview of the training procedure . 93

9 Physics-informed clustering procedure 95

9.1 Drawbacks of the Euclidean distance . 96

9.2 The dissimilarity measure . 97

9.2.1 Definitions and general properties 97

9.2.2 Case n = 1 . 102

9.3 Optimal partitions of the solution manifold 103

9.3.1 Normalized Kolmogorov width variant 104

9.3.2 Optimal K-N -ROM-dictionary partitions 104

9.3.3 Optimal K-1-ROM-dictionary partitions 105

9.3.4 Algorithm for the construction of a dictionary of local ROMs 106

9.4 Snapshots selection . 107

9.5 Application: 1D steady heat equation . 108

9.5.1 Problem description . 108

9.5.2 Comparison of different model order reduction strategies 109

9.6 Summary . 113

10 Hyperparameters tuning 115

10.1 Gain with respect to a global reduced-order model 116

10.2 Practical method . 118

10.3 Back to the 1D steady heat equation . 120

vii

Table of Contents

11 Classification for automatic model recommendation 123

11.1 Challenges to be addressed . 124

11.2 Test case . 125

11.3 Feature selection . 127

11.3.1 A geostatistical variant of mRMR feature selection 127

11.3.2 Numerical results . 130

11.4 Data augmentation . 131

11.4.1 Pure sets . 132

11.4.2 The data augmentation algorithm 134

11.4.3 Numerical results . 136

11.5 Validation of our feature selection and data augmentation algorithms 137

11.5.1 Classification performances of various classifiers 137

11.5.2 Comparison with a CNN . 140

11.5.3 How to further improve classification performances? 141

11.6 Applicability to other problems . 141

V Application to an industrial problem 143

12 Industrial context 147

12.1 HP turbine blades in an aircraft engine . 148

12.1.1 Thermomechanical fatigue of HP turbine blades 148

12.1.2 Industrial test case and objectives 149

12.2 Model and assumptions . 151

12.2.1 Modeling assumptions . 151

12.2.2 Stochastic model for the thermal loading 153

12.2.3 Mechanical constitutive model . 154

13 ROM-net’s training phase 159

13.1 Design of numerical experiments . 160

13.2 ROM dictionary construction . 161

13.2.1 Clustering . 161

13.2.2 Construction of local ROMs . 163

13.3 Automatic model recommendation . 166

13.3.1 Feature selection . 166

13.3.2 Classification . 167

13.4 Surrogate model for Gappy reconstruction 168

13.5 Summary . 169

viii

Table of Contents

14 ROM-net’s exploitation phase 171

14.1 Uncertainty quantification results . 172

14.2 Validation . 173

15 Conclusion 177

References 179

ix

Part I

Introduction

1

Chapter 1

Introduction

Contents

1.1 Motivations . 3

1.2 Computational physics assisted by artificial intelligence 5

1.3 Main contributions . 7

1.1 Motivations

Numerical simulations in physics have become an essential tool in many engineering do-
mains. The development of high-performance computing has enabled engineers and sci-
entists to use complex high-fidelity models for real-world applications, with ultra-realistic
simulations involving millions of degrees of freedom. However, such simulations are too
time-consuming to be integrated in design iterations in the industry. They are usually
limited to the final validation and certification steps, while the design process still relies
on simplified models. Accelerating these complex simulations is a key challenge, as it
would provide useful numerical tools to improve design processes. The development of
numerical methods for fast simulations would also enable using new models that have not
been applied to industrial problems yet, because of their complexities. Uncertainty quan-
tification is another important example of analysis that would become practicable if the
cost of simulations was sufficiently reduced. Indeed, quantities of interest monitored in
numerical simulations depend on the environment of the physical system, which is usually
not exactly known. In some cases, these uncertainties strongly influence simulation re-
sults, and the probabilistic behavior of the quantities of interest must be studied in order
to ensure the reliability of the industrial product.

The work presented in this thesis is funded by Safran and is motivated by the aero-
nautical industry’s need for fast numerical methods to control the uncertainties in the
design of high-pressure turbine blades in an aircraft engine, see Figure 1.1. As one of
the world leaders in the aeronautical industry, Safran is committed to the reduction of
the environmental impact of aviation thanks to the development of fuel-efficient engines
while maintaining a high level of reliability. Improving the engine’s efficiency requires
increasing the temperature of the gases leaving the combustion chamber, which is a real

3

Chapter 1. Introduction

Figure 1.1: The LEAP, turbofan developed by CFM International, a joint venture be-
tween Safran Aircraft Engines and GE Aviation. This engine powers Airbus A320neo,
Boeing 737 MAX and COMAC C919 planes. Picture taken from https://medialibrary.

safran-group.com/Photos/media/178745. ©2017 Antonio Gomez, Safran.

challenge given the extremely severe thermomechanical conditions that high-pressure tur-
bine blades already face. It is therefore crucial to predict the effects of uncertainties such
as thermal loading uncertainties (see Figure 1.2), in order to know to what extent the
mechanical behavior and thus the durability of the turbine blades are affected. However,
computing the fatigue lifetime of a high-pressure turbine may take several weeks, which
is incompatible with uncertainty quantification since it requires running many simula-
tions, typically thousands of simulations. Domain decomposition methods partially solve
this issue by leveraging advances in high-performance computing, but they are not nec-
essarily adapted to many-query problems because of their intensive use of computational
resources. Another solution is to reduce a bit the quality of the numerical predictions
in exchange for faster simulations requiring fewer computational resources. Indeed, for
uncertainty quantification purposes, knowing the exact values of many physics variables
on the entire system is not always necessary, since uncertainties may be summarized with
a few well-chosen quantities of interest. In this field, artificial intelligence (AI), and more
specifically machine learning, has a major role to play. Domain decomposition methods
remain also indispensable for the generation of high-fidelity training data for machine
learning algorithms.

4

https://medialibrary.safran-group.com/Photos/media/178745
https://medialibrary.safran-group.com/Photos/media/178745

1.2. Computational physics assisted by artificial intelligence

Figure 1.2: Uncertainties on the temperature field in a high-pressure turbine blade.

1.2 Computational physics assisted by artificial intelligence

Recent advances in machine learning has given birth to a new emerging research field,
namely AI-assisted computational physics. This thesis focuses on the use of machine
learning for the acceleration of computational methods in physics.

The most straightforward approach for the acceleration of numerical simulations is to
use supervised learning to replace the high-fidelity numerical solver by a regression-based
surrogate model (or metamodel), when the quantities of interest are well established. Using
regression algorithms, one can directly estimate quantities of interest for given values
of the uncertain parameters, without computing intermediate variables involved in the
underlying physics model. When the quantity of interest is a field defined on the whole
mesh of the physical system, dimensionality reduction may be required to reduce the
number of outputs to predict. Using training data generated by the high-fidelity model,
dimensionality reduction can identify a reduced set of latent variables1 describing the
quantity of interest. The proper orthogonal decomposition (POD [1, 2]) is a linear method
defining the latent space as a low-dimensional subspace minimizing the projection error of
training data. Generalization to nonlinear dimensionality reduction can be obtained with
artificial neural networks using an autoencoder architecture [3, 4]. A regression algorithm
can be applied in conjunction with one of these dimensionality reduction techniques in
order to build a metamodel that predicts the latent variables given the time and the
parameters’ values. The quantity of interest can then be reconstructed, either using the
autoencoder’s decoder or by combining the modes of the POD basis. Examples can be
found in [5, 6, 7] for POD-GPR (Gaussian process regression), and in [8] for POD-NN
(using a neural network). These methods have the advantage of being very fast and non-
intrusive by nature. The latent dynamics, i.e. the evolution of the latent variables with
respect to time, can also be learnt by recurrent neural networks (e.g. Long Short-Term
Memory networks, LSTM [4]), see [9, 10, 11] for POD-LSTM and [12, 13, 14, 15] for
the combination of LSTM with autoencoders. Alternatively, the latent dynamics can be

1Latent variables are unobserved variables defined as functions of observable variables.

5

Chapter 1. Introduction

modeled with neural ordinary differential equations (NODEs) like in [16, 17].

All of the aforementioned methods are purely data-driven: apart from the training
data that are generated by a physics model, no physics knowledge is incorporated in the
learning process. Learning physics principles from data may require large datasets, espe-
cially for complex physics phenomena, which is incompatible with the computational cost
of the high-fidelity model generating the training data. Nonetheless, regression-based sur-
rogate models remain useful for the prediction of errors between the true solution and the
approximate one [5, 18, 19, 20, 21]. But contrary to many applications of machine learning
methods, applications in physics have the particularity of being described by mathemati-
cal models that have been developed by experts and researchers for many decades or even
centuries. This valuable prior knowledge must be incorporated in AI methods to improve
the quality of numerical predictions and compensate the lack of training data. In par-
ticular, purely data-driven approaches are likely to make predictions that do not satisfy
basic physics principles. To accelerate the constitutive equations solver in solid mechanics,
[22] introduces thermodynamics-based artificial neural networks (TANNs), which benefit
from automatic differentiation [23] to get thermodynamically-consistent predictions sat-
isfying the first and the second laws of thermodynamics. Applications to materials with
elastoplastic behaviors show that, on test data out of the range of training data, pre-
dictions of TANNs remain very good in comparison with neural network-based surrogates
trained for a classical regression task. These results illustrate how important it is to include
physics laws in machine learning methods to improve their performances or to reduce the
amount of training data that is required. Thermodynamics-aware neural networks have
also been studied in [24].

Another seminal paper [25] has defined physics-informed neural networks (PINNs) to
solve partial differential equations. The neural network takes the position and the time as
inputs, and returns the corresponding value of the solution of the boundary-value problem.
It is trained by minimizing the mean squared error loss penalized by a regularization term
that forces the predictions to satisfy the equations of the boundary-value problem. The
regularization term penalizes the squared residuals of the partial differential equations,
the boundary conditions and the initial conditions. Variants of this method use the weak
formulation [26] or the energy formulation [27] of the partial differential equations being
studied. Other approaches use artificial intelligence in multi-fidelity methods, where a
physics model makes a first prediction that is improved by a neural network to obtain a
high-fidelity prediction. This is called super-resolution. This idea has been used in [28]
with cycle-consistent generative adversarial networks (CycleGANs [29]).

Projection-based model order reduction [30, 31] is another discipline aiming at the
acceleration of numerical simulations without discarding physics equations. The POD
Galerkin method [2, 32] is a well-known projection-based method that solves partial differ-
ential equations in a suitable low-dimensional approximation space. This approximation
space is constructed with the POD using high-fidelity training data. Hyper-reduction [33]
has been introduced by David Ryckelynck in 2005 to maintain the speed of reduced-order
models for nonlinear problems involving a lot of internal variables. In this thesis, we
will use the POD Galerkin method with the Empirical Cubature Method (ECM [34]) for
hyper-reduction. These methods have been implemented in a non-intrusive Python code
by Fabien Casenave in the FUI Mordicus project involving several French companies,
including Safran. Details can be found in [35].

6

1.3. Main contributions

1.3 Main contributions

Figure 1.3: Temperature field on the high-pressure turbine blade studied in this thesis.

The objective of this thesis is to study the benefits of machine learning methods for
nonlinear model order reduction. The model order reduction community is actively con-
tributing to the assimilation of machine learning advances in computational physics. In
particular, the use of AI algorithms is motivated by the study of non-reducible problems,
that is, problems that cannot be solved accurately in a low-dimensional approximation
space. Advection-dominated and wave propagation problems are classic examples of non-
reducible problems. In this thesis, we rather focus on elliptic problems with high parameter
sensitivity. Among the wide variety of methods dealing with non-reducible problems, non-
linear manifold ROM methods [36, 37, 38] generalize the POD Galerkin method by using
an autoencoder to solve the equations on a nonlinear manifold. In this thesis, we rather
adopt another method based on clustering [39] for the construction of local reduced-order
models (ROMs) [40, 41], giving a dictionary of low-dimensional approximation spaces that
are adapted to different regions of the solution manifold. Our work is also inspired by the
ideas presented in [42, 43], where a classification algorithm learns to select the most ap-
propriate approximation space for fast and accurate simulations. The novelties introduced
in this thesis can be summarized into 4 major contributions:

� The definition of a physics-informed clustering strategy based on a ROM-oriented
dissimilarity measure for the construction of dictionaries of local ROMs, with an illus-
tration of the sensitivity of local reduced-order models’ performances when changing
the dissimilarity measure used for clustering. The Euclidean distance in the solution
space, although commonly used, is shown to give irrelevant clusters in some specific
cases, leading to local ROMs that can even deteriorate the performances of a sin-
gle global ROM. The ROM-oriented dissimilarity measure has been introduced to
remedy this issue. In particular, two solutions have a low dissimilarity if they can
be reasonably well approximated in the same low-dimensional approximation space.

7

Chapter 1. Introduction

We introduce the concept of optimal partition of the solution manifold in terms of
normalized Kolmogorov widths, and prove that the optimal partitions can be found
by means of a representative-based clustering algorithm using this ROM-oriented
dissimilarity measure.

� The definition of an a priori efficiency criterion evaluating the profitability of a
dictionary of local ROMs associated to a classifier with respect to a single ROM. This
criterion can be evaluated quite early in the training phase, before time-consuming
operations. It also helps for the calibration of hyperparameters such as the number
of local ROMs in the dictionary.

� The development of a variant of the mRMR feature selection algorithm [44, 45]
for classification tasks on data coming from numerical simulations. This algorithm
reduces the risk of overfitting for high-dimensional classification problems with small
training sets by selecting a reduced set of features that are relevant for prediction
purposes but not redundant. When dealing with random fields discretized on a mesh,
it consists in identifying a few nodes of the mesh that give enough information for
prediction.

� The definition of a new data augmentation algorithm for classification problems on
physics data. It relies on the concept of pure sets in a labeled training set for the
generation of new labeled examples from convex combinations of elements of the
training set. Drawing points from the convex hulls of pure sets reduces the risk of
generating new data with wrong labels.

This thesis also introduces 3 additional minor contributions:

� The distinction between low-fidelity and high-fidelity data to address the different
needs in terms of the size of the training set for machine learning tasks and for model
order reduction.

� The use of surrogate models to replace the Gappy POD [46] when reconstructing
full fields from hyper-reduced predictions. The surrogate models take ROM predic-
tions on a reduced-integration domain as inputs and return the coefficients in the
corresponding POD basis to get predictions on the whole mesh.

� The demonstration of the applicability of our methodology to a real industrial prob-
lem, showing that it can be implemented without bottlenecks for large scale prob-
lems.

We have already presented most of these novelties in five papers [47, 48, 49, 50, 51], where
our methodology is called ROM-net. Some sections of this thesis report are directly taken
from these articles. The next chapter introduces machine learning methods that are used
in this thesis. Model order reduction methods and strategies for non-reducible problems
are presented in a separate chapter. The fourth chapter is the core of this thesis report: it
defines our methodology and gives detailed descriptions of the contributions listed above.
Finally, the last chapter shows the application of a ROM-net to a real high-pressure turbine
blade, whose temperature field can be visualized in Figure 1.3. With 2 local hyper-reduced
order models, the ROM-net accelerates a large scale nonlinear mechanical problem with a
complex elasto-viscoplastic constitutive law under high parameter sensitivity by a factor

8

1.3. Main contributions

of 636, with error indicators in the order of 1% to 3% on quantities of interest (stress and
strain variables). It enables the estimation of uncertainties on the mechanical behavior of
the high-pressure turbine blades given uncertainties on the thermal loading.

∗ ∗
∗

9

Part II

Machine learning methods

11

Résumé

Cette partie du mémoire introduit les principales notions d’apprentissage statistique (ma-
chine learning en anglais) utilisées dans ce travail de thèse. Nous commençons par définir
ce qu’est l’apprentissage statistique et le situons par rapport à d’autres thématiques as-
sociées, telles que l’intelligence artificielle, la science des données, et l’apprentissage pro-
fond. À l’intersection entre statistiques et optimisation, le machine learning comprend
entre autres des méthodes d’apprentissage supervisé à partir de données labellisées, et
d’apprentissage non-supervisé à partir de données brutes. Ces méthodes permettent de
construire des modèles prédictifs ou des algorithmes à partir de données d’entrâınement,
et peuvent aussi servir à extraire de l’information à partir de bases de données. Nous
introduisons ensuite quelques concepts de la théorie des probabilités, de l’estimation de
paramètres et de la théorie de l’information, afin de donner au lecteur les principales no-
tions élémentaires utilisées en apprentissage statistique. Nous nous intéressons enfin aux
opérateurs à noyau ainsi qu’au théorème de Mercer et à la transformée de Karhunen-
Loève, dont les applications sont nombreuses dans ce travail via la simulation de processus
stochastiques et de champs aléatoires, la décomposition orthogonale aux valeurs propres
pour la réduction de modèle, et l’astuce du noyau.

Le chapitre suivant est consacré à la quantification d’incertitudes dans des modèles
numériques potentiellement coûteux, et parle également de plans d’expériences numériques
et de méthodes de Monte-Carlo. C’est dans ce chapitre que nous définissons les variabilités
non-paramétrées : un modèle mathématique contient parfois des paramètres aléatoires
dont les fluctuations ne peuvent être décrites par un nombre raisonnable de paramètres ;
les fluctuations de ces paramètres aléatoires appartenant à un espace de grande dimension
sont appelées variabilités non-paramétrées. Cette notion souligne un aspect important de
ce travail de thèse, puisque nous nous intéressons à des applications en mécanique des
milieux continus où les incertitudes portent non pas sur quelques propriétés scalaires des
matériaux étudiés, mais sur un champ physique tel qu’un champ de température défini
en tout point du système et pour lequel l’utilisateur ne dispose a priori d’aucun modèle
paramétrique.

Cette partie du mémoire se termine par un large aperçu des algorithmes d’apprentissage
statistique utilisés pendant la thèse. Un premier chapitre est dédié à l’apprentissage
non-supervisé et en particulier aux méthodes de réduction de dimension et de partition-
nement des bases de données. Un second chapitre présente les principaux algorithmes
d’apprentissage supervisé pour la classification et la régression, ainsi que les méthodes
d’apprentissage ensembliste permettant de réduire le sur-ajustement (ou surapprentis-
sage). Le risque de surapprentissage est particulièrement important dans les problèmes
considérés dans ce mémoire, où les données sont en grande dimension et en nombre limité.
Nous verrons qu’il est par ailleurs possible de synthétiser l’information contenue dans ces

13

données pour une tâche précise grâce à des algorithmes de sélection de variables pertinentes
et non-redondantes.

∗ ∗
∗

14

Chapter 2

General and theoretical concepts

Abstract: This chapter introduces basic concepts, definitions and theorems that are used
throughout this thesis. After a brief introduction to machine learning, concepts and meth-
ods from probability theory, estimation theory and information theory are presented. Prob-
ability theory is particularly important for the description of uncertainties in a model and
for the understanding of machine learning algorithms. Methods from estimation theory are
extensively used in machine learning for parameter estimation from data. Machine learn-
ing methods also borrow concepts of information theory for the definition of loss functions
for classification problems and for feature selection, for example. Finally, Mercer kernels
and the Karhunen-Loève expansion are defined at the end of this chapter for their applica-
tions to random field simulation, kernel methods, and, as explained later, to model order
reduction.

Contents

2.1 What is machine learning? . 16

2.2 Basic concepts . 18

2.2.1 Probability theory . 18

2.2.2 Estimation theory . 21

2.2.3 Information theory . 21

2.3 Mercer kernels . 22

2.3.1 Mercer’s theorem and Karhunen-Loève expansion 22

2.3.2 Application to random field simulation 24

2.3.3 The kernel trick . 25

15

Chapter 2. General and theoretical concepts

2.1 What is machine learning?

Artificial Intelligence
Develop machine intelligence.

Data Science
Process and analyze data.

Machine Learning
Build a predictive model or a
computer program from data.

Data Mining
Extract information from data.

Big Data
Data science on large datasets.

Deep Learning
Machine learning with
artificial neural networks.

Figure 2.1: Machine learning and related fields.

Artificial intelligence is an interdisciplinary field whose goal is to develop machine intel-
ligence, such as the ability to interact with the environment, collect and interpret data,
learn from these data, and make context-adapted decisions. Artificial intelligence is related
to computer science, applied mathematics, robotics, data science and machine learning.
Data science uses mathematical and statistical methods to process, analyze, interpret,
summarize and visualize data. Big data is a branch of data science dealing with very large
datasets, whose development is motivated by the large amount of data that is collected
through Internet, for example. Data mining is another important branch of data science
dedicated to knowledge discovery. It includes all techniques and algorithms aiming at
finding hidden structures or patterns and extracting information from databases, such as
algorithms for cluster analysis, anomaly detection and association pattern mining.

Machine learning methods combine statistics and mathematical optimization to infer
a predictive model from data, or more generally to build a computer program learnt
from data that executes specific tasks without being explicitly programmed to perform
these tasks. The concept of statistical learning refers to the calibration of the model’s
parameters using data, by means of an optimization algorithm. Machine learning problems
sometimes use data mining algorithms and, conversely, machine learning techniques find
many applications in data science. However, the specific goal of machine learning is to use
knowledge drawn from data in order to make predictions for new unseen data, whereas data
mining focuses on the extraction of knowledge. This leads to the dual concepts of training
data, i.e. data used to build a predictive model, and test data, i.e. data considered in an
exploitation phase for which the model will make new predictions (see Figure 2.2). With
the recent development of GPUs (Graphics Processing Units) and computer performances,
deep learning has emerged as a major branch of machine learning, where the predictive
models rely on the superposition of simple functionalities in deep architectures. Such
models are called artificial neural networks or deep neural networks, because of some
similarities they share with neurons in the human brain. Figure 2.1 shows the intersections
between all the fields that are related to machine learning.

16

2.1. What is machine learning?

Figure 2.2: Training and test (or exploitation) phases of a machine learning model.

There are three basic learning paradigms:

� In supervised learning, every training example x is associated to a label y, and the
model must learn the correspondence between the input x and the output y. The
output variable can be either categorical (classification problems), or numerical with
a continuous set of possible values (regression problems).

� In unsupervised learning, the training data are not labeled. Unsupervised learning
problems include cluster analysis, where the objective is to divide the data into
groups called clusters; dimensionality reduction, which aims at finding a compressed
representation of the data; density estimation, consisting in identifying a probabil-
ity density function that could have generated the training data; and generative
modeling, whose goal is to generate new realistic data.

� In reinforcement learning, an agent learns to act in an environment through a trial-
and-error process guided by a reward system. Typical applications are self-driving
cars, autonomous robotics and game playing.

Some unsupervised learning tasks such as clustering and dimensionality reduction can be
seen as data mining tasks. However, they are used in machine learning for prediction
purposes or for preprocessing the data to be fed into a predictive model. The present
thesis borrows algorithms from supervised and unsupervised methods:

� dimensionality reduction is used for the construction of reduced-order models, the
compression of simulation data, and the reduction of the number of variables to be
processed by some predictive models;

� cluster analysis is used for the identification of groups of data with similar physical
or mechanical behaviors, enabling the construction of dictionaries of cluster-specific
models;

� classification is used for automatic model recommendation;

� regression is used for the reconstruction of a physical field from localized predictions
made by a reduced-order model.

17

Chapter 2. General and theoretical concepts

2.2 Basic concepts

2.2.1 Probability theory

A real-valued random variable X : Θ → R is a function mapping the outcomes of a
random process to real numbers. The function itself is deterministic, but its arguments
are randomly chosen from the set Θ of possible outcomes. X is said to have a probability
density function if there exists an integrable function p : R→ R+ such that:

P(X ≤ x) =

∫ x

−∞
p(s)ds (2.1)

where P is a probability measure. For dx small enough, p(x)dx can be interpreted as the
probability that X returns a value between x and x+dx. A probability density function is
nonnegative and its integral over R equals to one. If X is a discrete random variable, the
term probability mass function is preferred. The probability mass function of a discrete
random variable X following a categorical distribution (or multinoulli distribution) is
defined by

p(x) =
∑
k

P(X = xk)δ(x− xk) (2.2)

where the variables xk denote the discrete values that X can take, and δ is the Dirac delta
function ensuring that the integral of p over R is one:∫

R
p(x)dx =

∑
k

P(X = xk) = 1 (2.3)

Let us now consider two real-valued random variables X and Y , having a joint prob-
ability distribution pX,Y . The marginal distribution pX can be calculated from the joint
distribution using:

pX(x) =

∫
R
pX,Y (x, y)dy (2.4)

The conditional distribution pY |X is defined as the probability distribution of Y for a given
value of X, and reads:

pY |X(y|x) =
pX,Y (x, y)

pX(x)
(2.5)

The random variables X and Y are independent if their joint distribution equals to the
product of the marginal distributions.

The expectation (or expected value or mean) of a real-valued random variable X with
probability density function p is defined by:

E [X] =

∫
Θ
X(θ)dP(θ) =

∫
R
xp(x)dx (2.6)

if this integral exists. More generally, the expectation of the random variable f(X) with
f : R→ R reads:

E [f(X)] =

∫
R
f(x)p(x)dx (2.7)

The expectation operator is linear. The probability distribution is sometimes specified
in the notation of the expectation to avoid confusion; in this case, the expectation of

18

2.2. Basic concepts

f(X) when X follows the probability distribution p is denoted by EX∼p [f(X)]. If X is
square-integrable, then one can define its variance as:

Var(X) = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 (2.8)

The standard deviation is the square root of the variance. From the definition of the
variance, one can prove that ∀(a, b) ∈ R2, Var(aX + b) = a2Var(X). The covariance of
two real-valued random variables X and Y is defined as:

Cov(X,Y) = E [(X − E [X])(Y − E [Y])] = E [XY]− E [X]E [Y] (2.9)

and the correlation is obtained by normalizing the covariance:

Corr(X,Y) =
Cov(X,Y)√

Var(X)
√

Var(Y)
(2.10)

Due to Cauchy-Schwarz inequality, the correlation satisfies Corr(X,Y) ∈ [−1; 1]. If X
and Y are independent, then their covariance (and thus their correlation) is zero, but
the converse is false. In other words, independence implies uncorrelatedness. The next
definition introduces the concept of multivariate random variable:

Definition 2.2.1 (Multivariate random variable). Given an integer n ≥ 2, a multivariate
random variable (or random vector) is an application X : Θ → Rn whose coordinates
Xi : Θ → R, ∀i ∈ [[1;n]] are real-valued random variables. The expectation of X is the
vector defined by:

E [X] = (E [X1] ,E [X2] , ...,E [Xn]) (2.11)

and the covariance matrix Γ ∈ Rn×n is defined by:

Γ = E
[
(X− E [X])(X− E [X])T

]
= E

[
XXT

]
− E [X]E [X]T (2.12)

which gives:

∀(i, j) ∈ [[1;n]]2, Γij = Cov(Xi, Xj) = E [(Xi − E [Xi])(Xj − E [Xj])] (2.13)

It can be shown that the covariance matrix of a random vector is always symmet-
ric positive semidefinite. The next definitions introduce Gaussian random variables and
vectors:

Definition 2.2.2 (Standard normal distribution). A real-valued random variable X fol-
lows the standard normal distribution if its probability density function reads:

∀x ∈ R, p(x) =
1√
2π

exp

(
−x

2

2

)
(2.14)

We write: X ∼ N (0, 1).

It can be shown that if X ∼ N (0, 1), then its expectation is 0 and its variance is 1.

Definition 2.2.3 (Normal distribution). A real-valued random variable X follows the
normal distribution (or Gaussian distribution) if there exist U ∼ N (0, 1) and (µ, σ) ∈
R× R∗+ such that X = µ+ σU . We write X ∼ N (µ, σ2).

19

Chapter 2. General and theoretical concepts

Property 2.2.4. If X ∼ N (µ, σ2), then:

� its expectation is: E [X] = µ ;

� its variance is: Var(X) = σ2 ;

� its probability density function reads:

∀x ∈ R, p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.15)

Definition 2.2.5 (Gaussian random vector). Let X : Θ → Rn be a multivariate random
variable. X is a Gaussian random vector if and only if all the linear combinations of its
coordinates are normally distributed. In this case, X is said to follow the multivariate
normal distribution and we write X ∼ N (µ,Γ), where µ ∈ Rn is the mean vector and
Γ ∈ Rn×n is the covariance matrix of X.

In particular, if X is a Gaussian random vector, then its coordinates follow the normal
distribution. The converse of this property is false.

Property 2.2.6. Let X be a Gaussian random vector. The random variables {Xi}i∈[[1;n]]

are independent if and only if the covariance matrix of X is diagonal. In other words,
for Gaussian random vectors, independence and uncorrelatedness of the coordinates are
equivalent.

Property 2.2.7. Let X ∼ N (µ,Γ). X has a probability density function if and only if
its covariance matrix Γ is invertible. In this case, the probability density function is given
by:

∀x ∈ Rn, p(x) =
1

(2π)n/2
√

det(Γ)
exp

(
−1

2
(x− µ)T Γ−1 (x− µ)

)
(2.16)

To finish this review of basic concepts of probability theory, let us introduce Bayes’
theorem:

Theorem 2.2.8 (Bayes’ theorem). Let H (hypothesis) and E (evidence) be two events,
with P(E) 6= 0. Then:

P(H|E) =
P(E|H)P(H)

P(E)
(2.17)

The probability P(H) is called the prior probability, while P(H|E) is the posterior
probability giving the probability of the hypothesis H given the observation of the evidence
E. Bayes’ theorem is used by generative classifiers to compute membership probabilities
given class priors and modeled class-conditional probability distributions.

Remark 2.2.9. For a more detailed introduction to probability theory, we refer the reader
to the books [52, 53, 54].

Notations: The j-th feature of a random vector X will be denoted by Xj . The observa-
tions of X (resp. Xj) will be denoted by x (resp. xj), or xi (resp. xji) when indexing is
necessary, for example when considering training data.

20

2.2. Basic concepts

2.2.2 Estimation theory

In statistics, estimation theory includes all the techniques for parameter estimation from
data. These methods are used for the calibration of the parameters of a model, and are
therefore widely used by machine learning algorithms.

Suppose that one wants to model a data-generating distribution, denoted by p and
parametrized by θ. The objective is to infer the value of θ from a sample containing n data
points xi, so that these data could have been drawn from the probability distribution p(.; θ).
One way to find a plausible data-generating distribution is to use maximum likelihood
estimation [55] (MLE). Considering the data points as observations of independent and
identically distributed variables following the distribution p(.; θ), the likelihood function is
defined as:

θ 7→
n∏
i=1

p(xi; θ) (2.18)

The maximum likelihood estimate θMLE is obtained by maximizing the likelihood function
or, equivalently, the log-likelihood function:

θ 7→
n∑
i=1

log p(xi; θ) (2.19)

The maximum likelihood estimate can be computed with the expectation-maximization
algorithm [56, 55]. Maximum a posteriori estimation (MAP) differs slightly from MLE in
that it describes the parameter θ as a random variable and introduces a prior distribution
q in the function to maximize:

θ 7→ q(θ)

n∏
i=1

p(xi|θ) (2.20)

MAP estimators are used for example by generative classifiers, which compute the prior
probabilities for each class, model class-conditional distribution using MLE, and use Bayes’
theorem to compute posterior probabilities defining membership probabilities.

2.2.3 Information theory

Definition 2.2.10 (Differential entropy). Let X be a random variable with probability
density function pX . The differential entropy of X is defined by:

H(X) = −EX∼pX [log pX(X)] (2.21)

Definition 2.2.11 (Kullback-Leibler divergence). Let p and q be two probability distribu-
tions. The Kullback-Leibler divergence (or relative entropy) of p from q is defined by:

DKL(p||q) = EX∼p
[
log

p(X)

q(X)

]
(2.22)

The Kullback-Leibler divergence is nonnegative and equals to zero if and only if p = q
almost everywhere. It is usually used to compare two distributions, but it is not a metric
on probability distributions since it is not symmetric and it does not satisfy the triangle
inequality. The Kullback-Leibler divergence appears for example as a regularization term
in the evidence lower bound (ELBO) defining the objective function to be maximized when
training a variational autoencoder (VAE), see [3, 4, 57].

21

Chapter 2. General and theoretical concepts

Definition 2.2.12 (Cross-entropy). Let p and q be two probability distributions. The
cross-entropy of q relative to p is:

H(p, q) = −EX∼p [log q(X)] (2.23)

The cross-entropy is commonly used to define loss functions in classification prob-
lems. Minimizing the cross-entropy H(p, q) with respect to q is equivalent to minimizing
DKL(p||q), since:

H(p, q) = H(p) +DKL(p||q) (2.24)

Definition 2.2.13 (Mutual information [58], eq. 8.47, p. 251). Let X and Y be two real-
valued random variables with joint probability distribution pX,Y and marginal distributions
pX and pY . The mutual information I(X,Y) is defined by

I (X,Y) =

∫
R2

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
dxdy (2.25)

The mutual information measures the mutual dependence between two random vari-
ables, i.e. it quantifies the information about Y that can be obtained by observing X.
Contrary to correlation coefficients, the information provided by this score function is not
limited to linear dependence. The mutual information is nonnegative, symmetric, and
equals to zero if and only if the random variables are independent, properties that can be
derived from the following equality:

I (X,Y) = DKL(pX,Y ||pXpY) (2.26)

The mutual information is commonly used by feature selection algorithms.

Remark 2.2.14. For more details about information theory, see [58].

2.3 Mercer kernels

2.3.1 Mercer’s theorem and Karhunen-Loève expansion

Let N be a positive integer and let Ω be a compact set in the Euclidean space RN , i.e.
Ω is a closed and bounded subset of RN since the dimension N is finite. A kernel is a
real-valued function κ : Ω× Ω→ R. The following definitions introduce concepts used in
Mercer’s theorem.

Definition 2.3.1 (Positive semidefinite kernel). A kernel κ : Ω × Ω → R is said to be
positive semidefinite if it satisfies the two following properties:

� κ is symmetric:
∀(x,x′) ∈ Ω× Ω, κ(x,x′) = κ(x′,x) (2.27)

� for all finite sequences of points {xi}1≤i≤n in Ω and real numbers {λi}1≤i≤n:

n∑
i,j=1

λiλjκ(xi,xj) ≥ 0 (2.28)

i.e. the similarity matrix (κ(xi,xj))1≤i,j≤n is positive semidefinite.

22

2.3. Mercer kernels

Definition 2.3.2 (Mercer kernel). A continuous positive semidefinite kernel is called a
Mercer kernel.

Definition 2.3.3 (Hilbert-Schmidt integral operator). Let κ ∈ L2(Ω × Ω) be a square-
integrable kernel. The Hilbert-Schmidt integral operator Lκ : L2(Ω)→ L2(Ω) associated to
κ is the linear operator defined by:

∀φ ∈ L2(Ω), ∀x ∈ Ω, Lκ [φ] (x) =

∫
Ω
κ(x,x′)φ(x′)dx′ (2.29)

Theorem 2.3.4 (Mercer’s theorem [59]). Let κ : Ω × Ω → R be a Mercer kernel, whose
Hilbert-Schmidt integral operator is denoted by Lκ. The eigenvalues {λi}1≤i≤∞ of Lκ are
nonnegative and the corresponding eigenfunctions {ei}1≤i≤∞ form an orthonormal basis
of L2(Ω). The eigenfunctions associated to nonzero eigenvalues are continuous on Ω. In
addition, the kernel satisfies the following equation:

∀(x,x′) ∈ Ω× Ω, κ(x,x′) =
∞∑
i=1

λiei(x)ei(x
′) (2.30)

where the convergence of the above function series is absolute and uniform.

Mercer’s theorem has two interesting applications used in this thesis, namely the
Karhunen-Loève expansion (or decomposition) and the kernel trick. Before introducing
the Karhunen-Loève expansion, let us define the concept of a random field :

Definition 2.3.5 (Random field). A random field on Ω ⊂ RN is an application f :
Ω×Θ→ R such that, for all x ∈ Ω, f(x, .) : Θ→ R is a real-valued random variable.

Random fields are also known as random functions, or stochastic processes whenN = 1.
A sample path or realization of a random field is an application f(., θ) : Ω → R obtained
for a given θ ∈ Θ. The expectation of a random field is an application µ : Ω → R whose
value at x ∈ Ω corresponds to the expectation of f(x, .). The (auto)-covariance function
is defined by:

Γ(x,x′) = Cov(f(x, .), f(x′, .)) (2.31)

and the variance function is given by σ2(x) = Γ(x,x). The (auto)-correlation function
reads:

ρ(x,x′) = Corr(f(x, .), f(x′, .)) =
Γ(x,x′)

σ(x)σ(x′)
(2.32)

Theorem 2.3.6 (Karhunen-Loève expansion [60, 61]). Let f : Ω × Θ → R be a square-
integrable random field with continuous covariance function Γ. Then, the covariance func-
tion Γ is a Mercer kernel and the random field f reads:

∀x ∈ Ω, f(x, .) = E[f(x, .)] +
∞∑
i=1

Υi

√
λiei(x) (2.33)

where {λi}1≤i≤∞ and {ei}1≤i≤∞ are respectively the eigenvalues and eigenfunctions of the
Hilbert-Schmidt integral operator LΓ associated to the covariance function Γ, and where
{Υi}1≤i≤∞ are centered mutually uncorrelated random variables with unit variance defined
by considering the orthogonal projection in L2(Ω) onto the eigenfunctions:

∀i ∈ N∗, Υi =
1√
λi

∫
Ω

(f(x, .)− E[f(x, .)]) ei(x) dx (2.34)

The convergence in Equation (2.33) is in L2(Θ) and uniform in Ω.

23

Chapter 2. General and theoretical concepts

The Principal Component Analysis (PCA) and the Proper Orthogonal Decomposition
(POD) are directly related to the Karhunen-Loève expansion theorem.

2.3.2 Application to random field simulation

The Karhunen-Loève expansion can be used for random field simulation using Gaussian
random fields:

Definition 2.3.7 (Gaussian random field [62]). A Gaussian random field f : Ω×Θ→ R
is a random field such that the random vector (f(x1, .), ..., f(xp, .)) follows a multivariate
normal distribution for any choice of p and (x1, ...,xp) ∈ Ωp.

When considering the Karhunen-Loève expansion of a Gaussian random field, the ran-
dom variables Υi appearing in the decomposition have the additional properties of being
independent standard normal random variables [60]. Therefore, a Gaussian random field
is entirely defined by its expectation and its covariance function. It can be constructed
by defining a mean field µ for the expectation and a Mercer kernel for the covariance
function Γ. The first eigenfunctions of the Hilbert-Schmidt integral operator LΓ corre-
sponding to the largest eigenvalues can be combined with independent standard normal
random variables to form a truncated version of the Karhunen-Loève expansion given in
Equation (2.33). The covariance function is usually defined as an isotropic function, that
is, a function that depends only on the distance d(x,x′) between the arguments x and x′.
A common example of isotropic covariance function is the exponential covariance function:

Γ(x,x′) = σ2 exp

(
−
(
d(x,x′)

d0

)ν)
(2.35)

where d0 is the correlation length and 0 < ν ≤ 2.

When constructing a random field, one may want it to have some regularity proper-
ties, such as continuous realizations with probability one, i.e. the probability to draw a
continuous field is 1. This is the concept of sample path continuity :

Definition 2.3.8 (Sample path continuity [62]). A random field f : Ω × Θ → R has
continuous realizations (or sample paths) with probability one if P(E) = 1 where E is the
event:

E =

{
θ ∈ Θ | ∀x ∈ Ω, lim

n→+∞
‖xn − x‖ = 0 ⇒ lim

n→+∞
|f(xn, θ)− f(x, θ)| = 0

}
(2.36)

The paper [62] gives several conditions under which a random field has continuous
realizations with probability one, and makes the conjecture that Gaussian random fields
with continuous expectation functions and continuous covariance functions have continu-
ous realizations with probability one (see Conjecture 2.1, page 20 in [62]).

In practice, random fields are discretized on a 2D or 3D point cloud. In this case,
the eigenvalue problem of the Hilbert-Schmidt integral operator LΓ associated to the
covariance function Γ is simply replaced by the eigenvalue problem of the covariance matrix
Γ defined by Γij = Γ(xi,xj) where xi is the vector containing the coordinates of the i-th
sampling point. In this work, the domain Ω is sampled by the nodes of a finite-element
mesh.

24

2.3. Mercer kernels

2.3.3 The kernel trick

The following property is a corollary of Mercer’s theorem:

Property 2.3.9 (Representation of Mercer kernels as inner products). Let Ω be a compact
space and let κ : Ω × Ω → R be a Mercer kernel. Let {λi}1≤i≤∞ and {ei}1≤i≤∞ be the
eigenvalues and eigenfunctions of the Hilbert-Schmidt integral operator associated to κ.
Let n be defined by:

n = sup {i ∈ N | λi > 0} (2.37)

The mapping ϕ : Ω→ Rn defined by:

∀x ∈ Ω, ∀i ∈ [[1;n]], ϕi(x) =
√
λiei(x) (2.38)

is continuous and satisfies:

∀(x,x′) ∈ Ω× Ω, κ(x,x′) =
〈
ϕ(x), ϕ(x′)

〉
l2

(2.39)

where 〈., .〉l2 is the l2 inner product on Rn.

Remark 2.3.10. A more general result, known as the Moore-Aronszajn theorem, can be
found in [63, 64].

This property states that any Mercer kernel can be represented by an inner product,
which is the origin of the kernel trick in kernel methods such as Kernel Ridge Regression,
Kernel PCA, and Support Vector Machines (SVMs). Kernels methods include all the
methods that only require evaluating inner products between samples. The kernel trick
enables transforming linear kernel methods into nonlinear algorithms, by replacing the
original inner products by a Mercer kernel. Let us give the example of a support vector
classifier, classification algorithm that will be presented later in this thesis. When the
classes are not linearly separable, one can apply a feature map ϕ to the data points in
order to get a higher-dimensional representation of the dataset. The key idea is that
nonlinear classification problems may be transformed into linear classification problems
in higher-dimensional spaces. The transformed feature space ϕ(Ω) can even be infinite-
dimensional, as long as it is an inner product space. The linear support vector classifier
can then be applied to the transformed dataset {(ϕ(xi), yi)}1≤i≤m where yi is the label
for the i-th example xi, which simply consists in replacing the dot products xTi xj by the
inner products 〈ϕ(xi), ϕ(xj)〉l2 . However, computing inner products in a high-dimensional
space is very expensive. Instead of explicitly choosing a feature map and evaluating these
inner products, one can choose a Mercer kernel κ which implicitly defines a feature map ϕ
and directly gives inner products 〈ϕ(xi), ϕ(xj)〉l2 = κ(xi,xj), according to Property 2.3.9.
The feature map and the corresponding transformed feature space need not be known:
they are implicitly defined via the kernel function, which provides an inexpensive way to
evaluate the inner products. Common Mercer kernels include:

� the Gaussian RBF1 kernel:

κ(x,x′) = exp

(
−||x− x′||22

2σ2

)
(2.40)

1RBF: Radial Basis Function.

25

Chapter 2. General and theoretical concepts

� the polynomial kernel:

κ(x,x′) =
(
γ0 + γ1x

Tx′
)d

(2.41)

∗ ∗
∗

26

Chapter 3

Uncertainty quantification in
high-fidelity models

Abstract: The quantities of interest monitored in numerical simulations depend on the
environment of the physical system being modeled, which is usually not exactly known. In
some cases, these uncertainties strongly influence simulation results. Uncertainty quantifi-
cation is necessary to ensure the reliability of the physical system, but it requires calling the
model multiple times. When the allowable number of model calls is limited because of its
computational complexity, the configurations of the system and its environment for which
simulations should be run can be cleverly chosen by design of numerical experiments meth-
ods. These concepts will be useful for the application of our methodologies to an industrial
test case, where the computational complexity of the high-fidelity model is particularly high
and motivates the construction of faster models from well-chosen simulations for uncer-
tainty quantification purposes. This chapter also explains the concept of nonparametrized
variabilities describing the type of uncertainties that are studied in this thesis.

Contents

3.1 The concept of nonparametrized variabilities 28

3.2 Design of numerical experiments 29

3.3 Monte Carlo simulations . 31

3.4 Uncertainty propagation example in nonlinear solid mechanics 32

27

Chapter 3. Uncertainty quantification in high-fidelity models

3.1 The concept of nonparametrized variabilities

Numerical simulations in computational physics involve influential parameters related to
the environment of the physical system, its state, and its physical properties. Some of
these parameters are uncertain, because of a lack of knowledge, modeling uncertainties,
uncertainties due to manufacturing processes, or difficulties to measure some quantities
in a physical experiment. They are therefore modeled as random variables. The random
fluctuations of these parameters are called variabilities in this thesis.

Uncertainty propagation consists in modeling the probabilistic behavior of uncertain
influential parameters in a model and propagating these uncertainties in the model to see
how outputs (or quantities of interest) are affected. The ultimate goal is to estimate sta-
tistical properties of the outputs, such as the moments of their probability distributions
(e.g. mean, variance), and the accuracy of these estimates can be quantified through con-
fidence intervals. One may also want to calculate the probability for the output to take
values larger than a given threshold (failure probability), or even to estimate the entire
probability density function. Uncertainty quantification is essential for the design of reli-
able engineering systems, especially because sophisticated physics-based models are now
applicable to industrial cases whereas it remains difficult to know the exact behavior of
influential parameters related to the environment of the system. Problems with large vari-
abilities on some parameters do not necessarily need uncertainty quantification analyses:
these analyses are required when the outputs have a high sensitivity to the variabilities.

The input variabilities may belong to high-dimensional spaces, or even infinite dimen-
sional spaces. This is the case in particular when a parameter corresponds to a function
in a Hilbert space. When the model is parametrized by a random field discretized on a
mesh, the dimension of the parameter space corresponds to the number of nodes in the
mesh. Instead of considering the random field as a parameter, one can see it as a collection
of scalar parameters corresponding to the values of the random field at every node in the
mesh. However, the number of scalar parameters is then too large to be used efficiently.
For instance, for problems with affine dependence with respect to some scalar parameters
X1, ..., Xp, e.g.: (

A0 +

p∑
k=1

XkAk

)
u = b, (3.1)

precomputing the matrices {Ak}0≤k≤p to accelerate the assembly of the operators involved
in the problem is beneficial only if the dimension p of the parameter space is low. Corre-
lations between these parameters may enable reducing the effective number of descriptive
parameters, but in the general case, no low-dimensional parametrization of the variabili-
ties is available. In this case, we say that the uncertain parameters have nonparametrized
variabilities (or generic variabilities). Therefore, the word (non)-parametrized has two
different meanings:

� The physics problems that are studied in this thesis are parametrized by uncertain
influential parameters that can potentially be high-dimensional. The word parameter
will be adopted to denote these influential parameters whose variabilities are taken
as inputs in our methodology.

� The input variabilities are nonparametrized when no low-dimensional parametriza-
tion is available, or, in other words, when the intrinsic number of independent scalar
parameters is too large (say, greater than 100).

28

3.2. Design of numerical experiments

The concept of nonparametrized variabilities is introduced in [65], and was already studied
in [43] for problems with very high dimensional parameter spaces, although not explic-
itly mentioned with this specific name. The paper [65] explains that a nonparametrized
variability can be seen as a configuration of the system or a scenario, with no explicit
parametrized description. The problem when dealing with nonparametrized variabilities is
that the operators involved in the model must be assembled for every new simulation. The
industrial application presented in this work is an advantageous specific case, although the
parameter space is very high-dimensional. Indeed, it is a temperature-dependent prob-
lem in solid mechanics, where the variabilities on the temperature field do not require
assembling new operators in the exploitation phase of the reduced-order models. The
only operation that must be done when considering a new scenario is the evaluation of the
new temperature field on the reduced-integration points used for hyper-reduction, which is
quasi-instantaneous. These aspects will become clearer in the chapter dedicated to model
order reduction. On the contrary, variabilities on pressure loads on the external surface
of the physical system would require assembling the new operators for every scenario to
take the boundary conditions into account.

In [66, 67], the authors distinguish two types of uncertainties, namely parameter un-
certainties (those considered in the present thesis), and model-form uncertainties due to
a lack of knowledge of the complex physical phenomena that are necessarily described by
imperfect models. The latter has no parametrization, not even in a high dimensional space,
which motivates the nonparametric approach developed in [66, 67] to take into account
model-form uncertainties. In this sense, the uncertainties on the quantities of interest due
to model-form uncertainties are nonparametrized. However, the focus of this thesis is on
parameter uncertainties (that can be nonparametrized in the sense explained above), and
not on model-form uncertainties.

3.2 Design of numerical experiments

Uncertainty quantification requires a large number of model calls, which may be prohibitive
for some real-world problems when the model involves a partial differential equations solver
like finite-element or finite-volume solvers. In this case, the model is evaluated on a small
sample and the resulting information is used to build a surrogate model that is able to
compute approximate outputs in a reduced computation time. The surrogate model can
either be a regression model or a reduced-order model. Once trained, it can be evaluated
on larger samples to quantify uncertainties on the outputs. Within this framework, the
choice of training data for which the true model must be called is a central issue. Given
the cost of calling the true model, training points should be well-selected so that they
contain as much information as possible to build a predictive surrogate model. This
problem is known as design of computer (or numerical) experiments [68]. Algorithms for
design of experiments (DoE) have been extensively studied for computational problems as
well as physical experiments. Monte Carlo sampling [69] is a random sampling technique
that suffers from the clumping effect generating holes in the parameter space while some
training points are too close to each other. For that reason, Monte Carlo sampling is not
appropriate at all when the sample size is limited. To better fill the parameter space, the
simplest approach is the factorial design [70] relying on a grid. Although appropriate for
the calibration of a linear regression model (possibly with second-order interactions), the
number of points in a full factorial experiment grows exponentially with the dimension of

29

Chapter 3. Uncertainty quantification in high-fidelity models

the parameter space for a given number of levels per dimension, as mentioned later in the
section dedicated to the curse of dimensionality. This problem is partially solved using
fractional factorial design [71], but the resulting training set still has very bad projection
properties. Generally speaking, a DoE is expected to have:

� good space-filling properties;

� good projection properties, in the sense that space-filling properties remain good
after projections onto lower-dimensional subspaces of the parameter space.

In particular, if clumping appears after projection, then it means that the DoE is not
robust to projections. Space-filling properties after projection are important especially
for low-dimensional subspaces (dimensions 1 to 3) since, usually, the effective number of
influential parameters is small with respect to the dimension of the parameter space and the
most significant interaction orders remain low. To build a DoE that has nice space-filling
properties, [72] defined two geometrical criteria called minimax and maximin. Minimax
DoE consists in minimizing the maximum distance between a random query point and its
closest neighbor among DoE points to avoid having large holes in the parameter space.
Maximin DoE rather maximizes the minimum distance between DoE points. Space-filling
properties can also be obtained with discrepancy criteria [68]. A discrepancy measure
quantifies the deviation of the DoE with respect to the uniform distribution: a uniform
filling corresponds to a lower discrepancy.

Concerning projection properties, Latin Hypercube Sampling (LHS, [73]) gives good
space-filling properties in one-dimensional subspaces. A DoE on a grid is a LHS if and only
if all of the axis-parallel hyperplanes containing a DoE point contain only one DoE point.
On a 2D grid, this means that each sample is the only one in its row and column. A LHS
can have poor global space-filling properties (e.g. samples only on the diagonal in 2D), but
ensuring that a DoE is a LHS is a nice way to obtain robustness for projections in dimension
1. Maximin LHS [74] looks for a maximin design among LHS designs. The drawback is
that it does not guarantee robustness for projections in subspaces of dimension higher
than 1. In 2015, however, [75] introduced Maximum Projection design and Maximum
Projection LHS, algorithms that maximize maximin space-filling properties on projections
onto subspaces of any dimension, with more weight on lower dimensions.

The aforementioned methods can be slow for high-dimensional parameter spaces or
when the number of points in the DoE is large. Quasi-Monte Carlo sampling (e.g. with a
Sobol’ sequence [76]) can be used to generate a fast but suboptimal DoE.

Remark 3.2.1. A DoE generally tries to spread the samples uniformly. To get samples
from a given probability distribution, one can use the inverse transformation method. If U
is a random variable following the uniform distribution U([0; 1]) on [0; 1], and if F denotes
the cumulative distribution function of a target distribution p, then the random variable
F−1(U) follows the probability distribution p.

Remark 3.2.2. Since designs of experiments are not efficient in very high dimensional
spaces, they require a low-dimensional parametrization of the variabilities of the uncer-
tain parameters. For problems with nonparametrized variabilities, there is no choice but
to generate a DoE for training data using an approximate low-dimensional parametriza-
tion. Nonetheless, this DoE can be used to train a machine learning model and/or a
reduced-order model that ignores the low-dimensional parametrization and does not use

30

3.3. Monte Carlo simulations

it when being called, taking the true variabilities instead in order not to depend on that
parametrization. In this way, the trained model can be applied to new nonparametrized
variabilities.

3.3 Monte Carlo simulations

Let X denote a random parameter (i.e. real-valued random variable, random vector,
stochastic process or random field) of the physics problem, and let Z be a quantity of
interest whose randomness is induced by the variabilities of X. Although being a deter-
ministic function of X, Z is simply seen as a random variable in this section, which enables
forgetting the underlying uncertain parameter X. The focus of this section is on describing
the stochastic behavior of Z. The notation Z is used instead of Y for quantities of interest
in this thesis, because Y will denote an intermediate variable related to the choice of the
reduced-order model for the computation of Z.

Statistical properties to be estimated are generally expressed with integrals. An inte-
gral can be seen as the expectation of a function of a random variable, and can then be
estimated with the empirical mean (or sample mean) of the function evaluated at random
points, which is the main idea behind Monte Carlo methods [77]. The convergence of the
Monte Carlo quadrature is ensured by the Strong Law of Large Numbers:

Theorem 3.3.1 (Strong Law of Large Numbers). Let (Zi)i∈N∗ be a sequence of inde-
pendent and identically distributed integrable random variables with expectation µ. Given
n ∈ N∗, let Zn denote the empirical mean defined by:

Zn =
1

n

n∑
i=1

Zi (3.2)

The empirical mean Zn converges almost surely to the expectation µ, that is:

P
(

lim
n→+∞

Zn = µ

)
= 1 (3.3)

The empirical mean is therefore a consistent estimator of the expectation. This esti-
mator is unbiased, which means that its expected value is the parameter to be estimated.
When estimating the variance, one commonly uses the unbiased sample variance that
reads:

S2
n =

1

n− 1

n∑
i=1

(
Zi − Zn

)2
(3.4)

Monte Carlo methods have a convergence rate of O(n−1/2), according to the Central Limit
Theorem:

Theorem 3.3.2 (Central Limit Theorem). Let (Zi)i∈N∗ be a sequence of independent and
identically distributed square-integrable random variables with expectation µ and standard
deviation σ > 0. Then, the random variable defined by:

√
n

σ

(
Zn − µ

)
(3.5)

31

Chapter 3. Uncertainty quantification in high-fidelity models

converges in law to the standard normal distribution N (0, 1)1.

This convergence rate is rather slow but it has the advantage of being independent of
the dimension, which is the reason why Monte Carlo methods are widely used for numerical
approximations of high-dimensional integrals. The number of samples n that is required to
achieve a desired accuracy level depends on the standard deviation σ. Variance reduction
methods such as importance sampling [77] modify the integrand to reduce this constant
in order to accelerate convergence or reduce the error for a given n. Another way to
accelerate convergence is to resort to quasi-Monte Carlo methods [77] that replace random
sequences used in Monte Carlo by quasi-random (or low-discrepancy) sequences. These
sequences are deterministic sequences giving a uniform repartition of the samples to avoid
the clumping effect of random sequences. Quasi-random sequences can be generated using
Sobol’ sequences [76], for instance.

The Central Limit Theorem can be used to build asymptotic confidence intervals using
confidence intervals of the standard normal distribution. Let φr denote the quantile of
order r of the standard normal distribution N (0, 1). For all α ∈]0; 1[, the interval:

In =
[
Zn − φ1−α

2

√
S2
n/n;Zn + φ1−α

2

√
S2
n/n

]
(3.6)

is an asymptotic confidence interval with confidence level 1−α for the expectation µ, that
is:

lim
n→+∞

P(µ ∈ In) = 1− α (3.7)

Monte Carlo simulations simply consist in drawing independent realizations of the
random variable X and running the corresponding simulations. The resulting values taken
by the output Z are then used to compute estimates of the expectation and the variance
and asymptotic confidence intervals, using the Strong Law of Large Numbers and the
Central Limit Theorem. As mentioned in the section dedicated to designs of experiments,
Monte Carlo sampling is not appropriate when the model complexity limits the number
of simulations. In this situation, a first DoE is built in order to generate training data.
A surrogate model trained on these data is then used in Monte Carlo simulations to get
a large enough number of simulations in a reasonable computation time for uncertainty
quantification.

3.4 Uncertainty propagation example in nonlinear solid me-
chanics

This section provides a simple example in nonlinear solid mechanics, showing the impor-
tance of uncertainty propagation. Let us consider the solid body Ω shown on Figure 3.1
subjected to a displacement-controlled loading applied on Su. Assuming a quasi-static

1Pointwise convergence of the cumulative distribution function to the standard normal cumulative
distribution function.

32

3.4. Uncertainty propagation example in nonlinear solid mechanics

Figure 3.1: Finite-element mesh of the structure (33047 quadratic tetrahedral elements
and 54649 nodes).

evolution, equilibrium equations and boundary conditions read:

div(σ(ξ, t)) = 0 ∀t ∈ [0; 1] ∀ξ ∈ Ω
u(ξ, t).ey = −ud(t)ey ∀t ∈ [0; 1] ∀ξ ∈ Su
u(ξ, t).ex = 0 ∀t ∈ [0; 1] ∀ξ ∈ Sx0
u(ξ, t).ey = 0 ∀t ∈ [0; 1] ∀ξ ∈ Sy0
u(0, t).ez = 0 ∀t ∈ [0; 1]

σ(ξ, t).n(ξ, t) = 0 ∀t ∈ [0; 1] ∀ξ ∈ ∂Ω \ (Su ∪ Sx0 ∪ Sy0)

(3.8)

where u(ξ, t) is the displacement field (primal variable), σ(ξ, t) is the symmetric second-
order Cauchy stress tensor, and n(ξ, t) is the outward-pointing normal vector to the outer
surface of Ω. The imposed displacement ud(t) is defined by:

ud(t) = ud(t) +Xt (3.9)

where ud(t) is the nominal (or reference) imposed displacement and Xt is a zero-mean
Gaussian process defined by an exponential covariance function. This stochastic process
models the uncertainties on the mechanical loading that usually exist in complex systems,
for example uncertainties due to the vibrations of the neighboring parts. A realization
of this stochastic process is given in Figure 3.2. This stochastic process defines non-
parametrized variabilities. However, an approximate low-dimensional parametrization of
these variabilities can be obtained by truncating the Karhunen-Loève expansion of this
stochastic process. This strategy could be used for designs of experiments, for example.
In this simple example, we simply run Monte Carlo simulations, so we do not need such
parametrizations nor designs of experiments.

The structure is made of an elastoplastic generalized standard material described by
the von Mises yield criterion and a nonlinear isotropic hardening law. In the framework
of the infinitesimal strain theory, the constitutive equations are:

� Hooke’s law (with an isotropic elastic stiffness tensor C):

σ = C : (ε− εp) (3.10)

� von Mises yield criterion with isotropic hardening:

f(σ, R) = σeq(σ)−R− σy σeq(σ) =

√
3

2
s : s s = σ − 1

3
tr(σ)1 (3.11)

33

Chapter 3. Uncertainty quantification in high-fidelity models

Figure 3.2: Imposed displacement ud(t) (in red) and nominal loading ud(t).

� nonlinear isotropic hardening law (with p denoting the accumulated plastic strain):

R(p) = R∞(1− exp(−bp)) (3.12)

� flow rule for the plastic strain rate tensor:

ε̇p =
3

2
ṗ

s

σeq(σ)
(3.13)

� Karush-Kuhn-Tucker conditions:

ṗ ≥ 0, f ≤ 0, ṗf = 0 (3.14)

� Consistency condition for the determination of the plastic multiplier:

ṗḟ = 0 (3.15)

The quantities of interest Z1, Z2 are the mean values of the accumulated plastic strains
in two critical zones, namely a zone at the top of the first (from the left) top hole in the
structure, and another at the bottom of the first bottom hole. The accumulated plastic
strain can be formulated explicitly using Equation (3.13) and the definition of the von
Mises stress σeq(σ):

p(ξ, t) =

∫ t

0

√
2

3
ε̇p(ξ, τ) : ε̇p(ξ, τ) dτ (3.16)

This internal variable is usually involved in ductile fracture criteria such as Rice and
Tracey’s [78], and is therefore directly associated to the damage state of ductile materials.

The mechanical behavior of the structure is simulated with Zset [79] finite-element
software. 30 Monte Carlo simulations are run for different realizations of the stochastic
process defining the imposed displacement ud(t). An example of accumulated plastic
strain field in given in Figure 3.3 on the deformed geometry, where deformations have
been voluntarily amplified for visualization purposes. Table 3.1 compares the expected

34

3.4. Uncertainty propagation example in nonlinear solid mechanics

Figure 3.3: Accumulated plastic strain field p.

values of the mean accumulated plastic strains in the two critical zones with their values
predicted when solving the mechanical problem without the random term Xt, i.e. with the
nominal imposed displacement ud(t) only. The bounds of the asymptotic 99% confidence
intervals defined in Equation (3.6) are also given. It can be observed that the values
of the accumulated plastic strain are underestimated when discarding the random term
Xt. Because of nonlinearities, a simulation with the mean loading (nominal imposed
displacement) does not give the mean damage level, which illustrates the importance of
uncertainty quantification for a reliable design.

Table 3.1: Comparison of the expected values of the accumulated plastic strains averaged
over two critical zones and the corresponding values predicted with the mean loading ud(t).

Critical zone Expected value 99% confidence interval Nominal value

Lower zone 0.0101 [0.0086; 0.0116] 0.0066
Upper zone 0.0116 [0.0100; 0.0132] 0.0074

∗ ∗
∗

35

Chapter 4

Unsupervised learning

Abstract: Unsupervised learning deals with unlabeled data and consists in extracting in-
formation about their patterns, in the spirit of data mining tasks. It can be used in order
to summarize information on a dataset: cluster analysis categorizes samples by finding
groups of data sharing some characteristics, and dimensionality reduction models high-
dimensional data with a reduced number of latent variables to get a compressed represen-
tation. In this thesis, clustering enables identifying groups of possible configurations of
a physical system that can be simulated accurately with the same model. Dimensionality
reduction is used for the construction of low-dimensional approximation spaces for model
order reduction, but also for data preprocessing and visualization purposes.

Contents

4.1 The curse of dimensionality . 38

4.2 Dimensionality reduction . 38

4.3 Cluster analysis . 39

4.3.1 Clustering algorithms . 39

4.3.2 K-medoids clustering . 40

37

Chapter 4. Unsupervised learning

4.1 The curse of dimensionality

Generally speaking, machine learning algorithms are less efficient when the input data
belong to a high-dimensional vector space. This issue is known as the curse of dimension-
ality [80]. As shown in [81], under some conditions, the mean relative difference between
the smallest and the largest distances from a random query point to points of a high-
dimensional dataset becomes negligible as the dimension of the ambient space increases.
Therefore, all the concepts and methods relying on a distance (such as nearest neighbor,
some clustering algorithms, etc...) become meaningless in high dimension. Of course, in
many applications, high-dimensional data have a low intrinsic dimension, meaning that
the data points lie in a low-dimensional manifold. In this case, there is no curse of dimen-
sionality. However, in more general cases, working with high-dimensional data is difficult
since many more training examples are required to fill a bounded region of the ambient
space. Let us give the example of a function defined on a hypercube of dimension d, and
let us say that we would like to know the values of this function on a grid with n points
per direction. The total number of points in this grid equals to nd, which becomes too
large when d increases. As a result, real datasets in high dimensions cannot give enough
information about the influence of variations along each direction of the ambient space.

Another common illustration of the curse of dimensionality is that most of the volume
of a hypercube is located around its corners. Indeed, the ratio between the volume of
the inscribed hypersphere and the volume of the hypercube tends towards zero when the
dimension d increases.

In particular, the curse of dimensionality can be observed in high-dimensional su-
pervised learning tasks where models overfit the training data, and in high-dimensional
clustering, where one may find meaningless clusters.

4.2 Dimensionality reduction

Dimensionality reduction consist in finding a compressed representation of a dataset while
limiting as much as possible the loss of information. It is particularly useful for the
following applications:

� Data visualization;

� Extraction of the hidden structure of data, i.e. discovering the main characteristics
of the manifold containing the data to get their most salient features;

� Storage of large databases when only the most salient features matter;

� Addressing the curse of dimensionality for high-dimensional supervised learning
problems (regression or classification);

� Addressing the curse of dimensionality for high-dimensional cluster analysis by look-
ing for clusters from the low-dimensional representation of the dataset;

� Accelerating numerical simulations (see Model Order Reduction).

38

4.3. Cluster analysis

The Principal Component Analysis (PCA) belongs to linear dimensionality reduction
techniques. It consists in finding a low-dimensional affine subspace minimizing the pro-
jection error between the projected data and the original data. The principal axes are
determined by solving an eigenvalue problem on the correlation matrix computed after
centering the data. The corresponding eigenvalues indicate the variance that is captured,
which enables ordering the principal axes and choosing their appropriate number to rep-
resent the dataset with a given level of accuracy.

When data lie in a nonlinear manifold, it is sometimes advantageous to apply a nonlin-
ear dimensionality reduction method. Indeed, such methods can unveil latent coordinates
that are more adapted to the nonlinear shape of the manifold. For example, when high-
dimensional data points form a spiral embedded in a 2D subspace, the radius and the angle
might be more relevant than two coordinates associated to a basis of this 2D subspace for
the description of the data. Kernel PCA is a nonlinear extension of PCA using the kernel
trick. Instead of solving the eigenvalue problem for the (linear) correlation matrix, one
considers the eigenvalue problem of a Gram matrix corresponding to an inner product in
an unknown higher-dimensional space computed via a Mercer kernel. Theoretically, this
is equivalent to mapping the data to a higher-dimensional space and then applying PCA.
Once again, the eigenvalues enable selecting an appropriate number of latent coordinates
that well represent the data.

More generally, dimensionality reduction can be performed by undercomplete autoen-
coders. Autoencoders are defined by an encoder e : RN → Rn and a decoder d : Rn → RN
that are combined to give the autoencoder function f = d ◦ e. The autoencoder is said
to be undercomplete when the dimension n of the latent space is lower than the original
dimension N . Intuitively, the encoder compresses the data into the low-dimensional la-
tent space, and the decoder tries to retrieve the original data from the latent coordinates.
Autoencoders are usually obtained by training a neural network with this autoencoder ar-
chitecture, using the mean squared error loss to penalize the reconstruction error. When
trained with the mean squared error loss and one single hidden layer with linear activation
functions, the autoencoder neural network learns the PCA. Many autoencoder variants
exist and can be found in [3, 4]. Using an autoencoder for dimensionality reduction pur-
poses ensures that the low-dimensional representation of the data in the latent space is
relevant, in the sense that we know that the decoder can reconstruct the original data
from this reduced information.

4.3 Cluster analysis

4.3.1 Clustering algorithms

Cluster analysis belongs to unsupervised learning tasks in data science and has a broad
range of applications in data mining, such as image segmentation for medical image com-
puting and object detection, gene expression analysis in bioinformatics, anomaly detection,
market segmentation, and community discovery in social network analysis. Cluster anal-
ysis is the search of groups (or clusters) of similar objects in a database. The choice of
the clustering algorithm depends on the underlying motivation and thus on the clusters’
topological properties that are expected. One may want to favor compactness or intra-
cluster cohesion, between-cluster separation, connectivity, or cluster density. A clustering
algorithm is either hierarchical or partitional. Hierarchical cluster analysis aims at finding

39

Chapter 4. Unsupervised learning

a nested series of partitions represented in a dendrogram, obtained by merging or splitting
clusters. Hierarchical clustering algorithms include bottom-up agglomerative methods and
top-down divisive methods. Many variants exist depending on the definition of the dissim-
ilarity measure between data points and on the linkage criterion quantifying the similarity
between two clusters (e.g. single linkage, average linkage, complete linkage, Ward). Parti-
tional cluster analysis only finds one partition of the database, with the number of clusters
being fixed by the user or automatically chosen according to the structure of the database.
Representative-based algorithms use a dissimilarity measure to assign each object of the
database to the cluster corresponding to the closest representative object. They include
k-means [82], k-medians [83], k-medoids [84], and many variants of k-means. Probabilistic
model-based algorithms assume that the data are generated by a mixture model such as
the Gaussian mixture model (section 3.2.2 of [39]) and use the expectation-maximization
algorithm [56, 55] to find the maximum likelihood estimates of the parameters of the mix-
ture model. Density-based algorithms (e.g. DBSCAN [85]) define clusters as high-density
zones. This strategy is also used by some grid-based algorithms such as CLIQUE [86]
and STING [87] which discretize each feature of the data into a finite number of cells.
Graph-based algorithms can detect arbitrarily-shaped clusters by partitioning a similarity
graph. They include spectral clustering methods [88] such as NCuts [89]. Finally, deep
clustering methods resort to deep learning to find latent representations of the data with
features that facilitate clustering, using various network architectures such as multilayer
perceptrons, convolutional neural networks, autoencoders, variational autoencoders, gen-
erative adversarial networks, and deep belief networks. Reviews and taxonomies of deep
clustering can be found in [90, 91]. We refer the reader to the books [39], [83] (chapters 6
and 7), [55] (section 14.3), or articles [92, 93] for more details about clustering algorithms.

4.3.2 K-medoids clustering

In representative-based clustering algorithms, each cluster is associated to a partition-
ing representative, i.e. a reference point that well represents the cluster’s members.
Representative-based algorithms generally define the clusters thanks to the Voronoi dia-
gram generated by the representatives, which gives clusters with high cohesion. They rely
on a dissimilarity measure quantifying the difference between two points in the dataset.

Definition 4.3.1 (Dissimilarity measure). Let X be a topological space. A dissimilarity
measure on X is a function δ : X×X → R+ such that δ(x, x′) = δ(x′, x) for all (x, x′) ∈ X 2

and δ(x, x) = 0 for all x ∈ X .

Definition 4.3.2 (Representative-based clustering). Let us consider a finite set {xi}1≤i≤m
of elements of a topological space X endowed with a dissimilarity measure δ. For a given
integer K ∈ [[2;m]], representative-based clustering consists in finding K representatives
{x̃k}1≤k≤K ⊂ X minimizing the objective function:

m∑
i=1

min
k∈[[1;K]]

δ(xi, x̃k) (4.1)

The clusters Ck are given by:

Ck := {xi | δ(xi, x̃k) ≤ δ(xi, x̃l) ∀l ∈ [[1;K]]} (4.2)

40

4.3. Cluster analysis

When the dissimilarity measure is taken to be the squared Euclidean distance, the
optimal representatives are the clusters’ means or centroids (see [83], p.162). This prob-
lem corresponds to k-means clustering [82], where the cost function in Equation (4.1)
corresponds to the within-cluster variance and is related to clusters inertia. Taking the
L1 or Manhattan distance instead as in k-medians would define the optimal representa-
tives as the clusters’ component-wise medians, when X is a finite-dimensional vector space
(see [83], p.164). In k-medoids, the representatives must be taken among the elements of
the dataset. This restriction is particularly useful when functions of the training examples
(such as mean and median) do not make sense or cannot be easily computed. It en-
ables working with any type of data with any dissimilarity measure. The next definitions
introduce the k-medoids optimization problem:

Definition 4.3.3 (Binary matrices). A binary matrix is a matrix whose coefficients are
either 0 or 1. The set of binary matrices of size m× n is denoted by Bm,n.

Definition 4.3.4 (K-medoids clustering). Let us consider a finite set {xi}1≤i≤m of ele-
ments of a topological space X endowed with a dissimilarity measure δ. For a given integer
K ∈ [[2;m]], let us introduce the set Zm,K :

Zm,K :=

{
Z ∈ Bm,K |

K∑
k=1

zik = 1 ∀i ∈ [[1;m]] and
m∑
i=1

zik ≥ 1 ∀k ∈ [[1;K]]

}
(4.3)

K-medoids clustering consists in solving the following optimization problem:

Z∗ := arg min
Z∈Zm,K

K∑
k=1

m∑
i=1

zikδ(xi, x̃k) (4.4)

where the medoids x̃k are given by:

x̃k := arg min
j∈[[1;m]]

m∑
i=1

zikδ(xi, xj) (4.5)

Using Equation (4.5), the optimization problem given in Equation (4.4) can be formulated
as follows:

Z∗ := arg min
Z∈Zm,K

K∑
k=1

min
j∈[[1;m]]

m∑
i=1

zikδ(xi, xj) (4.6)

This formulation of the k-medoids problem has similarities with the k-means formu-
lation proposed in [94]. With this formulation, the definition of the clusters Ck in Equa-
tion (4.2) is equivalent to:

Ck = {xi | z∗ik = 1} (4.7)

Equation (4.3) defining the set Zm,K ensures that each point is assigned to one single
cluster, and that each cluster contains at least one element. Equation (4.5) defines the
medoid of a cluster as its most central member. K-medoids is a combinatorial optimization
problem, for which several heuristic approaches have been proposed to find a suboptimal
solution at lower cost. The Partitioning Around Medoids (PAM [84] and Chap. 2 of [95])
is the most known algorithm. It iteratively looks for the best swap between nonmedoid
points and medoids. Clustering Large Applications (CLARA [96] and Chap. 3 of [95])

41

Chapter 4. Unsupervised learning

applies PAM on different subsamples to reduce the computational complexity of PAM. As
explained in Section 11.2.1 of [39], both PAM and CLARA algorithms can be interpreted
as graph-searching problems: PAM explores the entire graph of clustering solutions, while
CLARA explores a subgraph only. Clustering Large Applications based on Randomized
Sampling (CLARANS [97, 98]) only considers a sample of the neighbors of the current
graph node at each iteration, which enables searching over the entire graph as in PAM
but at lower cost. These three algorithms have been improved recently in [99] in terms
of computational complexity. Apart from these approaches, a simple and fast k-medoids
algorithm has been proposed by Park and Jun in [100] following the standard implemen-
tation of k-means with a Voronoi iteration approach, i.e. alternating between a cluster
assignment step and updating the medoids with Equation (4.5). Park and Jun’s algorithm
has a per-iteration complexity of O(mK), whereas PAM has a per-iteration complexity of
O(K(m−K)2), see [101]. However, as explained in [99], this algorithm does not explore
as many configurations as PAM does. For small datasets (i.e. m in the order of 102 to
103), it is worth using PAM to find the best configuration. Running PAM on such datasets
takes less than a minute, which remains negligible in comparison with other computations
involved in our methodology.

Remark 4.3.5. For all these variants of k-medoids clustering, the dissimilarities δ(xi, xj)
are precomputed before looking for clusters.

∗ ∗
∗

42

Chapter 5

Supervised learning

Abstract: Supervised learning algorithms consist in building predictive models from a
training set of input-output examples. They can generally be formulated as an optimiza-
tion problem, using the empirical risk minimization principle. There are two categories
of supervised learning algorithms, namely regression and classification algorithms. Regres-
sion is used in this thesis for the reconstruction of full fields from hyper-reduced predictions
on reduced-integration domains, and classification plays a major role in our methodology
for the recommendation of suitable approximation spaces when solving partial differential
equations. Ensemble learning methods enable limiting the risk of overfitting by leverag-
ing different predictive models, which is particularly important when working with small
training sets of simulation data.

Remark 5.0.1. This chapter includes a few paragraphs taken from our paper [48], with
modifications.

Contents

5.1 Empirical risk minimization . 44

5.2 Regression algorithms . 46

5.2.1 Penalized linear regression and kriging 46

5.2.2 Hyperparameters tuning . 47

5.3 Classification algorithms . 48

5.3.1 Generative classifiers . 48

5.3.2 Logistic regression . 49

5.3.3 k-nearest neighbors classifier . 50

5.3.4 Tree-based classifiers . 50

5.3.5 Support vector classifiers . 51

5.3.6 Artificial neural networks . 53

5.4 Ensemble learning . 57

5.4.1 Voting and averaging . 57

5.4.2 Other ensemble methods . 58

5.5 Classification in computational physics 59

5.6 Feature selection based on mutual information 60

5.6.1 Introduction to feature selection 60

5.6.2 mRMR feature selection . 61

43

Chapter 5. Supervised learning

5.1 Empirical risk minimization

Supervised learning is the task of learning the correspondence between input data X and
outputs Y from a training set of input-output pairs {(xi, yi)}1≤i≤m. Supervised machine
learning problems fall into two categories: regression problems, for which the outputs take
continuous values, and classification problems, consisting in the prediction of categorical
labels. In this work, it is assumed that X is a continuous multivariate random variable
having a probability density function pX : X → R+, with X ⊂ RN where N is the num-
ber of features. In single-label classification problems, the random variable Y is discrete
and follows a categorical distribution (or multinoulli distribution) whose probability mass
function is defined by

∀y ∈ R, pY (y) =
K∑
k=1

PY (k)δ(y − k) (5.1)

where K is the number of categories (or classes), δ is the Dirac delta function, and PY (k)
denotes the probability of the event Y = k for a given label k ∈ [[1;K]]. The labeled
training data are drawn from the joint probability distribution pX,Y , called the data-
generating distribution. As X is continuous and Y is discrete, pX,Y is a mixed joint
density and can be obtained with the formula

pX,Y (x, y) = pY (y) pXY (x | y) =

K∑
k=1

PY (k)δ(y − k)pXY (x | y) (5.2)

with pXY being the class-conditional probability distribution.

In the present chapter, we are interested in single-label multiclass problems. Therefore,
the classification problem considered here reads: given an integer K ≥ 2 and a training
set {(xi, yi)}1≤i≤m ⊂ X × [[1;K]], train a classifier C(. ; θ) : X → [[1;K]] to assign any
observation x ∈ X to the correct class, with θ denoting the parameters of the classifier.
However, reaching the highest possible accuracy on the training set is not the objective to
be pursued, as it usually leads to overfitting. Indeed, the classifier is supposed to be applied
to new unseen data, or test data, after the training phase. Therefore, the generalization
ability of the classifier is at least as important as its performance on the training set.
A classifier with high capacity1 perfectly fits training data but is very sensitive to noise,
leading to high test error and thus overfitting. On the other hand, a classifier with low
capacity can produce smaller error gaps between training and test predictions, but such
a classifier may not be able to fit the data, which is called underfitting. This dilemma is
known as the bias-variance trade-off : low model capacity leads to high bias, while high
model capacity leads to high variance. An illustration of the concepts of overfitting and
underfitting is given in Figure 5.1 for regression.

For a given observation x ∈ X , probabilistic classification algorithms estimate the
membership probabilities Pmodel (y x; θ) for each class y ∈ [[1;K]]. The classifier C returns
the index of the class with the highest membership probability:

C(x; θ) = arg max
y∈[[1;K]]

(Pmodel (y x; θ)) (5.3)

The parameters θ must be optimized to minimize the expected risk J (θ) defined by

J (θ) = E(X,Y)∼pX,Y [L (C(X; θ), Y)] (5.4)

1Ability to learn classes with complex boundaries, related to model complexity.

44

5.1. Empirical risk minimization

Figure 5.1: Illustration of overfitting (red curve) and underfitting (green curve) in a re-
gression problem. The training points are represented by crosses, while test points are
represented by dots.

where L is the per-example loss function quantifying the error between the predicted class
C(X; θ) and the true class Y . However, as the true data-generating distribution pX,Y is
unknown, the expected risk must be estimated by computing the expectation with respect
to the empirical distribution p̂X,Y :

p̂X,Y (x, y) =
1

m

m∑
i=1

δ(x− xi, y − yi) (5.5)

Therefore, the training process consists in minimizing the empirical risk :

Ĵ (θ) = E(X,Y)∼p̂X,Y [L (C(X; θ), Y)] =
1

m

m∑
i=1

L (C(xi; θ), yi) (5.6)

This is known as the empirical risk minimization (ERM) principle [102]. Common choices
for the function L are the hinge loss (defined for multiclass problems in [103]) used by
support vector machines (SVMs), and the log loss or negative log-likelihood

L (C(x; θ), y) = − log Pmodel (y x; θ) (5.7)

that is widely used for classifiers based on artificial neural networks (ANNs) and for logistic
regression. When L is the negative log-likelihood, the objective function Ĵ (θ) is the
cross-entropy loss and the optimal set of parameters θ∗ minimizing Ĵ is the maximum
likelihood estimator [55]. Variants include the balanced cross-entropy loss to handle class
imbalance, and the focal loss [104] which focuses more on misclassified examples. Usually,
a regularization term is added to the empirical risk to penalize the model complexity in
order to reduce overfitting.

For regression problems, the probability density function of Y is also denoted by pY , but
Equation (5.1) is no longer valid. The concept of data-generating distribution pX,Y remains
valid, although the second equality in Equation (5.2) no longer holds. The ERM principle

45

Chapter 5. Supervised learning

and the concept of overfitting are also valid, replacing the classifier C(. ; θ) : X → [[1;K]]
by a regressor R(. ; θ) : X → RK , where K = 1 if Y is a real-valued random variable and
K > 1 if Y is a K-dimensional random vector. For K = 1, the per-example loss function
L is rather defined as the squared error (R(X; θ) − Y)2 defining the mean squared error
(MSE) loss, or as the absolute error |R(X; θ)−Y | defining the mean absolute error (MAE)
loss. The next sections introduce the main regression and classification algorithms. Most
of the time, supervised learning algorithms have a version for classification and another
for regression. Therefore, some algorithms that are presented in the section dedicated to
classification have a counterpart for regression (e.g. for k-nearest neighbors algorithm,
decision trees, support vector machines and artificial neural networks). The choice of
presenting these algorithms as regression or classification algorithms is motivated by the
way they are used in the test cases presented in this thesis.

5.2 Regression algorithms

5.2.1 Penalized linear regression and kriging

Let X ∈ RN and Y ∈ RK be two multivariate random variables. Linear regression
consists in modeling the output variable Y as a linear function of X, i.e. Y ≈ WX with
W ∈ RK×N . An additional bias term can be considered to get an affine function, by
adding a coordinate to the vector X and setting it to 1. The MSE loss reads:

Ĵ (W) =
1

m

m∑
i=1

||yi −Wxi||22 (5.8)

Linear regression can be easily extended to nonlinear problems by replacing X by nonlinear
functions of X, such as polynomials for polynomial regression. The resulting regression
problem is still called linear regression, it can be written as a new linear regression problem
on a transformed input Z containing the nonlinear functions of the features of X.

When the dimension N of the input is high, the regression algorithm is prone to
overfit training data. To avoid this issue, the model complexity is penalized by adding a
regularization term Λ(W) to the cost function:

W ∗ = arg min
W∈RK×N

Ĵ (W) + C−1Λ(W) (5.9)

with C being the inverse of the regularization strength, used to control the trade-off
between the regularization term and the MSE loss. Common choices for the regularization
term include:

� L1 regularization, called Lasso:

Λ(W) =
K∑
i=1

N∑
j=1

|Wij | (5.10)

which gives sparse coefficients, enabling the automatic selection of the most relevant
features.

46

5.2. Regression algorithms

� L2 regularization, also known as weight decay:

Λ(W) =
1

2

K∑
i=1

N∑
j=1

W 2
ij =

1

2
||W ||2F (5.11)

which gives the Ridge Regression algorithm. When different weights are given to the
coefficients of the matrix W in Λ(W), this is known as Tikhonov regularization.

� Multi-task Lasso:

Λ(W) =
N∑
j=1

√√√√ K∑
i=1

W 2
ij (5.12)

which behaves like Lasso with the additional constraint that the selected features
are the same for all the components of Y .

� Elastic net regularization [105], consisting in a weighted average of L1 and L2 regu-
larization terms.

Kriging or Gaussian process regression [106, 107] is another famous algorithm. It
has the advantage of giving confidence intervals for its predictions, which is the reason
why kriging is widely used in adaptive refinement procedures, sensitivity analysis, and
robust optimization, where it replaces a complicated function that is implicitly defined by
a costly numerical simulation [108]. Different correlation functions are used depending on
the regularity of the function to be approximated. Common kernels include Matérn kernels
with parameter 3/2 for continuous and differentiable functions, and with parameter 5/2 for
continuous and twice differentiable functions. For high-dimensional regression problems,
Lasso can be applied to select a reduced number of input variables before training a
Gaussian process regression model.

5.2.2 Hyperparameters tuning

The parameter C in Equation (5.9) and the other parameters that may be introduced in the
regularization term such as the elastic net mixing coefficient are called hyperparameters.
More generally, for any model and any learning task, a hyperparameter is a parameter
that is not calibrated by the optimization algorithm used in the training procedure. These
hyperparameters can be optimized using a validation set or with cross-validation, instead
of being adjusted manually. When using a validation set, the user must train the model
several times on the training set for different values of the hyperparameter, and then
evaluate the trained models on the validation set. While the predictions on the training
set are not accurate enough, new values of the hyperparameter must be tested. But using
part of the available data as a validation set is not always appropriate: when working with
a limited amount of data, the validation set might be too small to be representative, or too
large to let enough examples in the training set. In this case, k-fold cross-validation can
be used. It consists in splitting the training set into k subsets. Each possible value for the
hyperparameter is tested by training the model k times on k− 1 subsets and evaluating it
on the remaining subset (playing the role of a validation set). The performance criterion is
then averaged over the k evaluations, to get a performance measure that is independent of
the choice of the validation set. The hyperparameter value giving the best cross-validated
performance is kept and the model is trained again with this value for its hyperparameter,

47

Chapter 5. Supervised learning

this time on the whole training set. The concept of hyperparameter can be generalized
to incorporate not only numerical parameters, but also algorithmic choices such as the
optimizer, the kernel for SVMs, and the network architecture for neural networks.

5.3 Classification algorithms

In single-label multiclass classification, the boundaries between classes in the input space
are called decision boundaries. Linear classifiers are classification algorithms for which
the decision boundaries are defined by linear combinations of the features of X. Linear
classifiers are appropriate when the classes are linearly separable in X , which means that
the decision boundaries correspond to portions of hyperplanes. Linear classifiers include
logistic regression [109, 110, 111], linear discriminant analysis (LDA [55]), and the linear
support vector classifier (linear SVM [112, 113]).

Many algorithms exist for nonlinear classification problems, each of them having its
own advantages and drawbacks. As a kernel method, the linear SVM is extended to nonlin-
ear classification problems using the kernel trick based on Mercer’s theorem [59]. Artificial
neural networks [114, 115] (see in [116] for a historical review) have become very popular
due to their performances in numerous classification contests. Decision trees (e.g., CART
algorithm [117]) and naive Bayes classifiers [118, 119] are well-known for their interpretabil-
ity. Other nonlinear classifiers include the k-nearest neighbors algorithm (kNN [120]) and
quadratic discriminant analysis (QDA [55]). In [121], the most common classifiers are com-
pared on eleven binary classification problems. Short reviews of classification algorithms
can be found in [122, 123]. This section introduces various classification algorithms that
have been used in this thesis.

5.3.1 Generative classifiers

Following Bayes’ theorem (Theorem 2.2.8), the posterior probability PY |X(y|x) is given
by:

PY |X(y|x) =
pX|Y (x|y)PY (y)∑K
k=1 PY (k)pX|Y (x|k)

(5.13)

Generative classifiers estimate the class priors PY (k) from training data and model the
class-conditional distributions pX|Y (x|k) in order to calculate the membership probabilities
using Bayes’ theorem for any input x. For a given observation x, the predicted label y
corresponds to the class with the highest membership probability, which is equivalent to
maximizing pX|Y (x|y)PY (y). The decision rule of a generative classifier can then be seen as
the maximum a posteriori (MAP) estimation of y, i.e. finding the parameter y such that x
is a plausible observation drawn from the parametrized distribution pX|Y (x|y), with priors
PY (y) on the possible values of y. During training, the class-conditional distributions
pX|Y are modeled by classic probability distributions, whose parameters are calibrated
using maximum likelihood estimation (MLE).

Quadratic discriminant analysis (QDA [55]) models the class-conditional distributions
pX|Y (x|y) with multivariate normal distributions:

pX|Y (x|y) =
1

(2π)N/2 det(Σy)1/2
exp

(
−1

2
(x− µy)TΣ−1

y (x− µy)
)

(5.14)

48

5.3. Classification algorithms

where µy (resp. Σy) is the mean (resp. covariance matrix) for class y, estimated on the
training set. This model gives quadratic decision boundaries. The Gaussian naive Bayes
classifier [118, 119] is a special case of QDA, with all class covariance matrices Σy being
diagonal. This constraint is referred to as the naive assumption, and amounts to assuming
the class-conditional independence of the features Xi, i.e.:

pX|Y (x|y) =
N∏
i=1

pXi|Y (xi|y) =
N∏
i=1

1√
2πσ2

yi

exp

(
−(xi − µyi)2

2σ2
yi

)
(5.15)

Linear discriminant analysis (LDA) is a linear probabilistic classifier obtained by adding
the homoscedasticity assumption to QDA: all class covariance matrices are identical. This
assumption leads to linear decision boundaries. The main advantage of QDA, LDA and
Gaussian naive Bayes classifiers is that they have no hyperparameter.

5.3.2 Logistic regression

Definition 5.3.1 (Softmax function). Let n ∈ N∗ be a positive integer. The softmax
function softmax : Rn → Rn is defined by:

∀x =
[
x1, ..., xn

]
∈ Rn, ∀i ∈ [[1;n]], softmaxi(x) =

exp(xi)∑n
j=1 exp(xj)

(5.16)

The softmax function is commonly used to compute membership probabilities from a
vector of scores for multiclass problems. The name softmax comes from the fact that the
softmax function can be seen as a smooth version of the one-hot encoded arg max function
when one score sk is large enough with respect to the other scores. Indeed, in this case,
softmaxk(s) ≈ 1 while the other terms are close to zero. The softmax function is used in
logistic regression and neural network-based classifiers.

Logistic regression [109, 110] is a linear probabilistic classifier. Its multiclass version
is known as the multinomial logistic regression [111]. The logarithms of the membership
probabilities are modeled with a linear function of the input x ∈ RN :

logPmodel (k | x;W) = wTk x− log x0 (5.17)

where W ∈ RK×N is a matrix whose rows are denoted by wk ∈ RN , and with x0 being
defined as:

x0 =
K∑
k=1

exp(wTk x) (5.18)

so that the sum of the membership probabilities equals to 1. These equations give:

Pmodel (k | x;W) = softmaxk (Wx) (5.19)

The parameters W are optimized by minimizing the cross-entropy loss. Usually, a regular-
ization term is added to the cost function. According to [55, 124], LDA is more accurate
than logistic regression when the homoscedasticity assumption is satisfied. Nevertheless,
as this condition is rarely satisfied, logistic regression is more widely used.

49

Chapter 5. Supervised learning

5.3.3 k-nearest neighbors classifier

The k-nearest neighbors classifier [120] belongs to instance-based learning algorithms,
which store training data in memory and compare test data with training examples to
make predictions. The label for a given observation is obtained by a majority vote be-
tween the k nearest training examples in the sense of the Euclidean distance. In weighted
nearest neighbors classifiers, the votes are weighted according to the distances from the
new observation. A review of weighting schemes can be found in [125].

5.3.4 Tree-based classifiers

Decision trees are supervised learning algorithms modeling the correspondence between
inputs and outputs by means of simple decision rules, leading to a recursive partition of
the input space. They can handle both categorical and numerical data. Decision trees can
solve regression problems (regression trees) or classification problems (classification trees),
and are known to be interpretable in the sense that classification rules can be visualized
as paths in a tree structure. Interpretability is a key advantage for applications where
understanding the causes leading to a prediction is necessary. For such applications, tree-
based algorithms are preferred over black-box models such as deep neural networks or
kernel SVM. However, decision trees are generally unstable and usually overfit training
data, which is the reason why they are often used in conjunction with an ensemble method
such as random forest [126], for instance.

A decision tree is a rooted tree: it has a root node with no incoming edge, all of the
other nodes having exactly one incoming edge. An example is given in Figure 5.2, where
the root node compares the feature x1 with a threshold value xt1. Nodes with outgoing
edges are called internal nodes. Non-internal nodes are called leaves and contain a label.
Leaves are represented by ellipses in Figure 5.2. Internal nodes perform a test on a feature
of the input data, which splits the input space into two or more regions. Typically, for
numerical features, a test consists in comparing a feature to a threshold value. This test
corresponds to an internal node with two outgoing edges like in Figure 5.2, splitting the
input space with a hyperplane orthogonal to the axis of the feature being tested. For a
given observation x, the predicted label is obtained by following a path in the tree: starting
from the root node, the path follows edges according to results of tests made by internal
nodes, until it reaches a leaf whose label gives the predicted class.

Figure 5.2: Decision tree for a binary classification problem.

50

5.3. Classification algorithms

Building an optimal decision tree for a given training set is a NP-hard problem. For this
reason, many heuristic methods have been developed. Most of them follow a top-down
recursive approach, like in CART [117]. This growing procedure is sometimes followed
by a pruning procedure to reduce the complexity of the tree and avoid overfitting. The
complexity of a tree can be measured via its depth, the number of nodes, or the number
of leaves, for example.

5.3.5 Support vector classifiers

Support vector machines (SVMs [112, 113]) are supervised machine learning algorithms
which can handle both classification and regression problems. This section focuses on sup-
port vector classifiers. A linear support vector classifier, or linear SVM, can solve classifi-
cation problems where classes are linearly separable. The linear SVM is a non-probabilistic
classifier, i.e. it does not compute membership probabilities to make decisions. SVMs are
introduced in this section for binary classification problems. In this context, the labels yi
are redefined to take values in {−1; 1}.

Hard-margin classifier for linearly separable classes

Figure 5.3: Decision boundary of a hard-margin classifier.

Before introducing the linear SVM and kernel SVM, let us introduce a simplified version
of the linear SVM known as the hard-margin classifier [55]. When dealing with linearly
separable classes, there is an infinite number of hyperplanes separating the two classes.
For a given hyperplane defined by the affine equation h(x) = 0 with:

h(x) = wTx+ w0 (5.20)

and (w,w0) ∈ RN × R, the margin M is defined by:

M = min
x∈RN

min
i∈[[1;m]]

{||x− xi||2, h(x) = 0} = min
i∈[[1;m]]

|h(xi)|
||w||2

(5.21)

The hyperplane maximizing the margin is taken as the decision boundary of the hard-
margin classifier when the two classes are perfectly linearly separable, see Figure 5.3. The

51

Chapter 5. Supervised learning

labels 1 and −1 can be inverted if necessary so that this hyperplane satisfies yih(xi) > 0
for all i ∈ [[1;m]]. In addition, w and w0 can be chosen so that:

min
i∈[[1;m]]

yih(xi) = 1 (5.22)

which implies that M = ||w||−1
2 . Therefore, to find the hyperplane maximizing the margin,

one must solve the following optimization problem:

min
(w,w0)∈RN×R

||w||2 (5.23)

subject to:
yih(xi) ≥ 1 ∀i ∈ [[1;m]] (5.24)

Soft-margin classifier

In general, the two classes are not perfectly linearly separable. Even if this is the case,
the hard-margin classifier is too sensitive to outliers. This is why linear SVM relies on the
concept of soft margin, allowing some points to be between the two hyperplanes h(x) = 1
and h(x) = −1. Given a hyperparameter C > 0, the primal formulation of the optimization
problem solved by the linear SVM is:

min
(w,w0,ζ)∈RN×R×Rm

1

2
wTw + C

m∑
k=1

ζk (5.25)

under the constraints:

∀i ∈ [[1;m]], yih(xi) ≥ 1− ζi and ζi ≥ 0 (5.26)

The constraints on the slack variables ζi can be expressed with the hinge loss:

ζi ≥ max (0; 1− yih(xi)) (5.27)

which shows the link between Equation (5.25) and the empirical risk minimization of
the hinge loss with a L2 regularization on the weights w with regularization strength
C−1. One way to solve this optimization problem is to solve its Lagrangian dual with a
quadratic programming algorithm, see [55]. Points located on the hyperplanes h(x) = 1
and h(x) = −1 are called support vectors. It can be shown that the solution w is a
combination of the support vectors only [55].

Several extensions of SVMs to multiclass problems have been proposed, like in [103].
As a kernel method, the SVM classifier can be applied to nonlinear problems thanks to
the kernel trick. According to [127], SVMs are popular for classification problems on
small datasets and thanks to their strong theoretical background, contrasting with the
development of neural networks based on extensive experimentation before coming to
theoretical results. As said in [128], SVMs find the global minimum during training, while
neural networks suffer from the existence of many local minima. For some applications,
SVMs proved to be as competitive as or even more competitive than neural networks,
see [127, 129, 130]. However, neural networks have become more popular during the last
decade thanks to the rapid improvement of computer performances and to the extensive
use of GPUs, enabling working with deep architectures to address complex problems.

52

5.3. Classification algorithms

5.3.6 Artificial neural networks

Network architecture

Artificial neural networks (ANNs) form a class of functions that can be represented by
an architecture made of layers of neurons with an alternation between linear operations
and nonlinear activation functions. The first ANN trained for a supervised learning task
was the perceptron, invented by Rosenblatt in 1958 [131]. Later, hidden layers of neu-
rons have been progressively added between the input and the output layers of ANNs to
solve nonlinear problems, which led to the concepts of deep neural networks (DNNs) and
deep learning. The earliest examples of DNNs in the 1960s can be found in [114, 115].
Since then, complex architectures have been explored for many different problems not
limited to supervised learning tasks: recurrent neural networks (RNNs) for the processing
of sequential data such as time series or texts (e.g. Long Short-Term Memory networks,
LSTM), autoencoders for nonlinear dimensionality reduction, U-nets for image segmenta-
tion, variational autoencoders (VAEs) and generative adversarial networks (GANs) for the
generation of synthetic data, etc... For detailed descriptions of the various deep learning
architectures, we refer the reader to the books [3] and [4]. In this thesis, only feedforward
architectures have been used. A historical review of artificial neural networks is proposed
in [116]. With many outstanding results in international competitions in computer vi-
sion since 2009, deep learning has become very popular during the last decade with the
development of very deep architectures trained on GPUs.

Feedforward neural networks

Feedforward neural networks are artificial neural networks whose connections between
neurons go from the input layer to the output layer without forming loops in the hidden
layers (see Figure 5.4). Formally, a feedforward neural network can be defined as follows:{

x(0) = x

x(l) = Φ(l)
(
x(l−1)

)
∀l ∈ [[1;L]]

(5.28)

where L ∈ N∗ is the number of layers (excluding the input layer). If n(l) denotes the

number of neurons in the l-th layer, then the functions Φ(l) are defined on Rn(l−1)
and

return vectors in Rn(l)
. For a K-class classification problem, the output layer is generally

defined using the softmax function to get membership probabilities:

Φ(L)
(
x(L−1)

)
= softmax

(
Wx(L−1)

)
(5.29)

with W ∈ RK×n(L−1)
. No bias term is added before applying the softmax function, since

softmax is translation-invariant.

Multilayer perceptrons

A multilayer perceptron (MLP) is a particular type of feedforward neural networks with
fully-connected layers, meaning that the value computed at any neuron of any layer l can
be a function of all the neurons of layer l − 1. The most simple MLPs consist in stacking
affine transformations and nonlinear activation functions. Additional functionalities may

53

Chapter 5. Supervised learning

Figure 5.4: Example of feedforward neural network with fully-connected layers (multilayer
perceptron). Each connection is weighted by a coefficient of the matrices W (l). Each
neuron, represented by a circle, carries a scalar value. The contributions whose connections
converge towards the same neuron are added and fed into a nonlinear activation function,
optionally with an additional bias term.

be added in the architecture, such as dropout [132] and batch normalization [133] for
example. Without these additional functionalities, a MLP can be defined by:

Φ(l)
(
x(l−1)

)
= ϕ(l)

(
W (l)x(l−1) + b(l)

)
(5.30)

with W (l) ∈ Rn(l)×n(l−1)
, b(l) ∈ Rn(l)

, and ϕ(l) : Rn(l) → Rn(l)
of the form:

∀z = [z1, ..., zn
(l)

]T ∈ Rn
(l)
, ϕ(l)(z) = [ϕ̂(l)(z1), ..., ϕ̂(l)(zn

(l)
)]T (5.31)

except for l = L when considering classification problems. In the equation above, ϕ̂(l) is an
activation function, the most common choice being the ReLU function [4] z 7→ max(0, z).
An illustration of a simple MLP with L = 3 layers (2 hidden layers and an output layer)
is given in Figure 5.4.

Remark 5.3.2. A MLP classifier made of a single fully-connected layer (L = 1) with the
softmax activation function for Φ(1) and trained with the cross-entropy loss is equivalent
to the multinomial logistic regression algorithm.

Radial basis function networks

A radial basis function network (RBFN) is a feedforward neural network such that:

Φ(l)
(
x(l−1)

)
= W (l)ρ(l)

(
x(l−1), c(l)

)
(5.32)

with W (l) ∈ Rn(l)×ñ(l)
. The function ρ(l) : Rn(l−1) × Rn(l−1) → Rñ(l)

is a vector function
made of radial basis functions:(

ρ(l)
(
χ, c(l)

))
i

= ρ̂(l)
(
||χ− c(l)[i]||2

)
(5.33)

54

5.3. Classification algorithms

with c(l) being the list of centers c(l)[i] ∈ Rn(l−1)
. A common choice for ρ̂(l)

(
||χ− c(l)[i]||2

)
is the Gaussian RBF:

ρ̂(l)
(
||χ− c(l)[i]||2

)
= exp

(
−γ||χ− c(l)[i]||22

)
(5.34)

The centers are usually determined with k-means clustering algorithm on the training
data, while the coefficient γ for the Gaussian RBF function is given by heuristic methods.
These parameters can also be optimized with gradient descent, like the weights W (l) of the
fully-connected layers. Using radial basis functions instead of simple activation functions
imply that it is generally not necessary to use many RBF layers. In fact, RBFN are
usually shallow, with only one RBF layer and one or more fully-connected layers. The
idea behind RBFN is similar to SVM: the RBF layer gives a richer representation of the
input, on which the classification problem may be easier. As explained in [4], when trained
with the hinge loss, RBFNs can be seen as generalized kernel SVMs.

Convolutional neural networks

Convolutional neural networks (CNNs) are commonly used to process images. The first
CNN can be found in [134]. Common CNN architectures for classification tasks generally
involve several blocks made of a convolution layer, batch normalization, an activation
layer and a pooling layer, followed by fully-connected layers. 2D convolution filters are
applied on images to compute feature maps (or channels) containing increasingly high-
level features as we progress in the hidden convolution layers, while pooling layers reduce
the amount of information to be analyzed in each feature map. Then, the feature maps of
the last convolution layer are flattened to be fed into fully-connected layers that analyze
the high-level features to predict the output. A CNN can be seen as a first purely-
convolutional network processing useful representations of the input data, followed by
a multilayer perceptron. The next paragraphs introduce a few functionalities of CNNs.
For simplicity, the input is assumed to have a tensorial representation x ∈ Rc×n1×n2 like
images, where c is the number of channels (c = 3 for colored images, i.e. one channel for
each primary RGB color), and n1 and n2 are the number of pixels along the horizontal and
vertical directions. In fact, in this thesis, CNNs will be applied to 3D fields defined on a
mesh by projecting them onto a 3D grid with n1×n2×n3 voxels. The following equations
will therefore be used with an additional dimension to process data in Rc×n1×n2×n3 , where
c will correspond to the number of components of the physical field.

Convolution operator. Let us consider tensors x ∈ Rc×n1×n2 and w ∈ Rcw×c×f1×f2
with fi ≤ ni. The tensor w ? x ∈ Rcw×m1×m2 with mi = ni − fi + 1 is defined by:

(w ? x) [i, j, k] =

c∑
α=1

f1∑
β=1

f2∑
γ=1

w [i, α, β, γ]x [α, j + β − 1, k + γ − 1] (5.35)

Padding function. Let p ∈ N2. Φpad(.; p) : Rc×n1×n2 → Rc×(n1+2p1)×(n2+2p2) is defined
by:

Φpad(x; p) [i, j, k] =

{
x [i, j − p1, k − p2] if (j, k) ∈ [[1 + p1;n1 + p1]]× [[1 + p2;n2 + p2]]

0 else

(5.36)

55

Chapter 5. Supervised learning

Stride function. Let s ∈ N2. Φstride(.; s) : Rc×n1×n2 → Rc×m1×m2 with:

mi =

⌊
ni − 1

si

⌋
+ 1 (5.37)

is defined by:
Φstride(x; s) [i, j, k] = x [i, 1 + (j − 1)s1, 1 + (k − 1)s2] (5.38)

2D convolution layer. Φconv(.;W, b, p, s) : Rc×n1×n2 → RcW×m1×m2 with:

mi =

⌊
ni + 2pi − fi

si

⌋
+ 1 (5.39)

and p ∈ N2, s ∈ N2, b ∈ RcW×m1×m2 , W ∈ RcW×c×f1×f2 . The integer cW is the number
of filters (or feature maps), defining the number of channels of the output. The 2D
convolution layer is defined by:

Φconv(x;W, b, p, s) = b+ Φstride (W ? Φpad(x; p); s) (5.40)

2D pooling layer. Φpool(.;φpool, f, p, s) : Rc×n1×n2 → Rc×m1×m2 with:

mi =

⌊
ni + 2pi − fi

si

⌋
+ 1 (5.41)

is defined by:
Φpool(x;φpool, f, p, s) = Φstride (φpool (Φpad(x; p); f) ; s) (5.42)

with φpool(.; f) : Rc×n1×n2 → Rc×(n1−f1+1)×(n2−f2+1). Common pooling operations in-
clude:

� Max pooling:

φmax
pool(x; f) [i, j, k] = max

β∈[[1;f1]]
max

γ∈[[1;f2]]
x [i, j + β − 1, k + γ − 1] (5.43)

� Average pooling:

φavg
pool(x; f) [h, i, j] =

1

f1f2

f1∑
β=1

f2∑
γ=1

x [i, j + β − 1, k + γ − 1] (5.44)

Training a deep neural network

Training a DNN for a supervised learning task requires optimizing its parameters θ in
order to minimize the empirical risk. To do this, one needs to compute the gradient of the
empirical risk:

∇θĴ (θ) = E(X,Y)∼p̂X,Y [∇θL (C(X; θ), Y)] =
1

m

m∑
i=1

∇θL (C(xi; θ), yi) (5.45)

Computing the expected value of the gradient of the per-example loss function is very
expensive, because it requires calling the model and evaluating gradients on the whole

56

5.4. Ensemble learning

training set. Instead, the gradient ∇θĴ (θ) can be approximated by evaluating the sum
in Equation (5.45) on a batch containing a small number of randomly drawn training
examples. This is the idea behind the minibatch stochastic gradient descent (SGD) opti-
mization method, which updates the parameters θ with gradient descent using minibatch
approximations of the gradient. One epoch corresponds to the multiple iterations that
are made so that the DNN has seen the entire training set. For more details, see [3]. In
practice, there exist other stochastic optimization methods that are more sophisticated
than minibatch SGD, such as Adam [135] for instance. Independently from the choice
of the optimizer, the gradients ∇θL (C(xi; θ), yi) are computed with the backpropagation
algorithm (see section 1.3 of [4]), a special case of automatic differentiation [23] (also
known as auto-diff or algorithmic differentiation). Contrary to numerical differentiation
(finite difference approximation) and symbolic differentiation (manipulating expressions),
automatic differentiation computes efficiently the exact derivatives of a function thanks to
the chain rule for the differentiation of composition functions, idea that is at the origin of
differentiable programming.

5.4 Ensemble learning

Ensemble learning aims at creating a meta-estimator from several base estimators (or
learners). Combining the predictions of different models generally results in more robust
predictions and reduces overfitting. In addition, using an ensemble method replaces the
task of finding a single very accurate model by the task of building an effective meta-
estimator from several models with lower accuracies.

5.4.1 Voting and averaging

Generally speaking, a group of experts is more reliable than a single expert. A single
expert can make mistakes, whereas a group of experts benefits from the opinion of each of
his members to make a decision that is approved by the majority. This is the idea behind
voting ensembles, where a voting estimator is built from several estimators. For classifi-
cation tasks, the simplest method is based on majority vote (hard voting): the predicted
class is the class that is most frequently predicted by the classifiers in the ensemble. Some
classifiers can make mistakes, but their mistakes have a lower impact when combining
predictions of different classifiers. A voting classifier is less sensitive to noise and outliers
in training data because the vote tends to smooth the decision boundaries, which reduces
overfitting. When forming an ensemble, it is important to train classifiers with differ-
ent characteristics so that their weaknesses can be compensated by the strengths of the
other classifiers. One can use different classification algorithms for example, but combin-
ing them does not automatically increase the performances on test data, especially when
some classifiers are much less accurate than others. When training a neural network, it is
common to recycle different networks that have been trained with different architectures
and hyperparameters to gain a few percents of accuracy. This practice does not require
more efforts than training a single neural network, since reaching a high accuracy generally
requires trying many different architectures and hyperparameters settings. Using a voting
classifier enables recycling the best models instead of discarding all of them except the one
with the highest accuracy.

57

Chapter 5. Supervised learning

This idea can also be used for regression tasks, where the final prediction is obtained
by averaging the outputs of the regressors in the ensemble. If the errors made by each
classifier form a sequence of independent and identically distributed random variables
with expectation 0, then their average converges almost surely to zero as the number of
classifiers increases, according to the Strong Law of Large Numbers. Averaging predictions
also works for classification tasks when using probabilistic classifiers. Soft voting consists
in averaging the membership probabilities predicted by the probabilistic classifiers in the
ensemble, and returning the class with the highest averaged membership probability. These
techniques are known as ensemble averaging [136].

The winners of numerous deep learning challenges used ensemble averaging to improve
their predictions (see for example [137, 138, 139]). We also noticed the benefits of ensemble
averaging in [47], where using soft voting on an ensemble made of 12 deep neural networks
with accuracies ranging from 63.05% to 73.75% enabled reaching an accuracy of 80% on
test data.

5.4.2 Other ensemble methods

Bagging or bootstrap aggregating [140] consists in training several instances of a base learner
on different training sets. These training sets, called bootstrap samples, are built from
the original one by random sampling with replacement. Hence, some training examples
may appear several times in a given bootstrap sample, or not appear at all. Training the
same learner on different bootstrap samples gives an ensemble of models with different
strengths. The predictions of these models are aggregated to improve the accuracy of the
final prediction, either by a majority vote or by averaging membership probabilities. The
generalization error of a bagging estimator can be estimated by the out-of-bag error. The
out-of-bag error is evaluated by calculating the prediction error for each base estimator on
the training examples that do not belong to the bootstrap sample of the estimator. The
random subspace method [141], also known as feature bagging, works like classical bagging
except that the training sets are obtained by randomly sampling the features instead of the
training examples. This method is generally used when the number of features is larger
than the number of samples. Random forests [126] combine bagging and feature bagging
to build an ensemble of decision trees.

In the real world, groups of experts sometimes give a report of their discussions and
conclusions to another person that has the responsibility to make the final decision. This
person does not need to be an expert: he only needs to analyze the opinion of the group of
experts and make a sensible decision in consequence. Similarly, in machine learning, the
predictions of several pre-trained classifiers can be fed into another simpler classifier (e.g.
logistic regression) that returns the final prediction. This is called stacked generalization
or stacking ([142, 55]).

All the aforementioned methods use models trained independently. In contrast, boost-
ing methods train different models sequentially. The most common boosting algorithm is
AdaBoost (adaptive boosting [143, 144]). The algorithm iteratively trains a weak learner
(typically a shallow decision tree) to build a boosted estimator whose prediction consists
of a weighted average of the weak learner’s predictions. During training, the i+ 1-th weak
learner focuses more on training examples for which the i-th weak learner made mistakes.
Gradient boosting [145, 146, 147, 148] generalizes boosting by interpreting it as an opti-
mization problem with a specific loss function, and by applying gradient descent to an

58

5.5. Classification in computational physics

arbitrary differentiable loss function to define the weak learners. When applied with deci-
sion trees as weak learners, gradient boosting algorithms are also called gradient-boosted
decision trees.

5.5 Classification in computational physics

Classification problems can be encountered in various disciplines such as handwritten
text recognition [149], document classification [150], and computer-aided diagnosis in the
medical field [151], among many others. In numerical analysis, classification algorithms
are getting increasingly more attention for the selection of efficient numerical models that
can predict the behavior of a physical system with very different states or under various
configurations of its environment [42, 43, 152, 153, 154, 155, 156]. In this case, the class
labels are used to identify the models.

Applications to turbulence modeling in computational fluid dynamics can be found
in [153, 156]. In large eddy simulations (LES; see in [157]), the Navier–Stokes equations
are filtered to avoid resolving small-scale turbulent structures whose effects are taken
into account either by sub-grid scale models (explicit LES closures) or via the dissipation
induced by numerical schemes (implicit LES). In [153], sub-grid statistics obtained from
direct numerical simulations enable training a fully-connected deep neural network to
switch between different explicit LES closures at any point of the grid. This classifier is
reused in [156], this time for switching between different numerical schemes in implicit
LES. In both cases, the classifier is used to increase the accuracy of numerical predictions.

The idea of locally switching between different simulation strategies can also be found
in [152] for the multiscale modeling of composite materials. In the multilevel finite-element
method (FE2 [158]), the quantities of interest at every integration point of the macro-
scopic finite-element mesh are given by a microscopic finite-element computation of an
elementary cell representing the material’s microstructure. The multi-fidelity surrogate
model presented in [152] relies on two surrogate models replacing the microscopic finite-
element model: a reduced-order model taken from [159] and an artificial neural network
based regression model. At each integration point of the macroscopic mesh, the classifier
(a fully-connected network) analyzes the effective strains and predicts whether the error
of the regression model would be acceptable, enabling the selection of either the purely
data-driven regression model or the more sophisticated physics-driven ROM. This time,
automatic model recommendation by a classifier is used to adapt the model complexity
and reduce the computation time.

In [154, 155], optimal classification trees (OCTs [160]) are used as model selectors
in a data-driven physics-based digital twin of an unmanned aerial vehicle (UAV). The
OCTs enable the update of the digital twin according to sensor data by selecting a model
from a predefined model library. In this context, the training procedure for the classifier
corresponds to an inverse problem. Indeed, training examples are generated by running
simulations with all the models in the library and evaluating their predictions at the
sensors’ locations. Therefore, for a given model y ∈ [[1;K]], the data x are obtained
by means of numerical simulations performed with y. This corresponds to the forward
mapping. The classifier must learn the inverse mapping giving y as a function of x.
In this example, data labeling is straightforward: the label of a training example x is
given by the index y of the model which was used to generate x. It is also noteworthy

59

Chapter 5. Supervised learning

that generating training examples is not too expensive, because numerical simulations
are performed with reduced-order models obtained by the Static-Condensation Reduced-
Basis-Element method (SCRBE [161, 162, 163, 164]). In this application, automatic model
recommendation gives the UAV the ability to dynamically evaluate its flight capability and
replan its mission accordingly.

Another example of classifier used to accelerate numerical simulations can be found
in [42]. Contrary to the works in [154, 155], the data labeling procedure relies on the clus-
tering of simulation data. In this framework, the model library is made of cluster-specific
Discrete Empirical Interpolation Method (DEIM) [165] models that are faster than the
high-fidelity model. The high-fidelity model computes a prediction ui for each input xi
in the database {xi}1≤i≤m, resulting in a dataset {ui}1≤i≤m on which a clustering algo-
rithm is applied. The predicted variable u is the discretization of a continuous field on a
finite-element mesh, thus living in a high-dimensional space. To avoid the so-called curse
of dimensionality [80], a DEIM-based feature selection technique is used before apply-
ing k-means clustering [82]. Alternatively, the clusters can be obtained with a variant
of k-means using the DEIM residual as clustering criterion. Then, for a given training
example xi, the class label yi is defined by the index of the cluster that ui is assigned to.
In the exploitation phase, when dealing with test data, the best DEIM model is selected
by a nearest neighbor classifier. The input data given to the classifier are either parame-
ters of the problem or the variable u obtained at the previous time increment. A similar
methodology is described in [43], where the concept of model library is termed model dic-
tionary, which is the terminology adopted in this thesis. The model dictionary is made of
hyper-reduced-order models [33], and the input data {xi}1≤i≤m are images of a mechanical
experiment. The dimensionality of simulation data is reduced by Principal Component
Analysis (PCA) before using k-means clustering. A convolutional neural network [166] is
trained to return class labels without computing the intermediate variable u in order to
avoid time-consuming operations. This classifier is an approximation of the true classifier
K returning the correct label for any input x.

5.6 Feature selection based on mutual information

5.6.1 Introduction to feature selection

When classification data are high-dimensional, dimensionality reduction techniques can
be applied to reduce the amount of information to be analyzed by the classifier. For
classification problems where the dimension of the input data is higher than the number
of training examples, dimensionality reduction is crucial to avoid overfitting. In addition,
when considering physical fields discretized on a mesh, the dimension of the input space
can reach 106 to 108 for industrial problems. In such cases, the input data are too hard
to manipulate, which dramatically slows down the training process for the classifier and
thus restrains the exploration of the hyperparameters space, as it requires multiple runs
of the training process with different values for the hyperparameters. Applying data
augmentation techniques to increase the number of examples in the training set is also
impossible, as it would cause memory problems. Therefore, dimensionality reduction is
recommended not only for reducing the risk of overfitting, but also for facilitating the
training phase and enabling data augmentation.

60

5.6. Feature selection based on mutual information

Feature selection [167] aims at decreasing the number of features by selecting a subset
of the original features. It differs from feature extraction, where new features are created
from the original ones (e.g., Principal Component Analysis (PCA), and more generally
encoders taken from undercomplete autoencoders [3]). Feature selection can be seen as
applying a mask to a high-dimensional random vector to get a low-dimensional random
vector containing the most relevant information. It is preferred over autoencoders when
interpretability is important [168]. Furthermore, contrary to undercomplete autoencoders
trained with the mean squared error loss, most feature selection algorithms do not intend
to find reduced features enabling the reconstruction of the input: features are selected for
the purpose of predicting class labels, which makes these algorithms more goal-oriented
for supervised learning tasks.

Among the existing feature selection algorithms, univariate filter methods consist in
computing a score for each feature and ranking the features according to their scores.
The score measures how relevant a feature is for the prediction of the output variable.
If Nf is the target number of features, then the Nf features with the highest scores are
selected, and the others are discarded. The major drawback of univariate filter methods
is that they do not account for relations between the selected features. The resulting
set of selected features may then contain redundant features. To address this issue, the
minimum redundancy maximum relevance (mRMR) algorithm [44, 45] tries to find a trade-
off between relevance and redundancy.

Remark 5.6.1. Feature selection is not required for high-dimensional data represented by
second-order or third-order tensors, obtained for example by projecting a 2D or 3D field
on a voxel grid. Indeed, dedicated learning algorithms have been developed to circumvent
the problem of their dimension, namely convolutional neural networks (CNNs).

5.6.2 mRMR feature selection

We recall that a projection π is a linear map satisfying π ◦π = π, with ◦ denoting function
composition. It is entirely defined by its kernel and its image, which are complementary:
given two complementary vector subspaces V1 and V2, there is a unique projection π whose
kernel is V1 and whose image is V2, namely, the projection onto V2 along V1. For more
details about projections, see in [169], pages 385 to 388. Let us now give a formal definition
of a feature selector :

Definition 5.6.2 (Feature selector). Let V be a finite-dimensional real vector space. Given
a basis B = (ei)1≤i≤dim(V) of V and a set of integers S ⊂ [[1; dim(V)]], the feature selec-
tor πS,B : V → V is the projection whose image is span ({ei}i∈S) and whose kernel is
span

(
{ei}i∈[[1;dim(V)]]\S

)
.

When the choice of the basis B is obvious, the notation πS,B is simply replaced by πS . In
practice,

∀(λi)1≤i≤dim(V) ∈ Rdim(V), πS

dim(V)∑
i=1

λiei

 =
∑
i∈S

λiei (5.46)

Therefore, from a numerical point of view, one can interpret the feature selector as linear
map πS : V → span ({ei}i∈S), which enables reducing the size of the vector representing
πS(x) for x ∈ V . In this way, applying a feature selector πS to a vector of RN consists in

61

Chapter 5. Supervised learning

masking its features whose indexes are not in S, which gives a reduced vector in R|S| where
|S| denotes the number of elements in S. Feature selection algorithms build the set S by
searching for the most relevant features for the prediction of the output variable Y . For
this purpose, the mutual information (see Definition 2.2.13) can be used to quantify the
degree of the relationship between variables. Given Equation (5.2) and Definition 2.2.13,
the mutual information between a feature Xi of X and the categorical output Y reads:

I
(
Xi, Y

)
=

K∑
k=1

PY (k)

∫
xi∈R

pXi|Y (xi|k) log

(
pXi|Y (xi|k)

pXi(xi)

)
dxi (5.47)

The mutual information can be used to quantify the redundancy of a set of features S
with cardinality S and its relevance for predicting Y :

Definition 5.6.3 (Relevance [45], eq. 4, p. 2). Let X = (Xi)1≤i≤N be a multivariate
random variable, and let Y be a discrete random variable. The relevance of a reduced set
S ⊂ [[1;N]] of features of X for predicting Y is defined by

D(S, Y) =
1

S

∑
i∈S

I(Xi, Y) (5.48)

Definition 5.6.4 (Redundancy [45], eq. 5, p. 2). Let X = (Xi)1≤i≤N be a multivariate
random variable. The redundancy of a reduced set S ⊂ [[1;N]] of features of X is defined
by

R(S) =
1

S2

∑
i,j∈S2

I(Xi, Xj) (5.49)

The minimum redundancy maximum relevance (mRMR) algorithm [44, 45] builds the set
S by maximizing D(S, Y) − R(S), which is a combinatorial optimization problem. For
this type of optimization problem, a brute-force search is intractable, because the number
of solution candidates is too large. Instead, mRMR searches for a sub-optimal solution by
following a greedy approach. First, the feature having the highest mutual information with
the label variable Y is selected. Then, the algorithm follows an incremental procedure:
given the set Sk−1 obtained at iteration k − 1, form the set Sk such that

Sk = Sk−1 ∪

 arg max
i∈[[1;N]]\Sk−1

I(Xi, Y)− 1

k − 1

∑
j∈Sk−1

I(Xi, Xj)

  (5.50)

This incremental procedure stops when k reaches the target number of features Nf . A
review of feature selection algorithms based on mutual information can be found in [170].

∗ ∗
∗

62

Part III

Nonlinear model order reduction

63

Résumé

La plupart des phénomènes physiques peuvent être modélisés à l’aide d’équations mathé-
matiques, en particulier par des équations aux dérivées partielles. La résolution numérique
de ces équations permet de simuler le phénomène physique, pratique devenue courante en
ingénierie pour compléter les informations tirées de campagnes expérimentales. Nous dis-
posons aujourd’hui de modèles sophistiqués permettant de simuler le comportement de sys-
tèmes complexes faisant intervenir différents phénomènes physiques couplés. Néanmoins,
la précision de ces modèles est altérée par le manque de connaissance de l’environnement
exact dans lequel le système étudié évolue, ainsi que par les incertitudes sur l’état et
les propriétés réels de ce système. Quantifier les incertitudes sur un résultat de simula-
tion numérique est donc primordial pour optimiser un produit en phase de conception et
s’assurer de sa fiabilité. La quantification d’incertitudes requiert généralement de lancer
un grand nombre de simulations pour différentes configurations possibles du système et
de son environnement, ce qui est impossible pour certaines applications industrielles pour
lesquelles la durée d’une seule simulation est trop importante pour envisager de lancer des
milliers de calculs.

La réduction de modèle permet de réduire la complexité et le temps des calculs en four-
nissant une solution approchée aux équations du modèle. Contrairement aux méthodes de
régression qui se substituent aux modèles physiques, les méthodes de réduction de mod-
èle par projection identifient un espace d’approximation de faible dimension permettant
de résoudre de manière approchée les équations du modèle par projection de Galerkin.
L’espace d’approximation est construit à partir de données d’entrâınement générées par
un modèle haute-fidélité, et est donc adapté au problème physique étudié, contrairement
à l’espace d’approximation générique utilisé par le modèle haute-fidélité (méthode des élé-
ments finis ou des volumes finis, par exemple). La décomposition orthogonale aux valeurs
propres (POD pour Proper Orthogonal Decomposition) est couramment utilisée comme
méthode de réduction de dimension linéaire pour construire cet espace d’approximation
afin de réduire le nombre de degrés de liberté à déterminer. Pour des modèles basés sur
des lois de comportement non-linéaires faisant intervenir plusieurs variables internes, il est
parfois nécessaire d’avoir recours à une méthode d’hyper-réduction en complément de la
POD afin d’accélérer les calculs de manière efficace.

Un problème décrit par une équation aux dérivées partielles est dit réductible si la
suite des épaisseurs de Kolmogorov décrôıt rapidement lorsque la dimension de l’espace
d’approximation augmente. L’épaisseur de Kolmogorov quantifie l’erreur que l’on ferait en
calculant une solution approchée dans un espace d’approximation de dimension donnée.
Certains problèmes sont très sensibles aux variations des paramètres incertains et peuvent
générer des solutions vivant dans une variété différentielle trop complexe pour permettre
une décroissance rapide des épaisseurs de Kolmogorov. Ces problèmes sont non-réductibles

65

et ont fait l’objet de nombreuses recherches dans la communauté de la réduction de modèle.
Parmi les méthodes issues de ces travaux de recherche, l’utilisation d’un dictionnaire de
modèles réduits locaux permet d’avoir recours à une collection d’espaces d’approximation
associés à différentes régions de la variété contenant les solutions possibles. C’est la méth-
ode retenue dans ce travail de thèse.

∗ ∗
∗

66

Chapter 6

Projection-based model order
reduction

Abstract: Projection-based model order reduction methods consist in finding a low-dimen-
sional approximation space where an approximate solution of a partial differential equation
can be computed in a reasonable computation time. For complex nonlinear problems, hyper-
reduction enables using a reduced number of integration points in a finite-element mesh.
Model order reduction and hyper-reduction are essential for applications requiring fast
simulations, but also for the reduction of energy consumption [171] in problems involving
many numerical simulations such as in uncertainty quantification and design optimization.
This chapter introduces the Proper Orthogonal Decomposition [1, 2] that is widely used for
the construction of suitable approximation spaces, and presents the Empirical Cubature
Method [34], a hyper-reduction technique that is used in the industrial application of this
thesis.

Remark 6.0.1. This chapter includes some paragraphs taken from our papers [47, 49],
with some modifications.

Contents

6.1 Parametrized partial differential equations 68

6.2 Model order reduction techniques 68

6.3 Data compression . 69

6.3.1 The Proper Orthogonal Decomposition 69

6.3.2 The POD Galerkin method . 72

6.4 Operator compression . 73

6.4.1 Hyper-reduction . 73

6.4.2 The Empirical Cubature Method 73

6.4.3 Dual variable reconstruction . 74

67

Chapter 6. Projection-based model order reduction

6.1 Parametrized partial differential equations

Let us consider a physics problem described by the following parametrized differential
equation:

D(u;x) = 0 (6.1)

where u is the primal variable belonging to a Hilbert space H whose inner product is de-
noted by 〈., .〉H, x denotes the parameters of the problem, and D is an operator involving
a differential operator and operators for initial conditions and/or boundary conditions.
Equation (6.1) can be a system of ordinary differential equations (ODEs) or partial dif-
ferential equations (PDEs) depending on the physics problem. Let us assume that this
physics problem is well-posed in the sense of Hadamard, that is to say that there exists
a unique solution u(x) for any parameter x, and that this solution changes continuously
with x. Let us introduce the set X of all the possible parameters x. The solution manifold
M is defined by:

M := u(X) = {u(x) | x ∈ X} (6.2)

When a probability distribution is defined on X to describe the stochastic behavior
of the parameter x with a random variable, Equation (6.1) becomes a stochastic (partial)
differential equation. Stochastic PDEs are extensively studied in uncertainty quantifica-
tion.

6.2 Model order reduction techniques

Model order reduction [30, 31] is a discipline in numerical analysis consisting in replacing
a computationally expensive high-fidelity model by a fast reduced-order model (ROM) to
calculate approximate solutions of some complex physics equations. A ROM can be either
a data-driven metamodel (or surrogate model) calibrated with a regression algorithm, or a
physics-based model obtained by numerical methods such as the Proper Generalized De-
composition (PGD [172, 173]), the Reduced Basis method (RBM [174, 175]), and the POD
Galerkin method [2, 32], among others. It is generally used for parametrized equations
whose solution must be known for different points in the parameter space. As in machine
learning, a model order reduction procedure starts by a training phase (or offline stage)
where the ROM is built from some training data. The ROM is then used on test data
in an exploitation phase (or online stage). In the training phase, high-fidelity solutions,
called snapshots, are computed with the high-fidelity model for different points of the pa-
rameter space to get a sampled representation of the solution manifold. The model order
reduction algorithm analyzes these snapshots to learn how the solution is affected by pa-
rameter variations. Contrary to usual machine learning problems, the amount of training
data is limited because the high-fidelity model giving snapshots is time-consuming and
costly. The selection of relevant points in the parameter space can be optimized to ensure
that the snapshots are representative of the behavior of the solution, like in the greedy
approach of the Reduced Basis method where an a posteriori error estimator is used to
select snapshots. Given the cost of computing snapshots in the training phase, a ROM
is profitable only if it is extensively used in the exploitation phase. In this thesis, we
will focus on projection-based model order reduction (e.g. POD Galerkin, Reduced Basis
method) where the approximate solution is obtained by solving the physics equations with
the Galerkin method on a well-chosen reduced-order basis (ROB).

68

6.3. Data compression

Following the terminology introduced in [35], the training phase of a projection-based
model order reduction method has 3 main steps:

� Data generation: snapshots are computed with the high-fidelity model and provide
information about how the physical system reacts to changes of the parameter x;

� Data compression: a ROB is constructed by looking for a hidden low-rank structure
in the snapshots, using dimensionality reduction techniques such as the POD;

� Operator compression: operator compression includes all the operations that guar-
antee the efficiency of the reduced-order model in the exploitation phase. It includes
pre-computations of some integral terms facilitating the assembly of the reduced
problem in the online stage1, but also the use of a hyper-reduction method to guar-
antee the reduction of the computational cost for complex nonlinear problems.

The next sections introduce methods for data compression and operator compression.

6.3 Data compression

6.3.1 The Proper Orthogonal Decomposition

It is now assumed that Equation (6.1) defines a parametrized partial differential equation
whose solution u(x) for a given point x ∈ X in the parameter space is a function of space
and time defined on Ω × [0; tf], with Ω ⊂ Rα, α = 1, 2 or 3 and tf ∈ R∗+. Most of the
time, the Hilbert space H is a subspace of the Lebesgue space L2(Ω × [0; tf]) of square-
integrable functions. However, parameters x and time t can be considered together in a
variable χ called generalized parameters living in the set X̃ = X × [0; tf]. Therefore, the
solution u(χ) belongs to the space L2(Ω). The Stiefel manifold V (N,L2(Ω)) represents the
set of all orthonormal N -frames in L2(Ω). For two square-integrable functions f and g,
the notation 〈f, g〉L2(Ω) stands for the L2(Ω) inner product

∫
Ω f(ξ)g(ξ)dξ. The following

definition gives a theoretical continuous definition of the proper orthogonal decomposition
(POD [1, 2]):

Definition 6.3.1 (POD basis). Let u : X̃ → L2(Ω). A POD basis {ψ∗k}1≤k≤N ∈
V (N,L2(Ω)) of order N ∈ N∗ of u is a solution of the following optimization problem:

{ψ∗k}1≤k≤N ∈ arg min
{ψk}1≤k≤N∈V (N,L2(Ω))

∫
χ∈X̃
||u(χ)−

N∑
k=1

〈u(χ), ψk〉L2(Ω)ψk||2L2(Ω) dχ (6.3)

The sum in Equation (6.3) is the proper orthogonal decomposition of order N of u.
When N → +∞, the approximation error given by the minimum of the cost function in
Equation (6.3) tends towards zero (Theorem 4 in [176]). The proper orthogonal decom-
position is related to the Karhunen-Loève decomposition introduced in Equation 2.33.

1This technique is particularly relevant for linear and nonlinear problems with affine parameter depen-
dence.

69

Chapter 6. Projection-based model order reduction

Let H be a Hilbert space with an orthonormal basis {ei}i∈N∗ , and A : H → H a linear
operator. We define the Hilbert-Schmidt function ΛHS(H) as:

ΛHS(H)(A) :=

√√√√ ∞∑
i=1

||A(ei)||2H (6.4)

which can potentially take infinite values. A linear operator A on a Hilbert space H
is a Hilbert-Schmidt operator if ΛHS(H)(A) is finite. As shown in [177] (Chapter VIII,
Theorem 2.3), the set HS(H) of all Hilbert-Schmidt operators on H is a Hilbert space
with respect to the following inner product:

〈A,B〉HS(H) :=

∞∑
i=1

〈A(ei), B(ei)〉H (6.5)

The Hilbert-Schmidt function ΛHS(H) is actually the norm induced by this inner product,
and corresponds to the Frobenius norm for matrices when the vector space H is finite-
dimensional. We now use the more conventional notation ||A||HS(H) := ΛHS(H)(A) for the
Hilbert-Schmidt norm. The Hilbert-Schmidt inner product and norm are independent of
the choice of the basis {ei}i∈N∗ , see Proposition 9.18 in Chapter 9 of [178], which will be
useful for proofs of some properties of the dissimilarity measure introduced in this the-
sis. The POD is highly related to the theory of Hilbert-Schmidt operators. In [179, 180],
it is shown that the POD optimization problem is equivalent to finding the optimal ap-
proximation of a Hilbert-Schmidt operator related to u by a finite rank operator in the
Hilbert-Schmidt norm. The POD basis functions can also be obtained from the eigenfunc-
tions of the Hilbert-Schmidt integral operator [2] Ru:

L2(X̃) 3 ϕ 7→ Ru(ϕ) ∈ L2(X̃), (6.6)

where Ru(ϕ) is defined by:

X̃ 3 χ 7→ Ru(ϕ)(χ) :=

∫
χ′∈X̃

〈
u(χ), u(χ′)

〉
L2(Ω)

ϕ(χ′)dχ′ ∈ R (6.7)

In this work, we keep the explicit distinction between the time t and the parameters
x ∈ X rather than working on the generalized parameters χ ∈ X̃ , because we do not
consider the time as a clustering variable. Nonetheless, spatio-temporal functions f ∈
L2(Ω× [0; tf]) are considered as trajectories (f(., t))t∈[0;tf] in the Hilbert space L2(Ω). In
other words, such functions are seen as functions defined on Ω and parametrized by the
time. For this reason, the manifold M is rather defined by:

M := {u(x)(., t) | x ∈ X , t ∈ [0; tf]} (6.8)

and the approximation spaces are subspaces of L2(Ω), leading to an approximate solution
expressed as a time-dependent linear combination of basis functions defined on Ω.

In practice, we are given a finite set of m points xi of the parameter space X , for
which high-fidelity solutions u(xi) are computed in a high-dimensional approximation
space whose dimension is denoted by N . These solutions, called snapshots, provide in-
formation about the behavior of the physical system and give a sampled version of the
solution manifold. The POD is applied as a linear dimensionality reduction technique, pro-
cessing this information to build a ROB that can be used to accelerate future numerical
simulations for new parameters.

70

6.3. Data compression

Definition 6.3.2 (POD basis construction). Given an integer N ≤ N , a POD basis
{ψ∗k}1≤k≤N ∈ V (N,L2(Ω)) is computed from the snapshots {u(xi)}1≤i≤m as a solution of
the following optimization problem:

{ψ∗k}1≤k≤N ∈ arg min
{ψk}1≤k≤N∈V (N,L2(Ω))

m∑
i=1

||u(xi)−
N∑
k=1

〈u(xi), ψk〉L2(Ω)ψk||2L2(Ω×[0;tf]) (6.9)

The uniqueness of the POD basis is obtained by specifying a construction algorithm,
such as the Snapshot POD [181, 182] or the singular value decomposition (SVD) for
instance. By construction, the subspace spanned by the ROB minimizes the projection
errors of the snapshots u(xi). The optimality of the POD basis is discussed and illustrated
in [183]. In practice, when using a numerical procedure to solve Equation (6.1), for example
the finite-element method with a time-stepping scheme, the coordinates of the snapshots
in the finite-element basis are stored in columns in a matrix Q ∈ RN×mnt called snapshots
matrix, with nt being the number of time steps. The coordinates of the POD modes ψk
are given in the N first columns of the matrix M−1/2V, where M ∈ RN×N is the finite-
element mass matrix and V ∈ RN×rank(Q) is the matrix of left singular vectors in the SVD
of the snapshots matrix Q, when indexing the singular values in decreasing order. The
decay rate of the singular values of the snapshots matrix Q is related to the behavior of the
sequence of Kolmogorov widths of the PDE given in Equation (6.1). It enables evaluating
the reducibility of the physics problem. When computing a POD basis for a variable
defined at integration points rather than the finite-element mesh nodes, for the purpose of
applying Gappy POD after hyper-reduced simulations, the POD modes are simply given
by the N first left singular vectors in the SVD of the corresponding snapshots matrix.

Remark 6.3.3 (Singular value decomposition (SVD)). The SVD of the snapshots matrix
Q ∈ RN×mnt reads:

Q = ṼΣ̃W̃T = VΣWT (6.10)

where Σ̃ = diag(σ1, ..., σr, 0, ..., 0) ∈ RN×mnt and Σ = diag(σ1, ..., σr) ∈ Rr×r, with r =
rank(Q). The diagonal terms σ1, ..., σr are positive and correspond to the nonzero singular
values of Q. The columns of Ṽ ∈ RN×N (resp. W̃ ∈ Rmnt×mnt) contain the left singular
vectors (resp. the right singular vectors). The matrices Ṽ and W̃ are orthogonal: ṼT Ṽ =
ṼṼT = IN and W̃TW̃ = W̃W̃T = Imnt. The matrix V ∈ RN×r (resp. W ∈ Rmnt×r)
contains the r first columns of the matrix Ṽ (resp. W̃) associated to the r nonzero singular
values. The left singular vectors of Q correspond to the eigenvectors of the matrix QQT

since QQTV = VΣ2. They can also be obtained with the formula V = QWΣ−1, where
the right singular vectors are given by the eigenvectors of QTQ since QTQW = WΣ2.
Note that the columns of M−1/2V are orthogonal for the L2 inner product:

(M−1/2V)TM(M−1/2V) = VTV = Ir. (6.11)

Remark 6.3.4 (Snapshot POD). The Snapshot POD consists in: (i) computing the snap-
shot correlation matrix C with the formula Cij = 〈u(χi), u(χj)〉L2(Ω), 1 ≤ i, j ≤ mnt, (ii)
retaining the eigenvalue/eigenvector pairs of C associated to the N highest eigenvalues:
(λi, ζi), 1 ≤ i ≤ N , and (iii) recombining them with the snapshots to create the ROB:

ψi = λ
−1/2
i

∑mnt
k=1 u(χk)ζik, 1 ≤ i ≤ N . Note that we have used the generalized parameters

χ for the equations of the Snapshot POD, in order to simplify the numbering of the mnt
snapshots provided by m simulations with nt time steps each.

71

Chapter 6. Projection-based model order reduction

6.3.2 The POD Galerkin method

This section shows how to solve the PDE by Galerkin projection onto the approximation
space spanned by the POD basis. Let us consider, for example, a physics problem that can
be solved by the finite-element method, such as in solid mechanics or heat transfer. Let us
introduce the finite-element shape functions {φi}1≤i≤N . The finite-element approximation

uh(x)2 of the primal variable u(x) is:

∀x ∈ X , ∀t ∈ [0; tf], ∀ξ ∈ Ω, uh(x)(ξ, t) =

N∑
i=1

uh,i(x, t)φi(ξ) (6.12)

The finite-element solution uh(x)(., tn) computed at the n-th time step can be represented
by a vector Un(x) ∈ RN containing its coordinates uh,i(x, tn) in the finite-element basis
{φi}1≤i≤N . For simplicity, the dependence with respect to x is omitted in this section.
This numerical solution can be obtained with the Newton-Raphson algorithm, an iterative
procedure based on the linearization of the weak formulation of the PDE. The resulting
linear system to be solved for the k-th iteration at the n-th time increment reads:

J(k)
n δU(k)

n = −R(k)
n (6.13)

where J
(k)
n ∈ RN×N is the Jacobian matrix (also called global tangent stiffness matrix in

mechanics), R
(k)
n ∈ RN is the vector of residuals, and δU

(k)
n ∈ RN is the correction applied

to the vector of increments of the primal variable defined by:

∆U(k)
n = ∆U(k−1)

n + δU(k)
n (6.14)

with ∆U
(0)
n = 0. When the convergence criterion ||R(k)

n || ≤ εNR||Fext
n || is satisfied for a

given k = k∗ with εNR being the tolerance of the Newton-Raphson algorithm and Fext
n

being the vector of external forces, the solution at the n-th time increment is defined as:

Un = Un−1 + ∆U(k∗)
n (6.15)

Equation (6.13) is the high-dimensional linear system deriving from the high-fidelity model.

Projection-based model order reduction consists in searching an approximation of the
high-fidelity solution in a low-dimensional subspace VROM ⊂ span {φi}1≤i≤N adapted
to the current physics problem. This subspace is spanned by an appropriate reduced-
order basis {ψi}1≤i≤N , with N being very small compared to N . The reduced-order
approximation of the primal variable reads:

∀t ∈ [0; tf], ∀ξ ∈ Ω, uROM (ξ, t) =
N∑
i=1

γi(t)ψi(ξ) (6.16)

where {γi}1≤i≤N are the reduced coordinates which can be stored in a vector γ ∈ RN .
The coordinates of the modes {ψi}1≤i≤N in the finite-element basis {φi}1≤i≤N are stored

in columns in a matrix V ∈ RN×N called reduction matrix. Hence:

∀i ∈ [[1;N]], ∀ξ ∈ Ω, ψi(ξ) =

N∑
j=1

Vjiφj(ξ) (6.17)

2The index h generally refers to a parameter controlling the mesh size.

72

6.4. Operator compression

After the Galerkin projection of the governing equations onto VROM , the reduced linear
system to solve at each iteration of the Newton-Raphson algorithm in the reduced-order
model (ROM) is then:

VTJ(k)
n Vδγ(k)

n = −VTR(k)
n (6.18)

6.4 Operator compression

6.4.1 Hyper-reduction

For a nonlinear model, the Jacobian matrix must be updated at every iteration. Hence, the

products VTJ
(k)
n V and VTR

(k)
n in Equation (6.18) must be computed at every iteration.

As explained in [184], if ω is the average number of nonzero entries in a row of the Jacobian

matrix, then the product VTJ
(k)
n V involves 2NN(ω +N) floating-point operations. The

product VTR
(k)
n requires 2NN floating-point operations. In spite of the reduction in

terms of number of degrees of freedom, the computational cost of these products still
scales linearly with the dimension N of the high-fidelity model. In addition, all the entries
of the Jacobian and the residual vector must be evaluated to compute these products,
and the cost of the local integration of the constitutive laws is non-negligible for nonlinear
models involving many internal variables. Because of this additional complexity, POD
bases do not efficiently diminish the computational cost of the nonlinear problem.

Hence, a second reduction stage is necessary for these nonlinear problems, this time
in terms of integration points. This is called hyper-reduction, or operator compression
according to the terminology introduced in [35]. Hyper-reduction was initially the name of
a method developed by David Ryckelynck in [33], but this term has been extended to refer
to all the methods proposing a second reduction stage. Hyper-reduction methods include
the empirical interpolation method (EIM, [185]), the missing point estimation (MPE,
[186]), the a priori hyperreduction (APHR, [33]), the best point interpolation method
(BPIM, [187]), the discrete empirical interpolation method (DEIM, [165]), the Gauss-
Newton with approximated tensors (GNAT, [188]), the enery-conserving sampling and
weighting (ECSW, [189]), the empirical cubature method (ECM, [34]), and the linear
program empirical quadrature procedure (LPEQP, [190]). Hyper-reduction techniques
implicitly assume that the physics model is based on local constitutive laws. A constitutive
model is local if its equations evaluated at a given point ξ ∈ Ω only involve variables
evaluated at ξ. The constitutive equations are ordinary differential equations in time, and
can be solved pointwise. Consequently, some integration points can be removed without
preventing the integration of the constitutive laws on the remaining points. This is no
longer possible when the constitutive equations include effects of the neighborhood, which
is the case for contact problems [191] and for some nonlocal models that are used in damage
mechanics to avoid mesh dependency [192, 193].

6.4.2 The Empirical Cubature Method

Instead of computing the Jacobian matrix and the residual vector before solving Equa-

tion (6.18), the products VTJ
(k)
n V and VTR

(k)
n can be evaluated directly by computing

integrals involving the POD modes. But contrary to the shape functions, the POD modes
do not have local supports, and therefore these integrals must be computed over the whole

73

Chapter 6. Projection-based model order reduction

domain Ω with a generic cubature formula involving all the integration points of the finite-
element mesh: ∫

Ω
f(ξ)dξ ≈

NG∑
i=1

ωif(ξGi) (6.19)

where f : Ω → R is an integrand, {ωi}NGi=1 is the set of integration weights, and
{
ξGi
}NG
i=1

is the set of Gauss points (or integration points). Evaluating the integrand at every
integration point can be expensive, the number of Gauss points NG being proportional to
the dimension N of the high-fidelity model. Values of the integrand must be updated at
every iteration and every Gauss point, which requires calling the constitutive equations
solver many times.

The idea of the ECM proposed in [34] is to determine a small subset of integration

points
{
ξ̂Gi

}nG
i=1

and their associated weights {ω̂i}nGi=1 such that the integration error is

minimized, with nG being orders of magnitude smaller than NG. The cubature formula
becomes: ∫

Ω
f(ξ)dξ ≈

nG∑
i=1

ω̂if(ξ̂Gi) (6.20)

The integration weights {ω̂i}nGi=1 have to be positive in order to preserve the spectral
properties of the Jacobian matrix, namely symmetry and positive definiteness. The fact
that the spectral properties of the Jacobian are preserved guarantees the stability of the
hyper-reduced model, which is not the case in some nodal vector approximation approaches
such as the EIM. The optimal reduced-integration points and their corresponding weights

are the solution of a combinatorial optimization problem involving

(
NG

nG

)
nonnegative

least square problems. In practice, one looks for a sub-optimal solution with a heuristic
approach, such as the Nonnegative orthogonal matching pursuit [194] like in [35]. Following
the terminology of the APHR [33], the set formed by the elements containing the reduced-
integration points is called the reduced-integration domain (RID) and is denoted by ΩR.

6.4.3 Dual variable reconstruction

In hyper-reduced simulations, the constitutive equations are solved only at the reduced-
integration points. Consequently, the dual variables (or internal variables) are known on
the RID only, whereas the primal variable is naturally defined on the whole mesh because
it is a linear combination of the POD modes. The Gappy POD [46] can reconstruct the
field of a dual variable given its values on the RID, using a POD basis inferred from the
snapshots for this dual variable. Let z ∈ L2(Ω) be a dual variable, known on the RID
ΩR only, and let {ψzi }1≤i≤Nz be a POD basis for this variable. The Gappy POD method
consists in solving the following optimization problem:

min
λ∈RNz

||z −
Nz∑
i=1

λiψ
z
i ||2L2(ΩR) (6.21)

in order to find the optimal coefficients {λi}1≤i≤Nz in the POD basis. When one wants
to retrieve the whole history of z over time, this optimization problem must be solved for
each time step.

74

6.4. Operator compression

∗ ∗
∗

75

Chapter 7

Non-reducible problems

Abstract: In some cases, the solution manifold of a parametrized partial differential equa-
tion cannot be embedded into a low-dimensional approximation space. Such problems are
non-reducible, which means that classical model order reduction fails to compute accurate
solutions in a reasonable computation time. The non-reducibility of a problem is related to
the behavior of its Kolmogorov widths, which slowly decay as the dimension of the approx-
imation space increases. This chapter introduces the definitions of Kolmogorov widths and
gives an overview of strategies that have been developed to accelerate the computation of
non-reducible problems. The interpretation of the normalized Kolmogorov width in terms
of angles is particularly important for the methodology developed in this thesis.

Remark 7.0.1. This chapter uses paragraphs taken from our paper [49], with some modi-
fications.

Contents

7.1 Kolmogorov widths . 78

7.2 Strategies for non-reducible problems 80

77

Chapter 7. Non-reducible problems

7.1 Kolmogorov widths

Approximate solutions of Equation (6.1) can be obtained by solving the PDEs on a
finite-dimensional subspace HN ∈ Gr(N,H) spanned by a ROB, where the Grassman-
nian Gr(N,H) is the set of all N -dimensional subspaces of H. The best approximation of
the solution in HN for a given parameter x is the orthogonal projection πHN (u(x)) of the
theoretical solution u(x) onto the approximation space:

πHN (u(x)) = arg min
v∈HN

||u(x)− v||H (7.1)

with ||.||H denoting the norm induced by the inner product of the Hilbert space H.

The Kolmogorov N -width is defined by:

dN (M) := inf
HN∈Gr(N,H)

sup
u∈M

inf
v∈HN

||u− v||H = inf
HN∈Gr(N,H)

sup
u∈M

||u− πHN (u)||H (7.2)

and quantifies how well the solution manifoldM can be approximated by searching approx-
imate solutions in a N -dimensional subspace of H. The Kolmogorov N -width corresponds
to the worst projection error on the best N -dimensional approximation space. A variant
of this definition is introduced in [195]:

d′N (u, pX) :=

(
inf

HN∈Gr(N,H)

∫
x∈X

pX(x) ||u(x)− πHN (u(x))||2H dx

)1/2

=

(
inf

HN∈Gr(N,H)
EX∼pX

[
||u(X)− πHN (u(X))||2H

])1/2 (7.3)

where X is a random variable representing the parameters whose probability density
function is pX : X → R+ and whose observations are denoted by x. Equation (7.3)
gives the smallest expected squared projection error that can be obtained when using
a N -dimensional approximation space. For a fixed solution manifold M, the sequences
(dN (M))N∈N∗ and (d′N (u, pX))N∈N∗ are decreasing, which means that approximation er-
rors get lower when increasing the dimension of the approximation space. Instead of
considering the absolute projection error when defining the Kolmogorov N -width, one can
use the relative projection error, which leads to the following definition:

Definition 7.1.1 (Normalized Kolmogorov N -width). Let N ∈ N∗. If M contains at
least one nonzero element, the normalized Kolmogorov N -width of the manifold M in the
ambient Hilbert space H is defined by:

d̃N (M) := inf
HN∈Gr(N,H)

sup
u∈M\{0}

inf
v∈HN

||u− v||H
||u||H

(7.4)

Property 7.1.2 (Inequalities on Kolmogorov widths). If M is bounded and contains at
least one nonzero element, then:

∀N ∈ N∗, dN (M) ≤ sup
v∈M

||v||H d̃N (M) (7.5)

Proof. The boundedness ofM implies the existence of sup
v∈M

||v||H, thus for all u ∈M\{0}:

||u− πHN (u)||H ≤ sup
v∈M

||v||H
||u− πHN (u)||H

||u||H
(7.6)

which implies Equation (7.5).

78

7.1. Kolmogorov widths

Let]H(u, v) ∈ [0;π/2] denote the angle between two nonzero elements u and v of H:

]H(u, v) := arccos

(
|〈u, v〉H|
||u||H||v||H

)
(7.7)

and let]H (u,V) ∈ [0;π/2] be the angle between u and a subspace V ⊂ H:

]H (u,V) := inf
v∈V

]H(u, v) (7.8)

The normalized Kolmogorov N -width is related to the largest angle between elements of
the solution manifold and the approximation space:

Property 7.1.3. Let N ∈ N∗, and suppose thatM contains at least one nonzero element.
Then:

d̃N (M) = inf
HN∈Gr(N,H)

sup
u∈M\{0}

sin]H (u,HN) (7.9)

Proof. Given that]H (u,HN) ∈ [0;π/2], the sine of the angle]H (u,HN) satisfies:

sin]H (u,HN) = | sin]H (u,HN) |
=

√
1− cos2]H (u,HN)

=

√
1− cos2 inf

v∈HN
arccos

(
|〈u, v〉H|
||u||H||v||H

) (7.10)

and, since the function α→
√

1− cos2 α is increasing on the interval [0;π/2]:

sin]H (u,HN) = inf
v∈HN

√
1− cos2 arccos

(
|〈u, v〉H|
||u||H||v||H

)
= inf

v∈HN

√
1−

〈u, v〉2H
||u||2H||v||2H

(7.11)
Furthermore:

||u− πspan({v})(u)||2H
||u||2H

=
||u− 〈u, v

||v||H 〉H
v
||v||H ||

2
H

||u||2H
= 1−

〈u, v〉2H
||u||2H||v||2H

(7.12)

where πspan({v})(u) is the orthogonal projection of u on span({v}). Using Equation (7.12)
in Equation (7.11) yields:

sin]H (u,HN) = inf
v∈HN

||u− πspan({v})(u)||H
||u||H

= inf
v∈HN

inf
w∈span({v})

||u− w||H
||u||H

(7.13)

Finally, given that ∪
v∈HN

span({v}) = HN :

sin]H (u,HN) = inf
v∈HN

||u− v||H
||u||H

(7.14)

which ends the proof.

79

Chapter 7. Non-reducible problems

7.2 Strategies for non-reducible problems

For some problems, the Kolmogorov width slowly decays when increasing the dimension
N of the approximation space. For these non-reducible problems, the dimension N of the
approximation space giving a sufficiently small Kolmogorov width is generally too high to
enable the fast computation of approximate solutions. Qualitatively, the solution manifold
M covers too many independent directions to be embedded in a low-dimensional subspace.
To address this issue, several techniques have been developed:

� Problem-specific methods tackle the difficulties of some specific physics problems
that are known to be non-reducible, such as advection-dominated problems which
have been largely investigated, for instance in [196, 197, 198].

� Online-adaptive model reduction methods update the ROM in the exploitation phase
by collecting new information online as explained in [199], in order to limit extrap-
olation errors when solving the parametrized governing equations in a region of the
parameter space that was not explored in the training phase. The ROM can be
updated for example by querying the high-fidelity model when necessary for basis
enrichment [33, 200, 201, 65, 202]. Other methods propose enrichment procedures
that do not require solving the equations with the high-fidelity model, whose com-
plexity scales linearly with ([203, 204]) or is independent of ([205]) the dimension of
the high-fidelity model.

� ROM interpolation methods [206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217]
use interpolation techniques on Grassmann manifolds or matrix manifolds to adapt
the ROM to the parameters considered in the exploitation phase by interpolating
between two precomputed ROMs.

� Dictionaries of basis vector candidates enable building a parameter-adapted ROM in
the exploitation phase by selecting a few basis vectors. This technique is presented
in [218, 219] for the Reduced Basis method.

� Dictionaries of ROMs rely on the construction of several local ROMs adapted to
different regions of the solution manifold. These local ROMs can be obtained by
partitioning the time interval [220, 221], the parameter space [220, 222, 223, 42, 202,
154, 155], or the solution space [40, 41, 42, 224, 43, 47, 225]. Local ROMs have
been used both with the Reduced Basis method and the POD Galerkin method.
In the same vein as online-adaptive model reduction methods, local ROBs can be
adapted online using for example a low-rank SVD update method, as in [41, 224]
when switching from one local ROB to another or in [202] when an error indicator
detects extrapolation errors. This concept of local ROMs should not be confused
with another type of local (or localized) ROMs described in [226], where the ROMs
are associated to subdomains of the computational domain, in the spirit of domain
decomposition techniques.

� Nonlinear manifold ROM methods [36, 37, 38] learn a nonlinear embedding and
project the governing equations onto the corresponding approximation manifold, by
means of a nonlinear function mapping a low-dimensional latent space to the solution
space. This function is the decoder of an undercomplete autoencoder trained with
the mean squared error loss to compress the snapshots and reconstruct them from

80

7.2. Strategies for non-reducible problems

their compressed representations. In this way, the nonlinear manifold is approxi-
mated with one single nonlinear ROM. Classical linear ROMs are obtained when the
autoencoder has only one hidden-layer with linear activation functions. In this case,
the decoder simply returns a linear combination of the POD modes.

This thesis focuses on dictionaries of ROMs, where the solution manifold is partitioned
to get a collection of subsets Mk ⊂ M that can be covered by a dictionary of low-
dimensional subspaces, enabling the use of linear ROMs. If {Mk}k∈[[1;K]] is a partition of
M, then:

∀k ∈ [[1;K]], ∀N ∈ N∗, dN (Mk) ≤ dN (M) (7.15)

which is also valid when replacing dN by d′N or d̃N . For a given number K of subsets,
two partitions can be compared on the basis of the ratios dN (Mk)/dN (M). The idea of
clustering training data to define local ROBs traces back to the work of D. Amsallem,
K. Washabaug, M.J. Zahr and C. Farhat in 2012, published in [40, 41] and validated on
nonlinear problems in computational fluid dynamics and fluid-structure-electric interac-
tions. In these papers, the set of snapshots is partitioned with k-means clustering to define
K clusters represented by their means {uk}1≤k≤K . One local ROB is computed for each
cluster using the POD. In the exploitation phase, given the solution at the i-th time in-
crement, one looks for the closest mean uk in terms of the norm ||.||L2(Ω) and computes
the state of the solution at the i+ 1-th time increment with the corresponding local ROB.
This technique has been used more recently in a hyper-reduction framework in [224, 225].

∗ ∗
∗

81

Part IV

ROM-nets

83

Résumé

Cette partie est le coeur du mémoire, dans lequel nous présentons nos contributions à
la réduction d’ordre de modèle non-linéaire par l’utilisation de méthodes d’apprentissage
statistique. La méthode que nous proposons est appelée ROM-net, ou plus précisément
ROM-net basé sur un dictionnaire, et a déjà été décrite dans nos cinq articles [47, 48, 49,
50, 51]. Les chapitres qui suivent reprennent d’ailleurs en grande partie des sections de ces
papiers, avec quelques modifications et éléments supplémentaires. De manière générale, un
ROM-net est un algorithme d’apprentissage statistique qui adapte le modèle d’ordre réduit
(ROM) utilisé en fonction de l’état et de l’environnement du système physique étudié. Un
ROM-net permet de prendre en compte une large gamme de configurations du système
et d’en simuler le comportement de manière approchée plus rapidement qu’un modèle
physique haute-fidélité, tout en conservant les équations du modèle. Les configurations
(ou scénarios) étudiées correspondent potentiellement à des variabilités non-paramétrées.

Un ROM-net basé sur un dictionnaire comprend un dictionnaire de ROMs locaux et
un algorithme de classification, ou classifieur. Le dictionnaire de ROMs locaux permet
d’adapter le choix du modèle (et donc de l’espace d’approximation pour la résolution des
équations) en fonction de la configuration du système. Chaque modèle du dictionnaire est
adapté à une famille particulière de configurations du système. Le classifieur, quant à lui,
sert de système de recommandation automatique de modèle : il analyse la configuration
du système et sélectionne le meilleur modèle du dictionnaire pour effectuer des simulations
rapides et précises. La phase d’apprentissage d’un ROM-net basé sur un dictionnaire se
décompose comme suit:

� Analyse du système : Un modèle haute-fidélité est utilisé pour prédire le com-
portement physique du système pour un certain nombre de configurations différentes.
Pour réduire le coût de cette étape, il est possible de considérer une version simpli-
fiée du problème physique. Dans le cas d’application présenté à la fin du mémoire
pour le calcul de durée de vie d’une aube de turbine dans un turboréacteur avec
incertitudes sur le chargement thermique, le problème cible consiste à prédire le
comportement mécanique de l’aube pour un grand nombre de cycles de chargement,
un cycle correspondant à un vol. L’analyse du système consiste ici à simuler, pour
différents chargements thermiques possibles, le comportement mécanique lors du tout
premier cycle de chargement. L’information fournie par les résultats de ces simula-
tions numériques dites simplifiées est insuffisante pour prédire une durée de vie, mais
permet néanmoins d’appréhender le comportement de l’aube lorsque le chargement
thermique varie. Les résultats des simulations numériques simplifiées sont appelés
snapshots simplifiés.

� Partitionnement des données de simulation : Les simulations simplifiées per-

85

mettent d’identifier des familles (ou clusters) de configurations conduisant à des
comportements physiques similaires. Il s’agit de l’étape de partitionnement des don-
nées (ou clustering en anglais). De cette manière, K clusters sont identifiés, où K
est un entier choisi par l’utilisateur. Le clustering est dit physique, car le partition-
nement de la base de données de configurations possibles se fait à l’aide de données
physiques issues des simulations numériques simplifiées.

� Construction du dictionnaire de modèles réduits locaux : Pour chacun des
K clusters, nous utilisons les méthodes classiques de réduction d’ordre de modèle
pour construire un modèle réduit adapté aux membres du cluster en question.

� Entrâınement du classifieur : Le classifieur est entrâıné à recommander le
meilleur modèle du dictionnaire pour une configuration donnée, grâce aux données
d’entrâınement labellisées lors de l’étape du clustering.

Après une présentation générale de la méthodologie, nous présentons les algorithmes
développés et les solutions proposées pour optimiser les deux éléments principaux d’un
ROM-net basé sur un dictionnaire, à savoir le dictionnaire de ROMs locaux et le classifieur.

Bien que couramment utilisée, la distance euclidienne entre des données issues de sim-
ulations n’est pas toujours pertinente pour faire du clustering en vue de construire un
dictionnaire de ROMs locaux. Cela est expliqué en détails et illustré dans les chapitres qui
suivent. Nous proposons donc une nouvelle mesure de dissimilarité adaptée à la réduction
de modèle, qui joue le rôle de distance dans la procédure de clustering. Cette dissimilarité
est définie de manière à regrouper dans un même cluster les données de simulation pouvant
être approchées en utilisant le même espace d’approximation. Nous donnons quelques élé-
ments théoriques permettant de relier cette dissimilarité à la distance de Hilbert-Schmidt
entre deux opérateurs de projection ainsi qu’aux épaisseurs de Kolmogorov. Enfin, nous
introduisons la notion de partition optimale de la variété des solutions, et démontrons
que ces partitions optimales sont les solutions du problème de clustering des k-médöıdes
avec la dissimilarité que nous avons proposée, donnant ainsi une justification à nos choix
méthodologiques. L’efficacité de notre méthode de clustering est illustrée sur un prob-
lème de thermique non-réductible en 1D, où les performances du dictionnaire de ROMs
locaux obtenu dépassent significativement les performances de dictionnaires obtenus par
des méthodes alternatives. Nous définissons également un critère d’efficacité a priori d’un
ROM-net basé sur un dictionnaire, permettant d’évaluer le gain potentiel apporté par un
ROM-net par rapport à un unique ROM global. Ce critère est calculable assez tôt dans
la phase d’entrâınement, avant les étapes les plus coûteuses, et constitue donc un moyen
efficace d’évaluation du compromis entre le coût et la complexité de la mise en place d’un
ROM-net d’une part, et du gain en précision et en temps de calcul d’autre part. Ce
critère d’efficacité fournit aussi une méthode pratique pour la calibration de certains hy-
perparamètres tels que le nombre de modèles du dictionnaire ou la dimension des espaces
d’approximation.

Après avoir optimisé notre stratégie de construction du dictionnaire de ROMs locaux,
nous nous intéressons plus particulièrement à l’entrâınement du classifieur pour la recom-
mandation automatique de modèles. Contrairement aux problèmes de classification usuels
en machine learning, le problème de classification rencontré lors de la mise en place d’un
ROM-net à base de dictionnaire combine trois difficultés majeures liées à la nature et au
coût des données d’entrâınement issues de simulations numériques. Lorsque le classifieur

86

doit analyser un champ physique discrétisé sur un maillage, la dimension des données à ma-
nipuler est proportionnelle à la dimension du modèle haute-fidélité, et peut donc facilement
atteindre quelques millions voire plusieurs dizaines de millions sur certains cas industriels.
En plus d’être de grande dimension, les données d’entrâınement sont nécessairement en
nombre limité en raison du coût de la procédure de labellisation des données par clus-
tering physique, puisque cette procédure fait intervenir des simulations numériques. La
grande dimension des données d’entrâınement et leur nombre limité sont les deux diffi-
cultés principales qui, combinées, accentuent le risque de surapprentissage du classifieur.
Le caractère physique de ces données pose une difficulté supplémentaire, puisque bon
nombre d’algorithmes d’augmentation de données ne permettent pas de conserver le car-
actère physique des données ou ne sont tout simplement pas applicables à des champs
discrétisés sur un maillage. Nous proposons donc un nouvel algorithme d’augmentation
de données adapté aux problèmes de classification sur des données issues de simulations
numériques. Par ailleurs, pour réduire la quantité d’informations à analyser pour une seule
donnée et ainsi accélérer l’entrâınement du classifieur et réduire la mémoire utilisée lors
de l’augmentation de données, nous proposons une variante d’un algorithme de sélection
de variables pertinentes et non-redondantes tenant compte du caractère physique de nos
données pour identifier plus rapidement un jeu de variables efficace pour la classification.
Les algorithmes d’augmentation de données et de sélection de variables sont évalués sur
un cas test, en combinaison avec une grande variété d’algorithmes de classification usuels.

∗ ∗
∗

87

Chapter 8

Preliminaries about ROM-nets

Abstract: The use of ROM dictionaries introduces the need for a model selection method
that identifies the most suitable model in the dictionary. In [40, 41, 224, 225], the lo-
cal ROM is selected by finding the closest cluster representative from the current state
of the solution with the Euclidean distance. When model selection is not straightforward
and slows down the simulation process, one can use a classifier to learn the model se-
lection task and enable fast model recommendation in the exploitation phase. Dictionar-
ies of ROMs with automatic model recommendation made by a classifier can be found
in [43, 42, 47, 154, 155]. To our knowledge, the idea of combining physics-informed clus-
tering for the definition of local ROMs with a classifier for model recommendation came
from the pioneering works of Peherstorfer, Butnaru, Willcox, and Bungartz on the Local-
ized Discrete Empirical Interpolation Method (LDEIM [42], 2014) and of Nguyen, Barhli,
Muñoz and Ryckelynck on computer vision [43] in 2018. This chapter introduces a few
definitions and concepts that are further developed in the next chapters. In particular, it
presents the dictionary-based ROM-net, methodology that we have developed and improved
in this thesis from the works of [42] and [43].

Remark 8.0.1. This chapter incorporates paragraphs taken from our papers [47, 49], with
some modifications.

Contents

8.1 ROM-nets . 90

8.2 Dictionary-based ROM-nets . 91

8.3 Overview of the training procedure 93

89

Chapter 8. Preliminaries about ROM-nets

8.1 ROM-nets

Our objective is to predict a quantity of interest Z via the computation of a primal variable
u that belongs to a reduced approximation space and satisfies nonlinear physics equations
depending on a stochastic input X. Let X denote the set of input variabilities and let
Z represent the set containing the quantity of interest. In structural mechanics, Z can
represent a damage field, the von Mises stress in a zone of interest, or the displacement
of a specific point in the structure, while X can stand for material constants, boundary
conditions, geometrical parameters, a X-ray computed tomography scan characterizing the
microstructure, images of defects, or even a three-dimensional field defined on the domain
Ω such as a temperature field, residual stresses, or heterogeneous material parameters. The
input X is described by a random variable because it contains the uncertainties on the
physical system under study: when considering polycrystalline materials, X-ray computed
tomography scans could be used to study macroscopic properties under microstructural
variabilities such as grains’ sizes, shapes and orientations. We refer the reader to [227,
228] for more details on finite-element modeling based on X-ray computed tomography
scans. In the industrial application presented at the end of this thesis, X is the finite-
element discretization of a temperature field whose variabilities evolve in L2(Ω). These
stochastic variabilities may be related to turbulence in a fluid-structure interaction with
a high-Reynolds-number fluid flow. In aircraft engines, the temperature field in high-
pressure turbine blades results from a complex turbulent flow coming from the combustion
chamber. An example of fluid flow in a combustion chamber can be found in [229], where
a time stable reduced-order model is built for the simulation of 3D unsteady turbulent and
incompressible flow in a fuel injection system and in the primary zone of a combustion
chamber in an aircraft engine.

Although X can be generated by a parametric stochastic model, it is assumed that
we have no prior knowledge of the underlying model. Therefore, the proposed methodol-
ogy is suitable for nonparametrized input variabilities which can represent uncertainties
on the environment of the physics problem. This feature is required when the method is
trained on data simulated by a parametric model, but applied to real data with unknown
distributions obtained from experimental measures or from a more complex model. Ap-
plying an algorithm on data drawn from a distribution that is different from the one that
generated training data is called domain adaptation. It is a common practice in transfer
learning. It is recalled that the expression nonparametrized variabilities is adopted here
to underline that the stochastic model generating X is unknown and, as a consequence,
no low-dimensional parametrization describing X exactly is available. Typically, the di-
mension of the input X scales with the number of degrees of freedom in the high-fidelity
model, when X describes a field discretized on a mesh.

When the input X ∈ X is modified, the primal variable u evolves on a manifoldM. In
some situations, it is complicated to build a relevant reduced-order model giving accurate
predictions for the primal variable on the whole manifold. In such cases, predictions on
the quantity of interest Z are inaccurate since they derive from the behavior of the primal
variable. The reduced-order model must be adapted to the input to capture nonlinearities.

Let us introduce the notation V (H) representing the set of all the possible reduced-
order models, where a reduced-order model is defined by a reduced-order basis (basis of a
vector subspace of the Hilbert space H) and, optionally, by some parameters related to a
hyper-reduction algorithm. Given two sets A and B, the notation BA represents the set

90

8.2. Dictionary-based ROM-nets

of functions f : A → B. Let us now give the definitions of a projection-based reduced-order
solver and a ROM-net :

Definition 8.1.1 (Projection-based reduced-order solver). Let us consider a physics prob-
lem parametrized by X ∈ X . Let Z ∈ Z be a quantity of interest of this physics problem. A
projection-based reduced-order solver is an operator S : V (H)→ ZX taking a reduced-order
model m ∈ V (H) as an input and returning a predictor S[m] : X → Z for the quantity of
interest. The operator S[m] uses Galerkin projection onto a reduced-order basis to compute
an approximate solution of the governing equations, and computes the quantity of interest
associated to this approximate solution. Given X ∈ X , the quantity of interest Z can be
approximated by:

Z̃ := S[m](X) (8.1)

Definition 8.1.2 (ROM-net). Let us consider a physics problem parametrized by X ∈ X ,
where a quantity of interest Z ∈ Z can be predicted by a projection-based reduced-order
solver S : V (H) → ZX . A ROM-net R : X → V (H) is a machine learning algorithm
returning a reduced-order model R(X) ∈ V (H) adapted to the input X ∈ X . Given
X ∈ X , the quantity of interest Z can be approximated by:

Z̃ := S[R(X)](X) (8.2)

Contrary to metamodeling, using a reduced-order model R(X) enables satisfying ho-
mogeneous Dirichlet boundary conditions and solving the constitutive equations at least
at some specific points if hyper-reduction is used. Hence, a ROM-net provides a hybrid
approach mixing physics-based modeling and machine learning. It is noteworthy that
the definition of the quantity of interest remains quite flexible after the training of a
ROM-net. In solid mechanics for instance, the definition of the damage indicator of an
uncoupled damage model can be changed without restarting the training phase. Using
physics knowledge through reduced-order models also facilitates transfer learning: indeed,
in the exploitation phase, parameters that are not included in the variable X can also be
slightly modified, as long as their variabilities do not induce highly nonlinear variations of
the outputs. Solving physics equations is supposed to give more robustness to parameter
changes.

Remark 8.1.3. The Definition 8.1.2 of a ROM-net has been slightly modified with respect
to the original definition we gave in [47]. Indeed, in [47], the definition specifies that a
ROM-net is a deep learning algorithm. It has been chosen to change this definition to
make it more general in order to include other related works.

8.2 Dictionary-based ROM-nets

When the solution manifold M is embedded in a low-dimensional vector space, one can
construct a single global reduced-order model in order to compute approximate solutions
of the physics problem for different points in the parameter space X . When the solu-
tion manifold M is not embedded in a low-dimensional vector space, using one single
global reduced-order model would result in either time-consuming or inaccurate reduced
simulations, depending on the number of modes selected in the reduced-order basis. By

91

Chapter 8. Preliminaries about ROM-nets

partitioning the parameter space X , one can define a dictionary of local reduced-order
models which enables approximating M by several affine subspaces, as mentioned in Sec-
tion 7.2. Clustering algorithms can be used to split the set X into distinct clusters. Inputs
belonging to the same cluster lead to solutions which can be predicted with the same local
reduced-order model because of their proximity on the manifold M.

The dictionary of local reduced-order models contains K ≥ 2 cluster-specific reduced-
order models. Hence, for a given input X ∈ X , one must identify the corresponding cluster
to select the most appropriate reduced-order model.

Definition 8.2.1 (Dictionary of reduced-order models). Given an integer K ≥ 2, an
injective function DK : [[1;K]] → V (H) is called a dictionary of reduced-order models of
dimension K, or K-ROM-dictionary.

Definition 8.2.2 (Dictionary-based ROM-net). Let us consider a physics problem parame-
trized by X ∈ X , where a quantity of interest Z ∈ Z can be predicted by a projection-based
reduced-order solver S : V (H) → ZX . Given an integer K ≥ 2, a classifier CK : X →
[[1;K]] and a K-ROM-dictionary DK : [[1;K]] → V (H), a dictionary-based ROM-net RK
is defined by:

∀X ∈ X , RK(X) = DK ◦ CK(X) (8.3)

Figure 8.1: Exploitation phase of a dictionary-based ROM-net. K local ROMs are com-
bined with a classifier CK for automatic model recommendation.

Figure 8.1 illustrates the concept of dictionary-based ROM-nets. The classifier CK
solves a multiclass classification problem to recommend a suitable reduced-order model
from the dictionary. Nevertheless, as the classes are given by a clustering algorithm,
one could wonder why a classifier is used. When using a representative-based clustering
algorithm with dissimilarity measure δ, each cluster Xk is represented by a center x̃k. In
theory, one could compute the dissimilarities between the new input x and all the clusters’
representatives x̃k, and then select the cluster with the smallest dissimilarity δ(x, x̃k).
However, this procedure is not reasonable when repeated many times, because of the
computation time required to evaluate the dissimilarities. Indeed, as further explained
later, dissimilarity measures that are suitable for model order reduction applications may
involve numerical simulations. The clustering procedure of dictionary-based ROM-nets
is actually a physics-informed clustering procedure. Hence, the time saving obtained
by model order reduction would be counterbalanced by the time-consuming operations
required for model selection. The perfect classifier defined by:

KK(X) = arg min
k∈[[1;K]]

(δ(X, x̃k)) (8.4)

is too expensive because it is based on numerical simulations. When using the ROM-net,
the perfect classifier KK is replaced by the approximate (or real) classifier CK to bypass
the computations required for model recommendation.

92

8.3. Overview of the training procedure

8.3 Overview of the training procedure

Figure 8.2: Training phases of a dictionary-based ROM-net and a global ROM with a
physics-informed clustering strategy.

A dictionary-based ROM-net consists in a dictionary of local ROMs and a classifier
acting as a model selector, which enables the automatic adaptation of the ROM to the
state and the environment of the physical system. The ROM-net’s classifier (real classifier
denoted by CK where K is the number of local ROMs) approximates the theoretical perfect
classifier KK returning the index of the best local ROM for a given point in the parameter
space. For simplicity, the phrases dictionary-based ROM-nets and ROM-nets will be used
interchangeably.

Figure 8.2 gives the main steps of the training phase of a dictionary-based ROM-net
and draws a comparison with the construction of a global ROM benefiting from the ROM-
net’s physics-informed cluster analysis. The dictionary of local ROMs is built from clusters
given by a physics-informed clustering procedure. First, a simplified version of the physics
problem is solved for each input example of the training database. The simplified physics
problem must be less computationally demanding than the target problem. In particular,
it can be solved with a coarse mesh to reduce the dimension of the approximation space.
The simplified simulations provide what we call simplified snapshots: these snapshots
cannot be exploited to build ROMs, but they give information about how the physical
system reacts to parameter changes. The clustering algorithm finds clusters from the
information contained in these simplified snapshots. In light of the clustering results, one
must identify a few relevant training examples for which the target problem is solved to
get high-fidelity snapshots, that is, snapshots that well represent the solution manifold and
can then be used for the construction of the local ROMs. The different needs in terms of
training data for reduced-order modeling and machine learning can be seen through these
two families of snapshots: the clustering and classification algorithms use information
related to the simplified snapshots to get a sufficiently large training set, while the ROMs

93

Chapter 8. Preliminaries about ROM-nets

use a limited number of high-fidelity snapshots in order to learn to make predictions
in a physics problem. This distinction between these two types of simulation data is
essential when considering complex problems with many degrees of freedom. The three
major differences between our work and the seminal works of [43] and [42] are the use
of simplified simulations, the clustering strategy with a new ROM-oriented dissimilarity
measure, and an a priori efficiency criterion introduced hereinafter. In addition, high-
dimensional nonparametrized variabilities are considered in this thesis. It is noteworthy
that, among the four variants of the LDEIM, the parameter-based LDEIM with clustering
of snapshots (section 4.2. of [42]) is the one that shares the more similarities with our
work, since it applies clustering on simulation data and uses the parameters as inputs for
the classifier.

When using a dictionary-based ROM-net, a natural question arises:

� Which dissimilarity measure and clustering algorithm should be used for model order
reduction purposes?

After clustering, the training phase of the dictionary-based ROM-net still includes
expensive steps corresponding to boxes with thick lines in Figure 8.2, namely the com-
putation of the high-fidelity snapshots, the construction of the local ROMs (which can
involve a hyper-reduction algorithm), and the training of a classifier for automatic model
recommendation. Therefore, an evaluation criterion is needed in order to assess the quality
of the clusters before continuing the ROM-net’s training phase, i.e. right after the cluster-
ing step, see Figure 8.2. This criterion should enable the evaluation of the profitability of
the ROM-net and the tuning of clustering hyperparameters, using the simplified snapshots
only. Put briefly, in addition to the aforementioned question, we must also address the
following issues:

� Is it possible to define a simple practical method to select good hyperparameters
(number of clusters, number of POD modes, number of high-fidelity snapshots)?

� Can one define an efficiency criterion indicating whether it is worth continuing the
ROM-net’s training after the clustering step? This efficiency criterion would enable
choosing between a ROM-net and a single global ROM by evaluating the balance
between the benefits of using a ROM-net and its training cost.

These questions are answered in the two next chapters.

∗ ∗
∗

94

Chapter 9

Physics-informed clustering
procedure

Abstract: This chapter introduces a physics-informed clustering strategy for the construc-
tion of dictionaries of local ROBs. Physics-informed cluster analysis consists in clustering
the parameter space of the parametrized physics problem under study using knowledge about
the behavior of the physical system. In particular, physics-informed representative-based
clustering algorithms rely on dissimilarity measures involving physical quantities obtained
when solving the physics problem. In other words, clusters in the parameter space are
implicitly defined as the preimages of clusters found in a database of numerical simulation
results. The dissimilarity measure introduced in this chapter is designed for model order
reduction purposes, and can be computed either on the solution or on a quantity of interest.

Note: The work presented in this chapter follows up the internship of Ali Ketata, that I
had the pleasure of supervising at Safran in 2020.

Remark 9.0.1. This chapter is taken from our papers [49, 51], with some modifications.

Remark 9.0.2. As explained in Section 6.3.1 introducing the POD, the time t is not
included in the parameter x for time-dependent problems, because it is not considered as
a clustering variable. A simulation for a given point x in the parameter space gives a
solution u that provides several snapshots in time for the construction of a reduced-order
model.

Contents

9.1 Drawbacks of the Euclidean distance 96

9.2 The dissimilarity measure . 97

9.2.1 Definitions and general properties 97

9.2.2 Case n = 1 . 102

9.3 Optimal partitions of the solution manifold 103

9.3.1 Normalized Kolmogorov width variant 104

9.3.2 Optimal K-N -ROM-dictionary partitions 104

9.3.3 Optimal K-1-ROM-dictionary partitions 105

9.3.4 Algorithm for the construction of a dictionary of local ROMs . . 106

9.4 Snapshots selection . 107

95

Chapter 9. Physics-informed clustering procedure

9.5 Application: 1D steady heat equation 108

9.5.1 Problem description . 108

9.5.2 Comparison of different model order reduction strategies 109

9.6 Summary . 113

9.1 Drawbacks of the Euclidean distance

When using a clustering algorithm to partition the solution manifold, the quality of the
partition is related to the choice of the clustering method and the dissimilarity measure
δ used to group similar solutions on the manifold. Among physics-informed clustering
strategies, i.e. strategies incorporating simulation data to compute dissimilarities, [40, 41,
224, 43, 225] used k-means with Euclidean distances in the solution space or in a subspace
of the solution space found by PCA, we used the Grassmann distance between subspaces
spanned by the trajectories of the solutions in [47] (idea that was also used later in [230]
and in our paper [48]), and [42] proposed working on the governing equations’ nonlinear
term, using either a variant of k-means with the DEIM [165] residual as clustering criterion
or k-means on a low-dimensional representation of the governing equations’ nonlinear term
obtained by a DEIM-based feature selection. It is recalled that k-means is a representative-
based clustering algorithm equipped with the Euclidean distance, and that changing this
distance leads to other clustering methods. The Local Decomposition Method [6] also
relies on a physics-informed clustering strategy even though no dissimilarity measure is
used, because a Gaussian mixture model is applied to shock sensors computed from the
field of a quantity of interest, which enables separating subsonic and transonic flows in
computational fluid dynamics.

As suggested by Equation (7.9) of Property 7.1.3, the dissimilarity measure should be
defined as a function of the angle between elements of the solution manifold in order to
focus on the shape of the fields u ∈M rather than their intensities. In this way, clustering
would efficiently decrease projection errors by limiting the maximum angular deviations
within clusters. The Euclidean distance ||u − v||H used in [40, 41, 224, 43, 225] does
not always ensure the reduction of projection errors. Indeed, the solution manifold can
contain solutions that are relatively close in terms of the Euclidean distance but distributed
in many different directions of the space H. On the other hand, having a subsetMk with
a large diameter in terms of the Euclidean distance is not a problem if it is embedded in
a low-dimensional space, as indicated by Property 7.1.3. Let us suppose that the solution
manifold contains two elements u and v having disjoint supports supp(u) and supp(v) and
such that there exists a large real number λ such that λu is still in the solution manifold
(see Figure 9.1). The elements u and λu are aligned in the same direction and could then
be obtained with the same 1-dimensional approximation space. However, if λ is large
enough, the distance ||u− λu||H can be very large with respect to ||u− v||H. In this case,
it is possible to assign u and v to the same cluster while assigning λu to another, whereas
u and λu are aligned along a direction that is orthogonal to v. For these reasons, the
Euclidean distance does not seem to be adapted, except if the number K of clusters is
large enough to get very local subsets Mk with restricted angular deviations.

A more natural and straightforward approach would consist in clustering the parameter
space X to define the subsets Mk = u(Xk) for each cluster Xk. This strategy may not be

96

9.2. The dissimilarity measure

Figure 9.1: Clustering with the Euclidean distance would assign u and v to the same cluster
and λu to another, whereas u and λu could be computed with the same 1D approximation
space.

appropriate when u is a nonlinear function of the parameters x ∈ X . The physics of the
underlying problem can also generate situations where small changes of the parameters
in some directions of the parameter space totally modifies the shape of the solution in a
nonlinear way, while large variations in other directions of the parameter space only imply
linear variations. An example is given in [47], where it is shown that clusters identified
in the parameter space give subsets Mk spreading all over the solution manifold M.
To avoid this issue, it is preferable to apply a physics-informed clustering strategy by
partitioning the solution manifold directly with an appropriate dissimilarity measure δ.
Contrary to [40, 41, 224, 225], the method presented in this thesis does not enable changing
the selected local ROB according to the solution’s state in time-dependent problems.
Nevertheless, we introduce a dissimilarity measure that improves the quality of the local
ROBs on problems where the Euclidean distance ||.||H in the solution space fails to define
good approximation spaces.

9.2 The dissimilarity measure

9.2.1 Definitions and general properties

Clustering is the task of splitting a database into several clusters of similar data points.
For many clustering approaches, the degree of similarity between two points is quantified
by a dissimilarity measure. This section introduces the dissimilarity measure used in this
thesis and gives some of its properties. It is important to stress that this dissimilarity is
computed from the simplified snapshots given by the simplified simulations. Hence, in this
section, the notation u ∈ L2(Ω× [0; tf]) represents a simplified snapshot.

Definition 9.2.1 (Principal angles between subspaces). Let V1 and V2 be two subspaces
of L2(Ω). The principal angles or canonical angles θk(V1,V2) ∈ [0;π/2] between V1 and
V2 are defined by:

∀k ∈ N∗, θk(V1,V2) :=](vk1 , v
k
2) (9.1)

where the angle] :=]L2(Ω) is measured in L2(Ω) (see Equation (7.7)), and where the

vectors vk1 ∈ V1 and vk2 ∈ V2 are given by the following sequence of optimization problems:
(v1

1, v
1
2) ∈ arg min

(v1,v2)∈V1×V2
](v1, v2)

(vk+1
1 , vk+1

2) ∈ arg min

{
](v1, v2) vj ∈ Vj ∩

(
span({vij}1≤i≤k)

)⊥
, j ∈ {1; 2}

}
(9.2)

with the notation V⊥ denoting the orthogonal complement of V ⊂ L2(Ω) in L2(Ω).

97

Chapter 9. Physics-informed clustering procedure

In practice, when the spaces V1 and V2 are finite-dimensional, it can be shown (see
Theorem 1 of [231]) that the principal angles are given by:

∀k ∈ [[1; min(dim(V1),dim(V2))]], θk (V1,V2) = arccosσk (9.3)

with σ1 ≥ σ2 ≥ ... ≥ σmin(dim(V1),dim(V2)) being the singular values of the matrix C(V1,V2) ∈
Rdim(V1)×dim(V2) defined by:

Cij(V1,V2) := 〈ψ(1)
i , ψ

(2)
j 〉L2(Ω) (9.4)

where the functions ψ
(1)
i (resp. ψ

(2)
j) form an orthonormal basis of V1 (resp. V2). The

vector θ(V1,V2) denotes the vector containing the principal angles between the spaces V1

and V2.

Definition 9.2.2 (n-dimensional elementary basis). Let u ∈ L2(Ω×[0; tf]) and n ∈ [[1;N]].
The n-dimensional elementary basis associated to u is the orthonormal n-frame Ψn(u) ∈
V (n,L2(Ω)) obtained by solving the POD minimization problem given in Equation (6.9)
with the Snapshot POD algorithm, using the trajectory of u over time as a snapshot.

Definition 9.2.3 (n-dimensional elementary approximation space). Let u ∈ L2(Ω×[0; tf])
and n ∈ [[1;N]]. The n-dimensional elementary approximation space Vn(u) ∈ Gr(n,L2(Ω))
is the subspace spanned by Ψn(u).

In Definition 9.2.2, the POD basis Ψn(u) is used for clustering only, it is not sup-
posed to be used for numerical simulations since it is computed from simplified snapshots.
Qualitatively, the subspace Vn(u) spanned by this POD basis is the best n-dimensional
approximation space for the trajectory of u(., t) in L2(Ω), that is to say:

Vn(u) = arg min
Vn∈Gr(n,L2(Ω))

∫ tf

0
inf
v∈Vn

||u(., t)− v||2L2(Ω) dt (9.5)

Definition 9.2.4 (Chordal distance between subspaces [232], p. 140, Section 2). Let H
be a Hilbert space, and n,m be two integers with n ≤ m. The chordal distance between
subspaces V1 ∈ Gr(n,H) and V2 ∈ Gr(m,H) is defined by:

dc(V1,V2) := || sinθ(V1,V2)||2 =

(
n∑
k=1

sin2 θk(V1,V2)

)1/2

(9.6)

Definition 9.2.5 (Sine dissimilarity between functions). Given n ∈ [[1;N]], the sine dis-
similarity δ̃n between functions u and v in L2(Ω× [0; tf]) is defined by:

δ̃n(u, v) := dc(Vn(u),Vn(v)) (9.7)

Let us now recall the definition of the orthogonal projection πHn : L2(Ω)→ L2(Ω) on
a n-dimensional subspace Hn of L2(Ω), with an orthonormal basis {ψk}1≤k≤n:

∀u ∈ L2(Ω), πHn(u) =

n∑
k=1

〈u, ψk〉L2(Ω)ψk (9.8)

98

9.2. The dissimilarity measure

Property 9.2.6 (Sine dissimilarity and L2 projection errors). For all n ∈ [[1;N]], the sine
dissimilarity is symmetric and satisfies:

∀(u, v) ∈ L2(Ω× [0; tf])2, δ̃n(u, v) =

(
n∑
i=1

||ψi(u)− πVn(v)(ψi(u))||2L2(Ω)

)1/2

(9.9)

with πVn(v) denoting the orthogonal projection on Vn(v) and where the functions ψi(u) ∈
L2(Ω) for i ∈ [[1;n]] are the vectors of the elementary basis Ψn(u).

Proof. Let us first develop the square of the right-hand side of Equation (9.9), denoted by
fn(u, v)2, using Equation (9.8), the bilinearity of the L2 inner product and the orthonor-
mality of the bases Ψn(u) and Ψn(v):

fn(u, v)2 =
n∑
i=1

||ψi(u)||2L2(Ω) − 2
n∑
i=1

n∑
j=1

〈ψi(u), ψj(v)〉2L2(Ω)

+
n∑
i=1

n∑
j=1

n∑
k=1

〈ψi(u), ψj(v)〉L2(Ω)〈ψi(u), ψk(v)〉L2(Ω)〈ψj(v), ψk(v)〉L2(Ω)

= n− 2

n∑
i=1

n∑
j=1

〈ψi(u), ψj(v)〉2L2(Ω)

+
n∑
i=1

n∑
j=1

n∑
k=1

〈ψi(u), ψj(v)〉L2(Ω)〈ψi(u), ψk(v)〉L2(Ω)δjk

= n−
n∑
i=1

n∑
j=1

〈ψi(u), ψj(v)〉2L2(Ω)

(9.10)
where δjk is the Kronecker delta function. Let C ∈ Rn×n be the matrix whose entries
are the inner products 〈ψi(u), ψj(v)〉L2(Ω). Its SVD reads C = V cos Θ WT where Θ is
a diagonal matrix containing the principal angles θk(Vn(u),Vn(v)), and where V and W
are orthogonal matrices. Then:

fn(u, v)2 = n− tr(CTC)

= n− tr
(
W cos (Θ)T VTV cos (Θ) WT

)
= n− tr

(
WTW cos (Θ)T VTV cos (Θ)

)
= n− tr

(
cos (Θ)T cos (Θ)

)
= n−

n∑
k=1

cos2 θk(Vn(u),Vn(v))

=
n∑
k=1

1− cos2 θk(Vn(u),Vn(v))

=

n∑
k=1

sin2 θk(Vn(u),Vn(v))

= δ̃n(u, v)2

(9.11)

These equations remain true when exchanging u and v, which ends the proof.

99

Chapter 9. Physics-informed clustering procedure

Property 9.2.7 (Sine dissimilarity and Hilbert-Schmidt distance). For all n ∈ [[1;N]],
for all (u, v) ∈ L2(Ω× [0; tf])2, the sine dissimilarity satisfies:

δ̃n(u, v) =
1√
2
||πVn(u) − πVn(v)||HS(L2(Ω)) (9.12)

Proof. Since the Hilbert-Schmidt inner product on HS(L2(Ω)) does not depend on the
choice of the orthonormal basis of L2(Ω), let us choose a basis that is relevant for calcu-
lations. For u ∈ L2(Ω × [0; tf]), the n-dimensional elementary basis Ψn(u) is completed
with an orthonormal basis of the orthogonal complement of Vn(u) in L2(Ω). The resulting
orthonormal basis of L2(Ω) is denoted by {ψk(u)}k∈N∗ , where the n first basis vectors are
those of the basis Ψn(u). Let us now expand the term ||πVn(u) − πVn(v)||2HS(L2(Ω)):

||πVn(u)−πVn(v)||2HS(L2(Ω)) = ||πVn(u)||2HS(L2(Ω))+||πVn(v)||2HS(L2(Ω))−2〈πVn(u), πVn(v)〉HS(L2(Ω))

(9.13)
Using the definition of the Hilbert-Schmidt inner product given by Equation (6.5), one
has:

〈πVn(u), πVn(v)〉HS(L2(Ω)) =
∞∑
i=1

〈πVn(u)(ψi(u)), πVn(v)(ψi(u))〉L2(Ω)

=
n∑
i=1

〈ψi(u), πVn(v)(ψi(u))〉L2(Ω)

=
n∑
i=1

n∑
j=1

〈ψi(u), ψj(v)〉2L2(Ω)

(9.14)

where the last equality results from the expression of πVn(v)(ψi(u)) given by Equation (9.8).
Furthermore:

||πVn(u)||2HS(L2(Ω)) =
∞∑
i=1

〈πVn(u)(ψi(u)), πVn(u)(ψi(u))〉L2(Ω)

=

n∑
i=1

〈ψi(u), ψi(u)〉L2(Ω)

= n

(9.15)

Similarly, one can prove that ||πVn(v)||2HS(L2(Ω)) = n. Finally:

||πVn(u) − πVn(v)||2HS(L2(Ω)) = 2n− 2

n∑
i=1

n∑
j=1

〈ψi(u), ψj(v)〉2L2(Ω) = 2fn(u, v)2 = 2δ̃n(u, v)2

(9.16)
where fn(u, v) was introduced in the proof of Property 9.2.6.

Property 9.2.8. For all n ∈ [[1;N]], the sine dissimilarity is a pseudometric on L2(Ω ×
[0; tf]).

Proof. The sine dissimilarity δ̃n is nonnegative and symmetric. Equation (9.12) implies
that for all u ∈ L2(Ω× [0; tf]), δ̃n(u, u) = 0. Equation (9.12) also yields:

δ̃n(u, v) =
1√
2
||πVn(u)−πVn(v)||HS(L2(Ω)) =

1√
2
||πVn(u)−πVn(w) +πVn(w)−πVn(v)||HS(L2(Ω))

(9.17)

100

9.2. The dissimilarity measure

so the triangle inequality on the Hilbert-Schmidt norm gives the triangle inequality:

δ̃n(u, v) ≤ δ̃n(u,w) + δ̃n(w, v).

Note that δ̃n(u, v) = 0 does not imply that u = v, which is the reason why the sine
dissimilarity is not a metric on L2(Ω × [0; tf]). This is not a problem since we want this
dissimilarity measure to be zero for all pairs of functions (u, v) ∈ L2(Ω × [0; tf])2 whose
trajectories over time in L2(Ω) give the same POD approximation space, as explained
in Section 9.1. The next property shows the link between the sine dissimilarity and the
Grassmann dissimilarity used in [47] for dictionary-based ROM-nets:

Property 9.2.9 (Equivalence with the Grassmann dissimilarity for small angles). Given
n ∈ [[1;N]], let θn denote the vector of principal angles between Vn(u) and Vn(v) for two
square-integrable functions u and v. As ||θn||2 tends towards zero, the sine dissimilarity is
asymptotically equivalent to the Grassmann dissimilarity ||θn||2, that is, using Bachmann-
Landau notations:

δ̃n(u, v) ∼
||θn||2→0

||θn||2 (9.18)

Proof. One must show that:

|| sinθn||2 = ||θn||2 + o(||θn||2) (9.19)

As ||θn||2 tends towards zero:

|| sinθn||2 =

(
n∑
i=1

sin2 θn,k

)1/2

=

(
n∑
i=1

(θn,k + o(θ2
n,k))

2

)1/2

=
(
||θn||22 + o(||θn||22)

)1/2
(9.20)

which gives:
|| sinθn||2 = ||θn||2

√
1 + o(1) = ||θn||2 + o(||θn||2) (9.21)

Definition 9.2.10 (ROM-oriented dissimilarity between parameters). Given n ∈ [[1;N]],
the ROM-oriented dissimilarity between parameters x and x′ in X is defined by:

δn
(
x, x′

)
:= δ̃n

(
u (x) , u

(
x′
))

(9.22)

where u : X → L2(Ω× [0; tf]) is either the primal variable (i.e. the solution of the physics
problem) or a dual variable (i.e. an internal variable) defining a quantity of interest.

It is recalled that this dissimilarity is computed from simplified snapshots. Prop-
erty 9.2.8 implies that the ROM-oriented dissimilarity is a pseudometric on X . Several
variants of this dissimilarity can be obtained according to the definition of the variable u.
Using the primal variable should improve the quality of the POD Galerkin approximation,
since the data would be clustered according to the angles between the subspaces spanned
by the trajectories of the primal solution. This would give a method-oriented dissimilar-
ity, that is, a dissimilarity favoring the accuracy of the numerical method (namely model
order reduction) used for numerical simulations. Using a dual variable instead would im-
prove the quality of the Gappy POD [46] reconstruction for the quantity of interest when
hyper-reduction is used. This would define a goal-oriented method favoring the accuracy
of numerical predictions of a quantity of interest. Of course, one could mix both strategies
by taking a weighted average of these two variants of the ROM-oriented dissimilarity.

101

Chapter 9. Physics-informed clustering procedure

9.2.2 Case n = 1

In this section, the Hilbert space H is a subspace of L2(Ω). We denote by ‖ · ‖H the norm
induced by the inner product 〈·, ·〉H of H.

Definition 9.2.11 (Relative projection error). Let u ∈ H \ {0}, and ΨN = {ψk}1≤1≤N ∈
V (N,H) be an orthonormal reduced-order basis of dimension N ∈ N∗ in H. The relative
projection error η(u,ΨN)H of u on span(ΨN) is given by:

η(u,ΨN)H :=
||u− πspan(ΨN)(u)||H

||u||H
=
||u−

∑N
k=1〈u, ψk〉Hψk||H
||u||H

(9.23)

Remark 9.2.12. The relative projection error does not depend on the choice of the
orthonormal basis used to represent the subspace span(ΨN). Therefore, the notations
η(u,ΨN)H and η(u, span(ΨN))H can be used interchangeably. The notation η(u,ΨN) can
be used instead of η(u,ΨN)H when there is no ambiguity on the Hilbert space H considered.

Remark 9.2.13. The relative projection error can be preferred over the absolute error
when the norm of the solution changes significantly over the manifold M. Contrary to the
absolute error, it does not depend on the magnitude of the solution, and it is symmetric
when evaluated between two solutions: η(u, span({v}))H = η(v, span({u}))H, which enables
interpreting it as a dissimilarity measure. Moreover, the reducibility of different problems
can be more easily compared via their normalized Kolmogorov widths. It is also common
practice to plot the normalized singular values of the POD to manipulate percentages.

In the previous section, we have defined the sine dissimilarity δ̃n involving the sines of
the principal angles between elementary approximation spaces, for time-dependent prob-
lems where the solutions can be seen as trajectories in H, and we have seen that it has
the properties of a pseudometric. In this section, we focus on the sine dissimilarity δ̃1 for
n = 1 computed between nonzero elements of H ⊂ L2(Ω) with the following formula:

δ̃1(u, v)H := sin]H (u, v) =

√
1−

〈u, v〉2H
||u||2H||v||2H

, (9.24)

for (u, v) ∈ (H\{0})2. Note that we have added the subscript H in case the inner product
〈·, ·〉H differs from the L2(Ω) inner product. It is recalled that, contrary to the distance ‖·‖H
commonly used for the construction of dictionaries of local ROMs, the sine dissimilarity
measure focuses on the shape of the solutions and is not affected by their intensities.
Indeed, for all (u, v) ∈ (H \ {0})2 and for all (λ1, λ2) ∈ R∗2, δ̃1(λ1u, λ2v)H = δ̃1(u, v)H.
For (u, v) ∈ (H \ {0})2, let us introduce the following binary relation:

u ∼δ̃1 v ⇐⇒ δ̃1(u, v)H = 0.

This binary relation is reflexive and symmetric. In addition, it is also transitive, because
δ̃1(u, v)H is zero if and only if u and v are linearly dependent, according to the equality case
of the Cauchy-Schwarz inequality. This binary relation is thus an equivalence relation, and
enables to define the following equivalence classes for the elements of H \ {0}: [u] := {v ∈
H \ {0} | v ∼δ̃1 u}. The quotient set H/ ∼δ̃1 is defined as the set of all these equivalence
classes. In particular in M, collinear solutions are represented by the same element of
this quotient set, andM/ ∼δ̃1 can be seen as the set of directions covered by the solution

manifold M. The sine dissimilarity δ̃1 is a metric on H/ ∼δ̃1 .

102

9.3. Optimal partitions of the solution manifold

Property 9.2.14. The relative projection error can be expressed using the sine dissimi-
larity: for all u ∈ H \ {0} and HN ∈ Gr(N,H),

η (u,HN)2
H = 1−N +

N∑
j=1

δ̃1(u, hj)
2
H,

where the N functions hj form an orthonormal basis of the subspace HN .

Proof. The orthogonal projection of u ∈ H \ {0} onto the subspace HN reads: πHN (u) =∑N
j=1〈u, hj〉Hhj . Therefore:

η (u,HN)2
H = ||u||−2

H

||u||2H − 2
N∑
j=1

〈u, hj〉2H +
N∑
j=1

N∑
i=1

〈u, hj〉H〈u, hi〉H〈hi, hj〉H


= 1−

N∑
j=1

〈u, hj〉2H
||u||2H

.

The proof is ended using the orthonormality of the basis {hj}1≤j≤N of HN and Equa-
tion (9.24).

Corollary 9.2.15. For all (u, v) ∈ (H \ {0})2,

δ̃1(u, v)H = η (u, span({v}))H .

9.3 Optimal partitions of the solution manifold

As an unsupervised learning task, clustering has no indisputable evaluation criterion. This
is the reason why there is no hierarchy in the large variety of clustering algorithms. The
algorithm must be selected according to the purpose. For model order reduction purposes,
we have seen that the Kolmogorov N -width relates the physics problem’s reducibility to
projection errors on the approximation space, which makes the (relative) projection error
η a good candidate for an evaluation criterion.

As shown in Equation (7.9) in Property 7.1.3, Kolmogorov widths can be decreased by
limiting the angular deviation within the clusters. Having defined a dissimilarity measure
δn (or δ̃n) based on angles in Definitions 9.2.5 and 9.2.10, one must look for compact-
shaped clusters in terms of the dissimilarity δn (or δ̃n). Therefore, we use PAM k-medoids
clustering algorithm to reduce the intra-cluster maximum angular deviations as much as
possible, see Section 4.3.2 for more details about k-medoids clustering algorithms. Our
physics-informed clustering method consists in running simplified simulations and applying
PAM to simulation data using the ROM-oriented dissimilarity. This cluster analysis defines
an automatic data labeling procedure, giving labeled training examples for the classifier
of a ROM-net.

In the next paragraphs, we introduce the concept of optimal partitions of the solution
manifold in terms of normalized Kolmogorov widths, and give a theoretical result showing
the link between optimal partitions and k-medoids clustering.

103

Chapter 9. Physics-informed clustering procedure

9.3.1 Normalized Kolmogorov width variant

Let us recall our notations. We are considering a generic parametrized partial differential
equation (pPDE):

D(u;x) = 0, (9.25)

where u ∈ H ⊂ L2(Ω) and x ∈ X denote respectively the solution and the parameter, with
H being a Hilbert space and X the parameter domain. The pPDE (9.25) is assumed to be
well-posed in the sense of Hadamard: X 3 x 7→ u ∈ H solution of (9.25) is a continuous
application, called the solution application. For clarity of presentation, this application
is still denoted by u: for all x ∈ X , u(x) is the unique solution of (9.25). The solution
manifold M is defined as the image of the solution application: M = u(X). We suppose
thatM does not contain the zero solution: ∃ λ > 0 such that inf

x∈X
‖u(x)‖H = inf

u∈M
‖u‖H > λ.

The uncertain parameter x is modeled by a random variable X taking values in X and
following a probability distribution denoted by pX : X → R+. Another random variable
can be defined using the solution application: U := u(X), whose probability distribution
pU is obtained when X follows pX . In particular, the solution manifold is the support of
the probability density function pU : M = supp(pU).

In section 7.1, we defined the Kolmogorov N -width dN , its variant d′N introduced
in [195] involving the mean squared error, and a normalized Kolmogorov N -width d̃N . We
now introduce a variant of the normalized Kolmogorov width denoted by ďN , considering
the mean squared error instead of the maximum error as in the definition of d′N :

ďN (pU)H :=

(
inf

HN∈Gr(N,H)
EU∼pU

[
η (U,HN)2

H

])1/2

=

(
inf

HN∈Gr(N,H)
EX∼pX

[
η (u(X),HN)2

H

])1/2

.

(9.26)

This variant is referred to as normalized Kolmogorov width too in the sequel.

9.3.2 Optimal K-N-ROM-dictionary partitions

Let P ⊂ M ⊂ H \ {0} be a subset of the solution manifold. The probability P(P) of the
event U ∈ P reads:

P(P) =

∫
P
pU (u)du = EU∼pU [1P(U)],

where 1 is the indicator function. A partition {Mk}1≤k≤K of M is a collection of non-
empty subsets ofM such that any point u of the solution manifoldM belongs to exactly
one of these subsets. Let K ≥ 2, and consider a partition of M into K subsets. The
following definition introduces optimal K-N -ROM-dictionary partitions as partitions that
are optimal for reduced-order modeling.

Definition 9.3.1 (OptimalK-N -ROM-dictionary partitions). The family of sets {Mk}1≤k≤K
is an optimal K-N -ROM-dictionary partition of M if it is a partition of M and

{Mk}1≤k≤K := arg inf
{Pk}1≤k≤K
partition of M

K∑
k=1

P(Pk) ď2
N (pU |u∈Pk)H. (9.27)

104

9.3. Optimal partitions of the solution manifold

An optimal K-N -ROM-dictionary partition of a solution manifold is a partition of
size K, leading to a dictionary of local ROMs with N modes minimizing the expectation
of the squared intra-cluster normalized Kolmogorov N -width. Using Equation (9.26),
Equation (9.27) reads:

{Mk}1≤k≤K = arg inf
{Pk}1≤k≤K
partition of M

K∑
k=1

P(Pk) inf
HkN∈Gr(N,H)

EU∼pU|u∈Pk

[
η
(
U,HkN

)2

H

]
. (9.28)

9.3.3 Optimal K-1-ROM-dictionary partitions

Taking N = 1, Equation (9.28) defines optimal K-1-ROM-dictionary partitions as the
solutions of the optimization problem:

{Mk}1≤k≤K = arg inf
{Pk}1≤k≤K
partition of M

K∑
k=1

P(Pk) inf
ũk∈H/∼δ̃1

EU∼pU|u∈Pk
[
δ̃1(U, ũk)

2
H

]
, (9.29)

where the relative projection error is replaced by the sine dissimilarity thanks to Corol-
lary 9.2.15. Note that the second infimum is taken on the quotient set H/ ∼δ̃1 , because
looking for an optimal element of the quotient set is equivalent to searching for an optimal
1D approximation space in Gr(1,H). Equation (9.29) can be interpreted as the continuous
version of a representative-based clustering problem, where for a given integer K ≥ 2, the
objective is to find K representative elements whose nearest neighbors for a given dissimi-
larity measure define the K clusters. Given a metric measure space V whose metric (resp.
measure) is denoted by δV (resp. µV), and given a subset V ′ of V with a nonzero measure,
the continuous representative-based clustering problem can be stated as follows:

inf
{Pk}1≤k≤K
partition of V′

K∑
k=1

inf
ũk∈V

∫
Pk
δ2
V(v, ũk)dµV(v),

which is equivalent to:

inf
{Pk}1≤k≤K
partition of V′

K∑
k=1

µV(Pk)
µV(V ′)

inf
ũk∈V

1

µV(Pk)

∫
Pk
δ2
V(v, ũk)dµV(v).

The ratio µV(Pk)/µV(V ′) can be seen as the probability P(Pk) of being in Pk when drawing
a realization of the uniform distribution on V ′. The integral term normalized by the
measure of the cluster corresponds to the expectation in Equation (9.29). In both cases,
the integrand is a squared metric. When V is a Hilbert space and δV is the norm induced by
its inner product, the aforementioned clustering problem is a continuous k-means clustering
problem, where the objective is to find clusters minimizing the sum of the intra-cluster
inertia. In this case, the optimal representative elements are the centroids (or means) of
the clusters. In a nutshell, the optimal K-1-ROM-dictionary partitions are the solutions
of a representative-based clustering problem on the quotient set H/ ∼δ̃1 endowed with the

metric δ̃1.

105

Chapter 9. Physics-informed clustering procedure

9.3.4 Algorithm for the construction of a dictionary of local ROMs

The optimization problem defining optimal K-N -ROM-dictionary partitions in Defini-
tion 9.3.1 is numerically intractable, since there is an infinite number of possible partitions
of the continuous solution manifold and since each candidate partition requires solving K
optimization problems for the construction of the local ROMs. In the same fashion the
(snapshot) POD has been proposed as a practical procedure for approximating the opti-
mal N -ROM subspace, we propose an algorithm approximating the optimal K-N -ROM-
dictionary partitions, given a sampling of the solution manifold as a set of m precomputed
solutions M̂ := {ui}1≤i≤m. This a priori sample is usually done by applying a design of
experiments over the parameter domain X .

Approximate optimal K-N-ROM-dictionary partitions of discrete solution sets

We look for an approximation of the optimal K-N -ROM-dictionary partitions {M̂k}1≤k≤K
of the discretized set M̂. The probabilities P(M̂k) are obtained by taking the ratios

|M̂k|/m, where |M̂k| is the cardinality of M̂k. The true but unknown probability density
functions pU |u∈Mk

are replaced by the empirical distributions:

p̂
U |u∈M̂k

(u) =
1

|M̂k|

m∑
i=1

1M̂k
(ui) δ(u− ui),

where δ is the Dirac delta function. Using Equation (9.26), the squared normalized Kol-
mogorov N -width of this probability mass function is then:

ďN (p̂
U |u∈M̂k

)2
H = inf

HkN∈Gr(N,H)

1

|M̂k|

m∑
i=1

1M̂k
(ui) η (ui,HN)2

H .

Like the RBM and the snapshot POD methods, and to derive a computable algorithm,
a basis for the approximation of the best subspace HkN is searched in the set AN (M̂k),

N ≤ dim(span(M̂k)), defined as the set containing all the H-orthonormal families of N

elements of span(M̂k). From Definition 9.3.1 and Property 9.2.14, an approximation of

the optimal K-N -ROM-dictionary partitions {M̂k}1≤k≤K of a discrete solution set M̂ is
sought as:

arg min
{P̂k}1≤k≤K
partition of M̂

K∑
k=1

min
{hkj }1≤j≤N∈AN (M̂)

m∑
i=1

1P̂k(ui)
N∑
j=1

δ̃1(ui, h
k
j)

2
H. (9.30)

Approximate optimal K-1-ROM-dictionary partitions of discrete solution sets

Property 9.3.2. When considering a discrete solution set M̂ and if the 1-ROM sub-
spaces are sought in span(M̂), the optimal K-1-ROM-dictionary partitions are exactly the
minimizers of the cost function of k-medoids clustering with the sine dissimilarity measure
δ̃1.

106

9.4. Snapshots selection

Proof. From Equation (9.30) (or discretizing the solution manifold in Equation (9.29)),
optimal K-1-ROM-dictionary partitions satisfy

arg min
{P̂k}1≤k≤K
partition of M̂

K∑
k=1

min
ũk∈M̂

m∑
i=1

1P̂k(ui) δ̃1(ui, ũk)
2
H,

from which we recognize the cost function of k-medoids clustering.

Hence, the case N = 1 leads to an optimization problem for which various computable
heuristic approaches have been proposed, including the Partitioning Around Medoids
(PAM [84]).

Algorithm for approximate optimal partitions

Property 9.3.2 cannot be directly extended to N > 1, and optimizing the partition and
the approximation spaces simultaneously in Equation (9.30) requires computing many
candidate local subspaces, which is very expensive. As a practical algorithm, we propose
to: (i) compute the optimal K-1-ROM-dictionary partitions over the sampled solution
manifold, and (ii) compute the local N -dimensional approximation spaces using any clas-
sical reduced-order modeling method on each element of this partition, for instance the
snapshot POD or the RBM.

Remark 9.3.3. In addition to the arguments given in Remark 9.2.13 for the use of nor-
malized Kolmogorov widths, using relative errors enables linking the concept of optimal
partitions with a representative-based cluster analysis. Trying to do the same for absolute
Kolmogorov widths would have required considering a dissimilarity obtained by symmetriz-
ing the absolute errors: the link between the corresponding optimal K-1-ROM-dictionary
partitions and such dissimilary would be lost, and Property 9.3.2 would not hold anymore.

9.4 Snapshots selection

Once clusters have been identified within the dataset, one must select relevant points for
which the entire high-fidelity simulation will be run to provide high-fidelity snapshots for
the construction of the local ROMs. For each cluster, the high-fidelity snapshots must be
well distributed and representative of the cluster’s members. When one wants to use only
one snapshot per cluster, then the clusters’ medoids are good candidates. For more than
one snapshot per cluster, a second k-medoids cluster analysis can be conducted within
each cluster, with ns subclusters where ns is the desired number of high-fidelity snapshots
per cluster, using the same dissimilarity measure as for the first clustering. High-fidelity
snapshots can then be computed for the subclusters’ medoids. This method corresponds
to a two-stage hierarchical k-medoids clustering. Another way to select snapshots would
consist in following a maximin greedy approach: we first select the cluster’s medoid,
then the simulation that is the farthest away from the medoid within the cluster, and
then the simulation maximizing the minimum distance between the two aforementioned
simulations. In other words, starting from the medoid, snapshots are iteratively selected
by finding the simulation maximizing the minimum distance to the snapshots that have
already been selected.

107

Chapter 9. Physics-informed clustering procedure

9.5 Application: 1D steady heat equation

9.5.1 Problem description

Let us consider the following ordinary differential equation:
− (λu′)′ (ξ) = s(ξ) ∀ξ ∈ [0;L]

u(0) = u0

u(L) = u0

(9.31)

where λ ∈ L2([0;L]), s ∈ L2([0;L]), u0 ∈ R and u − u0 ∈ H1
0 ([0;L]). This equation

describes the thermal behavior of an heterogeneous continuous medium of length L with
thermal conductivity λ(ξ) and temperature u(ξ), in the presence of a heat source s(ξ). We
are interested in the behavior of the solution u under variying source terms and conduc-
tivity functions. The conductivity function λ is defined by:

λ(ξ) = λ11{ε(ζ)L≤ξ≤(ε(ζ)+ζ)L} + λ2(1{ξ<ε(ζ)L} + 1{ξ>(ε(ζ)+ζ)L}) (9.32)

with λ2 = 1000λ1 ∈ R∗+ and with ζ being a random variable following the uniform distri-
bution U(0.1, 0.5). The random variable ε(ζ) follows the uniform distribution U(0, 1− ζ).
The source term s is modeled by a zero-mean Gaussian process with an exponential co-
variance function. The problem described by Equation (9.31) is therefore parametrized by
the heat source distribution s and the microstructural parameters ζ and ε(ζ). The weak
formulation of Equation (9.31) reads:∫ L

0
λ(ξ)v′(ξ)u′(ξ)dξ =

∫ L

0
s(ξ)v(ξ)dξ ∀v ∈ H1

0 ([0;L]) (9.33)

The interval [0;L] is discretized into N − 1 = 1999 subdivisions of length h = L/(N − 1).
The vertices {ξi = ih}0≤i≤N−1 define a finite-element mesh whose P1 shape functions
are denoted by {φi}1≤i≤N−2. The shape functions φ0 and φN−1 are not used because
of the Dirichlet boundary conditions. The finite-element method computes a high-fidelity
approximate solution u−u0 in the space span ({φi}1≤i≤N−2), whose coordinates are stored
in a vector q ∈ RN−2. This vector is the solution of the following linear system:

Kq = f (9.34)

with K ∈ R(N−2)×(N−2) given by:

Kij =

∫ L

0
λ(ξ)φ′i(ξ)φ

′
j(ξ)dξ ∀(i, j) ∈ [[1;N − 2]] (9.35)

and f ∈ RN−2 given by:

fi =

∫ L

0
s(ξ)φi(ξ)dξ ∀(i, j) ∈ [[1;N − 2]] (9.36)

A dataset of 1000 realizations of the random source term and microstructural pa-
rameters is generated. For each example in the dataset, the finite-element solution q is
computed with a Python routine. Figure 9.2 shows the solution’s behavior for different
configurations. One can observe that the solution is not affected by the source term in

108

9.5. Application: 1D steady heat equation

Figure 9.2: Examples of solutions u(ξ) for different source terms s(ξ). The vertical dashed
lines indicate the locations of the interfaces between the constituents of the bimaterial.
Between the two interfaces, the thermal conductivity is λ1. Outside of this interval, the
thermal conductivity is λ2 = 1000λ1.

high-conductivity regions. Figure 9.3 gives the singular values of the matrix containing
the 1000 solutions. It can be observed that the decay of the singular values is rather slow
for a 1D problem, meaning that this problem is non-reducible and that a dictionary of
local ROBs may be required. The database is splitted into two subsets: a training set and
a test set, both containing 500 examples. The training set is used to identify clusters and
build the ROBs, while the test set is used for evaluation purposes.

Remark 9.5.1. In the training phase of a dictionary-based ROM-net for time-dependent
physics problems, the simplified problem that is simulated to provide data for the clustering
procedure generally corresponds to a few time steps of the target problem. In this example,
Equation (9.31) does not define a time-dependent problem. In this case, the simplified
problem can be defined as the target problem solved on a coarse finite-element mesh.

9.5.2 Comparison of different model order reduction strategies

Let x = (s, ζ, ε(ζ)) denote the parameter of the problem. After projection of the source
term in the finite-element basis, the parameter x is represented by a N + 2-dimensional
vector x whose coordinates are centered and scaled to unit variance. This way, distances
in the parameter space can be computed with the Euclidean distance:

δX (x, x′) = ||x− x′||2 (9.37)

109

Chapter 9. Physics-informed clustering procedure

Figure 9.3: Decay of the singular values obtained by singular value decomposition on the
matrix containing all the examples in the dataset.

Introducing the notation q(x) ∈ RN−2 for the solution of Equation (9.34) for a given pa-
rameter x, one can define a physics-informed dissimilarity measure δH using the Euclidean
distance in the solution space:

δH(x, x′) = ||q(x)− q(x′)||2 (9.38)

These dissimilarity measures are compared with the ROM-oriented dissimilarity measure
δ̃1 introduced in Equation (9.24), obtained by computing the sine dissimilarity in the
solution space. K-medoids clustering is used for both snapshots selection and manifold
partitioning in conjunction with one of these three dissimilarity measures. Different model
order reduction strategies are compared in terms of projection errors under the following
setting:

� Equivalent number of snapshots: all the strategies use the same total number
of snapshots, which ensures equal budgets for high-fidelity simulations in the train-
ing phase. It is recalled that the high-fidelity snapshots are given by high-fidelity
simulations that are more expensive than the simplified simulations used to generate
the database and find clusters.

� Equivalent number of POD modes: all the ROBs use the same number of
modes, which ensures equivalent speed-ups when exploiting the ROMs.

If a dictionary of K local ROBs is compared with a global ROB made of N modes, then
each local ROB must have N modes. For the construction of these local cluster-specific
ROBs, ns = N snapshots are selected in each cluster using the two-stage hierarchical
k-medoids clustering procedure. Hence, the total number of snapshots is Kns = KN .
Snapshots for the construction of the global ROB are therefore selected by taking the
medoids of a single k-medoids clustering with KN clusters.

Six model order reduction strategies are considered, namely:

110

9.5. Application: 1D steady heat equation

� Three global ROBs containing N modes computed from KN snapshots. The snap-
shots are selected thanks to a k-medoids cluster analysis with KN clusters, using
different dissimilarities:

– Global ROM 1 uses the dissimilarity δX (Euclidean distance in the parameter
space).

– Global ROM 2 uses the dissimilarity δH (Euclidean distance in the solution
space).

– Global ROM 3 uses the ROM-oriented dissimilarity δ̃1 (sine dissimilarity in
the solution space).

� Three ROM dictionaries consisting of K local ROBs with N modes each. Each
local ROB is inferred from N snapshots. Again, k-medoids is applied with different
dissimilarity measures:

– ROM dictionary 1 uses the dissimilarity δX (Euclidean distance in the pa-
rameter space). This strategy is the most natural and simple one among ROM
dictionaries.

– ROM dictionary 2 uses the dissimilarity δH (Euclidean distance in the so-
lution space) like in [40, 41, 224, 43, 225]. This strategy belongs to physics-
informed strategies.

– ROM dictionary 3 uses the ROM-oriented dissimilarity δ̃1 (sine dissimilarity
in the solution space). This is the strategy we have introduced in this thesis
for dictionary-based ROM-nets. Like ROM dictionary 2, it relies on a physics-
informed cluster analysis, but with another dissimilarity.

In this section, the comparison is presented for K = 6 and N = ns = 3, for reasons that
will become clearer in the next chapter focusing on hyperparameter tuning. For cluster-
ing, we use our own implementation of PAM [84, 95] k-medoids algorithm, with multiple
random initializations for the medoids. Projection errors as defined in Equation (9.23)
are computed for the 500 test examples for each strategy, which enables estimating their
probability density functions using Gaussian kernel density estimation (see section 6.6.1.
of [55]). The violin plots of the projection errors are given in Figure 9.4, and the values
of the quartiles and expectations are given in Table 9.1. The third ROM dictionary using
the ROM-oriented dissimilarity clearly outperforms the other strategies. Although using
a physics-informed clustering procedure, ROM dictionary 2 fails to improve the perfor-
mances of global ROMs on this specific example. This result illustrates the fact that the
Euclidean distance is not always appropriate for model order reduction purposes. ROM
dictionary 1 gives the worst results, showing that integrating physics in cluster analyses is
crucial when the final objective is to build local approximation spaces. Interestingly, these
results also show that using local ROBs can deteriorate the performances of a global ROB
when choosing an improper dissimilarity measure for clustering. In this example, the three
global ROMs give approximately the same projection errors. These errors are lower than
those obtained with ROM dictionary 1 and ROM dictionary 2 because the global ROMs
have more relevant snapshots, since they use KN well-distributed snapshots instead of N
badly-distributed snapshots. Hence, the dissimilarities δX and δH both define inefficient
notions of locality in this example.

111

Chapter 9. Physics-informed clustering procedure

Figure 9.4: Violin plots of the projection errors for different model order reduction strate-
gies, with (K,N, ns) = (6, 3, 3).

Table 9.1: Quartiles and means of the projection errors for different model order reduction
strategies, with (K,N, ns) = (6, 3, 3).

Strategy Dissimilarity Q1 Median Q3 Mean

Global ROM 1 δX 0.3863 0.5735 0.7477 0.5636
Global ROM 2 δH 0.3611 0.5427 0.7208 0.5397

Global ROM 3 δ̃1 0.3460 0.5666 0.7346 0.5480
ROM dictionary 1 δX 0.5434 0.7412 0.9379 0.7071
ROM dictionary 2 δH 0.2874 0.6280 0.8038 0.5586

ROM dictionary 3 δ̃1 0.1482 0.2369 0.4584 0.3132

Remark 9.5.2. Figure 9.4 gives projection errors obtained when choosing the correct
cluster and thus the most suitable local ROB. The ROM-net’s classification errors would
have the effect of moving the distribution of ROM dictionary 3 towards larger errors,
reducing the gap between the errors made by the different model order reduction strategies.
Therefore, particular attention must be paid to the training of the ROM-net’s classifier.

Figure 9.5 plots the projection error against the dissimilarity measure δX (left), δH
(middle) and δ̃1 (right) separating a test example from its closest snapshot. One can
clearly see the correlation between the projection error and our ROM-oriented dissimilarity
δ̃1, contrasting with the absence of correlations between the projection error and the
other dissimilarities. This example of a non-reducible problem validates the ROM-oriented
dissimilarity introduced in this thesis.

112

9.6. Summary

Figure 9.5: Scatter plots giving the projection error (y-axis) for test data against the
dissimilarity with the closest snapshot (x-axis). From the left to the right: Euclidean
distances in the parameter space, Euclidean distances in the solution space, and ROM-
oriented dissimilarity.

9.6 Summary

Figure 9.6: Schematic illustration showing the differences between clustering with the
Euclidean distance (left) and with the ROM-oriented dissimilarity measure (right). The
area inside the closed red curve corresponds to the solution manifold, and the arrows
represent independent directions in the ambient space. The green and the blue curves
delineate the two clusters.

In this chapter, we have introduced a physics-informed clustering procedure for the con-
struction of a dictionary of local ROMs. It has been shown that the Euclidean distance
may fail to identify relevant clusters for model order reduction purposes. To address this
issue, a ROM-oriented dissimilarity measure based on angles is proposed. Contrary to
the Euclidean distance, it does not depend on the magnitude of the physical fields. As
illustrated on Figure 9.6, clustering with the Euclidean distance may give clusters sharing
some directions of the ambient space, while an angle-based dissimilarity can efficiently
identify clusters of data embedded in low-dimensional subspaces.

We stress that we only question the choice of the Euclidean distance, but not the
methods using it for the construction of local ROMs. Indeed, our study does not include
important ingredients used in the methods presented in [40, 41, 224, 225], such as the pos-
sibility to switch between clusters, the low-rank update of the local ROBs when switching
between clusters, and the use of affine subspaces rather than vector subspaces which may
result in clusters sharing fewer common directions.

113

Chapter 9. Physics-informed clustering procedure

However, our study on optimal partitions of the solution manifold in terms of a normal-
ized Kolmogorov width gives theoretical motivations for the use of a representative-based
clustering algorithm (such as k-medoids clustering) with our ROM-oriented dissimilarity
measure.

∗ ∗
∗

114

Chapter 10

Hyperparameters tuning

Abstract: This chapter introduces an a priori efficiency criterion assessing the relevance
of a ROM-net for a given problem. It relies on the concept of gain that evaluates the
profitability of a ROM-net with respect to a single global ROM. This criterion can be
evaluated before time-consuming steps in the training phase, and gives a very practical
method for hyperparameters calibration under constrained computational costs.

Note: The work presented in this chapter follows up the internship of Ali Ketata, that I
had the pleasure of supervising at Safran in 2020.

Remark 10.0.1. This chapter is taken from our paper [49], with some modifications.

Contents

10.1 Gain with respect to a global reduced-order model 116

10.2 Practical method . 118

10.3 Back to the 1D steady heat equation 120

115

Chapter 10. Hyperparameters tuning

10.1 Gain with respect to a global reduced-order model

A dictionary-based ROM-net [47] is made of a dictionary of K local ROMs and a classifier
CK which automatically selects the best model from the dictionary for a given point in
the parameter space without computing any physics-informed dissimilarity, see Figure 8.1.
The real classifier CK enables bypassing the simplified simulation that is required to eval-
uate the perfect classifier KK , see Figure 8.2. In this section, it is assumed that all the
dictionary’s ROMs have the same number of modes, denoted by N , and have been built
from the same number of high-fidelity snapshots, denoted by ns. A dictionary of K ROBs

with N modes and ns high-fidelity snapshots per basis is denoted by {Ψ(K,N,ns)
k }k∈[[1;K]].

The objective of this chapter is to define a practical method for the calibration of the
hyperparameters K, N and ns, based on an evaluation criterion quantifying the ROM-
net’s profitability with respect to a single global ROM. This criterion must be computable
very early in the ROM-net’s training phase, right after the physics-informed clustering
procedure in Figure 8.2 and before the computation of high-fidelity snapshots, the con-
struction of the ROMs, and the classifier’s training phase. Therefore, the local ROBs

{Ψ(K,N,ns)
k }k∈[[1;K]] used in the evaluation criterion are simply built from Kns simplified

snapshots selected for example by the two-stage hierarchical k-medoids clustering, instead
of the corresponding high-fidelity snapshots that will be computed afterwards. Their per-

formances are compared with the performance of a global ROB Ψ
(1,N,Kns)
g containing N

modes and inferred from the same Kns snapshots as {Ψ(K,N,ns)
k }k∈[[1;K]]. This global basis

thus benefits from the physics-informed clustering procedure for the selection of its snap-
shots. The ROBs are related to the function u(X) ∈ L2(Ω × [0; tf]) parametrized by the
random variable X representing the current point in the parameter space. The following
definition introduces the gain used in our evaluation criterion:

Definition 10.1.1 (Gain). Given integers K > 1, N > 0 and ns > 0 and a classifier
FK : X → [[1;K]], the gain is defined by:

G(X;K,N, ns,FK) =
η
(
u(X),Ψ

(1,N,Kns)
g

)
η
(
u(X),Ψ

(K,N,ns)
FK(X)

) (10.1)

where u(X) results from a simplified simulation. For K = 1, the gain equals to 1.

Remark 10.1.2. In Definition 10.1.1, the primal variable u can be replaced by a quantity
of interest, depending on the choice made for the definition of the ROM-oriented dissimi-
larity.

As a function of X, the gain can be seen as a random variable parametrized by
the hyperparameters K, N and ns and the classifier. The notations GC(K,N, ns) and
GK(K,N, ns) denote G(X;K,N, ns, CK) and G(X;K,N, ns,KK) respectively. Right after
the physics-informed clustering procedure, the user cannot evaluate the gain GC(K,N, ns)
since the real classifier CK has not been trained yet. However, the clusters implicitly define
the perfect classifier KK and thus the user has access to values of the gain GK(K,N, ns).
In the next property, the following assumption is made:

[A1] The gain GK(K,N, ns) is assumed to be deterministic, which means that it is no
longer a random variable but rather a deterministic function of the hyperparameters
K, N and ns. In other words, when the right cluster is chosen, the gain does not
depend on X.

116

10.1. Gain with respect to a global reduced-order model

Property 10.1.3 (Gain decomposition). Under assumption [A1]:

E[GC(K,N, ns)] = p GK(K,N, ns) + (1− p) E(K,N, ns) (10.2)

where p = P(CK = KK) is the classification accuracy and E(K,N, ns) given by:

E(K,N, ns) := E[GC(K,N, ns) CK 6= KK] (10.3)

is the conditional expectation of the gain GC(K,N, ns) when selecting the wrong ROB.

Proof. The expected gain E[GC(K,N, ns)] satisfies:

E[GC(K,N, ns)] = p E[GC(K,N, ns) CK = KK] + (1− p) E(K,N, ns) (10.4)

If GK(K,N, ns) is constant for fixed hyperparameters (K,N, ns), then:

GK(K,N, ns) = E[GK(K,N, ns) CK = KK] = E[GC(K,N, ns) CK = KK] (10.5)

because the gains GK(K,N, ns) and GC(K,N, ns) return the same values when the real
classifier CK selects the right ROB. Replacing E[GC(K,N, ns) CK = KK] by GK(K,N, ns)
in Equation (10.4) ends this proof.

Two additional assumptions are made in what follows:

[A2] The classification accuracy p is modeled as a decreasing function of the number
of clusters K defined on a finite interval [[1;Kmax]]. Indeed, for a fixed number of
training examples, increasing the number of classes K makes the classification task
more complicated. When the number of classes is too large in comparison with the
number of training data, the classifier hardly improves the performance of a random
guess classifier.

[A3] The conditional expectation E(K,N, ns) is constant, meaning that the expected gain
when choosing the wrong ROB does not depend on the hyperparameters K, N and
ns. For all K,N, ns:

E := E(K,N, ns) = E[GC(K,N, ns) CK 6= KK]
≤ E[GK(K,N, ns) CK 6= KK] = GK(K,N, ns)

(10.6)

so E ≤ GK(1, N, ns) = 1 in particular. In the application presented in the last
section of this chapter, we take E = 0.75.

The next definition introduces the concept of real profitability for a dictionary-based ROM-
net:

Definition 10.1.4 (Real ROM-net profitability). Given integers K > 1, N > 0 and ns >

0, a dictionary-based ROM-net with classifier CK and ROM dictionary {Ψ(K,N,ns)
k }k∈[[1;K]]

is profitable with a real profit G∗r ∈ R+ if its expected gain satisfies E[GC(K,N, ns)] ≥ G∗r.

This means that, on average, projection errors made by a global ROB are G∗r times
larger than those made by the ROM-net, even when classification errors are taken into ac-
count. However, the ROM-net profitability cannot be evaluated a priori on E[GC(K,N, ns)],

since the real classifier has not been trained yet and the dictionary of ROBs {Ψ(K,N,ns)
k }k∈[[1;K]]

inferred from high-fidelity snapshots have not been computed yet, see Figure 8.2. For these
reasons, the following definition introduces the concept of perfect profitability :

117

Chapter 10. Hyperparameters tuning

Definition 10.1.5 (Perfect ROM-net profitability). Given integers K > 1, N > 0 and
ns > 0, a dictionary-based ROM-net with perfect classifier KK and ROM dictionary

{Ψ(K,N,ns)
k }k∈[[1;K]] is perfectly profitable with a perfect profit G∗p ∈ R+ if E[GK(K,N, ns)] ≥

G∗p.

Property 10.1.6. Let G∗r ∈ R+. Let us consider a dictionary-based ROM-net with hy-
perparameters K, N , ns. Under assumptions [A1], [A2] and [A3], the dictionary-based
ROM-net is profitable with real profit G∗r if and only if it is perfectly profitable with the
following perfect profit:

G∗p(G
∗
r) =

G∗r − (1− p(K))E

p(K)
(10.7)

Proof. It is a direct consequence of the gain decomposition property (Property 10.1.3).

When the gains are computed with the results of the simplified simulations and with
ROBs inferred from simplified snapshots, the dictionary-based ROM-net is said to be a
priori profitable with real profit G∗r > 1 if:

E[GK(K,N, ns)] ≥
G∗r − (1− p(K))E

p(K)
(10.8)

The a priori profitability can be assessed early in the ROM-net training phase, right after
the physics-informed clustering procedure.

10.2 Practical method

The number of clusters K, the number of POD modes N and the number of snapshots per
cluster ns are three important hyperparameters when building a dictionary-based ROM-
net. Choosing a good number of clusters K may be particularly difficult. The optimal
value of K is related to the nonlinearity of the solution manifold: the more curved the
solution manifold M is, the greater K must be to cover M with several subspaces. It
also depends on the number of POD modes N : very fast simulations would require N to
be small, which would increase the number of local bases required to cover the solution
manifold. Last but not least, K also has an influence on the accuracy of the ROM-net’s
classifier. In a classification problem, increasing the number of classes while keeping the
size of the training set constant makes the learning task tougher. Hence, the performance
of a dictionary-based ROM-net does not monotonically increase with K since its classifier
may choose the wrong model, leading to inaccurate numerical predictions.

The hyperparameters K, N and ns must satisfy the following requirements:

[R1] Limited computational resources: the total number of high-fidelity snapshots
Kns is limited by the maximum allowable budget in terms of high-fidelity simulations
of the entire physics problem.

[R2] Speed-up factor requirements: to effectively reduce the computational cost of
high-fidelity simulations, the number N of POD modes per local ROB must not
exceed N 1/3.

118

10.2. Practical method

[R3] Accuracy requirements: the mean projection error must be lower than a user-
defined threshold η∗:

E[η
(
u(X),Ψ

(K,N,ns)
KK(X)

)
] ≤ η∗ (10.9)

[R4] Gain requirements: given a user-defined threshold G∗r > 1, Equation (10.8) for
the ROM-net a priori profitability must be satisfied to ensure that the local bases
give better performances than a single global ROB.

Remark 10.2.1 (Concerning requirement R2). After the Galerkin projection of the gov-
erning equations onto a ROB made of N modes, the linear system to be solved at each
iteration of the Newton-Raphson algorithm is full and thus has a complexity of O(Nα) with
2 ≤ α ≤ 3, which must be compared with the complexity O(N β) of the sparse linear system
obtained with the finite-element method, with 1 ≤ β ≤ 2. The worst case is obtained for
α = 3 and β = 1, which gives an upper bound in the order of N 1/3 for N .

Given these constraints, we introduce the definition of hyperparameters admissible set :

Definition 10.2.2 (Hyperparameters admissible set). The hyperparameters admissible set
is defined by:

A = {(K,N, ns) ∈ (N∗)3 [R1], [R2], [R3], [R4] are satisfied.} (10.10)

This definition gives a practical method for the ROM-net profitability analysis and hyper-
parameters tuning. The hyperparameters admissible set can be identified using simplified
snapshots right after the clustering step in the training phase, see Figure 8.2. If the hy-
perparameters admissible set is empty, then it is not worth continuing the training phase
of the dictionary-based ROM-net given the user-defined thresholds η∗ and G∗r and the
maximum number of high-fidelity snapshots nmax

snapshots. The user can either build a global
ROB using the physics-informed clustering results to identify snapshots, or weaken some
of the requirements [R1] to [R4]. The time spent for simplified simulations is not wasted:
the user can justify the choice of using a global ROB, and can benefit from these sim-
ulations for high-fidelity snapshots selection. On the contrary, if the hyperparameters
admissible set is not empty, then there is a benefit in using a dictionary-based ROM-net.
The choice of the best hyperparameters configuration among the admissible ones depends
on the user’s priorities. However, given the cost of the entire training phase, a ROM-net
is generally used for applications where the number of test simulations is very high, e.g.
for parameter optimization or uncertainty quantification. In this case, once accuracy and
gain requirements are met, one should take the smallest number of POD modes N to
get the highest possible speed-up factor. Among the admissible configurations with the
smallest number of modes, it is recommended to choose the value of K minimizing the
mean projection error, to get the most accurate dictionary among the fastest admissible
ones. The number of high-fidelity snapshots ns per cluster must be fixed accordingly so
that the total number Kns of high-fidelity snapshots remains lower than nmax

snapshots.

Remark 10.2.3. Choosing the smallest possible number of modes N generally implies
choosing larger values for K, which usually decreases the performance of the ROM-net’s
classifier for automatic model recommendation. When interesting values for K are rather
large (say greater than 8), one can artificially improve the classifier’s accuracy by run-
ning several reduced simulations in parallel with the models having the highest membership
probabilities. An error estimator could then be used to determine which reduced simulation

119

Chapter 10. Hyperparameters tuning

is the most accurate, as proposed in [230]. Such a strategy increases the number of sim-
ulations to be run in the exploitation phase, but would enable working with large K’s and
thus small N ’s, lessening the computational complexity of online reduced simulations. In
addition, when the number of training examples is not large enough compared to the num-
ber of clusters K for the classification task, the data augmentation algorithm presented in
our paper [48] (see also Chapter 11 of this thesis report) for the classification of numerical
simulations can be applied to reduce the risk of overfitting.

10.3 Back to the 1D steady heat equation

This section deals with the calibration of the hyperparameters (K,N, ns) for the physics
problem described in the previous chapter. K-medoids is applied on the training set with
the ROM-oriented dissimilarity δn introduced in Equation (9.22). Since Equation (9.31)
is time-independent, one must take n = 1 for the ROM-oriented dissimilarity. We simply
use the notation δ instead of δ1 (or δ̃1) for the ROM-oriented dissimilarity obtained by
computing the sine dissimilarity in the solution space, whose formula is given in Equa-
tion (9.24).

The physics problem considered in this section gives only one field u per set of pa-
rameters. Therefore, the number of POD modes N is necessarily lower than or equal
to the number of high-fidelity snapshots per cluster ns. For simplification purposes, we
take N = ns. Given that N = 2000, the number of POD modes N must be lower than
bN 1/3c = 12. To effectively reduce the computational cost of high-fidelity simulations, the
maximum number of modes considered is N = 5.

Let us say that we are given a budget of 20 high-fidelity simulations. The hyperparam-
eters must satisfy the inequality Kns = KN ≤ 20. Our thresholds for the mean projection
error and the mean gain are η∗ = 0.35 and G∗r = 2. A polynomial of degree 2 is considered
for the model p(K) for the classification accuracy, and its coefficients are determined by
imposing p(1) = 1, p(6) = 0.8 (value taken from our paper [47]), p(Kmax) = 1/Kmax

(accuracy of a random guess for balanced classes) and Kmax = 20.

Figure 10.1 gives the mean projection error as a function of K and N . For N = 4
and N = 5 modes, the mean projection errors are below the tolerance η∗ for all K. For
N = 3, the accuracy criterion is satisfied for K ≥ 4. The mean projection error for N = 2
modes falls below the tolerance for K ≥ 13, which does not conform to the constraint
K ≤ 10 imposed by the allocated number of high-fidelity snapshots. With N = 1 mode,
the mean projection error remains too large, which rejects configurations with N = 1.
The configurations (K,N) satisfying the accuracy criterion and respecting the budget for
high-fidelity snapshots are K = 4, 5, 6 for N = 3, K = 2, 3, 4, 5 for N = 4, and K = 2, 3, 4
for N = 5.

The gain curves are given in Figure 10.2. The dashed line in black delimits the ROM-
net’s profitability domain: configurations under this curve are irrelevant, either because
the corresponding expected gain is too low, or because misclassification errors would be
too frequent because too many classes are considered. The configuration (K,N) = (5, 5)
meets both gain and accuracy requirements, but violates the constraint K ≤ 4 for N =
5 and thus requires too many high-fidelity snapshots. For (K,N) = (3, 3), the gain
is large enough but the mean projection error is larger than the tolerance, as seen in
Figure 10.1. Finally, the admissible configurations are K = 4, 5, 6 for N = 3, and K = 4, 5

120

10.3. Back to the 1D steady heat equation

Figure 10.1: Mean projection error as a function of the number of clusters K for different
number of modes N . Dotted lines indicate the configurations which do not comply with
the allocated number of high-fidelity snapshots.

Figure 10.2: Gain as a function of the number of clusters K for different number of modes
N . Dotted lines indicate the configurations which do not comply with the allocated number
of high-fidelity snapshots.

for N = 4. The hyperparameters admissible set is represented in Figure 10.3. Among
the admissible configurations, those with N = 3 are more interesting in terms of speed of

121

Chapter 10. Hyperparameters tuning

online reduced simulations. The lowest mean projection error is obtained for K = 6 when
N = 3, see Figure 10.1. Therefore, we choose the hyperparameters (K,N, ns) = (6, 3, 3),
corresponding to the lower right dot in Figure 10.3.

Remark 10.3.1. It has been decided to take the configuration with the best accuracy among
the admissible configurations with the smallest value for N , in order to have a simple and
systematic approach for hyperparameters calibration. However, in the present example,
one could also use the elbow method. The elbow method is commonly used for selecting
the number of clusters for k-means clustering or the number of components for a PCA.
It consists in choosing the elbow or knee point of the curve of an evaluation criterion. In
spite of the difficulties of defining clearly the elbow point in some situations, this method
raises interesting questions. In our example, if one uses the elbow method with the error
curve, the best number of clusters is still K = 6: for N = 3, K = 6 is the elbow point.
When using this method with the gain curve, the best number of clusters turns out to be
K = 4, even when considering a smoothed version of the blue curve in Figure 10.2 to avoid
undesirable fluctuations due to sampling and medoids initializations. Indeed, taking K = 5
or K = 6 does not significantly improve the gain when N = 3, whereas the number of high-
fidelity snapshots and the complexity of the classification problem would be increased. The
practical method presented in this chapter can be adapted according to the user’s priorities
between training cost, online speed, accuracy, and gain.

Figure 10.3: Hyperparameters admissible set.

∗ ∗
∗

122

Chapter 11

Classification for automatic model
recommendation

Abstract: Our methodology resorts to classification algorithms for the selection of local
ROMs adapted to the environment and the state of the physical system. For this classifica-
tion task, labeled training data come from numerical simulations and correspond to physical
fields discretized on a mesh. Three challenging difficulties arise: the lack of training data,
their high dimensionality, and the non-applicability of common data augmentation tech-
niques to physics data. This chapter introduces two algorithms to address these issues: one
for dimensionality reduction via feature selection, and one for data augmentation. These
algorithms are combined with a wide variety of classifiers for their evaluation.

Remark 11.0.1. This chapter is taken from our paper [48], with some modifications and
novelties.

Contents

11.1 Challenges to be addressed . 124

11.2 Test case . 125

11.3 Feature selection . 127

11.3.1 A geostatistical variant of mRMR feature selection 127

11.3.2 Numerical results . 130

11.4 Data augmentation . 131

11.4.1 Pure sets . 132

11.4.2 The data augmentation algorithm 134

11.4.3 Numerical results . 136

11.5 Validation of our feature selection and data augmentation al-
gorithms . 137

11.5.1 Classification performances of various classifiers 137

11.5.2 Comparison with a CNN . 140

11.5.3 How to further improve classification performances? 141

11.6 Applicability to other problems 141

123

Chapter 11. Classification for automatic model recommendation

11.1 Challenges to be addressed

Working with high-dimensional data increases the risk of overfitting and slows down the
training process for the classifier, which restrains the exploration of the hyperparameters
space. We have seen that feature selection can be used to identify a reduced number
of features containing sufficient information for classification. The minimum redundancy
maximum relevance (mRMR) algorithm [44, 45] tries to find a trade-off between the rel-
evance of the selected features and their redundancy. However, for very large numbers of
features like in computational physics, evaluating the redundancy is very computationally
demanding. Fortunately, working on physics data provides other possibilities to define a
redundancy measure. In this chapter, we propose a new feature selection algorithm suit-
able for features coming from the same physical quantity but corresponding to different
points in a space-time discretization. It is assumed that this physical quantity, defined as
a function of space and/or time, has some smoothness properties. This is often the case in
physics, where the physical quantity satisfies partial differential equations and boundary
conditions. In [233], it is shown that the solution of Poisson’s equation on a Lipschitz
domain in R3 with a L2 source term and Dirichlet or Neumann boundary conditions is
continuous. Poisson’s equation is well known in physics, and can be found, for example,
in electrostatics, in Gauss’s law for gravity, in the stationary heat equation, and in the
stationary particle diffusion equation. If the features of a random vector contain the dis-
cretized values of a smooth function of space and time, then their correlations are related
to their proximities on the space-time grid. The approach presented in this chapter is
depicted as a geostatistical variant of mRMR algorithm, in the sense that it consists in
modeling the redundancy as a function of space and time.

Once the dimension of the input space is reduced, another challenge of the classification
problem must be addressed: the lack of training data. Data augmentation refers to tech-
niques aiming at enlarging the training set by generating new examples from the original
ones. For image classification, many class-preserving operations can be used to create new
images, such as translations, rotations, cropping, scaling, and changes in colors, brightness
and contrast. Unfortunately, these common techniques cannot be used when considering
physics data. For this type of data, new examples can be generated using generative
adversarial networks (GAN [234]; see in [235] for the use of deep convolutional GANs
in computational fluid dynamics). However, training GANs is quite complex in practice
and may also be made more difficult by the lack of training examples. More simply, new
data can be generated by convex combinations of the original examples. SMOTE [236]
takes convex combinations of input data with their nearest neighbors in the input space.
ADASYN [237] uses the same idea but focuses more on examples that are hard to learn,
i.e., those having examples of a foreign class in their neighborhoods. Both data augmenta-
tion algorithms use k-nearest neighbors algorithm and thus compute Euclidean distances
in the input space. When working on high-dimensional physics data, this approach may
suffer from the curse of dimensionality [80]. In addition, defining neighborhoods with
the Euclidean distance in the input space is not always appropriate, as dictionary-based
ROM-nets use physics-aware dissimilarities to label the data. The data augmentation
algorithm developed in this chapter consists in growing sets around original examples by
incrementally adding nearest neighbors in terms of the dissimilarity measure used for the
automatic data labeling procedure presented in Section 8.3 and Chapter 9. These sets are
used to generate new data by convex combinations. Contrary to SMOTE and ADASYN,
the risk of generating new data with wrong labels is controlled by checking that the convex

124

11.2. Test case

hulls of the growing sets do not contain any example belonging to a foreign class.

In sum, the contributions of this chapter are motivated by difficulties that are inherent
to classification tasks on simulation data and that can be summarized in three main issues:

� the lack of training data due to the expensive data labeling procedure involving
simulations with a high-fidelity model (risk of overfitting),

� the high dimensionality of input data (risk of overfitting), and

� most common data augmentation techniques are not applicable to physics data.

The feature selection and data augmentation strategies introduced in this chapter are
developed to tackle these difficulties.

11.2 Test case

Notations: The j-th feature of a random vector X is the real-valued random variable
denoted by Xj . Its observations are denoted by xj , or xji when indexing is necessary, for
example when considering training data. When X is obtained by discretizing a random
field on a mesh, the feature Xj corresponds to the value taken by the random field at the
j-th node. In the numerical application presented in this work, a random temperature
field is considered. The spatial coordinates of the j-th node are stored in a vector ξj ∈ R3.
The categorical variable Y indicates which model should be used.

In this work, input data {xi}1≤i≤m correspond to several instances or variabilities of
a physical field discretized on a mesh. Let N be the number of nodes in the mesh. If the
physical field is scalar and defined at the nodes, then each observation xi is a vector of
RN . For relatively small problems, N is in the order of 104 to 105. For some industrial
problems, N can be in the order of 106 to 108. The dataset {xi}1≤i≤m may come from
experiments, numerical simulations, statistical models, or a combination of them, and
contains from 102 to 104 observations. It is assumed that all features of all observations are
known, contrary to some classification tasks in other disciplines encountering the problem
of missing values. This assumption is clearly satisfied when data come from numerical
simulations or statistical models. For experimental data, numerous techniques provide
space-distributed measurements that can be projected onto the mesh, such as particle
image velocimetry [238] in fluid dynamics, digital image correlation [239] and photoelastic
experiments [240] in solid mechanics, and temperature-sensitive paints [241] measuring
surface temperatures.

The framework considered in this chapter is the same as in the previous chapters, where
the input variabilities are supposed to be used for an uncertainty propagation study in a
physics problem P, for which a high-fidelity model mHF is available. The physics problem
P is a time-dependent problem. As the high-fidelity model is too computationally expen-
sive, dictionary-based ROM-nets have been introduced to reduce the computation time by
means of a reduced-order model dictionary and a classifier playing the role of a model se-
lector. The dictionary-based ROM-net is trained on the available dataset {xi}1≤i≤m. For

125

Chapter 11. Classification for automatic model recommendation

a given observation xi, the class label yi indicates the most appropriate model in the dic-
tionary to be used for fast simulations with limited errors with respect to the high-fidelity
model mHF . Class labels are obtained by the following data labeling procedure1:

� Step 1: For each observation xi in the dataset, use the high-fidelity model mHF to
solve a simplified version P ′ of the physics problem P (for example, the problem P ′
can consist in solving P for a few time increments only). The primal solution of P ′
computed for xi is denoted by ui. It consists of a collection {uni }1≤n≤nt of nt fields
defined on the mesh, with nt being the number of time increments in problem P ′.

� Step 2: Given {ui}1≤i≤m, compute the dissimilarity matrix δ ∈ Rm×m with the
following formula:

δij = δ(xi, xj) = dGr(∞,∞)

(
span({uni }1≤n≤nt), span({unj }1≤n≤nt)

)
with dGr(∞,∞) being the Grassmann metric defined in [242]. The coefficient δij is a
dissimilarity measure between xi and xj .

� Step 3: k-medoids clustering [84] is applied to the dissimilarity matrix δ. In this
chapter, we consider K = 4 clusters. The label yi = K(xi) ∈ [[1;K]] is given by the
index of the cluster containing ui.

This procedure gives m = 1000 examples of input–label pairs {(xi, yi)}1≤i≤m. This
dataset is split into a training set, a validation set, and a test set with cardinalities 600,
200, and 200, respectively, enabling the supervised training and evaluation of a classifier C.
For the sake of simplicity, the labeled data are renumbered so that the mtrain = 600 first
input–output pairs {(xi, yi)}1≤i≤mtrain form the training set on which the feature selection
and data augmentation algorithms presented in this chapter are trained.

In this work, the physics problem P is a temperature-dependent mechanical problem.
The structure is made of an elasto-viscoplastic material whose behavior depends on the
local value of the temperature field [243]. The random variable X is a random vector
representing the evaluation of the random temperature field on a finite-element mesh con-
taining N = 42445 nodes (see Figure 11.1). The structure is subjected to centrifugal
forces and pressure loads. The random temperature fields are generated by a stochastic
model described in [47], where ten fluctuation modes are randomly combined and super-
posed to a reference temperature field. The realizations of the random temperature field
are continuous and always satisfy the heat equation. Modeling random fields as random
combinations of deterministic spatial functions is quite common when studying stochastic
partial differential equations [244, 245, 246], because a random field can be approximated
by truncating its Karhunen–Loève expansion [247]. More information about the stochastic
model generating random temperature fields will be given in Chapter 12.

As already stated, the main contributions presented in this chapter are a feature se-
lection strategy and a data augmentation algorithm adapted to the specificities and diffi-
culties of classification problems encountered when training dictionary-based ROM-nets.
Concerning feature selection, the main focus is on the fast quantification of features re-
dundancy by taking advantage of the type of input data. Concerning data augmentation,

1This is the first version of the ROM-net’s physics-informed clustering procedure that was presented
in [47], using Grassmann distances. This procedure slightly differs from the one presented in this thesis,
with the ROM-oriented dissimilarity measure based on the sine dissimilarity.

126

11.3. Feature selection

in addition to the constraints that have already been mentioned, it is likely that trans-
forming an input example xi substantially modifies the intermediate variable ui, and thus
the class label yi might no longer be relevant for the transformed input. Avoiding this sit-
uation is crucial to ensure that the augmented data are correctly labeled. Our algorithms
are applicable under the assumptions that the random vector X derives from a random
field whose realizations are continuous with probability one (sample path continuity, see
Definition 2.3.8) and belong to a convex domain X related to physics constraints. Last,
a comparison of various classification algorithms is conducted to put into perspective the
choice made in our first paper [47] to use an ensemble of deep neural networks for the
ROM-net’s classifier.

Figure 11.1: Finite-element mesh of the structure considered in this chapter.

Remark 11.2.1. Another strategy would consist in using a regression algorithm for the
classification task. Indeed, as our data labeling procedure is based on clustering, the clas-
sification problem could be replaced by a regression problem for the prediction of dissimi-
larities {δ(x, x̃k)}1≤k≤K for x ∈ X , with x̃k being the medoid of the k-th cluster. Given
these distances for a new observation x, the class label is obtained by taking the integer
k ∈ [[1;K]] associated to the smallest dissimilarity δ(x, x̃k). However, the data augmenta-
tion algorithm presented in this chapter is not compatible with regression algorithms. For
this reason, this chapter focuses on classifiers rather than regressors.

11.3 Feature selection

11.3.1 A geostatistical variant of mRMR feature selection

When training dictionary-based ROM-nets, the number of features of the random vector
X scales with the number of nodes N in the mesh. In particular, the number of features
is exactly N if X is the nodal representation of a scalar field. Therefore, there are too
many features to compute all redundancy terms I(Xi, Xj). However, one can estimate
the redundancy terms thanks to the proximities of the features on the mesh. Indeed, X is
a regionalized variable: in our example, we recall that ξi ∈ R3 denotes the position of the
i-th node in the mesh, and that the feature Xi corresponds to the value taken by a random
temperature field at ξi. If two points ξi and ξj of the mesh are close to each other, the
corresponding features Xi and Xj are likely to be correlated and thus redundant because of
the smoothness of the temperature field. This idea is also valid when considering physical
variables discretized in time.

The random temperature field is modeled by a Gaussian random field [62] as in [47],
which is a common and simple approach when modeling uncertainties on a physical field.

127

Chapter 11. Classification for automatic model recommendation

As a consequence, X is a Gaussian random vector and the mutual information I(Xi, Xj)
has a simple formula involving the correlation coefficient:

Property 11.3.1 (Mutual information of two correlated Gaussian random variables [58],
eq. 8.56, p. 252). Let (X1, X2) be a Gaussian random vector. The mutual information
I(X1, X2) reads

I(X1, X2) = −1

2
ln
(
1− ρ2

)
(11.1)

where ρ denotes the correlation between X1 and X2.

This property implies that, for Gaussian random fields having isotropic correlation
functions2 ρ, the mutual information I(Xi, Xj) only depends on the distance ||ξi − ξj ||2.
A wide variety of isotropic correlation functions are given in [62]. More generally, as
Equation (11.1) is an increasing function of ρ2, any isotropic upper (resp. lower) bound
of the squared correlation function gives an isotropic upper (resp. lower) bound of the
mutual information.

For the example studied in this chapter, Figure 11.2 shows that the mutual information
I(Xi, Xj) decreases as the corresponding distance ||ξi − ξj ||2 increases. Therefore, our
feature selection algorithm builds a metamodel Ĩ replacing I(Xi, Xj) by a function of the
distance ||ξi−ξj ||2, which drastically reduces the computational cost of mRMR algorithm
for our particular problem. First of all, one must build a design of experiments (DoE)
to select a few terms I(Xi, Xj) to be computed exactly. The metamodel Ĩ is calibrated
to fit the corresponding precomputed redundancy terms. Then, mRMR feature selection
is applied by replacing I(Xi, Xj) with Ĩ(||ξi − ξj ||2). The feature selection algorithm is
described in Algorithm 1. We call this algorithm geostatistical mRMR, as geostatistics
is the branch of statistics that deals with regionalized variables. A stopping criterion is
added to the incremental procedure used in mRMR, enabling an automatic selection of
the number of features to be kept for the classification task: the algorithm stops when

the value of arg max
i∈[[1;N]]\Sk

(
I(Xi, Y)− 1

k

∑
j∈Sk Ĩ

(
‖ξi − ξj‖2

))
has not changed much during

a number of iterations. A condition on the mutual information I(Xi, Y) can also be added
to avoid selecting quasi-irrelevant features. It should be noted that the number of selected
features does not depend on the number of nodes N in the mesh. In addition, for stage 1
of Algorithm 1, computing all the terms ‖ξj1 − ξj2‖2 of the matrix of pairwise mesh nodes
distances is not necessary: only a few lines of this matrix corresponding to randomly
selected nodes are evaluated, which is sufficient to build the DoE. In other words, one
computes the distances between a few nodes and all the mesh nodes.

2The correlation function ρ(ξ, ξ′) of a random field is isotropic if it only depends on the distance
||ξ − ξ′||2.

128

11.3. Feature selection

Figure 11.2: Mutual information I(Xi, Xj) as a function of the distance ||ξi − ξj ||2.

Algorithm 1 Geostatistical mRMR

Input: training set {(xi, yi)}1≤i≤mtrain , set of mesh nodes {ξi}1≤i≤N , stopping criterion.
Output: set of selected features.

1: Stage 1 (design of experiments):

2: Select distance values rj .
3: For each rj , draw nj pairs of mesh nodes (ξj1 , ξj2) such that ‖ξj1 − ξj2‖2 ≈ rj .
4: Stage 2 (metamodel for redundancy terms):

5: Compute the mutual information I(Xi, Xj) for each pair selected in Stage 1.
6: Train a metamodel Ĩ such that I(Xi, Xj) ≈ Ĩ

(
‖ξi − ξj‖2

)
.

7: Stage 3 (compute relevance terms):

8: Compute I(Xi, Y) for all i ∈ [[1;N]].

9: Stage 4 (greedy feature selection):

10: S1 := arg max
i∈[[1;N]]

I(Xi, Y)

11: k := 1
12: while stopping criterion not satisfied do

13: Sk+1 := Sk ∪ { arg max
i∈[[1;N]]\Sk

(
I(Xi, Y)− 1

k

∑
j∈Sk Ĩ

(
‖ξi − ξj‖2

))
}

14: k := k + 1
15: end while
16: return Sk

Remark 11.3.2. A parallel can be drawn between our feature selection strategy and hyper-
reduction methods [33, 185, 189, 34] used to accelerate complex nonlinear problems in
physics (see in [248] for design optimization and [35] for large-scale simulations). Hyper-
reduction methods aim at finding a reduced set of integration points in the finite-element
mesh that is sufficient to predict the behavior of the physical system. The constitutive
equations are solved on this reduced-integration domain only, while the values of quantities
of interest at the remaining integration points can be recovered with the Gappy POD [46].
In short, hyper-reduced solvers make predictions from a reduced number of points in a mesh,

129

Chapter 11. Classification for automatic model recommendation

like the classifiers used in this chapter do when combined with the geostatistical mRMR.
Although the objectives are different, both hyper-reduction and geostatistical mRMR feature
selection benefit from the properties of physics data to reduce the complexity of numerical
tasks.

11.3.2 Numerical results

The red curve on Figure 11.2 corresponds to the metamodel estimating redundancy terms.
In this example, we choose

Ĩ(r) = I∞ + γ1(r1 − r)α1H(r1 − r) + γ2(r2 − r)α2H(r2 − r) (11.2)

where H is the Heaviside step function and I∞, γ1, γ2, r1, r2, α1, α2 are calibration param-
eters that are adjusted manually. In the DoE, the step between distances rj is smaller
for small distances, in order to better capture the evolution of the mutual information
in its high gradient regime. The number nj of pairs of nodes separated by a distance of
rj selected in the DoE also depends on rj : as higher variances were expected for small
distances, nj decreases when rj increases. In total, 749 terms I(Xi, Xj) are computed,
which takes 5.12 seconds using Scikit-learn [249]. Building the DoE takes only 0.33 sec-
onds. Then, the greedy procedure takes 303 seconds and selects 87 features among the
42445 original ones. The first iteration is the longest one with 276 seconds, because it
includes the computation of all the relevance terms I(Xi, Y). As a comparison, the orig-
inal mRMR algorithm takes 6469 seconds to compute 7 iterations only. We did not let
mRMR algorithm go further, as the per-iteration computation time grows with the itera-
tion number. For a fair comparison, our implementations of mRMR and stages 3 and 4 of
the geostatistical mRMR are the same except that redundancy terms are evaluated with
Scikit-learn for mRMR and with the function Ĩ for the geostatistical mRMR.

Table 11.1 compares the relevance D(S, Y), the true redundancy R(S), the approxi-
mate redundancy R̃(S) estimated with Ĩ, the true cost function D(S, Y)−R(S), and the
approximate cost function D(S, Y)− R̃(S) for three different feature selection strategies:

� the geostatistical mRMR feature selection (Algorithm 1), selecting a set S∗ of fea-
tures;

� a univariate filter algorithm selecting the features with the highest mutual informa-
tion (MI) scores I(Xi, Y). This algorithms finds a set SMI maximizing the relevance
for a given cardinality; and

� a purely geometric feature selection algorithm, randomly selecting the first feature
and adding features in a greedy manner so that the distance to the closest point
ξi, i ∈ Sk is maximized. This algorithm tends to select a set SG of well-distributed
features in order to get a low redundancy for a given cardinality.

As the geostatistical mRMR automatically selected 87 features, the two other approaches
are applied with |SG| = |SMI | = 87 as a target. Table 11.1 shows that the relevance of
the set S∗ selected by our algorithm is in the same order of magnitude as the relevance
of the set SMI . Its redundancy is in the same order of magnitude as the redundancy of
the set SG. These results show that the geostatistical mRMR algorithm does have the
desired behavior: it selects a subset of features S∗ with high relevance and low redundancy.

130

11.4. Data augmentation

Figure 11.3 shows the features selected by the three different algorithms. The classification
accuracies of several classifiers using the reduced features S∗ are given at the end of this
chapter.

Table 11.1: Evaluation of the geostatistical mRMR feature selection algorithm.

Algorithm D(S, Y) R̃(S) R(S) D(S, Y)− R̃(S) D(S, Y)−R(S)

Geostat. mRMR (S∗) 0.0460 0.0816 0.1111 −0.0356 −0.0651
MI-based filter (SMI) 0.0671 0.9794 0.8129 −0.9124 −0.7458
Geometric filter (SG) 0.0090 0.0788 0.1072 −0.0699 −0.0982

Figure 11.3: Red dots indicate the selected features. From the left to the right: geometric
feature selection, MI-based feature selection, and geostatistical mRMR.

Remark 11.3.3. The geometric feature selection algorithm gives rather good results in
terms of the cost function, but it does not mean that it is an appropriate approach. Indeed,
one can see that the relevance of SG is very low, as this algorithm does not use any
information concerning the classification problem.

11.4 Data augmentation

This section introduces a new data augmentation algorithm based on the concept of pure
sets. As already explained, the aim of data augmentation is to generate new labeled
examples from training data, in order to enlarge the training set for machine learning
problems on small datasets. The main difficulty is to find class-preserving transformations
ensuring that the generated examples have the correct label.

131

Chapter 11. Classification for automatic model recommendation

11.4.1 Pure sets

Definition 11.4.1 (Convex set [250], p. 10). Let V be a real vector space. A non-empty
set S ⊂ V is convex if

∀(x1, x2) ∈ S2, ∀λ ∈ [0; 1], λx1 + (1− λ)x2 ∈ S (11.3)

Definition 11.4.2 (Convex combination [250], p. 11). Let {xi}1≤i≤n be a finite set of
elements of a real vector space V . A convex combination of {xi}1≤i≤n is a vector x ∈ V
such that

∃ (λi)1≤i≤n ∈ Rn+ |
n∑
i=1

λi = 1 and x =

n∑
i=1

λixi (11.4)

Definition 11.4.3 (Convex hull of a set [250], p. 12). Let V be a real vector space and
S a non-empty set included in V . The convex hull or convex envelope E(S) of S is the
smallest convex set containing S. Equivalently, the convex hull E(S) can be defined as the
set of all convex combinations of all finite subsets of S.

Property 11.4.4 (Image of a convex hull by a linear map). Let V and W be two real
vector spaces, and let L : V → W be a linear map. Let S be a non-empty set included in
V . Then,

L (E(S)) = E (L(S)) (11.5)

Proof. Let z ∈ E (L(S)). Following the definition of a convex hull, there exists n ∈ N∗
such that

∃ (wi)1≤i≤n ∈ L(S)n, ∃ (λi)1≤i≤n ∈ Rn+ |
n∑
i=1

λi = 1 and z =

n∑
i=1

λiwi (11.6)

For all i ∈ [[1;n]], as wi ∈ L(S), there exists vi ∈ S such that wi = L(vi). By linearity of
L:

z =
n∑
i=1

λiL(vi) = L

(
n∑
i=1

λivi

)
∈ L (E(S)) (11.7)

so E (L(S)) ⊂ L (E(S)). The other inclusion can be shown using exactly the same argu-
ments. Thus, L (E(S)) = E (L(S)).

This property has a very simple yet important consequence for the data augmentation
algorithm presented in this chapter.

Property 11.4.5. Let V and W be two real vector spaces, and let L : V →W be a linear
map. Let S be a non-empty set included in V . Then, for all x ∈ V :

L(x) /∈ E (L(S))⇒ x /∈ E(S) (11.8)

Proof. By contraposition, x ∈ E(S)⇒ L(x) ∈ L (E(S)) = E (L(S)).

132

11.4. Data augmentation

Our data augmentation strategy uses this property in the particular case where the linear
map is a projection. As a reminder, the notation K stands for the true classifier assigning
any input x to a single label y ∈ [[1;K]]. Before giving the description of the algorithm,
let us introduce the definition of pure sets in a labeled dataset and a proposition for the
characterization of pure sets.

Definition 11.4.6 (Pure set). Let n be a positive integer, and let S = {xi}1≤i≤n be a
finite set of elements of a real vector space V labeled by K. Let SI = {xi}i∈I⊂[[1;n]] be a
non-empty subset of S. The set SI is pure in S if K (S ∩ E(SI)) is a singleton, which
means that the set SI is pure in S if all of the points of S that belong to the convex hull
of SI have the same label.

Let S = {xi}1≤i≤n be a finite set of elements of a finite-dimensional real vector space
V labeled by integers {yi}1≤i≤n in [[1;K]], with K ≤ n. For all k ∈ [[1;K]], Ck denotes the
set of elements of S labeled by k:

Ck = {xi ∈ S | yi = k} (11.9)

For any subset Sk of Ck with cardinality |Sk|, ÂSk ∈ Rdim(V)×|Sk| denotes the matrix
whose columns contain the coordinates of the elements of Sk. The matrix denoted by
ASk is obtained by adding a row of ones below the matrix ÂSk , giving a matrix of size
(1 + dim(V))× |Sk|.

Proposition 11.4.7 (Pure set characterization). Let Sk be a subset of Ck with cardinality
|Sk|. The set Sk is pure in S if and only if for all x in S \ Ck the linear system:

ASkw =

(
x
1

)
(11.10)

has no nonnegative solution w ∈ R|Sk|+ .

Proof. Let x ∈ S \ Ck. Equation (11.10) has no nonnegative solution if and only if

@ w ∈ R|Sk|+ |
|Sk|∑
i=1

wi = 1 and ÂSkw = x (11.11)

⇐⇒ x /∈ E (Sk) (11.12)

which ends the proof.

Corollary 11.4.8 (Pure set testing). Let Sk be a subset of Ck with cardinality |Sk|, and
let L : V → W be a linear map, where W is a finite-dimensional real vector space. If for
all x in S \ Ck the linear system

AL(Sk)w =

(
L(x)

1

)
(11.13)

has no nonnegative solution in R|Sk|+ , then Sk is pure in S.

Proof. Equation (11.13) characterizes the purity of L(Sk) in L(S) (Proposition 11.4.7),
which implies that Sk is pure in S (Property 11.4.5).

133

Chapter 11. Classification for automatic model recommendation

Figure 11.4 illustrates the concept of pure sets. On this figure, the set C1 is made of all
the elements represented by dots, while the crosses form the set C2 = S \C1. On the left,
the subset formed by the six black dots is pure since its convex hull delimited by dashed
lines contains only dots. The subset made of the six black dots on the right-hand side of
the figure is not pure because of the presence of a cross in its convex hull. Equation (11.10)
has a nonnegative solution when using the coordinates of this cross in its right-hand side.

Existence of a nonnegative solution

Not pure

Pure

S

: C1

: C2

Figure 11.4: Illustration of the concept of pure sets on a binary classification problem.

11.4.2 The data augmentation algorithm

The objective is to generate new data points x ∈ X in a given class y ∈ [[1;K]] from
the preexisting observations in that class. To this end, one must apply class-preserving
transformations on the training examples. New examples can be created by taking convex
combinations of some subsets of the training set, for example. One way of controlling the
risk that newly generated examples have wrong labels is to take convex combinations of
subsets only if they are pure. Indeed, if the k-th class Ck contains a set Sk that is pure
in the training set, one can expect that the probability P(Y = k | X ∈ E (Sk)) is high
enough to get new examples of class Ck by drawing samples in E (Sk). In addition, the
third Hadamard well-posedness condition states that the solution of a physics equation
changes continuously with respect to the parameters of the problem. In the neighborhood
of a point x0 belonging to a pure set Sk, the primal solution u stays in the neighborhood
of the solution u0 obtained with x0 and is thus likely to have the same label. Therefore,
the objective of our algorithm is to find pure sets in the training set in order to generate
new examples by convex combinations with a limited risk of getting incorrectly labeled
examples. The pure sets detected by the algorithm are listed in a matrix of lists S such
that S[k, i] contains the indices of the training points forming the i-th pure set of the k-th
class. The pure sets are grown from different starting points or seeds in the training set by
iteratively adding the seeds’ nearest neighbors in terms of the precomputed dissimilarity
measure δ used for clustering in the data labeling procedure. The growth stops before
losing the purity of the subsets. However, checking the purity in the high-dimensional
input space can cause difficulties, even when training the data augmentation algorithm
after a first dimensionality reduction like in this chapter. For this reason, the algorithm
checks the purity after having applied a feature selector πS with a small random subset
of features S containing d features. Let us apply Property 11.4.5 with V = W being the
input vector space containing X and with the linear map L being the feature selector πS .

134

11.4. Data augmentation

As Property 11.4.5 states, if no point of πS ({xj}1≤j≤mtrain \ Ck) belongs to the convex
hull of πS

(
{xj}j∈S[k,i]

)
, then the set E

(
{xj}j∈S[k,i]

)
does not contain any point labeled

with k′ 6= k. As a set can lose its purity after projection, the algorithms tries pmax random
feature selectors πS before considering that the set is not pure. In practice, the purity of
πS
(
{xj}j∈S[k,i]

)
in πS ({xj}1≤j≤mtrain) is numerically tested by solving a nonnegative least

squares (NNLS [251]) problem. If for all points x ∈ {xj}1≤j≤mtrain \ Ck the inequality

min
w∈R|S[k,i]|+

||AπS({xj}j∈S[k,i])w − π̃S(x)||2 ≥ εDA||π̃S(x)||2 (11.14)

is satisfied with π̃S(x) = (πS(x)T 1)T and with εDA being the tolerance of the data augmen-
tation algorithm, then Corollary 11.4.8 implies that {xj}j∈S[k,i] is pure in {xj}1≤j≤mtrain .
Algorithm 3 describes the data augmentation algorithm. It calls Algorithm 2 to find n
well-distributed seeds per class before growing pure sets. It is noteworthy that using few
pure sets to generate many examples would increase the distribution gap [252] between
augmented data and original data. To avoid this issue, one had better use many well-
distributed seeds to distribute data augmentation efforts between the pure sets and thus
limit the divergence between the augmented distribution and the true data-generating
distribution.

Remark 11.4.9. Realizations of the random variable X belong to a convex domain X
related to physics constraints. When considering surface random temperature fields defined
on the boundaries of a solid, X is a hypercube consisting of all the fields taking values
between zero Kelvin degree and the material’s melting point. These random fields can be
used as Dirichlet boundary conditions for the nonlinear heat equation. The assumption of
a linear thermal behavior is added when considering three-dimensional random temperature
fields defined inside the solid, so that the set X remains convex when adding the constraint
that the random field must satisfy the heat equation. More generally, convex combinations
respect physics constraints defined by linear operators, such as linear partial differential
equations and Dirichlet, Neumann, and Robin boundary conditions.

Algorithm 2 Seeds selection for data augmentation. Note: all the dissimilarities have
already been computed in the data labeling procedure.

Input: training set {(xi, yi)}1≤i≤mtrain , class label k, class center x̃k, dissimilarity matrix
δ, target number of seeds n, preselection parameters (ε1, ε2) ∈ [0; 1]2.

Output: List lk of n indices of seeds candidates for the k-th class.
1: Stage 1 (filter the data):
2: Find the minimum dissimilarity δkref separating the class center x̃k from a point be-

longing to another class.
3: Remove points having neighbors belonging to foreign classes within a distance of ε1δ

k
ref.

4: Remove isolated points having no neighbor within a distance of ε2δ
k
ref.

5: Ik := set of the indices of the remaining points in class k.
6: Stage 2 (maximin greedy selection):
7: Initialize lk with the index of the class center x̃k.
8: for i ∈ [[2; min(n, |Ik| − 1)]] do
9: j := arg max

l∈Ik\lk
min
q∈lk

δlq

10: Append j to lk.
11: end for
12: return lk

135

Chapter 11. Classification for automatic model recommendation

Algorithm 3 Data augmentation algorithm

Input: training set {(xi, yi)}1≤i≤mtrain , dissimilarity matrix δ, per-class number of seeds
n, maximum number of pure set testings pmax, dimension d of subspaces for pure set
testings, number of augmented data mDA.

Output: augmented data {(x̃i, ỹi)}1≤i≤mDA and matrix S listing pure sets.
1: Stage 1 (find pure sets in the training set):
2: for k ∈ [[1;K]] do
3: Apply Algorithm 2 to get the list lk of n indices of seeds candidates.
4: for i ∈ [[1;n]] do
5: S1 := {lk[i]}
6: neighbors := argsort(δ[lk[i], :])
7: j := 1
8: setPurity := True
9: while setPurity do

10: Sj+1 := Sj ∪ {neighbors[j]}
11: j := j + 1
12: p := 1
13: Select a random subset S of d features.
14: while {πS(xq)}q∈Sj is not pure in {πS(xq)}1≤q≤mtrain and p ≤ pmax do
15: Select a new random subset S of d features.
16: p := p+1
17: end while
18: if p = pmax + 1 then
19: setPurity := False
20: end if
21: end while
22: S[k, i] := Sj−1

23: end for
24: end for
25: Stage 2 (generate new data):
26: Generate mDA random convex combinations {x̃i}1≤i≤mDA of the pure sets listed in S.

Convex combinations x̃i of the pure set described in S[k, j] are labeled by ỹi = k.
27: return {(x̃i, ỹi)}1≤i≤mDA and S

11.4.3 Numerical results

Linear discriminant analysis (LDA), commonly used for classification tasks, can also be
used for supervised dimensionality reduction by projecting the data onto the subspace
maximizing the between-class variance, as explained in [55]. For the classification problem
presented in this chapter, the training data are visualized in the two-dimensional subspace
obtained by LDA in Figure 11.5. Although this subspace is the one that best separates
the classes, one can see that the training examples do not form well-separated groups. For
this reason, testing the purity of subsets of training data before generating new exam-
ples by convex combinations is necessary to reduce the risk of getting incorrectly labeled
augmented data.

136

11.5. Validation of our feature selection and data augmentation algorithms

Figure 11.5: Data visualization in the 2D subspace maximizing the separation between
classes (supervised linear dimensionality reduction using linear discriminant analysis
(LDA)).

The data augmentation algorithm finds about 60 pure sets per class with an average
population of five training examples, using random subspaces of dimension 5 to test the
purity. Note that two pure sets are merged only when one is included in the other, as the
union of two pure sets is not always pure. The computation time for the data augmentation
training phase (stage 1 of Algorithm 3) is 40 minutes. Once pure sets have been found,
one can generate as many augmented examples as necessary (stage 2 of Algorithm 3).
Generating 5400 examples to multiply the size of the training set by 10 takes less than a
second. Among the augmented data, 400 examples are taken for the evaluation of the data
augmentation algorithm. The data labeling procedure involving numerical simulations is
applied for these 400 examples in order to estimate the percentage of incorrectly labeled
data. It turns out that none of these examples is incorrectly labeled, which validates the
algorithm for our problem. The benefits of data augmentation for the classification task
are evaluated in the next section.

11.5 Validation of our feature selection and data augmen-
tation algorithms

11.5.1 Classification performances of various classifiers

In this section, 14 different classifiers are trained and evaluated on our classification prob-
lem. To evaluate whether the features selected by geostatistical mRMR are relevant for
classification purposes, each classifier is tested twice: once in combination with the geo-
statistical mRMR and once with principal component analysis (PCA) with 10 modes.
As the random temperature fields derive from a Gaussian random field involving only
10 modes, the database obtained after applying PCA contains all the information of the
original data. Each combination of one of the 14 classifiers with PCA or feature selection
is trained twice: once on the true training set containing mtrain = 600 examples, and once
on the augmented training set made of 6000 examples.

137

Chapter 11. Classification for automatic model recommendation

All the classifiers are trained with Scikit-learn [249], except multilayer perceptrons
(MLPs; i.e., fully-connected feedforward deep neural networks) and radial basis function
networks (RBFNs) which are trained with PyTorch [253]. We train the RBFNs in a fully
supervised manner with Gaussian radial basis functions, which means that the parame-
ters of the radial basis functions are learned by gradient descent like the weights of the
fully-connected layers. In addition, we use only one RBF hidden layer followed by one
fully-connected layer for RBFNs, as these artificial neural networks generally have shallow
architectures, as explained in [4]. Deeper architectures have been tested for MLPs, with
dropout [132], batch normalization [133], ReLU activation functions, and with the num-
ber of hidden layers ranging from 2 to 8 with a maximum of 500 neurons per layer. The
architectures and the values of some hyperparameters such as the learning rate for Adam
optimizer [135], batch size, number of epochs, and dropout rate are calibrated by evaluating
the classifier on the validation set after each training attempt. Scikit-learn’s MLP classifier
has also been tested; it is called simple MLP in this thesis, because its architecture is only
made of fully-connected layers and does not include dropout nor batch normalization. All
the classifiers based on artificial neural networks are trained with Tikhonov regularization
(or L2 regularization of the network’s parameters) and early stopping [3]. Logistic regres-
sion is trained with elastic net regularization [105] consisting in a weighted average of L1

and L2 penalties of the model’s parameters. Kernels used for support vector machines
(SVMs) are obtained by combining several polynomial kernels with different hyperparam-
eters. Kernel design could be optimized using multiple kernel learning algorithms [254],
but we simply build our kernels by evaluating different combinations on the validation
set, just as when we look for a good architecture for artificial neural networks. For all of
the classifiers using regularization terms in their loss functions, namely, neural networks,
SVMs, and logistic regression, hyperparameters such as the regularization strength (weight
of the regularization term in the loss function) or the elastic net mixing coefficient are also
calibrated using the validation set. For tree-based classifiers, model capacity is controlled
by adjusting the maximum depth of the tree and the minimum number of samples at a
leaf node. Given the instability of decision trees and their known tendency to overfit, our
analysis includes random forests, as well as AdaBoost and gradient boosting with decision
trees as base estimators, whose hyperparameters are calibrated on the validation set. Fi-
nally, this comparative study also includes the k-nearest neighbors classifier whose number
of nearest neighbors must be calibrated, and three generative classifiers that have (almost)
no hyperparameter to calibrate, namely, Gaussian naive Bayes, LDA and QDA classifiers.

The classification accuracies on test data are given in Table 11.2 for classifiers trained
with PCA and in Table 11.3 for those trained with feature selection. Of course, this ranking
is specific to the classification problem presented in this chapter, no general conclusion can
be drawn from this particular numerical application. On this classification problem, when
using augmented data in the training phase, the highest test accuracy reached with linear
classifiers is 43.5%, obtained with the linear SVM combined with PCA. The fact that k-
nearest neighbors classifiers barely exceed 50.0% of accuracy on this problem is related to
an observation that was made in [47]: there is no simple correlation between the Euclidean
distance and the physics-informed dissimilarity measure used in dictionary-based ROM-
nets. MLPs get the best results, reaching 87.0% of accuracy when combined with our
data augmentation and feature selection algorithms. Interestingly, quadratic discriminant
analysis (QDA) gives excellent results while having no hyperparameter to tune, contrary
to the two other families of classifiers obtaining the best results: MLPs and multiple kernel
SVMs. This makes QDA the best compromise between accuracy and training complexity

138

11.5. Validation of our feature selection and data augmentation algorithms

for this specific classification task.

Although PCA perfectly describes the input data in this example, the geostatistical
mRMR feature selection algorithm enables reaching higher accuracies with some classi-
fiers. Not only does it behave as the original mRMR when selecting features, but it also
gives satisfying results when combined with a classifier. Concerning data augmentation,
Tables 11.2 and 11.3 show that our algorithm significantly improves classification results.
The accuracy gain due to data augmentation is 4.98% on average and ranges from −2.5%
to 10.5%, increasing the accuracy in 25 cases out of 28.

Table 11.2: Test accuracies of different classifiers with dimensionality reduction by princi-
pal component analysis (PCA), with and without data augmentation (DA).

Classifier Acc. with DA Acc. without DA

Multilayer perceptron 86.5% 81.5%
Simple multilayer perceptron 85.0% 79.5%

Quadratic discriminant analysis 76.0% 70.0%
Multiple kernel support vector machine 73.0% 68.0%

Radial basis function network 63.5% 62.0%
k-nearest neighbors 51.0% 46.0%

AdaBoost 50.5% 52.5%
Gradient-boosted trees 49.5% 48.0%

Random forest 45.0% 47.5%
Linear support vector machine 43.5% 33.0%

Gaussian naive Bayes 38.5% 31.5%
Penalized logistic regression 38.5% 28.0%

Decision tree 34.0% 36.5%
Linear discriminant analysis 33.5% 29.0%

Table 11.3: Test accuracies of different classifiers with dimensionality reduction by feature
selection (FS), with and without data augmentation (DA).

Classifier Acc. with DA Acc. without DA

Multilayer perceptron 87.0% 81.0%
Simple multilayer perceptron 84.0% 80.0%

Quadratic discriminant analysis 77.5% 70.5%
Multiple kernel support vector machine 72.5% 66.0%

Random forest 69.0% 63.0%
AdaBoost 68.5% 63.0%

Gradient-boosted trees 68.0% 58.5%
Radial basis function network 62.5% 60.0%

Decision tree 55.5% 43.5%
k-nearest neighbors 50.0% 47.0%

Linear support vector machine 40.5% 34.5%
Gaussian naive Bayes 39.5% 34.5%

Penalized logistic regression 37.0% 29.0%
Linear discriminant analysis 32.5% 29.0%

139

Chapter 11. Classification for automatic model recommendation

11.5.2 Comparison with a CNN

Figure 11.6: Voxel grid used to get a 3D image of a temperature field defined on a finite-
element mesh.

Convolutional neural networks (CNNs) are commonly used for image classification. Our
classification problem shares some similarities with image classification, since each input
feature is attached to a node in the mesh, just as each feature of an image is attached to a
pixel. Instead of using a feature selection method or any dimensionality reduction method,
one can project 3D temperature fields onto a voxel grid to get 3D images of these fields
that can be fed into a CNN with 3D convolution filters. The voxel grid used in this work is
illustrated in Figure 11.6. It contains 16× 8× 3 voxels. The voxels being outside the solid
body Ω are assigned a zero value, while for those being inside Ω, the local value of the
temperature field is evaluated with the finite-element shape functions. This preprocessing
step has some drawbacks compared to feature selection, namely:

� Projection onto the voxel grid takes about 5 seconds per field on this rather small
mesh, whereas extracting the nodal values identified by feature selection is instan-
taneous;

� Some voxels may carry useless information, since some of them are located outside
of the solid body Ω;

� There might be too many voxels in irrelevant areas of Ω, and conversely, there might
be too few voxels in relevant areas.

Nonetheless, feature selection does not enable using a CNN. To go further, one could
replace the traditional CNN with geometric deep learning methods [255] applying con-
volution filters on point clouds, meshes and graphs, which avoids projecting the data
onto a voxel grid. However, this solution does not tackle the difficulties related to the
high-dimensionality of input data.

The CNNs used in this study are trained with PyTorch [253] with Adam optimizer [135].
The architecture giving the best performances on this classification problem is made of
3 blocks containing a convolution layer, batch normalization [133] and ReLU activation
function, followed by a Max-Pooling layer, one fully-connected layer with ReLU activation
and dropout [132], and a final fully-connected layer with softmax activation function. The
architecture and the values of some hyperparameters such as the number of epochs, the

140

11.6. Applicability to other problems

batch size, the learning rate, the L2 regularization strength, the dropout rate, the num-
ber of channels per convolution layer, the filters’ sizes, and padding have been optimized
manually going back and forths between the training set and the validation set. On test
data, the CNN reaches an accuracy of 74.5% with data augmentation, and 74.0% without
data augmentation. The CNN has not been trained on voxel grids with other resolutions.

11.5.3 How to further improve classification performances?

Table 11.4: Test accuracies obtained by ensemble methods with dimensionality reduction
by principal component analysis (PCA).

Classifier Acc. with DA

Stacking (6 MLPs and logistic regression) 89.5%
Ensemble averaging (6 MLPs) 89.0%

Table 11.5: Test accuracies obtained by ensemble methods with dimensionality reduction
by feature selection (FS).

Classifier Acc. with DA

Stacking (6 MLPs and logistic regression) 90.0%
Ensemble averaging (6 MLPs) 89.0%

Ensemble methods can be used to reduce overfitting and increase the accuracy on test
data. In addition, it enables recycling different variants of a classifier that the user has
trained for different hyperparameters. Using ensemble averaging with classifiers trained
on the augmented dataset with feature selection, we manage to combine six MLPs with
different architectures to reach an accuracy of 89.0%. When stacking these MLPs with
a ridge logistic regression analyzing the predicted membership probabilities, we get an
accuracy of 90.0%. Following the same procedures with six MLPs trained on the PCA
representation of the data, ensemble averaging (resp. stacking with ridge logistic regres-
sion) gives an accuracy of 89.0% (resp. 89.5%). These results are summarized in Table 11.4
and Table 11.5. In addition to ensemble learning methods, one can also use random noise
injection to increase noise robustness, as explained in [3].

11.6 Applicability to other problems

The feature selection and data augmentation algorithms introduced in this thesis can ei-
ther be used together like in the previous section, or they can be used separately and
combined with other algorithms. For instance, the data augmentation algorithm can
be used in conjunction with any dimensionality reduction technique. However, feature
selection is recommended when the interpretability of input data is important. In addi-
tion, unsupervised dimensionality reduction techniques such as PCA, sparse PCA, kernel
PCA, and deep autoencoders extract features that are relevant to reconstruct data after
compression, while supervised dimensionality reduction techniques such as mRMR and
geostatistical mRMR select features that are suitable for the specific supervised learning
task that is considered.

141

Chapter 11. Classification for automatic model recommendation

Although this work is motivated by difficulties encountered when training dictionary-
based ROM-nets, our algorithms could be used for other computational methods involving
classifiers for model recommendation, such as the LDEIM [42]. The nature of the mod-
els in the dictionary, the underlying physics describing the problem, and the way input
data are labeled do not matter. It is important to emphasize that our data augmentation
algorithm is dedicated to classification problems, whereas our feature selection algorithm
could be applied to regression problems too as the definition of the relevance D(S, Y)
can be extended to continuous output variables Y . As a consequence, the geostatistical
mRMR feature selection algorithm can be applied before training a metamodel that di-
rectly predicts a quantity of interest, as long as the inputs are regionalized variables. One
could also think of a classifier making qualitative predictions, such as a binary classifier
saying whether the system will fail for a given configuration. Our algorithms are appli-
cable to all these types of problems on physics data, and more generally on continuous
fields3 for the feature selection algorithm and on data with linear constraints for the data
augmentation algorithm (with a possible extension to nonlinear constraints, as explained
in Remark 11.4.9).

∗ ∗
∗

3More precisely: random fields whose realizations are continuous with probability one, see Defini-
tion 2.3.8 for sample path continuity.

142

Part V

Application to an industrial
problem

143

Résumé

Cette partie clôt ce mémoire de thèse avec l’application d’un ROM-net à un problème
industriel réel. Il s’agit de quantifier les incertitudes sur le comportement mécanique d’une
aube de turbine haute pression dans un turboréacteur, étant données des incertitudes sur
le chargement thermique. Située juste après la chambre de combustion, la turbine haute
pression est un des organes critiques d’un turboréacteur. En effet, les aubes de turbine
haute pression sont soumises à un chargement thermo-mécanique extrême résultant de la
combinaison des efforts centrifuges engendrés par le rotor et de l’écoulement turbulent des
gaz chauds sortants de la chambre de combustion.

Connâıtre avec précision le chargement thermique appliqué à une aube de turbine
haute pression est à ce jour impossible. Bien que nous disposions de modèles sophistiqués
pour simuler l’écoulement turbulent issu de la chambre de combustion et l’évolution du
champ de température au sein d’une aube, les prédictions numériques sont difficilement
validables à l’aide d’essais en raison du manque d’instruments de mesure fiables perme-
ttant d’enregistrer l’évolution temporelle exacte de la température en chaque point de
l’aube. Les peintures thermo-sensibles sont utilisées pour mesurer la température maxi-
male atteinte sur la surface externe de l’aube. Cependant, ces peintures ne sont précises
qu’à 50 degrés près et ne reproduisent pas un champ de température surfacique réellement
observé à un instant donné, puisque la température mesurée en chaque point correspond
à la température maximale atteinte au cours d’un cycle de chargement représentatif d’un
vol. À haute température, les propriétés du superalliage base nickel constituant l’aube
dépendent fortement de la température. Par conséquent, une incertitude de 50 degrés sur
la température locale se traduit par de grandes incertitudes sur les prédictions numériques
du comportement mécanique. Simuler avec précision le comportement mécanique d’une
aube et son endommagement progressif est essentiel dans l’optique de la réduction de
l’empreinte écologique de l’industrie aéronautique, car l’amélioration du rendement d’un
turboréacteur passe par l’augmentation de la température de sortie de chambre de com-
bustion, ce qui exacerbe le chargement thermo-mécanique sévère appliqué aux aubes de
turbine haute pression.

Pour s’assurer de la fiabilité d’une aube, il est donc nécessaire de prendre en compte ces
incertitudes en phase de conception afin de contrôler les risques et d’optimiser le design
de l’aube et les marges prévues. Lancer un grand nombre de simulations mécaniques
pour différents chargements thermiques possibles n’est pas envisageable, car une seule
simulation peut prendre plusieurs semaines en raison de la taille du maillage éléments
finis, de la complexité de la loi de comportement, et du nombre de cycles de chargement à
simuler avant convergence de la réponse de l’aube. La réduction d’ordre de modèle permet
d’accélérer ces simulations en calculant une solution approchée du problème mécanique,
sous réserve que les incertitudes sur la thermique restent raisonnables. Pour aller plus loin

145

dans la prise en compte de fortes incertitudes tout en maintenant des temps de calculs
raisonnables, un ROM-net peut être utilisé afin d’adapter le choix du modèle réduit en
fonction du scénario de chargement thermique considéré.

Dans cette partie, nous détaillons chacune des étapes de construction d’un ROM-net
pour l’application à l’aube de turbine. Le ROM-net est ensuite utilisé pour propager
les incertitudes sur les quantités d’intérêt du problème, permettant d’avoir une vision
statistique de l’état de santé de l’aube. Les prédictions du ROM-net sont comparées à
celles du modèle haute-fidélité plus coûteux pour validation. Dans cet exemple, le ROM-
net accélère les calculs d’un facteur 636, tout en maintenant un niveau d’erreur de l’ordre
de 1% à 3% sur les quantités d’intérêt, selon l’indicateur d’erreur choisi.

∗ ∗
∗

146

Chapter 12

Industrial context

Abstract: This chapter presents an industrial test case for the evaluation of the method-
ologies developed in this thesis. It consists in predicting the mechanical behavior of a
high-pressure (HP) turbine blade in an aircraft engine with uncertainties on the thermal
loading. The industrial context and the models for the mechanical behavior and the thermal
loading are presented, with a particular emphasis on the assumptions that have been made.

Remark 12.0.1. In the figures given in the coming chapters, values on the axes have been
voluntarily removed for confidentiality reasons.

Remark 12.0.2. This chapter is taken from our paper [50], with some modifications.

Contents

12.1 HP turbine blades in an aircraft engine 148

12.1.1 Thermomechanical fatigue of HP turbine blades 148

12.1.2 Industrial test case and objectives 149

12.2 Model and assumptions . 151

12.2.1 Modeling assumptions . 151

12.2.2 Stochastic model for the thermal loading 153

12.2.3 Mechanical constitutive model 154

147

Chapter 12. Industrial context

12.1 HP turbine blades in an aircraft engine

12.1.1 Thermomechanical fatigue of HP turbine blades

High-pressure (HP) turbine blades are critical parts in an aircraft engine. Located down-
stream of the combustion chamber (see Figure 12.1), they are subjected to extreme ther-
momechanical loadings resulting from the combination of centrifugal forces, pressure loads,
and hot turbulent fluid flows whose temperatures are higher than the material’s melting
point. The thermomechanical loading repeated over time progressively damages the blades
and leads to crack initiation under thermomechanical fatigue. Predicting the fatigue life-
time is crucial not only for safety reasons, but also for ecological issues, since reducing fuel
consumption and improving the engine’s efficiency requires increasing the temperature of
the gases leaving the combustion chamber.

Figure 12.1: The LEAP, turbofan developed by CFM International, a joint venture be-
tween Safran Aircraft Engines and GE Aviation. This engine powers Airbus A320neo,
Boeing 737 MAX and COMAC C919 planes. Picture taken from https://medialibrary.

safran-group.com/Photos/media/178745. ©2017 Antonio Gomez, Safran.

High-pressure turbine blades are made of monocrystalline nickel-based superalloys that
have good mechanical properties at high temperatures. To reduce the temperature inside
this material, the blades contain cooling channels in which fresh air circulates. In addi-
tion, the blade’s outer surface is protected by a thin thermal barrier coating. In spite of
these advanced cooling technologies, the rotor blades undergo centrifugal forces at high
temperatures, causing inelastic strains. Under this cyclic thermomechanical loading re-
peated over the flights, the structure has a viscoplastic behavior and reaches a viscoplastic
stabilized response, where the dissipated energy per cycle still has a nonzero value. This
is called plastic shakedown, and leads to low-cycle fatigue. At cruise flight, the persistent

148

https://medialibrary.safran-group.com/Photos/media/178745
https://medialibrary.safran-group.com/Photos/media/178745

12.1. HP turbine blades in an aircraft engine

centrifugal force applied at high temperature induces progressive (or time-dependent) in-
elastic deformations: this phenomenon is called creep. In addition, the difference between
gas pressures on the extrados and the intrados of the blade generates bending effects.
Environmental factors may also locally modify the chemical composition of the material,
leading to its oxidation. As oxidized parts are more brittle, they facilitate crack initiation
and growth. Thermal fatigue resulting from temperature gradients is another life-limiting
factor. Temperature gradients make cold parts of the structure prevent the thermal ex-
pansion of hot parts, creating compressive thermal stresses in these hot parts. Due to their
higher temperatures, the hot parts are more viscous and have a lower yield stress, which
make them prone to develop inelastic strains in compression. When the temperature cools
down after landing, tensile residual stresses appear in parts which were compressed at
high temperatures and favour crack nucleation. Given the complex temperature field re-
sulting from the internal cooling channels and the turbulent gas flow, thermal fatigue has
a strong influence on the turbine blade’s lifetime. In particular, during transient regimes
such as take-off, an important temperature gradient appears between the leading edge and
the trailing edge of the blade, since the latter has a low thermal inertia due to its small
thickness and thus warms up faster.

In short, the behavior of a high-pressure turbine blade results from a complex inter-
action between low-cycle fatigue, thermal fatigue, creep, and oxidation. Due to the cost
and the complexity of experiments on parts of an aircraft engine, numerical simulations
play a major role in the design of high-pressure turbine blades and their fatigue lifetime
assessment.

12.1.2 Industrial test case and objectives

Industrial problem

Figure 12.2 gives the simplified geometry and the finite-element mesh of a real high-
pressure turbine blade. The mesh is made of quadratic tetrahedral elements, and contains
approximately 106 nodes. The elasto-viscoplastic mechanical behavior is described by a
crystal plasticity model presented in Section 12.2.3. Computing the fatigue lifetime of the
HP turbine blade requires simulating its behavior until the stabilization of the mechanical
response, which may last several weeks because of the size of the mesh, the complexity
of the constitutive equations, and the number of loading cycles in the transient regime.
With such a computation time, uncertainty quantification with Monte Carlo simulations
is unaffordable. In addition, such simulations are too time-consuming to be integrated in
design iterations, which limits them to the final validation and certification steps, while
the design process still relies on simplified models. Accelerating these complex simulations
is a key challenge, as it would provide useful numerical tools to improve design processes
and quantify the effect of the uncertainties on the environment of the system. With the
help of domain decomposition methods, the computation time can be reduced by solving
equilibrium equations in parallel on different subdomains of the geometry. Using the im-
plementation of the Adaptive MultiPreconditioned FETI solver [256] in Zset finite-element
software [79], the simulation of one single loading cycle of the HP turbine blade with 48
subdomains takes approximately 53 minutes. Domain decomposition methods have the
advantage of computing the exact high-fidelity solution in a reasonable computation time
thanks to advances in high-performance computing. Model order reduction methods, and
in particular ROM-nets, are complementary to domain decomposition methods, as they

149

Chapter 12. Industrial context

compute approximate solutions much faster. Model order reduction is more suitable for
uncertainty propagation purposes where thousands of simulations must be run, but do-
main decomposition methods remain important to reduce the cost of the training phase
as much as possible.

Figure 12.2: High-pressure turbine blade geometry and mesh (micro-perforations are not
modeled).

Objectives

The objective is to use a ROM-net to quantify uncertainties on the mechanical behavior
of the high-pressure turbine blade, given uncertainties on the thermal loading. The re-
duction of the computation time should enable Monte Carlo simulations for uncertainty
quantification. This work is a proof of concept: it aims at evaluating the performances
of a ROM-net on a real industrial test case, but not at giving real conclusions on the
uncertainties in the design of high-pressure turbine blades. In other words, the objective
of this study is to evaluate and validate a methodology on an industrial test case, rather
than using realistic modeling assumptions and data to derive relevant information on the
design of high-pressure turbine blades.

In particular, we are not interested in predicting the state of the structure after a
large number of flight-representative loading cycles. Only one cycle is simulated. Cyclic
extrapolation of the behavior of a high-pressure turbine blade has been studied in [65, 35]
and is out of the scope of the present work.

150

12.2. Model and assumptions

12.2 Model and assumptions

12.2.1 Modeling assumptions

Weak thermomechanical coupling

It is assumed that the heat produced or dissipated by mechanical phenomena has neg-
ligible effects in comparison with thermal conduction, which enables avoiding strongly
coupled thermomechanical simulations and running thermal and mechanical simulations
separately instead. Under a weak thermomechanical coupling, the first step consists in
solving the heat equation to determine the temperature field and its evolution over time.
The temperature field history defines the thermal loading and is used to compute thermal
strains and temperature-dependent material parameters for the mechanical constitutive
laws. Once the thermal loading is known, the temperature-dependent mechanical problem
must be solved in order to predict the mechanical response of the structure.

Cyclic thermomechanical loading

The thermomechanical loading applied to the high-pressure turbine blade during its whole
life is modeled as a cyclic loading, with one cycle being equivalent to one flight. The
rotation speed of the turbine’s rotor is proportional to a periodic function of time ω(t)
whose evolution over one period (or cycle, see Figure 12.3) is representative of one flight
with its three main regimes, namely take-off, cruise, and landing. The period (or duration
of one cycle) is denoted by tc. The rotation speed between flights k and k + 1 is zero,
which means that ω(ktc) = 0 for any integer k. The rotation speed ω(t) is scaled so that
its maximum is 1.

Figure 12.3: Function ω(t) defining one cycle for the rotation speed.

Let Ω ⊂ R3 denote the solid body representing the high-pressure turbine blade, with
∂Ω denoting its outer surface. Let ∂Ωp ⊂ ∂Ω be the surface corresponding to the intrados
and extrados. The thermal loading is defined as:

∀ξ ∈ Ω, ∀t ∈ R+, T (ξ, t) = (1− ω(t))T0 + ω(t)Tmax(ξ) (12.1)

where T0 = 293 K and Tmax is the temperature field obtained when the rotation speed
reaches its maximum. This field Tmax is obtained either by an aerothermal simulation

151

Chapter 12. Industrial context

or by a stochastic model, as explained later. Similarly, the pressure load applied on ∂Ωp

reads:
∀ξ ∈ ∂Ωp, ∀t ∈ R+, p∂Ω(ξ, t) = (1− ω(t))p∂Ω

0 + ω(t)p∂Ω
max(ξ) (12.2)

where p∂Ω
0 = 1 atm is the atmospheric pressure at sea level, and where p∂Ω

max is the pressure
field obtained when the rotation speed reaches its maximum. The clamping of the blade’s
fir-tree foot on the rotor disk is modeled by displacements boundary conditions that are
not detailed here.

Geometric details and TBC

Small geometric details of the structure have been removed to simplify the geometry.
Nonetheless, the main cooling channels are considered. The effects of the thermal bar-
rier coating (TBC) have been integrated in aerothermal simulations, but the TBC is not
considered in the mechanical simulation although its damage locally increases the temper-
ature in the nickel-based superalloy and thus affects the fatigue resistance of the structure.
Additional centrifugal effects due to the TBC are not taken into account.

Influential factors

The predicted mechanical response of the structure depends on many different factors.
Below is a non-exhaustive list of influential factors that are possible sources of uncertainties
in the numerical simulation:

� Thermal loading: The viscoplastic behavior of the nickel-based superalloy is very
sensitive to the temperature field and its gradients. However, the temperature field is
not accurately known because of the impossibility of validating numerical predictions
experimentally. Indeed, temperature-sensitive paints are accurate to within 50 K
only, and they do not capture a real surface temperature field since they measure
the maximum temperature reached locally during the experiment.

� Crystal orientation: Because of the complexity of the manufacturing process of
monocrystalline blades, the orientation of the crystal is not perfectly controlled. As
the superalloy has anisotropic mechanical properties, defaults in crystal orientation
highly affect the location of damaged zones in the structure.

� Mechanical loading: The centrifugal forces are well known because they are re-
lated to the rotation speed that is easy to measure. On the contrary, pressure loads
are uncertain because of the turbulent nature of the incoming fluid flow. However,
the effects of pressure loads uncertainties on the mechanical response are less signif-
icant than those of the thermal loading and crystal orientation uncertainties.

� Constitutive laws: Uncertainties on the choice of the constitutive model, the
relevance of the modeling assumptions, and the values of the calibrated parameters
involved in the constitutive equations also influence the results of the numerical
simulations.

For simplification purposes, the only source of uncertainty that is considered in this
work is the thermal loading. The equations of the mechanical problem are then seen as

152

12.2. Model and assumptions

parametrized equations, where the parameter is the temperature field Tmax (see Equa-
tion (12.1)) obtained when the rotation speed reaches its maximum value. The dimension
of the parameter space is then the number of nodes in the finite-element mesh. The
mechanical loading is assumed to be deterministic. With the crystal orientation, the con-
stitutive laws and their parameters (or coefficients), they are considered as known data
describing the context of the study and given by experts from Safran.

12.2.2 Stochastic model for the thermal loading

A stochastic model is required to take into account the uncertainties on the thermal load-
ing. Given the definition of the thermal loading in Equation (12.1), we only need to model
uncertainties in space through the field Tmax obtained when the rotation speed reaches its
maximum value. The random temperature fields must satisfy some constraints: they must
satisfy the heat equation, and they must not take values out of the interval [0 K;Tmelt],
where Tmelt is the melting point of the superalloy. These random fields are obtained by
adding random fluctuations to a reference temperature field, see Figure 12.4. The refer-
ence field was computed by engineers from Safran, using the software Ansys Fluent1 for
aerothermal simulations. The data-generating distribution is defined as a Gaussian mix-
ture model made of two Gaussian distributions with the same covariance function but with
distinct means, and with a prior probability of 0.5 for each Gaussian distribution. The
Gaussian distributions are obtained by taking the four first eigenfunctions of the covari-
ance function (see Karhunen-Loève expansion [247]), with a standard deviation of 15 K.
Therefore, realizations of the random temperature field read:

∀ξ ∈ Ω, T (ξ) = Tref(ξ) + Υ0 δT0(ξ) +
4∑
i=1

Υi δTi(ξ) (12.3)

where Tref is the reference field, δT0 is a temperature perturbation at the trailing edge
whose maximum value is 50 K, {δTi}1≤i≤4 are fluctuation modes, Υ0 is a random variable
following the Bernoulli distribution with parameter 0.5, and {Υi}1≤i≤4 are independent
and identically distributed random variables following the standard normal distribution
N (0, 1). The variable Υ0 is also independent of the other variables Υi. The different fields
involved in Equation (12.3) can be visualized in Figure 12.4. Equation (12.3) defines a
mixture distribution with two Gaussian distributions whose means are Tref and Tref + δT0.
We voluntarily define this mixture distribution with δT0 adding 50 K in a critical zone of
the turbine blade in order to check that our physics-informed cluster analysis can succes-
fully detect two relevant clusters, i.e. one for fields obtained with Υ0(θ) = 0 and one for
fields obtained with Υ0(θ) = 1. Indeed, the temperature perturbation δT0 is expected to
significantly modify the mechanical response of the high-pressure turbine blade. All the
fields {δTi}0≤i≤4 satisfy the steady heat equation like Tref, which ensures that the random
fields always satisfy the heat equation under the assumption of a linear thermal behavior.
For nonlinear thermal behaviors, Equation (12.3) would define surface temperature fields
that would be used as Dirichlet boundary conditions for the computation of bulk temper-
ature fields. The assumption of a linear thermal behavior is adopted here to avoid solving
the heat equation for every realization of the random temperature field.

Let us now give more details about the construction of the fluctuation modes {δTi}1≤i≤4.
First, surface fluctuation modes are computed on the boundary ∂Ω using the method given

1https://www.ansys.com/products/fluids/ansys-fluent

153

https://www.ansys.com/products/fluids/ansys-fluent

Chapter 12. Industrial context

in [257] for the construction of random fields on a curved surface. The correlation function
is defined as a function of the geodesic distance dG along the surface ∂Ω:

ρ(ξ, ξ′) = exp

(
−dG(ξ, ξ′)

d0
G

)
(12.4)

where d0
G is a correlation length. Geodesic distances are computed thanks to the algorithm

described in [258, 259] and implemented in the Python library gdist2. A covariance matrix
is built by evaluating the correlation function on pairs of nodes of the outer surface of the
finite-element mesh, and multiplying the correlation by the constant variance. The four
surface modes are then obtained by finding the four eigenvectors corresponding to the
largest eigenvalues of the covariance matrix. The steady heat equation with Dirichlet
boundary conditions is solved for each of these surface modes to derive the 3D fluctuation
modes, using Zset [79] finite-element solver. The Python library BasicTools3 developed
by Safran is used to read the finite-element mesh and write the temperature fields in a
format that can be used for simulations on Zset.

Figure 12.4: Reference temperature field (on the left), temperature perturbation at the
trailing edge (field 0), and fluctuation modes (fields 1 to 4). The fluctuations in the fourth
mode are located inside the blade, in the cooling channels.

12.2.3 Mechanical constitutive model

It is assumed that the mechanical behavior of the high-pressure turbine blade can be
described in the framework of the infinitesimal strain theory. The mechanical response
of the structure during the first loading cycle is described by the following equilibrium

2https://pypi.org/project/gdist/
3https://gitlab.com/drti/basic-tools

154

https://pypi.org/project/gdist/
https://gitlab.com/drti/basic-tools

12.2. Model and assumptions

equations and boundary conditions:
div(σ(ξ, t)) + fC(ξ, t) = 0 ∀t ∈ [0; tc] ∀ξ ∈ Ω

σ(ξ, t).n(ξ, t) = −p∂Ω(ξ, t)n(ξ, t) ∀t ∈ [0; tc] ∀ξ ∈ ∂Ωp

u(ξ, t) = u∂Ω(ξ, t) ∀t ∈ [0; tc] ∀ξ ∈ ∂Ω \ ∂Ωp

(12.5)
where u(ξ, t) is the displacement field (primal variable), σ(ξ, t) is the symmetric second-
order Cauchy stress tensor, fC(ξ, t) is the local volumic centrifugal force, u∂Ω(ξ, t) is the
imposed displacement, and n(ξ, t) is the outward-pointing normal vector to the outer
surface ∂Ω. The relation between the stress tensor and the displacement field is described
by constitutive laws modeling the mechanical behavior of the monocrystalline nickel-based
superalloy. At high temperatures, this material has an elasto-viscoplastic behavior that
can be described in the crystal plasticity framework [260, 261] to model inelastic strains
generated by the motion of dislocations4 in different slip systems of the crystal. The strain
tensor ε is defined as the symmetric part of the displacement gradient (with respect to ξ):

ε =
1

2

(
∇u + (∇u)T

)
(12.6)

Figure 12.5: On the left: von Mises stress field σeq obtained when the rotation speed
reaches its maximum value. On the right: accumulated plastic strain pocum in octahedral
slip systems at the end of the first cycle. Note: the foot of the high-pressure turbine blade
has an elastic behavior, while the rest of the blade has a viscoplastic behavior described
by a crystal plasticity model.

The stress tensor is obtained from the elastic strain tensor thanks to Hooke’s law:

σ = C : (ε− εp − α(T − T0)1) (12.7)

where εp is the tensor of inelastic strains and 1 is the identity second-order tensor. The
fourth-order tensor C is the stiffness tensor. Given the face-centered cubic crystal struc-
ture of the superalloy, the stiffness tensor is anisotropic but has only three independent

4Linear defects in the crystal structure.

155

Chapter 12. Industrial context

coefficients. The thermal expansion of crystals with cubic symmetry is isotropic, which
explains why the thermal expansion coefficient α is the same in all directions. The time
evolution of hidden variables such as inelastic strains are described by ordinary differential
equations that must be solved at every integration point of the finite-element mesh. The
inelastic strain rate can be decomposed into contributions of dislocations motions in 12
octahedral slip systems and 6 cubic slip systems:

ε̇p =

12∑
s=1

γ̇os sym (los ⊗ nos) +
6∑
s=1

γ̇cs sym (lcs ⊗ ncs) =
12∑
s=1

γ̇osm
o
s +

6∑
s=1

γ̇csm
c
s (12.8)

where γ̇os (resp. γ̇cs) is the shear strain rate in the s-th octahedral (resp. cubic) slip system.
The tensor mo

s (resp. mc
s) is the orientation tensor of the s-th octahedral (resp. cubic)

slip system, defined by the normal nos (resp. ncs) to the slip plane and the slip direction los
(resp. lcs). The shear strain rates γ̇os are given by a hyperbolic viscoplastic flow rule:

γ̇os = εoh sinh

(〈
|τ os − xos| − ros

Ko
h

〉noh)
sign(τ os − xos) (12.9)

where εoh, Ko
h and noh are material parameters. Similar equations are satisfied in cubic slip

systems. The resolved shear stresses τ os are given by Schmid’s law:

τ os = σ : mo
s (12.10)

Again, similar equations are valid for cubic slip systems. The stress variables xos, x
c
s, r

o
s and

rcs describe hardening phenoma, i.e. the evolution of the shape of the elastic domain within
which no dissipative phenoma occur. The back-stresses xos (and xcs) are the solutions of
an ordinary differential equation modeling kinematic hardening with static recovery:

ẋos = coγ̇os − doxos|γ̇os | − co
(
|xos|
Mo

)mo
(12.11)

Isotropic hardening is modeled by the following equations:

ros = ro0 +Qo (1− exp (−boνos)) (12.12)

with ν̇os = |γ̇os |. All the constitutive equations given in this section are true for all ξ ∈ Ω
and for all t ∈ [0; tc], and are solved at every integration point of the finite-element mesh.
All the coefficients involved in these equations depend on the local value of the temperature
field. The problem is thus seen as a system of partial differential equations and ordinary
differential equations parametrized by the thermal loading. The standard procedure for the
computation of a fatigue lifetime with an uncoupled damage model consists in solving the
mechanical problem for a large number of cycles until the stabilization of the mechanical
response (plastic shakedown). Then, a damage field can be computed in a post-processing
step and can be linked to a fatigue lifetime. For high-pressure turbine blades, fatigue
models generally consider interaction effects with oxidation and creep, like in [262, 263].
In this work, no fatigue lifetime is computed since we only solve the problem for the very
first cycle. Instead, our quantity of interest is a strain indicator that partially describes the
damage state of the material. This quantity of interest corresponds to the accumulated
plastic strain in octahedral slip systems at the end of the first cycle, which reads:

pocum(ξ) =

∫ tc

0

√
2

3
ε̇p,o(ξ, t) : ε̇p,o(ξ, t) dt (12.13)

156

12.2. Model and assumptions

with:

ε̇p,o =

12∑
s=1

γ̇osm
o
s (12.14)

It is also common to look at the values of the von Mises equivalent stress field defined as:

σeq =

√
3

2
s : s, s = σ − 1

3
tr(σ)1 (12.15)

Therefore, the variables considered for the evaluation of the ROM-net and for uncertainty
quantification are the accumulated plastic strain pocum in octahedral slip systems at the end
of the first cycle, and the von Mises stress σeq obtained when the rotation speed reaches its
maximum value. These variables can be visualized in Figure 12.5 for a reference thermal
loading.

∗ ∗
∗

157

Chapter 13

ROM-net’s training phase

Abstract: This chapter develops the different stages of the ROM-net’s training phase for
the industrial test case presented in the previous chapter. Given a budget of 200 high-
fidelity simulations, a dictionary containing two local ROMs is constructed thanks to the
physics-informed clustering procedure. A logistic regression classifier is trained for auto-
matic model recommendation using information identified by feature selection. Finally, an
alternative to the Gappy POD for full-field reconstruction is presented.

Note: We gratefully acknowledge Clément Bénard, Sébastien Da Veiga and Christian Rey
for their valuable tips and advice for the work presented in this chapter.

Remark 13.0.1. This chapter is taken from our paper [50], with some modifications.

Contents

13.1 Design of numerical experiments 160

13.2 ROM dictionary construction . 161

13.2.1 Clustering . 161

13.2.2 Construction of local ROMs . 163

13.3 Automatic model recommendation 166

13.3.1 Feature selection . 166

13.3.2 Classification . 167

13.4 Surrogate model for Gappy reconstruction 168

13.5 Summary . 169

159

Chapter 13. ROM-net’s training phase

13.1 Design of numerical experiments

Given the computational cost of high-fidelity mechanical simulations of the high-pressure
turbine blade, the training data are sampled from the stochastic model for the thermal
loading using a design of experiments (DoE). We are allowed to run 200 high-fidelity
simulations, so a database of 200 temperature fields must be built. This database includes
two separate datasets coming from two independent DoEs:

� The first dataset is built from a Maximum Projection LHS design (MaxProj LHS
DoE) and contains 80 points. This dataset will be used for the construction of the
dictionary of local ROMs via clustering. The MaxProj LHS DoE has good space-
filling properties on projections onto subspaces of any dimension.

� The second dataset is built from a Sobol’ sequence (Sobol’ DoE) of 120 points.
Using a suboptimal DoE method ensures that this second dataset is different and
independent from the first one. The lower quality of this dataset with respect to
the first one is compensated by its larger population. This dataset will be used for
learning tasks requiring more training examples than the construction of the local
ROMs, namely the classification task for automatic model recommendation, and the
training of cluster-specific surrogate models for the reconstruction of full fields from
hyper-reduced predictions on a reduced-integration domain. These surrogate models
(Gappy surrogates) replace the Gappy POD [46] method that is commonly used in
hyper-reduced simulations to retrieve dual variables on the whole mesh.

The workflow for each DoE is illustrated on Figure 13.8. We advise the reader to refer
to Figure 13.8 while reading this chapter.

The DoEs are built with the platform Lagun1 developed by Safran in collaboration with
IFPEN. The fact that these two datasets come from two separate DoEs is beneficial: as
each of them is supposed to have good space-filling properties, they are both representative
of the possible thermal loading and can therefore be used to define a training set and a
test set for a given learning task. For instance, the classifier trained on the Sobol’ DoE
can be tested on the MaxProj LHS DoE. The local ROMs built from snapshots belonging
to the MaxProj LHS DoE can make predictions on the Sobol’ DoE that will be used for
the training of the Gappy surrogates, which is relevant since the Gappy surrogates are
supposed to analyze ROM predictions on new unseen data in the exploitation phase.

Drawing random temperature fields as defined in Equation (12.3) requires sampling
data from the random variables {Υi}0≤i≤4, where Υ0 follows the Bernoulli distribution
with parameter 0.5 and the variables Υi for i ∈ [[1; 4]] are independent standard normal
variables and independent of Υ0. Both DoE methods (Maximum Projection LHS and
Sobol’ sequence) generate point clouds with a uniform distribution in the unit hypercube.
Figures 13.1 and 13.2 show the projections onto 2-dimensional subspaces of the 5D point
clouds used to build our datasets. The marginal distributions are plotted to check that
they well approximate the uniform distribution. These point clouds, considered as samples
of a random vector (χ0, χ1, χ2, χ3, χ4) following the uniform distribution on the unit hy-
percube, are transformed into realizations of the random vector (Υ0,Υ1,Υ2,Υ3,Υ4) using
the following transformations:

Υ0 = 1χ0>1/2 and ∀i ∈ [[1; 4]], Υi = F−1(χi) (13.1)

1https://gitlab.com/drti/lagun

160

https://gitlab.com/drti/lagun

13.2. ROM dictionary construction

Figure 13.1: Visualization of the MaxProj LHS DoE. The marginal distributions are rep-
resented on the diagonal. The 5D DoE is projected on 2D subspaces for visualization
purposes, in order to check space-filling properties in 2D.

where F−1 is the inverse of the cumulative distribution function of the standard normal
distribution. The resulting samples define the MaxProj dataset and the Sobol’ dataset
of random temperature fields, using Equation (12.3). Each temperature field defines a
thermal loading, using Equation (12.1). The 200 corresponding mechanical problems are
solved for one loading cycle with the finite-element software Zset [79] with the domain
decomposition method described in [256], with 48 subdomains. The average computation
time for one simulation is 53 minutes.

13.2 ROM dictionary construction

13.2.1 Clustering

The 80 simulations associated to the MaxProj dataset are used as clustering data. Loading
all the simulation data takes about 5 minutes, and computing the pairwise ROM-oriented
dissimilarities takes only a few seconds. The ROM-oriented dissimilarity defined in Def-
inition 9.2.10 is computed with n = 1 using Equation (9.24), i.e. each simulation is

161

Chapter 13. ROM-net’s training phase

Figure 13.2: Visualization of the Sobol’ DoE. The marginal distributions are represented
on the diagonal. The 5D DoE is projected on 2D subspaces for visualization purposes, in
order to check space-filling properties in 2D.

represented by one field. Two variants are tested: a method-oriented variant, where the
dissimilarities are computed from the displacements fields at the maximum rotation speed,
and a goal-oriented variant, where the dissimilarities involve the quantity of interest pocum

(accumulated plastic strain in octahedral slip systems at the end of the simulation). The
dataset is partitioned into two clusters using our implementation of PAM [84, 95] k-medoids
algorithm, with 10 different random initializations for the medoids. The clustering results
can be visualized thanks to Multidimensional Scaling (MDS) [264]. MDS is an information
visualization method which consists in finding a low-dimensional dataset Z0 whose matrix
of Euclidean distances d(Z0) is an approximation of the true dissimilarity matrix δ. To
that end, a cost function called stress function is minimized with respect to Z:

Z0 = arg min
Z

(ς(Z; δ)) = arg min
Z

∑
i<j

(δij − dij(Z))2

 (13.2)

This minimization problem is solved with the algorithm Scaling by MAjorizing a COmpli-
cated Function (SMACOF, [265]) implemented in Scikit-learn [249]. Figures 13.3 and 13.4
show the clusters on the MDS representations with the two variants of the ROM-oriented

162

13.2. ROM dictionary construction

dissimilarity measure. Each figure compares the clustering results with the expected clus-
ters corresponding to Υ0 = 0 (i.e. without the perturbation δT0) and Υ0 = 1 (i.e. with
the perturbation δT0). On this example, the method-oriented variant using the displace-
ment field does not manage to distinguish the expected clusters. On the contrary, the
goal-oriented variant leads to clusters that almost correspond to the expected ones, with
only 4 points with wrong labels out of 80. In the sequel, the results obtained with the
goal-oriented variant are considered. The medoids of the two clusters are given in Fig-
ure 13.5. Cluster 0 contains temperature fields for which Υ0 = 1, while cluster 1 contains
fields for which Υ0 = 0. It can be observed that the quantity of interest clearly differs from
one cluster to the other, while the differences are hardly visible on the displacement field.
The displacement field combines deformations associated to different phenomena (thermal
expansion, elastic strains, viscoplastic strains) that are not necessarily related to damage
in the structure, which could explain why the quantity of interest pocum seems to be more
appropriate for clustering in this example.

Figure 13.3: MDS representation of the clustering results using the ROM-oriented dissimi-
larity measure on the displacement field (method-oriented variant). On the left, the colors
correspond to the expected clusters. On the right, the colors correspond to the clusters
identified by the clustering algorithm. The positions of the labels 0 and 1 coincide with
the positions of the clusters’ medoids. The MDS relative error ς(Z0; δ)/ς(0; δ) is 7.9%.

13.2.2 Construction of local ROMs

For simplification purposes, and because of the computation time and the memory re-
quired to store high-fidelity simulation data, we do not make the distinction between
simplified snapshots and high-fidelity snapshots. This means that the simulations used
for the physics-informed clustering procedure are not a simplified version of the target
problem, so that these simulation data can directly provide snapshots for the construction
of the local ROMs. In the case where the target problem would require computing, say, 50
cycles, then the simplified simulations would correspond to the first loading cycle and the
high-fidelity ones would contain the responses to 50 loading cycles (or fewer cycles if the
ROMs were used for cyclic extrapolation as in [65, 35]). In the present study, the target
problem consists in predicting the state of the structure after the first cycle only, which
explains why we chose not to distinguish two fidelity levels for this proof of concept.

The question of snapshots selection, though, remains relevant. Indeed, using all the
simulations as snapshots would slow down the training phase of the local ROMs. For each

163

Chapter 13. ROM-net’s training phase

Figure 13.4: MDS representation of the clustering results using the ROM-oriented dis-
similarity measure on the quantity of interest pocum (goal-oriented variant). On the left,
the colors correspond to the expected clusters. On the right, the colors correspond to the
clusters identified by the clustering algorithm. The positions of the labels 0 and 1 coincide
with the positions of the clusters’ medoids. The MDS relative error ς(Z0; δ)/ς(0; δ) is
12%.

Figure 13.5: The 3 fields on the left correspond to the medoid of cluster 0, and those
on the right correspond to the medoid of cluster 1. The fields in the first and the third
columns show the differences between the medoids’ temperature fields and the reference
temperature field Tref (the scale is truncated for the first field). The second and the fourth
columns show the displacement magnitude field

√
u.u (top) and the quantity of interest

pocum (bottom).

cluster, 20 simulations are selected to provide snapshots for the local ROMs. Given that it

164

13.2. ROM dictionary construction

represents half of the clusters’ populations, the two-stage hierarchical clustering procedure
for snapshots selection is not adapted. Instead, the simulations are selected in a maximin
greedy approach similar to the one described in Algorithm 2 for seeds selection for data
augmentation, starting from the medoid. Figure 13.6 shows which simulations have been
selected for the construction of the local ROMs.

Figure 13.6: MDS representation of the clustering results. Orange points represent the
snapshots selected for cluster 0, while the light blue points represent the snapshots selected
for cluster 1. For each cluster, the snapshots are selected by a maximin procedure starting
from the medoid.

The local ROMs are built with the snapshot POD [181, 182] and the Empirical Cu-
bature Method (ECM [34]) for hyper-reduction, using Safran’s module of Mordicus code,
developed by Fabien Casenave in the FUI Mordicus project. This Python code enables
for non-intrusive model order reduction, as explained in [35] for an earlier version. The
snapshot POD and the ECM are done in parallel with shared memory on 24 cores. The
tolerance for the snapshot POD is set to 10−8 for the displacement field, and to 10−4 for
dual variables (the quantity of interest pocum and the six components of the stress tensor).
The POD bases for the dual variables will be used for their reconstruction with the Gappy
surrogates. The tolerance for the ECM is set to 5× 10−4. The primal POD bases of both
local ROMs contain 18 displacement modes. The local ROM 0 (resp. 1) has 10 (resp. 12)
modes for the quantity of interest pocum, and both ROMs have between 8 and 13 modes for
stress components. The ECM selects 506 (resp. 510) integration points for the reduced-
integration domain of ROM 0 (resp. 1). Building one local ROM takes approximately 2
hours and 30 minutes.

Remark 13.2.1. In addition to Mordicus code, the Python library BasicTools2 developed
at Safran is used for all operations on finite-element meshes and simulation data.

2https://gitlab.com/drti/basic-tools

165

https://gitlab.com/drti/basic-tools

Chapter 13. ROM-net’s training phase

13.3 Automatic model recommendation

In this section, a classifier is trained for the automatic model recommendation task. The
120 temperature fields coming from the Sobol’ dataset are used as training data for the
classifier. Their labels are determined by finding their closest medoid in terms of the ROM-
oriented dissimilarity measure. Hence, for each temperature field of the Sobol’ dataset,
two dissimilarities are computed: one with the medoid of the first cluster, and one with
the medoid of the second cluster. Once trained, the classifier can be evaluated on the 80
labeled temperature fields of the MaxProj dataset.

13.3.1 Feature selection

Figure 13.7: Feature selection results. The kriging metamodel for redundancy terms is
represented by the red curve and built from 800 true redundancy terms (blue points). The
elements containing the selected nodes are represented in the turbine blade geometry.

Each temperature field is discretized on the finite-element mesh, which contains ap-
proximately 106 nodes. To reduce the dimension of the input space and facilitate the
training phase of the classifier, we apply the geostatistical mRMR feature selection algo-
rithm described in Algorithm 1 on data from the Sobol’ dataset. First, 800 pairs of nodes
are selected in the mesh, which takes 18 seconds. The 800 corresponding redundancy terms
are computed with Scikit-learn [249] in less than 3 seconds. Figure 13.7 plots the values
of these redundancy terms versus the Euclidean distance between the nodes. Contrary
to the simple test case considered for the validation of our feature selection strategy, the
correlation between the redundancy mutual information terms and the distance between
the nodes is poor, with a lot of noise. This can be due to the fact that the random tem-
perature fields have been built using Gaussian random fields on the outer surface with an

166

13.3. Automatic model recommendation

isotropic correlation function depending on the geodesic distance along the surface rather
than the Euclidean distance. Since the turbine blade is a relatively thin structure, two
nodes, one on the intrados and another one on the extrados, can be close to each other in
the Euclidean distance, but with totally uncorrelated temperature fluctuations because of
the large geodesic distance separating them. On the contrary, two points on the same side
of the turbine blade can have correlated temperature variations while being separated by
a Euclidean distance in the order of the blade’s thickness. The length of the mutual infor-
mation’s high-variance regime seems to correspond to the blade’s chord, which supports
this explanation. The thinness of the turbine blade induces anisotropy in the correlation
function of the bulk Gaussian random field defining the thermal loading, which implies an
anisotropic behavior of the mutual information according to Property 11.1. The use of a
local temperature perturbation δT0 in conjunction with fluctuation modes having larger
length scales may also partially explain the large variance of redundancy terms. Nonethe-
less, it remains clear that redundancy terms are smaller for large distances. This trend
is captured by a kriging metamodel (Gaussian process regression [106, 107]) trained with
Scikit-learn in a few seconds, with a sum-kernel involving the Matérn kernel with parame-
ter 5/2 (to get a continuous and twice differentiable metamodel) and length scale 1, and a
white kernel to estimate the noise level of the signal. The curve of the metamodel is given
in Figure 13.7. Then, for each node of the finite-element mesh, the mutual information
with the label variable is computed. The computation of these relevance terms (about a
million terms) are distributed between 280 cores, which gives a total computation time
of 15 minutes. Among the original features, 5986 features are preselected by discarding
those with a relevance mutual information lower than 0.05. The geostatistical mRMR
selects 11 features in 42 seconds. The corresponding nodes in the finite-element mesh can
be visualized in Figure 13.7.

Remark 13.3.1. The metamodel for redundancy terms could be improved by defining it
as a function of the precomputed geodesic distances along the outer surface rather than the
Euclidean distances. Each finite-element node would be associated to its nearest neighbor
on the outer surface before computing the approximate mutual information from geodesic
distances. Apart from this potential improvement, one could also tighten the feature selec-
tion stopping criterion in order to select more features and therefore reduce the influence of
the errors made by the metamodel, if the selected features do not enable reaching satisfying
levels of accuracy for the classification task.

13.3.2 Classification

The classifier is trained on the Sobol’ dataset, using the values of the temperature fields
at the 11 nodes identified by the feature selection algorithm. The classifier is a logistic
regression [109, 110, 111] with elastic net regularization [105] implemented in Scikit-learn.
The two hyperparameters involved in the elastic net regularization are calibrated using 5-
fold cross-validation, giving a value of 0.001 for the inverse of the regularization strength,
and 0.4 for the weight of the L1 penalty term (and thus 0.6 for the L2 penalty term).
Thanks to the L1 penalty term, the classifier only uses 5 features among the 11 input
features. The classifier’s accuracy, evaluated on the MaxProj dataset to use new unseen
data, reaches 98.75%. The confusion matrix indicates that 100% of the test examples
belonging to class 0 have been correctly labeled, and that 2.38% of the test examples
belonging to class 1 have been misclassified. Table 13.1 summarizes the values of precision,
recall and F1-score on test data.

167

Chapter 13. ROM-net’s training phase

Table 13.1: Classification results.

Class Precision Recall F1-score Support

0 0.9744 1.0000 0.9870 38
1 1.0000 0.9762 0.9880 42

Accuracy - - 0.9875 80
Macro avg 0.9872 0.9881 0.9875 80

Weighted avg 0.9878 0.9875 0.9875 80

Remark 13.3.2. Our data augmentation algorithm described in Algorithm 3 is not needed
here, since the classifier’s accuracy is already satisfying.

13.4 Surrogate model for Gappy reconstruction

When using hyper-reduction, the ROM calls the constitutive equations solver only at
the integration points belonging to the reduced-integration domain. It is recalled that
the ECM selected 506 (resp. 510) integration points for the reduced-integration domain of
ROM 0 (resp. 1), and that the finite-element mesh initially contains millions of integration
points. Therefore, after a reduced simulation, dual variables defined at integration points
are known only at integration points of the reduced-integration domain. To retrieve the full
field, the Gappy POD [46] finds the coefficients in the POD basis that minimize the squared
error between the reconstructed field and the ROM predictions on the reduced-integration
domain, see Section 6.4.3. This minimization problem defines the POD coefficients as a
linear function of the predicted values on the reduced-integration domain. Although these
coefficients are optimal in the least squares sense, they can be biased by the errors made
by the ROM. To alleviate this problem, we propose to replace the common Gappy POD
procedure by a metamodel or Gappy surrogate. The inputs and the outputs of the Gappy
surrogate are the same as for the Gappy POD: the input is a vector containing the values
of a dual variable on the reduced-integration domain, and the output is a vector containing
the optimal coefficients in the POD basis. One Gappy surrogate must be built for each
dual variable of interest: in our case, 7 surrogate models per cluster are required, namely
one for the quantity of interest pocum and one for every component of the Cauchy stress
tensor.

The training data for these Gappy surrogates are obtained by running reduced sim-
ulations with the local ROMs, using the thermal loadings of the Sobol’ dataset. Indeed,
the two local ROMs have been built on the MaxProj dataset, therefore thermal loadings
of the Sobol’ dataset can play the role of test data for the ROMs. For each thermal
loading in the Sobol’ dataset, the true high-fidelity solution is already known since it has
been computed to provide training data for the classifier. In addition, the exact labels for
these thermal loadings are known, which means that we know which local ROM to choose
for each thermal loading of the Sobol’ dataset. Given ROM predictions on the reduced-
integration domain, the optimal coefficients in the POD basis are given by the projections
of the true prediction made by the high-fidelity model (the finite-element model) onto the
POD modes. This provides the true outputs for the Sobol’ dataset, which can then be
used as a training set for the Gappy surrogates.

168

13.5. Summary

Given the high-dimensionality of the input data (there are more than 500 integration
points in the reduced-integration domains) with respect to the number of training examples
(120 examples), a multi-task Lasso metamodel is used. The hyperparameter controlling
the regularization strength is optimized by 5-fold cross-validation. Training the 14 Gappy
surrogates (7 for each cluster) takes 1 hour. The Gappy surrogates select between 8%
and 18% of the integration points in the reduced-integration domains, thanks to the reg-
ularization term used in the loss function of multi-task Lasso (see Equation (5.12)). The
mean cross-validated coefficients of determination are 0.9637 (resp. 0.8935) for the quan-
tity of interest for cluster 0 (resp. cluster 1), and range from 0.9404 to 0.9938 for stress
components. These satisfying results mean that it is not required to train a kriging meta-
model with the variables selected by Lasso to get nonlinear Gappy surrogates. The Gappy
surrogates are then linear, just as the Gappy POD.

Remark 13.4.1. In this strategy, the local ROMs solve the equations of the mechanical
problem, which enables using linear surrogate models to reconstruct dual variables. Using
surrogate models instead of local ROMs for the prediction of dual variables directly from
the input temperature field would have been more difficult, given the nonlinearities of this
mechanical problem and the lack of training data for regression. In addition, such surrogate
models would require a parametrization of the input temperature fields, whereas the local
ROMs use the exact values of the temperature fields on the RID without assuming any
model for the thermal loading. However, it is noteworthy that the use of surrogate models
is incompatible with cyclic extrapolation, be it for complete surrogates or Gappy surrogates,
since these metamodels are trained with data obtained at a given cycle.

13.5 Summary

In summary, the dictionary-based ROM-net used for mechanical simulations of the high-
pressure turbine blade is made of a dictionary of two local hyper-reduced-order models and
a logistic regression classifier. The classifier analyzes the values of the input temperature
field at 11 nodes only, identified by our feature selection strategy. For a given thermal
loading in the exploitation phase, after the reduced simulation with the local ROM rec-
ommended by the classifier, linear cluster-specific Gappy surrogates reconstruct the full
dual fields (quantity of interest and stress components) from their predicted values on the
reduced-integration domain. Figure 13.8 summarizes the workflow.

∗ ∗
∗

169

Chapter 13. ROM-net’s training phase

Figure 13.8: Workflow for the training and the exploitation of a dictionary-based ROM-net
for uncertainty quantification on the high-pressure turbine blade.

170

Chapter 14

ROM-net’s exploitation phase

Abstract: This chapter deals with the evaluation of the ROM-net trained in the previous
chapter for the industrial test case and its use for uncertainty propagation. The accuracy
of the ROM-net’s predictions are quantified through different error indicators, on the basis
of 20 simulations with new thermal loadings for which the high-fidelity solutions are known.
The distributions of quantities of interest are estimated by Monte Carlo simulations.

Remark 14.0.1. This chapter is taken from our paper [50], with some modifications.

Contents

14.1 Uncertainty quantification results 172

14.2 Validation . 173

171

Chapter 14. ROM-net’s exploitation phase

14.1 Uncertainty quantification results

Once trained, the ROM-net can be applied for the quantification of uncertainties on the
mechanical behavior of the HP turbine blade resulting from the uncertainties on the ther-
mal loading. Since the ROM-net online operations can be performed sequentially on one
single core, 24 cores are used in order to compute the solution for 24 thermal loadings
at once. This way, 42 batches of 24 Monte Carlo simulations are run in 2 hours and 48
minutes, using Safran’s module of Mordicus code developed by Fabien Casenave in the
FUI Mordicus project. The 1008 thermal loadings used for this study are generated by
randomly sampling points from the uniform distribution on the 5D unit hypercube and
applying the transformation given in Equation (13.1).

Figure 14.1: Histograms and probability density functions of the quantities of interest pocum

(left) and σeq (right).

Table 14.1: Widths of the confidence intervals (CI) for the expectations, expressed as
percentages of the estimated expectations.

Estimated variable Confidence level Relative CI width

E[pocum] 0.95 2.16%
E[pocum] 0.99 2.84%
E[σeq] 0.95 1.26%
E[σeq] 0.99 1.66%

Let us introduce a zone of interest Ω′ defined by all of the integration points at which
pocum is higher than 0.4×max pocum(ξ) for the thermal loading defined by Tref + δT0. This
zone of interest contains 209 integration points. The values of the variables pocum and σeq

averaged over Ω′ are denoted by pocum and σeq.

The expected values of pocum and σeq are estimated with the empirical means (see Strong
Law of Large Numbers, Theorem 3.3.1). The variances of pocum and σeq are computed with
the unbiased sample variances defined in Equation (3.4). The Central Limit Theorem 3.3.2
gives asymptotic confidence intervals for the expected values, see Equation (3.6). The
widths of the confidence intervals are expressed as a percentage of the estimated value for
the expectations in Table 14.1.

The probability density functions of the quantities of interest can be estimated using

172

14.2. Validation

Gaussian kernel density estimation (see section 6.6.1. of [55]). Figure 14.1 gives the
histograms and estimated distributions for pocum and σeq. The shapes of these distributions
highly depend on the assumptions made for the stochastic thermal loading, and would
therefore be different with more realistic statistical assumptions motivated by experts’
knowledge and future experimental and numerical results. As observed in Figure 12.5,
the stress field is highly sensitive to temperature gradients, which may explain why the
distribution of the Von Mises stress is bimodal for the given dataset of temperature fields
drawn from a mixture of two Gaussian distributions.

14.2 Validation

Table 14.2: Error indicators for the evaluation of the ROM-net on 20 new thermal loadings.

Error indicator Errors on pocum Errors on σeq

Mean L2 relative error on Ω 1.14% 0.84%
Mean L2 relative error on Ω′ 0.75% 1.46%
Mean L∞ relative error on Ω 1.11% 1.09%
Mean L∞ relative error on Ω′ 1.05% 2.60%

Mean relative error on value averaged over Ω′ 0.50% 0.89%
Mean distance between maxima 0 0

Figure 14.2: Errors on the quantity of interest pocum. The red (resp. blue) color is used for
zones where the quantity of interest is overestimated (resp. underestimated).

For validation purposes, the accuracy of the ROM-net is evaluated on 20 Monte Carlo
simulations with 20 new thermal loadings. These thermal loadings are generated by ran-
domly sampling points from the uniform distribution on the 5D unit hypercube, and
applying the transformation given in Equation (13.1). The reduced simulations are run
on single cores with Safran’s module of Mordicus code. The total computation time for
generating a new thermal loading on the fly, selecting a local ROM, running one reduced
simulation and reconstructing the quantities of interest is 4 minutes on average. As a

173

Chapter 14. ROM-net’s exploitation phase

comparison, one single high-fidelity simulation with Zset [79] with 48 subdomains takes
53 minutes, which implies that the ROM-net computes 13.25 times faster. However, one
high-fidelity simulation requires 48 cores for domain decomposition, whereas the ROM-net
works on one single core. Hence, using 48 cores to run 48 reduced simulations in parallel,
636 reduced simulations can be computed in 53 minutes with the ROM-net, while the
high-fidelity model only runs one simulation. In addition to the acceleration of numerical
simulations, energy consumption is reduced by a factor of 636 in the exploitation phase. In
spite of the fast development of high-performance computing, numerical methods comput-
ing approximate solutions at reduced computational resources and time are particularly
important for many-query problems such as uncertainty quantification, where the intensive
use of computational resources is a major concern. Model order reduction and ROM-nets
play a prominent role toward green numerical simulations [171]. Of course, the number of
simulations in the exploitation phase must be large enough to compensate the efforts made
in the training phase, like in any machine learning or model order reduction problem.

Figures 14.3 and 14.4 show the results for two simulations belonging to cluster 0 and
cluster 1 respectively. These figures give the difference between the current tempera-
ture field and the reference one, i.e. the field T − Tref, and the resulting variations
of the quantity of interest predicted by the ROM-net and the high-fidelity model, i.e.
po,ROM

cum (T) − po,HF
cum (Tref) and po,HF

cum (T) − po,HF
cum (Tref). The signs and the positions of the

variations of the quantity of interest seem to be quite well predicted by the ROM-net.

Table 14.2 gives different indicators quantifying the errors made by the ROM-net: the
L2 relative errors on the whole domain Ω and on the zone of interest Ω′, the L∞ relative
errors on Ω and Ω′, the relative errors on pocum and σeq, and the errors on the locations of
the points where the fields pocum and σeq reach their maxima. All the relative errors remain
in the order of 1% or 2%, which validates the methodology. In addition, the ROM-net
perfectly predicts the position of the critical points at which pocum and σeq reach their
maxima. Figure 14.2 shows errors on the quantity of interest.

∗ ∗
∗

174

14.2. Validation

Figure 14.3: Comparison between high-fidelity predictions (middle column) and ROM-
net’s predictions (right-hand column). The field on the left represents the difference be-
tween the current temperature field (belonging to cluster 0) and the reference one. The
other fields correspond to the increments of the quantity of interest pocum with respect to
its reference state obtained with the reference temperature field.

175

Chapter 14. ROM-net’s exploitation phase

Figure 14.4: Comparison between high-fidelity predictions (middle column) and ROM-
net’s predictions (right-hand column). The field on the left represents the difference be-
tween the current temperature field (belonging to cluster 1) and the reference one. The
other fields correspond to the increments of the quantity of interest pocum with respect to
its reference state obtained with the reference temperature field.

176

Chapter 15

Conclusion

Figure 15.1: Exploitation phase of a dictionary-based ROM-net.

This thesis report summarizes our contributions to nonlinear model order reduction
assisted by machine learning methods, already presented in our papers [47, 48, 49, 50,
51] on ROM-nets. Dictionary-based ROM-nets combine a dictionary of local reduced-
order models (local ROMs [40, 41]) with a classification algorithm for automatic model
recommendation, like in [42, 43], see Figure 15.1. This methodology adapts the choice
of the ROM according to the state and the environment of the physical system, which
enables accelerating numerical simulations while maintaining reasonable levels of error for
many-query problems such as uncertainty quantification. A dictionary-based ROM-net
has been successfully applied to a real industrial problem, namely the quantification of
uncertainties on the mechanical behavior of a high-pressure turbine blade in an aircraft
engine, under nonparametrized variabilities of the thermal loading. On this example, our
methodology enabled computing 636 times faster with errors in the order of 1% to 3%.

In our methodology, the solution manifold is partitioned with a physics-informed clus-
tering procedure involving simulation data, with a new ROM-oriented dissimilarity mea-
sure that is suitable for nonlinear model order reduction. However, the possibility to use
different local ROMs in a single time-dependent simulation as in [40, 41] has not been ex-
plored yet within this framework. In addition to this contribution in the field of clustering
for the construction of local ROMs, we have developed a new data augmentation algorithm
for classification on simulation data, a variant of the mRMR feature selection algorithm,
and an a priori efficiency criterion that can be used for hyperparameters calibration.

Beyond uncertainty quantification, industrial needs in terms of numerical methods
include algorithms for topology optimization, which is another example of many-query
problem where accelerating simulations is essential. Dealing with nonparametrized geo-
metrical variabilities is of paramount importance for the design of mechanical parts and

177

Chapter 15. Conclusion

for the certification of systems with shape uncertainties generated by their manufacturing
processes. The application of ROM-nets to nonparametrized geometrical variabilities is a
challenging outlook that could be studied in the future. More generally, the incorporation
of model order reduction and machine learning in industry needs further developments on
error indicators and error estimators, robust methods, and on-the-fly model enrichment
from various sources of data (experimental and numerical data, partial data, low-fidelity
predictions, streaming data collected by sensors, ...).

This work is part of a global trend in the computational physics research community,
consisting in combining numerical methods for physics modeling with recent advances in
machine learning. Mixing both worlds is crucial to be able to exploit data while preserving
knowledge that has been accumulated over centuries by researchers in physics.

∗ ∗
∗

178

References

References

[1] J. Lumley. The structure of inhomogeneous turbulent flows. Atm. Turb. and Radio
Wave. Prop., pages 166–178, 1967.

[2] L. Cordier and M. Bergmann. Proper Orthogonal Decomposition: an overview. In
Lecture series 2002-04, 2003-03 and 2008-01 on post-processing of experimental and
numerical data, Von Karman Institute for Fluid Dynamics, 2008., page 46 pages.
VKI, 2008.

[3] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[4] C.C. Aggarwal. Neural Networks and Deep Learning. Springer, 2018.

[5] M. Guo and J.S. Hesthaven. Data-driven reduced order modeling for time-dependent
problems. Computer Methods in Applied Mechanics and Engineering, 345:75–99,
2019.

[6] R. Dupuis, J.-C. Jouhaud, and P. Sagaut. Surrogate modeling of aerodynamic sim-
ulations for multiple operating conditions using machine learning. 12 2019.

[7] G. Ortali, N. Demo, and G. Rozza. Gaussian process approach within a data-
driven POD framework for fluid dynamics engineering problems. arXiv preprint:
2012.01989, 2020.

[8] Q. Wang, J.S. Hesthaven, and D. Ray. Non-intrusive reduced order modeling of
unsteady flows using artificial neural networks with application to a combustion
problem. Journal of Computational Physics, 384:289–307, 2019.

[9] Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo. Model identi-
fication of reduced order fluid dynamics systems using deep learning. International
Journal for Numerical Methods in Fluids, 86(4):255–268, 2018.

[10] S.M. Rahman, S. Pawar, O. San, A. Rasheed, and T. Iliescu. Nonintrusive reduced
order modeling framework for quasigeostrophic turbulence. Physical Review E, 100,
11 2019.

[11] R. Maulik, A. Mohan, B. Lusch, S. Madireddy, P. Balaprakash, and D. Livescu.
Time-series learning of latent-space dynamics for reduced-order model closure. Phys-
ica D: Nonlinear Phenomena, 405:132368, 04 2020.

[12] F. Gonzalez and M. Balajewicz. Deep convolutional recurrent autoencoders for learn-
ing low-dimensional feature dynamics of fluid systems. arXiv preprint: 1808.01346,
2018.

179

http://www.deeplearningbook.org

References

[13] S. Wiewel, M. Becher, and N. Thuerey. Latent-space physics: Towards learning the
temporal evolution of fluid flow. arXiv preprint: 1802.10123, 2019.

[14] R. Maulik, B. Lusch, and P. Balaprakash. Reduced-order modeling of advection-
dominated systems with recurrent neural networks and convolutional autoencoders.
Physics of Fluids, 33(3):037106, Mar 2021.

[15] J. Tencer and K. Potter. Enabling nonlinear manifold projection reduced-order
models by extending convolutional neural networks to unstructured data. ArXiv,
abs/2006.06154, 2020.

[16] R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differ-
ential equations. arXiv preprint: 1806.07366, 2019.

[17] K. Lee and E. Parish. Parameterized neural ordinary differential equations: Appli-
cations to computational physics problems. arXiv preprint: 2010.14685, 2020.

[18] M. Drohmann and K. Carlberg. The ROMES method for statistical modeling
of reduced-order-model error. SIAM/ASA Journal on Uncertainty Quantification,
3:116–145, 02 2015.

[19] S. Trehan, K. Carlberg, and L.J. Durlofsky. Error modeling for surrogates of dy-
namical systems using machine learning. arXiv preprint: 1701.03240, 2017.

[20] B. Freno and K. Carlberg. Machine-learning error models for approximate solutions
to parameterized systems of nonlinear equations. 08 2018.

[21] S. Pagani, A. Manzoni, and K. Carlberg. Statistical closure modeling for reduced-
order models of stationary systems by the ROMES method. 01 2019.

[22] F. Masi, I. Stefanou, P. Vannucci, and V. Maffi-Berthier. Thermodynamics-based
Artificial Neural Networks for constitutive modeling. Journal of the Mechanics and
Physics of Solids, 147:104277, Feb 2021.

[23] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind. Automatic Differentiation in
Machine Learning: A Survey. J. Mach. Learn. Res., 18(1):5595–5637, January 2017.

[24] Q. Hernandez, A. Badias, D. Gonzalez, F. Chinesta, and E. Cueto. Deep learning
of thermodynamics-aware reduced-order models from data. Computer Methods in
Applied Mechanics and Engineering, 379:113763, Jun 2021.

[25] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[26] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural
networks for solving partial differential equations. arXiv preprint: 1912.00873, 2019.

[27] E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Ham-
dia, X. Zhuang, and T. Rabczuk. An energy approach to the solution of partial
differential equations in computational mechanics via machine learning: Concepts,
implementation and applications. Computer Methods in Applied Mechanics and En-
gineering, 362:112790, 2020.

180

References

[28] H. Kim, J. Kim, S. Won, and C. Lee. Unsupervised deep learning for super-resolution
reconstruction of turbulence. Journal of Fluid Mechanics, 910, Jan 2021.

[29] J. Zhu, T. Park, P. Isola, and A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2242–2251, 2017.

[30] A. Quarteroni and G. Rozza. Reduced Order Methods for Modeling and Computa-
tional Reduction. Springer Publishing Company, Incorporated, 2013.

[31] W. Keiper, A. Milde, and S. Volkwein. Reduced-Order Modeling (ROM) for Simu-
lation and Optimization: Powerful Algorithms as Key Enablers for Scientific Com-
puting. Springer International Publishing, 2018.

[32] C. Rowley, T. Colonius, and R. Murray. Model reduction for compressible flow using
POD and Galerkin projection. Physica D: Nonlinear Phenomena, 189:115–129, 01
2003.

[33] D. Ryckelynck. A priori hyperreduction method: an adaptive approach. Journal of
Computational Physics, Elsevier, 202(1):346–366, 2005.

[34] J.A. Hernandez, M.A. Caicedo, and A. Ferrer. Dimensional hyper-reduction of non-
linear finite element models via empirical cubature. Computer methods in applied
mechanics and engineering, 313:687–722, 2017.

[35] F. Casenave, N. Akkari, F. Bordeu, C. Rey, and D. Ryckelynck. A nonintrusive
distributed reduced-order modeling framework for nonlinear structural mechanics —
application to elastoviscoplastic computations. International Journal for Numerical
Methods in Engineering, 121(1):32–53, 2020.

[36] K. Lee and K.T. Carlberg. Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders. Journal of Computational Physics,
404:108973, 2020.

[37] K. Lee and K. Carlberg. Deep Conservation: A latent-dynamics model for exact
satisfaction of physical conservation laws. arXiv preprint: 1909.09754, 2020.

[38] Y. Kim, Y. Choi, D. Widemann, and T. Zohdi. A fast and accurate physics-
informed neural network reduced order model with shallow masked autoencoder.
arXiv preprint: 2009.11990, 2020.

[39] C.C. Aggarwal and C.K. Reddy. Data Clustering: Algorithms and Applications.
Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. Taylor &
Francis, 2013.

[40] D. Amsallem, M. Zahr, and C. Farhat. Nonlinear model order reduction based on
local reduced-order bases. International Journal for Numerical Methods in Engi-
neering, pages 1–31, 2012.

[41] K. Washabaugh, D. Amsallem, M. Zahr, and C. Farhat. Nonlinear model reduction
for CFD problems using local reduced order bases. 42nd AIAA Fluid Dynamics
Conference, 2012.

181

References

[42] B. Peherstorfer, D. Butnaru, K. Willcox, and H.J. Bungartz. Localized Discrete
Empirical Interpolation Method. SIAM Journal on Scientific Computing, 36, 01
2014.

[43] F. Nguyen, S.M. Barhli, D.P. Muñoz, and D. Ryckelynck. Computer vision with error
estimation for reduced order modeling of macroscopic mechanical tests. Complexity,
2018.

[44] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene
expression data. In Computational Systems Bioinformatics. CSB2003. Proceedings
of the 2003 IEEE Bioinformatics Conference. CSB2003, pages 523–528, Aug 2003.

[45] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information:
Criteria of max-dependency,max-relevance, and min-redundancy. IEEE transactions
on pattern analysis and machine intelligence, 27:1226–38, 09 2005.

[46] R. Everson and L. Sirovich. Karhunen–Loève procedure for gappy data. J. Opt. Soc.
Am. A, 12(8):1657–1664, Aug 1995.

[47] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck. Model order reduction
assisted by deep neural networks (ROM-net). Advanced Modeling and Simulation in
Engineering Sciences, 7(16), 2020.

[48] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck. Data augmentation and
feature selection for automatic model recommendation in computational physics.
Mathematical and Computational Applications, 26(1), 2021.

[49] T. Daniel, A. Ketata, F. Casenave, and D. Ryckelynck. Physics-informed cluster
analysis and a priori efficiency criterion for the construction of local reduced-order
bases. arXiv preprint: 2103.13683, 2021.

[50] T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, and C. Rey. Uncertainty quan-
tification for industrial design using dictionaries of reduced order models. arXiv
preprint: 2108.04012, 2021.

[51] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck. Optimal piecewise linear
data compression for solutions of parametrized partial differential equations. arXiv
preprint: 2108.12291, 2021.

[52] B. Jourdain. Probabilités et statistique. Ellipses, 2016.

[53] F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester. A Modern Intro-
duction to Probability and Statistics: Understanding Why and How. Springer Texts
in Statistics. Springer London, 2006.

[54] A.A. Borovkov. Probability Theory. Universitext. Springer London, 2013.

[55] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer series in statistics.
Springer, 2009.

[56] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

182

References

[57] E. Pineau and M. Lelarge. InfoCatVAE: Representation Learning with Categorical
Variational Autoencoders. arXiv preprint: 1806.08240, 2018.

[58] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, 2012.

[59] J. Mercer and A.R. Forsyth. Xvi. functions of positive and negative type, and
their connection the theory of integral equations. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, 209(441-458):415–446, 1909.

[60] A. Alexanderian. A brief note on the Karhunen-Loève expansion. arXiv preprint:
1509.07526, 2015.

[61] H. Hotelling. Analysis of a Complex of Statistical Variables Into Principal Compo-
nents. Warwick & York, 1933.

[62] P. Abrahamsen. A Review of Gaussian Random Fields and Correlation Functions.
Norsk Regnesentral - Norwegian Computing Center, 1997.

[63] Par N. Aronszajn. La theorie des noyaux reproduisants et ses applications - pre-
miere partie. Mathematical Proceedings of the Cambridge Philosophical Society,
39(3):133–153, 1943.

[64] N. Aronszajn. Theory of Reproducing Kernels. Transactions of the American Math-
ematical Society, 68(3):337–404, 1950.

[65] F. Casenave and N. Akkari. An error indicator-based adaptive reduced order model
for nonlinear structural mechanics - Application to high-pressure turbine blades.
Math. Comput. Appl., 24(2), 2019.

[66] C. Soize and C. Farhat. A nonparametric probabilistic approach for quantifying un-
certainties in low-dimensional and high-dimensional nonlinear models. International
Journal for Numerical Methods in Engineering, 109(6):837–888, 2017.

[67] C. Farhat, A. Bos, R. Tezaur, Todd Chapman, P. Avery, and Christian Soize. A
stochastic projection-based hyperreduced order model for model-form uncertainties
in vibration analysis. 2018.

[68] S.S. Garud, I.A. Karimi, and M. Kraft. Design of computer experiments: A review.
Computers and Chemical Engineering, 106:71–95, 2017. ESCAPE-26.

[69] N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

[70] R. A. Fisher. The design of experiments. 1935.

[71] G.E.P. Box, J.S. Hunter, and W.G. Hunter. Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley Series in Probability and Statistics. Wiley, 2005.

[72] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance
designs. Journal of Statistical Planning and Inference, 26(2):131–148, 1990.

[73] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

183

References

[74] M.D. Morris and T.J. Mitchell. Exploratory designs for computational experiments.
Journal of Statistical Planning and Inference, 43(3):381–402, 1995.

[75] V.R. Joseph, G. Evren, and S. Ba. Maximum projection designs for computer ex-
periments. Biometrika, 102(2):371–380, 2015.

[76] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–
112, 1967.

[77] Russel E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica,
7:1–49, 1998.

[78] J.R. Rice and D.M. Tracey. On the ductile enlargement of voids in triaxial stress
fields. Journal of the Mechanics and Physics of Solids, 17:201–217, 1969.

[79] Mines ParisTech and ONERA the French aerospace lab. Zset: nonlinear material &
structure analysis suite. http://www.zset-software.com, 1981-present.

[80] R.E. Bellman. Adaptive control processes. Princeton University Press, 1961.

[81] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor
meaningful? ICDT 1999. LNCS, 1540, 12 1997.

[82] J.B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and
Probability, 1:281–297, 1967.

[83] C.C. Aggarwal. Data Mining: The Textbook. Springer International Publishing,
2015.

[84] L. Kaufmann and P. Rousseeuw. Clustering by means of medoids. Data Analysis
based on the L1-Norm and Related Methods, pages 405–416, 01 1987.

[85] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, pages
226–231. AAAI Press, 1996.

[86] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining applications. pages 94–105, 1998.

[87] W. Wang, J. Yang, and R. Muntz. Sting: A statistical information grid approach
to spatial data mining. In Proceedings of the 23rd International Conference on Very
Large Data Bases, VLDB ’97, pages 186–195, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[88] U. von Luxburg. A tutorial on spectral clustering. arXiv preprint: 0711.0189, 2007.

[89] J. Shi and J. Malik. Normalized cuts and image segmentation. In Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 731–737, 1997.

[90] E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers. Clustering with
deep learning: Taxonomy and new methods. arXiv preprint: 1801.07648, 2018.

184

http://www.zset-software.com

References

[91] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering
with deep learning: From the perspective of network architecture. IEEE Access,
6:39501–39514, 2018.

[92] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput.
Surv., 31(3):264–323, September 1999.

[93] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. Patel, A. Tiwari, M. Er, W. Ding,
and C. Lin. A review of clustering techniques and developments. Neurocomputing,
267, 07 2017.

[94] A. D. Gordon and J. T. Henderson. An algorithm for euclidean sum of squares
classification. Biometrics, 33(2):355–362, 1977.

[95] L. Kaufman, P.J.R. Leonard Kaufman, and P.J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. A Wiley-Interscience publication. Wiley,
1990.

[96] L. Kaufman and P. Rousseeuw. Clustering Large Data Sets, pages 425–437. 12 1986.

[97] R.T. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. Technical report, CAN, 1994.

[98] R. Ng and J. Han. CLARANS: A method for clustering objects for spatial data
mining. Knowledge and Data Engineering, IEEE Transactions on, 14:1003– 1016,
10 2002.

[99] E. Schubert and P.J. Rousseeuw. Faster k-medoids clustering: Improving the PAM,
CLARA, and CLARANS algorithms. In G. Amato, C. Gennaro, V. Oria, and
M. Radovanović, editors, Similarity Search and Applications, pages 171–187, Cham,
2019. Springer International Publishing.

[100] H.S. Park and C.H. Jun. A simple and fast algorithm for k-medoids clustering.
Expert Systems with Applications, 36:3336–3341, 2009.

[101] R. Ng and J. Han. Efficient and effective clustering methods for spatial data mining.
Efficient and Effective Clustering Methods for Spatial Data Mining, 11 2000.

[102] V.N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[103] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. J. Mach. Learn. Res., 2:265–292, 2002.

[104] T. Lin, P. Goyal, R. Girshick, K. He, and P Dollar. Focal loss for dense object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[105] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
67(2):301–320, 2005.

[106] Rasmussen C.E. Gaussian processes in machine learning. Advanced Lectures on
Machine Learning, 3176, 2004.

[107] C.E. Rasmussen and C. Williams. Gaussian processes for machine learning. MIT
Press, 2006.

185

References

[108] J. Kleijnen. Kriging Metamodeling in Simulation: A Review. European Journal of
Operational Research, 192:707–716, 02 2007.

[109] J. Berkson. Application of the logistic function to bio-assay. Journal of the American
Statistical Association, 39(227):357–365, 1944.

[110] D.R. Cox. The regression analysis of binary sequences. Journal of the Royal Statis-
tical Society. Series B (Methodological), 20(2):215–242, 1958.

[111] D.R. Cox. Some procedures connected with the logistic qualitative response curve.
Research papers in probability and statistics, pages 55–71, 1966.

[112] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
September 1995.

[113] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifier.
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory,
5, 08 1996.

[114] A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. 1966.

[115] R. D. Joseph. Contributions to perceptron theory. phd thesis, cornell univ. 1961.

[116] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks :
the official journal of the International Neural Network Society, 61:85–117, 2015.

[117] L. Breiman, J.H. Friedman, R.A. Olshen, and R.A. Stone. Classification and regres-
sion trees. 1983.

[118] M. E. Maron. Automatic indexing: An experimental inquiry. J. ACM, 8(3):404–417,
July 1961.

[119] H. Zhang. The optimality of naive bayes. volume 2, 01 2004.

[120] Cover, T. and Hart, P. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27, 1967.

[121] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. Proceedings of the 23rd international conference on Machine learning -
ICML ’06, 2006:161–168, 06 2006.

[122] S. Kotsiantis. Supervised machine learning: A review of classification techniques.
Informatica (Ljubljana), 31, 10 2007.

[123] M. Perez-Ortiz, S. Jimenez-Fernandez, P.A. Gutierrez, E. Alexandre, C. Martinez,
and S. Salcedo-Sanz. A review of classification problems and algorithms in renewable
energy applications. Energies, 9:607, 08 2016.

[124] S Buyukozturk and Omay Cokluk Bokeoglu. Discriminant function analysis: Con-
cept and application. Egitim Arastirmalari - Eurasian Journal of Educational Re-
search, 8:73–92, 01 2008.

[125] Dietrich Wettschereck, David W. Aha, and Takao Mohri. A Review and Empirical
Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms,
pages 273–314. Kluwer Academic Publishers, USA, 1997.

186

References

[126] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[127] L. Wang. Support vector machines: Theory and applications. Studies in fuzziness
and soft computing, v 177, 302, 01 2005.

[128] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
Min. Knowl. Discov., 2(2):121–167, 1998.

[129] H. Bisgin, T. Bera, H. Ding, H. Semey, L. Wu, Z. Liu, A. Barnes, D. Langley,
M. Pava-Ripoll, H. Vyas, W. Tong, and J. Xu. Comparing svm and ann based
machine learning methods for species identification of food contaminating beetles.
Scientific Reports, 8, 12 2018.

[130] Liyang, W., Yongyi, Y., Nishikawa, R.M., and Jiang, Y. A study on several machine-
learning methods for classification of malignant and benign clustered microcalcifica-
tions. IEEE Transactions on Medical Imaging, 24(3):371–380, 2005.

[131] F.F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65 6:386–408, 1958.

[132] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 06 2014.

[133] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. 02 2015.

[134] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cyber-
netics, 36:193–202, 1980.

[135] D.P. Kingma and J. Ba. Adam: a method for stochastic optimization. https:

//arxiv.org/abs/1412.6980, 2014.

[136] S. Haykin. Neural Networks - A Comprehensive Foundation. Second edition, pages
351–391, 1999.

[137] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[138] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint: 1409.1556, 2014.

[139] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[140] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[141] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell., 20:832–844, 1998.

187

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

References

[142] D.H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[143] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In EuroCOLT, 1995.

[144] T.J. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class adaboost. 2009.

[145] J. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29, 11 2000.

[146] J. Friedman. Stochastic gradient boosting. Computational Statistics and Data Anal-
ysis, 38:367–378, 02 2002.

[147] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient
descent in function space. 06 1999.

[148] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient
descent. pages 512–518, 01 1999.

[149] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

[150] B. Baharudin, L.H. Lee, K. Khan, and A. Khan. A review of machine learning
algorithms for text-documents classification. Journal of Advances in Information
Technology, 1, 02 2010.

[151] K. Kourou, T.P. Exarchos, K.P. Exarchos, M.V. Karamouzis, and D.I. Fotiadis.
Machine learning applications in cancer prognosis and prediction. Computational
and Structural Biotechnology Journal, 13:8 – 17, 2015.

[152] F. Fritzen, M. Fernández, and F. Larsson. On-the-fly adaptivity for nonlinear
twoscale simulations using artificial neural networks and reduced order modeling.
Frontiers in Materials, 6:75, 2019.

[153] R. Maulik, O. San, J. Jacob, and C. Crick. Sub-grid scale model classification and
blending through deep learning. Journal of Fluid Mechanics, 870:784–812, 07 2019.

[154] M.G. Kapteyn, D.J. Knezevic, and K.E. Willcox. Toward predictive digital twins via
component-based reduced-order models and interpretable machine learning.

[155] M.G. Kapteyn and K.E. Willcox. From physics-based models to predictive digital
twins via interpretable machine learning. arXiv preprint: 2004.11356, 2020.

[156] R. Maulik, O. San, and J.D. Jacob. Spatiotemporally dynamic implicit large eddy
simulation using machine learning classifiers. Physica D: Nonlinear Phenomena,
406:132409, 2020.

[157] C. Meneveau and P. Sagaut. Large Eddy Simulation for Incompressible Flows: An
Introduction. Scientific Computation. Springer Berlin Heidelberg, 2006.

[158] F. Feyel. Multiscale FE2 elastoviscoplastic analysis of composite structures. Com-
putational Materials Science, 16(1):344 – 354, 1999.

188

References

[159] F. Fritzen and O. Kunc. Two-stage data-driven homogenization for nonlinear solids
using a reduced order model. European Journal of Mechanics - A/Solids, 69:201 –
220, 2018.

[160] D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning, 106, 04
2017.

[161] Phuong Huynh, D.B., Knezevic, D.J., and Patera, A.T. A static condensation
reduced basis element method : approximation and a posteriori error estimation.
ESAIM: M2AN, 47(1):213–251, 2013.

[162] J. Eftang, D. Huynnh, D. Knezevic, E. Ronqust, and A. Patera. Adaptive port
reduction in static condensation. 01 2015.

[163] J. Eftang and A. Patera. Port reduction in parametrized component static conden-
sation: Approximation and a posteriori error estimation. International Journal for
Numerical Methods in Engineering, 96, 07 2013.

[164] K. Smetana and A. Patera. Optimal local approximation spaces for component-based
static condensation procedures. SIAM Journal on Scientific Computing, 38:A3318–,
10 2016.

[165] S. Chaturantabut and D. Sorensen. Discrete empirical interpolation for nonlinear
model reduction. Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference, CDC/CCC 2009, Proceedings of the 48th IEEE Conference,
pages 4316–4321, 2010.

[166] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, and T. Chen. Recent advances in convolutional neural networks. Patter
Recognition, 77:354–377, 2018.

[167] G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers
and Electrical Engineering, 40(1):16 – 28, 2014.

[168] A. Janecek, W. Gansterer, M. Demel, and G. Ecker. On the relationship between
feature selection and classification accuracy. Journal of Machine Learning Research
- Proceedings Track, 4:90–105, 01 2008.

[169] C. Meyer. Matrix Analysis and Applied Linear Algebra Book and Solutions Manual.
01 2000.

[170] J. Vergara and P. Estevez. A review of feature selection methods based on mutual
information. Neural Computing and Applications, 24, 01 2014.

[171] D. Ryckelynck, D.M. Benziane, A. Musienko, and G. Cailletaud. Toward ”green”
mechanical simulations in materials science. European Journal of Computational
Mechanics, 19(4):365–388, 2010.

[172] F. Chinesta, P. Ladeveze, and E. Cueto. A short review on model order reduction
based on Proper Generalized Decomposition. Archives of Computational Methods in
Engineering, 18:395–404, 11 2011.

[173] F. Chinesta and E. Cueto. PGD-Based Modeling of Materials, Structures and Pro-
cesses. 01 2014.

189

References

[174] C. Prud’homme, D. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera, and
G. Turinici. Reliable real-time solution of parametrized partial differential equa-
tions: Reduced-basis output bound methods. Journal of Fluids Engineering, 124:70,
03 2002.

[175] G. Rozza, D. Huynh, and A. Patera. Reduced basis approximation and a poste-
riori error estimation for affinely parametrized elliptic coercive partial differential
equations. Archives of Computational Methods in Engineering, 15:1–47, 09 2007.

[176] T. Henri and J.P. Yvon. Convergence estimates of POD-Galerkin methods for
parabolic problems. volume 166, pages 295–306, 01 2006.

[177] I. Gohberg, S. Goldberg, and M.A. Kaashoek. Classes of Linear Operators. Number
vol. 1 in Classes of Linear Operators. Springer, 1990.

[178] C. Cheverry and N. Raymond. Handbook of Spectral Theory. Lecture, September
2019.

[179] S. Djouadi. On the optimality of the proper orthogonal decomposition and balanced
truncation. pages 4221 – 4226, 01 2009.

[180] S. Djouadi and S. Sahyoun. On a generalization of the proper orthogonal decompo-
sition and optimal construction of reduced order models. In 2012 American Control
Conference (ACC), pages 1436–1441, 2012.

[181] L. Sirovich. Turbulence and the dynamics of coherent structures, Parts I, II and III.
Quarterly of Applied Mathematics, XLV:561 – 590, 1987.

[182] A. Chatterjee. An introduction to the proper orthogonal decomposition. Current
Science, 78:808 – 817, 2000.

[183] M. Meyer and H.G. Matthies. Efficient model reduction in non-linear dynamics using
the Karhunen-Loève expansion and dual-weighted-residual methods. Computational
Mechanics, 31:179–191, 05 2003.

[184] D. Ryckelynck, K. Lampoh, and S. Quilicy. Hyper-reduced predictions for lifetime
assessment of elasto-plastic structures. Computational Micromechanics of Materials,
2015.

[185] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential
equations. Comptes Rendus Mathematiques, 339(9):666–672, 2004.

[186] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models
described by proper orthogonal decomposition. Proceedings of the IEEE Conference
on Decision and Control, 53(10):1767–1772, 2005.

[187] N.C. Nguyen, A.T. Patera, and J. Peraire. A best points interpolation method
for efficient approximation of parametrized functions. Internat. J. Numer. Methods
Engrg., 73:521–543, 2008.

[188] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT method for non-
linear model reduction: Effective implementation and application to computational
fluid dynamics and turbulent flows. Journal of Computational Physics, 242:623–647,
2013.

190

References

[189] C. Farhat, P. Avery, T. Chapman, and J. Cortial. Dimensional reduction of nonlinear
finite element dynamic models with finite rotations and energy-based mesh sampling
and weighting for computational efficiency. International Journal for Numerical
Methods in Engineering, 98(9):625–662, 2014.

[190] M. Yano and A.T. Patera. An LP empirical quadrature procedure for reduced basis
treatment of parametrized nonlinear PDEs. Computer Methods in Applied Mechanics
and Engineering, 344, 2018.

[191] J. Fauque, I. Ramiere, and D. Ryckelynck. Hybrid hyper-reduced modeling for
contact mechanics problems. International Journal for Numerical Methods in Engi-
neering, 115(1):117–139, 2018.

[192] S. Feld-Payet, J. Besson, and F. Feyel. Finite element analysis of damage in ductile
structures using a nonlocal model combined with a three-field formulation. Interna-
tional Journal of Damage Mechanics, 20(5):655–680, 2011.

[193] V. Davaze, N. Vallino, B. Langrand, J. Besson, and S. Feld-Payet. A non-local dam-
age approach compatible with dynamic explicit simulations and parallel computing.
International Journal of Solids and Structures, 2021.

[194] M. Yaghoobi, D. Wu, and M.E. Davies. Fast non-negative orthogonal matching
pursuit. IEEE Signal Processing Letters, 22:1229–1233, 2015.

[195] M. Bachmayr and A. Cohen. Kolmogorov widths and low-rank approximations of
parametric elliptic PDEs. Mathematics of Computation, 86(304):701–724, 2017.

[196] Angelo Iollo and Damiano Lombardi. Advection modes by optimal mass transfer.
Phys. Rev. E, 89:022923, Feb 2014.

[197] J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann. The Shifted Proper Or-
thogonal Decomposition: A mode decomposition for multiple transport phenomena.
SIAM Journal on Scientific Computing, 40(3):A1322–A1344, 2018.

[198] N. Cagniart, Y. Maday, and B. Stamm. Model order reduction for problems with
large convection effects. In: Chetverushkin B., Fitzgibbon W., Kuznetsov Y., Neit-
taanmäki P., Periaux J., Pironneau O. (eds) Contributions to Partial Differential
Equations and Applications. Computational Methods in Applied Sciences, 47, 2019.

[199] R. Zimmermann, B. Peherstorfer, and K. Willcox. Geometric subspace updates with
applications to online adaptive nonlinear model reduction. SIAM Journal on Matrix
Analysis and Applications, 39, 11 2017.

[200] T. Kim and D.L. James. Skipping steps in deformable simulation with online model
reduction. ACM Trans. Graph., 28(5):1–9, December 2009.

[201] M. Ohlberger and F. Schindler. Error control for the localized reduced basis multi-
scale method with adaptive on-line enrichment. SIAM Journal on Scientific Com-
puting, 37(6):A2865–A2895, 2015.

[202] W. He, P. Avery, and C. Farhat. In-situ adaptive reduction of nonlinear multiscale
structural dynamics models. arXiv preprint: 2004.00153, 2020.

191

References

[203] B. Peherstorfer and K. Willcox. Online adaptive model reduction for nonlinear
systems via low-rank updates. SIAM Journal on Scientific Computing, 37(4):A2123–
A2150, 2015.

[204] B. Peherstorfer. Model reduction for transport-dominated problems via online
adaptive bases and adaptive sampling. SIAM Journal on Scientific Computing,
42(5):A2803–A2836, 2020.

[205] P.A. Etter and K.T. Carlberg. Online adaptive basis refinement and compression
for reduced-order models via vector-space sieving. Computer Methods in Applied
Mechanics and Engineering, 364, 2020.

[206] D. Amsallem and C. Farhat. An online method for interpolating linear parametric
reduced-order models. SIAM Journal on Scientific Computing, 33(5):2169–2198,
2011.

[207] T. Lieu and M. Lesoinne. Parameter adaptation of reduced order models for three-
dimensional flutter analysis. AIAA Paper 2004-0888, 2004.

[208] T. Lieu, C. Farhat, and M. Lesoinne. POD-based aeroelastic analysis of a complete
F-16 configuration: ROM adaptation and demonstration. AIAA Paper 2005-2295,
2005.

[209] T. Lieu and C. Farhat. Adaptation of POD-based aeroelastic ROMs for varying
Mach number and angle of attack: Application to a complete F-16 configuration.
AIAA Paper 2005-7666, 2005.

[210] T. Lieu, C. Farhat, and M. Lesoinne. Reduced-order fluid/structure modeling of
a complete aircraft configuration. Computer Methods in Applied Mechanics and
Engineering, 195:5730–5742, 2006.

[211] T. Lieu and C. Farhat. Adaptation of aeroelastic reduced-order models and appli-
cation to an F-16 configuration. AIAA Journal, 45:1244–1257, 2007.

[212] D. Amsallem and C. Farhat. Interpolation method for adapting reduced-order mod-
els and application to aeroelasticity. AIAA Journal, 46(7):1803–1813, 2008.

[213] D. Amsallem, J. Cortial, and C. Farhat. Towards real-time computational-fluid-
dynamics-based aeroelastic computations using a database of reduced-order infor-
mation. AIAA Journal, 48(9):2029–2037, 2010.

[214] D. Amsallem, R. Tezaur, and C. Farhat. Real-time solution of linear computational
problems using databases of parametric reduced-order models with arbitrary under-
lying meshes. Journal of Computational Physics, 326:373 – 397, 2016.

[215] R. Mosquera, A. Hamdouni, A. El Hamidi, and C. Allery. POD basis interpolation
via Inverse Distance Weighting on Grassmann manifolds. Discrete and Continuous
Dynamical Systems, Series S., 12(6):1743–1759, 2018.

[216] R. Mosquera, A. El Hamidi, A. Hamdouni, and A. Falaize. Generalization of the
Neville-Aitken Interpolation Algorithm on Grassmann Manifolds : Applications to
Reduced Order Model. https://arxiv.org/pdf/1907.02831.pdf, 2019.

192

https://arxiv.org/pdf/1907.02831.pdf

References

[217] Y. Choi, G. Boncoraglio, S. Anderson, D. Amsallem, and C. Farhat. Gradient-based
constrained optimization using a database of linear reduced-order models. Journal
of Computational Physics, 423:109787, 2020.

[218] Y. Maday and B. Stamm. Locally adaptive greedy approximations for anisotropic pa-
rameter reduced basis spaces. SIAM Journal on Scientific Computing, 35(6):A2417–
A2441, 2013.

[219] S. Kaulmann and B. Haasdonk. Online greedy reduced basis construction using
dictionaries. 2012.

[220] M. Drohmann, B. Haasdonk, and M. Ohlberger. Adaptive reduced basis methods
for nonlinear convection–diffusion equations. volume 4, pages 369–377, 12 2010.

[221] M. Dihlmann, M. Drohmann, and B. Haasdonk. Model reduction of parametrized
evolution problems using the reduced basis method with adaptive time partitioning.
01 2011.

[222] J. Eftang, A. Patera, and E. Ronquist. An “hp” certified reduced basis method for
parametrized elliptic partial differential equations. SIAM J. Scientific Computing,
32:3170–3200, 09 2010.

[223] B. Haasdonk, M. Dihlmann, and M. Ohlberger. A training set and multiple bases
generation approach for parametrized model reduction based on adaptive grids in
parameter space. Mathematical and Computer Modelling of Dynamical Systems,
17:423–442, 08 2011.

[224] D. Amsallem, M. Zahr, and K. Washabaugh. Fast local reduced basis updates
for the efficient reduction of nonlinear systems with hyper-reduction. Advances in
Computational Mathematics, 41, 02 2015.

[225] S. Grimberg, C. Farhat, R. Tezaur, and C. Bou-Mosleh. Mesh sampling and weight-
ing for the hyperreduction of nonlinear Petrov-Galerkin reduced-order models with
local reduced-order bases. 08 2020.

[226] A. Buhr, L. Iapichino, and K. Smetana. 6 Localized model reduction for parameterized
problems, pages 245–306. De Gruyter, 2020.

[227] H. Proudhon, A. Moffat, I. Sinclair, and et al. Three-dimensional characterisation
and modelling of small fatigue corner cracks in high strength al-alloys. COMPTES
RENDUS PHYSIQUE, 13:316–327, 2012.

[228] A. Buljac, M. Shakoor, J. Neggers, M. Bernacki, P.O. Bouchard, L. Helfen, T.F.
Morgeneyer, and F. Hild. Numerical validation framework for micromechanical sim-
ulations based on synchrotron 3d imaging. Computational Mechanics, 59:419–441,
2017.

[229] N. Akkari, F. Casenave, and V. Moureau. Time Stable Reduced Order Model-
ing by an Enhanced Reduced Order Basis of the Turbulent and Incompressible
3D Navier–Stokes Equations. Mathematical and Computational Applications, 24(2),
2019.

[230] D. Ryckelynck, T. Goessel, and F. Nguyen. Mechanical dissimilarity of defects in
welded joints via Grassmann manifold and machine learning. Preprint, July 2020.

193

References

[231] A. Bjorck and G. Golub. Numerical methods for computing angles between linear
subspaces. Mathematics of Computation, 27:123, 07 1973.

[232] J. Conway, R. Hardin, and N. Sloane. Packing lines, planes, etc.: Packings in
grassmannian space. Experimental Mathematics, 5:139–159, 01 1996.

[233] D. Hua. A regularity result for boundary value problems on Lipschitz domains.
Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 5, 10(2):325–
333, 1989.

[234] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. Advances in Neural
Information Processing Systems, 3, 06 2014.

[235] N. Akkari, F. Casenave, M.E. Perrin, and D. Ryckelynck. Deep Convolutional Gener-
ative Adversarial Networks Applied to 2D Incompressible and Unsteady Fluid Flows,
pages 264–276. 07 2020.

[236] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. Smote: Synthetic minority
over-sampling technique. J. Artif. Intell. Res. (JAIR), 16:321–357, 01 2002.

[237] H. He, Y. Bai, E. Garcia, and S. Li. Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. pages 1322 – 1328, 07 2008.

[238] L. Adrian, R.J. Adrian, and J. Westerweel. Particle Image Velocimetry. Cambridge
Aerospace Series. Cambridge University Press, 2011.

[239] T. Chu, W. Ranson, and M. Sutton. Applications of digital-image-correlation tech-
niques to experimental mechanics. Experimental Mechanics, 25:232–244, 09 1985.

[240] H. Mueller. Theory of photoelasticity in amorphous solids. Physics, 6(6):179–184,
1935.

[241] U. Fey and Y. Egami. Transition detection by temperature-sensitive paint. volume
Chap. 7.4 of Handbook with DVD-ROM, pages 537–552. Springer Berlin, Heidelberg,
New York, 2007.

[242] K. Ye and L.H. Lim. Schubert varieties and distances between subspaces of different
dimensions. SIAM J. Matrix Anal. Appl., 37(3):1176–1197, 2016.

[243] J.L. Chaboche. A review of some plasticity and viscoplasticity constitutive theories.
International Journal of Plasticity, 24(10):1642 – 1693, 2008. Special Issue in Honor
of Jean-Louis Chaboche.

[244] H.G. Matthies, C.E. Brenner, C.G. Bucher, and C. Guedes Soares. Uncertainties in
probabilistic numerical analysis of structures and solids - Stochastic finite elements.
Structural Safety, 19(3):283 – 336, 1997. Devoted to the work of the Joint Committee
on Structural Safety.

[245] B. Sudret and A. Der Kiureghian. Stochastic finite element methods and reliability:
A state-of-the-art report. 01 2000.

194

References

[246] H.G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic
stochastic partial differential equations. Computer Methods in Applied Mechanics
and Engineering, 194(12):1295 – 1331, 2005. Special Issue on Computational Meth-
ods in Stochastic Mechanics and Reliability Analysis.

[247] B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Application of Hierarchical
Matrices for computing the Karhunen-Loève Expansion. Computing, 84(1–2):49–67,
2009.

[248] D. Amsallem, M. Zahr, Y. Choi, and C. Farhat. Design optimization using hyper-
reduced-order models. Structural and Multidisciplinary Optimization, 51:919–940,
04 2014.

[249] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[250] R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and
Physics. Princeton University Press, 1970.

[251] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Society for Industrial
and Applied Mathematics, 1995.

[252] Z. He, L. Xie, X. Chen, Y. Zhang, Y. Wang, and Q. Tian. Data augmentation
revisited: Rethinking the distribution gap between clean and augmented data. 09
2019.

[253] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8026–8037. Curran
Associates, Inc., 2019.

[254] M. Gonen and E. Alpaydin. Multiple kernel learning algorithms. Journal of Machine
Learning Research, 12:2211–2268, 07 2011.

[255] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, Jul 2017.

[256] C. Bovet, A. Parret-Freaud, N. Spillane, and P. Gosselet. Adaptive multiprecondi-
tioned FETI: Scalability results and robustness assessment. Computers and Struc-
tures, 193:1 – 20, 2017.

[257] C. Scarth et al. Random field simulation over curved surfaces: Applications to
computational structural mechanics. Comput. Methods Appl. Mech. Engrg., 2018.

[258] J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou. The discrete geodesic prob-
lem. SIAM Journal on Computing, 16(4):647–668, 1987.

195

References

[259] V. Surazhsky, T. Surazhsky, D. Kirsanov, S.J. Gortler, and H. Hoppe. Fast exact
and approximate geodesics on meshes. ACM Trans. Graph., 24(3):553–560, 2005.

[260] R. J. Asaro. Crystal Plasticity. Journal of Applied Mechanics, 50(4b):921–934, 12
1983.

[261] L. Meric, P. Poubanne, and G. Cailletaud. Single crystal modeling for structural
calculations: Part 1 - Model presentation. Journal of Engineering Materials and
Technology, 113(1):162–170, 01 1991.

[262] F. Gallerneau. Etude et modelisation de l’endommagement d’un superalliage
monocristallin revetu pour aube de turbine. PhD thesis - Mines ParisTech, 1995.

[263] F. Gallerneau, D. Nouailhas, and J.L. Chaboche. A fatigue damage model including
interaction effects with oxidation and creep damages. Fatigue’ 96: Proceedings of
the Sixth International Fatigue Congress, 2:861–866, 01 1996.

[264] I. Borg and P. Groenen. Modern multidimensional scaling - Theory and applications.
2nd edition, Springer-Verlag, 2005.

[265] J. de Leeuw. Applications of convex analysis to multidimensional scaling. in JR
Barra, F Brodeau, G Romier, B van Cutsem (eds.), Recent Developments in Statis-
tics, pages 133–145, 1977.

196

ABSTRACT

Uncertainty quantification in computational physics requires running many

simulations. For some industrial applications, the complexity of the numerical model is

incompatible with the number of simulations to be run. Solving physics equations in a

reduced computation time is therefore essential for the design of safe and reliable systems.

In this thesis, we propose a new numerical method combining model order reduction and

machine learning to compute an approximate solution of a stochastic partial differential

equation in a reasonable computation time. With this method, the mechanical behavior of

an aircraft engine’s component is predicted 636 times faster than with the original high-

fidelity model with less than 3% of errors, which enables quantifying the uncertainties

generated by the thermal loading.

MOTS CLÉS

Apprentissage statistique, Réduction de modèle, Simulation numérique.

RÉSUMÉ

La quantification d’incertitudes dans les simulations numériques requiert de lancer

un grand nombre de calculs. Pour certaines applications industrielles, la complexité des

modèles physiques utilisés est incompatible avec le nombre de simulations requises.

Accélérer la résolution d’équations décrivant un problème physique donné est essentiel

dans l’optique de concevoir des systèmes fiables et sûrs. Dans cette thèse, nous

proposons une nouvelle méthode combinant la réduction de modèle et l’apprentissage

statistique pour prédire rapidement une solution approchée d’une équation aux dérivées

partielles stochastique. Le comportement mécanique d’une pièce d’un turboréacteur a

ainsi pu être calculé 636 fois plus vite qu’avec le modèle haute-fidélité d’origine avec moins

de 3% d’erreur, ce qui a permis de quantifier les incertitudes engendrées par la thermique.

KEYWORDS

Machine learning, Model order reduction, Numerical simulations.

	I Introduction
	Introduction
	Motivations
	Computational physics assisted by artificial intelligence
	Main contributions

	II Machine learning methods
	General and theoretical concepts
	What is machine learning?
	Basic concepts
	Probability theory
	Estimation theory
	Information theory

	Mercer kernels
	Mercer's theorem and Karhunen-Loève expansion
	Application to random field simulation
	The kernel trick

	Uncertainty quantification in high-fidelity models
	The concept of nonparametrized variabilities
	Design of numerical experiments
	Monte Carlo simulations
	Uncertainty propagation example in nonlinear solid mechanics

	Unsupervised learning
	The curse of dimensionality
	Dimensionality reduction
	Cluster analysis
	Clustering algorithms
	K-medoids clustering

	Supervised learning
	Empirical risk minimization
	Regression algorithms
	Penalized linear regression and kriging
	Hyperparameters tuning

	Classification algorithms
	Generative classifiers
	Logistic regression
	k-nearest neighbors classifier
	Tree-based classifiers
	Support vector classifiers
	Artificial neural networks

	Ensemble learning
	Voting and averaging
	Other ensemble methods

	Classification in computational physics
	Feature selection based on mutual information
	Introduction to feature selection
	mRMR feature selection

	III Nonlinear model order reduction
	Projection-based model order reduction
	Parametrized partial differential equations
	Model order reduction techniques
	Data compression
	The Proper Orthogonal Decomposition
	The POD Galerkin method

	Operator compression
	Hyper-reduction
	The Empirical Cubature Method
	Dual variable reconstruction

	Non-reducible problems
	Kolmogorov widths
	Strategies for non-reducible problems

	IV ROM-nets
	Preliminaries about ROM-nets
	ROM-nets
	Dictionary-based ROM-nets
	Overview of the training procedure

	Physics-informed clustering procedure
	Drawbacks of the Euclidean distance
	The dissimilarity measure
	Definitions and general properties
	Case n=1

	Optimal partitions of the solution manifold
	Normalized Kolmogorov width variant
	Optimal K-N-ROM-dictionary partitions
	Optimal K-1-ROM-dictionary partitions
	Algorithm for the construction of a dictionary of local ROMs

	Snapshots selection
	Application: 1D steady heat equation
	Problem description
	Comparison of different model order reduction strategies

	Summary

	Hyperparameters tuning
	Gain with respect to a global reduced-order model
	Practical method
	Back to the 1D steady heat equation

	Classification for automatic model recommendation
	Challenges to be addressed
	Test case
	Feature selection
	A geostatistical variant of mRMR feature selection
	Numerical results

	Data augmentation
	Pure sets
	The data augmentation algorithm
	Numerical results

	Validation of our feature selection and data augmentation algorithms
	Classification performances of various classifiers
	Comparison with a CNN
	How to further improve classification performances?

	Applicability to other problems

	V Application to an industrial problem
	Industrial context
	HP turbine blades in an aircraft engine
	Thermomechanical fatigue of HP turbine blades
	Industrial test case and objectives

	Model and assumptions
	Modeling assumptions
	Stochastic model for the thermal loading
	Mechanical constitutive model

	ROM-net's training phase
	Design of numerical experiments
	ROM dictionary construction
	Clustering
	Construction of local ROMs

	Automatic model recommendation
	Feature selection
	Classification

	Surrogate model for Gappy reconstruction
	Summary

	ROM-net's exploitation phase
	Uncertainty quantification results
	Validation

	Conclusion
	References

