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Titre : Etude d’approximations de problemes de transport optimal et application
a la physique

Résumé : Le transport optimal (TO) a de nombreuses applications; mais son
approximation numérique est complexe en pratique. Nous étudions une relaxation
du TO pour laquelle les contraintes marginales sont remplacées par des contraintes
de moments (TOCM), et montrons la convergence de ce dernier vers le probleme OT.
Le théoreme de Tchakaloff nous permet de montrer qu'un minimiseur du probleme
TOCM est une mesure discrete chargeant un nombre fini de points, qui, pour les
problemes multimarginaux, est linéaire en le nombre de marginales, ce qui permet de
contourner le fléau de la dimension. Cette méthode est aussi adaptée aux problemes
de TO martingale. Dans certains cas importants en pratique, nous obtenons des
vitesses de convergence en O(1/N) ou O(1/N?), ou N est le nombre de moments,
ce qui illustre leur role.

Nous présentons un algorithme, basé sur un processus de Langevin sur-amorti
contraint, pour résoudre le probleme TOCM. Nous prouvons que tout minimiseur
local du probleme TOCM en est un minimiseur global. Et illustrons ’algorithme
sur des exemples de larges problemes TOCM symétriques.

Dans la seconde partie de la these, nous étendons une méthode (E. Cances et
L.R. Scott, STAM J. Math. Anal., 50, 2018, 381-410) pour calculer un nombre
arbitraire de termes dans la série asymptotique de l'interaction de van der Waals
entre deux atomes d’hydrogene. Ces termes sont obtenus en résolvant un ensemble
d’EDP de Slater—Kirkwood modifiées. La précision de cette méthode est montrée
par des exemples numériques et une comparaison avec d’autres méthodes issues de
la littérature. Nous montrons aussi que les états de diffusion de I'atome d’hydrogene
ont une contribution majeure au coefficient Cg de la série de van der Waals.

Mots-clefs : Transport Optimal, Transport Optimal multimarginal, Transport
Optimal martingale, Processus de Langevin sur-amorti contraint, coefficients de
dispersion de van der Waals, schéma de Galerkin.



Title: Study of approximations of optimal transport problems and application to
physics

Abstract: Optimal Transport (OT) problems arise in numerous applications. Nu-
merical approximation of these problems is a practical challenging issue. We inves-
tigate a relaxation of OT problems when marginal constraints are replaced by some
moment constraints (MCOT problem), and show the convergence of the latter to-
wards the former. Using Tchakaloff’s theorem, we show that the MCOT problem is
achieved by a finite discrete measure. For multimarginal OT problems, the number
of points weighted by this measure scales linearly with the number of marginal laws,
which allows to bypass the curse of dimension. This method is also relevant for
Martingale OT problems. In some fundamental cases, we get rates of convergence
in O(1/N) or O(1/N?) where N is the number of moments, which illustrates the
role of the moment functions.

We design a numerical method, built upon constrained overdamped Langevin
processes, to solve MCOT problems; and proved that any local minimizer to the
MCQOT problem is a global one. We provide numerical examples for large symmet-
rical multimarginal MCOT problems.

We extend a method (E. Cances and L.R. Scott, SIAM J. Math. Anal., 50, 2018,
381-410) to compute more terms in the asymptotic expansion of the van der Waals
attraction between two hydrogen atoms. These terms are obtained by solving a set
of modified Slater-Kirkwood PDE’s. The accuracy of the method is demonstrated
by numerical simulations and comparison with other methods from the literature.
We also show that the scattering states of the hydrogen atom (the ones associated
with the continuous spectrum of the Hamiltonian) have a major contribution to the
Cg coefficient of the van der Waals expansion.

Keywords: Optimal Transport, Multimarginal Optimal Transport, Martingale
Optimal Transport, Constrained Overdamped Langevin process, van der Waals dis-
persion coefficients, Galerkin scheme.
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Résumé substantiel:

Le travail de cette these se concentre sur deux problemes rencontrés en chimie quan-
tique, et plus spécifiquement pour des applications concernant les calculs de structure
électronique des molécules.

Une premiere partie de ce travail concerne des résultats théoriques sur une
méthode pour calculer la fonctionnelle de Levy-Lieb dans la limite des électrons
strictement corrélés (SCE) en Théorie de la Fonctionnelle de Densité (DFT). Pour
une densité électronique donnée, la limite SCE de la fonctionnelle de Levy-Lieb est
un probleme de transport optimal multimarges symétrique avec un cotit de Coulomb,
ou le nombre de marginales est égal au nombre d’électrons dans le systeme, qui
peut étre tres large dans les applications considérées. Une des contributions de
cette these est I'étude théorique et numérique d'une méthode numérique pour la
résolution de ce probleme de transport optimal, qui consiste en la relaxation des
contraintes marginales en un nombre fini de contraintes de moments. En particulier,
nous prouvons que les minimiseurs de ce probléeme approché existent et que certains
d’entre eux peuvent étre écrits comme chargeant un nombre fini de points, qui croit
linéairement avec le nombre de marginales. Ceci est exploité pour la conception
d’algorithmes efficaces pour la résolution de ce probleme approché et des résultats
numeériques illustrent la performance de I’algorithme proposé, qui utilise un proces-
sus de Langevin sur-amorti contraint. La méthode numérique proposée peut étre
utilisée pour résoudre d’autres types de problemes de transport optimal multimarges
ainsi que des problemes de transport optimal martingale venant d’applications fi-
nancieres.

Une seconde contribution de cette these s’intéresse a une méthode de pertur-
bations et un développement en série asymptotique afin de calculer la fonction
d’onde électronique dans I'approximation de Born-Oppenheimer de deux atomes
d’hydrogene a grande distance. Ce travail étend un article de E. Canceés et L.R. Scott
[78] et fournit une méthode itérative pour calculer les coefficients de dispersion de
I'interaction de van der Waals a un ordre arbitraire pour deux atomes d’hydrogene.

Transport Optimal La théorie du transport optimal a été d’abord formulée par
Monge en 1781 dans [260]. Son intérét a été croissant dans le seconde moitié du
XXe¢ siecle apres I'introduction de sa formulation relaxée par Kantorovich dans [189)
et sa résolution numérique par la programmatin linéaire par Dantzig [115, [116].
Depuis la fin du XX¢ siecle, des progres ont été fait dans I’étude de ses propriétés
mathématiques par Brenier [57), [59], Gangbo [149] et McCann [150, I51], et de ses
connections avec I’équation de Monge-Ampere (voir Caffarelli dans |72} [73, [74]). Les
travaux suivants, incluant ceux de Otto [I87, [264], Caffarelli [71], Villani [318] [319],
Ambrosio et Savaré [12] et Figalli [135] 137, [138] ont encore développé cette théorie.

Transport Optimal multimarges Soit M € N* et pour tout 1 < ¢ < M,
soit X; = R% avec d; € N*. Nous considérons M mesures de probabilité p;, €
P(Xy),....pups € P(Xyr) et une fonction de cott semi-continue inférieurement c :
Xy X .o X Xy — Ry U{oo}.

Le probleme de transport optimal multimarges est défini par

I = inf {/ C(Z’l,...,ZL’M)d']T(fL’l,~-~7$M)}a (1)
eI (1, fins) X1 X XX
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ou

H(/,Ll, ,/JJM) = {71' S P(Xl X ..o X XM>

t.q.V1 <1 < M, dT(:dﬂi}.

X1><'~~><Xi_1 XXi+1X'~~><X]V[

Un tel probleme apparait en chimie quantique, objet de I'application de cette
these ainsi qu’en mécanique des fluides [43] et en science des données [232].

D’un point de vue théorique, ces problemes ont été grandement étudiés par les
mathématiciens [49, 161, 274], avec la caractérisation de mesures optimales [152]
258, 259, 270], si elles peuvent étre de type Monge [195, 269] ou non [141]. Il y a
aussi des études de ce probleme pour des couts particuliers [I5§], dans le cas
symétrique [162] ou son utilisation comme métrique [254].

Des extensions du probleme (1) comme le transport optimal multimarges partiel
[198], avec un nombre infini de marginales [271] ou sur une variété Riemanienne
[196] ont aussi été étudiées, ainsi que ses connections avec des systémes d’équations
[208, 163], les couplages multi-agents [273] and et les effets de quantification [53].

Transport Optimal martingale Nous introduisons dans ce paragraphe le trans-
port optimal martingale dans le cas avec deux marginales. Nous supposons que
X =Y =R%avec d € N*, et considérons deux mesures de probabilités p, v € P(R?)
telles que

lyldr(y) < oo
]Rd

et u est plus petite que v dans I'ordre convexe, i.e.

[ e@anta) < [ stuaviy). ¢

R4

pour toute fonction convexe ¢ : R¢ — R positive et intégrable par rapport a u et
v. Cette derniere condition est équivalente, d’apres le théoreme de Strassen [311], &
I’existence d'un coupage martingale entre p et v, i.e.

Ir € (p, v), Yo € R, / ydr(z,y) = .
Rd

Le probleme de transport optmal martingale consiste alors en la résolution du
probléeme de minimisation

inf { / c(x,y>d7r<x,y>}, 3)
mell(p,v) RdxRd

VaeR?, [oq ydm(z,y)=a

otts ¢ : R x R? — R, U {oo} est une fonction de cofit semi-continue inférieurement.

Ces problemes sont difficiles a résoudre d’un point de vue numérique car leur
discrétisation par les méthodes classiquement utilisées pour les problemes de trans-
port optimal a deux marginales ont une complexité exponentielle en le nombre de
marginales.
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Partie I : Etude de Papproximation de problemes de transport opti-
mal par des problemes de transport avec contraintes de moments Une
premiere contribution de cette these a été d’introduire une relaxation du probleme
de transport optimal multimarges ou martingale pour laquelle les con-
traintes marginales et martingales sont relaxées en des contraintes de moments.
Plus précisément, pour chaque loi marginale p;, nous choisissons N fonctions tests
¢£f) X >R (1<i<M,1<n<N),leprobleme de transport optimal approché
par des contraintes de moments s’écrit alors

N .
N = " inf - {/ c(xl,...,xM)dﬂ(xl,...,:UM)},
TEM (1, tint3(Dr ) 1<n< Nyeos (P ' )1<n<N) X1 X XX

(4)

ou

II (,Ula -eey MM (¢511))1§n§N7 BRI (¢;M))1§n§N) =
{7T € P(Xl X ... X XM)th1 < 1 S ]\47 V1 S n S N,

/ 6D (z)dm (1, - Tar) = / ¢5§>dui} .
X1><~"XX1\/[ X;

Nous prouvons le théoreme suivant

Théoreme 0.1. Sous des hypothéses appropriées sur les fonctions tests et des con-
traintes techniques additionnelles, nous avons que

m — I(v).
N—+o00

De plus, il existe au moins un minimiseur 7 € P(Xy X -+ x Xyy) @ qut s’écrit

K
N _ E
ﬂ- - wké(xlf7"7w§\/[)
k=1

pour un certain 1 < K < NM+42, et certains wy, > 0 et (x]f, . ,xﬂ) e Xy x---xXuy
pour tout 1 < k < K.

L’existence de ce minimiseur discret chargeant un faible nombre de points est
intéressant d’un point de vue numérique car cela permet de concevoir une méthode
numérique qui peut calculer une approximation du transport optimal multimarges
avec un nombre de scalaires qui croit linéairement avec le nombre de lois marginales,
ce qui casse le fléau de la dimension posé par les problemes multimarges.

Nous établissons de plus qu'une telle relaxation s’applique aussi a la contrainte
martingale du transport optimal multimarges martingale et avons dans ce cas des
résultats de convergence analogues. Enfin, ce probleme approché a un intérét parti-
culier en finance dans la mesure ou les fonctions de moments permettent de prendre
seulement en compte 'information disponible sur les mesures de probabilité con-
sidérées.

De plus, nous étudions aussi pour des classes particulieres de fonctions tests,
dans certains cas fondamentaux, la vitesse de convergence du probleme approché
() vers , illustrant 'influence du choix des fonctions tests sur I’approximation.
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Calculs de structure électronique de molécules Dans l'approximation de
Born-Oppenheimer, une molécule est un systeme composé de

e M € N* noyaux qui sont connsidérés comme des particules ponctuelles clas-
siques et dont les positions sont notées Ri,---,Ry € R? et leur charge
électrique 21, -, Zy € N¥,

e N électrons qui sont modélisés comme des particules quantiques et dont 1'état
est décrit par une fonction

- R3N — C
| (2, zNy) = W(x, . TN,
appelée fonction d’onde du systeme d’électrons.

Afin d’alléger les notations, nous omettons les variables de spin. En effet, dans
les deux parties de cette these, ou bien la dépendance en le spin peut étre séparé
de celle en les positions (seconde contribution), ou bien elle disparait dans la limite
semiclassique considérée (troisieme contribution).

L’interprétation physique d’une fonction d’onde v est la suivante: étant donné un
ensemble A C R*V, [ |1)|? représnete la probabilité que les positions des N électrons
appartiennent & 1’ensemble A. En particulier, ceci implique que ||9]|7, (BIN) = 1. De
plus, la fonction d’onde ¢ est antisymétrique par rapport a ses variables. C’est une
conséquence du fait que les électrons sont des fermions. Plus précisément, en notant
Sy lensemble des permutations de I'ensemble {1,..., N}, nous avons que pour tout
p € Sy et tout (z1,...,zy) € R3Y,

(), -5 Tpvy) = €(P)Y (@, - TN),
ou €(p) est la signature de p.

L’énergie E[1)] d'un systéeme de N électrons dont 1’état est décrit par une fonction
d’onde v dans la molécule décrite ci-dessus est la somme de trois contributions :

e 'énergie cinétique:
1
Tli= [ VP
R3N

e I’énergie de Coulomb associée aux interactions entre les électrons et les noyaux :

Cnuc[ /RSN <ZVnuc X; ) ’¢($17...,IN>|2d1’1-.. dI’N,

where, for all z € R3,

nuc § ;
|.17 - Rk
e l'énergie de Coulomb associée aux interactions entre les électrons :

Cetec[V] ::/ c(xy, ... ,xN)|¢(x1,...,xN)|2 dzy ... dzvy,
R3N

oll pour presque tout (zy,...,xy) € RV,
1
c(xy,...,xN) = Z R —
1<i<j<N i — ]



Calculer I’état fondamental des électrons dans la molécule revient a calculer la
fonction d’onde 1)y qui minimise I’énergie du systeme parmi toutes les fonctions
d’onde admissibles. Plus précisément, notons

A={y e LA(R*Y), Vo € L2 (R*M)*N | 4 antisymmetric, 9]l z2gsny = 1}

I’ensemble de fonctions d’ondes associées a un systeme de N electrons avec une
énergie cinétique finie. Alors, nous avons que

U(Ry, -+, Ry) = glelﬁTW] + Chuc[tV] + Cetec[V], (5)
ol nous avons signalé la dépendance de la valeur de cet infimum en la position des
noyaux de la molécule Ry, -+, Ry;. Soit H := —%A + Zf\; Ve (%) + (1, -+ ,xN)
que l'on appelle opérateur de Schrodinger a plusieurs corps. L’opérateur H est
auto-adjoint, borné inférieurement, et opérateur sur

L2

antisym

(R3N) .= {o € L*(R*), 1 antisymmetric}

avec pour domaine

Hsmisym(RBN) = {yp € H*(R*), v antisymmetric}.
Notons aussi
Halntisym(RgN) = {yp € H'(R*), v antisymmetric}.
Dans le cas ou U(Ry,-- -, Ry) :=inf o(H) est une valeur propre discrete de H

(ce qui arrive par exemple quand la molécule est neutre ou chargée positivement
d’apres le théoréme de Zhislin [326]), il existe au moins un minimiseur ¢ & (), et
tout minimiseur est nécessairement un vecteur propre de H associé a la valeur propre

U(Ry, -+, Ry). Ainsi, résoudre le probléme de Schrodinger électronique revient a
résoudre un probleme aux valeurs propres linéaire de grande dimension de la forme
HwOZU(Rla"' 7RM)¢O‘ (6)

Seconde contribution de cette thése : interactions de van der Waals
entre deux atomes d’hydrogene Bien que pour de grandes valeurs de N et
M des approximations et des méthodes numériques sont nécessaires pour évaluer
U(Ry,--+, Ry ), pour de petits systemes, des techniques analytiques peuvent per-
mettre de résoudre ’équation de Schrodinger.

C’est le cas lorsque l'on considere les intéractions électroniques en entre deux
atomes hydrogene a grande distance. Ces interactions sont appelées interactions
de van der Waals, sont attractives et jouent un role important dans les systemes
en phase condensée tels que les molécules biologiques [21), 288] ou les matériaux 2D
[153]. Etudiées depuis 1873 [317], elles ont d’abord été comprises mathématiquement
par London [238]. Dans le cas de deux atomes d’hydrogene, Slater et Kirkwood [309]
ont amené une équation aux dérivées partielles qui permet de calculer les coefficients
de dispersion de I'énergie dans la limite des grandes distances (qui décroit en —Cf/R®
au premier ordre, ot R est la distance entre les noyaux). Cances et Scott dans [7§]
ont modifié leur technique et ont prouvé que le probleme qu’ils ont proposé est bien
posé et a I’aide d’une approximation de Galerkin ont calculé le coefficient Cg.

Une extension de la technique de Cances et Scott a été étudiée pendant cette
these afin de calculer les coefficients de dispersion de van der Waals a n’importe
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quel ordre. Cette technique repose sur une méthode de perturbation afin d’analyser
le développement en série asymptotique de 'attraction de van der Waals ainsi que
sur une séparation des interactions entre une partie radiale et une partie angulaire
ce qui ramene le probleme original en six dimensions a des équations aux dérivées
partielles en deux dimensions. Les coefficients de dispersion peuvent enfin étre
calculés récursivement par des approximations de Galerkin; les valeurs calculées avec
cette méthode sont en accord avec celles de [204], 265] pour lesquelles les auteurs ont
utilisé d’autres techniques.

Theorie de la fonctionnelle de la densité La grande dimensionalité de I’équation
@ la rend difficile a résoudre d’'un point de vue numérique par des méthodes stan-
dard dans le cas ou N est grand, en particulier pour des systéemes d’électrons forte-
ment corrélés ou les interactions coulombiennes entre les noyaux jouent un role
important.

Le principe de la Théorie de la Fonctionnelle de la Densité (DFT), et de tous
les modeles qui en sont dérivés est une reformulation du probleme ou la densité
(et non plus la fonction d’onde) est la variable principale. Le principal avantage de
cette méthode est que le probleme est maintenant formulé sur le domaine R? plutot
que R3V,

La justification théorique des modeles de DFT a été introduite par Hohenberg et
Kohn [I82], puis par Levy [225] et complétée par Lieb [229]. En effet, le théoreme
de Hohenberg-Kohn [182] dit que 'énergie de la densité électronique de 1'état fon-
damental du probleme électronique peut étre trouvée en résolvant un probleme
de la forme

U(le-wRM)zinf{F(pH/ pV,pGLl(R?’),/p:N},
R3 R3

ou F' est une fonctionnelle de la densité électronique p. Plus précisément, la DF'T
repose sur le calcul suivant [182] 229]:

U(Rh" . ,RM) = inf{@beaﬂvwe)’ ¢e € A}
= inf {inf{<¢e7H1¢e>a % € A7 Ppe = p} +/ /0‘/7 pEe IN}
R3

:1nf{FLL(,0)+/ pV, pGIN}7
R3

ou Zy est I'ensemble des densités électroniques associées a des fonctions d’onde
admissible et qui peut s’écrire [229]

IN:{pZO, Vp € H(R?), /Rsp:]\f}.

et ou

Fri(p) := inf {(e, Hithe), Ye € A, py, = p}
est appelée la fonctionnelle de Levy-Lieb. Cette fonctionnelle est universelle au sens
ou elle ne dépend pas du systeme moléculaire étudié (qui n’intervient qu’a travers
le potentiel V' et le nombre d’électrons V). De facon équivalente, la fonctionnelle
de Levy-Lieb peut étre réécrite

FLL(p) = {TW}] + Celec[w]7 ¢ S A7 Py = p} :

Cette théorie est attrayante, toutefois en pratique, le calcul exact de Fi1(p) est hors
de portée dans la mesure ou il nécessite la résolution d’un probleme aussi complexe
que le probleme de Schrodinger électronique original.
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Limite semi-classique de la fonctionnelle de Levy-Lieb L’une des approxi-
mations, suggérée par des chimistes théoriques dans [302] B04], consiste a regarder
la limite semi-classique ou celle des électrons strictement corrélés (SCE) de la fonc-
tionnelle de Levy-Lieb, afin de 'utiliser pour concevoir des modeles approchant la
DFT pour les systemes fortement corrélés. Cette limite semi-classique est la limite
lorsque « tend vers 0 de la fonctionnelle F}; définie comme suit pour tout p € Zy
et0<a<l:

FSL(p) = {O‘TW)] + Celec[w]a ,4/} € A? Py = p} .

Dans cette limite semi-classique, l'influence du terme d’énergie cinétique T'[¢)] est
alors négligé par rapport aux contributions dues au terme d’interactions coulom-
biennes électron-électron Cepec[t)]. Il a été rigoureusement prouvé par une série de
travaux [106}, 107, 226] que la limite lorsque « tend vers 0 de la fonctionnelle F?; (p)
s’écrit comme un probléeme de transport optimal multimarges avec coiut de Coulomb.
Plus précisément, pour tout p € Zy, notons v, la mesure de probabilité sur R?
définie par dv,(z) = &]\f)dm et Peym(R3*Y) I'ensemble des mesures de probabilité
symétriques sur R*V. Pour tout v € Psym (R3N), notons fi~ la mesure de probabilité
sur R? définie comme la marginale de 7, i.e.

d,u'y(x) ::/ drY('I?J;Qv"'uxN)'
(z2,...,z N )ER3N 1)

Des travaux de Buttazzo, De Pascale et Gori Giorgi [67], Cotar, Friesecke et
Kliippelberg [106] pour des preuves pour N = 2 et avec Mendl et Pass [142], Bindini
et De Pascale [50] étendus par Lewin [226] pour N > 2 dans le cas des états mixes
fermioniques et Cotar, Friesecke et Kliippelberg [I07] pour N > 2, ont prouvé, en
utilisant un lissage approprié des plans de transport que dans la limite semi-classique

lim Ff, (o) = 1(v,).

a—0

oll pour toute mesure de probabilité v sur R3,

I(v) = inf / cdy. (7)

Hy =V

Troisieme contribution de cette these : Développement d’un nouvel algo-
rithme numérique pour des problemes de transport optimal multimarges
symétriques Une troisieme contribution de cette these est de proposer et analyser
d’un point de vue mathématique une nouvelle méthode pour approcher le probleme
de transport optimal multimarges symétrique . Dans cette approche, nous con-
sidérons toujours 'espace d’états continus R3, mais les contraintes marginales appa-
raissant dans sont relaxées en un nombre fini de contraintes de moments. C’est
un cadre dans lequel les résultats introduits en premiere contribution s’appliquent
et peuvent étre symétrisés, permettant des gains de complexités additionnels.

Par simplicité, nous présentons nos résultats ci-apres dans le cas ou le support
de la mesure v est inclus dans un ensemble compact Y C R?. Soit (f,)men C C(Y),
vérifiant I’hypothese de densité naturelle suivante

Vfecy), inf If =gl — 0,
gMGSpa:n{fly--wa} Moo
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et considérons le probleme de transport optimal approché avec contraintes de mo-
ments

™(v) = inf ix / cdy. (8)
7 € Poym(R™), RN
Vi<m< M,

N
fRSN (% Zi:l fm(xz)> d/y(xla s 7:EN) = fRB fm dv
Nous avons prouvé le théoreme suivant, ott P(R?*Y) est I'ensemble des mesures de
probabilités sur R*Y (non nécessairement symétriques).
Théoreme 0.2. Sous les hypothéses précédentes, nous avons que

™) vl I(v).

De plus,
™) = inf / cdy, (9)
v € P(R?), RN
Vi<m< M,

Srsw (3 250 fnlw0)) dy(ans . son) = fyo frn v

et il existe au moins un minimiseur Y™ € P(R3Y) q (@ qut s’écrit

K
P =D Wit )
k=1

our un ceritain ~ ~ + et certains wy = et \r{,..., T c our tou
P tain 1 < K < M +2, et certai >0 et (2f,....2%) € YN pour tout
1 <k < K. De plus,

K
1
M e
EXRyPIP BLLE

peESN k=1
. P T M .. .
la version symétrisée de v, est un minimiseur de @

Le théoreme établit deux choses : (i) il est possible de retirer la contrainte
de symétricité de la mesure v dans le probleme (8) pour calculer I (v); (ii) il existe
un minimiseur de @ qui s’écrit comme une mesure discrete chargeant un faible
nombre de points (moins de M +2), et un minimiseur a peut étre obtenu comme
le symétrisé de cette mesure discrete. En particulier, ceci signifie qu’il est suffisant
d’identifier au plus O(N M) scalaires pour calculer . Ceci suggere que considérer
le probléme d’optimisation suivant pour le calcul de I (v), puisque

M+2
™) = min o Z wie(zh, ... ok). (10)
(wi)1<k<rry2 € RYTS, k=1
M+2
k=1 Wk =1,

(zf,...,2%) e YN, VI<k<M+2,
S wn (S @) = fyo Sl

L’utilisation de cette structure parcimonieuse pour la conception de méthode
numeériques pour la résolution de a été 'objet de cette these. Nous prouvons
en particulier que tout minmiseur local de (10) en est un minimseur global . De
plus, la méthode numérique proposée pour la résolution de ce probleme utilise un
processus de Langevin sur-amorti contraint, et cela permet de résoudre un probleme
de transport optimal multimarges symétrique ayant 100 marginales, ce qui est plus
large que I'état de ’art pour ce type de problemes.
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Chapter 1

Introduction



1.1 Introduction

The work of this thesis focuses on two mathematical problems arising from quantum
chemistry, and more specifically from applications concerning electronic structure
calculations of molecules.

A first part of this work concerns some theoretical results about a numerical
method for computing the so-called strictly correlated electrons (SCE) limit of the
so-called Levy-Lieb functional in Density Functional Theory (DFT). For a given
electronic density, the SCE limit of the Levy-Lieb functional gives rise to a symmetric
multi-marginal optimal transport problem with Coulomb cost, where the number of
marginal laws is equal to the number of electrons in the system which can be very
large in relevant applications. One contribution of this thesis is the theoretical and
numerical study of a numerical method for the resolution of this optimal transport
problem, which consists in relaxing the marginal constraints into a finite number
of moment constraints. In particular, it is proved that minimizers to the resulting
approximate optimization problem exist and that some of them can be written as
discrete measures charging a low number of points, which scales linearly with the
number of electrons. This can be exploited for the design of efficient algorithms
for the resolution of such approximate problems. Numerical results illustrate the
performance of the proposed numerical method, which makes use of constrained
overdamped Langevin dynamics. The proposed numerical method can be used for
the resolution of other types of multi-marginal optimal transport problems, including
problems with martingale constraints arising from finance applications.

A second contribution of the thesis focuses on a perturbation method and asymp-
totic expansion to compute the electronic wavefunction in the Born-Oppenheimer
approximation of two hydrogen atoms at large distance. This work extends an article
by E. Cances and R. L. Scott [78], and provides an iterative method to compute van
der Waals dispersion coefficients up to an arbitrary order for two hydrogen atoms.

This introductory chapter is structured as follows: an introduction on optimal
transport theory, its applications and existing numerical methods in the general
case is given in Section [I.2] Section presents an introduction on electronic
structure calculation problems for molecules in quantum chemistry, in particular for
the electronic Schrodinger many-problem together with its link to van der Waals
interactions, and the Density Functional Theory. In this section are also presented
the links between optimal transport problems and the SCE limit of the so-called
Levy-Lieb functional, together with the main contributions of this thesis.

1.2 Introduction to optimal transportation

Optimal transport theory has been first formulated by Monge in 1781 in [260]. Its
interest has been increasing in the second half of XX century after the introduction
of its relaxed formulation by Kantorovich in [I89] and its numerical solution by
linear programming by Dantzig [I15, [I16]. From the end of the XX century,
progress was made in the study of its mathematical properties by Brenier [57, 59],
Gangbo [149] and McCann [150, 151], and of its connection with Monge-Ampere
equation (see Caffarelli in [72] [73, [74]). Latter works including the one of Otto [I87,
264], Caffarelli [71], Villani [318| 319], Ambrosio and Savaré [12] and Figalli [12] 137,
138] developped this theory further.

Optimal transport has a wide range of applications, and we refer the reader to



the review articles [283] 284]. Different points of views can be cast on this family of
problems, depending on the types of applications one considers.

First, a “transport” point of view allows computing given a starting distribution
and an end distribution, a way of transporting the first one on the last one which
is optimal relative to some physical cost or constraints. This can be leveraged in
the planning of cities [69, [80] and urban network [6§], the study of crowd motion
[65], 216, 293] as well as in fluid mechanics [39, 43 56, 58, 60, 61] or propagation
through porous media [87] and even for the reconstruction of initial conditions of
the universe [62] 144].

A second point of view on optimal transport is to consider this theory as a
mean to compute metrics between two probability distributions (for instance the
Wasserstein distance). This approach is used in computer vision and image analysis
[23, 131 [176, 203, 24T, 242, 282, 289, 294, 298|, signal analysis [202, B15], shape
matching or reconstruction [117, 132, 239, 312] and data science and machine learn-
ing (for instance for linguistics or Wasserstein Generative Adversarial Networks)
[20,, 155, 183, 277, 295].

A third field of applications is economics, which often makes use of the dual
formulation of optimal transport as an equilibrium state that maximizes the interest
of two (or more) actors [81), 82], 94], and econometrics [146], [147].

Section [I.2.1] contains an introduction to the mathematical properties of two-
marginal optimal transport problems. In this thesis, we will focus more specifically
on applications stemming from quantum chemistry and finance, where multimarginal
optimal transport and martingale optimal transport naturally arise. Hence, Sec-
tion will be devoted to the presentation of such problems, together with the
existing numerical methods used to compute a numerical approximation of their
solutions.

1.2.1 Two-marginal optimal transport problem

We begin by presenting definitions and mathematical properties related to the study
of two-marginal optimal transport problems, following results from [11l B18] 3T9]
291].

1.2.1.1 Monge and Kantorovich formulation

For any Polish space Z, (i.e. complete and separable metric space), let us denote
by P(Z) the set of probability measures on Z, and by Cy,(Z) the set of continuous
bounded functions on Z.

Let us consider two probability measures u € P(X) and v € P(Y), where X and
Y are Polish spaces.

Definition 1.1 (Push-forward measure). Let T : X — Y be a measurable map.
Then, the push-forward measure of p by T (denoted T#u) in P(Y) is defined by

TH#Hu(A) = p(T71(A)) for every measurable set A C Y. (1.1)

In addition, let ¢ : X x Y — R, U {400} be a lower semi-continuous function.
The function ¢ will be called hereafter a cost function. For a given cost function c,
the Monge formulation of optimal transport reads as

find 7% : X — ) a measurable map s.t. T* € arg min / c(x, T(z))du(x).
x

T:x—Y measurable
TH#p=v

(1.2)



This problem can be interpreted as follows: the map 7™ encodes a displacement of
some mass distributed according to the probability measure p to match the distri-
bution of mass given by v in such a way that it generates the lowest displacement
cost relative to c.

In general, Problem [I.2]is not well-posed as there may not exist any minimizer
T*, depending on the choice of ¢, u and v.

Let us denote the set of couplings measures on X x Y between p and v by

M(p,v) = {7T EPX xY)| /de = dv, /ydw = d,u} : (1.3)

The Kantorovich formulation of optimal transport then reads as
find 7* €€ Il(u,v) s.t. @ € arg min/ c(x,y)dn(z,y). (1.4)
w€ll(p,v) J XXY

The measure 7 can be seen as a coupling measure between p and v which encodes
correlations between two random variables whose marginal laws are given respec-
tively by p and v which, integrated against ¢, have the lowest cost.

Theorem 1.1. Let X and ) be Polish spaces, p € P(X), v € P(Y), c: X x Y —
R, U{+00} be a lower semi-continuous cost function, then (1.4]) admits at least one
solution.

Note that in some cases, solutions to (1.4]) can be obtained from solutions to ([1.2]).
If there exists 7' : X — ) a measurable map such that dr*(z,y) = du(z) ® ér@)(y)
where 7* is a solution to (|1.4), we say that 7* is a Monge minimizer to (1.4)).

In the case when ¢(x,y) = h(x — y) with h a strictly convex function, p and v
are probability measures on a compact subset 2 C R?, p is absolutely continuous
and 052 is negligible, then the minimizer of (|1.4)) is unique and of Monge form.

1.2.1.2 Wasserstein distance

Optimal transport is a natural way to define metrics between probability measures,
such as the Wasserstein distance introduced below.

Definition 1.2 (Wasserstein distance). Let 1 < p < +00. The Wasserstein distance
to the power p between p and v is defined as

1/p
Wy, v) = min x — yPdr(x, .
p(k,v) (WEHW) /Xxy| ylPdm( y))
For any ¢ € Cy(X) and ¢ € Cyp(Y), let us denote by

[ AXY - R,
‘ﬁ@”{ (@y) = @) +P).

1.2.1.3 Dual formulation

The dual formulation of the Kantorovich formulation (1.4) reads as

find (¢*, ") € Cp(X) x Cp(Y) s.t.  (¢",0") €  argmax / ¢ du + / (R
peCh ¢>eaww<€c0b(y

(1.5)
Any solution (¢*,1*) € Cyp(X) x Cp(Y) to (1.4)) is called a set of Kantorovich poten-

tials.

The following theorem states some theoretical properties of the dual problem ([1.4)).
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Theorem 1.2 (From [291], Theorem 1.39 and 1.42]). Let X and Y be Polish spaces.

o I[fc: X xY — RU{+oo} is Ls.c. and bounded from below, then there exists
a supremum value to (1.5); besides, it is equal to the minimal value of ([1.4)).

o [fc: X x)Y — R is uniformly continuous and bounded, then the optimal value
of 15 equal to the optimal value of ; besides, there exists mazximizers
to (1.5)). Moreover, for any 7 solution of and any (¢*,¥*) solution to
, 1t necessarily holds that

o*(z) + U™ (y) = c(z,y) T -a.e. on X XY (1.6)

Let us mention here that numerous works are related to regularity properties of
transport maps [26l, 194], 235], Kantorovich potentials [240, 281], c-cyclical mono-
tonicity [89], optimality [280] and duality [30} 31|, B2 191, 28T]

1.2.1.4 Extensions of the two-marginal optimal transport problem

Let us briefly mention here some works on extensions or particular aspects of the two-
marginal optimal transport problems introduced in the preceding sections: optimal
transport theory on Riemanian or non-compact manifolds [129, 139, 250]; study of
particular cost functions (e.g. the determinant [85] or repulsive costs [104, 123]);
problems with unequal dimensions [263]; unbalanced optimal transport [54, 96| 97];
partial transport problem [134]; dynamical formulation [186] 212l 213]; transport
with obstacle problem [75].

Second, studies involving extensions of the Wasserstein distance [79, O0] or in
the Wasserstein space [249] 292] such as the problem of finding barycenters in the
Wasserstein space [2].

Let us also mention studies involving relaxations of optimal transport such as the
entropic relaxation and some statistical properties [95], 124] 133, 136, 199] 20T, 231]
or its use to approximate Wasserstein gradient flows [276] or Schrodinger problem
[248].

Last, let us mention the link between optimal transport and PDE’s [127] and
analytical problems such as the Schrodinger problem [221), 222], Cournot-Nash equi-
libria [51].

1.2.2 Multimarginal and martingale optimal transport

In this section are introduced multimarginal and martingale optimal transport and
optimal transport problems, which are the main focus of this thesis.

Multimarginal optimal transport Let M € N* (where N* denotes the set of
positive integers {1,2,3,...}) and for all 1 < i < M, let X; = R% with d; € N*.
We consider M probability measures py € P(&X1), ..., up € P(Xy) and a lower semi
continuous cost function ¢ : Xy x ... x Xy — Ry U {oo}.

The multimarginal optimal transport problem is defined as follows

inf {/ c(:z:l,...,xM)dﬂ(xl,...,xM)} : (1.7)
7€ (p1,.pinr) X1 X X Xy

5



where

H(/,Ll, ,/JJM) = {71' S P(Xl X ..o X XM>

s.t. V1 <1 < M, dT(':d/Li}.

Xy XX X1 XXi+1X'~~><X]V[

Such multi-marginal optimal transport problems arise in quantum chemistry
applications which will be detailed in the next section. Let us mention here that it
also appears in fluid mechanics [43] and data science [232].

From a theoretical point of view, such problems have received a lot of atten-
tion from mathematicians [49] 161, 274], with some characterization of its optimal
measures [152, 258, 259 270], whether they can be of Monge form [195] 269] or not
[T41]. There are also studies of problem for some particular costs [158], the
symmetric case [162] or its use as a metric [254].

Extensions of problem such as partial multimarginal optimal transport
[198], with an infinite number of marginal laws [271] or on a Riemanian manifold
[196] have also been studied, as well as connections with systems of equations [208]
163] or multi-agent matching [273] and quantization effects [53].

Martingale optimal transport In this paragraph, we introduce martingale op-
timal transport in the two marginal case. Let us assume that X = ) = R? with
d € N*, and consider two probability measures yu, v € P(R?) such that

|yldv(y) < oo
R4
and g is lower than v for the convex order, i.e.
[ et < [ etanty) (1.9
R4 Rd

for any convex function ¢ : R¢ — R non-negative or integrable with respect to u and
v. This latter condition is equivalent, by Strassen’s theorem [311], to the existence
of a martingale coupling between p and v, i.e.

Ir € (p,v), Yo € R, / ydr(z,y) = .
Rd

The original martingale optimal transport then consists in the resolution of the
minimization problem

inf { / c(x,y>dw<z,y>}, (1.9)
eIl (p,v) RdxRd

VzER?, Jpa ydm(z,y)=x

with ¢ : R? x R? — R, U {oc} being a L.s.c. cost function.

Financial application of multimarginal and martingale optimal transport
Considering an asset with a price S; at time t. An option on this asset is a tradable
product which gives a payoff A(Sr) at time 7" (called maturity) to its owner. Typical
options are calls (A:s+— (s — K)*) or puts (A : s = (K — s)") traded for various
values of K (called strike) at fixed maturities (T} < T3 < ...). Knowing the price of
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such options for any value of K is equivalent to knowing the probability distribution
of the price of the asset at time T.

Thus, the modeling of the price of any financial product based on the asset must
be in accordance with its option prices, and, under a no-arbitrage assumption, must
follow a martingale. Recent works [27], 125 128, [145] then used martingale optimal
transport to provide model-free bounds on the considered financial product, which
was used recently for VIX options [120] 173, [174]. This financial application led
to several theoretical studies of martingale optimal transport [29] [I81], its dual-
ity [33] 35, O3], martingale transport plans [119, 160] and its link with Skorokhod
embeddings [25], 28, [172].

Numerical methods using sampling techniques [5, [6], entropic regularization and
the Sinkhorn algorithm [118, [I71], 247] have been used. However, those techniques
might struggle in the case of multimarginal martingale optimal transport, i.e. when
taking into account two or more maturities.

1.2.3 Numerical methods for optimal transportation

Several numerical methods have been introduced to solve optimal transport prob-
lems [224] 277], often in view of some particular applications. We summarize in this
section the most widely used methods, and highlight the advantages and drawbacks
of them, in particular with respect to the resolution of multimarginal or martingale
optimal transport problems. Methods dedicated to the resolution of optimal trans-
port problems stemming from quantum chemistry applications will be detailed in a
forthcoming section.

In order to solve optimal transport problems involving discrete distributions,
linear programming methods naturally arise such as the simplex [4], the Hungarian
method [207] or the Auction algorithm [47, [70] or related improved linear program-
ming methods [164]. The sparsity and the ordered structure of the minimas for
particular cost function and particular space dimension, can be used in order to im-
prove the complexity of the algorithms through the resolution of local subproblems
[296], 299, [B00] or via the use of proximal splitting [267], or solving local versions of
the dual problem [253].

Semi-discrete optimal transport, for which only one marginal law is discrete, is
another numerical approach and can be used for applications in dimension 2 or 3

[45, (177, 197, 215, 223, 252).

Differential methods using PDE’s [176], gradient flows [19, [36] [175], Lagrangian
method [184], its connection with fluid mechanics [37] or Newton method, and lever-
aging the connection between optimal transport and the Monge-Ampere equation
[44] 234), 236], 294]) have also been studied to solve L? optimal transport with two
marginal laws; the extension of these methods to unbalanced optimal transport has
been considered in [38, 237].

Last but not least, let us mention the Sinkhorn algorithm (and some variants,
such as Greenkhorn) [411, 83|, [ITT], 154} 233] 297] which relies on the use of an en-
tropic regularization of optimal transport which yields a strictly convex problem and
which is very efficient to solve discrete two marginal relaxed optimal transport. This
method can be adapted to unbalanced optimal transport problems [305]. Although
data science and image processing [310] behaves nicely regarding the relaxation, it
has to be noted that the speed of convergence of this class of algorithms decreases
as the relaxation parameter goes to zero [200, 200, B06]. Let us mention the compu-
tation of Wasserstein barycenters as a multimarginal optimal transport application
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for which the Sinkhorn algorithm is also efficient [112] and for which ad hoc meth-
ods also exist [I0I]. The use of the Sinkhorn algorithm for multimarginal optimal
transport can also be analysed thanks to the multimarginal Schrodinger problem
[84]. A study on some other regularization methods for optimal transport can also
be found in [I30].

Let us comment on the limitations of the aforementioned methods with respect
to multimarginal optimal transport applications. In this context, the size of the
resulting discrete optimal transport problems typically scales exponentially with
the number of marginal laws. The semi-discrete methods make a crucial use of the
two marginal structure and henceforth are not easily applicable to multimarginal
problems. The differential methods mentioned above relies on results specific to the
two marginal case. Lastly, the Sinkhorn algorithm relies on the computation of a
cost matrix on a tensorized discretization grid. Although multimarginal problems
[232] can be efficiently solved by means of these approaches, their complexity still
scales exponentially with the number of marginal laws, making it not transferable
to large systems.

1.3 Electronic structure calculations for molecules
and main contributions of the thesis

The aim of this section is to give an introduction to ab initio modeling in quantum
chemistry, more precisely electronic structure calculations of molecules, in particular
to the many-body Schrodinger problem and Density Functional Theory. We refer
to [77, [I85] 268] for a more complete introduction.

1.3.1 The many-body Schrodinger electronic problem

In this section, we will make the use of atomic units so that

1
e=1, e=1, h=1, =1, 1.10
m (& 47T€0 ( )

where m, is the mass of an electron, e is the elementary charge, h is the reduced
Planck’s constant, and ¢, is the dielectric permittivity of the vacuum.

In the Born-Oppenheimer approximation, a molecule is a system composed of

e M & N* nuclei, which are considered as classical point-like particles, whose po-
sitions are denoted by R, ..., Ry € R? and electrical charges by 71, ..., Zy €
N*;

e N electrons, which are modeled as quantum particles, and whose state is
described by a function

2/1'{ R3N — C
. ($1,...,$N) — w(.Tl,...,.ﬁEN),

called the wavefunction of the system of electrons.

Note that, in order to lighten notations, spin variables are omitted, since in
the two part of this thesis, either the spin dependency can be separated from the
treatment of the positions one (Part , or it disapears in the semiclassical limit
considered (Part [I).



The physical interpretation of a wavefunction 1 is the following: given A C R3V,
/ A |4)|? represents the probability that the positions of the N electrons belong to the
set A. In particular, this implies that [|1)||? 12@snvy = 1. In addition, the wavefunction
Y is antisymmetric with respect to its varlables This is a consequence of the fact
that the electrons are fermionic particles. More precisely, denoting by Sy the set of
permutations of the set {1,..., N}, it holds that for all p € Sy and all (zy,...,zy) €
R3N

Qzb(l‘p(l)’ e "rp(N)) - €(p)’¢)(l‘1, T 7xN)7

where €(p) denotes the signature of p.

The energy E[v] of a system of N electrons whose state is described by a wave-
function ¢ in the molecule described above is the sum of three contributions:

e the kinetic energy:
1

1= [ 190

e the Coulomb energy associated to the interactions between the electrons and
the nuclei:

C’nuc Vnuc ) PRI 2d e d )
/Rw (Z (x; )W G xn)|* dxy TN

where, for all z € R3,

nuc Z |x o Rk ;
e the Coulomb energy associated to the interactions between the electrons:

CelecWJ] ::/ Nc(xl,...,I’N)|1/J($1,...,$N)|2d$1... di,
R3

where for almost all (z1,...,zy) € R,

1
C(l’l,...,.TN): Z m
4 J

— X
1<i<j<N

Computing a ground state of the electrons in the molecule amounts to computing
a wavefunction 1)y among all admissible wavefunctions which minimize the energy
of the system. More precisely, let us denote by

A = {w c LQ(RSN)7 Vw c LQ(R?)N)SN, w antisymmetric, HwHLZ(R:;N) = 1}

the set of wavefunctions associated to a system of N electrons with finite kinetic
energy. Then, it holds that

U(Ry,.. Rar) = min T[Y] + Coue[t] + Coree ], (1.11)

where we have highlighted the dependence of this infimum value with respect to the
positions of the nuclei of the molecule Ry, ..., Ry. Let H := —%A%—Zf\il Viue () +



c(x1,...,xN) be the so-called many-body Schrddinger operator. The operator H is
a self-adjoint, bounded from below, operator on

Lintisym(R3N) ={y e L2(R3N), Y antisymmetric}
with domain
Hsntisym(R?’N) = {y € H*(R*"), + antisymmetric}.

We also denote by
Hl

antisym

(R*N) .= {yp € H(R*Y), 9 antisymmetric}.

In the case when U(Ry, ..., Ry) := inf o(H) is a discrete eigenvalue of H (which
occurs for instance when the molecule is neutral or positively charged from Zhis-
lin’s theorem [326]), there exists at least one minimizer ¢y to ((1.11]), and any mini-
mizer is necessarily an eigenvector of H associated to the eigenvalue U(Ry, ..., Ry).
Thus, solving the electronic Schrodinger problem amounts to solving a linear high-
dimensional eigenvalue problem of the form

Hlbo = U(R17"'7RM)¢O' (112)

1.3.2 First contribution of the thesis: Van der Waals inter-
action between two hydrogen atoms

Although for large values of N and M approximations and numerical techniques
must be used in order to evaluate U(Ry, ..., Ryr), for small systems analytical tech-
niques can provide a way of solving Schrodinger equation.

This is the case for instance when considering the electronic interaction between
two hydrogen atoms in the dissociation limit. In this asymptotic regime, the in-
teraction between the two hydrogen atoms is called the van der Waals interaction.
It is attractive and plays a crucial role in systems in the condensed phase such as
biological molecules [21], 288] or 2D materials [I53]. Studied from 1873 [317], van der
Waals interaction has first been mathematically understood by London [238]. Its
rigorous mathematical foundations have been investigated in the pioneering work
by Morgan and Simon [261], inspired by the one of Ahlrichs in [3], and later by
Lieb and Thiring [230], followed by many authors (see in particular [I3] 205] and
references therein). For Hj, the expansion of the interaction energy as a function
of the distance R between the nuclei is a diverging series — yet Borel summable, as
predicted in [63] and later proved by [100] [1T4], [168]. Recent articles have studied
this expansion for collection of atoms [14, 18], with terms up to 1/R? [22], molecules
[15, [16] and its differentiability [I7]. In the case of two hydrogen atoms, Slater
and Kirkwood [309] provided a PDE, which allows to compute the first dispersion
coefficient of the energy in the dissociation limit (which scales like —Cf/RS, with
R the distance between the nuclei). Cances and Scott in [78], modified their tech-
nique, proved the well-posedness of the problem they proposed and used a Galerkin
approximation to compute the Cg coefficient.

An extension of the technique by Cances and Scott has been studied during this
thesis, and is presented in Chapter 4] in order to compute van der Waals dispersion
coefficients up to any order. The technique relies on a perturbation method in
order to analyse the asymptotic expansion of the van der Waals attraction and on
a separation between radial and angular interactions which brings the original six-
dimensional problem to the study of two-dimensional PDE’s. Dispersion coefficients
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can then be computed recursively by Galerkin approximations; values were found
following this approach in accordance with the ones in [204] 265], where the authors
used other techniques.

1.3.3 Density Functional Theory

The high-dimensional character of equation (1.12)) makes it very difficult to solve
from a numerical point of view with standard numerical methods in the case when N
is large, especially for strongly correlated systems where the Coulombic interactions
between the nuclei play a significant role.

The principle of Density Functional Theory (DFT), and of all the models which
are derived from it, is the reformulation of problem ((1.11]) with the density (and not
anymore the wavefunction) as the main variable. The key advantage of this method
is that problems are then formulated over the domain R? instead of R3",

Theoretical justification of DFT models has been introduced by Hohenberg and
Kohn [182], followed by Levy [225] and completed by Lieb [229]. We refer the reader
to the review chapter [228]. Indeed, the Hohenberg-Kohn theorem [I82] states that
the energy and the electronic density of the ground state of the electronic problem
(1.11) can be found by solving a problem of the form

U(Rl,...,RM):inf{F(p)—l—/Wp\/, p € L'(R?), /R :N},

where F'is a functional of the electronic density p.

Let us rewrite H under the following form
N
H = HV — HO + Zvnuc<xi>7
i=1

where

Z “A,, + Z _x| (1.13)

1<'L<]<N

in order to highlight the dependence of the Hamiltonian on the potential V.. The
minimization problem (|1.11)) can then be rewritten as

U(Ri, ..., Ry) = inf { (o, Hyt), b, € A}. (1.14)

We also denote by
In = {p, e € A, py. = p}

the set of all electronic densities associated with some admissible wavefunction,
where the density py,, associated to the wavefunction v, is defined for x € R3

p¢e<$> =N |¢6(I,[E2,...,$N>|2d$2...dJ}N_
R3(N—1)

It is proved in [229] that Zy can be characterized equivalently as

IN:{pzo, Vp € H'(R?), /Rgp:N}.
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DFT relies on the following elementary calculus [182], 229]:
U(Rl, e ,RM) = inf{<we, vae>, we S A}
= lnf {inf{<wea Hoﬁbe% ¢e S Aa pwe = p} + /3 p‘/a P € IN}
R

:mf{FLL(p)-i-/ ,OV; ,OGIN}a
R3

where
FLL(p) = inf{(”vbea H0w6>7 we € .A, pwe = p}

is called the Levy-Lieb functional. 1t is universal in the sense that it does not
depend on the molecular system under consideration (which only comes into play
through the potential V' and the number of electrons N). Equivalently, the Levy-
Lieb functional can be rewritten as

FLL(ﬂ) = {T[¢] + Celec[z/}]w %U € -’47 P¢ - p} .

This is a very appealing theory, but unfortunately, the exact computation of F1(p)
is out-of-reach since it requires the resolution of a problem almost as complex as the
original electronic Schrodinger problem.

In practice then, approximations of the functional F7; are used, which gives rise
to a wide zoology of DFT models.

1.3.4 Semi-classical limit of the Levy-Lieb functional

One of these approximations, which was suggested by theoretical chemists in [302,
304], consists in looking to the semi-classical or strongly correlated electrons (SCE)
limit of the Levy-Lieb functional, with a view to use it in order to design approximate
DFT models for strongly correlated systems. This semi-classical limit is the limit
as a goes to 0 to the functional F}; defined as follows for p € Ty and 0 < a < 1:

FSL(p) = {OZTW] + Oelec[¢]7 77Z) € -Aa Py = ,O} .

In this semi-classical limit, the influence of the kinetic term 7'[¢)] is then neglected
in front of the contributions due to the electron-electron Coulombic interaction term
Celec[?]. It has been rigorously proven in the series of works [106] 107, 226] that the
limit as « goes to 0 of the functional Ff; (p) reads as a symmetric multi-marginal
optimal transport problem with Coulomb cost. More precisely, for all p € Zy, let
us denote by v, the probability measure on R? defined by dv,(x) := % dx and by
Peym(R3*Y) the set of symmetric probability measures on R*N. For all 7 € Py, (R*Y),

we denote by ., the probability measure on R? defined as the marginal of 7, i.e.

d/“L’Y<I) ::/ d’)/(x,Z‘Q,...,I‘N).
(22 xN)e]Rs(N—l)

77777

With work of Buttazzo, De Pascale and Gori Giorgi [67], Cotar, Friesecke and
Kliippelberg [106] for proofs for N = 2 and with Mendl and Pass [142] , Bindini and
De Pascale [50] extended by Lewin [226] for N > 2 in the fermonic mixed-states
case and Cotar, Friesecke and Kliippelberg [107] for N > 2, it is proved, using
appropriate smoothing of transport plans, that in the semi-classical limit

C{E}% Fri(p) = I(Vp)7
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where for all probability measure v on R3,

I(v) := inf / cdy. (1.15)
7 € Pym(R), Jrov

Hy =V

A different (but closely related) approach to this limit also exists through density
scaling [91]. The asymptotic expansion to the next orders of F?; (p) with respect to
a has been studied in [167], [170].

This problem has been well studied in the recent years. Although some Monge
maps can be exhibited in spherically symmetric cases (which are close to optimality
[105], B03]), there exists when N > 3 in general some non-Monge minimizers [272]
concentrated on higher dimensional submanifolds (non-necessary unique), and the
minimizer is unique and non-Monge when N = oo [108]. Let us mention as studied
subjects the continuity of multimarginal optimal transport and of its maps (with
studies with repulsive costs other than the Coulombic one) [66, 66], [102], 104], duality
theory [103] 1211 157], relaxation [156) 159]. Let us also note [52, 109, 169, 209] 255]
as other works on the subject.

The SCE formulation of DFT has also already been applied to model quantum
systems [110} 165], 244, 246] 256], and appears in the study of uniform electron gas
[227]; comparisons with other DFT methods can be found in [166], 243 245].

A classical way to approximate the problem (1.15)) is to use a (fixed) discrete
state space {y1,...,yn} C R3 for some M € N* and compute an approximation of
a solution v to (1.15) under the form

")/ ~ Z )\ml,...,mNé‘(ymly--wymN)

1<mq,..my<M

where the M"Y real coefficients (Ap,,.my); “m <y have to be determined. This
T A am 1<y
leads to a very high-dimensional linear optimization problem.

1.3.5 Numerical methods for the resolution of (1.15)

The challenges raised by multimarginal optimal transport with a Coulombic cost
led to the development of dedicated numerical methods which are exposed in this
section.

First, let us mention the work of Mendl and Lin [25], which, using the Kan-
torovich dual formulation computes the SCE limit for atoms and small molecules.
Let us also note the work of Chen, Friesecke and Mendl [92] in the 2 electrons case
which uses a smart meshing method to compute precisely a minimizer for the SCE
formulation of DFT for the Hy molecule. Nenna in [42, 262] uses the Sinkhorn al-
gorithm to solve a relaxed multimarginal optimal transport problem for atoms, up
to N = 3 electrons in the radially symmetric case. However, in the duality case,
checking the inequality constraint is not easy and in the two later methods, scaling
to more electrons is not easy either.

In more recent works by Friesecke and Vogler [143] [320] and Khoo, Ying, Lin
and Lindsey [192] [193], numerical methods on finite state space break the curse
of dimensionality, with complexity growing linearly with the number of electrons.
Note that, for some particular multimarginal problems (Wasserstein barycenters),
this linear complexity had been showed [86].
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1.3.6 Second contribution of the thesis: moment constrained
approximation of multi-marginal optimal transporta-
tion problems

A second contribution of the thesis is to propose and analyze from a mathematical

point of view an alternative approach in order to approximate the symmetric optimal

transport problem (1.15)). In this approach, we still consider a continuous state space

R3, but the marginal contraint appearing in (|1.15) is relaxed into a finite number

of moment constraints. For the sake of simplicity, let us present our results here in

the case when the support of the measure v is included in a compact set Y C R3.
Let (fin)mens C C(Y'), satisfying the following natural density assumption

gmESPan{fi,....far} M—+400

and consider the approximate moment constrained optimal transport problem

™M) .= inf x / cdy. (1.16)
7 € Poym(R™), RN
Vi<m< M,

fRSN (% ZZZ\;1 fm(xz)) dy(zy,...,2N) = fRs Jm dv

It is proved in Chapter |2/ where P(R3Y) denotes the set of (not necessarily symmet-
ric) probability measures on R3Y.

Theorem 1.3. Under the preceding assumptions, it holds that

™M) — I(v).

M—+o0
Besides, it holds that
™) = inf / cdy, (1.17)
v € P(R3), RSN
Vi<m< M,

Juon (3 200 ) d(an, ) = fy fn

and there exists at least one minimizer yM € P(R3N) to which reads as

K
’YM = Z wké(m’f,,x’fv)
k=1

for some 1 < K < M + 2, and for some wy > 0 and (2%,...,2%) € YN for all
1 <k < K. Besides,

1 K
= N 2 2
= — wo
Toym = oy )
peSN k=1
the symmetrized version of Y™, is a minimizer to .

Theorem states two things: (i) it is possible to drop the symmetry constraint
of the measure «y in problem (1.16)) to compute ™ (v); (i) there exists a minimizer of
(1.17) which reads as a discrete measure which charges a low number of points (less
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than M + 2), and a minimizer to can be obtained as the symmetrized version
of this discrete measure. In particular, this means that it is sufficient to identify
at most O(NM) scalars to compute ™. This suggests considering the following
optimization problem for the computation of I (v), since

M+2
™) = min i Z wie(zh, ... 2%).  (1.18)
(Wk)1<k<mi2 € Ry, k=1
M2
k=1 Wk =1,

(x’f,,xﬁ,) cYVN VI<k<M+2,
2w (% 2L @) = fr fndv

The use of this sparse structure for the design of efficient numerical methods for the
resolution of is the object of Chapter . It is proved in particular that any
local minimizer to (1.18]) is actually a global minimizer. In addition, the numerical
method proposed for the resolution of this problem builds on the use of constrained
overdamped Langevin processes.

Let us stress on the fact that the theorems and results presented in Chapter [2|and
Chapter [3| can be extended to general multi-marginal optimal transport problems,
as well as martingale optimal transport problems, and thus can be used, in addition
to the quantum chemistry applications highlighted in this section, for the financial
applications mentioned in Section [1.2.2]
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Part 1

Moment Constrained Optimal
Transport
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Chapter 2

Moment Constrained Optimal
Transport

This chapter is an article written with Aurélien Alonsi, Virginie Ehrlacher and
Damiano Lombardi and published in Mathematics of Computations [8].

Abstract

Optimal Transport (OT) problems arise in a wide range of applications,
from physics to economics. Getting numerical approximate solutions of these
problems is a challenging issue of practical importance. In this work, we in-
vestigate the relaxation of the OT problem when the marginal constraints
are replaced by some moment constraints. Using Tchakaloff’s theorem, we
show that the Moment Constrained Optimal Transport problem (MCOT) is
achieved by a finite discrete measure. Interestingly, for multimarginal OT
problems, the number of points weighted by this measure scales linearly with
the number of marginal laws, which is encouraging to bypass the curse of
dimension. This approximation method is also relevant for Martingale OT
problems. We show the convergence of the MCOT problem toward the cor-
responding OT problem. In some fundamental cases, we obtain rates of con-
vergence in O(1/N) or O(1/N?) where N is the number of moments, which
illustrates the role of the moment functions. Last, we present algorithms ex-
ploiting the fact that the MCOT is reached by a finite discrete measure and
provide numerical examples of approximations.

2.1 Introduction

The aim of this paper is to investigate a new direction to approximate optimal trans-
port problems [291) 319]. Such problems arise in a variety of application fields rang-
ing from economics [82), [146] to quantum chemistry [I0§] or machine learning [277]
for instance. The simplest prototypical example of optimal transport problem is the
two-marginal Kantorovich problem, which reads as follows: for some d € N*, let p
and v be two probability measures on R? and consider the optimization problem

inf /Rd y c(x,y)dnr(z,y) (2.1)

where ¢ is a non-negative lower semi-continuous cost function defined on R? x R?
and where the infimum is taken over the set of probability measures 7 on R% x R?
with marginal laws p and v.
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The most straightforward approach for the resolution of problems of the form
(2.1) consists in introducing discretizations of the state spaces, which are fixed a
priori. More precisely, N points z',--- ,2Y € R? are chosen a priori and fixed,
marginal laws p and v are approximated by discrete measures of the form u ~
Zi]\il 10, and v & ZZN: 1 Vi0, with some non-negative coefficients p; and v; for 1 <
i < N. An optimal measure 7 minimizing is then approximated by a discrete
measure T ~ Zlgi,jSN TijOzi -7 Where the non-negative coefficients (m;;)1<ij<n €

Rf * are solution to the optimization problem

inf Z mc(z’, 27) (2.2)

1<ij<N

and satisfy the following discrete marginal constraints:

N N
\Vllgl,]SN, ZTFMZMZ‘ and Z?Tij:l/j.
=1

j=1

This boils down to a classical linear programming problem, which becomes compu-
tationally prohibitive when NV is large.

Several numerical methods have already been proposed in the literature for the
resolution of optimal transport problems at a lower computational cost. Most of
them rely on an a priori discretization of the state spaces as presented above. One
of the most successful approach consists in minimizing a regularized cost involving
the Kullback-Leibler divergence (or relative entropy) via iterative Bregman projec-
tions: the so-called Sinkhorn algorithm [41), 262, B06]. Let us also mention other
approaches such as the auction algorithm [48], numerical methods based on Laguerre
cells [148], multiscale algorithms [252] 296] and augmented Lagrangian methods us-
ing the Benamou-Brenier dynamic formulation [39, [40].

In this work, we are also interested in studying multi-marginal and martingale-
constrained optimal transport problems.

Multimarginal optimal transport problems arise in a wide variety of contexts [291],
319], like for instance the computation of Wasserstein barycenters [2] or the approx-
imation of the correlation energy for strongly correlated systems in quantum chem-
istry [102, 108, 304]. Such problems read as follows: let M € N* and pq,--- , pups be
M probability measures on R? and consider the optimization problem

inf/ c(xy, - xpy)dm(zy, - xar) (2.3)
(Rd)M

where ¢ is a lower semi-continuous cost function defined on (RY)™ and where the
infimum runs on the set of probability measures 7 on (R%)™ with marginal laws given
by g1, -+, par- Approximations of such multi-marginal problems on discrete state
spaces can be introduced similar to , leading to a linear programming problem
of size N™. For large values of M, such discretized problems become intractable
numerically. The most successful method up to now for solving such problems, which
avoids this curse of dimensionality, is based on an entropic regularization together
with the Sinkhorn algorithm [41], 262].

Constrained martingale transport arise in problems related to finance [28]. Few
numerical methods have been proposed so far for the resolution of such problems.
In 5, [6], algorithms using sampling techniques preserving the convex order is pro-
posed, which enables then to use linear programming solvers. Algorithms making
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use of an entropy regularization and the Sinkhorn algorithm have been studied
in [118, I71].

In this paper, we consider an alternative direction to approximate optimal trans-
port problems, with a view to the design of numerical schemes. In this approach,
the state space is not discretized, but the approximation consists in relaxing the
marginal laws constraints (or the martingale constraint) of the original problem into
a finite number of moment constraints against some well-chosen test functions. More
precisely, in the case of Problem , let us introduce some real-valued bounded
functions ¢1,- -, ¢n defined on R?, which are called hereafter test functions, and
consider the approximate optimal transport problem, called hereafter the Moment
Constrained Optimal Transport (MCOT) problem:

inf / c(x,y) dr(z,y)
RdxRd

where the infimum is taken over the set of probability measures 7 on R? x R?
satisfying for all 1 <14,5 < N,

[, o@anta) = [ o@aue) ad [ i drtn) = [ o)

dwRd

The aim of this paper is to study the properties of this alternative approxima-
tion of optimal transport problems, and its generalization for multi-marginal and
martingale-constrained optimal transport problems. A remarkable feature of this
approximation is that it circumvents the curse of dimensionality with respect to the
number of marginal laws in the case of multimarginal optimal transport problems.
Note that in the martingale constrained case, our method enables to consider the
original formulation of the financial problem that has moment constraints (see for
instance Example 2.6 of [I80]), which is not the case of the previous methods.

Our first contribution in this paper is to characterize some minimizers of the
MCOT problem. Using Tchakaloff’s theorem, we prove that, under suitable as-
sumptions, there exists at least one minimizer which is a discrete measure charging
a finite number of points. Interestingly, in the multi-marginal case, the number of
charged points scales at most linearly in the number of marginals. In the particular
case of problems issued from quantum chemistry applications, due to the inherent
symmetries of the system, the number of charged points is independent of the num-
ber of marginals, and only scales linearly with the number of imposed moments.
This formulation of the multimarginal optimal transport problem thus does not suf-
fer from the curse of dimensionality. The result obtained in the quantum chemistry
case is close in spirit to the one of [I43] where the authors studied a multimarginal
Kantorovich problem with Coulomb cost on finite state spaces.

These considerations motivate us to consider a new family of algorithms for the
resolution of multi-marginal and martingale constrained optimal transport problems,
in which an optimal measure is approximated by a discrete measure charging a
relatively low number of points. The points and weights of this discrete measure
are then optimized in order to satisfy a finite number of moment constraints and to
minimize the cost of the original optimal transport problem.

Of course, another interesting issue consists in determining how the choice of
the particular test functions influences the quality of the approximation with re-
spect to the exact optimal transport problem. In this paper, we prove interesting
one-dimensional results in this direction. More precisely, for piecewise affine test
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functions defined on a compact interval, and for the two-marginal optimal trans-
port problems involved in the computation of the W5 or the W, distance between
two sufficiently regular measures, the convergence of the approximate optimal cost
with respect to the optimal cost scales like O (%) where N is the number of test
functions. These results indicate that the choice of appropriate test functions has
an influence on the rate of convergence of the approximate problem to the exact
problem. Besides, there is very few results, up to our knowledge, concerning the
speed of convergence of approximations of optimal transport problems. The study
of these rates of convergence for more general set of test functions and of optimal
transport problems is an interesting issue which is left for future research.

The article is organized as follows. Some preliminaries, including the Tchakaloff
theorem, are recalled in Section [2.2] In Section [2.3] we introduce the approximate
MCOT problem and prove under suitable assumptions that one of its minimizers
reads as a discrete measure whose number of charged points is estimated depending
on the number of moment constraints and on the nature of the optimal transport
problem considered. Under additional assumptions, we prove that the MCOT prob-
lem converges to the exact optimal transport problem as the number of test functions
grows in Section 2.4l Rates of convergence of the approximate problem to the exact
problem depending on the choice of test functions are proved in Section 2.5 Fi-
nally, algorithms which exploits the particular structure of the MCOT problem are
proposed in Section and tested on some numerical examples.

2.2 Preliminaries

2.2.1 Presentation of the problem and notation

We begin this section by recalling the classical form of the 2-marginal optimal trans-
port (OT) problem, which will be the prototypical problem considered in this paper,
and introduce the notation used in the sequel.

Let d,,d, € N*. We assume that X C R% (resp. J C R%) is a Gs-set, i.e. a
countable intersection of open sets. This property ensures by Alexandroff’s lemma
(see e.g. [9], p. 88) that X (resp. Y) is a Polish space for a metric which is equivalent
to the original one on R% (resp. R%). In particular, X’ can either be a closed or an
open set of R%.

Let p € P(X) and v € P()) be probability measures on X and ) and let us
define

) = {m € P x9)s [ dna) =avty). [ dnto) = duto)},

X Yy
the set of probability couplings between p and v. We consider a non-negative cost
function ¢ : X x Y — R, U {400}, which we assume to be lower semi-continuous
(Ls.c. ). The Kantorovich optimal transport (OT) problem with the two marginal

laws 1 and v associated to the cost function c is the following minimization problem:

[ = inf {/Xxyc(x,y)dﬂ(x, y) e Ty, y)} | (2.4)

Under our assumptions, it is known (see e.g. Theorem 1.7 in [291]) that there exists
7 € H(p,v) such that I = [, o c(z,y)dr*(z,y). Problem will be referred
hereafter as the exact OT problem, with respect to the approximate problem which
we define hereafter.
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The aim of this paper is to study a relaxation of Problem (2.4) with a view
to the design of numerical schemes to approximate the exact OT problem. More
precisely, the approximate problem considered in this paper consists in relaxing the
marginal constraints into a finite number of moments constraints. Let M, N € N*
and (¢ )1<m<nmr € LY(X, u; R) (respectively (¢,)1<n<y C LYY, v;R)) measurable
real-valued functions that are integrable with respect to p (resp. v). The functions
(dm)1<m<nr and (¥, )1<n<ny Will be called test functions hereafter. We define for such
families of functions

(1, v; (Pm)1<ments (Yn)1<nen) = {7? eEP(X x)Y): (2.5)

Vi<m< M, 1<n<N\, |m ()] + |0 (y)|dr (2, y) < o0,
XxY

(@) (2, ) = /X () dp(2),

XxYy AXY

Un(y)dm(z,y) = / wn(y)du(ﬂf)},
X

which is the set of probability measures on X x ) that have the same moments as

i and v for the test functions. We are then interested in the moment constrained

optimal transport (MCOT) problem, which we define as the following minimization

problem :

r e [ | cloain(ay) 7 € Tu i Gz hener) | (20)

Since T1(j1, v) C (g, v; (dm)1<m<nrs (¥n)1<n<n), we clearly have IMN < . In this
paper, we are interested in the following question.

e Is the infimum of the MCOT problem attained by some probability measure
7 € H(, v; (Pm)1<m<rrs (Yn)1<nsn)?

e Under which assumptions does it hold: M-V — I?7 Can the speed of
M,N—+oco

convergence be estimated?

For simplicity, we will assume that M = N in the whole paper, and we will
denote for 1 < m,n < N:

[ ::/ngmdﬂ and 7, ::/y%dy. (2.7)

1 . S
RY (respectively ¢(y) := (¥1(y), .., ¥n(y)) € RY) and ®(z) = (1,¢(z)) € R
(respectively W¥(y) := (1,7(y)) € RVTL).

2.2.2 Tchakaloff’s theorem

In this section, we present a corollary of the Tchakaloff theorem which is the back-
bone of our results concerning the existence of a minimizer to the MCOT problem.
A general version of the Tchakaloff theorem has been proved by Bayer and Teich-
mann [24] and Bisgaard [46]. The next proposition is a rather immediate conse-
quence of Tchakaloft’s theorem, see Corollary 2 in [24]. We recall first that
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Theorem 2.1. Let 7 be a measure on R¢ concentrated on a Borel set A € F, i.e.
m(RT\ A) = 0. Let Ny € N* and A : R? — RN g Borel measurable map. Assume
that the first moments of A#m exist, i.e.

/RNO [ul|dA#Em (u) = /R IA(2)|d7(2) < oo,

where || - || denotes the Euclidean norm of RNo. Then, there exist an integer 1 <
K < Ny, points z1, ...,z € A and weights p1, ...,pxg > 0 such that

K
V1 < i < Ny, / Ai(z)dm(z) = ZpkAi(zk),
Re k=1

where A\; denotes the i-th component of A.

We recall here that A#m is the push-forward of 7 through A, and is defined as
A#m(A) = n(A~1(A)) for any Borel set A C R™. Let us note here that even if 7 is
a probability measure, we may have Zle pr # 1. In the sequel, we will apply this
proposition to functions A such that the constant 1 is a coordinate of A, which will
ensure Y n  pp = 1.

Let us remark that the number of points K needed may be significantly smaller
than Ny. Lemma gives, for any N € N* an example with Ny = 2N + 1 and
K=N+1.

Last, let us mention that Theorem is a consequence of Caratheodory’s the-
orem [287, Corollary 17.1.2] applied to [gn, udA#m(u) which lies in the (convex)
cone induced by spt(A#w), the support of the measure A#mr.

2.2.3 An admissibility property

A natural requirement for the MCOT Problem ([2.6)) to make sense is to assume that
it has finite value. This is precisely our definition of admissibility.

Definition 2.1 (Admissibility). Let p € P(X), v € P(Y) and a l.s.c. cost function
c: X xY = RU{oco}. Then, a set of test functions ((dm)1<m<ns (Un)i<n<n) €
LYX, ;RN x LYY, v;R)Y s said to be admissible for (u,v,c) if

Iy € (1, v; (Pm)1<m< (¢n)1§n§N)a/X yc(xay)dV(l“ay) < o0. (2.8)

Thanks to Tchakaloff’s theorem, the admissibility can be checked on finite prob-
ability measure as stated in the next Lemma.

Lemma 2.2. Let p € P(X), v € P(Y) and ¢ : X x Y — Ry U {+o0} a Ls.c.
function. A set ((¢m)1<m<n, (Vn)1<n<n) € LNX, i R)N x LYY, v;R)N is admis-
sible for (u,v,c) if, and only if, there exist weights wy, ..., won+1 > 0 and points
(1,91)5 -+, (Tans1, Yans1) € X X YV such that

2N+1 2N+1
D Wb € T, v (Sm)1<men, (Un)i<nsn) and Y wye(wy, yy) < oo.
o P

In particular, if ¢ is finite valued (i.e. ¢ : X x Y — Ry ), any set of test functions
(Pm)1<men, (Un)1<n<n) € LNX, s R)Y x LYY, v;R)N is admissible for (u,v,c) in
the sense of Definition |2.1).
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Proof. Let A : X x Y — R?N*! be defined by A,,(z,y) = ¢m(x) and Ay (2, y) =
Um(y) for m € {1,.... N}, Aonia(w,y) = 1. Let A = {(z,y) € X x YV : c(x,y) =
+00}. Since the set of test function is admissible, there exists a probability measure

v € (1, v; (dm)1<msns (¥n)1<n<n) such that [ o e(z, y)dy(z,y) < oo. In partic-
ular, v(A) = 0. We can thus apply Theorem [2.1] which gives the implication. The
reciprocal result is obvious.

Last, when c¢ is finite valued (A = 0), any v € TI(1, V; (dm)1<m<N, (¥n)i1<n<n)
satisfies 7(A) = 0 and the claim follows by using again Theorem [2.1] O

2.3 Existence of discrete minimizers for MCOT
problems

2.3.1 Two-marginal case

When Definition is satisfied, in order to have the existence of a minimizer for
the MCOT problem, we make two further assumptions.

e We assume that the test function are continuous.
e We add to the MCOT problem (£2.6) a moment inequality constraint.

The additional moment constraint will ensure the tightness of a minimizing sequence
satisfying the moment equality and inequality constraints, while the continuity of
the test functions will ensure that any limit satisfies the moment constraints. Our
main result is stated in Theorem [2.3] thereafter.

Theorem 2.3. Let p € P(X), v e P(Y) andc : X x Y — Ry U {400} a ls.c.
function. Let ¥, C X,%, C Y be Borel sets such that (3,) =v(X,) =1. Let N €
N* and let ((¢pm)i1<m<ns (Vn)1<n<n) € LM, ; R)YN x LYY, v; R)Y be an admissible
set of test functions for (u,v,c) in the sense of Definition . We assume that

1. Foralln € {1,..., N}, the functions ¢, and 1, are continuous.

2. There exist 0, : Ry — Ry and 8, : Ry — R, two non-negative non-decreasing
continuous functions such that 0,(r) — 400 and 0,(r) — 400, and such
r—+00

r—~400
that there exist C' > 0 and 0 < s < 1 such that for all 1 < n < N, and all
[Pn(2)] < CA+0,(|2])"  and  [|Pu(y)| < C(1+0,(lyl)" (2.9)

For all A >0, let us introduce

7€M (1,05 (Pm) 1<m<N>(Pn)1<n<N)

Y = inf / c(x,y)dn(z,y). (2.10)
XxY
S sy Ou(l2))+0u (Jy])dm (z,y) <A

Then, there exists Ag > 0 such that for all A > Ay, 1Y is finite and is a minimum.
Moreover, for all A > Ay, there exists a minimizer © for Problem such that
nll = Zszl PkOuy s for some 0 < K < 2N + 2, with p, > 0, 1, € £, and yr, € £,
foralll <k < K.

Remark 2.1. Let us make here a few remarks:
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(i) When I defined by is finite and
A= [ Bud1eaute) + [ 0.(uavty) < oo

we have for all A > A}, IV < I < cc.

(ii) When the functions ¢,, and v, are bounded continuous (which holds automat-
ically when X and Y are compact), Assumption (2.9)) is obviously satisfied.

(iii) When X and Y are compact sets, we can then take the positive constant C' =
maxi<p<n(Max(||¢nllsc, [|[¥nll)) and 8, = 60, =0, and therefore we get for all
A>0, IY = IV with

= inf / c(x,y)dr(z,y).
XxY

mEI (V5 (dm ) 1<m<Ns(Pn)1<n< )

(iv) An alternative statement of Theorem that avoids imposing the constraint
Loy @ullz]) + 0,(lyl))dm(z,y) < A can be obtained under stronger assump-
tions on the test functions and on the cost. More precisely, such a result can
be obtained if the test functions are assumed to be compactly supported. The

precise statement of this result is given in Section of Appendiz[A.9
Proof of Theorem[2.3 Let us introduce the function

Xxy - R2N+2
()

ey o | 0 (2.11)
c(r,y)

and let us denote by A; the i*" component of A for all 1 < i < 2N +2. By assumption

there exists v € II(u, v; (dm)1<m<n, (¥n)1<n<n) such that fXxy c(z,y)dy(z,y) < co.
We apply Theorem with Nog = 2N +2 and get that there exist K € {1,...,2N +

2}, 21, ., 25 € X, Y1, .., yx € Y and weights wy, ..., wg € RY such that

K
/ Az, y)dy(z,y) = Zwk/\(%; Yr)- (2.12)
AxY k=1
Denoting by 7 := Zszl W0z, yp, We have that

/M (0u(|z]) + 0,(Jy)) dF (z, y) < co.

We thus get that, for all A > Ay := [, 5, (0,(]z]) +0,(ly]))dY(z, y), I} is finite,
SiIlCG we have ’3/ - H(,u, v (Qbm)lngNy (¢n)1STLSN)'

Let us now assume that A > Ag and let us prove that this infimum is a minimum.
Let (m)ieny be a minimizing sequence for the minimization problem (2.10). We first
prove the tightness of this sequence. For M, My > 0, let us introduce the compact
sets

Ki={ze X st|z| <M}, Ka={ye), st |y <M}.
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Then, we have

m (K1 x K2)%) = /

Lz e, xicodm(z,y) < / logic, + Lygr,dm(z, )
XxY

XxY
0 0, A
X xY eu(Ml) HV(MQ) mln(eu(Ml)v QV(MQ»
which implies the tightness of the sequence (m;),ey. We can thus extract a subse-
quence that weakly converges. For notational simplicity, we still denote () this
subsequence, and there exists 7o, € P(X x )) such that m f Moo

—00
Since ¢ and © : X x Y 3 (z,y) — 6,(|z|) + 6,(Jy|) are non-negative lower
semi-continuous functions, using [291][Lemma 1.6], we have

/ c(x,y)dr®™(z,y) < lim inf/ c(x,y) dm(x,y) = 17 .
XxY XxY

=400

—+o00

[ @ullal) + (151 dmy) < timint [ (6,(Ja]) + 8u(lyD) dmi(e. ) < A
XY XxY

Besides, using (2.9)), we obtain that for all 1 < m,n < N,

max ([ onldmz). [ o) im(en)) SCA+A). (213)

Therefore, we get from (2.13) and the continuity of ¢,, and v, that

O () dn™(z,y) = lim Om(2) dm(2,y) = [im,
XY I=4o0 Jxxy

Un(x) dr™(z,y) = lim Un(@) dmy(2,y) = Vn.
XxY l=+oo Jxxy

This shows that m, satisfies the constraints of Problem ([2.10) and thus that

Iivé/ (2, y)dm(z, y).
XxY

Thus, I} = Ly €@, y)dmee (2, y) and 7 is a minimizer of Problem (2.10).
Last, we apply Theorem to the measure 7, and the application A defined
in ([2.11]) and get the existence of 7% . O

Example below shows that the MCOT problem may not be a minimum if we
remove the constraint [ ,(6,(|2]) + 6. (Jy|))dn(z,y) < A.

Example 2.1. Let

.. { RxR — R,
(z,y) = (z—y)*+o(z]) +e(yl),

where for r € Ry, o(r) = lo<p<i7 + 1i2.€' "7, Let us consider the MCOT problem
with the test functions ¢1 = Yy = x — .,

I = inf d .
Lt A ot

S zdm(z,y)=1
Jr ydm(z,y)=1
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The sequence defined forl € N* by m; = (1 — %) 5(070)4—%5(171) 1S a4 MINIMIZIng Sequence
since [ pxdm(z,y) = [ pydm(z,y) =1, ¢>0 and

/ c(x,y)dm(z,y) = 261_l — 0.
RxR ) l—00

Hence, I = 0. Now, since p(r) > 0 for r > 0, the only probability measure
7 € P(R x R) such that [ edm =0 is §(g0). Since this probability measure does not
satisfy the constraints ([ ©d000)(2,y) = [o, 5 ¥dd00) (2, y) = 0), this shows that
I is not a minimum.

Let us also note here that the test functions (¢,;)i<m<ny and (¥,)1<n<ny are
needed to be continuous to guarantee the existence of a minimum in Theorem
as Example [2.2| shows.

Example 2.2. Let X =Y = [0,1], dv(x) = (%1(07%)(:15) + 3
dr and c(z,y) = (y — z)*. Let N =4, ¢, = L1, Gm = Lm=1 m) for 2 < m < 4
and VP, = ¢, for 1 <m < 4, so that

_ _ _ _ r_ 1 din— 3
= - = = —, V1 =1V = — an = = —
Pi=H2=Hs = Ha =75 1 2=3 5= =3
Forl e N, [ >4, let
1 1 1 1 1 1
W= RO TR0 T 0 Tl Tl T 0 (1Y)

For all l > 4, v, satisfies the constraints of the MCOT problem, and

Lol 1 1 1\4 2
—yl?d =(-+-4+=-)=== ——0
A /0 |$ yl Vl(xvy) (8 + 4 + 8) 12 12 15i0o

Thus, the infimum value of the associated MCOT problem is 0. Now, let m € P(X %
Y) be such that [ cdm =0. We have n({(z,y) € X x Y :y =x}) =1 and thus

vm, Pm () dm(z,y) = Pm(y) dm (2, y).
XY XXy
Therefore, we cannot have the left hand side equal to fi,, and the right hand side
equal to Up,, which shows that there does not exist any minimizer to the MCOT
problem.

2.3.2 Multimarginal and martingale OT problem

In this section, two important extensions of the previous problem are introduced,
the multimarginal problem and the martingale problem. As for Problem ([2.10]),
several formulations and refinements can be established. We only keep here the
more general ones for conciseness.

2.3.2.1 Multimarginal problem

The propositions introduced until now for two marginal laws can be extended to
an arbitrary (finite) number of marginal laws. The proof can be straightforwardly
adapted from the one of Theorem [2.3| For all 1 < i < M, we consider X; = R% with
d; € N* or more generally a Gs-set X; C R%. We consider M probability measures
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w1 € P(X1), ..., uar € P(Xy) and a Ls.c. cost function ¢ : X} X ... x Xy — Ry U{oo}.
We consider the following multimarginal optimal transport problem

I= inf {/ c(xy, ..o,y )dm (2, ...,xM)} , (2.15)
TEIL(141 5eeesbns) Xy X X Xy
where TI(p1, .., piar) = {7 € P(X X .. X Xyp)s.t.V1 <i < M, [, dr = dp}.

In order to build the moments constrained optimal transport problem, we in-
troduce, for each i, N; € N* test functions (¢!)i<p<n, € L'(X;, pi; R)Ni. We
say that this set of test functions is admissible for (uq,..., par,c) if there exists
v € P(X) X ... x X)) such that

Vie{l,...,M},Vne{l,...,N;}, G (w)dy(z1, ..., wp) = /X ¢ (x)dps(z)

X1><...><XM

and leX_“XXM c(xy,...,xp)dy(x, ..., xp) < 0o. We can now state the analog of
Theorem for the multimarginal case.

Theorem 2.4. For i € {1,...,M}, let u; € P(&;) and ¥,, C X; a Borel set
such that 11;(X,,) = 1. We assume that ¢ : Xy x ... x Xy — RT U {oo} is a
Ls.c. cost function, and that the set of test functions ¢! € L'Y(X;, ui;R) for i €
{1,...,M} and n € {1,...,N;} is admissible for (u1,...,um,c). We make the

following assumptions.
1. For all i and n, the function ¢! is continuous.

2. For alli, there exists 6; : R, — R, a non-decreasing continuous function such
that 0;(r) — +oo and such that there exist C > 0 and 0 < s < 1 such that

r—-+400

for all 1 < n < N;, we have

Vo € X, |¢h(x)] < O+ 612" (2.16)
We note N = (Ny,...,Ny), X = Xy X - X Xy and consider the following problem

IV = inf {]Lc@quamﬁdﬂ@aw”xM)}. (2.17)

TEP(X)
Vi,n, fX ¢£l(l.'i)d7r($1,...7$]\{)
e 6 (@) dus(2)
T M 05|y drm (1.0 0r ) <A

Then, there exists Ay > 0 such that for all A > Aq, I is finite and is a minimum.
Moreover, for all A > Ay, there exists a minimizer 7'('11;/[](07“ the problem (2.10) such
that ™% = Zlepkéxszxﬁl, for some 0 < K < .7 N; + 2, with p, > 0 and
xfeszoralllgiSMandlngK.

Remark 2.2. An interesting point to remark in Theorem[2.4] is that the number of
weighted points of the discrete measure ™ is linear with respect to the number of
moment constraints. In particular, if we take the same number of moments N; = N
for each marginal, the number of weighted points is equal to 2+ M N and thus grows
linearly with respect to M. Since each point has dM coordinates, the dimension of
the discrete measure is in O(M?). For this reason, the development of algorithms
for minimizing 7% by using finite discrete measures may be a way to avoid the curse

of dimensionality when M 1is getting large.
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We make here a specific focus on the multimarginal optimal transport problem
which arises in quantum chemistry applications [304, [108]. In this particular case,

the multi-marginal optimal transport of interest reads as (2.15)), with X; = -+ - Xy =
R3 Ny =---= Ny = N for some N € N*, yy = -+ = pups = p for some p € P(R3?)

and c is given by the Coulomb cost

1
C(l'l,"' ,xM) = E ﬁ
J

x.
1<i<j<M ’ v

The integer M represents here the number of electrons in the system of interest.
The inherent symmetries of the system yield interesting consequences for the MCOT
problem ([2.17]), which are summarized in the following proposition.

Proposition 2.5. Let M € N*, N € N*, yy € P(X) and ¥, C X a Borel set
such that p(X,) = 1. We assume that ¢ : XM — RT U {oc} is a symmetric l.s.c.
cost function. More precisely, we denote by Sy the set of permutations of the set
{1,---, M} and assume that

Vo € Su,  c(Toy, s Touy) = (@1, -+ ,xp),  for almost all x1,--+ ,xp € X

For all1 <n < N, let ¢, € L*(X,;;R). We define ¢! := ¢, for all 1 <i < M
and assume the set of test functions ¢!, forn € {1,...,N} and i € {1,--- , M} 1is
admissible for (u,...,u,c). We make the following assumptions.

1. For all n, the function ¢, is continuous.

2. There exists 8 : R, — R, a non-decreasing continuous function such that
O(r) — + 00 and such that there exist C > 0 and 0 < s < 1 such that for all

r—+00

1 <n <N, we have

Vo € X, |on(z)] < C(1+6(|z]))". (2.18)

We consider the following problem

Y = inf {/Xc(xl,...,xM)dﬂ(xl,...xM)}. (2.19)

reP(XM)
Vn,i, f.XM & (xs)dm(x1,e s pr)
= [ ¢n(x)dp(x)
Jonr 01 0(|z])dm (@1, m0r) <A

= in {/Xc(xl,...,xM)dﬂ(xl,...xM)}, (2.20)

reP(XM)
vn, [vnm (ﬁ =M ¢n(:r:,-))d7'r(x1,..,,xM)
=[x &n(z)du(z)
St 0Ly 0(|z)dm (21,00 ) <A

and there exists Ay > 0 such that for all A > Ay, IY is finite and is a minimum.
Moreover, for all A > Ay, there exists a minimizer ©7y for the problem such
that T = S°% PRy ot 5 for some 0 < K < N 42, with py > 0 and ¥ ey, for
all1 <i < M and 1 < k < K. Besides, the symmetric measure

symA | Z Zpk zk Nyt (M) (221)

’ oeSy k=1

1S a minimazer to m and '
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Proof. 1t is obvious that the right hand side of is smaller than the right hand
side of . By using the same arguments as in the proof of Theorem , there ex-
ists Ag > 0 such that for all A > Ag the infimum of is finite, is a minimum that
is attained by some discrete probability measure 7} = Zszl pk(s:c’f,...,a:]fw7 for some
< K< N—{—QWithx,]f €Y, foralll <i¢< Mand1l <k < K. Then, since cis sym-
metric and the set of constraints is also symmetric, we get that Wé}[m A also realizes
the minimum. Besides, it satisfies [y ¢n(2:)dnl A (21, . 20) = [ dn(x)dp()
for all n, i, which shows that it is also the minimizer of . n

Remark 2.3. Proposition 15 particularly interesting for the design of numerical
schemes for the resolution of multimarginal optimal transport problems with Coulomb
cost arising in quantum chemistry applications. Indeed, the latter read as and
the number of charged points of the minimizer 7 of only scales at most like
N+2, and that the dimension of the optimal discrete measure is in dM (N +2). This
result states that such formulation of the multimarginal optimal transport problem
does not suffer from the curse of dimensionality. Let us mention that this result
is close in spirit to the recent work [145], where multimarginal optimal transport
problems with Coulomb cost are studied on finite state spaces.

2.3.2.2 Martingale OT problem

In this paragraph, we assume X = ) = R¢ with d € N*, and consider two probability
measures j1,v € P(R?) such that

ly|ldv(y) < oo
]Rd

and p is lower than v for the convex order, i.e.

[ e@ano < [ e, 2.22)

R4

for any convex function ¢ : R — R non-negative or integrable with respect to p and
v. This latter condition is equivalent, by Strassen’s theorem [311], to the existence
of a martingale coupling between p and v, i.e.

Ir € (p,v), Vo € RY, / ydr(z,y) = .

R4

The original martingale optimal transport consists then in the minimization problem

inf {/ c(x,y)dr(z, y)} , (2.23)
mell(p,v) Rd xRd

vzeR?, fRd ydr(z,y)==z

with ¢ : R? x R? — R, U{co} being a l.s.c. cost function. This problem has recently
got a great attention in mathematical finance since the work of Beiglbock et al. [27],
because it is related to the calculation of model-independent option price bounds on
an arbitrage free market.

We consider a set of test functions (¢, )1<m<n € LR 1; R)N and (1,,)1<n<n €
LY(R4, v;R)N, and the following problem:

NV — inf / c(z,y)dn(z, } )
mE€IL(1,v5(dm)1<m< N> (¥n)1<n<n) { R R (2, y)dr (2, y)
V:cERd,fIRd ydn(z,y)=z
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Suppose for simplicity that there exist some minimizer to this problem 7*. Then, by
using Theorem 5.1 in Beiglbock and Nutz [34] that is an extension of Tchakaloff’s
theorem to the martingale case, there exists a probability measure 7 weighting at
most (d + 2N + 2)? points such that 7 € (p, v; (dm)1<m<ns (¥n)1<n<n);

Vz € RY, / yd7*(z,y) = x
Rd

and
/ c(x,y)dm*(z,y) = / c(z,y)dn* (z,y) = IV,
R4 xR4 R4 x R4
However, the minimization problem for IV still has the martingale constraints. To
get a problem that is similar to the MCOT, we then relax in addition the martingale
constraint. This constraint is equivalent to have

[, @y - aanta) =

for all bounded measurable functions f : R — R, and also for all function f : R —
R such that [, [« f(x)|du(z) < co. Then, it is natural to consider N’ test functions
i :RT = R, 1 <1< N’ such that

/R (o)) < o (2.24)

and then to consider the following minimization problem

NN = inf { /R . c(x,y)dn(z, y)} : (2.25)

TEI(p,v5(dm)1<m< N+ (¥n)1<n<N)
vi, fRd «Rd YX1 (x)dﬂ-(xvy):fﬂgd X1 (:t)d,u(x)

We will say that the test functions (¢ )1<m<n, (¥n)1<n<n and (x;)1<i<n are admis-
sible for the martingale problem of (i, v, ¢) if I""N" < co. Similarly to Theorem m,
we get the following result.

Theorem 2.6. Let 1 € P(RY), v € P(RY) and ¢ : R x RY — R, U {+o00} a Ls.c.
function. Let 2,3, C R? be Borel sets such that u(x,) = v(¥X,) = 1. Let N €
N* and let (¢m)1<men € L'(RY i R)N, (Pn)i<nen € L'REVR)Y and (xi)1<i<n
satisfying be an admissible set of test functions for the martingale problem of
(u,v,c). We make the following assumptions.

1. For alln € {1,...,N}, L € {1,...,N'}, the functions ¢, ¥, and x; are
continuous.

2. There exist 0, : Ry — Ry and 0, : Ry — Ry two non-negative non-decreasing

continuous functions such that 0,(r) — o0 and 0,(r) — 400, and such
T—+00 r—-+00

that there exist C' > 0 and 0 < s < 1 such that for all1 <n < N, 1 <[ < N/,
and all (z,y) € R x RY,

|6n ()] + [n(W)] + [yxa(@)] < O+ 0,(l]) + 0o (Jyl))". (2.26)

For all A > 0, let us introduce

Y = inf { /R . c(x,y)dﬂ(x,y)}. (2.27)

7€ (,v5(dm)1<m< N>(¥n)1<n<N)
Vi, [rd sgd ¥x(@)dm(z,y)=[pa Tx1 (@) dp(x)
Jrd g Ou(lz)+6u (Jy]))dm (2,y) <A
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Then, there exists Ag > 0 such that for all A > Ay, IiV’N, 18 finite and is a minimum.
Moreover, for all A > Ay, there exists a minimizer WQ’N, for Problem (2.27)) such
that Wf’N/ = Zfﬂpkémk,ym for some 0 < K < 2N + N'+2, with p,, > 0, z;, € ¥,
and yp € 3, forall1l <k < K.

The proof of Theorem follows exactly the same line as the proof of Theo-
rem [2.3], since the relaxation of the martingale moment constraints only brings new
moment constraints. Let us stress that the minimizer 7T1]X’N/ does not satisfy in gen-
eral the martingale constraint. Also, we do not impose in Theoremto have (2.22)),
i.e. p smaller than v for the convex order. In fact, the admissibility condition already
ensures that IV < oo and thus, by using Theorem that IIZI’N/ < oo for A large
enough. Nonetheless, if we assume in addition that p smaller than v for the convex
order and that I, the infimum of Problem , is finite, then we have IiV’N/ < 0
and IYVN < T for any A > [o, oa(0,(2]) + 6,(|y]))dn' (z, y), where 7' € TI(,v) is
such that [p, ydn'(z,y) =z and [p, pac(z,y)dr'(z,y) < T+ 1.

2.4 Convergence of the MCOT problem towards
the OT problem

The aim of this section is to prove that when the number of test functions N — +o0,
the minimizer of the MCOT problem converges towards a minimizer of the OT
problem, under appropriate assumptions and up to the extraction of a subsequence.

2.4.1 Convergence for two-marginal (or multi-marginal) Op-
timal Transport problems

Let us consider two sequences of continuous real-valued test functions (¢, )men+ and
(¥n)nen+ defined on X' (resp. )) and make the following assumptions.

Let us first assume that there exist continuous non-decreasing non-negative func-
tions 6, : Ry — Ry and 6, : R — R, such that

0,(|x|) m +oo and  6,(|y|) m +00 (2.28)
and
/ 0,(|z|)dp(zr) < oo and /9y(|y|)du(y) < 0. (2.29)
X Yy

In the sequel, we set
Agi= [ Bu(lahdnte) + [ B.(ul)avty). (2.30)
X y

We assume moreover that there exist sequences (s”)mens, (8 )nen= € (0,1)N and
(Ch)mens (CF )nen- € (Ri)N* such that

VYm e N, Ve € X, |om(a)] < CLA+0,(z])™, (2.31)
Vne N, Vyed, [va(y)| < Cr(l+06,(lyl) (2.32)
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Last, we assume that the probability measures 1 and v are fully characterized by
their moments:

Vn € P(X), (Vm e N*, /X Om(x)dn(z) = um) = n=p, (2.33)

Vn e P(Y), (Vn € N*,/ywn(x)dn(x) = ﬂn) = n=ur. (2.34)

We consider the optimal cost for the OT problem ([2.4)) that we restate here for
convenience

[— inf { /X Xyc(x,y)dﬂ(:c,y)}, (2.35)

mell(p,v)

and for all N € N*, we define the N** MCOT problem,

N .
IAO B WEH(#1V3(¢WL)1ISI]TVIL2N,(¢R)1STLSN) {/Xxy c(x, y)dﬁ(x, y)} ' (2'36)
S sy Ou(|zD 400 (ly]))dm(z,y) < Ao

Theorem 2.7. Let u € P(X) and v € P(Y) satisfying for some continuous
non-decreasing functions 0, : Ry — Ry and 0, : Ry — Ry satisfying . Let ¢ :
X xY — R,U{+o00} als.c. function. Let (¢m)men C LN(X, 1;R) and (¥y,)nens C
LY (Y, v;R) be continuous functions satisfying ([2.31)), (2.32), [2-33) and ([2.34). Let
us finally assume that I, defined by s finite.

Then, for all N € N*, there exist at least one minimizer for Problem and

W o — I
Ao N—+oo

Besides, from every sequence (m™)nen+ such that for all N, ¥ € P(X x Y) is
a minimizer for (2.36), one can extract a subsequence which converges towards a

minimizer 7 € P(X x V) to problem (2.35).

Proof. From Theorem and Remark (i), We know that there exists at least
one minimizer 7 € P(X x V) to (2.36)). Since we have

VN, ; y(%(lfﬂl) + 0, (ly))dr™ (2, y) < Ao,

and (2.28)), we get that the sequence (7V)yen- is tight. Thus, up to the extraction
of a subsequence, still denoted (7)yen+ for the sake of simplicity, there exists a
measure 7 € P(X x ) such that 7% ——— 7> tightly. With the same argument

N—o0
as in the proof of Theorem [2.3] we get that for all m,n € N*,

Gm(2)d7>(2,y) = fi  and Yo (2)dT™ (2, y) = Uy

XxXY XxXY

Then, Properties (2.33)) and (2.34) give 7> € II(u, v). Therefore,

/X yc(x,y)dwoo(x,y) > 1. (2.37)

On the other hand, note that (1 Qg) ~Nen is a non-decreasing sequence and that for all
N € N*, Iﬁfo < I. Thus, there exists I>° < I such that IAVO N—> I°°. Furthermore,
—00

since ¢ is a non-negative semi-lower continuous function, using [291][Lemma 1.6], we
deduce that

/ c(z,y)dr™(x,y) < lim inf/ c(z,y)dr™ (z,y) = I < I.
xXxY AxY

N—+o0

Hence fXxy c(x,y)dm>(x,y) = I which concludes the proof since 7 € II(u,v). O
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Remark 2.4. Let us make a few remarks:

(i) A result analogous to Theorem can be easily obtained for general multi-
marginal optimal transport problems. The extension to martingale optimal
transport problems is less obvious and is the object of Section |2.4.2

(ii) Assuming that X and Y are compact subsets of R% and R%, a result analogous
to Theorem that holds without the additional moment constraint and for
possibly discontinuous test functions can be proved. More precisely, considering
two sequences of bounded measurable real-valued test functions (¢m)mens C

L>®(X) and (Vn)nen C L®(Y) that satisfy

Y(x inf — — 2.
Vf €c ( )7UNESpan{grln,1§m§N} Hf UNHOON—H—OOO ( 38)
and
Vi e '), inf 1f—vnllee — O, (2.39)
N—+o00

vy ESpan{yn, 1<n<N}

it is easy then to see that the properties (2.33) and (2.34)) are satisfied for any
p € P(X) and v € P(Y). The precise statement and proof of this result is

given in Section of Appendiz[A.9

(iti) The result of Theorem[2.7] can be seen as a T'-convergence result, see Braides [55]
for an introduction to this theory. Let us define for m € P(X x Y), F,(m) =
Loy c@ y)dn(z,y) if 7 € (1, v; (dm)i<mens (Pn)i<n<n) (Tesp. Fuo(m) =
fXxy c(z,y)dm(z,y) if # € I(u,v)) and F,(r) = +oo (resp. F(w) = +0)
otherwise. Let us define K = {m € P(XxY), [y, ,(0u(|2))+0,(ly]))dr(z,y) <
Ap}. We can then check that on K, the sequence (F,) I'-converges to Fy, by
using that ™ — [, (x,y)dm(x,y) is l.s.c. for the weak convergence and

c
X
properties (2.31)), (2.31)), (2.33) and (2.34), as in the proof of Theorem .

Then, since K 1is tight and thus a relatively sequentially compact set, we get
the claim by Proposition 1.18 [55].

2.4.2 Convergence for Martingale Optimal Transport prob-
lems

In this subsection, we study the convergence of Iiv’N/ defined by ([2.25) when the
number of test functions for the martingale condition N’ — +oo towards the fol-
lowing minimization problem:

omo _ in { /R L c(x,y)dﬂ(a:,y)}. (2.40)

TEI(p,V5(dm ) 1<m<Ns(Pn)1<n<N)
VmERd,fRd ydr(z,y)=x
Sy Ou(lzD+0u(ly))dr (z,y) <A

This convergence is particularly interesting for the practical application in finance:
the marginal laws p, v are in general not observed and market data only provide
some moments. For d = 1, market data give the prices of European put (or
call) options that corresponds to ¢,,(x) = (K,, — )% and ¢,(y) = (K, —y)*.
We consider for simplicity a non-negative underlying asset with zero interest rates.
Then, by taking 6,(|z|) = 6,(|]z|) = |z|, we have from the martingale assumption
Loyl + [y)dm(z,y) = 2S;, where Sy > 0 is the current price of the underlying
asset. Then, a natural choice would be to take Ay = 2S3. Therefore, the conver-
gence stated in Proposition [2.8| gives a way to approximate option price bounds
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by taking into account that only some moments are known, while the few existing
numerical methods for Martingale Optimal Transport in the literature assume that
the marginal laws are known [B, [0, [171].

Proposition 2.8. Let u € P(RY) lower than v € P(RY) for the convex order and
c:RYx R — R, U{+o0} a ls.c. function. We assume |x| < 0,(|z|), ly| < 0,(|y])
and suppose Ay < oo with Ay defined by . We assume that the test functions
(x1,1 € N*) are bounded and such that for any function f : RY — R continuous with
compact support, we have

nf v 1f = glloe ;=2 0. (2.41)

0
g€Span{x;, 1<I<KN’ '—+00

Let the assumptions of Theorem hold for any N' > 1. Then, we have II%N, N—)
'—+o00

N,mg
Iy < oo.

Proof. Since Ay < oo, any martingale coupling between p and v satisfies the con-
straints of IZ;N/. By using Tchakaloff’s theorem and the fact that c is finite-valued,
we get that I,%N/ is finite for any N’ and is attained by a measure denoted by 7'
according to Theorem Similarly, using Tchakaloft’s theorem for the martingale
case, Theorem 5.1 [34], we get that Iﬁfo’mg < 00. Note that from the inclusion of the
constraints, we clearly have IZ)’N{ < 1"Né < Iiz)’mg for N{ < NJ. We can then repeat
the arguments in the proof of Theorem to get that (v /) is tight and any limit 7*°
of a weakly converging subsequence satisfies Iﬁfo’mg = Joayga c(x,y)dT> (2, ).

The only thing to prove is that [, p.(y —2)f(2)dn>(z,y) = 0 for any function
f : R?* — R continuous with compact support. Let € > 0. By assumption, there
exists M € N* and \y,..., Ay € R such that sup,cpa |f(z) — 31y Moxi(z)| < e
Therefore, for N’ > M, we have

[ 5@ = )| -

/]Rd Rd (f(x) N Z Ale(x)) (y— a:)dwN/(x’y)

< 6/ ly — z|dr™ (2, y) < eAo,
RIxRE

by using the triangle inequality and the fact that |z| < 6,(|z]), |y| < 6.(|ly]). We
conclude then easily letting N/ — oo. ]

Let us mention that we can obtain using similar arguments that Iivo’mg and IX;N/
converge towards as N and N’ go to infinity. Note that the convergence of
Iﬁ)’mg is implictly used in the literature on robust finance: it is usually assumed to
know marginal laws while in practice market data only provide some moments.

2.5 Rates of convergence for particular sets of test
functions

Throughout this section, we assume that
X =Y=101]
and for all N € N*, we define the intervals

1 1
T{V:{o,—],WSmgN,Tg:(—m m}

— 2.42
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We investigate in this section the rate of convergence of IV defined by

™ = inf { /X Xyc(x,y)dﬂ(x,y)} (2.43)

TEI (1, V5 (dm)1<m<N>(¥n)1<n<N)

towards [ defined by , when the test functions are piecewise constant (resp.
piecewise linear) on 7. We obtain, under suitable assumptions a convergence rate
of O(1/N) (resp. O(1/N?)). This shows, as one may expect, the importance of the
choice of test functions to approximate the Optimal Transport problem.

Note that, as studied in Appendix [A.2] the compactness of X and Y allows to

define Problem ([2.43)) with no inequality constraint (contrary to (2.10])), and that,
despite non-continuous test functions, such MCOT problems are well defined and
under appropriate assumptions converge towards the OT problem.

2.5.1 Piecewise constant test functions on compact sets

In this section, we assume that the cost function ¢ : [0, 1]> — R, is Lipschitz:
|C({L‘, y) - C(l‘/,y/)| < Kmax(|m - ZE,|, |y - y,|) (244)
We define, for m € P([0,1]?), I(7) = [4, c(2,y)dn(z,y) and

I'= inf I(m). (2.45)

mell(p,v)

We introduce the piecewise constant test functions
VN21a1§m§N7 ¢%:1T},\L’7
and consider the MCOT problem:

= inf {/[0,1]2 c(x,y)dﬂ(m,y)}. (2.46)

TE(p,v; (AN ) 1<m< N (PR )1<n<)

Then, Theorem establishes the rate of convergence of the sequence (IV)yen- to
I as N increases.

Theorem 2.9. Let p,v € P([0,1]) and ¢ : [0,1]* — R, a Lipschitz function with
Lipschitz constant K > 0. Then, for all N € N*,

K
IN<r<IV+ ¥ (2.47)

Remark 2.5. Let us note that we are not exactly in the framework of Section
since the test functions depends on N. However, we have

Span{qb%, 1§m§N} CSpan{gb?nN, 1§m§2N}

and thus Proposition[A.4) gives for any L € N*,

J L —
k—4o00 .

Before proving Theorem [2.9] we state a result which bounds the distance between
an MCOT optimizer and the minimizer of the OT problem (2.45). We define,
for p > 1, the W,-Wasserstein distance between 71,17, € P(R?) as WE(n1, 1) =

inf rerin ) Jpaga |1 — @2][Bdm (21, 22), i.e. we take the [|||,-norm for W,.
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Proposition 2.10. Let p > 1. Let p € P([0,1]). If u¥ € P([0,1]) is such that
fol ON (z)dpN (z) = fol oN (z)du(x) for allm € {1,..., N}, then

W (p, ) < %

Let us assume besides that the cost function satisfies c(x,y) = H(y — x) with H :
R — R, strictly convex. There exists then a unique minimizer of which we
denote by 7*.

Let 7 € T1(p, v; (X)) 1<mens (0N )1<n<n), p¥ and vV the marginal laws of 7™ and
assume that

reM(uN wN)

/ c(x,y)dn(z,y) = min / c(x,y)dr(x,y).
[0, [0,1)2

Then, we have W, (7™, 7*) < %, where W, is defined using the |||, norm on R%.

Proof. For n € P(R), we define F,'(u) = inf{z € R : n((—o0,z]) > u}, that
coincides with the usual inverse when £, is increasing continuous. Let p > 1. By
Theorem 2.9 [291], we have

= [ 1 @ - ER

F,(0) N FH(%)
:/0 |Fljl(u)—FJA}(u)|pdu+Z/ |Fljl(u)—F;N1(u)|pdu.

If F, (2) = F, (2), we clearly have f ,ZVT)) |F () — FgNl(u)|pdu = 0. Other-

m
N

wise, we have F,v (%) = F, (&) < F, (%) F,~ (%), and therefore

Yu € <Fu Tl) JF, (%)) ., F l(u),ngvl(U) € {mle%} :
This gives [F, ' (u) — Fl:Nl(u)] < 1/N. Since F,(0) = F,~(0), we get that F'(u) =
FM_A}(u) = 0 for u € (0, F,, (0)). We finally get W2 (p, p™) < NP,
Now, let U ~ U([0,1]) be a uniform random variable on [0, 1]. Still by Theo-
rem 2.9 [291], we have (F,,'(U), F; ' (U)) ~ 7* and (F,x(U), F,v(U)) ~ 7. This
gives a coupling between 7* and 7V, and thus

=

W™, 7") S E[|Fx(U) — F, A (U)PI+E[F i (U) - B0 <

In order to prove Theorem [2.9] let us introduce the following auxiliary problem.
For all N € N*, let us define

ﬁN(My V) ::{(ﬁm,nhgm,nSN |V]- S m,n S N7 7_"—m,n 2 O;

N N
Vm, Zﬁmm = (TN, ¥n, Z T = V(TTJLV)}

n=1 m=1
and
JN .= inf c 2 2 ) Trn- 2.48
el () mznzl ( N N 7 ( )



Let us introduce the following applications

D: T(p,v) — IV(u,v)
T — (7T(T7Ir\[ X Tév))1<m n<N (249)
and
J: IV(u,v) — RT
7 — Zg,n:1 c (mj\;g7 n;\[i> ,ﬁm’n (250)
Lemma 2.11. Let N € N*. We have
K
v e P([0,1]), |I(7m) — J(D(m))| < N (2.51)
Besides, we have
K
IN< N <INV ¢ — 2.52
+on (2.52)
Proof of Lemma[2.11. Let m € P([0,1]?). Then, we write
I(m) =

N
/ o(z, y)dn(z, y) =
[0,1]2

N

> / c(r,y)dn (v, y)
m,n=1 T,,JY\LIXT?]LV
B . (m —1
N Z N
m,n=1

1,1

_2%> Dy ()
N

_|_

m _—
[ (=
m,n:l T,,,],\L/XTéV
and get |I(m)

N Nz))dﬁ(%y),
— J(D(m))| < 3y s
TN x TN,

1
5y since [c(z,y) — ¢ <mN

2 BE)| < K for (a,y)
Let N € N*. For all # € [I(y, v), defining m:= > | T
that = € P([0,1]%), D(r) = 7 and I(m)

1 1
2 n

1
m3

n—77

one obtains
N
J(7); this implies that IN'< gy
Conversely, if m € TI(, v; (@2 1<mens (0N )1<n<n) is chosen to satlsfy I(m) <
IN + € for some € > 0, one gets JV < J(D(r)) < I(m) + A
e — 0 provides the wanted result

="+ £ te Lettln_g
O
We also need the following auxiliary lemma

Lemma 2.12. For all 7 € TIV(u,v), there exists #* € Tl(u, v) such that @ = D(7*) ]|
Proof of Lemma[2.19 Let @ € Il(y,v). We define #* by

dm*(

Z Ly (2

Z ﬁ-m,n 1T711V (y>dy(y)
n=1 25:1 Tm,n! v(T3Y)
Since SN _ | o = w(TN) and N _ 7,0 = v(TN), we have
N N
_ Tmn 1TN (y)dl/(y)
d7*(z,y) = w(TN ’
Jodm e = S 3 s =
_ i iﬁ Loy (y)dv(y)
n=1 \m=1 o V(TT]LV)
'In the literature, 7* i

ZlTN( )dv(y) =

dv(y).
n=1
is called the block approzimation of @ [83, Definition 2.9]
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Also, we have fy dr*(z,y) = du(z) fozl 1y () SN — dp(x), which

-1 3N -
n=1 Zn’:l ﬂ—m,n’

gives 7 € II(u, v). Last, we have

[ am ) = T o =
TN TN

anzl ﬁm,n’
which precisely gives T = D(7*). O
We are now in position to give the proof of Theorem

Proof of Theorem[2.9. The inclusion I1(x, v) C I(p, v; (0X)1<mens (6N )1<n<n) gives
N <TI.

Lemma implies that for all 7 € TIV (1, v), there exists 7* € I(p, v) such that
D(7*) = 7, and we get by Lemma |J(7) — I(7*)| < &. Let now 7 € II"(p, v)
such that J(7) < J¥+e for some € > 0. Then one gets that JV +5-+e > I (7%) > 1.
Letting € go to zero yields that

K
I<JV+ N (2.53)
Furthermore, Lemma gives JV < IV + % and thus I < IV + % O

Remark 2.6. Theorem [2.9 can be easily extended to higher dimensions and to the
multi-marginal case. Let us assume that ¢ : ([0,1]9)M — R, is such that

clar, o aar) = elah, o i) S K _max i = all

For N € N* and m € {1,...,N}? =: Ey, we consider the test function ¢ (r) =
e, o (x;) for x € [0,1]%. Then, with

I= inf / c(xy,...,xpy)dr(zy, ..., xy)
([0,1)4)™

wEI(p1,. .t ns)

and

NV = inf {/ c(xl,...,xM)dW(azl,...,xM)},
W:Vm,k,f([()’l]d)M N (zp)dm(z1,...,. o0 ) =1 ([0,1]4)M

where Ym, k, i = [ a0 ON(2)dpk(z), we get similarly (it is straightforward to

0,14
generalize Proposition@ and we can extend the result of Lemmal[2.19 by induction
on M)

K

IN<rr<IVy—,

S 1S + N
Since the number of moments (i.e. of test functions) involved in the computation of
IV is MN?, we see that the storage complexity of getting an approzimation of I*

with a giwven error is exponential in d but, in view of Remark: (resp. , only
quadratically (resp. linearly) dependant on M.

2.5.2 Piecewise affine test functions in dimension 1 on a
compact set

The test functions considered are discontinuous piecewise affine functions, identical
on each space. For all N € N* and all 1 < m < N, let us define the following
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discontinuous piecewise affine functions

N (x):{ N(z—24) if zeTh,

™1 0 otherwise,
m—1 :
™ 0 otherwise,

and for all i =1, 2,
ﬂer'::/@Nm‘dﬂ and ﬂﬁi3:/¢%id”
b X b b y b}

Lemma 2.13. Let py, pus € P([0,1]). Let N € N* and let us assume that for all
1<m<Nandi=1,2,

¢%,i($)dﬂl($) = ¢%,i(37)dﬂ2($)~
[0,1] [0,1]

Then, denoting by Fy : [0,1] — [0,1] (resp. Fy :[0,1] — [0,1]) the cumulative
distribution function of py (resp. ps), one gets that

Wi<m<nN, [ F()ds= / Fy(x)ds, (2.54)
TN TN
and m m

Proof. We have ¢y,1 + ¢m2 = Lry and thus, for 2 <m < N, Fy (%) — Fy (2)
By () — F> (™). Since Fi(1) = F5(1) = 1, this gives (2.55). Now, let
An integration by parts yields for 1 < m < N

m
N

Sa@ae) = [ @ = "))

m—1

- (F) - [, e

Using (2.55)), this gives (2.54)). O

Let us remark that we may have F;(0) # F5(0) under the assumptions of
Lemma [2.13] since p; and po may charge differently 0.

Let us now explain with a rough calculation why considering these test functions
may lead to a convergence rate of O(1/N?) when ¢ is C! with a Lipschitz gradient.
Let

[0,1]

= inf {/m c(x,y)dﬂ(:c,y)}. (2.56)

m€(pvs(dy ), (6h )

We have IV < I and, for any 7 € II(u, v; (¢ ), (oX.)),

m,i n,%

. L T AT S A
I(r) = 0, i P
0= 3 e (5757 0 (52557 e
m_1 1 _1
—i—ayc( N2’ N2)(y— N2)d:cdy—|—0(1/N2)



Thus, we have

al 1. 1 m—1 1\ |
I(W):Z 0—58@,—583, N ) Tmn (2.57)
1

1 1 1 1
m—1: n—; m—=% n—1
—I—(()xc( N2’ N2>7T§m+8yc( N2’ N2>7r2m+0(1/N2),
with the notations wl = w(TN x TN), Nr2, = Jrn oy ¢ 1 (x)dm(z,y) and

N = [ ooy @ma(y)dm(z,y). We can thus consider the linear programming
problem of minimizing the right-hand-side of under the constraints Y . =
ﬂﬁ,ﬁ‘ﬂ%,m m Tmn = ljﬁ,l_i_l;’r]r\z[ﬂ? o Tonn = ﬂ%,l/N7 D T = ’7%,1/]\[ and m,, >
0. Suppose for simplicity that we can find a minimum (7% ) to this discrete problem.
If we could find (similarly as Lemma 7 € U(p,v) such that 7L = 7 (TN x
TT]LV)7 Nﬂ-:rﬁm = fT/rYXT/LV ¢7Nn,1($)dﬂ-*($=y) and Nﬂ-:rii = fTNJXXT,{V (ban,l(y)dW*(xvy)v we
would get then
I <1V +0(1/N?%).

Unfortunately, such a result is not obvious. Besides, we see from this derivation that
the smoothness of the cost function plays an important role.

Let us recall that for p > 1, the W),-Wasserstein distance at the power p,
WP(p,v), corresponds to the cost function c¢(z,y) = [r — y[P. In the following,
we prove convergence results with rate O(1/N?) for c(x,y) = |r — y| and c(z,y) =
|z — y|%. In the first case, the cost function is not smooth on the diagonal, and we
need to impose an extra condition on p and v to get this rate. We first state a first
result, which is already interesting, but will be not sufficient to prove the desired
convergence. Its proof is postponed to Appendix

Proposition 2.14. Let py, ps € P([0,1]) be two probability measures with cumula-
tive distribution functions Fy and Fy, respectively, such that Fy, Fy € C*([0,1]). Let
us assume that for all1 <m < N andi=1,2,

Gmi(@)dm () = [ o (2)dpa(2).
[0,1] [0,1]
Then,

1Y [loo + 155 [l
Wi, p2) < a2

In addition, let my = minyep 1) F{(u) and my = min,ep ) F3(u) and let us assume
that my > 0 and mo > 0. Then, for all p > 1, we have

(2.58)

G e

Remark 2.7. The result of Proposition (2.14] can be extended through the triangle
inequality in order to treat reqular measures with different piecewise affine moments.
Indeed, forp > 1:

1Y oo + 155 || oo
! e 222 (p!)

3=

Wy (g, pa) <

WP(Ma V) S Wp(lu’v la) + WP(ﬂ? ﬂ) + WP(D7 V)7

thus
Wy(p1,v) = Wyl )| < Wylp 1) + Wy (. 0). (2.60)

Thus, using Proposition |2.14), one gets that for p, v two measures with cumulative
distribution functions F and G, respectively, such that F,G € C?([0,1]) and fi, U
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two measures with cumulative distribution functions F and G, respectively, such
that F,G € C*([0,1]); If u and fi (respectively v and ) have the same 2N piecewise
affine moments of step 1/N, then

[F" oo + 1F" oo + 16" lloo + 1G”lloo

]Wl(u,u)—Wl(/],ﬁ)IS 3N2

(2.61)
Besides, if m, = minycpo1) F'(v), mp = ming,ep F’(u), m, = Ming,ep1 G'(u) and
my = minyeo1) G'(u), are positive, one has for all p € N¥,

(W, v) = Wy(i, D)

~ p—1
[F" oo + I1E"lloe (5 (1 1N\ 7 2
< e Il (2 (L)) 7
my, mg

16" + G oo (5 (L, LN\ o
+ 3N2 5 m—y—i-m—ﬂ (p) (2.62)

Unfortunately, Proposition [2.14] cannot be extended to non-smooth measures, as
Example below shows. However, the O(1/N?) convergence obtained in Remark
may stay true even for non-smooth measures g and v. This is important in
our context to treat the case where i and 7 are not smooth since the solution of
the MCOT problem may typically be a discrete measure that match respectively
the moments of p and v. We tackle this issue for W; and W5 in the two following
paragraphs.

Example 2.3. In Proposition if one of the measures (let us say fi) is not reg-
ular enough, then the convergence in O(1/N?) may not be true, as shown thereafter.
We consider u ~ U([0,1]) and

and

However, we have

1 1\’1 1
— ldu=2N () =
T <2N) 2 " AN

2.5.2.1 Convergence speed for W;

1/N
Wl(u’ﬂN) = N/
0

Proposition 2.15. Let p,v, i, v € P([0,1]). Let us assume that u and v are ab-
solutely continuous with respect to the Lebesque measure and let us denote by p,
and p, their density probability functions. Let us denote by F,, F,, F; and Fj; the
cumulative distribution functions of p, v, i and U respectively. Let N € N*. Let us
assume that

V1l <m <N, Fu_/ F; and / F,,—/ F;. (2.63)
Ty Y TN TN
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Let us assume in addition that the function F,, —F, changes sign at most Q) times for
some @ € N. More precisely, denoting by G := F,, — F,,, we assume that there exist
2o =0<2; <xp < <29 <2041 =1€]0,1] suchthatforalll<q<@—|—1

Vo, y € [x4-1,2,, G(z)G(y) > (2.64)
and for all 1 < q < @,
Vo € [z4-1,24], V2 € (24, 2411], G(2)G(2) < 0. (2.65)
Let us also assume that p, — p, € L>=([0,1],dz;R). Then,

Q
Wi(p,v) < Wi, v) +2||p, — Pu||oom-

Note that we only assume regularity of the measures u,v, not of f,v. The
assumption that F,, — F, changes sign at most () times is related to the fact that
c(x,y) = | — y| is not smooth on the diagonal: an optimal coupling is given by the
inverse transform coupling, and F); ' — F ! changes sign at most @ times as well.
Last, remarkably, we do not need for this result to assume F),(m/N) = F(m/N)
and F,(m/N) = F;(m/N). Thus, it is sufficient to work with continuous piecewise
affine test functions.

More precisely, for all N € N*| let us define

_ i N
e, o ={ 7V He

(2.66)

elsewhere,
and for all 2 <m < N,
N(x—mT) it zeTh
Uh(x)={ 1=N(z—22) if €TV
0 elsewhere.
We can check by integration by parts that f[o 1] YN (z)dp(z) = N fTN x)dz and
Joay ¥m(@)du(z) = N [ Fu(z)d NfTN (z)dx for 2 < m < N. Therefore
) m 1
we get
vme{1,..., N},/ YN (z)dp(z) = YN (x)dfi(x)
[0,1] [0,1]
s vyme{l,..., N}, [ Fuo)de _/ Eyoyda. (2.67)
TN TN
Last, let us remark that ¥ = ¢&, and ¥ = ¢ _ 11 gb%,z for 2 < m < N so that

Span{w 1<n<N} CSpan{¢n1,¢n2, 1§n§N} and

T(p, v; (D), (D)) € T, s (), ().

Corollary 2.16. Let u,v € P([0,1]). Let us assume that p and v are absolutely
continuous with respect to the Lebesgue measure and let us denote by p, and p,
their density probability functions. Let F,, and F, be their cumulative distribution
functions. For all N € N*, let us define

NV = inf {/ x—ydwx,y}, 2.68
WGH(HaV;(w%)lﬁmﬁN7(w71y)1§n§N) [071]2 | | ( ) ( )

There exists a minimizer for (2.68). Let us assume in addition that the function F, —
F, changes sign at most Q) times for some QQ € N (in the sense of Proposition
and that p, — p, € L>([0,1],dz;R). Then,

Q

IV < Wip,v) < IV + 2|, — polloe s (2.69)
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In fact, looking at the proof of Proposition [2.15] it even is sufficient to assume
that p,—p, is bounded on a neighborhood of the points at Which F,—F, changes sign.
For simplicity of statements, we have assumed in Proposition [2. and Corollary [2.16|
that p, — p, is bounded on [0, 1].

Proof of Corollary[2.16. From the inclusion I(p, v) C TI(u, v; (V2 )1<mens (WY )1<n<n),
we clearly have IV < Wy(u,v). Using Theorem [2.3| together with Remark (ii)-
(iii), since the functions 1Y are continuous on [0,1] for all 1 < m < N, there exists

™ € (p, v; (WY )1<men, (VY )1<n<ny) which is a minimizer to Problem ({2.68)). Let
us denote by /i and 7 the marginal laws of 7. First, we remark that

1
= [lo=ylar ) > _min {/Mmeme}—wu@m.
0

well(fi,D)

Second, using the fact that

(2, 2) C I, 75 (Y )1<mens (0 )1<nen) = (g, v; (5 )1<men (U 1<),

we obtain

1
= z —yldrN (z,y) = min /x— dm(z }
/0 ’ y’ ( y) w €75 (VN ) 1<m< N (W )1<n<N){ ‘ y‘ ( y)
1
< mmj{/|m—M®Wuw}=Wﬂﬂﬁ)

0

well(f,v

Thus, IV = Wi (j1,7). Besides, we have for all 1 <m < N,

Um(@)di(z) = | Y (@)du(e), Um)do(y) = [ dm(y)de(y),
[0,1] [0,1] [0,1] [0,1]
and we therefore get (2.63)) from (2.67). We can thus apply Proposition and
get the desired result. O

Proof of Proposition[2.15. Let 1 <m < N. Ifforall 1 < ¢ < Q, z, ¢ T~ then
F, — F, remains non-negative or non-positive on 7. Thus, using (2.63)), we deduce

that
| F-Rl=c] (F.-R)
N N

:5/ (Fﬁ_Fﬂ):/ (Fﬁ_Fﬁ>§/ |F — 3l
TN TN N

wheree:lifFM—FyzOonTélv ande:—lifFM—FngonTg. On the other
hand, if there exists 1 < ¢ < @, such that x, € T, one gets

[ E-rl= [ F-r)r2 [ (F-R)
T T T

:/ (F,;—Fp)+2/ (F,—F,)"

TN TN

S/ |Fﬂ—Fg|+2/ (F,—F,)"
Ty oy

1
< F~_F17 2 — Prlloo (79
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since for x € TN, F,(x) — F,(z) = fé pu — pv and |z —z4| < 1/N.
Thus, as there are at most () intervals of that last type, we get

1 1 Q
/ F,—F)| < / Fr = Fol 4 2l — polloo-2,
0 0 N

ie. Wilp,v) < Wi, o) +2|p, — PV”OO%' -

2.5.2.2 Convergence speed for W,

Proposition 2.17. Let p,v, 1,7 € P([0,1]). Let us assume that p(dz) = p,(x)dz
and v(dz) = p,(x)dz with p,,p, € L®([0,1],dz;R;). Let us denote by F,, F,,
Fy and F; the cumulative distribution functions of u, v, i and v respectively. Let
N € N*. Let us assume that

V1 <m<N,F, <%) = F; (%) and F, (%) F, <m> (2.70)

V1<m <N, F, —/ F; and / / (2.71)
TN TN TN TN

7l pullos +llovll
3 N2 '

This proposition plays the same role as Proposition for Wi. Again, the
important point is that no regularity assumption is made on i and 7. We note
that we no longer have restriction on the number of points where F,, — F}, changes
sign, which is related to the fact that c(x,y) = (x — y)? is smooth. Contrary to

Proposition [2.15 we need here the condition ([2.70)).

Corollary 2.18. Let p,v € P([0,1]). Let us assume that p(dzx) = p,(z)dr and
v(dx) = py(z)dz with p,, p, € L>([0,1],dz;Ry). Let F,, and F, be their cumulative
distribution functions. For all N € N*, let us define

NV = inf {/ x —y)%dr x,y}. 2.73
WEH()U‘?V;(QS%’[)ISmSNv(d)yNn’l)ngEN) [0,1]2( ) ( ) ( )
1<i<2

1<1<2

Then,

W (,v) < W3 (i 9) + (2.72)

Then,

7 pulloe + [l lloo
N? '

We omit the proof of Corollary since it follows the same line as the one of
Corollary [2.16| The only difference is that we do not know here if the infimum is
a minimum and have to work for an arbitrary € > 0 with the probability measure

T € U(p, v; () )rzmen, (¢7]Xl)1<<";§N) such that [, (v — y)?dm(z,y) < IV + €. Let
2

1<i<2
us also mention here that we can use Proposition[2.10]to bound the distance between

an MCOT minimizer and an OT minimizer since ¢, 1 + @2 = 1yn.

N < W (pv) < TV + (2.74)

Proof of Proposition[2.17. From Lemma B.3 [I8§], we have

W2(u,v) = / / 1,0y ([Fu(z) — B )] + [F(x) — Fu(y)]*)dady
P> / / R+ [F() — Fuly)] )y

*Z/ | el = Bl + ) ~ Bl sy
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The two terms [F,(z) — F,(y)]* and [F,(x) — F,,(y)]" can be analyzed in the same

way by exchanging p and v, and we focus on the first one. Thus, we consider

for k < 1 the term ay = [on [pv Locy[Fu(z) — F,(y)]"dady and denote dy =
k !

fTé\f leN 1., [Fﬂ(x) - Fﬁ(y)]erxdy‘

o If F,(k/N) < F,((I — 1)/N), then from (2.70)), we have also F(k/N) < Fp((l —
1)/N) (note that if [ = 1, Fi}(O) Z 0= F,,(O)) ThUS, A = O~ékl =0.

o If F,(I/N) < F,((k—1)/N), then from (2.70), we have also F;(I/N) < F((k —
1)/N), and using we get for k < [

akl—/ / d:z:dy—/ / Fi(z) — Fy(y)dedy = ayy.
N JTN N JTN

For k = [, we have by using (2.71) and Lemma m for the inequality

hh / / g /
TN L x
/T / /
N % N
= /T / Fﬂ / FD
N k—1 k;]l

k N

[ulloo + 11w oo

63 '
e We now consider the case where F,(k/N) > F,((l—1)/N) and F,(I/N) > F,((k
1)/N). We can thus find zo € T} and yo € T}V such that F,(zo) = F,(yy). We
then have Vo € T,y € T}V, |Fu(z) = B (y)| < [Fu(z) = Fulzo)| +[Fo(yo) — Fu(y)| <
|l pulloolz = 20| + || pvlloc |y — Yol, and thus using that fTN |z — mo|dr < 53,

2=
-
~_—
o
8

da:——

TN

1 1Pulloo + 1l ow]l 0o
d By
TN + 63

V\/

= Qi +

[ulloo +lovlloo _ < Npulloo + [Pl
< < .
Ykt = RE = Gt 2N’
For 1 < k < N, we note {lx,lx +1,,...,0p + npg — 1} C {1,..., N} the set of [

such that F,((k—1)/N) < F,(I/N) and F,(k/N) > F,((l —1)/N). We necessarily
have l41 > I + ny — 1 since F,((ly + ng — 2)/N) < F,(k/N) < F,(lt+1/N).
Therefore, there is at most one element overlap between two consecutive sets, and
thus S0 ng < 2N,

Combining all cases, and taking into account the contribution of the symmetric
term [F,(z) — F,,(y)]T in the integral, we finally get

Pulloc F llPvlioo Pulloc + {|Pvlco
W3 (u,v) < Wi (i, )+2(NH i 6N3H loe | oyl ZNB!\ I )

which gives (2.72) ]

2.6 Numerical algorithms to approximate opti-
mal transport problems

This section presents the implementation of two algorithms for the approximation of
the Optimal Transport cost. Both algorithms rely on Theorem[2.3] i.e. that the opti-
mum of the MCOT problem is attained by a finite discrete measure Y o+~ PO (2 ,ur)-
The two algorithms corresponds to the following choices:
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1. piecewise constant test functions,
2. (regularized) piecewise linear test functions.

In the first case, the precise positions (x,yx) are useless to satisfy the moment
constraints: only matters in which cell (zy,yx) belongs. Thus, the optimization
problem is essentially discrete on a (large) finite space, for which Metropolis-Hastings
algorithms are relevant. In the second case, we implement a penalized gradient
algorithm to optimize the positions (zy, yx) and the weights py.

The goal of these numerical tests is only illustrative to see the potential relevance
of this approach. We do not claim that these algorithms are more efficient than other
existing methods in the literature, and the improvement of our algorithms is left for
future research.

2.6.1 Metropolis-Hastings algorithm on a finite state space

We expose in the following the principles of the Metropolis-Hastings algorithm used
to compute an approximation of the OT cost. For simplicity, we do so in the case
of two one-dimensional marginal laws. However, the algorithm principles can be
adapted to solve a Multimarginal MCOT problem with marginal laws defined on
spaces of any finite dimension.

2.6.1.1 Description of the algorithm

For this algorithm, we consider the framework of Subsection [2.5.1] i.e. N piecewise
constant functions ¢Y = 17v, 1 < m < N, and the MCOT problem . As
mentioned above, if (z, ;) belongs to the cell TV x TN , its position in this cell
does not matter for the moment constraints. We can therefore assume that the
position minimizes the cost in this cell. For ¢(z,y) = |y — z|?, this amounts to take

c(4, L) if i>
c(ze k) = (i, j) with 6(i, ) = { (L. &) if i=j
(5 &) if i<y

We consider then 2N + 2 distinct cells TN x TV, k e {1,...,2N + 2}. The
weights associated to each cell is determined as the solution of the linear optimization
of the cost associated under the constraint that the weights satisfy the moments

constraints:
IN+2

(p1, ey P2N+2) = arg min Z i€ (ig, Jk) - (2.75)

k>0 ZQNil»Zp -1

V1<m<N, SN2 prliy —m=fim
V1<n<N, 22 +2pkljk n=0n

Note that this set of constraints may be void. To start with an initial configuration
(1K, jr)1<k<2n+2 that allows the existence of weights which satisfy the constraints, we
use the inverse transform sampling between the distributions given by (fix)1<x<y and
(U )1<k<ny on{1,..., N}. This gives in fact the optimal solution (px, (ix, Ji))1<k<2n-+2
for satisfying in particular the constraints. Since we want here to test the
relevance of the Metropolis-Hastings algorithm in this framework, we do not want
to start from the optimal solution: thus, we consider a random permutation o on
{1,..., N} and then the inverse transform sampling between the distributions given
by (fir)1<k<n and (T )1<k<n on {1,..., N'}. This gives a configuration that satisfy
the constraints and is not a priori optimal.
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We now have to specify how the Markov chain defining the algorithm moves from
one state (ix, Jr)1<k<an+2 to another. Let us denote by N (ix, jx) = {(ix+1, jx), (ix —
L, jk), (ik, i + 1), (ix, ji — 1)} the neighboring cells of (i, ji) and

FN<Zk7.7k) = N(Zkajk) N ({17 R N}2 \ (Uk’¢k{(ik’7jk’)})7

the neighboring cells that are free, i.e. that are not in the current configuration.
We choose randomly and uniformly a cell I € {1,...,2N +2}. If FN(i;,5) = 0,
we pick randomly another one. This rejection method amounts to choose randomly
and uniformly a cell [ among those such that F'N (i, j;) # 0. Then, we select (i}, j;)
uniformly on F'N (i, j;) and set (i}, j;.) = (ix, jix) for k # 1, and we accept the new
configuration (i}, j;.)1<k<an+2 only if it allows to satisfy the constraints and with an
acceptance ratio described in Algorithm [I} In practice, we run this algorithm with
K > 2N + 2 cells, in order to increase the chance that the new configuration is
compatible with the constraints.

Algorithm 1 Metropolis-Hastings algorithm

Fix a temperature 8 € RT and take 2N +2 < K < N2
Initialize cells (g, jk)1<k<x and compute the actual optimal cost cactual
Sy ié (i, i)
for a given number of steps do
Choose randomly a particle 1 <1 < K such that FN(i;,7,) # 0.
Compute nuepual = Card(F N (iy, 5;)) the number of free cells near (i, 7).
Choose randomly a new cell (i), 7)) in F'N (i, ;).
if the configuration (7}, j;.)1<k<an+2 allows to satisfy the constraints then
Compute cCpewpos the optimal cost associated to the configuration

-/ v
(ks Jk)1<k<ont2.
Compute Npewpos, the number of free cells near (i}, j;) in the new configuration.

efcnewpos/ﬁ
Move the particle [ with probability min <1,
e

Nactu ,
actual ) This prob-

_Cactual/ﬁ nnewpos
ability is the acceptance ratio of the Metropolis-Hastings algorithm, as ex-

plained in Section 2.2 of [122].
Update the value of cyctual 1O Crewpos if the move is accepted.
end if
end for
return the lowest cost encountered throughout the loop.

The state space of the Markov Chain describing Algorithm [I] is the set of K
distinct elements of {1,...,N}?. Note that we can go from any points (i,7) to
(7/,7") with at most 2N — 2 moves (a move consists in adding or removing one to
one of the coordinate). If we ignore the problem of satisfying the constraints, we
can therefore go from a configuration (ig, jx)1<k<2n+2 to another one (4}, j;.)1<k<an+2
with at most K (2N — 2) moves, which let think that the Doeblin condition may be
satisfied. This would ensure theoretically the convergence of the algorithm converges
towards the infimum

1l
inf / / c(x,y)dn(z,y), 2.76
el (i (oM )1<m<n (9N )1<n<n) Jo Jo ( ) ( ) ( )

and that the convergence is exponentially fast (see e.g. Section 2 of [122]).
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2.6.1.2 Numerical examples

We tested the algorithm for the marginal laws with probability density functions

pu() =321 (2),  pu(y) = (2= 2¢)1p0)(y), (2.77)

and the quadratic cost c(z,y) = |z — y|?.

We consider a number of particles K = 3N + 2 in order at each step to have
more freedom among the configurations which satisfy the constraints. We present
two minimizations:

e N =20 and 8 = 0.000075
e N =60 and 8 = 0.00002.

The evolution of the configurations through the iterations are represented for
N =20 and N = 60 in Figure [2.2] The darker the cell, the more weight it has. In
green (Figures [2.2.6| and [2.2.12)) are represented the optimal configuration for the
given number of moment constraints. The convergence of the numerical cost for
each minimization is represented in Figure 2.1, The pink line represents the cost
of the Optimal Transport problem we approximate, the dark blue line the one of
the cost of the current configuration and the light blue one the minimum numerical
cost encountered during the minimization. The green line is the cost of the optimal
configuration for the given number of moment constraints, that we aim to compute.

—— numerical cost —— numerical cost

true cost true cost
—— min of numerical cost —— min of numerical cost
0.22 optimal discrete cost optimal discrete cost

o e o
N N )
N @ I

o
N
=

Cost value
Cost value

0.18

o
N
(=]

0.16

0 2000 4000 6000 8000 10000 0 20000 40000 60000 80000 100000
Number of iterations Number of iterations

(1) N = 20. (2) N = 60.

Figure 2.1: Cost in function of the number of iterations for Metropolis-Hastings
algorithm and piecewise constant test functions (N = 20 and N = 60).

2.6.2 Gradient on a penalized functional
2.6.2.1 Principles

We make use of Theorem by searching optima of the MCOT problem with N
test functions on each space by looking for an optimal probability measure which is
finitely supported on at most 2NV +2 points (note that in the multimarginal case, we
can look similarly for measures supported on DN +2 points). This algorithm consists
in penalizing moments constraints of the MCOT problem for N differentiable test
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(2) N =20, iteration 2000.
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(4) N = 20, iteration 6000.

(5) N = 20, iteration 10000.

P
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(7) N = 60, iteration 0.

(8) N = 60, iteration 3000.

00
00 02 04 06 08 10

(10) N = 60, iter. 60000.

00
00 02 04 06 08 10

(11) N = 60, iter. 100000.

(3) N = 20, iteration 4000.

(6) N = 20, optimal config.

(9) N = 60, iteration 20000.

(12) N = 60, optimal config.

Figure 2.2: Particles and weights configurations during the optimization using a
Metropolis-Hastings algorithm with piecewise constant test functions (N = 20 and
N = 60) for the marginal laws of (2.77) and a quadratic cost.
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functions on each space ((¢m)1<m<n and (¢,)1<n<n) and then using a gradient-type
algorithm to compute the optimum.

For the sake of simplicity, we consider the case of two marginal laws where the
cost function ¢ is assumed to be differentiable. Let us write the position of the
2N + 2 particles by ((zk, yx))1<k<en+2 and their weights by (pg)i<k<on+2. Then, it
is natural to consider the minimization of

2N+2 2N+2 2 2N+2 2
Z PeC(Th, Y )+ Z (Z Pedm (k) m> +Z (Z Petn(Yr) — Vn) :
n=1

m=1

for some small parameter 7 > 0 and under the constraints p; > 0, Z2N+2 pe = 1.
To avoid the handling of these latter constraints, we prefer to consider weights
Dr = ZQN - o for some ap € R. Although the latter weights cannot be equal to

zero, the previous minimization problem is equivalent to minimize

F(xb <oy LIN425 Y15 -5 Y2N 42, A1, ...,CL2N+2)

2
2N +2 Qi 1 [ XL [N Qi i
= E SN alc<xk>yk)+_ E E SN G () = fim

W2 g, 2
+Z (Z an@m ~ ) . (278)
n=1 \ k=1 Z<i=1

since some particles can have the same positions as other ones. For a fixed value of
n > 0, we use a projected gradient algorithm (see e.g. Algorithm 1.3.16 of [279]),
to ensure that (zy,yx) € [0,1])? for all k, together with a line search method. We
implement alternated gradient steps as follows: first, a gradient step is performed on
the coefficients (ag)1<p<ont2 With (g, yr)1<k<on+2 fixed; second, a gradient step is
done on the positions (zx)1<k<2n+2 With the other variables fixed; lastly, a gradient
step is done on the positions (yx)i<k<ani+2 with the other variables fixed. This
procedure is repeated until the norm of the projected gradient is below some error
threshold. The convergence of this algorithm is ensured by Wolfe theorem (see
Theorem 1.2.21 of [279]).

The example computations exposed thereafter use two sets of test functions: reg-
ularized continuous piecewise affine functions and Gaussian test functions. Remark
that we do not use discontinuous piecewise affine test functions, for which we have
rates of convergence for W; and W,;. We make this choice because the gradient
algorithm that we describe above has better numerical properties for continuously
differentiable test functions.

In the MCOT formulation with M = N, minimizers of MCOT problems
are the same if we consider test functlons (gbm)1<m<N and (¥y,)1<m<y such that
Span((¢m)1<m<n) = Span((ém)1<m<n) and Span((Ym)1<m<n) = Span((Ym)i<m<n)-
However, in the penalized version of the problem (2.78 -, the choice of the test func-
tions has a strong impact on the convergence of the gradient algorithms. It appears
that considering positive part functions (which are convex functions) greatly im-
proves the efficiency of the procedure with respect to classical hat functions, even if
both spans are identical.

Thus, for the numerical examples in 1D, we use the functions for ¢ > 0 and for
all N € N¥|

—(x—%) if x—%g—e
Ve e 0,1, ¢(@) = Lz—L—e? it —e<z—L<e (2.79)
0 if z—+>¢



and for all 1 <m < N,

0 if x—mT_lg—e
Ve e 0,1, ¢N@)={ Lz—mdie) if —e<az—md<e (280
q:—mT’l if Jc—mT’lZe;

which are a regularization of the functions, for all N € N*, and 1 <m <N,

(._%)_ and (._mT‘l)+, (2.81)

The vector space spanned by the restriction to [0, 1] of the latter functions (defined
in ) is the same as the one spanned by the classical continuous piecewise affine
functions (i.e. the functions ¥ introduced in Section . We also use Gaussian
test functions in the 1D numerical examples defined by, for all 0 < m < N,

Vo e [0,1], ¢%N(x) = exp (-w) . (2.82)

2
2 (r3w)
For the example in dimension 2, for N € N*, we use the following (N + 1)? test
functions defined as follows: for all 1 < m,n < N and (z,y) € [0,1]?,

T+Y— Gt —Y) — G (y — )
P (T2Y) = Py < = 5 = (2.83)
where for all ¢ € Z,
N .
Ny g () if 1T<g<N,
vre 0.1, &g (r) = { 0 otherwise, (2:84)
and
N N 1 1
poolwy) =wia (v —oy —v ) (2.85)

For 1 <m,n < N, we set

1 1
@%,O(xay) = 30%,1 (Q?, N - y) and Spé\,[n(aja y) = (pjl\jn (N - $>y) . (286)

Those functions (plotted in Figure [2.3|) are a regularization of the continuous non-

negative functions G (z,y) = (min (z — 2,y — ”T_l))Jr with 1 < m,n < N,
Gio(a.y) = (min (§ = 2,5 —9))", Giuly) = (min (- "5 & —y))", and
G,Ixo(x, y) = (min (% —x,y — "T_l))Jr The vector space spanned by the restriction

to [0,1]* of functions (G, )o<mmn<n is the same as the one spanned by the classical
continuous piecewise affine functions associated to the mesh illustrated in Figure 2.4}
We use such regularized functions, instead of classical piecewise affine finite elements,
for differentiability and efficiency purposes, by analogy with observations in the 1D
case.

2.6.2.2 1D numerical example

Convergence of the algorithm We tested the algorithm for the marginal laws
with densities p, and p, defined in Equation , the quadratic cost function
c(z,y) = |y — z|* and a fixed penalization coefficient 1/n. The exact optimal trans-
port map between p (abscissa) and v (ordinate) is represented by the red line on
the graphs of Figure 2.7, We present four minimizations:
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(3) 803,0

(4) 808,4

Figure 2.3: Examples of unscaled functions used for the 2D numerical example as
defined in (2.83)), (2.84), (2.85) and (2.86]) for N = 5 (out of 36 test functions in
total).

Figure 2.4: Mesh of piecewise affine functions on [0, 1]%.
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e Regularized continuous piecewise affine functions (2.80)

— N =10 and 1/n = 100,
— N =40 and 1/n = 25.

e Gaussian test functions ([2.82))

— N =10 and 1/n = 100,
— N =20 and 1/ = 100.

Once each minimization process has converged, in the regularized continuous piece-
wise affine functions case, the cost for N = 10 is 0.17764 and the one for N = 40 is
0.17785; in the case with Gaussian test function, the cost for N = 10 is 0.17857 and
the cost for N = 20 is 0.17915. The cost of the optimal transport problem is roughly
equal to 0.18444. The convergence of the numerical cost for each case in function
of the number of iterations of the gradient algorithm is plotted in Figures [2.5] and
2.6l where the pink line indicates the exact cost of the optimal transport problem
that we approximate. The evolution of the configurations through the iterations
are represented in each case in the graphs of Figure 2.7 The darker the particle
(g, yr), the larger its weight py (note that at iteration 0, all the particles have the
same weight 1/N, and we use a darker color to make them visible).

We note on the examples in the regularized continuous piecewise affine functions
case (see Figure[2.7)) that the particles (zy, yx) tend to cluster in some places. This is
due to the fact that the cost function is convex and that the test functions are (up to
the regularization) locally linear. In contrast, this phenomenon is not observed with
Gaussian test function where many particles have a significant weight. Nonetheless,
as far as the approximation of the cost is concerned, both choices of test functions
lead to a similar accuracy: on our example, the Gaussian test functions lead to a
slightly better approximation of the cost.

-
0.150

0125

0.025

(1) N = 10. (2) N = 40.

Figure 2.5: Cost in function of the number of iterations in the gradient algorithm
for regularized continuous piecewise affine test functions.

2.6.2.3 2D numerical example

We consider two normal marginal laws in R?: p ~ Ny(m,, ¥,) and v ~ Ny(m,,, %,),

with
0 10 1 1 o7
My = (0) » B = (o 1) ;M = (1) ) 2w = <0.7 | ) ) (2.87)
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(1) N = 10. (2) N = 20.

Figure 2.6: Cost in function of the number of iterations in the gradient algorithm
for Gaussian test functions.

and the quadratic cost function. In this case, it is known that the optimal cost is
given by |m, —m, |2 + Tr(S, + £, — 2(/°S,5/*)1/2) and the optimal transport
map is given by x — m, + 2_1/2(22/22”2;1/2)1/22;1/2, see e.g. [126]. In Figures
and [2.9] the density of y (resp. v) is plotted with different shades of red (resp.
blue). We consider regularized piecewise linear test functions on [—4, 4]* obtained
by rescaling the functions (2.83)), (2.84)), (2.85)) and on [0,1]2.

We represent several iterations of the optimization for N = 36 and 1/n = 2 in
Figure [2.9] where the green arrows represent the transport map computed by the
algorithm from p (red) to v (blue). The greener the arrow, the more weight it has.

We represent the configuration of particles at convergence on Figure [2.8.1| where
each particle consists in a red dot linked to a blue dot. The bigger are the dots, the
more mass is transported. The green dots represent the location where the red dot
would have been transported if the particle were on the transport plan. Convergence
of the cost is represented in Figure where the pink line represents the cost of
the Optimal Transport problem we approximate.

2.6.2.4 Martingale Optimal Transport numerical example

We tested the algorithm for the marginal laws p and v being respectively the uniform
random variables on [%,32] and [0, 1], with the cost ¢(z,y) = |y — z|>. Note that
[y —zPdn(z,y) = [ |y|*dv(y) — [ |z[*du(z) = 1/16 for any martingale coupling 7.
By Jensen’s mequahty, we have f ly—z|*dm(z,y) > (1/16)%? = (1/4)3 and therefore
dr(z,y) = dp(z)(3d0,41/4(y) + 5d0,-1/4(y)) is an optimal martingale coupling and
the equality condition in Jensen’s inequality shows that this is the unique optimal
martingale coupling.

The two lines y = 2 + 1/4 and y = x — 1/4 characterizing the optimal martin-
gale coupling are represented by the red lines on Figure 2.11] We have made one
minimization with N = 10 and 1/ = 60, and N’ = 10 continuous piecewise affine
moment constraints for the martingale constraint, see Problem ([2.25). The evolu-
tion of the configurations through the iterations are represented in Figure [2.11] The
darker the particle (zy, yx), the larger the value of its weight py. The convergence of
the numerical cost is illustrated in Figure where the pink line represents the
cost of the exact Martingale Optimal Transport problem we approximate.
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Figure 2.7: Particles and weights configurations during the optimization using a
gradient-type procedure with regularized continuous piecewise affine (RCPA) test
functions and Gaussian test functions (Gauss) for the marginal laws and a
quadratic cost.
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Figure 2.9: Convergence for two 2D marginal laws with 36 test functions on each
set for a quadratic cost.
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Figure 2.10: Cost in function of the number of iterations in the gradient algorithm.
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Figure 2.11: Convergence with 10 test functions on each set for ¢(z,y) = |y — z|?

29



60



Appendix A

Appendix of Chapter

A.1 Technical proofs of Section

Proof of Proposition [2.14
Proof. Let us first prove (2.58). Lemma implies that

V1i<m<N, Fi(z)de = / Fy(z)dx (A1)
Ty N
and
Vi<k<N, F LA F. k (A.2)
= = ) 1 N — 12 N . .

Then, using a Taylor expansion, as Fy, Fy € C?([0,1]), we get that forall 1 <m < N,
allu € TN and all | = 1,2,

A — B (M) = B () (0= Y| < Ml oy g
N N N 2 N

Integrating over T one gets

my 1 my 1 |/ || oo
Fi(u)d —F(—)— F’(—) llo.
/TWNL de =k () 5 +E\N) oaz| < Tone
This implies, using (A.1) and (A.2)), that
(MY _ @>‘< [T oo + 155 ]|
Fl(N) F2(N - 3N ' (A4)

Thus, using (A.3), for all l = 1,2 and v € T,
m m m
Fiw) = £ (%) + (u= ) L (%) +alw),

where |@;(u)| < % (u— %)2 Then, using (A.4), one gets that for all u € T,

|Fi(u) = Fa(u)] <

I W ey WY D, )

3N N 2 N
(A5)
Integrating over T yields that
17 oo + 11F5 [l
Fy(u) — Fy(u)| du < . A6
[ 1R = Bl dn < G (A.6)
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Using the fact that

wlwl,m):/m”mm Filu |du—2/ |Fu(w) — Fau)| du,

we obtain that

17 oo + 1175 [0

<
Wl(,uhlh) = IN2

Let us now prove (2.59)). The main result needed is the expression of the Wasser-
stein distance in term of the cumulative distribution functions (cdf) and not their
inverse (see [I88] Lemma B.3), which holds for p > 1,

WE(F,G) =p(p—1) / La<y ([G(@) = F(y)]" + [F(z) = G(y)]") (y — 2)P*dady
RQ

(A.7)

because the reasoning of the beginning of this proof introduced a control on the

norm between the cdf of the marginal law and the cdf of a marginal law satisfying
the same moments.

Then, one can proceed with the following induction. Suppose that we know for
p € N* that

. 17" loo + [1F"ls \ (5 (1 | 1YY
1% < | — 4+ — ! A.8
p(/”’?/’b) — ( 3N2 2 m# + mﬂ b= ( )

which holds for p = 1. Then,

WP (1, )

. (p—l—l)p/ 1oy <[F( )—ﬁ(y)]+ + @) r) 2P dady
e [ ([ ([For-rw)] + [ - F<y>]+) —r ) do
o [ ([ [Fe@-F0)] -

+ [ [ - Fw] -0y a

Let us treat the first term of the sum, as the second one can be treated symmetrically.
If F(z) > F(x), we can define y, = F~! (F(x)) and because F : [0,1] — [F(0),1] is
continuous increasing, and we have

s\
o
&
|
= Sh!

(y)} Ny — apidy = /x : (F (v) = F (y)) (y — )P~ dy
1



Thus, by using (A.3] , we get

/ / Fw)] " (y— 2y dyde

= ]—9/0 Lip@)>F) ’F F@)‘ (Yo — x)"dz

1 ~
. Z / Lip@)=F@) ‘F (2) = F (”3)‘ (Ye — )Pz
pm:l Trjnv
. i i
1 F// . F// . F// . F// . 2
‘Z/ [F" [l + [[E”] (ﬂ_x)Jrll oo + [1£7]] (x_m)
p e Jox 3N N 2 N

x 1{F(I)2F(z)}(ym - -’L')pd.%

5 F s + 1F"loo [ - _
= 6p g / Lip@sieyE " (F(@) = F7 (F(2)))"de
0
5 17" ]loo + I1F|lso /1 - Lo du
< — 1o i <F _F ) e
~ Op N? oy T (u) (@) F'(F~(u))

p

F~Y(u) — F7Y(u)| du,

= 5 1Pt 1 1 [
~ 6p N2 mingep 1) £/ (F~Y(u)) Jo

where we used the formula bounding the difference between the cdf (A.5)).
Therefore, as m, > 0 and mj; > 0, and using the symmetry of the formula (A.7)),
one gets

WP (1) <

50+ 1) | oo + 17 N g
2 3N? my, i W( ). (A.9)

Hence, using the induction hypothesis (A.8)), we obtain that (A.8) holds for p + 1,
which gives the claim. O

m

Lemma A.1. Let p € P([0,1]) and F, its cumulative distribution function. Let
N € N*. Then, for any 1 < m < N, we define z € TN by

N % if Fu (%) = Fu (%)
T =% Jon Fu+ 52 F, (BF2) —2F, (2)

m F (m >F m=2),

F(3) = Fa (%) RG> B0

and N = F,,(0)do + Zgzl(FM (%) — F, (mT’l))éxm Then, we have for all 1 < m <

N
Fiw <N>:FH<N>, /T,]XFﬂN:/T/,\{FW vxeTm,[anuz[anﬂN.

N

)

Besides, if p(d ) = pu(x)dx with a p, € L>([0,1],dz;R;) and i € P([0,1]) is such
that F (%) = F, (%) and fTN fTN F,, we have

’ ’ 104l 0
F,|dxr < F;|d —_— Al

Proof. 1t F), (%) F, (m—_l), we have



since F), is non-decreasing and right-continuous. Therefore, there is a unique z2) €
TN such that

N m-—1 m —1 (m N) <m> /
T Yep (22 LA F(Z) = Ia
(l“m N)“(N>+Nxm“]\f —_—

which is precisely the definition of 2. By construction, we have Fyn (%) = F, (%)
and the previous equation gives

N m
Tm m—1 N m
Fon = r(r=2) g F(—)d -
/TN " /m; “( N ) x+/xN FAN /TN

m m

e

when F, (%) > F, () (this identity is obvious if F}, (%) = mF“ (1)) Last, since
for x € T, F, (%) < Fu(z) < F, (%), we get that z +— [ (F,, — Fjv) is non-
N
decreasing on [, 2], non-increasing on [z7, %] and vanishes for z € {1
it is therefore non-negative on T .
Now, let us assume that p has a bounded density probability function p,. We

have

m—1 g v |pulloe, =1
xe{ ~ ’x%}’[n1<F“_FﬂN):/mN1/Wp“(u)dUdZ§ g (x — N )2

N

m1.
s NS

T

m N
e [x,ﬁﬁ} ,/nl(FM—FﬂN)z—/x (F, — Fu)
= [T outwaut < el= 2y

and therefore

N HpuHoo N m—1 ’ m ~\? HpuHoo
_r < 1Pulloc —— m_ < .
/T,,zg (/le(F“ F“N)> de< ™5 Tm N )T (N xm) = T6N3

Now, we observe that we either have [,y (fL Fu) de < [on (fé Fp> dz or
m N m N

S (f; FM> de > [~ (f; F,;) de > [~ (f; Fﬂzv> dz. In the first case,
m N m N m N
the claim is obvious. In the second one, we then have

/T,f,Y (/;&)de/TN (/;Fu>+/m (/;(FM_FﬂN)>v

m

and we get the result using (A.11]). O

-

A.2 Refinements of Theorem and Theorem

We prove in this section some additional results which may be seen as refinements
of Theorem [2.3] and Theorem 2.7

A.2.1 Existence of discrete minimizers for MCOT problems:
case of compactly supported test functions

As announced in Remark [2.1] (iv), an alternative statement of Theorem [2.3| which
avoids imposing the constraint [, ,(0,(|z]) + 0. (|y|))dm(z,y) < A can be obtained
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under stronger assumptions on the test functions and the cost. In all Subsec-

tion we consider the case
X =R%™ and Y = R%,

for some d,, d, € N*, and assume that the cost c is continuous and satisfies:

Vee X, c(z,y) — oo, Yy € YV, c(z,y) — o0, (A.12)
ly| =00 |z| =400
A(x,) € N, (yn) € VN, |z, = 400, |yn| — +o0 and ¢(x,,, y,) = 0. (A.13)

This condition is satisfied for example when d, = d, and c¢(z,y) = H(|x — y|), with
H continuous satisfying H(0) = 0 and H(r) — +oo. We assume also that the

r—+00
test functions ¢,,,¥,, 1 < m,n < N are continuous with compact support, and

define their compact support as follows

Sy:={reX, F1<m<N, ¢,(z)# 0},
Sy:={yeY, IL<n<N, P,(y) #0}.

Let M = max, yes,xsy ¢(,y) and let us define

Sy={reX:3yeSy clz,y) <M+1} (A.14)
Sy={yeY:3z eS8y clz,y) <M+1} (A.15)
together with
K= (S/\/ng)U(S;\gXSy>.

It can be easily seen that Sy (resp. Sy) is a compact set that contains Sy (resp.
Sy), and thus the set K is compact. Then, from (A.13)), we take an arbitrary point
(z,7) ¢ K such that ¢(z,y) = 0, and we define

K=Ku{(zy)} (A.16)

Lemma A.2. Let K € N*, and for all 1 < k < K, z, € X, yp € YV, pr > 0 such

that Zszl pr=1 Ify= ZkK=1 POz € (1, V5 (Pm)1<m<n, (¥n)1<n<n) then there
exist K points (Zy, yr) € K for 1 < k < K such that the discrete probability measure

A= 3 g € T, 5 (b)) 1<mens (Yn)i<nen) and

K
Zpkc(i‘k? Ur) = /
k=1 x

Proof. Consider a measure v = Zszl Di0z, y, Satisfying the assumptions of Lemma
We construct 4 = Zle Pr0z

c(x,y)dy(z,y) < /

XxY

K
C(I, y)d/}/(x7 y) - Zpkc<a;k7 yk)
xY k=1

.5, using the following procedure.
Case 1. If (zy,yx) € K, then we define (T, Ux) = (zk, Yx).
Case 2. If x, ¢ Sy and yi, ¢ Sy, then we define (Zx, Jx) = (Z, 7).

Case 3. Let us suppose x; € Sy and y;, ¢ Sy (tlge case Yy, € Sy and zy & SX is
treated symmetrically). By definition of Sy, we have

Vo € Sy, c(x,yx) > M+ 1.
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In particular, we have c(zg,y,) > M + 1. Let y* € Sy. Then,

c(zg, y*) < e c(z,y)

Let yx := (1 — N)y* + Ay for A € [0,1]. As ¢ is continuous, there exists

A* such that c(zy, ya-) = 225, Then, yy- ¢ Sy because 22 > M, and

ya« € Sy. Then, we define (T, Jx) = (zk, Yr+).

This construction preserves the points in the supports Sy and Sy, and the points
outside the supports are replaced by other points outside the supports. Thus, we
have

K N
VI<m <N, > pedm(@r) = Y prdm(wr)
k=1

k=1

K N
VI<n <N, Y peta(ie) = Y pitbn(y),
k=1

k=1

and the moment constraints are satisfied by 4. In addition, it is clear that the cost
does not change in Case 1 and is lowered in Cases 2 and 3. [

Proposition A.3. Let us assume that X = R%, Y = R% and ¢ : R% x R% — R,
18 continuous and satisfies , .

Let us assume that for all1 < m,n < N, ¢,, and ), are compactly supported real-
valued continuous functions defined on R?. Then, there exists at least one minimizer
to the minimization problem

= inf /;v yc(x,y)dﬂ(m,y). (A.17)

wEI(p,v5(dm)1<m<N>(Pn)1<n< V)

Moreover, there exists K € N such that K < 2N + 2, and for all 1 < k < K,
(e, yx) € K, pr > 0 such that Zszlpk = 1 such that ™ := 21[::117/65%,% is a
MinNIMmUm.

Proof. Let us consider a minimizing sequence (m;);eny for Problem (A.17). For all
[ € N, we will denote by 7, a finite discrete measure which has the same cost and
same moments than 7;, with at most 2/NV 42 points, which exists thanks to Theorem
2.1 and the fact that the test functions are compactly supported. Then, using
Lemma[A.2] for all [ € N, one can define a measure 4, which satisfies the moment
constraints, has a support contained in the set K defined in , and such that,

/Xxy (@, y) (. y) < / c(z,y)dv(z, y).

XxY

Thus, (%;)en is a minimizing sequence. Besides, (;);en is tight since the support of
71 is included in the compact set K for all I € N. Then, following the same lines as
in the proof of Theorem [2.3] one can extract a weakly converging subsequence, the
cost of the limit of which is equal to I"V. The fact that there exists a finite discrete
measure charging at most K < 2N + 2 points can be deduced from Theorem [2.1],
following the same lines as in the proof of Theorem [2.3 O
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A.2.2 Convergence of the MCOT problem towards the OT
problem: bounded test functions on compact sets

We now assume that X and ) are compact subsets of R% and R%. As announced
in Remark (ii), we state a result analogous to Theorem which holds without
the additional moment constraint and for possibly discontinuous test functions. We
consider two sequences of bounded measurable real-valued test functions (¢, )men+ C
L>(X) and (¢ )nen C L*°(Y) that satisfy

Ve ol X), inf ||f—vN||mN:>mO (A.18)

vnESpan{gm, I<M<N}

and
Ve ), inf ||f—vN||mNjw0. (A.19)

vy ESpan{yy, 1<n<N}

It is easy then to see that the properties (2.33)) and (2.34]) are satisfied for any
p € P(X) and v € P(Y). For any N > 1, we consider the following MCOT
problem:

= inf {/Xxyc(x,y)dﬂ(a:,y)}. (A.20)

WGH(NHV;(Q&W)ISmSN?(wn)lgngN)

Proposition A.4. Let us assume that X and ) are compact sets and let p € P(X)
and v € P(Y). Let (¢m)men C L¥(X) and (y)nens C L=(Y) satisfying (A.18))
and (A.19). Let us assume that I < 4+o0o. Then, it holds that IV < T and

W ——.
N—oo

Moreover, from every sequence (m%)nen such that for all N € N*, the measure
€ Tk, v; (Sm)1<men, (Yn)1znzn) satisfies

/ c(x,y) dﬂN(x, y) < Iy + en, (A.21)
XxY

with ey — 0, one can extract a subsequence which converges towards a measure
n—-+00

7 € P(X x Y) which is a minimizer to Problem ([2.35)).

Remark A.1. From Theorem [2.1] there exists 0 < Ky < 2N +2, &1, , &gy €
X,y yky €Y and wi,wiey > 0 such that 4N = 30N wiba,) €
H(M7 ) (Qbm)lSmSNa (77Z)n)1§n§N) and

/ c(x,y) dyN (z,y) = / c(z,y)dr™ (z,y) < Iy + en. (A.22)
xxY XY

In other words, any sequence (1) yen= satisfying the assumptions of Proposz'tz’on
can be chosen as a discrete measure charging at most 2N + 2 points.

Proof of Proposition[A.J. Since X and ) are compact, the sequence (7V) is tight,
and we can assume, up to the extraction of a subsequence, that it weakly converges
to m°. For N € N* U {oo}, we denote the marginal laws of 7V respectively by
dpN (z) = I dr™(z,y) and dv™(y) := [, da"(x,y). For f € C°(X), it holds that

/ fapN —— / Fd,
X - Jx
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Let € > 0. Using the density condition (A.18)), one can find M € N* and Ay, ..., Ay €
R such that sup,¢y ‘f(a:) — M Nigi(x)| < e. Thus,

<e (A.23)

M
/ fdu =" i
X i=1
S fau® = XN [ i | < e e,

M
/ fdMK - Z Aifbi
X i=1

Then, (A.23) and (A.24) imply that | [, fdu® — [, fdu| < 2¢, and taking K — oo
leads to

and for K > M,

<e (A.24)

/deu(’o —/deu' < 2e. (A.25)

As ([A.25)) holds for any € > 0, one gets that for any f € C°(X),

/X fdp> = /X fdu,

which yields that ;> = p. Similarly, we have v = v. Therefore, 7*° € II(u, v) and

/ c(z,y)dn™(z,y) > 1. (A.26)
X XY

Now, we use the same arguments as in the proof of Theorem to deduce that
Loy (@, y)dn>®(z,y) < I, which gives the result. O
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Chapter 3

Constrained overdamped Langevin
dynamics for symmetric
multimarginal optimal
transportation

This chapter is an article written with Aurélien Alonsi and Virginie Ehrlacher and
submitted to Mathematical Models and Methods in Applied Sciences [1].

Abstract

The Strictly Correlated Electrons (SCE) limit of the Levy-Lieb functional
in Density Functional Theory (DFT) gives rise to a symmetric multi-marginal
optimal transport problem with Coulomb cost, where the number of marginal
laws is equal to the number of electrons in the system, which can be very
large in relevant applications. In this work, we design a numerical method,
built upon constrained overdamped Langevin processes to solve Moment Con-
strained Optimal Transport (MCOT) relaxations (introduced in Chapter
and in A. Alfonsi, R. Coyaud, V. Ehrlacher and D. Lombardi, Math. Comp.
90, 2021, 689-737) of symmetric multi-marginal optimal transport problems
with Coulomb cost. Some minimizers of such relaxations can be written as dis-
crete measures charging a low number of points belonging to a space whose di-
mension, in the symmetrical case, scales linearly with the number of marginal
laws. We leverage the sparsity of those minimizers in the design of the numer-
ical method and prove that any local minimizer to the resulting problem is
actually a global one. We illustrate the performance of the proposed method
by numerical examples which solves MCOT relaxations of 3D systems with
up to 100 electrons.

3.1 Introduction

Optimal transport (OT) problems [291) B19] appear in numerous application fields
such as data science [277], finance [27], economics [82], [140], [147] or physics [318].
Hence an increasing interest in developing efficient numerical methods for this types
of problems among the applied mathematics community.

In this article, we specifically focus on multi-marginal symmetric optimal trans-
portation problems arising from quantum chemistry. Density Functional Theory
(DFT) [268] is one of the most popular theories in quantum chemistry in order to
compute the ground state of electrons within a molecule. It is exact in principle,
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due to the Hohenberg-Kohn theorem, up to the knowledge of the Levy-Lieb func-
tional, which is unfortunately not computable in practice. Hence, a wide zoology
of electronic structure models have been developped in the chemistry community
where approximations of this Levy-Lieb functional are computed [228]. Actually, it
has been recently proved [50, 66, 67, 106, 107, 142, 226] that the semi-classical limit
of this Levy-Lieb functional is the solution of a symmetric multi-marginal optimal
transport problem which we state now.

For all p € N* (where N* denotes the set of positive integers {1,2,3,...}), we
denote by P (IRP) the set of probability measures on R?. For d € N*, for all 4 € P(R?)
and M € N* a fixed number of marginal laws (the number of electrons in DFT), we
will denote the set of M-couplings for u by

(p; M) = {ﬂ' epP ((Rd)M) V1 <m < M, dr(xy,...,xn) = du(x,y,) 7.
(R)M—1
(3.1)
Let ¢ : (RHM — R, U{+00} be a M-symmetric (i.e. such that for all (z1,--- ,x) €
(]Rd)M, c(x1,...,xm) = c(To)s - - - Tor)) for o € Sy a M-permutation) non-
negative lower semi-continuous (l.s.c.) function. The function c is called hereafter
the cost function. Then, the multimarginal symmetric optimal transport problem

associated to u, M and c is defined as

I(p) = inf c(xy, ..., ep)dm(xy, ..., Tar). 3.2
0= dpty [ e minan ) (32)

In DFT applications, the cost ¢ is defined as the Coulomb cost ¢(xy,...,zy) =
> —L— Then, this multimarginal symmetric optimal transport problem

m1<m2 |[Tmy —Tmgl| "
allows to compute the interaction energy between electrons, given an electronic
density (equal to Mpu), in the Strictly Correlated Electrons (SCE) limit — bringing
interest in numerical methods for large multimarginal systems.

A straightforward discretization of problem ({3.2) (using a discretization of the
state space R? with a discrete d dimensional grid for instance) leads to a linear
programming problem, whose size scales exponentially with M. Hence, for large
values of M, specific numerical methods have to be used in order to circumvent the
curse of dimensionality. Hence, new application or efficiency oriented approaches
have been developed for such problems, using entropic relaxation and the Sinkhorn
algorithm [41] [42], dual formulations of the problem [251] or sparsity structure of
the minimizers of the discrete problems [143] [320], which can be combined with a
semidefinite relaxation [192] 193].

In Chapter 2] the authors considered a relaxation of the optimal transport prob-
lem (Moment Constrained Optimal Transport — MCOT) which boils down to con-
sidering a particular instance of Generalized Moment Problem [179] 210} 211]. The
idea of the proposed approach is to change the discretization approach in the sense
the state space R? is not discretized anymore, but the marginal constraints in
are relaxed into a finite number of moment constraints. Taking advantage of the
M-symmetry of the problem, it was proved in Proposition that some minimizers
of the obtained relaxed problems could be written as discrete measures charging a
low number of points which scales independently of M.

Thus, a natural idea inspired from this result is to restrict the minimization set
considered in the MCOT problem to the set of probability measures of (R?)™ which
can be written as discrete measures charging a low number of points and satisfying
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the associated moment constraints. The resulting problem, called hereafter the
particle problem, amounts to optimize the positions of the points and the weights
charging the associated Dirac measureﬂ In principle, the low number of points
needed to obtain a representation of a minimizer to the MCOT problem should help
in tackling the curse of dimensionality. However, the non-convexity of the particle
problem remains a numerical challenge.

One of the first contribution of this paper is to prove that, despite the non-
convexity of the obtained particle problem, any of its local minimizers are actually
global minimizers. Besides, we prove that the set of local minimizers, which is
hence identical to the set of global minimizers, is polygonally connected. This first
result is stated in Section 3.2] of the article.

The second contribution of the paper is to propose a numerical scheme in order to
find an optimum solution to the particle problem. The numerical method builds on
the use of a constrained overdamped Langevin process projected on a submanifold
defined by the constraints of the problem, in the spirit of [99] 217, 218, 219, 220, 324].
Such processes are actually already used in the context of molecular dynamics (for
which the constraint is defined through the use of a so-called reaction coordinate
function). We give in this paper some elements of theoretical analysis justifying the
interest of such processes for the resolution of multi-marginal optimal transportation
problems and outline the link between such constrained overdamped Langevin pro-
cesses and entropic regularization of optimal transport problems. This is the object
of Section [3.3] Finally, we present the numerical scheme we consider in this article
in Section and the numerical results obtained with this approach in Section [3.5]
Proofs of our main theoretical results are postponed until Section (3.6

We want here to stress on the fact that this numerical scheme enabled us to
obtain approximations of solutions to for very high-dimensional problems, for
instance in cases where d = 3 and M = 100. Such a method thus appears to be a
very promising approach in order to solve large-scale problems in DFT for systems
involving a large number of electrons.

Let us point out here that algorithms based on constrained overdamped Langevin
dynamics can also be used in principle for the resolution of general multimarginal
optimal transport problems and multimarginal martingale optimal transport prob-
lems, as there exist an MCOT approximation for both types of problems (see Section
. In these cases, the number of marginal constraints to be imposed scales lin-
early in hence the practical implementation of the numerical method proposed
in this paper is more intricate than in the symmetric case studied here, where the
number of constraints is independant of M.

Note that we use, in this article, the term particle to designate a Dirac measure (seen in the
minimization problem as a vector in Ry x (R%)M accounting for a nonnegative weight and the
coordinates of a point in (R?)™), and not with the physics meaning that encompasses electrons
— the electronic density of which, in the DFT application, would correspond in this article to M
times the marginal law pu.

iIn the case of multimarginal martingale optimal transport, if there is no assumption of Marko-
vian relationship between the marginal laws, the scaling in the number of constraints for the
approximation of the martingale constraints may be exponential in M.
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3.2 Mathematical properties of MCOT particle
problems
We recall in this section the MCOT problem which was introduced in Chapter [2]

together with the associated particle problem. We also state here our first theoretical
results which describe the set of minimizers associated to the particle problem.

3.2.1 MCOT and particle problems

As introduced in Chapter 2] the Moment Constrained Optimal Transport (MCOT)
problem is a particular case of Generalized Moment Problem [211] which may be seen
as a relaxation of optimal transport where the marginal constraints are alleviated
and replaced by a finite number of moment constraints. In the following, we restrain
our analysis to symmetrical multimarginal optimal transport for the sake of clarity
but let us mention here that the results presented here can be extended to general
multimarginal optimal transport, as well as martingale optimal transport.

Let d e N*, € P(R?), M € N* and ¢ : (R)M — R, U {400} be a lower semi-
continuous symmetric function. The MCOT problem is a relaxation of the optimal
transport problem ({3.2) which we present now. Let N € N* and let us consider a
set (én)1<n<n C L'(R? 1;R) of N continuous real-valued functions, integrable with
respect to p and called hereafter test functions. For all 1 < n < N, let us denote by

o= [ ou(w)uta), (33

the moments of u, by
(15 (Pn)1<n<n; M) = {7? e P (RHM) (3.4)

M
‘v’lSnSN,/ Z|¢n($m)|d7r(x1,...,$M)<oo,
(RHM =]

/(]Rd)M (i Z cbn(xm)) dm(zy,... an) = /ln},

the set of probability measures on (R?)™ for which the mean of the moments against
the test functions of the marginal laws are equal to the one of u, and by

1% (14 (¢n) 1<n<n; M) = {71’ e P ((RHM): (3.5)
M
¥l <n< N,/ S |6n(@m)|dn(an, -, 2a1) < 00,
RHYM 4

‘v’lSmSM, ¢n<xm)d7r<xl77xM):M”}

(R)M

the set of probability measures on (R%)* that have, for each marginal law, the same
moments as p against the test functions.

For technical reasons linked to the fact that the optimal problem is defined on the
unbounded state space R?, we assume in addition that there exists a non-decreasing
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non-negative continuous function 6 : R, — R, satisfying 6(r) —+> ~+o00 and for
r—>400

which there exists C' > 0 and 0 < s < 1 such that for all 1 <n < N and all z € R?,

|on(2)] < C(1+0(|2]))". (3.6)
We finally choose a positive real number A > 0 satisfying A > Ay := [, 0(|z|)du(z).

Then, the MCOT problem is defined by

.= inf / c(xy,...,xpy)dr(zy, ..., xp).
(Rd)M

T (115(¢n)1<n< N3 M)
a7 Syt Xy 0(1zm)dm (21, e0r) <A

(MCOT?)
Under appropriate assumptions on the family of test functions (¢,)i<p<n, it is
proved in Chapter [2| that the value of IV can be made arbitrarily close to I as
N, the number of test functions, goes to infinity. Besides, converging subsequences
of minimizers to (MCOT?®|) necessarily converge to some minimizer of . This
is the reason why (MCOT>|) can be seen as a particular discretization approach for
the numerical approximation of Problem ((3.2)).

Remark 3.1. It is proved in Chapter@ that the value of IV does not depend on the
value of A provided that A satisfies A > Ay.

Using the symmetry of the cost ¢ and the marginal constraints, it can be easily
checked that IV is also equal to

= inf / c(xy, ... xp)dm(xy, ..., Tar).
(R4)M

m€ll(p;(dn)1<n<viM)
+ Jraym M 0(zm|)dr (21,0 ) <A
(MCOT)
Then, from Propositionthere exists at least one minimizer to problem (MCOT)),
which can be written as

K
k=1 ( ' M)

for some 0 < K < N + 2, WithwkZOandmfilERdforalllSmSMand
1 < k < K. Besides, the symmetrized measure associated to 7, which is defined

by
T = Ml Z Zwk5

oc€SN k=1
where Sy is the set of permutations of {1,--- , M}, is a minimizer to (MCOT?)).
The proof of this result makes use of Tchakaloff’s theorem [24), Corollary 2], which

is recalled in Theorem in Section [3.6.1} Note that since II(1; (¢n)1<n<n; M) C
I (p; M), when [ is finite, it naturally holds that IV < I < oco.

) (3.8)
(1)’ o (M)

These theoretical results naturally lead us to consider an optimization problem
similar to but where the optimization set is reduced to the set of measures
of II(1; (én)1<n<n; M) which can be written as discrete measures under the form
for some K € N*. This naturally leads to the following optimization problem,
which we call hereafter the MCOT particle problem with K particles:

I = inf Zwkc X", (MCOTH)

WY)eu
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where

Uy = {(W7 Y) € RE 5 (RYM) W = (wi)icrer, ¥V = (X icrer,  (3.9)

K K K
Zwkzl, Zwkﬂ(Xk)SA, Vi<n<N, Zwkgon(Xk):un},
k=1 k=1 k=1

with, for all X = (z1,-++ ,zy) € (RY)M and all 1 <n < N,

I(X) = % S 0(znl)  and  pa(X) = % S 6. (3.10)

m=1

In view of Proposition we have I¥ = IV as soon as K > N + 2.

A few remarks are in order at this point.

Remark 3.2. (i) Considering pmblem as a starting point for a numer-
tcal scheme seems very appealing, especially in contexts when M is large. In-
deed, in principle, the resolution of only requires the optimization
of at most K(M + 1) scalars, thus would require the resolution of an optimiza-
tion problem defined on a continuous optimization set involving a number of
parameters which only scales linearly with respect to the number of marginal
laws. Thus, gradient-based algorithms are natural to consider for the numerical

resolution of (MCOT"|), at least for differentiable test functions.

(ii) Problem is highly non-convex, whereas the original MCOT prob-
lem reads as a (high-dimensional) linear problen{i|. This definitely
makes the numerical resolution of a challenging task. This is the
reason why we consider in this article randomized versions of gradient-
based algorithms for the resolution of . Nevertheless, strikingly, we
prove in this article that, despite the lack of convexity, any local minimizers to
the MCOT particle problem are actually global minimizers, provided
that K > 2N + 6. This is the object of Section to state this result and

further mathematical properties of the set of minimizers to (MCOT™)).

The main focus of this article is to propose numerical schemes relying on stochas-
tic versions of gradient-based algorithms in order to find minimizers to the MCOT
particle problem. Such numerical schemes actually make use of constrained over-
damped Langevin processes, which are usually encountered in the context of molec-
ular dynamics simulations [2I8] 219]. In Section we relate such stochastic pro-
cesses with MCO'T problems and entropic regularizations of the latter.

In numerical tests, and especially in the 3D case, the schemes proposed in this
article perform better when using a large number of particles K, with weights wy
assumed to be fixed and equal to % which are not optimized upon. That is why
we introduce here the resulting optimization, called the MCOT fized-weight particle

problem with K particles, which reads as follows:

K
1
JY = inf —c(X"). (MCOTX -fixed weight)
Y::(Xk)gkgKe((Rd)M)K’ k=1 K
VI<n<N, £ S5 on(X*)=pn,

iMore generally, any non-linear minimization problem can be reframed as a linear minimization
problem in a much larger space (the measure space), as min,ega ¢(x) = minp [, c(y)dP(y).
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Remark 3.3. (i) Let us stress on the fact that the existence of a solution to
(MCOT"™ -fized weight]) is not gquaranteed in general. This stems from the
fact that there may not exist a set of points Y = (Xk)lgkgK satisfying the

constraints of problem (MCOTY -fized weight). However, for all N, K € N*,
it always holds that JY > I%.

Let however consider (W,Y) € UN_, a minimizer of (MCOT")) and assume
that the cost ¢ and the test functions ¢, are bounded. Then, by rounding the
weights wy to a multiple of 1)K, and then by using { copies of particles with

weight (/K , we can construct Y = (Xk> such that
1<k<K

1 & 1
— X*) ~ —
K§ on(XF) un+O(K>.

k=1

Thus, Y satisfies the moment constraints of problem (fMCOTK -fixed wez’ghﬂ)
up to an error of order O (%) and achieves a cost that is also O (%) away
from the optimal cost achieved by (W,Y).

Furthermore, in the limit K — oo optima of problems (MCOT" -fixed weight|)
(with an accepted error O (%) on the constraints) converge to the optimum of

the problem (MCOT)).

(ii) Yet, in the numerical experiments in the fived weight case in 3D, the conver-
gence in K appears to be faster than O (%) and even low values of K can give

sharp approximations of the optimum of (MCOT)).

3.2.2 Properties of the set of minimizers of the particle
problem

The aim of this section is to present the first main theoretical result of this paper,
which states some mathematical properties on the set of minimizers of the particle

problem MCOT#|
For any (W,Y) € RE x ((R)M)X we define by

I(W,Y) =) wipe(X"),

where W := (wp)i<k<r and Y := (X*),<p<x. Problem (MCOTZX]) can then be

equivalently rewritten as

I¥ = inf Z(W)Y). (3.11)

WY)eu

We begin this section by Theorem which states that for any two elements
of UY, there exists a continuous path with values in &3 which connects these two
elements, and such that Z monotonically varies along this path.

Theorem 3.1. Let us assume that K > 2N + 6. Let (Wy,Yy), (W1,Yy) € UE.
Then, there exists a continuous application 1 : [0,1] — U made of a polygonal
chain such that ¥(0) = (W, Ys), ¥(1) = (Wy,Y1) and such that the application
[0,1] 5t +— Z((t)) is monotone.
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In order to explain the main ideas of the proof of Theorem [3.1} let us remark
that, using Tchakaloff’s theorem (recalled in Section [3.6.1)), for any measure = €
I1(4e; (fn)1<n<n; M), satistying,

/ ddr < A, (3.12)
(Re)M

and charging K > 2N + 6 points, one can find a measure 7 € II(1; (¢n)1<n<n; M)
charging N + 3 points, whose support is included in the one of 7, and having the
same cost and the same moment against ¥. Then, the segment ((1 — )7 + ¢7)¢co1]
is included in II(x; (¢n)1<n<n; M), charges at most 2N + 6 points and keeps the cost
and the moment against ¢ constant. Besides, let 7o, 71 € I(; (¢n)1<n<n; M) be two
measures with support on at most N +3 points, and such that for ¢ = 0, 1, 7; satisfies
(3-12)). Then, the segment ((1 — )7y + 71 )sejo,1) is included in II(z; () 1<n<n; M),
satisfies the inequality constraint for all ¢ € [0,1], charges at most 2N + 6
points, and the cost varies linearly along it. By identifying (W, Yy) with 7o (resp.
(W1,Y7) with 7), one can join m to m by segments (with appropriately defined
intermediate measures 7y and 7;) satisfying the constraints, and along which the
cost varies linearly. The adaptation of these ideas to vectors (W, Yy), (W1, Y1) € UE,
which requires to take into account the displacement of the positions between Y
and Y; as well as the ordering of the coordinates, is the object of Section [3.6.2]

A direct consequence of Theorem is then Corollary which states that any
local minimizer to problem (or equivalently problem is actually a
global minimizer as soon as K > 2N + 6. In addition, the set of minimizers forms
an polygonally connected (and thus arc-connected) set.

Corollary 3.2. Let us assume that K > 2N + 6. Then, any local minimizer of
the MCOT particle problem 15 actually a global minimizer. Besides, the
set of (local or global) minimizers of the MCOT particle problem s an
polygonally connected subset of RY x ((R%)M)%.

3.3 Overdamped Langevin processes for MCOT
particle problems

The motivation of this section is twofold: first, the numerical method used in this ar-
ticle for the resolution of the particle problems and (MCOT" -fixed weight])
can be seen as a time discretization of constrained overdamped Langevin dynamics,
which are usually encountered in molecular dynamics simulation; second, we draw
here a link, on the formal level, between the long-time and large number of particles
limit of these processes and a regularized version of the MCOT problem (MCOT)
using the so-called Kullback-Leibler entropy regularization, very similar to the regu-
larization which is at the core of the Sinkhorn algorithm for the resolution of optimal
transportation problem [277].

The objective of Section [3.3.1]is to recall some fundamental properties of general
constrained overdamped Langevin processes. Then, in Section [3.3.2] we consider
specific processes which are related to the MCOT problem presented in Section [3.2]

3.3.1 Properties of general constrained overdamped Langevin
processes
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3.3.1.1 Definition

Let p € N*. Let us first introduce unconstrained overdamped Langevin processes in
the state space RP. Let (2, F,P) be a probability space. An overdamped Langevin
stochastic process is a stochastic process (Y;);>0 solution to the following stochastic
differential equation

dY, = =VV(Y,) dt + B dW,,

where V' : RP — R is a smooth function, called hereafter the potential function of the
overdamped Langevin process, § > 0 is a positive coefficient which is proportional to
the square root of the temperature of the system in molecular dynamics (5 = V2T
with T the temperature), and (W;)s>¢ is a p-dimensional Brownian motion.

Constrained overdamped Langevin processes are overdamped Langevin processes
whose trajectory is enforced to be included into a given submanifold. In the sequel,
we assume that the submanifold is characterized as the zero isovalued set of a given
smooth function I' : R? — RY for some ¢ € N*, so that the corresponding submani-
fold is defined by

M={Y e R T(Y) = 0}.

We assume in the sequel that the submanifold M is arc connected. In addition, let
us assume that there exists a neighborhood W of M such that, for all Y € W,

G(Y):=VI(Y)'VI(Y) € R™¥ (3.13)

is an invertible matrix, where VI'(Y),; ; = 0;,['; for 1 <i <pand 1 < j < ¢. These
two assumptions on the function I', together with the implicit function theorem,
imply that M is a regular (p — ¢)-dimensional submanifold.

A constrained overdamped Langevin process [218, Section 3.2.3] is a RP-valued
stochastic process (Y;);>o that solves the stochastic differential equation

dY; = —VV (V) dt + pdW, + VI'(Y;)d A, (3.14)

['(y;) =0, '

where 5 > 0, (W})i>0 is a p-dimensional Brownian process and (At)i>o is a ¢-
dimensional stochastic adapted stochastic process, which ensures that Y; belongs
to the submanifold M almost surely for all ¢ € R*. More precisely, A; is the
Lagrange multiplier associated to the constraint I'(Y;) = 0 and is defined by

07T (Y7)
2 =1 "1
an =Gy | [ vrereve - £ dt — BYT(V,)dW,
2 2
=1 81 ( )
(3.15)
Thus, if we define P(y) = Id — VI'(y)" G~ (u) VT (y) the projection operator, we get
62 i=1 az Fl(y;f)
dYy = P(Y))[-VV(Y:) + fdW] — —- V() e (v dt.
=1 a7,2 ( )
Let us assume in addition that
_2v(Y)
= / e 7 dopy(Y) < +oo, (3.16)
RP
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where doy, is the surface measure (induced by the Lebesgue measure in R?, see
[218, Remark 3.4] for a precise definition) on the submanifold M. Let us introduce
the probability measure n € P(RP) defined by

dn(Y) = Egﬁg@' det G(Y)| "2 da (V). (3.17)

Under suitable assumptions, [218, Proposition 3.20] states that n is the unique
equilibrium distribution of the stochastic process Y; solution to the constrained
overdamped Langevin dynamics (3.14]) and that

Y, weakly converges to n as t — +oo. (3.18)

3.3.1.2 Long-time and large number of particles limit

We recall here some results proved in [290], Section 2.3 and Proposition 5.1], where
the authors consider the so-called large-particle limit of constrained overdamped
Langevin dynamics subject to average moment constraints. The objective of the
work [290] was to study the properties of the constrained overdamped Langevin
process in a large number of particles limit and to show the convergence towards 7
of the invariant distribution of the approximating particle system when the number
of particles K — ooore precisely, from now on, let us consider p’ = Kp for some
K € N*. We define for any K € N* the potential function V¥ and the constraint
function I'® by:

K K

1 1

VY = (XF) ek € (RDE V . § V(X*) and I*(Y § T (X"%).
k:l

=1

We then consider the following constrained overdamped Langevin process (V;%)i>o
that is assumed to be solution to the stochastic differential equation

AV = —VVE(Y ) dt + Baw /[ + VI (VA
" (3.19)

(Y,%) =0,

where (W), is a K p-dimensional Brownian process and (AX);> is a g-dimensional
stochastic adapted stochastic process, which ensures that Y% satisfies the constraint
I'E(YX) = 0 almost surely. The process Y is usually called a particle system: each
coordinate X* for 1 < k < K is seen as a particle. The large number of particles
limit consists in considering the limit as K goes to infinity of the stochastic process
(Y=o

It follows from (3.18)) that, under suitable assumptions, as t goes to oo, the law
of the process VX converges to the probability measure n* € P ((Rp K ) defined for
all Y = (X17 T 7XK) < (RP)K by

1 (x*)
A (Y¥) = (H — >daMK<yK), (3.20)

where

ME = {YK e R, TF(YF) =0},

VWe use here the notation K for the number of particles in view of the use of the Langevin
dynamics to solve MCOT?; ) problems, from Section 3.3.2] for which K > 2N +6. Yet, the results
recalled in Section [3.3.1.2] are general and unrelated to MCOT applications.
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_ovE (K,
7K = /(R )Ke 7 dopx (YE),
p

and
GE(YE) .= VI (Y)Y E (Y E) e RI*,
For 1 <k <K, (th) >0 18 a p-dimensional stochastic process. Let us denote by

¢ € P(RP) the law of the first particle X}. Then, the symmetry of the functions
VE and T implies that ¢/ weakly converges in law when ¢ — oo to the probability
measure (X defined for all X € R? by

ACK (X) = /( CACE ! (3.21)
Rp)K -1

Under appropriate assumptions on V' and I' which we do not detail here [290,
Proposition 5.1], the sequence (¢X) . - Weakly converges in P(RP) as K goes to
infinity to a probability measure 73 € P(RP) which is the unique solution to

T = argmin/ In dﬂ(ii)m dr(X), (3.22)
o \(2)

TEP(RP) ~le7 782 dX
Jpp D dr=0

_ 2v(X)
where Z*° = fRP e # dX. In other words, 7 is thus a probability measure on

RP which is absolutely continuous with respect to the Lebesgue measure and which
is solution to

2 X
Tj 1= argmin / V(X)) dr(X) + ﬁ—/ In (M> dr(X). (3.23)
waP(RP) RP 2 Jre dX
rp L dm=0

3.3.2 Application to MCOT problems

The aim of this section is to illustrate the link between the MCOT problems pre-
sented in Section [3.2] and the constrained overdamped Langevin processes intro-
duced in Section [3.3.1] We start by considering the fized weight MCOT particle
problem (MCOT?® -fixed weight|), before considering the MCOT particle problem

with adaptive weights (MCOT)).

3.3.2.1 Fixed-weight MCOT particle problem

We first draw the link between constrained Langevin overdamped dynamics and the
fixed weight MCOT particle problem (MCOT?® -fixed weight|). Then, for all K €
N*, let us consider (Y,*);>o a constrained overdamped Langevin process solution
to the stochastic differential equation (3.19) with p = dM, ¢ = N, V = ¢ and

I'=(p1 —p1, -+ , oy — py) where for all 1 <n < N, ¢, is defined by (3.10)).

Then, the stochastic dynamics (3.19) can be viewed as a randomized version of
a constrained gradient numerical method for the resolution of problem (MCOT"
fixed weight|), where for all t > 0, VX = (X}, ... | XF) € (RY)M)E and where for
all 1 <k <K,

X = (ko ahy,) € (RYM.

Note that it is not clear in general that V' and I" satisfy the regularity assumptions
which ensure the convergence results stated in Section [3.3.1.2|to hold true. But, for-
mally, assuming that the long-time limit and large number of particles convergence
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holds nevertheless, the associated measure 7 solution (3.23) can be equivalently
rewritten as
T = arg min J(m), (3.24)
meP((RHM)
V1<Sn<N, [(gayM ¢n dr=pin

T(m) = /(Rd)M ¢ (X) dr(X) + %2 /(Rd)M In < d2§)> dr(X).

Recall that 7 is the large number of particles limit of the long-time limit of
the law of one particle associated to the constrained overdamped Langevin process.
Notice that 7 can be equivalently seen as the solution of an entropic regularization

of the MCOT problem (MCOT]), where the term [ In <d”(x)) dm(X) can be

identified as the Kullback-Leibler entropy of the measure m with respect to the
Lebesgue measure. Thus, Problem is close to the entropic regularization of
optimal transport problems used in several works [41], [118] 262, 277], in particular
for the so-called Sinkhorn algorithm [41].

where

Let us point out here that, at least on the formal level, we expect the family
(75)p>0 to weakly converge to a minimizer of (MCO') as 3 goes to 0 (a similar
result is proven in [83, Theorem 2.7]).

3.3.2.2 Adaptive-weight MCOT particle problem

A similar link can be drawn between constrained Langevin overdamped dynamics
and the MCOT particle problem (MCOT?"|) with adaptive weights.

In order to fit in the framework of the constrained Langevin overdamped dy-
namics, without any positivity constraint, let us introduce a continuous surjective
function f : R — R, which we call hereafter a weight function. We assume that
f satisfies the following assumption: there exists an interval I C R such that the

Lebesgue measure of I is equal to 1 and such that [, f ;[ =1. A simple choice of ad-

1/3
1 252 )

missible weight function can be given by f(a) = a® for all @ € R with I = (3,

Then, for all K € N* let us consider (75) a constrained overdamped
>0

Langevin process solution to the stochastic differential equation with p =
dM +1,q= N + 1, and where for all X = (a, X) € R x (RHM  V(X) = f(a)c(X)
and I'(X) = (f(a) — 1, f(a)p1(X) — 1, -, fla)on(X) — un). Then, the stochas-
tic dynamics can be viewed as a randomized version of a constrained gradient
numerical method for the resolution of the optimization problem

inf Z flag)e (3.25)

(AY)eVE

which is equivalent to problem (MCOT")) using the surjectivity of f.
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Note that the choice of the function f can influence the dynamics as it regulates
both the way the brownian motion W affects the weights, and the balance, in the
minimization of V and in the enforcement of the constraint I'(X) = Oy, between a
displacement of particles and a change in weights.

Here again, it is not clear in general that V and I satisfies the regularity as-
sumptions which ensures the convergence results stated in Section |3.3.1.2] to hold
true. But, using formal computations, we can consider the associated measure
75 € P (R x (R")M) solution to

Ty = arg min J(7), (3.27)
7eP(Rx(RHM)

fae[R fxe(Rd)M f(a)dw(a,X)=1
Vi<n<N, faE]R fXE<Rd)M fla)on(X) dm(a,X)=pn

2 —
/ / (X) dm(a, X)+ p / / M d7(a, X).
a€R J Xe(R4)M acR J xe Rd)M dadX

Let us introduce now 73 € P ((R?)™) defined by

where

dr(X) = / _f@ (e, X).

Then 7} satisfies the constraints of problem (3.24) and

T :/ o(X) dr3(X / / <d_ 50, X)) d7(a, X).
Xe®RHM acR J X e(Rd)M dadX

Notice that, as a consequence, problem (3.27) may be seen as a second kind of

entropic regularization of (MCOT|) and that 77 is expected to be an approximation
MCOT

of some minimizer to (MCOT]) as 3 goes to 0.

Let us notice here that the assumption made on f ensures that, for all 7 &€
P ((RY)M), there exists a probability measure 7@ € P (R x (R?)) such that

- / @ X)

Indeed, defining d7(a, X) := 1;(a) da® dn(X) yields the desired result. Besides, we
easily check that J(7) = J(m), which leads immediately to J(73) < J(m3) from
the optimality of 7j.

3.4 Numerical optimization method

We present in this section the numerical procedure we use in our numerical tests to
compute approximate solutions to the particle problems with fixed weights (MCOT"

Fﬁxed weight)) or adaptive weights (MCOT")) for a fixed given K € N*. Note that
(MCOT" -fixed weight|) can be equivalently rewritten as

JN = inf VEYE), 3.28
R e VR (3.28)
& (v H)=o0,
oK (vyK)<a
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where VE and I'f are defined in Section [3.3.2.1] and where

K . (RT)M)F = R
© '{Y::(Xl,.--,XK) — L3 9(XR).

Besides, problem (MCOTX)) can be rewritten equivalently as
= inf VR, (3.29)
7o e(Rx (M)
™ (¥")=0,

8" ¥")<a

where 7 and T are defined in Section 3.3.2.2, and where

_K,{_ (R x (RY)M)K - R
. Y = ((a’lvxl)?"'7<aK7XK)) sz 1 ( ) (Xk>

For the sake of simplicity, we restrict the presentation here to the method used
for the resolution of ([3.28]), since the method used for the resolution of (3.29) follows

exactly the same lines.

3.4.1 Time-discretization of constrained overdamped Langevin
dynamics

The numerical procedure considered in this paper consists in a time discretization
of the dynamics with an adaptive time step and noise level. The main idea
of the algorithm is the following: let (W, ),en be a sequence of iid normal vectors of
dimension dM K. At each iteration n € N* of the procedure, starting from an initial
guess Y € ME for n = 0, a new approximation Y% 11 € MZX is computed as the
projection in some sense of Y e = =YK - VVK(YHK)At + Buv/At, W, onto ME,
where At,, > 0 is the time step and 3, > 0 is the noise level at iteration n. Precisely,
the next iterate Y,/ is computed as Y[\, , + VI (Y,%) - A, where AT, € RY is
a Lagrange multiplier which ensures that the constraint I'* (VX ;) = 0 is satisfied.

The complete resulting procedure is summarized in Algorithm [2]

We discuss here three main difficulties about the algorithm we propose:

e the initialization step which consists in finding an element Y € MX;

e the choice of the values of the time step At,, and noise level 3, at each iteration
of the algorithm;

e the practical method used in order to compute a projection of Y2 . . onto the

n+1/2
submanifold M*, and in particular the value of the Lagrange multiplier A, ;.

The procedure chosen to adapt the time step and noise level is discussed in Sec-
tion | The algorithm used to compute a projection of Y% 172 onto the subman-
ifold M ~and the value of the Lagrange multiplier A%, is detailed in Section 3.4.3
Finally, the initialization procedure used to compute a starting guess Y{* € M*" is
exaplined in Section |3.4.4]
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Algorithm 2 Constrained Overdamped Langevin Algorithm
Input Y € ME Aty >0, By > 0, 79 > 0, Geonst € N*, imax € N*, NoiseDecrease :
Rt x N — R", npa.x € N*
Fix n =0, Af =0.
Define (W, )nen a sequence of i.i.d. normal vectors of the same dimension as Y{*.

while n < ngy.. do
AdaptTimeStep (Y5, AKX At,,, B,, 7))
Y =Y = VVEY )AL, + 8.VALW,
if Projection(Y,, o, VI (Y,5), AY, imax) succeeds then
Y. Al in = Projection(V,R o, VI (YF), AL, imax)
if 7,, < ieonst then
Tnil ¢ 27,
end if
Bns1 < NoiseDecrease(,,n)
Aty < Aty Taa < Ta
n<n+1
else
Tp — Tn/2
end if
end while
return min(VE(Y,5),0 <n < nypay)

3.4.2 Time step and noise level adaptation procedure

Two remarks are in order to motivate the procedure we propose here:

(i) the computation of the Lagrange multiplier AX, | at each iteration n of the
algorithm and of the resulting value of VX | must be fast (as it is executed at
each step).

(ii) the time-step At, must be:

(a) small enough for the procedure that computes the Lagrange multiplier to
be well-defined,

arge enough for the total number of iterations needed to observe conver-
b) larg gh for the total ber of iterati ded to ob
gence to be reasonable. In practice, ny., was chosen to be of the order of
20000 in the numerical experiments presented in Section [3.5]

To address item , we use a Newton method similar to the one proposed in [219]
220] to enforce the constraints and compute the Lagrange multiplier AZ , which is
summarized in Algorithm [4] and detailed in Section [3.4.3] This method is observed
to converge fast if the value Ynﬁl /o 18 close enough to the submanifold M*%. The
tolerance threshold allowed at each step on the satisfiability of the constraints is
given by 7,, > 0, the value of which is also adapted at each step. Its precise value is
inferred as follows: if the Newton method converges fast enough (i.e. if the number
of iterations needed to ensure convergence i, is lower than some fixed value iconst),
then the value of 7, is multiplied by 2. On the other hand, if the Newton method
does not converge in a maximum number of iterations (given by imax), then 7, is
divided by 2. This step may involve a new time-step computation for iteration n,
which we detail below.
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The time-step At,, is adapted (in order to answer item ({)) through Algorithm
(AdaptTimeStep subprocedure). It is increased at each step n if the constraints
are satified up to a tolerance threshold lower than 7, (in order to answer ({iibj)).
Otherwise, the time-step is divided by 2 as many times as needed for Y% w12 O
satisfy the constraints defining the submanifold up to a tolerance lower than 7, (in
order to satisfy item (fia))).

Moreover, the noise-level (3, is decreased at each iteration n at a rate inspired
from Robbins-Siegmund Lemma [266, Theorem 6.1] for non-constrained stochastic
gradient optimization, using the NoiseDecrease function in Algorithm [2 This is
managed through the NoiseDecrease function. In the numerical experiments pre-
sented in Section [3.5] we used two possible choices of NoiseDecrease function defined
respectively by (,n) — ( (noise level unchanged) and (53, n \/: B (slow de-

crease of the noise level: note that this is the relative decrease so that after n steps,

the noise is fy/v/1 + n).

Algorithm 3 AdaptTimeStep subprocedure

Input: Y&, A, At, 8, 7, n

if |[T5(YE — VVE(YE)2AL + W,v2At6)|| < 7 then
At <+ 2At;

else
while |5 (YE — VVE(YE)At + W,v/2At6)|| > 7 do

At < At/2; A+ A/2

end while

end if

3.4.3 Projection method

As mentioned earlier, to compute VX, € MX and AL, from Y+1/2, we use a
Newton method similar to the one proposed in [219, 220]. We refer the reader
to [220} Section 2.2.2] for theoretical considerations on such projections.

More precisely, the procedure reads as follows: given VX, VX, 12 € (RHMHE
the aim of the Newton procedure is to find a solution A%, € RN to the equation

PR (YR + VIR - AL, =0.
We numerically observe that this Newton procedure only converges in cases when
Ynﬁl /2 and YK are close enough to the manifold M¥. Provided that Y,X belongs
to MK Y +1 /2 Can be made arbitrarily close to the submanifold provided that the
value of the time step At, is chosen small enough. We also refer the reader to [279,
Theorem 1.4.1] for theoretical conditions which guarantee the convergence of this
Newton procedure.

This projection procedure, together with the routine for the adaptation of the
error tolerance 7,, on the satisfiability of the constraints, is summarized in Algo-
rithm [4] Note that this Newton algorithm requires the inversion of matrices of the
form

VIR (Yo + VIR () - A VI(Y,S)

for A € RY and that we cannot theoretically guarantee the invertibility of this
matrix in general. In practice, it naturally depends significantly on the choice of
test functions (¢,)1<n<n-
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Algorithm 4 Projection subprocedure (Newton method)

Input: Y, n+1/2, VIE(YE), AE i ax

i =0, Aj A

while ||FK( e+ VIRV - A > 107" and ¢ < diay do

-1

Ny e N = (TTRVE, + VIR - AT VD)) - TR, +
VIR (Y) - A)
1 1+1

end While

if |[TE(YE w2 + VIE(YE) - A)|| < 107 then
return Y, o + VIR (V) - AL AL d

else
return Projection failure.

end if

3.4.4 Initialization procedure

Algorithm [2] is initialized with an initial guess Y which is assumed to belong to
the constraints submanifold M¥. In practice, finding an element which belongs to
this submanifold is a delicate task, especially when the number of test functions
is large. Indeed, as mentioned in the preceding section, the Newton procedure
described in Section only converges if the starting point of the algorithm is
sufficiently close to the manifold M. This is the reason why this initialization
step is rather performed using a method inspired from [324] Section 5 example 3].
A Runge-Kutta 3 (Bogacki-Shampine) numerical scheme [285] (5.8-42)] is used in
order to discretize the dynamics

d K K
S () = FOY()

starting from a random initial state Y5 (¢t = 0) = Y&O ¢ ((Rd)M)K, where F is
defined as

Y VIE(YE) . TE(YK)
PIVIE(YE) - TE(Y )|l

W e (RYM)S ) FYK)=— K (v¥ (3.30)

We observe that such a numerical procedure is more robust than a Newton algorithm,
even if it can converge very slowly.

Let us mention here that, in the case of the particle problem ((3.29) with adaptive
weights, an additional step may be used prior to such a Runge-Kutta method, which
consists in using a Carathéodory-Tchakaloff subsampling procedure. Carathéodory-
Tchakaloff subsampling [278] 313] has been introduced to compute low nodes cardi-
nality cubatures.

In our context, this method can be adapted to find a low nodes cardinality start-
ing point, as close as possible to the constraints submanifold M. More precisely,
the method works as follows: we fix a value K., > K and compute (X1, ... XF)
iid samples of random vectors according to the probability law pu. A Non-Negative
Least Squares (NNLS) is then used to find a sparse solution to the optimization
problem

w* € argmin || dw — fi)?, (3.31)

Koo
weRY
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where @ := (®n1), ey 1 1cper., € RYVE® = (-, py, 1) € RM and

By Kuhn-Tucker conditions for the NNLS problem [214] Theorem (23.4)], there
exists a solution w* = (w})i<p<i,, € RE> to such that #J < N +1
with J := {1 < k < K, w; > 0}. Common algorithms such as the Lawson-Hanson
method [214, Theorem (23.10)] enable to compute such a sparse solution. Let us
point out that any solution w* to then satisfies

Koo

SIS win(X5) — i gz KLZ

n=1 | keJ
In practice, in the case when #J < K, the positions and weights returned by
the Carathéodory-Tchakaloff Subsampling procedure are subdivided and randomly
perturbed with a small amount of noise.

(3.32)

3.4.5 Test functions scaling

From a numerical perspective, the MCOT approximation of an OT problem is never
exactly computed. In particular, constraints are never exactly satisfied, but rather
up to a machine precision ¢ : [T (V") [|o < ¢ for V' € (R x ((R)M)X numerically
satisfying the constraints. Hence, replacing ™ by D T" in the optimization proce-
dure, for D a non-singular diagonal matrix, can change the numerical solution. We
discuss hereafter of a way of choosing an appropriate scaling D.
Let V" be a minimizer of
v e arg min v (?K),
?Ke(Rx((Rd)M))K
™ ")=0,

@K( K)<A

let V" € (R x ((RHM)E and let us assume that f and c are C2. Then,
VK(?K,*):VK( )—I—VVK( —K %

K K * =K —K K*

"y =" )+ VI (¥

YL =Y + 0 (0?)
YY) 10 (),

where a = Y = V",
=K

AsY™ isa minimizer, fK(Y ™) = 0y, and there exists \* € RY such that

K  —K,* —K K*

VV (Y ) =VD (Y 7).

Thus,

K ~—Kx —K —K

V(Y

=K K*

) -V =@ YT VTN(Y
— T N+ 0(a?).

R (O

oK. . . .
Therefore, if Y is a numerical solution, under the hypothesis that for all 1 <
n < N, FK(VK)n = =e, the numerical error on the optimal cost is minimized if

there exists a € R such that for all 1 <n < N, A} = £a — which is the condition
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for choosing an appropriate scaling D. In practice, although the value of such a \*
might not be known exactly, it might be of the same magnitude as a solution to

K — K —K |12
arg min HVFK(YK) A — VVK(YK) ,
2

AERN

if T (VK) is well-conditioned.
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3.5 Numerical tests

The aim of this section is to illustrate the results obtained via the numerical pro-
cedure described in Section for the resolution of the particle problems ({3.29))
and in different test cases.

Section [3.5.1lis devoted to results obtained in cases where d = 1 and Section[3.5.2]
contains numerical results obtained in examples where d = 3. The experiments pre-
sented in this section have been implemented in python 3 using scipy and numpy
modules, and tested on a server with an Intel Xeon processor with 32 cores (hyper-
threaded) and 192 Go RAM.

3.5.1 One-dimensional test cases (d = 1)
3.5.1.1 Theoretical elements

In the case where d = 1, the solution to the optimal transport problem is
analytically known in the case when ¢ is a symmetric repulsive cost from [102),
Theorem 1.1]. For sake of completeness, we recall their result for the cost function
that we consider in our numerical experiments.

Theorem 3.3 (Colombo, De Pascale, Di Marino, 2015). Let € > 0 and ¢ : RM —
[0, +00] be the cost defined by

1
V'Ilv"' 7$M€R7 C(xlw-.al'M): Z ﬁ (334)
1<ijenizg © T

Let p be an non atomic probability measure on R such that

min / c(xy,...,ep)dr(zy, ..., xp) < +00. (3.35)
w€ll(w; M) Jpm

Let —co=dy < dy < -+ < dpy = +00 be such that

1 ,
”([d’mdﬁ-l]) = M? L= 07 . 'aM - L (336)

Let T : R — R be the unique (up to p-null sets) function increasing on each interval
[di,div1], i=0,..., M — 1 and such that

T#<1[diydi+l]u) = 1[dz‘+1,di+2]:ua 1=0,..., M —2

(3.37)
T#(l[del»dM]/“L) = 1[d0,d1]ru"
Then T is an admissible map for
inf / @ T@),. ... T D@ du(x), (3.9
T:R—R Borel, T#u=p, TM =1d Jr

i limes
. ——
where T =T o...oT.
Moreover, the only symmetric optimal transport plan is the symmetrization of
the plan induced by the map T.

We make use of Theorem to compare the exact solution of problem (3.2))
together with the approximation given by the numerical procedure described in
Section to solve the MCOT particle problems with fixed or adaptive weights.
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Figure 3.1: Densities of the marginal laws tested for 1D numerical tests.

3.5.1.2 Marginals, test functions, cost and weight functions

Marginals. The numerical experiments in this section were realized with three
different marginal laws, which are respectively denoted by 1, p2 and p3 and defined
by

1
dpy(z) = 51[_1,1] (x)dz, (3.39)
)
dps(x) == [110 cos (gx) + 0.46} 11 4(2) dx, (3.40)
137
duz(x) == |:0.137T oS <7x) + 0.48} 1_1 1 (z) de. (3.41)

The densities of pq, us, 3 are plotted in Figure |3.1

Test functions. The test functions (¢,)i1<n<ny used are Legendre Polynomials

with the following scaling
\/2n + %
—F—FPF,, (3.42)

On = n+1

where P, is the Legendre Polynomial of degree n. As the marginal laws considered
have their support in [—1, 1], we chose the Legendre polynomials for their orthog-
onality property. Besides, by using polynomials, the matrix VI'(X) is related to a
Vandermonde matrix, the invertibility of which (crucial to enforce the constraints by
Algorithm {| or the Runge-Kutta method) is ensured as long as particles are spread
on more than N locations. In view of Section the scaling between the polyno-
mials comes from the assumption of an L? convergence of the function ZTJLI An®n
as N goes to +00.

Cost. We use in all experiments the regularized Coulomb cost function (3.34]) with
e=10"1.

Weight functions. Two different choices of weight functions f are studied in the
numerical experiments presented below: the squared weight function f : R 3 a ~ a?
and the exponential weight function f : R 5 a +— e™*. Although we do not have
strong criteria to chose a weight function, the intuition behind the squared weight
function is that it can behave well regarding the enforcement of the constraints
by a Newton method, given that I is then a polynomial. The intuition behind the
exponential weight function is that it could slow down the cancellation of the weights

of the particles, keeping alive more degrees of freedom for the optimization process.
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Figure 3.2: Evolution of [T (Y,X)| . for different weight functions as a function of
the number of iterations m of the Runge-Kutta 3 procedure. Tests were performed
with M = 5, K = 10000. Blue curves uses fixed weights, orange curves uses an
exponential weight function and green curves a squared weight function. No marker
is for N = 10, a diamond marker for N = 20 and a “+” marker for N = 40.
Caratheodory-Tchakaloff subsampling gave initial values of 1.11 x 10716 ( 3.83 x
10716, 3.02 x 107%6) for py, N = 10 (resp. N = 20, N = 40) and 3.33 x 1071¢ (
1.28 x 10716, 4.66 x 10719) for uz, N =10 (resp. N =20, N = 40).

3.5.1.3 Initialization step — Figure

The aim of Figure is to plot the decrease of [T (Y X)||,, as a function of the
number of iterations of the Runge-Kutta 3 method presented in Section [3.4.4] in
a test case where M = 5. We numerically observe here that, as expected, as N
increases, the number of iterations needed by the Runge-Kutta procedure to reach
convergence increases['Besides, we observe that the additional degrees of freedom of
the cases using weight functions allow a faster initial optimization — yet not heavily
pronounced, as well as an initialization slightly faster for the squared weight function
compared to the exponential one.

3.5.1.4 Decrease of the cost function — Figures [3.3], [3.4) and [3.5]

The aim of Figures , and M is to plot the evolution of VX (Y,X) (or v (75 )
as a function of n the number of iterations of the constrained overdamped Langevin
algorithm presented in Section for various values of N, various weight functions,
values of 3y and NoiseDecrease functions, and using or not a subsampling at ini-
tialization. We observe in Figure that decreasing the noise as the squareroot
of the number of iterations n converges faster than keeping it constant, and that
keeping By = 0 is the fastest. In Figure [3.4] we remark that the higher N the slower
the optimization (with the particular case of pz, N = 20 with the squared weight
function which does not converge in 20000 iterations), and that cases initialized by
Caratheodory-Tchakaloff subsampling tend to start with a higher cost. In Figure
we observe that with K = 10000 particles, considering fixed or variable weights
does not strongly change the speed of convergence (but for the case 3, N = 20 with

VYThe problem of finding common roots of polynomials is linked with Bezout’s theorem. The
complexity of such problems have been studied in [307, [308].
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the squared weight function mentioned above). However, using variable weights
with K = 100 particles seems to be the fastest set of parameters.
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Figure 3.3: Evolution of the cost as a function of the number of iterations n for
various weight functions and values of [, for s and u3. Tests were performed with
M =5, N =20, K = 10000 and At, = 1072, Blue curves are for 3, = 107!,
orange curves for 1073, green curves for 107°° and purple curves for 3y = 0. Solid
lines have a decrease of the noise in the squareroot of time whereas dotted lines with
a “+”7 marker have no decrease of the noise.
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Figure 3.4: Evolution of the cost as a function of the number of iterations n for
various weight functions and values of N, for us and ps. Tests were performed with
M =5, By =0, K = 10000 and Aty = 1073. Blue curves for N = 10, green curves
for N = 20 and red curves for N = 40. Dotted lines correspond to tests initialized by
Caratheodory-Tchakaloff subsampling whereas tests solid lines correspond to tests
initialized by Runge-Kutta 3 method.
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various weight functions, for ps and ug. Tests were performed with M =5, N = 20,
By = 0 and Aty = 1073. Blue curves uses fixed weights, orange curves uses an
exponential weight function and green curves a squared weight function. K =
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Figure 3.6: Lowest cost value reached during optimization by the constrained over-
damped Langevin algorithm in function of the Sy, for various weight functions,
values of K and choices of NoiseDecrease functions. The purple line corresponds to
the optimal transport cost. The marginal law is po, N = 20, M =5, Aty = 1073,
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3.5.1.5 Minimal values of cost — Figure

The goal of Figure [3.6|is to compare the minimal values of the cost obtained by the
algorithm for different parameters together with its analytic value. We observe that
considering adaptive weights enables to reach lower optimal costs than with fixed
weights, but the relative difference between the approximate minimal cost values is
lower than 0.1%. When the noise level decreases in the square root of the number
of iterations a lower optimal cost can be reached compared to a constant noise level.
In the variable weights cases, the lower K the lower the optimal cost, but when
the optimization starts with a Tchakaloff subsampling solution, for which the lowest
cost reached is 0.3% higher than with the Runge-Kutta 3 method.

3.5.1.6 Optimal position of particles — Figures [3.7], [3.8] and [3.9)

The aim of Figures and [3.9]is to plot the positions of the particles obtained
by the numerical procedure presented in Section for respectively iy, po and g
and different values of K, N, [y, initialization methods, and in fixed and variable
weights cases. We numerically observe that the obtained particles are located close
to the support of the exact optimal transport plan, and that the higher the value of
N the more precise the approximation of this transport map is (see Theorem
Also, when K = 10000 and even more when 3, = 103, particles are more spreaded
around the transport map.

HHIEHHE Y il aeesesds N adidalilis b
s oo i m A s e e R L .
=SS RS S S B
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- B / // /
- ;s VARV | / / / /
. . ’ - .
B = |/ /S 7 7 B / // /
) o / !
(1) N =10 (2) N =20 (3) N = 40

Figure 3.7: Optimal transport with x4, and M = 5, Aty = 1073, In each plot, on the
main graph m SR M =1 WEO o s represented by blue particles. The
darker the heavier the particle. Particles have some transparency which allows to
see more clearly areas of high concentration. Red curves represent the functions 7"
for i € {1,...,M — 1} defined in Theorem [3.3] The higher the density the darker.
On side graphs are represented in blue a weighted histogram of the particles, in
red the marginal law and in green a normal kernel density estimate based on the

weighted particles (with a bandwidth rule based on Scott’s rule with d = 0).

94



J/ii.kHjL@i! WE W i W N
TR R T
gy o ‘e = :
‘;:j/.:/ / // : ’/ / . // / j/ : Af
M N = 20 5 —<>N= 0, G = (3) N = 40, fo = (4) N = 40, fo =

0, K = 10000, fixed 1073° K = 10000, 0, K = 10000, fixed 10735, K = 10000,
weights fixed weights weights fixed weights

(5) N =20, 5o =0, (6) N = 20, 50 —()N=4O,ﬁ0=0,(8) N = 40, 50 =
K = 10000, squared 10~ 35, K = 10000, K = 10000, squared 1073, K = 10000,
weights squared weights weights squared weights

adioaddaka WME W! WE
| A (el e

) }55// LB R ,,»-»//..:

/ 1/

/
AP A R R R ;

(9) N = 20, fp =(10) N = 20, ﬂo =(11) N = 40, By = (12) N = 40, By =
0, K = 100, squared 1073%, K = 100, 0, K = 100, squared 1073%, K = 100,
weights squared weights weights squared weights

M&H! e Hil i HLmﬁhmiH Aozl B

i

i :::/--// T E T
7 ,555// SE T ;3:"4;»//—//

A - Vo Vo
B R R R
(13) N =20, 5y =0, (14) N = 20, By = (15) N =40, 5y = 0, (16) N = 40, 6y =
K = 10000, squared 1073° K = 10000, K = 10000, squared 1073%, K = 10000,
weights, with initial squared weights, with weights, with initial squared Weights, with
subsampling initial subsampling  subsampling initial subsampling

Figure 3.8: Optimal transport with py and M = 5, Aty = 1073, In each plot, on the
main graph grm—p L 0 S Zmém, | WkOyk v i Tepresented by blue particles. The
darker the heavier the particle. Particles have some transparency which allows to
see more clearly areas of high concentration. Red curves represent the functions T
for i € {1,...,M — 1} defined in Theorem [3.3] The higher the density the darker.
On side graphs are represented in blue a weighted histogram of the particles, in
red the marginal law and in green a normal kernel density estimate based on the
weighted particles (with a bandwidth rule based on Scott’s rule with d = 0).
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Figure 3.9: Optimal transport with p3 and M = 5, Aty = 1073, In each plot, on the
main graph +; M 0 Zk 1 Zmim, | WOk ok is represented by blue particles. The
darker the heav1er the particle. Particles have some transparency which allows to
see more clearly areas of high concentration. Red curves represent the functions T°
for i € {1,...,M — 1} defined in Theorem [3.3] The higher the density the darker.
On side graphs are represented in blue a weighted histogram of the particles, in
red the marginal law and in green a normal kernel density estimate based on the
weighted particles (with a bandwidth rule based on Scott’s rule with d = 0).
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3.5.2 Three-dimensional test cases (d = 3)
3.5.2.1 Tests design

The numerical experiments were realized with four different marginal laws that are
named afterwards as follows:

M1~ N (03, Idg) s (343)
) 105 0.75 2 1 08 022

fo ~ 2N (0, | 05 2 15 J+sN([2]) {08 2 18 ), (3.44)
3 0.75 1.5 2] \o22 18
1 ] 4 (8 12

s~ N0, 0)+ N[ 0] )+ 2a( [ 0 ~Nilo) o
10 5 \o 0 0

(16 e 1 05 075
N0 | oy o]0 witn o= (05 2 15 )
0 0 0.75 15 3
(3.45)

pa ~U (8(07 1)) .

And, for i = 1,2,3,4, using as test functionensor products of 1D orthonormal
polynomials (P/*)1<j<s,, defined as, for j =1,2,3, 1 € N,
1eN

i » s 1
degree (.Pl#“j) = l, VZ/ < l, /R3 PIM“](Ij).Pl/;L“J(.rj)d/,Li(xl,./11‘27373) = m(sl’l/

(3.47)

As for a finite number of multivariate polynomials (and under a suitable control
of mixed derivatives), the hyperbolic cross [I113] seems to behave better than using
all polynomials up to a given degree, we used, for a number of test functions N
appropriately chosen, the polynomials Pl’fl ® PfQLQ ® ]Dlgi’g, where

(h+1)(la+1)(5+1) < Ly, (3.48)

where Ly is defined such that #{(l1,l2,13)|(l1 + 1)(l +1)(I3+1) < Ly} = N. The
map between maximum degree of the polynomials (L —1) and N is shown in Table

B.1l

Ly—1[6 7 8 9 10 11
N |28 38 44 53 56 T4

Table 3.1: Map between the maximum degree of 1D polynomials and the number
of test functions using hyperbolic cross in 3D.

In the numerical examples presented afterwards, as all weights are fixed to %,

there is no need to use the polynomial of degrees (ly,1ls,13) = (0,0,0), hence values
of N decreased by 1 compared to the values of Table [3.1}

ViThese polynomials were chosen after a few numerical tests on some optimization procedures for
their better convergence properties than the polynomials they were compared to. Their tensorised
form both eases the computation of the moments and allows some parallelisation. Note also that the
matrix VI'E (YK) is a multivariate Vandermonde matrix. We checked numerically its invertibility
throughout the optimization process.
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Remark 3.4. One of the main advantages of using sums of Normal functions (or
a uniform measure on a ball) as marginal laws and polynomials as test functions is
that their exists in that case close formulas for the computation of the moments (see
Appendiz . From our experiments in dimension 1, the precision of the com-
putation of the moments is important both for the solution of the MCOT problem
to be well-defined (and thus for the algorithm to converge) — numerically computed
moments, though not eract, must allow the existence of Y& € (R)M)X such that
ITE(YE)||oo < € for e the machine-precision; and for the convergence as N increases
of the MCOT cost towards the OT cost — numerically computed moments not precise
enough might hide this convergence. Numerical quadratures in 3D could be imple-
mented for dealing with more general marginal laws and test functions, however,
their computation and convergence speed put it beyond the scope of this article.

Mean-Covariance. Tests were also performed using as test functions the mean
and covariance matrix for p; and ps, in order to notice on examples how much those
test functions do constrain an optimal transport problem. Note that this problem
of optimal transport when the mean and covariance structure are given may be
interesting per se, when only partial information on the distribution is known. We
have indicated in Table [3.2] the optimal costs obtained with our algorithm for y; and
2 with mean-covariance constraints (N = 9) and with many moment constraints
(N = 52). We observe on our examples a relative difference around 15-20%.

|, M =10 g, M =100 1o, M =10 iz, M = 100
N=9 10.65 1395 8.007 1074
N =52 12.50 1599 9.107 1201

Table 3.2: Optimal value of the cost obtained for p; and ps with mean-covariance
constraints (N =9) and with many moment constraints (N = 52).

Cost. In order to avoid too high values of the cost function, we used in all ex-
periments a regularized Coulomb cost c(z1,...,2y) = EM +,|, with

) m#EM'=1 e+|vm—=z,,
e=102andVi=1,...,M,z,, € R

Fixed weights. After several tests comparing fixed and variable weights (with
various weight functions), we observe that in dimension 3, for the marginal laws con-
sidered, both initialization and optimization using variable weights were much slower
than using fixed weights. Therefore, all following tests have been performed using
fixed weights. Heuristically, when using variable weights, some particles tend to have
large weights and are strongly constrained while other ones become lightweight and
do not move much since the gradient on positions is proportional to weights.

3.5.2.2 Initialization and constraints enforcement — Figure [3.10

Initialization was performed by a sampling K particles according to the marginal
law, and then using the Runge-Kutta method showed in Section to bring the
particles on the submanifold of the constraints M. This method has been tested
for various values of N and K, presented respectively in Figures [3.10}

As N increases (Figure[3.10]), the submanifold of the constraints becomes harder
to reach using the Runge-Kutta method (similarly to the 1D case)" and large
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values of N (Ly > 11) could not be attained in the time of the numerical experiment
(remind that the number of computations involved at each iteration grows linearly
with V). In the case of each marginal laws (u1 and ps) for which the tests have been
performed, despite the assymmetry of us, the dependence on N of the convergence
speed appears to be similar.

Note also that as we use symmetrised test functions (regarding the marginal laws)
with fixed weights, the number of independant coordinates involved in the Runge-
Kutta method to satisfy the constraints is linear in KM (M being the number
of marginal laws). Thus, solving the problem of finding a starting point on the
submanifold with 100 marginal laws and 10% particles is numerically the same as
the one with 10 marginal laws and 10* particles. Although in the case where weights
are variable this remark can not be applied, as coordinates on different marginal laws
of the same particle share the same weight, increasing the number of marginal laws
relaxes the problem of finding a starting point on the submanifold.

3.5.2.3 Optimization procedure — Figures [3.11], [3.12] [3.13] and [3.14

The aim of Figures and is to plot the evolution of VX (Y,X) as a function
of n the number of iterations of the constrained overdamped Langevin algorithm
presented in Section for various values of N and values of 3. As we observed
(Figure [3.11)), and similarly to the tests in dimension 1, that tests with 8, = 0
converges faster than Sy > 0, we kept 5y = 0 for all the other tests. The convergence
of the cost for various values of N and K, various number of marginal laws and for
(1 and po is presented in Figure And a presentation of how particles move
during the optimization procedure can be seen in Figures and [3.14

On all subgraphs of Figure[3.12, one can observe that the optimization procedure
reaches a cost close to the optimal one for the MCOT problem in 50-200 iterations,
when K is large enough for a given N (e.g. K = 1000 is sufficient when N = 27 but
not when N = 43). As N increases the value of the optimal costs does as well, which
is expected, as MCOT problems get more and more constrained. As K increases,
the value of the cost computed converges towards the MCOT cost. Indeed, the
slight decrease of the computed MCOT cost at the 20000'" iteration as K increases
that can be observed in Table from K = 320 to K = 10000 suggests that their
exists Ky € N such that for K > K, the gain in an increase in K reflects weakly
on the MCOT cost computed.

On Figures and is plotted the evolution of some symmetrized visualiza-
tions of the process during the optimization for an MCOT problem on p. Although
at each iteration it satisfies the moment constraints, it deviates from a Normal
sample rapidly and tends to concentrate on some points (a bit like in Tchakaloff’s

theorem and Theorem .

3.5.2.4 Minimas — Figures [3.15], [3.16], [3.17 and [3.18

As K increases, the symmetrized minimizers of Figures and tends to be
visually more and more concentrated on some particular points. According to Table
3.3 higher values of K tends to have lower costs.

Some symmetrized visualizations of minimizers for MCOT problems for the non-
symmetrical measures i, and us are presented in Figures and [3.18 In those
cases, the 1D couplings obtained on each axis (X, Y or Z) are not the same (Figure

ViiSimilarly to Footnote El, the problem of finding particles satisfying the constraints is linked
with the multivariate Bezout’s theorem [307], 308].
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Figure 3.10: Evolution of |T®(Y,X)|,, for values of N ranging from 27 to 52 and
K between 1000 (dotted lines) and 10000 (solid lines) as a function of the number
of iterations m of the Runge-Kutta 3 procedure. Aty = 10~*. Blue curves are for
N = 27, orange ones for N = 37, green ones for N = 43, red ones for N = 52 and
pink ones for N = 73.

[.17). A higher number of marginal laws M seems to spread more the particules,
although their 1D coupling still shows particles highly concentrated around a few
values in the considered examples. Higher values of NV increases the concentration of
the particles around fewer values in the us examples. The planar representation of
the minimizers for large M (Figure , shows that particules are not distributed
spatially as a Normal function and tend to concentrate on some 1D curves (for the
considered 2D projections) with a higher spreading than for lower values of M.

3.5.2.5 Optimization for p, - Figure 3.19

Optimal transport for py with a large number of electrons is of theoretical interest
as it might provide approximations for a uniform electronic density in a large space
[227]. Numerical results for its MCOT relaxation with M = 100 and N = 52 are
presented in Figure . Although the cost has been optimized (Figure , it
is only 3% lower than the initial uniform sampling (after a Runge-Kutta 3 initial-
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Figure 3.11: Evolution of the cost as a function of the number of iterations n for
various values of 3. The marginal law is ps, By varies from 0 to 1 and the other
parameters are Aty = 107, noise level decreases as the squareroot of the number of
iterations, N = 27, M = 10, K = 160.

K 40 80 160
cost, 12.2558198 12.1747815 12.1457150
lower cost | 12.1981977 12.0864398 12.0862042
K 320 1000 10000
cost, 12.0916662 12.0821615 12.0785749
lower cost | 12.0855486 12.0821615 12.0785745

Table 3.3: Values of the regularized Coulomb cost (see here-named paragraph in
Section for the MCOT problem with u;, M = 10, N = 27, Aty = 1074,
Bo = 0 and K ranging from 40 to 10000. The cost line corresponds to the value of
the regularized cost associated to the minimizing process at iteration 20000 (which
also corresponds to the minimizers represented in the graphs of Figures and
3.16|). The lower cost line corresponds to the lower value of the regularized cost

encountered by the minmizing process before or at iteration 20000 for each value of
K.
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(4) pa, M = 100

Figure 3.12: Evolution of the cost as a function of the number of iterations n for
various values of N and K from 1000 (dotted lines) to 10000 (solid lines). Aty =
107%, By = 0. Blue curves are for N = 27, orange ones for N = 37, green ones for

N = 43, red ones for N = 52 and pink ones for N = 73. On Figures |3.12.1] and
3.12.3, “+” signs are added to better distinguish overlaid curves.

(3) pu1, M = 100

102



(al) plane XY, iteration 1 (b1) X axis, iteration 1 (c1) radial, iteration 1

(a2) plane XY, iteration 30 (b2) X axis, iteration 30 (c2) radial, iteration 30

(a3) plane XY, iteration 50 (b3) X axis, iteration 50 (c3) radial, iteration 50

Figure 3.13: Transport along optimization for u;, M = 10, K = 10000, N = 27,
Bo = 0, Aty = 1074 In figures of column (a) is showed e Sr M 6.4 Lok

In figures of column (b) is showed m S Enj\f#m,:l ok o, - In figures of
m,1° /1

m

. K
column (c) is showed m Sy Zn]\;m,:l 5‘w§1"|xﬁu|, where |2F | = le(xﬁz,i)z
The evolution of the corresponding cost can be seen in Figure [3.12.1]
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(ad) plane XY, iteration 100  (b4) X axis, iteration 100 (c4) radial, iteration 100

(a5) plane XY, iter. 1000 (b5) X axis, iteration 1000 (ch) radial, iteration 1000

(a6) plane XY, iter. 20000 (b6) X axis, iteration 20000  (c6) radial, iteration 20000

Figure 3.14: Transport along optimization for u;, M = 10, K = 10000, N = 27,
Bo = 0, Aty = 107%. In figures of column (a) is showed 1z Sr , SN K

m=1 :Efn,l,xm,z'
- 1 K M
In figures of column (b) is showed 7/ D251 Xmsm—1 ok 1k, In figures of
. 1 K M k| _ 3 E 2
column (c) is showed MM-DK Dkl Dmtmi =1 5\x§1|,|xfn,|7 where [z, | = /2072 (25, ;)%

The evolution of the corresponding cost can be seen in Figure [3.12.1]
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(al) plane XY, K=40 (b1) X axis, K=40 (c1) radial, K=40

(a2) plane XY, K=80 (b2) X axis, K=80 (c2) radial, K=80

(a3) plane XY, K=160 (b3) X axis, K=160 (¢3) radial, K=160

Figure 3.15: Optimal transport with u;, M = 10, N = 27, By = 0 and Aty = 1074,
for K = 40,80,160. In figures of column (a) is showed e Sr M 6%

m=1 Ty 15T 2

In figures of column (b) is showed m S Zn]\f;ém,:l ok o, - In figures of
m,1 1

m/,

: K <M 3
column (c) is showed 7M(M171)K S 5‘%"'12/'7 where |2F | = Zi:1(xfn,i)2'

Corresponding costs can be found in Table
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(a4) plane XY, K=320 (b4) X axis, K=320

(c4) radial, K=320

(ab) plane XY, K=1000 (b5) X axis, K=1000

(a6) plane XY, K=10000

Figure 3.16: Optimal transport with pu,, M

0 and Aty = 107*, for K = 320,1000,10000.

umn (a) is showed i Sp SM K

— k
m=1 Ty 15Tm,2

1 K M
ShOWed M(M—l)K Zk:l Zm?’émlzl xlrcn,l’zlc

m/,

1 K M k| —
M(M-1)K ZkZl Zm#m’:l 5|z,’§1|,|x’:n,|7 where |xm’ - Z

can be found in Table .
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(¢b) radial, K=1000

(b6) X axis, K=10000

(c6) radial, K=10000

10, N = 27, By
In figures of col-
In figures of column (b) is

In figures of column (c) is showed

)2. Corresponding costs




(al) po, X axis, M = 10, N = 27

(a2) po, X axis, M = 100, N =
27

rem———r ]

| b 4

| |

l |
|

|

|

| Fo .

[§@nmn it

(a3) p3, X axis, M = 100, N =

27

L

(ad) us, X axis, M = 100, N =
52

Bo
H

nnnnn

Figure 3.17: Optimal transport for ps and pug,

i

(bl) w2, Y axis, M = 10, N =

| E

(b2) 2, Y axis, M = 100, N =

(R

- F

(b3) us, Y axis, M = 100, N =
27

"

Densey

(b4) w3, Y axis, M = 100, N =
52

(C2) p2, Z axis, M =
27

(C3) w3, Z axis, M = 100, N =
27

@

(C4) p3, Z axis, M =
52

M = 10,100, N = 27,52 BO_O,K:

10000 and Aty = 10~* In figures of column (a) is showed 2= S p M 6.0 &

In figures of column (b) is showed m S, Zm;ém,:l —
m’,l

column (c) is showed M(M S S Zm¢m, 101t |2k | where [zF | =

m 17$m,2

. In figures of

3
Y (@h)?.

In order to better distinguish between areas of low and high particles density, plots
are represented as 2D histograms.
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(1) pg, plane XY, M =10, N =27 (2) po, plane XY, M =100, N =27
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(4) ps, plane XY, M =100, N = 52

Figure 3.18: Optimal transport for ps and pg, M = 10,100, N = 27,52, By = 0,

K = 10000 and At, = 10~* In each graph, minimizers are represented as
e Zszl Z%:l ok Lk In order to better distinguish between areas of low and

high particles density, plots are represented as 2D histograms.
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ization). Although the 1D marginal laws seem well approximated (Figures
and [3.19.3)), planar and radial graphs (Figures [3.19.2]and [3.19.4)) show that particles
are concentrated on two spheres (of radius 0.6 and 1 respectively). Most of the
transport takes place inside and between those two spheres.

5.1x10°

5.075 x 10%
5.05x10°

5.025 x 10%

cost

5x10%

4.975 x 10° -025

4.95x10°

10° 10! 10? 10° 10°
number of iterations

(1) Cost as a function of n

nnnnn

(3) X axis (4) radial

Figure 3.19: Evolution of the cost as a function of the number of iteration n (Figure
3.19.1) and optimal transport with uy, M = 100, N = 52, K = 10000 By = 0
and Aty = 107*. In Figure 3.19.2] is showed iS5 M 5, . . In Fig-

m=1"x 1%,2
ure [3.19.3| is showed W_DK Sy Zf\nﬁém,zl ok, In Figure |3.19.4] is showed
K M 3
m Y ket Zmém,:l 5Ixﬁllvlwfn/|’ where |2k | = Zi:l(xfn,i)z' In order to better

distinguish between areas of low and high particles density, plots are represented as
2D histograms.
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3.6 Proof of Theorem

The aim of this section is to gather the proofs of our main theoretical results.

3.6.1 Tchakaloff’s theorem

We present here a corollary of the so-called Tchakaloff theorem which is the backbone
of our results concerning the theoretical properties of the MCOT particle problem.
A general version of the Tchakaloff theorem has been proved by Bayer and Teich-
mann [24]. Theorem is an immediate consequence of Tchakaloft’s theorem, see
Corollary 2 in [24].

Theorem 3.4. Let © be a measure on RY concentrated on a Borel set A € F, i.e.
m(RT\ A) = 0. Let Ny € N* and A : R? — RN g measurable Borel map. Assume

that the first moments of A#m exist, i.e.
[ Iuldagnto) = [ A@)dnc:) < o
]RNO ]Rd

where || - || denotes the Euclidean norm of RNo. Then, there exist an integer 1 <
K < Ny, points z1, ..., zxg € A and weights py, ...,px > 0 such that

K
V1 <i < Ny, / Ai(z)dm(z) =) (=),
R k=1

where \; denotes the i-th component of A.

We recall here that A#m is the push-forward of m through A, and is defined as
A#tm(A) = (A1 (A)) for any Borel set A C RN,

Last, let us mention that Theorem is a consequence of Caratheodory’s the-
orem [287, Corollary 17.1.2] applied to [,n, udA#m(u) which lies in the (convex)
cone induced by spt(A#m), the support of the measure A#m.

3.6.2 Proof of Theorem [3.1]
We denote here by Sy the set of permutations of the set {1,---, K}.

Lemma 3.5. Let (W,Y) € UF be such that there exists k' such that wy = 0.
Then for any permutation o € Sk, there exists a polygonal map v : [0,1] — UY
such that ¥(0) = (W,Y), (1) = (W?,Y?) and Z(3(t)) is constant, where Y7 :=
(X7W)1cher € (RYM)E and W = (wor) r1<r<r € (R1)N.

Proof. For (W,Y) and (W', Y”"), we will denote [(W,Y), (W', Y”)] the segment map
te 0,1 — [(1-t)W +tW' (1 —1)Y +tY’] and we will construct 1 as the concate-
nation of segments that are clearly in Y and leaves Z constant.

It is sufficient to prove this result for transpositions i.e. for ¢ such that there
exist i1 < 19 such that U(il) = 19, U(ig) = 7, and O'(Z) = ¢ for ¢ g {il,ig}. We
distinguish two cases.

o k' € {iy, i}, say k' = iy. We then define Y; = (X¥),<x<x by XF = X and
X% = X* for k # k' and consider the segment [(W,Y), (W,Y;)]. We then set
wh' = w, wi' = 0 and wb = w* for k ¢ {k,i;} (note that W, = W) and
consider the segment [(W,Y}), (Wy,Y1)]. Last, we define Yy = (X5)1<p<i as
X2 = X¥ and X} = XF for k # i, (note that Y3 = Y7) and consider the
segment [(W1,Y7), (W1, Y2)].
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o k' ¢ {iy,ip}. First, we define Y1 = (XF)icperx by XF = X" and XF =
X% for k # K and consider the segment [(W,Y),(W,Y7)]. We then set
wt = wh, w = 0 and w¥ = w* for k ¢ {k i1} and consider the seg-
ment [(W, Y1), (W1, Y1)]. Then, we define Yy = (X§)1<p<x as X2' = X and
X35 = X[ for k # i1, and consider the segment [(Wy, Y1), (W4, Yg)] We the set
wy = w?, w =0 and w§ = w¥ for k & {iy, iy}, and consider the segment
[(W1,Y3), (W, Ys)]. Now, we define Y3 = (X5)1<pex by X22 = X, XF = X¥
for k # iy and consider the segment [(W3,Ys), (Ws,Y3)]. Then, we define
w? = wh = w", wE =0 and w§ = wh for k & {iy, k'} (note that W3 = W°)
and consider the segment [(Ws,Y3), (W3, Y3)]. Last, we set Yy = (X})1<k<x
with X¥ = X*¥ and X} = X} for k # k' (note that Y, = Y?) and finally
consider the segment [(W3,Ys), (W3, Yy)], which gives the claim.

]

Proof. For i = 0,1, let W; := (wy;)1<k<ic € RE, Y; = (XF)i<k<x € (RHM and
= Zle Wyi0xr € P ((Rd)M). Note that, for ¢ = 0,1, the support of m; is
included in the discrete set {XF, 1 <k < K}.
For i = 0,1, using Theorem [3.4] with 7 = m; and A : (RY)M — R¥*3 the map
defined such that, for all X € (R%)M

Ay (X) = (X)), VI<n<N,

Avi(X) =1, Ayio(X) = c(X) and  Ayis(X) = 9(X),

it holds that there exists a subset J* C {1,---, K} such that K; := #J° < N + 3,
and weights (w});c;» C Ry such that

VI<n< N, Y diea(X]) = / Pdr; = wiipa(XE) = i, (3.49)
jedi (RE)M k=1
K
> @] / dm = w = 1, (3.50)
jeJt k=1
Z ﬁ;c(Xf) = / cdm; = Zwklc IZ(W.,Y;), (3.51)
jeri
Y w(x]) = / 0 dm; = Zwm < A. (3.52)
JjeJ

Without loss of generality, by using Lemma , we can assume that J° = [1, K]
where Ky < N + 3 and that J' = [K — K1—|—1 K] where K — K1 +1 > N + 4.

We then define the weights Wy = (@9, --- | wh,,0,--+,0) € RE and W, =
(0,-++,0,Wk_je 415+, W) € RE. Let us first define the applications

1p1 : |:O, %:| S5t — (W(] + 5t(WO — Wo), YE))

and
s : [% 1} St <W1 +5(1— ) (W, — Wl),Y1>

111



so that ¢o(0) = (Wo, Yo), Yo(1/5) = (Wo, o), ¢1(1) = (Wi, Y1), 1(4/5) = (W, A).
Then, vy and 1, are continuous applications and identities (3.49)-([3.50)-(3.51)-

(3.52) implies that for all ¢ € [0,1/5] (respectively all t € [4/5,1]), ¥o(t) € UK
and Z(v(t)) = Z(Wo, Yy) (respectively 1y (t) € UE and Z(¢y(t) = Z(Wy, Y7)).

We then define Y := (Xé,--- X800, 0, XTI L ,XIK) € ((RHM)K,
We then introduce the continuous applications

(P Eﬂ >t (WO,YO+5(t— 1/5)17)

and -

It thus holds that ¢»(1/5) = (WO,YO) and 15(2/5) = (Wo,Y). Similarly, 14(4/5) =
(Wl,Yl) and 14(3/5) = (W1,Y). Let us point out here that, by the definition of
Y, for any t € [%, %} the K, first components of 1y(t) are equal to X¢,---, X[*.
Thus, since WO (w?, - w%o, 0,---,0) € Rf, this implies that for all ¢ € [
Po(t) € UE and in addition,

575]

Z(a(t)) = Z(Wo, Yo) = Z(Wo,Y) = Z(Wo, Y0).
Similarly, for any ¢ € [2, 2], 14(t) € Uf and in addition,

T(yu(t)) = Z(W1, V1) = Z(W1,Y) = Z(Wy, Y).

Notice that in particular, Z remains constant along the paths in U% given by the

applications 9y, ¥s, 14 and 5.
Last, we introduce the application

2 — .

by [Sg} S5t <Wo+5(t—2/5)W1,Y>

which is continuous and such that ¢5(2/5) = (Wp,Y) and ¢3(3/5) = (W3, Y). Using
similar arguments as above, it then holds that for all t € [2/5,3/5], ¥5(t) € PE and

I(s(t)) = (Wo, Y) +5(t—2/5)T (Wl, 17) = T (W, Yo) +5(t — 2/5) (W1, Y1)

This implies that Z monotonically varies along the path given by the application 3.
We finally consider the application ¢ : [0,1] — (R4 )% x ((R4)M )K defined by

i) it e 0,1/5),
dalt) if ¢ € [1/5,2/5),
vie 0,1, w(t) = vs(t) ifte [2/5,3/5],
alt) if ¢ € [3/5,4/5),
Ws(t) ift e [4/5,1].

Gathering all the results we have obtained so far, it then holds that v is continuous,
that for all ¢ € [0, 1], ¥(t) € UE and that the application Z o) is monotone. Hence
the desired result. O
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Appendix B

Appendix of Chapter

B.1 Moments computation in Normal case

Recall that for N ~ N(0, 1),

0 if p is odd
Py _
E(N?) = { oP(p—1) if pis even. (B.1)
For a 3D multivariate Normal random variable
0 U% P1,20102 130103
X~N 0|, | pr20109 a% P2,30203 )
0 P1,30103 230203 a§
Gy
X = | Gy | where cov(Gy,G2) = p120102, cov(G1,Gs) = p130103, cov(Ge, G3) =
G

p230203 and Gy, Go and G5 are not independent. Using Ny, No, N3 ~ N(0,1)
independent normal random variables, one has

G1 = O'1N1 (BQ)

GQ = 09 (pLQNl + z/ 1— p%’2N2> (B3)
Gz =03 (01,3]\71 + p2sNo + /1 —pi 3 — P%,:aNs) (B.4)

such that

Var(Gy) = 05 Var(G3) = 03 (B.5)
E (GlGQ) = p1720'10'2 E (Gng) = P1,30103 (BG)
E (GgGg) = P2,30203 (B?)
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Then the (k, [, m)-th moment can be computed as

1
E (GYGYGY) =E (o—’foag (praMi+ /1= p3a0o)
Xog' <P1,3N1 + p23Na + /1= piy— P§,3N3> )

l

m U\ i i N
= 01005’ (Nfz (@) P12V ( 1 - P%,Q) N;

=0

m .
m\ m—j
) <j> P13V <Pz,3N2 +4/1—pis— P§,3N3> )

=0

I—i ™ m )
_01‘72‘73 Z()Plz( 1_,0%,2) Z(j>0j1,3
=0
ktitj nrl—i = (m —J\ n n (] s \" T ioh
xXE| N N, Z < h >P2,3N ( 1 —P13 ,0273) Ny

h=0
Lo m—j
= 010307 Z <>P12 (\/1_P%,2> Z (])P{:&Z ( h
j=0 h=0
m—j—h oy . e
X 03,3 ( 1— P%,?, - P%,:s) E <Nf+l+JNé_l+hN§n ’ h)
(B.8)
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Part 11

Van der Waals interactions
between two hydrogen atoms: The
next orders
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Chapter 4

Van der Waals interactions
between two hydrogen atoms: The
next orders

This chapter is an article written with Eric Cances and L. Ridgway Scott and sub-
mitted to Communications in Mathematical Sciences [76].

Abstract

We extend a method (E. Cances and L.R. Scott, STAM J. Math. Anal., 50,
2018, 381-410) to compute more terms in the asymptotic expansion of the van
der Waals attraction between two hydrogen atoms. These terms are obtained
by solving a set of modified Slater—Kirkwood partial differential equations.
The accuracy of the method is demonstrated by numerical simulations and
comparison with other methods from the literature. It is also shown that the
scattering states of the hydrogen atom, that are the states associated with the
continuous spectrum of the Hamiltonian, have a major contribution to the Cg
coeflicient of the van der Waals expansion.

4.1 Introduction

Van der Waals interactions, first introduced in 1873 to reproduce experimental re-
sults on simple gases [317], have proved to also play an essential role in complex
systems in the condensed phase, such as biological molecules [21], 288] and 2D mate-
rials [I53]. The quantum mechanical origin of the dispersive van der Waals interac-
tion has been elucidated by London in the 1930s [238]. The rigorous mathematical
foundations of the van der Waals interaction have been investigated in the pioneer-
ing work by Morgan and Simon [261], inspired by the one of Ahlrichs in [3], and later
by Lieb and Thiring [230)], followed by many authors (see in particular [I3] 205] and
references therein). For Hj, the expansion of the interaction energy as a function
of the distance R between the nuclei is a diverging series — yet Borel summable, as
predicted in [63] and later proved by [100, 114, 168]. Recent articles have studied
this expansion for collection of atoms [I4} [18], with terms up to 1/R° [22], molecules
[15], [16] and its differentiability [17].

In a recent paper [78], a new numerical approach was introduced to compute
the leading order term —CgR~° of the van der Waals interaction between hydrogen
atoms separated by a distance R. Here we extend that approach to compute higher
order terms —C,,R™™, n > 6. The coefficients C,, have been computed by various
methods. On the one hand, both [275] and [98] apparently failed to include key
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components in the computation of 'y, computing only one component out of three
that we derive here. On the other hand, our result differs by approximately 200%
and agrees with [265]. One of the objects of this paper is to clarify this discrepancy.

The computation of the expansion coefficients can also be derived through tech-
niques using polarizabilities [265] which is exact but might involve slightly different
numerical computations than the perturbation method used here. In order to get
the right values, one has to use a high enough order of perturbation theory. Com-
putations using up to the second order [10, 88, B14] fail for C42, C14 and Cjg (with
errors of approximately 1%, 5%, and 10%) for which computations up to the fourth
order [257] are needed. The third order [323] is sufficient for Cy,, C13 and Cy5. More-
over, the polarizabilities method can be derived also for other atoms than hydrogen
as well as for three-body interaction [88]. A comparison of the numerical results is
explored in Section [£.3.1]

One can also compute the expansion coefficients using basis states as in [140].
However, this leads to a substantial error even for Cs. The discrepancy observed
between the basis states method and the other methods can be interpreted as the
missing contribution to the energy from the continuous spectrum.

The perturbation method of [309] is remarkable because, in the case of two
hydrogen atoms, the problem splits, for any of the C), terms, exactly into terms
constituted of an angular factor and a function of two one-dimensional variables
(the underlying problem is six-dimensional). The first term in this expansion has
been examined in [78] and gave a value of Cy agreeing with [265]. This article extends
this analysis and allows computation of all C),. The linearity and the nature of the
angular parts allows treatment of these problems separately in a way analogous to
the first term of the expansion. Although the partial differential equations (PDE)
defining the functions of these two variables are not solvable in closed form, they
are nevertheless easily solved by numerical techniques.

In Section [4.2] we present an extended and modified version of Slater and Kirk-
wood’s derivation [309], in order to manipulate more suitable family of PDEs for
theoretical analysis and numerical simulation. These modified Slater-Kirkwood
PDEs are well posed at all orders and, when their unique solutions are multiplied
by their respective angular factor, the resulting function, after summation of the
terms, solves the triangular systems of six-dimensional PDEs originating from the
Rayleigh—Schrodinger expansion. We finally check that the so-obtained perturba-
tion series are asymptotic expansions of the ground state energy and wave function
(after applying some “almost unitary” transform) of the hydrogen molecule in the
dissociation limit. In Section we use a Laguerre approximation [301, Section
7.3] to compute coefficients up to Cy, given that Cy has been computed in [78]. Our
approach also allows us to evaluate the respective contributions of the bound and
scattering states of the Hamiltonian of the hydrogen atom to the Cy coefficient of
the van der Waals interaction. Numerical simulations show that the terms in the
sum-over-states expansion coupling two bound states only contribute to about 60%.
The mathematical proofs are gathered in Section Lastly, some useful results
on the multipolar expansion of the hydrogen molecule electrostatic potential in the
dissociation limit and on the Wigner (2n + 1) rule used in the computations are
provided in the Appendix.

4.2 The hydrogen molecule in the dissociation limit

As usual in atomic and molecular physics, we work in atomic units: & = 1 (reduced
Planck constant), e = 1 (elementary charge), m, = 1 (mass of the electron), ¢y =
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1/(4m) (dielectric permittivity of the vacuum). The length unit is the bohr (about
0.529 Angstroms) and the energy unit is the hartree (about 4.36 x 10~'® Joules).

We study the Born-Oppenheimer approximation of a system of two hydrogen
atoms, consisting of two classical point-like nuclei of charge 1 and two quantum
electrons of mass 1 and charge —1. Let r; and ry be the positions in R? of the two
electrons, in a cartesian frame whose origin is the center of mass of the nuclei. We
denote by e the unit vector pointing in the direction from one hydrogen atom to the
other, and by R the distance between the two nuclei. We introduce the parameter
¢ = R7! and derive expansions in € of the ground state energy and wave function.
Note that in [78], we use instead e = R™1/3. The latter is well-suited to compute the
lower-order coefficient Cg, but the change of variable e = R~! is more convenient to
compute all the terms of the expansion.

Since the ground state of the hydrogen molecule is a singlet spin state [178§], its
wave function can be written as

[T =1
A

where 1, > 0 is the L?normalized ground state of the spin-less six-dimensional
Schrodinger equation

Ye(r1,12) (4.1)

He¢e = )\677/16, ||¢€HL2(R3XR3) = ]-a (42)

where for € > 0, the Hamiltonian H, is the self-adjoint operator on L?*(R® x R?) with
domain H?(R? x R?) defined by

1 1 1 1
C2TT 2T — (2e)Te|  |ra — (2¢)" e
1 1 1
im0 el Tt @) te m—m|  ©

where A,, is the Laplace operator with respect to the variables r; € R®. The first
two terms of H, model the kinetic energy of the electrons, the next four terms the
electrostatic attraction between nuclei and electrons, and the last two terms the
electrostatic repulsion between, respectively, electrons and nuclei. The ground state
of H, is symmetric (¢¢(r1,r2) = t(ra,r1)) so that the wave function defined by
does satisfy the Pauli principle (the anti-symmetry is entirely carried by the
spin component). It is well-known [14] [I8] [78, 261] that

A=—-1—Cse®+0 (66) .
The computation of A\, (and 1)) to higher order by a modified version of the Slater—
Kirkwood approach, is the subject of this article.

4.2.1 Perturbation expansion

The first step is to make a change of coordinates. Introducing the translation oper-
ator

T f(ri,ra) = f(r1 4 (2¢) 'e,ry — (2¢) 'e) = f(r1 + 3Re,ry — 3Re), R=¢ ',

the swapping operator C and the symmetrization operator S defined by

Co(ri,r) = drarr), S = %mcx
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where Z denotes the identity operator, as well as the “asymptotically unitary” op-
erator

7; = STE' (43)
It is shown in [78] that
where Hj is the reference non-interacting Hamiltonian
1 1 1 1

Hy= —=A,, — — — =A,, — —
’ 277 ] 277y

and V, the correlation potential

! ! + ! + (4.5)
— — €. :
r1 —ele] |ra+elel  |rp—ry—ele]

‘/e(rla r2) -

The linear operator 7. is “asymptotically unitary” in the sense that for all f,g €
L*(R? x R3),

It follows from (4.4)) that if (), ¢) is a normalized eigenstate of Hy+ V., that is (A, ¢)
satisfies

(Ho+Vo)o=Xo,  [|9]l2@sxrs) = 1,
then
HT.p = NTeo.

In addition, we know from Zhislin’s theorem [78] [325] that both H,. and Hy+ V, have
ground states, that their ground state eigenvalues are non-degenerate, and that their
ground state wave functions are (up to replacing them by their opposites) positive
everywhere in R3*3. Since 7. preserves positivity, we infer that H, and Hy+ V. share
the same ground state eigenvalue A\, and that if ¢, is the normalized positive ground
state wave function of Hy + V,, then ¢ := Tcde/||Tche|| L2(r3xrs) is the normalized
positive ground state wave function of H..

The next step is to construct for € > 0 small enough the ground state (A, ¢.) of
Hy+ V. by the Rayleigh—Schrodinger perturbation method from the explicit ground
state

Xo=—1,  ¢o(ry,ry) =7 tem(ml+ral) (4.6)
of Hy. Using a multipolar expansion, we have
+oo
Ve(ryrg) = €"BM(ry,1y), (4.7)
n=3

where homogeneous polynomial functions B™, n > 3 are specified below (see equa-
tion (4.14))), the convergence of the series being uniform on every compact subset of
R? x R3. Assuming that A\, and ¢, can be Taylor expanded as

+o0o +o0
Ae = Ao — Z Cne" and ¢ = Z € dn, (formal expansions) (4.8)
n=1 n=0

(we use the standard historical notation —C,, instead of A, for the coefficients of
the eigenvalue A.) inserting these expansions in the equations (Hy + V)¢ = A,
|Pe||L2(r3xr3y = 1, and identifying the terms of order n in ¢, we obtain a triangu-
lar system of linear elliptic equations (Rayleigh—Schrédinger equations). The well-
posedness of this system is given by the following lemma, whose proof is postponed
until Section 4.4.2]
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Lemma 4.1. The triangular system

Vn>1,  (Hy=Xo)on=— B%ou = Crnr, (4.9)
k=3 k=1
1 n—1
(b0, 6n) = =5 > (@ n-r), (4.10)
k=1
where we use the convention Y ,_ -+ = 0 if m > n, has a unique solution

((Ch, dn))nens in (Rx H2(R3xR3))N". In particular, we have (C, ¢1) = (Ca, ¢3) = 0
and C3 = Cy = C5 = 0. In addition, the functions ¢, are real-valued.

Note that (C1, ¢1) = (Cs, ¢2) = 0 directly follows from the fact that the first non-
vanishing term in the expansion of V. is €¢B®). The formal expansions
are in fact asymptotic expansions as established in the following theorem, in which
the second inequality of has been proved to hold for HJ in [261, Theorem
3.5]. Its proof is provided in Section [4.4.2]

Theorem 4.2. Let ), € H?(R3 x R3) be the positive L*(R? x R?)-normalized ground
state of H. and \. the associated ground-state energy:

Hape = Athe,  |[Ye]lr2@exmesy =1, e >0 ace. on R® x R (4.11)

Let (¢, No) be as in ([4.6), ((Ch, dn))nen+ the unique solution of ([4.9) in (Rx H?(R3x
R3))pens, and T¢ the “almost unitary” symmetrization operator defined in (4.3)).
Then, for all n € N, there exists €, > 0 and K, € Ry such that for all 0 < € < ¢,,

Hwﬁ o wgn)HHQ(R3><R3) < K”€n+17 P‘ﬁ o )‘En) < Kn€n+17 ’)\6 - /Lgn)} < KnEQ(nJrl);
(4.12)

where

n k n
TG0+ g 'on) MY = 2= el = (| H o).
‘ 1T (G0 + s Fon) | noe " oo e
e \Po k=3 € Pk L2(R3xR3) it

Let us point out that in view of the last two bounds in (4.12]), the series expansion

of ME") in € up to order (2n+ 1), which can be computed from the ¢;’s for 0 < k < n,
is given by

2n+1
Mgn) — /\O _ Z Ckek + O(€2n+2).
k=6
Therefore, the knowledge of the ¢,’s up to order n allows one to compute all the
Cy’s up to order (2n + 1) (Wigner’s (2n + 1) rule).

Remark 4.1 (van der Waals forces). It follows from the Hellmann-Feynman theorem
that the van der Waals force F. acting on the nucleus located at (2¢)~te is given by

— (2¢)71
F. = /}R3 %pe(r) dr with p(r) =2 /R3 [Ye(r,x') |2 dr’ (electronic density).

Introducing the approrimation Fg") of F. computed from zpé") as

— (2¢)7te) _
O | e @ s i 0w =2 [ e
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we obtain from the Cauchy-Schwarz inequality, the Hardy inequality in R3, and

[LT2) that

|Fe - an)| S 8||77D6 - @Z)én)”Hl(R?’xR?’)“d}e + 77Z1£n)||H1(R3><]R3) S K:LEn+1

for some constant K! € R, independent of € and € small enough. Since F™ can be
Taylor expanded at € = 0, we obtain that the force ¥, satisfies for all n > 6

F.=— (Z nC,ﬁ”“) e+ O(e").

k=6

This extends the result F. = —6Csc’e + O(€®) proved in [17, Theorem /] for any
two atoms with non-degenerate ground states, to arbitrary order in the simple case
of two hydrogen atoms.

4.2.2 Computation of the perturbation series

The coefficients B™ are obtained by a classical multipolar expansion, detailed in
Appendix for the sake of completeness. Using spherical coordinates in an or-
thonormal cartesian basis (ey, e, e3) of R? for which e; = e, so that

r; = r;(sin(6;) cos(¢;)er + sin(6;) sin(¢;)es + cos(6;)e),

4.13
cos(¢;) =r;-e, and r;=|r;, i=1,2, (4.13)

it holds that for all n > 3,

B™(ry,ry) Zrlﬁ’l; Z Ge(ly, lo, m)Y; " (01, 01)Y, " (02, ¢2),  (4.14)

(l1 l2 €Bn, frnin(ll l2)<m<min(l1 lg)
Zrlf?“lf Z Gr(l1, b, m) Y[ (01, 01) V) (02, 2),  (4.15)
(l1,l12)€Br, —min(ly1,l2)<m<min(ly,l2)
where (Y, )ien, m=—t,—14+1, 1—1,; and (V" )ieN, m=—i,—i+1,- 1—1, are respectively the com-

plex and real spherical harmonics , and where

Bn:{(ll,l2> . ll—f—lg:n—l, ll,lg%O}:{(l,’l’L—l—l) . 1§l§7’l—2}

(4.16)
The coefficients G¢(ly,la, m) and G,(ly,l2, m) are respectively given by
A (ly + 1o)!
Ge(ly, la,m) = (_1>12 rlh + ) 1/2°
(20 4+ 1) (2l + 1) (L — m)! (L + m)! (I — m)!(ly + m)!)
(4.17)

Gr(ll, lg, m) = (—1>mGC(l1, lg, m)

Both expansions and are useful (4.14) will be used in the proof of
Theorem - to estabhsh formula , which has a simpler and more compact
form in the complex spherical harmonics basis. On the other hand, allows
one to work with real-valued functions.

One of the main contributions of this article is to show that the functions ¢,,,
hence the real numbers \,, can be obtained by solving simple 2D linear elliptic
boundary value problems on the quadrant

Q=R xR,
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extending the technique of Slater and Kirkwood for Cg [309], modified in [78]. For
each angular momentum quantum number [ € N, we denote by
Il+1) 1 1 (l+1 1 1

S Y o4z 4.18
2r2 P 270 2r2 7“+2’ ( )

Ki(r) =

and we consider the boundary value problem: given f € L?({2)

find T € H(Q) such that
(4.19)

—%AT(TI, 1) + (ki (r1) + Kk, (1)) T = f(r1,7m2)  in D'(Q).

It follows from classical results on the radial operator —%% + r; on L*(0,+00)
with form domain Hg (0, +00) encountered in the study of the hydrogen atom (see
Section for details) that for all Iy, I € N, (I3,12) # (0,0), the problem (4.19)
is well posed in H}(Q). For I} = Iy = 0, this problem is well-posed in

@ = {oe i@ s [omen nrandn - o}
Q
provided that the compatibility condition
/ f(risre)e”™ 2 rira dridry = 0 (4.20)
Q

is fulfilled. Problem (4.19) is useful to solve the Rayleigh—-Schrodinger system (|4.9))-
(4.10) thanks to the following lemma, proved in Section |4.4.1] We denote by

¢y = {v € L*(R* x R?) : (¢, ¢) =0}.

Note that the condition (4.20)) is equivalent to <gb0, M> = 0.

riT2

Lemma 4.3. Let l;,ly € N, mi,mg € Z such that —1; < m; <; for j = 1,2, and
f € L3(). Consider the problem of finding v € H?*(R3 x R3) N ¢y solution to the
equation

f(r177"2)

rira

}/l:nl(elvgbl)i/;:w(e?vqb)‘ (421)

1. If (I, 12) # (0,0), then the unique solution to (¢.21]) in H*(R* x R?) is

T(T17 7’2)
T2

w = lenl (917 ¢1)Y2;n2 (027 ¢2)7 (422)

where T is the unique solution to (£.19)) in H}(Q);

2. If (l1,13) = (0,0), and if the compatibility condition (4.20) is satisfied, then
the unique solution to (4.21)) in H?(R® x R3) N ¢5 is

1/] _ iT(Tl,Tg)’

4T T
where T is the unique solution to ([E.19) in HL(2).
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In addition, if f decays exponentially at infinity, then so does T, hence 1, in the
following sense: for all 0 < o < /3/8, there exists a constant C,, € Ry such that
foralln > a, l1,ls € N, my,mg € Z such that —l; < m; <; for j = 1,2, and all

fer*Q)

Hea(r1+?”2)THH1(Q) < CaHeﬁ(r1+T2)fHL2(Q)’ (4.23)
Hea(‘rlHlm‘)wHLQ(R3xR3) < CaHe”(‘“H'”DFHH(RP)xRS), (4.24)
e D] gy < Ca(l+ b (1 + 1) + dla(ly + 1)Y2 70D P agag.

(4.25)

Lastly, if f is real-valued, then so is T

The properties of the functions ¢,, upon which our numerical method is based,
are collected in the following theorem, proved in Section [4.4.2]

Theorem 4.4. Let ((Cy, ¢n))nen+ be the unique solution in (R x H?(R3 x R?)),en-
to the Rayleigh—Schridinger system (4.9)). Then, ¢y = ¢ =0, C,, =0 for 1 <n <5
and for each n > 3, there exists a positive integer N,, such that

min(l1,l2)

¢n = Z L Z T(ST?lz,m) (Th 7GQ)}/ll (917 ¢1> (927 ¢2) ? <426>

rire

(I1,l2)€Ln m=—min(ly,l2)

where L, 1s a ﬁmte subset of N? with cardinality N, < oo, where T ((l )l m) 15 the

unique solutzon to in HY(Q) (or in HY(Q) if Iy = I, = 0) for f = j’”(ll)l2 m)?
where f I l2.m) 18 a real-valued function that can be computed recursively from the

T((;,llll)é my S, Jorn' <m (asin (4.71) ). Moreover, there exists o, > 0 such that

e r1+r2)T n) ||H1 (@) < 00, (4.27)
Hean (Ir1]+[rz]) ¢n||H1(R3><R3) < 00. (428)
The number N,, = |£,| (number of terms in the expansion) for 6 < n < 9 are

displayed in Table[1.1], whose construction rules are given in the proof of Theorem [4.4]
(see Section. For 3 <n <5, L, = B,, where the latter set is defined in ,
and N,, = |B,| = n—2. For general n, B, C L,,. For n > 6, additional terms appear,
as indicated in Table [4.1]

N,, | pairs of angular momentum quantum numbers (1, l) in £,\B,
8 1 (0,2:0.2)

13 | (0,2:1,3), (1,3:0,2)

18 | (0,2:0,2,4), (1,3:1,3), (0,2,4:0,2)

27 | (0,2:1,3,5), (1,3:0,2.4), (1,3,5:0,2), (0,2,4:1,3), (1,3;1,3)

© 0~ O3

Table 4.1: Additional spherical harmonics appearing in each ¢, for 6 <n < 9. N,
is the number of terms in the spherical harmonics expansion . The condensed
notation (Iy,11;1s,1) (resp. (I1,15;1,15,15) or (I1,14,1];15,15)) stands for the four
(resp. six) pairs (I1,12), (I1,12), (I1,1}), etc.

Table can be read using the following rule: for a given n, if (I1,l3) ap-
pears in the corresponding row of the table, then there may exist m such that
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Y (01, ¢1)Y,, " (02, 2) mlght appear with a non-zero function T((l )l m) 1 the spher-
ical harmonics expansion of ¢,,. Conversely, if a given ([, l5) does not appear
in the table, then (¢,, U;lrg? Ym1(91,¢1)Yl;”2(92,¢2)> = 0, for all m;,my and all
v € L*(Q). The relative complexity of Table is due to fact the first term in the
right-hand side of is a sum of bilinear terms in B* and ¢,_,. The angular
parts of both B*) and ¢,,_; are finite linear combinations of angular basis functions
Y" @Y, ™. When multiplied, they give rise to a still finite but longer linear com-
bination of ¥, ® Y,_™’s (see (4.69)). By contrast, the corresponding table for the
B™)’s is quite simple, since all the rows have the same structure: for all n > 3, we
have

n | n=2 | (kykn—k) forl<k<n-—2 (4.29)

From (¢ )o<k<n, We can obtain the coefficients \; up to j = 2n+1 using Wigner’s
(2n+1) rule. Another, more direct, way to compute recursively the \,,’s is to take the
inner product of ¢ with each side of and use the fact that (¢, (Ho— X\o)Pn) =
((Ho — Ao)oo, ¢n) = 0. Since (C1, ¢1) = (Co, ¢9) = 0, we thus obtain

n—3 n—3
<¢07 B(k)¢n7k> - Z Ck<¢07 ¢nfk>7 (430)
k=3 k=3
where we use the convention Zzzm ...=01ifm >n. It follows that Cs = Cy = C5 =

0.
Using (4.14)), (4.26]) and the orthonormality properties of the complex spherical
harmonics, the terms <@/)O,B(k)gbn_k> in (4.30) can be written as

<¢07B(k)¢n—k> = <B(k)¢07¢n—k>
min(ll,lg)
_< ZT{LIT? Z Ge(ly, I, m)Y" (01, ¢1)Y, ™ (02, go)7 “lem(ritra)
(

ll,lg)EBk m:fmin(ll,lg)
1 min(l},15) ( :
n—k
S N T 66y )
UL M2 =y i)
min(ly,l2)

n—k) ,(n—k
T Z Z ﬁ((ll o)Ll la, r)rw (4.31)

(l1,02)ELy—NBy, m=—min(l1,l2)

where
B((Z),lz,m) = _ﬂ-_lGC(lla l2a m) (432)
tEZ),lg,m) e /Q l1+1réz+1 7(T1+r2)T((ll)l2 ) (Tla 7”2) drq d’l"g, (433)

with the convention that tgz)b my = 0if (l1,12) € L,,. In view of Table , we see in
particular that since the sum in (4.31)) is empty

(0, BF ) =0 Vhk,n=34,5 k+#n, (4.34)
and that many other vanish, e.g.

<¢078(3)¢6> =0, <¢0,B(4)¢5> =0, <¢0,B(5)¢4> =0, <¢0,B(6)¢3> =0. (4.35)

Additional pairs k,n can be examined by comparing the sets By and L,,_.
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Furthermore, if the chosen numerical method to solve the boundary value prob-
lem (4.19)) giving the radial function Tl’f U is a Galerkin method using as basis

functions of the approximation space tensor products of 1D Laguerre functions (that

are, polynomials in 7 times e~"), then the computation of tl(zz . can be done ex-

plicitly, at least for the approximate solution [301, Section 7.3]. Using the fact that

Gbo = 4de ~lrutr2) Yo(eh le) (92, gb?) (436)

we then have

(60, 6a) — <4< YO0, 61)Y0 (s, 6),

min(l} 13)

Z L Z T((z?,)lfz,m/)(ﬁ, )Y} (6’1, gbl) (92, ¢2)> (4.37)

rr
U5 ELR 172 m/=—min(l I}
by 1ol

_ 4
425(000)

As a consequence, <gz§0, gbn> =01if (0,0) ¢ L, so that in particular

<¢Oa ¢3> = <¢07 ¢4> = <¢07¢5> = 0. (438)
Then, C,, can be computed from as

n—3 min(l1,l2) n—3

_ (n—k) (n k) (n—k)
C, = Z Z Z ﬁ(ll lo m) (I1,la,m) — 4 Z Okt(0,070)' (4_39)
k=3 (I1,l2)€Ly_ m=—min(l1,l2) k=6
l1+lo=k—1
l1,127#0

4.2.3 Practical computation of the lowest order terms

We detail in this section the practical computation of ¢3 (already done in [78]), ¢4
and ¢5, as well as C,, for n < 11. Recall that ¢; = ¢ =0, and C,, = 0 for n < 5.

Computation of ¢3. We have

B(S) = T1Tre < Z Gc(l, 17 m)) (91, ¢1) (927 §b2)> s (440)

m=—1

(HO - )\0)(?3 - _8(3)¢07 (441)
(b0, ¢3) =0, (4.42

with G.(1,1,m) = —%(8 — 4|m|) and therefore

(HO — )\0)¢3 = —7“17’26 TH—TQ) ( Z 7T_1G 1, 1, m) (81, d)l) (62, ¢2)> s

m=—1
<¢07 ¢3> =0.
As a consequence, using Lemma [4.3] it holds that £3 = {(1,1)},
(3)
T 7"1, 7”2
¢3 = & lr ” ( Z Oé " (61, 1) Y™ (02, ¢2)> ) (4.43)
172 —
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where O‘E??Lm) = —m 'Gc(1,1,m) = —5(8 — 4|m|) and where T(1 )y € Hg(Q) can be

numerically computed by solving the 2D boundary value problem

1 (4 .
—QAT((E)I) + (k1(ry) + K1(r2)) T((1)1) = r2pe=(nt2)ip Q

with homogeneous Dirichlet boundary conditions.

Computation of ¢,. To compute the next order, we first expand B® as

1
B®W = py2 Z Ge(1,2,m)Y]" (61, 01)Y; ™(02, $2)

m=—1

2
+riry Y Ge(2,1,m)Y" (01, 61)Y; " (62, 0),
m=—2
with Go(1,2,1) = G.(1,2,—1) = 47/V/5, G(1,2,0) = 47v3/V5, G.(2,1,m) =
—Ge(1,2,m). From —, we get
(Ho — Ao)os = —BPgy — BY gy,
<¢07¢4> =0

since ¢ = o = 0 and Cy = 0 for 1 < k < 5. We therefore have £, = {(1,2),(2,1)}
and

7”1,7“2

(
b1 = Z Oy Vi (01, 61)Y5 ™ (B2, 62)

rire

T( 7117 T2 !

Z 2" (01, 01)Y7 " (02, 02),

rire

where agi),l%m) = -1 1Ge(ly, 12, m), T((;)l) € HJ(Q) solves

Ag Y 1)(7“1, ) + (K2(r1) + K1(r2)) T((;,)l) =rirje” "2 in Q, (4.44)

and T(ﬁQ)(rl, re) = %

(271)(7"2, r1). A representation of T ) can be seen in Figure

Computation of ¢5. We have

B =3 Z Ge(1,3,m)Y{™ (01, ¢1)Yy ™ (02, P2)

m=—1

+riry Z Ge(2,2,m)Y5" (61, ¢1)Y; ™ (02, 02)

+ i1y Z Go(3,1,m)Y5" (61, ¢1)Y, (02, $2),

m=-—1

and

(Ho — Ao)¢s = —BP gy,
{¢o,05) =0
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Figure 4.1: Shape of T2 1) I|and T((; )1)(7’1, r2)/(r17r2) 2, using the Laguerre function
approximation scheme HBZE Section 7.3].

since ¢1 = ¢ = 0 and C}, = 0 for 1 < k < 5. We thus have £5 = {(1,3),(2,2),(3,1)}
and

T(5) (7"1,7"2) !
§0 =SB S all Y0, 00075602

m=—1

T 7"1,7“2
+ (227’17”2 Z 0‘22m 5" (01, 01)Y5 ™ (02, 92)
T( ) (7"1 7“2) !
3, ) .
F O S Y0, )Y (2, 60), (4.45)

m=—1

where O‘E?)z my =~ Ge(li, I, m), (( )) € H} () solves

1
—§A2T((15,)3)(7”1, 7o) + (K1(r1) + K3(r2)) T((15,)3) = rirge ), (4.46)
T((2 )3) € H} () solves
1
—§A2T((;)2)(r1, r2) + (K2(r1) + K2(r2)) T((;) = rdrde=(ntra), (4.47)

and T((357)1) (Tl, 7”2) = T((157)3) (Tg, 7”1).
Computation of )\, for 6 < n < 11. Let us define for n = 3,4, 5,

min(l1,l2)

(m) _ -1 (n)
ﬂ(llvb) — Z a(h,lz,m)GC(ll? l27 m)

m=—min(l1,l2)

n l l —(r1+r
tEl1)7l2) — /{; 1+1 2+1 (ri+ Q)T((l )l )(T,l’ 7“2) d’l“l dT’Q,

with the convention that ﬁl ) tgz)l y = 0if (l1,02) ¢ L,. From (4.30) and the

fact that C,, = 0 for 3 < n < 5, we obtain, using (4.31]), (4.38), (]4.39|), Table [4.1]
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and the symmetries of the coefficients 5((2)12) and tgi) )

<¢ B<3>¢4> - <¢o, B<4>¢3> =0,
<¢073(3)¢5> (¢0, BY¢s) — <¢0,B(5)¢3> = —(¢0, BY¢u)
5((;1)2)75(1,2) + 5(2,)1)% 1) 25(4) 1 z)v

= —(¢0, B¥ ) — (b0, BV 5} — (¢, BDps) — {9, B p3) — Cs(¢o, ¢3) = 0,
7

7
Cro=—>_{¢o, B<’“>¢1O_k> - Z Ci{o, bro-k) = —(¢o, BV ¢5)
k=3

_ nB) 45) (5) (5) (5)
= Buatas T 5(2,2 o) T 5 3k 3 1) = 25(1 stis +Bes 2 2)7 (4.49)

8
Cu=—- (¢, B<’“>¢>n_k> - Z Ci{ o, $r1-k) = — (b0, BY67) — (0, B ¢5)
k=3 k=6
1

_ (7 (7) (7) @) (6)
o Z [ﬁ(12m 12m)+5(2,1,m)t21m] Z /322mt22m (450)

m=—1 m=—2

As o lll = = —7m G (l1,ly,m) for n = 3,4,5, (I1,13) € L, and —min(ly,ly) <m <
mln(ll, l3), we obtain, using (4.17)), that

(a(n) )2 _ 16 (I +1)!)?
(t1.k2,m) (2[1 + 1)(2[2 + 1)([1 — ) (ll + m) (lg — )'(lg + m)"

and therefore

16 64 16 32
ﬁ(?’) _ Z (a(3) ))2:_+_+___

(1,1) S~ (1,1,m 9 9 9 - 3’
1
@) _ g _ (4) _ 16 16 16 _
Bl =By = D_ (0fhm)’ =5 +3x — + = =16,
m=—1
! 64 2 224
6B) _ pB) _ (5) 2 _ 6) _ (5) 2 _
Bivs = Bian = D (@sm)’ =57 Bany= D (@pam)’ =%
m=—1 m=—2
so that
32 3) (1) 128 (5 224 (5
06 - Et(l,l)’ C7 - O, Cg - 32t(1’2), Cg - 0, ClO - Tt(lﬁ) Tt(2,2)'

(4.51)

It is optimal to use (4.51]) to compute Cg, Cg, Cyq since only ¢, is needed to compute
(. On the other hand, computing C}; using (4.50|) requires computing ¢¢ and ¢z,
and it is therefore preferable to use Wigner’s (2n + 1) rule that allows computing

Ch from ¢3, ¢4 and ¢s.

Computation of higher-order terms. For n > 6, the right-hand side of (4.9)
contains terms of the form B®¢,,_,, with k& > 3 and n — k > 1. The computation of
¢, therefore requires solving 2D boundary value problems of the form

1 ! n
—SAT + (r (r1) + iy (r2) T = e T
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for some (I1,l) € L, I} +1, =k —1, (I{,l§) € L, and —min(l{,15) < m” <
min(l,15). The right-hand side of this equation is not explicit, but the above equa-
)

7m/l)
puted numerically during the calculation of ¢,,_;. An analogous procedure was used

by Morgan and Simon for Hj and can be found in the Appendix of [261].

. . . —k .
tion can nevertheless be solved numerically since 7| ((ﬁ l,, has been previously com-
1072

4.3 Numerical results

4.3.1 Comparison between different approaches

The following tables contain the results of the approximated values of the C), co-
efficients computed by Ovsiannikov and Mitroy [265], by Choy [98], by Pauling
and Beach [275], and by the techniques described in this paper. The latter con-
sist in solving recursively the Modified Slater-Kirkwood boundary value problems
of type using a Galerkin scheme in finite-dimensional approximation spaces
constructed from tensor products of 1D Laguerre functions with degrees lower of
equal to k. With basic double-precision floating-point arithmetics, the latter ap-
proach is numerical stable up to £ = 11 and provides results with excellent precision
(relative error lower than 107%). Tt is well-known that the conditioning of spectral
methods for PDEs using orthogonal polynomial spaces grows exponentially. How-
ever, in the present case, the entries of the Galerkin matrix are square roots of
rational numbers so that arbitrary precision can be obtained using symbolic compu-
tation. The method of Choy [98] is based on the Slater—Kirkwood algorithm [309],
whereas the method of Pauling and Beach [275] is different. Although Slater and
Kirkwood are referenced in [275], Pauling and Beach were motivated by a method
of S. C. Wang [322].

Method 06 Cg ClO CH
[275] 6.49903 124.399 1135.21
[98] 6.4990267 124.3990835 1135.2140398
This work | 6.49902670540 [78] | 124.399083 3285.82841 -3474.89803
[265] 6.499026705406 124.3990835836 | 3285.828414967 | -3474.898037882

Table 4.2: Comparison of the coefficients Cy to C'; between various papers and the
basis states method and our method based on numerical solutions of boundary value
problems of type (4.19) in tensor products of Laguerre functions up to degree 11
(for which round-off error is suitably controlled). These results agree at least to 9
digits with the results in [88] 257, 265 314, 323].

The discrepancy between the Choy [08] and Pauling-Beach [275] results (who
agree to the digits given) and the other methods for Cyy has the following origin.

According to (4.49)), we have
_ 905 45 (5) 4(5)
Cro =280t + Fazlea)

It appears that Choy in [98], who also was guided by [309], only computed the
second term

Blanytion = 1135.214 .. (4.52)
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Method 012 013 014 C’15
This work | 122727.608 -326986.924 6361736.04 -28395580.6
[265] 122727.6087007 | -326986.9240441 | 6361736.045092 | -28395580.6

Table 4.3: Comparison of the C, coefficients C15 to Ci5 between [265] and our
method based on numerical solutions of boundary value problems of type (4.19)) in
tensor products of Laguerre functions up to degree 11 (for which round-off error

is suitably controlled). These results agree at least to 9 digits with the results
in [257] 265] [323] for C3 and Cy5 and [257, 265] for C}5 and Cy.

Method 016 017 x 1077 Clg x 10719 019 x 1071

This work | 441205192 -2.73928165 3.93524773 -3.07082459
[265] 441205192.2739 | -2.739281653140 | 3.93524773346 | -3.07082459389

Table 4.4: Comparison of the C, coefficients Cig to Cig9 between [265] and our
method based on numerical solutions of boundary value problems of type in
tensor products of Laguerre functions up to degree 11 (for which round-off error
is suitably controlled). These results agree at least to 9 digits with the results

in [257, 265).

4.3.2 Role of continuous spectra in sum-over-state formulae

It follows from (4.41), (4.42) and (4.48)) that the leading coefficient C of the van
der Waals expansion can be written as

Cs = (B(B)%, (Ho — Ao);éB(B’)(bo)’

where (H _)\0>¢Ti is the inverse of the restriction to Hy— A\ to the invariant subspace
0

¢a (which is well-defined since )¢ is a non-degenerate eigenvalue of the self-adjoint
operator Hy. This expression is sometimes wrongly rewritten as a sum-over-state
formula

Cs = Z I ¢g Eo Yol (wrong), (4.53)
with ¥y := ¢, Ey := Ao = —1, where the v;’s form an orthonormal family of excited

states of Hj associated with the eigenvalues E;. This is not possible because H,
has a non-empty continuous spectrum. Using with a sum running over the
excited states of Hy (and omitting an integral over the scattering states of Hy) leads
to an error that we are going to estimate. We have

/ v;, B
Co = Z ! j; Eo Yol = — (B, 63,p),

where ¢3 ,,;, is the projection of ¢3 on the Hilbert space spanned by the eigenfunctions
of Hy. Recall that the eigenvalues and associated eigenfunctions of the hydrogen
atom Hamiltonian hg := 1A which is a self-adjoint operator on L*(R?), are
of the form

1
2n2’

r|’

Ep = — Ynim(r) = @ni(r)Y"(0,0), neN", 0<I<n-1, —1<m<l,

(4.54)
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with

() s () () o

where the associated Laguerre polynomials of the second type L%m), n,m € N, are
defined from the Laguerre polynomial L, and are given by

L) = (-1 ot n,Z () e s

dxm™

The eigenvalues and associated eigenfunctions of Hy are therefore given by

1 1

gm,nz =Epy T Eny = — - o2’ \Ijnl,lhml;nmlz,mz - ¢n17llym1 ® wnmlmmzv

2
2ny

for n; € N*, 0 S lj S n; — 1, —lj S m; S lj. Note that QZS() = \1117070;17070. We therefore
have

O = g n1,117m1;n2,12,m27B(S)wOHQ
6 Z ZZ Z Z €n1+5n2+1 ’

(nl,nz) (N*XN*)\{(l 1 } 11=0 l2=0 mi=—11 mo=—Io

Using (4.40) and the L?(S?)-orthonormality of the spherical harmonics, we get

1
<\I]n1,l1,m1;n2,l2,m27B(S)w0> = W_lsnlsnz Z GC(L ]-,m)511,1512,15m,m15—m,m27

m=—1
where
+oo (n—1)"3 [(n+1)!
Sp = S ¢y 1 (1) dr = 8n® : 4.57
/0 rPe”"gna(r) dr n (n+1)"+3\ (n—2)! ( )
The latter expression is derived in Appendix [C.3] We finally obtain
1
_ S2 52 32 S2 52
Co=m D 1G(LIm)" 3 = 3
m=—1 ny,ng>2 2n3 2n3 ni,no>2 2n3 2n3
(4.58)

Summing up the terms of the above series for n;,ny < 300 (note that S, ~, e
eQan), we obtain the approximate value

Cl ~3.923

which shows that the continuous spectrum plays a major role in the sum-over-state
evaluation of the Cy coefficient of the hydrogen molecule (recall that Cg ~ 6.499).

4.4 Proofs

We now establish the results stated above, starting from Lemma [1.3]

4.4.1 Proof of Lemma 4.3

Recall that the Hydrogen atom Hamiltonian hy = —%A — ITI\ introduced in the

previous section is a self-adjoint operator on L*(R?) with domain H?(R?), and that
its ground state is non-degenerate:

1 . _ _r
hot100 = —=%100 With 190 = <P1,0(T)3/b0(9, ¢) =12 ) ||¢1,0,0”L2(R3) =1
2
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Since Hy = ho @ 1p2gs) + 1 r2ms) @ ho, Hy is a self-adjoint operator on L?(R3 x R3)
with domain H?(R?* x R?) and it also has a non-degenerate ground state

Hodo = Moo With ¢g = 11000100 = 7 e~ "1772), |foll 2rsxrsy = 1 and Ay = —1.

Given (o, F) € R x L*([R? x R?), the problem consisting of seeking (u, ¥) € R x
H?(R3 x R3) such that

(Ho — )\0)\11 = F — ,ugbo, <¢0, ‘1’) =, (459)

is well-posed and its unique solution is given
U= (HO )’(z,LHqSLF + a¢0a = <¢07F>7

where (Hy — )\0)|q_%1 is the inverse of Hy — Ay on the invariant subspace gz% and

Iy  F' = F — (¢o, F))¢o the orthogonal projection of F" on ¢5 . Consider the unitary
map

U: L*(Q)® L*(S?) @ L*(S?) — L*(R®* x R?) = L*(R%) ® L*(R?)
induced by the spherical coordinates defined for all f € L*(Q), l1,l; € N, —[; <

m; < 1; by
U ® 51 ® 52))(en,10) = LUTLLIT2D (i) 59 (r—Q) .

v | [ro] [Ty | T2

Since (Y;™)ien, —i<m<i is an orthonormal basis of L*(S?), we have

L) e LX) e LS = P @ @ My

l1,lcENmMm1=—11 mo=—Io

where H;')™ = L*(Q) ® CY™ @ CY”. Tt follows from classical results for
Schrodlnger operators on L*(R?) with central potentials (see e.g. [286, Section
XII1.3.B]) that each #H;";™* is an invariant subspace for U* Hold and that

* _
Z/{ HOZ/{’HZVIHZ;’"Q - Hl1712 ® ]I(CY'Z"lnl ® ]l(cl/l;n27

where the expression of Hj,;, can be derived by adapted the arguments in [78|
Section 3], that we do not detail here for the sake of brevity: H,, 4, is the self-adjoint
operator on L?(2) with form domain H}(f2) defined by

1
Hiy o, = —éA + ki, (1) + Kip(r2) + Ao- (4.60)

Note that the operator Hj,;, on L*(Q) = L*(0,+00) ® L*(0,+00) can itself be
decomposed as

1 1
2 + 12 2(y + 1)2’

Hiyy 1y = hiy @ 12(0,400) + 1 12(0,400) @ iy > —

where for each [ € N, h; is the self-adjoint operator on L?(0, +00) with form domain
H} (0, +00) defined by

1 I(l+1) 1 1d 1

I - 1 — =

2d7‘2+ 212 ro 2dr? 2

hl = -
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This well-known operator allows one to construct the bound states of hydrogen

atom with orbital quantum number [. It satisfies h; > — 50 +1)2 and its ground state
eigenvalue — 50 H)Q is non-degenerate. It follows from this bound that

Hy gy —No=Hpy gy +1> for all (I3,1,) € N*\ {(0,0}. (4.61)

col w

Choosing a = 0 in (4.59) amounts to enforcing that the solution ¥ is in ¢5. Taking
= 0 and F = {22y™(0, 60)Y (0, 60) = U(f @ Y™ @ Y[™), with f €

L2(Q), it follows that (4.21)) has a unique solution in H?(R* x R?) if and only if
= (¢o, F') = 0, that is

(11 ,12)=(0,0) / f(r1,ma)e” "2 g dry dry = 0,
Q

in which case the solution is given by ¥ =U(T ® Y™ ® Y;"**) where

T .= (Hll,lz - )‘0)_1f lf (lla 12) 7é (07 0)7
T := (Hoo — )\0)‘(_,,=IT2€7(T1+TQ))Lf if (I1,12) = (0,0).
We therefore have 7( )
ri,T " m
= Y (01, 60) ViR (02, 00),
rre

where T is the unique solution to (4.19) in H{ () if (I1,12) # (0,0) and T is the
unique solution to (£.19) in H}(Q2) = HL(Q) N (ryree~ 1t L if (1;1,) = 0.

The fact that if f decays exponentially at infinity, then so does T', hence 1), is
a consequence of the following result, whose proof follows the same lines as in [78],
Section 3.3] where this result is established for the special case when (I1,15) = (1,1)
and f = r?r2e= (),

Lemma 4.5. If the function f of (4.19) decays exponentially at infinity at a rate
n > 0, in the sense that
||e"(”+7'2)f||L2(Q < 00, (4.62)

then the unique solution T of also decays exponentially at infinity. More
precisely, for all 0 < a < /3 there exists a constant C,, € Ry such that for all
n>a and all f € L*(Q) satzsfymg ([4.62), it holds

DT ey < Call€™TH72) £ 12 (4.63)

Proof. We limit ourselves to the case when (Iy, () # (0,0). The special case (l1,l2) =
(0,0) can be dealt with similarly, by replacing HL(Q) by HE(Q). Let a be the
continuous bilinear form on H} () x HJ () associated with the positive self-adjoint
operator Hj, ;, — Ao:

Vu,v € Hy(Q), a(u,v) /Vu VU+/(K)ll(rl)—F/‘ib(T’g))U(Tl,7”2)?}(7”1,7'2)617“1 drs.
Q

Recall that the continuity of a can be shown directly (without using the fact that
H(2) is the form domain of H,,,) as a straightforward consequence of the one-
dimensional Hardy inequality

Vg € HY(0, +50), /O () /r)dr < 4 /0 T2 (4.64)
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It follows from (4.61)) that a > 2 (in the sense of quadratic forms on L(12)). For

0 < a < 4/3/8, we introduce the continuous bilinear form a, on HJ(Q2) x Hi(Q)
defined by

Vv € HY(Q),  au(u,v) = a(u, v)— /Q cvur) <§—Z(r) + g—;;(r)) dr— /Q o?u(r)u(r)dr,

for which

3
Yo € HY). anlv,0) = alv,0) = ol > (5 - ) ol

N———
>0

Using either the fact that r;(r) > 1 (for [ > 1) or the Hardy inequality (4.64) (for
[ =0), we also have

1
Vo€ H(@), aa(v) = alwv) — @l 2 § [ V0F ~ 2ol

Since a > g and a, > (% — 042) > 0, the above bound implies that a and a, are
both continuous and coercive on H} (). The function T' € Hy () solution to (4.19)

is also the unique solution to the variational equation
Yw € Hy(Q), a(T,w) = / fw.
Q

Proceeding as in [78, Section 3.3], we obtain that for all v € H}(S) such that
ety € HH(Q) and w € C(Q), we have

(ea(r1 +ra)

o, w,w) = a(u, e"112ey). (4.65)

Consider now f € L%(Q) satisfying (4.62) for some 7 > . The function e*"1+72) f
is in L*(Q), so that the problem of finding v € H'(2) such that

Vw € Hy (),  an(v,w) = / erE72) £y
Q

has a unique solution v, satisfying ||v|| 1) < Cae® 72 fl| 120y < Ca|€"H72) f| 12(q,
where C, > 1 is the ratio between the continuity constant and the coercivity con-
stant of a,. Let u = e~*"+2)y ¢ H(Q). In view of (.65, we have

V€ CE(Q), alu, ") = anv,w) = [ ) fu = alT )
Q

Hence, T' = wand [[e®" )T || i q) = [|e* 2l (g) = [[v]|mi(e) < Calle” 2 fl 20y
O

As a consequence, we have

||ea(‘r1|+‘r2‘)¢||L2(]R3><]R3) _ ||6a(r1+7"2)T||L2(Q) < ||60<(7"1+7“2)T||H1(Q)

< Ca||677(r1+7“2)f||L2(Q) — CaH6”(|r1|+|r2|)F|lL2(R6),

which proves (4.25). In addition, a simple calculation using (4.64]) shows that for
all g € Hj(Q)

2 2 2

g m m
Yy Yy 2
T1T2 ® h ®© b2

9

1

9

T2

o

= llgllin o) + Ll +1)

H1(R3xR3) L2(Q)

< (144l (l + 1) + 4la(lo + 1) [lgl| %,

L(Q)
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yielding
Hea(lrl|+‘r2|)¢”H1(R3xR3) < (1 + 4ll(l1 + 1) + 412(12 + 1))1/2Hea(rl-l-rz)THHl(Q)
< Co(1 44l (I + 1) + 4lo(ly + 1)2||enmiteD gy 2 o)

Lastly, since Hj,;, is a real operator in the sense that Hj, ;¢ = Hzl,lﬁ for all
¢ € D(Hy, ,), it is obvious that T is real-valued, whenever f is.

4.4.2 Proof of Lemma 4.1 and Theorem [4.4]

We have seen in the previous section that for each (o, F) € R x L*(R? x R?), (4.59)
has a unique solution (u,%) in R x H*(R3 x R?). For n = 1, we have

(HO - )\0)¢1 = _Cl¢0a <¢07 ¢1> =0

and it is clear that (Cy, ¢1) = (0,0) is a solution, hence the solution, to this system.
Likewise, for n = 2, we have

(Hy — Moo = ~Cién — oo = ~Chn, (60, 62) = —5 (b1, 1) =0

so that (Cy, ¢2) = (0,0). To prove that the Rayleigh-Schrédinger triangular system
(4.9)-(4.10)) is well-posed and that ¢,, is of the form (4.26)), we proceed by induction
on n. It is proven in [78] that for n = 3,

T( Tl,’l"g
¢3 = 7o Z O‘llm)y (01, 61)Y) ™ (02, b2),
with ozg’)l my = —7Ge(1,1,m) and || (11 (Tl,Tg)en{)’l(rl+rz)|’H1(Q) =: C}, < oo. Let

L3 = {(1,1)} and assume that for some n > 3 the following recursion hypotheses
are satisfied (this is the case for n = 3): for all 3 < k <n,

min(l,l2)

Cbk - Z L Z T((k)lg m) (7"1, TQ) A (917 ¢1) 12 (92, ¢2) s (466)

o

(ll,lz)eﬁk m=— min(l1,lz)

for some finite set £, C N? with cardinality N, < oo, where T ((l l m) is the unique
solution to (£.19) in H'(Q) (or in HY(Q) if {; = Iy = 0) for f = fz oy € L7(€2) and

that for all (I1,ls) € Ly and —min(ly,ly) < m < min(ly,ly) there exists nl’“l >0
such that

Jam

k T T
TG, sy (P ) tzom 4D |y o) = CF | < 00, (4.67)

From (4.14), the fact that ¢; = ¢2 = 0 and the recursion hypothesis (4.66|), we
obtain that for all 3 < k <n+ 1,

min(ly,l2) min(l},15)

RN SHD SRS DD S

li+lo=k—1 (I} ,I})E€Ly 11— m=—min(ly,l2) m’=—min(l},l})
l1,127#0

U (f;n ZLH b ol @ v zznl Y, mYl/ ) (4.68)

where
m/ . Il
fﬁ17&7127l§(T1,T2) = Gc(lhlg, )7" Ly 2T((lj’)l/ )(Tl,rg).
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In addition, we have

I+
= Y gumyEt™ where Qe =0if I+ +1" € 2N, (4.69)
l// Il l/

where the coefficients Qﬁ,’}'f,, € R can be computed explicitly using Wigner’s 3-]
symbols [64, p. 146]:

mﬁm,_(_1>m+m,\/(2l+1)(2l’+1)(2l”+1) A AN A "
Ly 47 0 0 0 m m' —m-—m']"

This implies that

n+1 n+1
- Z B(k)qbn—kl—k) - Z Ck¢n+1—k
k=3 k=1

min(lq,l2)

1 n+1
= Z R Z f((lj;n)(m,rz) 1 (01, 01)Y,, ™ (02, 02) |
(ll ,l2)€£n+1 12 m=— min(l1 ,lg)

(4.70)

for some L£,,,1 C N? with finite cardinality, where for (I1,1ly) € L1, —min(ly, 1) <
m < min(ly, ly),

n+1
(n+1) (n k+1)
f(llvl%m) - Z Ck ll lo m) (rl? T2)
k=3

4 B p(n—ke1) TR,
+ Z Z Z r 2T(l”,zg,m“)(rl’TQ)GC(ZD527m) l'l,zg', 515,12,12 )

m/4+m’'=m l/1+l/2:k—1 (llll,lg)e,cn+17k
000 min(il.1)>m"|
min(l] ly)>|m’|

(4.71)

is a linear combinations of the functions rllll T?T((z? y oy € L2(Q),3<j<n ] e
L, +1+75 <n+1 —min(l{, 1) <m” < min(l{,1]) and therefore satisfies in

view of (4.67))

n ntl (e
1D (1) eSirem Ty ) < o0 (4.72)
for some fl" ngm > 0. Therefore the problem consisting in seeking (Chy1, 1) €

R x H?*(R? x R3) satisfying

n+1 n+1

(Ho—o)bns1 = ZB( Pty — Zcmnﬂ b (Do bnir) = ——Z<¢k i1k

is well-posed and we deduce from Lemma [4.3] that

min(ly,l2)

1 n
Ong1 = Z r_ Z T((l;lr;,zﬂ)(rlﬂb) A (917¢1) (92>¢2) )

172

(ll,lg)€£n+1 m:fmin(ll,lg)

where T((l I )m) is the unique solution to ([@.19) in H'(Q) (or in H(Q) if l; = I = 0)

for f = f“‘“) . In addition, it follows from (£.72) that (£.67) holds true for

(l1,l2,m)
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k=n+1 T herefore the Rayleigh—Schrodinger triangular system (4.9))-(4.10)) is
Well-posed and the T\" 0 l m) S decay exponentially at infinity in the sense of (4.67]).
From we obtaln that for o, = min (11,02)ELn (M 1.m) > 0, we have

—min(ly,l2)<m<min(l1,l2)

min(l1,l2)

e |r1|+\rz\)¢ ||H1 roxgs) < Cpy Z Z e T1+r2)T((l:L,)l2,m)||H1(Q)
(l1 ZQ)EEn m=— mln(l1 lz)

min(ly,l2)

C Z Z Hen(ll lg M)(T1+T2)T((ll la,m) HHI < 00,

(l1 lg)eﬁn m=— m1n(l1 lg)

for some C,, € R, so that ¢, decays exponentially at infinity in the sense of (4.28)).
Lastly, we infer from Wigner’s (2n + 1) rule and the fact that ¢; = ¢ = 0, that
C, = 0for 1 < n < 5. This completes the proof of both Lemma[d.Tand Theorem [4.4]

Let us finally explain how to construct Table We have already shown that
L3 =1{(1,1)}, and from (4.68)-(4.70) and the fact that ¢; = ¢o = 0, we see that

n—2
L1 C (U Mk,n+1k> UMn+1,O U U Ly,
k=3

3<k<n—5| Cpy1-k#0
where for k,n > 3,

Mo ={l1,l2) EN" XN [y +lp =k -1} ={(1,k—2),--- ,(k—2,1)},
Min = {(11, lr) € Nx N[ 3(ly,15) € My, (I, 1) € Ly, 5.t
=0 Sl SO +UL Gl €N, 5 - 1,2

Consequently, we have

= Muyy;
Ly = M5,0;
Lo=Ms33UMgo with Mss={(0,2;0,2)};
Lr=M3zs UMy3 UMz with Mz, = My3=1{(0,2;1,3),(1,3;0,2)};
Lg=Msz5 UMy UMs3U Mgy with

Mss = Msz ={(0,2;2,4),(1,3;1,3),(2,4,0,2)},

My ={(0,2;0,2,4),(0,2,4;0,2),(1,3;1,3)}
Lo = MsgUMys UMssUMgsUMgoULs with

Moz C Mss = {(0,2:3,5), (1,3;2,4), (2,4;1,3), (3,50,2), (1,3; 1, 3)},

Mys = Ms4

= {(0,2;1,3,5),(1,3;0,2,4), (2,4; 1,3), (1,3:2,4), (0,2, 4:1,3), (1,3,5;0,2)},

where we recall that (1y,11;12,1,) (vesp. (l1,13;12,15,15), (I1,01,1];12,15)) stands for

the four (resp. six) pairs (I1,l2), (I1,l2), (I1,1,), etc. After eliminating redundancies,
we obtain Table [4.1]

4.4.3 Proof of Theorem 4.2

As in [78], we introduce the space

V={ve L’ (R®xR% : v(ry,rs) = v(rs,11) Vr1, 12 € R*}, (4.73)
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the functions ¥ € VN H2(R? x R?) normalized in L2(R3 x R3),

P = mT, (gbgn)) where ¢ = qﬁo—l—z “ ¢ and m{™ = |
k=3

(=1
T (O g

(4.74)
as well as the Rayleigh quotient

p = (™, Hap{™y (4.75)

and the approximation

of Ac. When € — 0, we have T, (¢9) — 1 and therefore m{™ = 1. We know from [78,
Section 2.4] that there exists a constant C' € Ry such that for € > 0 small enough

e — VP || mr2@expsy < Cet, A — pP| < C, and |\ — A9 < O

It follows from Theorem [4.4] that the ¢,’s are in H?(R? x R?). Since 7. continuous
on this space, we obtain that for all n > 3, there exists ¢, € R, such that for € > 0
small enough

l|1ve — ¢£n)||H2(R3xR3) < cpe.

We infer from [78, Lemma 2.2 and Appendix A] that there exists a constant C' € R
such that for all n > 3 there exists € > 0 such that for all 0 < € < ¢,

Ae — 1| < CIIHA™ — 9™ |13 g5 ps), (4.76)
e — || Leroxrsy < CIHAM™ — puyp || 12 gsxrey (4.77)

(the first estimate above follows from the Kato-Temple inequality [190]). To proceed

further, we need to evaluate the L?-norm of the residual rén) = He@/)én) — u&’“wé”).
We have

Hp!™ = mMHT (o) = mI T [(Ho + Ve) o ™))
=m"T | (Ho+ Vo) (go+ Y efon) |
k=3
and thus,
r™ = m T [(Ho + Ve)ol™ — pl o]

m™ T,

(Ho+ V(0o + Y b dr) — (Mo — Y Cre®) (o + Y _ é*n)
k=3 k=3 k=3

(Ho +) ekzs(’f)) (6o + > € dr) — (Mo — Y Cue")(do+ > " en)
k=3 k=3 k=3

O =)o + (Ve =y BO)o

k=3
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Using (4.9)), we get
(Ho+ Y " BP) (g0 + > cFor) — (Ao — D Cue®) (0o + Y _ )
k=3 =3 k=3 k=3

=" Ek (Z B(j)(anrk*j + Z Cj¢n+kj> :
j=k j=k

k=1

(4.78)

Since BY are degree (j — 1) homogeneous functions (in cartesian coordinates) and

the ¢,,’s decay exponentially in the sense of (4.28]), there exists K,, € R, and ¢, > 0

such that for all 0 < € < ¢,,

(Ho + Z BE) (g + Z For) — (N — Z Cre™) (o + Z o) < K"t
k=3 k=3 k=3 k=3

L2(R3 xR3)

(4.79)
It remains to bound ||(Ve—=Y_,_, ekB(k))wén)HLz(Rngzs). From ({4.6)), (4.28) and (4.74]),

there exists €, > 0, o, > 0 and M,, € R, such that for all 0 < e <¢,

e DG | s o cmsy < M.

Introducing
Qe ={(r1,r2) ER* xR’ : |r1| + |ra| < (26)7'}. (4.80)
and the potentials defined by
vél)(rl,rg) = |r; —ete| ™}, véz)(rl,rg) vy + e te| 7}, 3)(r1,r2) vy — 1y — € te| ™,
(4.81)
we have,
(Ve = > e B | amasrey < [|(Ve = > " BE)gM |20,y + > ¥ IBPGM | L)
k=3 k=3 k=3

3
+ Z |’U§j)¢£n)||L2(Qg) + €||¢£n)||L2(Qg)-
j=1

We first see that
62y < 72 eonE I G0 gy < M9

Next, as B® is a polynomial function, there exists a constant B, such as for all
0 <e<e,,

Z e BM oM 2(ar) < Z e[ B emantrHrb o g e

k=3 k=3

ean(lril+ra]) ¢(n 22 ()

S Mn Z Ek||B(k)e—C¥n(|l‘1|+|r2|) ||L00(Q§) S Bn€3e—an(26)*1
k=3

In addition, we have

3
Z vaj)¢£n)”lz2(92) < Z e—an(26)” 1 H'U eon(lrel+rz() En)HLQ(QE)
j=1

w

3
SZ n(26)71 | @) gon (i +ra) O™ || 2R3 <3

< 8€_a” (2e)7 ||6a”(‘r1‘+|r2‘)(]§£n)||H1(R3xR3) = 86_0‘”(26)_1Mm
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where we have used the Hardy inequality in dimension 3

2
voet®), [ S5 a<a [ vowpa

to show that for any ¢ € H'(R? x R3),

2
()12 _ |¢(I‘1 )|
HUe 1/’||L2(R3x1R3) - /R3 </]R3 |rj ( )j€_1e’2 d drs_ —J

< [a([ 19 bt ) dray < 40900,
R

for j = 1,2, and
W r17r2 ’2
dry dr
Il mona = [ | [ e dey i,

/ / |1/} rl + r27r1 r2) |2 drll dr/2
R3 JR3 |I'2 — 6_1e|2

/ ’ r; VI“Q)w (rl + I'2, I‘1 ) |2 drll dr/2
2 R3 JR3
= 4[(Ve, = Vi)Yl 72goxrs) = IV F2ra sy

From the multipolar expansion of V., we know that there exist ¢, € R,

n

Ve(rh F2) - Z EiB(i)(I‘l, 1‘2)

=3

<, K™™' whenever |ri| + |ry| < K < (2¢)71

(4.82)
Let us now show that (4.82)) implies that there exists ¢, € Ry such that for all
0< K < (2)7!

Y
n

sup  |Ve(ry,re) — Zei[)’(i)(rl, ry)

e[+ 2] <K —

eman(ril+ira) < & entl (4.83)

This is immediate from (4.82)) for K < 1, taking ¢, = ¢,. Now we let K > 1. Then
(4.82) implies

n

sup Ve(ry,1o) — ZEiB(i)(rhrz)

(K/2)<(r1|+[r2[) <K i=3

Applying this repeatedly for 277 K replacing K until 277K < 1 yields (4.83)), with

efan(|r1|+|r2|) S Cne*anK/QKnEnJrl.

Cp, = Cp SUP heont/2,

t>0

Applying (4.83) for K = (2¢)7! yields

||(Ve Z kB ) —an(|r1]+]r2]) ||LOO(Q€) Sgn€n+1,
k=3

from which we obtain

1V = 32 BD)6 [z
k=3
< (V- Z ekB(k))e_an(|r1|+\r2|)HLOO(QE)||ean(\r1\+|r2\)¢£n)“LQ(Q )
k=3
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Finally, we get

n

(Ve — Z EkB(k))QSE")Hp(Rang) < Cu M + (8 4+ €+ Bne?’)Mne_o‘"(%)fl, (4.84)
k=3

Together with (4.79)), this proves that there exists ¢/ € R, such that for all 0 < € <

Ena

17| oo xre)y = | Hp™ — pl || oo xrey < et (4.85)

It follows from (4.76)-(4.77) that for n > 3 fixed, there exists C' € R, such that for
all 0 < e <e,,

A — p™M| <0l and (e — ™| 2 rexmsy < O™ (4.86)
Then,
™ — A

€

= <¢§7L)’ HE@ZJE") _ Agn)¢£n)>
:mgn)<w€(n)77;[(v€ Z Bk )¢ + Z (ZBU Orthe j +ch¢n+k ])}>
k=3 k=1 =k

so that there exists a constant ¢, such that for 0 < e <,

= )

n

(Vo= 3 B0 03 (zs%k ﬂrZC -

k=3 k=1

<2

L2(R3xR3)

<c en-‘rl

— N

The error bounds on the eigenvalue errors in (4.12)) follow from (4.86]) and the above
inequality.

Finally, the error 56(") =) — wén), as defined in [7§], satisfies
HE" = Atpe = HW = Ao = = v =i,
From (4.85)-(4.86]), there exists a constant ¢, € R, such that for all 0 < € < ¢,,

‘|£5(n)HL2(R3XR3) S Cn€n+l and Hngn)HLz(]Wx]R?’) S Cn6n+1.

In addition,

1
—S AL = Wl ", (4.87)
where
| 1 1
Weler2) = = Ity — (26)le|  |ra—(2¢)'e]  [ri + (2¢) e
1 1

+ €.

- +
lrs + (2¢)"le|  |r; — 1y

Proceeding as in [78, Section 2.4], we use the Hardy inequality in R? and the Cauchy-
Schwarz inequality to obtain that

1 n
SITED s

= (M, - WM +n™)
< (10[|VE™]| oo xrsy + €l|l€™ | L2moxis) + 15 || L2 grs ) 1€ || 23 wrs)
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1
§||A€e(n)||L2(R3><R3) = || = We&l™ + || 12 (s xmey
< 10| VEM || p2axrsy + €ll € (| 2@axre) + 108 [|z2moxee)-

It follows from (4.87)) that there exists a constant ¢, € R, such that for all 0 < e <

€n, HAée(n)HLQ(RBXRZS) S Cn€n+1, and thus ”£€(n)HH2(R3><R3) S Cn€n+1.
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Appendix C

Appendix of Chapter

C.1 Multipolar expansion of V,

We start from the well-known multipolar expansion of in terms of Legendre

polynomials

1
|r—Re|

1 1 [ r-e r[\"
k=0

which is a straightforward consequence of the definition of Legendre polynomials via
their generating function [321]

Vol<a<l, (1-2ut+)"7? =% Rt (C.2)
k=0
taking
IR A L)
x| R

Since the Legendre polynomials are at most 1 in magnitude on the interval [—1, 1],
the sum in (C.2]) converges absolutely for all |¢t| < 1, and

o o0 tn
’kZPk(x)tk’ < thk = <o foralljf <L,

Consequently,

n—1
r[\* r|™
< <
|r — Re| Re| R ( OP ( ] ) ( < QR”“’ for all |r| < R/2. (C.3)

k=

Recalling that Py(x) =1, Pi(x) = x and

Vo(r1 1) L L ! +
(ry,r5) = — — €.
1o2 r1 —ele] |ra+elel |rp—ry—ele]

with e = R, we deduce from (C.3)) that

< 6K whenever |r;| + |ro| < K < (26)7,

Ve(rh 1‘2) - Z *B") (1“1, 1"2)

k=3

(C.4)
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where the polynomial functions B*) are given by

ri—ryp)-e _ ri-e
B(k)(rlvlb) = Pr (& ) |1f“1—1'2\]“C 1_PI<:—1< - )’ 1|]~C !

vy — 1y vy

— P, Ip-e |r2|k71'
2]

This proves (4.82). To derive the expression (4.14]) for the B*®)s, we first use the

identities

l
/ 47T m m m / 47T m
A = (g57) T COMPON@) e = e
=-—1

valid for all [l € N, = < m < [, 0,0’ € S* (recall that e is the unit vector of the
z-axis), and get

47 r —r
B(k)(rhm) “\Vor—1 (Yko—l <|1—2 ) vy — ol

1‘1—1“2|

ry k—1 0 ro k—1
yo (B v (-2 .
’H(w)'“' ( w)'”' )

We next use the addition formula [316] stating that for [ € N, ry,ry € R3,

[ 4 ry —ro
YO l
2[—{—1 ! (|I‘1—I‘2’) |r1 r2|

min(l,l2)
-2 2 Celhubminy (ﬁ) By, (_) ,
rp

T2
l1+l2=l m=—min(l1,l2)

dr A I A
(1 I 1 2 1 2
Gc(l17 127m) ( ) ((2[1 + 1)(2[2 4 1))1/2 (l1 + m) lLh—m )

47T(l1 + lg)'
(20 + D)2l + DT + m) (I + m) (I, — m)(ls — m)1)172"

As for G.(1,0,0) = G¢(0,1,0) = (2l+1)1/2 and Yy = f’ we finally obtain (4.14)).

C.2 Wigner (2n+ 1) rule

Using the notation in (4.74]), we consider the Rayleigh quotients

<¢6 ,(H0+22n+1 ZB )¢£n)>

" = (W, Hap™) and i =
16132 oy

(recall that |\z/1£n)|]L2(RsxR3) =1). Let

2n+1

n" = (Hy+ Voo™, o= (Vi=> B¢l and M = (T T, — 1)g".

1=3
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We deduce from the boundedness of the ¢,,’s in H*(R3 x R3), the Hardy inequality
in R3, and the estimates (4.28) and (4.82), that there exist C' € R, 8, > 0 and
€, > 0 such that for all 0 < e < ¢,

1687 |2 roxrs) < 2, 18| 2o xrey < C,

[0l g cry < O, 1€ 22y < Cen,

proceeding as in the proof of (4.84) to establish the third inequality. It follows from
(4.12)) and the above bounds that

Iu(n) _ )\ +/j(n) o (n) + O( 2n+2)
(0, (Ho+ 3525 eBY) 6) (T Tol, (Ho + Vi)ol”)

e —|—O 2n+2
687122 gocns (TeT0l, o) -
_ )\e - <¢£n); Ve > + <§6 ﬂ?en)> - <€€n)’ ¢£n)><¢£n)7 7I£N)> =+ O(€2n+2)
(0,6 (0, 0") + (&, o)
2n+1
= >\e + O(€2n+2) - _1— Z Ckﬁk + O(€2n+2).
k=6

Thus, the coefficients C}, for k < 2n+ 1 can be computed from the Taylor expansion
of ﬁé”) up to order (2n+ 1), which only involves the ¢;’s for k < n, and the B*)’s for
k < (2n+1). To obtain a computable expression of the coefficients Cy, and Cs,, 41,
we first use Equation (4.9)), which can be rewritten as

k k k
Hogr + > BV = —Codp — Y Citn—y =—>_ Citpj, (C.5)
j=3 j=6 =0

with Cp =1 and C; =0 for i = 1,...,5, to get that for all n > 1

2n+1
v = (", (Ho + Y eizs’(")) o)
=3

L ! I n+l—i
_ —ZEZZ<¢iaZOj¢Z—i—j>+€"Z ( Z<¢“ Z Cibmirisj)
= =0 7=0
—|—Z<¢“ZB(n+l i—j) ¢ >> +62n+lz<¢“282n+1 i—3) >+O( 2n+2>‘

=0
(C.6)
In addition, we have
n n n k n n
H¢£n)”2 = <Z€i¢ivz€i¢j> =1+ Ek ¢17¢k 1 _'_en €k <¢i7¢n+kfi>a
i=0 i=0 k=1 =0 k=1  i=k
and, using the relation Ef:o <¢i, ¢k,i> = 0 derived from (4.10]), we get
60 = Z (66 mrrs). (©7)
k=1
It follows from ((C.6))-(C.7) that
V(n) 2n+1
ﬁgn) _ En) . _ _ Z CkEk + 0(6271-1—2)7
[ k=0
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with

n n—1 n
Con = (¢n, Z Cinj) — Z {¢s, ZB(2n_i—j)¢j>
j=0 =0

n n—k n—k—i

n k
- (Z <¢i’¢n+k—i>> <¢ia Z Cj¢n—k—z‘—j>7
k=1 \i=k i=0 j=0
and

n n n+l1—k n+l—k—1
ognﬂz—z(zwi,m_») S 00 S Cmrii)
i=0 Jj=0

k=1 i=k

_ zn: <¢i’ zn: B(Z"+1_i_j)¢j>.
i=0 §=0

C.3 Computation of the integrals S, in (4.57

Recall that

—+o00
5 = / e on 1 (r)dr,
0

o= ) 2 () () e

where the associated Laguerre polynomials of the second kind L

the following properties [I, Section 22.2]:

where

,n,m € N, satisfy

e forall k,k',m € N,
> m a kE+m)!
/0 2™ L™ (2) L™ (2)e ™" do = %m,; (C.8)

e for all v € C such that R(y) > —3, and m € N,

(1+7) k+m+1 l(cm)(x>; (C.9)

Mg

k=0

e for all k,m € N,

eL" (@) = (k+m+ 1)L (2) — (k + 1)L (2). (C.10)

By a change of variable, we obtain

2 —2)! oo _
Sp = L (n—2) I, with [, := / 2L 3,)26_75”6_“3 dz.
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Applying (C.9) for v = ”T_l and m = 4, then ((C.10)) for m = 3, and finally (C.8) for

m = 3, we obtain

+00 +00 45 k
2°(n—1) i
_ 47(3) § : (4) x
In —/0 xXr Ln—2 < m[/k (.CE)) e dl’

T s (=2 D ), N 3) _m

— /U PP, <;§ T (6 + 9L (@) - (k+ 1)Lk+1(:r)>) e du
<= 25(n — 1)k k+3)! k+4)!

- kX; W ((k + 4)(T)5k,n2 —(k+ 1)216713!5%1,7:,2)

_ 2(n—1)"? N (n+1)! 25(n —1)n3 . (n+1)!

= e PTG e T )

~ 2%0(n—1)""? (n+1)!
 (n 1) (n=2)

Finally, we get
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Résumé : Le transport optimal (TO) a de nombreuses applications; mais son
approximation numérique est complexe en pratique. Nous étudions une relaxation
du TO pour laquelle les contraintes marginales sont remplacées par des contraintes
de moments (TOCM), et montrons la convergence de ce dernier vers le probleme OT.
Le théoreme de Tchakaloff nous permet de montrer qu'un minimiseur du probleme
TOCM est une mesure discrete chargeant un nombre fini de points, qui, pour les
problemes multimarginaux, est linéaire en le nombre de marginales, ce qui permet de
contourner le fléau de la dimension. Cette méthode est aussi adaptée aux problemes
de TO martingale. Dans certains cas importants en pratique, nous obtenons des
vitesses de convergence en O(1/N) ou O(1/N?), ot N est le nombre de moments,
ce qui illustre leur role.

Nous présentons un algorithme, basé sur un processus de Langevin sur-amorti
contraint, pour résoudre le probleme TOCM. Nous prouvons que tout minimiseur
local du probleme TOCM en est un minimiseur global. Et illustrons 1’algorithme
sur des exemples de larges problemes TOCM symétriques.

Dans la seconde partie de la these, nous étendons une méthode (E. Cances et
L.R. Scott, STAM J. Math. Anal., 50, 2018, 381-410) pour calculer un nombre
arbitraire de termes dans la série asymptotique de l'interaction de van der Waals
entre deux atomes d’hydrogene. Ces termes sont obtenus en résolvant un ensemble
d’EDP de Slater-Kirkwood modifiées. La précision de cette méthode est montrée
par des exemples numériques et une comparaison avec d’autres méthodes issues de
la littérature. Nous montrons aussi que les états de diffusion de I’atome d’hydrogene
ont une contribution majeure au coefficient Cg de la série de van der Waals.

Abstract: Optimal Transport (OT) problems arise in numerous applications. Nu-
merical approximation of these problems is a practical challenging issue. We inves-
tigate a relaxation of OT problems when marginal constraints are replaced by some
moment constraints (MCOT problem), and show the convergence of the latter to-
wards the former. Using Tchakaloft’s theorem, we show that the MCOT problem is
achieved by a finite discrete measure. For multimarginal OT problems, the number
of points weighted by this measure scales linearly with the number of marginal laws,
which allows to bypass the curse of dimension. This method is also relevant for
Martingale OT problems. In some fundamental cases, we get rates of convergence
in O(1/N) or O(1/N?) where N is the number of moments, which illustrates the
role of the moment functions.

We design a numerical method, built upon constrained overdamped Langevin
processes, to solve MCOT problems; and proved that any local minimizer to the
MCOT problem is a global one. We provide numerical examples for large symmet-
rical multimarginal MCOT problems.

We extend a method (E. Cances and L.R. Scott, SIAM J. Math. Anal., 50, 2018,
381-410) to compute more terms in the asymptotic expansion of the van der Waals
attraction between two hydrogen atoms. These terms are obtained by solving a set
of modified Slater-Kirkwood PDE’s. The accuracy of the method is demonstrated
by numerical simulations and comparison with other methods from the literature.
We also show that the scattering states of the hydrogen atom (the ones associated
with the continuous spectrum of the Hamiltonian) have a major contribution to the
Cg coefficient of the van der Waals expansion.
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