
HAL Id: tel-03604486
https://pastel.hal.science/tel-03604486

Submitted on 10 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Discovery of Partial Differential Equations
Gert-Jan Both

To cite this version:
Gert-Jan Both. Model Discovery of Partial Differential Equations. Machine Learning [stat.ML].
Université Paris sciences et lettres, 2021. English. �NNT : 2021UPSLS088�. �tel-03604486�

https://pastel.hal.science/tel-03604486
https://hal.archives-ouvertes.fr

Contents

1 Introduction 3

1.1 Model discovery . 5

1.2 Contributions . 8

1.3 Organization of this thesis . 9

2 Regression 11

2.1 Structure of differential equations 12

2.2 Regression for model discovery 13

2.3 Regularized regression . 14

2.4 Heuristics . 18

2.5 Extensions . 19

3 Differentiation and surrogates 25

3.1 The need for surrogates . 25

3.2 Surrogates: local versus global 27

3.3 Neural networks as surrogates 29

4 DeepMoD 35

4.1 DeepMoD: Deep Learning for Model discovery in noisy data . 36

4.2 Sparsely constrained neural networks for model discovery of
PDEs . 42

4.3 Fully differentiable model discovery 47

4.4 Temporal Normalizing Flows 57

4.5 Model discovery in the sparse sampling regime 61

1

2 CONTENTS

5 Conclusion 69

5.1 Challenges and questions unanswered 70

Chapter 1

Introduction

Figure 1.1: One-dimensional solution of the Kuramoto-Shivashinsky equa-
tion.

How much can a picture tell us? The image above shows an initial distur-
bance slowly breaking up into many small waves, which themselves merge
and split as time progresses. Such complex behaviour is certainly beautiful
to behold, but as scientists we wish take it a step further. Can we under-
stand the underlying system and capture it in a (quantitative) model? This
seems a daunting task considering figure 1.1, yet this process is at the heart
of science. The classical approach to construct such models is known as
First-Principle modelling. It starts, as the name implies, from basic princi-

3

4 CHAPTER 1. INTRODUCTION

ples and relies on simple abstractions and laws such as conservation of mass
and energy to derive a model. FP modelling is an iterative process, tweaking
and improving the model until it describes the observed data sufficiently,
making it very time-consuming. Additionally, it requires expert knowledge;
without any knowledge about the underlying system, it is next to impossible
to come up with or improve the model. Its biggest drawback however is its
ability to only model fairly simple systems. Figure 1.1 is a one-dimensional
solution of the so-called Kuramoto-Shivashinsky equation,

𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 − 𝜕4𝑢𝜕𝑥4 − 𝑢𝜕𝑢𝜕𝑥. (1.1)

While this is a fairly complex equation due to its fourth-order derivatives
and non-linear terms, it does consist of only four terms. Faced with complex
systems such as the airflow over a wing, the behaviour of crowd or the move-
ment of impurities in a plasma, first-principle modelling becomes impossible;
it would simply take too much time to derive a (effective) model describing
all the interactions and processes. In these cases one resorts to data-driven
modelling. In this paradigm we seek only to mathematically describe the
data we observe. Instead of concerning itself with why the data looks like it
does, it restricts itself to accurately modelling the data without knowledge
of the underlying system. This does not make data-driven modelling more
trivial than first-principle modelling: constructing a model which accurately
describes the noisy, often high-dimensional data is no easy feat 1.

While data-driven modelling thus allows us to work with very complex sys-
tems, it lacks the key feature which makes first-principle modelling so power-
ful and popular: interpretability. This powerful property has various con-
notations across various fields, and we consider it here that a given dataset
can be described by a fairly compact equation. Interpretable models in this
form are implicitly tied to trust (can we prove mathematically a certain
state can or cannot be reached?), abstraction (we can decompose complex
behaviour as the interaction between subsystems), and exploitation (if we
would suppress this interaction, we could use it), and thus forms a key prop-
erty of science. The ideal approach would thus marry the interpretability
of first-principle modelling to the ability of data-driven modelling to handle
complex data. Simply put, we wish for an algorithm which, given figure 1.1,
would be capable of autonomously discovering eq. (1.1) 2.

1A nice example of the time it takes for theories to develop is the anomalous peri-
helion procession of Mercury. It was already known in 1859 that Mercury’s orbit could
not be completely described by Newtonian mechanics, but it remained unexplained until
Einstein’s postulation of general relativity in 1915.

2A great example of the extrapolation power of models is Planck’s law. To explain the
blackbody emission spectrum, Planck derived a model which exchanged energy in discrete

1.1. MODEL DISCOVERY 5

1.1 Model discovery

The process of using an algorithm to autonomously discover a systems gov-
erning equation is known as model discovery 3. Before I introduce the typical
approaches to model discovery, I want to discuss what these models typi-
cally look like. In the context of model discovery we typically recognize
three categories. Given some spatio-temporal data 𝑢(𝑥, 𝑡),

• explicit models give an explicit solution for the data we’re measur-
ing, 𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡). Having an expression for the observable makes
these among the most powerful, but in unfortunately these models can
usually only be derived for a very restricted subset of systems.

• A much more common approach is to derive a model in terms of its
temporal evolution, i.e. in the form of a differential equation 𝜕𝑢/𝜕𝑡 =𝑓(…). It is usually much simpler and more natural to specify a model
in this way, as and such they admit a much larger class of problems
than explicit models. We can recognize two distinct subclasses:

– With ordinary differential equations 4 the propagation func-
tion 𝑓 is a function of the state of the system, i.e. 𝜕𝑢/𝜕𝑡 =𝑓(1, 𝑢, 𝑢2, …),

– With partial differential equations the propagation function
also contains higher-order partial derivatives with respect to other
(spatial) features, i.e. 𝜕𝑢𝜕𝑡 = 𝑓(1, 𝑢, 𝑢𝑥, …). The distinction be-
tween ODEs and PDEs might seem minor, but, as I will discuss
later on, the spatial derivatives make discovering PDEs a much
more challenging problem.

These categories are ofcourse an oversimplification, but they correspond
well to the different approaches and main problems encountered in model
discovery. No matter the type of model, a first, naive approach to model
discovery would be to simply fit all possible models and compare them.
However, there are simply too many models to construct and test - such an
approach would take prohibitively long, even on small datasets with powerful
computers. Luckily, this brute-force approach is not necessary: all we need
is a method to smartly search the space of all models.

amounts. While he initially thought this to be wrong, he inadvertently (and unwillingly)
opened the door to quantum physics!

3This term is mostly used by natural scientists working on physical datasets. Several
other terms are in use, depending on the field and the exact goal. In engineering, it is
often referred to as system identification, while in machine learning it is often known as
causal inference.

4In this setting also often referred to as dynamical systems.

6 CHAPTER 1. INTRODUCTION

1.1.1 Symbolic regression

Symbolic regression covers a large class of approaches to model discovery,
which all, to a varying degree, are based on searching the space of all possi-
ble models. Before discussing various approaches to this search, we must
first understand how to computationally construct a symbolic equation.
Equations can be considered so-called expression trees. For example, the
expression tree for the equation (𝑎 + 𝑏) ⋅ 𝑐 + 7 is given by figure 1.2.

Figure 1.2: Example of binary expression tree. Figure taken from https:
//en.wikipedia.org/wiki/Binary_expression_tree.

The expression tree approach allows to computationally work with symbolic
equations - for example, to represent the equation (𝑎 + 𝑏) ⋅ 𝑐 + 7 ⋅ 𝑑, simply
add ’*’ and ‘d’ nodes to the ‘7’ node. In other words, expression trees also
easily allow to change a given equation. This idea forms the core of ge-
netic programming (GP), one of the most popular approaches to symbolic
regression. Starting with a random population of these trees, GP randomly
mutates the trees, conserving only the well-performing trees and repeat this
until the convergence, analogous to how a population of genes evolves [Bon-
gard and Lipson, 2007, Schmidt and Lipson, 2009, Maslyaev et al., 2019].
Alternatively, Petersen [2020] train a recurrent neural network to generate
the trees corresponding to the unknown equations. A completely different
approach to symbolic regression is taken by the team behind AI-Feynman
[Udrescu and Tegmark, 2019, Udrescu et al., 2020]. They consider specifi-
cally equations originating from physics, and note that these equations often
possess symmetry, separability or other various simplifying properties. By
recursively applying these simplifications, the problem is split into a num-
ber of much easier to solve sub-problems, discovering a variety of seminal

https://en.wikipedia.org/wiki/Binary_expression_tree
https://en.wikipedia.org/wiki/Binary_expression_tree

1.1. MODEL DISCOVERY 7

equations from physics. A final approach worth mentioning is that of the
Bayesian model scientist [Guimerà et al., 2020]. While the entire model
space might be (infinitely) large, in practice many models and equations
look alike or share much of their expression. Having mined all the equations
on Wikipedia, the Bayesian model scientist generates various hypotheses for
the form of the equation by combining fitting with this knowledge of all
previous equations.

Symbolic regression is an active area of research, with the field seemingly fo-
cusing on discovering complex, explicit equations from synthetic, low-noise
datasets [Udrescu and Tegmark, 2019]. However, most real, physical sys-
tems are governed by (coupled) differential equations, and the observations
are noisy and sparse. Symbolic regression struggles in these settings, and
as I will discuss later, the difficulty lies not in finding the equation, but
in accurately calculating the features (i.e. the derivatives). An alternative
approach based on sparse regression is much more for these systems and
settings.

1.1.2 Sparse regression

Model discovery can be greatly simplified if we consider only differential
equations - this doesn’t reduce the generality of our approach, as many
physical systems are expressed as DEs. Considering again equation (1.1),
note that it essentially is a linear combination of features, just like many
other PDEs. This implies that many models can be written as 5,

𝜕𝑢𝜕𝑡 = 𝑤0𝑋0 + … + 𝑤𝑀𝑋𝑀 (1.2)= 𝑤𝑋𝑇 (1.3)

where 𝑤𝑖 is the coefficient corresponding to feature 𝑋𝑖 and 𝑋 the full feature
matrix. Even within this restricted model space (i.e. the model is a linear
combination of features), a combinatorial approach remains prohibitively
expensive. However, by constructing a large set of possible features and
combining these into a single matrix Θ, model discovery can be approached
as a regression problem,

�̃� = min𝑤 ∥𝜕𝑢𝜕𝑡 − 𝑤Θ∥2 . (1.4)

5I’m neglecting a huge group of models here: those with spatially or temporally varying
coefficients! I’ll return to this issue in the next chapter.

8 CHAPTER 1. INTRODUCTION

where �̃� determines the model: �̃�𝑖 = 0 if feature 𝑖 is not a part of the equa-
tion. More precisely, this has transformed model discovery into a variable
selection problem; finding the correct model involves selecting the correct
(i.e. non-zero) components of 𝑤. The number of candidate terms 𝑁 is typ-
ically much larger than the number of terms making up the equation 𝑀 ,
implying that most components of �̃� should be zero. To promote such solu-
tions, a sparsity promoting penalty is added - hence this approach is known
as sparse regression. It was pioneered by Brunton et al. [2016] and has
since become the de-facto method of performing model discovery.

1.2 Contributions

The sparse regression approach is elegant, flexible and widely applicable, but
struggles on noisy and sparse data. When working with differential equa-
tions, the features making up the equation (𝜕𝑢/𝜕𝑡 for both ODEs and PDEs
and higher order spatial derivatives for PDEs) are not directly observed.
Rather, the observed data 𝑢(𝑥, 𝑡) must first be numerically differentiated
to calculate the features. Numerical differentiation fundamentally is build
on approximations, and when faced with sparse and noisy data it produces
highly inaccurate results 6. This in turn fundamentally limits model dis-
covery to low-noise, densely sampled datasets; if the features are corrupted,
no approach will be able to select the right ones. As higher-order deriva-
tives are more inaccurate, this issue specifically affects model discovery of
PDEs, which often contains several higher-order spatial derivatives. If the
calculation of the features is the limiting factor, this implies that model
discovery should be approached as a distinct two-step process: calculating
the features (step 1) is just as important, if not more, as selecting the right
variables (step 2).

Motivated by this line of reasoning, we realized that if our goal was to
apply model discovery on experimental data, improving the accuracy of
the features would have much more impact than constructing more robust
sparse regression algorithms. A common approach to improve the accuracy
of the features is to approximate the data using some data-driven model, for
example using polynomials or a fourier series, and perform sparse regression
based on the features calculated from that approximation. My work is build
on the idea that by integrating these two steps, model discovery can be
made much more robust: the approximation makes it easier to discover the
governing equation, while this equation in turn can be used to improve the
approximation. In other words, I argue that data-driven and first-principle
modelling are not opposites, but that they can mutually improve each other7.

6I’ll illustrate later how bad numerical differentiation really is.
7More generally put, data-driven modelling improves first-principle modelling by yield-

1.3. ORGANIZATION OF THIS THESIS 9

Specifically, my work focuses on 1) constructing accurate representations of
(noisy) data using neural networks and 2) how to incorporate the knowledge
of the governing equation back into these networks. Our overarching goal
was to improve model discovery of partial differential equations on noisy and
sparse datasets, opening the way for use on real, experimental datasets.

In Both et al. [2019] we show that such neural networks significantly im-
prove the robustness of model discovery compared to unconstrained neural
networks or classical approaches. Improving on this, in Both et al. [2021b]
we present a modular framework, showing how these constrained networks
can utilize any sparse regression algorithm and how to iteratively apply the
sparse regression step, boosting performance further. In our latest work
[Both and Kusters, 2021], we build upon the first two articles to construct a
fully differentiable model discovery algorithm by combining multitask learn-
ing and Sparse Bayesian Learning. Besides these methodological papers, we
show in Both et al. [2021a] that neural network based model discovery needs
much less samples to find the underlying equation when they are randomly
sampled, as opposed to on a grid. This marks a fundamental difference with
classical approaches, which struggle with off-grid sampled data. In Both and
Kusters [2019] we introduce Conditional Normalizing Flows. CNFs allow to
learn a fully flexible, time-dependent probability distribution, for example
to construct the density of single particle data. In Both and Kusters [2021]
we build on this to discover a population model directly from single parti-
cle data. This series of articles was released under the name DeepMoD -
Deep Learning based Model Discovery. Most of this work is collected in an
open-source software package called DeePyMoD. Taken together, our work
strongly establishes the argument for neural network based surrogates, con-
strained by the underlying physics, for model discovery on real, experimental
data.8

1.3 Organization of this thesis

I’ve written my thesis using Distill for R Markdown, a format based on
the excellent online journal Distill. Distills typesetting and typography is
strongly based on the Tufte style and is optimized for digital viewing: I’ve
included some interactive plots, and hover over footnotes to see their content
9 or over citations to see the full one - often with a link to an Arxiv version
[Both and Kusters, 2021]. All this means that while you can read it on
paper, you will miss out on these features, so I highly recommend using this

ing providing better features, while first-principle modelling improves data-driven mod-
elling by infusing it with physical biases.

8I’ve worked on several other topics, but I have chosen to focus on my main projects.
9No more scrolling!

https://github.com/PhIMaL/DeePyMoD
https://rstudio.github.io/distill/website.html
https://distill.pub/
https://edwardtufte.github.io/tufte-css/

10 CHAPTER 1. INTRODUCTION

website 10.

This thesis itself is also a small experiment. Instead of writing a long static
document which is likely to only be read by the committee, can I write
something a little more modern which will be useful to others, perhaps
those not familiar with the field? Instead of writing a comprehensive review
examining all the papers in the field, can I write something which gives
a broader overview, discusses key papers in-depth and introduce the key
challenges? The website in front of you is the answer I came up with.

• I have split the background of my work into two pages: Regres-
sion shortly discusses the regression approach to model discovery and
presents the key papers of the field. As I argue in this thesis, surro-
gates should be a key component of model discovery algorithms. In
Surrogates I discuss various classical approaches, but will spend the
bulk of the chapter on Physics Informed Neural Networks (PINNs).

• DeepMoD is the umbrella under which I’ve collected all of my work
done during my PhD on model discovery from January 2019 until July
2021. I start by explaining the main idea behind our approach, and
then summarize our papers and list their respective contributions.

• In Discussion I reflect on our work and put it in context. Finally, I
consider the open questions and challenges for model discovery.

Each chapter article can be read on its own, but I suggest following the order
in which I’ve introduced them above. I hope this thesis is able to convey all
that I’ve learned and done the last few years - happy reading!

10Distill has an excellent article discussing the uses of interactive articles.

https://distill.pub/2020/communicating-with-interactive-articles/

Chapter 2

Regression

Figure 2.1: One-dimensional solution of the Kuramoto-Shivashinsky equa-
tion.

Consider again the Kuramoto-Shivashinsky equation,

𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑥2 − 𝜕4𝑢𝜕𝑥4 − 𝑢𝜕𝑢𝜕𝑥. (2.1)

It is a fourth order, non-linear partial differential equation giving rise to the
beautifully rich behaviour of figure 2.1. This complexity - a fairly unusual

11

12 CHAPTER 2. REGRESSION

fourth-order derivative and a non-linear term - also poses a challenge for
model discovery. Is it really possible to discover an equation this complex
autonomously from data? In this chapter I introduce how sparse regres-
sion makes this possible, using the Kuramoto-Shivashinksy equation as an
example 1. Before reviewing regression and various sparsity-promoting reg-
ularizations, I shortly consider why the sparse regression technique can be
used. This chapter ends with an overview of the key extensions which have
been developed.

2.1 Structure of differential equations

While the Kuramoto-Shivashinksy equation appears complex, its structure is
not particularly unique. In fact, it shares many features with other models.
Consider for example the Cahn-Hilliard equation, which describes phase
separation of a fluid with concentration 𝑐, diffusion coefficient 𝐷 and a length
scale √𝛾:

𝜕𝑐𝜕𝑡 = 𝐷∇2 (𝑐3 − 𝑐 − 𝛾∇2𝑐) , (2.2)

or the Korteweg-de Vries equation, which describes the speed 𝑢 of waves in
shallow water,

𝜕𝑢𝜕𝑡 = −𝜕3𝑢𝜕𝑥3 + 6𝑢𝜕𝑢𝜕𝑥. (2.3)

All three equations describe completely different systems, but share a simi-
lar structure: each consists of 1) a linear combination of 2) relatively simple
features2. Indeed, considering the list of non-linear partial differential equa-
tions on Wikipedia, only very few equations have features composed of more
than two terms, such as 𝑢 ⋅ 𝑢𝑥 ⋅ 𝑢𝑥𝑥𝑥. Property 2 implies that most models
can be constructed from a small, finite set of elements consisting of 3,

1. Polynomials of the observable 𝑢 up to order 𝑝: 1, 𝑢, 𝑢2, ….
2. Derivatives up to order 𝑞: 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, …
3. Combinations of these two features: 𝑢 ⋅ 𝑢𝑥, 𝑢2 ⋅ 𝑢𝑥𝑥𝑥, …
1For more information on the KS equation, see Wikipedia or Encyclopedia of Math.
2Although they all share a diffusive term - we can’t seem to escape entropy.
3An interesting question is if this is a fundamental fact or a consequence of our approach

to physics.

https://en.wikipedia.org/wiki/List_of_nonlinear_partial_differential_equations
https://en.wikipedia.org/wiki/Kuramoto%E2%80%93Sivashinsky_equation
https://encyclopediaofmath.org/wiki/Kuramoto-Sivashinsky_equation

2.2. REGRESSION FOR MODEL DISCOVERY 13

For most known equations, 𝑝 ≤ 3 and 𝑞 ≤ 4, typically yielding 20-30 candi-
date features. Even at this size, a combinatorial search is computationally
too expensive, as it involves solving the PDE. However, by exploiting prop-
erty 1, i.e. that the unknown equation is a linear combination of the can-
didate features, model discovery can be expressed as a regression problem
4.

Figure 2.2: Solution of the Cahn-Hilliard equation. Image taken from https:
//www.hindawi.com/journals/mpe/2016/9532608/

2.2 Regression for model discovery

Expressing model discovery as a regression problem starts by combining all𝑀 candidate features into a single library matrix Θ,

Θ = ⎡⎢⎣| | | | |1 𝑢 𝑢𝑥 … 𝑢2𝑢𝑥𝑥| | | | | ⎤⎥⎦ (2.4)

i.e. each column of Θ ∈ ℛ𝑁×𝑀 contains a single feature. Assuming the
equation is a linear combination of these features, the unknown equation
can be written as,

𝜕𝑢𝜕𝑡 = Θ𝜉 (2.5)

where 𝜕𝑢𝜕𝑡 ∈ ℛ𝑁 is the time derivative and 𝜉 ∈ ℛ𝑀 the coefficient vector
describing the equation. If a component 𝜉𝑗 is zero, the corresponding featureΘ𝑗 is not a part of the equation, and vice versa. For example, if Θ =[1 𝑢 𝑢𝑥 𝑢𝑢𝑥],

4I’m only considering non-coupled, one-dimensional cases here, but the argumentation
extends to higher dimensions. The library size will be much bigger, and the combinatorial
search will be even more expensive, but most features will still be a combination of two
components.

https://www.hindawi.com/journals/mpe/2016/9532608/
https://www.hindawi.com/journals/mpe/2016/9532608/

14 CHAPTER 2. REGRESSION

𝜉 = [0.0 0.5 0.0 −2.0]𝑇 (2.6)

corresponds to the equation

𝜕𝑢𝜕𝑡 = 12𝑢 − 2𝜕2𝑢𝜕𝑥2 . (2.7)

With eq. (2.5), instead of comparing all models which can be build with the
candidate features, now we only need to find a single vector 𝜉 by minimizing
5,

̂𝜉 = min𝜉 ‖𝑢𝑡 − Θ𝜉‖22 (2.8)

This least-squares problem is trivial to solve 6, but will, unfortunately, not
yield the correct result in most cases 7. Since the number of features 𝑀 is
likely to be much larger than the number of terms making up the unknown
equation, solving eq. (2.8) will overfit the model: very little if any com-
ponents of ̂𝜉 will be zero. Luckily, equation (2.8) can be adapted to yield
results ̂𝜉 win which many components are exactly 0, a property known as
sparsity. This is known as sparse regression and this approach to model
discovery was pioneered by Brunton et al. [2016] for ODEs and extended
to PDEs in Rudy et al. [2017] . Various ways to promote the sparsity of
solutions to eq. (2.8) exist, and I discuss those in the next section.

2.3 Regularized regression

To promote sparsity of the resulting vector, we augment the objective func-
tion eq. (2.8) with a regularization function 𝑅(𝜉) on the unknown coefficients𝜉 8,

5The way I like to think about this, is that with this approach we’re essentially fitting
all models at the same time.

6It has an analytical solution but for numerical stability one often uses QR decom-
position or SVD. Addtionally, least squares is a so-called BLUE - which means that the
estimate ̂𝜉 is unbiased and has the lowest variance as long as the errors are uncorrelated.

7Technically this norm is only appropriate for Gaussian, white noise (i.e. zero-mean,
uncorrelated). Extensions to other noise models are called generalized linear models, but
in practice only white noise is used.

8The 1/𝑁 factor is not strict required, but has the benefit of making the regularization
strength 𝜆 sample size-independent.

https://en.wikipedia.org/wiki/Generalized_linear_model

2.3. REGULARIZED REGRESSION 15

̂𝜉 = min𝜉 1𝑁 ‖𝑢𝑡 − Θ𝜉‖22 + 𝜆𝑅(𝜉) (2.9)

where 𝜆 sets the strength of the regularization. The choice of 𝑅(𝜉) affects
which behaviour is penalized. Three common choices are,

• 𝑅(𝜉) = ‖𝜉‖0, also known as ℓ0 regularization, penalizes the number of
non-zero components, promoting sparsity in the final solution.

• 𝑅(𝜉) = ‖𝜉‖1, known as ℓ1 regularization, penalizes the magnitude of 𝜉
linearly, also promoting sparsity in the final solution.

• 𝑅(𝜉) = ‖𝜉‖22, also called ℓ2 regularization, penalizes the magnitude
of 𝜉 quadratically, preventing large magnitude coefficiens in the final
solution.

These penalties can also be combined: for example, the elastic net [Zou
and Hastie, 2005] combines the benefits of both ℓ1 and ℓ2 regularization by
defining

𝑅(𝜉) = 𝛼 ‖𝜉‖1 + (1 − 𝛼) ‖𝜉‖22 . (2.10)

Since these regularizations are central to sparse regression and model dis-
covery, I want to discuss each of these three regularizations in-depth.9

Figure 2.3: Penalty functions of ℓ0, ℓ1 and ℓ2 regularization.

2.3.1 ℓ0ℓ0 regularization penalizes the number of non-zero components through the
penalty function,

9More generally, 𝜉 can be penalized by any 𝑝-norm, but in practice only 𝑝 = 1, 2 are
used.

16 CHAPTER 2. REGRESSION

‖𝜉‖0 = ∑𝑗 𝜉∗𝑗 , 𝜉∗𝑗 = {1 if 𝜉𝑗 ≠ 00 if 𝜉𝑗 = 0 (2.11)

This makes it an obvious choice for promoting sparsity: if the amount of
terms is penalized, solutions with fewer terms are favoured, and additionally,
it does not affect the magnitude of the components, making it an unbiased
estimator. Unfortunately, by penalizing the number of terms (also known
as the support) the objective function becomes non-differentiable and non-
convex. Simply put, this regularization still effectively involves solving a
combinatorial problem. Maddu et al. [2019] show that an approximation
known as Iterative Hard Thresholding can be an effective method in model
discovery. A different avenue of research tackles these issues head-on by
taking a probabilistic approach. For example, Louizos et al. [2018] consider
the penalty as the sum of Bernouilli random variables, allowing gradient-
based optimization. Nonetheless, these approaches are still computationally
expensive.

2.3.2 ℓ1 - Lasso

Given these issues, a common approach is to relax the problem and applyℓ1 regularization,

‖𝜉‖1 = ∑𝑗 ∣𝜉𝑗∣ . (2.12)

Compared to an ℓ0 regularized problem, this too yields sparse solutions (I
will discuss why it does later on), but is convex and can be efficiently solved
using proximal method such as FISTA [Beck and Teboulle, 2009], despite its
non-differentiability at 𝑥 = 0. Usually this approach is called Lasso (Least
Absolute Shrinkage and Selection operator), as it the sparsest norm still
yielding a convex problem [Tibshirani, 2011].
The Lasso is a popular approach when sparsity is required, but it does not
come without its drawbacks. It yields a biased estimate of the coefficients,
but a more significant issue is that it is not guaranteed to be consistent10.
An estimator is consistent if the estimate approaches the true value with
increasing sample size:

̂𝜉 → 𝜉true as 𝑁 → ∞ (Consistency)
10In literature this sometimes also referred to as the oracle property.

2.3. REGULARIZED REGRESSION 17

While this might seem like a trivial point, its implications are not: an incon-
sistent estimator will not be able to recover the truth, even with an infinite
number of samples. The Lasso is consistent only if the Irrepresentable con-
dition (IRC) is satisifed [Zhao and Yu]. In practice the IRC is often violated,
implying the Lasso is unable to recover the ground truth. The violation is
caused by correlation between variables, and the lasso can be made consis-
tent by scaling the components in the penalty. For example, the adaptive
Lasso [Zou, 2006] scales the penalty as

∑𝑗 𝑤𝑗 ∣𝜉𝑗∣ (Adaptive Lasso)

where 𝑤𝑗 = 1/ ∣𝜉∗𝑗 ∣𝛾, with 𝜉∗𝑗 the result of a different consistent estimator
and 𝛾 a scaling factor.

2.3.3 ℓ2 - Ridge

The third popular regularization is an ℓ2 penalty,

∑𝑗 ∣𝜉𝑗∣2 , (Ridge)

also known as ridge regression. Ridge regression can be analytically solved,
thus having essentially the same computational cost as least squares 11,
and can handle highly correlated variables. Unfortunately, ridge regression
favours results where none of the coefficients are large, but not exactly zero
either - in other words, it does not yield a sparse coefficient vector. To see
why Lasso yields sparse results while ridge regression does not, consider fig-
ure 2.4. The ovals show the level sets of the loss due the fitting term (i.e. the
first term of eq. (2.9)) and the loss due the regularization is represented by
the circle (ridge) and square (lasso). The solution of the regularized problem
is the intersection of these two losses. For the ℓ1 regularization, the inter-
section happens at the corners, leading to sparse coefficients, whereas for
the ℓ2 regularization it happens in the middle, yielding small but non-zero
coefficients. Model discovery often relies on heuristics and some approaches
based on ridge regression show good performance, despite it not mathemati-
cally yielding sparse coefficients. For example, SINDy [Brunton et al., 2016],
one of the most popular model discovery approaches, uses ridge regression.

11Simply add
√𝜆 along the diagonal of the gram matrix, or augment the data and solve

it like a standard least squares problem

18 CHAPTER 2. REGRESSION

Figure 2.4: Comparison of Lasso and Ridge losses. Figure from https://
www.astroml.org/book_figures/chapter8/fig_lasso_ridge.html

2.4 Heuristics

Besides these regularizations, various other heuristic are often applied to
improve the sparsity of the obtained coefficients. I discuss two commonly
used ones: thresholding and sequential regression.

2.4.1 Thresholding

It is quite common that we recover a sparse vector which is approximately
right: the required terms stand out, but several other small but non-zero
components exist, despite regularization. Performance can be strongly im-
proved by thresholding this sparse vector. Since all components have
different dimensions, the features are first normalised by their ℓ2 norm 12,

Θ∗𝑗 = Θ𝑗∥Θ𝑗∥2 , (2.13)

allowing us to define normalized coefficients as,

𝜉∗𝑗 = 𝜉𝑗 ⋅ ∥Θ𝑗∥2 . (2.14)

Given some threshold value 𝜂, the threshold operation is then defined as

𝜉𝑗 = {𝜉𝑗 if 𝜉∗𝑗 ≥ 𝜂0 if 𝜉∗𝑗 < 𝜂 (2.15)

12We can also normalize the target vector, i.e. the time derivative, to make everything
dimensionless.

https://www.astroml.org/book_figures/chapter8/fig_lasso_ridge.html
https://www.astroml.org/book_figures/chapter8/fig_lasso_ridge.html

2.5. EXTENSIONS 19

The value of 𝜂 is usually preset (i.e. a hyperparameter), but it can also be
learned [Rudy et al., 2017].

2.4.2 Sequential regression

A second trick is to sequentially refine the estimate by iteratively per-
forming sparse regression on only the active features selected by the previous
estimator,

𝜉𝑖+1 = min𝜉𝑖 1𝑁 ∥𝑢𝑡 − Θ𝑖𝜉𝑖∥22 + 𝜆𝑅(𝜉𝑖) (2.16)Θ𝑖+1 = Θ𝑖[𝜉𝑖+1 ≠ 0] (2.17)

until 𝜉 converges. While this does bias the results as coefficients can only
be removed, not added, in practice it works well.

Figure 2.5: Illustration of sequential regression.

2.5 Extensions

Sparse regression forms a very flexible and general approach to model dis-
covery and has been adapted, extended and improved in various ways since
its introduction. In the next section I discuss the key papers which have ei-
ther solved important open questions, or make significant progress towards
it.

2.5.1 Stability selection

In the previous section we considered the effect of different regularizations
on sparsity. An additional important factor is the strength of this regular-
ization, denoted by the factor 𝜆 in eq. (2.9). Figure 2.6 shows the solution ̂𝜉
as a function of the regularization strength 𝜆. The resulting sparse vector is

20 CHAPTER 2. REGRESSION

strongly dependent on 𝜆; the lower the amount of regularization, the more
features are selected.

Figure 2.6: Lasso path. Figure from https://scikit-learn.org/0.18/auto_
examples/linear_model/plot_lasso_lars.html

The default method to choose hyper-parameters such as 𝜆 is cross-validation
(CV). CV consists of splitting the data into 𝑘 folds13, training the model
on 𝑘 − 1 folds and testing model performance on the remaining fold. This
process is repeated for all folds and averaging over the results yields a data
efficient but computationally expensive approach to hyperparameter tuning.
CV optimizes for predictive performance - how well does the model predict
unseen data? -, but model discovery is interested in finding the underlying
structure of the model. Optimizing for predictive performance might not
be optimal; a correct model certainly generalizes well, but optimizing for
it on noisy data will likely bias the estimator to include additional, spuri-
ous, terms. An alternative metric which optimizes for variable selection is
stability selection [Meinshausen and Buehlmann, 2009].

The key idea is that while a single fit probably will not be able to dis-
criminate between required and unnecessary terms we expect that among
multiple fits on sub-sampled datasets the required terms will consistently
be non-zero. Contrarily, the unnecessary terms are essentially modelling
the error and noise, and will likely be different for each subsample. More
specifically, stability selection bootstraps a dataset of size 𝑁 into 𝑀 subsets𝐼𝑀 of 𝑁/2 samples, and defines the selection probability Π𝜆𝑗 as the fraction
of subsamples in which a term 𝑗 is non-zero

Π𝜆𝑗 = 1𝑀 ∑𝑀 1(𝑗 ∈ 𝑆𝜆(𝐼𝑀)) (2.18)

13subsets

https://scikit-learn.org/0.18/auto_examples/linear_model/plot_lasso_lars.html
https://scikit-learn.org/0.18/auto_examples/linear_model/plot_lasso_lars.html

2.5. EXTENSIONS 21

where 𝑆𝜆𝑗 is the recovered support, i.e. whether a term is non-zero. The sup-
port can be determined using any sparse regression method: Meinshausen
and Buehlmann [2009] use Lasso, but Maddu et al. [2019] use a relaxed ℓ0
penalty. Calculating the selection probability for a range of regularization
strengths Λ yields the stability path (figure 2.7).

Figure 2.7: Stability paths. Figure from https://thuijskens.github.io/2018/
07/25/stability-selection

Using the stability path, the final support is determined by selecting all
components with a selection probability above a given threshold 𝜋thr,

𝑆stable = {𝑗 ∶ max𝜆∈Λ Π𝜆𝑗 > 𝜋thr} (2.19)

As the active components are determined from a range of 𝜆, stability selec-
tion does not require making a point estimate for the regularization strength
as with CV. Stability selection has been shown to outperform cross valida-
tion in model discovery, especially at higher noise levels [Maddu et al., 2019,
2020].

2.5.2 Multi-experiment datasets

A dataset rarely consists of a single experiment - they are comprised of
several experiments, each with different parameters, initial and boundary
conditions. Despite these variations, they all share the same underlying dy-
namics. To apply model discovery on these datasets we need a mechanism
to exchange information about the underlying equation among the experi-
ments. Specifically, we need to introduce and apply the constraint that all
experiments share the same support (i.e. which terms are non-zero).

Consider 𝑘 experiments, all taken from the same system, {Θ ∈ ℛ𝑁×𝑀 , 𝑢𝑡 ∈ℛ𝑁}𝑘, with an unknown sparse coefficient vector 𝜉 ∈ ℛ𝑀×𝑘. Applying

https://thuijskens.github.io/2018/07/25/stability-selection
https://thuijskens.github.io/2018/07/25/stability-selection

22 CHAPTER 2. REGRESSION

sparse regression on each experiment separately is likely violate this con-
straint; while it will yield a sparse solution for each experiment, the support
will not be the same (see figure 2.8). Instead of penalizing single coeffi-
cients, we must penalize groups - an idea known as group lasso 14 [Huang
and Zhang, 2009]. Group lasso first calculates a norm over all members in
each group (typically an ℓ2 norm), and then applies an ℓ1 norm over these
group-norms (see figure 2.8),

𝑅(𝜉) = 𝑘∑𝑗=1 ∣√√√⎷ 𝑀∑𝑖=1 ∣𝜉𝑖𝑗∣2∣ (Group sparsity)

This approach drives groups of coefficients to zero, rather than single coeffi-
cients, and thus satisfies the constraint (see figure 2.8). Group sparsity has
been successfully used for model discovery on multiple experiments [de Silva
et al., 2019], or with space- or time-dependent coefficients (see next section),
but can also be exploited to impose symmetry [Maddu et al., 2020].

Figure 2.8: Lasso applies the penalty vertically, while group lasso applies
the penalty horizontally.

2.5.3 Time/space dependent coefficients

So far we have implicitly assumed that all the governing equations have
fixed coefficients. This places a very strong limit on the applicability of
model discovery; usually coefficients are fields depending on space or time
(or even both!), so that 𝜉 = 𝜉(𝑥, 𝑡). As a first attempt at solving this, Rudy
et al. [2018] learn the spatial or temporal dependence of 𝜉 by considering each
corresponding slice as a separate experiment with different coefficients, and
applying the group sparsity approach we introduced in the previous section.
A Bayesian version of this approach was studied by Chen and Lin [2021].

14Technically this is group sparsity, but since almost always lasso is used, these terms
are used interchangeably.

2.5. EXTENSIONS 23

It is important to note that in both these works 𝜉(𝑥, 𝑡) is not parametrized;
it is not the functional form which is inferred, but simply its values at the
locations of the samples. 15

2.5.4 Information-theoretic approaches

The sparse regression approach tacitly assumes that the sparsest equation
is also the correct one. While not an unreasonable assumption, it does
require some extra nuance, as there often is not a single correct model.
Many (effective) models are constructed as approximations of a certain order
depending on the accuracy required. A first order approximation yields the
sparsest equation, while the second order model could describe the model
better. Another example is that a system can be locally modelled by a
simpler, sparser equation. In both cases neither model is incorrect - they
simply make a different trade-off. Information-theoretic approaches give a
principled way to balance sparsity of the solution with accuracy.

Consider two models 𝐴 and 𝐵, each with likelihood ℒ𝐴,𝐵 and 𝑘𝐴,𝐵 terms.
Model B has a higher likelihood, ℒ𝐵 > ℒ𝐴, indicating a better fit to the
data, but also consists of more terms, 𝑘𝐵 > 𝑘𝐴. The Bayesian Information
Criterion (BIC) and the closely related Akaike Information Criterion (AIC)
are two metrics to decide which balance these two objectives,

BIC = 𝑘 ln𝑛 − 2 lnℒ (2.20)

and the Akaike Information Criterion,

AIC = 2𝑘 − 2 lnℒ. (2.21)

If model 𝐵 has a lower AIC or BIC than model 𝐴 it is a better, even if𝑘𝐵 > 𝑘𝐴. In other words, these criteria give a principled way to decide the
trade-off between how well the model fits fits the data and the complexity
of the model. This approach has been used by Mangan et al. [2017] to
decide between various discovered models, and a similar approach based on
minimum description length was used by Udrescu and Tegmark [2019] .

As we discussed, it is likely for multiple models to be correct simultaneously,
all with similar BIC or AIC. Each of these models is essentially the model
best describing the data at a certain accuracy, and all of the models together

15A interesting approach not based on sparse regression is taken by Long et al. [2019]
. They note that since derivatives can be approximated as a convolution, learnable filters
can be used to discover the underlying equation, even with spatially varying sources.

24 CHAPTER 2. REGRESSION

describe a curve in model space known as the Pareto Frontier 16. All models
on this curve are correct, but of varying complexity, and we merely need to
pick the model corresponding to the accuracy to which we wish to describe
the data [Udrescu et al., 2020].

2.5.5 Bayesian approaches

The requirement that the resulting coefficient vector 𝜉 be sparse is essentially
a form of prior knowledge. A principled way to include such prior knowledge
is given by Bayes’ theorem, which states for some data 𝑋 and parameters 𝑤

posterior⏞𝑝(𝑤 ∣ 𝑋) = likelihood⏞𝑝(𝑋 ∣ 𝑤) prior⏞𝑝(𝑤)𝑝(𝑋) . (2.22)

The likelihood describes the probability of the data 𝑋 for a given parame-
ter 𝑤, while the prior describes the probability distribution of the param-
eter 𝑤. The posterior then is the distribution of 𝑤 given the data and
the prior. Contrary to maximum likelihood approaches which yield point
estimates, Bayesian approaches yield distributions, allowing to quantify un-
certainty. Additionally, the inclusion of the prior effectively regularizes the
problem, making Bayesian regression typically much more robust than MLE
approaches.

The sparsity of 𝜉 can be encoded in the prior in various ways. A common
approach known as Sparse Bayesian Learning [Tipping, 2001] takes a zero-
centred Gaussian as prior,

𝑝(𝜉𝑗 ∣ 𝛼𝑗) = 𝒩(𝑤𝑖 ∣ 0, 𝛼−1𝑗). (2.23)

The SBL assumes all terms are zero, but the confidence of that decision
(𝛼𝑗) is inferred from data. As 𝛼𝑗 → ∞, the prior becomes infinitely sharp
at zero, and the component is pruned from the model. The Gaussian prior
is not particularly sparse, but Yuan et al. [2019] nonetheless show good
performance with model discovery. Sparsity can be more strongly promoted
by using a Laplacian prior to yield a Bayesian Lasso [Helgøy and Li, 2020],
or a so-called spike-and-slab-prior [Nayek et al., 2020].17

16Pareto optimality is a very wide applicable concept, as it essentially describes how to
make the trade-off between multiple conflicting objectives.

17The field of Bayesian approaches to model selection is so rich it deserves a book on
its own. I restrict myself here mainly to some approaches used in the model discovery of
PDEs.

https://en.wikipedia.org/wiki/Pareto_efficiency

Chapter 3

Differentiation and
surrogates

Surrogates 1 are a widely used approach to approximate a dataset or model
by a different, data-driven model with certain desirable properties. For
example, a computationally cheap surrogate can be used to replace a com-
putationally expensive simulation, or an easily-differentiable surrogate can
be used to approximate a dataset we wish to differentiate. I discuss vari-
ous surrogates used in the model discovery community and make the case
for neural networks as surrogates. A neural network-based surrogate can
be strongly improved by constraining it to the underlying physics using an
approach known as Physics Informed Neural Networks (PINNs), and I end
the chapter with a short introduction to Normalizing Flows (NFs). Before
all of this though, I want to discuss why surrogates are needed in model
discovery.

3.1 The need for surrogates

Using the sparse regression approach to discover PDEs requires calculating
various higher-order derivatives. For example, a diffusive term is given by
a second order derivative, ∇2𝑢, while the Kuramoto-Shivashinksy equation
requires a fourth order derivative. Consider the definition of the derivative,

𝑑𝑢𝑑𝑥 = limℎ→0 𝑢(𝑥 + ℎ) − 𝑢(𝑥)ℎ . (3.1)

1also known as digital twins [Rasheed et al., 2020]

25

26 CHAPTER 3. DIFFERENTIATION AND SURROGATES

Since data is always sampled at a finite spacing, in practice a derivative
must always be approximated,𝑑𝑢𝑑𝑥 ≈ 𝑢(𝑥 + ℎ) − 𝑢(𝑥)ℎ . (3.2)

This equation forms the basis of numerical differentiation. In what follows
we assume the data has been sampled on a grid with spacing Δ𝑥, allowing
the use of a more natural notation in terms of grid index 𝑖. Equation (3.2)
takes into account only the ‘following’ sample 𝑢𝑖+1 at position +ℎ and is
hence known as a forward-difference scheme. A more accurate estimate
can be obtained by taking into account both the previous sample 𝑢𝑖−1 and
following sample 𝑢𝑖+1, yielding the popular second-order central difference
scheme 2, 𝑑𝑢𝑖𝑑𝑥 ≈ 𝑢𝑖+1 − 𝑢𝑖−12Δ𝑥 . (3.3)

Applying eq. (3.3) recursively yields higher order derivatives,𝑑2𝑢𝑖𝑑𝑥2 ≈ 𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1Δ𝑥2 (3.4)𝑑3𝑢𝑖𝑑𝑥3 ≈ −𝑢𝑖−2 + 2𝑢𝑖−1 − 2𝑢𝑖+1 + 𝑢𝑖+22Δ𝑥3 (3.5)

Numerical differentiation through finite differences has various attractive
properties: it’s easy to implement and computationally cheap. However,
these advantages come with large drawbacks:

• The approximation is only valid for small Δ𝑥. If the samples are
spaced far apart, the resulting derivative will be inaccurate. Higher
order schemes can alleviate this only slightly.

• Higher order derivatives are calculated by successively applying the
approximation (see (3.5)). Consequently, small errors in lower orders
get propagated and amplified to higher orders, making estimates of
these higher-order derivatives highly inaccurate.

• At the edges of the dataset (e.g. 𝑢0), the derivatives cannot be calcu-
lated. Doing so would require extrapolating, which is highly inaccu-
rate, so typically the data at the edge is simply discarded. Since higher
order derivatives utilize large stencils, this can amount to a significant
part of the data when working with small datasets.

2Actually, we can exactly calculate the derivative, but the trade-off is that we need to
approximate the data using some other model - a surrogate!

3.2. SURROGATES: LOCAL VERSUS GLOBAL 27

However, the dominant issue is numerical differentiation’s inability to deal
with noisy data. Even low noise levels of i.i.d. white noise (<10%) can
corrupt the features to such an amount that model discovery becomes im-
possible. We illustrate these issues in figure 3.1, where we show with a toy
function 𝑓(𝑥) = 𝑐𝑜𝑠(𝑥2) the effect of data sparsity and 10% applied noise on
the first and third derivative. Note that while the effect on the first deriva-
tive is still relatively limited, the third derivative is strongly corrupted. For
the sparse data we can still qualitatively observe the behaviour, albeit with
much lower peaks, but the noise has corrupted the data almost completely.

Figure 3.1: Numerical differentiation of noisy and sparse data. Blue are the
samples, black dashed line the ground truth.

Denoising the to-be-differentiated data and regularizing the differentiation
process increases accuracy [Van Breugel et al., 2020], but remains inadequate
for very noisy data. Luckily, surrogates offer a way out. By fitting an
easily-differentiable model such as a polynomial to the data, the problem of
numerical differentiation is circumvented; the derivative of a polynomial can
be trivially calculated symbolically. This does not mean that calculating the
features is easy; the difficulty of determining the derivatives is now displaced
to the task of accurately fitting the surrogate model the noisy data. In the
next section I discuss the surrogate models which are often used in model
discovery.

3.2 Surrogates: local versus global

Model discovery requires surrogates to be easily differentiable, but also to
be flexible. The surrogate model must be able to accurately model the data:
given some data 𝑢(𝑥), the surrogate 𝑝(𝑥) ought to have enough degrees of
freedom to approximate 𝑢 reasonably, i.e. 𝑝(𝑥) ≈ 𝑢(𝑥). A classical approach
is to represent 𝑝(𝑥) as a series expansion 3,

3Note that the surrogate model doesn’t need to be interpretable - we’re merely trying
to represent and interpolate the data in such a a way that we can easily take derivatives.

28 CHAPTER 3. DIFFERENTIATION AND SURROGATES

𝑝(𝑥) = ∑𝑛 𝑎𝑛ℎ𝑛(𝑥) (3.6)

where 𝑎𝑛 are picked such that 𝑝(𝑥) ≈ 𝑢(𝑥). The derivatives are now easily
(and accurately!) calculated - it’s simply the sum over the derivatives of the
basis functions: 𝑑𝑢𝑑𝑥 ≈ 𝑑𝑝(𝑥)𝑑𝑥 = ∑𝑖 𝑎𝑖 𝑑ℎ𝑖(𝑥)𝑑𝑥 (3.7)

The flexibility of the surrogate strongly depends on the choice of basis func-
tions. A choice well-known to physicists is to use the Fourier basis,ℎ𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥. (3.8)

Using Fourier series has several attractive properties: they’re computation-
ally efficient, well established, and are particularly useful for calculating
derivatives. The fourier transform of a 𝑝th order derivative is 4,

ℱ (𝑑𝑝𝑓𝑑𝑥𝑝) = (𝑖𝑘)𝑝 ̂𝑓(𝑘), (3.9)

which allows to efficiently calculate all derivatives 5. Additionally, the
Fourier representation allows natural denoising of the data by applying a
low-pass filter. This approach has been successfully applied to model dis-
covery [Schaeffer, 2017], but is limited by its issues with sharp transitions
(Gibbs ringing) and its requirement for periodic boundary condition.
A different choice of basis would be polynomials, but these do no have
enough expressivity to model most data. However, data can locally be ap-
proximated polynomially, and spline interpolation exploits this idea by
locally fitting a polynomial in a sliding window, and ensuring continuity at
the edges 6. Various types of splines exist, depending on 1) the type of in-
terpolating polynomial used, 2) the order of the interpolating polynomials
and 3) the continuity conditions at the edges. They are computationally
cheap, have well known properties, and can be used to smooth data through
with a smoothness parameter. These properties make it a popular approach
to calculate derivatives, but when data is extremely noisy, sparse or high-
dimensional results are inaccurate

4Transforming the entire PDE to Fourier space can indeed get rid off all derivatives,
but unfortunately non-linear terms correspond to convolutions in fourier space, making
everything much more complicated.

5This is also known as the spectral method to calculating derivatives, and is often used
when solving PDEs [Schaeffer, 2017]

6I’m seeing this as basically Taylor expanding around every sample, and making sure
everything is continuous.

3.3. NEURAL NETWORKS AS SURROGATES 29

3.3 Neural networks as surrogates

The most basic multilayer perceptron (MLP) neural networks cconsist of a
basic matrix multiplication with an applied non-linearity,

𝑧 = 𝑓(𝑥𝑊 𝑇 + 𝐵) = ℎ(𝑥) (3.10)

where 𝑥 ∈ ℛ𝑁×𝑀 is the input, 𝑊 ∈ ℛ𝐾×𝑀 the kernel or weight matrix,𝑏 ∈ ℛ𝐾 the bias and 𝑓 a non-linearity such as tanh. These layers are
composed to increase expressive power, yielding a deep neural network,

𝑧 = ℎ𝑛 ∘ ℎ𝑛−1 … ∘ ℎ0(𝑥) = 𝑔𝜃(𝑥) (3.11)

in the rest of this thesis, we refer to a neural network of arbitrary depth and
width as 𝑔𝜃(𝑥), where 𝜃 are the networks weights and biases.
Neural networks are excellent function interpolators, making them very suit-
able for surrogates: they scale well to higher dimensions, are computation-
ally efficient and are very flexible 7. Given a dataset 𝑢, 𝑥𝑖, we typically train
neural networks by minimizing the mean squared error,

ℒ = 𝑁∑𝑖=1 |𝑢𝑖 − 𝑔𝜃(𝑥𝑖)|2 (3.12)

A neural networks flexibility is also its weakness; it is very sensitive to
overfitting. To counter this, the dataset is split into a test and train set
and train until the MSE on the test set starts increasing. While this works
well in practice for many problems, the approach so far is completely data-
driven; the only information used to train the network are the samples in
the dataset. We often have more information available about a dataset - for
example, its underlying (differential) equation 8. How can we include such
knowledge in a neural network?

3.3.1 Physics Informed Neural Networks

One of the most popular ways to include physical knowledge in neural net-
works is using so-called Physics Informed Neural Networks (PINNs) [Raissi
et al., 2017a,b]. Consider a (partial) differential equation

7In fact, neural networks are known to be universal function approximators, meaning
that a network with a single hidden layer of infinite width can approximate any continuous
function.

8but not the solution!

30 CHAPTER 3. DIFFERENTIATION AND SURROGATES

𝜕𝑢𝜕𝑡 = 𝑓(…) (3.13)

and a neural network �̂� = 𝑔𝜃(𝑥, 𝑡). PINNs train a neural network by mini-
mizing

ℒ(𝜃) = 1𝑁 𝑁∑𝑖 ∣𝜕�̂�𝑖𝜕𝑡 − 𝑓(�̂�𝑖, …), ∣2 . (3.14)

As ℒ → 0, the output of the network �̂� satisfies the given differential equa-
tion 9, and the network learns the solution of a differential equation, without
explicitly solving it.

PINNs can also be used to perform parameter inference. Given a dataset{𝑢, 𝑡, 𝑥}𝑖 and a differential equation with unknown coefficients 𝑤, PINNs
minimize,

ℒ(𝜃, 𝑤) = 1𝑁 𝑁∑𝑖 |𝑢𝑖 − �̂�𝑖|2 + 𝜆𝑁 𝑁∑𝑖 ∣𝜕�̂�𝑖𝜕𝑡 − 𝑓(𝑤, �̂�𝑖, …), ∣2 . (3.15)

Note that we minimize both the neural network parameters 𝜃 and the un-
known parameters 𝑤. Here the first term ensures the network learns the
data, while the second term ensures the output satisfies the given equation.
PINNs have become a very popular method for both solving differential
equations and for parameter inference, for various reasons:

• PINNs are very straightforward to implement, requiring no specialized
architecture or advanced numerical approaches. The parametrization
of the data or solution as a neural network makes PINNs a meshless
method. Not having to create meshes is a second simplifying property.

• Automatic differentiation can be used to calculate the derivatives,
yielding machine-precision derivatives.

• When used for parameter inference, PINNs essentially act as
physically-consistent denoisers, making them particularly robust and
useful when working with noisy and sparse data.

Notwithstanding their popularity and ease of use, PINNs are not without
flaws - specifically, they can unpredictably yield a low accuracy solution, or
even fail to converge at all [Sitzmann et al., 2020, Wang et al., 2020b,a] .

9Similar terms can be added for initial and boundary conditions, but we omit these
here for clarity.

3.3. NEURAL NETWORKS AS SURROGATES 31

3.3.2 Extensions & alternatives

PINNS have been extended and modified along several lines of research. To
boost performance on complex datasets, it has proven fruitful to decom-
pose the domain and apply a PINN inside each subdomain, while matching
the boundaries [Hu et al., 2021, Shukla et al., 2021]. A different line of
research instead focuses on appropriately setting the strength of the reg-
ularization term, adapting ideas from multitask learning 𝜆 [Maddu et al.,
2021, McClenny and Braga-Neto, 2020]. A final avenue worth mentioning
is the inclusion of uncertainty, either through Bayesian neural nets [Yang
et al., 2020] or using dropout [Zhang et al.].

Various other approaches have been proposed to include physical knowledge
in neural networks. Champion et al. [2019b] use a variation on a PINN with
auto-encoders to discover an underlying equation. Other works highlight the
connection between numerical differentiation and convolutions and include
the equation through this [Long et al., 2017].

A very promising set of approaches are differentiable ODE and PDE solvers
[Chen et al., 2018, Rackauckas et al., 2020], and are also often referred to
as differentiable physics [Ramsundar et al., 2021]. Here, instead of mod-
elling the solution 𝑢 by a neural network, we model the time-derivative 𝑢𝑡
and apply a solver. The upside of this approach is that the solution can be
guaranteed to satisfy the physics, contrary to the ‘soft-constraint’ or regular-
ization approach of PINNs, but it does reintroduce all the nuances involved
in solving PDEs - discretisation, stability issues and possible stiffness. Cal-
culating the gradient involves solving the adjoint problem, which itself can
also be unstable.

Kernel-based methods have also been used to incorporate physical knowledge
- specifically Gaussian Processes [Särkkä, 2019, Atkinson, 2020]. GPs have
build-in uncertainty estimation and can be made to respect a given equation
by using it as a kernel function. Unfortunately, this requires linearisation of
the equation as GPs cannot accommodate non-linear kernels.10

A final approach worth mentioning explores including more abstract princi-
ples. Cranmer et al. [2020] present an architecture which parametrizes the
Lagrangian of a system, while Greydanus et al. [2019] present a Hamiltonian-
preserving architecture.

10In my opinion kernel methods such as GPs have been vastly underused. Kernel meth-
ods typically perform well in small datasets and can be made non-local through the use
of neural networks, so-called Deep GPs.

32 CHAPTER 3. DIFFERENTIATION AND SURROGATES

3.3.3 Normalizing Flows

We discussed already that neural networks are universal function approxima-
tors and can thus theoretically approximate any function, including proba-
bility distributions. However, for a function 𝑝(𝑥) to be a proper distribution
we require ∫+∞−∞ 𝑝(𝑥) = 1, (3.16)

which cannot be calculated when using a normal neural network to model𝑝(𝑥); the integral is intractable as it runs from +∞ to −∞. While the
integral can be approximated, this property is never guaranteed and will
always be an approximation. Other approaches to density estimation rely
for example on a mixture of Gaussians, which guarantee the normalization
but are neither flexible enough to model any arbitrary density, but also too
computationally expensive. Normalizing Flows [Rezende and Mohamed,
2015] have become the prime method for modelling densities, being flexi-
ble, computationally cheap, and guaranteed to yield a proper probability
distribution.

NFs are based on the change-of-variable theorem for probability distribu-
tions, 𝑝(𝑥) = 𝜋(𝑧) ∣ 𝑑𝑧𝑑𝑥∣ , 𝑥 = 𝑓(𝑧). (3.17)

Essentially, this allows us to express the unknown distribution 𝑝(𝑥) to be ex-
pressed in terms of a known distribution 𝜋(𝑧) and a transformation 𝑥 = 𝑓(𝑧).
NFs can thus learn any distribution by learning the transformation 𝑓 . The
only requirement is for 𝑓 to be a bijective function - in other words, it
needs to one-to-one and invertible. The expressive power of NFs depends on
the transformation 𝑓 , but constructing arbitrary invertible functions is ex-
tremely challenging 11. Normalizing flows work around this by constructing
a series of simple transformations 12,𝑥 = 𝑓𝐾 ∘ 𝑓𝐾−1 ∘ … 𝑓0(𝑧) (3.18)

To train a normalizing flow, we typically minimize the negative log likelihood
over the samples,

ℒ = − 𝑁∑𝑖=1 log 𝑝(𝑥). (3.19)

11Invertible neural networks are an active field - ICML has a recurring workshop on
them.

12If every single layer is invertible, then so will the whole flow.

https://invertibleworkshop.github.io/

3.3. NEURAL NETWORKS AS SURROGATES 33

Various types of flows 𝑓 have been proposed, from the relatively simple
planar flows of Rezende and Mohamed [2015] to more complicated ones such
as the Sylvester normalizing flows [Berg et al., 2018] or monotonic neural
networks [Wehenkel and Louppe, 2019]. Recent work has focused on flows
on different geometries and satisfying certain equivariances.

34 CHAPTER 3. DIFFERENTIATION AND SURROGATES

Chapter 4

DeepMoD

In the previous two chapters I have introduced two, largely separate ideas:
using sparse regression to perform model discovery of differential equations,
and using surrogates, specifically PINNs, to accurately interpolate data, con-
sistent with a given equation. The central premise of my work is that these
two ideas can be combined, yielding a robust model discovery algorithm.
Integrating sparse regression in PINNs is easily achieved. Considering again
the loss of a PINN with known equation 𝑢𝑡 = 𝑋𝑤,

ℒ = ∑𝑖 ‖𝑢𝑖 − 𝑔𝜃(𝑥𝑖, 𝑡𝑖)‖22 + ∑𝑖 ‖(𝑢𝑡)𝑖 − 𝑋𝑖𝑤‖22 . (4.1)

we simply replace this equation by the candidate library Θ and the sparse
vector 𝜉,

ℒ = ∑𝑖 ‖𝑢𝑖 − 𝑔𝜃(𝑥𝑖, 𝑡𝑖)‖22 + ∑𝑖 ‖(𝑢𝑡)𝑖 − Θ𝑖𝜉‖22 . (4.2)

Simply put, this results in a PINN which discovers its constraining equation
during training 1. This approach has several benefits:

• The neural network is a very flexible surrogate, and we can use au-
tomatic differentiation to calculate machine-precision derivatives, cir-
cumventing the numerical differentiating problem.

1In this interpretation model discovery almost comes about as a side-effect; we simply
train a PINN with many terms and it simply decides itself which to use.

35

36 CHAPTER 4. DEEPMOD

• By constraining the network to solutions of the constraining equation,
it acts as a physically-consistent denoiser and interpolator. In other
words, the data is denoised and interpolated with knowledge of some
underlying equation - in contrast to for example splines, which are
purely data-driven.

• The integration of the two steps of model discovery - calculating fea-
tures and sparse regression - into a single, differentiable model starts a
‘virtuous cycle’. Accurate features improve the model discovery task,
which in turn more strongly constrains the network, leading to a better
estimate of the data, finally yielding more accurate features.

Equation (4.2) only describes the core idea, and in a series of three articles
we explore and refine this idea under the name DeepMoD - Deep Learning for
Model Discovery. Additionally, we worked on two tangential projects: one
compares splines with DeepMoD and studies the effect of sampling strate-
gies, while the second introduces Conditional Normalizing Flows (CNFs) to
infer time-dependent probabilities and densities. In this chapter, I shortly
discuss the contributions and methodology. followed by the results of each
paper.
The result sections are adapted from the corresponding paper.

4.1 DeepMoD: Deep Learning for Model discovery
in noisy data

Gert-Jan Both, Subham Choudhury, Pierre Sens, Remy Kusters - PDF
This paper lays out and introduces the ideas I’ve sketched above, forming
the basis for the rest of our work. We propose to train a neural network
with the loss function

ℒ(𝜃, 𝜉) = ∑𝑖 ‖𝑢𝑖 − �̂�𝑖‖22⏟⏟⏟⏟⏟⏟⏟ℒfit

+ ∑𝑖 ‖(�̂�𝑡)𝑖 − Θ𝑖𝜉‖22⏟⏟⏟⏟⏟⏟⏟ℒreg

+ 𝜆 ∑𝑗 ∣𝜉𝑗∣⏟ℒsparse

(4.3)

where �̂�𝑖 = 𝑔𝜃(𝑥𝑖, 𝑡𝑖) is the output of the neural network, and the features�̂�𝑡 and Θ are calculated from the output of the neural network. The first
term in equation eq. (4.3) ensures the network learns the data, the second
term constrains it to the given equation and the third term promotes the
sparsity of 𝜉 by applying an ℓ1 penalty. Training the network involves both
optimizing the neural network parameters 𝜃 and the sparse coefficient vector𝜉. After convergence, the found 𝜉 is normalized and thresholded to yield the
final equation (see figure 4.1 for a schematic overview).

https://arxiv.org/abs/1904.09406

4.1. DEEPMOD: DEEP LEARNING FOR MODEL DISCOVERY IN NOISY DATA37

Dataset Neural Network Normalization

û

Auto. Diff.

∂tû = Θ"ξ

Library

Include in cost function

Converged

ξ∗ = ξ ·
||Θ||

||ut||

Solution
Train without L₁

×

×

×

×

×
×

×

×

×

×

×

keep

set to

zero

keep

ξ∗

Space

T
im

e

Burgers equation

∂tu = uux − 0.1uxx

L = MSE(u, û)

+MSE(∂tû,Θ"ξ)

+ L1("ξ)

= ...u u
x

u
u
x

u
2
u
x
x

Found solution

∂tu = uux − 0.1uxx

0

0

1

0

...

-0.1

0

uux

uxx

u

ux

u
2
uxx

(x, t)

Figure 4.1: Schematic representation of the first DeepMoD iteration.

4.1.1 Results

We test the performance of this approach, which we call DeepMoD, on
a set of case studies: the Burgers’ equation with and without shock, the
2D advection-diffusion equation and the Keller-Segel model for chemotaxis.
These examples show the ability of DeepMoD to handle (1) non-linear equa-
tions, (2) solutions containing a shock wave, (3) coupled PDEs and finally
(4) higher dimensional and experimental data.

4.1.1.1 Non-linear PDEs

The Burgers equation occurs in various areas of gas dynamics, fluid mechan-
ics and applied mathematics and is evoked as a prime example to benchmark
model discovery [Rudy et al., 2017, Long et al., 2017] and coefficient infer-
ence algorithms [Raissi et al., 2017a,b], as it contains a non-linear term as
well as second order spatial derivative,𝜕𝑡𝑢 = −𝑢𝑢𝑥 + 𝜈𝑢𝑥𝑥. (4.4)

Here 𝜈 is the viscosity of the fluid and 𝑢 its velocity field. We use the
dataset produced by Rudy et al. [Rudy et al., 2017], where 𝜈 = 0.1. The
numerical simulations for the synthetic data were performed on a dense
grid for numerical accuracy. DeepMoD requires significantly less datapoints
than this grid and we hence construct a smaller dataset for DeepMoD by
randomly sampling the results through space and time. From now on, we
will refer to randomly sampling from this dense grid simply as sampling.
Also note that this shows that our method does not require the data to be
regularly spaced or stationary in time. For the data in Fig. 4.2 we add 10%
white noise and sampled 2000 points for DeepMoD to be trained on.

We train the neural network using an Adam optimizer and plot the different
contributions of the cost function as a function of the training epoch in Fig.

38 CHAPTER 4. DEEPMOD

a)

b)

Convergence

ξ

optimised

MSE

minimized

d)

c)

u

x

Figure 4.2: a) Cost functions and b) coefficient values as function of the
number of epochs for the Burgers’ dataset consisting of 2000 points and 10%
white noise. Initially, the neural network optimizes the MSE and only after
the MSE is converged the coefficient vector is optimized by the network.
c) Velocity field 𝑢 for 𝑡 = 5 obtained after training with (no overfitting)
and without (overfitting) the regression regularization ℒ𝑅𝑒𝑔. d) The values
in the grid indicate the accuracy of the algorithm tested on the Burgers’
equation, defined as the mean relative error over the coefficients, as function
of the sample size of the data set and level of noise. The coloring represents
the fraction of correct runs (Red indicates that in none of the five iterations
the correct PDE is discovered).

4.1. DEEPMOD: DEEP LEARNING FOR MODEL DISCOVERY IN NOISY DATA39

4.2a and we show the value of each component of 𝜉 as a function of the
training epoch in Fig. 4.2b. Note that for this example, after approximately
2000 epochs, the MSE is converged, while at the same time we observe the
components of 𝜉 only start to converge after this point. We can thus identify
three ‘regimes’: in the initial regime (0 - 2000 epochs), the MSE is trained.
Since the output of the neural network is far from the real solution, so isΘ, and the regression task cannot converge (See first 2000 epochs in Fig.
4.2b). After the MSE has converged, �̂� is sufficiently accurate to perform
the regression task and 𝜉 starts to converge. After this second regime (2000
- 6000 epochs), all components of the cost converged (>6000 epochs) and we
can determine the solution. From this, we obtain a reconstructed solution
(see Fig. 4.2b) and at the same time recover the underlying PDE, with
coefficients as little as 1% error in the obtained coefficients. We show the
impact of including the regression term in the cost function in Fig.4.2c, where
the obtained solution of DeepMoD is compared with a neural network, solely
trained on the MSE, to reconstruct the data. Including the regression term
regularizes the network and prevents overfitting, despite the many terms in
the library. We conclude that it is the inclusion of the regression in the
neural network which makes DeepMoD robust to noisy data and prevents
overfitting.

Next, we characterize the robustness of DeepMoD in Fig. 4.2d, where we
run DeepMod for five times (differently sampled data set) for a range of
sample sizes and noise levels. The color in Fig. 4.2d shows how many of the
five runs return the correct equation and the value in the grid displays the
mean error over all correct runs. Observe that at vanishing noise levels, we
recover the Burgers equation with as little as 100 data-points, while for 5000
data points we recover the PDE with noise levels of up to 75%. Between
the domain where we recover the correct equation for all five runs and the
domain where we do not recover a single correct equation, we observe an
intermediate domain where only a fraction of the runs return the correct
equation, indicating the importance of sampling.

To benchmark DeepMoD, we can directly compare the performance of our
algorithm with respect to two state-of-the-art methods, (i): PDE-Find by
Rudy et al. [Rudy et al., 2017] and (ii) PDE-Stride by Maddu et al. [Maddu
et al., 2019]. Considering an identical Burgers’ data set with 105 data points,
approach (i) recovers the correct equation for up to 1% Gaussian noise [Rudy
et al., 2017] while method (ii) discovers the correct equation up to 5% noise
[Maddu et al., 2019]. Compared to the results in Fig. 4.2d we note that even
for two order of magnitude fewer samples points, 103 w.r.t. 105, DeepMoD
recovers the correct equation up to noise levels > 50% Gaussian noise. Deep-
MoD allows up to two orders of magnitude higher noise-levels and smaller
sample sizes with respect to state-of-the-art model discovery algorithms.

40 CHAPTER 4. DEEPMOD

4.1.1.2 Shock wave solutions

If the viscosity is too low, the Burgers’ equation develops a discontinuity
called a shock (See Fig. 4.3). Shocks are numerically hard to handle due
to divergences in the numerical derivatives. Since DeepMoD uses automatic
differentiation we circumvent this issue. We adapt the data from Raissi et
al. [Raissi et al., 2017b] which has 𝜈 = 0.01/𝜋, sampling 2000 points and
adding 10% white noise (See Fig. 4.3). We recover ground truth solution of
the Burgers’ equation as well as the corresponding PDE,𝜕𝑡𝑢 = −0.99𝑢𝑢𝑥 + 0.0035𝑢𝑥𝑥, (4.5)

with a relative error of 5% on the coefficients. In Fig.4.3 we show the inferred
solution for 𝑡 = 0.8.

Figure 4.3: Ground truth, Noisy and Inferred data at 𝑡 = 0.8 for the Burgers’
equation with a shock wave (10% noise and 2000 sample points).

4.1.1.3 Coupled differential equations

Next, we apply DeepMod to a set of coupled PDE’s in the form of the
Keller-Segel (KS) equations, a classical model for chemotaxis [Painter, 2018].
Chemotactic attraction is one of the leading mechanisms that accounts for
the morphogenesis and self-organization of biological systems. The KS
model describes the evolution of the density of cells 𝑢 and the secreted
chemical 𝑤, 𝜕𝑡𝑢 = ∇ ⋅ (𝐷𝑢∇𝑢 − 𝜒𝑢∇𝑤)𝜕𝑡𝑤 = 𝐷𝑤Δ𝑤 − 𝑘𝑤 + ℎ𝑢. (4.6)

Here the first equation represents the drift-diffusion equation with a diffusion
coefficient of the cells, 𝐷𝑢 and a chemotactic sensitivity 𝜒, which is a measure

4.1. DEEPMOD: DEEP LEARNING FOR MODEL DISCOVERY IN NOISY DATA41

for the strength of their sensitivity to the gradient of the secreted chemical𝑤. The second equation represents the reaction diffusion equation of the
secreted chemical 𝑤, produced by the cells at a rate ℎ and degraded with a
rate 𝑘. For a 1D system, we sample 10000 points of 𝑢 and 𝑤 for parameter
values of 𝐷𝑢 = 0.5, 𝐷𝑣 = 0.5, 𝜒 = 10.0, 𝑘 = 0.05 and ℎ = 0.1 and add5% white noise. We choose a library consisting of all spatial derivatives
(including cross terms) as well as first order polynomial terms, totalling 36
terms. For these conditions we recover the correct set of PDEs,

𝜕𝑡𝑢 = 0.50𝑢𝑥𝑥 − 9.99𝑢𝑤𝑥𝑥 − 10.02𝑢𝑥𝑤𝑥𝜕𝑡𝑤 = 0.48𝑤𝑥𝑥 − 0.049𝑤 + 0.098𝑢, (4.7)

as well as the reconstructed fields for 𝑢 and 𝑤 (See Fig. 4.4). Note that
even the coupled term, 𝑢𝑥𝑤𝑥 , which becomes vanishingly small over most
of the domain, is correctly identified by the algorithm, even in the presence
of considerable noise levels.

Figure 4.4: Ground truth, noisy and reconstructed solutions for the density
of cells, 𝑢 (top row) and the density of secreted chemicals 𝑤 (bottom row)
in the Keller Segel model for 5% white noise and 10000 samples.

4.1.1.4 Experimental data

To showcase the robustness of DeepMoD on high-dimensional and experi-
mental input data, we consider a 2D advection diffusion process described
by, 𝜕𝑡𝑢 = −∇ ⋅ (−𝐷∇𝑢 + ⃗𝑣 ⋅ 𝑢) , (4.8)

42 CHAPTER 4. DEEPMOD

where ⃗𝑣 is the velocity vector describing the advection and 𝐷 is the diffusion
coefficient. In the SI of the paper we apply DeepMod on a simulated data-
set of eq. 4.8, with as initial condition, a 2D Gaussian with 𝐷 = 0.5 and⃗𝑣 = (0.25, 0.5). For as little as 5000 randomly sampled points we recover the
correct form of the PDE as well as the vector ⃗𝑣 for noise levels up to ≈ 25%.
In the absence of noise the correct equation is recovered with as little as 200
sample points through space and time. This number is surprisingly small
considering this is an 2D equation.

Finally, we apply DeepMoD on a time-series of images from an electrophore-
sis experiment, tracking the advection-diffusion of a charged purple loading
dye under the influence of a spatially uniform electric field. In Fig. 4.5a
we show time-lapse images of the experimental setup where we measure the
time-evolution of two initial localised purple dyes. Fig. 4.5b shows the re-
sultant 2D density field for three separate time-frames (in arbitrary units),
corresponding to the red square in Fig. 4.5a by substracting the reference
image (no dye present). The dye displays a diffusive and advective motion
with constant velocity 𝑣, which is related to the strength of the applied
electric field.

We apply DeepMoD on 5000 sampled data-points sampled through space
and time and consistently recover the advection term 𝑢𝑦 as well as the
two diffusive components (𝑢𝑥𝑥 and 𝑢𝑦𝑦). In Fig. 4.5c we show the scaled
coefficients as function of the number of epochs. After thresholding the
scaled coefficients (|𝜉| < 0.1), we obtain for the unscaled coefficients, the
resultant advection diffusion equation,0.31𝑢𝑦 + 0.011𝑢𝑥𝑥 + 0.009𝑢𝑦𝑦 = 0. (4.9)

Analysing the second diffusing dye (dashed box in Fig. 4.5) result in nearly
identical values for the drift velocity, 𝑣 ≈ 0.3, and the diffusion coefficients,𝐷 ≈ 0.01 indicating the robustness of the obtained value of 𝐷 and 𝑣. In
contrast to the artificial data presented in previous paragraphs, some higher-
order non-linear terms, in particular 𝑢𝑢𝑦𝑦 and 𝑢𝑢𝑥𝑥 remain small, yet non-
zero. This suggests that an automatic threshold strategy may not guarantee
the desired sparse solution. Fixing a threshold of the scaled coefficients
(|𝜉| < 0.1 in this particular case) or other thresholding strategies such as
coefficient cluster detection would be better suited for this task.

4.2 Sparsely constrained neural networks for
model discovery of PDEs

Gert-Jan Both, Gijs Vermarien, Remy Kusters - PDF

https://arxiv.org/abs/2011.04336

4.2. SPARSELY CONSTRAINED NEURAL NETWORKS FOR MODEL DISCOVERY OF PDES43

A

B

C

Figure 4.5: a) Time-series images of the electrophoresis essay. The two red
boxes indicate the analysed region. b) Region indicated in the solid red
box of (a) showing the density of the dye at three different time-frames (in
pixels). c) Scaled coefficients values of all the candidate for a single run.
The pink region indicates the terms with scaled coefficient |𝜉| < 0.1.

44 CHAPTER 4. DEEPMOD

This paper was conceived and written mostly during the first confinement in
Paris - plenty of time to think and wonder!

The original DeepMoD outperformed other model discovery approaches, but
left several questions unanswered. Specifically, we wondered:

• How can the optimal strength of ℓ1 penalty, 𝜆, be determined? Re-
training the network would be prohibitively expensive, and while per-
formance was not extremely sensitive to the choice of 𝜆, it is a hyper-
parameter which much be correctly chosen.

• Lasso has several undesirable properties and perhaps suboptimal per-
formance. Can other model discovery algorithms such as SINDy be
integrated in this framework?

• We never remove terms from the equation; rather, they approach or
become zero due to the ℓ1 penalty. Can performance be improved
further removing the zero components and iteratively refining the es-
timate, similar to the iterative regression technique?

Next to answering these questions, this paper also represented a deepening of
our understanding of the DeepMoD framework. We realized the coefficient
vector 𝜉 essentially performs two tasks: 1) selecting which terms are active,
i.e. the ‘model discovery’ task and 2) constraining the neural network. The
main innovation in this paper is the introduction of a mask 𝑔 defining the
support of 𝜉, allowing us to separate these two tasks:

ℒ(𝜃, 𝜉) = ∑𝑖 ‖𝑢𝑖 − �̂�𝑖‖22 + ∑𝑖 ‖𝑢𝑡 − Θ(𝑔 ⋅ 𝜉)‖22 . (4.10)

This mask 𝑔 is calculated non-differentiably, i.e. it effectively acts as an ex-
ternal ‘forcing variable’. In ML applications, non-differentiability is typically
considered a short-fall (see next section), but here it forms a bridge between
neural-network based approaches and classical approaches. It is through the
mask 𝑔 that any sparse regression method can be utilized to perform vari-
able selection on a neural-network based library. For example, lasso with
cross validation can be used, but we also show an example with SINDy. We
thus show that deep-learning based and classical methods can be synthe-
sized, benefitting from both approaches. Together with this innovation we
present a modular version of our framework, reprinted in figure 4.6.

In this framework, (I) A function approximator constructs a surrogate model
of the data, (II) from which a library of possible terms and the time deriva-
tive is constructed using automatic differentiation. (III) A sparsity estimator
constructs the sparsity mask 𝑔 to select the active terms in the library using

4.2. SPARSELY CONSTRAINED NEURAL NETWORKS FOR MODEL DISCOVERY OF PDES45

Funct. approx. LibraryData Sparsity

Constraint

Sparsity mask

Determine mask

U
n

d
e

rl
y

in
g

 P
D

E

mse reg

Figure 4.6: Schematic representation of the modular DeepMoD approach.

some sparse regression algorithm and (IV) a constraint constrains the func-
tion approximator to solutions allowed by the active terms obtained from
the sparsity estimator.

We released this paper together with a pytorch-based framework, DeePy-
MoD. Overall the paper and the software package made our approach sig-
nificantly more flexible: each module can be easily changed, independent of
another.

4.2.1 Results

4.2.1.1 Constraint

The sparse coefficient vector 𝜉 in eq. (4.10) is typically found by optimising it
concurrently with the neural network parameters 𝜃. Considering a network
with parameter configuration 𝜃∗, the problem of finding 𝜉 can be rewritten
as min𝜉 |𝑢𝑡(𝜃∗) − Θ(𝜃∗)𝜉|2. This can be analytically solved by least squares
under mild assumptions; we calculate 𝜉 by solving this problem every it-
eration, rather than optimizing it using gradient descent. In figure 4.7 we
compare the two constraining strategies on a Burgers data-set, by training
for 5000 epochs without updating the sparsity mask. Panel A) shows that
the least-squares approach reaches a consistently lower loss. More strikingly,
we show in panel B) that the mean absolute error in the coefficients is three
orders of magnitude lower. We explain the difference as a consequence of the
random initialisation of 𝜉: the network is initially constrained by incorrect
coefficients, prolonging convergence. The random initialisation also causes
the larger spread in results compared to the least squares method. The
least squares method does not suffer from sensitivity to the initialisation
and consistently converges.

https://github.com/PhIMaL/DeePyMoD
https://github.com/PhIMaL/DeePyMoD

46 CHAPTER 4. DEEPMOD

Figure 4.7: A) Loss and B) mean absolute error of the coefficients obtained
with the gradient descent and the least squares constraint as a function of
the number of epochs. Results have been averaged over twenty runs and
shaded area denotes the standard deviation.

4.2.1.2 Sparsity estimator

Implementing the sparsity estimator separately from the neural network
allows us to use any sparsity promoting algorithm. Here we show that a
classical method for PDE model discovery, PDE-find [Rudy et al., 2017],
can be used together with neural networks to perform model discovery in
highly sparse and noisy data-sets. We compare it with the thresholded
Lasso approach in figure 4.8 on a Burgers data-set with varying amounts of
noise. The PDE-find estimator discovers the correct equation in the majority
of cases, even with up to 60% - 80% noise, whereas the thresholded lasso
mostly fails at 40%. We emphasise that the modular approach we propose
here allows to combine classical and deep learning-based techniques. More
advanced sparsity estimators such as SR3 [Champion et al., 2019c] can easily
be included in this framework.

4.2.1.3 Function approximator

We show in figure 4.9 that a tanh-based NN fails to converge on a data-set of
the Kuramoto-Shivashinksy (KS) equation (panel A and B). Consequently,
the coefficient vectors are incorrect (Panel D). As our framework is agnostic
to the underlying function approximator, we instead use a SIREN [Sitzmann
et al., 2020], which is able to learn very sharp features in the underlying dy-
namics. In panel B we show that a SIREN is able to learn the complex
dynamics of the KS equation and in panel C that it discovers the correct
equation2. This example shows that the choice of function approximator
can be a decisive factor in the success of neural network based model dis-

2In bold; 𝑢𝑢𝑥: green, 𝑢𝑥𝑥: blue and 𝑢𝑥𝑥𝑥𝑥: orange

4.3. FULLY DIFFERENTIABLE MODEL DISCOVERY 47

Figure 4.8: Fraction of correct discovered Burgers equations (averaged over
10 runs) as function of the noise level for the thresholded lasso and PDE-find
sparsity estimator.

covery. Using our framework we can also explore using RNNs, Neural ODEs
[Rackauckas et al., 2020] or Graph Neural Networks [Seo and Liu, 2019].

Figure 4.9: A) Solution of the KS equation. Lower panel shows the cross
section at the last time point: 𝑡 = 44. B) MSE as function of the number of
epochs for both the tanh-based and SIREN NN. C) Coefficients as function
of number of epochs for the SIREN and D) the tanh-based NN. The bold
curves in panel C and D are the terms in the KS equation components;
green: 𝑢𝑢𝑥:, blue: 𝑢𝑥𝑥 and orange: 𝑢𝑥𝑥𝑥𝑥. Only SIREN is able to discover
the correct equation.

4.3 Fully differentiable model discovery

Gert-Jan Both, Remy Kusters - PDF

This is my favourite paper. I think it’s an elegant approach solving many of
the issues and questions of our previous papers, and as a bonus it also works
in practice!

https://arxiv.org/abs/2106.04886

48 CHAPTER 4. DEEPMOD

The modular approach in the second paper improved flexibility and perfor-
mance, but left several things to be desired:

• It required the tuning of a fairly large set of hyperparameters: when
to first update the mask, when to update it after, and which sparse
regression approach to use (which itself introduces various hyperpa-
rameters).

• The non-differentiability of the mask allows to easily incorporate var-
ious sparse regression techniques, but also presents a weakness. If
it is set incorrectly (for any reason), the training fails as the con-
straint is incompatible with the data. Additionally, due to this non-
differentiability, model selection is effectively a side-effect of the train-
ing, and we hypothesize a fully differentiable method would increase
performance and stability.

In this paper we create a fully-differentiable model discovery algorithm,
which, considering eq. (4.10), requires making the mask 𝑔 differentiable.
Differentiable masking is challenging due to the binary nature of the prob-
lem, and instead we relax the application of the mask to a regularisation
problem. Specifically, we propose to use Sparse Bayesian Learning [Tipping,
2001] to select the active features and act as constraint.

4.3.1 PINNs constrained by Sparse Bayesian Learning

Sparse Bayesian Learning (SBL) [Tipping, 2001] is a Bayesian approach to
regression yielding sparse results. SBL defines a hierarchical model, starting
with a Gaussian likelihood with noise precision 𝛽 ≡ 𝜎−2, and a zero-mean
Gaussian with precision 𝛼𝑗 on each component 𝜉𝑗 as prior,𝑝(𝜕𝑡�̂�; Θ, 𝜉, 𝛽) = 𝑁∏𝑖=1 𝒩(𝜕𝑡�̂�𝑖; Θ𝑖𝜉, 𝛽−1), (4.11)

𝑝(𝜉; 𝐴) = 𝑀∏𝑗=1 𝒩(𝜉𝑗; 0, 𝛼−1𝑗), (4.12)

with 𝜕𝑡�̂� ∈ ℛ𝑁 , Θ ∈ ℛ𝑁×𝑀 , 𝜉 ∈ ℛ𝑀 , and we have defined 𝐴 ≡ diag(𝛼).
The posterior distribution of 𝜉 is a Gaussian with mean 𝜇 and covariance Σ,Σ = (𝛽Θ𝑇 Θ + 𝐴)−1𝜇 = 𝛽ΣΘ𝑇 𝜕𝑡�̂�. (4.13)

Many of the terms in 𝐴 will go to infinity when optimised, and correspond-
ingly the prior for term 𝑗 becomes a delta peak. We are thus certain that

4.3. FULLY DIFFERENTIABLE MODEL DISCOVERY 49

that specific term is inactive and can be pruned from the model. This makes
SBL a very suitable choice for model discovery, as it gives a rigorous cri-
terion for deciding whether a term is active or not. Additionally it defines
hyper-priors over 𝛼 and 𝛽, 𝑝(𝛼) = 𝑀∏𝑗=1 Γ(𝛼𝑗; 𝑎, 𝑏)𝑝(𝛽) = Γ(𝛽; 𝑐, 𝑑) (4.14)

The inference of 𝐴 and 𝛽 cannot be performed exactly, and SBL uses type-II
maximum likelihood to find the most likely values of ̂𝐴 and ̂𝛽 by minimising
the negative log marginal likelihood 3

ℒSBL(𝐴, 𝛽) = 12 [𝛽 ‖𝑢𝑡 − Θ𝜇‖2 + 𝜇𝑇 𝐴𝜇 − log|Σ| − log|𝐴| − 𝑁 log𝛽]− 𝑀∑𝑗=1(𝑎 log𝛼𝑗−𝑏𝛼𝑗)−𝑐 log𝛽+𝑑𝛽,
(4.16)

using an iterative method (see Tipping [2001]). The marginal likelihood also
offers insight how the SBL provides differentiable masking. Considering only
the first two terms of eq. (4.16),𝛽 ‖𝑢𝑡 − Θ𝜇‖2 + 𝜇𝑇 𝐴𝜇 (4.17)

we note that the SBL essentially applies a coefficient-specific ℓ2 penalty to
the posterior mean 𝜇. If 𝐴𝑗 → ∞, the corresponding coefficient 𝜇𝑗 → 0,
pruning the variable from the model. Effectively, the SBL replaces the
discrete mask 𝑚𝑗 ∈ {0, 1} by a continuous regularisation 𝐴𝑗 ∈ (0, ∞], and
we thus refer to our approach as continuous relaxation.

4.3.1.1 Model

To integrate SBL as a constraint in PINNs, we place a Gaussian likelihood
on the output of the neural network,�̂� ∶ 𝑝(𝑢; �̂�, 𝜏) = 𝑁∏𝑖=1 𝒩(𝑢𝑖; �̂�𝑖, 𝜏−1), (4.18)

and define a Gamma hyper prior on 𝜏 , 𝑝(𝜏) = Γ(𝜏; 𝑒, 𝑓), yielding the loss
function,

3Neglecting the hyper-prior, this loss function can also written more compactly asℒSBL(𝐴, 𝛽) = log |𝐶| + 𝜕𝑡𝑢𝑇 𝐶−1𝜕𝑡𝑢, 𝐶 = 𝛽−1𝐼 + Θ𝐴−1Θ𝑇 , (4.15)

but the format we use provides more insight how SBL provides differentiable masking.

50 CHAPTER 4. DEEPMOD

ℒdata(𝜃, 𝜏) = 12 [𝜏 ‖𝑢 − �̂�‖2 − 𝑁 log 𝜏] − 𝑒 log 𝜏 + 𝑓𝜏. (4.19)

Assuming the likelihoods factorise, i.e. 𝑝(𝑢, 𝑢𝑡; �̂�, Θ, 𝜉) = 𝑝(𝑢; �̂�) ⋅𝑝(𝑢𝑡; Θ, 𝜉), SBL can be integrated as a constraint in a PINN by simply
adding the two losses given by eq. (4.16) and eq. (4.19),ℒSBL-PINN(𝜃, 𝐴, 𝜏, 𝛽) = ℒdata(𝜃, 𝜏) + ℒSBL(𝜃, 𝐴, 𝛽) (4.20)

Our approach does not rely on any specific property of the SBL, and thus
generalises to other Bayesian regression approaches.

4.3.1.2 Training

The loss function for the SBL-constrained PINN contains three variables
which can be exactly minimised, and denote these as ̂𝐴, ̂𝜏 and ̂𝛽. With these
values, we introduce ̃ℒSBL-PINN(𝜃) ≡ ℒSBL-PINN(𝜃, ̂𝐴, ̂𝜏 , ̂𝛽) and note that we
can further simplify this expression as the gradient of the loss with respect
to these variables is zero. For example, ∇𝜃ℒ(̂𝐴) = ∇𝐴ℒ ⋅ ∇𝜃𝐴|𝐴= ̂𝐴 = 0, as∇𝐴ℒ|𝐴= ̂𝐴 = 0. Thus, keeping only terms directly depending on the neural
network parameters 𝜃 yields,

̃ℒSBL-PINN(𝜃) = ̂𝜏2 ‖𝑢 − �̂�‖2 + ̂𝛽2 ‖𝑢𝑡 − Θ𝜇‖2 + 𝜇𝑇 ̂𝐴𝜇 − log|Σ|= 𝑁 ̂𝜏2 [ℒfit(𝜃) + ̂�̂�𝜏 ℒreg(𝜃, 𝜇)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=ℒPINN(𝜃,𝜇)
+𝜇𝑇 ̂𝐴𝜇 − log|Σ| (4.21)

where in the second line we have rewritten the loss function in terms of a
classical PINN with relative regularisation strength 𝜆 = ̂𝛽/ ̂𝜏 and coefficients𝜉 = 𝜇. Contrary to a PINN however, the regularisation strength is inferred
from the data, and the coefficients 𝜇 are inherently sparse.

An additional consequence of ∇𝜃ℒ(̂𝐴, ̂𝛽, ̂𝜏) = 0 is that our method does
not require backpropagating through the solver. While such an operation
could be efficiently performed using implicit differentiation [Bai et al., 2019],
our method requires solving an iterative problem only in the forward pass.
During the backwards pass the values obtained during the forward pass can
be considered constant.

Considering eq. (4.21), we note the resemblance to multitask learning using
uncertainty, introduced by Cipolla et al. [2018]. Given a set of objectives,
the authors propose placing a Gaussian likelihood on each objective so that

4.3. FULLY DIFFERENTIABLE MODEL DISCOVERY 51

each task gets weighed by its uncertainty. The similarity implies that we
are essentially reinterpreting PINNs as Bayesian or hierarchical multi-task
models.

4.3.2 Physics Informed Normalizing Flows

Having redefined the PINN loss function in terms of likelihoods (i.e. eq.
(4.21)) allows to introduce a PINN-type constraint to any architecture with
a probabilistic loss function. In this section we introduce an approach with
normalizing flows, called Physics Informed Normalizing Flows (PINFs). As
most physical equations involve time, we first shortly discuss how to con-
struct a time-dependent normalizing flow. We show in the experiments
section how PINFs can be used to directly infer a density model from single
particle observations.

4.3.2.1 Conditional Normalizing Flows

Normalizing flows construct arbitrary probability distributions by applying
a series of 𝐾 invertible transformations 𝑓 to a known probability distribution𝜋(𝑧), 𝑧 = 𝑓𝐾 ∘ … ∘ 𝑓0(𝑥) ≡ 𝑔𝜃(𝑥)

log 𝑝(𝑥) = log𝜋(𝑧) + 𝐾∑𝑘=1 log ∣det 𝜕𝑓𝑘(𝑧)𝜕𝑑𝑧 ∣ , (4.22)

and are trained by minimising the negative log likelihood, ℒNF =− ∑𝑁𝑖=1 log 𝑝(𝑥). Most physical processes yield time-dependent densities,
meaning that the spatial axis is a proper probability distribution with∫ 𝑝(𝑥, 𝑡)𝑑𝑥 = 1. Contrarily, this is not valid along the temporal axis, as∫ 𝑝(𝑥, 𝑡)𝑑𝑡 = 𝑓(𝑥). To construct PINFs, we first require a Conditional Nor-
malizing Flow capable of modelling such time-dependent densities. Instead
of following the method of Both and Kusters [2019], which modifies the
Jacobian, we employ time-dependent hyper-network. This hyper-network ℎ
outputs the flow parameters 𝜃, and is only dependent on time, i.e. 𝜃 = ℎ(𝑡),
thus defining a time-dependent normalizing flow as 𝑧 = 𝑔ℎ(𝑡)(𝑥).
4.3.2.2 PINFs

Conditional normalizing flows yield a continuous spatio-temporal density,
and the loss function of a PINF is defined as simply adding the SBL-loss to
that of the normalizing flow, yielding̃ℒPINF(𝜃) = ℒNF(𝜃) + 𝑁 ̂𝛽2 ℒreg(𝜃, 𝜇) + 𝜇𝑇 ̂𝐴𝜇 − log|Σ|. (4.23)

52 CHAPTER 4. DEEPMOD

4.3.3 Results

We now show several experiments illustrating our approach. We start this
section by discussing choice of hyperprior, followed by a benchmark on sev-
eral datasets and finally a proof-of-concept with physics-informed normaliz-
ing flows.

4.3.3.1 Choosing prior

The loss function for the SBL constrained approach contains several hyper-
parameters, all defining the (hyper-) priors on respectively 𝐴, 𝛽 and 𝜏 . We
set uninformed priors on 𝐴 and 𝛽, 𝑎 = 𝑏 = 𝑒 = 𝑓 = 1𝑒−6, but those on𝛽, the precision of the constraint, must be chosen more carefully. Figure
4.10 illustrates the learning dynamics on a dataset of the Korteweg-de Vries
equation 4 when the 𝛽 hyperprior is uninformed, i.e. 𝑐 = 𝑑 = 1𝑒−6. Observe
that the model fails to learn the data, while almost immediately optimising
the constraint. We explain this behaviour as a consequence of our assump-
tion that the likelihoods factorise, which implies the two tasks of learning
the data and applying the constraint are independent. Since the constraint
contains much more terms than required, it can fit a model with high preci-
sion to any output the neural network produces. The two tasks then are not
independent but conditional: a high precision on the constraint is warranted
only if the data is reasonably approximated by the neural network. To es-
cape the local minimum observed in figure 4.10, we couple the two tasks by
making the hyper-prior on 𝛽 dependent on the performance of the fitting
task.

Figure 4.10: Regression loss as a function of fitting loss during training,
comparing an uninformed prior with a dynamic prior.

Our starting point is the update equation for 𝛽 (see Tipping [2001] for
4We choose to plot the losses of the original PINN loss ℒdata and ℒreg because these

are more easily interpreted than the likelihood-based losses we have introduced.

4.3. FULLY DIFFERENTIABLE MODEL DISCOVERY 53

details), ̂𝛽 = 𝑁 − 𝑀 + ∑𝑖 𝛼𝑖Σ𝑖𝑖 + 2𝑐𝑁ℒreg + 2𝑑 (4.24)

We typically observe good convergence of normal PINNs with 𝜆 = 1, and
following this implies ̂𝛽 ≈ ̂𝜏 , and similarly ℒreg → 0 as the model converges.
Assuming 𝑁 ≫ 𝑀 + ∑𝑖 𝛼𝑖Σ𝑖𝑖, we havê𝜏 ≈ 𝑁 + 2𝑐2𝑑 , (4.25)

which can be satisfied with 𝑐 = 𝑁/2, 𝑑 = 𝑛/ ̂𝜏 . Figure 4.10 shows that
with this dynamic prior the SBL constrained PINN does not get trapped
in a local minimum and learns the underlying data. We hope to exploit
multitask learning techniques to optimize this choice in future work.

4.3.3.2 Experiments

We present three experiments to benchmark our approach. We first study
the learning dynamics in-depth on a solution of the Korteweg- de Vries
equation, followed by a robustness study of the Burgers equation, and finally
show the ability to discover the chaotic Kuramoto-Shivashinsky equation
from highly noisy data. Reproducibility details can be found in the appendix
of the paper.

4.3.3.2.1 Korteweg-de Vries The Korteweg-de Vries equation de-
scribes waves in shallow water and is given by 𝑢𝑡 = 𝑢𝑥𝑥𝑥 − 𝑢𝑢𝑥. Figure
4.11a shows the dataset: 2000 samples with 20% noise from a two-soliton
solution. We compare our approach with I) Sparse Bayesian Learning with
features calculated with numerical differentiation, II) a model discovery
algorithm with PINNs, but non-differentiable variable selection called
DeepMoD [Both and Kusters, 2021] and III) PDE-find [Rudy et al., 2017], a
popular model discovery method for PDEs based on SINDy [Brunton et al.,
2016]. The first two benchmarks also act as an ablation study: method I
uses the same regression algorithm but does not use a neural network to
interpolate, while method II uses a neural network to interpolate but does
not implement differentiable variable selection.
In figure 4.11b and c we show that the differentiable approach recovers the
correct equation after approximately 3000 epochs. Contrarily, DeepMoD re-
covers the wrong equation. Performing the inference 10 times with different
seeds shows that the fully-differentiable approach manages to recover the
Kortweg-de Vries equation nine times, while DeepMoD recovers the correct
equation only twice - worse, it recovers the same wrong equation the other
8 times. Neither PDE-find nor SBL with numerical differentiation is able to

54 CHAPTER 4. DEEPMOD

Figure 4.11: Comparison of a differentiable SBL-constrained model and an
non-differentiable OLS-constrained model on a Korteweg-de Vries dataset
(panel a) with a library consisting of 4th order derivatives and 3rd order
polynomials, for a total of 20 candidate features. In panel b and c we
respectively plot the inferred prior ̂𝐴 and the posterior coefficients 𝜇. In
panel d we show the non-differentiable DeePyMod approach. In panels b
and c we see that the correct equation (bold blue line: 𝑢𝑥𝑥, bold orange
line: 𝑢𝑢𝑥) is discovered early on, while the non-differentiable model (panel
d) selects the wrong terms.

discover the Korteweg-de Vries equation from this dataset, even at 0% noise
due to the data sparsity.

4.3.3.2.2 Burgers We now explore how robust the SBL-constrained
PINN is with respect to noise on a dataset of the Burgers equation,𝑢𝑡 = 𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑥 (figure 4.12a). We add noise varying from 1% to 100%
and compare the equation discovered by benchmark method II (DeepMoD,
panel b) and our approach (panel c) - the bold orange and blue lines
denote 𝑢𝑥𝑥 and 𝑢𝑢𝑥 respectively, and the black dashed line their true
value. Observe that DeepMoD discovers small additional terms for >50%
noise, which become significant when noise >80%. Contrarily, our fully
differentiable approach discovers the same equation with nearly the same
coefficients across the entire range of noise, with only very small additional
terms (𝒪(10−4)). Neither PDE-find nor SBL with numerical differentiation
is able to find the correct equation on this dataset at 10% noise or higher.

4.3.3.2.3 Kuramoto-Shivashinsky The Kuramoto-Shivashinksy
equation describes flame propagation and is given by 𝑢𝑡 = −𝑢𝑢𝑥 − 𝑢𝑥𝑥 −𝑢𝑥𝑥𝑥𝑥. The fourth order derivative makes it challenging to learn with
numerical differentiation-based methods, while its periodic and chaotic
nature makes it challenging to learn with neural network based methods
[Both et al., 2021b]. We show here that using the SBL-constrained approach
we discover the KS-equation from only a small slice of the chaotic data (256
in space, 25 time steps), with 20% additive noise. We use a tanh-activated

4.3. FULLY DIFFERENTIABLE MODEL DISCOVERY 55

Figure 4.12: Exploration of robustness of SBL-constrained model for model
discovery for the Burgers equation (panel a). We show the discovered equa-
tion over a range of noise for DeepMoD (panel b) and the approach presented
in this paper (panel c). The bold orange and blue lines denotes 𝑢𝑥𝑥 and𝑢𝑢𝑥, and black dashed line their true value.

network with 5 layers of 60 neurons each, and the library consists of
derivatives up to 5th order and polynomials up to fourth order for a total
of thirty terms. Additionally, we precondition the network by training
without the constraint for 10k epochs.

Training this dataset to convergence takes significantly longer than previ-
ous examples, as the network struggles with the data’s periodicity (panel
b). After roughly 70k epochs, a clear separation between active and inac-
tive terms is visible in panel c, but it takes another 30k epochs before all
inactive terms are completely pruned from the model. Panels d and e show
the corresponding posterior and the maximum likelihood estimate of the co-
efficients using the whole library. Remarkably, the MLE estimate recovers
the correct coefficients for the active terms, while the inactive terms are all
nearly zero. In other words, the accuracy of the approximation is so high,
that least squares identifies the correct equation.

Figure 4.13: Recovering the Kuramoto-Shivashinsky equation. We show the
chaotic data and a cross section in panels a and b. The periodicity makes
this a challenging dataset to learn, requiring 200k iterations to fully converge
before it can be recovered (panel c). Panels d and e show that the posterior
and MLE of the coefficients yield nearly the same coefficients, indicating
that the network was able construct an extremely accurate approximation
of the data.

56 CHAPTER 4. DEEPMOD

4.3.3.3 Model discovery with normalizing flows

Consider a set of particles whose movement is described by a micro-scale
stochastic process. In the limit of many of such particles, such processes
can often be described with a deterministic macro-scale density model, de-
termining the evolution of the density of the particles over time. For exam-
ple, a biased random walk can be mapped to an advection-diffusion equa-
tion. The macro-scale density models are typically more insightful than the
corresponding microscopic model, but many (biological) experiments yield
single-particle data, rather than densities. Discovering the underlying equa-
tion thus requires first reconstructing the density profile from the particles’
locations. Classical approaches such as binning or kernel density estimation
are either non-differentiable, non-continuous or computationally expensive.
Normalizing Flows (NFs) have emerged in recent years as a flexible and
powerful method of constructing probability distribution, which is similar
to density estimation up to a multiplicative factor. In this section we use
physics informed normalizing flows to learn a PDE describing the evolution
of the density directly from unlabelled single particle data.

Figure 4.14: Using a tempo-spatial Normalizing Flow constrained by Sparse
Bayesian Learning to discover the advection-diffusion equation directly from
single particle data. Panel a shows the true density profile, and in panels b,
c and d we show the density inferred by binning (blue bars), inferred by NF
(red) and the ground truth (black, dashed) at 𝑡 = 0.1, 2.5, 4.5. Note that
although the estimate of the density is very good, we see in panel e that we
recover two additional terms (bold blue line: 𝑢𝑥, bold orange line 𝑢𝑥𝑥.
Since the conditional normalizing flow is used to construct the density, a
precision denoting the noise level does not exist, and instead we set as prior
for 𝛽 (𝑎 = 𝑁, 𝑏 = 𝑁 ⋅ 10−5). We consider a flow consisting of ten planar
transforms [Rezende and Mohamed, 2015] and a hyper-network of two layers
with thirty neurons each. The dataset consists of 200 walkers on a biased
random walk for 50 steps, corresponding to an advection-diffusion model,
with an initial condition consisting of two Gaussians, leading to the density
profile shown in figure 4.14a. The two smallest terms in panel e correspond

4.4. TEMPORAL NORMALIZING FLOWS 57

to the advection (bold green line) and diffusion (bold red line) term, but not
all terms are pruned. Panels b, c and compare the inferred density (red line)
to the true density (dashed black line) and the result obtained by binning. In
all three panels the constrained NF is able to infer a fairly accurate density
from only 200 walkers. We hypothesise that the extra terms are mainly due
to the small deviations, and that properly tuning the prior parameters and
using a more expressive transformation would prune the remaining terms
completely. Nonetheless, this shows that NF flows can be integrated in this
fully differentiable model discovery framework.

4.4 Temporal Normalizing Flows

Gert-Jan Both, Remy Kusters. PDF
This is another of my favourite papers. Although the execution leaves much
to be desired, I believe the core idea is quite simple and elegant and can be
of wide use.
In the biological sciences, single particle tracking (SPT) has become the
method of choice to investigate many cellular processes. The obtained tra-
jectories can be either analyzed as random walks, or from the perspective
of walker densities. This density model is deterministic and typically more
insightful than the stochastic random walk. However, in experiments the
position of single particles, and from these positions a time-dependent den-
sity must be reconstructed. Classical methods such as binning or kernel
density estimation are computationally expensive, non-differentiable 5, but
above all unable to explicit model a time-dependent density. Rather, they
construct snapshots of the density at given times. In this paper we introduce
conditional normalizing flows (CNFs)6, a flexible and differentiable method
which models the entire continuous spatio-temporal density.
We construct a Conditional Normalizing Flow by constraining the Jacobian
of the transformation. Consider a two dimensional normalizing flow in spa-
tial coordinate 𝑥 and time 𝑡:

𝑝(𝑥, 𝑡) = 𝜋(𝑧, 𝜏) ∣ 𝑑𝑧𝑑𝑥 𝑑𝜏𝑑𝑡 − 𝑑𝜏𝑑𝑥 𝑑𝑧𝑑𝑡 ∣ , [𝑧, 𝜏] = 𝑓(𝑥, 𝑡). (4.26)𝑧 and 𝜏 are thus some sort of latent coordinates. Since only the spatial
axis represents a valid probability distribution, i.e. ∫ 𝑝(𝑥, 𝑡)𝑑𝑥 = 1, but

5meaning that the inferred density is a given and cannot be changed.
6When we wrote this paper, we only considered dependence on time - hence the name

temporal normalizing flow. Calling them CNFs generalizes our approach and brings it in
line with literature.

https://arxiv.org/abs/1912.09092

58 CHAPTER 4. DEEPMOD∫ 𝑝(𝑥, 𝑡)𝑑𝑡 = 𝑓(𝑥), only 𝑥 can be validly transformed to 𝑧. We enforce this
by simply requiring 𝑡 = 𝜏 , i.e. the latent time 𝜏 is the real time 𝑡. The
transformation then reduces to

𝑝(𝑥, 𝑡) = 𝜋(𝑧, 𝑡) ∣𝑑𝑧(𝑥, 𝑡)𝑑𝑥 ∣ , 𝑧 = 𝑓(𝑥, 𝑡) (4.27)

i.e. the bijective transform depends on 𝑥 and 𝑡, but the coordinate 𝑡 is not
transformed.

4.4.1 Results

We now demonstrate tNFs on three datasets:

• A multi-scale toy problem to show tNFs can accommodate different
length scales in a single distribution;

• A dataset of Brownian motion to show how tNFs enhance density
estimation for sparse datasets;

• A dataset of chemotactic walkers to show that tNFs can correctly
estimate a multi-modal, non-Gaussian density.

4.4.1.1 Multi-scale density estimation

A key problem in density estimation is inferring an accurate distribution
when vastly different length scales are present within a single dataset. Clas-
sical approaches such as binning and KDE require a single characteristic
length scale, prohibiting an accurate estimate of a multi-scale distribution.
We now show that normalizing flows, and by extension tNFs, are capable of
accurately inferring such a distribution.

We build an artificial distribution consisting of three normal distributions
with standard deviations 𝜎 of 0.01, 0.1 and 1.0 (thus spanning three orders of
magnitude) and respective weights 0.013, 0.13 and 0.85. Figure 4.15 shows
the inferred distribution from 5000 samples for the NF and the KDE with
Scott’s rule determining the lengthscale. Observe that, as expected, the
KDE is unable to accommodate the different scales and that due the different
weighting of each peak, the widest is dominating the lengthscale estimation.
Contrarily, the NF provide an accurate density estimate for all lengthscales
present in the problem, independent of their weights. We stress that tNF
do not require any prior information of the different lengthscales present in
the data-set.

4.4. TEMPORAL NORMALIZING FLOWS 59

Figure 4.15: Comparison of density estimation with different scales. 𝑁 =5000 samples were taken from a density consisting of three Gaussians with
widths 0.01, 0.1, and 1, at respective locations 0.1, 2 and 10, and weights0.013, 0.13 and 0.85. The KDE used a Gaussian kernel with the kernel width
set by Scott’s rule.

4.4.1.2 Brownian motion

Brownian motion is the most basic and ubiquitous random walk and thus an
ideal test case to assess the performance of tNFs, comparing them to time
independent NFs and classical binning. We generate a single trajectory for a
Brownian random walker by the recursive relation, ⃗𝑥𝑛+1 = 𝒩(⃗𝑥𝑛, √2𝐷Δ𝑡).
Here 𝑛 is the step number with 𝑥0 the initial position, 𝐷 the diffusive coef-
ficient and Δ𝑡 the time step. In the limit of an infinite number of walkers,
the walker density 𝑐 is described by the diffusion equation, 𝜕𝑡𝑐 = 𝐷∇2𝑐.
Our dataset consists of 𝑀 = 500 walkers with 𝐷 = 2.0, with snapshots
being taken every Δ𝑡 = 0.1 for 𝑁 = 100 frames. The initial positions were
sampled from a Gaussian centered at 𝑥 = 1.5 with width 𝜎 = 0.5; in this
case, the diffusion equation can be solved exactly and the solution behaves
as a spreading Gaussian in time. We show the estimated density at 𝑡 = 0.75
and 𝑡 = 4.25 in figure 4.16 (a) and (b) for the tNF, the time independent NF
and binning. The tNF provides a significantly better density estimate than
the time independent NF, illustrated by the difference in ℓ2 error; 2.6 ⋅ 10−5
for the tNF and 7.4 ⋅ 10−5 for the NF, averaged over frame 15 and 85.

Normalizing flows are based on neural networks and hence prone to over-
fitting. We analyze the effect of overfitting in Appendix I of the paper and
show that NFs overfit more strongly than tNFs and perform worse in terms of
the ℓ2 error. We mainly attribute this improvement to the temporal correla-
tions in the dataset, which suppresses the natural frame-to-frame variations
in the density estimate. Nonetheless, tNFs are not immune to overfitting
and we speculate performance could be enhanced by applying techniques
such as early stopping.

60 CHAPTER 4. DEEPMOD

Figure 4.16: Results of inferring a Brownian walker density from 𝑀 = 500
walkers with 𝐷 = 2 and where a snapshot was taken every Δ𝑡 = 0.1 for𝑁 = 100 frames. The initial position was sampled from a Gaussian placed
at 𝑥 = 1.5 with width 𝜎 = 0.5. Panel a and b compare the inferred density
by binning, time independent normalizing flow (NF) and time dependent
normalizing flow (tNF) at two different times. Panel c compares the learned
mapping with the true mapping.

For the diffusion equation the true mapping can be trivially derived. We
compare it to the learned mapping in figure 4.16c. It shows perfect agreement
at 𝑡 = 4.25, but deviates from the true curve for 𝑥 < −5 at 𝑡 = 0.75. As can
be seen in figure 4.16a, no samples were present in this domain, explaining
the deviance. Nonetheless, it implies that the network does not generalize
well outside the sampling domain. We speculate that techniques such as
batch normalization or a different architecture for the network (a recurrent
network, for example) might further improve performance.

4.4.1.3 Chemotaxis

The Brownian motion presented in the previous section was a linear problem
with a uni-modal, Gaussian solution. We now apply tNFs to so-called chemo-
tactic walkers, a non-linear problem with a multi-modal solution. Bacteria
and other micro-organisms sense gradients of chemicals throughout their en-
vironment and use this to guide their motion towards a food source. This
effect is known as chemotaxis and is typically modelled by a random walker
with a superimposed drift; ⃗𝑥𝑛+1 = 𝒩(⃗𝑥𝑛 + 𝜒∇𝑝(⃗𝑥𝑛)𝑑𝑡, √2𝐷𝑑𝑡), where 𝑝 is
the chemical density and 𝜒 is the chemotactic sensitivity, which controls the
interaction between the chemical and the bacteria. In the infinite walker
limit, the walker and chemical density are given by the Keller-Segel model:𝜕𝑡𝑐 = ∇ ⋅ (𝐷𝑐∇𝑐 − 𝜒𝑐∇𝑝) and 𝜕𝑡𝑝 = 𝐷𝑝∇2𝑝 − 𝐾𝑝. Here 𝐷𝑐 and 𝐷𝑝 are
the diffusion coefficients of the bacteria and the chemical respectively and a
decay set by 𝐾 has been added to the chemical density.
Our dataset consisted of 𝑀 = 500 walkers with 𝐷 = 0.5 and we sampled
the initial position from a Gaussian centred at 𝑥 = −2.5. The food source
was modelled by a Gaussian with diffusion coefficient 𝐷 = 0.25, centred at𝑥 = 2.5; the walkers will thus drift towards food source over time. Figure
4.17 shows a comparison of the time independent NF, tNF and the binning

4.5. MODEL DISCOVERY IN THE SPARSE SAMPLING REGIME 61

Figure 4.17: Results of inferring a chemotactic walker density from 𝑀 = 500
walkers with 𝐷 = 0.5 and chemotactic sensitivity 𝜒 = 10, where a snapshot
was taken every Δ𝑡 = 0.1 for 𝑁 = 100 frames. The initial position was
sampled from a Gaussian placed at 𝑥 = −2.5 with width

√0.5, while the
food source is a Gaussian located at 𝑥 = 2.5 with width

√0.5, diffusing
with 𝐷 = 0.25 and decaying at a rate of 0.05. Panel a and b compare
the inferred density by binning, time independent normalizing flow (NF)
and time dependent normalizing flow (tNF) at two different times. Panel c
compares the learned mapping with the true mapping.

method. In figure 4.17(a) and (b) we find that the tNF leads to a significantly
more accurate density estimation, illustrated by the difference in ℓ2 error
(1.45⋅10−4 for the NF versus 1.8⋅10−5 for the tNF, averaged over 𝑡 = 6.0 and19.0). The tNF captures the multi-modal distribution at 𝑡 = 6.0 excellently,
without overfitting, contrarily to the time independent NF. The mapping,
as shown in figure 4.17c, is non-linear, in contrast to the mapping obtained
for the Brownian motion.

4.5 Model discovery in the sparse sampling regime

Gert-Jan Both, Georges Tod, Remy Kusters. PDF

This paper started with a curious observation: between our first and second
paper we noticed a curious regression in performance. We eventually traced it
back to a change in sampling strategy: when the data was randomly sampled
instead of on a grid, DeepMoD was able to recover the underlying equation
with much less data.

DeepMoD can handle much sparser data than other classical interpolation
techniques. In this paper we compare our method in-depth to spline in-
terpolation, how it fails as data becomes sparser and link it to the data’s
characteristic lengthscale.

https://arxiv.org/abs/2105.00400

62 CHAPTER 4. DEEPMOD

4.5.1 Results

4.5.1.1 Synthetic data - Burgers equation

We consider a synthetic data set of the Burgers equation 𝑢𝑡 = 𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑥,
with a delta peak initial condition 𝑢(𝑥, 𝑡 = 0) = 𝐴𝛿(𝑥) and domain 𝑡 ∈[0.1, 1.1], 𝑥 ∈ [−3, 4]. This problem can be solved analytically to yield a
solution dependent on a dimensionless coordinate 𝑧 = 𝑥/√4𝜈𝑡. We recog-
nize the denominator as a time-dependent length scale: a Burgers data set
sampled with spacing Δ𝑥 thus has a time-dependent dimensionless spacingΔ𝑧(𝑡). We are interested in the smallest characteristic length scale, which
for this data set is 𝑙𝑐 = √4𝜈𝑡0, where 𝑡0 = 0.1 is the initial time of the data
set. We set 𝐴 = 1 and 𝜈 = 0.25, giving 𝑙𝑐 = √0.1 ≈ 0.3.
Splines do not scale effectively beyond a single dimension, making it hard
to fairly compare across both the spatial and temporal dimensions. We
thus study the effect of spacing only along the spatial axis and minimize
the effect of discretization along the temporal axis by densely sampling 100
frames, i.e. Δ𝑡 = 0.01. Along the spatial axis we vary the number of samples
between 4 and 40, equivalent to 0.5 < Δ𝑥𝑙𝑐 < 5. We study the relative error𝜖 as the sum of the relative errors for all the derivatives, normalized over
every frame,

𝜖 = 3∑𝑖=1 ⟨∥𝜕𝑖𝑥𝑢𝑗 − 𝜕𝑖𝑥�̂�𝑗∥2∥𝜕𝑖𝑥𝑢𝑗∥2 ⟩𝑗 (4.28)

where 𝑖 sums the derivatives and 𝑗 runs over the frames. The derivatives
are normalised every frame by the 𝑙2 norm of the ground truth to ensure𝜖 is independent of the magnitude of 𝑢. 𝜖 does not take into account the
nature of noise (e.g. if it is correlated and non-gaussian), nor if the correct
equation is discovered. However, taken together with a success metric (i.e
if the right equation was discovered), it does serve as a useful proxy to the
quality of the interpolation.

Figure 4.18b) shows 𝜖 as a function of the relative spacing Δ𝑥/𝑙𝑐 and whether
the correct equation was discovered. The error when using splines (yellow)
increases with Δ𝑥 and, as expected, we are unable to discover the correct
equation for Δ𝑥 > 0.8𝑙𝑐 (dots indicate the correct equation is discovered and
triangles indicates it failed to do so). Considering the NN-based DeepMoD
method, sampled on a grid (green), we observe that it is able to accurately
interpolate and discover the correct equation up to Δ𝑥 ≈ 1.2𝑙𝑐. The reason
for this is that NN-based interpolation constructs a surrogate of the data,
informed by both the spatial and the temporal dynamics of the data set,
while classical interpolation is intrinsically limited to a single time frame.

4.5. MODEL DISCOVERY IN THE SPARSE SAMPLING REGIME 63

In figure 4.18c) we consider the same graph with 20% white noise on the
data. Despite smoothing, the spline is unable to construct an accurate
library and fails to discover the correct equation in every case. DeepMoD
stands in stark contrast, discovering the correct equation with comparable
relative error as in the 0% noise case.

R
a

n
d

o
m

 s
a

m
p

li
n

g
S

h
if

te
d

 s
a

m
p

li
n

g

No noise

20% noise

time

x

x

x

b)

c)

a)
Failed

Succes

Spline grid

NN grid

NN random

NN shifted

Failed

Succes

Spline grid

NN grid

NN random

NN shifted

G
ri

d
 s

a
m

p
li

n
g

Figure 4.18: a) The three sampling strategies considered. b) and c) Error in
the function library as function of the distance between the sensors Δ𝑥, nor-
malized with 𝑙𝑐 = √4𝜈𝑡0, for b) noise-less data and c) 20% of additive noise.
The yellow symbols correspond to a spline interpolation and the green, blue
and red correspond to the NN-based model discovery with various sampling
strategies. The circles indicate that model discovery was successful while the
triangles indicate that the incorrect model was discovered. The horizontal
dashed line indicates the smallest characteristic length-scale in the problem:Δ𝑥/𝑙𝑐 = 1.
4.5.1.1.1 Off-grid sampling Whereas higher-order splines are con-
strained to interpolating along a single dimension, DeepMoD uses a neural
network to interpolate along both the spatial and temporal axis. This
releases us from the constraint of on-grid sampling, and we exploit this
by constructing an alternative sampling method. We observe that for a
given number of samples 𝑛, DeepMoD is able to interpolate much more
accurately if these samples are randomly drawn from the sampling domain.
We show in figure 4.18b and c (Red) that the relative error 𝜖 in the sparse
regime, can be as much as two orders of magnitude lower compared to
the grid-sampled results at the same number of samples. We hypothesize
that this is due to the spatio-temporal interpolation of the network. By

64 CHAPTER 4. DEEPMOD

interpolating along both axes, each sample effectively covers its surrounding
area, and by randomly sampling we cover more of the spatial sampling
domain. Contrarily, sampling on a grid leaves large areas uncovered; we are
effectively sampling at a much lower resolution than when using random
sampling.

To test whether or not this improvement is intrinsically linked to the ran-
domness of sampling, we also construct an alternative sampling method
called shifted-grid sampling. Given a sampling grid with sensor distanceΔ𝑥, shifted-grid sampling translates this grid a distance Δ𝑎 every frame,
leading to an effective sample distance of Δ𝑎 ≪ Δ𝑥. This strategy, simi-
larly as random sampling varies the sensor position over time, but does so
in a deterministic and grid-based way. We show this sampling strategy in
figure 4.18a, while panels b and c confirm our hypothesis; shifted grid sam-
pling (Blue) performs similarly to random sampling. Shifted-grid sampling
relies on a densely sampled temporal axis ‘compensating’ for the sparsely
sampled spatial axes. This makes off-grid sampling beneficial when either
the time or space axis, but not both, can be sampled with a high resolution.
In the experimental section we show that if both axes are sparsely sampled,
we do not see a strong improvement over grid sampling.

4.5.1.2 Experimental data - 2D Advection-Diffusion

In an electrophoresis experiment, a charged dye is pipetted in a gel over
which a spatially uniform electric field is applied (see Figure 4.19a)). The
dye passively diffuses in the gel and is advected by the applied electric field,
giving rise to an advection-diffusion equation with advection in one direction:𝑢𝑡 = 𝐷(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝑣𝑢𝑦. Both et al. [2019] showed that DeepMoD could
discover the correct underlying equation from the full data-set (size 120 x
150 pixels and 25 frames). Here, we study how much we can sub-sample
this data and still discover the advection-diffusion equation.

In figure 4.19 c) and d) we perform grid based as well as a random sub-
sampling of the data. The neural network-based method discovers the
advection-diffusion equation on as few as 6 x 8 spatial sampling points with
13 time-points, or with 20 x 25 pixels on only 3 time-points. The mini-
mum number of required samples is similar for grid and random sampling,
confirming that when both axes are poorly sampled, there is no benefit to
sample randomly.

The smallest characteristic length scale in the problem is the width of the
dye at 𝑡 = 𝑡0, which we estimate as 𝑙𝑐 ≈ 10 pixels. For the data presented
in figure 4.19c) and 4.19d), at a resolution below 10 × 13 sensors classical
approaches would inherently fail, even if no noise was present in the data set.
This is indeed what we observe: using a finite difference-based library we

4.5. MODEL DISCOVERY IN THE SPARSE SAMPLING REGIME 65

NN grid NN random

x y

t

b) c)

e) f)

d)a)

E
xp

e
ri

m
e

n
ta

l d
a

ta

n
o

 n
o

is
e

2
%

 n
o

is
e

2
0

%
 n

o
is

e

n
o

is
e

 le
v

e
l (

%
)

FD Grid

l
c

NN Grid
NN Random

FD Grid
NN Grid

NN Random

FD Grid
NN Grid

NN Random

Figure 4.19: a) Experimental setup of the gel electrophoresis. b) Three time
frames of the density with a spatial resolution of 20x25. c) and d) Success
diagram for the experimental data indicating correct model discovery (Yel-
low indicates the correct AD equation 𝑢𝑡 = 𝐷(𝑢𝑥𝑥 +𝑢𝑦𝑦)+𝑣𝑢𝑦 is discovered)
as function of the spatial and temporal resolution for c) grid sampling and
d) random sampling. e) Obtained mask and coefficients (𝐷 = 0.025 and and𝑣 = (0, 0.2)) for the artificial data-set as function of the noise level (11x11
spatial resolution). Hereby, yellow indicates the terms selected by the algo-
rithm and the red dashed box the terms that are expected in the PDE. f)
Success diagrams for various levels of additive noise, comparing the result
of DeepMoD with a grid and random sampling strategy and the classical
LassoCV algorithm on a Finite Difference (FD)-based library (after SVD
filtering of the different frames).

66 CHAPTER 4. DEEPMOD

were unable to recover the advection-diffusion equation, even after denoising
with SVD. However, we do observe that below this value we occasionally
discover the correct PDE, despite the experimental noise present in the data.
The use of a neural network and random sampling lead to non-deterministic
behaviour: the neural network training dynamics depend on its initialization
and two randomly sampled datasets of similar size might not lead to similar
results. In practice this leads to a ‘soft’ decision boundary, where a fraction
of a set of runs with different initialization and datasets fail.

4.5.1.2.1 Noiseless synthetic data set To further confirm our results
from the previous section, we simulate the experiment by solving the 2D
advection-diffusion with a Gaussian initial condition and experimentally de-
termined parameters (𝐷 = 0.025 and and 𝑣 = (0, 0.2). Figure 4.19e) shows
the selected terms and their magnitude as functions of the applied noise
levels for a highly subsampled data-set (grid sampling, spatial resolution of
11x11 and temporal resolution 14). The correct AD equation is recovered
up to noise levels of 100% (See figure 4.19e), confirming the noise robustness
of the NN-based model discovery. In panel f) we compare the deep-learning
based model discovery using grid and random sampling with classical meth-
ods for various noise levels and sensor spacing with a fixed temporal resolu-
tion of 81 frames (Data for the FD was pre-processed with a SVD filter, see
SI for further details). We confirm that, similarly to the Burgers example of
the previous section, the correct underlying PDE is discovered even below
the smallest characteristic length-scale in the problem (indicated by a red
dashed line in figure 4.19f).

This figure confirms our three main conclusions: 1) In the noiseless limit,
classical approaches are only slightly less performing than NN-based model
discovery for grid sampling. 2) Increasing the noise level dramatically im-
pacts classical model discovery while barely impacting NN-based model dis-
covery and 3) random sampling over space considerably improves perfor-
mance, allowing model discovery with roughly 4-8 times fewer sample points
for this particular data-set (depending on the noise level).

4.5.1.3 Experimental data - Cable equation

Applying a constant voltage to a RC-circuit with longitudinal resistance (see
figure 4.20 a) result in time-dependent voltage increase throughout the cir-
cuit due to the charging of the capacitors. This rise is modeled by the cable
equation, which is essentially a reaction-diffusion equation $ u_t = u_{xx}/
(R_l C) + u/(R_m C)$ with 𝐶 the capacitance, 𝑅𝑙 the longitudinal resis-
tance and 𝑅𝑚 the parallel resistance of the circuit. The discrete nature of
the experiment automatically gives Δ𝑥 = 𝑂(𝑙𝑐). We consider an extreme

4.5. MODEL DISCOVERY IN THE SPARSE SAMPLING REGIME 67

case where we only have seven sensors throughout the circuit (i.e. spatial
axis), but take 2500 samples along the time axis. Figure 4.20b shows the
measured voltage at these seven elements. Initially, all the capacitors are un-
charged and we observe a sharp voltage increase at the first element. As the
capacitors charge, this further propagates through the circuit, charging the
capacitors and resulting in the curves shown in the figure. We apply both a
classical approach with the library generated with splines and DeepMoD to
a varying amount of elements. Figure 4.20 c and d show that the DeepMoD
discovers the cable equation with as few as seven elements, whereas classical
methods are unable to find the cable equation at any number of elements.

a)

b)

c)

d)

r
l

r
l

r
l

r
m

r
m

r
m

c
m

u
2

u
1

u
0

u
n

c
m

c
m

NN-based

Spline

u

u
0

u
1

u
2

u
3

u
4

u
5

u
6

Figure 4.20: a) Schematic overview of the electronic setup to generate the
cable equation. b) The voltage drop 𝑢 as function of time for various posi-
tions along the circuit for a circuit with 7 elements. The mask obtained for
c) NN-based and d) cross validated Lasso with spline based library model
discovery (Yellow indicates the term was recovered by the algorithm). The
red boxes indicate the two expected terms in the equation.

68 CHAPTER 4. DEEPMOD

Chapter 5

Conclusion

Despite the massive progress in the last few years, model discover of (partial)
differential equations is still a field in its infancy. At the start of this thesis
in early 2019, both the sparse regression approach for PDEs and PINNs were
novel; to our knowledge, no one had attempted to perform model discovery
on noisy experimental data. Considering the experiments on synthetic data
that would have been a futile attempt - they all showed model discovery re-
quired densely sampled datasets with very little noise (<10%, but more often
<2% noise). With this we set out to construct methods able to handle noisy
and sparse datasets originating from experiments. The line of work we have
developed with DeepMoD makes large strides towards this goal. In each
paper we show that our methods are able to handle >50% noise and work
with an order of magnitude less data than classical methods on increasingly
challenging (synthetic) datasets such as the Kuramoto-Shivashinsky equa-
tion. DeepMoD also recovered the underlying equation when applied to data
generated by simple experiments, validating our approach.

A second, more implicit goal was to create accessible methods. Complex
methods are less likely to be adapted than simple ones, and if the goal is
to make model discovery a valuable addition to scientists’ toolboxes, com-
plexity should be strongly limited. Ideally, scientists without a background
in numerical methods should be able to understand and apply our meth-
ods. Deep learning is an ideal vehicle for this, as many scientists these days
have at least a basic understanding. Automatic differentiation, the key but
complex mechanism at the core of DL, is often abstracted away to frame-
works such as Pytorch, making it possible to construct powerful approaches
without in-depth numerical knowledge. This leads to the peculiar situa-
tion where a neural network-based approach is regarded as more accesible
than splines. Indeed, our work shows that an integrated combination of
simple features (a basic MLP, a simple Lasso and a constraint) can eas-
ily and strongly outperform much more complex traditional approaches - a

69

70 CHAPTER 5. CONCLUSION

testament to the power of differentiable programming.

Our work also carries strong implications for future work and for model
discovery as a field. First and foremost, it shows that the limiting fac-
tor is the accuracy of the features, implying that accurately modelling and
denoising data is just as important as the sparse regression. Perhaps para-
doxically then, significant progress can be made by focussing on data-driven
modelling. In all cases, neural networks (especially PINNs) should feature
prominently; the benefits of automatic differentiation and excellent inter-
and extrapolation only become more pronounced in high-dimensional data.
That is not to say that non-DL-based approaches should be neglected. A
main thread in our work has been to show how ‘classical’ methods such as
sparse and Bayesian regression can be integrated in DL approaches, and
most progress can be made by synthesizing these approaches. The Bayesian
regression and model selection literature is especially rich, and combining
DL-based modelling with these methods should prove fruitful.

Taken together, our work strongly establishes the argument for physics-
constrained, neural network-based surrogates for model discovery of PDEs
on experimental data.

5.1 Challenges and questions unanswered

Model discovery is a young and exciting field, and as with all young fields,
many limitations, challenges and questions remain. As such I list these in no
particular order below - I’ve mentioned some of them before, others might
have occured to you while reading this thesis and a few of them are of a
more philosophical nature.

• Perhaps the single biggest barrier to apply model discovery on novel,
experimental data is the lack of methods able to handle data with
spatially and temporally varying coefficient fields. Initial work [Rudy
et al., 2018, Chen and Lin, 2021] has focussed on leveraging group spar-
sity, but so far this approach works only for a single varying dimension
- sufficient for temporal dependence, but not for spatial dependence
(2D at least). Scaling this approach to spatio-temporal dependence
yields a compressed sensing problem: every sample becomes a sepa-
rate regression problem (𝑛 = 1) with many features (𝑝 ≫ 𝑛). An
alternative approach would be to extend on DeepMoD, and use a neu-
ral network to model the field. This implicitly encodes a smoothness
bias into the fields and initial results have been promising. However,
to perform actual model discovery would require some criterion for
deciding when a field can be considered inactive.

5.1. CHALLENGES AND QUESTIONS UNANSWERED 71

• Contrarily, perhaps one of the biggest opportunities for model discov-
ery would be the synthesis of data from multiple sources. Rarely does
a single experiment tell the whole story: we need multiple experiments
to capture all of a systems dynamics. Initial work using group sparsity
[de Silva et al., 2019, Tod et al., 2021] only scratches the surface of
what is possible. How can data from multiple experiments with differ-
ent length and time scales be integrated? Initial work on combining
timescales [Champion et al., 2019a] on ODEs is promising, but has not
been expanded to PDEs, nor to (multiple) lengthscales. Even more in-
teresting would be to combine data from different experimental setups
and instruments, also known as multimodal fusion.

• Related to the data synthesis challenge is that of sampling, active
learning and experimental design. Sampling has been studied in-depth
from the perspective of signal reconstruction [Brunton et al., 2013], but
not from the viewpoint of model discovery - a subtly different problem.
Is there an optimal sampling strategy for model discovery, and if so,
what would it be? Having more knowledge about this could form the
basis for an active learning approach, where the model itself suggests
where to sample to optimize model discovery. The most ambitious
form of this would be experiment design, with an agent suggesting
novel experiments designed to aid model discovery.

• All of the neural networks used in our work were simple MLPs - no
normalization, batching, or attention mechanisms. How much do the
implicit biases of the function approximator impact the discovered
equation? Various works show that incorporating underlying symme-
tries and invariances in the network improves performance [Cranmer
et al., 2020, Greydanus et al., 2019, Finzi et al., 2021], but in the
context of model discovery these would have to be discovered from
data.

• Model discovery is usually applied directly on the observable data; we
observe some quantity 𝑢 and also wish to find a model for 𝑢. In some
cases the observable is not fully observed - the model is described by
an 𝑛-dimensional state, and we only observe some of those dimensions
-, or not at all what we wish to model - we observe single particles
but want to model a density-. This significantly complicates model
discovery, as it requires first constructing or inferring these ‘latent’
dynamics. This is likely to yield biased estimates and, in our experi-
ence, model discovery deals poorly with bias in data. Making model
discovery more robust at dealing with bias is a sorely understudied
subject.

• A reflection on in what kind of settings model discovery can be useful

72 CHAPTER 5. CONCLUSION

is needed. Most papers (including our own) use model discovery on
systems where the dynamics are already known, and relatively simple.
In what kind of data could model discovery be truly useful? Can
the complex, high dimensional data associated with the modern world
by described by relatively simple, physics-inspired PDEs? Is model
discovery only useful to discover effective models, or would it be able
to discover new, more fundamental dynamics?

Bibliography

Steven Atkinson. Bayesian Hidden Physics Models: Uncertainty Quantifica-
tion for Discovery of Nonlinear Partial Differential Operators from Data.
arXiv:2006.04228 [cs, stat], June 2020. URL http://arxiv.org/abs/2006.
04228. arXiv: 2006.04228.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models.
arXiv:1909.01377 [cs, stat], October 2019. URL http://arxiv.org/abs/
1909.01377. arXiv: 1909.01377.

Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Al-
gorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences,
2(1):183–202, January 2009. ISSN 1936-4954. doi: 10.1137/080716542.
URL http://epubs.siam.org/doi/10.1137/080716542.

Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and
Max Welling. Sylvester Normalizing Flows for Variational Inference.
arXiv:1803.05649 [cs, stat], March 2018. URL http://arxiv.org/abs/1803.
05649. arXiv: 1803.05649.

J. Bongard and H. Lipson. Automated reverse engineering of nonlin-
ear dynamical systems. Proceedings of the National Academy of Sci-
ences, 104(24):9943–9948, June 2007. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.0609476104. URL http://www.pnas.org/cgi/doi/10.1073/
pnas.0609476104.

Gert-Jan Both and Remy Kusters. Temporal Normalizing Flows.
arXiv:1912.09092 [physics, stat], December 2019. URL http://arxiv.org/
abs/1912.09092. arXiv: 1912.09092.

Gert-Jan Both and Remy Kusters. Fully differentiable model discovery.
arXiv:2106.04886 [cs, stat], June 2021. URL http://arxiv.org/abs/2106.
04886. arXiv: 2106.04886.

Gert-Jan Both, Subham Choudhury, Pierre Sens, and Remy Kusters. Deep-
MoD: Deep learning for Model Discovery in noisy data. arXiv:1904.09406
[physics, q-bio, stat], April 2019. URL http://arxiv.org/abs/1904.09406.
arXiv: 1904.09406.

73

http://arxiv.org/abs/2006.04228
http://arxiv.org/abs/2006.04228
http://arxiv.org/abs/1909.01377
http://arxiv.org/abs/1909.01377
http://epubs.siam.org/doi/10.1137/080716542
http://arxiv.org/abs/1803.05649
http://arxiv.org/abs/1803.05649
http://www.pnas.org/cgi/doi/10.1073/pnas.0609476104
http://www.pnas.org/cgi/doi/10.1073/pnas.0609476104
http://arxiv.org/abs/1912.09092
http://arxiv.org/abs/1912.09092
http://arxiv.org/abs/2106.04886
http://arxiv.org/abs/2106.04886
http://arxiv.org/abs/1904.09406

74 BIBLIOGRAPHY

Gert-Jan Both, Georges Tod, and Remy Kusters. Model discovery in the
sparse sampling regime. arXiv:2105.00400 [physics, stat], May 2021a.
URL http://arxiv.org/abs/2105.00400. arXiv: 2105.00400.

Gert-Jan Both, Gijs Vermarien, and Remy Kusters. Sparsely constrained
neural networks for model discovery of PDEs. arXiv:2011.04336 [physics],
May 2021b. URL http://arxiv.org/abs/2011.04336. arXiv: 2011.04336.

B. W. Brunton, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Optimal Sensor
Placement and Enhanced Sparsity for Classification. arXiv:1310.4217 [cs],
October 2013. URL http://arxiv.org/abs/1310.4217. arXiv: 1310.4217.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discov-
ering governing equations from data by sparse identification of non-
linear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, April 2016. ISSN 0027-8424, 1091-6490.
doi: 10.1073/pnas.1517384113. URL http://www.pnas.org/lookup/doi/
10.1073/pnas.1517384113.

Kathleen Champion, Steven L. Brunton, and J. Nathan Kutz. Discovery
of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings.
SIAM Journal on Applied Dynamical Systems, 18(1):312–333, January
2019a. ISSN 1536-0040. doi: 10.1137/18M1188227. URL http://arxiv.
org/abs/1805.07411. arXiv: 1805.07411.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brun-
ton. Data-driven discovery of coordinates and governing equations.
arXiv:1904.02107 [stat], March 2019b. URL http://arxiv.org/abs/1904.
02107. arXiv: 1904.02107.

Kathleen Champion, Peng Zheng, Aleksandr Y. Aravkin, Steven L. Brun-
ton, and J. Nathan Kutz. A unified sparse optimization framework to
learn parsimonious physics-informed models from data. arXiv:1906.10612
[physics], June 2019c. URL http://arxiv.org/abs/1906.10612. arXiv:
1906.10612.

Aoxue Chen and Guang Lin. Robust data-driven discovery of partial dif-
ferential equations with time-dependent coefficients. arXiv:2102.01432
[cs, stat], February 2021. URL http://arxiv.org/abs/2102.01432. arXiv:
2102.01432.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
Neural Ordinary Differential Equations. arXiv:1806.07366 [cs, stat], June
2018. URL http://arxiv.org/abs/1806.07366. arXiv: 1806.07366.

Roberto Cipolla, Yarin Gal, and Alex Kendall. Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics. In 2018

http://arxiv.org/abs/2105.00400
http://arxiv.org/abs/2011.04336
http://arxiv.org/abs/1310.4217
http://www.pnas.org/lookup/doi/10.1073/pnas.1517384113
http://www.pnas.org/lookup/doi/10.1073/pnas.1517384113
http://arxiv.org/abs/1805.07411
http://arxiv.org/abs/1805.07411
http://arxiv.org/abs/1904.02107
http://arxiv.org/abs/1904.02107
http://arxiv.org/abs/1906.10612
http://arxiv.org/abs/2102.01432
http://arxiv.org/abs/1806.07366

BIBLIOGRAPHY 75

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7482–7491, Salt Lake City, UT, USA, June 2018. IEEE. ISBN 978-
1-5386-6420-9. doi: 10.1109/CVPR.2018.00781. URL https://ieeexplore.
ieee.org/document/8578879/.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David
Spergel, and Shirley Ho. Lagrangian Neural Networks. arXiv:2003.04630
[physics, stat], March 2020. URL http://arxiv.org/abs/2003.04630. arXiv:
2003.04630.

Brian de Silva, David M. Higdon, Steven L. Brunton, and J. Nathan Kutz.
Discovery of Physics from Data: Universal Laws and Discrepancy Models.
arXiv:1906.07906 [physics, stat], June 2019. URL http://arxiv.org/abs/
1906.07906. arXiv: 1906.07906.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A Practical Method
for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix
Groups. arXiv:2104.09459 [cs, math, stat], April 2021. URL http://arxiv.
org/abs/2104.09459. arXiv: 2104.09459.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural
Networks. arXiv:1906.01563 [cs], September 2019. URL http://arxiv.
org/abs/1906.01563. arXiv: 1906.01563.

Roger Guimerà, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco A.
Massucci, Manuel Miranda, Jordi Pallarès, and Marta Sales-Pardo. A
Bayesian machine scientist to aid in the solution of challenging scientific
problems. Science Advances, 6(5):eaav6971, January 2020. ISSN 2375-
2548. doi: 10.1126/sciadv.aav6971. URL https://advances.sciencemag.
org/lookup/doi/10.1126/sciadv.aav6971.

Ingvild M. Helgøy and Yushu Li. A Noise-Robust Fast Sparse Bayesian
Learning Model. arXiv:1908.07220 [cs, stat], May 2020. URL http://
arxiv.org/abs/1908.07220. arXiv: 1908.07220.

Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji
Kawaguchi. When Do Extended Physics-Informed Neural Networks
(XPINNs) Improve Generalization? arXiv:2109.09444 [cs, math,
stat], September 2021. URL http://arxiv.org/abs/2109.09444. arXiv:
2109.09444.

Junzhou Huang and Tong Zhang. The Benefit of Group Sparsity.
arXiv:0901.2962 [math, stat], March 2009. URL http://arxiv.org/abs/
0901.2962. arXiv: 0901.2962.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning
PDEs from Data. arXiv:1710.09668 [cs, math, stat], October 2017. URL
http://arxiv.org/abs/1710.09668. arXiv: 1710.09668.

https://ieeexplore.ieee.org/document/8578879/
https://ieeexplore.ieee.org/document/8578879/
http://arxiv.org/abs/2003.04630
http://arxiv.org/abs/1906.07906
http://arxiv.org/abs/1906.07906
http://arxiv.org/abs/2104.09459
http://arxiv.org/abs/2104.09459
http://arxiv.org/abs/1906.01563
http://arxiv.org/abs/1906.01563
https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aav6971
https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aav6971
http://arxiv.org/abs/1908.07220
http://arxiv.org/abs/1908.07220
http://arxiv.org/abs/2109.09444
http://arxiv.org/abs/0901.2962
http://arxiv.org/abs/0901.2962
http://arxiv.org/abs/1710.09668

76 BIBLIOGRAPHY

Zichao Long, Yiping Lu, and Bin Dong. PDE-Net 2.0: Learning PDEs
from Data with A Numeric-Symbolic Hybrid Deep Network. Journal of
Computational Physics, 399:108925, December 2019. ISSN 00219991. doi:
10.1016/j.jcp.2019.108925. URL http://arxiv.org/abs/1812.04426. arXiv:
1812.04426.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning
Sparse Neural Networks through L_0 Regularization. arXiv:1712.01312
[cs, stat], June 2018. URL http://arxiv.org/abs/1712.01312. arXiv:
1712.01312.

Suryanarayana Maddu, Bevan L. Cheeseman, Ivo F. Sbalzarini, and Chris-
tian L. Müller. Stability selection enables robust learning of partial dif-
ferential equations from limited noisy data. arXiv:1907.07810 [physics],
July 2019. URL http://arxiv.org/abs/1907.07810. arXiv: 1907.07810.

Suryanarayana Maddu, Bevan L. Cheeseman, Christian L. Müller, and
Ivo F. Sbalzarini. Learning physically consistent mathematical models
from data using group sparsity. arXiv:2012.06391 [cs, q-bio, stat], De-
cember 2020. URL http://arxiv.org/abs/2012.06391. arXiv: 2012.06391.

Suryanarayana Maddu, Dominik Sturm, Christian L. M üller, and Ivo F.
Sbalzarini. Inverse-Dirichlet Weighting Enables Reliable Training of
Physics Informed Neural Networks. arXiv:2107.00940 [physics, q-bio],
July 2021. URL http://arxiv.org/abs/2107.00940. arXiv: 2107.00940.

N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor. Model selection
for dynamical systems via sparse regression and information criteria. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 473(2204):20170009, August 2017. ISSN 1364-5021, 1471-2946.
doi: 10.1098/rspa.2017.0009. URL http://rspa.royalsocietypublishing.
org/lookup/doi/10.1098/rspa.2017.0009.

Michail Maslyaev, Alexander Hvatov, and Anna Kalyuzhnaya. Data-driven
PDE discovery with evolutionary approach. arXiv:1903.08011 [cs, math],
11540:635–641, 2019. doi: 10.1007/978-3-030-22750-0_61. URL http:
//arxiv.org/abs/1903.08011. arXiv: 1903.08011.

Levi McClenny and Ulisses Braga-Neto. Self-Adaptive Physics-Informed
Neural Networks using a Soft Attention Mechanism. arXiv:2009.04544
[cs, stat], September 2020. URL http://arxiv.org/abs/2009.04544. arXiv:
2009.04544.

Nicolai Meinshausen and Peter Buehlmann. Stability Selection.
arXiv:0809.2932 [stat], May 2009. URL http://arxiv.org/abs/0809.2932.
arXiv: 0809.2932.

http://arxiv.org/abs/1812.04426
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1907.07810
http://arxiv.org/abs/2012.06391
http://arxiv.org/abs/2107.00940
http://rspa.royalsocietypublishing.org/lookup/doi/10.1098/rspa.2017.0009
http://rspa.royalsocietypublishing.org/lookup/doi/10.1098/rspa.2017.0009
http://arxiv.org/abs/1903.08011
http://arxiv.org/abs/1903.08011
http://arxiv.org/abs/2009.04544
http://arxiv.org/abs/0809.2932

BIBLIOGRAPHY 77

Rajdip Nayek, Ramon Fuentes, Keith Worden, and Elizabeth J. Cross.
On spike-and-slab priors for Bayesian equation discovery of nonlinear
dynamical systems via sparse linear regression. arXiv:2012.01937 [cs,
eess, stat], December 2020. URL http://arxiv.org/abs/2012.01937. arXiv:
2012.01937.

K. J. Painter. Mathematical models for chemotaxis and their applications in
self-organisation phenomena. arXiv:1806.08627 [q-bio], June 2018. URL
http://arxiv.org/abs/1806.08627. arXiv: 1806.08627.

Brenden K. Petersen. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. arXiv:1912.04871
[cs, stat], February 2020. URL http://arxiv.org/abs/1912.04871. arXiv:
1912.04871.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kir-
ill Zubov, Rohit Supekar, Dominic Skinner, and Ali Ramadhan. Universal
Differential Equations for Scientific Machine Learning. arXiv:2001.04385
[cs, math, q-bio, stat], January 2020. URL http://arxiv.org/abs/2001.
04385. arXiv: 2001.04385.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics In-
formed Deep Learning (Part I): Data-driven Solutions of Nonlinear Par-
tial Differential Equations. arXiv:1711.10561 [cs, math, stat], November
2017a. URL http://arxiv.org/abs/1711.10561. arXiv: 1711.10561.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics In-
formed Deep Learning (Part II): Data-driven Discovery of Nonlinear Par-
tial Differential Equations. arXiv:1711.10566 [cs, math, stat], November
2017b. URL http://arxiv.org/abs/1711.10566. arXiv: 1711.10566.

Bharath Ramsundar, Dilip Krishnamurthy, and Venkatasubramanian
Viswanathan. Differentiable Physics: A Position Piece. arXiv:2109.07573
[physics], September 2021. URL http://arxiv.org/abs/2109.07573. arXiv:
2109.07573.

Adil Rasheed, Omer San, and Trond Kvamsdal. Digital Twin: Values, Chal-
lenges and Enablers From a Modeling Perspective. IEEE Access, 8:21980–
22012, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2970143. URL
https://ieeexplore.ieee.org/document/8972429/.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with
Normalizing Flows. arXiv:1505.05770 [cs, stat], May 2015. URL http:
//arxiv.org/abs/1505.05770. arXiv: 1505.05770.

Samuel Rudy, Alessandro Alla, Steven L. Brunton, and J. Nathan Kutz.
Data-driven identification of parametric partial differential equations.

http://arxiv.org/abs/2012.01937
http://arxiv.org/abs/1806.08627
http://arxiv.org/abs/1912.04871
http://arxiv.org/abs/2001.04385
http://arxiv.org/abs/2001.04385
http://arxiv.org/abs/1711.10561
http://arxiv.org/abs/1711.10566
http://arxiv.org/abs/2109.07573
https://ieeexplore.ieee.org/document/8972429/
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1505.05770

78 BIBLIOGRAPHY

arXiv:1806.00732 [math], June 2018. URL http://arxiv.org/abs/1806.
00732. arXiv: 1806.00732.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan
Kutz. Data-driven discovery of partial differential equations. Sci-
ence Advances, 3(4):e1602614, April 2017. ISSN 2375-2548. doi: 10.
1126/sciadv.1602614. URL http://advances.sciencemag.org/lookup/doi/
10.1126/sciadv.1602614.

Hayden Schaeffer. Learning partial differential equations via data discovery
and sparse optimization. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 473(2197):20160446, January
2017. ISSN 1364-5021, 1471-2946. doi: 10.1098/rspa.2016.0446. URL
https://royalsocietypublishing.org/doi/10.1098/rspa.2016.0446.

Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from
Experimental Data. Science, 324(5923):81–85, April 2009. ISSN 0036-
8075, 1095-9203. doi: 10.1126/science.1165893. URL https://www.
sciencemag.org/lookup/doi/10.1126/science.1165893.

Sungyong Seo and Yan Liu. Differentiable Physics-informed Graph Net-
works. arXiv:1902.02950 [cs, stat], February 2019. URL http://arxiv.
org/abs/1902.02950. arXiv: 1902.02950.

Khemraj Shukla, Ameya D. Jagtap, and George Em Karniadakis. Par-
allel Physics-Informed Neural Networks via Domain Decomposition.
arXiv:2104.10013 [cs], September 2021. URL http://arxiv.org/abs/2104.
10013. arXiv: 2104.10013.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B.
Lindell, and Gordon Wetzstein. Implicit Neural Representations with
Periodic Activation Functions. arXiv:2006.09661 [cs, eess], June 2020.
URL http://arxiv.org/abs/2006.09661. arXiv: 2006.09661.

Simo Särkkä. The Use of Gaussian Processes in System Identification.
arXiv:1907.06066 [cs, eess, stat], July 2019. URL http://arxiv.org/abs/
1907.06066. arXiv: 1907.06066.

Robert Tibshirani. Regression shrinkage and selection via the lasso: a retro-
spective: Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 73(3):273–
282, June 2011. ISSN 13697412. doi: 10.1111/j.1467-9868.2011.00771.x.
URL http://doi.wiley.com/10.1111/j.1467-9868.2011.00771.x.

Michael Tipping. tipping01a.pdf. Journal of Machine Learning Re-
search, I, 2001. URL https://www.jmlr.org/papers/volume1/tipping01a/
tipping01a.pdf.

http://arxiv.org/abs/1806.00732
http://arxiv.org/abs/1806.00732
http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1602614
http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1602614
https://royalsocietypublishing.org/doi/10.1098/rspa.2016.0446
https://www.sciencemag.org/lookup/doi/10.1126/science.1165893
https://www.sciencemag.org/lookup/doi/10.1126/science.1165893
http://arxiv.org/abs/1902.02950
http://arxiv.org/abs/1902.02950
http://arxiv.org/abs/2104.10013
http://arxiv.org/abs/2104.10013
http://arxiv.org/abs/2006.09661
http://arxiv.org/abs/1907.06066
http://arxiv.org/abs/1907.06066
http://doi.wiley.com/10.1111/j.1467-9868.2011.00771.x
https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf

BIBLIOGRAPHY 79

Georges Tod, Gert-Jan Both, and Remy Kusters. Discovering PDEs from
Multiple Experiments. arXiv:2109.11939 [physics, stat], September 2021.
URL http://arxiv.org/abs/2109.11939. arXiv: 2109.11939.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: a Physics-
Inspired Method for Symbolic Regression. arXiv:1905.11481 [hep-
th, physics:physics], May 2019. URL http://arxiv.org/abs/1905.11481.
arXiv: 1905.11481.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin
Wu, and Max Tegmark. AI Feynman 2.0: Pareto-optimal symbolic regres-
sion exploiting graph modularity. arXiv:2006.10782 [physics, stat], De-
cember 2020. URL http://arxiv.org/abs/2006.10782. arXiv: 2006.10782.

Floris Van Breugel, J. Nathan Kutz, and Bingni W. Brunton. Numerical
Differentiation of Noisy Data: A Unifying Multi-Objective Optimization
Framework. IEEE Access, 8:196865–196877, 2020. ISSN 2169-3536. doi:
10.1109/ACCESS.2020.3034077. Conference Name: IEEE Access.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and
mitigating gradient pathologies in physics-informed neural networks.
arXiv:2001.04536 [cs, math, stat], January 2020a. URL http://arxiv.
org/abs/2001.04536. arXiv: 2001.04536.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail
to train: A neural tangent kernel perspective. arXiv:2007.14527 [cs,
math, stat], July 2020b. URL http://arxiv.org/abs/2007.14527. arXiv:
2007.14527.

Antoine Wehenkel and Gilles Louppe. Unconstrained Monotonic Neural
Networks. arXiv:1908.05164 [cs, stat], August 2019. URL http://arxiv.
org/abs/1908.05164. arXiv: 1908.05164.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian
Physics-Informed Neural Networks for Forward and Inverse PDE Prob-
lems with Noisy Data. arXiv:2003.06097 [cs, stat], March 2020. doi:
10.1016/j.jcp.2020.109913. URL http://arxiv.org/abs/2003.06097. arXiv:
2003.06097.

Ye Yuan, Junlin Li, Liang Li, Frank Jiang, Xiuchuan Tang, Fumin Zhang,
Sheng Liu, Jorge Goncalves, Henning U. Voss, Xiuting Li, Jürgen Kurths,
and Han Ding. Machine Discovery of Partial Differential Equations from
Spatiotemporal Data. arXiv:1909.06730 [physics, stat], September 2019.
URL http://arxiv.org/abs/1909.06730. arXiv: 1909.06730.

Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quan-
tifying total uncertainty in physics-informed neural networks for solving
forward and inverse stochastic problems. page 32.

http://arxiv.org/abs/2109.11939
http://arxiv.org/abs/1905.11481
http://arxiv.org/abs/2006.10782
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2007.14527
http://arxiv.org/abs/1908.05164
http://arxiv.org/abs/1908.05164
http://arxiv.org/abs/2003.06097
http://arxiv.org/abs/1909.06730

80 BIBLIOGRAPHY

Peng Zhao and Bin Yu. On Model Selection Consistency of Lasso. page 23.

Hui Zou. The Adaptive Lasso and Its Oracle Properties. Journal of the
American Statistical Association, 101(476):1418–1429, December 2006.
ISSN 0162-1459, 1537-274X. doi: 10.1198/016214506000000735. URL
https://www.tandfonline.com/doi/full/10.1198/016214506000000735.

Hui Zou and Trevor Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(2):301–320, 2005. ISSN
1467-9868. doi: 10.1111/j.1467-9868.2005.00503.x. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x.
_eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
9868.2005.00503.x.

https://www.tandfonline.com/doi/full/10.1198/016214506000000735
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x

