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Résumé

Les instabilités thermoacoustiques sont néfastes pour les systèmes de combustion

dans lesquels elles apparaissent, tels que les chambres de combustion de turbines à

gaz. Des systèmes de surveillance avancés sont nécessaires pour estimer et prévoir

ce phénomène a�n de le prévenir, et possiblement de le supprimer grâce à des méth-

odes de contrôle. Dans cette thèse, nous proposons d'utiliser une description sous

forme de systèmes à paramètres distribués des phénomènes acoustiques couplés à

des modèles de dégagement de chaleur. Les non-linéarités sont prises en compte

chaque fois que possible, pour décrire les instabilités. Des algorithmes d'estimation

d'état et de paramètres prenant en compte ces e�ets dynamiques sont proposés.

Deux niveaux de complexité di�érents sont considéré. D'une part, on s'intéresse

à une con�guration de laboratoire et un modèle de modes thermoacoustiques lon-

gitudinaux dans une chambre de combustion. Pour ce système, un estimateur de

l'état d'un tube de Rijke chau�é électriquement est synthétisé. Puis, un observa-

teur globalement convergent, prenant en compte les non-linéarités du réchau�eur

électrique et la dynamique distribuée, est proposé et analysé. Celui-ci est associé

à un algorithme d'identi�cation de paramètres pour estimer les impédances acous-

tiques aux frontières du domaine spatial. L'observateur d'état et l'identi�cation de

paramètres sont testés à la fois dans des simulations et expérimentalement. Ensuite,

nous proposons un algorithme pour estimer les deux paramètres aux limites de sys-

tèmes hyperboliques linéaires 2 × 2 avec une seule mesure aux limites. En outre,

un modèle dynamique de l'acoustique dans un conduit avec une section transver-

sale variable dans l'espace est dérivé. En utilisant ces deux résultats ensemble, le

schéma d'estimation des paramètres aux limites pour le tube de Rijke est étendu à

des conduits plus généraux. Un bouclage de sortie, combinant une loi de commande

par retour d'état et un observateur frontière colocalisé, pour les instabilités ther-

moacoustiques longitudinales dans un modèle d'une chambre de combustion avec

acoustique distribuée et un modèle de �amme linéaire est ensuite proposé. En�n,

nous proposons un estimateur d'était pour un modèle de chambre de combustion

avec une �amme non linéaire. Une méthode basée sur l'utilisation de réseaux de

neurones est utilisée pour concevoir un observateur pour le sous-système de �amme,

qui est ensuite véri�é sur les données CFD.
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Abstract

Unwanted thermoacoustic instabilities are harmful to combustion systems that su�er

from them such as gas turbine combustors operating under lean premixed conditions.

Advanced monitoring systems are needed to estimate and forecast the phenomenon

to assist in decision making and automatic stabilization. In this thesis we propose

using a distributed description of acoustics interfaced to heat release models, with

nonlinearities whenever possible, to describe the instabilities. State and parameter

estimation algorithms taking these dynamic e�ects into account are explored. Two

di�erent levels of complexity are considered: we start with a laboratory setup and

move towards a model of longitudinal thermoacoustic modes in a can combustor.

First, state estimation for the electrically heated Rijke tube is considered. A globally

convergent observer, taking into account nonlinearities from the electrical heater and

distributed dynamics, is proposed and analysed. This is paired with a parameter

identi�er for estimating boundary acoustic impedances. The state observer and

parameter identi�er are tested both in simulations and experimentally. Next, a

parameter identi�er to estimate both boundary parameters of 2×2 linear hyperbolic

systems with a single boundary measurement is proposed. Also, a transient model

of acoustics in a duct with spatially varying cross-sectional area is derived. Using

these two results together the boundary parameter estimation scheme for the Rijke

tube is extended to more general ducts. An output feedback controller, combining

a full-state feedback control law and collocated boundary observer, for longitudinal

thermoacoustic instabilities in a model of a can combustor with distributed acoustics

and a linear �ame model is proposed next. Convergence is proven and it is tested in

simulations. Lastly, the state estimation problem for a can combustor model with

a nonlinear �ame is considered. Neural networks are used to design an observer for

the �ame subsystem, which is subsequently veri�ed on CFD data.
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Chapter 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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Dans ce chapitre introductif, le sujet de la thèse est motivé et une revue

de la littérature des travaux antérieurs sur le sujet est présentée. Par la suite,

notre approche est introduite et comparée aux approches précédentes, assurant sa

nouveauté et l'intérêt d'appliquer une telle approche. Une liste de contributions et

de publications qui sont un résultat direct du travail présenté ici est énoncée, avant

que la structure de la thèse ne soit expliquée.

In this introductory chapter, the thesis topic is motivated and a literature review

of previous work on the topic is presented. Thereafter our approach is introduced

and compared to previous approaches, ensuring its novelty and the interest of ap-

plying such an approach. A list of contributions and publications which are a direct

result of the work presented here are stated, before the thesis structure is explained.

1.1 Background

The ever increasing demand of energy and transport in society since the industrial

revolution has gone hand in hand with an increase in emissions into the atmosphere,

which in turn contribute to undesirable e�ects such as global warming and more

extreme weather patterns [Masson-Delmotte et al. 2021]. One particular technology

which has, since the �rst useful one in the sense of providing net power output was

built in 1903 by Ægidius Elling [Bakken et al. 2004], been especially ubiquitous in

both power generation applications and for use as a propulsion system for vehicles

such as ships and aircraft [Nasir et al. 2018] is the gas turbine (see Figure 1.1). Since

then numerous improvements to the technology have been developed, with more

e�cient power outputs and cleaner emissions in each generation. One direction of

improvement which is especially promising with respect to decreasing emissions into

the atmosphere, especially in the form of NOx formation, and hence contributing

to an overall cleaner technology is the operation of gas turbines under so-called
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Figure 1.1: Siemens SGT-750 gas turbine (left) and cross section of combustion

chamber (right). From [Rashwan et al. 2020].

lean premixed conditions [Seo 2003]. The main challenge faced in implementing

this technique in practice is the increased likelihood of detrimental thermoacoustic

instabilities [Lieuwen et al. 2001] in the combustion chamber, the part of the gas

turbine shown on the right of Figure 1.1, under this operating regime. Due to the

widespread use of and reliance on gas turbines by society, overcoming this issue

would be a signi�cant contribution towards solving the current climate crisis.

Within the context of their spontaneous occurrence in combustion chambers,

thermoacoustic instabilities are an undesirable phenomenon, with consequences

ranging from wear and tear in the less severe cases up to the combustor explod-

ing in the more extreme cases [Poinsot 2017], possibly in a matter of seconds. An

Figure 1.2: Burner assembly that has been damaged by thermoacoustic instabilities.

From [Goy et al. 2005].

example from [Goy et al. 2005] of a burner assembly that has undergone a beating

from these instabilities is shown in Figure 1.2. As noted in [McManus et al. 1993],
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answering the question of whether or not a combustor will su�er from such insta-

bilities is notoriously di�cult to answer in the design and even production stages,

with thermoacoustic oscillations usually �rst being observed in latter stages of the

development cycle.

Thermoacoustic instabilities were initially studied as a physical curiosity be-

fore they became an issue in practical technologies, with the �rst published study

based on work by [Higgins 1802]. This was followed by work in [Rijke 1859], which

standardized the experimental setup now known as the Rijke tube by generating

thermoacoustic instabilities via a heated gauze placed in the lower half of an open-

ended tube. A physical mechanism for the instability is qualitatively suggested

in [Rayleigh 1878], later to be quanti�ed more precisely in [Putnam & Dennis 1954].

In practice and with thermoacoustic instabilities possibly occurring in a wide range

of combustion technologies, such as solid [Price 1969] and liquid [Crocco 1965] pro-

pellant rocket motors, ramjets [Rogers & Marble 1956], turbojet thrust augmenters

[Bonnell et al. 1971], boilers [Putnam 1971] and furnaces [Lieuwen & Yang 2005] to

give a non-exhaustive list, a high number of di�erent factors play in and hence

the precise classi�cation of thermoacoustic instabilities is a di�cult task. In

[Williams 2018] thermoacoustic instabilities due to combustion are classi�ed in three

di�erent categories:

1. Intrinsic instabilities.

2. Chamber instabilities.

3. System instabilities.

The �rst of these, intrinsic instabilities, occur when there is some unstable feedback

mechanism of a combustion process interacting with itself and is often character-

ized by being of lower frequency than the other types. A well-known mathematical

model that gives an example of this type of instability mechanism on laminar �ame

fronts is the Kuramoto-Sivashinsky equation [Kuramoto 1978, Sivashinsky 1977],

and has been studied recently by multiple authors from a system dynamics per-

spective due to its interesting instability properties (see e.g. [Liu & Krsti¢ 2001,

Baudouin et al. 2013, Coron & Lü 2015]). Such instabilities are however outside

the scope of this work, and instead the focus is directed towards the second type,

namely chamber instabilities. In practice these occur when combustion occurs in-

side a con�ned volume, which is the case one has inside gas turbine combustion

chambers. Compared to intrinsic instabilities, these instabilities tend to be charac-

terized by much higher frequencies, typically dominated by the acoustic properties

of the combustor. The main mechanism driving the instability here is the acous-

tics in the chamber being in phase with the heat release process, causing a self-

sustaining oscillation that grows exponentially until being saturated by nonlinear

e�ects [Sujith et al. 2016]. The third type of instability, system instabilities, occur

due to the interaction of the combustion system with other parts of the system,

such as the feed or exhaust system. These are however also outside the scope of this

work.
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1.2 Approach

To deal with the thermoacoustic instability issue, one must disrupt the construc-

tive coupling between heat release and acoustic waves in some sense. Much of

the early work on tackling this problem has been based on applying what one

can consider �traditional engineering� approaches of physically augmenting the sys-

tem, known as passive control methods (see e.g. [Culick 1988]). Passive method-

ologies are still an active �eld of development and some of the strategies employed

include but are not limited to Helmholtz resonators [Gysling et al. 2000], acous-

tic liners for internal damping inside the combustor [Eldredge & Dowling 2003]

and quarter wave tubes [Zahn et al. 2016]. Analysing the frequency do-

main properties [Zahn et al. 2015] of combustors �ts naturally well with pas-

sive stabilization methods because they allow investigations, such as sen-

sitivity analyses [Magri & Juniper 2013] and determinations of stability mar-

gins [Betz et al. 2017], into how the ad-hoc system augmentation in�uences the

overall system eigenvalues to be readily performed.

As noted in [Morgans & Dowling 2007], a drawback of passive methodologies

is that they are potentially expensive and time consuming to implement due to

their bespoke nature, and often times they only work under speci�c operating

conditions. A possibly more �exible approach is active stabilization methods,

which were already investigated in a theoretical setting for instabilities in rocket

engines in the 1950s [Tsien 1952]. The �rst experimental studies on empirically

based control strategies of feeding back a phase-shifted and ampli�ed sensor signal,

tuned via a trial-and-error approach, started being performed for the Rijke tube

around three decades later in [Dines 1984]. Since then a multitude of di�erent ap-

proaches have been studied, with an overview of contributions up to the mid-2000s

given in [Dowling & Morgans 2005]. Gradually more and more model-based control

strategies started appearing, with some notable contributions from around the turn

of the millennium being [Krsti¢ et al. 1999, Annaswamy et al. 2000].

In this thesis the main focus is the design of model-based algorithms for esti-

mating unmeasured states and unknown parameters of transient models reproducing

thermoacoustic instabilities. The literature on model-based estimation methods for

thermoacoustic instabilities is highly sparse in comparison to its control counterpart,

but some notable contributions are [Hong & Lin 2007, de Andrade et al. 2020] and a

review of typical sensors used are given in [Docquier & Candel 2002]. The intended

application of these algorithms would be to run in real time with the physical pro-

cess, where use cases could be general monitoring and in early-warning systems, but

also in conjunction with control algorithms that need access to unmeasured state

and parameter data. A trade-o� one faces in the modelling stage for such algorithm

design is model complexity, where one wants a model that is simple enough that it

can be run online, but complex enough to capture the most important features of the

dynamics. Two important aspects of thermoacoustic instabilities (of the chamber

instability type) is the distributed nature of the acoustics but also strong nonlinear-

ities in the heat release model, which has an e�ect of saturating the thermoacoustic
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instability into a limit cycle oscillation [Han et al. 2015].

Many of the previous model-based control and estimation algorithms from the

literature base themselves on an approach of �rst lumping the mathematical model

into a �nite dimensional model (see e.g. [Bonciolini et al. 2021]), basing the algo-

rithm design on this reduced model. This approach is often referred to as early-

lumping. A well-known issue from vibration control that can come up with early-

lumping is the so-called spillover phenomenon [Sa� et al. 2018], where higher or-

der modes that have been neglected in the modelling are inadvertently destabi-

lized. The spillover phenomenon has been observed in experiments involving con-

trol of thermoacoustic instabilities with early-lumped model-based controllers, see

e.g. [Bloxsidge et al. 1987, Gulati & Mani 1992]. A way of overcoming this issue is

to take a so-called late-lumping approach, where the full distributed nature of the

dynamics is taken into account in the algorithm design, only discretizing the model

in the implementation stages.

In this thesis a late lumping approach is taken for the model-based estimation

algorithm design, aiming to preserve the distributed nature of the phenomenon

as much as possible, yet basing the algorithm design on a model that is feasi-

ble to implement in real time. Little work of this type has been addressed pre-

viously in the literature for application towards thermoacoustic instabilities. In

the past decade some work has been done taking a similar approach for the Ri-

jke tube [Olgac et al. 2014, Epperlein et al. 2015, de Andrade et al. 2018a], but the

heat release models are in this case always linearized, thus losing the important

nonlinear nature of the phenomenon. Hence, the aim of this thesis is to explore the

design of model-based estimation algorithms for thermoacoustic instabilities that

take into account both the distributed and nonlinear aspects, whenever possible.

The general model structure that will be used to describe the chamber instabilities

is that of coupled Partial Di�erential Equation (PDE)�Ordinary Di�erential Equa-

tion (ODE) models [Barreau et al. 2018, Ghousein & Witrant 2020], where roughly

speaking the PDE represents the chamber acoustics and the ODE represents the

heat release model. Also, as discussed extensively in [Poinsot 2017], the literature

heavily focuses on studies investigating laboratory setups but which are not directly

useful for understanding and tackling the problem of thermoacoustic instabilities in

practical engines. Although the work in this thesis uses the Rijke tube as a start-

ing point, the aim is to leverage this as a stepping stone towards estimation design

for more complicated mathematical models that can better describe a combustion

chamber towards the second half of the work. This can then serve as a general

framework for further investigations of the same nature, where the algorithms can

be extended to larger scale system instabilities, or be modi�ed to take into account

the smaller scale e�ects of intrinsic instabilites. Also, the framework could be ex-

tended to design estimation algorithms for more complicated chamber instabilities

such as those found in annular combustors.

For the algorithm designs, we assume limited instrumentation is available. Pre-

cisely, all the algorithms considered assume a single pressure measurement is avail-

able, only. Arguably the most important states to estimate when regarding chamber
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instabilities is the distributed pressure and velocity together with heat release rate.

A parameter of high signi�cance in the stability properties of chamber instabili-

ties, but which is typically di�cult to know a priori, are the boundary acoustic

impedances. Hence focus will be placed on estimation of these parameters. Overall,

the objectives of the thesis can be summarized as follows:

1. Design observers estimating distributed states and heat release under perfect

model assumptions.

2. Design parameter identi�cation algorithms relying on parsimonious measure-

ments.

3. When possible, take into account the nonlinearity of the heat release process.

Next, in Section 1.3 the contributions of the thesis are stated, before the thesis

structure is summarized in Section 1.4.

1.3 Contributions

Following on from the statement of objectives in Section 1.2, we state here the main

contributions which have come about as a result of this thesis work. They can be

summarized as follows:

1. A globally convergent state observer for the Rijke tube, using a distributed

model of the acoustics and a nonlinear model of the heat release rate, has been

designed and analysed. It has also been tested in simulations and experimen-

tally.

2. A distributed transient model of the acoustics, suitable for control and esti-

mation algorithm design, in a duct with spatially varying cross-sectional area

is derived. This model generalizes the model of acoustics in a duct with con-

stant cross-sectional area. Also, the coupling with a �ame at a boundary with

sudden area expansion has been treated.

3. A parameter identi�cation scheme for estimating both boundary acoustic

impedances of the Rijke tube, relying on a single pressure measurement is

derived. It is tested in simulations and experimentally. Also, using the model

from Contribution 2, how this scheme generalizes to the case of a duct with

spatially varying cross-sectional area has been considered.

4. A state observer and full-state feedback controller for a linearized model of a

can combustor, assuming actuation is collocated to the pressure sensor, has

been designed. These can be combined into an output feedback controller.

The designs have been tested in simulations.

5. An observer for a nonlinear �ame model has been designed numerically using

neural networks. The observer has been veri�ed using Computational Fluid

Dynamics (CFD) data.
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Part of the work presented in this thesis has resulted in the following �rst-author

publications:

• Conference publications:

� N.C.A. Wilhelmsen, F. Di Meglio. An Observer for the Electri-

cally Heated Vertical Rijke Tube with Nonlinear Heat Release. IFAC-

PapersOnLine, vol. 53, no. 2, pages 4181�4188, 2020.

� N.C.A. Wilhelmsen, F. Di Meglio. Estimating Both Re�ection Coe�-

cients of 2×2 Linear Hyperbolic Systems with Single Boundary Measure-

ment. In 2020 59th IEEE Conference on Decision and Control (CDC),

pages 658�665. IEEE, 2020.

• Journal publication:

� N.C.A. Wilhelmsen, F. Di Meglio. Acoustic Boundary Output Feed-

back Stabilization of Dynamic n− τ Flame Model via Duct with Spatially

Varying Cross Section. IEEE Transactions on Automatic Control, 2021.

Submitted.

It should also be noted that some of the work presented in this thesis is as of

yet unpublished, and may warrant future publication.

1.4 Thesis structure

Part I This part presents the problem considered and states underlying assump-

tions. It lays the groundwork for the remainder of the thesis.

Chapter 1 In this chapter, which is the current one, background literature on

the problem has been introduced. The approach taken and contributions are stated.

Chapter 2 This chapter is responsible for presenting the mathematical models

the algorithm designs appearing in Part II & III are based on. Part of the content

in this chapter appears in [Wilhelmsen & Di Meglio 2021].

Part II For this part of the thesis the Rijke tube, a laboratory setup, is considered.

The state observation and boundary parameter identi�cation problems are solved.

Chapter 3 In this chapter, a state observer for the Rijke tube is derived and

analysed, before being tested in simulations and experimentally. Part of this chapter

appears in [Wilhelmsen & Di Meglio 2020b].
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Chapter 4 Here the acoustic boundary parameter identi�cation problem

is considered. A simple scheme for estimating both boundary parameters

with a single pressure sensor is proposed, and afterwards tested in simulations

and experimentally. Part of the material presented in this chapter appears

in [Wilhelmsen & Di Meglio 2020a].

Part III The aim of this part is to move the study of estimation algorithms from

a laboratory setup towards more complicated combustor dynamics.

Chapter 5 In this chapter, the boundary parameter identi�cation scheme

problem for general 2×2 linear hyperbolic PDEs is studied. A generalization of the

estimation scheme from Chapter 4 to more complicated combustor acoustics is sug-

gested. The main contribution from [Wilhelmsen & Di Meglio 2020a] is presented

in this chapter, along with a minor unpublished result.

Chapter 6 This chapter derives an output feedback controller for a linearized

model of a combustor with distributed acoustics. All of this chapter is based on

content from from [Wilhelmsen & Di Meglio 2021].

Chapter 7 Here the state observer design for a combustor model with dis-

tributed acoustics but nonlinear �ame model is considered. Using results from the

literature, the state estimation problem is reduced to the problem of static function

approximation, for which neural networks are employed. The nonlinear observer is

veri�ed on CFD data. All the novel material in this chapter is as of yet unpublished.

Part IV This last part suggests some conclusions, and houses the appendix and

bibliography.

Chapter 8 In this chapter the progress made is summarized, and re�ections

are made. Some directions for further research are proposed.
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Les modèles mathématiques qui constituent la base du reste de la thèse sont

développés dans ce chapitre. Nous présentons d'abord l'approche générale de

modélisation adoptée, sous forme d'interconnections de modèles dans le domain

temporel. Cette approche considère le système thermoacoustique comme étant

composé de multiples sous-systèmes avec des interfaces bien dé�nies. Les modèles

de dégagement de chaleur sont le premier type de sous-système à être couvert.

Deux types sont considérés, à savoir le dégagement de chaleur d'un appareil de

chau�age électrique et le dégagement de chaleur dû à la présence d'une �amme.

Nous dérivons ensuite un modèle des phénomènes acoustiques. Nous proposons

un modèle adapté à l'estimation et à la conception d'algorithmes de contrôle,

décrivant les oscillations longitudinales dans un conduit à géométrie variable

dans l'espace. Il est simpli�é à deux cas particuliers, le premier étant pour un

écoulement moyen nul et le second étant le modèle pour l'acoustique dans un conduit

avec une section transversale constante. Le troisième type de sous-système, les

impédances acoustiques, est ensuite considéré. Nous terminons ce chapitre par la
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description du couplage entre le dégagement de chaleur et l'acoustique, avant de ré-

sumer les modèles de réseaux complets qui seront considérés tout au long de la thèse.

The mathematical models which form the basis for the rest of the thesis are de-

veloped in this chapter. It starts with introducing the general approach to modelling

taken, which is a time domain network model approach. This approach considers

the thermoacoustic system as consisting of multiple subsystems with well-de�ned

interfaces. Heat release models are the �rst type of subsystem to be covered. Two

types are considered, namely heat release from an electrical heater and heat release

due to �ames. We then derive a model of the acoustic phenomenon. We propose a

model suitable for estimation and control algorithm design, describing longitudinal

oscillations in a duct with spatially varying geometry. It is simpli�ed to two special

cases, the �rst one being for zero mean �ow and the second special case being the

model for acoustics in a duct with constant cross-sectional area. The third type

of subsystem, acoustic impedances, are considered next. This is followed by the

description of coupling between the heat release and acoustics, before the complete

network models that will be considered throughout the thesis are summarized.

2.1 Modelling principles

In this thesis we are concerned with longitudinal thermoacoustic oscillations, using

1−D distributed models to describe the acoustics. Here, the acoustic modes along a

privileged coordinate is described, with �ow �eld �uctuations along the other spatial

coordinates assumed constant or negligible for the analysis of modes along the axis

of interest. Although this assumption is too simplistic to describe highly complex

cases such as azimuthal modes mixing with longitudinal modes as one can in practice

�nd in annular combustors [Pankiewitz & Sattelmayer 2003, Lieuwen & Yang 2005],

studying the simpler cases is essential to understanding the more complex cases. To

describe the heat release, 0 − D models based on the assumption that the spatial

extent of the heat source is negligible compared to the length scale of the acoustics

inside the combustor are employed. This allows the heating element/�ame to be

considered an acoustically compact source [Lieuwen 2021], and its internal struc-

ture can be disregarded and instead an Input and Output (I/O) description used.

With interfaces de�ned between the heat source and the acoustics, the complete

system can be described as an interconnected model of acoustic elements. Such a

modelling approach is referred to in the literature as thermoacoustic network mod-

elling [Polifke & Gentemann 2004, Stow & Dowling 2009, Moeck 2010], and is the

approach taken here. A schematic of the structure of a typical thermoacoustic net-

work model is shown in Figure 2.1.

As described in [Emmert 2016], there are two main paradigms within network

modelling of thermoacoustics. The more classical approach is to consider the fre-

quency domain properties of the thermoacoustic instabilities, such as wave number

and complex frequency of the oscillations. This approach lends itself well to com-
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Figure 2.1: Example schematic of thermoacoustic network model.

putation of the eigenmodes of a given combustor setup to determine its intrinsic

stability properties, and hence useful for passive stabilization approaches of ther-

moacoustic instabilities. Some contributions in the literature that apply this ap-

proach are [Dowling 1995, Schuermans et al. 2000]. On the other hand, rather than

basing the analysis around speci�c wave numbers and frequencies of oscillation, a

di�erent approach is to simply describe the thermoacoustic instabilities by a set of

mathematical models (typically state space representations) of the subsystems inter-

connected by well-de�ned interfaces, that physically represent the averaged acoustic

quantity at the point of the interface. This approach lends itself well to time domain

analysis, and is the approach taken here. Some other examples from the literature

that employ this approach are [Schuermans et al. 2003, Bothien et al. 2007].

In the following sections, we introduce the mathematical models of the various

subsystems that will be employed in the network models used in this thesis. First,

in Section 2.2 heat release models that are considered are described. The �rst heat

release model considered is that of an electrical heater, which is used in the work

on the Rijke tube in Part II of this thesis. Flame models are instead considered in

Part III of the thesis, and these are subsequently described. Next, in Section 2.3,

the acoustics is modelled. These models are used throughout the thesis, and this

section contains a generalization of 1 − D in�nite dimensional acoustics models

for the case when one has a duct with spatially varying geometry and non-zero

mean �ow. Then in Section 2.4 the model boundary conditions and interfaces are

described, including descriptions of acoustic impedance and coupling between the

acoustics and heat release. The �nal network models that are used throughout the

thesis are summarized in Section 2.5.

2.2 Heat release

2.2.1 Electrical heater

Modelling of the electrical heater used in the Rijke tube considered in this thesis is

based on work done originally by [King 1914] and [Lighthill 1954]. A description of

the modelling process is given in [Epperlein et al. 2015], but it is included here for

completeness and convenience for the reader. Consider an electrical heater made of a

wire of length lw and diameter dw, in a laminar �ow �eld, as depicted in Figure 2.2.

We are interested in quantifying the power of heat release Q from the electrical

heater into the �ow �eld, which occurs due to convection and conduction processes.

There are two main quantities a�ecting these processes, namely the local velocity V
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Figure 2.2: Heat release Q from electrical heater in laminar �ow �eld of velocity

V . Global view (left) and boundary layer around wire due to �uctuating velocity

�eld (right).

of the �ow �eld around the heater and the di�erence between the wire temperature

Tw and the surrounding gas temperature Tg. We make the following assumptions:

Assumption 1. The �ow is laminar and equal throughout the cross section perpen-

dicular to the direction of the �ow.

Assumption 2. The steady-state �ow states density ρ̄, pressure P̄ , and velocity V̄

are constant in time.

Assumption 3. The wire temperature Tw and gas temperature Tg are described by

constant scalars.

King's law developed by [King 1914] gives an approximate algebraic relationship

between heat release QK
1 and the aforementioned quantities which reads

QK = lw

(
κ+ κv

√
|V |
)

(Tw − Tg) (2.1)

where κ represents thermal conductivity of the surrounding �uid, and κv is a pro-

portionality constant that must be empirically determined.

The algebraic relationship (2.1) works well in describing the heat release when

the �ow �eld around the electrical heater is constant, but in thermoacoustic systems

1Subscript K used here to denote heat release as predicted by King's law.
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such as the Rijke tube the local velocity is changing rapidly, and hence additional dy-

namic e�ects must be taken into consideration. When the �ow around the heater is

�uctuating, a boundary layer is formed around the wire, as illustrated in Figure 2.2.

Hence, the heat release from the wire predicted by (2.1) is not released directly into

the �ow �eld, but must pass through the boundary layer �rst. In [Lighthill 1954] it

was found that these dynamics can be approximated by a �rst-order transfer func-

tion, relating the heat release QK directly from the wire as input and the resultant

heat release Q released into the �ow as output, given by

Q

QK
(s) =

1

τs+ 1
(2.2)

where τ is a time constant computed as

τ =
dw
5V̄

,

the quantity V̄ appearing in the denominator denoting mean �ow velocity. Com-

bining then (2.1)�(2.2) and writing in the time domain, we have a scalar ODE

describing the heat release rate Q from the electrical heater given by

Q̇(t) = −1

τ
Q(t) +

1

τ
lw

(
κ+ κv

√
|V (t)|

)
(Tw − Tg). (2.3)

This model can be used as a subsystem in a thermoacoustic network model by con-

sidering the averaged (in space over the cross section perpendicular to the direction

of �ow) local velocity V as the input variable and heat release rate Q as output vari-

able. It is used in Chapter 3 where we derive a state observer for a thermoacoustic

model of the Rijke tube. Next in Section 2.2.2 we describe �ame models which rely

on the same I/O variables and can hence be easily integrated into thermoacoustic

network models.

2.2.2 Flames

Mathematical modelling of �ames and combustion processes is a rich and com-

plex �eld, and going deep into this topic is outside the scope of this thesis. For

the interested reader, in-depth sources covering the topic such as [Liberman 2010,

Lieuwen 2021, Poinsot & Veynante 2005, De Goey et al. 2011] can be consulted.

Rather, we are interested in obtaining an external description of the �ame and

its interaction with the �ow �eld.

Flames are the result of combustion, which in essence is an exothermic chemical

reaction between a fuel and an oxidizer. The �ames we consider are assumed to

have su�ciently low speeds to be so-called de�agrations, rather than detonations

which occur at much higher speeds [Poinsot & Veynante 2005, Oran & Boris 2005].

Within the scope of this work we are mainly interested in �ames that can be con-

sidered premixed and laminar. That is to say the fuel and oxidizer are mixed be-

fore arriving at the �ame, rather than introduced separately which is the case for
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di�usion �ames, and the �ow �eld around the �ame is laminar rather than tur-

bulent. This assumption is not as restrictive as it might seem from �rst glance,

for two main reasons. Firstly, in practice the issue of thermoacoustic instabili-

ties often occurs within lean premixed combustors [Seo 2003], and hence using pre-

mixed �ame models makes sense from a practical perspective. Secondly, as noted

in [Poinsot & Veynante 2005], many models of turbulent �ames, such as �amelet

theory [Williams 1975], use smaller laminar �ame models as their building blocks.

Figure 2.3: Heat release Q from exothermic reduction-oxidation reaction in laminar

�ow �eld of velocity V .

Consider the scenario depicted in Figure 2.3. We have a laminar �ow of unburned

gas consisting of a mix of fuel and oxidizer �owing into a reaction zone (�ame).

Within the �ame, a series of exothermic reduction-oxidation reactions occur, releas-

ing heat into the �ow and a mix of burned gases at the downstream boundary of

the reaction zone. Note that the �ame is travelling into the unburned gases with

laminar burning velocity Vl, being stabilized by the �ow �eld moving in the opposite

direction with similar velocity.

Depending on the particular fuel and oxidizer used and the conditions under

which the reaction occurs, in practice a high number of di�erent chemical reactions

with varying rates of reaction, possibly involving multiple reaction steps, can occur.

However, for the purpose of this work we consider the chemistry to occur in a

single-step irreversible reaction, represented by the general chemical formula

nFF + nOO → P (2.4)

where F , O and P are placeholders for chemical formulas of the fuel, oxidizer and

product respectively, and nF , nO denote the relative quantities of fuel and oxidizer

in the reaction. Some examples of combustion reactions represented by the gen-
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nF F nO O P

2 C3H8 7 O2 6CO2 + 8H2O

2 CH3OH 3 O2 2CO2 + 4H2O

1 H2 1 Cl2 2HCl

Table 2.1: Examples of combustion reaction species �tting together in the for-

mula (2.4).

eral formula (2.4) are listed in Table 2.1. An important metric to characterize the

combustion process is the equivalence ratio φ, de�ned by

φ := $
ṁF

ṁO
(2.5)

where ṁF and ṁO are respectively the mass �ow rates of fuel and oxidizer, and the

mass stoichiometric ratio $ is de�ned by

$ :=
nOWO

nFWF
(2.6)

with WF , WO being the molar masses of fuel and oxidizer, respectively. The com-

bustion process is said to be lean if φ < 1, rich if φ > 1 and at stoichiometry if

φ = 1. As mentioned previously, the main focus within this work is on lean com-

bustion, where there is an excess of oxidizer in the �ow. It is in this case reasonable

to assume that the gas upstream and downstream of the reaction zone have similar

physical properties, such as density and adiabatic constant.

The thickness of the reaction zone separating the unburned and burned gas

regions in Figure 2.3 is assumed to be small in relation to the wavelength of the

acoustics considered. One can hence apply the so-called thin �ame limit and con-

sider the �ame to be an in�nitesimally thin sheet separating the two regions of the

�ow [Lieuwen & Yang 2005] via a jump condition in the �ow �eld. The location

of this in�nitesimally thin region, referred to as the �ame front, in the �ow as a

function of radial position from the centre of a burner is depicted in Figure 2.4 for

the case of a conical �ame. Based on the velocity V the dynamics of the �ame front

can be described by the G-equation [Williams 1985]

∂G

∂t
+ V (t)

∂G

∂z
= −Vl

√(
∂G

∂z

)2

+

(
∂G

∂r

)2

(2.7)

where the level set G(z, r, t) = 0 represents the �ame front and the �ame speed Vl
is assumed constant. The �ame height hF and tip angle αF are calculated from

the steady-state solution to (2.7), by setting V (t) ≡ V̄ and ∂G
∂t = 0. As can be

seen, perturbations in the local velocity vector V a�ects the local displacement of

the �ame front, something which can be observed experimentally as shown by the

Schlieren images in Figure 2.5. This in turn impacts the total area AF of the �ame
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Figure 2.4: Location of conical �ame front along vertical z direction as function of

radius r, stabilized to edge of burner of radius R. Steady state position (dashed red

line) and perturbed position (solid red line).

Figure 2.5: Schlieren images from [Ducruix et al. 2000] of a premixed conical �ame

under steady state conditions (top image) and velocity perturbations (bottom im-

ages).
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front at any given point in time, given by

AF =

∫ R

0
2πr

ds

dr
dr, (2.8)

where ds is an in�nitesimal displacement along the �ame surface (see Figure 2.4).

Assuming a homogenous equivalence ratio throughout the incoming premixed gas,

the heat release rate �uctuations Q̆ are related to the displacements in �ame

surface area ĂF = AF − ĀF , ĀF being the steady-state �ame area, given

by [Ducruix et al. 2000]

Q̆ = ρVl∆qĂF . (2.9)

where ρ is the density of the gas and ∆q is the heat release per unit mass (caloric

value) of the premixed gas. So far, in addition to Assumptions 1, 2, we have intro-

duced the following Assumptions in the preceding discussion:

Assumption 4. The fuel and oxidizer enter the reaction zone premixed.

Assumption 5. The combustion is lean so the equivalence ratio, assumed to be

constant, satis�es φ < 1. Hence the physical properties of the gas are similar before

and after the reaction zone.

Assumption 6. The combustion reaction can be approximated by a single-step

chemical reaction of the form (2.4).

Assumption 7. The spatial extent of the reaction zone is considered small compared

to the acoustic wavelength, so it can be considered an in�nitesimally thin disconti-

nuity.

Assumption 8. The �ame sheet is a de�agration and hence moves into the un-

burned gases at a constant velocity Vl of comparable magnitude to the local steady-

state �ow velocity V̄ .

Although the formulation (2.7)�(2.9) of variation of the heat release rate due to

�uctuations in the incoming �ow velocity paints an intuitive picture of the process, it

is rather complex and nontrivial to apply it directly for analysis of thermoacoustics

from a global perspective. Indeed, computing the heat release involves integrating

a path (2.8) along a level set of the solution to a nonlinear PDE (2.7), which may

be both computationally expensive and inconvenient for analysis. A more practical

alternative is to heuristically describe the I/O characteristics of the �ame, which

under Assumptions 1, 2, 4�8 can be achieved via the Flame Transfer Function

(FTF) [Schuller et al. 2003] (or for nonlinear frequency domain analysis the Flame

Describing Function (FDF) [Noiray et al. 2008]) formulation. Conventionally, the

FTF F is de�ned as the ratio of the normalized heat release rate �uctuations Q̆/Q̄

to the normalized velocity �uctuations V̆ /V̄ at each frequency ω > 0, i.e.

F(jω) :=
Q̆(ω)V̄

V̆ (ω)Q̄
. (2.10)
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Figure 2.6: Gain and phase data of FTF from [Silva et al. 2017]. Prediction from

simulations (solid line) and data collected from experiments (individual points).

Being complex functions, FTFs are typically represented by their gain and phase

data, an example from [Silva et al. 2017] shown in Figure 2.6.

One of the earliest and simplest FTFs to be established and used in practice

is the n − τ model [Crocco & Cheng 1956], a phenomenological model initially de-

veloped from research on combustion instabilities in liquid fuel rockets, and later

shown to be useful in modelling thermoacoustic instabilities in other combustion

systems [Lieuwen & Yang 2005], such as lean premixed combustors. It describes

the �ame based on two parameters, the interaction index n and a time delay τ .

Using the Laplace variable s := σ + jω we have

F(s) = ne−τs. (2.11)

Assigning the output Y := Q̆/Q̄ and input U := V̆ /V̄ , in the time-domain the n−τ
model (2.11) gives the algebraic relation

Y (t) = nU(t− τ). (2.12)

In practice it has been shown that in addition to the time delay, lean premixed �ames

exhibit low-pass �lter behaviour [Blackshear 1952, Merk 1957, Ducruix et al. 2000].

It is well known from linear systems theory that low pass �lters can be described by

strictly proper rational transfer functions [Zumbahlen 2007], and only taking into

account this aspect of the �ame behaviour one has a �ame transfer function of the

form

F(s) =
N(s)

D(s)
(2.13)

where N , D are polynomials in s, where deg(N) < deg(D).

Similar to what is done in [Freitag 2009, Cuquel 2013], we consider an FTF that

combines the e�ects of an input time delay as described by (2.11) and low-pass �lter
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behaviour as described by (2.13). We propose a �ame transfer function of the form

F(s) =
N1(s) +N2(s)e−τs

D(s)
(2.14)

which is obtained by multiplying a transfer function of the form (2.13) with a transfer

function of the form (2.11), and adding a polynomial term N1(s) to the numerator

to account for possible instantaneous low-pass �ltering e�ects. An example from

the literature of an FTF, also for a conical �ame, �tting the form (2.14) is found

in [Sugimoto & Matsui 1982] by measuring �uctuations in CH∗ radicals. It is re-

produced here as

F(s) = 2
−1 + (s− β)τ + e−(s−β)τ

(s− β)2τ2

where expressions for the parameters β and τ are given by

β = αVi, τ =
hF
Vi

where Vi is the (assumed constant) propagation velocity of CH∗ radicals, α is a

constant describing the distribution of CH∗ radicals emitted along the �ame front,

and hF is the �ame height.

Recall that for strictly proper rational transfer functions N1
D (s), N2

D (s) there

exists (A1, b1, C1) ∈ Rn1×n1×Rn1×1×R1×n1 , (A2, b2, C2) ∈ Rn2×n2×Rn2×1×R1×n2 ,

respectively, such that

N1(s)

D(s)
= C1(sI −A1)−1b1,

N2(s)

D(s)
= C2(sI −A2)−1b2. (2.15)

We then obtain a state-space realization of (2.14) with state X ∈ Rn, n :=

n1 + n2, as

Ẋ(t) = AX(t) + B̄0V̆ (t) + B̄1V̆ (t− τ) (2.16a)

Y (t) =
1

V̄
C̄X(t) (2.16b)

where

A :=

[
A1 0n1×n2

0n2×n1 A2

]
B̄0 :=

[
b1

0n2×1

]
, B̄1 :=

[
0n1×1

b2

]
C̄ :=

[
C1 C2

]
.

The formulation (2.14) and its equivalent time-domain representation (2.16) can

both be used as linear representations of premixed �ame dynamics, as we do in

Chapter 6. In reality �ames can have strong nonlinearities that can be important to

take into account for thermoacoustic analysis. As noted in [Lieuwen 2005], nonlin-

earities are more pronounced at conditions such as higher perturbation frequencies
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and shorter �ame lengths. Using an FDF, which describes the response not only

as a function of the velocity perturbation frequency but also the forcing amplitude,

is one method of capturing nonlinearities in the frequency domain. In Chapter 7,

we take an alternative approach and propose to use a nonlinear time domain gen-

eralization of (2.16) in the form of an input-a�ne nonlinear state space model to

capture the nonlinearity of the �ame response. This gives a generic model of the

form

Ẋ(t) = f(X(t)) + ḡ0(X(t))V̆ (t) + ḡ1(X(t))V̆ (t− τ) (2.17a)

Y (t) =
1

V̄
h̄(X(t)) (2.17b)

where the functions f(·), ḡ0(·), ḡ1(·), h̄(·) can e.g. be �tted using nonlinear regres-

sion software, based on I/O data of �ame response from simulations or experiments.

This concludes the heat release and �ame modelling. Next in Section 2.3, mod-

elling of the acoustics is covered, before they are coupled with the heat release

models in Section 2.4.

2.3 Acoustics

We �rst derive the model of acoustic �uctuations in a duct with spatially varying

cross-sectional area and a non-zero steady-state velocity with low Mach number.

This is subsequently simpli�ed to the special cases of zero velocity in a duct with

spatially varying cross section, and duct with constant cross-sectional area and ar-

bitrary low Mach number steady-state velocity

2.3.1 Duct with spatially varying cross section

Figure 2.7: Duct of length L with spatially varying cross-sectional area a(z) for

z ∈ [0, L].

Consider the setup shown in Figure 2.7. It consists of a duct of length L, with

spatially varying cross-sectional area a(z) for z ∈ [0, L], through which a gas is

�owing with mean inlet density ρ̄0, velocity V̄0 and pressure P̄0. In addition to

Assumptions 1, 2, we assume the following:
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Assumption 9. The steady state velocity V̄ << c, with c being the speed of sound,

for z ∈ [0, L] so that the Mach number Ma << 1.

Assumption 10. The duct geometry can be approximated by a solid of revolution

around the z-axis for z ∈ [0, L].

Assumption 11. Internal damping contributions from the duct wall material can

be neglected.

To obtain a mathematical model for the acoustics, we start with the mass,

momentum and energy equations of gas dynamics. They can respectively be writ-

ten [Bale 2002] in 1−D for the scenario shown in Figure 2.7 as the system

∂t (a(z)ρ(z, t)) = −∂z (a(z)ρ(z, t)V (z, t)) (2.18a)

∂t (a(z)ρ(z, t)V (z, t)) = −∂z
(
a(z)

(
P (z, t) + ρ(z, t)V 2(z, t)

))
+ a′(z)P (z, t)

(2.18b)

∂t(a(z)e(z, t)) = −∂z(a(z) (e(z, t) + P (z, t))V (z, t)) +Q(z, t) (2.18c)

giving a description of the density ρ, velocity V , pressure P and pointwise energy

e at each spatial coordinate z ∈ [0, L] and point in time t ≥ 0. It is initialized from

ρ(z, 0) = ρ0(z), V (z, 0) = V0(z), P (z, 0) = P0(z), e(z, 0) = e0(z)

where ρ0, V0, P0, e0 ∈ L2(0, L), with possible distributed heat release rate Q as a

source term in (2.18c). We assume the total energy e is composed of potential and

kinetic energy, so that

e(z, t)︸ ︷︷ ︸
Total energy

= ρ(z, t)U(z, t)︸ ︷︷ ︸
Potential energy

+
1

2
ρ(z, t)V 2(z, t)︸ ︷︷ ︸
Kinetic energy

(2.19)

with U being speci�c internal energy. Assuming that the air satis�es the ideal

gas law, the speci�c internal energy U can be related to pressure P and density ρ

via [Epperlein et al. 2015]

U(z, t) =
Cv
R

P (z, t)

ρ(z, t)
(2.20)

where Cv is the speci�c heat capacity of the gas at constant volume, and R the

universal gas constant. Substituting (2.19)�(2.20) into (2.18), after some algebraic

manipulation, we have the nonlinear PDE system in (ρ, V, P ) written as

ρt(z, t) = −V (z, t)ρz(z, t)− ρ(z, t)Vz(z, t)−
a′(z)

a(z)
ρ(z, t)V (z, t) (2.21a)

Vt(z, t) = − 1

ρ(z, t)
Pz(z, t)− V (z, t)Vz(z, t) (2.21b)

Pt(z, t) = −γP (z, t)Vz(z, t)− V (z, t)Pz(z, t)− γ
a′(z)

a(z)
P (z, t)V (z, t) +

γ̄

a(z)
Q(z, t)

(2.21c)
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where γ is the adiabatic constant, de�ned in terms of R and Cv as

γ := 1 +
R

Cv
(2.22)

and γ̄ := γ − 1.

With constant inlet conditions in Figure 2.7 thanks to Assumption 2, the acous-

tics are considered �small� perturbations around an equilibrium �ow pro�le of (2.21).

This requires to assume the following:

Assumption 12. Temporal variations in the density, velocity and pressure can be

approximated su�ciently well by �rst-order perturbations around the mean �ow.

As will be discussed further down in Section 2.4, we consider only pointwise

interaction of the heat release rate with acoustic �eld, and hence the heat release

rate is disregarded for the equilibrium pro�le calculation. Setting the temporal

derivative on the left-hand side of (2.21) equal to zero and rearranging, the steady

state is found to satisfy the Initial Value Problem (IVP)

d

dz

 ρ̄(z)

V̄ (z)

P̄ (z)

 =
a′(z)

a(z)

1

ρ̄(z)V̄ 2(z)− γP̄ (z)

 −ρ̄2(z)V̄ 2(z)

γP̄ (z)V̄ (z)

−γP̄ (z)ρ̄(z)V̄ 2(z)

 (2.23a)

 ρ̄(0)

V̄ (0)

P̄ (0)

 =

ρ̄0

V̄0

P̄0

 (2.23b)

for z ∈ (0, L).

Using Assumption 12, we introduce now perturbations ρ̆, V̆ , P̆ around the mean

values solved from the IVP (2.23), so we decompose

ρ(z, t) = ρ̄(z) + ρ̆(z, t), (2.24a)

V (z, t) = V̄ (z) + V̆ (z, t), (2.24b)

P (z, t) = P̄ (z) + P̆ (z, t). (2.24c)

Substituting (2.24) into (2.21) and neglecting higher order and a�ne terms, we

end up withρ̆t(z, t)V̆t(z, t)

P̆t(z, t)

 =

−V̄ (z) ρ̄(z) 0

0 −V̄ (z) − 1
ρ̄(z)

0 −γP̄ (z) V̄ (z)


ρ̆z(z, t)V̆z(z, t)

P̆z(z, t)

+

 0

0
γ̄
a(z)

 Q̆(z, t)

+

−l1(V̄ (z)) −l1(ρ̄(z)) 0

0 −V̄ ′(z) 0

0 −lγ(P̄ (z)) −γl1(V̄ (z))

 ρ̆(z, t)

V̆ (z, t)

P̆ (z, t)

 (2.25)
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where possible heat release rate �uctuations Q̆ = Q−Q̄ appear as an external source

term. The term lκ(f) is de�ned

lκ(f(·)) := f ′(·) + κ
a′(·)
a(·)

f(·) (2.26)

for constant κ ∈ R and function f ∈ C1(0, L). Next, similar to what is

done for acoustics in a duct with constant cross-sectional area considered in

e.g. [Epperlein et al. 2015], dimensional analysis shows that for low Mach number

�ow (Assumption 9) we can approximate V̄ ≈ 0 in relation to the other steady state

quantities and decouple the expressions for V̆ , P̆ from the expression for ρ̆. This

gives a simpli�ed linear acoustic PDE system in (V̆ , P̆ ) which reads

V̆t(z, t) = − 1

ρ̄(z)
P̆z(z, t)− V̄ ′(z)V̆ (z, t) (2.27a)

P̆t(z, t) = −γP̄ (z)V̆z(z, t)−
(
P̄ ′(z) + γ

a′(z)

a(z)
P̄ (z)

)
V̆ (z, t)

− γV̄ ′(z)P̆ (z, t) +
γ̄

a(z)
Q̆(z, t). (2.27b)

2.3.2 Special cases

We present here two scenarios for which the acoustic equations (2.27) can be written

in a simpler form. First in Section 2.3.2.1 we consider the case when there is zero

mean �ow at the inlet of the duct. Secondly, we show how (2.27) simpli�es to the

constant cross-sectional area case in Section 2.3.2.2.

2.3.2.1 Special case I : Duct with zero mean �ow

We let here V̄0 = 0 in the IVP (2.23). It can in this case be shown by direct

substitution that the solution satis�es

ρ̄(z) ≡ ρ̄0, V̄ (z) ≡ 0, P̄ (z) ≡ P̄0.

Substituting these steady-state solutions into (2.27) gives us the simpli�ed acoustics

equations

V̆t(z, t) = −1

ρ̄
P̆z(z, t) (2.28a)

P̆t(z, t) = −γP̄ V̆z(z, t)− γ
a′(z)

a(z)
P̄ V̆ (z, t) +

γ̄

a(z)
Q̆(z, t) (2.28b)

This model is used in Chapter 5.
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2.3.2.2 Special case II : Duct with constant cross-sectional area

We let here the cross-sectional area a(z) ≡ a0 be constant. Firstly, this implies

a′(z) ≡ 0, and substituting into (2.23) we obtain the constant solution

ρ̄(z) ≡ ρ̄0, V̄ (z) ≡ V̄0, P̄ (z) ≡ P̄0

for the equilibrium pro�le. We then have that the acoustics are described by

V̆t(z, t) = −1

ρ̄
P̆z(z, t) (2.29a)

P̆t(z, t) = −γP̄ V̆z(z, t) +
γ̄

a
Q̆(z, t) (2.29b)

This model is used in Chapters 3�4.

We consider next in Section 2.4 boundary conditions for the acoustics (2.27)�

(2.29) and coupling between the heat release and acoustic �eld.

2.4 Boundary conditions

Boundary conditions for the thermoacoustic models considered in this thesis are dis-

cussed here. First, the modelling of acoustic impedance is presented in Section 2.4.1.

This is followed by coupling between �ame and acoustics, which is considered in Sec-

tion 2.4.2.

2.4.1 Acoustic impedance

Figure 2.8: Incident pressure wave P̆ i being decomposed into re�ected P̆ r and trans-

mitted P̆ t waves at surface at surface of discontinuity between region of characteristic

impedance Z0 (left) and Z1 (right).

To introduce the concept of acoustic impedance, consider the scenario presented

in Figure 2.8. It shows an incident acoustic wave P̆ i propagating perpendicularly

towards a surface of discontinuity separating two di�erent media at z = zd, with

respectively constant density ρ0, ρ1 and speed of sound c0, c1. Due to the surface

of discontinuity, the incident wave is split into two components - a transmitted

wave P̆ t, which continues in the same direction of travel as P̆ i, and a re�ected
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wave P̆ r which propagates in the opposite direction. As shown in [Kim 2010], the

magnitude of the re�ected and transmitted waves are computed via the re�ection dr
and transmission dt coe�cients respectively, de�ned as

dr :=
Z1 − Z0

Z1 + Z0
(2.30a)

dt :=
2Z1

Z1 + Z0
(2.30b)

where Zi denotes the characteristic impedance of medium i ∈ {0, 1}, computed as

the product of density and speed of sound

Zi = ρici. (2.31)

At any point z in an acoustic �eld the local pressure and velocity are related via

the impedance Z through the relation

P̆ (z, t) = ZV̆ (z, t) (2.32)

This gives a basis for modelling the boundary conditions of the acoustics equa-

tions described in Section 2.3. When modelling the duct termination via a scalar

Figure 2.9: Theoretical ideal cases for duct termination impedance. Open end (left),

closed end (middle) and anechoic end (right).

impedance as (2.32), there are three important theoretical edge cases to consider as

shown in Figure 2.9. The �rst is an ideal open end, where the impedance Z = 0.

Applying (2.30a) with Z1 = Z and Z0 = k, k being the characteristic impedance of

the gas inside the duct, one obtains a re�ection coe�cient dr = −1 for the case of

an ideal open end. The second edge case is that of an ideal closed end, where the

impedance Z = ±∞, and thus the re�ection coe�cient dr = 1. Finally, we have the

case of an ideal anechoic end, which has an impedance of Z = k and hence re�ection

coe�cient dr = 0.

In practice the impedance typically falls somewhere between these edge cases,

as there will always be a certain amount of damping present causing acoustic waves

to neither perfectly transmit nor perfectly re�ect. Knowing the exact value of the

acoustic impedance at the terminations of a given duct is often di�cult to know a
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priori or compute analytically in practice. As a representation of the duct termina-

tions, we use the boundary conditions

P̆ (L, t) = ZLV̆ (L, t) +WL(t) (2.33a)

P̆ (0, t) = Z0V̆ (0, t) +W0(t). (2.33b)

One should note that in the general case acoustic impedance is simply the ratio

between velocity and pressure at any given position z and time t, so that

Z(z, t) :=
P̆ (z, t)

V̆ (z, t)
, (2.34)

and hence it depends on both the media of propagation and the acoustic �eld. The

special case of locally reacting linear surfaces [Rienstra & Hirschberg 2004] models

the acoustic impedance as a general linear system, with input being velocity per-

turbations and output being pressure perturbations. This description is common

to use in frequency domain analysis of acoustics as the impedance can be modelled

as a complex function of frequency Z = Z(ω), where the real component is the

resistive part and the imaginary component the reactive part. In the time domain,

the relation between pressure and velocity within this description would hence be a

convolution

P̆ (t) =

∫ t

0
Z(t− τ)V̆ (τ)dτ, (2.35)

which can be inconvenient to use directly in time domain analysis if no further as-

sumptions about the structure of Z are taken. Hence the boundary conditions (2.33),

although being a simpli�cation that models the impedance as only having a con-

stant, resistive component, is convenient to use for algorithm design and serves as a

su�ciently good approximation in many practical scenarios. Hence, using boundary

conditions of the form (2.33) relies on the following Assumption:

Assumption 13. The boundary acoustic impedances can be approximated by scalar

constants.

2.4.2 Heat release�acoustics coupling

2.4.2.1 Electrical heater

As done in e.g. [Epperlein et al. 2015, de Andrade et al. 2018b], we assume the elec-

trical heater is considered a point source inside the acoustic domain at �xed position

z0 ∈ (0, L). This yields the following Assumption, analagous to Assumption 7 for

the �ame models:

Assumption 14. The spatial extent of the electrical heater is small compared to the
acoustic wavelength, and can hence be modelled by a point source in the �ow.
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To model this, the Dirac delta function δ is used giving rise to the representation

Q̆(z, t) = δ(z − z0)Q̆(t) (2.36)

that will be used for the heat release source term in (2.29b) when modelling the

Rijke tube, with the heat release rate �uctuations Q̆ = Q− Q̄ coming from (2.3).

2.4.2.2 Flame models

Figure 2.10: Jump condition around �ame.

For the combustor models considered, we assume the �ame is located at the base

of the combustion chamber, namely at z = 0. We make the following assumption

for the boundary condition upstream (z < 0) of the �ame:

Assumption 15. There is a non-re�ective boundary condition upstream of the

�ame.

The jump condition around the �ame can be considered to be composed of three

regions (see Figure 2.10): the region directly upstream of the area expansion where

the premixed fuel-air mixture is entering, the region of unburned gases directly

downstream of the area expansion but upstream of the �ame front, and the region

of burnt gases directly downstream of the �ame front. We denote respectively the

pressure and velocity in these three regions around z = 0 as (P̆−, V̆ −), (P̆ 0, V̆ 0) and

(P̆+, V̆ +).

As suggested in [Gentemann et al. 2003], the pressure and velocity �uctuations

P̆ 0, V̆ 0 are assumed to be in the linear regime related to their respective upstream

counterparts P̆−, V̆ − via the relation

P̆ 0(0, t) = P̆−(0, t) +

(
1− ζ −

(
Au
Ad

)2
)
Muk̄V̆

−(0, t) (2.37a)

k̄V̆ 0(0, t) = −MdP̆
−(0, t) +

Au
Ad

k̄V̆ −(0, t) (2.37b)
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where ζ is the pressure loss coe�cient across the area expansion, Au, Ad are respec-

tively the area directly upstream and downstream of the area expansion, Mu, Md

are the �ow Mach numbers directly upstream and downstream of the area expansion

and k̄ is the mean characteristic impedance of the unburned gas.

With Assumption 9 we have Mu,Md << 1, so we set Mu ≈ 0, Md ≈ 0 and the

terms involving these are neglected, yielding

P̆ 0(0, t) ≈ P̆−(0, t) (2.38a)

V̆ 0(0, t) ≈ Au
Ad

V̆ −(0, t). (2.38b)

After the jump condition involving the area expansion, there is another jump

condition as the �ow passes through the �ame. This condition is in [Polifke 2015] de-

rived from the Rankine-Hugoniot equations, and in the linear regime can be written

as

P̆+(0, t) = P̆ 0(0, t)− θMdk̄V̆
0(0, t)− k̄V̄ (0)θMd

Q̆(t)

Q̄
(2.39a)

k̄V̆ +(0, t) = k̄V̆ 0(0, t) + k̄V̄0θ
Q̆(t)

Q̄
− θMdγP̆

0(0, t) (2.39b)

where θ is de�ned as

θ :=
Th
Tc
− 1 (2.40)

with Tc, Th being respectively the absolute temperatures at the cold (upstream)

and hot (downstream) sides of the �ame, and V̄0 is the mean velocity at z = 0.

Neglecting again the terms involving the Mach number Md << 1 in their product,

yields the approximate relations

P̆+(0, t) ≈ P̆ 0(0, t) (2.41a)

V̆ +(0, t) ≈ V̆ 0(0, t) + V̄0θ
Q̆(t)

Q̄
. (2.41b)

Substituting then (2.38) into (2.41), we obtain the boundary conditions

P̆+(0, t) = P̆−(0, t) (2.42a)

V̆ +(0, t) = αV̆ −(0, t) + ς
Q̆(t)

Q̄
(2.42b)

where we have denoted

α :=
Au
Ad

, ς := V̄0θ.

The �ame models (2.16) or (2.17) are in turn coupled with the average local

velocity �uctuation V̆ (·) := 1
2(V̆ −(0, ·) + V̆ +(0, ·)).
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2.5 Summary of models

With the di�erent model components described in Section 2.2�2.4, we put together

the subsystems and present the complete network models in this section. The Rijke

tube model in Section 2.5.1 and can combustor model in Section 2.5.3 both assume

the following:

Assumption 16. Heat transfer between the duct walls and internal gas is neglected.

2.5.1 Rijke tube � Chapter 3

The �rst model we consider is the electrically heated Rijke tube. It consists of a

cylindrical tube with constant cross-sectional area, and an electrical heater inside the

tube. The complete model consists hence of the mathematical model of the electrical

heater (2.3), the acoustics within a duct with constant cross-sectional area (2.29)

with heat release coupled via (2.36) and general acoustic boundary conditions (2.33).

We only consider state estimation of the Rijke tube, and let the boundary actuation

signals W0 ≡ 0, WL ≡ 0. This gives rise to the complete model

Q̇(t) = −1

τ
Q(t) +

1

τ
lw(κ+ κv

√
|V̆ (z0, t) + V̄ |)(Tw − Tg) (2.43a)

V̆t(z, t) = −1

ρ̄
P̆z(z, t) (2.43b)

P̆t(z, t) = −γP̄ V̆z(z, t) +
γ̄

a
δ(z − z0)(Q(t)− Q̄) (2.43c)

P̆ (L, t) = ZLV̆ (L, t) (2.43d)

P̆ (0, t) = Z0V̆ (0, t) (2.43e)

P̆ (x, 0) = P̆0(x) (2.43f)

V̆ (x, 0) = V̆0(x) (2.43g)

Q(0) = Q0 (2.43h)

initialized from P̆0, V̆0 ∈ L2(0, L) and Q0 ∈ R.

2.5.2 Acoustic duct for boundary parameter identi�cation � Chap-
ters 4�5

For the purpose of boundary parameter identi�cation, we consider a model of an

acoustic duct with zero mean �ow as given by (2.28), but with no heat release

�uctuations, so that Q̆ ≡ 0. This is coupled to the boundary conditions (2.33), with

W0 or WL used as identi�cation signals. The mathematical model is then

V̆t(z, t) = −1

ρ̄
P̆z(z, t) (2.44a)

P̆t(z, t) = −γP̄ V̆z(z, t)− γ
a′(z)

a(z)
P̄ V̆ (z, t) (2.44b)
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P̆ (L, t) = ZLV̆ (L, t) +WL(t) (2.44c)

P̆ (0, t) = Z0V̆ (0, t) +W0(t) (2.44d)

P̆ (x, 0) = P̆0(x) (2.44e)

V̆ (x, 0) = V̆0(x) (2.44f)

initialized from P̆0, V̆0 ∈ L2(0, L).

2.5.3 Can combustor � Chapters 6�7

Lastly, we consider a mathematical model representing longitudinal oscillations in

a can combustor. The acoustics are described by (2.27), and a �ame modelled

by (2.16) or (2.17) is located at z = 0, coupling to the acoustics via (2.42). The

other end of the combustor is assumed to be modelled by a generic constant resis-

tive impedance (2.33a), where the input signal WL can be used for stabilization of

thermoacoustic instabilities. The model is then given by

Ẋ(t) = f(X(t)) + ḡ0(X(t))V̆ (0, t) + ḡ1(X(t))V̆ (0, t− τ) (2.45a)

Q̆(t) =
Q̄

V̄0
h̄(X(t)) (2.45b)

V̆t(z, t) = − 1

ρ̄(z)
P̆z(z, t)− V̄ ′(z)V̆ (z, t) (2.45c)

P̆t(z, t) = −γP̄ (z)V̆z(z, t)−
(
P̄ ′(z) + γ

a′(z)

a(z)
P̄ (z)

)
V̆ (z, t)− γV̄ ′(z)P̆ (z, t)

(2.45d)

P̆ (L, t) = ZV̆ (L, t) +W (t) (2.45e)

P̆+(0, t) = P̆−(0, t) (2.45f)

V̆ +(0, t) = αV̆ −(0, t) + ς
Q̆(t)

Q̄
(2.45g)

P̆ (x, 0) = P̆0(x) (2.45h)

V̆ (x, 0) = V̆0(x) (2.45i)

X(0) = X0 (2.45j)

where the more general ODE (2.17) has been used for the �ame model. The model

is initialized from P̆0, V̆0 ∈ L2(0, L) and X0 ∈ Rn.
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Lab Setup : The Rijke Tube





35

Introduction to Part II

Figure ii.1: Diagram of Rijke tube setup to be considered for observer design in

Chapter 3. The Rijke tube is set up vertically and an electrical heater is located in

the lower half of the tube.

As stated in Chapter 1, Part II is focused on the Rijke tube, which is schematically

depicted in Figure ii.1 for the case when there is a microphone sensing the lower

boundary. The model (2.43) of the Rijke tube can be written in the form of a

network model as discussed in Section 2.1, and this will be the basis for algorithm

design.

The Rijke tube, being a common experimental setup for studying thermoacous-

tic instabilities, is one of the simplest arrangements capable of exhibiting the phe-
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nomenon. The electrically heated version has the advantage of being simple to

model due to the absence of complex combustion dynamics. The version of the

Rijke tube with a heated gauze was �rst introduced in [Rijke 1859], and due to its

simplicity has since been the subject of numerous studies to gain understanding of

and develop methods to mitigate thermoacoustic instabilities, see [Raun et al. 1993]

for a review.

We describe here the simulation and experimental setup considered in testing

the algorithms to be designed in Chapters 3�4.

Simulation setup

Simulations are performed using MATLAB. The PDEs are solved using a �rst-order

upwind scheme, and the heat release model is solved using a fourth-order Runge-

Kutta scheme. A spatial discretization of dx = 1.00 × 10−2 and a constant time

step of dt = 9.74 × 10−6 is used. The parameter update scheme is discretized in

time using a �rst-order Euler scheme with a time-step of dt = 1.17 × 10−5 s. The

Parameter Symbol Value Unit

Acoustic parameters

Adiabatic constant γ 1.40 �

Mean pressure P̄ 1.00× 105 Pa

Mean density ρ̄ 1.20 kg ·m−3

Mean velocity V̄ 0.350 m · s−1

Length of tube L 1.40 m

Cross-sectional radius of tube r 3.57× 10−2 m

Top acoustic impedance ZL 20.0 Pa · s ·m−1

Bottom acoustic impedance Z0 −15.0 Pa · s ·m−1

Electrical heater parameters

Mean heat release rate Q̄ 7.20× 102 W

Wire time constant τ 2.00× 10−3 s

Temperature of wire Tw 9.33× 102 K

Temperature of gas Tg 3.00× 102 K

Empirical constant for King's law κv 1.50 W · s0.5 ·m−1.5 ·K−1

Thermal conductivity of air κ 2.638× 10−2 W ·m−1 ·K−1

Length of wire lw 1.067 m

Position of heater z0 0.350 m

Table ii.1: Physical parameters used in Rijke tube simulations.

physical parameters considered in the simulations are summarized in Table ii.1. The

simulation is initialized from

P̆0(x) = 0, V̆0(x) = 0, Q̆0 = 0.
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Figure ii.2: Open-loop pressure response of Rijke tube in simulations.

Figure ii.3: Open-loop velocity response of Rijke tube in simulations.
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Figure ii.4: Open-loop heat release rate response of Rijke tube in simulations.

To visualize the plant dynamics with the choice of parameters presented in Ta-

ble ii.1, the open loop response of the plant simulated for ts = 0.5 s is plotted. In

Figure ii.2, the pressure for (z, t) ∈ [0, L]× [0, ts] is shown, and likewise in Figure ii.3

the velocity is plotted for (z, t) ∈ [0, L]× [0, ts]. Lastly, in Figure ii.4 the simulated

heat release rate from the electrical heater is shown.

Since the simulation is initialized from zero initial conditions, the thermoacoustic

instabilities which can be seen in Figures ii.2�ii.4 arise naturally as a consequence

of the model (2.43) and the parameters summarized in the Table ii.1. As expected,

the oscillations have an initial period of exponential growth before they saturate

into a limit cycle, which is typical of thermoacoustic instabilities. Additionally, the

open-loop pressure response can be seen to have nodes by the tube boundaries,

whereas the open-loop velocity response has anti-nodes by the tube boundaries,

being representative of the open ends of the Rijke tube.

Experimental setup

The Rijke tube used for the experiments conducted is shown in Figure ii.5. It

consists of a cylindrical steel tube of length L = 1.00 m and radius r = 35.7 mm,

which is propped up by a wooden frame via plastic strips. A heating element is

positioned into the bottom of the tube via a steel rod, as can be seen under the tube

in Figure ii.5.

On top of the steel rod, the heating element, which consists of a nickel-chromium

alloy coil [Ome ], is supported via a Mica support. The heating coil is shown in
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Figure ii.5: Rijke tube.
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Figure ii.6: Coil turned o� Figure ii.7: Coil turned on

Figure ii.8: Power supply.
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Figure ii.9: Microphone.

Figure ii.10: Pressure sensor supply.

Figure ii.6, for the case when the power supply is turned o�, and in Figure ii.7 with

the power supply turned on. The power supply used is a VOLTCRAFT DPS-32-

15 [Con 2016], pictured in Figure ii.8. During the experiment, the heating coil is

positioned at z0 = 0.25 m from the base of the tube, and fed a current of I = 16.5 A

through a voltage of E = 24.0 V , giving an estimated power dissipated from the

coil of Q̄ = 396 W .

For the pressure sensor readings, two ROGA RG-50 microphones [ROG ], one of

which is pictured in Figure ii.9, are used. They are each powered by an MMF M29

IEPE Sensor Supply [Met 2017] as pictured in Figure ii.10, interfaced via Bayonet

Neill-Concelman (BNC) connectors. From the IEPE Sensor Supply, the analog pres-

sure signal is passed into a Bela Board [McPherson 2017], pictured in Figure ii.11,

which is used for data acquisition. The Bela Board has an onboard Analog-to-

Digital Converter (ADC) and C compiler, and the sensor reading is sampled at

fs = 44.1 KHz.
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Figure ii.11: Bela board used for data acquisition.

Figure ii.12: Boundary pressure

measurement. For observer.

Figure ii.13: In-domain pressure

measurement. For validation.
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Figure ii.14: Loudspeaker.

Figure ii.15: Acoustic parameter identi�cation

setup.

To test the state observer developed in Chapter 3 with experimental data, two

pressure measurements are taken. The �rst pressure measurement is taken at the

bottom boundary of the tube, as shown in Figure ii.12. This signal is used as the

input to the observer. The second pressure measurement is taken upstream of the

heater at zv = 0.85 m within the tube, as shown in Figure ii.13, and is used for

validation.

To test the parameter identi�er to be presented in Chapter 4 in estimating the

boundary impedances Z0, ZL, the experimental setup is slightly di�erent. The

electrical heater is not used for this experiment, but instead a Sony SRS-XB01

loudspeaker [Son 2018], as shown in Figure ii.14, is used to excite the cylindrical

tube. One pressure sensor is placed in order to capture the output of the loudspeaker,

while the other sensor is placed to record the response of the tube, as shown in

Figure ii.15. This setup is used instead of passing the desired loudspeaker signal
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directly into the parameter identi�er to prevent possible loudspeaker distortions

from negatively a�ecting the parameter identi�cation.

Parameter Symbol Value Unit

Acoustic parameters

Adiabatic constant γ 1.40 �

Mean pressure P̄ 1.00× 105 Pa

Mean density ρ̄ 1.20 kg ·m−3

Length of tube L 1.00 m

Cross-sectional radius of tube r 3.57× 10−2 m

Electrical heater parameters

Voltage over coil E 24.0 V

Current through coil I 16.5 A

Diameter of coil wire dw 1.00× 10−3 m

Temperature of gas Tg 3.00× 102 K

Empirical constant for King's law κv 1.50 W · s0.5 ·m−1.5 ·K−1

Thermal conductivity of air κ 2.638× 10−2 W ·m−1 ·K−1

Position of heater z0 0.250 m

Derived parameters

Mean heat release rate Q̄ 3.96× 102 W

Temperature of wire Tw 1.11× 103 K

Length of wire lw 0.918 m

Mean velocity V̄ 0.163 m · s−1

Wire time constant τ 5.71× 10−4 s

Table ii.2: Physical parameters used in data post-processing for Rijke tube experi-

ments.

After the data is collected with the experimental setups described above, it is

tested with the observer and parameter identi�er in MATLAB. The parameters used

for this data post-processing is summarized in Table ii.2. Compared to Table ii.1,

the acoustic impedances are omitted as these are considered unknown, and will be

estimated using the method to be presented in Chapter 4.

The �rst three parameters listed under Acoustic parameters, namely γ, P̄ and

ρ̄ are taken to correspond to standard atmospheric conditions. Next, the length L

and radius r are measured directly from the tube shown in Figure ii.5.

Under Electrical heater parameters, the measured voltage E and current I is

documented. Also, the diameter of the coil wire dw is taken from the manufacturer

documentation [Ome ]. The temperature of the gas Tg is set to standard room

temperature, and the parameters κv and κ are the same in Tables ii.1 and ii.2,

being estimates based on standard conditions of air in room temperature and esti-

mates from the literature (see e.g [Epperlein et al. 2015], [de Andrade et al. 2016],

[de Andrade et al. 2017]). The position of the heater z0 is measured relative to the
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positioning of the tube.

The mean heat release Q̄ is under Derived parameters, as this is computed from

the voltage E and current I supplied. Additionally the wire temperature Tw is esti-

mated according to the manufacturer documentation [Ome ] based on the supplied

current I, and in turn from this the wire length lw is estimated, also based on the

manufacturer documentation [Ome ]. From the calculated wire temperature Tw to-

gether with gas temperature Tg, gravitational constant g and wire diameter dw, as

shown in [Epperlein 2014] the mean velocity V̄ =
√
g
Tw−Tg
Tg

dw. Also, based on the

formula given in [Epperlein et al. 2015], the wire time constant τ is estimated based

on the wire diameter dw and mean velocity V̄ as τ = dw
5V̄

.
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Dans ce chapitre, nous proposons un observateur d'état pour le modèle de tube

de Rijke (2.43). Il est basé sur l'hypothèse qu'une mesure de pression à la frontière

inférieure du domaine spatial est disponible. Après avoir réécrit le modèle en coor-

données de Riemann et replié le domaine spatial autour du modèle de dégagement

de chaleur, l'observateur est proposé en copiant la dynamique du modèle et en

reconstruisant la frontière non mesurée. Il est démontré que l'estimation de l'état

de la frontière non mesurée converge vers la valeur réelle de manière exponentielle.

Ceci permet ensuite d'établir des propriétés de convergence globale pour tous les

états du modèle. Par la suite, un résultat mineur a�rmant que les estimations

d'état restent bornées en cas d'incertitude sur la connaissance des paramètres de la

frontière est donné. Les résultats théoriques sont suivis d'une validation, d'abord

en simulations, puis en expériences. La sensibilité des estimations aux di�érentes

valeurs des paramètres limites suggère que des estimations de ceux-ci devraient être

obtenues, motivant le sujet du chapitre 4.

In this chapter, we propose a state observer for the Rijke tube model (2.43). It

is based on the assumption that the lower boundary is measured. After rewriting

the model in Riemann coordinates and folding the spatial domain around the heat

release model, thus moving it to the rewritten model boundary, the observer is pro-

posed by copying the model dynamics and reconstructing the unmeasured boundary.

It is shown that the estimate of the unmeasured boundary state converges to the
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true value exponentially. This in turn allows establishment of global convergence

properties for all states in the model. Subsequently, a minor result asserting that

the state estimates remain bounded under uncertainty in knowledge of the bound-

ary parameters is given. The theoretical results are followed by validation, �rst in

simulations and then in experiments. The sensitivity to the estimates to di�erent

values of the boundary parameters suggests estimates of these should be obtained,

motivating the topic of Chapter 4.

3.1 Literature review

Much of the previous work on the Rijke tube has consisted in characterizing its

stability limits, with [Carrier 1955] pioneering linear stability analysis of the sys-

tem and later [Bayly 1986] taking into account nonlinear features. In addition to

experimental studies of the stability limits of the Rijke tube, studies on active con-

trol strategies applied to attenuate the thermoacoustic oscillations in the Rijke tube

have been performed. A control law consisting in measuring the pressure signal

upstream of the heater and subsequently sending this signal phase-shifted and am-

pli�ed to a loudspeaker has been applied to a Rijke tube in [Heckl 1988], being one

of the �rst studies investigating active control of the Rijke tube. More recently, a

more sophisticated full-state feedback boundary control law designed via in�nite-

dimensional backstepping on a linearised PDE-ODE model of the electrically heated

Rijke tube has been derived in [de Andrade et al. 2018b]. To pair with this full-

state feedback control law, a corresponding boundary observer for the linearized

PDE-ODE model is derived in [de Andrade et al. 2018a]. This work was contin-

ued in [de Andrade et al. 2020], where experimental veri�cation of the observer was

obtained. Also, in [Auriol et al. 2020b], [de Andrade & Vazquez 2020] observer de-

signs for the Rijke tube using in-domain measurements rather than just a boundary

measurement are considered.

As explained in Chapter 2, the heat release model (2.3) captures the non-

linear e�ects of the electrically heated Rijke tube. For the observer design in

[de Andrade et al. 2018a] (2.3) is linearized, which makes the mathematical anal-

ysis tractable - however this linear ODE model does not re�ect the full nonlinear

dynamics one typically obtains in practice. A nonlinear heat release model is needed

to model the saturated response one sees for large amplitudes and resultant limit

cycle behaviour [Agostino et al. 2002]. To maintain this behaviour in the design,

we propose in Section 3.2 an observer taking into account the nonlinear features of

King's law.

3.2 Observer design

3.2.1 Model in Riemann coordinates

Consider the setup shown in Figure ii.1. It consists of an un�anged, cylindrical tube

of length L and constant cross-sectional area a, with an electrical heater located
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in the interior of the tube at vertical position z0 ∈
(
0, L2

]
. With real-time gauge

pressure data from a microphone located at z = 0, the aim of the state observer is

to infer the unmeasured pressure and velocity perturbations along the vertical axis

of the tube, together with the heat release rate from the electrical heater.

In Chapter 2, a mathematical model to describe the distributed pressure P̆ and

velocity perturbations V̆ coupled with the heat release rate Q from the electrically

heated coil is introduced, and given by (2.43). We assume the boundary pressure

measurement

Y (t) := P̆ (0, t) (3.1)

is known.

Remark 1. In an ideal theoretical setting, since the Rijke tube is open

at both ends, a pressure node is located at both z = 0 and z =

L. However, in practice the nodes are located slightly outside the tube

ends ([Levine & Schwinger 1948],[Epperlein et al. 2015]) making boundary pressure

sensing feasible. This fact is modelled by the non-zero impedances Z0, ZL in (2.43d)�

(2.43e).

In order to use the model for observer design, it is convenient to rewrite the

linearised acoustics from (2.43) in Riemann invariant coordinates and fold the spatial

domain around z0 to move the heat release to the system boundary. To facilitate

this, we introduce the invertible a�ne spatial coordinate transforms zi : x 7→ z,

z1(x) := z0(1− x) (3.2a)

z2(x) := z0 + x(L− z0) (3.2b)

with x ∈ [0, 1] and i ∈ {1, 2} to rewrite the linearised acoustics from (2.43) in

Riemann invariant coordinates. The subscript i denotes which part of the Rijke

tube x is mapped to, with z1 mapping x to points below the electrical heater and

z2 mapping x to points above the electrical heater. Next, de�ne the Riemann

coordinates

ui(x, t) := P̆ (zi(x), t) + kV̆ (zi(x), t) (3.3a)

vi(x, t) := P̆ (zi(x), t)− kV̆ (zi(x), t) (3.3b)

where k is the characteristic impedance of the gas, de�ned as

k :=

√
γP̄ ρ̄. (3.4)

This allows us to rewrite the parts of the linearised acoustics (2.43b)�(2.43c) for

z 6= z0, over (x, t) ∈ (0, 1)× [0,∞) as

u1,t(x, t) = λ1u1,x(x, t) (3.5a)

v1,t(x, t) = −λ1v1,x(x, t) (3.5b)

u2,t(x, t) = −λ2u2,x(x, t) (3.5c)
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v2,t(x, t) = λ2v2,x(x, t) (3.5d)

where

λ1 :=
c

z0
(3.6a)

λ2 :=
c

L− z0
, (3.6b)

with c being the speed of sound inside the tube, given by

c :=

√
γP̄

ρ̄
. (3.7)

Remark 2. Since z0 ≤ L
2 we have that λ1 ≥ λ2. This fact is useful later on in the

observer design.

Next, the acoustic boundary conditions (2.43d)�(2.43e) are rewritten as

u1(1, t) = d0v1(1, t) (3.8a)

v2(1, t) = d1u2(1, t) (3.8b)

where the re�ection coe�cients d0, d1 are de�ned as

d0 :=
Z0 + k

Z0 − k
(3.9a)

d1 :=
ZL − k
ZL + k

. (3.9b)

Since the spatial domain is folded around z0, the electrical heater is moved to the

boundary of the model. To deal with this, we consider the Laplace transform of the

PDE dynamics in Riemann coordinates around the electrical heater. These can be

rewritten as ODEs in the spatial coordinate z as

d

dz
u(z, s) = −s

c
u(z, s) +

γ̄

ac
δ(z − z0)Q̆(s) (3.10a)

d

dz
v(z, s) =

s

c
v(z, s)− γ̄

ac
δ(z − z0)Q̆(s) (3.10b)

As shown in e.g. [Epperlein et al. 2015], we can then write

u(z+
0 , s) = u(z−0 , s) +

γ̄

ac
Q̆(s)

v(z+
0 , s) = v(z−0 , s)−

γ̄

ac
Q̆(s)

where z−0 is the position directly under the heater and z+
0 is the position directly

above the heater. Using the spatial change of variables (3.2) and writing in the time

domain, this gives rise to the boundary condtions

v1(0, t) = v2(0, t) + µX̆(t) (3.12a)
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u2(0, t) = u1(0, t) + µX̆(t) (3.12b)

where we have denoted X̆ := Q̆, and the ODE boundary coe�cient µ is de�ned

µ :=
γ̄

ac
. (3.13)

Denoting X := Q, the heat release model (2.43a) is rewritten as

Ẋ(t) = −aX(t) + b1
√
|b2 + b3(u1(0, t)− v2(0, t))|+ b4 (3.14)

with

a :=
1

τ

b1 :=
lw(Tw − Tg)κv

τ

b2 := V̄

b3 :=
1

2k

b4 :=
lw(Tw − Tg)κ

τ
.

The gauge pressure measurement (3.1) is in the Riemann invariant coordinates,

de�ned via (3.3), written as Y (·) = 1
2(u1(1, ·) + v1(1, ·)). Applying the boundary

condition for u1 we see by de�ning the boundary measurement signal

y(t) := v1(1, t) (3.15)

the gauge pressure measurement is reconstructed as

Y (t) =
1 + d0

2
y(t). (3.16)

These dynamics are schematically depicted in Figure 3.1. Notice that several feed-

back loops make the dynamics potentially unstable.

3.2.2 Observer design

With the measurement signal y de�ned in (3.15), we propose the observer

˙̂
X(t) = −aX̂(t) + b1

√
|b2 + b3(û1(0, t)− v̂2(0, t))|+ b4 (3.17a)

û1,t(x, t) = λ1û1,x(x, t) (3.17b)

û2,t(x, t) = −λ2û2,x(x, t) (3.17c)

v̂1,t(x, t) = −λ1v̂1,x(x, t) (3.17d)

v̂2,t(x, t) = λ2v̂2,x(x, t) (3.17e)

û2(0, t) = û1(0, t) + µ(X̂(t)− X̄) (3.17f)

v̂1(0, t) = v̂2(0, t) + µ(X̂(t)− X̄) (3.17g)
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Figure 3.1: Schematic of Rijke tube system in Riemann coordinates. The green

arrows are couplings between the ODE state and PDE states, the red arrows are

boundary couplings between the PDE states and the magenta arrow represents the

output signal.

û1(1, t) = d0y(t) (3.17h)

v̂2(1, t) = d1y(t+ λ−1
1 − λ

−1
2 ) + d1

(
û1(0, t− λ−1

2 )− v̂2(0, t− λ−1
2 )
)
. (3.17i)

We state now the main result pertaining to the convergence properties of (3.17),

before explaining the rationale behind the observer. A formal proof of the result is

then given in Section 3.2.3.

Theorem 1. Consider system (3.5), (3.8), (3.12), (3.14) and the state observer

(3.17) using the measurement (3.15). We assume |d0|, |d1| < 1. Assume the states

have initial conditions (ui,0, vi,0, X0) ∈ L2(0, 1) × L2(0, 1) × R and (ûi,0, v̂i,0, X̂0) ∈
L2(0, 1)×L2(0, 1)×R, respectively. Then, the zero equilibrium of the dynamics of the

estimation errors ũi := ui − ûi, ṽi := vi − v̂i, X̃ := X − X̂ is Globally Asymptocally

Stable (GAS).

This observer consists of a copy of the Rijke tube dynamics in Riemann coor-

dinates (3.5), with the exception of (3.17i). While (3.17h) consists of injecting the

measured output directly, Equation (3.17i) deserves more explanation. It is based

on the following considerations. First, notice that substituting Equation (3.12b)

into the general solution of u2 in terms of the boundary at x = 0, u2(1, ·) rewrites

u2(1, t) = u2(0, t− λ−1
2 )

= u1(0, t− λ−1
2 ) + µX̆(t− λ−1

2 ). (3.18)

Besides, using the expression for v1(0, ·) from (3.12a) together with the measurement

y(·) = v1(1, ·) yields
µX̆(t) = y(t+ λ−1

1 )− v2(0, t). (3.19)

Combining (3.18)�(3.19) gives

v2(1, t) = d1

(
u1(0, t− λ−1

2 )− v2(0, t− λ−1
2 ) + y(t+ λ−1

1 − λ
−1
2 )
)
. (3.20)
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The boundary condition (3.17i) follows by considering estimates of u1(0, t − λ−1
2 )

and v2(0, t − λ−1
2 ) in lieu of the true values. As we show next in Section 3.2.3, the

resulting error converges asymptotically to zero.

Remark 3. Notice that the observer is causal, in particular the signal y(t+ λ−1
1 −

λ−1
2 ) is available at time t due to Remark 2.

3.2.3 Convergence analysis

The most critical boundary conditions in the error system for stability are ũ1(1, ·),
ṽ2(1, ·), so we derive their expressions �rst. It is trivial to see that ũ1(1, ·) = 0, while

subtracting (3.17i) from (3.20) yields

ṽ2(1, t) = d1(ũ1(0, t− λ−1
2 )− ṽ2(0, t− λ−1

2 )). (3.21)

The other terms in the observer (3.17) are copies of the corresponding terms in

the original system (3.5) and hence their corresponding error dynamics are easily

computed. Therefore, the state estimation error in ũi, ṽi, X̃ satis�es the dynamics

ũ1,t(x, t) = λ1ũ1,x(x, t) (3.22a)

ũ2,t(x, t) = −λ2ũ2,x(x, t) (3.22b)

ṽ1,t(x, t) = −λ1ṽ1,x(x, t) (3.22c)

ṽ2,t(x, t) = λ2ṽ2,x(x, t) (3.22d)

ũ1(1, t) = 0 (3.22e)

ũ2(0, t) = ũ1(0, t) + µX̃(t) (3.22f)

ṽ1(0, t) = ṽ2(0, t) + µX̃(t) (3.22g)

ṽ2(1, t) = d1

(
ũ1(0, t− λ−1

2 )− ṽ2(0, t− λ−1
2 )
)

(3.22h)

˙̃X(t) = −aX̃(t) + b1
√
|b2 + b3(u1(0, t)− v2(0, t))|

− b1
√
|b2 + b3(û1(0, t)− v̂2(0, t))| (3.22i)

A schematic view of the error system is shown in Figure 3.2, illustrating the cascade

structure of its dynamics which ensure the convergence of its states to zero. We are

now ready to prove Theorem 1.

Proof of Theorem 1. From (3.22a), (3.22e) we see that ũ1(0, t − λ−1
2 ) = 0 for time

t ≥ λ−1
1 + λ−1

2 . Hence the boundary condition (3.22h) simpli�es after this time to

ṽ2(1, t) = −d1ṽ2(0, t− λ−1
2 ) (3.23)

allowing us to conclude that

ṽ2(0, t) = −d1ṽ2(0, t− 2λ−1
2 ). (3.24)

Since |d1| < 1, we can conclude that ṽ2(0, t)→ 0 exponentially as t→∞. Next, we

can bound (3.22i) by the following inequality:

˙̃X(t) ≤ −aX̃(t) + b1
√
|b3[ũ1(0, t)− ṽ2(0, t)]|. (3.25)
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Figure 3.2: Schematic of the error system, where Di := λ−1
i are time delays.

De�ne

g(t) := b1
√
|b3(ũ1(0, t)− ṽ2(0, t))| (3.26)

where we know g tends to zero as t→∞. Also, de�ning the linear system in Ξ̃,

˙̃Ξ(t) = −aΞ̃(t) + g(t), (3.27)

with initial condition Ξ̃(0) = X̃(0), then Ξ̃ is Input-to-State Stable (ISS) with

respect to g. More precisely (see [Khalil & Grizzle 2002]), we can establish the

bound (where 0 ≤ t0 ≤ t),

|Ξ̃(t− t0)| ≤ e−a(t−t0)|Ξ̃(t0)|+ 1

a
sup

t0≤τ≤t
|g(τ)|. (3.28)

Since ˙̃X ≤ ˙̃Ξ and X̃(0) = Ξ̃(0), we can establish

X̃(t) ≤ Ξ̃(t). (3.29)

As g is exponentially vanishing as t→∞, we see the right hand side of (3.28) goes

to zero and hence X̃ → 0 asymptotically as t→∞, which proves the Theorem.

3.2.4 Robustness to modelling error in boundary condition

In practice the acoustic impedances Z0, ZL appearing in Equations (2.43d)�(2.43e)

are di�cult to estimate correctly, implying the boundary coe�cients d0, d1 ap-

pearing in (3.8) for the Riemann coordinate formulation is prone to being incor-

rectly modelled. Denote the estimates of d0, d1 as d̂0,d̂1 and de�ne d̃0 := d0 − d̂0,

d̃1 := d1 − d̂1 as the modelling errors.

When d̂0, d̂1 is used in place of d0, d1 in the observer (6.41), the expressions for

ũ1(1, ·), ṽ2(1, ·), given by (3.22e), (3.22h), change to

ũ1(1, t) = d̃0y(t) (3.30)
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ṽ2(1, t) = d̂1(ũ1(0, t− λ−1
2 )− ṽ2(0, t− λ−1

2 ) (3.31)

+ d̃1

(
µX(t− λ−1

2 ) + u1(0, t− λ−1
2 )
)

with the rest of the error system (3.22) being una�ected. We state now a Proposition

on the sensitivity of the state estimate error to errors in these boundary parameters.

Proposition 1. Assume that the states of the original system are bounded, and the

estimates d̂0, d̂1 of d0, d1 respectively satisfy

|d̂0|, |d̂1| < 1. (3.32)

Then all the error signals ũi, ṽi, X̃ are bounded.

Proof. In the following we denote the Laplace transform of the time-domain signal

f as f̌ , i.e. f̌(s) = L(f(·)). With the signal h de�ned as

h(t) := u1(0, t) + µX(t) (3.33)

we �nd that [
ˇ̃u1(0, s)
ˇ̃v2(0, s)

]
= H(s)

[
y̌(s)

ȟ(s)

]
(3.34)

where

H(s) :=

 e−λ
−1
1 s 0

d̂1e
−(2λ−1

2 +λ−1
1 )s

1+d̂1e
−2λ−1

2 s

e−2λ−1
2 s

1+d̂1e
−2λ−1

2 s

[d̃0 0

0 d̃1

]
(3.35)

is a transfer matrix. This allows us to reconstruct the signal ι de�ned as

ι(t) := ũ1(0, t)− ṽ2(0, t) (3.36)

in terms of signals y, h as

ι(t) =

[
1

−1

]>
L−1

(
H(s)

[
y̌(s)

ȟ(s)

])
. (3.37)

Since |d̂0|, |d̂1| < 1, Equation (3.35) implies that H is stable (see [Niculescu 2001]

for a more extended treatment of transfer functions for systems with time delays),

and since y, h ∈ L∞, one has ι, g ∈ L∞, with g de�ned by (3.26).

Further, since ũ1(1, ·) = d̃0y(·), ũ1(1, ·) ∈ L∞ and hence all of ũ1 is bounded.

Besides, one has

ˇ̃v2(1, s) =
e−λ

−1
2 s

1 + d̂1e−λ
−1
2 s

(
d̃0d̂1e

−λ−1
1 sy̌(s) + d̃1ȟ(s)

)
(3.38)

which again using that |d̂0|, |d̂1| < 1 implies that ṽ2(1, ·) ∈ L∞ and therefore all of

ṽ2 is bounded. Equation (3.25) further implies the following bound on X̃,

X̃(t) ≤ e−at|X̃(0)|+ 1

a
||g||∞. (3.39)

Finally, (3.22f)�(3.22g) express ũ2(0, ·), ṽ1(0, ·) as the sum of bounded signals, there-

fore ũ2(x, ·), ṽ1(x, ·) ∈ L∞, ∀x ∈ [0, 1].
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3.3 Simulations

We test �rst the observer in a simulation setting, with parameters as presented

in Table ii.1. In this chapter, the observer (3.17) is tested for the case when the

boundary acoustic impedances Z0, ZL are incorrect. These simulations demonstrate

the theoretical result of Propostion 1. In Chapter 4, after having estimated the

boundary parameters, the observer with correct boundary parameters will be tested,

demonstrating Theorem 1.

As a comparison, an observer we refer to as the �trivial� observer will be com-

pared to (3.17) in the simulations. This observer is identical to (3.17), except instead

of the boundary condition (3.17i), it uses

v̂2(1, t) = d1û2(1, t). (3.40)

The �trivial� observer (3.17a)�(3.17h), (3.40) is the simplest observer one can con-

struct for the Rijke tube modelled by (2.43) using the measurement (3.1), since

it is simply a copy of the dynamics with the measurement injected in the corre-

sponding boundary where it is taken. It does not have a convergence guarantee

as one has a potentially unstable feedback loop in the interaction between û2, v̂2

and X̂, but because it does not attempt to reconstruct v̂(1, ·) from known signals

it does not introduce an exponentially converging error, which is a drawback of the

observer (3.17) in the terms of its transient convergence properties.

Two di�erent pairs of Ẑ0, ẐL are tested , namely one pair satisfying |Ẑ0| <
|Z0|, |ẐL| < |ZL|, and the second pair satisfying |Ẑ0| > |Z0|, |ẐL| > |ZL|. The

performance of the �trivial� observer (3.17a)�(3.17h), (3.40) is compared, and it uses

the same parameters and measurement signal as the observer (3.17) in the respective

tests. In the two tests, the simulation is run for ts = 2 s, and the observers are

turned on at t = 0.5 s.

3.3.1 First simulation - Smaller impedances

Here �estimates� Ẑ0 = −5, ẐL = 5 are used as values of the impedance in the

observer. First the estimation errors for the observers are plotted against each

other. For the pressure and velocity, the estimation error by the heater, at position

z = z0, is considered. In Figure 3.3, the pressure estimation error P̃ (z0, ·) of

the observer (3.17) is plotted in dark blue, versus the pressure estimation error

P̃trivial(z0, ·) of the �trivial� observer (3.17a)�(3.17h), which is plotted in a lighter

shade of blue. Likewise, the velocity estimation errors Ṽ (z0, ·) and Ṽtrivial(z0, ·) are
plotted against each other in respectively dark and light grey in Figure 3.4. Lastly,

the heat release estimation error Q̃(·) and Q̃trivial(·), in respectively dark and light

red, are plotted against each other in Figure 3.5. With the observer being turned

on at t = 0.5 s, the plots are shown for t ∈ [0.5, 0.7] and t ∈ [1.8, 2.0], being

respectively the �rst and last 200 ms of testing the observers. The plots are split

up in this manner for ease of viewing, due to the relatively high frequency of the

dynamics.
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Figure 3.3: Pressure estimation errors. Initial transient (top) and converged esti-

mates (bottom).
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Figure 3.4: Velocity estimation errors. Initial transient (top) and converged esti-

mates (bottom).
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Figure 3.5: Heat release rate estimation errors. Initial transient (top) and converged

estimates (bottom).
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For both observers, the estimation error stays bounded throughout, with the

�trivial� observer having approximately constant error for the duration of the simu-

lation, but the observer (3.17) starting with a large error that converges to a bound.

The pressure estimation errors P̃trivial(z0, ·) in Figures 3.3 appears to be slightly

closer to the origin than the estimation error P̃ (z0, ·). However, the estimation er-

rors Ṽ (z0, ·) and Q̃(·) appear to be much closer to the origin than Ṽtrivial(z0, ·) and
Q̃trivial(·) in Figures 3.4�3.5. Since it can be di�cult to see directly in Figures 3.3�

3.5 which observer produces estimates that are on average closer to the true value,

the steady-state estimation error norm ||f̃ || after the initial transient response of

the quantity f̃ is estimated via

||f̃ || ≈

√
1

T2 − T1

∫ T2

T1

f̃2(t)dt.

Norm Observer (3.17) �Trivial� observer (3.17a)�(3.17h), (3.40)

||P̃ (z0)|| 14.2 12.8

||Ṽ (z0)|| 2.25× 10−2 3.83× 10−2

||Q̃|| 8.93 20.4

Table 3.1: Error norms.

In Table 3.1 the estimates of the estimation error norms for the two observers

is summarized to three signi�cant digits, using T1 = 1.5 s and T2 = 2 s. The

observer (3.17) has a norm ||P̃ (z0)|| that is 11.0% higher than the one for the �trivial�

observer. However, the norms ||Ṽ (z0)|| and ||Q̃|| are respectively 69.9% and 128%

higher for the �trivial� observer (3.17a)�(3.17h), (3.40) than for the observer (3.17).

Hence, despite the pressure estimation error norms being slightly higher for the

the observer (3.17) compared to the �trivial� observer, the estimation error norm of

the velocity and heat release rate is signi�cantly higher for the �trivial� observer. We

can thus conclude that overall the observer (3.17) has (after the initial transient)

better performance than the �trivial observer� (3.17a)�(3.17h), (3.40) when Ẑ0 = −5

and ẐL = 5 are used in place of Z0 = −15 and ZL = 20 respectively.

To have a sense of the state estimates produced by the two observers as com-

pared to the true states, after the initial transient, the estimates are plotted against

the true states for t ∈ [1.99, 2.00]. In Figure 3.6 the pressure P (z0, ·) at z0 is plot-

ted against the estimate P̂ (z0, ·) produced by the observer (3.17) and the estimate

P̂trivial(z0, ·) produced by the �trivial observer� (3.17a)�(3.17h), (3.40). Likewise, in

Figure 3.7 the velocity V (z0, ·) compared to the estimate V̂ (z0, ·) produced by (3.17)

and V̂trivial(z0, ·) produced by (3.17a)�(3.17h), (3.40) is plotted. Lastly, the heat re-

lease rate Q(·) is plotted against the estimate Q̂(·) and Q̂trivial(·) in Figure 3.8.

3.3.2 Second simulation - Larger impedances

Here the case of incorrect �estimates� taking values Ẑ0 = −50, ẐL = 50 is considered.

As in Section 3.3.1, the pressure and velocity estimation errors are plotted for z = z0.
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Figure 3.6: Pressure at z = z0 compared to estimates.
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Figure 3.7: Velocity at z = z0 compared to estimates.
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Figure 3.8: Heat release rate compared to estimates.

In Figure 3.9 the pressure estimation error P̃ (z0, ·) for the observer (3.17) is

plotted against the corresponding error P̃trivial(z0, ·) for (3.17a)�(3.17h), (3.40) in

dark and lighter blue, respectively. In Figure 3.10 the velocity estimation error

Ṽ (z0, ·) is plotted in dark green against Ṽtrivial(z0, ·) in light green. Lastly, the heat

release estimation errors Q̃(·) and Q̃trivial(·) are shown in Figure 3.11, in respectively
dark and light red.

The pressure estimation errors plotted in Figure 3.9 are fairly similar to each

other. However, for the velocity estimation errors in Figures 3.10, the estimation

errors from the observer (3.17) have a tighter bound and appear to be closer to

the origin after the initial transient as compared to the �trivial� observer (3.17a)�

(3.17h), (3.40). The same can be said for the heat release rate estimation errors in

Figure 3.11, where the observer (3.17) performs objectively better after the initial

transient.

Norm Observer (3.17) �Trivial� observer (3.17a)�(3.17h), (3.40)

||P̃ (z0)|| 32.0 29.0

||Ṽ (z0)|| 5.04× 10−2 8.60× 10−2

||Q̃|| 25.7 49.0

Table 3.2: Error norms.

We summarize now the estimated estimation error norms of the observers for

the three di�erent plots in Figures 3.9�3.11, in Table 3.2. Similar to the situation in

Section 3.3.1, the �trivial� observer performs better in estimating the pressure, but
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Figure 3.9: Pressure estimation error. Initial transient (top) and converged esti-

mates (bottom).
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Figure 3.10: Velocity estimation error. Initial transient (top) and converged esti-

mates (bottom).
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Figure 3.11: Heat release rate estimation error. Initial transient (top) and converged

estimates (bottom).
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worse in estimation of the velocity and heat release rate. Here, the observer (3.17)

has error norm ||P̃ (z0)|| that is estimated to be 10.0% higher than that for the

�trivial� observer (3.17a)�(3.17h), (3.40). On the other hand, the norm ||Ṽ (z0)|| is
70.5% higher for the �trivial� observer. Finally, the estimate of the heat release rate

estimation error norm is 90.7% higher for the �trivial observer�, when compared to

the corresponding metric for the observer (3.17).
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Figure 3.12: Pressure at z = z0 compared to estimates.

Again, we show the state estimates versus the states for the last 10 ms of the

simulation. In Figure 3.12 the pressure at z = z0 is plotted against the estimates

P̂ (z0, ·) and P̂trivial(z0, ·). From the Figure, their performance is nearly identical,

with P̂trivial(z0, ·) being slightly closer to P (z0, ·) some of the time and P̂ (z0, ·) being
slightly closer at other times, but overall they are approximately equally far away. In

Figure 3.13, the velocity estimate V̂ (z0, ·) from (3.17) and the estimate V̂trivial(z0, ·)
is plotted against the velocity V (z0, ·). Here it can be clearly seen that V̂ (z0, ·) is

closer the the true state than V̂trivial(z0, ·) throughout. Lastly, in Figure 3.14, we

see the heat release rate Q(·) compared to the estimates Q̂(·) and Q̂trivial(·). As for
the velocity, the estimate Q̂(·) is closer to the true state throughout than Q̂trivial(·).

Here the observer (3.17) was tested and compared to the �trivial� ob-

server (3.17a)�(3.17h), (3.40) for two cases when incorrect values of the acoustic

impedances are used, �rstly when the �estimates� are smaller in absolute value than

the true parameters, and secondly when the �estimates� are larger in absolute value.

Proposition 1 guarantees that the estimation errors from (3.17) remain bounded

whenever these estimates are incorrect, as long as the re�ection coe�cients d̂0, d̂1

are smaller than unity in absolute value. The �trivial� observer (3.17a)�(3.17h),
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Figure 3.13: Velocity at z = z0 compared to estimates.
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Figure 3.14: Heat release rate compared to estimates.
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(3.40) does however not have such a guarantee associated to it, but in the two cases

considered, the error does indeed remain bounded as can be seen in Figures 3.3�3.5,

3.9�3.11. Despite this, the estimates from (3.17) have overall better performance

when using incorrect values of the boundary acoustic impedances than the �trivial�

observer.

Comparing Figures 3.6�3.8 to Figures 3.12�3.14, we see the estimates using Ẑ0,

ẐL smaller than Z0, ZL in absolute value are in general larger than the true states,

whereas the estimates using Ẑ0, ẐL larger than Z0, ZL in absolute value end up being

smaller than the true states. This is to be expected as an impedance closer to the

characteristic impedance k results the estimated re�ection coe�cients d̂0, d̂1 being

closer to zero, and hence introduces more damping into the system. Since using

values of the acoustic impedances smaller than the true values causes the observer

to exaggerate the estimates, and likewise using values larger than the true values

causes the observer to underestimate the states, to achieve correct state estimates it

is important to have as correct estimates of the acoustic impedances at hand, which

is the focus of Chapter 4. We test next the state observer on experimental data.

3.4 Experiment

We consider in this section the experimental setup consisting of the Rijke tube as

shown in Figure ii.5 together with the electrical heater shown in Figures ii.6�ii.7

placed in the interior of tube, as described in the introduction to Part II. Sup-

plying power to the electrical heater via the power supply shown in Figure ii.8,

thermoacoustic instabilities are incited within the tube. Recall that the measured

and estimated physical parameters for the experimental setup are documented in

Table ii.2.
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Figure 3.15: Boundary pressure measurement, taken at z = 0 m. See Figure ii.12

for sensor placement. Observer tested in dark blue region.
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Figure 3.16: In-domain pressure measurement, taken at z = 0.85 m. See Figure ii.13

for sensor placement. Observer tested in dark blue region.

Also as described in the introduction to Part II, two microphones positioned as

shown in Figures ii.12�ii.13 pick up pressure time series data from the thermoacous-

tic instability. In Figure 3.15 the pressure measurement time series taken at the

lower boundary (z = 0, corresponding to Figure ii.12) of the tube is plotted, while

in Figure 3.16 we see the in-domain pressure measurement (z = zv, corresponding

to Figure ii.13) plotted. The plots are shown from time t = 28 s after the Rijke

tube is turned on, as this is when thermoacoustic instabilities started to develop.

The region in Figures 3.15�3.16 which is shown in dark blue is the time interval

t ∈ [40 42] over which the observer is to be tested. As expected, the boundary

pressure measurement has a much smaller magnitude than the in-domain pressure

measurement, since it is close to a node. We test now the observer (3.17) to see how

well it uses the data shown in Figure 3.15 to estimate the data in Figure 3.16. For

simplicity, only the observer (3.17) and not the �trivial� observer is tested here.

Since the boundary impedances Z0, ZL are here unknown, a range of values are

tested. In Figure 3.17, the observer is tested using guessed values of the impedances

set to Zz = ±5 Pa ·s ·m−1 for z ∈ {0, L}. The estimate produced by the observer at

position z = zv is plotted in grey and compared to the measured pressure at vertical

position z = zv. It is apparent that the pressure estimate overshoots the measured

pressure by a signi�cant amount. On the other, in Figure 3.18 the impedances are

set to Zz = ±50 Pa · s ·m−1. Here the observer produces pressure estimates with

amplitudes smaller than the measured pressure at z = zv.

To have a clearer view of the discrepancy between measured and estimated

pressure, in Figure 3.19 the estimates compared to the measured pressure at z = zv
is plotted for a shorter interval of time t ∈ [41.98 42], being the last 20 ms of the

observer test. Here, in addition to Zz = ±5 Pa · s · m−1 and Zz = ±50 Pa · s ·
m−1, two values of impedance between these, namely Zz = ±10 Pa · s ·m−1 and



70 Chapter 3. The Rijke Tube � State Observer

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

-500

-400

-300

-200

-100

0

100

200

300

400

500

Figure 3.17: Measured (blue line) compared to estimated (grey line) gauge pressure

using impedances Zz = ±5 Pa · s ·m−1, z ∈ {0, L} at z = zv.
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Figure 3.18: Measured (blue line) compared to estimated (grey line) gauge pressure

using impedances Zz = ±50 Pa · s ·m−1, z ∈ {0, L} at z = zv.
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Figure 3.19: Measured (blue line) compared to estimated (grey lines) gauge pressure

for multiple values of Zz, z ∈ {0, L} (see legend) at z = zv. Shown for �nal 20 ms

of observer test.

Zz = ±20 Pa · s ·m−1, are tested. As hinted at by Figures 3.17�3.18, one can see

that the estimated amplitude is highly sensitive to the values of impedance used

in the observer. This indicates that for more accurate estimation of the pressure,

identi�cation of the correct boundary impedance, being the focus of Chapter 4, is

crucial. Additionally one sees in Figure 3.19 that the estimates are in general phase

shifted and shifted away from the origin compared to the measured gauge pressure.

This is further discussed in Section 3.5.

3.5 Discussion

The observer (3.17) features a nonlinear model of the heat release (2.43a) and has

proven convergence, but with the tradeo� that an asymptotically convergent error

is introduced into the dynamics. It has been tested and compared to the �trivial�

observer which has no convergence guarantee, but does not introduce such an error

into its dynamics.

The simulation results presented in Section 3.3 were in general as expected,

although the �trivial observer� has in most cases surprisingly good performance. In

the experimental part, Section 3.4, the results are more interesting. While using

incorrect acoustic impedances the simulations causes slight o�sets in the estimates

compared to the true values, as can be seen in Figures 3.6�3.8, 3.12�3.14, in the

experiments the variation in amplitude based on value of impedance used is much

larger, as one can see in Figure 3.19.

In addition to the estimated amplitude being very sensitive to the acoustic

impedance, the estimates shown in Figure 3.19 are phase-shifted compared to

the measured pressure signal. There could be multiple reasons for this, a pos-
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sible one being that the model (2.43) on which the algorithm design is based

neglects certain aspects of the physics which are involved. With respect to the

acoustic impedances, an assumption made in Chapter 2 is to model the acoustic

impedances as constant scalars, hence leaving out possible reactive e�ects. How-

ever in practice one typically has reactive e�ects in the impedance of an open-ended

tube [Levine & Schwinger 1948], and leaving this out in the modelling could be a

possible explanation for the observed phase shift.

Another possible modelling error could be due to assumptions regarding heat

transfer. In the particular experimental setup used here, the tube used is made

of steel, which is a metal and hence conducts heat well. With the heater having

been turned on for some time, inevitably the tube heats up, which then in turn

in�uences the temperature Tg of the gas around the heater. As is seen in (2.43a),

the rate of change of heat release rate is directly proportional to the di�erence

between the wire and the gas temperature. The temperature of the gas documented

in Table ii.2 is of approximate room temperature, which may in practice be wrong.

Indeed, as is documented in the literature [Du et al. 2019], the temperature of the

gas immediately surrounding the electrical heater tends to be signi�cantly higher

than the standard ambient room temperature surrounding the tube.

Therefore, in addition to the pressure measurement, a useful auxiliary sensor sig-

nal to use in the observer could be the temperature of the gas around the heater. Al-

ternatively, observers that use more complicated models of the Rijke tube than (2.43)

could be a viable research direction, with an observer that estimates the tempera-

ture distribution in the tube and its in�uence on the acoustics being an interesting

idea.
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Le tube de Rijke, modélisé comme ayant des extrémités ouvertes idéales, possède

aux frontières des coe�cients de ré�exion dr = −1. En pratique, il y a toujours

un amortissement inconnu présent, ce qui implique |dr| < 1. La sensibilité des

estimations d'état de l'observateur proposé dans le chapitre 3 aux di�érentes

valeurs des coe�cients limites inconnus motive l'identi�cation de ces paramètres.

Après une revue de la littérature sur le sujet, nous proposons dans ce chapitre une

méthode d'estimation de ces paramètres à partir d'une seule mesure de pression. Le

modèle (2.44) qui, à section constante, modélise le tube de Rijke avec le réchau�eur

éteint, est réécrit en coordonnées de Riemann. En utilisant la méthode des carac-

téristiques, nous exprimons le problème d'identi�cation sous forme d'une régression

linéaire. Nous proposons de résoudre ce problème par une méthode des moindres

carrés avec avec un facteur d'oubli pour estimer les impédances acoustiques aux

frontières. Nous e�ectuons d'abord des simulations, puis nous utilisons des données

expérimentales. Nous testons l'observateur du chapitre 3 avec les valeurs identi�ées

des paramètres de frontière.
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In theory the Rijke tube has ideal open ends with re�ection coe�cients dr = −1;

in practice there is always unknown damping present, which implies |dr| < 1. Sen-

sitivity of the state estimates from the observer proposed in Chapter 3 to di�erent

values of the unknown boundary coe�cients motivates identi�cation of these param-

eters in practice. After a literature review on the topic, we propose in this chapter

a method for estimating these parameters from a single pressure measurement. The

model (2.44) which, with constant cross-sectional area, models the Rijke tube with

the heater turned o�, is rewritten in Riemann coordinates. Using the Method Of

Characteristics (MOC), a regressor form linear in the unknown parameters and their

product is written. We propose applying this regressor form together with Least

Squares (LS) with forgetting factor to estimate the boundary acoustic impedances.

This is done �rst in simulations, and subsequently using experimental data. We test

the observer from Chapter 3 with the identi�ed values of the boundary parameters.

4.1 Literature review

In addition to design of state observers for estimating the pressure, velocity and heat

release from sensor measurements, many of the parameters in the Rijke tube are by

default unknown and need to be identi�ed to implement the observers correctly.

In [Epperlein et al. 2015] a range of classical system identi�cation techniques are

applied to estimate various parameters in the Rijke tube. As seen in Chapter 3, one

class of parameters that can have a large impact on obtaining the correct estimates

is the boundary acoustic impedances. These parameters appear in the acoustic

boundary conditions (2.43d)�(2.43e) of the Rijke tube acoustic model.

In particular for combustion chambers susceptible to thermoacoustic instabili-

ties, the chambers are in practice interfaced to complex turbomachinery during their

operation, which in turn determines the impedances, making it a daunting task to

analytically compute the quantities for all operating conditions [Poinsot 2017]. In

the Rijke tube the acoustic impedances are in practice open ends with a bit of damp-

ing, and hence simpler than the impedances one �nds in real combustion chambers.

Hence, studying the problem of acoustic impedance estimation in the Rijke tube

can be seen as a stepping stone towards understanding how to estimate the acoustic

impedances in more complicated cases.

An early method for determination of boundary acoustic impedances developed

is the Standing-Wave-Ratio (SWR) method [Kathuriya & Munjal 1975] where the

positions of nodes and antinodes of a standing wave inside a tube connected to

the acoustic boundary impedances of interest are identi�ed by moving a micro-

phone along the tube, and based on this information the acoustic impedances can

be computed. Later, the now much used two-microphone method was introduced

by [Seybert & Ross 1977]. The method consists of exciting the acoustic system at

the boundary anticollocated to the unknown acoustic boundary with an acoustic

source randomly �uctuating within a narrow bandwidth around the frequency one

wishes to estimate the boundary impedance for. Two microphones are then placed
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at di�erent positions along the tube, and the boundary acoustic impedance is cal-

culated based on the auto-spectral densities of the pressure at the respective points

and their relative cross-spectral density. The original two-microphone method does

not take into account uncertainty in the estimate, with an improved version doing

this suggested in [Schultz et al. 2007].

The methods for estimating acoustic impedance mentioned above were designed

to be applied with frequency domain data, assuming the impedance to be a general

linear system with velocity as the input and pressure as the output, and hence

typically giving a complex frequency response as the estimate of the impedance.

For more complex cases it is necessary to describe the impedance in that manner,

but in the Rijke tube acoustics (2.43) they are simply represented as real scalar

quantities, with the pressure at the boundary being proportional to the velocity,

rather than a convolution. To estimate these quantities, we propose in Section 4.2 a

parameter identi�cation scheme. The method is developed in the time domain and

can hence be implemented in real-time.

4.2 Parameter identi�er

Figure 4.1: Diagram of setup for parameter identi�cation of boundary impedances

of cylindrical tube, for application to the Rijke tube. A pressure sensor collocated

with a loudspeaker are placed at z = 0. Actuating the tube with a su�ciently rich

signal and measuring the response, the aim of the parameter identi�er is to estimate

the unknown boundary impedances Z0, ZL.

In Section 3.2 we have proposed a state observer for the Rijke tube and proved

that its corresponding estimation error dynamics are GAS with respect to the origin,

if all model parameters are known. Also, a minor result was given with respect to



76 Chapter 4. The Rijke Tube � Parameter Identi�er

robustness of the observer estimates to error in knowledge of the acoustic re�ection

coe�cients, which can in practice be challenging to compute or estimate accurately.

In this section a simple estimation scheme for estimating these re�ection coe�cients

is proposed.

4.2.1 Model in Riemann coordinates

We consider the same setup as shown in Figure ii.1, but with the electrical heater

turned o�. Also, we let there be a loudspeaker collocated with the pressure mea-

surement at z = 0. This results in the setup illustrated in Figure 4.1, with the

acoustic impedances Z0, ZL, which we are interested in estimating, labelled. The

model (2.44) with a′(·) ≡ 0, WL ≡ 0 and W0 ≡W can describe this scenario, where

W is an identi�cation signal. Note that this model is identical to (2.43b)�(2.43e)

with Q = Q̄ ≡ 0, and can hence represent the Rijke tube with the heater turned o�.

We assume the measurement Y given by (3.1) is available.

De�ne the Riemann coordinates

u(x, t) = P̆ (xl, t) + kV̆ (xl, t) (4.1a)

v(x, t) = P̆ (xl, t)− kV̆ (xl, t) (4.1b)

where k the characteristic impedance of the air as given by (3.4). Note that unlike

the observer design, where separate Riemann coordinates are needed for the part of

the tube above and below the heater, only a single pair of Riemann coordinates are

needed here due to the absence of folding the domain around the electrical heater.

Applying this transformation maps the system (2.44) with a′(·) ≡ 0 into the

system

ut(x, t) = −λux(x, t) (4.2a)

vt(x, t) = λvx(x, t) (4.2b)

u(0, t) = d0v(0, t) + U(t) (4.2c)

v(1, t) = d1u(1, t) (4.2d)

with re�ection coe�cients d0, d1 given in (3.9) and λ de�ned by

λ :=
c

L
. (4.3a)

For the sake of obtaining the regressor form needed for parameter identi�cation, we

de�ne the signal y as

y(t) := v(0, t) (4.4)

as the output signal of (4.2). The respective I/O signals U and y from the bound-

ary (4.2c) are related to the physical I/O signalsW and Y from the boundary (2.44d)

via the relations

U(t) = (1− d0)W (t) (4.5a)



4.2. Parameter identi�er 77

y(t) =
2

1 + d0
Y (t)− 1− d0

1 + d0
W (t). (4.5b)

Next in Section 4.2.2, the model in Riemann coordinates (4.2) is written in a

regressor form suitable for parameter identi�cation of the unknown re�ection coef-

�cients d0, d1 using physical I/O signals W and Y .

4.2.2 Regressor form

The regressor form is given by the following Lemma.

Lemma 1. Consider the duct acoustics described by (2.44) with a′(·) ≡ 0, W0 = W

and WL ≡ 0, and output signal Y given by (3.1). Then the relation

r(t) = ϑ>R(t) (4.6)

where r is de�ned by

r(t) := Y (t)− 1

2
W (t), (4.7)

the parameter vector ϑ is written in terms of d0, d1, de�ned in (3.9), as

ϑ :=

d0d1

d0

d1

 , (4.8)

and known signal vector R is

R(t) :=

 r(t− 2λ−1)

−1
2W (t)

1
2W (t− 2λ−1)

 , (4.9)

holds true.

Proof. Applying the plant dynamics (4.2) and output signal de�nition (4.4), we

have the relation between current and past characteristic I/O signals together with

parameters

y(t) = d1d0y(t− 2λ−1) + d1U(t− 2λ−1). (4.10)

Next, substituting (4.5) into (4.10) we obtain

2

1 + d0
Y (t)− 1− d0

1 + d0
W (t) = d1d0

(
2

1 + d0
Y (t− 2λ−1)− 1− d0

1 + d0
W (t− 2λ−1)

)
+ d1(1− d0)W (t− 2λ−1). (4.11)

With some algebraic manipulation, we end up with

Y (t)− 1

2
W (t)︸ ︷︷ ︸

=r(t)

= d1d0

(
Y (t− 2λ−1)− 1

2
W (t− 2λ−1)

)
︸ ︷︷ ︸

=r(t−2λ−1)

+d0

(
−1

2
W (t)

)
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+ d1

(
1

2
W (t− 2λ−1)

)
+

1

2
d1d

2
0W (t− 2λ−1)− 1

2
d1d

2
0W (t− 2λ−1)︸ ︷︷ ︸

=0

(4.12)

which can be written as (4.6)�(4.9), and the proof is complete.

With the regressor form (4.6), a wide range of parameter identi�cation schemes

can be applied to estimate the parameter vector ϑ, given that the signal r and signal

vector R are available. Next, in Section 4.2.3 we state su�cient conditions for the

parameter estimates to converge when applying modi�ed LS with forgetting factor.

4.2.3 Identi�cation scheme

To apply the regressor form (4.6)�(4.9) to estimate the boundary acoustic

impedances Z0, ZL via (3.9), we consider modi�ed least squares with forgetting

factor. Denote the estimate of ϑ de�ned in (4.8) as ϑ̂. We can then form an esti-

mate r̂ of r as de�ned in (4.7), by replacing ϑ by ϑ̂ in (4.6), which lets us de�ne

r̂(t) := ϑ̂(t)>R(t). (4.13)

Modi�ed LS with forgetting factor proposes to update the estimate ϑ̂ via the

adaptive law

˙̂
ϑ(t) = P (t) (r(t)− r̂(t))R(t) (4.14a)

Ṗ (t) =

{
βP (t)− P (t)R(t)R(t)>P (t), if ||P (t)|| ≤ P̄
0, otherwise

(4.14b)

initialized from ϑ̂(0) = ϑ̂0 ∈ R3×1, P (0) = P0 ∈ R3×3, and β, P̄ > 0 are scalar

tuning constants. The following Theorem presents the properties of the adaptive

law (4.14).

Theorem 2. De�ne r̃ := r − r̂. The adaptive law (4.14) guarantees that

• r̃, ϑ̂, ˙̂
ϑ ∈ L∞

• r̃, ˙̂
ϑ ∈ L2

• If Ψ ∈ L∞ and Ψ is Persistently Exciting (PE), then P, P−1 ∈ L∞ and

ϑ̂(t)→ ϑ exponentially.

Proof. For the �rst two properties, see Proof of Theorem 4.3.5 in

[Ioannou & Sun 2012], and for the �nal property see Proof of Corollary 4.3.2

in [Ioannou & Sun 2012].
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The parameter vector ϑ in (4.8) consists of three parameters, whereas we are

only interested in estimating two. Hence, the regressor form (4.6) represents an

overparametrized system in the unknown coe�cients d0 and d1. Denoting θ := d0d1

and θ̂ as the estimate of θ, we propose to solve the optimization problem

(ď0, ď1) = arg min(O(ď0, ď1)) (4.15)

where O : R2 7→ R is given by

O(ď0, ď1) := δ1(ď0ď1 − θ̂)2 + δ2(ď0 − d̂0)2 + δ3(ď1 − d̂1)2 (4.16)

and

δi =

{
1, if ρi is PE

0, otherwise .
(4.17)

where ρi is the i
th component of R.

We test next the parameter estimation scheme in simulations and experiments.

The obtained values are then applied together with the observer from Chapter 3.

4.3 Simulations

4.3.1 Parameter identi�cation simulations

Here we apply the parameter estimation scheme proposed in Section 4.2 to estimate

the acoustic impedances Z0, ZL listed in Table ii.1, testing the update law considered

in Theorem 2.

To obtain su�cient information about the acoustic boundary impedances Z0,

Z1, the input signal W in (4.8) must be �su�ciently rich�, so that the PE condition

in Theorem 2 is satis�ed. For the simulations in this section, we choose W as

W (t) = 2 cos

(
λπ

3
t

)
+ 2.5 cos

(
λπ

4
t

)
+ 3 cos(λπt)

where λ is computed from (4.3a) and (3.7) using parameters in Table ii.1.

A plot ofW versus the corresponding measurement signal Y from the simulation

for t ∈ [0.0, 0.2] is shown in Figure 4.2. Using these two signals, the parameter esti-

mation scheme presented in Theorem 2 is implemented with the tuning parameters

β = 5, P̄ = 103,

and initialized from

ϑ̂0 =

 0.56

−0.80

−0.70

 , P0 =

1 0 0

0 1 0

0 0 1

 .
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Figure 4.2: Pressure input signal W (in blue) versus pressure output signal Y (in

orange) used for parameter identi�cation.
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Figure 4.3: Acoustic impedance estimates versus true values.
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For each time step, after updating the parameter estimate using (4.14), the

optimization problem (4.16) is solved with

δ1 = 1, δ2 = 1, δ3 = 1,

using the fminunc function from MATLAB. The resultant acoustic impedance esti-

mates as a function of time for t ∈ [0, 2] are plotted in dashed lines against the

true parameters, which are represented by solid lines, in Figure 4.3. The impedance

Z0 and its corresponding estimate are in magenta, whereas ZL and its estimate is

plotted in cyan. With the given tuning parameters, the estimates converge to a

steady state solution close to the true values within 2 s.

Parameter estimate Expected value Variance

Ẑ0 −14.4 6.40× 10−3

ẐL 20.8 3.58× 10−2

Table 4.1: Acoustic impedance estimates.

To obtain values of the acoustic impedances which can be applied to the observer,

the expected value and variance of the estimates for the last 0.5 s of the simulation

are computed, summarized in Table 4.1. The estimates are not perfect, but are close

to the true values tabulated in Table ii.1. The true test of the parameter estimates

is in assisting the observer to produce correct state estimates, which is tested next

in Section 4.3.2.

4.3.2 State observer simulations - Correct boundary coe�cients

The observer (3.17) is now compared to the �trivial observer� (3.17a)�(3.17h), (3.40)

when using the estimates of Z0, ZL presented as expected values of Ẑ0(·), ẐL(·)
documented in Table 4.1. In Figure 4.4, the pressure estimation error P̃ (z0, ·),
shown in dark blue, from the observer (3.17) is plotted against the error P̃trivial(z0, ·),
shown in light blue, associated with the �trivial� observer (3.17a)�(3.17h). As done

in Chapter 3, the �rst and last 200 ms of the observer being active is plotted. Also,

shown in Figure 4.5 is the estimation error Ṽ (z0, ·), in dark green, of the velocity

from (3.17) plotted against Ṽtrivial(z0, ·) from the �trivial� observer, which is shown

in light green. Lastly, in Figure 4.6 we see the heat release rate errors Q̃(·), in dark

red, and Q̃trivial(·), in light red, plotted against each other.

Comparing Figures 4.4�4.6 to the corresponding Figures 3.3�3.5, 3.9�3.11 from

Chapter 3, we see the estimates of Z0, ZL has a profound impact on the correctness of

the state estimates, after the initial transient. Indeed, the errors from last 200 ms of

the simulation as plotted in Figures 4.4�4.6 are almost at the origin. The estimates

of the error norm, computed in the same way as in Chapter 3, is summarized in

Table 4.2. Compared to the norms documented in Tables 3.1�3.2, the error norms

in Table 4.2 are much smaller in magnitude, as expected. However, in this case

the �trivial� observer has better performance for all three state estimates. This
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Figure 4.4: Pressure estimation error. Initial transient (top) and converged esti-

mates (bottom).
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Figure 4.5: Velocity estimation error. Initial transient (top) and converged esti-

mates (bottom).
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Figure 4.6: Heat release rate estimation errors. Initial transient (top) and converged

estimates (bottom).



4.3. Simulations 85

Norm Observer (3.17) �Trivial� observer (3.17a)�(3.17h), (3.40)

||P̃ (z0)|| 1.44 0.305

||Ṽ (z0)|| 2.3× 10−3 9.31× 10−4

||Q̃|| 1.08 0.399

Table 4.2: Error norms.

can be attributed to the asymptotically convergent error that is introduced into

the observer (3.17) from reconstructing the unmeasured boundary, which is done in

order to be able to guarantee global convergence. This shows there is a trade-o�

involved, with the global convergence guarantee coming with a possible performance

penalty.
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Figure 4.7: Pressure at z = z0 compared to estimates.

To see the estimates compared to the true states, they are plotted for the last

10 ms of the simulation in Figure 4.7, which shows the pressure P (z0, ·) versus the
estimates P̂ (z0, ·) and P̂trivial(z0, ·), Figure 4.8 which shows the velocity V (z0, ·)
versus the estimates V̂ (z0, ·) and V̂trivial(z0, ·), and Figure 4.9 which shows the heat

release Q(·) versus estimates Q̂(·) and Q̂trivial(·). In all three cases, the estimates are

almost identical to the states, showing that the error norms documented in Table 4.2

have marginal importance for state estimation purposes.

With the parameter identi�cation algorithm tested on a simulation example in

Section 4.3.1 and the parameter estimates subsequently applied to the observer from

Chapter 3, we now do the same with the experimental data.
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Figure 4.8: Velocity at z = z0 compared to estimates.
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Figure 4.9: Heat release rate compared to estimates.
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4.4 Experiments

We test in this section the parameter identi�cation method developed in Section 4.2

experimentally. The values obtained are then used in the observer from Chapter 3 to

see if any improvement is made over the experimental estimates documented in Sec-

tion 3.4. For the parameter identi�cation experiment, we use the experimental setup

shown in Figure ii.15, with a collocated loudspeaker and microphone. An acoustic

identi�cation signal is measured sent into the tube, and the resultant response from

the tube is picked up with a microphone.

4.4.1 Parameter identi�cation experiment
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Figure 4.10: Pressure input signal W (in blue) versus pressure output signal Y (in

orange) used for parameter identi�cation.

For parameter identi�cation, to excite the tube, we sent in a signal consisting of

three separate frequencies, namely f1 = 440 Hz, f2 = 510 Hz and f3 = 750 Hz.

The resultant I/O signals used for parameter identi�cation, as measured by the mi-

crophone setup shown in Figure ii.15, are shown for the �rst 50 ms in Figure 4.10.

Using these signals, the parameter estimation scheme from Theorem 2 is imple-

mented with the tuning parameters

β = 2, P̄ = 103.
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The parameter estimation scheme is initialized from three di�erent initial conditions

ϑ̂1
0 =

 0.25

−0.50

−0.50

 , ϑ̂2
0 =

0.25

0.50

0.50

 , ϑ̂3
0 =

−0.1875

−0.25

0.75


but the same value for P0 as used in Section 4.3.1.

For each time step, after updating the parameter estimate using (4.14), the

optimization problem (4.16) is solved with

δ1 = 1, δ2 = 0, δ3 = 1.

The resultant acoustic impedances as a function of time are plotted in Figure 4.11
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Figure 4.11: Acoustic impedance estimates.

for time t ∈ [0, 5], with the dashed magenta lines showing the estimates Ẑi0(·)1 for

i ∈ {1, 2, 3} (see legend) of Z0, and the dashed cyan lines showing the estimates

ẐiL(·) for i ∈ {1, 2, 3} (see legend) of ZL. Compared to the estimates found in

Figure 4.3, the estimates in Figure 4.11 appear to have a higher variance, despite

the lower value of forgetting factor used. It appears that the estimates reach a

steady state region at around t = 4 s, and the expected value and variance of the

estimates computed over the last 1 s of the simulation is recorded in Table 4.3.

Compared to the estimates in Table 4.1, the estimates in Table 4.3 do indeed have

a larger variance. Next, in Section 4.4.2, the observer (3.3) is tested again, using

the expected values (which converged to very similar values) of the estimates in

Table 4.3 as Ẑ0, ẐL.

1The notation Ẑiz denotes the estimate of the boundary impedance at location z initialized from

ϑ̂i0.
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Parameter estimate Expected value Variance

Ẑ1
0 −15.4 0.579

Ẑ1
L 68.5 0.443

Ẑ2
0 −15.4 0.577

Ẑ2
L 68.5 0.440

Ẑ3
0 −15.5 0.599

Ẑ3
L 68.4 0.461

Table 4.3: Acoustic impedance estimates.

4.4.2 State observer experiment - Estimated boundary coe�cients

We repeat here the observer experiment from Section 3.4 using values of the

impedances estimated in Section 4.4.1. Precisely, we use the mean of the expected

values of the estimated impedances documented in Table 4.3 in the observer. The

observer is tested on the data shown in Figures 3.15�3.16.
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Figure 4.12: Measured (blue line) compared to estimated (grey line) gauge pressure

at z = zv using values of impedance estimated in Section 4.4.1.

In Figure 4.12 the estimated value of gauge pressure at z = zv is plotted in grey,

and compared to the measured value which is plotted in blue. A closer view of

the estimated gauge pressure compared to the measured gauge pressure is shown in

Figure 4.13, showing the last 20 ms of the observer test. Considering the discrepancy

in estimated and measured amplitude in Figure 4.12, sensitivity of the estimated

gauge pressure to assumed locations zv of the in-domain validation microphone

is considered in Figure 4.13 by plotting estimates for zv ∈ [0.8 0.9] around the

estimate corresponding to the measured value of zv = 0.85 m. As is seen, the

amplitude of the estimated gauge pressure is highly sensitive to accurate knowledge

of the in-domain microphone position zv, and uncertainty in this could hence be a
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Figure 4.13: Measured (blue line) compared estimated (grey lines) gauge pressure for

validation microphone locations zv ∈ [0.8 0.9]. Using values of impedance estimated

in Section 4.4.1. Shown for �nal 20 ms of observer test.

contributing factor in inaccurate estimation of the pressure amplitude. In addition

to this possible contributions from modelling error will be discussed in Section 4.5.

As was the case in Chapter 3, the estimates are however still phase-shifted compared

to the measured pressure signal and as seen from Figure 4.13 possible uncertainty

in the measured microphone position does not in�uence this greatly.

4.5 Discussion

Compared to existing results in the literature, the parameter identi�er (4.14) has the

advantage that it estimates both acoustic impedances simultaneously with a single

pressure measurement, but with the regressor form (4.6) being overparametrized.

Since the acoustic impedances are estimated indirectly via the re�ection coe�cients

d0, d1, an accurate knowledge of the characteristic impedance k is needed to get

accurate knowledge of the impedances.

In the parameter identi�cation experiment presented in Section 4.4.1, the es-

timate of ẐL converges to a larger absolute value than the estimate of Ẑ0. This

is surprising as they should in theory be as similar as possible, with each of them

representing an open end with a slight amount of damping. However, the estimates

are both signi�cantly smaller than the characteristic impedance k in absolute value,

which represent physically feasible solutions. With a value closer to k in absolute

value representing more damping, and the acoustics model (2.43) used in the algo-

rithm design assuming there is no in-domain damping in the Rijke tube, one possible

explanation for acoustic impedance estimate ẐL being larger than Ẑ0 in absolute

value is that in-domain damping from the tube is inadvertently lumped together

with the acoustic impedance anticollocated with the I/O signals.
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Also, a possible source of error in the experimental technique used is that the

microphones shown in Figure ii.15 are fairly close to each other. With the pres-

sure node in practice extending approximately ∆L = 0.61r outside of the tube

end [Levine & Schwinger 1948], the microphone that is supposed to only pick up

the loudspeaker signal could also accidentally pick up some of the tube acoustic

response. Also, the loudspeaker signal is attenuated slightly as it travels from the

loudspeaker into the tube, so the exact microphone placements could impact the

resultant parameter estimate.

Although the parameters found in Section 4.4.1 made an improvement to the

observer state estimates, the estimate shown in Figure 4.13 is still far from per-

fect. As discussed in Section 3.5, there could be multiple reasons, such as possible

modelling error, for this. Two probable causes of modelling errors are mentioned,

namely the lack of modelling heat transfer between the air inside the Rijke tube

and tube walls and also modelling the impedances as having a resistive component,

only. The former could cause errors in the sense that extra damping from a heated

tube that is not included in the model might cause the observer to overestimate

the amplitude of the thermoacoustic instabilities. Indeed, this could possibly ex-

plain the estimated pressure amplitude in Figures 4.12�4.13 being larger than that

of the measured pressure despite using estimated rather than guessed values of the

boundary impedances. Also as discussed in Section 3.5, the latter modelling error

is a probable cause for the observed phase shift in Figures 3.19, 4.13. In addition

to sensitivity of the estimate to validation microphone position as explored in Fig-

ure 4.13, the author has considered sensitivity of the estimates to other uncertain

parameters, some examples being the electrical heater position and electrical heater

time constant. However no signi�cant variation in the phase shift has been observed

from varying parameters currently in the model, suggesting modelling error is the

probable cause for this error.

Some direct further work building on what is presented here is to investigate

robustness of the parameter identi�er (4.14) in estimating accurately the boundary

acoustic impedances of the Rijke tube. It should be investigated to what extent in-

domain damping in�uences the estimate of the anti-collocated acoustic impedance,

and the sensitivity of the method to microphone placement in relation to the loud-

speaker and tube boundary. Also, possibilities for combining the observer and pa-

rameter identi�er into an adaptive observer should be looked into.

As has been seen, the Rijke tube is a rather simple setup, and the algorithm de-

signs based on the model (2.43) and (2.44) with constant cross-sectional area re�ects

that. Thermoacoustic instabilities in combustors can feature highly complicated dy-

namics that is di�cult to understand from studying basic laboratory setups such as

the Rijke tube. Next, in Part III of this thesis, some research e�orts attempting to

move beyond the Rijke tube are considered.
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Towards Combustors
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Introduction to Part III

The work that was considered in Part II dealt with the Rijke tube, which is a labora-

tory setup. Although studying this setup is useful for understanding the rudiments

of thermoacoustics as a physical phenomenon, designing algorithms to estimate the

states and parameters for the Rijke tube can not be directly applied to practical

combustors. There are, in addition to other factors, two important reasons for this.

Firstly, the Rijke tube uses either a heated gauze or an electrical heater, which are

simpler to model than �ames in principal. Secondly, the Rijke tube has very simple

geometry, whereas many important aspects of thermoacoustics in combustors are a

direct consequence of their more complicated geometry [Poinsot 2017].

Therefore, to work towards model-based state and parameter estimation algo-

rithms for combustors, the unique aspects of combustor dynamics need to be taken

into account in the models used. In Part III of the thesis we aim to take some steps,

however small, towards this. Only longitudinal modes and laminar �ame dynamics

are considered, but we hope the contributions presented can be built upon towards

the realization of estimation algorithms using more realistic descriptions of the com-

bustor dynamics in future work. We start in Chapter 5 by considering the problem

of generalizing the parameter estimation scheme from Chapter 4, which assumes the

cross-sectional area of the duct is constant, to the case when the duct has spatially

varying geometry. This is done by using the acoustics described by (2.44) with

a′(·) 6= 0 in general as a basis. In Chapters 6 and 7, the state estimation problem

for the model (2.45), representing longitudinal oscillations in a can combustor with

spatially varying geometry, is considered. Here we use spatially compact �ame mod-

els to describe the heat release. In Chapter 6 the �ame model is linearized, but in

Chapter 7 a nonlinear �ame model is considered.
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Dans ce chapitre, nous présentons un schéma d'identi�cation des paramètres

permettant d'estimer les coe�cients limites d'un système hyperbolique linéaire

2× 2. La conception est similaire au schéma d'identi�cation des paramètres suggéré

au chapitre 4 pour le tube de Rijke, mais les coe�cients de couplage dans le

domaine rendent l'application de la même approche non triviale. Pour surmonter ce

problème, une transformation de type backstepping est employée pour transformer

le système hyperbolique linéaire 2 × 2 en un système cible piloté par les signaux

entrée/sortie en chaque point du domaine spatial. La méthode des caractéristiques

est ensuite appliquée pour trouver une forme de régresseur pour laquelle les méthodes

standard d'estimation des paramètres peuvent être appliquées. Nous illustrons cette

approche par des simulations sur un exemple théorique. Ensuite, il est démontré que

le modèle (2.44) de l'acoustique dans un conduit dont la section transversale varie

dans l'espace peut être écrit comme un système hyperbolique linéaire 2 × 2. Cela

permet d'appliquer la forme de régresseur trouvée pour les systèmes hyperboliques

linéaires 2 × 2 généraux a�n de trouver une forme similaire pour l'estimation des

impédances acoustiques de frontière dans les conduits dont la géométrie varie dans
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l'espace.

In this chapter, a parameter identi�cation scheme for estimating the boundary

coe�cients of a 2× 2 linear hyperbolic system is presented. The design is similar to

the parameter identi�cation scheme suggested in Chapter 4 for the Rijke tube, but

the in-domain coupling coe�cients make applying the same approach non-trivial.

To overcome this issue, a backstepping transformation is employed to map the 2×2

linear hyperbolic system into a target system driven by the I/O signals at each point

in the spatial domain. The MOC is then applied to �nd a regressor form for which

standard parameter estimation methods can be applied. The design is demonstrated

in simulations on a theoretical example. Next, it is shown that the model (2.44)

of acoustics in a duct with spatially varying cross-sectional area can be written as

a 2 × 2 linear hyperbolic system. This allows the regressor form found for general

2 × 2 linear hyperbolic systems to be applied to �nd a similar form for estimation

of boundary acoustic impedances in ducts with spatially varying geometry.

5.1 Background

5.1.1 Problem statement

We are here concerned with systems of the form

ut(x, t) = −λ(x)ux(x, t) + σ+(x)v(x, t) (5.1a)

vt(x, t) = µ(x)vx(x, t) + σ−(x)u(x, t) (5.1b)

u(0, t) = d0v(0, t) (5.1c)

v(1, t) = d1u(1, t) + U(t), (5.1d)

where u, v are distributed states de�ned over (x, t) ∈ [0, 1]× [0,∞), and the bound-

ary re�ection coe�cients d0, d1 are unknown. The transport speeds λ, µ ∈ C1(0, 1)

and in-domain coupling coe�cients σ+, σ− ∈ C0(0, 1) are all assumed known, and

U : [0,∞) 7→ R is a boundary input signal. We assume the initial conditions

u0, v0 ∈ L2(0, 1).

Given knowledge of the boundary measurement

y(t) := u(1, t), (5.2)

only, the main goal is to design a parameter identi�cation scheme for estimating

the unknown coe�cients d0, d1 and to choose the input signal U so that parameter

convergence is achieved.

5.1.2 Literature review

Linear hyperbolic 2 × 2 systems of the form (5.1) model a wide range of

systems commonly found in engineering applications, such as open channel



5.1. Background 99

�ow [Coron et al. 1999], gas dynamics [Marchesin & Paes-Leme 1986], leak detec-

tion in pipes [Aamo 2015] and oil well drilling [Di Meglio & Aarsnes 2015]. They

consist of two distributed one-dimensional states convecting in opposite directions

through a �rst-order transport equation and coupled in-domain and at the bound-

aries. In order to actuate and sense these systems, the most feasible access points in

many practical applications are the boundaries, and hence much research has been

devoted to observer and controller design within this setting over the past years.

A successful technique for boundary observer and controller design for many

distributed parameter systems is the backstepping methodology, which was �rst

developed for stabilization of certain classes of �nite dimensional nonlinear sys-

tems (see [Krsti¢ et al. 1995, Khalil & Grizzle 2002]) and later generalized to design

stabilizing boundary control laws for in�nite dimensional systems, the design �rst

fully mastered in [Liu 2003] for a parabolic PDE. The technique was later applied to

hyperbolic PDEs in [Krsti¢ & Smyshlyaev 2008a] and later to systems of �rst-order

hyperbolic PDEs in [Vazquez et al. 2011].

In early contributions it is assumed all system parameters are known, but

following on the research e�ort for control and observer backstepping designs,

research into adaptive controllers and parameter identi�ers for parabolic PDEs

has been considered, culminating in the seminal text [Smyshlyaev & Krsti¢ 2010].

In [Mechhoud et al. 2013] estimation of the source terms in a parabolic PDE describ-

ing plasma heat transport is considered, and in [Baudouin et al. 2014], a parameter

estimation problem for the Korteweg-De Vries equation modelling shallow water

waves is considered.

After multiple contributions for parabolic PDEs, research on adaptive de-

signs for hyperbolic systems was initiated in [Bernard & Krsti¢ 2014]. Building

on this, much research has been done on systems of hyperbolic PDEs; in the

two-part paper [An�nsen & Aamo 2016a, An�nsen & Aamo 2016b] uncertain in-

domain coupling coe�cients are estimated assuming distributed measurements are

available, while in [An�nsen et al. 2016] an uncertain boundary re�ection coe�-

cient at the boundary anti-collocated with sensing is estimated for n + 1 systems.

In [Ghousein et al. 2020] the temperature distribution in a heat exchanger is es-

timated by posing the problem as estimation of the amplitude of a distributed in-

domain disturbance with known pro�le, via considering the problem as an estimation

problem for 2× 2 linear hyperbolic systems. Many of the current designs available

for adaptive control and parameter identi�cation of hyperbolic PDE systems are

covered in [An�nsen & Aamo 2019].

A scheme for estimating both re�ection coe�cients d0, d1 in the 2 × 2 lin-

ear hyperbolic system (5.1), given the boundary measurement (5.2) only is pre-

sented in Section 5.2. Both re�ection coe�cients of such systems are estimated

in [An�nsen & Aamo 2017], but assuming both boundaries are available for mea-

surement. Here, we only require one measurement. The methodology applied here

is based on using a Volterra integral transformation, a vital ingredient in the in�nite

dimensional backstepping technique (see [Krsti¢ & Smyshlyaev 2008b]), to map the

system we are studying into a target system. Using this target system, the measure-
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ment signal is written in a regressor form linear in the unknown coe�cients and their

product, allowing standard parameter identi�cation techniques to be applied. The

results from Section 5.2 are then applied in Section 5.4 to suggest an algorithm for

estimating the boundary impedances of a duct with spatially varying cross section,

such as the one modelled by (2.44).

5.2 Boundary parameter estimation 2×2 hyperbolic sys-
tems

5.2.1 Mapping to target system

We apply the Volterra integral transformation

α(x, t) = u(x, t) +

∫ 1

x
Kuu(x, ξ)u(ξ, t) +Kuv(x, ξ)v(ξ, t)dξ (5.3a)

β(x, t) = v(x, t) +

∫ 1

x
Kvu(x, ξ)u(ξ, t) +Kvv(x, ξ)v(ξ, t)dξ (5.3b)

with kernels satisfying the PDE system

−λ(x)Kuu
x (x, ξ)− λ(ξ)Kuu

ξ (x, ξ) = λ′(ξ)Kuu(x, ξ) + σ−(ξ)Kuv(x, ξ) (5.4a)

−λ(x)Kuv
x (x, ξ) + µ(ξ)Kuv

ξ (x, ξ) = −µ′(ξ)Kuv(x, ξ) + σ+(ξ)Kuu(x, ξ) (5.4b)

−µ(x)Kvu
x (x, ξ) + λ(ξ)Kvuξ(x, ξ) = −λ′(ξ)Kvu(x, ξ)− σ−(ξ)Kvv(x, ξ) (5.4c)

−µ(x)Kvv
x (x, ξ)− µ(ξ)Kvv

ξ (x, ξ) = µ′(ξ)Kvv(x, ξ)− σ+(ξ)Kvu(x, ξ) (5.4d)

de�ned over the the upper triangular domain Tu := {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1}, and
having boundary conditions

Kuu(x, 1) = fu(x) (5.5a)

Kuv(x, x) =
σ+(x)

λ(x) + µ(x)
(5.5b)

Kvu(x, x) =
−σ−(x)

λ(x) + µ(x)
(5.5c)

Kvv(x, 1) = fv(x) (5.5d)

Here the boundary data fu, fv can be chosen freely, as long as it is su�ciently

smooth for (5.4)�(5.5) to have a well-posed solution. In Figure 5.1, a schematic

representation of the characteristics of the kernel equations (5.4)�(5.5) is shown.

Remark 4. Note that unlike the standard backstepping transformation considered

in e.g. [Vazquez et al. 2011], the kernels de�ned by (5.4)�(5.5) do not depend on the

boundary coe�cients d0, d1. This is achieved, as can be seen in (5.5) and Figure 5.1,

by de�ning the boundary condition of Kuu,Kvv along the line ξ = 1 rather than

x = 0, as is conventional in backstepping designs for observer and controller designs.
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Figure 5.1: Schematic of kernel equations (5.4)�(5.5). Characteristics in green,

originating in boundary data as indicated.

We present now a Lemma equating the system (5.1) with a target system. The

proof is standard and hence omitted.

Lemma 2. The invertible Volterra integral transformation (5.3)�(5.5) maps the

system (5.1) into the target system

αt(x, t) + λ(x)αx(x, t) = ly1(x)y(t) + lU1 (x)U(t) (5.6a)

βt(x, t)− µ(x)βx(x, t) = ly2(x)y(t) + lU2 (x)U(t) (5.6b)

α(0, t) = d0β(0, t) +

∫ 1

0
M(x)α(x, t) +N(x)β(x, t)dx (5.6c)

β(1, t) = d1α(1, t) + U(t) (5.6d)

with the I/O gains de�ned as

ly1(x) := d1µ(1)Kuv(x, 1)− λ(1)Kuu(x, 1) (5.7)

ly2(x) := d1µ(1)Kvv(x, 1)− λ(1)Kvu(x, 1) (5.8)

lU1 (x) := µ(1)Kuv(x, 1) (5.9)

lU2 (x) := µ(1)Kvv(x, 1) (5.10)

and M , N given by

M(x) := Kuu(0, x)− d0K
vu(0, x)−

∫ x

0
M(s)Kuu(s, x) +N(s)Kuv(s, x)ds (5.11)

N(x) := Kuv(0, x)− d0K
vv(0, x)−

∫ x

0
M(s)Kvu(s, x) +N(s)Kvv(s, x)ds (5.12)
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5.2.2 Regressor form

We denote here by φε the injective function

φε(x) :=

∫ x

0

dξ

ε(ξ)
(5.13)

for any ε ∈ C1(0, 1), ε > 0. We denote also φ̄ε(x) := φε(1) − φε(x). Note that ly1 ,

ly2 , N and M can be factorized as

ly1(x) = l̄y1(x) + d1l
U
1 (x) (5.14)

ly2(x) = l̄U2 (x) + d1l
U
2 (x) (5.15)

M(x) = M1(x) + d0M2(x) (5.16)

N(x) = N1(x) + d0N2(x) (5.17)

with component functions de�ned as

l̄y1(x) := −λ(1)Kuu(x, 1) (5.18)

l̄y2(x) := −λ(1)Kvu(x, 1) (5.19)

M1(x) := Kuu(0, x)−
∫ 1

0
M1(s)Kuu(s, x) +N1(s)Kuv(s, x)ds (5.20)

M2(x) := −Kvu(0, x)−
∫ x

0
M2(s)Kuu(s, x) +N2(s)Kuv(s, x)ds (5.21)

N1(x) := Kuv(0, x)−
∫ x

0
M1(s)Kvu(s, x) +N1(s)Kvv(s, x)ds (5.22)

N2(x) := −Kvv(0, x)−
∫ x

0
M2(s)Kvu(s, x) +N2(s)Kvv(s, x)ds (5.23)

Consider also the integral terms Iyi , I
U
j given by

Iy1 [y](t) :=

∫ 1

0
−M2(s)F y11[y](s, t) +N2(s)F y12[y](s, t)ds

+

∫ φµ(1)

0
lU2 (φ−1

µ (φµ(1)− s))y(t− φλ(1)− φµ(1) + s)ds (5.24)

Iy2 [y](t) :=

∫ 1

0
M2(s)F y21[y](s, t) +N2(s)F y22[y](s, t)ds

+

∫ φµ(1)

0
l̄y2(φ−1

µ (φµ(1)− s))y(t− φλ(1)− φµ(1) + s)ds (5.25)

IU2 [U ](t) :=

∫ 1

0
M2(s)FU21[U ](s, t) +N2(s)FU22[U ](s, t)ds

+

∫ φµ(1)

0
lU2 (φ−1

µ (φµ(1)− s))U(t− φλ(1)− φµ(1) + s)ds (5.26)

Iy3 [y](t) :=

∫ 1

0
−M1(s)F y11[y](s, t) +N1(s)F y12[y](s, t)ds
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+

∫ φλ(1)

0
lU1 (φ−1

λ (s))y(t− φλ(1) + s)ds (5.27)

Iy4 [y](t) :=

∫ 1

0
M1(s)F y21[y](s, t) +N1(s)F y22[y](s, t)ds

+

∫ φλ(1)

0
l̄y1(φ−1

λ (s))y(t− φλ(1) + s)ds (5.28)

IU4 [U ](t) :=

∫ 1

0
M1(s)FU21[U ](s, t) +N1(s)FU22[U ](s, t)ds

+

∫ φλ(1)

0
lU1 (φ−1

λ (s))U(t− φλ(1) + s)ds (5.29)

which in turn depend on F yij , F
U
ij , given by

F y11[y](s, t) :=

∫ φ̄λ(s)

0
lU1 (φ−1

λ (φλ(s) + σ))y(t− φλ(1) + σ)dσ (5.30)

F y12[y](s, t) := y(t− φ̄µ(s))

+

∫ φ̄µ(s)

0
lU2 (φ−1

µ (φµ(1)− σ))y(t− φ̄µ(s)− φλ(1) + σ)dσ (5.31)

F y21[y](s, t) := y(t− φλ(s))−
∫ φ̄λ(s)

0
l̄y1(φ−1

λ (φλ(s) + σ))y(t− φλ(1) + σ)dσ (5.32)

FU21[U ](s, t) := −
∫ φ̄λ(s)

0
lU1 (φ−1

λ (φλ(s) + σ))U(t− φλ(1) + σ)dσ (5.33)

F y22[y](s, t) :=

∫ φ̄µ(s)

0
l̄y2(φ−1

µ (φµ(1)− σ))y(t− φ̄µ(s)− φλ(1) + σ)dσ (5.34)

FU22[U ](s, t) := U(t− φ̄µ(s)− φλ(1))

+

∫ φ̄µ(s)

0
lU2 (φ−1

µ (φµ(1)− σ))U(t− φ̄µ(s)− φλ(1) + σ)dσ (5.35)

Lemma 3. The output signal y de�ned in (5.2) can be written as

y(t) = d0d1ω1(t) + d0ω2(t) + d1ω3(t) + ω4(t) (5.36)

with ωi de�ned as

ω1(t) := y(t− φλ(1)− φµ(1)) + Iy1 [y](t) (5.37)

ω2(t) := U(t− φλ(1)− φµ(1)) + Iy2 [y](t) + IU2 [U ](t) (5.38)

ω3(t) := Iy3 [y](t) (5.39)

ω4(t) := Iy4 [y](t) + IU4 [U ](t) (5.40)

being functions only of known signals and gains de�ned in (5.24)�(5.35).

Proof. Applying the MOC and transformation (5.3a), we write the measurement as

y(t) = α(1, t)
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= α(0, t− φλ(1)) +

∫ φλ(1)

0
ly1(φ−1

λ (s))y(t− φλ(1) + s)ds

+

∫ φλ(1)

0
lU1 (φ−1

λ (s))U(t− φλ(1) + s)ds. (5.41)

Further, using the MOC for α from the boundary at x = 1

α(x, t− φλ(1)) = y(t− φλ(x))−
∫ φ̄λ(x)

0
ly1(φ−1

λ (φλ(x) + s))y(t− φλ(1) + s)ds

−
∫ φ̄λ(x)

0
lU1 (φ−1

λ (φλ(x) + s))U(t− φλ(1) + s)ds. (5.42)

Applying the boundary condition (5.6c), using the MOC to solve for the dynam-

ics (5.6b), substituting in (5.6d) and also applying (5.42) allows us to express

α(0, t− φλ(1)) = d0

(
d1y(t− φµ(1)− φλ(1)) + U(t− φµ(1)− φλ(1))

+

∫ φµ(1)

0
ly2(φ̄−1

µ (s))y(t− φµ(1)− φλ(1) + s)ds

+

∫ φµ(1)

0
lU2 (φ̄−1

µ (s))U(t− φµ(1)− φλ(1) + s)ds

)

+

∫ 1

0
M(s)

(
y(t− φλ(s))

−
∫ φ̄λ(s)

0
ly1(φ−1

λ (φλ(s) + σ))y(t− φλ(1) + σ)dσ

−
∫ φ̄λ(s)

0
lU1 (φ−1

λ (φλ(s) + σ))U(t− φλ(1) + σ)dσ

)
ds

+

∫ 1

0
N(s)

(
d1y(t− φλ(1)− φ̄µ(s)) + U(t− φλ(1)− φ̄µ(s))

+

∫ φ̄µ(s)

0
ly2(φ̄−1

µ (σ))y(t− φ̄µ(s)− φλ(1) + σ)dσ

+

∫ φ̄µ(s)

0
lU2 (φ̄−1

µ (σ))U(t− φ̄µ(s)− φλ(1) + σ)dσ

)
ds (5.43)

Hence substituting (5.43) into (5.41) and applying (5.14)�(5.17), by factoring out

the unknown coe�cients and grouping terms one obtains the expression (5.36).

5.2.3 Adaptive law

Denoting by $ the signal

$(t) := y(t)− ω4(t) (5.44)
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we see that (5.36) can be expressed in the regressor form

$(t) = ϑ>Ω(t) (5.45)

with ϑ as de�ned in (4.8) but Ω given by

Ω(t) :=

ω1(t)

ω2(t)

ω3(t)

 . (5.46)

Similar to the case in Section 4.2, a large number of standard adaptive schemes

can be applied with the regressor form (5.45) to estimate the unknown parameters

in ϑ. As was done there, we suggest applying modi�ed least-squares with forgetting

factor. We form an estimate $̂ of the signal $ by applying the parameter estimate

vector ϑ̂

$̂(t) := ϑ̂(t)>Ω(t), (5.47)

and together with forgetting factor β > 0, the adaptive law reads

˙̂
ϑ(t) = P (t)($(t)− $̂(t))Ω(t) (5.48a)

Ṗ (t) =

{
βP (t)− P (t)Ω(t)Ω(t)>P (t), if ||P (t)|| ≤ P̄
0, otherwise.

(5.48b)

initialized from P (0) = P0, ϑ̂(0) = ϑ̂0 and P̄ an upper bound imposed on P . The

following Theorem is almost identical to Theorem 2 (only di�erence being di�erent

signals), but is stated for completeness.

Theorem 3. De�ne $̃ := $ − $̂. The adaptive law (5.48) guarantees that

• $̃, ϑ̂,
˙̂
ϑ ∈ L∞.

• $̃,
˙̂
ϑ ∈ L2.

• If Ω ∈ L∞ and Ω is PE, then P , P−1 ∈ L∞ and ϑ̂(t)→ ϑ exponentially.

Since the same parameter vector is used in (5.45) as was the case for (4.6), the

optimization problem (4.15)�(4.16) with δi assigned as

δi =

{
1, if ωi is PE

0, otherwise.
(5.49)

is solved to obtain unique estimates ď0, ď1.

Remark 5. Given a vector of signals Ω de�ned as (5.46), checking whether

it and its components are PE is relatively straightforward. Recalling

from [Ioannou & Sun 2012] that a signal ϕ : [0,∞) 7→ Rn is PE if it satis�es

α1I ≥
1

T0

∫ t+T0

t
ϕ(τ)ϕ>(τ)dτ ≥ α0I (5.50)
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for some T0, α0, α1 > 0, whether the signal is PE or not can be veri�ed by applying

the condition directly. However, the question of how to choose the input signal U

so that Ω and its components are PE is more tricky and will in practice most likely

need to be found by trial and error, before the parameter identi�er can be applied to

a given plant. As discussed in [Ioannou & Sun 2012], a �rule of thumb� is to choose

U to be su�ciently rich of order equal to the number of unknown parameter, which

in the case of U being the sum of sinusoids corresponds to the signal consisting of at

least half as many distinct frequencies as there are unknown parameters. One could

then apply (5.50) to verify that the regressor signal Ω and its components are PE

for this choice of U .

5.3 Simulations

5.3.1 Simulation example

The system (5.1) is implemented in MATLAB with the coe�cients

λ(x) = 1, µ(x) = 1

σ+(x) = 1, σ−(x) = 1

d0 = 0.1, d1 = 0.2

and simulated for a total time of ts = 20 seconds, starting from the initial conditions

u0(x) = 0, v0(x) = 0.

Spatial and temporal discretization of dx = 10−3 and dt = 10−3, respectively, are

used. To solve the PDEs forwards in time, a �rst-order upwind scheme is applied.

The trapezoidal method is used to approximate all integrals.

As the system parametrization (5.45) is linear in three parameters, the input

signal U must be su�ciently rich in frequencies to allow the signal vector Ω to be

PE and be able to distinguish between the parameters. To excite the system to

generate su�cient output information for parameter convergence, the input signal

U de�ned by

U(t) = sin(t) + sin

(
t

2

)
is chosen.

In order to compute the signals ωi, i ∈ {1, . . . , 4}, de�ned by (5.37)�(5.40),

the kernel PDE system (5.4)�(5.5) is solved using Uniformly Gridded Discretization

(UGD) (see [An�nsen & Aamo 2019]) with boundary data fu = 0 and fv = 0.

Hence, using these solutions the signals ωi are computed after φλ(1) + φµ(1) = 2 s

of I/O data has been collected.

Remark 6. The choice of boundary data fu, fv �tunes� the exact shape (as func-

tions of I/O data) of the respective signal components d0d1ω1, d0ω2, d1ω3 and ω4 ,

that decompose the measurement signal y in (5.36). In the example presented here,
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choosing fu = fv = 0 is su�cient to obtain parameter convergence, but in certain

cases where Ω does not satisfy the PE property with this choice, one could choose

fu and fv di�erently to make Ω PE, given that U is su�ciently rich. There is

no guarantee, however, that this will work in all cases, and further investigation is

necessary to establish the exact conditions for this to be possible.
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Figure 5.2: Component signals of Ω.

The three component signals of Ω are plotted in Figure 5.2. With the ωi signals

computed, the adaptive law (5.48) is implemented with

β = 2, P̄ = 103.

The parameter estimate vector ϑ̂ and covariance matrix P are respectively initialized

at

ϑ̂0 =

0.25

0.5

0.5

 , P0 =

1 0 0

0 1 0

0 0 1

 .
For each time step, after updating the parameter estimate using (5.48), the

optimization problem (4.15)�(4.16) is solved with

δ1 = 1, δ2 = 1, δ3 = 1,

using the fminunc function from MATLAB.

A plot showing the parameter d0 plotted against d̂0 directly from the update

law and ď0 after the optimization step is plotted in Figure 5.3. Likewise, Figure 5.4

shows a plot of d1 against d̂1 and ď1. As can be seen, both estimates from before
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Figure 5.3: Plot of d0 versus estimates.
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Figure 5.4: Plot of d1 versus estimates.
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and after the optimization step converge to their true values. In particular for

the estimation of d0, the optimization step forces the estimate ď0 to stay closer

throughout, compared to d̂0 which has a small overshoot initially.

5.3.2 Robustness to noise

In situations where one has sensor data that is corrupted by high levels of noise,

the forgetting factor β appearing in (5.48) has the e�ect of amplifying the noise,

as it discounts past data in preference for current data, and can hence give poor

parameter estimates if β and/or the maximum covariance norm P̄ are chosen to

be too high. One faces in any case a trade-o� between �exibility o�ered by the

forgetting factor and robustness to noise.

The system (5.1) is simulated with the same settings as in Section 5.3.1, but

with the measurement y originally de�ned as (5.2), now corrupted by an additive

white Gaussian noise process with power1 of 0.1 W , yielding a comparatively high

level of noise for this example. Instead of forgetting factor and maximum covariance

used in Section 5.3.1, these constants are here set to signi�cantly lower values of

β = 0.1, P̄ = 2

to not amplify the noise too much. Using these new values, the adaptive law (5.48)

is implemented. A plot of the resultant parameter estimates is given in Figure 5.5.
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Figure 5.5: Plot of d0 and d1 versus estimates. With measurement noise.

The quality of the parameter estimates are deteriorated due to the noise, but despite

1The unit Watt [W ] to quantify the �size� of the noise is used here with the conventional

meaning, as used by the wgn function [wgn ] used to implement it in MATLAB, that if a voltage with

equal numerical value, in Volts [V ], to the noise signal generated is placed over a resistor with

resistance 1 Ω, a power equal to the number of Watts speci�ed would be dissipated.
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this the estimates remain in the neighbourhood of the correct parameter values.

One should however note that parametrization (5.45) used will cause the estimates

produced by applying LS to be biased when faced with measurement noise. Hence

with signi�cant amounts of noise the estimates could diverge, rather than converge to

the true parameters as they would in the corresponding noiseless case with identical

input signal. It could be bene�cial to instead apply an update law more robust to

noise, such as Instrumental Variables (IV) (see e.g. [Ljung 1987]), rather than LS in

such a scenario.

5.4 Application to estimation of acoustic impedance in

duct with spatially varying cross section

5.4.1 Model in Riemann coordinates

Figure 5.6: Acoustic impedance estimation in duct with spatially varying cross-

sectional area.

Consider the setup shown in Figure 5.6. It consists of a similar setup to that

shown in Figure 4.1, but rather than having a duct with constant cross-sectional

area, the cross section is here described by a spatially varying function a(z) for

z ∈ [0, L]. We let there be a loudspeaker located at z = L sending in signalWL = W

that it is collocated to a pressure measurement. Also, it is assumed the air inside

the duct is stationary, so that V̄ = 0, and standard atmospheric conditions apply.

As shown in Chapter 2, such a scenario can be modelled by (2.44) with W0 = 0.

The pressure measurement Y is given by

Y (t) = P̆ (L, t) (5.51)

and together with knowledge ofW , the aim is to estimate unknown boundary acous-

tic impedances Z0, ZL. We proceed in the following steps. First, we show that (2.44)
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can be written in the form (5.1) by mapping into Riemann coordinates. Then, ap-

plying results from Section 5.2, we suggest a regressor form for (2.44) that can be

used for parameter identi�cation.

Lemma 4. Consider the change of variables

u(x, t) := (P̆ (xL, t) + kV̆ (xL, t)) exp

(
L

c

∫ x

0
σ(ξ)dξ

)
(5.52a)

v(x, t) := (P̆ (xL, t)− kV̆ (xL, t)) exp

(
L

c

∫ x

0
σ(ξ)dξ

)
(5.52b)

where σ is de�ned by

σ(x) :=
γP̄

2k

a′(xL)

a(xL)
(5.53)

and the speed of sound c and characteristic impedance k are respectively de�ned

in (3.7), (3.4). The change of coordinates (5.52) maps (2.44) into (5.1) with trans-

port speeds

λ(x) :=
c

L
, (5.54a)

µ(x) :=
c

L
(5.54b)

in-domain coupling coe�cients

σ+(x) = σ(x), (5.55a)

σ−(x) = −σ(x) (5.55b)

re�ection coe�cients

d0 :=
Z0 + k

Z0 − k
(5.56a)

d1 :=
ZL − k
ZL + k

(5.56b)

(5.56c)

and input signal

U(t) := (1− d1)αWW (t) (5.57)

where

αW := exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
(5.58)

is known.

Proof. Consider �rst the intermediate change of variables

ū(x, t) := P̆ (xL, t) + kV̆ (xL, t) (5.59a)

v̄(x, t) := P̆ (xL, t)− kV̆ (xL, t) (5.59b)
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which lets us rewrite (2.44a)�(2.44b) as

1

2k
(ūt(x, t)− v̄t(x, t)) = − 1

2Lρ̄
(ūx(x, t) + v̄x(x, t)) (5.60a)

1

2
(ūt(x, t) + v̄t(x, t)) = − γP̄

2kL
(ūx(x, t)− v̄x(x, t))

− γP̄

2k

a′(xL)

a(xL)
(ū(x, t)− v̄(x, t)) (5.60b)

Multiplying (5.60a) by k and adding and subtracting from (5.60b) gives the following

expressions for the temporal partial derivatives ūt, v̄t

ūt(x, t) = − 1

2L

(
k

ρ̄
+
γP̄

k

)
ūx(x, t) +

1

2L

(
−k
ρ̄

+
γP̄

k

)
v̄x(x, t)− γP̄

2k

a′(xL)

a(xL)
ū(x, t)

+
γP̄

2k

a′(xL)

a(xL)
v̄(x, t), (5.61a)

v̄t(x, t) =
1

2L

(
k

ρ̄
− γP̄

k

)
ūx(x, t) +

1

2L

(
k

ρ̄
+
γP̄

k

)
v̄x(x, t)− γP̄

2k

a′(xL)

a(xL)
ū(x, t)

+
γP̄

2k

a′(xL)

a(xL)
v̄(x, t). (5.61b)

Applying the de�nitions of k, c and σ, we write (5.61) as

ūt(x, t) = − c
L
ūx(x, t)− σ(x)ū(x, t) + σ(x)v̄(x, t) (5.62a)

v̄t(x, t) =
c

L
v̄x(x, t)− σ(x)ū(x, t) + σ(x)v̄(x, t) (5.62b)

Next, substituting the subsequent change of variables

u(x, t) = ū(x, t) exp

(
L

c

∫ x

0
σ(ξ)dξ

)
(5.63a)

v(x, t) = v̄(x, t) exp

(
L

c

∫ x

0
σ(ξ)dξ

)
(5.63b)

into (5.62) we obtain (5.1a)�(5.1b) with λ, µ as given in (5.54) and σ+, σ− as given

in (5.55).

Composing (5.59) with (5.63) gives the complete change of coordinates (5.52).

Substituting this into the boundary conditions (5.1c)�(5.1d), by assigning d0, d1 and

U as in (5.56)�(5.57) we see (2.44c)�(2.44d) maps into (5.1c)�(5.1d) with W0 = 0,

and the proof is complete.

5.4.2 Regressor form

Having shown that the acoustics mathematical model (2.44) �ts into the form (5.1),

we combine here Lemmas 3�4 to suggest a regressor form for estimating the bound-

ary impedances Z0, ZL in (2.44).



5.4. Application to estimation of acoustic impedance in duct with
spatially varying cross section 113

Lemma 5. Consider the acoustics described by (2.44) and I/O signals W and Y

given by (2.44c) and (5.51) respectively. Then the relation

χ(t) = ι>Ψ(t) (5.64)

where the signal χ is de�ned by

χ(t) := 2 (Y (t)− Iy4 [Y ](t)) + αW
(
Iy4 [W ](t)−W (t)− IU4 [W ](t)

)
(5.65)

the parameter vector ι is given by

ι :=


d0d

2
1

d2
1

d0d1

d0

d1

 (5.66)

and the vector of signals Ψ, which is given by

Ψ(t) :=


ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)

ψ5(t)

 (5.67)

consists of the component signals ψi de�ned by

ψ1(t) := αW
(
Iy1 [W ](t)− IU2 [W ](t)

)
(5.68)

ψ2(t) := αW
(
Iy3 [W ](t)− IU4 [W ](t)

)
(5.69)

ψ3(t) := 2 (Y (t− φλ(1)− φµ(1)) + Iy1 [Y ](t))

+ αW (Iy2 [W ](t)−W (t− φλ(1)− φµ(1))− Iy1 [W ](t)) (5.70)

ψ4(t) := 2Iy2 [Y ](t) + αW
(
W (t− φλ(1)− φµ(1)) + IU2 [W ](t)− Iy2 [W ](t)

)
(5.71)

ψ5(t) := 2Iy3 [Y ](t) + αW (Iy4 [W ](t)−W (t)− Iy3 [W ](t)) (5.72)

holds true.

Proof. The relation between U and W is given in (5.57), and applying this together

with (5.51)�(5.52) we write the characteristics measurement y, de�ned in (5.2), in

terms of Y , W and system parameters as

y(t) =
2

1 + d1
Y (t)− 1− d1

1 + d1
exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
W (t). (5.73)

Subsituting (5.57), (5.73) into (5.37)�(5.40) gives

ω1(t) =
2

1 + d1
(Y (t− φλ(1)− φµ(1)) + Iy1 [Y ](t))
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− 1− d1

1 + d1
exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
(W (t− φλ(1)− φµ(1)) + Iy1 [W ](t)) (5.74)

ω2(t) = (1− d1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)(
W (t− φλ(1)− φµ(1)) + IU2 [W ](t)

)
+

2

1 + d1
Iy2 [Y ](t)− 1− d1

1 + d1
exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
Iy2 [W ](t) (5.75)

ω3(t) =
2

1 + d1
Iy3 [Y ](t)− 1− d1

1 + d1
exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
Iy3 [W ](t) (5.76)

ω4(t) =
2

1 + d1
Iy4 [Y ](t)− 1− d1

1 + d1
exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
Iy4 [W ](t)

+ (1− d1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
IU4 [W ](t). (5.77)

Substituting (5.74)�(5.77) into the regressor form (5.45) and multiplying both sides

by (1 + d1) yields

2Y (t)− (1− d1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
W (t)− 2Iy4 [Y ](t)

+ (1− d1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
Iy4 [W ](t)− (1− d2

1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
IU4 [W ](t)

= d0d1

(
2(Y (t− φλ(1)− φµ(1)) + Iy1 [Y ](t))

− (1− d1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
(W (t− φλ(1)− φµ(1)) + Iy1 [W ](t))

)
+ d0

(
(1− d2

1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)(
W (t− φλ(1)− φµ(1)) + IU2 [W ](t)

)
+ 2Iy2 [Y ](t)− (1− d1) exp(

L

c

∫ 1

0
σ(ξ)dξ)Iy2 [W ](t)

)
+ d1

(
2Iy3 [Y ](t)− (1− d1) exp

(
L

c

∫ 1

0
σ(ξ)dξ

)
Iy3 [W ](t)

)
.

Rearranging gives us the regressor form (5.64), and the proof is complete.

With the regressor form (5.64), it should in principle be possible to apply a

wide range of di�erent parameter identi�cation schemes to estimate the unknown

re�ection coe�cients d0, d1 and hence Z0, ZL in (2.44). However, the parameter

vector ι appearing in (5.64) is more overparametrized than the parameter vector ϑ

appearing in (4.6) and (5.45).

5.5 Discussion

We solved in this chapter the problem of estimating both re�ection coe�cients of 2×
2 linear hyperbolic systems of the form (5.1) using a single boundary measurement.
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The approach used was similar to the one for boundary estimation in the Rijke

tube in Chapter 4, but to deal with the in-domain coupling coe�cients the plant

was mapped into target system (5.6) for which the MOC is applied to obtain the

regressor form (5.45).

Applying a standard parameter estimation scheme, such as least-squares with

forgetting factor as suggested, on the system written in regressor form should in

theory result in the parameters converging to their correct values, given that the

input signal is chosen to be �su�ciently rich� for the signals in the regressor form to

be PE. However, as the parameter vectors ϑ given in (4.8), and especially ι in (5.66),

are overparametrized, obtaining unique estimates ď0, ď1 that are consistent with all

the estimates in the parameter vectors is not necessarily guaranteed by the procedure

suggested. The solutions could in practice end up in local minima or saddle points

that are not representative of the true solution. More investigation needs to go into

choice of the input signal and update law for the parameters to be able to guarantee

global convergence.

In Section 4.2, the overparametrization comes about as a result of there being un-

known boundary coe�cients in the relationship (4.5) between physical pressure I/O

signals (Y,W ) and characteristic coordinate I/O signals (y, U). On the other hand,

in Section 5.2 the same overparametrization results from the presence of in-domain

coupling coe�cients, and in Section 5.4 an even more complicated overparametriza-

tion comes about due to both factors. Compared to frequency-domain estimation

methods such as the two-microphone method [Seybert & Ross 1977], part of the

value in designing time-domain parameter estimation scheme is their application to

real-time applications, such as adaptive observers and controllers. Also, to imple-

ment the parameter estimation schemes considered here online in a system su�ering

from thermoacoustic instabilities, the algorithms need to be extended to work in

tandem with heat release included in the model.

As mentioned in Chapter 2, the acoustic impedance is often within the paradigm

of locally reacting linear surfaces considered to be a general linear system. The

parameter estimation schemes presented here consider it as the even more spe-

cial case of being modelled by a constant scalar, as this formulation is conve-

nient to work with in the time domain. In an analogue to purely resistive net-

works in electric circuit theory, this formulation only takes the resistive part of

the impedance into account and disregards possible reactive parts. As considered in

e.g. [Rienstra & Hirschberg 2004], one could model the impedance as a mass-spring-

damper system, where the damper represents the resistive part that is currently

modelled, and the mass and spring model reactive parts of the impedance, anal-

ogous to inductors and capacitors modelling the reactive parts of the impedance

in electric circuit theory. With such a model, the parameter estimation scheme

would have three parameter to estimate at each boundary, namely the unknown

mass, spring constant and damping coe�cient. The problem would then formulate

as parameter identi�cation for a coupled hyperbolic PDE�ODE system.

So far we considered in Section 5.4 the estimation of acoustic impedances in

a duct with spatially varying geometry, but the acoustic properties of the duct
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walls was not explicitly taken into account. For the sake of boundary acoustic

impedance estimation, modelling of the acoustics where such distributed damping

due to the particular material is taken into account would be a useful further step

from the model (2.44), as this could prevent possible distributed contributions from

the acoustic properties of the material to be inadvertently lumped into the boundary

impedance estimates.
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Dans ce chapitre, un contrôleur par retour de sortie est proposé pour stabiliser

les instabilités thermoacoustiques longitudinales dans un modèle mathématique d'une

chambre de combustion de la forme (2.45), avec le sous-système décrivant la �amme

linéarisé. Après avoir montré que (2.45) avec un dégagement de chaleur linéarisé

peut être écrit comme un système d'EDP hyperbolique linéaire 2×2 couplé à un

sous-système d'EDO avec retard, une commande par retour d'état est proposée. Elle

est conçue grâce à un changement de variables transformant le système considéré en

une cascade EDP�EDO simpli�ée, pour laquelle la conception de la commande est

un problème résolu. Ensuite, l'observateur est conçu en transformant la dynamique

de l'erreur d'estimation en une cascade stable EDP�EDO. En combinant la loi de

contrôle par retour d'état et l'observateur, on obtient un commande par retour de

sortie. Un exemple de simulation pour illustrer la théorie est présenté.

In this chapter an output-feedback controller to stabilize longitudinal thermoa-

coustic instabilities in a mathematical model of a can combustor as given by (2.45),
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with the �ame subsystem linearised, is proposed. After showing that (2.45) with

linearized heat release can be written as a 2 × 2 linear hyperbolic PDE coupled

to an ODE subsystem with instantaneous and time-delayed interaction, a full-state

feedback law is proposed. It is designed by mapping the considered plant into a

simpli�ed PDE�ODE cascade, for which control design is a solved problem. Subse-

quently, the observer is designed by mapping the estimation error dynamics directly

into a stable target PDE�ODE cascade. Combining the full-state feedback control

law and observer we arrive at an output feedback controller. A simulation exam-

ple to demonstrate the theory is presented, where the full-state feedack controller,

observer and output feedback controller are shown to stabilize and estimate the

pressure, velocity and heat release rate.

6.1 Background

6.1.1 Literature review

Much of the early work on combustion instability focused on developing meth-

ods to passively dampen [Culick 1988, Putnam 1971] out the instabilities by

ad-hoc physical augmentation of the system. Although it is advantageous to

have an inherently stable system, passive methodologies to stabilize thermoacous-

tic instabilities can turn out to be incredibly expensive, the infamous Apollo

F-1 project [Oefelein & Yang 1993] being an example of this. Also as noted

in [Dowling & Morgans 2005], even though a passive method works well within a

given operating region, it might have limited applicability to other operating condi-

tions.

An alternative to passive stabilization of thermoacoustic instabilities is active

stabilization. The interest of this approach amongst researchers in the �eld has

gone in and out of fashion since the problem �rst started being studied, with one of

the earliest contributions [Tsien 1952] being from the beginning of the 1950s. A few

decades later active feedback control of combustion instabilities was demonstrated

experimentally, �rstly on the Rijke tube [Dines 1984, Heckl 1988] and gradually

on more complex rigs [Lang et al. 1987, Neumeier et al. 1996, Johnson et al. 2001],

via empirically designed phase-shift controllers. These are based on feeding back

an ampli�ed and phase-shifted measurement signal1, tuned via a trial-and-error

approach. More sophisticated control algorithms, both in the form of data-

driven [Kemal & Bowman 1996, Blonbou et al. 2000, Murugappan et al. 2003] and

model-based [Yang et al. 1992, Krsti¢ et al. 1999, Annaswamy et al. 2000] design

approaches have been explored.

Many of the model-based control algorithms in the literature rely on trun-

cating the in�nite dimensional model of the thermoacoustic instability into a �-

nite number of modes, arguing that the lower order modes are most signi�cant

for the instability and the higher order modes can thus be disregarded. This

1This is usually a pressure measurement but other metrics such as CH∗ radicals or soot forma-

tion can be used.
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approach reduces the plant model to be stabilized as a set of ODEs, and a

�nite-dimensional control law can then be developed to stabilize these lower order

modes. Unfortunately, a problem with this approach is that although the modes

included in the truncated model are stabilized, instabilities at higher frequencies

that were not present initially may inadvertently occur as a result of the interven-

tion [Bloxsidge et al. 1987, Gulati & Mani 1992].

Additionally, it is typically assumed that the duct acoustics can be modelled

by an ideal wave equation, which in reality requires that the duct has constant

cross-sectional area relative to the propagation of the acoustic waves and no inter-

nal damping. This is a reasonable assumption for many laboratory setups, where

the ducts are purposefully made to be straight, but since real combustion chambers

tend to have more complex geometry, for them it is not necessarily the case. As

pointed out in [Poinsot 2017], the chamber geometry is a highly signi�cant deter-

mining factor for combustion instability, and is thus important to take into account

when considering the suppression of thermoacoustic instabilities in real combus-

tion chambers. In [de Andrade et al. 2018b, de Andrade et al. 2018a], an in�nite-

dimensional full-state feedback control law and boundary observer for stabilizing

thermoacoustic instabilities in the Rijke tube are designed, respectively. Although

the acoustics model considered contains all modes of the system, the Rijke tube

has straight geometry and the design is therefore not directly applicable to real

combustion chambers.

The objective of this chapter is to propose a model-based output-feedback control

law for stabilizing thermoacoustic instabilities that takes into account the in�nite-

dimensional nature of the duct acoustics and e�ects from spatially varying geometry.

A linear �ame response is assumed, which is a reasonable assumption for early stages

of the instability, and hence if the instability is suppressed fast enough nonlinear ef-

fects are unnecessary to take into account. As part of the design process, an observer

that estimates pressure, velocity and heat release in the combustion chamber from

a pressure measurement is derived. As a contribution on its own, the observer could

have applications within early warning systems to detect thermoacoustic instabilities

before they grow unstable.

6.1.2 Model in Riemann coordinates

Consider the setup shown in Figure 6.1. It consists of a duct of length L and spatially

varying cross-sectional area a(z), where z ∈ [0, L]. It is assumed a premixed �ame is

burning at z = 0, being fed by a fuel injector. At the far end of the duct, at z = L,

a loudspeaker is assumed to be collocated with a pressure sensor. This setup can be

modelled by the can combustor model (2.45), where the input signal W comes in

via the boundary condition (2.45e), and the output signal Y is as de�ned in (5.51).

In this chapter, we consider the special case when the �ame subsystem (2.45a)�

(2.45b) is linearised. We present now a Lemma mapping the model considered into

a form suitable for algorithm design and analysis.
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Figure 6.1: Sketch of combustor setup considered.

Lemma 6. Consider the system (2.45), where f(·), g0(·), g1(·) in (2.45a) and h(·)
in (2.45b) take the particular form

f(X) := AX, ḡ0(X) := B̄0, ḡ1(X) := B̄1, h̄(X) := C̄X,

with A ∈ Rn×n, B̄0, B̄1 ∈ Rn×1 and C̄ ∈ R1×n constant matrices. With the change

of variables

u(x, t) :=
(
P̆ (xL, t) + k(xL)V̆ (xL, t)

)
exp

(
−L

∫ x

0

σ̄++(ξ)

c(ξL)
dξ

)
(6.1a)

v(x, t) :=
(
P̆ (xL, t)− k(xL)V̆ (xL, t)

)
exp

(
L

∫ x

0

σ̄−−(ξ)

c(ξL)
dξ

)
(6.1b)

the system satis�es the dynamics

Ẋ(t) = AX(t) +B0v(0, t) +B1v(0, t− τ) (6.2a)

ut(x, t) = −λ(x)ux(x, t) + σ+(x)v(x, t) (6.2b)

vt(x, t) = µ(x)vx(x, t) + σ−(x)u(x, t) (6.2c)

u(0, t) = d0v(0, t) + CX(t) (6.2d)

v(1, t) = d1u(1, t) + U(t), (6.2e)

with transport speeds

λ(x) :=
c(xL)

L
(6.3a)

µ(x) :=
c(xL)

L
(6.3b)

in-domain coupling coe�cients

σ+(x) := σ̄+−(x) exp

(
−L

∫ x

0

σ̄++(ξ) + σ̄−−(ξ)

c(ξL)
dξ

)
, (6.4a)
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σ−(x) := σ̄−+(x) exp

(
L

∫ x

0

σ̄++(ξ) + σ̄−−(ξ)

c(ξL)
dξ

)
(6.4b)

re�ection coe�cients

d0 :=
1− α
1 + α

, (6.5a)

d1 :=
Z − k(L)

Z + k(L)
exp

(
L

∫ 1

0

σ̄++(ξ) + σ̄−−(ξ)

c(ξL)
dξ

)
, (6.5b)

boundary input signal

U(t) :=
2k(L)

k(L) + Z
exp

(
L

∫ 1

0

σ̄−−(ξ)

c(ξL)
dξ

)
W (t) (6.6)

and matrix-valued parameters B0, B1, C given by

B0 := − 1

2k(0)
B̄0 (6.7)

B1 := − 1

2k(0)
B̄1 (6.8)

C :=
2k(0)

1 + α
θC̄ (6.9)

where

σ̄++(x) := −1 + γ

2
V̄ ′(xL)− 1

2k(xL)

(
P̄ ′(xL) +

(
a′(xL)

a(xL)
− k′(xL)

k(xL)

)
γP̄ (xL)

)
(6.10a)

σ̄+−(x) :=
1− γ

2
V̄ ′(xL) +

1

2k(xL)

(
P̄ ′(xL) +

(
a′(xL)

a(xL)
− k′(xL)

k(xL)

)
γP̄ (xL)

)
(6.10b)

σ̄−+(x) :=
1− γ

2
V̄ ′(xL)− 1

2k(xL)

(
P̄ ′(xL) +

(
a′(xL)

a(xL)
− k′(xL)

k(xL)

)
γP̄ (xL)

)
(6.10c)

σ̄−−(x) := −1 + γ

2
V̄ ′(xL) +

1

2k(xL)

(
P̄ ′(xL) +

(
a′(xL)

a(xL)
− k′(xL)

k(xL)

)
γP̄ (xL)

)
(6.10d)

and

k(z) :=
√
γρ̄(z)P̄ (z), (6.11)

c(z) :=

√
γP̄ (z)

ρ̄(z)
. (6.12)

Proof. The part of the Proof regarding mapping of the acoustics (2.45c)�(2.45d)

into the PDE dynamics (6.2b)�(6.2c) and boundary condition (2.45e) into (6.2e) is

almost identical to steps followed in the proof of Lemma 4, so it is omitted.
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Evaluating the change of variables (6.1) at x = 0, and denoting by

u−(0, ·), v−(0, ·) characteristics variables directly upstream of the �ame and area

jump, u+(0, ·), v+(0, ·) characteristics variables directly downstream of the �ame,

we rewrite (2.45f)�(2.45g) as

1

2

(
u+(0, t) + v+(0, t)

)
=

1

2
(u−(0, t) + v−(0, t)) (6.13a)

1

2

(
u+(0, t)− v+(0, t)

)
=
α

2

(
u−(0, t)− v−(0, t)

)
+ k(0)θC̄X(t). (6.13b)

Adding and subtracting (6.13a) respectively to and from (6.13b), after some algebra

we have the boundary conditions

u+(0, t) =
1− α
1 + α

v+(0, t) +
2α

1 + α
u−(0, t) +

2k(0)θ

1 + α
C̄X(t), (6.14a)

v−(0, t) =
−1 + α

1 + α
u−(0, t) +

2

1 + α
v+(0, t) +

2k(0)θ

1 + α
C̄X(t). (6.14b)

Substituting characteristic variables into the linearized �ame model followed by

boundary conditions (6.14) gives

Ẋ(t) = AX(t) + B̄0
u−(0, t)− v+(0, t)

2k(0)
+ B̄1

u−(0, t− τ)− v+(0, t− τ)

2k(0)
. (6.15)

Thanks to Assumption 15, a non-re�ective section is upstream of the bound-

ary (6.14), so we can in (6.14)�(6.15) set u−(0, ·) = 0. Also, since v−(0, ·) exits the
system the boundary condition (6.14b) is disregarded in the �nal model. Hence, de-

noting u(0, ·) = u+(0, ·), v(0, ·) = v+(0, ·) gives respectively (6.2d) with d0 assigned

in (6.5a), C assigned in (6.9) and (6.2a) with B0, B1 assigned in (6.7)�(6.8).

Remark 7. Note that for the physical control signal W in (6.6) to be implementable

in practice, the proportionality constant between U and W must be non-zero. Phys-

ically this corresponds to the case when the actuated boundary is not an ideal rigid

wall, which in theory would correspond to a velocity node and hence an in�nite

speci�c impedance Z.

6.1.3 Problem statement

We consider in this chapter boundary controller and observer design of the

plant (6.2). In Section 6.2�6.3 the problems of full-state feedback control design

and observer design for the plant is considered in general. These designs are then

combined into an output-feedback controller in Section 6.4 which is applied to sta-

bilize longitudinal thermoacoustic instabilities in a simulation example presented in

Section 6.5.

The plant (6.2) consists of a linear ODE subsystem (6.2a) with state X ∈ Rn
de�ned for t ∈ [0,∞), where A ∈ Rn×n, and having both instantaneous and time-

delayed input signals entering via B0, B1 ∈ Rn×1, respectively. It is coupled via the

boundary (6.2d), with C ∈ R1×n and d0 ∈ R, to a 2 × 2 linear hyperbolic PDE
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system (6.2b)�(6.2c), with states u, v ∈ L2(0, 1) de�ned over (x, t) ∈ [0, 1]× [0,∞).

The parameters of the PDE system are the transport speeds λ, µ ∈ C1(0, 1), λ, µ >

0, and in-domain coupling coe�cients σ+, σ− ∈ L∞(0, 1). The plant is actuated by

the signal U : [0,∞) 7→ R via the boundary condition (6.2e), where d1 ∈ R, and we

assume a collocated measurement signal y, de�ned as in (5.2) is available. For the

purpose of the control and observer designs we make the following assumption.

Assumption 17. The transport speeds λ, µ ∈ C1(0, 1) and time delay τ ∈ R in

(6.2) satisfy the inequalities

• λ(x), µ(x), τ > 0,

• τ ≥
∫ 1

0
dx
λ(x) ,

∫ 1
0

dx
µ(x) .

Additionally, to facilitate the control and observer design we introduce the arti-

�cial state w, de�ned according to

wt(x, t) = −1

τ
wx(x, t), (6.16a)

w(0, t) = v(0, t). (6.16b)

The plant ODE (6.2a) is then rewritten as

Ẋ(t) = AX(t) +B0v(0, t) +B1w(1, t). (6.17)

The problem of boundary control and observer design for interconnected PDE�

ODE systems has been widely studied in the literature the past decade, both for

parabolic PDEs [Tang & Xie 2011] and hyperbolic PDEs [Di Meglio et al. 2018].

These build on contributions for stabilization of PDEs, which for hyperbolic PDEs

was �rstly achieved with the backstepping method in [Vazquez et al. 2011]. Alter-

native methods to backstepping have also been considered, such as Lyapunov-based

methods [Castillo et al. 2013]. In [Castillo et al. 2012] Lyapunov based methods are

considered for hyperbolic PDEs with dynamic boundary conditions.

With B1 = 0 in (6.2) the collocated controller and observer design

from [Di Meglio et al. 2018] can be applied to stabilize (6.2), but when B1 6=
0 the delayed input signal causes extra di�culties. As an isolated sub-

system with v(0, ·) considered as the input signal, stabilization of (6.2a) is

considered in [Kwon & Pearson 1980, Artstein 1982]. The plant considered

in [de Andrade et al. 2018b] can be written to look similar to (6.2), but only a

scalar ODE is considered and the PDE subsystems have no in-domain couplings.

Likewise, the plant considered in [Auriol et al. 2020a] can be written to look similar

to (6.2) but instead of a term proportional to the delayed v(0, ·) signal one would

have a term related to the delayed ODE state X(·).

6.2 Control Design

The control design is performed in two steps. First, (6.2) is mapped into a simpler

cascade for which the control design is known. Subsequently, the control law for
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the simpler cascade is written out and the expression for U that stabilizes (6.2) is

recovered.

6.2.1 Mapping into simpler cascade

Consider the cascade system

Ż(t) = AZ(t) + B̄β(0, t) (6.18a)

αt(x, t) = −λ(x)αx(x, t) (6.18b)

βt(x, t) = µ(x)βx(x, t) (6.18c)

α(0, t) = d0β(0, t) (6.18d)

β(1, t) = d1α(1, t) + V (t) (6.18e)

where B̄ and V are to be de�ned, and the change of coordinates

Z(t) = X(t)−
∫ 1

0
r(ξ)w(ξ, t)dξ (6.19a)

α(x, t) = u(x, t)− νu(x)>X(t)−
∫ x

0
Kuu(x, ξ)u(ξ, t)dξ

−
∫ x

0
Kuv(x, ξ)v(ξ, t)dξ −

∫ 1

0
Ru(x, ξ)w(ξ, t)dξ (6.19b)

β(x, t) = v(x, t)− νv(x)>X(t)−
∫ x

0
Kvu(x, ξ)u(ξ, t)dξ

−
∫ x

0
Kvv(x, ξ)v(ξ, t)dξ −

∫ 1

0
Rv(x, ξ)w(ξ, t)dξ (6.19c)

where r satis�es for ξ ∈ [0, 1]

r′(ξ) = τAr(ξ) +
τ

d0
B̄Ru(0, ξ), (6.20a)

r(1) = −τB1, (6.20b)

νu, νv satisfy for x ∈ [0, 1]

ν ′u(x) = − 1

λ(x)
A>νu(x)− λ(0)

λ(x)
Kuu(x, 0)C> (6.21a)

ν ′v(x) =
1

µ(x)
A>νv(x) +

λ(0)

µ(x)
Kvu(x, 0)C> (6.21b)

νu(0) = C> (6.21c)

νv(0) = 0, (6.21d)

Ru, Rv are for (x, ξ) ∈ S, the square domain S := {(x, ξ) | 0 ≤ x, ξ ≤ 1}, given by

1

τ
Ruξ (x, ξ) = −λ(x)Rux(x, ξ) (6.22a)

1

τ
Rvξ(x, ξ) = µ(x)Rvx(x, ξ) (6.22b)
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Ru(x, 1) = τνu(x)>B1 (6.22c)

Ru(1, ξ) = 0 (6.22d)

Rv(x, 1) = τνv(x)>B1 (6.22e)

Rv(0, ξ) =
1

d0
Ru(0, ξ) (6.22f)

and �nally Kuu,Kuv,Kvu,Kvv are for (x, ξ) ∈ Tl, the lower triangular domain

Tl := {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1}, given by

λ(x)Kuu
x (x, ξ) + λ(ξ)Kuu

ξ (x, ξ) = −λ′(ξ)Kuu(x, ξ)− σ−(ξ)Kuv(x, ξ) (6.23a)

λ(x)Kuv
x (x, ξ)− µ(ξ)Kuv

ξ (x, ξ) = µ′(ξ)Kuv(x, ξ)− σ+(ξ)Kuu(x, ξ) (6.23b)

µ(x)Kvu
x (x, ξ)− λ(ξ)Kvu

ξ (x, ξ) = λ′(ξ)Kvu(x, ξ) + σ−(ξ)Kvv(x, ξ) (6.23c)

µ(x)Kvv
x (x, ξ) + µ(ξ)Kvv

ξ (x, ξ) = −µ′(ξ)Kvv(x, ξ) + σ+(ξ)Kvu(x, ξ) (6.23d)

Kuu(x, 0) =
µ(0)

d0λ(0)
Kuv(x, 0)− 1

d0λ(0)
νu(x)>B0

− 1

d0λ(0)τ
Ru(x, 0) (6.23e)

Kuv(x, x) =
σ+(x)

λ(x) + µ(x)
(6.23f)

Kvu(x, x) = − σ−(x)

λ(x) + µ(x)
(6.23g)

Kvv(x, 0) =
λ(0)d0

µ(0)
Kvu(x, 0) +

1

µ(0)
νv(x)>B0

+
1

µ(0)τ
Rv(x, 0). (6.23h)

The vector B̄ in (6.18a) is de�ned in terms of the solution to (6.20) as

B̄ := B0 −
1

τ
r(0). (6.24)

We have the following Lemma.

Lemma 7. With U in (6.2e) given by

U(t) = V (t) + (νv(1)> − d1νu(1)>)X(t) +

∫ 1

0
(Kvu(1, ξ)− d1K

uu(1, ξ))u(ξ, t)dξ

+

∫ 1

0
(Kvv(1, ξ)− d1K

uv(1, ξ)) v(ξ, t)dξ +

∫ 1

0
Rv(1, ξ)w(ξ, t)dξ, (6.25)

the transformation (6.19)�(6.23) maps (6.2) into (6.18), (6.24), whenever (6.20)�

(6.23) has a unique, smooth solution.

Proof. Di�erentiating (6.19a) with respect to time, (6.19b)�(6.19c) with respect to

time and space, integrating by parts and substituting the resultant expressions into
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target dynamics (6.18a)�(6.18c), applying (6.20), (6.21a)�(6.21b), (6.22a)�(6.22c),

(6.22e), (6.23) and (6.24) we recover (6.2a)�(6.2c).

Furthermore, evaluating (6.19b)�(6.19c) at x = 0 and substituting into (6.18d),

from applying (6.21c)�(6.21d), (6.22f) we recover (6.2d). Finally, evaluating (6.19b)�

(6.19c) at x = 1, substituting into (6.18e) and applying (6.22d) we obtain (6.2e),

(6.25).

Remark 8. Note that νv(0) and Ru(1, ·) do not necessarily need to be assigned to

zero as in (6.21d), (6.22d), respectively; their values are an extra degree of freedom

in the design. However, in assigning a non-zero value to these boundary conditions,

B̄ de�ned in (6.24) will be the solution to a nonlinear matrix equation, which may or

may not have a unique solution, depending on the system parameters. As is shown

further down, picking them as (6.21d), (6.22d) lets B̄ be solved as the solution to a

linear matrix equation.

6.2.2 Analysis of kernels

As mentioned in Lemma 7, in order to map (6.2) into (6.18) via a transformation of

the form (6.19), the kernels (6.20)�(6.23), in addition to B̄ de�ned as (6.24), must

have a well-posed solution. We show here that this is the case under Assumption 17

and su�ciently smooth model parameters in (6.2).

Firstly, the general solution of (6.20) is for ξ ∈ [0, 1] given by

r(ξ) = −τ
(
eτA(ξ−1)B1 +

1

d0

∫ 1

ξ
e−τAsB̄Ru(0, s)ds

)
. (6.26)

Evaluating then (6.26) at ξ = 0 and substituting into (6.24), with the matrix E

de�ned as

E := I − 1

d0

∫ 1

0
eτAsRu(0, s)ds, (6.27)

and I denoting the identity matrix, we uniquely solve for B̄ as

B̄ = E−1(B0 + e−AτB1). (6.28)

Note that this requires the following Assumption:

Assumption 18. The matrix E de�ned by (6.27) is invertible.

Applying the MOC, under Assumption 17 we have the solution of (6.22) given

by

Ru(x, ξ) =

{
τνu(φ−1

λ (φλ(x) + τ(1− ξ)))>B1, if ξ > 1− 1
τ (φλ(1)− φλ(x))

0, if ξ ≤ 1− 1
τ (φλ(1)− φλ(x))

(6.29a)

Rv(x, ξ) =

{
τνv(φ

−1
µ (φµ(x) + τ(ξ − 1)))>B1, if ξ > 1− 1

τ φµ(x)
1
d0
Ru(0, ξ + 1

τ φµ(x)), if ξ ≤ 1− 1
τ φµ(x).

(6.29b)
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Figure 6.2: Sketch of solutions to Ru and Rv. The region shaded in green has

characteristics originating from the boundary condition along Ru(·, 1), the region

shaded in blue has characteristics with data originating in Ru(1, ·), and the region

shaded in red has characteristics coming from the boundary condition of Rv(·, 1).

The line of discontinuity in the solution of Ru terminates along x = 0 at the point

ξ = 1− 1
τ φλ(1), while the main line of discontinuity in the solution to Rv terminates

along x = 1 at the point ξ = 1− 1
τ φµ(1).

where φλ, φµ are functions of the form (5.13).

The solutions to Ru, Rv are illustrated in Figure 6.2. Thus, evaluating (6.29a)

at ξ = 0 and substituting into (6.23e) we have

Kuu(x, 0) =
µ(0)

d0λ(0)
Kuv(x, 0) + νu(x)>

(
− 1

d0λ(0)
B0

)
. (6.30)

Subsequently, substituting (6.30) into (6.21a) gives us

ν ′u(x) =

(
− 1

λ(x)
A> +

1

d0λ(x)
CB>0

)
νu(x) +Kuv(x, 0)

(
− µ(0)

d0λ(x)
C>
)
. (6.31)

Then, (6.30)�(6.31) together with (6.21c), (6.23a)�(6.23b), (6.23f) forms a coupled

system of equations to solve for (Kuu,Kuv, νu).

Likewise, evaluating (6.29b) at ξ = 0 and substituting into (6.23h) yields

Kvv(x, 0) =
λ(0)d0

µ(0)
Kvu(x, 0) + νv(x)>

(
1

µ(0)
B0

)
+

1

d0µ(0)τ
Ru
(

0,
1

τ
φµ(x)

)
.

(6.32)

From (6.29a) we see Ru is only dependent on the solution to νu, and hence (6.32)

together with (6.21b), (6.21d), (6.23c)�(6.23d), (6.23g) forms a coupled system of

equations to solve for (Kvv,Kvu, νv). To assess the regularity of solutions to the

systems of equations for (Kuu,Kuv, νu), (Kvv,Kvu, νv), respectively, we need the

following Lemma.

Lemma 8. The coupled system

ε1(x)G1
x(x, ξ) + ε1(ξ)G1

ξ(x, ξ) = c11(x, ξ)G1(x, ξ) + c12(x, ξ)G2(x, ξ) (6.33a)
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ε1(x)G2
x(x, ξ)− ε2(ξ)G2

ξ(x, ξ) = c21(x, ξ)G1(x, ξ) + c22(x, ξ)G2(x, ξ) (6.33b)

G1(x, 0) = aG2(x, 0) + γ(x)>F + b1(x) (6.33c)

G2(x, x) = b2(x) (6.33d)

γ ′(x) = D(x)γ(x) +G2(x, 0)E(x) (6.33e)

γ(0) = H (6.33f)

with parameters satisfying ε1, ε2 ∈ C1(0, 1), ε1, ε2 > 0, a ∈ R, b1, b2 ∈ C(0, 1),

c11, c12, c21, c22 ∈ C(Tl), D ∈ C((0, 1);Rn×n), E ∈ C((0, 1);Rn×1), F,H ∈ Rn×1

has a unique solution G1, G2 ∈ L∞(Tl), γ ∈ (L∞[0, 1])n.

The proof of this Lemma is almost identical to the proof of Lemma 1 in

[Auriol et al. 2018], and hence omitted.

Through comparison we see the systems of equations for (Kuu,Kuv, νu),

(Kvv,Kvu, νv) can be written in the form (6.33) with appropriate coe�cient as-

signment, and hence by Lemma 8 we establish that Kuu,Kuv,Kvu,Kvv ∈ L∞(Tl),
νu, νv ∈ (L∞[0, 1])n.

6.2.3 Full control law

We present now the main result of this section.

Theorem 4. Let Assumption 17 and 18 be satis�ed, and assume that (A, B̄) is a

controllable pair, K ∈ R1×n chosen so that (A+ B̄K) is Hurwitz. Denote by Φα,Φβ

the state transition matrices de�ned via

∂

∂x
Φα(x, σ) = − 1

λ(x)
A>Φα(x, σ), Φα(σ, σ) = I (6.34a)

∂

∂x
Φβ(x, σ) =

1

µ(x)
A>Φβ(x, σ), Φβ(σ, σ) = I. (6.34b)

Then the full-state feedback control law

U(t) = Π>X(t) +

∫ 1

0
πu(ξ)u(ξ, t)dξ +

∫ 1

0
πv(ξ)v(ξ, t)dξ +

∫ 1

0
πw(ξ)w(ξ, t)dξ

(6.35)

with

Π := NX + νv(1)> − d1νu(1)> (6.36a)

πu(x) := Nu(x) +Kvu(1, x)− d1K
uu(1, x) (6.36b)

πv(x) := Nv(x) +Kvv(1, x)− d1K
uv(1, x) (6.36c)

πw(x) := Nw(x) +Rv(1, x) (6.36d)

with NX , Nu, Nv, Nw de�ned by

Nu(ξ) :=Mα(ξ)−
∫ 1

ξ
Mα(s)Kuu(s, ξ)ds−

∫ 1

ξ
Mβ(s)Kvu(s, ξ)ds (6.37a)
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Nv(ξ) :=Mβ(ξ)−
∫ 1

ξ
Mα(s)Kuv(s, ξ)ds−

∫ 1

ξ
Mβ(s)Kvv(s, ξ)ds (6.37b)

Nw(ξ) := −MZr(ξ)−
∫ 1

0
Mα(s)Ru(s, ξ)ds−

∫ 1

0
Mβ(s)Rv(s, ξ)ds (6.37c)

NX :=MZ −
∫ 1

0
Mα(ξ)νu(ξ)>dξ −

∫ 1

0
Mβ(ξ)νv(ξ)

>dξ (6.37d)

andMZ ,Mα,Mβ de�ned by

Mα(ξ) :=
d1

λ(0)
exp

(
−
∫ φλ(ξ)

0
λ′(φ−1

λ (σ))dσ

)
KΦα(φ−1

λ (φλ(1)− φλ(ξ)), 0)>B̄

(6.38a)

Mβ(ξ) :=
1

µ(0)
exp

(
−
∫ φµ(ξ)

0
µ′(φ−1

µ (σ))dσ

)
KΦβ(φ−1

µ (φµ(1)− φµ(ξ)), 0)>B̄

(6.38b)

MZ := K
(

Φβ(1, 0)> − d1d0Φα(1, 0)>
)

(6.38c)

stabilizes (6.2) exponentially to the origin.

Proof. By applying the backstepping transformation and computing the kernels ex-

plicitly, obtain that V given by

V (t) =

∫ 1

0
Mα(ξ)α(ξ, t)dξ +

∫ 1

0
Mβ(ξ)β(ξ, t)dξ +MZZ(t) (6.39)

exponentially stabilizes (6.18) to the origin. Substituting in the transformation

(6.19) and rearranging, we can rewrite V in plant coordinates as

V (t) =

∫ 1

0
Nu(ξ)u(ξ, t)dξ +

∫ 1

0
Nv(ξ)v(ξ, t)dξ +

∫ 1

0
Nw(ξ)w(ξ, t)dξ +NXX(t).

(6.40)

Substituting this into (6.25) we have the expression (6.35). By Lemma 7 and by the

fact that (6.19) is invertible the Proof is complete.

Remark 9. It should be noted that the problem of boundary stabilization of (6.18)

is a well-known problem, with several controllers in the literature (some examples

presented in [Auriol et al. 2018, Bekiaris-Liberis & Krsti¢ 2014]). In principle one

could apply any controller that stabilizes (6.18) and combine it with the transforma-

tion (6.19) to obtain a stabilizing controller for (6.2).

In practice, implementing the control law requires full knowledge of the states

(u, v,X), which are often unknown in practice. In the next section we design an

observer that produces exponentially convergent estimates of these states.
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6.3 Observer Design

We design in this section an observer of the form

˙̂
X(t) = AX̂(t) +B0v̂(0, t) +B1ŵ(1, t) + L[y(t)− û(1, t)] (6.41a)

ût(x, t) = −λ(x)ûx(x, t) + σ+(x)v̂(x, t) + P+(x)[y(t)− û(1, t)] (6.41b)

v̂t(x, t) = µ(x)v̂x(x, t) + σ−(x)û(x, t) + P−(x)[y(t)− û(1, t)] (6.41c)

ŵt(x, t) = −1

τ
ŵt(x, t) + Pw(x)[y(t)− û(1, t)] (6.41d)

û(0, t) = d0v̂(0, t) + CX̂(t) (6.41e)

v̂(1, t) = d1y(t) + U(t) (6.41f)

ŵ(0, t) = v̂(0, t) (6.41g)

using the measurement signal y as de�ned in (5.2), where L, P+, P−, Pw are gains

to be found such that (û, v̂, ŵ, X̂) converge to their true values (u, v, w,X) in some

sense.

With state estimation errors de�ned as ũ := u− û, ṽ := v − v̂, w̃ := w − ŵ and

X̃ := X − X̂, we �nd the state estimation error dynamics

˙̃X(t) = AX̃(t) +B0ṽ(0, t) +B1w̃(1, t)− Lũ(1, t) (6.42a)

ũt(x, t) = −λ(x)ũx(x, t) + σ+(x)ṽ(x, t)− P+(x)ũ(1, t) (6.42b)

ṽt(x, t) = µ(x)ṽx(x, t) + σ−(x)ũ(x, t)− P−(x)ũ(1, t) (6.42c)

w̃t(x, t) = −1

τ
w̃x(x, t)− Pw(x)ũ(1, t) (6.42d)

ũ(0, t) = d0ṽ(0, t) + CX̃(t) (6.42e)

ṽ(1, t) = 0 (6.42f)

w̃(0, t) = ṽ(0, t). (6.42g)

6.3.1 Mapping into stable cascade

Consider the target error system

˙̃Z(t) = (A− ΓC)Z̃(t) (6.43a)

α̃t(x, t) = −λ(x)α̃x(x, t) (6.43b)

β̃t(x, t) = µ(x)β̃x(x, t) (6.43c)

ω̃t(x, t) = −1

τ
ω̃x(x, t) (6.43d)

α̃(0, t) = d0β̃(0, t) + CZ̃(t) +

∫ 1

0
F (ξ)ω̃(ξ, t)dξ (6.43e)

ω̃(0, t) = β̃(0, t) +

∫ 1

0
H(ξ)β̃(ξ, t)dξ (6.43f)

β̃(1, t) = 0 (6.43g)
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where Γ is picked so that (A− ΓC) is Hurwitz, and F , H are to be de�ned further

down. We assess the convergence properties of (6.43) in the following Lemma.

Lemma 9. The states (α̃, β̃, ω̃, Z̃) of (6.43) converge exponentially fast to the origin.

Proof. Due to (6.43c), (6.43g), we have that β̃ ≡ 0 for time t ≥ φµ(1). Hence, after

this (6.43f) is reduced to ω̃(0, ·) = 0, which together with (6.43d) implies ω̃ ≡ 0

for time t ≥ φµ(1) + τ . Thereafter the target system is reduced to the autonomous

ODE (6.43a) cascading into the transport PDE (6.43b), via the boundary condition

(6.43e) which is reduced to α̃(0, ·) = CZ̃(·). Because Γ is picked so that A −
ΓC is Hurwitz, (α̃, Z̃) converge to the origin exponentially fast and the Proof is

complete.

Consider next the change of coordinates

X̃(t) = Z̃(t) +

∫ 1

0
ηα(ξ)α̃(ξ, t)dξ +

∫ 1

0
ηβ(ξ)β̃(ξ, t)dξ +

∫ 1

0
ηω(ξ)ω̃(ξ, t)dξ

(6.44a)

w̃(x, t) = ω̃(x, t) +

∫ 1

0
Sα(x, ξ)α̃(ξ, t)dξ (6.44b)

ũ(x, t) = α̃(x, t) +

∫ 1

x
Mαα(x, ξ)α̃(ξ, t)dξ +

∫ 1

x
Mαβ(x, ξ)β̃(ξ, t)dξ (6.44c)

ṽ(x, t) = β̃(x, t) +

∫ 1

x
Mβα(x, ξ)α̃(ξ, t)dξ +

∫ 1

x
Mββ(x, ξ)β̃(ξ, t)dξ (6.44d)

where ηω satis�es for ξ ∈ [0, 1]

η′ω(ξ) = τ(A− ΓC)ηω(ξ) (6.45a)

ηω(1) = −τB1, (6.45b)

ηα satis�es for ξ ∈ [0, 1]

η′α(ξ) =
1

λ(ξ)

( (
A− λ′(ξ)I

)
ηα(ξ) +B0M

βα(0, ξ) +B1S
α(1, ξ)

)
(6.46a)

ηα(0) =
1

λ(0)
Γ, (6.46b)

ηβ satis�es for ξ ∈ [0, 1]

η′β(ξ) = − 1

µ(ξ)

((
A+ µ′(ξ)I

)
ηβ(ξ) + (B0 −

1

τ
ηω(0))Mββ(0, ξ)

)
(6.47a)

ηβ(0) =
1

µ(0)

(
1

τ
ηω(0) + λ(0)d0ηα(0)−B0

)
, (6.47b)

Sα satis�es for (x, ξ) ∈ S

λ(ξ)Sαξ (x, ξ) +
1

τ
Sαx (x, ξ) = −λ′(ξ)Sα(x, ξ) (6.48a)
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Sα(x, 0) = 0 (6.48b)

Sα(0, ξ) = Mβα(0, ξ), (6.48c)

and Mαα,Mαβ,Mβα,Mββ are for (x, ξ) ∈ Tu := {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1} given by

λ(ξ)Mαα
ξ (x, ξ) + λ(x)Mαα

x (x, ξ) = −λ′(ξ)Mαα(x, ξ) + σ+(x)Mβα(x, ξ) (6.49a)

−µ(ξ)Mαβ
ξ (x, ξ) + λ(x)Mαβ

x (x, ξ) = µ′(ξ)Mαβ(x, ξ) + σ+(x)Mββ(x, ξ) (6.49b)

λ(ξ)Mβα
ξ (x, ξ)− µ(x)Mβα

x (x, ξ) = −λ′(ξ)Mβα(x, ξ) + σ−(x)Mαα(x, ξ) (6.49c)

−µ(ξ)Mββ
ξ (x, ξ)− µ(x)Mββ

x (x, ξ) = µ′(ξ)Mββ(x, ξ) + σ−(x)Mαβ(x, ξ) (6.49d)

Mαα(0, ξ) = d0M
βα(0, ξ) + Cηα(ξ) (6.49e)

Mαβ(x, x) = − σ+(x)

λ(x) + µ(x)
(6.49f)

Mβα(x, x) =
σ−(x)

λ(x) + µ(x)
(6.49g)

Mββ(0, ξ) =
1

d0

(
Mαβ(0, ξ)− Cηβ(ξ)

)
. (6.49h)

The terms F , H appearing in (6.43e)�(6.43f) are de�ned as

F (ξ) := Cηω(ξ), H(ξ) := Mββ(0, ξ). (6.50)

We have the following Lemma.

Lemma 10. The change of coordinates (6.44) maps (6.43) into (6.42), provided

that

P+(x) = λ(1)Mαα(x, 1), (6.51a)

P−(x) = λ(1)Mβα(x, 1), (6.51b)

Pw(x) = λ(1)Sα(x, 1), (6.51c)

L = λ(1)ηα(1). (6.51d)

6.3.2 Analysis of kernels

As was done for the controller kernels in Section 6.2.2, we show here that under As-

sumption 17 and su�ciently smooth model parameters in (6.2), the kernel equations

(6.45)�(6.49) have a well-posed solution.

Firstly, (6.45) is solved explicitly as

ηω(ξ) = −τ exp(τ(A− ΓC)(ξ − 1))B1. (6.52)

Also, as a function of Mβα, the solution to Sα is written as

Sα(x, ξ) =

{
exp(−

∫ τx
0 λ′(σ + φλ(ξ)− τx)dσ)Mβα(0, ξ − λτx), if ξ ≥ φ−1

λ (τx)

0, if ξ < φ−1
λ (τx).

(6.53)
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Figure 6.3: Sketch of solution to Sα. The region shaded in grey has characteristics

originating along the line x = 0, while the region shaded in blue has characteristics

from ξ = 0. The line of discontinuity, represented by the dashed line, intersects

ξ = 1 at the point x = 1
τ φλ(1).

The solution to Sα is illustrated in Figure 6.3. Evaluating (6.53) at x = 1 and

substituting into (6.46a), we have

η′α(ξ) =
1

λ(ξ)

(
A− λ′(ξ)I

)
ηα(ξ) +

1

λ(ξ)
B0M

βα(0, ξ). (6.54)

Then (6.54) together with (6.46b), (6.49a), (6.49c), (6.49e), (6.49g) constitutes an

independent system of equations to solve for (Mαα,Mβα, ηα).

Likewise, evaluating (6.52) at ξ = 0 and substituting this together with (6.46b),

(6.49h) into (6.47) we have

η′β(ξ) =

(
− 1

µ(ξ)
(A+ µ′(ξ)I) +

1

µ(ξ)
BC

)
ηβ(ξ)− 1

d0µ(ξ)
BMαβ(0, ξ) (6.55a)

ηβ(0) =
d0

µ(0)
Γ− 1

µ(0)
B (6.55b)

with

B := B0 + exp(−τ(A− ΓC)B1. (6.56)

This gives us that (6.55) together with (6.49b), (6.49d), (6.49f), (6.49h) is a coupled

system of equations for (Mββ ,Mαβ, ηβ).

Swapping x → ξ, ξ → x in the systems of equations (6.46b), (6.49a), (6.49c),

(6.49e), (6.49g), (6.54) for (Mαα,Mβα, ηα) and (6.49b), (6.49d), (6.49f), (6.49h),

(6.55) for (Mββ ,Mαβ, ηβ), we mirror the equations over the line x = ξ such that

they are de�ned over (Tl)2× [0, 1] rather than (Tu)2× [0, 1]. Lemma 8 is then applied

to establish that Mαα,Mαβ,Mβα,Mββ ∈ L∞(Tu) and ηα, ηβ ∈ (L∞[0, 1])n.

6.3.3 Observer

We present now the main result of this section.
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Theorem 5. The observer (6.41) with gains (6.51) produces state estimates

(û, v̂, ŵ, X̂) that converge exponentially to the states (u, v, w,X) of the plant (6.2),

(6.16).

Proof. Because the change of coordinates (6.44) is invertible, by combining Lem-

mas 9�10, we see the observer error system (6.42) with gains (6.51) converges to the

origin exponentially. Due to the de�nition of the error state, we write û = u − ũ,
v̂ = v − ṽ, w̃ = w − ŵ, X̂ = X − X̃, and indeed because (ũ, ṽ, w̃, X̃)→ 0 exponen-

tially, we have (û, v̂, ŵ, X̂)→ (u, v, w,X) exponentially.

Combining then Lemma 6 and Theorem 5, we see estimates for the pressure,

velocity and heat release rate perturbations (P̂ , V̂ , Q̂) in the thermoacoustic sys-

tem (2.45) are computed based on û, v̂, X̂ as

P̂ (z, t) :=
1

2

(
û
( z
L
, t
)

exp

(
L

∫ z
L

0

σ̄++(ξ)

c(ξL)
dξ

)

+ v̂
( z
L
, t
)

exp

(
−L

∫ z
L

0

σ̄−−(ξ)

c(ξL)
dξ

))
(6.57a)

V̂ (z, t) :=
1

2k(z)

(
û
( z
L
, t
)

exp

(
L

∫ z
L

0

σ̄++(ξ)

c(ξL)
dξ

)

− v̂
( z
L
, t
)

exp

(
−L

∫ z
L

0

σ̄−−(ξ)

c(ξL)
dξ

))
(6.57b)

Q̂(t) :=
Q̄

V̄ (0)
C̄X̂(t). (6.57c)

6.4 Output Feedback Controller

We combine here the results from Section 6.2�6.3 to propose an output feedback

controller to stabilize (6.2), whenever the output signal (5.2) is known. This is then

applied to make an acoustic boundary output feedback controller for the thermoa-

coustic model (2.45).

Corollary 1. Assume the output signal y as de�ned in (5.2) is available. Then the

control law

U(t) = Π>X̂(t) +

∫ 1

0
πu(ξ)û(ξ, t)dξ +

∫ 1

0
πv(ξ)v̂(ξ, t)dξ +

∫ 1

0
πw(ξ)ŵ(ξ, t)dξ,

(6.58)

with Π, πu, πv, πw given in (6.36)�(6.38) and X̂, û, v̂, ŵ are produced by (6.41)

stabilizes (6.2) exponentially to the origin.

The proof of Corollary 1 is omitted for sake of brevity. Intuitively, the conver-

gence of the output feedback controller can be seen by rewriting the closed loop

system as a cascade of the observer system into the observer dynamics.
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Figure 6.4: Flame identi�cation experiment block diagram.

To apply the control law (6.58) to stabilize (2.45), assume pressure measurement

Y given in (5.51) is available. Then, applying (6.2e), (6.1) and (6.6) we �nd y can

be expressed as

y(t) =
2P̆ (L, t)− 2k(L)

k(L)+ZW (t)

exp(L
∫ 1

0
σ̄++(ξ)
c(ξL) dξ) + d1 exp(−L

∫ 1
0
σ̄−−(ξ)
c(ξL) dξ)

. (6.59)

Hence, by Corollary 1 a stabilizing feedback U is calculated from (6.41), (6.58),

where coe�cients are assigned according to Lemma 6. The acoustic forcing signal

W to apply to stabilize (2.45) is then computed from (6.6).

6.5 Simulations

We demonstrate the theory in Sections 6.2�6.4 on an example of the thermoacoustic

system (2.45). Next, in Section 6.5.1 the model parameters are presented, before in

Section 6.5.2 the output feedback controller from Corollary 1 is veri�ed to stabilize

the plant (6.2) in a MATLAB simulation.

6.5.1 Simulation parameters

Firstly, to obtain the �ame model, a taX model (see [Emmert et al. 2014] for more

details on taX) of the considered �ame being excited by an acoustic source was set

up. The Simulink block diagram of this setup is shown in Figure 6.4. Applying the

MATLAB system identi�cation toolbox, a transfer function for the �ame was �tted to

the transfer function produced by taX. The �t is shown in Figure 6.5, and is given

by the transfer function

F (s) =
0.03412

2.251× 10−6s2 + 0.0008245s+ 1
e−0.002s.

Calculating a state space realization in controller canonical form of this transfer

function gives the matrices

A =

[
−366.3014 −4.4427× 105

1 0

]
,
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Figure 6.5: Bode plot of �ame versus �tted transfer function model.

B̄0 =

[
0

0

]
, B̄1 =

[
1

0

]
,

C̄ =
[
0 1.5159× 104

]
.

for a model of the form (2.16), and the input time delay τ = 0.002 s. Since the

parameters in the resultant model matrices vary largely in terms of order of magni-

tude, it is in practice bene�cial to scale the matrices to have more well-conditioned

numerical behaviour. We de�ne the matrix P := Diag{1/β, β} where β is a tuning

constant, and consider a second tuning constant δ. We de�ne then new matrices

A′ := PAP−1, B′1 :=
1

δ
PB1, C ′ := δCP−1 (6.60)

where B1 and C are calculated from B̄1 and C̄ according to (6.8)�(6.9). From trial

and error values of β = 25 and δ = 10−4

k(0) are found, resulting in the matrices

A′ =

[
−366.3014 −710.8327

625 0

]
, B′1 =

[
−200

0

]
, C ′ =

[
0 316.6565

]
The new matrices A′, B′1 and C ′ are then used in the simulation in place of A,

B1 and C. Note that when scaling with δ, one must multiply the right-hand side

of (6.57a)�(6.57b) by 1
δ to compensate for the scaling when recovering the pressure

and velocity from the characteristic coordinates.

Consider next a duct of length L = 2.5 m with cross-sectional area expressed as

a function of z as

a(z) = 1 + 0.2 tanh(−20z + 12.5) + 0.2 tanh(20z − 37.5)
[
m2
]
. (6.61)

is considered. The cross-sectional area is plotted in Figure 6.6. The area jump

upstream of the �ame at the combustor inlet has an area ratio of α = 0.12, and a

speci�c resistive impedance of Z = 1.011×105
[
Pa s
m

]
is used for the outlet boundary

at the downstream end of the combustor.
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Figure 6.6: Cross-sectional area of duct.

Directly downstream of the �ame, the mean density ρ̄0, velocity V̄0 and pressure

P̄0 are set to be

ρ̄0 = 1.2

[
kg

m3

]
, V̄0 = 75

[m
s

]
, P̄0 = 4× 106 [Pa] .

Using γ = 1.4, the IVP (2.23) is solved with the aforementioned values as initial

conditions, yielding the �ow steady state solution plotted in Figure 6.7.

The resultant transport speeds λ, µ computed from (6.3), (6.11)�(6.12) are ap-

proximately constant, with the maximum value approximately 0.016% higher than

the minimum value. For simplicity, they are assumed constant and their mean val-

ues are used in the simulation, so that λ(x) ≡ λ, µ(x) ≡ µ. It can be veri�ed that

λτ = µτ ≈ 1.73 > 1 and hence satis�es Assumption 17. For the coupling of the

heat release into the �ow, the temperature ratio Th
Tc
≈ c2h

c2c
, where ch, cc is the speed

of sound directly down- and upstream of the �ame. A speed of sound cc = 341 [ms ]

upstream of the �ame is used.

To compute the controller and observer gains, the poles of the target ODE

matrices pc := eig(A+ B̄K), po := eig(A− ΓC) are set as

pc =

[
−1× 105

−2× 105

]
, po =

[
−1− 2j

−1 + 2j

]
.

The kernels are approximated with UGD by discretizing the spatial domain into a

uniform grid with discretization step of ∆x = ∆ξ = 10−2. The resultant distributed

controller and observer gains are respectively plotted in Figures 6.8�6.9, and the

ODE gains are given by

Π =

[
−3.21× 106

7.43× 105

]
, L =

[
9.00× 10−3

−1.71

]
.

6.5.2 Simulation results

To simulate the plant (6.2) with parameters de�ned via Lemma 6 using coe�cients

as stated in Section 6.5.1, the normalized spatial domain [0, 1] 3 x is discretized with
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a uniform discretization step ∆x = 10−2. A Di�erential-Algebraic Equation (DAE)

is then obtained which is solved using the ode23t solver in MATLAB. The initial

condtions used are

u0(x) ≡ 0, v0(x) ≡ 0, w0(x) ≡ 0, X0 =

[
0

1.25× 10−7

]
and results in an open-loop response of the plant as plotted in Figures 6.10�6.12.

As can be seen, after 0.25 s the amplitude of the pressure �uctuations are almost

5000 Pa, which corresponds to a Sound Pressure Level (SPL) of around 170 dB.

Firstly, the full-state feedback controller from Theorem 4 is implemented. The

closed-loop response of this controller is plotted in Figures 6.13�6.15. In Figure 6.16

the control signal U is plotted. Next, the observer from Theorem 5 is implemented

to estimate the open-loop states plotted in Figures 6.10�6.12. The estimation errors

are plotted in Figure 6.17�6.19. Lastly, the output-feedback controller from

Corollary 1 is implemented to stabilize the unstable plant only using knowledge of

the pressure estimate at the downstream boundary of the combustor. The closed-

loop response of this controller is shown in Figure 6.20�6.22, and the corresponding

boundary control signal U is plotted in Figure 6.23.

As the simulations demonstrate, the output-feedback controller is successful in

stabilizing the thermoacoustic instability present in the open-loop plant. Comparing

the output feedback control signal in Figure 6.23 to the full-state feedback control

signal in Figure 6.16, we see the observer dynamics in the loop causes the signal to

be more �uneven� and with higher amplitude.

6.6 Discussion

In this chapter an output-feedback controller for stabilizing a model of thermoa-

coustic instabilities in a duct with spatially varying geometry coupled to a linear

�ame model with a simultaneous instantaneous and time-delayed velocity input has

been proposed. It senses and actuates the acoustics at the boundary opposite from
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Figure 6.10: Open-loop pressure �uctuations.

Figure 6.11: Open-loop velocity �uctuations.
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Figure 6.12: Open-loop heat release rate �uctuations.

Figure 6.13: Full-state feedback control pressure �uctuations.
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Figure 6.14: Full-state feedback control velocity �uctuations.
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Figure 6.15: Full-state feedback control heat release rate �uctuations.
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Figure 6.16: Full-state feedback control signal.

Figure 6.17: Estimation error of open-loop pressure.
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Figure 6.18: Observer estimation error of open-loop velocity.
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Figure 6.19: Estimation error of open-loop heat release rate.
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Figure 6.20: Output feedback stabilized pressure �uctuations.

Figure 6.21: Output feedback stabilized velocity �uctuations.
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Figure 6.22: Output feedback stabilized heat release rate �uctuations.
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Figure 6.23: Output feedback control signal.
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the location of the �ame. The output feedback controller is composed of two parts,

an exponentially converging full-state feedback control law connected in-the-loop to

an observer providing exponentially converging internal state estimates. To design

the control law, the plant is �rst mapped to a simpli�ed cascade system, for which

a control law is known and can be explicitly found. Subsequently the full-state

feedback control law is recovered.

On the other hand, the observer is designed by mapping the estimation error

dynamics directly into an exponentially convergent target cascade system. Both the

controller and observer kernels are analysed and found to have a well-posed solution

given certain assumptions are satis�ed. Results from a simulation testing �rst the

full-state feedback control law and observer independently, and �nally the combined

output feedback control law, is presented and shown to successfully stabilize and

estimate the pressure, velocity and heat release �uctuations, which are unstable in

the open-loop plant.

From a theoretical perspective, investigating if and how the second part of

Assumption 17 can be removed would be valuable. Also, design of observers

and controllers for plants with more complicated dynamics in place of the �w-

subsystem� (6.16) is a direction this research can be continued. Controller and

observer designs for plants with nonlinear extensions of (6.2a), such as an input-

a�ne ODE as natural �rst step, would be valuable both for theoretical understand-

ing and practical application. Next in Chapter 7 the observer problem for such a

nonlinear generalization is considered, but using a considerably di�erent approach

to that taken here.

In practice, if the necessary control e�ort to stabilize the thermoacoustic in-

stability gets too large, the loudspeaker could saturate due to physical limitations.

Hence, further work should focus on modifying the controller presented here to sta-

bilize the instabilities in face of actuator saturations. Future work should hence

also focus on modelling and design of a controller that stabilizes the plant by ac-

tuation the ODE subsystem directly, and combining this with the observer in an

anti-collocated setup. A fuel modulation controller could also be used together with

the acoustic actuating controller proposed here, and studying ways of combining

these would also be a useful research direction.
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Dans ce chapitre, nous nous intéressons au problème d'estimation des états du

modèle de chambre de combustion (2.45) décrivant les instabilités thermoacoustiques

longitudinales. Contrairement au chapitre 6 le modèle de �amme considéré ici a

une réponse dynamique non linéaire. Deux résultats utiles de la littérature sont

rappelés. Le premier résultat réduit le problème de la conception d'un observateur

pour l'interconnection EDP�EDO au problème de la conception d'un observateur

pour le sous-système non linéaire EDO uniquement. Le deuxième résultat réduit

le problème de la conception d'un observateur pour les EDO non linéaires en un

problème d'approximation d'une fonction statique et de son inverse à gauche. Une

procédure pour générer des données numériques représentant des points dans le

domaine de dé�nition de la fonction et de son inverse à gauche est proposée, avant

d'être appliquée pour générer numériquement des données basées sur le modèle de

�amme non linéaire. Avec ces données, des réseaux de neurones représentant les

transformations directe et inverse sont entraînés. Les transformations estimées

sont d'abord testées dans une implémentation d'observateur estimant les états

internes du modèle de �amme non linéaire EDO, puis dans l'estimation du taux de

dégagement de chaleur à partir des données originales entrée/sortie sur lesquelles

le modèle de �amme est basé.
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The observation problem of estimating the states of the can combustor

model (2.45) describing longitudinal thermoacoustic instabilities is considered, but

unlike Chapter 6 the �ame model considered here has a nonlinear dynamic response.

Two useful results from the literature are recalled. The �rst result reduces the prob-

lem of designing an observer for the fully coupled PDE�ODE plant to the problem

of designing an observer for the nonlinear ODE subsystem only. The second re-

sult reduces the problem of observer design for the nonlinear ODE into a problem

of approximating a static function and its left-inverse. A procedure to generate

numerical data representing points in the domain and co-domain of the function

and its left-inverse is proposed, before being applied to numerically generate data

based on the nonlinear �ame model. With this data, neural networks representing

the forward and left-inverse transformations necessary to implement the nonlinear

observer are trained. The estimated transformations are tested �rst in an observer

implementation estimating the internal states of the nonlinear ODE �ame model,

and thereafter in estimation of the heat release rate from the original I/O data on

which the �ame model is based.

7.1 Background

7.1.1 Problem statement

We consider in this chapter the same setup as that shown in Figure 6.1, which

can be modelled by (2.45). However, di�erently from Chapter 6, we do here not

linearise dynamics of the �ame subsystem (2.45a)�(2.45b). Assuming the boundary

pressure signal (5.51) is available for measurement, the aim of this chapter is to

design an observer to estimate the duct acoustics together with heat release (and

internal states of the �ame model) from knowledge of this output signal. The control

problem is not studied in this chapter, so the loudspeaker signal W in (2.45e) at

z = L can be considered an arbitrary and optional input to the system.

Lemma 6 from Chapter 6 can easily be modi�ed to write (2.45) without any

restrictions on (2.45a)�(2.45b) in the form (6.2), but with

Ẋ(t) = f(X(t)) + g0(X(t))v(0, t) + g1(X(t))v(0, t− τ) (7.1a)

u(0, t) = d0v(0, t) + h(X(t)) (7.1b)

in place of (6.2a), (6.2d). Hence, we consider the problem of designing a state ob-

server for the coupled PDE�ODE system (6.2b)�(6.2c), (6.2e), (7.1) using knowledge

of the output signal (5.2), only.

Due to the nonlinearity of the �ame model, performing a similar analysis to that

presented in Chapter 6 is highly nontrivial. Instead, we take a signi�cantly di�erent

approach. First, in Section 7.1.2 a generic observer design for a 2×2 linear hyperbolic

PDE system coupled to a nonlinear ODE, from [Irscheid et al. 2021], is presented.

This observer design allows an observer for the coupled PDE�ODE system to be

designed, given that one has an observer for the ODE subsystem. Hence, instead
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of designing an observer directly for the complete plant (6.2b)�(6.2c), (6.2e), (7.1),

we design it for the ODE subsystem (7.1a). This reduces the problem of observer

design for the complete PDE�ODE plant to that of observer design for just the ODE

subsystem.

The observer for the nonlinear ODE subsystem is designed as a Kazantzis-

Kravaris-Luenberger (KKL) observer, the literature and theory of which is reviewed

in Section (7.1.3). To implement the KKL observer in practice, one needs to com-

pute a nonlinear injective mapping between the plant state space and observer state

space. Although the conditions for the existence of such a transformation are rela-

tively weak, there is no general methodology for calculating the transformation in

practice. Similar to the work done in [da Costa Ramos et al. 2020], we train neural

networks to approximate the transformation.

Since the resultant observer design problem considered here is of a highly nu-

merical nature, in contrast to the analytical approach taken for the linear design in

Chapter 6, a speci�c nonlinear ODE �ame model must be applied during the design

stage. For this, a nonlinear input-a�ne Reduced Order Model (ROM) of Kornilov's

�ame [Kornilov et al. 2009], a premixed laminar conical �ame, is considered. This

ROM is described in [da Costa Ramos 2021] and is constructed using the Dynamic

ROM tool in the Twin Builder software [twi ] by Ansys Inc., based on CFD data

of the �ame as considered in [Jaensch et al. 2017]. Exact expressions of the �ame

model are the property of Ansys Inc. and can hence not be reproduced here, but

for the reader it is su�cient to know they are an input-a�ne nonlinear model of the

form (2.17), with internal state X ∈ R5.

7.1.2 Observer for nonlinear ODE coupled to hyperbolic PDE sys-
tem

We state here the main result from [Irscheid et al. 2021] that gives a generic method-

ology for implementing observers for a 2 × 2 linear hyperbolic PDE coupled to a

nonlinear ODE. The design is based on the following assumption.

Assumption 19. Let

Ẋ(t) = F (X(t), Ū(t)) (7.2a)

Ȳ (t) = h(X(t)) (7.2b)

be a nonlinear ODE with input Ū and output Ȳ . We assume:

• An observer
˙̂
X(t) = F̄ (X̂(t), Ū(t), Ȳ (t)) (7.3)

initialized from X̂(0) = X̂0 ∈ Rn exists such that limt→∞ ||X̂(t)−X(t)|| = 0.

• The vector �eld F is su�ciently locally Lipschitz for the IVP (7.2a), initialized

from some X(0) = X0, to have a well-posed solution for all t ≥ 0.
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The �rst part of Assumption 19 implies that as long as one has an observer for

the ODE subsystem at hand, an observer for the coupled PDE�ODE system can be

implemented. The second part is necessary to construct the observer presented in the

following Theorem. The observer is given for the case of constant transport speeds,

but Remark 1 of [Irscheid et al. 2021] claims that the observer can be adjusted to

the case of spatially varying transport speeds with minor modi�cation.

Theorem 6 (Theorem 1 in [Irscheid et al. 2021]). Let Assumption 19 hold. Con-

sider the observer

˙̂
X(t) = F̄ (X̂(t), ˆ̄U(t), ˆ̄Y (t)) (7.4a)

ût(x, t) = −λûx(x, t) + σ+(x)v̂(x, t) + P+(x)ỹ(t) (7.4b)

(7.4c)

v̂t(x, t) = µv̂x(x, t) + σ−(x)û(x, t) + P−(x)ỹ(t) (7.4d)

û(0, t) = d0v̂(0, t) + h(X̂(t)) (7.4e)

v̂(1, t) = d1y(t) + U(t) (7.4f)

with

ˆ̄U(t) = v̂

(
0, t− 1

λ

)
+

∫ 1

0
Mβα(0, ξ)ỹ

(
t− 1

λ
ξ

)
dξ (7.5)

ˆ̄Y (t) = h

(
X̂

(
t− 1

λ

))
− ỹ(t) (7.6)

ỹ(t+ s) =

û(1, t+ s)− y(t+ s), if s ∈
[
− 1
λ , 0
]

h
(
X̂
(
t+ s− 1

λ

))
− h

(
Xp

(
s− 1

λ ; t
))
, if s ∈

(
0, 1

λ

] (7.7)

Xp(s; t) = Φ

(
t+ s, ˆ̄U |t+

1
λ

+s
t ; X̂(t)

)
(7.8)

X̂(t) = Xp(0; t) (7.9)

and observer gains given by

P+(x) = λMαα(x, 1) (7.10a)

P−(x) = λMβα(x, 1) (7.10b)

whereMαα,Mβα are the solution to (6.49a), (6.49c), (6.49e), (6.49g) with λ(x) ≡ λ,
µ(x) ≡ µ, C ≡ 0 and Φ in (7.8) denotes the solution to the IVP (7.2a) initialized

from X̂(t) with input (7.5). This observer guarantees that (û, v̂, X̂) converges to the

states (u, v,X) of the plant

Ẋ(t) = F (X(t), v(0, t)) (7.11a)

ut(x, t) = −λux(x, t) + σ+(x)v(x, t) (7.11b)

vt(x, t) = µvx(x, t) + σ−(x)u(x, t) (7.11c)

u(0, t) = d0v(0, t) + h(X(t)) (7.11d)

v(1, t) = d1u(1, t) + U(t). (7.11e)
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Setting

F (X(t), v(0, ·)) := f(X(t)) + g1(X(t))v(0, t) + g2(X(t))v(0, t− τ) (7.12)

in (7.11a) we can apply the observer (7.4) to estimate the states of (6.2b)�

(6.2c), (6.2e), (7.1), given that we have an observer

˙̂
X(t) = F̄ (X̂(t), v(0, t), h(X(t))). (7.13)

for the �ame subsystem. For this we design a KKL observer, and the background

for such observers is given next in Section 7.1.3.

Remark 10. The observer given by Theorem 6 can be applied to implement an

observer for the plant (6.2) considered in Chapter 6, whenever the ODE subsystem

is observable. This is because the ODE subsystem there is linear and hence trivially

satis�es the Lipschitzness condition required by the second part of Assumption 19.

However, the observer (6.41) does not require the computation of an integral of the

form (7.5) or to solve an IVP such as (7.8) at each time step as required by (7.4), but

instead can be implemented directly after the gains (6.51) have been computed once

o�ine. This suggests the observer (6.41) would be more computationally e�cient

than (7.4) in practice, and hence more suitable for real-time implementation.

7.1.3 KKL observers

The theory of KKL observers originates in the original, linear Luenberger observer

design presented in [Luenberger 1964]. There, a state observer is designed for a

�nite-dimensional Linear Time Invariant (LTI) state-space system by mapping the

plant into a target system driven by known I/O signals. Conditions are given for

the existence of an invertible linear transformation between the plant and target

state, which is computed from solving a Sylvester matrix equation. State estimates

are then recovered by mapping the target state into the plant state space via the

inverse transformation.

A generalization of this observer design for autonomous nonlinear ODEs was

discovered independently by [Shoshitaishvili 1992] and [Kazantzis & Kravaris 1998].

As for the linear case, the plant is mapped into a linear target system driven by

the measurement signal, but because the original plant is nonlinear, a nonlinear

transformation is required. Rather than being the solution to a Sylvester matrix

equation, the nonlinear transformation is here the solution to a �Sylvester-like� PDE.

General su�cient conditions for the existence and injectivity of this mapping are

given in [Andrieu & Praly 2006].

The extension of this one step further to nonautonomous nonlinear ODEs is

treated in [Bernard & Andrieu 2018]. In the general case a nonlinear, time-varying

transformation is required here, rather than a static one which was su�cient for the

autonomous nonlinear case. However, the �ame model of the form (2.17) we consider

here falls within a special class of nonautonomous nonlinear ODEs, namely input-

a�ne nonlinear ODEs. As shown in [Bernard & Andrieu 2018], for this particular
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class of nonautonomous nonlinear ODEs it is su�cient to use a static, rather than

time-varying transformation in a KKL observer design, and the transformation is

the same as for the corresponding autonomous drift1 system. The result is based on

the following assumption.

Assumption 20. Let the system

Ẋ(t) = f(X(t)) + g(X(t))Ū(t) (7.14a)

Ȳ (t) = h(X(t)) (7.14b)

be initialized from some X0 ∈ χ0 ⊂ Rn, and S be an open subset of Rn containing

χ0. The system (7.14) is assumed to be uniformly instantaneously observable on S
and its drift system is strongly di�erentially observable of order n on S.

The following result from [Bernard & Andrieu 2018] provides the theoretical ba-

sis for the numerical observer design presented in Section 7.2.

Theorem 7 (Theorem 4 in [Bernard & Andrieu 2018]). Let λ1, . . . , λn be any dis-

tinct positive real numbers such that min(λ1, . . . , λn) = λmin > 0 su�ciently large,

D the Hurwitz matrix Diag(−λ1, . . . ,−λn) in Rn×n, F the vector (1, . . . , 1)> in Rn.
Then, for any positive real number U , any bounded open subset χ of Rn such that

• cl(χ) ⊂ S,

• For any Ū in U , for all t in [0,∞) and for all X0 in χ0, |Ū(t)| ≤ U and

Φ(t, Ū |t0;X0) is in χ,

there exists a strictly positive number λ̄ such that for any λmin > λ̄:

• There exists a function T : Rn 7→ Rn, which is a di�eomorphism on cl(χ) and

is solution to the PDE associated to the drift dynamics

∂T

∂X
(X)f(X) = DT (X) + Fh(X), ∀X ∈ χ. (7.15)

• There exists a Lipschitz function ϕ̄ de�ned on Rn satisfying

ϕ̄(T (X)) :=
∂T

∂X
(X)g(X), ∀X ∈ χ (7.16)

and such that, for any function T ∗ : Rn 7→ Rn satisfying

T ∗(T (X)) = X (7.17)

the system

Ż(t) = DZ(t) + FȲ (t) + ϕ̄(Z(t))Ū(t) (7.18)

is an observer for system (7.14) initialized in χ0.

1The drift system of an input-a�ne ODE plant is the autonomous ODE which results from

setting the input Ū ≡ 0.
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Hence, to design a KKL observer for the system (7.14), it su�ces to �nd a

solution T to the PDE (7.15) and its corresponding left-inverse satisfying (7.17).

Finding such transformation numerically is the focus of Section 7.2. Note that the

ODE subsystem (2.45a) can be written in the form (7.14a) with

g(X) :=

[
g1(X)

g2(X)

]>
, Ū(t) :=

[
V̆ (0, t)

V̆ (0, t− τ)

]
.

7.2 Numerical design of observer for Kornilov's �ame

7.2.1 Methodology

We propose here a methodology for data generation to train neural net-

works to estimate a static transformation satisfying (7.15), linking states of

the input-a�ne system (7.14a) to states of the corresponding observer (7.18).

In [da Costa Ramos et al. 2020] it was proposed to train a time varying transforma-

tion for input-a�ne nonlinear systems, which introduces an extra dimension (time)

into the transformation to be found. The approach was feasible there since toy

examples of dimension n = 2 were considered; here we consider a state space model

of dimension n = 5 for a practically applied problem. At this dimension, �nding

a static transformation is already challenging enough due to the �curse of dimen-

sionality�, let alone �nding a spatially varying transformation. Also, the approach

previously considered relies on exploring the state space using a single nominal in-

put signal, which for higher dimensional state spaces could be di�cult to achieve

su�ciently well in practice.

In light of Theorem 7, it is su�cient to train a static transformation between

the drift system and the observer dynamics it cascades into, as given by

Ẋ(t) = f(X(t)), (7.19a)

Ż(t) = DZ(t) + Fh(X(t)). (7.19b)

To achieve this, data consisting of corresponding {X,Z} pairs in respectively the

plant and observer compact states spaces of interest χ and Z needs to be established.

However, since the �ame model (2.45a) describes �ame behaviour under a locally

changing velocity �eld, simulating the drift system (7.19a) will not necessarily cause

the system to follow the trajectories in χ that the plant follows under acoustic

forcing. Rather, one wants to sample {X,Z} at points corresponding to where the

states go under the in�uence of input signals one could expect in practice.

Having picked a D and F matrix for use in (7.18), we suggest applying the

following steps to generate the {X,Z} pairs necessary to train the static transfor-

mation.

1. Choose a representative set of N input signals {Ū i}1≤i≤N for the system.

2. For each Ū i, solve the following IVP for t ∈ [0, ts]:

Ẋi(t) = f(Xi(t)) + g(Xi(t))Ū i(t), Xi(0) = Xi,0 ∈ χ0. (7.20)
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3. Sample state trajectories atM points in time 0 ≤ t1 < · · · < tM ≤ ts to obtain
N ×M points {Xi(tj)}1≤i≤N,1≤j≤M .

4. Solve N ×M IVPs

Ẋb,ij(t) = −f(Xb,ij(t)), Xb,ij(0) = Xi(tj) (7.21)

for t ∈ [0, to], with to being the estimated convergence time2 of the observer,

and ε > 0 a time-scaling constant.

5. Solve the following N ×M IVPs for t ∈ [0, t0]:

Ẋf,ij(t) = f(Xf,ij(t)), Xf,ij(0) = Xb,ij(t0), (7.22a)

Żij(t) = DZij(t) + Fh(Xf,ij(t)), Zij(0) = Zij,0 ∈ Z0. (7.22b)

6. Store N ×M training data pairs as {Xf,ij(to), Z
ij(to)}.

In Step 1, the objective is to pick a set of input signals representing what the

plant would be subjected to in a practical setting. This is so that in Step 2, the

generated trajectories explore the regions of the state space we expect the plant

to visit during practical operating conditions, so that an observer able to estimate

states in this region is trained su�ciently well. Thereafter, Step 3 starts collecting

data points that will be used during training of the neural networks by sampling the

trajectories generated during Step 2. However, at this stage we only have half of

the data necessary to train the neural networks � the other half needs to come from

sampling of the observer state space at points corresponding to transformations of

the plant states through the unknown transformation T . This is what Steps 4�5 of

the data generation procedure are for. Since knowledge of T is needed to calculate ϕ̄

de�ned by (7.16), the input signals chosen in Step 1 cannot be directly used to drive

the observer dynamics (7.18). Hence the data from the observer state space must be

generated without using the input signals directly. To do this, we consider �nding

points in the plant state space, which when used as initial conditions to the drift

dynamics (7.19a), end up at the points sampled in Step 3 after being integrated

for the time equal to the observer convergence time to. Finding these points is

akin to backwards integration of the drift system, hence Step 4. Then, when the

cascade (7.19) is solved from these initial conditions for a time of duration to, the

plant states will move back to the initial values they were sampled at in Step 3, while

the observer states will be integrated to points Zij = T (Xij) in the observer state

space. This is achieved through Step 5. With the complete set of data generated,

the data generated in Step 5 is stored for further use in Step 6.
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7.2.2 Generation of training data

To generate the data for Step 1, N = 50 input signals Ū i are chosen to simulate

trajectories Xi of IVP (7.20) for t ∈ [0 ts], where ts = 0.4 s. To be representative

of what the �ame might be exposed to in a practical setting, the input signals are

selected as a mix of monofrequent and broadband signals containing frequencies

between fl = 50 Hz and fh = 300 Hz, and amplitudes between al = 0.5 and

ah = 1.5. For i ∈ {1, . . . , 25}, the signals are monofrequent and are plotted in

Figure 7.1. The remaining signals for i ∈ {26, . . . , 50} are broadband, generated

with the MATLAB idinput function and are plotted in Figure 7.2. Using the set of

input signals {Ū i}Ni=1 shown in Figures 7.1�7.2, Step 2 of the procedure is performed

to generate a set of trajectories {Xi}Ni=1 in χ with the ode45 function from MATLAB,

initialized from the same initial state Xi,0 = X0 ∈ R5 given by the Dynamic ROM

model.

Figure 7.3: Three orthogonal 3�D projections of 5�D point cloud representing sam-

pled trajectories in χ ⊂ R5.

In accordance with Step 3, each of these trajectories are sampled. This was done

at each time step giving M = 8001 samples for each of the N = 50 trajectories,

for a total of N ×M = 400050 points in χ ⊂ R5. Three di�erent 3�D projections

of the resultant 5�D point cloud are visualized in Figure 7.3. The red point cloud

represents the points projected onto the X1�X2�X3 subspace of χ, the green point

cloud the points projected to the X1�X2�X4 subspace and the blue point cloud the

2We use here the estimate used in [da Costa Ramos et al. 2020], namely to := k
λmin

where k = 3

or 5.
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points projected into the X1�X2�X5 subspace.

With these points in R5 as initial conditions, N × M = 400050 IVPs of the

form (7.21) are solved for Step 4 of the data generation procedure. To perform this

step we need an estimate of the observer convergence time, and to estimate this

we need the observer eigenvalues. These are picked to correspond to a sixth-order

Bessel �lter , and are calculated using the besself function in MATLAB. This results

in observer D and F matrices given by

D =



−4285.38 −875.10 0 0 0 0

875.10 −4285.38 0 0 0 0

0 0 −3768.3 −2649.18 0 0

0 0 2649.18 −3768.3 0 0

0 0 0 0 −2537.76 −4531.86

0 0 0 0 4531.86 −2537.76


,

F =
[
600 600 600 600 600 600

]>
and using k = 3 an estimated observer convergence time of

to ≈ 1.18× 10−3 s.

Remark 11. The resultant observer matrix D ∈ R6×6 has complex eigenvalues

and implies the set Z for which the trajectories of (7.18) will be contained in is a

subset of R6, which is of one dimension higher than R5 which contains χ. However,

Theorem 7 states that Z should be contained in R5 and have real eigenvalues. These

are, however, the strictest necessary conditions and in some practical scenarios (such

as the one considered here) it is possible to use an observer state space of dimension

p > n and matrix D with complex eigenvalues. In the case considered here we found

choosing p = n+1 and complex eigenvalues in D gave better numerical performance.

Investigating the exact conditions under which this design �exibility is possible would

be valuable and interesting further work.

The IVPs (7.21) are solved using the ode45 solver. To visualize this step, the

solution to 150 of the IVPs are plotted in Figure 7.4, using initial conditions X30(tj)

for j ∈ {1, . . . , 150}. Subsequently, in Step 5 the IVP (7.22) is solved N ×M =

400050 times using ode45 with initial data generated from Step 4 for Xf,ij but

Zij,0 = 0. This step is visualized in Figure 7.6 by showing the observer states for

150 of the IVPs, namely Z30,j for j ∈ {1, . . . , 150}. Step 5 results inN×M = 400050

points Zij in Z ⊂ R6. These are represented by four 3�D point clouds as shown in

Figure 7.6, where the black point cloud represents points in the Z1�Z2�Z3 subspace

of Z, the cyan point cloud is for the Z1�Z2�Z4 subspace, the magenta point cloud

represents points in the Z1�Z2�Z5 subspace and the yellow point cloud is for Z1�

Z2�Z6.

Next, in Section 7.2.3 the data shown in Figures 7.3, 7.6 is used to train nonlinear

transformations between the two point clouds (one forward transformation T : R5 7→
R6 and one left-inverse T ∗ : R6 7→ R5), with each triplet of points in 7.3 (one
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Figure 7.4: Solutions Xb,30,j for j ∈ {1, . . . , 150} of (7.21). Represents backwards

integration of the drift system. For ease of viewing only state component number (j

mod 5) is shown for each sampling point j.

Figure 7.5: Solutions Z30,j for j ∈ {1, . . . , 150} of (7.22). Represents integration of

the observer driven by the drift system. For ease of viewing only state component

number (j mod 6) is shown for each sampling point j.
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Figure 7.6: Four orthogonal 3�D projections of 6�D point cloud representing sam-

pled trajectories in Z ⊂ R6.

component from each of the three 3�D point clouds) together corresponding to a

quadruple of points in 7.6 (one component from each of the four 3�D point clouds).

An example of points corresponding to each other is shown in Figure 7.7, which

shows a set of points {Xf,45,j(to), Z
45,j(to)} for j ∈ {1, . . . , 300}.

7.2.3 Training of neural networks

We employ neural networks to approximate the nonlinear transformation T and

its left-inverse T ∗ necessary to implement the observer presented in Theorem 7.

Using a shallow network with a single hidden layer of sigmoid functions and a

linear output layer is su�cient to approximate any function with a �nite number

of discontinuities arbitrarily well [Beale et al. 2010], and because we have reduced

our observer design problem to a problem of approximating two static functions

T : R5 7→ R6, T ∗ : R6 7→ R5, such an architecture is employed.

A diagram of the architecture used to approximate T is shown in Figure 7.8,

whereas the neural network architecture used to approximate T ∗ is shown in Fig-

ure 7.9. They are both initialized using the feedforwardnet function in MATLAB,

and both consist of a hidden layer of 8 tansig functions, a type of sigmoid function

de�ned by

tansig(x) :=
2

1 + exp(−2x)
− 1. (7.23)

The input to each of the tansig functions is a weighted sum of the inputs (5 inputs

in the case of T and 6 in the case of T ∗) in addition to a bias. All of the input
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Figure 7.7: Example of correspondingX and Z points for training of transformation.

Figure 7.8: Architecture of neural networks used to approximate forward transfor-

mation T .

Figure 7.9: Architecture of neural networks used to approximate left-inverse trans-

formation T ∗.
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weights are summarized in a matrix denoted W 1, of dimension 8 × 5 for T and

8 × 6 for T ∗, and the biases in the �rst layer are stored in a vector of dimension 8

denoted b1. Linear combinations of the 8 tansig functions are passed into an output

layer, which consists of 6 passthrough functions in the case of T and 5 passthrough

functions in the case of T ∗. A bias is also added to each of the linear combinations of

outputs from the tansig functions. In the case of T , 6 di�erent linear combinations

are performed so the weights in the second layer are stored in a matrix denoted W 2

of dimension 6×8, whereas the second bias vector denoted b2 is of dimension 6. On

the other hand, for T ∗ the second weight matrix W 2 is of dimension 5× 8 and the

bias vector b2 is of dimension 5. This gives a total of 101 hyperparameters to �t for

T ∗ and 102 hyperparameters for T .

When initializing the neural networks, the parameters in W 1, W 2, b1 and b2

in each of the networks is randomized. Then, using the training data visually rep-

resented in Figures 7.3, 7.6, a backpropagation algorithm is employed to update

the network parameters to approximate the functions T and T ∗. For this purpose,

conjugate gradient backpropogation with Polak-Ribiére updates is used. Because
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Figure 7.10: Gradient of the hyperparameter search vector during backpropagation

training of neural networks. Shown for forward transformation (top) and inverse

transformation (bottom).

the training of neural networks is a randomized process and consists of solving a rel-

atively complex optimization problem, three separate neural networks are trained

for the sake of replication. Before training each the neural networks, 10% of the

training data shown in Figures 7.3, 7.6 was picked out at random, and is used in

Section 7.2.4 to check how well the trained transformations predict data not used
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Figure 7.11: Step size of the hyperparameter search vector during backpropagation

training of neural networks. Shown for forward transformation (top) and inverse

transformation (bottom).
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Figure 7.12: Validation performance of neural networks during backpropagation

training. Shown for forward transformation (top) and inverse transformation (bot-

tom).
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in the training.

The neural networks were trained with an upper limit of 1000 epochs, with the

training consistently running up to the limit. In Figure 7.10, the gradient of the

parameter update vector at each epoch is plotted for the three networks trained,

and in Figure 7.11 the corresponding step size is shown. Also, in Figure 7.12 the

validation performance at each epoch is compared for the three di�erent neural net-

works trained for each transformation. The three networks for the forward trans-

formation have similar gradient, step size and validation performance throughout

the training, and the same can be said for the left-inverse transformations. How-

ever, the left-inverse transformations systematically had larger gradients and mean

square errors in the validation performance tests throughout training, indicating

that training of these networks was more challenging. This is consistent with the

results of [Andrieu & Praly 2006] which give smoothness guarantees for T but not

for T ∗.

7.2.4 Resultant transformation

The hyperparameters in the weight and bias matrices W 1, W 2, b1 and b2 obtained

at the end of the training for each of the six networks is documented in Appendix A.

Despite approximating the same transformation and being trained with the same

data (disregarding the 10% that is randomly taken out before training each net-

work), the resultant hyperparameters take di�erent values over the three networks

for each transformation in general. This indicates that the networks converged to

di�erent local minima or did not fully converge to a minimal point in the hyper-

parameter search space during training. To test the performance of the resultant

Quantity Neural network 1 Neural network 2 Neural network 3

||X̃1||/||X1|| 3.68× 10−1 3.67× 10−1 3.51× 10−1

||X̃2||/||X2|| 5.02× 10−1 5.14× 10−1 5.07× 10−1

||X̃3||/||X3|| 4.51× 10−1 4.42× 10−1 4.79× 10−1

||X̃4||/||X4|| 8.77× 10−2 8.61× 10−2 8.40× 10−2

||X̃5||/||X5|| 1.58× 10−2 2.33× 10−2 2.65× 10−2

||Z̃1||/||Z1|| 2.37× 10−2 3.72× 10−2 3.01× 10−2

||Z̃2||/||Z2|| 6.06× 10−2 5.33× 10−2 6.11× 10−2

||Z̃3||/||Z3|| 2.93× 10−1 2.96× 10−1 2.99× 10−1

||Z̃4||/||Z4|| 3.11× 10−2 2.91× 10−2 3.47× 10−2

||Z̃5||/||Z5|| 2.48× 10−1 2.46× 10−1 2.45× 10−1

||Z̃6||/||Z6|| 1.37× 10−1 1.33× 10−1 1.32× 10−1

Table 7.1: Euclidean norms of scaled prediction errors.

transformations, after training the transformations are tested on the remaining 10%

of the data that is not used during training. Firstly, for the left-inverse transforma-

tion, 120015 predictions X̂kl = T̂ ∗l (Zkl) for k ∈ {1, . . . , 40005} and l ∈ {1, 2, 3} are
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made by evaluating the three neural networks T̂ ∗l at the points Zkl in the valida-

tion data set. Subtracting the predictions from the corresponding Xkl data points

gives the prediction errors X̃kl := Xkl − X̂kl. Scaling each of the components of

X̃kl by the Euclidean norm ||X l
i || :=

√∑40005
k=1 |Xkl

i |2, the prediction errors for the

components can be compared. The same is done for the forward transformation,

namely 120015 predictions are made by computing Ẑkl = T̂l(X
kl) for each Xkl in

the validation data set, T̂l being the neural network estimate l of T .

The Euclidean norm of these values are summarized in Table 7.1. The neural

networks have systematically relatively smaller prediction errors in X4, X5, Z1, Z2

and Z4 than in the remaining state components. None of the neural networks have

overall better performance in prediction of all state components than the others.

7.3 Simulation and veri�cation

7.3.1 Direct observer tests

With the transformation T satisfying the �Sylvester-like� PDE (7.15) and its left-

inverse T ∗ having been approximated in Section 7.2, it is natural to test the trans-

formation in an implementation of the observer from Theorem 7. The same plant

and observer parameters as used for training are applied. For the input signal Ū

to (7.14), we use the signal

Ū(t) = 0.4 sin(200πt) + 0.6 sin(300πt) (7.24)

which was not part of the signals used to generate the training data, plotted in

Figures 7.1�7.2. To approximate ϕ̄ de�ned as (7.16) appearing in (7.18), a �nite

di�erence approximation with ∆Xi = 10−2 is used to approximate the Jacobian ∂T
∂X .

The observer dynamics (7.18) are initialized from Z0 = 0 in all three tests, and the

property (7.17) of the left-inverse transformation is applied to generate estimates X̂

from values of Z via

X̂(t) = T ∗(Z(t)). (7.25)

In Figure 7.13, the plant states for the observer test simulations are plotted in solid

black versus the estimates produced by the observers using the three di�erent trans-

formations trained in Section 7.2, which are dashed and colour coded (see the Figure

legend). From the plot, all three observers estimate the state components X4 and

X5 fairly well, but have more error in estimating X1, X2 and X3. This corresponds

to what is seen during the transformation validation tests in Section 7.2.4. Next, in

Figure 7.14 the estimation errors X̃i := Xi− X̂i are plotted to more easily compare

the performances between the three observers. Overall the three observers feature

similar error magnitudes. However, in estimating X4 and especially in X5 observer

number 1 has a slightly larger error compared to observer 2 and 3 at various points

throughout the simulation.

Part of the reason in estimating the 5 internal states of the observer is for

their contribution in estimating the heat release rate from the Kornilov �ame. The
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Figure 7.13: Plant states versus observer estimates.
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Figure 7.14: Observer estimation errors.
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observer can then be placed as a subsystem in the combustor network model (6.2b)�

(6.2c), (6.2e), (7.1), and used in a PDE�ODE observer such as the one presented

in Theorem 6 to estimate heat release rate (together with pressure and velocity

perturbations) using a pressure measurement taken from afar. Another reason the

internal state estimates of the Dynamic ROM Kornilov �ame model are of interest

could be for control purposes, where a complete knowledge of the state might be

needed for implementation of a control law, but this is outside the scope of this

chapter as we do not consider control design here. Since the internal states of the

Dynamic ROM ODE model are in a sense �synthetic� (they do not necessarily have

a physical meaning), it is interesting to verify how well the observer estimates the

heat release in the original CFD data on which the Dynamic ROM is based. This is

the focus of Section 7.3.2.

7.3.2 Veri�cation on Kornilov's �ame data

In this Section, the three observers are tested in their ability to reproduce the original

I/O data on which the nonlinear �ame ODE model is based. In Figure 7.15, the
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Figure 7.15: Velocity �uctuation signal from CFD data used for testing.

input signal from the CFD data that is passed into the observers is plotted. This

data is �rstly passed as the input signal Ū , together with the corresponding heat-

release �uctuation data as the output signal Ȳ , into the observer dynamics (7.18).

Then, the output estimate

Ŷ (t) = h(T ∗(Z(t))) (7.26)

is computed. The resultant estimates using the three di�erent neural networks
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Figure 7.16: Observer estimates of heat release versus CFD data. Using both I/O

signals from CFD as input to observer dynamics (7.18).

trained in Section 7.2 is plotted in Figure 7.16. In general the estimates track the

CFD data fairly well, but have a tendency to overshoot at times of abrupt change. To

more easily visualize and compare the performance, Figure 7.17 plots the estimation

error from the three respective observers. Indeed, at times when the heat release

�uctuations abruptly change corresponds to jumps in the error.

Next, it is of interest to test how well the observer estimates the heat release

rate �uctuations when the input signal Ȳ is not directly from the Kornilov CFD

data, but rather generated via the Dynamic ROM ODE model, by passing the input

signal data shown in Figure 7.15 as the input Ū to (7.14a), and then generating the

output data Ȳ from evaluating the measurement function h in (7.14b).

In Figure 7.18 the heat release rate from the CFD data, plotted in solid black,

is compared to the resultant estimates from the three observers. Compared to

Figure 7.16, there is more error in the estimation of the heat release rate, especially

at points where the heat release rate experiences `spikes�. This is as expected, since

an extra source of error is introduced by generating the output data fed into the

observer via the Dynamic ROM model. In Figure 7.19 the estimation errors computed

from subtracting the observer estimates in Figure 7.18 from the CFD output data

is plotted. Compared to Figure 7.17 the errors are larger at points where the heat

release changes quickly, but overall the estimation error stays close to the origin.
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Figure 7.17: Observer estimation errors. Using both I/O signals from CFD as input

to observer dynamics (7.18).
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Figure 7.18: Observer estimates of heat release versus CFD data. Using data from

CFD as input and output data from nonlinear ODE �ame model as I/O data for

observer dynamics (7.18).
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Figure 7.19: Observer estimation errors. Using data from CFD as input and output

data from nonlinear ODE �ame model as I/O data for observer dynamics (7.18).

7.4 Discussion

We have in this chapter numerically designed a KKL observer for a nonlinear state-

space ROM of Kornilov's �ame. The observer was tested in reproducing �rstly the

states of the state-space model, and subsequently in estimating the heat release in

the data on which the state-space model was based. Its performance, although not

perfect, is fair and for the most part gives a decent prediction of the quantities

of interest. One thing that could be tested to see if the observer performance

improves is to design the observer to have equal dimension as the plant, as is possible

according to Theorem 7. This would reduce the complexity of the problem as one

less dimension needs to be considered in the target system space, and the forward

and inverse transformations would be of equal size. Reducing the dimension of the

target space has implications for both the data generation, since the number of points

needed to sample a compact space of equal radius increases exponentially for each

added dimension, and also for hyperparameter optimization, since fewer parameters

would be needed, all else being equal. Alternatively, if one is only interested in

estimating the heat release, the step of designing an ODE with �synthetic� states

could be bypassed by only considering the output prediction directly with the I/O

data describing the �ame generated from CFD simulations, as for instance very

recently studied for autonomous systems in [Janny et al. 2021]. To apply this to the

problem considered in this chapter, the framework there would need to be extended

to input-a�ne systems. Taking this approach could be more �exible as no a priori
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restrictions on the structure of the f , g and h matrices in the plant model (7.14)

need to be taken, eliminating a possible source of error.

Although more complicated neural network architectures can be tested, the more

complex ones already tested by the author su�ered from over�tting, in which regu-

larization techniques must be applied. However, going in this direction could make

the problem more complicated than it needs to be, especially in light of the use case

of the neural network here being function approximation and hence in theory a sin-

gle hidden layer being su�cient. Keeping a single hidden layer, future investigations

could go into �nding the most suitable number of nodes in the hidden layer, as well

as testing alternative sigmoid functions. Also, during training the maximum num-

ber of epochs was capped at 1000, and especially for the forward transformation the

gradient and validation performance still had a slight downward trend in all cases

at this point in the training, as seen in Figures 7.10, 7.12. This indicates that the

training might have been stopped before a minimum in the hyperparameter search

spaced was reached, and investigating whether increasing this upper bound has an

impact on the observer perfomance could be a worthwhile further step.

From a testing point of view, a natural next step would be to integrate the ob-

server developed in this chapter into the PDE�ODE observer from Theorem 7.4, and

see how well it estimates heat release rate, pressure and velocity based on a pres-

sure measurement taken from afar. This observer could be compared to the linear

observer from Theorem 5, and conclusions about the advantages and disadvantages

of the two di�erent approaches could be drawn. It would be reasonable to expect to

�nd a trade-o� between computational e�ciency and estimation accuracy. In addi-

tion to testing how well the observers perform in a pure monitoring application, the

use of the linear and nonlinear observer approaches that have been explored could

be tested in the loop with a full-state feedback control law. One could start with

the linear control law from Theorem 4, before proceeding to designing a control law

taking into account nonlinearities in the heat release rate. Lastly, it is important

to not forget to mention that during development of the nonlinear observer in this

chapter, possible noise in the I/O signals was not taken into account. From a prac-

tical point of view, studying the sensitivity to noise of the observer is an important

direction in which to further develop this work.
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Dans ce chapitre �nal, nous résumons les travaux réalisés dans la thèse. Des

perspectives et des suggestions pour des travaux futurs sont o�ertes.

In this �nal chapter, we take a bird's-eye view of what has been achieved in the

thesis and make concluding statements. Perspectives and suggestions for further

work are o�ered.

8.1 Summary

We have in this thesis, in response to the objectives stated in Chapter 1, proposed

state and parameter estimation algorithms for thermoacoustic instabilities with dis-

tributed acoustics and, whenever possible, nonlinear heat release dynamics. The

�rst part of the work dealt with the electrically heated Rijke tube, a laboratory

setup for reproducing thermoacoustic instabilities. Here, an observer relying on a

boundary measurement is designed to provide globally convergent estimates of the

pressure, velocity and heat release rate using a model with distributed acoustics and

nonlinear heat release. It is identi�ed that the state estimates are sensitive to the

knowledge of boundary acoustic impedances, a parameter that is di�cult to know or

compute a priori. In response to this, we suggest a parameter identi�cation method

for estimating these parameters, also using a single pressure measurement.

As stated in the introductory Chapter 1, the literature on the topic of thermoa-

coustic instabilities has heavily relied on laboratory setups, and for model-based

estimation and active control this is not an exception. We have therefore proposed

to further the development of model-based estimation algorithms for thermoacous-

tics, using network models containing distributed models of the acoustics, towards

cases more directly applicable to industrial settings. This is here mainly via our pro-

posed model of distributed acoustics in ducts with variable cross-sectional area. As

noted in [Poinsot 2017] the combustor geometry is a �rst-order factor with regards

to thermoacoustics, and therefore taking this into account in the estimation algo-

rithm design is important for correct estimation in practical combustors outside of
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the laboratory. With the more general in�nite-dimensional acoustics model, to avoid

possible occurrence of the spillover e�ect we use it as basis for in�nite-dimensional

algorithm design, rather than lumping it into an ODE system �rst.

An extension of the parameter identi�cation method used for the Rijke tube is

considered next, �rstly in a theoretical setting by suggesting a boundary parame-

ter identi�cation method for 2 × 2 linear hyperbolic PDE systems where a single

boundary measurement is available. It is then suggested how this can be applied

to boundary parameter estimation in a duct with spatially varying cross section.

With the spatially varying acoustics coupled via a network model to a heuristically

designed linear �ame model, which we suggest can model the thermoacoustics in a

can combustor, we design an observer for estimating the distributed velocity and

pressure together with heat release from the �ame. This state estimator design

is paired with a collocated control law, which together can be used as an output

feedback controller for the thermoacoustic oscillations. In the �nal core Chapter,

we consider how a state estimator for a combustor can be designed when the �ame

model considered is nonlinear rather than linear. The mathematical analysis used

in Chapter 6 is not as straightforward for this case, so instead we take a di�erent

approach where the problem is, using previous results from the literature, simpli-

�ed to that of a nonlinear multidimensional function approximation problem. Data

is generated, and neural networks are trained to approximate the mapping. With

the learned mapping, an observer for the nonlinear �ame ODE subsystem is im-

plemented and �rst tested in estimating the internal states, before being tested on

estimating the heat release rate from CFD data.

8.2 Discussion

Concerning the performance of the algorithms from Part II in simulations and exper-

iments, there were mixed results. Although, to the best of the author's knowledge,

this Rijke tube observer is the �rst globally convergent observer for the electrically

heated Rijke tube that uses fully distributed acoustics and nonlinear heat release

to model the dynamics, the observer design was unconventional in the sense that

no tuning is possible. To prove the global convergence, an exponentially decreasing

error was introduced into the system. In the simulations this slowed the convergence

down compared to a �trivial observer� which, without any convergence guarantees,

converged much faster. Indeed, the heat release model used is self-stabilizing when

the conditions allow for it, with the nonlinear contribution coming from the coupling

to the acoustics. Despite this, the observer proposed had better robustness prop-

erties with respect to uncertainty in the boundary acoustic parameters, something

which was veri�ed in simulations. For the experimental tests, the estimate of the

pressure was phase-shifted away from the measured veri�cation signal. Also, com-

pared to the di�erence seen in the simulations, the di�erence in response was rather

large when di�erent values for the acoustic impedance are tested. After the acoustic

impedances were estimated using the method from Chapter 4, the amplitude of the
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estimated pressure signal was fairly close to the measured veri�cation signal. How-

ever, the estimate was still phase-shifted away from the measured pressure signal,

indicating that some modelling error might be present. Hence, as further work, a

model validation step needs to be taken to isolate the main causes of the issue.

Since the tube used in the construction of the Rijke tube was built of steel, one

possible cause of the error which had been neglected in the modelling step is heat

transfer between the gas and the tube, which could heat up the temperature of the

gas. Further work that could address this issue would be to include a model of the

heat evolution in the tube, and couple this to the acoustics model currently in place.

Within the framework used in this thesis, this could be formulated as a problem of

hyperbolic PDE system coupled in-domain to a parabolic PDE.

The parameter identi�cation method suggested for 2 × 2 systems of linear hy-

perbolic PDEs in Chapter 5 is tested on a theoretical example and shown to work

well there. The extension required to apply it for ducts with spatially varying

cross-sectional area results in a parameter vector that is overparametrized with �ve

parameters to estimate two parameters, rather than three parameters to estimate

two as was the case previously. For further work, it would be interesting to test

this on a practical example of a duct with spatially varying cross section. It should

be compared to an algorithm that does not take into account the spatially varying

geometry, and the parameter estimates compared to a benchmark example.

For the state estimation of distributed pressure and velocity in a combustor, two

cases were considered - namely the case of a linear �ame model and the more general

scenario where a nonlinear input-a�ne �ame model is considered. Since a di�erent

approach was taken in considering these two cases, their performance on practical

examples should be compared. As discussed, we expect the state observer from

Chapter 6 to be more computationally e�cient than the one from Chapter 7, but in

cases where strong nonlinearities in the heat release model are present it could be at

a disadvantage. For practical implementation of these state estimators in practice,

it is also expected that model validation steps need to be taken to ensure the model

used for observer design matches the behaviour of the combustor the observer is

being applied to. Control design, which was considered for the combustor with the

linear �ame using acoustic actuation collocated with the pressure sensor, should also

be studied when the actuation is via fuel modulation at the �ame. Indeed, from the

literature [Dowling & Morgans 2005] we know this type of actuation is more feasible

to implement in practice. The control design for the case of nonlinear �ame should

also be studied.

Overall, as stated in Chapter 1, this thesis has only considered longitudinal

modes of thermoacoustic instabilities. Modelling and designing estimation schemes

for these is, however, a crucial step in developing estimation schemes for more general

models. Although the work presented here only scratches the surface of what is

possible and necessary to do, we believe many of the ideas the work in this thesis

is based on, as well as the contributions o�ered, can together form a basis for

extending the results here to more complex cases. One important extension that

should be considered in future work is the development of estimation algorithms
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for the thermoacoustic instabilities encountered in annular combustors, which are

featured in many modern combustion systems. Also, future extensions of this work

should consider noise robustness and methods of modifying the algorithms suggested

to such cases, if necessary and possible. Additionally, we believe the algorithms

suggested here can be built on in the form of incorporating more realistic e�ects,

in the form of e�ects such as internal damping contributions from the combustor

material or intrinsic instabilities in the �ame front, which could in certain settings

be important to describe the system dynamics more accurately.
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Appendix A

Trained Neural Network

Coe�cients

The hyperparameters for the neural networks described in Section 7.2.3 of Chap-

ter 7, as a result of the backpropagation training visualized in Figures 7.10�7.12,

are documented here. As desribed, three pairs of neural networks for the forward

and left-inverse transformations, T and T ∗ respectively, are trained on simulation

data generated in Section 7.2.2. Due to the neural network architectures as shown

in Figures 7.8�7.9, the hyperparameters are summarized in six sets of weight and

bias matrices W 1, W 2, b1 and b2, with three of the sets being for the forward

transformation and the remaining three being for the left-inverse transformation.

We document here �rst the hyperparameters for the forward transformations,

and then the left-inverse transformations. In Tables 1.1-1.3, W 1 for the forward

transformation is shown, in Tables 1.4�1.6 W 2 is documented, and lastly in

Tables 1.7�1.9 the bias values b1 and b2 for T is shown. Likewise, in Tables 1.10�

1.12 W 1 for the left-inverse transformations is shown, in Tables 1.13�1.15 we have

W 2 documented, and �nally the bias vectors b1 and b2 for T ∗ are in Tables 1.16�1.18.

� w1
1,i w1

2,i w1
3,i w1

4,i w1
5,i

w1
j,1 0.3334 0.2224 −0.2287 1.4581 0.6641

w1
j,2 1.3027 −0.0620 0.0938 0.6231 −0.7262

w1
j,3 0.6840 −0.5221 −0.8297 1.5006 −1.6470

w1
j,4 0.1602 −0.1410 −0.7295 2.9956 −1.8192

w1
j,5 −1.4785 −1.2168 −0.8630 1.5563 −1.3585

w1
j,6 0.3796 −0.5499 0.4790 −0.8672 −0.6523

w1
j,7 −0.6092 −0.9651 −0.3413 −1.2453 1.6277

w1
j,8 −0.7007 −1.1893 0.2531 1.1828 −0.8958

Table 1.1: W 1 parameters forward transformation 1.
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� w1
1,i w1

2,i w1
3,i w1

4,i w1
5,i

w1
j,1 0.5038 −1.3071 −0.8413 −0.9842 1.3483

w1
j,2 −0.6279 −0.3470 0.4370 1.0616 −0.0459

w1
j,3 0.5308 0.1614 −1.1873 0.0820 −0.0649

w1
j,4 −0.8655 −0.4273 0.5800 −3.7819 2.6945

w1
j,5 −0.2274 −0.3042 −0.3390 0.4651 0.3101

w1
j,6 −1.4720 −1.4519 −0.8186 1.1868 −0.7636

w1
j,7 0.8490 0.8823 1.4739 −1.3427 1.6188

w1
j,8 1.1381 1.1290 0.4961 −1.1869 1.4154

Table 1.2: W 1 parameters forward transformation 2.

� w1
1,i w1

2,i w1
3,i w1

4,i w1
5,i

w1
j,1 0.4813 0.7649 0.3005 0.3120 −1.5745

w1
j,2 −0.8229 −1.6009 −0.3431 −0.8548 0.3393

w1
j,3 −0.2052 −0.2204 0.0617 2.0540 −1.6516

w1
j,4 1.1871 0.8884 0.1848 2.3388 −0.7672

w1
j,5 0.1331 0.1593 0.1144 −1.0263 2.0278

w1
j,6 −0.7291 0.0582 −0.4825 1.4118 −0.8644

w1
j,7 −0.7070 −1.0129 −1.6697 2.4584 −1.6323

w1
j,8 −0.7438 −0.6170 −0.1600 −0.9175 −0.7153

Table 1.3: W 1 parameters forward transformation 3.

� w2
1,i w2

2,i w2
3,i w2

4,i w2
5,i w2

6,i w2
7,i w2

8,i

w2
j,1 0.3201 −0.0228 0.2226 1.8772 0.5404 −0.0168 0.0592 0.7399

w2
j,2 0.6274 0.3354 0.6133 2.4500 0.9959 0.2755 −0.3686 0.5105

w2
j,3 −0.6225 −1.0955 −1.3432 −0.8923 −1.2631 0.0999 1.4896 0.2985

w2
j,4 0.4113 0.1303 0.3624 2.0790 0.7718 0.0373 −0.0811 0.6946

w2
j,5 −0.5021 −0.8032 −0.7103 −1.9424 −1.9465 0.1564 0.1971 0.3595

w2
j,6 −0.5429 −0.7936 −1.1580 −0.1304 −0.6629 −0.2023 1.4700 0.1597

Table 1.4: W 2 parameters forward transformation 1.

� w2
1,i w2

2,i w2
3,i w2

4,i w2
5,i w2

6,i w2
7,i w2

8,i

w2
j,1 −0.1657 0.2266 −0.0863 −0.9835 0.8930 0.6365 −0.1912 0.0722

w2
j,2 0.8318 0.4713 0.0949 −2.0117 0.6943 1.0213 −0.7738 −0.5028

w2
j,3 −0.5509 −0.8292 −0.1115 1.9340 1.6156 −0.4174 1.1387 0.5838

w2
j,4 0.5264 0.3620 0.0301 −1.4995 0.7621 0.9535 −0.5283 −0.1632

w2
j,5 0.2782 −0.9275 −0.4293 1.8116 0.3824 −1.9266 0.9844 −0.2666

w2
j,6 −1.2426 −0.2833 −0.9066 1.3566 1.2610 0.1815 0.8920 1.4710

Table 1.5: W 2 parameters forward transformation 2.



185

� w2
1,i w2

2,i w2
3,i w2

4,i w2
5,i w2

6,i w2
7,i w2

8,i

w2
j,1 −0.7112 0.2200 0.7772 0.4105 0.1178 0.1325 0.8600 −0.7485

w2
j,2 −0.6024 0.2641 1.1636 1.0484 −0.5394 −0.1591 1.7484 −0.8470

w2
j,3 −0.5409 0.8519 −0.4701 −1.3555 2.0236 0.2848 −1.2966 0.1467

w2
j,4 −0.6578 0.3702 1.0166 0.6543 −0.1407 0.0385 1.3305 −0.7560

w2
j,5 0.3574 −1.2891 −1.5860 −0.5538 0.5337 −1.2078 −1.7268 0.7355

w2
j,6 −0.7526 0.4911 0.0123 −1.2909 1.9136 0.8269 −1.0718 −0.3092

Table 1.6: W 2 parameters forward transformation 3.

b1i b2i

−0.8955 0.1458

−1.9130 −0.0853

0.5532 −0.4572

0.5941 0.1767

−0.1266 −0.1982

1.7945 −0.4110

0.0560 �

−2.1165 �

Table 1.7: Bias parameters forward transformation 1.

b1i b2i

2.1270 0.3248

1.7084 0.0677

2.2616 −0.1119

0.0332 −0.0001

0.1129 −0.1299

−0.0705 0.3702

0.9312 �

0.8654 �

Table 1.8: Bias parameters forward transformation 2.
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b1i b2i

1.6039 −0.0442

1.5545 −0.2280

0.3010 −0.2339

−0.2271 −0.1887

0.0090 0.4389

−1.1221 0.0612

−0.0589 �

−1.9612 �

Table 1.9: Bias parameters forward transformation 3.

� w1
1,i w1

2,i w1
3,i w1

4,i w1
5,i w1

6,i

w1
j,1 1.3826 1.0679 0.1349 −0.7569 −0.5219 −0.3797

w1
j,2 −0.6859 −0.3986 −1.0253 −0.0161 −0.9710 0.6847

w1
j,3 −0.5155 1.2254 1.8056 0.3121 2.7780 0.0689

w1
j,4 0.3854 −1.2561 0.0912 0.4432 −1.6349 −2.0053

w1
j,5 0.0584 −0.0800 −1.0154 −1.2928 0.0253 1.2015

w1
j,6 −0.2386 0.2284 −0.9416 −0.8623 −1.1179 −0.6938

w1
j,7 −0.0494 −0.4422 0.7741 −0.6775 3.1059 1.1577

w1
j,8 −0.8241 −0.3227 −0.3424 −0.0287 −0.5628 −0.8046

Table 1.10: W 1 parameters inverse transformation 1.

� w1
1,i w1

2,i w1
3,i w1

4,i w1
5,i w1

6,i

w1
j,1 0.1975 0.4069 0.6537 0.7793 0.6590 −1.2193

w1
j,2 −0.4519 −0.7778 0.0474 −0.5526 0.5512 −0.6582

w1
j,3 −0.5670 −1.3320 −0.9198 0.9287 0.3282 0.9070

w1
j,4 −0.9230 −0.0982 −2.3961 0.6542 −3.4710 −0.1798

w1
j,5 1.3613 0.5629 0.5792 0.0593 0.9104 −0.2677

w1
j,6 0.0718 0.0249 −0.6638 0.3127 −0.2835 −1.0733

w1
j,7 0.1668 −0.0269 1.9695 0.1153 3.1783 −0.0413

w1
j,8 −0.0951 −0.4528 −0.1362 1.4943 1.2534 0.6423

Table 1.11: W 1 parameters inverse transformation 2.
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� w1
1,i w1

2,i w1
3,i w1

4,i w1
5,i w1

6,i

w1
j,1 0.1902 −1.1442 1.0069 −0.9719 −0.9339 −0.8522

w1
j,2 −0.1182 −0.3627 −0.6432 −0.5649 −2.9620 −1.4441

w1
j,3 −0.9654 1.1340 −0.6392 0.0968 −1.1007 0.0047

w1
j,4 1.9488 −0.3202 −0.1038 0.2299 0.5180 0.1598

w1
j,5 −2.1316 0.2331 −1.7588 0.5451 −3.9605 −0.4333

w1
j,6 0.9969 −1.0412 −0.4697 −0.5067 0.0790 −0.1248

w1
j,7 −0.1513 1.1165 0.6779 0.4360 0.3397 −0.5085

w1
j,8 0.6043 0.7650 −0.9803 −1.0399 −3.7434 −0.9613

Table 1.12: W 1 parameters inverse transformation 3.

� w2
1,i w2

2,i w2
3,i w2

4,i w2
5,i w2

6,i w2
7,i w2

8,i

w2
j,1 1.1111 0.8534 2.0054 2.2950 −1.2870 −0.1903 −1.2689 0.4631

w2
j,2 0.4474 0.7015 −0.8695 −0.4933 0.4701 −0.0433 1.0553 −0.5836

w2
j,3 0.8366 −0.0170 0.4281 0.1099 −0.4090 −0.1221 −0.6932 −0.4362

w2
j,4 0.2744 0.7040 0.1797 −0.0099 −1.3376 0.0481 −0.1195 −0.1050

w2
j,5 0.2606 −0.2738 −0.0238 0.0416 −1.2495 0.1155 −0.0256 −0.2391

Table 1.13: W 2 parameters inverse transformation 1.

� w2
1,i w2

2,i w2
3,i w2

4,i w2
5,i w2

6,i w2
7,i w2

8,i

w2
j,1 1.1268 −0.6254 0.7815 −1.5400 1.2364 1.1251 −1.9268 −0.5410

w2
j,2 −0.1764 −0.0426 0.1778 0.7056 −0.6279 −0.1831 0.9001 −0.5989

w2
j,3 1.5557 0.1448 0.3831 −0.3140 1.1849 −0.5831 −0.8169 −0.2207

w2
j,4 −0.5958 −0.2105 −0.8427 −0.1496 0.2332 0.0031 −0.2307 0.4189

w2
j,5 −0.1629 −0.1393 −0.8389 −0.0055 0.2325 0.0040 −0.0400 0.8848

Table 1.14: W 2 parameters inverse transformation 2.

� w2
1,i w2

2,i w2
3,i w2

4,i w2
5,i w2

6,i w2
7,i w2

8,i

w2
j,1 −0.7805 2.2374 −1.1451 1.5314 −1.8960 1.1208 0.7387 1.5783

w2
j,2 0.0553 0.3161 0.7729 −0.2290 0.3677 −0.4795 −0.3732 −1.1368

w2
j,3 −0.5033 −0.2137 −0.2097 −0.3307 −0.1289 −0.3757 0.3793 0.5064

w2
j,4 0.1085 0.2132 0.0440 0.4149 −0.2165 −0.4756 0.6471 0.1822

w2
j,5 0.0967 −0.0341 0.1440 0.4536 −0.0403 −0.2991 0.7472 0.0289

Table 1.15: W 2 parameters inverse transformation 3.
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b1i b2i
−2.0478 −0.8218

1.0630 0.2832

−0.4552 −0.2070

0.3042 −0.4213

0.1500 0.2391

−1.6803 �

−2.0752 �

−1.8550 �

Table 1.16: Bias parameters inverse transformation 1.

b1i b2i
−2.4217 −0.9896

1.8845 0.2451

−0.0358 0.1923

1.0175 −0.5396

1.2121 0.3051

0.5690 �

−1.6330 �

−1.2409 �

Table 1.17: Bias parameters inverse transformation 2.

b1i b2i
−1.7773 −1.1882

0.8481 0.3159

0.8387 −0.9366

−1.1999 −0.1873

0.9280 −0.1259

0.2137 �

0.7320 �

1.9011 �

Table 1.18: Bias parameters inverse transformation 3.
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RÉSUMÉ
Les instabilités thermoacoustiques sont néfastes pour les systèmes de combustion dans lesquels elles apparaissent, tels que les 
chambres de combustion de turbines à gaz. Des systèmes de surveillance avancés sont nécessaires pour estimer et prévoir ce 
phénomène afin de le prévenir, et possiblement de le supprimer grâce à des méthodes de contrôle. Dans cette thèse, nous proposons
d’utiliser une description sous forme de systèmes à paramètres distribués des phénomènes acoustiques couplés à des modèles de 
dégagement de chaleur. Les non-linéarités sont prises en compte chaque fois que possible, pour décrire les instabilités. Des 
algorithmes d’estimation d’état et de paramètres prenant en compte ces effets dynamiques sont proposés. Deux niveaux de 
complexité différents sont considéré. D’une part, on s’intéresse à une configuration de laboratoire et un modèle de modes 
thermoacoustiques longitudinaux dans une chambre de combustion. Pour ce système, un estimateur de l’état d’un tube de Rijke 
chauffé électriquement est synthétisé. Puis, un observateur globalement convergent, prenant en compte les non-linéarités du 
réchauffeur électrique et la dynamique distribuée, est proposé et analysé. Celui-ci est associé à un algorithme d’identification de 
paramètres pour estimer les impédances acoustiques aux frontières du domaine spatial. L’observateur d’état et l’identification de 
paramètres sont testés à la fois dans des simulations et expérimentalement. Ensuite, nous proposons un algorithme pour estimer les 
deux paramètres aux limites de systèmes hyperboliques linéaires 2X2 avec une seule mesure aux limites. En outre, un modèle 
dynamique de l’acoustique dans un conduit avec une section transversale variable dans l’espace est dérivé. En utilisant ces deux 
résultats ensemble, le schéma d’estimation des paramètres aux limites pour le tube de Rijke est étendu à des conduits plus généraux.
Un bouclage de sortie, combinant une loi de commande par retour d’état et un observateur frontière colocalisé, pour les instabilités 
thermoacoustiques longitudinales dans un modèle d’une chambre de combustion avec acoustique distribuée et un modèle de flamme 
linéaire est ensuite proposé. Enfin, nous proposons un estimateur d’était pour un modèle de chambre de combustion avec une flamme
non linéaire. Une méthode basée sur l’utilisation de réseaux de neurones est utilisée pour concevoir un observateur pour le sous-
système de flamme, qui est ensuite vérifié sur les données CFD.

MOTS CLÉS
Thermoacoustique, observateur d’état, identificateur de paramètre, commande à bouclage de sortie, systèmes de paramètres 
distribués, systèmes non linéaires, backstepping, les réseaux de neurones 

ABSTRACT
Unwanted thermoacoustic instabilities are harmful to combustion systems that suffer from them such as gas turbine combustors 
operating under lean premixed conditions. Advanced monitoring systems are needed to estimate and forecast the phenomenon to 
assist in decision making and automatic stabilization. In this Thesis we propose using a distributed description of acoustics interfaced 
to heat release models, with nonlinearities whenever possible, to describe the instabilities. State and parameter estimation algorithms 
taking these dynamic effects into account are explored. Two different levels of complexity are considered: we start with a laboratory 
setup and move towards a model of longitudinal thermoacoustic modes in a can combustor. First, state estimation for the electrically 
heated Rijke tube is considered. A globally convergent observer, taking into account nonlinearities from the electrical heater and 
distributed dynamics, is proposed and analysed. This is paired with a parameter identifier for estimating boundary acoustic 
impedances. The state observer and parameter identifier are tested both in simulations and experimentally. Next, a parameter 
identifier to estimate both boundary parameters of 2X2 linear hyperbolic systems with a single boundary measurement is proposed. 
Also, a transient model of acoustics in a duct with spatially varying cross-sectional area is derived. Using these two results together the
boundary parameter estimation scheme for the Rijke tube is extended to more general ducts. An output feedback controller, combining
a full-state feedback control law and collocated boundary observer, for longitudinal thermoacoustic instabilities in a model of a can 
combustor with distributed acoustics and a linear flame model is proposed next. Convergence is proven and it is tested in simulations. 
Lastly, the state estimation problem for a can combustor model with a nonlinear flame is considered. Neural networks are used to 
design an observer for the flame subsystem, which is subsequently verified on CFD data.

KEYWORDS
Thermoacoustics, state observer, parameter identifier, output feedback control, distributed parameter systems, nonlinear systems, 
backstepping, neural networks
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