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Résumé

Les instabilités thermoacoustiques sont néfastes pour les systèmes de combustion
dans lesquels elles apparaissent, tels que les chambres de combustion de turbines à
gaz. Des systèmes de surveillance avancés sont nécessaires pour estimer et prévoir
ce phénomène a�n de le prévenir, et possiblement de le supprimer grâce à des méth-
odes de contrôle. Dans cette thèse, nous proposons d'utiliser une description sous
forme de systèmes à paramètres distribués des phénomènes acoustiques couplés à
des modèles de dégagement de chaleur. Les non-linéarités sont prises en compte
chaque fois que possible, pour décrire les instabilités. Des algorithmes d'estimation
d'état et de paramètres prenant en compte ces e�ets dynamiques sont proposés.
Deux niveaux de complexité di�érents sont considéré. D'une part, on s'intéresse
à une con�guration de laboratoire et un modèle de modes thermoacoustiques lon-
gitudinaux dans une chambre de combustion. Pour ce système, un estimateur de
l'état d'un tube de Rijke chau�é électriquement est synthétisé. Puis, un observa-
teur globalement convergent, prenant en compte les non-linéarités du réchau�eur
électrique et la dynamique distribuée, est proposé et analysé. Celui-ci est associé
à un algorithme d'identi�cation de paramètres pour estimer les impédances acous-
tiques aux frontières du domaine spatial. L'observateur d'état et l'identi�cation de
paramètres sont testés à la fois dans des simulations et expérimentalement. Ensuite,
nous proposons un algorithme pour estimer les deux paramètres aux limites de sys-
tèmes hyperboliques linéaires2 � 2 avec une seule mesure aux limites. En outre,
un modèle dynamique de l'acoustique dans un conduit avec une section transver-
sale variable dans l'espace est dérivé. En utilisant ces deux résultats ensemble, le
schéma d'estimation des paramètres aux limites pour le tube de Rijke est étendu à
des conduits plus généraux. Un bouclage de sortie, combinant une loi de commande
par retour d'état et un observateur frontière colocalisé, pour les instabilités ther-
moacoustiques longitudinales dans un modèle d'une chambre de combustion avec
acoustique distribuée et un modèle de �amme linéaire est ensuite proposé. En�n,
nous proposons un estimateur d'était pour un modèle de chambre de combustion
avec une �amme non linéaire. Une méthode basée sur l'utilisation de réseaux de
neurones est utilisée pour concevoir un observateur pour le sous-système de �amme,
qui est ensuite véri�é sur les données CFD.
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Abstract

Unwanted thermoacoustic instabilities are harmful to combustion systems that su�er
from them such as gas turbine combustors operating under lean premixed conditions.
Advanced monitoring systems are needed to estimate and forecast the phenomenon
to assist in decision making and automatic stabilization. In this thesis we propose
using a distributed description of acoustics interfaced to heat release models, with
nonlinearities whenever possible, to describe the instabilities. State and parameter
estimation algorithms taking these dynamic e�ects into account are explored. Two
di�erent levels of complexity are considered: we start with a laboratory setup and
move towards a model of longitudinal thermoacoustic modes in a can combustor.
First, state estimation for the electrically heated Rijke tube is considered. A globally
convergent observer, taking into account nonlinearities from the electrical heater and
distributed dynamics, is proposed and analysed. This is paired with a parameter
identi�er for estimating boundary acoustic impedances. The state observer and
parameter identi�er are tested both in simulations and experimentally. Next, a
parameter identi�er to estimate both boundary parameters of2� 2 linear hyperbolic
systems with a single boundary measurement is proposed. Also, a transient model
of acoustics in a duct with spatially varying cross-sectional area is derived. Using
these two results together the boundary parameter estimation scheme for the Rijke
tube is extended to more general ducts. An output feedback controller, combining
a full-state feedback control law and collocated boundary observer, for longitudinal
thermoacoustic instabilities in a model of a can combustor with distributed acoustics
and a linear �ame model is proposed next. Convergence is proven and it is tested in
simulations. Lastly, the state estimation problem for a can combustor model with
a nonlinear �ame is considered. Neural networks are used to design an observer for
the �ame subsystem, which is subsequently veri�ed on CFD data.
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Dans ce chapitre introductif, le sujet de la thèse est motivé et une revue
de la littérature des travaux antérieurs sur le sujet est présentée. Par la suite,
notre approche est introduite et comparée aux approches précédentes, assurant sa
nouveauté et l'intérêt d'appliquer une telle approche. Une liste de contributions et
de publications qui sont un résultat direct du travail présenté ici est énoncée, avant
que la structure de la thèse ne soit expliquée.

In this introductory chapter, the thesis topic is motivated and a literature review
of previous work on the topic is presented. Thereafter our approach is introduced
and compared to previous approaches, ensuring its novelty and the interest of ap-
plying such an approach. A list of contributions and publications which are a direct
result of the work presented here are stated, before the thesis structure is explained.

1.1 Background

The ever increasing demand of energy and transport in society since the industrial
revolution has gone hand in hand with an increase in emissions into the atmosphere,
which in turn contribute to undesirable e�ects such as global warming and more
extreme weather patterns [Masson-Delmotteet al. 2021]. One particular technology
which has, since the �rst useful one in the sense of providing net power output was
built in 1903 by Ægidius Elling [Bakken et al. 2004], been especially ubiquitous in
both power generation applications and for use as a propulsion system for vehicles
such as ships and aircraft [Nasiret al. 2018] is the gas turbine (see Figure 1.1). Since
then numerous improvements to the technology have been developed, with more
e�cient power outputs and cleaner emissions in each generation. One direction of
improvement which is especially promising with respect to decreasing emissions into
the atmosphere, especially in the form ofNOx formation, and hence contributing
to an overall cleaner technology is the operation of gas turbines under so-called



4 Chapter 1. Introduction

Figure 1.1: Siemens SGT-750 gas turbine (left) and cross section of combustion
chamber (right). From [Rashwan et al. 2020].

lean premixed conditions[Seo 2003]. The main challenge faced in implementing
this technique in practice is the increased likelihood of detrimentalthermoacoustic
instabilities [Lieuwen et al. 2001] in the combustion chamber, the part of the gas
turbine shown on the right of Figure 1.1, under this operating regime. Due to the
widespread use of and reliance on gas turbines by society, overcoming this issue
would be a signi�cant contribution towards solving the current climate crisis.

Within the context of their spontaneous occurrence in combustion chambers,
thermoacoustic instabilities are an undesirable phenomenon, with consequences
ranging from wear and tear in the less severe cases up to the combustor explod-
ing in the more extreme cases [Poinsot 2017], possibly in a matter of seconds. An

Figure 1.2: Burner assembly that has been damaged by thermoacoustic instabilities.
From [Goy et al. 2005].

example from [Goyet al. 2005] of a burner assembly that has undergone a beating
from these instabilities is shown in Figure 1.2. As noted in [McManuset al. 1993],
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answering the question of whether or not a combustor will su�er from such insta-
bilities is notoriously di�cult to answer in the design and even production stages,
with thermoacoustic oscillations usually �rst being observed in latter stages of the
development cycle.

Thermoacoustic instabilities were initially studied as a physical curiosity be-
fore they became an issue in practical technologies, with the �rst published study
based on work by [Higgins 1802]. This was followed by work in [Rijke 1859], which
standardized the experimental setup now known as theRijke tube by generating
thermoacoustic instabilities via a heated gauze placed in the lower half of an open-
ended tube. A physical mechanism for the instability is qualitatively suggested
in [Rayleigh 1878], later to be quanti�ed more precisely in [Putnam & Dennis 1954].
In practice and with thermoacoustic instabilities possibly occurring in a wide range
of combustion technologies, such as solid [Price 1969] and liquid [Crocco 1965] pro-
pellant rocket motors, ramjets [Rogers & Marble 1956], turbojet thrust augmenters
[Bonnell et al. 1971], boilers [Putnam 1971] and furnaces [Lieuwen & Yang 2005] to
give a non-exhaustive list, a high number of di�erent factors play in and hence
the precise classi�cation of thermoacoustic instabilities is a di�cult task. In
[Williams 2018] thermoacoustic instabilities due to combustion are classi�ed in three
di�erent categories:

1. Intrinsic instabilities.

2. Chamber instabilities.

3. System instabilities.

The �rst of these, intrinsic instabilities, occur when there is some unstable feedback
mechanism of a combustion process interacting with itself and is often character-
ized by being of lower frequency than the other types. A well-known mathematical
model that gives an example of this type of instability mechanism on laminar �ame
fronts is the Kuramoto-Sivashinsky equation [Kuramoto 1978, Sivashinsky 1977],
and has been studied recently by multiple authors from a system dynamics per-
spective due to its interesting instability properties (see e.g. [Liu & Krsti¢ 2001,
Baudouin et al. 2013, Coron & Lü 2015]). Such instabilities are however outside
the scope of this work, and instead the focus is directed towards the second type,
namely chamber instabilities. In practice these occur when combustion occurs in-
side a con�ned volume, which is the case one has inside gas turbine combustion
chambers. Compared to intrinsic instabilities, these instabilities tend to be charac-
terized by much higher frequencies, typically dominated by the acoustic properties
of the combustor. The main mechanism driving the instability here is the acous-
tics in the chamber being in phase with the heat release process, causing a self-
sustaining oscillation that grows exponentially until being saturated by nonlinear
e�ects [Sujith et al. 2016]. The third type of instability, system instabilities, occur
due to the interaction of the combustion system with other parts of the system,
such as the feed or exhaust system. These are however also outside the scope of this
work.
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1.2 Approach

To deal with the thermoacoustic instability issue, one must disrupt the construc-
tive coupling between heat release and acoustic waves in some sense. Much of
the early work on tackling this problem has been based on applying what one
can consider �traditional engineering� approaches of physically augmenting the sys-
tem, known as passive control methods(see e.g. [Culick 1988]). Passive method-
ologies are still an active �eld of development and some of the strategies employed
include but are not limited to Helmholtz resonators [Gysling et al. 2000], acous-
tic liners for internal damping inside the combustor [Eldredge & Dowling 2003]
and quarter wave tubes [Zahnet al. 2016]. Analysing the frequency do-
main properties [Zahnet al. 2015] of combustors �ts naturally well with pas-
sive stabilization methods because they allow investigations, such as sen-
sitivity analyses [Magri & Juniper 2013] and determinations of stability mar-
gins [Betz et al. 2017], into how the ad-hoc system augmentation in�uences the
overall system eigenvalues to be readily performed.

As noted in [Morgans & Dowling 2007], a drawback of passive methodologies
is that they are potentially expensive and time consuming to implement due to
their bespoke nature, and often times they only work under speci�c operating
conditions. A possibly more �exible approach is active stabilization methods,
which were already investigated in a theoretical setting for instabilities in rocket
engines in the 1950s [Tsien 1952]. The �rst experimental studies on empirically
based control strategies of feeding back a phase-shifted and ampli�ed sensor signal,
tuned via a trial-and-error approach, started being performed for the Rijke tube
around three decades later in [Dines 1984]. Since then a multitude of di�erent ap-
proaches have been studied, with an overview of contributions up to the mid-2000s
given in [Dowling & Morgans 2005]. Gradually more and more model-based control
strategies started appearing, with some notable contributions from around the turn
of the millennium being [Krsti¢ et al. 1999, Annaswamyet al. 2000].

In this thesis the main focus is the design of model-based algorithms for esti-
mating unmeasured states and unknown parameters of transient models reproducing
thermoacoustic instabilities. The literature on model-based estimation methods for
thermoacoustic instabilities is highly sparse in comparison to its control counterpart,
but some notable contributions are [Hong & Lin 2007, de Andradeet al. 2020] and a
review of typical sensors used are given in [Docquier & Candel 2002]. The intended
application of these algorithms would be to run in real time with the physical pro-
cess, where use cases could be general monitoring and in early-warning systems, but
also in conjunction with control algorithms that need access to unmeasured state
and parameter data. A trade-o� one faces in the modelling stage for such algorithm
design is model complexity, where one wants a model that is simple enough that it
can be run online, but complex enough to capture the most important features of the
dynamics. Two important aspects of thermoacoustic instabilities (of the chamber
instability type) is the distributed nature of the acoustics but also strong nonlinear-
ities in the heat release model, which has an e�ect of saturating the thermoacoustic
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instability into a limit cycle oscillation [Han et al. 2015].
Many of the previous model-based control and estimation algorithms from the

literature base themselves on an approach of �rst lumping the mathematical model
into a �nite dimensional model (see e.g. [Boncioliniet al. 2021]), basing the algo-
rithm design on this reduced model. This approach is often referred to asearly-
lumping. A well-known issue from vibration control that can come up with early-
lumping is the so-calledspillover phenomenon[Sa� et al. 2018], where higher or-
der modes that have been neglected in the modelling are inadvertently destabi-
lized. The spillover phenomenon has been observed in experiments involving con-
trol of thermoacoustic instabilities with early-lumped model-based controllers, see
e.g. [Bloxsidgeet al. 1987, Gulati & Mani 1992]. A way of overcoming this issue is
to take a so-calledlate-lumping approach, where the full distributed nature of the
dynamics is taken into account in the algorithm design, only discretizing the model
in the implementation stages.

In this thesis a late lumping approach is taken for the model-based estimation
algorithm design, aiming to preserve the distributed nature of the phenomenon
as much as possible, yet basing the algorithm design on a model that is feasi-
ble to implement in real time. Little work of this type has been addressed pre-
viously in the literature for application towards thermoacoustic instabilities. In
the past decade some work has been done taking a similar approach for the Ri-
jke tube [Olgac et al. 2014, Epperleinet al. 2015, de Andradeet al. 2018a], but the
heat release models are in this case always linearized, thus losing the important
nonlinear nature of the phenomenon. Hence, the aim of this thesis is to explore the
design of model-based estimation algorithms for thermoacoustic instabilities that
take into account both the distributed and nonlinear aspects, whenever possible.
The general model structure that will be used to describe the chamber instabilities
is that of coupled Partial Di�erential Equation (PDE)�Ordinary Di�erential Equa-
tion (ODE) models [Barreau et al. 2018, Ghousein & Witrant 2020], where roughly
speaking the PDE represents the chamber acoustics and the ODE represents the
heat release model. Also, as discussed extensively in [Poinsot 2017], the literature
heavily focuses on studies investigating laboratory setups but which are not directly
useful for understanding and tackling the problem of thermoacoustic instabilities in
practical engines. Although the work in this thesis uses the Rijke tube as a start-
ing point, the aim is to leverage this as a stepping stone towards estimation design
for more complicated mathematical models that can better describe a combustion
chamber towards the second half of the work. This can then serve as a general
framework for further investigations of the same nature, where the algorithms can
be extended to larger scale system instabilities, or be modi�ed to take into account
the smaller scale e�ects of intrinsic instabilites. Also, the framework could be ex-
tended to design estimation algorithms for more complicated chamber instabilities
such as those found in annular combustors.

For the algorithm designs, we assume limited instrumentation is available. Pre-
cisely, all the algorithms considered assume a single pressure measurement is avail-
able, only. Arguably the most important states to estimate when regarding chamber
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instabilities is the distributed pressure and velocity together with heat release rate.
A parameter of high signi�cance in the stability properties of chamber instabili-
ties, but which is typically di�cult to know a priori, are the boundary acoustic
impedances. Hence focus will be placed on estimation of these parameters. Overall,
the objectives of the thesis can be summarized as follows:

1. Design observers estimating distributed states and heat release under perfect
model assumptions.

2. Design parameter identi�cation algorithms relying on parsimonious measure-
ments.

3. When possible, take into account the nonlinearity of the heat release process.

Next, in Section 1.3 the contributions of the thesis are stated, before the thesis
structure is summarized in Section 1.4.

1.3 Contributions

Following on from the statement of objectives in Section 1.2, we state here the main
contributions which have come about as a result of this thesis work. They can be
summarized as follows:

1. A globally convergent state observer for the Rijke tube, using a distributed
model of the acoustics and a nonlinear model of the heat release rate, has been
designed and analysed. It has also been tested in simulations and experimen-
tally.

2. A distributed transient model of the acoustics, suitable for control and esti-
mation algorithm design, in a duct with spatially varying cross-sectional area
is derived. This model generalizes the model of acoustics in a duct with con-
stant cross-sectional area. Also, the coupling with a �ame at a boundary with
sudden area expansion has been treated.

3. A parameter identi�cation scheme for estimating both boundary acoustic
impedances of the Rijke tube, relying on a single pressure measurement is
derived. It is tested in simulations and experimentally. Also, using the model
from Contribution 2, how this scheme generalizes to the case of a duct with
spatially varying cross-sectional area has been considered.

4. A state observer and full-state feedback controller for a linearized model of a
can combustor, assuming actuation is collocated to the pressure sensor, has
been designed. These can be combined into an output feedback controller.
The designs have been tested in simulations.

5. An observer for a nonlinear �ame model has been designed numerically using
neural networks. The observer has been veri�ed using Computational Fluid
Dynamics (CFD) data.
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Part of the work presented in this thesis has resulted in the following �rst-author
publications:

� Conference publications:

� N.C.A. Wilhelmsen , F. Di Meglio. An Observer for the Electri-
cally Heated Vertical Rijke Tube with Nonlinear Heat Release. IFAC-
PapersOnLine, vol. 53, no. 2, pages 4181�4188, 2020.

� N.C.A. Wilhelmsen , F. Di Meglio. Estimating Both Re�ection Coe�-
cients of 2� 2 Linear Hyperbolic Systems with Single Boundary Measure-
ment. In 2020 59th IEEE Conference on Decision and Control (CDC),
pages 658�665. IEEE, 2020.

� Journal publication:

� N.C.A. Wilhelmsen , F. Di Meglio. Acoustic Boundary Output Feed-
back Stabilization of Dynamicn � � Flame Model via Duct with Spatially
Varying Cross Section. IEEE Transactions on Automatic Control, 2021.
Submitted.

It should also be noted that some of the work presented in this thesis is as of
yet unpublished, and may warrant future publication.

1.4 Thesis structure

Part I This part presents the problem considered and states underlying assump-
tions. It lays the groundwork for the remainder of the thesis.

Chapter 1 In this chapter, which is the current one, background literature on
the problem has been introduced. The approach taken and contributions are stated.

Chapter 2 This chapter is responsible for presenting the mathematical models
the algorithm designs appearing in Part II & III are based on. Part of the content
in this chapter appears in [Wilhelmsen & Di Meglio 2021].

Part II For this part of the thesis the Rijke tube, a laboratory setup, is considered.
The state observation and boundary parameter identi�cation problems are solved.

Chapter 3 In this chapter, a state observer for the Rijke tube is derived and
analysed, before being tested in simulations and experimentally. Part of this chapter
appears in [Wilhelmsen & Di Meglio 2020b].
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Chapter 4 Here the acoustic boundary parameter identi�cation problem
is considered. A simple scheme for estimating both boundary parameters
with a single pressure sensor is proposed, and afterwards tested in simulations
and experimentally. Part of the material presented in this chapter appears
in [Wilhelmsen & Di Meglio 2020a].

Part III The aim of this part is to move the study of estimation algorithms from
a laboratory setup towards more complicated combustor dynamics.

Chapter 5 In this chapter, the boundary parameter identi�cation scheme
problem for general2� 2 linear hyperbolic PDEs is studied. A generalization of the
estimation scheme from Chapter 4 to more complicated combustor acoustics is sug-
gested. The main contribution from [Wilhelmsen & Di Meglio 2020a] is presented
in this chapter, along with a minor unpublished result.

Chapter 6 This chapter derives an output feedback controller for a linearized
model of a combustor with distributed acoustics. All of this chapter is based on
content from from [Wilhelmsen & Di Meglio 2021].

Chapter 7 Here the state observer design for a combustor model with dis-
tributed acoustics but nonlinear �ame model is considered. Using results from the
literature, the state estimation problem is reduced to the problem of static function
approximation, for which neural networks are employed. The nonlinear observer is
veri�ed on CFD data. All the novel material in this chapter is as of yet unpublished.

Part IV This last part suggests some conclusions, and houses the appendix and
bibliography.

Chapter 8 In this chapter the progress made is summarized, and re�ections
are made. Some directions for further research are proposed.
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Les modèles mathématiques qui constituent la base du reste de la thèse sont
développés dans ce chapitre. Nous présentons d'abord l'approche générale de
modélisation adoptée, sous forme d'interconnections de modèles dans le domain
temporel. Cette approche considère le système thermoacoustique comme étant
composé de multiples sous-systèmes avec des interfaces bien dé�nies. Les modèles
de dégagement de chaleur sont le premier type de sous-système à être couvert.
Deux types sont considérés, à savoir le dégagement de chaleur d'un appareil de
chau�age électrique et le dégagement de chaleur dû à la présence d'une �amme.
Nous dérivons ensuite un modèle des phénomènes acoustiques. Nous proposons
un modèle adapté à l'estimation et à la conception d'algorithmes de contrôle,
décrivant les oscillations longitudinales dans un conduit à géométrie variable
dans l'espace. Il est simpli�é à deux cas particuliers, le premier étant pour un
écoulement moyen nul et le second étant le modèle pour l'acoustique dans un conduit
avec une section transversale constante. Le troisième type de sous-système, les
impédances acoustiques, est ensuite considéré. Nous terminons ce chapitre par la
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description du couplage entre le dégagement de chaleur et l'acoustique, avant de ré-
sumer les modèles de réseaux complets qui seront considérés tout au long de la thèse.

The mathematical models which form the basis for the rest of the thesis are de-
veloped in this chapter. It starts with introducing the general approach to modelling
taken, which is a time domain network model approach. This approach considers
the thermoacoustic system as consisting of multiple subsystems with well-de�ned
interfaces. Heat release models are the �rst type of subsystem to be covered. Two
types are considered, namely heat release from an electrical heater and heat release
due to �ames. We then derive a model of the acoustic phenomenon. We propose a
model suitable for estimation and control algorithm design, describing longitudinal
oscillations in a duct with spatially varying geometry. It is simpli�ed to two special
cases, the �rst one being for zero mean �ow and the second special case being the
model for acoustics in a duct with constant cross-sectional area. The third type
of subsystem, acoustic impedances, are considered next. This is followed by the
description of coupling between the heat release and acoustics, before the complete
network models that will be considered throughout the thesis are summarized.

2.1 Modelling principles

In this thesis we are concerned with longitudinal thermoacoustic oscillations, using
1� D distributed models to describe the acoustics. Here, the acoustic modes along a
privileged coordinate is described, with �ow �eld �uctuations along the other spatial
coordinates assumed constant or negligible for the analysis of modes along the axis
of interest. Although this assumption is too simplistic to describe highly complex
cases such as azimuthal modes mixing with longitudinal modes as one can in practice
�nd in annular combustors [Pankiewitz & Sattelmayer 2003, Lieuwen & Yang 2005],
studying the simpler cases is essential to understanding the more complex cases. To
describe the heat release,0 � D models based on the assumption that the spatial
extent of the heat source is negligible compared to the length scale of the acoustics
inside the combustor are employed. This allows the heating element/�ame to be
considered an acoustically compact source [Lieuwen 2021], and its internal struc-
ture can be disregarded and instead an Input and Output (I/O) description used.
With interfaces de�ned between the heat source and the acoustics, the complete
system can be described as an interconnected model of acoustic elements. Such a
modelling approach is referred to in the literature asthermoacoustic network mod-
elling [Polifke & Gentemann 2004, Stow & Dowling 2009, Moeck 2010], and is the
approach taken here. A schematic of the structure of a typical thermoacoustic net-
work model is shown in Figure 2.1.

As described in [Emmert 2016], there are two main paradigms within network
modelling of thermoacoustics. The more classical approach is to consider the fre-
quency domain properties of the thermoacoustic instabilities, such as wave number
and complex frequency of the oscillations. This approach lends itself well to com-
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Figure 2.1: Example schematic of thermoacoustic network model.

putation of the eigenmodes of a given combustor setup to determine its intrinsic
stability properties, and hence useful for passive stabilization approaches of ther-
moacoustic instabilities. Some contributions in the literature that apply this ap-
proach are [Dowling 1995, Schuermanset al. 2000]. On the other hand, rather than
basing the analysis around speci�c wave numbers and frequencies of oscillation, a
di�erent approach is to simply describe the thermoacoustic instabilities by a set of
mathematical models (typically state space representations) of the subsystems inter-
connected by well-de�ned interfaces, that physically represent the averaged acoustic
quantity at the point of the interface. This approach lends itself well to time domain
analysis, and is the approach taken here. Some other examples from the literature
that employ this approach are [Schuermanset al. 2003, Bothienet al. 2007].

In the following sections, we introduce the mathematical models of the various
subsystems that will be employed in the network models used in this thesis. First,
in Section 2.2 heat release models that are considered are described. The �rst heat
release model considered is that of an electrical heater, which is used in the work
on the Rijke tube in Part II of this thesis. Flame models are instead considered in
Part III of the thesis, and these are subsequently described. Next, in Section 2.3,
the acoustics is modelled. These models are used throughout the thesis, and this
section contains a generalization of1 � D in�nite dimensional acoustics models
for the case when one has a duct with spatially varying geometry and non-zero
mean �ow. Then in Section 2.4 the model boundary conditions and interfaces are
described, including descriptions of acoustic impedance and coupling between the
acoustics and heat release. The �nal network models that are used throughout the
thesis are summarized in Section 2.5.

2.2 Heat release

2.2.1 Electrical heater

Modelling of the electrical heater used in the Rijke tube considered in this thesis is
based on work done originally by [King 1914] and [Lighthill 1954]. A description of
the modelling process is given in [Epperleinet al. 2015], but it is included here for
completeness and convenience for the reader. Consider an electrical heater made of a
wire of length lw and diameter dw , in a laminar �ow �eld, as depicted in Figure 2.2.
We are interested in quantifying the power of heat releaseQ from the electrical
heater into the �ow �eld, which occurs due to convection and conduction processes.
There are two main quantities a�ecting these processes, namely the local velocityV
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Figure 2.2: Heat releaseQ from electrical heater in laminar �ow �eld of velocity
V . Global view (left) and boundary layer around wire due to �uctuating velocity
�eld (right).

of the �ow �eld around the heater and the di�erence between the wire temperature
Tw and the surrounding gas temperatureTg. We make the following assumptions:

Assumption 1. The �ow is laminar and equal throughout the cross section perpen-
dicular to the direction of the �ow.

Assumption 2. The steady-state �ow states density�� , pressure �P, and velocity �V
are constant in time.

Assumption 3. The wire temperatureTw and gas temperatureTg are described by
constant scalars.

King's law developed by [King 1914] gives an approximate algebraic relationship
between heat releaseQK

1 and the aforementioned quantities which reads

QK = lw
�

� + � v
p

jV j
�

(Tw � Tg) (2.1)

where � represents thermal conductivity of the surrounding �uid, and � v is a pro-
portionality constant that must be empirically determined.

The algebraic relationship (2.1) works well in describing the heat release when
the �ow �eld around the electrical heater is constant, but in thermoacoustic systems

1Subscript K used here to denote heat release as predicted by King's law.
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such as the Rijke tube the local velocity is changing rapidly, and hence additional dy-
namic e�ects must be taken into consideration. When the �ow around the heater is
�uctuating, a boundary layer is formed around the wire, as illustrated in Figure 2.2.
Hence, the heat release from the wire predicted by (2.1) is not released directly into
the �ow �eld, but must pass through the boundary layer �rst. In [Lighthill 1954] it
was found that these dynamics can be approximated by a �rst-order transfer func-
tion, relating the heat releaseQK directly from the wire as input and the resultant
heat releaseQ released into the �ow as output, given by

Q
QK

(s) =
1

�s + 1
(2.2)

where � is a time constant computed as

� =
dw

5�V
;

the quantity �V appearing in the denominator denoting mean �ow velocity. Com-
bining then (2.1)�(2.2) and writing in the time domain, we have a scalar ODE
describing the heat release rateQ from the electrical heater given by

_Q(t) = �
1
�

Q(t) +
1
�

lw
�

� + � v
p

jV (t)j
�

(Tw � Tg): (2.3)

This model can be used as a subsystem in a thermoacoustic network model by con-
sidering the averaged (in space over the cross section perpendicular to the direction
of �ow) local velocity V as the input variable and heat release rateQ as output vari-
able. It is used in Chapter 3 where we derive a state observer for a thermoacoustic
model of the Rijke tube. Next in Section 2.2.2 we describe �ame models which rely
on the same I/O variables and can hence be easily integrated into thermoacoustic
network models.

2.2.2 Flames

Mathematical modelling of �ames and combustion processes is a rich and com-
plex �eld, and going deep into this topic is outside the scope of this thesis. For
the interested reader, in-depth sources covering the topic such as [Liberman 2010,
Lieuwen 2021, Poinsot & Veynante 2005, De Goeyet al. 2011] can be consulted.
Rather, we are interested in obtaining an external description of the �ame and
its interaction with the �ow �eld.

Flames are the result of combustion, which in essence is an exothermic chemical
reaction between a fuel and an oxidizer. The �ames we consider are assumed to
have su�ciently low speeds to be so-calledde�agrations, rather than detonations
which occur at much higher speeds [Poinsot & Veynante 2005, Oran & Boris 2005].
Within the scope of this work we are mainly interested in �ames that can be con-
sidered premixed and laminar. That is to say the fuel and oxidizer are mixed be-
fore arriving at the �ame, rather than introduced separately which is the case for
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di�usion �ames, and the �ow �eld around the �ame is laminar rather than tur-
bulent. This assumption is not as restrictive as it might seem from �rst glance,
for two main reasons. Firstly, in practice the issue of thermoacoustic instabili-
ties often occurs within lean premixed combustors [Seo 2003], and hence using pre-
mixed �ame models makes sense from a practical perspective. Secondly, as noted
in [Poinsot & Veynante 2005], many models of turbulent �ames, such as �amelet
theory [Williams 1975], use smaller laminar �ame models as their building blocks.

Figure 2.3: Heat releaseQ from exothermic reduction-oxidation reaction in laminar
�ow �eld of velocity V .

Consider the scenario depicted in Figure 2.3. We have a laminar �ow of unburned
gas consisting of a mix of fuel and oxidizer �owing into a reaction zone (�ame).
Within the �ame, a series of exothermic reduction-oxidation reactions occur, releas-
ing heat into the �ow and a mix of burned gases at the downstream boundary of
the reaction zone. Note that the �ame is travelling into the unburned gases with
laminar burning velocity Vl , being stabilized by the �ow �eld moving in the opposite
direction with similar velocity.

Depending on the particular fuel and oxidizer used and the conditions under
which the reaction occurs, in practice a high number of di�erent chemical reactions
with varying rates of reaction, possibly involving multiple reaction steps, can occur.
However, for the purpose of this work we consider the chemistry to occur in a
single-step irreversible reaction, represented by the general chemical formula

nF F + nOO ! P (2.4)

where F , O and P are placeholders for chemical formulas of the fuel, oxidizer and
product respectively, andnF , nO denote the relative quantities of fuel and oxidizer
in the reaction. Some examples of combustion reactions represented by the gen-
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nF F nO O P

2 C3H8 7 O2 6CO2 + 8H2O
2 CH3OH 3 O2 2CO2 + 4H2O
1 H2 1 Cl2 2HCl

Table 2.1: Examples of combustion reaction species �tting together in the for-
mula (2.4).

eral formula (2.4) are listed in Table 2.1. An important metric to characterize the
combustion process is theequivalence ratio� , de�ned by

� := $
_mF

_mO
(2.5)

where _mF and _mO are respectively the mass �ow rates of fuel and oxidizer, and the
mass stoichiometric ratio$ is de�ned by

$ :=
nOWO

nF WF
(2.6)

with WF , WO being the molar masses of fuel and oxidizer, respectively. The com-
bustion process is said to belean if � < 1, rich if � > 1 and at stoichiometry if
� = 1 . As mentioned previously, the main focus within this work is on lean com-
bustion, where there is an excess of oxidizer in the �ow. It is in this case reasonable
to assume that the gas upstream and downstream of the reaction zone have similar
physical properties, such as density and adiabatic constant.

The thickness of the reaction zone separating the unburned and burned gas
regions in Figure 2.3 is assumed to be small in relation to the wavelength of the
acoustics considered. One can hence apply the so-called thin �ame limit and con-
sider the �ame to be an in�nitesimally thin sheet separating the two regions of the
�ow [Lieuwen & Yang 2005] via a jump condition in the �ow �eld. The location
of this in�nitesimally thin region, referred to as the �ame front , in the �ow as a
function of radial position from the centre of a burner is depicted in Figure 2.4 for
the case of a conical �ame. Based on the velocityV the dynamics of the �ame front
can be described by the G-equation [Williams 1985]

@G
@t

+ V(t)
@G
@z

= � Vl

s �
@G
@z

� 2

+
�

@G
@r

� 2

(2.7)

where the level setG(z; r; t ) = 0 represents the �ame front and the �ame speedVl

is assumed constant. The �ame heighthF and tip angle � F are calculated from
the steady-state solution to (2.7), by setting V (t) � �V and @G

@t = 0 . As can be
seen, perturbations in the local velocity vectorV a�ects the local displacement of
the �ame front, something which can be observed experimentally as shown by the
Schlieren images in Figure 2.5. This in turn impacts the total areaAF of the �ame
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Figure 2.4: Location of conical �ame front along vertical z direction as function of
radius r , stabilized to edge of burner of radiusR. Steady state position (dashed red
line) and perturbed position (solid red line).

Figure 2.5: Schlieren images from [Ducruixet al. 2000] of a premixed conical �ame
under steady state conditions (top image) and velocity perturbations (bottom im-
ages).



2.2. Heat release 19

front at any given point in time, given by

AF =
Z R

0
2�r

ds
dr

dr; (2.8)

where ds is an in�nitesimal displacement along the �ame surface (see Figure 2.4).
Assuming a homogenous equivalence ratio throughout the incoming premixed gas,
the heat release rate �uctuations �Q are related to the displacements in �ame
surface area �AF = AF � �AF , �AF being the steady-state �ame area, given
by [Ducruix et al. 2000]

�Q = �V l � q �AF : (2.9)

where � is the density of the gas and� q is the heat release per unit mass (caloric
value) of the premixed gas. So far, in addition to Assumptions 1, 2, we have intro-
duced the following Assumptions in the preceding discussion:

Assumption 4. The fuel and oxidizer enter the reaction zone premixed.

Assumption 5. The combustion is lean so the equivalence ratio, assumed to be
constant, satis�es � < 1. Hence the physical properties of the gas are similar before
and after the reaction zone.

Assumption 6. The combustion reaction can be approximated by a single-step
chemical reaction of the form (2.4).

Assumption 7. The spatial extent of the reaction zone is considered small compared
to the acoustic wavelength, so it can be considered an in�nitesimally thin disconti-
nuity.

Assumption 8. The �ame sheet is a de�agration and hence moves into the un-
burned gases at a constant velocityVl of comparable magnitude to the local steady-
state �ow velocity �V .

Although the formulation (2.7)�(2.9) of variation of the heat release rate due to
�uctuations in the incoming �ow velocity paints an intuitive picture of the process, it
is rather complex and nontrivial to apply it directly for analysis of thermoacoustics
from a global perspective. Indeed, computing the heat release involves integrating
a path (2.8) along a level set of the solution to a nonlinear PDE (2.7), which may
be both computationally expensive and inconvenient for analysis. A more practical
alternative is to heuristically describe the I/O characteristics of the �ame, which
under Assumptions 1, 2, 4�8 can be achieved via the Flame Transfer Function
(FTF) [Schuller et al. 2003] (or for nonlinear frequency domain analysis the Flame
Describing Function (FDF) [Noiray et al. 2008]) formulation. Conventionally, the
FTF F is de�ned as the ratio of the normalized heat release rate �uctuations�Q= �Q
to the normalized velocity �uctuations �V =�V at each frequency! > 0, i.e.

F (j! ) :=
�Q(! ) �V
�V (! ) �Q

: (2.10)
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Figure 2.6: Gain and phase data of FTF from [Silvaet al. 2017]. Prediction from
simulations (solid line) and data collected from experiments (individual points).

Being complex functions, FTFs are typically represented by their gain and phase
data, an example from [Silvaet al. 2017] shown in Figure 2.6.

One of the earliest and simplest FTFs to be established and used in practice
is the n � � model [Crocco & Cheng 1956], a phenomenological model initially de-
veloped from research on combustion instabilities in liquid fuel rockets, and later
shown to be useful in modelling thermoacoustic instabilities in other combustion
systems [Lieuwen & Yang 2005], such as lean premixed combustors. It describes
the �ame based on two parameters, the interaction indexn and a time delay � .
Using the Laplace variables := � + j! we have

F (s) = ne� � s : (2.11)

Assigning the output Y := �Q= �Q and input U := �V =�V , in the time-domain the n � �
model (2.11) gives the algebraic relation

Y(t) = nU(t � � ): (2.12)

In practice it has been shown that in addition to the time delay, lean premixed �ames
exhibit low-pass �lter behaviour [Blackshear 1952, Merk 1957, Ducruixet al. 2000].
It is well known from linear systems theory that low pass �lters can be described by
strictly proper rational transfer functions [Zumbahlen 2007], and only taking into
account this aspect of the �ame behaviour one has a �ame transfer function of the
form

F (s) =
N (s)
D(s)

(2.13)

where N , D are polynomials in s, where deg(N ) < deg(D).
Similar to what is done in [Freitag 2009, Cuquel 2013], we consider an FTF that

combines the e�ects of an input time delay as described by (2.11) and low-pass �lter
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behaviour as described by (2.13). We propose a �ame transfer function of the form

F (s) =
N1(s) + N2(s)e� � s

D(s)
(2.14)

which is obtained by multiplying a transfer function of the form (2.13) with a transfer
function of the form (2.11), and adding a polynomial term N1(s) to the numerator
to account for possible instantaneous low-pass �ltering e�ects. An example from
the literature of an FTF, also for a conical �ame, �tting the form (2.14) is found
in [Sugimoto & Matsui 1982] by measuring �uctuations in CH � radicals. It is re-
produced here as

F (s) = 2
� 1 + ( s � � )� + e� (s� � )�

(s � � )2� 2

where expressions for the parameters� and � are given by

� = �V i ; � =
hF

Vi

where Vi is the (assumed constant) propagation velocity ofCH � radicals, � is a
constant describing the distribution of CH � radicals emitted along the �ame front,
and hF is the �ame height.

Recall that for strictly proper rational transfer functions N1
D (s), N2

D (s) there
exists (A1; b1; C1) 2 Rn1 � n1 � Rn1 � 1 � R1� n1 , (A2; b2; C2) 2 Rn2 � n2 � Rn2 � 1 � R1� n2 ,
respectively, such that

N1(s)
D (s)

= C1(sI � A1) � 1b1;
N2(s)
D (s)

= C2(sI � A2) � 1b2: (2.15)

We then obtain a state-space realization of (2.14) with stateX 2 Rn , n :=
n1 + n2, as

_X (t) = AX (t) + �B0 �V (t) + �B1 �V (t � � ) (2.16a)

Y (t) =
1
�V

�CX (t) (2.16b)

where

A :=
�

A1 0n1 � n2

0n2 � n1 A2

�

�B0 :=
�

b1

0n2 � 1

�
; �B1 :=

�
0n1 � 1

b2

�

�C :=
�
C1 C2

�
:

The formulation (2.14) and its equivalent time-domain representation (2.16) can
both be used aslinear representations of premixed �ame dynamics, as we do in
Chapter 6. In reality �ames can have strong nonlinearities that can be important to
take into account for thermoacoustic analysis. As noted in [Lieuwen 2005], nonlin-
earities are more pronounced at conditions such as higher perturbation frequencies
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and shorter �ame lengths. Using an FDF, which describes the response not only
as a function of the velocity perturbation frequency but also the forcing amplitude,
is one method of capturing nonlinearities in the frequency domain. In Chapter 7,
we take an alternative approach and propose to use a nonlinear time domain gen-
eralization of (2.16) in the form of an input-a�ne nonlinear state space model to
capture the nonlinearity of the �ame response. This gives a generic model of the
form

_X (t) = f (X (t)) + �g0(X (t)) �V (t) + �g1(X (t)) �V (t � � ) (2.17a)

Y (t) =
1
�V

�h(X (t)) (2.17b)

where the functionsf (�), �g0(�), �g1(�), �h(�) can e.g. be �tted using nonlinear regres-
sion software, based on I/O data of �ame response from simulations or experiments.

This concludes the heat release and �ame modelling. Next in Section 2.3, mod-
elling of the acoustics is covered, before they are coupled with the heat release
models in Section 2.4.

2.3 Acoustics

We �rst derive the model of acoustic �uctuations in a duct with spatially varying
cross-sectional area and a non-zero steady-state velocity with low Mach number.
This is subsequently simpli�ed to the special cases of zero velocity in a duct with
spatially varying cross section, and duct with constant cross-sectional area and ar-
bitrary low Mach number steady-state velocity

2.3.1 Duct with spatially varying cross section

Figure 2.7: Duct of length L with spatially varying cross-sectional areaa(z) for
z 2 [0; L ].

Consider the setup shown in Figure 2.7. It consists of a duct of lengthL , with
spatially varying cross-sectional areaa(z) for z 2 [0; L ], through which a gas is
�owing with mean inlet density �� 0, velocity �V0 and pressure �P0. In addition to
Assumptions 1, 2, we assume the following:
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Assumption 9. The steady state velocity�V << c , with c being the speed of sound,
for z 2 [0; L ] so that the Mach numberMa << 1.

Assumption 10. The duct geometry can be approximated by a solid of revolution
around the z-axis for z 2 [0; L ].

Assumption 11. Internal damping contributions from the duct wall material can
be neglected.

To obtain a mathematical model for the acoustics, we start with the mass,
momentum and energy equations of gas dynamics. They can respectively be writ-
ten [Bale 2002] in1 � D for the scenario shown in Figure 2.7 as the system

@t (a(z)� (z; t)) = � @z (a(z)� (z; t)V (z; t)) (2.18a)

@t (a(z)� (z; t)V (z; t)) = � @z
�
a(z)

�
P(z; t) + � (z; t)V 2(z; t)

��
+ a0(z)P(z; t)

(2.18b)

@t (a(z)e(z; t)) = � @z(a(z) (e(z; t) + P(z; t)) V (z; t)) + Q(z; t) (2.18c)

giving a description of the density � , velocity V , pressureP and pointwise energy
e at each spatial coordinatez 2 [0; L ] and point in time t � 0. It is initialized from

� (z;0) = � 0(z); V (z;0) = V0(z); P(z;0) = P0(z); e(z;0) = e0(z)

where � 0; V0; P0; e0 2 L 2(0; L ), with possible distributed heat release rateQ as a
source term in (2.18c). We assume the total energye is composed of potential and
kinetic energy, so that

e(z; t)
| {z }

Total energy

= � (z; t)U(z; t)
| {z }
Potential energy

+
1
2

� (z; t)V 2(z; t)
| {z }

Kinetic energy

(2.19)

with U being speci�c internal energy. Assuming that the air satis�es the ideal
gas law, the speci�c internal energyU can be related to pressureP and density �
via [Epperlein et al. 2015]

U(z; t) =
Cv

R
P(z; t)
� (z; t)

(2.20)

where Cv is the speci�c heat capacity of the gas at constant volume, andR the
universal gas constant. Substituting (2.19)�(2.20) into (2.18), after some algebraic
manipulation, we have the nonlinear PDE system in(�; V; P ) written as

� t (z; t) = � V (z; t)� z(z; t) � � (z; t)Vz(z; t) �
a0(z)
a(z)

� (z; t)V (z; t) (2.21a)

Vt (z; t) = �
1

� (z; t)
Pz(z; t) � V (z; t)Vz(z; t) (2.21b)

Pt (z; t) = � 
P (z; t)Vz(z; t) � V (z; t)Pz(z; t) � 

a0(z)
a(z)

P(z; t)V (z; t) +
�


a(z)
Q(z; t)

(2.21c)
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where 
 is the adiabatic constant, de�ned in terms of R and Cv as


 := 1 +
R
Cv

(2.22)

and �
 := 
 � 1.
With constant inlet conditions in Figure 2.7 thanks to Assumption 2, the acous-

tics are considered �small� perturbations around an equilibrium �ow pro�le of (2.21).
This requires to assume the following:

Assumption 12. Temporal variations in the density, velocity and pressure can be
approximated su�ciently well by �rst-order perturbations around the mean �ow.

As will be discussed further down in Section 2.4, we consider only pointwise
interaction of the heat release rate with acoustic �eld, and hence the heat release
rate is disregarded for the equilibrium pro�le calculation. Setting the temporal
derivative on the left-hand side of (2.21) equal to zero and rearranging, the steady
state is found to satisfy the Initial Value Problem (IVP)

d
dz

2

4
�� (z)
�V (z)
�P(z)

3

5 =
a0(z)
a(z)

1
�� (z) �V 2(z) � 
 �P(z)

2

4
� �� 2(z) �V 2(z)

 �P(z) �V (z)

� 
 �P(z)�� (z) �V 2(z)

3

5 (2.23a)

2

4
�� (0)
�V (0)
�P(0)

3

5 =

2

4
�� 0
�V0
�P0

3

5 (2.23b)

for z 2 (0; L ).
Using Assumption 12, we introduce now perturbations�� , �V , �P around the mean

values solved from the IVP (2.23), so we decompose

� (z; t) = �� (z) + �� (z; t); (2.24a)

V (z; t) = �V (z) + �V (z; t); (2.24b)

P(z; t) = �P(z) + �P(z; t): (2.24c)

Substituting (2.24) into (2.21) and neglecting higher order and a�ne terms, we
end up with

2

4
�� t (z; t)
�Vt (z; t)
�Pt (z; t)

3

5 =

2

6
4

� �V (z) �� (z) 0
0 � �V (z) � 1

�� (z)

0 � 
 �P(z) �V (z)

3

7
5

2

4
�� z(z; t)
�Vz(z; t)
�Pz(z; t)

3

5 +

2

6
4

0
0
�


a(z)

3

7
5 �Q(z; t)

+

2

4
� l1( �V (z)) � l1( �� (z)) 0

0 � �V 0(z) 0
0 � l 
 ( �P(z)) � 
l 1( �V (z))

3

5

2

4
�� (z; t)
�V (z; t)
�P(z; t)

3

5 (2.25)
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where possible heat release rate �uctuations�Q = Q� �Q appear as an external source
term. The term l � (f ) is de�ned

l � (f (�)) := f 0(�) + �
a0(�)
a(�)

f (�) (2.26)

for constant � 2 R and function f 2 C1(0; L ). Next, similar to what is
done for acoustics in a duct with constant cross-sectional area considered in
e.g. [Epperleinet al. 2015], dimensional analysis shows that for low Mach number
�ow (Assumption 9) we can approximate �V � 0 in relation to the other steady state
quantities and decouple the expressions for�V , �P from the expression for �� . This
gives a simpli�ed linear acoustic PDE system in( �V ; �P) which reads

�Vt (z; t) = �
1

�� (z)
�Pz(z; t) � �V 0(z) �V (z; t) (2.27a)

�Pt (z; t) = � 
 �P(z) �Vz(z; t) �
�

�P0(z) + 

a0(z)
a(z)

�P(z)
�

�V (z; t)

� 
 �V 0(z) �P(z; t) +
�


a(z)
�Q(z; t): (2.27b)

2.3.2 Special cases

We present here two scenarios for which the acoustic equations (2.27) can be written
in a simpler form. First in Section 2.3.2.1 we consider the case when there is zero
mean �ow at the inlet of the duct. Secondly, we show how (2.27) simpli�es to the
constant cross-sectional area case in Section 2.3.2.2.

2.3.2.1 Special case I : Duct with zero mean �ow

We let here �V0 = 0 in the IVP (2.23). It can in this case be shown by direct
substitution that the solution satis�es

�� (z) � �� 0; �V (z) � 0; �P(z) � �P0:

Substituting these steady-state solutions into (2.27) gives us the simpli�ed acoustics
equations

�Vt (z; t) = �
1
��

�Pz(z; t) (2.28a)

�Pt (z; t) = � 
 �P �Vz(z; t) � 

a0(z)
a(z)

�P �V (z; t) +
�


a(z)
�Q(z; t) (2.28b)

This model is used in Chapter 5.
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2.3.2.2 Special case II : Duct with constant cross-sectional area

We let here the cross-sectional areaa(z) � a0 be constant. Firstly, this implies
a0(z) � 0, and substituting into (2.23) we obtain the constant solution

�� (z) � �� 0; �V (z) � �V0; �P(z) � �P0

for the equilibrium pro�le. We then have that the acoustics are described by

�Vt (z; t) = �
1
��

�Pz(z; t) (2.29a)

�Pt (z; t) = � 
 �P �Vz(z; t) +
�

a

�Q(z; t) (2.29b)

This model is used in Chapters 3�4.
We consider next in Section 2.4 boundary conditions for the acoustics (2.27)�

(2.29) and coupling between the heat release and acoustic �eld.

2.4 Boundary conditions

Boundary conditions for the thermoacoustic models considered in this thesis are dis-
cussed here. First, the modelling of acoustic impedance is presented in Section 2.4.1.
This is followed by coupling between �ame and acoustics, which is considered in Sec-
tion 2.4.2.

2.4.1 Acoustic impedance

Figure 2.8: Incident pressure wave�P i being decomposed into re�ected�P r and trans-
mitted �P t waves at surface at surface of discontinuity between region of characteristic
impedanceZ0 (left) and Z1 (right).

To introduce the concept of acoustic impedance, consider the scenario presented
in Figure 2.8. It shows an incident acoustic wave�P i propagating perpendicularly
towards a surface of discontinuity separating two di�erent media at z = zd, with
respectively constant density� 0, � 1 and speed of soundc0, c1. Due to the surface
of discontinuity, the incident wave is split into two components - a transmitted
wave �P t , which continues in the same direction of travel as �P i , and a re�ected
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wave �P r which propagates in the opposite direction. As shown in [Kim 2010], the
magnitude of the re�ected and transmitted waves are computed via the re�ectiondr

and transmissiondt coe�cients respectively, de�ned as

dr :=
Z1 � Z0

Z1 + Z0
(2.30a)

dt :=
2Z1

Z1 + Z0
(2.30b)

where Z i denotes the characteristic impedance of mediumi 2 f 0; 1g, computed as
the product of density and speed of sound

Z i = � i ci : (2.31)

At any point z in an acoustic �eld the local pressure and velocity are related via
the impedanceZ through the relation

�P(z; t) = Z �V (z; t) (2.32)

This gives a basis for modelling the boundary conditions of the acoustics equa-
tions described in Section 2.3. When modelling the duct termination via a scalar

Figure 2.9: Theoretical ideal cases for duct termination impedance. Open end (left),
closed end (middle) and anechoic end (right).

impedance as (2.32), there are three important theoretical edge cases to consider as
shown in Figure 2.9. The �rst is an ideal open end, where the impedanceZ = 0 .
Applying (2.30a) with Z1 = Z and Z0 = k, k being the characteristic impedance of
the gas inside the duct, one obtains a re�ection coe�cient dr = � 1 for the case of
an ideal open end. The second edge case is that of an ideal closed end, where the
impedanceZ = �1 , and thus the re�ection coe�cient dr = 1 . Finally, we have the
case of an ideal anechoic end, which has an impedance ofZ = k and hence re�ection
coe�cient dr = 0 .

In practice the impedance typically falls somewhere between these edge cases,
as there will always be a certain amount of damping present causing acoustic waves
to neither perfectly transmit nor perfectly re�ect. Knowing the exact value of the
acoustic impedance at the terminations of a given duct is often di�cult to know a
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priori or compute analytically in practice. As a representation of the duct termina-
tions, we use the boundary conditions

�P(L; t ) = ZL �V (L; t ) + WL (t) (2.33a)

�P(0; t) = Z0 �V (0; t) + W0(t): (2.33b)

One should note that in the general case acoustic impedance is simply the ratio
between velocity and pressure at any given positionz and time t, so that

Z (z; t) :=
�P(z; t)
�V (z; t)

; (2.34)

and hence it depends on both the media of propagation and the acoustic �eld. The
special case oflocally reacting linear surfaces [Rienstra & Hirschberg 2004] models
the acoustic impedance as a general linear system, with input being velocity per-
turbations and output being pressure perturbations. This description is common
to use in frequency domain analysis of acoustics as the impedance can be modelled
as a complex function of frequencyZ = Z (! ), where the real component is the
resistive part and the imaginary component the reactive part. In the time domain,
the relation between pressure and velocity within this description would hence be a
convolution

�P(t) =
Z t

0
Z (t � � ) �V (� )d�; (2.35)

which can be inconvenient to use directly in time domain analysis if no further as-
sumptions about the structure ofZ are taken. Hence the boundary conditions (2.33),
although being a simpli�cation that models the impedance as only having a con-
stant, resistive component, is convenient to use for algorithm design and serves as a
su�ciently good approximation in many practical scenarios. Hence, using boundary
conditions of the form (2.33) relies on the following Assumption:

Assumption 13. The boundary acoustic impedances can be approximated by scalar
constants.

2.4.2 Heat release�acoustics coupling

2.4.2.1 Electrical heater

As done in e.g. [Epperleinet al. 2015, de Andradeet al. 2018b], we assume the elec-
trical heater is considered a point source inside the acoustic domain at �xed position
z0 2 (0; L ). This yields the following Assumption, analagous to Assumption 7 for
the �ame models:

Assumption 14. The spatial extent of the electrical heater is small compared to the
acoustic wavelength, and can hence be modelled by a point source in the �ow.
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To model this, the Dirac delta function � is used giving rise to the representation

�Q(z; t) = � (z � z0) �Q(t) (2.36)

that will be used for the heat release source term in (2.29b) when modelling the
Rijke tube, with the heat release rate �uctuations �Q = Q � �Q coming from (2.3).

2.4.2.2 Flame models

Figure 2.10: Jump condition around �ame.

For the combustor models considered, we assume the �ame is located at the base
of the combustion chamber, namely atz = 0 . We make the following assumption
for the boundary condition upstream (z < 0) of the �ame:

Assumption 15. There is a non-re�ective boundary condition upstream of the
�ame.

The jump condition around the �ame can be considered to be composed of three
regions (see Figure 2.10): the region directly upstream of the area expansion where
the premixed fuel-air mixture is entering, the region of unburned gases directly
downstream of the area expansion but upstream of the �ame front, and the region
of burnt gases directly downstream of the �ame front. We denote respectively the
pressure and velocity in these three regions aroundz = 0 as( �P � ; �V � ); ( �P0; �V 0) and
( �P+ ; �V + ).

As suggested in [Gentemannet al. 2003], the pressure and velocity �uctuations
�P0, �V 0 are assumed to be in the linear regime related to their respective upstream
counterparts �P � , �V � via the relation

�P0(0; t) = �P � (0; t) +

 

1 � � �
�

Au

Ad

� 2
!

M u �k �V � (0; t) (2.37a)

�k �V 0(0; t) = � M d �P � (0; t) +
Au

Ad

�k �V � (0; t) (2.37b)
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where� is the pressure loss coe�cient across the area expansion,Au , Ad are respec-
tively the area directly upstream and downstream of the area expansion,M u , M d

are the �ow Mach numbers directly upstream and downstream of the area expansion
and �k is the mean characteristic impedance of the unburned gas.

With Assumption 9 we have M u ; M d << 1, so we setM u � 0, M d � 0 and the
terms involving these are neglected, yielding

�P0(0; t) � �P � (0; t) (2.38a)

�V 0(0; t) �
Au

Ad

�V � (0; t): (2.38b)

After the jump condition involving the area expansion, there is another jump
condition as the �ow passes through the �ame. This condition is in [Polifke 2015] de-
rived from the Rankine-Hugoniot equations, and in the linear regime can be written
as

�P+ (0; t) = �P0(0; t) � �M d
�k �V 0(0; t) � �k �V (0)�M d

�Q(t)
�Q

(2.39a)

�k �V + (0; t) = �k �V 0(0; t) + �k �V0�
�Q(t)

�Q
� �M d
 �P0(0; t) (2.39b)

where � is de�ned as

� :=
Th

Tc
� 1 (2.40)

with Tc, Th being respectively the absolute temperatures at the cold (upstream)
and hot (downstream) sides of the �ame, and �V0 is the mean velocity at z = 0 .
Neglecting again the terms involving the Mach numberM d << 1 in their product,
yields the approximate relations

�P+ (0; t) � �P0(0; t) (2.41a)

�V + (0; t) � �V 0(0; t) + �V0�
�Q(t)

�Q
: (2.41b)

Substituting then (2.38) into (2.41), we obtain the boundary conditions

�P+ (0; t) = �P � (0; t) (2.42a)

�V + (0; t) = � �V � (0; t) + &
�Q(t)

�Q
(2.42b)

where we have denoted

� :=
Au

Ad
; &:= �V0�:

The �ame models (2.16) or (2.17) are in turn coupled with the average local
velocity �uctuation �V (�) := 1

2( �V � (0; �) + �V + (0; �)) .
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2.5 Summary of models

With the di�erent model components described in Section 2.2�2.4, we put together
the subsystems and present the complete network models in this section. The Rijke
tube model in Section 2.5.1 and can combustor model in Section 2.5.3 both assume
the following:

Assumption 16. Heat transfer between the duct walls and internal gas is neglected.

2.5.1 Rijke tube � Chapter 3

The �rst model we consider is the electrically heated Rijke tube. It consists of a
cylindrical tube with constant cross-sectional area, and an electrical heater inside the
tube. The complete model consists hence of the mathematical model of the electrical
heater (2.3), the acoustics within a duct with constant cross-sectional area (2.29)
with heat release coupled via (2.36) and general acoustic boundary conditions (2.33).
We only consider state estimation of the Rijke tube, and let the boundary actuation
signalsW0 � 0, WL � 0. This gives rise to the complete model

_Q(t) = �
1
�

Q(t) +
1
�

lw(� + � v

q
j �V (z0; t) + �V j)(Tw � Tg) (2.43a)

�Vt (z; t) = �
1
��

�Pz(z; t) (2.43b)

�Pt (z; t) = � 
 �P �Vz(z; t) +
�

a

� (z � z0)(Q(t) � �Q) (2.43c)

�P(L; t ) = ZL �V (L; t ) (2.43d)

�P(0; t) = Z0 �V (0; t) (2.43e)

�P(x; 0) = �P0(x) (2.43f)

�V (x; 0) = �V0(x) (2.43g)

Q(0) = Q0 (2.43h)

initialized from �P0; �V0 2 L 2(0; L ) and Q0 2 R.

2.5.2 Acoustic duct for boundary parameter identi�cation � Chap-
ters 4�5

For the purpose of boundary parameter identi�cation, we consider a model of an
acoustic duct with zero mean �ow as given by (2.28), but with no heat release
�uctuations, so that �Q � 0. This is coupled to the boundary conditions (2.33), with
W0 or WL used as identi�cation signals. The mathematical model is then

�Vt (z; t) = �
1
��

�Pz(z; t) (2.44a)

�Pt (z; t) = � 
 �P �Vz(z; t) � 

a0(z)
a(z)

�P �V (z; t) (2.44b)
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�P(L; t ) = ZL �V (L; t ) + WL (t) (2.44c)

�P(0; t) = Z0 �V (0; t) + W0(t) (2.44d)

�P(x; 0) = �P0(x) (2.44e)

�V (x; 0) = �V0(x) (2.44f)

initialized from �P0; �V0 2 L 2(0; L ).

2.5.3 Can combustor � Chapters 6�7

Lastly, we consider a mathematical model representing longitudinal oscillations in
a can combustor. The acoustics are described by (2.27), and a �ame modelled
by (2.16) or (2.17) is located at z = 0 , coupling to the acoustics via (2.42). The
other end of the combustor is assumed to be modelled by a generic constant resis-
tive impedance (2.33a), where the input signalWL can be used for stabilization of
thermoacoustic instabilities. The model is then given by

_X (t) = f (X (t)) + �g0(X (t)) �V (0; t) + �g1(X (t)) �V (0; t � � ) (2.45a)

�Q(t) =
�Q
�V0

�h(X (t)) (2.45b)

�Vt (z; t) = �
1

�� (z)
�Pz(z; t) � �V 0(z) �V (z; t) (2.45c)

�Pt (z; t) = � 
 �P(z) �Vz(z; t) �
�

�P0(z) + 

a0(z)
a(z)

�P(z)
�

�V (z; t) � 
 �V 0(z) �P(z; t)

(2.45d)

�P(L; t ) = Z �V (L; t ) + W (t) (2.45e)

�P+ (0; t) = �P � (0; t) (2.45f)

�V + (0; t) = � �V � (0; t) + &
�Q(t)

�Q
(2.45g)

�P(x; 0) = �P0(x) (2.45h)

�V (x; 0) = �V0(x) (2.45i)

X (0) = X 0 (2.45j)

where the more general ODE (2.17) has been used for the �ame model. The model
is initialized from �P0; �V0 2 L 2(0; L ) and X 0 2 Rn .
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Introduction to Part II

Figure ii.1: Diagram of Rijke tube setup to be considered for observer design in
Chapter 3. The Rijke tube is set up vertically and an electrical heater is located in
the lower half of the tube.

As stated in Chapter 1, Part II is focused on the Rijke tube, which is schematically
depicted in Figure ii.1 for the case when there is a microphone sensing the lower
boundary. The model (2.43) of the Rijke tube can be written in the form of a
network model as discussed in Section 2.1, and this will be the basis for algorithm
design.

The Rijke tube, being a common experimental setup for studying thermoacous-
tic instabilities, is one of the simplest arrangements capable of exhibiting the phe-
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nomenon. The electrically heated version has the advantage of being simple to
model due to the absence of complex combustion dynamics. The version of the
Rijke tube with a heated gauze was �rst introduced in [Rijke 1859], and due to its
simplicity has since been the subject of numerous studies to gain understanding of
and develop methods to mitigate thermoacoustic instabilities, see [Raunet al. 1993]
for a review.

We describe here the simulation and experimental setup considered in testing
the algorithms to be designed in Chapters 3�4.

Simulation setup

Simulations are performed usingMATLAB. The PDEs are solved using a �rst-order
upwind scheme, and the heat release model is solved using a fourth-order Runge-
Kutta scheme. A spatial discretization of dx = 1 :00 � 10� 2 and a constant time
step of dt = 9 :74 � 10� 6 is used. The parameter update scheme is discretized in
time using a �rst-order Euler scheme with a time-step ofdt = 1 :17 � 10� 5 s. The

Parameter Symbol Value Unit

Acoustic parameters
Adiabatic constant 
 1:40 �

Mean pressure �P 1:00� 105 Pa
Mean density �� 1:20 kg � m� 3

Mean velocity �V 0:350 m � s� 1

Length of tube L 1:40 m
Cross-sectional radius of tube r 3:57� 10� 2 m

Top acoustic impedance ZL 20:0 Pa � s � m� 1

Bottom acoustic impedance Z0 � 15:0 Pa � s � m� 1

Electrical heater parameters
Mean heat release rate �Q 7:20� 102 W

Wire time constant � 2:00� 10� 3 s
Temperature of wire Tw 9:33� 102 K
Temperature of gas Tg 3:00� 102 K

Empirical constant for King's law � v 1:50 W � s0:5 � m� 1:5 � K � 1

Thermal conductivity of air � 2:638� 10� 2 W � m� 1 � K � 1

Length of wire lw 1:067 m
Position of heater z0 0:350 m

Table ii.1: Physical parameters used in Rijke tube simulations.

physical parameters considered in the simulations are summarized in Table ii.1. The
simulation is initialized from

�P0(x) = 0 ; �V0(x) = 0 ; �Q0 = 0 :
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Figure ii.2: Open-loop pressure response of Rijke tube in simulations.

Figure ii.3: Open-loop velocity response of Rijke tube in simulations.
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Figure ii.4: Open-loop heat release rate response of Rijke tube in simulations.

To visualize the plant dynamics with the choice of parameters presented in Ta-
ble ii.1, the open loop response of the plant simulated forts = 0 :5 s is plotted. In
Figure ii.2, the pressure for(z; t) 2 [0; L ] � [0; ts] is shown, and likewise in Figure ii.3
the velocity is plotted for (z; t) 2 [0; L ] � [0; ts]. Lastly, in Figure ii.4 the simulated
heat release rate from the electrical heater is shown.

Since the simulation is initialized from zero initial conditions, the thermoacoustic
instabilities which can be seen in Figures ii.2�ii.4 arise naturally as a consequence
of the model (2.43) and the parameters summarized in the Table ii.1. As expected,
the oscillations have an initial period of exponential growth before they saturate
into a limit cycle, which is typical of thermoacoustic instabilities. Additionally, the
open-loop pressure response can be seen to have nodes by the tube boundaries,
whereas the open-loop velocity response has anti-nodes by the tube boundaries,
being representative of the open ends of the Rijke tube.

Experimental setup

The Rijke tube used for the experiments conducted is shown in Figure ii.5. It
consists of a cylindrical steel tube of lengthL = 1 :00 m and radius r = 35:7 mm,
which is propped up by a wooden frame via plastic strips. A heating element is
positioned into the bottom of the tube via a steel rod, as can be seen under the tube
in Figure ii.5.

On top of the steel rod, the heating element, which consists of a nickel-chromium
alloy coil [Ome ], is supported via a Mica support. The heating coil is shown in
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Figure ii.5: Rijke tube.
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Figure ii.6: Coil turned o� Figure ii.7: Coil turned on

Figure ii.8: Power supply.
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Figure ii.9: Microphone.

Figure ii.10: Pressure sensor supply.

Figure ii.6, for the case when the power supply is turned o�, and in Figure ii.7 with
the power supply turned on. The power supply used is a VOLTCRAFT DPS-32-
15 [Con 2016], pictured in Figure ii.8. During the experiment, the heating coil is
positioned at z0 = 0 :25 m from the base of the tube, and fed a current ofI = 16:5 A
through a voltage of E = 24:0 V , giving an estimated power dissipated from the
coil of �Q = 396 W .

For the pressure sensor readings, two ROGA RG-50 microphones [ROG ], one of
which is pictured in Figure ii.9, are used. They are each powered by an MMF M29
IEPE Sensor Supply [Met 2017] as pictured in Figure ii.10, interfaced via Bayonet
Neill-Concelman (BNC) connectors. From the IEPE Sensor Supply, the analog pres-
sure signal is passed into a Bela Board [McPherson 2017], pictured in Figure ii.11,
which is used for data acquisition. The Bela Board has an onboard Analog-to-
Digital Converter (ADC) and C compiler, and the sensor reading is sampled at
f s = 44:1 KHz .
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Figure ii.11: Bela board used for data acquisition.

Figure ii.12: Boundary pressure
measurement. For observer.

Figure ii.13: In-domain pressure
measurement. For validation.
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Figure ii.14: Loudspeaker.

Figure ii.15: Acoustic parameter identi�cation
setup.

To test the state observer developed in Chapter 3 with experimental data, two
pressure measurements are taken. The �rst pressure measurement is taken at the
bottom boundary of the tube, as shown in Figure ii.12. This signal is used as the
input to the observer. The second pressure measurement is taken upstream of the
heater at zv = 0 :85 m within the tube, as shown in Figure ii.13, and is used for
validation.

To test the parameter identi�er to be presented in Chapter 4 in estimating the
boundary impedancesZ0, ZL , the experimental setup is slightly di�erent. The
electrical heater is not used for this experiment, but instead a Sony SRS-XB01
loudspeaker [Son 2018], as shown in Figure ii.14, is used to excite the cylindrical
tube. One pressure sensor is placed in order to capture the output of the loudspeaker,
while the other sensor is placed to record the response of the tube, as shown in
Figure ii.15. This setup is used instead of passing the desired loudspeaker signal
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directly into the parameter identi�er to prevent possible loudspeaker distortions
from negatively a�ecting the parameter identi�cation.

Parameter Symbol Value Unit

Acoustic parameters
Adiabatic constant 
 1:40 �

Mean pressure �P 1:00� 105 Pa
Mean density �� 1:20 kg � m� 3

Length of tube L 1:00 m
Cross-sectional radius of tube r 3:57� 10� 2 m

Electrical heater parameters
Voltage over coil E 24:0 V

Current through coil I 16:5 A
Diameter of coil wire dw 1:00� 10� 3 m
Temperature of gas Tg 3:00� 102 K

Empirical constant for King's law � v 1:50 W � s0:5 � m� 1:5 � K � 1

Thermal conductivity of air � 2:638� 10� 2 W � m� 1 � K � 1

Position of heater z0 0:250 m

Derived parameters
Mean heat release rate �Q 3:96� 102 W
Temperature of wire Tw 1:11� 103 K

Length of wire lw 0:918 m
Mean velocity �V 0:163 m � s� 1

Wire time constant � 5:71� 10� 4 s

Table ii.2: Physical parameters used in data post-processing for Rijke tube experi-
ments.

After the data is collected with the experimental setups described above, it is
tested with the observer and parameter identi�er in MATLAB. The parameters used
for this data post-processing is summarized in Table ii.2. Compared to Table ii.1,
the acoustic impedances are omitted as these are considered unknown, and will be
estimated using the method to be presented in Chapter 4.

The �rst three parameters listed under Acoustic parameters, namely 
 , �P and
�� are taken to correspond to standard atmospheric conditions. Next, the lengthL
and radius r are measured directly from the tube shown in Figure ii.5.

Under Electrical heater parameters, the measured voltageE and current I is
documented. Also, the diameter of the coil wiredw is taken from the manufacturer
documentation [Ome ]. The temperature of the gasTg is set to standard room
temperature, and the parameters� v and � are the same in Tables ii.1 and ii.2,
being estimates based on standard conditions of air in room temperature and esti-
mates from the literature (see e.g [Epperleinet al. 2015], [de Andradeet al. 2016],
[de Andrade et al. 2017]). The position of the heaterz0 is measured relative to the
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positioning of the tube.
The mean heat release�Q is under Derived parameters, as this is computed from

the voltage E and current I supplied. Additionally the wire temperature Tw is esti-
mated according to the manufacturer documentation [Ome ] based on the supplied
current I , and in turn from this the wire length lw is estimated, also based on the
manufacturer documentation [Ome ]. From the calculated wire temperatureTw to-
gether with gas temperatureTg, gravitational constant g and wire diameter dw , as

shown in [Epperlein 2014] the mean velocity�V =
q

gTw � Tg
Tg

dw . Also, based on the

formula given in [Epperlein et al. 2015], the wire time constant� is estimated based
on the wire diameter dw and mean velocity �V as � = dw

5 �V .





Chapter 3

The Rijke Tube � State Observer

Contents
3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Model in Riemann coordinates . . . . . . . . . . . . . . . . . 48

3.2.2 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Robustness to modelling error in boundary condition . . . . . 54

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 First simulation - Smaller impedances . . . . . . . . . . . . . 56

3.3.2 Second simulation - Larger impedances . . . . . . . . . . . . 60

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Dans ce chapitre, nous proposons un observateur d'état pour le modèle de tube
de Rijke (2.43). Il est basé sur l'hypothèse qu'une mesure de pression à la frontière
inférieure du domaine spatial est disponible. Après avoir réécrit le modèle en coor-
données de Riemann et replié le domaine spatial autour du modèle de dégagement
de chaleur, l'observateur est proposé en copiant la dynamique du modèle et en
reconstruisant la frontière non mesurée. Il est démontré que l'estimation de l'état
de la frontière non mesurée converge vers la valeur réelle de manière exponentielle.
Ceci permet ensuite d'établir des propriétés de convergence globale pour tous les
états du modèle. Par la suite, un résultat mineur a�rmant que les estimations
d'état restent bornées en cas d'incertitude sur la connaissance des paramètres de la
frontière est donné. Les résultats théoriques sont suivis d'une validation, d'abord
en simulations, puis en expériences. La sensibilité des estimations aux di�érentes
valeurs des paramètres limites suggère que des estimations de ceux-ci devraient être
obtenues, motivant le sujet du chapitre 4.

In this chapter, we propose a state observer for the Rijke tube model (2.43). It
is based on the assumption that the lower boundary is measured. After rewriting
the model in Riemann coordinates and folding the spatial domain around the heat
release model, thus moving it to the rewritten model boundary, the observer is pro-
posed by copying the model dynamics and reconstructing the unmeasured boundary.
It is shown that the estimate of the unmeasured boundary state converges to the
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true value exponentially. This in turn allows establishment of global convergence
properties for all states in the model. Subsequently, a minor result asserting that
the state estimates remain bounded under uncertainty in knowledge of the bound-
ary parameters is given. The theoretical results are followed by validation, �rst in
simulations and then in experiments. The sensitivity to the estimates to di�erent
values of the boundary parameters suggests estimates of these should be obtained,
motivating the topic of Chapter 4.

3.1 Literature review

Much of the previous work on the Rijke tube has consisted in characterizing its
stability limits, with [Carrier 1955] pioneering linear stability analysis of the sys-
tem and later [Bayly 1986] taking into account nonlinear features. In addition to
experimental studies of the stability limits of the Rijke tube, studies on active con-
trol strategies applied to attenuate the thermoacoustic oscillations in the Rijke tube
have been performed. A control law consisting in measuring the pressure signal
upstream of the heater and subsequently sending this signal phase-shifted and am-
pli�ed to a loudspeaker has been applied to a Rijke tube in [Heckl 1988], being one
of the �rst studies investigating active control of the Rijke tube. More recently, a
more sophisticated full-state feedback boundary control law designed via in�nite-
dimensional backstepping on a linearised PDE-ODE model of the electrically heated
Rijke tube has been derived in [de Andradeet al. 2018b]. To pair with this full-
state feedback control law, a corresponding boundary observer for the linearized
PDE-ODE model is derived in [de Andradeet al. 2018a]. This work was contin-
ued in [de Andradeet al. 2020], where experimental veri�cation of the observer was
obtained. Also, in [Auriol et al. 2020b], [de Andrade & Vazquez 2020] observer de-
signs for the Rijke tube using in-domain measurements rather than just a boundary
measurement are considered.

As explained in Chapter 2, the heat release model (2.3) captures the non-
linear e�ects of the electrically heated Rijke tube. For the observer design in
[de Andrade et al. 2018a] (2.3) is linearized, which makes the mathematical anal-
ysis tractable - however this linear ODE model does not re�ect the full nonlinear
dynamics one typically obtains in practice. A nonlinear heat release model is needed
to model the saturated response one sees for large amplitudes and resultant limit
cycle behaviour [Agostinoet al. 2002]. To maintain this behaviour in the design,
we propose in Section 3.2 an observer taking into account the nonlinear features of
King's law.

3.2 Observer design

3.2.1 Model in Riemann coordinates

Consider the setup shown in Figure ii.1. It consists of an un�anged, cylindrical tube
of length L and constant cross-sectional areaa, with an electrical heater located
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in the interior of the tube at vertical position z0 2
�
0; L

2

�
. With real-time gauge

pressure data from a microphone located atz = 0 , the aim of the state observer is
to infer the unmeasured pressure and velocity perturbations along the vertical axis
of the tube, together with the heat release rate from the electrical heater.

In Chapter 2, a mathematical model to describe the distributed pressure�P and
velocity perturbations �V coupled with the heat release rateQ from the electrically
heated coil is introduced, and given by (2.43). We assume the boundary pressure
measurement

Y (t) := �P(0; t) (3.1)

is known.

Remark 1. In an ideal theoretical setting, since the Rijke tube is open
at both ends, a pressure node is located at bothz = 0 and z =
L. However, in practice the nodes are located slightly outside the tube
ends ([Levine & Schwinger 1948],[Epperlein et al. 2015]) making boundary pressure
sensing feasible. This fact is modelled by the non-zero impedancesZ0, ZL in (2.43d)�
(2.43e).

In order to use the model for observer design, it is convenient to rewrite the
linearised acoustics from (2.43) in Riemann invariant coordinates and fold the spatial
domain around z0 to move the heat release to the system boundary. To facilitate
this, we introduce the invertible a�ne spatial coordinate transforms zi : x 7! z,

z1(x) := z0(1 � x) (3.2a)

z2(x) := z0 + x(L � z0) (3.2b)

with x 2 [0; 1] and i 2 f 1; 2g to rewrite the linearised acoustics from (2.43) in
Riemann invariant coordinates. The subscript i denotes which part of the Rijke
tube x is mapped to, with z1 mapping x to points below the electrical heater and
z2 mapping x to points above the electrical heater. Next, de�ne the Riemann
coordinates

ui (x; t ) := �P(zi (x); t) + k �V (zi (x); t) (3.3a)

vi (x; t ) := �P(zi (x); t) � k �V (zi (x); t) (3.3b)

where k is the characteristic impedance of the gas, de�ned as

k :=
q


 �P ��: (3.4)

This allows us to rewrite the parts of the linearised acoustics (2.43b)�(2.43c) for
z 6= z0, over (x; t ) 2 (0; 1) � [0; 1 ) as

u1;t (x; t ) = � 1u1;x (x; t ) (3.5a)

v1;t (x; t ) = � � 1v1;x (x; t ) (3.5b)

u2;t (x; t ) = � � 2u2;x (x; t ) (3.5c)
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v2;t (x; t ) = � 2v2;x (x; t ) (3.5d)

where

� 1 :=
c
z0

(3.6a)

� 2 :=
c

L � z0
; (3.6b)

with c being the speed of sound inside the tube, given by

c :=

s

 �P
��

: (3.7)

Remark 2. Since z0 � L
2 we have that� 1 � � 2. This fact is useful later on in the

observer design.

Next, the acoustic boundary conditions (2.43d)�(2.43e) are rewritten as

u1(1; t) = d0v1(1; t) (3.8a)

v2(1; t) = d1u2(1; t) (3.8b)

where the re�ection coe�cients d0; d1 are de�ned as

d0 :=
Z0 + k
Z0 � k

(3.9a)

d1 :=
ZL � k
ZL + k

: (3.9b)

Since the spatial domain is folded aroundz0, the electrical heater is moved to the
boundary of the model. To deal with this, we consider the Laplace transform of the
PDE dynamics in Riemann coordinates around the electrical heater. These can be
rewritten as ODEs in the spatial coordinatez as

d
dz

u(z; s) = �
s
c

u(z; s) +
�

ac

� (z � z0) �Q(s) (3.10a)

d
dz

v(z; s) =
s
c

v(z; s) �
�

ac

� (z � z0) �Q(s) (3.10b)

As shown in e.g. [Epperleinet al. 2015], we can then write

u(z+
0 ; s) = u(z�

0 ; s) +
�

ac

�Q(s)

v(z+
0 ; s) = v(z�

0 ; s) �
�

ac

�Q(s)

where z�
0 is the position directly under the heater and z+

0 is the position directly
above the heater. Using the spatial change of variables (3.2) and writing in the time
domain, this gives rise to the boundary condtions

v1(0; t) = v2(0; t) + � �X (t) (3.12a)
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u2(0; t) = u1(0; t) + � �X (t) (3.12b)

where we have denoted�X := �Q, and the ODE boundary coe�cient � is de�ned

� :=
�

ac

: (3.13)

Denoting X := Q, the heat release model (2.43a) is rewritten as

_X (t) = � aX (t) + b1
p

jb2 + b3(u1(0; t) � v2(0; t)) j + b4 (3.14)

with

a :=
1
�

b1 :=
lw(Tw � Tg)� v

�
b2 := �V

b3 :=
1
2k

b4 :=
lw(Tw � Tg)�

�
:

The gauge pressure measurement (3.1) is in the Riemann invariant coordinates,
de�ned via (3.3), written as Y(�) = 1

2(u1(1; �) + v1(1; �)) . Applying the boundary
condition for u1 we see by de�ning the boundary measurement signal

y(t) := v1(1; t) (3.15)

the gauge pressure measurement is reconstructed as

Y(t) =
1 + d0

2
y(t): (3.16)

These dynamics are schematically depicted in Figure 3.1. Notice that several feed-
back loops make the dynamics potentially unstable.

3.2.2 Observer design

With the measurement signaly de�ned in (3.15), we propose the observer

_̂X (t) = � aX̂ (t) + b1
p

jb2 + b3(û1(0; t) � v̂2(0; t)) j + b4 (3.17a)

û1;t (x; t ) = � 1û1;x (x; t ) (3.17b)

û2;t (x; t ) = � � 2û2;x (x; t ) (3.17c)

v̂1;t (x; t ) = � � 1v̂1;x (x; t ) (3.17d)

v̂2;t (x; t ) = � 2v̂2;x (x; t ) (3.17e)

û2(0; t) = û1(0; t) + � (X̂ (t) � �X ) (3.17f)

v̂1(0; t) = v̂2(0; t) + � (X̂ (t) � �X ) (3.17g)
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Figure 3.1: Schematic of Rijke tube system in Riemann coordinates. The green
arrows are couplings between the ODE state and PDE states, the red arrows are
boundary couplings between the PDE states and the magenta arrow represents the
output signal.

û1(1; t) = d0y(t) (3.17h)

v̂2(1; t) = d1y(t + � � 1
1 � � � 1

2 ) + d1
�
û1(0; t � � � 1

2 ) � v̂2(0; t � � � 1
2 )

�
: (3.17i)

We state now the main result pertaining to the convergence properties of (3.17),
before explaining the rationale behind the observer. A formal proof of the result is
then given in Section 3.2.3.

Theorem 1. Consider system(3.5), (3.8), (3.12), (3.14) and the state observer
(3.17) using the measurement(3.15). We assumejd0j; jd1j < 1. Assume the states
have initial conditions (ui; 0; vi; 0; X 0) 2 L 2(0; 1) � L 2(0; 1) � R and (ûi; 0; v̂i; 0; X̂ 0) 2
L 2(0; 1)� L 2(0; 1)� R, respectively. Then, the zero equilibrium of the dynamics of the
estimation errors ~ui := ui � ûi , ~vi := vi � v̂i , ~X := X � X̂ is Globally Asymptocally
Stable (GAS).

This observer consists of a copy of the Rijke tube dynamics in Riemann coor-
dinates (3.5), with the exception of (3.17i). While (3.17h) consists of injecting the
measured output directly, Equation (3.17i) deserves more explanation. It is based
on the following considerations. First, notice that substituting Equation (3.12b)
into the general solution ofu2 in terms of the boundary at x = 0 , u2(1; �) rewrites

u2(1; t) = u2(0; t � � � 1
2 )

= u1(0; t � � � 1
2 ) + � �X (t � � � 1

2 ): (3.18)

Besides, using the expression forv1(0; �) from (3.12a) together with the measurement
y(�) = v1(1; �) yields

� �X (t) = y(t + � � 1
1 ) � v2(0; t): (3.19)

Combining (3.18)�(3.19) gives

v2(1; t) = d1
�
u1(0; t � � � 1

2 ) � v2(0; t � � � 1
2 ) + y(t + � � 1

1 � � � 1
2 )

�
: (3.20)
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The boundary condition (3.17i) follows by considering estimates ofu1(0; t � � � 1
2 )

and v2(0; t � � � 1
2 ) in lieu of the true values. As we show next in Section 3.2.3, the

resulting error converges asymptotically to zero.

Remark 3. Notice that the observer is causal, in particular the signaly(t + � � 1
1 �

� � 1
2 ) is available at timet due to Remark 2.

3.2.3 Convergence analysis

The most critical boundary conditions in the error system for stability are ~u1(1; �),
~v2(1; �), so we derive their expressions �rst. It is trivial to see that ~u1(1; �) = 0 , while
subtracting (3.17i) from (3.20) yields

~v2(1; t) = d1(~u1(0; t � � � 1
2 ) � ~v2(0; t � � � 1

2 )) : (3.21)

The other terms in the observer (3.17) are copies of the corresponding terms in
the original system (3.5) and hence their corresponding error dynamics are easily
computed. Therefore, the state estimation error in~ui ; ~vi ; ~X satis�es the dynamics

~u1;t (x; t ) = � 1~u1;x (x; t ) (3.22a)

~u2;t (x; t ) = � � 2~u2;x (x; t ) (3.22b)

~v1;t (x; t ) = � � 1~v1;x (x; t ) (3.22c)

~v2;t (x; t ) = � 2~v2;x (x; t ) (3.22d)

~u1(1; t) = 0 (3.22e)

~u2(0; t) = ~u1(0; t) + � ~X (t) (3.22f)

~v1(0; t) = ~v2(0; t) + � ~X (t) (3.22g)

~v2(1; t) = d1
�
~u1(0; t � � � 1

2 ) � ~v2(0; t � � � 1
2 )

�
(3.22h)

_~X (t) = � a ~X (t) + b1
p

jb2 + b3(u1(0; t) � v2(0; t)) j

� b1
p

jb2 + b3(û1(0; t) � v̂2(0; t)) j (3.22i)

A schematic view of the error system is shown in Figure 3.2, illustrating the cascade
structure of its dynamics which ensure the convergence of its states to zero. We are
now ready to prove Theorem 1.

Proof of Theorem 1. From (3.22a), (3.22e) we see that~u1(0; t � � � 1
2 ) = 0 for time

t � � � 1
1 + � � 1

2 . Hence the boundary condition (3.22h) simpli�es after this time to

~v2(1; t) = � d1~v2(0; t � � � 1
2 ) (3.23)

allowing us to conclude that

~v2(0; t) = � d1~v2(0; t � 2� � 1
2 ): (3.24)

Sincejd1j < 1, we can conclude that~v2(0; t) ! 0 exponentially ast ! 1 . Next, we
can bound (3.22i) by the following inequality:

_~X (t) � � a ~X (t) + b1
p

jb3[~u1(0; t) � ~v2(0; t)]j: (3.25)
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Figure 3.2: Schematic of the error system, whereD i := � � 1
i are time delays.

De�ne

g(t) := b1
p

jb3(~u1(0; t) � ~v2(0; t)) j (3.26)

where we knowg tends to zero ast ! 1 . Also, de�ning the linear system in ~� ,

_~�( t) = � a~�( t) + g(t); (3.27)

with initial condition ~�(0) = ~X (0), then ~� is Input-to-State Stable (ISS) with
respect to g. More precisely (see [Khalil & Grizzle 2002]), we can establish the
bound (where0 � t0 � t),

j ~�( t � t0)j � e� a(t � t0 ) j ~�( t0)j +
1
a

sup
t0 � � � t

jg(� )j: (3.28)

Since _~X � _~� and ~X (0) = ~�(0) , we can establish

~X (t) � ~�( t): (3.29)

As g is exponentially vanishing ast ! 1 , we see the right hand side of (3.28) goes
to zero and hence~X ! 0 asymptotically as t ! 1 , which proves the Theorem.

3.2.4 Robustness to modelling error in boundary condition

In practice the acoustic impedancesZ0; ZL appearing in Equations (2.43d)�(2.43e)
are di�cult to estimate correctly, implying the boundary coe�cients d0, d1 ap-
pearing in (3.8) for the Riemann coordinate formulation is prone to being incor-
rectly modelled. Denote the estimates ofd0, d1 as d̂0,d̂1 and de�ne ~d0 := d0 � d̂0,
~d1 := d1 � d̂1 as the modelling errors.

When d̂0, d̂1 is used in place ofd0, d1 in the observer (6.41), the expressions for
~u1(1; �), ~v2(1; �), given by (3.22e), (3.22h), change to

~u1(1; t) = ~d0y(t) (3.30)
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~v2(1; t) = d̂1(~u1(0; t � � � 1
2 ) � ~v2(0; t � � � 1

2 ) (3.31)

+ ~d1
�
�X (t � � � 1

2 ) + u1(0; t � � � 1
2 )

�

with the rest of the error system (3.22) being una�ected. We state now a Proposition
on the sensitivity of the state estimate error to errors in these boundary parameters.

Proposition 1. Assume that the states of the original system are bounded, and the
estimatesd̂0, d̂1 of d0, d1 respectively satisfy

jd̂0j; jd̂1j < 1: (3.32)

Then all the error signals ~ui , ~vi , ~X are bounded.

Proof. In the following we denote the Laplace transform of the time-domain signal
f as �f , i.e. �f (s) = L (f (�)) . With the signal h de�ned as

h(t) := u1(0; t) + �X (t) (3.33)

we �nd that � �~u1(0; s)
�~v2(0; s)

�
= H (s)

�
�y(s)
�h(s)

�
(3.34)

where

H (s) :=

2

4
e� � � 1

1 s 0
d̂1e� (2 � � 1

2 + � � 1
1 ) s

1+ d̂1e� 2� � 1
2 s

e� 2� � 1
2 s

1+ d̂1e� 2� � 1
2 s

3

5
� ~d0 0

0 ~d1

�
(3.35)

is a transfer matrix. This allows us to reconstruct the signal� de�ned as

�(t) := ~u1(0; t) � ~v2(0; t) (3.36)

in terms of signalsy, h as

�(t) =
�

1
� 1

� >

L � 1
�

H (s)
�

�y(s)
�h(s)

��
: (3.37)

Since jd̂0j; jd̂1j < 1, Equation (3.35) implies that H is stable (see [Niculescu 2001]
for a more extended treatment of transfer functions for systems with time delays),
and sincey; h 2 L 1 , one has�; g 2 L 1 , with g de�ned by (3.26).

Further, since ~u1(1; �) = ~d0y(�), ~u1(1; �) 2 L 1 and hence all of~u1 is bounded.
Besides, one has

�~v2(1; s) =
e� � � 1

2 s

1 + d̂1e� � � 1
2 s

�
~d0d̂1e� � � 1

1 s �y(s) + ~d1�h(s)
�

(3.38)

which again using that jd̂0j; jd̂1j < 1 implies that ~v2(1; �) 2 L 1 and therefore all of
~v2 is bounded. Equation (3.25) further implies the following bound on ~X ,

~X (t) � e� at j ~X (0)j +
1
a

jjgjj1 : (3.39)

Finally, (3.22f)�(3.22g) express ~u2(0; �), ~v1(0; �) as the sum of bounded signals, there-
fore ~u2(x; �); ~v1(x; �) 2 L 1 , 8x 2 [0; 1].
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3.3 Simulations

We test �rst the observer in a simulation setting, with parameters as presented
in Table ii.1. In this chapter, the observer (3.17) is tested for the case when the
boundary acoustic impedancesZ0, ZL are incorrect. These simulations demonstrate
the theoretical result of Propostion 1. In Chapter 4, after having estimated the
boundary parameters, the observer with correct boundary parameters will be tested,
demonstrating Theorem 1.

As a comparison, an observer we refer to as the�trivial� observer will be com-
pared to (3.17) in the simulations. This observer is identical to (3.17), except instead
of the boundary condition (3.17i), it uses

v̂2(1; t) = d1û2(1; t): (3.40)

The �trivial� observer (3.17a)�(3.17h), (3.40) is the simplest observer one can con-
struct for the Rijke tube modelled by (2.43) using the measurement (3.1), since
it is simply a copy of the dynamics with the measurement injected in the corre-
sponding boundary where it is taken. It does not have a convergence guarantee
as one has a potentially unstable feedback loop in the interaction between̂u2, v̂2

and X̂ , but because it does not attempt to reconstructv̂(1; �) from known signals
it does not introduce an exponentially converging error, which is a drawback of the
observer (3.17) in the terms of its transient convergence properties.

Two di�erent pairs of Ẑ0, ẐL are tested , namely one pair satisfyingjẐ0j <
jZ0j, jẐL j < jZL j, and the second pair satisfyingjẐ0j > jZ0j, jẐL j > jZL j. The
performance of the �trivial� observer (3.17a)�(3.17h), (3.40) is compared, and it uses
the same parameters and measurement signal as the observer (3.17) in the respective
tests. In the two tests, the simulation is run for ts = 2 s, and the observers are
turned on at t = 0 :5 s.

3.3.1 First simulation - Smaller impedances

Here �estimates� Ẑ0 = � 5, ẐL = 5 are used as values of the impedance in the
observer. First the estimation errors for the observers are plotted against each
other. For the pressure and velocity, the estimation error by the heater, at position
z = z0, is considered. In Figure 3.3, the pressure estimation error~P(z0; �) of
the observer (3.17) is plotted in dark blue, versus the pressure estimation error
~Ptrivial (z0; �) of the �trivial� observer (3.17a)�(3.17h), which is plotted in a lighter
shade of blue. Likewise, the velocity estimation errors~V(z0; �) and ~Vtrivial (z0; �) are
plotted against each other in respectively dark and light grey in Figure 3.4. Lastly,
the heat release estimation error~Q(�) and ~Qtrivial (�), in respectively dark and light
red, are plotted against each other in Figure 3.5. With the observer being turned
on at t = 0 :5 s, the plots are shown for t 2 [0:5; 0:7] and t 2 [1:8; 2:0], being
respectively the �rst and last 200 ms of testing the observers. The plots are split
up in this manner for ease of viewing, due to the relatively high frequency of the
dynamics.
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Figure 3.3: Pressure estimation errors. Initial transient (top) and converged esti-
mates (bottom).
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Figure 3.4: Velocity estimation errors. Initial transient (top) and converged esti-
mates (bottom).
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Figure 3.5: Heat release rate estimation errors. Initial transient (top) and converged
estimates (bottom).
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For both observers, the estimation error stays bounded throughout, with the
�trivial� observer having approximately constant error for the duration of the simu-
lation, but the observer (3.17) starting with a large error that converges to a bound.
The pressure estimation errors ~Ptrivial (z0; �) in Figures 3.3 appears to be slightly
closer to the origin than the estimation error ~P(z0; �). However, the estimation er-
rors ~V(z0; �) and ~Q(�) appear to be much closer to the origin than~Vtrivial (z0; �) and
~Qtrivial (�) in Figures 3.4�3.5. Since it can be di�cult to see directly in Figures 3.3�
3.5 which observer produces estimates that are on average closer to the true value,
the steady-state estimation error norm jj ~f jj after the initial transient response of
the quantity ~f is estimated via

jj ~f jj �

s
1

T2 � T1

Z T2

T1

~f 2(t)dt:

Norm Observer (3.17) �Trivial� observer (3.17a)� (3.17h), (3.40)

jj ~P(z0)jj 14:2 12:8
jj ~V (z0)jj 2:25� 10� 2 3:83� 10� 2

jj ~Qjj 8:93 20:4

Table 3.1: Error norms.

In Table 3.1 the estimates of the estimation error norms for the two observers
is summarized to three signi�cant digits, using T1 = 1 :5 s and T2 = 2 s. The
observer (3.17) has a normjj ~P(z0)jj that is 11:0%higher than the one for the �trivial�
observer. However, the normsjj ~V (z0)jj and jj ~Qjj are respectively69:9% and 128%
higher for the �trivial� observer (3.17a)�(3.17h), (3.40) than for the observer (3.17).

Hence, despite the pressure estimation error norms beingslightly higher for the
the observer (3.17) compared to the �trivial� observer, the estimation error norm of
the velocity and heat release rate issigni�cantly higher for the �trivial� observer. We
can thus conclude that overall the observer (3.17) has (after the initial transient)
better performance than the �trivial observer� (3.17a)�(3.17h), (3.40) whenẐ0 = � 5
and ẐL = 5 are used in place ofZ0 = � 15 and ZL = 20 respectively.

To have a sense of the state estimates produced by the two observers as com-
pared to the true states, after the initial transient, the estimates are plotted against
the true states for t 2 [1:99; 2:00]. In Figure 3.6 the pressureP(z0; �) at z0 is plot-
ted against the estimateP̂ (z0; �) produced by the observer (3.17) and the estimate
P̂trivial (z0; �) produced by the �trivial observer� (3.17a)�(3.17h), (3.40). Likewise, in
Figure 3.7 the velocity V (z0; �) compared to the estimateV̂ (z0; �) produced by (3.17)
and V̂trivial (z0; �) produced by (3.17a)�(3.17h), (3.40) is plotted. Lastly, the heat re-
lease rateQ(�) is plotted against the estimateQ̂(�) and Q̂trivial (�) in Figure 3.8.

3.3.2 Second simulation - Larger impedances

Here the case of incorrect �estimates� taking valueŝZ0 = � 50, ẐL = 50 is considered.
As in Section 3.3.1, the pressure and velocity estimation errors are plotted forz = z0.
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Figure 3.6: Pressure atz = z0 compared to estimates.

Figure 3.7: Velocity at z = z0 compared to estimates.
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Figure 3.8: Heat release rate compared to estimates.

In Figure 3.9 the pressure estimation error ~P(z0; �) for the observer (3.17) is
plotted against the corresponding error ~Ptrivial (z0; �) for (3.17a)�(3.17h), (3.40) in
dark and lighter blue, respectively. In Figure 3.10 the velocity estimation error
~V (z0; �) is plotted in dark green against ~Vtrivial (z0; �) in light green. Lastly, the heat
release estimation errors~Q(�) and ~Qtrivial (�) are shown in Figure 3.11, in respectively
dark and light red.

The pressure estimation errors plotted in Figure 3.9 are fairly similar to each
other. However, for the velocity estimation errors in Figures 3.10, the estimation
errors from the observer (3.17) have a tighter bound and appear to be closer to
the origin after the initial transient as compared to the �trivial� observer (3.17a)�
(3.17h), (3.40). The same can be said for the heat release rate estimation errors in
Figure 3.11, where the observer (3.17) performs objectively better after the initial
transient.

Norm Observer (3.17) �Trivial� observer (3.17a)� (3.17h), (3.40)

jj ~P(z0)jj 32:0 29:0
jj ~V (z0)jj 5:04� 10� 2 8:60� 10� 2

jj ~Qjj 25:7 49:0

Table 3.2: Error norms.

We summarize now the estimated estimation error norms of the observers for
the three di�erent plots in Figures 3.9�3.11, in Table 3.2. Similar to the situation in
Section 3.3.1, the �trivial� observer performs better in estimating the pressure, but
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Figure 3.9: Pressure estimation error. Initial transient (top) and converged esti-
mates (bottom).
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Figure 3.10: Velocity estimation error. Initial transient (top) and converged esti-
mates (bottom).
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Figure 3.11: Heat release rate estimation error. Initial transient (top) and converged
estimates (bottom).
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worse in estimation of the velocity and heat release rate. Here, the observer (3.17)
has error norm jj ~P(z0)jj that is estimated to be 10:0% higher than that for the
�trivial� observer (3.17a)�(3.17h), (3.40). On the other hand, the norm jj ~V (z0)jj is
70:5% higher for the �trivial� observer. Finally, the estimate of the heat release rate
estimation error norm is 90:7% higher for the �trivial observer�, when compared to
the corresponding metric for the observer (3.17).

Figure 3.12: Pressure atz = z0 compared to estimates.

Again, we show the state estimates versus the states for the last10 ms of the
simulation. In Figure 3.12 the pressure atz = z0 is plotted against the estimates
P̂ (z0; �) and P̂trivial (z0; �). From the Figure, their performance is nearly identical,
with P̂trivial (z0; �) being slightly closer toP(z0; �) some of the time andP̂(z0; �) being
slightly closer at other times, but overall they are approximately equally far away. In
Figure 3.13, the velocity estimateV̂ (z0; �) from (3.17) and the estimateV̂trivial (z0; �)
is plotted against the velocity V (z0; �). Here it can be clearly seen thatV̂ (z0; �) is
closer the the true state than V̂trivial (z0; �) throughout. Lastly, in Figure 3.14, we
see the heat release rateQ(�) compared to the estimatesQ̂(�) and Q̂trivial (�). As for
the velocity, the estimate Q̂(�) is closer to the true state throughout than Q̂trivial (�).

Here the observer (3.17) was tested and compared to the �trivial� ob-
server (3.17a)�(3.17h), (3.40) for two cases when incorrect values of the acoustic
impedances are used, �rstly when the �estimates� are smaller in absolute value than
the true parameters, and secondly when the �estimates� are larger in absolute value.
Proposition 1 guarantees that the estimation errors from (3.17) remain bounded
whenever these estimates are incorrect, as long as the re�ection coe�cientŝd0, d̂1

are smaller than unity in absolute value. The �trivial� observer (3.17a)�(3.17h),
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Figure 3.13: Velocity at z = z0 compared to estimates.

Figure 3.14: Heat release rate compared to estimates.
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(3.40) does however not have such a guarantee associated to it, but in the two cases
considered, the error does indeed remain bounded as can be seen in Figures 3.3�3.5,
3.9�3.11. Despite this, the estimates from (3.17) have overall better performance
when using incorrect values of the boundary acoustic impedances than the �trivial�
observer.

Comparing Figures 3.6�3.8 to Figures 3.12�3.14, we see the estimates usinĝZ0,
ẐL smaller than Z0, ZL in absolute value are in general larger than the true states,
whereas the estimates usinĝZ0, ẐL larger than Z0, ZL in absolute value end up being
smaller than the true states. This is to be expected as an impedance closer to the
characteristic impedancek results the estimated re�ection coe�cients d̂0, d̂1 being
closer to zero, and hence introduces more damping into the system. Since using
values of the acoustic impedances smaller than the true values causes the observer
to exaggerate the estimates, and likewise using values larger than the true values
causes the observer to underestimate the states, to achieve correct state estimates it
is important to have as correct estimates of the acoustic impedances at hand, which
is the focus of Chapter 4. We test next the state observer on experimental data.

3.4 Experiment

We consider in this section the experimental setup consisting of the Rijke tube as
shown in Figure ii.5 together with the electrical heater shown in Figures ii.6�ii.7
placed in the interior of tube, as described in the introduction to Part II. Sup-
plying power to the electrical heater via the power supply shown in Figure ii.8,
thermoacoustic instabilities are incited within the tube. Recall that the measured
and estimated physical parameters for the experimental setup are documented in
Table ii.2.

Figure 3.15: Boundary pressure measurement, taken atz = 0 m. See Figure ii.12
for sensor placement. Observer tested in dark blue region.
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Figure 3.16: In-domain pressure measurement, taken atz = 0 :85 m. See Figure ii.13
for sensor placement. Observer tested in dark blue region.

Also as described in the introduction to Part II, two microphones positioned as
shown in Figures ii.12�ii.13 pick up pressure time series data from the thermoacous-
tic instability. In Figure 3.15 the pressure measurement time series taken at the
lower boundary (z = 0 , corresponding to Figure ii.12) of the tube is plotted, while
in Figure 3.16 we see the in-domain pressure measurement (z = zv , corresponding
to Figure ii.13) plotted. The plots are shown from time t = 28 s after the Rijke
tube is turned on, as this is when thermoacoustic instabilities started to develop.
The region in Figures 3.15�3.16 which is shown in dark blue is the time interval
t 2 [40 42] over which the observer is to be tested. As expected, the boundary
pressure measurement has a much smaller magnitude than the in-domain pressure
measurement, since it is close to a node. We test now the observer (3.17) to see how
well it uses the data shown in Figure 3.15 to estimate the data in Figure 3.16. For
simplicity, only the observer (3.17) and not the �trivial� observer is tested here.

Since the boundary impedancesZ0, ZL are here unknown, a range of values are
tested. In Figure 3.17, the observer is tested using guessed values of the impedances
set to Zz = � 5 Pa� s�m� 1 for z 2 f 0; Lg. The estimate produced by the observer at
position z = zv is plotted in grey and compared to the measured pressure at vertical
position z = zv . It is apparent that the pressure estimate overshoots the measured
pressure by a signi�cant amount. On the other, in Figure 3.18 the impedances are
set to Zz = � 50 Pa � s � m� 1. Here the observer produces pressure estimates with
amplitudes smaller than the measured pressure atz = zv .

To have a clearer view of the discrepancy between measured and estimated
pressure, in Figure 3.19 the estimates compared to the measured pressure atz = zv

is plotted for a shorter interval of time t 2 [41:98 42], being the last 20 ms of the
observer test. Here, in addition to Zz = � 5 Pa � s � m� 1 and Zz = � 50 Pa � s �
m� 1, two values of impedance between these, namelyZz = � 10 Pa � s � m� 1 and
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Figure 3.17: Measured (blue line) compared to estimated (grey line) gauge pressure
using impedancesZz = � 5 Pa � s � m� 1, z 2 f 0; Lg at z = zv .

Figure 3.18: Measured (blue line) compared to estimated (grey line) gauge pressure
using impedancesZz = � 50 Pa � s � m� 1, z 2 f 0; Lg at z = zv .



3.5. Discussion 71

Figure 3.19: Measured (blue line) compared to estimated (grey lines) gauge pressure
for multiple values of Zz, z 2 f 0; Lg (see legend) atz = zv . Shown for �nal 20 ms
of observer test.

Zz = � 20 Pa � s � m� 1, are tested. As hinted at by Figures 3.17�3.18, one can see
that the estimated amplitude is highly sensitive to the values of impedance used
in the observer. This indicates that for more accurate estimation of the pressure,
identi�cation of the correct boundary impedance, being the focus of Chapter 4, is
crucial. Additionally one sees in Figure 3.19 that the estimates are in general phase
shifted and shifted away from the origin compared to the measured gauge pressure.
This is further discussed in Section 3.5.

3.5 Discussion

The observer (3.17) features a nonlinear model of the heat release (2.43a) and has
proven convergence, but with the tradeo� that an asymptotically convergent error
is introduced into the dynamics. It has been tested and compared to the �trivial�
observer which has no convergence guarantee, but does not introduce such an error
into its dynamics.

The simulation results presented in Section 3.3 were in general as expected,
although the �trivial observer� has in most cases surprisingly good performance. In
the experimental part, Section 3.4, the results are more interesting. While using
incorrect acoustic impedances the simulations causesslight o�sets in the estimates
compared to the true values, as can be seen in Figures 3.6�3.8, 3.12�3.14, in the
experiments the variation in amplitude based on value of impedance used is much
larger, as one can see in Figure 3.19.

In addition to the estimated amplitude being very sensitive to the acoustic
impedance, the estimates shown in Figure 3.19 are phase-shifted compared to
the measured pressure signal. There could be multiple reasons for this, a pos-
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sible one being that the model (2.43) on which the algorithm design is based
neglects certain aspects of the physics which are involved. With respect to the
acoustic impedances, an assumption made in Chapter 2 is to model the acoustic
impedances as constant scalars, hence leaving out possible reactive e�ects. How-
ever in practice one typically has reactive e�ects in the impedance of an open-ended
tube [Levine & Schwinger 1948], and leaving this out in the modelling could be a
possible explanation for the observed phase shift.

Another possible modelling error could be due to assumptions regarding heat
transfer. In the particular experimental setup used here, the tube used is made
of steel, which is a metal and hence conducts heat well. With the heater having
been turned on for some time, inevitably the tube heats up, which then in turn
in�uences the temperature Tg of the gas around the heater. As is seen in (2.43a),
the rate of change of heat release rate is directly proportional to the di�erence
between the wire and the gas temperature. The temperature of the gas documented
in Table ii.2 is of approximate room temperature, which may in practice be wrong.
Indeed, as is documented in the literature [Duet al. 2019], the temperature of the
gas immediately surrounding the electrical heater tends to be signi�cantly higher
than the standard ambient room temperature surrounding the tube.

Therefore, in addition to the pressure measurement, a useful auxiliary sensor sig-
nal to use in the observer could be the temperature of the gas around the heater. Al-
ternatively, observers that use more complicated models of the Rijke tube than (2.43)
could be a viable research direction, with an observer that estimates the tempera-
ture distribution in the tube and its in�uence on the acoustics being an interesting
idea.
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Le tube de Rijke, modélisé comme ayant des extrémités ouvertes idéales, possède
aux frontières des coe�cients de ré�exion dr = � 1. En pratique, il y a toujours
un amortissement inconnu présent, ce qui impliquejdr j < 1. La sensibilité des
estimations d'état de l'observateur proposé dans le chapitre 3 aux di�érentes
valeurs des coe�cients limites inconnus motive l'identi�cation de ces paramètres.
Après une revue de la littérature sur le sujet, nous proposons dans ce chapitre une
méthode d'estimation de ces paramètres à partir d'une seule mesure de pression. Le
modèle (2.44) qui, à section constante, modélise le tube de Rijke avec le réchau�eur
éteint, est réécrit en coordonnées de Riemann. En utilisant la méthode des carac-
téristiques, nous exprimons le problème d'identi�cation sous forme d'une régression
linéaire. Nous proposons de résoudre ce problème par une méthode des moindres
carrés avec avec un facteur d'oubli pour estimer les impédances acoustiques aux
frontières. Nous e�ectuons d'abord des simulations, puis nous utilisons des données
expérimentales. Nous testons l'observateur du chapitre 3 avec les valeurs identi�ées
des paramètres de frontière.
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In theory the Rijke tube has ideal open ends with re�ection coe�cients dr = � 1;
in practice there is always unknown damping present, which impliesjdr j < 1. Sen-
sitivity of the state estimates from the observer proposed in Chapter 3 to di�erent
values of the unknown boundary coe�cients motivates identi�cation of these param-
eters in practice. After a literature review on the topic, we propose in this chapter
a method for estimating these parameters from a single pressure measurement. The
model (2.44) which, with constant cross-sectional area, models the Rijke tube with
the heater turned o�, is rewritten in Riemann coordinates. Using the Method Of
Characteristics (MOC), a regressor form linear in the unknown parameters and their
product is written. We propose applying this regressor form together with Least
Squares (LS) with forgetting factor to estimate the boundary acoustic impedances.
This is done �rst in simulations, and subsequently using experimental data. We test
the observer from Chapter 3 with the identi�ed values of the boundary parameters.

4.1 Literature review

In addition to design of state observers for estimating the pressure, velocity and heat
release from sensor measurements, many of the parameters in the Rijke tube are by
default unknown and need to be identi�ed to implement the observers correctly.
In [Epperlein et al. 2015] a range of classical system identi�cation techniques are
applied to estimate various parameters in the Rijke tube. As seen in Chapter 3, one
class of parameters that can have a large impact on obtaining the correct estimates
is the boundary acoustic impedances. These parameters appear in the acoustic
boundary conditions (2.43d)�(2.43e) of the Rijke tube acoustic model.

In particular for combustion chambers susceptible to thermoacoustic instabili-
ties, the chambers are in practice interfaced to complex turbomachinery during their
operation, which in turn determines the impedances, making it a daunting task to
analytically compute the quantities for all operating conditions [Poinsot 2017]. In
the Rijke tube the acoustic impedances are in practice open ends with a bit of damp-
ing, and hence simpler than the impedances one �nds in real combustion chambers.
Hence, studying the problem of acoustic impedance estimation in the Rijke tube
can be seen as a stepping stone towards understanding how to estimate the acoustic
impedances in more complicated cases.

An early method for determination of boundary acoustic impedances developed
is the Standing-Wave-Ratio (SWR) method [Kathuriya & Munjal 1975] where the
positions of nodes and antinodes of a standing wave inside a tube connected to
the acoustic boundary impedances of interest are identi�ed by moving a micro-
phone along the tube, and based on this information the acoustic impedances can
be computed. Later, the now much used two-microphone method was introduced
by [Seybert & Ross 1977]. The method consists of exciting the acoustic system at
the boundary anticollocated to the unknown acoustic boundary with an acoustic
source randomly �uctuating within a narrow bandwidth around the frequency one
wishes to estimate the boundary impedance for. Two microphones are then placed
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at di�erent positions along the tube, and the boundary acoustic impedance is cal-
culated based on the auto-spectral densities of the pressure at the respective points
and their relative cross-spectral density. The original two-microphone method does
not take into account uncertainty in the estimate, with an improved version doing
this suggested in [Schultzet al. 2007].

The methods for estimating acoustic impedance mentioned above were designed
to be applied with frequency domain data, assuming the impedance to be a general
linear system with velocity as the input and pressure as the output, and hence
typically giving a complex frequency response as the estimate of the impedance.
For more complex cases it is necessary to describe the impedance in that manner,
but in the Rijke tube acoustics (2.43) they are simply represented as real scalar
quantities, with the pressure at the boundary being proportional to the velocity,
rather than a convolution. To estimate these quantities, we propose in Section 4.2 a
parameter identi�cation scheme. The method is developed in the time domain and
can hence be implemented in real-time.

4.2 Parameter identi�er

Figure 4.1: Diagram of setup for parameter identi�cation of boundary impedances
of cylindrical tube, for application to the Rijke tube. A pressure sensor collocated
with a loudspeaker are placed atz = 0 . Actuating the tube with a su�ciently rich
signal and measuring the response, the aim of the parameter identi�er is to estimate
the unknown boundary impedancesZ0, ZL .

In Section 3.2 we have proposed a state observer for the Rijke tube and proved
that its corresponding estimation error dynamics are GAS with respect to the origin,
if all model parameters are known. Also, a minor result was given with respect to
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robustness of the observer estimates to error in knowledge of the acoustic re�ection
coe�cients, which can in practice be challenging to compute or estimate accurately.
In this section a simple estimation scheme for estimating these re�ection coe�cients
is proposed.

4.2.1 Model in Riemann coordinates

We consider the same setup as shown in Figure ii.1, but with the electrical heater
turned o�. Also, we let there be a loudspeaker collocated with the pressure mea-
surement at z = 0 . This results in the setup illustrated in Figure 4.1, with the
acoustic impedancesZ0, ZL , which we are interested in estimating, labelled. The
model (2.44) with a0(�) � 0, WL � 0 and W0 � W can describe this scenario, where
W is an identi�cation signal. Note that this model is identical to (2.43b)�(2.43e)
with Q = �Q � 0, and can hence represent the Rijke tube with the heater turned o�.
We assume the measurementY given by (3.1) is available.

De�ne the Riemann coordinates

u(x; t ) = �P(xl; t ) + k �V (xl; t ) (4.1a)

v(x; t ) = �P(xl; t ) � k �V (xl; t ) (4.1b)

where k the characteristic impedance of the air as given by (3.4). Note that unlike
the observer design, where separate Riemann coordinates are needed for the part of
the tube above and below the heater, only a single pair of Riemann coordinates are
needed here due to the absence of folding the domain around the electrical heater.

Applying this transformation maps the system (2.44) with a0(�) � 0 into the
system

ut (x; t ) = � �u x (x; t ) (4.2a)

vt (x; t ) = �v x (x; t ) (4.2b)

u(0; t) = d0v(0; t) + U(t) (4.2c)

v(1; t) = d1u(1; t) (4.2d)

with re�ection coe�cients d0, d1 given in (3.9) and � de�ned by

� :=
c
L

: (4.3a)

For the sake of obtaining the regressor form needed for parameter identi�cation, we
de�ne the signal y as

y(t) := v(0; t) (4.4)

as the output signal of (4.2). The respective I/O signalsU and y from the bound-
ary (4.2c) are related to the physical I/O signalsW and Y from the boundary (2.44d)
via the relations

U(t) = (1 � d0)W (t) (4.5a)
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y(t) =
2

1 + d0
Y(t) �

1 � d0

1 + d0
W (t): (4.5b)

Next in Section 4.2.2, the model in Riemann coordinates (4.2) is written in a
regressor form suitable for parameter identi�cation of the unknown re�ection coef-
�cients d0, d1 using physical I/O signals W and Y .

4.2.2 Regressor form

The regressor form is given by the following Lemma.

Lemma 1. Consider the duct acoustics described by(2.44) with a0(�) � 0, W0 = W
and WL � 0, and output signalY given by (3.1). Then the relation

r (t) = #> R(t) (4.6)

where r is de�ned by

r (t) := Y (t) �
1
2

W (t); (4.7)

the parameter vector# is written in terms of d0, d1, de�ned in (3.9), as

# :=

2

4
d0d1

d0

d1

3

5 ; (4.8)

and known signal vectorR is

R(t) :=

2

4
r (t � 2� � 1)

� 1
2W (t)

1
2W (t � 2� � 1)

3

5 ; (4.9)

holds true.

Proof. Applying the plant dynamics (4.2) and output signal de�nition (4.4), we
have the relation between current and past characteristic I/O signals together with
parameters

y(t) = d1d0y(t � 2� � 1) + d1U(t � 2� � 1): (4.10)

Next, substituting (4.5) into (4.10) we obtain

2
1 + d0

Y(t) �
1 � d0

1 + d0
W (t) = d1d0

�
2

1 + d0
Y(t � 2� � 1) �

1 � d0

1 + d0
W (t � 2� � 1)

�

+ d1(1 � d0)W (t � 2� � 1): (4.11)

With some algebraic manipulation, we end up with

Y (t) �
1
2

W (t)
| {z }

= r (t )

= d1d0

�
Y (t � 2� � 1) �

1
2

W (t � 2� � 1)
�

| {z }
= r (t � 2� � 1 )

+ d0

�
�

1
2

W (t)
�
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+ d1

�
1
2

W (t � 2� � 1)
�

+
1
2

d1d2
0W (t � 2� � 1) �

1
2

d1d2
0W (t � 2� � 1)

| {z }
=0

(4.12)

which can be written as (4.6)�(4.9), and the proof is complete.

With the regressor form (4.6), a wide range of parameter identi�cation schemes
can be applied to estimate the parameter vector#, given that the signal r and signal
vector R are available. Next, in Section 4.2.3 we state su�cient conditions for the
parameter estimates to converge when applying modi�ed LS with forgetting factor.

4.2.3 Identi�cation scheme

To apply the regressor form (4.6)�(4.9) to estimate the boundary acoustic
impedancesZ0, ZL via (3.9), we consider modi�ed least squares with forgetting
factor. Denote the estimate of# de�ned in (4.8) as #̂. We can then form an esti-
mate r̂ of r as de�ned in (4.7), by replacing # by #̂ in (4.6), which lets us de�ne

r̂ (t) := #̂(t)> R(t): (4.13)

Modi�ed LS with forgetting factor proposes to update the estimate #̂ via the
adaptive law

_̂#(t) = P(t) ( r (t) � r̂ (t)) R(t) (4.14a)

_P(t) =

(
�P (t) � P(t)R(t)R(t)> P(t); if jjP(t)jj � �P

0; otherwise
(4.14b)

initialized from #̂(0) = #̂0 2 R3� 1, P(0) = P0 2 R3� 3, and �; �P > 0 are scalar
tuning constants. The following Theorem presents the properties of the adaptive
law (4.14).

Theorem 2. De�ne ~r := r � r̂ . The adaptive law (4.14) guarantees that

� ~r; #̂; _̂# 2 L 1

� ~r; _̂# 2 L 2

� If 	 2 L 1 and 	 is Persistently Exciting (PE), then P; P � 1 2 L 1 and
#̂(t) ! # exponentially.

Proof. For the �rst two properties, see Proof of Theorem 4.3.5 in
[Ioannou & Sun 2012], and for the �nal property see Proof of Corollary 4.3.2
in [Ioannou & Sun 2012].
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The parameter vector # in (4.8) consists of three parameters, whereas we are
only interested in estimating two. Hence, the regressor form (4.6) represents an
overparametrized system in the unknown coe�cientsd0 and d1. Denoting � := d0d1

and �̂ as the estimate of� , we propose to solve the optimization problem

( �d0; �d1) = arg min( O( �d0; �d1)) (4.15)

where O : R2 7! R is given by

O( �d0; �d1) := � 1( �d0 �d1 � �̂ )2 + � 2( �d0 � d̂0)2 + � 3( �d1 � d̂1)2 (4.16)

and

� i =

(
1; if � i is PE

0; otherwise :
(4.17)

where � i is the i th component ofR.
We test next the parameter estimation scheme in simulations and experiments.

The obtained values are then applied together with the observer from Chapter 3.

4.3 Simulations

4.3.1 Parameter identi�cation simulations

Here we apply the parameter estimation scheme proposed in Section 4.2 to estimate
the acoustic impedancesZ0, ZL listed in Table ii.1, testing the update law considered
in Theorem 2.

To obtain su�cient information about the acoustic boundary impedances Z0,
Z1, the input signal W in (4.8) must be �su�ciently rich�, so that the PE condition
in Theorem 2 is satis�ed. For the simulations in this section, we chooseW as

W (t) = 2 cos
�

��
3

t
�

+ 2 :5 cos
�

��
4

t
�

+ 3 cos(��t )

where � is computed from (4.3a) and (3.7) using parameters in Table ii.1.
A plot of W versus the corresponding measurement signalY from the simulation

for t 2 [0:0; 0:2] is shown in Figure 4.2. Using these two signals, the parameter esti-
mation scheme presented in Theorem 2 is implemented with the tuning parameters

� = 5 ; �P = 103;

and initialized from

#̂0 =

2

4
0:56

� 0:80
� 0:70

3

5 ; P0 =

2

4
1 0 0
0 1 0
0 0 1

3

5 :
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Figure 4.2: Pressure input signalW (in blue) versus pressure output signalY (in
orange) used for parameter identi�cation.

Figure 4.3: Acoustic impedance estimates versus true values.
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For each time step, after updating the parameter estimate using (4.14), the
optimization problem (4.16) is solved with

� 1 = 1 ; � 2 = 1 ; � 3 = 1 ;

using the fminunc function from MATLAB. The resultant acoustic impedance esti-
mates as a function of time for t 2 [0; 2] are plotted in dashed lines against the
true parameters, which are represented by solid lines, in Figure 4.3. The impedance
Z0 and its corresponding estimate are in magenta, whereasZL and its estimate is
plotted in cyan. With the given tuning parameters, the estimates converge to a
steady state solution close to the true values within2 s.

Parameter estimate Expected value Variance

Ẑ0 � 14:4 6:40� 10� 3

ẐL 20:8 3:58� 10� 2

Table 4.1: Acoustic impedance estimates.

To obtain values of the acoustic impedances which can be applied to the observer,
the expected value and variance of the estimates for the last0:5 s of the simulation
are computed, summarized in Table 4.1. The estimates are not perfect, but are close
to the true values tabulated in Table ii.1. The true test of the parameter estimates
is in assisting the observer to produce correct state estimates, which is tested next
in Section 4.3.2.

4.3.2 State observer simulations - Correct boundary coe�cients

The observer (3.17) is now compared to the �trivial observer� (3.17a)�(3.17h), (3.40)
when using the estimates ofZ0, ZL presented as expected values of̂Z0(�), ẐL (�)
documented in Table 4.1. In Figure 4.4, the pressure estimation error~P(z0; �),
shown in dark blue, from the observer (3.17) is plotted against the error~Ptrivial (z0; �),
shown in light blue, associated with the �trivial� observer (3.17a)�(3.17h). As done
in Chapter 3, the �rst and last 200ms of the observer being active is plotted. Also,
shown in Figure 4.5 is the estimation error ~V (z0; �), in dark green, of the velocity
from (3.17) plotted against ~Vtrivial (z0; �) from the �trivial� observer, which is shown
in light green. Lastly, in Figure 4.6 we see the heat release rate errors~Q(�), in dark
red, and ~Qtrivial (�), in light red, plotted against each other.

Comparing Figures 4.4�4.6 to the corresponding Figures 3.3�3.5, 3.9�3.11 from
Chapter 3, we see the estimates ofZ0, ZL has a profound impact on the correctness of
the state estimates, after the initial transient. Indeed, the errors from last200ms of
the simulation as plotted in Figures 4.4�4.6 are almost at the origin. The estimates
of the error norm, computed in the same way as in Chapter 3, is summarized in
Table 4.2. Compared to the norms documented in Tables 3.1�3.2, the error norms
in Table 4.2 are much smaller in magnitude, as expected. However, in this case
the �trivial� observer has better performance for all three state estimates. This
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Figure 4.4: Pressure estimation error. Initial transient (top) and converged esti-
mates (bottom).
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Figure 4.5: Velocity estimation error. Initial transient (top) and converged esti-
mates (bottom).
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Figure 4.6: Heat release rate estimation errors. Initial transient (top) and converged
estimates (bottom).
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Norm Observer (3.17) �Trivial� observer (3.17a)� (3.17h), (3.40)

jj ~P(z0)jj 1:44 0:305
jj ~V (z0)jj 2:3 � 10� 3 9:31� 10� 4

jj ~Qjj 1:08 0:399

Table 4.2: Error norms.

can be attributed to the asymptotically convergent error that is introduced into
the observer (3.17) from reconstructing the unmeasured boundary, which is done in
order to be able to guarantee global convergence. This shows there is a trade-o�
involved, with the global convergence guarantee coming with a possible performance
penalty.

Figure 4.7: Pressure atz = z0 compared to estimates.

To see the estimates compared to the true states, they are plotted for the last
10 ms of the simulation in Figure 4.7, which shows the pressureP(z0; �) versus the
estimates P̂ (z0; �) and P̂trivial (z0; �), Figure 4.8 which shows the velocityV (z0; �)
versus the estimatesV̂ (z0; �) and V̂trivial (z0; �), and Figure 4.9 which shows the heat
releaseQ(�) versus estimatesQ̂(�) and Q̂trivial (�). In all three cases, the estimates are
almost identical to the states, showing that the error norms documented in Table 4.2
have marginal importance for state estimation purposes.

With the parameter identi�cation algorithm tested on a simulation example in
Section 4.3.1 and the parameter estimates subsequently applied to the observer from
Chapter 3, we now do the same with the experimental data.
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Figure 4.8: Velocity at z = z0 compared to estimates.

Figure 4.9: Heat release rate compared to estimates.
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4.4 Experiments

We test in this section the parameter identi�cation method developed in Section 4.2
experimentally. The values obtained are then used in the observer from Chapter 3 to
see if any improvement is made over the experimental estimates documented in Sec-
tion 3.4. For the parameter identi�cation experiment, we use the experimental setup
shown in Figure ii.15, with a collocated loudspeaker and microphone. An acoustic
identi�cation signal is measured sent into the tube, and the resultant response from
the tube is picked up with a microphone.

4.4.1 Parameter identi�cation experiment

Figure 4.10: Pressure input signalW (in blue) versus pressure output signalY (in
orange) used for parameter identi�cation.

For parameter identi�cation, to excite the tube, we sent in a signal consisting of
three separate frequencies, namelyf 1 = 440 Hz, f 2 = 510 Hz and f 3 = 750 Hz.
The resultant I/O signals used for parameter identi�cation, as measured by the mi-
crophone setup shown in Figure ii.15, are shown for the �rst50 ms in Figure 4.10.
Using these signals, the parameter estimation scheme from Theorem 2 is imple-
mented with the tuning parameters

� = 2 ; �P = 103:
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The parameter estimation scheme is initialized from three di�erent initial conditions

#̂1
0 =

2

4
0:25

� 0:50
� 0:50

3

5 ; #̂2
0 =

2

4
0:25
0:50
0:50

3

5 ; #̂3
0 =

2

4
� 0:1875
� 0:25
0:75

3

5

but the same value forP0 as used in Section 4.3.1.
For each time step, after updating the parameter estimate using (4.14), the

optimization problem (4.16) is solved with

� 1 = 1 ; � 2 = 0 ; � 3 = 1 :

The resultant acoustic impedances as a function of time are plotted in Figure 4.11

Figure 4.11: Acoustic impedance estimates.

for time t 2 [0; 5], with the dashed magenta lines showing the estimateŝZ i
0(�)1 for

i 2 f 1; 2; 3g (see legend) ofZ0, and the dashed cyan lines showing the estimates
Ẑ i

L (�) for i 2 f 1; 2; 3g (see legend) ofZL . Compared to the estimates found in
Figure 4.3, the estimates in Figure 4.11 appear to have a higher variance, despite
the lower value of forgetting factor used. It appears that the estimates reach a
steady state region at aroundt = 4 s, and the expected value and variance of the
estimates computed over the last1 s of the simulation is recorded in Table 4.3.
Compared to the estimates in Table 4.1, the estimates in Table 4.3 do indeed have
a larger variance. Next, in Section 4.4.2, the observer (3.3) is tested again, using
the expected values (which converged to very similar values) of the estimates in
Table 4.3 asẐ0, ẐL .

1The notation Ẑ i
z denotes the estimate of the boundary impedance at location z initialized from

#̂ i
0 .
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Parameter estimate Expected value Variance

Ẑ 1
0 � 15:4 0:579

Ẑ 1
L 68:5 0:443

Ẑ 2
0 � 15:4 0:577

Ẑ 2
L 68:5 0:440

Ẑ 3
0 � 15:5 0:599

Ẑ 3
L 68:4 0:461

Table 4.3: Acoustic impedance estimates.

4.4.2 State observer experiment - Estimated boundary coe�cients

We repeat here the observer experiment from Section 3.4 using values of the
impedances estimated in Section 4.4.1. Precisely, we use the mean of the expected
values of the estimated impedances documented in Table 4.3 in the observer. The
observer is tested on the data shown in Figures 3.15�3.16.

Figure 4.12: Measured (blue line) compared to estimated (grey line) gauge pressure
at z = zv using values of impedance estimated in Section 4.4.1.

In Figure 4.12 the estimated value of gauge pressure atz = zv is plotted in grey,
and compared to the measured value which is plotted in blue. A closer view of
the estimated gauge pressure compared to the measured gauge pressure is shown in
Figure 4.13, showing the last20ms of the observer test. Considering the discrepancy
in estimated and measured amplitude in Figure 4.12, sensitivity of the estimated
gauge pressure to assumed locationszv of the in-domain validation microphone
is considered in Figure 4.13 by plotting estimates forzv 2 [0:8 0:9] around the
estimate corresponding to the measured value ofzv = 0 :85 m. As is seen, the
amplitude of the estimated gauge pressure is highly sensitive to accurate knowledge
of the in-domain microphone positionzv , and uncertainty in this could hence be a
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Figure 4.13: Measured (blue line) compared estimated (grey lines) gauge pressure for
validation microphone locationszv 2 [0:8 0:9]. Using values of impedance estimated
in Section 4.4.1. Shown for �nal 20 ms of observer test.

contributing factor in inaccurate estimation of the pressure amplitude. In addition
to this possible contributions from modelling error will be discussed in Section 4.5.
As was the case in Chapter 3, the estimates are however still phase-shifted compared
to the measured pressure signal and as seen from Figure 4.13 possible uncertainty
in the measured microphone position does not in�uence this greatly.

4.5 Discussion

Compared to existing results in the literature, the parameter identi�er (4.14) has the
advantage that it estimates both acoustic impedances simultaneously with a single
pressure measurement, but with the regressor form (4.6) being overparametrized.
Since the acoustic impedances are estimated indirectly via the re�ection coe�cients
d0, d1, an accurate knowledge of the characteristic impedancek is needed to get
accurate knowledge of the impedances.

In the parameter identi�cation experiment presented in Section 4.4.1, the es-
timate of ẐL converges to a larger absolute value than the estimate of̂Z0. This
is surprising as they should in theory be as similar as possible, with each of them
representing an open end with a slight amount of damping. However, the estimates
are both signi�cantly smaller than the characteristic impedancek in absolute value,
which represent physically feasible solutions. With a value closer tok in absolute
value representing more damping, and the acoustics model (2.43) used in the algo-
rithm design assuming there is no in-domain damping in the Rijke tube, one possible
explanation for acoustic impedance estimateẐL being larger than Ẑ0 in absolute
value is that in-domain damping from the tube is inadvertently lumped together
with the acoustic impedance anticollocated with the I/O signals.
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Also, a possible source of error in the experimental technique used is that the
microphones shown in Figure ii.15 are fairly close to each other. With the pres-
sure node in practice extending approximately� L = 0 :61r outside of the tube
end [Levine & Schwinger 1948], the microphone that is supposed to only pick up
the loudspeaker signal could also accidentally pick up some of the tube acoustic
response. Also, the loudspeaker signal is attenuated slightly as it travels from the
loudspeaker into the tube, so the exact microphone placements could impact the
resultant parameter estimate.

Although the parameters found in Section 4.4.1 made an improvement to the
observer state estimates, the estimate shown in Figure 4.13 is still far from per-
fect. As discussed in Section 3.5, there could be multiple reasons, such as possible
modelling error, for this. Two probable causes of modelling errors are mentioned,
namely the lack of modelling heat transfer between the air inside the Rijke tube
and tube walls and also modelling the impedances as having a resistive component,
only. The former could cause errors in the sense that extra damping from a heated
tube that is not included in the model might cause the observer to overestimate
the amplitude of the thermoacoustic instabilities. Indeed, this could possibly ex-
plain the estimated pressure amplitude in Figures 4.12�4.13 being larger than that
of the measured pressure despite using estimated rather than guessed values of the
boundary impedances. Also as discussed in Section 3.5, the latter modelling error
is a probable cause for the observed phase shift in Figures 3.19, 4.13. In addition
to sensitivity of the estimate to validation microphone position as explored in Fig-
ure 4.13, the author has considered sensitivity of the estimates to other uncertain
parameters, some examples being the electrical heater position and electrical heater
time constant. However no signi�cant variation in the phase shift has been observed
from varying parameters currently in the model, suggesting modelling error is the
probable cause for this error.

Some direct further work building on what is presented here is to investigate
robustness of the parameter identi�er (4.14) in estimating accurately the boundary
acoustic impedances of the Rijke tube. It should be investigated to what extent in-
domain damping in�uences the estimate of the anti-collocated acoustic impedance,
and the sensitivity of the method to microphone placement in relation to the loud-
speaker and tube boundary. Also, possibilities for combining the observer and pa-
rameter identi�er into an adaptive observer should be looked into.

As has been seen, the Rijke tube is a rather simple setup, and the algorithm de-
signs based on the model (2.43) and (2.44) with constant cross-sectional area re�ects
that. Thermoacoustic instabilities in combustors can feature highly complicated dy-
namics that is di�cult to understand from studying basic laboratory setups such as
the Rijke tube. Next, in Part III of this thesis, some research e�orts attempting to
move beyond the Rijke tube are considered.
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Introduction to Part III
The work that was considered in Part II dealt with the Rijke tube, which is a labora-
tory setup. Although studying this setup is useful for understanding the rudiments
of thermoacoustics as a physical phenomenon, designing algorithms to estimate the
states and parameters for the Rijke tube can not be directly applied to practical
combustors. There are, in addition to other factors, two important reasons for this.
Firstly, the Rijke tube uses either a heated gauze or an electrical heater, which are
simpler to model than �ames in principal. Secondly, the Rijke tube has very simple
geometry, whereas many important aspects of thermoacoustics in combustors are a
direct consequence of their more complicated geometry [Poinsot 2017].

Therefore, to work towards model-based state and parameter estimation algo-
rithms for combustors, the unique aspects of combustor dynamics need to be taken
into account in the models used. In Part III of the thesis we aim to take some steps,
however small, towards this. Only longitudinal modes and laminar �ame dynamics
are considered, but we hope the contributions presented can be built upon towards
the realization of estimation algorithms using more realistic descriptions of the com-
bustor dynamics in future work. We start in Chapter 5 by considering the problem
of generalizing the parameter estimation scheme from Chapter 4, which assumes the
cross-sectional area of the duct is constant, to the case when the duct has spatially
varying geometry. This is done by using the acoustics described by (2.44) with
a0(�) 6= 0 in general as a basis. In Chapters 6 and 7, the state estimation problem
for the model (2.45), representing longitudinal oscillations in a can combustor with
spatially varying geometry, is considered. Here we use spatially compact �ame mod-
els to describe the heat release. In Chapter 6 the �ame model is linearized, but in
Chapter 7 a nonlinear �ame model is considered.
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Boundary Parameter Estimation
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Dans ce chapitre, nous présentons un schéma d'identi�cation des paramètres
permettant d'estimer les coe�cients limites d'un système hyperbolique linéaire
2� 2. La conception est similaire au schéma d'identi�cation des paramètres suggéré
au chapitre 4 pour le tube de Rijke, mais les coe�cients de couplage dans le
domaine rendent l'application de la même approche non triviale. Pour surmonter ce
problème, une transformation de type backstepping est employée pour transformer
le système hyperbolique linéaire2 � 2 en un système cible piloté par les signaux
entrée/sortie en chaque point du domaine spatial. La méthode des caractéristiques
est ensuite appliquée pour trouver une forme de régresseur pour laquelle les méthodes
standard d'estimation des paramètres peuvent être appliquées. Nous illustrons cette
approche par des simulations sur un exemple théorique. Ensuite, il est démontré que
le modèle(2.44) de l'acoustique dans un conduit dont la section transversale varie
dans l'espace peut être écrit comme un système hyperbolique linéaire2 � 2. Cela
permet d'appliquer la forme de régresseur trouvée pour les systèmes hyperboliques
linéaires 2 � 2 généraux a�n de trouver une forme similaire pour l'estimation des
impédances acoustiques de frontière dans les conduits dont la géométrie varie dans
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l'espace.

In this chapter, a parameter identi�cation scheme for estimating the boundary
coe�cients of a 2� 2 linear hyperbolic system is presented. The design is similar to
the parameter identi�cation scheme suggested in Chapter 4 for the Rijke tube, but
the in-domain coupling coe�cients make applying the same approach non-trivial.
To overcome this issue, a backstepping transformation is employed to map the2� 2
linear hyperbolic system into a target system driven by the I/O signals at each point
in the spatial domain. The MOC is then applied to �nd a regressor form for which
standard parameter estimation methods can be applied. The design is demonstrated
in simulations on a theoretical example. Next, it is shown that the model (2.44)
of acoustics in a duct with spatially varying cross-sectional area can be written as
a 2 � 2 linear hyperbolic system. This allows the regressor form found for general
2 � 2 linear hyperbolic systems to be applied to �nd a similar form for estimation
of boundary acoustic impedances in ducts with spatially varying geometry.

5.1 Background

5.1.1 Problem statement

We are here concerned with systems of the form

ut (x; t ) = � � (x)ux (x; t ) + � + (x)v(x; t ) (5.1a)

vt (x; t ) = � (x)vx (x; t ) + � � (x)u(x; t ) (5.1b)

u(0; t) = d0v(0; t) (5.1c)

v(1; t) = d1u(1; t) + U(t); (5.1d)

whereu; v are distributed states de�ned over(x; t ) 2 [0; 1]� [0; 1 ), and the bound-
ary re�ection coe�cients d0; d1 are unknown. The transport speeds�; � 2 C1(0; 1)
and in-domain coupling coe�cients � + ; � � 2 C0(0; 1) are all assumed known, and
U : [0; 1 ) 7! R is a boundary input signal. We assume the initial conditions
u0; v0 2 L 2(0; 1).

Given knowledge of the boundary measurement

y(t) := u(1; t); (5.2)

only, the main goal is to design a parameter identi�cation scheme for estimating
the unknown coe�cients d0; d1 and to choose the input signalU so that parameter
convergence is achieved.

5.1.2 Literature review

Linear hyperbolic 2 � 2 systems of the form (5.1) model a wide range of
systems commonly found in engineering applications, such as open channel
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�ow [Coron et al. 1999], gas dynamics [Marchesin & Paes-Leme 1986], leak detec-
tion in pipes [Aamo 2015] and oil well drilling [Di Meglio & Aarsnes 2015]. They
consist of two distributed one-dimensional states convecting in opposite directions
through a �rst-order transport equation and coupled in-domain and at the bound-
aries. In order to actuate and sense these systems, the most feasible access points in
many practical applications are the boundaries, and hence much research has been
devoted to observer and controller design within this setting over the past years.

A successful technique for boundary observer and controller design for many
distributed parameter systems is the backstepping methodology, which was �rst
developed for stabilization of certain classes of �nite dimensional nonlinear sys-
tems (see [Krsti¢et al. 1995, Khalil & Grizzle 2002]) and later generalized to design
stabilizing boundary control laws for in�nite dimensional systems, the design �rst
fully mastered in [Liu 2003] for a parabolic PDE. The technique was later applied to
hyperbolic PDEs in [Krsti¢ & Smyshlyaev 2008a] and later to systems of �rst-order
hyperbolic PDEs in [Vazquezet al. 2011].

In early contributions it is assumed all system parameters are known, but
following on the research e�ort for control and observer backstepping designs,
research into adaptive controllers and parameter identi�ers for parabolic PDEs
has been considered, culminating in the seminal text [Smyshlyaev & Krsti¢ 2010].
In [Mechhoud et al. 2013] estimation of the source terms in a parabolic PDE describ-
ing plasma heat transport is considered, and in [Baudouinet al. 2014], a parameter
estimation problem for the Korteweg-De Vries equation modelling shallow water
waves is considered.

After multiple contributions for parabolic PDEs, research on adaptive de-
signs for hyperbolic systems was initiated in [Bernard & Krsti¢ 2014]. Building
on this, much research has been done on systems of hyperbolic PDEs; in the
two-part paper [An�nsen & Aamo 2016a, An�nsen & Aamo 2016b] uncertain in-
domain coupling coe�cients are estimated assuming distributed measurements are
available, while in [An�nsen et al. 2016] an uncertain boundary re�ection coe�-
cient at the boundary anti-collocated with sensing is estimated forn + 1 systems.
In [Ghousein et al. 2020] the temperature distribution in a heat exchanger is es-
timated by posing the problem as estimation of the amplitude of a distributed in-
domain disturbance with known pro�le, via considering the problem as an estimation
problem for 2 � 2 linear hyperbolic systems. Many of the current designs available
for adaptive control and parameter identi�cation of hyperbolic PDE systems are
covered in [An�nsen & Aamo 2019].

A scheme for estimating both re�ection coe�cients d0, d1 in the 2 � 2 lin-
ear hyperbolic system (5.1), given the boundary measurement (5.2) only is pre-
sented in Section 5.2. Both re�ection coe�cients of such systems are estimated
in [An�nsen & Aamo 2017], but assuming both boundaries are available for mea-
surement. Here, we only require one measurement. The methodology applied here
is based on using a Volterra integral transformation, a vital ingredient in the in�nite
dimensional backstepping technique (see [Krsti¢ & Smyshlyaev 2008b]), to map the
system we are studying into a target system. Using this target system, the measure-
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ment signal is written in a regressor form linear in the unknown coe�cients and their
product, allowing standard parameter identi�cation techniques to be applied. The
results from Section 5.2 are then applied in Section 5.4 to suggest an algorithm for
estimating the boundary impedances of a duct with spatially varying cross section,
such as the one modelled by (2.44).

5.2 Boundary parameter estimation 2� 2 hyperbolic sys-
tems

5.2.1 Mapping to target system

We apply the Volterra integral transformation

� (x; t ) = u(x; t ) +
Z 1

x
K uu (x; � )u(�; t ) + K uv (x; � )v(�; t )d� (5.3a)

� (x; t ) = v(x; t ) +
Z 1

x
K vu (x; � )u(�; t ) + K vv(x; � )v(�; t )d� (5.3b)

with kernels satisfying the PDE system

� � (x)K uu
x (x; � ) � � (� )K uu

� (x; � ) = � 0(� )K uu (x; � ) + � � (� )K uv (x; � ) (5.4a)

� � (x)K uv
x (x; � ) + � (� )K uv

� (x; � ) = � � 0(� )K uv (x; � ) + � + (� )K uu (x; � ) (5.4b)

� � (x)K vu
x (x; � ) + � (� )K vu � (x; � ) = � � 0(� )K vu (x; � ) � � � (� )K vv(x; � ) (5.4c)

� � (x)K vv
x (x; � ) � � (� )K vv

� (x; � ) = � 0(� )K vv(x; � ) � � + (� )K vu (x; � ) (5.4d)

de�ned over the the upper triangular domain Tu := f (x; � ) j 0 � x � � � 1g, and
having boundary conditions

K uu (x; 1) = f u(x) (5.5a)

K uv (x; x ) =
� + (x)

� (x) + � (x)
(5.5b)

K vu (x; x ) =
� � � (x)

� (x) + � (x)
(5.5c)

K vv(x; 1) = f v(x) (5.5d)

Here the boundary data f u , f v can be chosen freely, as long as it is su�ciently
smooth for (5.4)�(5.5) to have a well-posed solution. In Figure 5.1, a schematic
representation of the characteristics of the kernel equations (5.4)�(5.5) is shown.

Remark 4. Note that unlike the standard backstepping transformation considered
in e.g. [Vazquez et al. 2011], the kernels de�ned by(5.4)� (5.5) do not depend on the
boundary coe�cients d0, d1. This is achieved, as can be seen in(5.5) and Figure 5.1,
by de�ning the boundary condition of K uu ; K vv along the line � = 1 rather than
x = 0 , as is conventional in backstepping designs for observer and controller designs.
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Figure 5.1: Schematic of kernel equations (5.4)�(5.5). Characteristics in green,
originating in boundary data as indicated.

We present now a Lemma equating the system (5.1) with a target system. The
proof is standard and hence omitted.

Lemma 2. The invertible Volterra integral transformation (5.3)� (5.5) maps the
system (5.1) into the target system

� t (x; t ) + � (x)� x (x; t ) = ly1(x)y(t) + lU1 (x)U(t) (5.6a)

� t (x; t ) � � (x)� x (x; t ) = ly2(x)y(t) + lU2 (x)U(t) (5.6b)

� (0; t) = d0� (0; t) +
Z 1

0
M (x)� (x; t ) + N (x)� (x; t )dx (5.6c)

� (1; t) = d1� (1; t) + U(t) (5.6d)

with the I/O gains de�ned as

ly1(x) := d1� (1)K uv (x; 1) � � (1)K uu (x; 1) (5.7)

ly2(x) := d1� (1)K vv(x; 1) � � (1)K vu (x; 1) (5.8)

lU1 (x) := � (1)K uv (x; 1) (5.9)

lU2 (x) := � (1)K vv(x; 1) (5.10)

and M , N given by

M (x) := K uu (0; x) � d0K vu (0; x) �
Z x

0
M (s)K uu (s; x) + N (s)K uv (s; x)ds (5.11)

N (x) := K uv (0; x) � d0K vv(0; x) �
Z x

0
M (s)K vu (s; x) + N (s)K vv(s; x)ds (5.12)
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5.2.2 Regressor form

We denote here by� " the injective function

� " (x) :=
Z x

0

d�
" (� )

(5.13)

for any " 2 C1(0; 1), " > 0. We denote also�� " (x) := � " (1) � � " (x). Note that ly1,
ly2, N and M can be factorized as

ly1(x) = �ly1(x) + d1lU1 (x) (5.14)

ly2(x) = �lU2 (x) + d1lU2 (x) (5.15)

M (x) = M 1(x) + d0M 2(x) (5.16)

N (x) = N1(x) + d0N2(x) (5.17)

with component functions de�ned as

�ly1(x) := � � (1)K uu (x; 1) (5.18)
�ly2(x) := � � (1)K vu (x; 1) (5.19)

M 1(x) := K uu (0; x) �
Z 1

0
M 1(s)K uu (s; x) + N1(s)K uv (s; x)ds (5.20)

M 2(x) := � K vu (0; x) �
Z x

0
M 2(s)K uu (s; x) + N2(s)K uv (s; x)ds (5.21)

N1(x) := K uv (0; x) �
Z x

0
M 1(s)K vu (s; x) + N1(s)K vv(s; x)ds (5.22)

N2(x) := � K vv(0; x) �
Z x

0
M 2(s)K vu (s; x) + N2(s)K vv(s; x)ds (5.23)

Consider also the integral termsI y
i , I U

j given by

I y
1 [y](t) :=

Z 1

0
� M 2(s)F y

11[y](s; t) + N2(s)F y
12[y](s; t)ds

+
Z � � (1)

0
lU2 (� � 1

� (� � (1) � s))y(t � � � (1) � � � (1) + s)ds (5.24)

I y
2 [y](t) :=

Z 1

0
M 2(s)F y

21[y](s; t) + N2(s)F y
22[y](s; t)ds

+
Z � � (1)

0

�ly2(� � 1
� (� � (1) � s))y(t � � � (1) � � � (1) + s)ds (5.25)

I U
2 [U](t) :=

Z 1

0
M 2(s)F U

21[U](s; t) + N2(s)F U
22[U](s; t)ds

+
Z � � (1)

0
lU2 (� � 1

� (� � (1) � s))U(t � � � (1) � � � (1) + s)ds (5.26)

I y
3 [y](t) :=

Z 1

0
� M 1(s)F y

11[y](s; t) + N1(s)F y
12[y](s; t)ds
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+
Z � � (1)

0
lU1 (� � 1

� (s))y(t � � � (1) + s)ds (5.27)

I y
4 [y](t) :=

Z 1

0
M 1(s)F y

21[y](s; t) + N1(s)F y
22[y](s; t)ds

+
Z � � (1)

0

�ly1(� � 1
� (s))y(t � � � (1) + s)ds (5.28)

I U
4 [U](t) :=

Z 1

0
M 1(s)F U

21[U](s; t) + N1(s)F U
22[U](s; t)ds

+
Z � � (1)

0
lU1 (� � 1

� (s))U(t � � � (1) + s)ds (5.29)

which in turn depend on F y
ij , F U

ij , given by

F y
11[y](s; t) :=

Z �� � (s)

0
lU1 (� � 1

� (� � (s) + � ))y(t � � � (1) + � )d� (5.30)

F y
12[y](s; t) := y(t � �� � (s))

+
Z �� � (s)

0
lU2 (� � 1

� (� � (1) � � ))y(t � �� � (s) � � � (1) + � )d� (5.31)

F y
21[y](s; t) := y(t � � � (s)) �

Z �� � (s)

0

�ly1(� � 1
� (� � (s) + � ))y(t � � � (1) + � )d� (5.32)

F U
21[U](s; t) := �

Z �� � (s)

0
lU1 (� � 1

� (� � (s) + � ))U(t � � � (1) + � )d� (5.33)

F y
22[y](s; t) :=

Z �� � (s)

0

�ly2(� � 1
� (� � (1) � � ))y(t � �� � (s) � � � (1) + � )d� (5.34)

F U
22[U](s; t) := U(t � �� � (s) � � � (1))

+
Z �� � (s)

0
lU2 (� � 1

� (� � (1) � � ))U(t � �� � (s) � � � (1) + � )d� (5.35)

Lemma 3. The output signal y de�ned in (5.2) can be written as

y(t) = d0d1! 1(t) + d0! 2(t) + d1! 3(t) + ! 4(t) (5.36)

with ! i de�ned as

! 1(t) := y(t � � � (1) � � � (1)) + I y
1 [y](t) (5.37)

! 2(t) := U(t � � � (1) � � � (1)) + I y
2 [y](t) + I U

2 [U](t) (5.38)

! 3(t) := I y
3 [y](t) (5.39)

! 4(t) := I y
4 [y](t) + I U

4 [U](t) (5.40)

being functions only of known signals and gains de�ned in(5.24)� (5.35).

Proof. Applying the MOC and transformation (5.3a), we write the measurement as

y(t) = � (1; t)
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= � (0; t � � � (1)) +
Z � � (1)

0
ly1(� � 1

� (s))y(t � � � (1) + s)ds

+
Z � � (1)

0
lU1 (� � 1

� (s))U(t � � � (1) + s)ds: (5.41)

Further, using the MOC for � from the boundary at x = 1

� (x; t � � � (1)) = y(t � � � (x)) �
Z �� � (x)

0
ly1(� � 1

� (� � (x) + s))y(t � � � (1) + s)ds

�
Z �� � (x)

0
lU1 (� � 1

� (� � (x) + s))U(t � � � (1) + s)ds: (5.42)

Applying the boundary condition (5.6c), using the MOC to solve for the dynam-
ics (5.6b), substituting in (5.6d) and also applying (5.42) allows us to express

� (0; t � � � (1)) = d0

 

d1y(t � � � (1) � � � (1)) + U(t � � � (1) � � � (1))

+
Z � � (1)

0
ly2( �� � 1

� (s))y(t � � � (1) � � � (1) + s)ds

+
Z � � (1)

0
lU2 ( �� � 1

� (s))U(t � � � (1) � � � (1) + s)ds

!

+
Z 1

0
M (s)

 

y(t � � � (s))

�
Z �� � (s)

0
ly1(� � 1

� (� � (s) + � ))y(t � � � (1) + � )d�

�
Z �� � (s)

0
lU1 (� � 1

� (� � (s) + � ))U(t � � � (1) + � )d�

!

ds

+
Z 1

0
N (s)

 

d1y(t � � � (1) � �� � (s)) + U(t � � � (1) � �� � (s))

+
Z �� � (s)

0
ly2( �� � 1

� (� ))y(t � �� � (s) � � � (1) + � )d�

+
Z �� � (s)

0
lU2 ( �� � 1

� (� ))U(t � �� � (s) � � � (1) + � )d�

!

ds (5.43)

Hence substituting (5.43) into (5.41) and applying (5.14)�(5.17), by factoring out
the unknown coe�cients and grouping terms one obtains the expression (5.36).

5.2.3 Adaptive law

Denoting by $ the signal
$ (t) := y(t) � ! 4(t) (5.44)
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we see that (5.36) can be expressed in the regressor form

$ (t) = #> 
( t) (5.45)

with # as de�ned in (4.8) but 
 given by


( t) :=

2

4
! 1(t)
! 2(t)
! 3(t)

3

5 : (5.46)

Similar to the case in Section 4.2, a large number of standard adaptive schemes
can be applied with the regressor form (5.45) to estimate the unknown parameters
in #. As was done there, we suggest applying modi�ed least-squares with forgetting
factor. We form an estimate $̂ of the signal $ by applying the parameter estimate
vector #̂

$̂ (t) := #̂(t)> 
( t); (5.47)

and together with forgetting factor � > 0, the adaptive law reads

_̂#(t) = P(t)($ (t) � $̂ (t))
( t) (5.48a)

_P(t) =

(
�P (t) � P(t)
( t)
( t)> P(t); if jjP(t)jj � �P

0; otherwise.
(5.48b)

initialized from P(0) = P0, #̂(0) = #̂0 and �P an upper bound imposed onP. The
following Theorem is almost identical to Theorem 2 (only di�erence being di�erent
signals), but is stated for completeness.

Theorem 3. De�ne ~$ := $ � $̂ . The adaptive law (5.48) guarantees that

� ~$ , #̂, _̂# 2 L 1 .

� ~$ , _̂# 2 L 2.

� If 
 2 L 1 and 
 is PE, then P, P � 1 2 L 1 and #̂(t) ! # exponentially.

Since the same parameter vector is used in (5.45) as was the case for (4.6), the
optimization problem (4.15)�(4.16) with � i assigned as

� i =

(
1; if ! i is PE

0; otherwise:
(5.49)

is solved to obtain unique estimates�d0, �d1.

Remark 5. Given a vector of signals 
 de�ned as (5.46), checking whether
it and its components are PE is relatively straightforward. Recalling
from [Ioannou & Sun 2012] that a signal' : [0; 1 ) 7! Rn is PE if it satis�es

� 1I �
1
T0

Z t+ T0

t
' (� )' > (� )d� � � 0I (5.50)
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for some T0; � 0; � 1 > 0, whether the signal is PE or not can be veri�ed by applying
the condition directly. However, the question of how to choose the input signalU
so that 
 and its components are PE is more tricky and will in practice most likely
need to be found by trial and error, before the parameter identi�er can be applied to
a given plant. As discussed in [Ioannou & Sun 2012], a �rule of thumb� is to choose
U to be su�ciently rich of order equal to the number of unknown parameter, which
in the case ofU being the sum of sinusoids corresponds to the signal consisting of at
least half as many distinct frequencies as there are unknown parameters. One could
then apply (5.50) to verify that the regressor signal
 and its components are PE
for this choice of U.

5.3 Simulations

5.3.1 Simulation example

The system (5.1) is implemented inMATLABwith the coe�cients

� (x) = 1 ; � (x) = 1

� + (x) = 1 ; � � (x) = 1

d0 = 0 :1; d1 = 0 :2

and simulated for a total time of ts = 20 seconds, starting from the initial conditions

u0(x) = 0 ; v0(x) = 0 :

Spatial and temporal discretization ofdx = 10 � 3 and dt = 10 � 3, respectively, are
used. To solve the PDEs forwards in time, a �rst-order upwind scheme is applied.
The trapezoidal method is used to approximate all integrals.

As the system parametrization (5.45) is linear in three parameters, the input
signal U must be su�ciently rich in frequencies to allow the signal vector 
 to be
PE and be able to distinguish between the parameters. To excite the system to
generate su�cient output information for parameter convergence, the input signal
U de�ned by

U(t) = sin( t) + sin
�

t
2

�

is chosen.
In order to compute the signals ! i , i 2 f 1; : : : ; 4g, de�ned by (5.37)�(5.40),

the kernel PDE system (5.4)�(5.5) is solved using Uniformly Gridded Discretization
(UGD) (see [An�nsen & Aamo 2019]) with boundary data f u = 0 and f v = 0 .
Hence, using these solutions the signals! i are computed after � � (1) + � � (1) = 2 s
of I/O data has been collected.

Remark 6. The choice of boundary dataf u ; f v �tunes� the exact shape (as func-
tions of I/O data) of the respective signal componentsd0d1! 1, d0! 2, d1! 3 and ! 4 ,
that decompose the measurement signaly in (5.36). In the example presented here,
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choosingf u = f v = 0 is su�cient to obtain parameter convergence, but in certain
cases where
 does not satisfy the PE property with this choice, one could choose
f u and f v di�erently to make 
 PE, given that U is su�ciently rich. There is
no guarantee, however, that this will work in all cases, and further investigation is
necessary to establish the exact conditions for this to be possible.

Figure 5.2: Component signals of
 .

The three component signals of
 are plotted in Figure 5.2. With the ! i signals
computed, the adaptive law (5.48) is implemented with

� = 2 ; �P = 103:

The parameter estimate vector#̂ and covariance matrixP are respectively initialized
at

#̂0 =

2

4
0:25
0:5
0:5

3

5 ; P0 =

2

4
1 0 0
0 1 0
0 0 1

3

5 :

For each time step, after updating the parameter estimate using (5.48), the
optimization problem (4.15)�(4.16) is solved with

� 1 = 1 ; � 2 = 1 ; � 3 = 1 ;

using the fminunc function from MATLAB.
A plot showing the parameter d0 plotted against d̂0 directly from the update

law and �d0 after the optimization step is plotted in Figure 5.3. Likewise, Figure 5.4
shows a plot ofd1 against d̂1 and �d1. As can be seen, both estimates from before
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Figure 5.3: Plot of d0 versus estimates.

Figure 5.4: Plot of d1 versus estimates.
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and after the optimization step converge to their true values. In particular for
the estimation of d0, the optimization step forces the estimate �d0 to stay closer
throughout, compared to d̂0 which has a small overshoot initially.

5.3.2 Robustness to noise

In situations where one has sensor data that is corrupted by high levels of noise,
the forgetting factor � appearing in (5.48) has the e�ect of amplifying the noise,
as it discounts past data in preference for current data, and can hence give poor
parameter estimates if � and/or the maximum covariance norm �P are chosen to
be too high. One faces in any case a trade-o� between �exibility o�ered by the
forgetting factor and robustness to noise.

The system (5.1) is simulated with the same settings as in Section 5.3.1, but
with the measurement y originally de�ned as (5.2), now corrupted by an additive
white Gaussian noise process with power1 of 0:1 W , yielding a comparatively high
level of noise for this example. Instead of forgetting factor and maximum covariance
used in Section 5.3.1, these constants are here set to signi�cantly lower values of

� = 0 :1; �P = 2

to not amplify the noise too much. Using these new values, the adaptive law (5.48)
is implemented. A plot of the resultant parameter estimates is given in Figure 5.5.

Figure 5.5: Plot of d0 and d1 versus estimates. With measurement noise.

The quality of the parameter estimates are deteriorated due to the noise, but despite
1The unit Watt [W ] to quantify the �size� of the noise is used here with the conventional

meaning, as used by thewgnfunction [wgn ] used to implement it in MATLAB, that if a voltage with
equal numerical value, in Volts [V ], to the noise signal generated is placed over a resistor with
resistance1 
 , a power equal to the number of Watts speci�ed would be dissipated.
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this the estimates remain in the neighbourhood of the correct parameter values.
One should however note that parametrization (5.45) used will cause the estimates
produced by applying LS to be biased when faced with measurement noise. Hence
with signi�cant amounts of noise the estimates could diverge, rather than converge to
the true parameters as they would in the corresponding noiseless case with identical
input signal. It could be bene�cial to instead apply an update law more robust to
noise, such as Instrumental Variables (IV) (see e.g. [Ljung 1987]), rather than LS in
such a scenario.

5.4 Application to estimation of acoustic impedance in
duct with spatially varying cross section

5.4.1 Model in Riemann coordinates

Figure 5.6: Acoustic impedance estimation in duct with spatially varying cross-
sectional area.

Consider the setup shown in Figure 5.6. It consists of a similar setup to that
shown in Figure 4.1, but rather than having a duct with constant cross-sectional
area, the cross section is here described by a spatially varying functiona(z) for
z 2 [0; L ]. We let there be a loudspeaker located atz = L sending in signalWL = W
that it is collocated to a pressure measurement. Also, it is assumed the air inside
the duct is stationary, so that �V = 0 , and standard atmospheric conditions apply.
As shown in Chapter 2, such a scenario can be modelled by (2.44) withW0 = 0 .
The pressure measurementY is given by

Y(t) = �P(L; t ) (5.51)

and together with knowledge ofW , the aim is to estimate unknown boundary acous-
tic impedancesZ0; ZL . We proceed in the following steps. First, we show that (2.44)



5.4. Application to estimation of acoustic impedance in duct with
spatially varying cross section 111

can be written in the form (5.1) by mapping into Riemann coordinates. Then, ap-
plying results from Section 5.2, we suggest a regressor form for (2.44) that can be
used for parameter identi�cation.

Lemma 4. Consider the change of variables

u(x; t ) := ( �P(xL; t ) + k �V (xL; t )) exp
�

L
c

Z x

0
� (� )d�

�
(5.52a)

v(x; t ) := ( �P(xL; t ) � k �V (xL; t )) exp
�

L
c

Z x

0
� (� )d�

�
(5.52b)

where � is de�ned by

� (x) :=

 �P
2k

a0(xL )
a(xL )

(5.53)

and the speed of soundc and characteristic impedancek are respectively de�ned
in (3.7), (3.4). The change of coordinates(5.52) maps (2.44) into (5.1) with trans-
port speeds

� (x) :=
c
L

; (5.54a)

� (x) :=
c
L

(5.54b)

in-domain coupling coe�cients

� + (x) = � (x); (5.55a)

� � (x) = � � (x) (5.55b)

re�ection coe�cients

d0 :=
Z0 + k
Z0 � k

(5.56a)

d1 :=
ZL � k
ZL + k

(5.56b)

(5.56c)

and input signal
U(t) := (1 � d1)� W W (t) (5.57)

where

� W := exp
�

L
c

Z 1

0
� (� )d�

�
(5.58)

is known.

Proof. Consider �rst the intermediate change of variables

�u(x; t ) := �P(xL; t ) + k �V (xL; t ) (5.59a)

�v(x; t ) := �P(xL; t ) � k �V (xL; t ) (5.59b)



112 Chapter 5. Boundary Parameter Estimation

which lets us rewrite (2.44a)�(2.44b) as

1
2k

(�ut (x; t ) � �vt (x; t )) = �
1

2L ��
(�ux (x; t ) + �vx (x; t )) (5.60a)

1
2

(�ut (x; t ) + �vt (x; t )) = �

 �P
2kL

(�ux (x; t ) � �vx (x; t ))

�

 �P
2k

a0(xL )
a(xL )

(�u(x; t ) � �v(x; t )) (5.60b)

Multiplying (5.60a) by k and adding and subtracting from (5.60b) gives the following
expressions for the temporal partial derivatives�ut , �vt

�ut (x; t ) = �
1

2L

�
k
��

+

 �P
k

�
�ux (x; t ) +

1
2L

�
�

k
��

+

 �P
k

�
�vx (x; t ) �


 �P
2k

a0(xL )
a(xL )

�u(x; t )

+

 �P
2k

a0(xL )
a(xL )

�v(x; t ); (5.61a)

�vt (x; t ) =
1

2L

�
k
��

�

 �P
k

�
�ux (x; t ) +

1
2L

�
k
��

+

 �P
k

�
�vx (x; t ) �


 �P
2k

a0(xL )
a(xL )

�u(x; t )

+

 �P
2k

a0(xL )
a(xL )

�v(x; t ): (5.61b)

Applying the de�nitions of k, c and � , we write (5.61) as

�ut (x; t ) = �
c
L

�ux (x; t ) � � (x)�u(x; t ) + � (x)�v(x; t ) (5.62a)

�vt (x; t ) =
c
L

�vx (x; t ) � � (x)�u(x; t ) + � (x)�v(x; t ) (5.62b)

Next, substituting the subsequent change of variables

u(x; t ) = �u(x; t ) exp
�

L
c

Z x

0
� (� )d�

�
(5.63a)

v(x; t ) = �v(x; t ) exp
�

L
c

Z x

0
� (� )d�

�
(5.63b)

into (5.62) we obtain (5.1a)�(5.1b) with �; � as given in (5.54) and� + ; � � as given
in (5.55).

Composing (5.59) with (5.63) gives the complete change of coordinates (5.52).
Substituting this into the boundary conditions (5.1c)�(5.1d), by assigning d0, d1 and
U as in (5.56)�(5.57) we see (2.44c)�(2.44d) maps into (5.1c)�(5.1d) with W0 = 0 ,
and the proof is complete.

5.4.2 Regressor form

Having shown that the acoustics mathematical model (2.44) �ts into the form (5.1),
we combine here Lemmas 3�4 to suggest a regressor form for estimating the bound-
ary impedancesZ0, ZL in (2.44).
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Lemma 5. Consider the acoustics described by(2.44) and I/O signals W and Y
given by (2.44c) and (5.51) respectively. Then the relation

� (t) = �> 	( t) (5.64)

where the signal� is de�ned by

� (t) := 2 ( Y (t) � I y
4 [Y ](t)) + � W

�
I y

4 [W ](t) � W (t) � I U
4 [W ](t)

�
(5.65)

the parameter vector� is given by

� :=

2

6
6
6
6
6
4

d0d2
1

d2
1

d0d1

d0

d1

3

7
7
7
7
7
5

(5.66)

and the vector of signals	 , which is given by

	( t) :=

2

6
6
6
6
6
4

 1(t)
 2(t)
 3(t)
 4(t)
 5(t)

3

7
7
7
7
7
5

(5.67)

consists of the component signals i de�ned by

 1(t) := � W
�
I y

1 [W ](t) � I U
2 [W ](t)

�
(5.68)

 2(t) := � W
�
I y

3 [W ](t) � I U
4 [W ](t)

�
(5.69)

 3(t) := 2 ( Y (t � � � (1) � � � (1)) + I y
1 [Y ](t))

+ � W (I y
2 [W ](t) � W (t � � � (1) � � � (1)) � I y

1 [W ](t)) (5.70)

 4(t) := 2 I y
2 [Y ](t) + � W

�
W (t � � � (1) � � � (1)) + I U

2 [W ](t) � I y
2 [W ](t)

�
(5.71)

 5(t) := 2 I y
3 [Y ](t) + � W (I y

4 [W ](t) � W (t) � I y
3 [W ](t)) (5.72)

holds true.

Proof. The relation betweenU and W is given in (5.57), and applying this together
with (5.51)�(5.52) we write the characteristics measurementy, de�ned in (5.2), in
terms of Y , W and system parameters as

y(t) =
2

1 + d1
Y(t) �

1 � d1

1 + d1
exp

�
L
c

Z 1

0
� (� )d�

�
W (t): (5.73)

Subsituting (5.57), (5.73) into (5.37)�(5.40) gives

! 1(t) =
2

1 + d1
(Y (t � � � (1) � � � (1)) + I y

1 [Y ](t))
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�
1 � d1

1 + d1
exp

�
L
c

Z 1

0
� (� )d�

�
(W (t � � � (1) � � � (1)) + I y

1 [W ](t)) (5.74)

! 2(t) = (1 � d1) exp
�

L
c

Z 1

0
� (� )d�

�
�
W (t � � � (1) � � � (1)) + I U

2 [W ](t)
�

+
2

1 + d1
I y

2 [Y ](t) �
1 � d1

1 + d1
exp

�
L
c

Z 1

0
� (� )d�

�
I y

2 [W ](t) (5.75)

! 3(t) =
2

1 + d1
I y

3 [Y ](t) �
1 � d1

1 + d1
exp

�
L
c

Z 1

0
� (� )d�

�
I y

3 [W ](t) (5.76)

! 4(t) =
2

1 + d1
I y

4 [Y ](t) �
1 � d1

1 + d1
exp

�
L
c

Z 1

0
� (� )d�

�
I y

4 [W ](t)

+ (1 � d1) exp
�

L
c

Z 1

0
� (� )d�

�
I U

4 [W ](t): (5.77)

Substituting (5.74)�(5.77) into the regressor form (5.45) and multiplying both sides
by (1 + d1) yields

2Y(t) � (1 � d1) exp
�

L
c

Z 1

0
� (� )d�

�
W (t) � 2I y

4 [Y ](t)

+ (1 � d1) exp
�

L
c

Z 1

0
� (� )d�

�
I y

4 [W ](t) � (1 � d2
1) exp

�
L
c

Z 1

0
� (� )d�

�
I U

4 [W ](t)

= d0d1

�
2(Y (t � � � (1) � � � (1)) + I y

1 [Y ](t))

� (1 � d1) exp
�

L
c

Z 1

0
� (� )d�

�
(W (t � � � (1) � � � (1)) + I y

1 [W ](t))
�

+ d0

�
(1 � d2

1) exp
�

L
c

Z 1

0
� (� )d�

�
�
W (t � � � (1) � � � (1)) + I U

2 [W ](t)
�

+ 2 I y
2 [Y ](t) � (1 � d1) exp(

L
c

Z 1

0
� (� )d� )I y

2 [W ](t)
�

+ d1

�
2I y

3 [Y ](t) � (1 � d1) exp
�

L
c

Z 1

0
� (� )d�

�
I y

3 [W ](t)
�

:

Rearranging gives us the regressor form (5.64), and the proof is complete.

With the regressor form (5.64), it should in principle be possible to apply a
wide range of di�erent parameter identi�cation schemes to estimate the unknown
re�ection coe�cients d0, d1 and henceZ0, ZL in (2.44). However, the parameter
vector � appearing in (5.64) is more overparametrized than the parameter vector#
appearing in (4.6) and (5.45).

5.5 Discussion

We solved in this chapter the problem of estimating both re�ection coe�cients of 2�
2 linear hyperbolic systems of the form (5.1) using a single boundary measurement.
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The approach used was similar to the one for boundary estimation in the Rijke
tube in Chapter 4, but to deal with the in-domain coupling coe�cients the plant
was mapped into target system (5.6) for which the MOC is applied to obtain the
regressor form (5.45).

Applying a standard parameter estimation scheme, such as least-squares with
forgetting factor as suggested, on the system written in regressor form should in
theory result in the parameters converging to their correct values, given that the
input signal is chosen to be �su�ciently rich� for the signals in the regressor form to
be PE. However, as the parameter vectors# given in (4.8), and especially� in (5.66),
are overparametrized, obtaining unique estimates�d0, �d1 that are consistent with all
the estimates in the parameter vectors is not necessarily guaranteed by the procedure
suggested. The solutions could in practice end up in local minima or saddle points
that are not representative of the true solution. More investigation needs to go into
choice of the input signal and update law for the parameters to be able to guarantee
global convergence.

In Section 4.2, the overparametrization comes about as a result of there being un-
known boundary coe�cients in the relationship (4.5) between physical pressure I/O
signals(Y; W) and characteristic coordinate I/O signals(y; U). On the other hand,
in Section 5.2 the same overparametrization results from the presence of in-domain
coupling coe�cients, and in Section 5.4 an even more complicated overparametriza-
tion comes about due to both factors. Compared to frequency-domain estimation
methods such as the two-microphone method [Seybert & Ross 1977], part of the
value in designing time-domain parameter estimation scheme is their application to
real-time applications, such as adaptive observers and controllers. Also, to imple-
ment the parameter estimation schemes considered here online in a system su�ering
from thermoacoustic instabilities, the algorithms need to be extended to work in
tandem with heat release included in the model.

As mentioned in Chapter 2, the acoustic impedance is often within the paradigm
of locally reacting linear surfaces considered to be a general linear system. The
parameter estimation schemes presented here consider it as the even more spe-
cial case of being modelled by a constant scalar, as this formulation is conve-
nient to work with in the time domain. In an analogue to purely resistive net-
works in electric circuit theory, this formulation only takes the resistive part of
the impedance into account and disregards possible reactive parts. As considered in
e.g. [Rienstra & Hirschberg 2004], one could model the impedance as a mass-spring-
damper system, where the damper represents the resistive part that is currently
modelled, and the mass and spring model reactive parts of the impedance, anal-
ogous to inductors and capacitors modelling the reactive parts of the impedance
in electric circuit theory. With such a model, the parameter estimation scheme
would have three parameter to estimate at each boundary, namely the unknown
mass, spring constant and damping coe�cient. The problem would then formulate
as parameter identi�cation for a coupled hyperbolic PDE�ODE system.

So far we considered in Section 5.4 the estimation of acoustic impedances in
a duct with spatially varying geometry, but the acoustic properties of the duct
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walls was not explicitly taken into account. For the sake of boundary acoustic
impedance estimation, modelling of the acoustics where such distributed damping
due to the particular material is taken into account would be a useful further step
from the model (2.44), as this could prevent possible distributed contributions from
the acoustic properties of the material to be inadvertently lumped into the boundary
impedance estimates.
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Dans ce chapitre, un contrôleur par retour de sortie est proposé pour stabiliser
les instabilités thermoacoustiques longitudinales dans un modèle mathématique d'une
chambre de combustion de la forme(2.45), avec le sous-système décrivant la �amme
linéarisé. Après avoir montré que (2.45) avec un dégagement de chaleur linéarisé
peut être écrit comme un système d'EDP hyperbolique linéaire 2� 2 couplé à un
sous-système d'EDO avec retard, une commande par retour d'état est proposée. Elle
est conçue grâce à un changement de variables transformant le système considéré en
une cascade EDP�EDO simpli�ée, pour laquelle la conception de la commande est
un problème résolu. Ensuite, l'observateur est conçu en transformant la dynamique
de l'erreur d'estimation en une cascade stable EDP�EDO. En combinant la loi de
contrôle par retour d'état et l'observateur, on obtient un commande par retour de
sortie. Un exemple de simulation pour illustrer la théorie est présenté.

In this chapter an output-feedback controller to stabilize longitudinal thermoa-
coustic instabilities in a mathematical model of a can combustor as given by (2.45),
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with the �ame subsystem linearised, is proposed. After showing that (2.45) with
linearized heat release can be written as a2 � 2 linear hyperbolic PDE coupled
to an ODE subsystem with instantaneous and time-delayed interaction, a full-state
feedback law is proposed. It is designed by mapping the considered plant into a
simpli�ed PDE�ODE cascade, for which control design is a solved problem. Subse-
quently, the observer is designed by mapping the estimation error dynamics directly
into a stable target PDE�ODE cascade. Combining the full-state feedback control
law and observer we arrive at an output feedback controller. A simulation exam-
ple to demonstrate the theory is presented, where the full-state feedack controller,
observer and output feedback controller are shown to stabilize and estimate the
pressure, velocity and heat release rate.

6.1 Background

6.1.1 Literature review

Much of the early work on combustion instability focused on developing meth-
ods to passively dampen [Culick 1988, Putnam 1971] out the instabilities by
ad-hoc physical augmentation of the system. Although it is advantageous to
have an inherently stable system, passive methodologies to stabilize thermoacous-
tic instabilities can turn out to be incredibly expensive, the infamous Apollo
F-1 project [Oefelein & Yang 1993] being an example of this. Also as noted
in [Dowling & Morgans 2005], even though a passive method works well within a
given operating region, it might have limited applicability to other operating condi-
tions.

An alternative to passive stabilization of thermoacoustic instabilities is active
stabilization. The interest of this approach amongst researchers in the �eld has
gone in and out of fashion since the problem �rst started being studied, with one of
the earliest contributions [Tsien 1952] being from the beginning of the 1950s. A few
decades later active feedback control of combustion instabilities was demonstrated
experimentally, �rstly on the Rijke tube [Dines 1984, Heckl 1988] and gradually
on more complex rigs [Langet al. 1987, Neumeieret al. 1996, Johnsonet al. 2001],
via empirically designed phase-shift controllers. These are based on feeding back
an ampli�ed and phase-shifted measurement signal1, tuned via a trial-and-error
approach. More sophisticated control algorithms, both in the form of data-
driven [Kemal & Bowman 1996, Blonbouet al. 2000, Murugappanet al. 2003] and
model-based [Yanget al. 1992, Krsti¢ et al. 1999, Annaswamyet al. 2000] design
approaches have been explored.

Many of the model-based control algorithms in the literature rely on trun-
cating the in�nite dimensional model of the thermoacoustic instability into a �-
nite number of modes, arguing that the lower order modes are most signi�cant
for the instability and the higher order modes can thus be disregarded. This

1This is usually a pressure measurement but other metrics such asCH � radicals or soot forma-
tion can be used.
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approach reduces the plant model to be stabilized as a set of ODEs, and a
�nite-dimensional control law can then be developed to stabilize these lower order
modes. Unfortunately, a problem with this approach is that although the modes
included in the truncated model are stabilized, instabilities at higher frequencies
that were not present initially may inadvertently occur as a result of the interven-
tion [Bloxsidge et al. 1987, Gulati & Mani 1992].

Additionally, it is typically assumed that the duct acoustics can be modelled
by an ideal wave equation, which in reality requires that the duct has constant
cross-sectional area relative to the propagation of the acoustic waves and no inter-
nal damping. This is a reasonable assumption for many laboratory setups, where
the ducts are purposefully made to be straight, but since real combustion chambers
tend to have more complex geometry, for them it is not necessarily the case. As
pointed out in [Poinsot 2017], the chamber geometry is a highly signi�cant deter-
mining factor for combustion instability, and is thus important to take into account
when considering the suppression of thermoacoustic instabilities in real combus-
tion chambers. In [de Andradeet al. 2018b, de Andradeet al. 2018a], an in�nite-
dimensional full-state feedback control law and boundary observer for stabilizing
thermoacoustic instabilities in the Rijke tube are designed, respectively. Although
the acoustics model considered contains all modes of the system, the Rijke tube
has straight geometry and the design is therefore not directly applicable to real
combustion chambers.

The objective of this chapter is to propose a model-based output-feedback control
law for stabilizing thermoacoustic instabilities that takes into account the in�nite-
dimensional nature of the duct acoustics and e�ects from spatially varying geometry.
A linear �ame response is assumed, which is a reasonable assumption for early stages
of the instability, and hence if the instability is suppressed fast enough nonlinear ef-
fects are unnecessary to take into account. As part of the design process, an observer
that estimates pressure, velocity and heat release in the combustion chamber from
a pressure measurement is derived. As a contribution on its own, the observer could
have applications within early warning systems to detect thermoacoustic instabilities
before they grow unstable.

6.1.2 Model in Riemann coordinates

Consider the setup shown in Figure 6.1. It consists of a duct of lengthL and spatially
varying cross-sectional areaa(z), wherez 2 [0; L ]. It is assumed a premixed �ame is
burning at z = 0 , being fed by a fuel injector. At the far end of the duct, at z = L ,
a loudspeaker is assumed to be collocated with a pressure sensor. This setup can be
modelled by the can combustor model (2.45), where the input signalW comes in
via the boundary condition (2.45e), and the output signalY is as de�ned in (5.51).

In this chapter, we consider the special case when the �ame subsystem (2.45a)�
(2.45b) is linearised. We present now a Lemma mapping the model considered into
a form suitable for algorithm design and analysis.
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Figure 6.1: Sketch of combustor setup considered.

Lemma 6. Consider the system(2.45), where f (�); g0(�); g1(�) in (2.45a) and h(�)
in (2.45b) take the particular form

f (X ) := AX; �g0(X ) := �B0; �g1(X ) := �B1; �h(X ) := �CX;

with A 2 Rn� n , �B0; �B1 2 Rn� 1 and �C 2 R1� n constant matrices. With the change
of variables

u(x; t ) :=
�

�P(xL; t ) + k(xL ) �V (xL; t )
�

exp
�

� L
Z x

0

�� ++ (� )
c(�L )

d�
�

(6.1a)

v(x; t ) :=
�

�P(xL; t ) � k(xL ) �V (xL; t )
�

exp
�

L
Z x

0

�� �� (� )
c(�L )

d�
�

(6.1b)

the system satis�es the dynamics

_X (t) = AX (t) + B0v(0; t) + B1v(0; t � � ) (6.2a)

ut (x; t ) = � � (x)ux (x; t ) + � + (x)v(x; t ) (6.2b)

vt (x; t ) = � (x)vx (x; t ) + � � (x)u(x; t ) (6.2c)

u(0; t) = d0v(0; t) + CX (t) (6.2d)

v(1; t) = d1u(1; t) + U(t); (6.2e)

with transport speeds

� (x) :=
c(xL )

L
(6.3a)

� (x) :=
c(xL )

L
(6.3b)

in-domain coupling coe�cients

� + (x) := �� + � (x) exp
�

� L
Z x

0

�� ++ (� ) + �� �� (� )
c(�L )

d�
�

; (6.4a)
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� � (x) := �� � + (x) exp
�

L
Z x

0

�� ++ (� ) + �� �� (� )
c(�L )

d�
�

(6.4b)

re�ection coe�cients

d0 :=
1 � �
1 + �

; (6.5a)

d1 :=
Z � k(L )
Z + k(L )

exp
�

L
Z 1

0

�� ++ (� ) + �� �� (� )
c(�L )

d�
�

; (6.5b)

boundary input signal

U(t) :=
2k(L )

k(L ) + Z
exp

�
L

Z 1

0

�� �� (� )
c(�L )

d�
�

W (t) (6.6)

and matrix-valued parametersB0, B1, C given by

B0 := �
1

2k(0)
�B0 (6.7)

B1 := �
1

2k(0)
�B1 (6.8)

C :=
2k(0)
1 + �

� �C (6.9)

where

�� ++ (x) := �
1 + 


2
�V 0(xL ) �

1
2k(xL )

�
�P0(xL ) +

�
a0(xL )
a(xL )

�
k0(xL )
k(xL )

�

 �P(xL )

�

(6.10a)

�� + � (x) :=
1 � 


2
�V 0(xL ) +

1
2k(xL )

�
�P0(xL ) +

�
a0(xL )
a(xL )

�
k0(xL )
k(xL )

�

 �P(xL )

�

(6.10b)

�� � + (x) :=
1 � 


2
�V 0(xL ) �

1
2k(xL )

�
�P0(xL ) +

�
a0(xL )
a(xL )

�
k0(xL )
k(xL )

�

 �P(xL )

�

(6.10c)

�� �� (x) := �
1 + 


2
�V 0(xL ) +

1
2k(xL )

�
�P0(xL ) +

�
a0(xL )
a(xL )

�
k0(xL )
k(xL )

�

 �P(xL )

�

(6.10d)

and

k(z) :=
q


 �� (z) �P(z); (6.11)

c(z) :=

s

 �P(z)
�� (z)

: (6.12)

Proof. The part of the Proof regarding mapping of the acoustics (2.45c)�(2.45d)
into the PDE dynamics (6.2b)�(6.2c) and boundary condition (2.45e) into (6.2e) is
almost identical to steps followed in the proof of Lemma 4, so it is omitted.
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Evaluating the change of variables (6.1) at x = 0 , and denoting by
u� (0; �); v� (0; �) characteristics variables directly upstream of the �ame and area
jump, u+ (0; �); v+ (0; �) characteristics variables directly downstream of the �ame,
we rewrite (2.45f)�(2.45g) as

1
2

�
u+ (0; t) + v+ (0; t)

�
=

1
2

(u� (0; t) + v� (0; t)) (6.13a)

1
2

�
u+ (0; t) � v+ (0; t)

�
=

�
2

�
u� (0; t) � v� (0; t)

�
+ k(0)� �CX (t): (6.13b)

Adding and subtracting (6.13a) respectively to and from (6.13b), after some algebra
we have the boundary conditions

u+ (0; t) =
1 � �
1 + �

v+ (0; t) +
2�

1 + �
u� (0; t) +

2k(0)�
1 + �

�CX (t); (6.14a)

v� (0; t) =
� 1 + �
1 + �

u� (0; t) +
2

1 + �
v+ (0; t) +

2k(0)�
1 + �

�CX (t): (6.14b)

Substituting characteristic variables into the linearized �ame model followed by
boundary conditions (6.14) gives

_X (t) = AX (t) + �B0
u� (0; t) � v+ (0; t)

2k(0)
+ �B1

u� (0; t � � ) � v+ (0; t � � )
2k(0)

: (6.15)

Thanks to Assumption 15, a non-re�ective section is upstream of the bound-
ary (6.14), so we can in (6.14)�(6.15) setu� (0; �) = 0 . Also, sincev� (0; �) exits the
system the boundary condition (6.14b) is disregarded in the �nal model. Hence, de-
noting u(0; �) = u+ (0; �); v(0; �) = v+ (0; �) gives respectively (6.2d) withd0 assigned
in (6.5a), C assigned in (6.9) and (6.2a) withB0, B1 assigned in (6.7)�(6.8).

Remark 7. Note that for the physical control signalW in (6.6) to be implementable
in practice, the proportionality constant betweenU and W must be non-zero. Phys-
ically this corresponds to the case when the actuated boundary is not an ideal rigid
wall, which in theory would correspond to a velocity node and hence an in�nite
speci�c impedanceZ .

6.1.3 Problem statement

We consider in this chapter boundary controller and observer design of the
plant (6.2). In Section 6.2�6.3 the problems of full-state feedback control design
and observer design for the plant is considered in general. These designs are then
combined into an output-feedback controller in Section 6.4 which is applied to sta-
bilize longitudinal thermoacoustic instabilities in a simulation example presented in
Section 6.5.

The plant (6.2) consists of a linear ODE subsystem (6.2a) with stateX 2 Rn

de�ned for t 2 [0; 1 ), where A 2 Rn� n , and having both instantaneous and time-
delayed input signals entering viaB0; B1 2 Rn� 1, respectively. It is coupled via the
boundary (6.2d), with C 2 R1� n and d0 2 R, to a 2 � 2 linear hyperbolic PDE
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system (6.2b)�(6.2c), with states u; v 2 L 2(0; 1) de�ned over (x; t ) 2 [0; 1] � [0; 1 ).
The parameters of the PDE system are the transport speeds�; � 2 C1(0; 1), �; � >
0, and in-domain coupling coe�cients � + ; � � 2 L 1 (0; 1). The plant is actuated by
the signal U : [0; 1 ) 7! R via the boundary condition (6.2e), whered1 2 R, and we
assume a collocated measurement signaly, de�ned as in (5.2) is available. For the
purpose of the control and observer designs we make the following assumption.

Assumption 17. The transport speeds�; � 2 C1(0; 1) and time delay � 2 R in
(6.2) satisfy the inequalities

� � (x); � (x); � > 0,

� � �
R1

0
dx

� (x) ;
R1

0
dx

� (x) .

Additionally, to facilitate the control and observer design we introduce the arti-
�cial state w, de�ned according to

wt (x; t ) = �
1
�

wx (x; t ); (6.16a)

w(0; t) = v(0; t): (6.16b)

The plant ODE (6.2a) is then rewritten as

_X (t) = AX (t) + B0v(0; t) + B1w(1; t): (6.17)

The problem of boundary control and observer design for interconnected PDE�
ODE systems has been widely studied in the literature the past decade, both for
parabolic PDEs [Tang & Xie 2011] and hyperbolic PDEs [Di Meglioet al. 2018].
These build on contributions for stabilization of PDEs, which for hyperbolic PDEs
was �rstly achieved with the backstepping method in [Vazquezet al. 2011]. Alter-
native methods to backstepping have also been considered, such as Lyapunov-based
methods [Castillo et al. 2013]. In [Castillo et al. 2012] Lyapunov based methods are
considered for hyperbolic PDEs with dynamic boundary conditions.

With B1 = 0 in (6.2) the collocated controller and observer design
from [Di Meglio et al. 2018] can be applied to stabilize (6.2), but whenB1 6=
0 the delayed input signal causes extra di�culties. As an isolated sub-
system with v(0; �) considered as the input signal, stabilization of (6.2a) is
considered in [Kwon & Pearson 1980, Artstein 1982]. The plant considered
in [de Andrade et al. 2018b] can be written to look similar to (6.2), but only a
scalar ODE is considered and the PDE subsystems have no in-domain couplings.
Likewise, the plant considered in [Auriol et al. 2020a] can be written to look similar
to (6.2) but instead of a term proportional to the delayed v(0; �) signal one would
have a term related to the delayed ODE stateX (�).

6.2 Control Design

The control design is performed in two steps. First, (6.2) is mapped into a simpler
cascade for which the control design is known. Subsequently, the control law for
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the simpler cascade is written out and the expression forU that stabilizes (6.2) is
recovered.

6.2.1 Mapping into simpler cascade

Consider the cascade system

_Z (t) = AZ (t) + �B� (0; t) (6.18a)

� t (x; t ) = � � (x)� x (x; t ) (6.18b)

� t (x; t ) = � (x)� x (x; t ) (6.18c)

� (0; t) = d0� (0; t) (6.18d)

� (1; t) = d1� (1; t) + V (t) (6.18e)

where �B and V are to be de�ned, and the change of coordinates

Z (t) = X (t) �
Z 1

0
r (� )w(�; t )d� (6.19a)

� (x; t ) = u(x; t ) � � u(x)> X (t) �
Z x

0
K uu (x; � )u(�; t )d�

�
Z x

0
K uv (x; � )v(�; t )d� �

Z 1

0
Ru(x; � )w(�; t )d� (6.19b)

� (x; t ) = v(x; t ) � � v(x)> X (t) �
Z x

0
K vu (x; � )u(�; t )d�

�
Z x

0
K vv(x; � )v(�; t )d� �

Z 1

0
Rv(x; � )w(�; t )d� (6.19c)

where r satis�es for � 2 [0; 1]

r 0(� ) = �Ar (� ) +
�
d0

�BR u(0; � ); (6.20a)

r (1) = � �B 1; (6.20b)

� u ; � v satisfy for x 2 [0; 1]

� 0
u(x) = �

1
� (x)

A> � u(x) �
� (0)
� (x)

K uu (x; 0)C> (6.21a)

� 0
v(x) =

1
� (x)

A> � v(x) +
� (0)
� (x)

K vu (x; 0)C> (6.21b)

� u(0) = C> (6.21c)

� v(0) = 0 ; (6.21d)

Ru ; Rv are for (x; � ) 2 S, the square domainS := f (x; � ) j 0 � x; � � 1g, given by

1
�

Ru
� (x; � ) = � � (x)Ru

x (x; � ) (6.22a)

1
�

Rv
� (x; � ) = � (x)Rv

x (x; � ) (6.22b)
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Ru(x; 1) = � � u(x)> B1 (6.22c)

Ru(1; � ) = 0 (6.22d)

Rv(x; 1) = � � v(x)> B1 (6.22e)

Rv(0; � ) =
1
d0

Ru(0; � ) (6.22f)

and �nally K uu ; K uv ; K vu ; K vv are for (x; � ) 2 Tl , the lower triangular domain
Tl := f (x; � ) j 0 � � � x � 1g, given by

� (x)K uu
x (x; � ) + � (� )K uu

� (x; � ) = � � 0(� )K uu (x; � ) � � � (� )K uv (x; � ) (6.23a)

� (x)K uv
x (x; � ) � � (� )K uv

� (x; � ) = � 0(� )K uv (x; � ) � � + (� )K uu (x; � ) (6.23b)

� (x)K vu
x (x; � ) � � (� )K vu

� (x; � ) = � 0(� )K vu (x; � ) + � � (� )K vv(x; � ) (6.23c)

� (x)K vv
x (x; � ) + � (� )K vv

� (x; � ) = � � 0(� )K vv(x; � ) + � + (� )K vu (x; � ) (6.23d)

K uu (x; 0) =
� (0)

d0� (0)
K uv (x; 0) �

1
d0� (0)

� u(x)> B0

�
1

d0� (0)�
Ru(x; 0) (6.23e)

K uv (x; x ) =
� + (x)

� (x) + � (x)
(6.23f)

K vu (x; x ) = �
� � (x)

� (x) + � (x)
(6.23g)

K vv(x; 0) =
� (0)d0

� (0)
K vu (x; 0) +

1
� (0)

� v(x)> B0

+
1

� (0)�
Rv(x; 0): (6.23h)

The vector �B in (6.18a) is de�ned in terms of the solution to (6.20) as

�B := B0 �
1
�

r (0): (6.24)

We have the following Lemma.

Lemma 7. With U in (6.2e) given by

U(t) = V (t) + ( � v(1)> � d1� u(1)> )X (t) +
Z 1

0
(K vu (1; � ) � d1K uu (1; � )) u(�; t )d�

+
Z 1

0
(K vv(1; � ) � d1K uv (1; � )) v(�; t )d� +

Z 1

0
Rv(1; � )w(�; t )d�; (6.25)

the transformation (6.19)� (6.23) maps (6.2) into (6.18), (6.24), whenever (6.20)�
(6.23) has a unique, smooth solution.

Proof. Di�erentiating (6.19a) with respect to time, (6.19b)�(6.19c) with respect to
time and space, integrating by parts and substituting the resultant expressions into
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target dynamics (6.18a)�(6.18c), applying (6.20), (6.21a)�(6.21b), (6.22a)�(6.22c),
(6.22e), (6.23) and (6.24) we recover (6.2a)�(6.2c).

Furthermore, evaluating (6.19b)�(6.19c) at x = 0 and substituting into (6.18d),
from applying (6.21c)�(6.21d), (6.22f) we recover (6.2d). Finally, evaluating (6.19b)�
(6.19c) at x = 1 , substituting into (6.18e) and applying (6.22d) we obtain (6.2e),
(6.25).

Remark 8. Note that � v(0) and Ru(1; �) do not necessarily need to be assigned to
zero as in (6.21d), (6.22d), respectively; their values are an extra degree of freedom
in the design. However, in assigning a non-zero value to these boundary conditions,
�B de�ned in (6.24) will be the solution to a nonlinear matrix equation, which may or
may not have a unique solution, depending on the system parameters. As is shown
further down, picking them as(6.21d), (6.22d) lets �B be solved as the solution to a
linear matrix equation.

6.2.2 Analysis of kernels

As mentioned in Lemma 7, in order to map (6.2) into (6.18) via a transformation of
the form (6.19), the kernels (6.20)�(6.23), in addition to �B de�ned as (6.24), must
have a well-posed solution. We show here that this is the case under Assumption 17
and su�ciently smooth model parameters in (6.2).

Firstly, the general solution of (6.20) is for � 2 [0; 1] given by

r (� ) = � �
�

e�A (� � 1)B1 +
1
d0

Z 1

�
e� �As �BR u(0; s)ds

�
: (6.26)

Evaluating then (6.26) at � = 0 and substituting into (6.24), with the matrix E
de�ned as

E := I �
1
d0

Z 1

0
e�As Ru(0; s)ds; (6.27)

and I denoting the identity matrix, we uniquely solve for �B as

�B = E � 1(B0 + e� A� B1): (6.28)

Note that this requires the following Assumption:

Assumption 18. The matrix E de�ned by (6.27) is invertible.

Applying the MOC, under Assumption 17 we have the solution of (6.22) given
by

Ru(x; � ) =

(
� � u(� � 1

� (� � (x) + � (1 � � ))) > B1; if � > 1 � 1
� (� � (1) � � � (x))

0; if � � 1 � 1
� (� � (1) � � � (x))

(6.29a)

Rv(x; � ) =

(
� � v(� � 1

� (� � (x) + � (� � 1)))> B1; if � > 1 � 1
� � � (x)

1
d0

Ru(0; � + 1
� � � (x)) ; if � � 1 � 1

� � � (x):
(6.29b)
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Figure 6.2: Sketch of solutions toRu and Rv . The region shaded in green has
characteristics originating from the boundary condition along Ru(�; 1), the region
shaded in blue has characteristics with data originating inRu(1; �), and the region
shaded in red has characteristics coming from the boundary condition ofRv(�; 1).
The line of discontinuity in the solution of Ru terminates along x = 0 at the point
� = 1 � 1

� � � (1), while the main line of discontinuity in the solution to Rv terminates
along x = 1 at the point � = 1 � 1

� � � (1).

where � � ; � � are functions of the form (5.13).
The solutions to Ru ; Rv are illustrated in Figure 6.2. Thus, evaluating (6.29a)

at � = 0 and substituting into (6.23e) we have

K uu (x; 0) =
� (0)

d0� (0)
K uv (x; 0) + � u(x)>

�
�

1
d0� (0)

B0

�
: (6.30)

Subsequently, substituting (6.30) into (6.21a) gives us

� 0
u(x) =

�
�

1
� (x)

A> +
1

d0� (x)
CB >

0

�
� u(x) + K uv (x; 0)

�
�

� (0)
d0� (x)

C>
�

: (6.31)

Then, (6.30)�(6.31) together with (6.21c), (6.23a)�(6.23b), (6.23f) forms a coupled
system of equations to solve for(K uu ; K uv ; � u).

Likewise, evaluating (6.29b) at � = 0 and substituting into (6.23h) yields

K vv(x; 0) =
� (0)d0

� (0)
K vu (x; 0) + � v(x)>

�
1

� (0)
B0

�
+

1
d0� (0)�

Ru
�

0;
1
�

� � (x)
�

:

(6.32)

From (6.29a) we seeRu is only dependent on the solution to� u , and hence (6.32)
together with (6.21b), (6.21d), (6.23c)�(6.23d), (6.23g) forms a coupled system of
equations to solve for(K vv ; K vu ; � v). To assess the regularity of solutions to the
systems of equations for(K uu ; K uv ; � u), (K vv ; K vu ; � v), respectively, we need the
following Lemma.

Lemma 8. The coupled system

"1(x)G1
x (x; � ) + "1(� )G1

� (x; � ) = c11(x; � )G1(x; � ) + c12(x; � )G2(x; � ) (6.33a)
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"1(x)G2
x (x; � ) � "2(� )G2

� (x; � ) = c21(x; � )G1(x; � ) + c22(x; � )G2(x; � ) (6.33b)

G1(x; 0) = aG2(x; 0) + 
 (x)> F + b1(x) (6.33c)

G2(x; x ) = b2(x) (6.33d)


 0(x) = D(x)
 (x) + G2(x; 0)E(x) (6.33e)


 (0) = H (6.33f)

with parameters satisfying "1; "2 2 C1(0; 1), "1; "2 > 0, a 2 R, b1; b2 2 C(0; 1),
c11; c12; c21; c22 2 C(Tl ), D 2 C((0; 1); Rn� n ), E 2 C((0; 1); Rn� 1), F; H 2 Rn� 1

has a unique solutionG1; G2 2 L 1 (Tl ), 
 2 (L 1 [0; 1])n .

The proof of this Lemma is almost identical to the proof of Lemma 1 in
[Auriol et al. 2018], and hence omitted.

Through comparison we see the systems of equations for(K uu ; K uv ; � u),
(K vv ; K vu ; � v) can be written in the form (6.33) with appropriate coe�cient as-
signment, and hence by Lemma 8 we establish thatK uu ; K uv ; K vu ; K vv 2 L 1 (Tl ),
� u ; � v 2 (L 1 [0; 1])n .

6.2.3 Full control law

We present now the main result of this section.

Theorem 4. Let Assumption 17 and 18 be satis�ed, and assume that(A; �B ) is a
controllable pair, K 2 R1� n chosen so that(A + �B K) is Hurwitz. Denote by � � ; � �

the state transition matrices de�ned via

@
@x

� � (x; � ) = �
1

� (x)
A> � � (x; � ); � � (�; � ) = I (6.34a)

@
@x

� � (x; � ) =
1

� (x)
A> � � (x; � ); � � (�; � ) = I: (6.34b)

Then the full-state feedback control law

U(t) = � > X (t) +
Z 1

0
� u(� )u(�; t )d� +

Z 1

0
� v(� )v(�; t )d� +

Z 1

0
� w(� )w(�; t )d�

(6.35)

with

� := N X + � v(1)> � d1� u(1)> (6.36a)

� u(x) := N u(x) + K vu (1; x) � d1K uu (1; x) (6.36b)

� v(x) := N v(x) + K vv(1; x) � d1K uv (1; x) (6.36c)

� w(x) := N w(x) + Rv(1; x) (6.36d)

with N X , N u , N v , N w de�ned by

N u(� ) := M � (� ) �
Z 1

�
M � (s)K uu (s; � )ds �

Z 1

�
M � (s)K vu (s; � )ds (6.37a)
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N v(� ) := M � (� ) �
Z 1

�
M � (s)K uv (s; � )ds �

Z 1

�
M � (s)K vv(s; � )ds (6.37b)

N w(� ) := �M Z r (� ) �
Z 1

0
M � (s)Ru(s; � )ds �

Z 1

0
M � (s)Rv(s; � )ds (6.37c)

N X := M Z �
Z 1

0
M � (� )� u(� )> d� �

Z 1

0
M � (� )� v(� )> d� (6.37d)

and M Z , M � , M � de�ned by

M � (� ) :=
d1

� (0)
exp

 

�
Z � � (� )

0
� 0(� � 1

� (� ))d�

!

K� � (� � 1
� (� � (1) � � � (� )) ; 0)> �B

(6.38a)

M � (� ) :=
1

� (0)
exp

 

�
Z � � (� )

0
� 0(� � 1

� (� ))d�

!

K� � (� � 1
� (� � (1) � � � (� )) ; 0)> �B

(6.38b)

M Z := K
�

� � (1; 0)> � d1d0� � (1; 0)>
�

(6.38c)

stabilizes (6.2) exponentially to the origin.

Proof. By applying the backstepping transformation and computing the kernels ex-
plicitly, obtain that V given by

V(t) =
Z 1

0
M � (� )� (�; t )d� +

Z 1

0
M � (� )� (�; t )d� + M Z Z (t) (6.39)

exponentially stabilizes (6.18) to the origin. Substituting in the transformation
(6.19) and rearranging, we can rewriteV in plant coordinates as

V (t) =
Z 1

0
N u(� )u(�; t )d� +

Z 1

0
N v(� )v(�; t )d� +

Z 1

0
N w(� )w(�; t )d� + N X X (t):

(6.40)

Substituting this into (6.25) we have the expression (6.35). By Lemma 7 and by the
fact that (6.19) is invertible the Proof is complete.

Remark 9. It should be noted that the problem of boundary stabilization of(6.18)
is a well-known problem, with several controllers in the literature (some examples
presented in [Auriol et al. 2018, Bekiaris-Liberis & Krsti¢ 2014]). In principle one
could apply any controller that stabilizes(6.18) and combine it with the transforma-
tion (6.19) to obtain a stabilizing controller for (6.2).

In practice, implementing the control law requires full knowledge of the states
(u; v; X ), which are often unknown in practice. In the next section we design an
observer that produces exponentially convergent estimates of these states.
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6.3 Observer Design

We design in this section an observer of the form

_̂X (t) = AX̂ (t) + B0v̂(0; t) + B1ŵ(1; t) + L [y(t) � û(1; t)] (6.41a)

ût (x; t ) = � � (x)ûx (x; t ) + � + (x)v̂(x; t ) + P+ (x)[y(t) � û(1; t)] (6.41b)

v̂t (x; t ) = � (x)v̂x (x; t ) + � � (x)û(x; t ) + P � (x)[y(t) � û(1; t)] (6.41c)

ŵt (x; t ) = �
1
�

ŵt (x; t ) + Pw(x)[y(t) � û(1; t)] (6.41d)

û(0; t) = d0v̂(0; t) + CX̂ (t) (6.41e)

v̂(1; t) = d1y(t) + U(t) (6.41f)

ŵ(0; t) = v̂(0; t) (6.41g)

using the measurement signaly as de�ned in (5.2), whereL , P+ , P � , Pw are gains
to be found such that (û; v̂; ŵ; X̂ ) converge to their true values(u; v; w; X ) in some
sense.

With state estimation errors de�ned as ~u := u � û, ~v := v � v̂, ~w := w � ŵ and
~X := X � X̂ , we �nd the state estimation error dynamics

_~X (t) = A ~X (t) + B0~v(0; t) + B1 ~w(1; t) � L ~u(1; t) (6.42a)

~ut (x; t ) = � � (x)~ux (x; t ) + � + (x)~v(x; t ) � P+ (x)~u(1; t) (6.42b)

~vt (x; t ) = � (x)~vx (x; t ) + � � (x)~u(x; t ) � P � (x)~u(1; t) (6.42c)

~wt (x; t ) = �
1
�

~wx (x; t ) � Pw(x)~u(1; t) (6.42d)

~u(0; t) = d0~v(0; t) + C ~X (t) (6.42e)

~v(1; t) = 0 (6.42f)

~w(0; t) = ~v(0; t): (6.42g)

6.3.1 Mapping into stable cascade

Consider the target error system

_~Z (t) = ( A � � C) ~Z (t) (6.43a)

~� t (x; t ) = � � (x)~� x (x; t ) (6.43b)
~� t (x; t ) = � (x) ~� x (x; t ) (6.43c)

~! t (x; t ) = �
1
�

~! x (x; t ) (6.43d)

~� (0; t) = d0 ~� (0; t) + C ~Z (t) +
Z 1

0
F (� )~! (�; t )d� (6.43e)

~! (0; t) = ~� (0; t) +
Z 1

0
H (� ) ~� (�; t )d� (6.43f)

~� (1; t) = 0 (6.43g)
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where � is picked so that (A � � C) is Hurwitz, and F , H are to be de�ned further
down. We assess the convergence properties of (6.43) in the following Lemma.

Lemma 9. The states(~�; ~�; ~!; ~Z ) of (6.43) converge exponentially fast to the origin.

Proof. Due to (6.43c), (6.43g), we have that~� � 0 for time t � � � (1). Hence, after
this (6.43f) is reduced to ~! (0; �) = 0 , which together with (6.43d) implies ~! � 0
for time t � � � (1) + � . Thereafter the target system is reduced to the autonomous
ODE (6.43a) cascading into the transport PDE (6.43b), via the boundary condition
(6.43e) which is reduced to~� (0; �) = C ~Z (�). Because� is picked so that A �
� C is Hurwitz, (~�; ~Z ) converge to the origin exponentially fast and the Proof is
complete.

Consider next the change of coordinates

~X (t) = ~Z (t) +
Z 1

0
� � (� )~� (�; t )d� +

Z 1

0
� � (� ) ~� (�; t )d� +

Z 1

0
� ! (� )~! (�; t )d�

(6.44a)

~w(x; t ) = ~! (x; t ) +
Z 1

0
S� (x; � )~� (�; t )d� (6.44b)

~u(x; t ) = ~� (x; t ) +
Z 1

x
M �� (x; � )~� (�; t )d� +

Z 1

x
M �� (x; � ) ~� (�; t )d� (6.44c)

~v(x; t ) = ~� (x; t ) +
Z 1

x
M �� (x; � )~� (�; t )d� +

Z 1

x
M �� (x; � ) ~� (�; t )d� (6.44d)

where � ! satis�es for � 2 [0; 1]

� 0
! (� ) = � (A � � C)� ! (� ) (6.45a)

� ! (1) = � �B 1; (6.45b)

� � satis�es for � 2 [0; 1]

� 0
� (� ) =

1
� (� )

� �
A � � 0(� )I

�
� � (� ) + B0M �� (0; � ) + B1S� (1; � )

�
(6.46a)

� � (0) =
1

� (0)
� ; (6.46b)

� � satis�es for � 2 [0; 1]

� 0
� (� ) = �

1
� (� )

�
�
A + � 0(� )I

�
� � (� ) + ( B0 �

1
�

� ! (0))M �� (0; � )
�

(6.47a)

� � (0) =
1

� (0)

�
1
�

� ! (0) + � (0)d0� � (0) � B0

�
; (6.47b)

S� satis�es for (x; � ) 2 S

� (� )S�
� (x; � ) +

1
�

S�
x (x; � ) = � � 0(� )S� (x; � ) (6.48a)
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S� (x; 0) = 0 (6.48b)

S� (0; � ) = M �� (0; � ); (6.48c)

and M �� ; M �� ; M �� ; M �� are for (x; � ) 2 Tu := f (x; � ) j 0 � x � � � 1g given by

� (� )M ��
� (x; � ) + � (x)M ��

x (x; � ) = � � 0(� )M �� (x; � ) + � + (x)M �� (x; � ) (6.49a)

� � (� )M ��
� (x; � ) + � (x)M ��

x (x; � ) = � 0(� )M �� (x; � ) + � + (x)M �� (x; � ) (6.49b)

� (� )M ��
� (x; � ) � � (x)M ��

x (x; � ) = � � 0(� )M �� (x; � ) + � � (x)M �� (x; � ) (6.49c)

� � (� )M ��
� (x; � ) � � (x)M ��

x (x; � ) = � 0(� )M �� (x; � ) + � � (x)M �� (x; � ) (6.49d)

M �� (0; � ) = d0M �� (0; � ) + C� � (� ) (6.49e)

M �� (x; x ) = �
� + (x)

� (x) + � (x)
(6.49f)

M �� (x; x ) =
� � (x)

� (x) + � (x)
(6.49g)

M �� (0; � ) =
1
d0

�
M �� (0; � ) � C� � (� )

�
: (6.49h)

The terms F , H appearing in (6.43e)�(6.43f) are de�ned as

F (� ) := C� ! (� ); H (� ) := M �� (0; � ): (6.50)

We have the following Lemma.

Lemma 10. The change of coordinates(6.44) maps (6.43) into (6.42), provided
that

P+ (x) = � (1)M �� (x; 1); (6.51a)

P � (x) = � (1)M �� (x; 1); (6.51b)

Pw(x) = � (1)S� (x; 1); (6.51c)

L = � (1)� � (1): (6.51d)

6.3.2 Analysis of kernels

As was done for the controller kernels in Section 6.2.2, we show here that under As-
sumption 17 and su�ciently smooth model parameters in (6.2), the kernel equations
(6.45)�(6.49) have a well-posed solution.

Firstly, (6.45) is solved explicitly as

� ! (� ) = � � exp(� (A � � C)( � � 1))B1: (6.52)

Also, as a function ofM �� , the solution to S� is written as

S� (x; � ) =

(
exp(�

R� x
0 � 0(� + � � (� ) � �x )d� )M �� (0; � � ��x ); if � � � � 1

� (�x )

0; if � < � � 1
� (�x ):

(6.53)
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Figure 6.3: Sketch of solution toS� . The region shaded in grey has characteristics
originating along the line x = 0 , while the region shaded in blue has characteristics
from � = 0 . The line of discontinuity, represented by the dashed line, intersects
� = 1 at the point x = 1

� � � (1).

The solution to S� is illustrated in Figure 6.3. Evaluating (6.53) at x = 1 and
substituting into (6.46a), we have

� 0
� (� ) =

1
� (� )

�
A � � 0(� )I

�
� � (� ) +

1
� (� )

B0M �� (0; � ): (6.54)

Then (6.54) together with (6.46b), (6.49a), (6.49c), (6.49e), (6.49g) constitutes an
independent system of equations to solve for(M �� ; M �� ; � � ).

Likewise, evaluating (6.52) at� = 0 and substituting this together with (6.46b),
(6.49h) into (6.47) we have

� 0
� (� ) =

�
�

1
� (� )

(A + � 0(� )I ) +
1

� (� )
B C

�
� � (� ) �

1
d0� (� )

B M �� (0; � ) (6.55a)

� � (0) =
d0

� (0)
� �

1
� (0)

B (6.55b)

with
B := B0 + exp( � � (A � � C)B1: (6.56)

This gives us that (6.55) together with (6.49b), (6.49d), (6.49f), (6.49h) is a coupled
system of equations for(M �� ; M �� ; � � ).

Swapping x ! � , � ! x in the systems of equations (6.46b), (6.49a), (6.49c),
(6.49e), (6.49g), (6.54) for(M �� ; M �� ; � � ) and (6.49b), (6.49d), (6.49f), (6.49h),
(6.55) for (M �� ; M �� ; � � ), we mirror the equations over the linex = � such that
they are de�ned over (Tl )2 � [0; 1] rather than (Tu)2 � [0; 1]. Lemma 8 is then applied
to establish that M �� ; M �� ; M �� ; M �� 2 L 1 (Tu) and � � ; � � 2 (L 1 [0; 1])n .

6.3.3 Observer

We present now the main result of this section.
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Theorem 5. The observer (6.41) with gains (6.51) produces state estimates
(û; v̂; ŵ; X̂ ) that converge exponentially to the states(u; v; w; X ) of the plant (6.2),
(6.16).

Proof. Because the change of coordinates (6.44) is invertible, by combining Lem-
mas 9�10, we see the observer error system (6.42) with gains (6.51) converges to the
origin exponentially. Due to the de�nition of the error state, we write û = u � ~u,
v̂ = v � ~v, ~w = w � ŵ, X̂ = X � ~X , and indeed because(~u; ~v; ~w; ~X ) ! 0 exponen-
tially, we have (û; v̂; ŵ; X̂ ) ! (u; v; w; X ) exponentially.

Combining then Lemma 6 and Theorem 5, we see estimates for the pressure,
velocity and heat release rate perturbations(P̂ ; V̂ ;Q̂) in the thermoacoustic sys-
tem (2.45) are computed based on̂u; v̂; X̂ as

P̂ (z; t) :=
1
2

 

û
� z

L
; t

�
exp

 

L
Z z

L

0

�� ++ (� )
c(�L )

d�

!

+ v̂
� z

L
; t

�
exp

 

� L
Z z

L

0

�� �� (� )
c(�L )

d�

! !

(6.57a)

V̂ (z; t) :=
1

2k(z)

 

û
� z

L
; t

�
exp

 

L
Z z

L

0

�� ++ (� )
c(�L )

d�

!

� v̂
� z

L
; t

�
exp

 

� L
Z z

L

0

�� �� (� )
c(�L )

d�

! !

(6.57b)

Q̂(t) :=
�Q

�V (0)
�CX̂ (t): (6.57c)

6.4 Output Feedback Controller

We combine here the results from Section 6.2�6.3 to propose an output feedback
controller to stabilize (6.2), whenever the output signal (5.2) is known. This is then
applied to make an acoustic boundary output feedback controller for the thermoa-
coustic model (2.45).

Corollary 1. Assume the output signaly as de�ned in (5.2) is available. Then the
control law

U(t) = � > X̂ (t) +
Z 1

0
� u(� )û(�; t )d� +

Z 1

0
� v(� )v̂(�; t )d� +

Z 1

0
� w(� )ŵ(�; t )d�;

(6.58)

with � , � u , � v , � w given in (6.36)� (6.38) and X̂ , û, v̂, ŵ are produced by(6.41)
stabilizes (6.2) exponentially to the origin.

The proof of Corollary 1 is omitted for sake of brevity. Intuitively, the conver-
gence of the output feedback controller can be seen by rewriting the closed loop
system as a cascade of the observer system into the observer dynamics.
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Figure 6.4: Flame identi�cation experiment block diagram.

To apply the control law (6.58) to stabilize (2.45), assume pressure measurement
Y given in (5.51) is available. Then, applying (6.2e), (6.1) and (6.6) we �ndy can
be expressed as

y(t) =
2 �P(L; t ) � 2k(L )

k(L )+ Z W (t)

exp(L
R1

0
�� ++ (� )
c(�L ) d� ) + d1 exp(� L

R1
0

�� �� (� )
c(�L ) d� )

: (6.59)

Hence, by Corollary 1 a stabilizing feedbackU is calculated from (6.41), (6.58),
where coe�cients are assigned according to Lemma 6. The acoustic forcing signal
W to apply to stabilize (2.45) is then computed from (6.6).

6.5 Simulations

We demonstrate the theory in Sections 6.2�6.4 on an example of the thermoacoustic
system (2.45). Next, in Section 6.5.1 the model parameters are presented, before in
Section 6.5.2 the output feedback controller from Corollary 1 is veri�ed to stabilize
the plant (6.2) in a MATLABsimulation.

6.5.1 Simulation parameters

Firstly, to obtain the �ame model, a taX model (see [Emmertet al. 2014] for more
details on taX) of the considered �ame being excited by an acoustic source was set
up. The Simulink block diagram of this setup is shown in Figure 6.4. Applying the
MATLABsystem identi�cation toolbox, a transfer function for the �ame was �tted to
the transfer function produced by taX. The �t is shown in Figure 6.5, and is given
by the transfer function

F (s) =
0:03412

2:251� 10� 6s2 + 0 :0008245s + 1
e� 0:002s:

Calculating a state space realization in controller canonical form of this transfer
function gives the matrices

A =
�
� 366:3014 � 4:4427� 105

1 0

�
;
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Figure 6.5: Bode plot of �ame versus �tted transfer function model.

�B0 =
�
0
0

�
; �B1 =

�
1
0

�
;

�C =
�
0 1:5159� 104

�
:

for a model of the form (2.16), and the input time delay � = 0 :002 s. Since the
parameters in the resultant model matrices vary largely in terms of order of magni-
tude, it is in practice bene�cial to scale the matrices to have more well-conditioned
numerical behaviour. We de�ne the matrix P := Diag f 1=�; � g where � is a tuning
constant, and consider a second tuning constant� . We de�ne then new matrices

A0 := PAP � 1; B 0
1 :=

1
�

PB1; C0 := �CP � 1 (6.60)

where B1 and C are calculated from �B1 and �C according to (6.8)�(6.9). From trial
and error values of� = 25 and � = 10� 4

k(0) are found, resulting in the matrices

A0 =
�
� 366:3014 � 710:8327

625 0

�
; B 0

1 =
�
� 200

0

�
; C0 =

�
0 316:6565

�

The new matrices A0, B 0
1 and C0 are then used in the simulation in place ofA,

B1 and C. Note that when scaling with � , one must multiply the right-hand side
of (6.57a)�(6.57b) by 1

� to compensate for the scaling when recovering the pressure
and velocity from the characteristic coordinates.

Consider next a duct of lengthL = 2 :5 m with cross-sectional area expressed as
a function of z as

a(z) = 1 + 0 :2 tanh(� 20z + 12:5) + 0 :2 tanh(20z � 37:5)
�
m2�

: (6.61)

is considered. The cross-sectional area is plotted in Figure 6.6. The area jump
upstream of the �ame at the combustor inlet has an area ratio of� = 0 :12, and a
speci�c resistive impedance ofZ = 1 :011� 105

� P a s
m

�
is used for the outlet boundary

at the downstream end of the combustor.
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Figure 6.6: Cross-sectional area of duct.

Directly downstream of the �ame, the mean density �� 0, velocity �V0 and pressure
�P0 are set to be

�� 0 = 1 :2
�

kg
m3

�
; �V0 = 75

hm
s

i
; �P0 = 4 � 106 [Pa] :

Using 
 = 1 :4, the IVP (2.23) is solved with the aforementioned values as initial
conditions, yielding the �ow steady state solution plotted in Figure 6.7.

The resultant transport speeds�; � computed from (6.3), (6.11)�(6.12) are ap-
proximately constant, with the maximum value approximately 0:016%higher than
the minimum value. For simplicity, they are assumed constant and their mean val-
ues are used in the simulation, so that� (x) � � , � (x) � � . It can be veri�ed that
�� = �� � 1:73 > 1 and hence satis�es Assumption 17. For the coupling of the

heat release into the �ow, the temperature ratio Th
Tc

� c2
h

c2
c
, where ch , cc is the speed

of sound directly down- and upstream of the �ame. A speed of soundcc = 341 [ m
s ]

upstream of the �ame is used.
To compute the controller and observer gains, the poles of the target ODE

matrices pc := eig(A + �B K), po := eig(A � � C) are set as

pc =
�
� 1 � 105

� 2 � 105

�
; po =

�
� 1 � 2j
� 1 + 2j

�
:

The kernels are approximated with UGD by discretizing the spatial domain into a
uniform grid with discretization step of � x = � � = 10 � 2. The resultant distributed
controller and observer gains are respectively plotted in Figures 6.8�6.9, and the
ODE gains are given by

� =
�
� 3:21� 106

7:43� 105

�
; L =

�
9:00� 10� 3

� 1:71

�
:

6.5.2 Simulation results

To simulate the plant (6.2) with parameters de�ned via Lemma 6 using coe�cients
as stated in Section 6.5.1, the normalized spatial domain[0; 1] 3 x is discretized with
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Figure 6.7: Steady-state density, velocity and pressure along duct.

Figure 6.8: Distributed controller gains.
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Figure 6.9: Distributed observer gains.

a uniform discretization step � x = 10 � 2. A Di�erential-Algebraic Equation (DAE)
is then obtained which is solved using theode23t solver in MATLAB. The initial
condtions used are

u0(x) � 0; v0(x) � 0; w0(x) � 0; X 0 =
�

0
1:25� 10� 7

�

and results in an open-loop response of the plant as plotted in Figures 6.10�6.12.
As can be seen, after0:25 s the amplitude of the pressure �uctuations are almost
5000 Pa, which corresponds to a Sound Pressure Level (SPL) of around170 dB.

Firstly, the full-state feedback controller from Theorem 4 is implemented. The
closed-loop response of this controller is plotted in Figures 6.13�6.15. In Figure 6.16
the control signal U is plotted. Next, the observer from Theorem 5 is implemented
to estimate the open-loop states plotted in Figures 6.10�6.12. The estimation errors
are plotted in Figure 6.17�6.19. Lastly, the output-feedback controller from
Corollary 1 is implemented to stabilize the unstable plant only using knowledge of
the pressure estimate at the downstream boundary of the combustor. The closed-
loop response of this controller is shown in Figure 6.20�6.22, and the corresponding
boundary control signal U is plotted in Figure 6.23.

As the simulations demonstrate, the output-feedback controller is successful in
stabilizing the thermoacoustic instability present in the open-loop plant. Comparing
the output feedback control signal in Figure 6.23 to the full-state feedback control
signal in Figure 6.16, we see the observer dynamics in the loop causes the signal to
be more �uneven� and with higher amplitude.

6.6 Discussion

In this chapter an output-feedback controller for stabilizing a model of thermoa-
coustic instabilities in a duct with spatially varying geometry coupled to a linear
�ame model with a simultaneous instantaneous and time-delayed velocity input has
been proposed. It senses and actuates the acoustics at the boundary opposite from
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Figure 6.10: Open-loop pressure �uctuations.

Figure 6.11: Open-loop velocity �uctuations.
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Figure 6.12: Open-loop heat release rate �uctuations.

Figure 6.13: Full-state feedback control pressure �uctuations.
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Figure 6.14: Full-state feedback control velocity �uctuations.

Figure 6.15: Full-state feedback control heat release rate �uctuations.
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Figure 6.16: Full-state feedback control signal.

Figure 6.17: Estimation error of open-loop pressure.
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Figure 6.18: Observer estimation error of open-loop velocity.

Figure 6.19: Estimation error of open-loop heat release rate.
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Figure 6.20: Output feedback stabilized pressure �uctuations.

Figure 6.21: Output feedback stabilized velocity �uctuations.
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Figure 6.22: Output feedback stabilized heat release rate �uctuations.

Figure 6.23: Output feedback control signal.
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the location of the �ame. The output feedback controller is composed of two parts,
an exponentially converging full-state feedback control law connected in-the-loop to
an observer providing exponentially converging internal state estimates. To design
the control law, the plant is �rst mapped to a simpli�ed cascade system, for which
a control law is known and can be explicitly found. Subsequently the full-state
feedback control law is recovered.

On the other hand, the observer is designed by mapping the estimation error
dynamics directly into an exponentially convergent target cascade system. Both the
controller and observer kernels are analysed and found to have a well-posed solution
given certain assumptions are satis�ed. Results from a simulation testing �rst the
full-state feedback control law and observer independently, and �nally the combined
output feedback control law, is presented and shown to successfully stabilize and
estimate the pressure, velocity and heat release �uctuations, which are unstable in
the open-loop plant.

From a theoretical perspective, investigating if and how the second part of
Assumption 17 can be removed would be valuable. Also, design of observers
and controllers for plants with more complicated dynamics in place of the �w-
subsystem� (6.16) is a direction this research can be continued. Controller and
observer designs for plants with nonlinear extensions of (6.2a), such as an input-
a�ne ODE as natural �rst step, would be valuable both for theoretical understand-
ing and practical application. Next in Chapter 7 the observer problem for such a
nonlinear generalization is considered, but using a considerably di�erent approach
to that taken here.

In practice, if the necessary control e�ort to stabilize the thermoacoustic in-
stability gets too large, the loudspeaker could saturate due to physical limitations.
Hence, further work should focus on modifying the controller presented here to sta-
bilize the instabilities in face of actuator saturations. Future work should hence
also focus on modelling and design of a controller that stabilizes the plant by ac-
tuation the ODE subsystem directly, and combining this with the observer in an
anti-collocated setup. A fuel modulation controller could also be used together with
the acoustic actuating controller proposed here, and studying ways of combining
these would also be a useful research direction.
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Dans ce chapitre, nous nous intéressons au problème d'estimation des états du
modèle de chambre de combustion(2.45) décrivant les instabilités thermoacoustiques
longitudinales. Contrairement au chapitre 6 le modèle de �amme considéré ici a
une réponse dynamique non linéaire. Deux résultats utiles de la littérature sont
rappelés. Le premier résultat réduit le problème de la conception d'un observateur
pour l'interconnection EDP�EDO au problème de la conception d'un observateur
pour le sous-système non linéaire EDO uniquement. Le deuxième résultat réduit
le problème de la conception d'un observateur pour les EDO non linéaires en un
problème d'approximation d'une fonction statique et de son inverse à gauche. Une
procédure pour générer des données numériques représentant des points dans le
domaine de dé�nition de la fonction et de son inverse à gauche est proposée, avant
d'être appliquée pour générer numériquement des données basées sur le modèle de
�amme non linéaire. Avec ces données, des réseaux de neurones représentant les
transformations directe et inverse sont entraînés. Les transformations estimées
sont d'abord testées dans une implémentation d'observateur estimant les états
internes du modèle de �amme non linéaire EDO, puis dans l'estimation du taux de
dégagement de chaleur à partir des données originales entrée/sortie sur lesquelles
le modèle de �amme est basé.
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The observation problem of estimating the states of the can combustor
model (2.45) describing longitudinal thermoacoustic instabilities is considered, but
unlike Chapter 6 the �ame model considered here has a nonlinear dynamic response.
Two useful results from the literature are recalled. The �rst result reduces the prob-
lem of designing an observer for the fully coupled PDE�ODE plant to the problem
of designing an observer for the nonlinear ODE subsystem only. The second re-
sult reduces the problem of observer design for the nonlinear ODE into a problem
of approximating a static function and its left-inverse. A procedure to generate
numerical data representing points in the domain and co-domain of the function
and its left-inverse is proposed, before being applied to numerically generate data
based on the nonlinear �ame model. With this data, neural networks representing
the forward and left-inverse transformations necessary to implement the nonlinear
observer are trained. The estimated transformations are tested �rst in an observer
implementation estimating the internal states of the nonlinear ODE �ame model,
and thereafter in estimation of the heat release rate from the original I/O data on
which the �ame model is based.

7.1 Background

7.1.1 Problem statement

We consider in this chapter the same setup as that shown in Figure 6.1, which
can be modelled by (2.45). However, di�erently from Chapter 6, we do here not
linearise dynamics of the �ame subsystem (2.45a)�(2.45b). Assuming the boundary
pressure signal (5.51) is available for measurement, the aim of this chapter is to
design an observer to estimate the duct acoustics together with heat release (and
internal states of the �ame model) from knowledge of this output signal. The control
problem is not studied in this chapter, so the loudspeaker signalW in (2.45e) at
z = L can be considered an arbitrary and optional input to the system.

Lemma 6 from Chapter 6 can easily be modi�ed to write (2.45) without any
restrictions on (2.45a)�(2.45b) in the form (6.2), but with

_X (t) = f (X (t)) + g0(X (t))v(0; t) + g1(X (t))v(0; t � � ) (7.1a)

u(0; t) = d0v(0; t) + h(X (t)) (7.1b)

in place of (6.2a), (6.2d). Hence, we consider the problem of designing a state ob-
server for the coupled PDE�ODE system (6.2b)�(6.2c), (6.2e), (7.1) using knowledge
of the output signal (5.2), only.

Due to the nonlinearity of the �ame model, performing a similar analysis to that
presented in Chapter 6 is highly nontrivial. Instead, we take a signi�cantly di�erent
approach. First, in Section 7.1.2 a generic observer design for a2� 2 linear hyperbolic
PDE system coupled to a nonlinear ODE, from [Irscheidet al. 2021], is presented.
This observer design allows an observer for the coupled PDE�ODE system to be
designed, given that one has an observer for the ODE subsystem. Hence, instead
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of designing an observer directly for the complete plant (6.2b)�(6.2c), (6.2e), (7.1),
we design it for the ODE subsystem (7.1a). This reduces the problem of observer
design for the complete PDE�ODE plant to that of observer design for just the ODE
subsystem.

The observer for the nonlinear ODE subsystem is designed as a Kazantzis-
Kravaris-Luenberger (KKL) observer, the literature and theory of which is reviewed
in Section (7.1.3). To implement the KKL observer in practice, one needs to com-
pute a nonlinear injective mapping between the plant state space and observer state
space. Although the conditions for the existence of such a transformation are rela-
tively weak, there is no general methodology for calculating the transformation in
practice. Similar to the work done in [da Costa Ramoset al. 2020], we train neural
networks to approximate the transformation.

Since the resultant observer design problem considered here is of a highly nu-
merical nature, in contrast to the analytical approach taken for the linear design in
Chapter 6, a speci�c nonlinear ODE �ame model must be applied during the design
stage. For this, a nonlinear input-a�ne Reduced Order Model (ROM) of Kornilov's
�ame [Kornilov et al. 2009], a premixed laminar conical �ame, is considered. This
ROM is described in [da Costa Ramos 2021] and is constructed using theDynamic
ROMtool in the Twin Builder software [twi ] by Ansys Inc. , based on CFD data
of the �ame as considered in [Jaenschet al. 2017]. Exact expressions of the �ame
model are the property ofAnsys Inc. and can hence not be reproduced here, but
for the reader it is su�cient to know they are an input-a�ne nonlinear model of the
form (2.17), with internal state X 2 R5.

7.1.2 Observer for nonlinear ODE coupled to hyperbolic PDE sys-
tem

We state here the main result from [Irscheidet al. 2021] that gives a generic method-
ology for implementing observers for a2 � 2 linear hyperbolic PDE coupled to a
nonlinear ODE. The design is based on the following assumption.

Assumption 19. Let

_X (t) = F (X (t); �U(t)) (7.2a)
�Y (t) = h(X (t)) (7.2b)

be a nonlinear ODE with input �U and output �Y . We assume:

� An observer
_̂X (t) = �F (X̂ (t); �U(t); �Y (t)) (7.3)

initialized from X̂ (0) = X̂ 0 2 Rn exists such thatlim t !1 jj X̂ (t) � X (t)jj = 0 .

� The vector �eld F is su�ciently locally Lipschitz for the IVP (7.2a), initialized
from someX (0) = X 0, to have a well-posed solution for allt � 0.
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The �rst part of Assumption 19 implies that as long as one has an observer for
the ODE subsystem at hand, an observer for the coupled PDE�ODE system can be
implemented. The second part is necessary to construct the observer presented in the
following Theorem. The observer is given for the case of constant transport speeds,
but Remark 1 of [Irscheid et al. 2021] claims that the observer can be adjusted to
the case of spatially varying transport speeds with minor modi�cation.

Theorem 6 (Theorem 1 in [Irscheid et al. 2021]). Let Assumption 19 hold. Con-
sider the observer

_̂X (t) = �F (X̂ (t); �̂U(t); �̂Y (t)) (7.4a)

ût (x; t ) = � � ûx (x; t ) + � + (x)v̂(x; t ) + P+ (x)~y(t) (7.4b)

(7.4c)

v̂t (x; t ) = � v̂x (x; t ) + � � (x)û(x; t ) + P � (x)~y(t) (7.4d)

û(0; t) = d0v̂(0; t) + h(X̂ (t)) (7.4e)

v̂(1; t) = d1y(t) + U(t) (7.4f)

with

�̂U(t) = v̂
�

0; t �
1
�

�
+

Z 1

0
M �� (0; � )~y

�
t �

1
�

�
�

d� (7.5)

�̂Y (t) = h
�

X̂
�

t �
1
�

��
� ~y(t) (7.6)

~y(t + s) =

8
<

:

û(1; t + s) � y(t + s); if s 2
�
� 1

� ; 0
�

h
�

X̂
�
t + s � 1

�

� �
� h

�
X p

�
s � 1

� ; t
��

; if s 2
�
0; 1

�

� (7.7)

X p(s; t) = �
�

t + s; �̂Uj
t+ 1

� + s
t ; X̂ (t)

�
(7.8)

X̂ (t) = X p(0; t) (7.9)

and observer gains given by

P+ (x) = �M �� (x; 1) (7.10a)

P � (x) = �M �� (x; 1) (7.10b)

whereM �� , M �� are the solution to (6.49a), (6.49c), (6.49e), (6.49g)with � (x) � � ,
� (x) � � , C � 0 and � in (7.8) denotes the solution to the IVP(7.2a) initialized
from X̂ (t) with input (7.5). This observer guarantees that(û; v̂; X̂ ) converges to the
states(u; v; X ) of the plant

_X (t) = F (X (t); v(0; t)) (7.11a)

ut (x; t ) = � �u x (x; t ) + � + (x)v(x; t ) (7.11b)

vt (x; t ) = �v x (x; t ) + � � (x)u(x; t ) (7.11c)

u(0; t) = d0v(0; t) + h(X (t)) (7.11d)

v(1; t) = d1u(1; t) + U(t): (7.11e)
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Setting

F (X (t); v(0; �)) := f (X (t)) + g1(X (t))v(0; t) + g2(X (t))v(0; t � � ) (7.12)

in (7.11a) we can apply the observer (7.4) to estimate the states of (6.2b)�
(6.2c), (6.2e), (7.1), given that we have an observer

_̂X (t) = �F (X̂ (t); v(0; t); h(X (t))) : (7.13)

for the �ame subsystem. For this we design a KKL observer, and the background
for such observers is given next in Section 7.1.3.

Remark 10. The observer given by Theorem 6 can be applied to implement an
observer for the plant(6.2) considered in Chapter 6, whenever the ODE subsystem
is observable. This is because the ODE subsystem there is linear and hence trivially
satis�es the Lipschitzness condition required by the second part of Assumption 19.
However, the observer(6.41) does not require the computation of an integral of the
form (7.5) or to solve an IVP such as(7.8) at each time step as required by(7.4), but
instead can be implemented directly after the gains(6.51) have been computed once
o�ine. This suggests the observer (6.41) would be more computationally e�cient
than (7.4) in practice, and hence more suitable for real-time implementation.

7.1.3 KKL observers

The theory of KKL observers originates in the original, linear Luenberger observer
design presented in [Luenberger 1964]. There, a state observer is designed for a
�nite-dimensional Linear Time Invariant (LTI) state-space system by mapping the
plant into a target system driven by known I/O signals. Conditions are given for
the existence of an invertible linear transformation between the plant and target
state, which is computed from solving a Sylvester matrix equation. State estimates
are then recovered by mapping the target state into the plant state space via the
inverse transformation.

A generalization of this observer design for autonomous nonlinear ODEs was
discovered independently by [Shoshitaishvili 1992] and [Kazantzis & Kravaris 1998].
As for the linear case, the plant is mapped into a linear target system driven by
the measurement signal, but because the original plant is nonlinear, a nonlinear
transformation is required. Rather than being the solution to a Sylvester matrix
equation, the nonlinear transformation is here the solution to a �Sylvester-like� PDE.
General su�cient conditions for the existence and injectivity of this mapping are
given in [Andrieu & Praly 2006].

The extension of this one step further to nonautonomous nonlinear ODEs is
treated in [Bernard & Andrieu 2018]. In the general case a nonlinear, time-varying
transformation is required here, rather than a static one which was su�cient for the
autonomous nonlinear case. However, the �ame model of the form (2.17) we consider
here falls within a special class of nonautonomous nonlinear ODEs, namely input-
a�ne nonlinear ODEs. As shown in [Bernard & Andrieu 2018], for this particular
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class of nonautonomous nonlinear ODEs it is su�cient to use a static, rather than
time-varying transformation in a KKL observer design, and the transformation is
the same as for the corresponding autonomousdrift 1 system. The result is based on
the following assumption.

Assumption 20. Let the system

_X (t) = f (X (t)) + g(X (t)) �U(t) (7.14a)
�Y (t) = h(X (t)) (7.14b)

be initialized from someX 0 2 � 0 � Rn , and S be an open subset ofRn containing
� 0. The system (7.14) is assumed to be uniformly instantaneously observable onS
and its drift system is strongly di�erentially observable of ordern on S.

The following result from [Bernard & Andrieu 2018] provides the theoretical ba-
sis for the numerical observer design presented in Section 7.2.

Theorem 7 (Theorem 4 in [Bernard & Andrieu 2018]). Let � 1; : : : ; � n be any dis-
tinct positive real numbers such thatmin( � 1; : : : ; � n ) = � min > 0 su�ciently large,
D the Hurwitz matrix Diag(� � 1; : : : ; � � n ) in Rn� n , F the vector (1; : : : ; 1)> in Rn .
Then, for any positive real numberU, any bounded open subset� of Rn such that

� cl(� ) � S ,

� For any �U in U, for all t in [0; 1 ) and for all X 0 in � 0, j �U(t)j � U and
�( t; �Ujt0; X 0) is in � ,

there exists a strictly positive number�� such that for any � min > �� :

� There exists a functionT : Rn 7! Rn , which is a di�eomorphism on cl(� ) and
is solution to the PDE associated to the drift dynamics

@T
@X

(X )f (X ) = DT (X ) + Fh(X ); 8X 2 �: (7.15)

� There exists a Lipschitz function �' de�ned on Rn satisfying

�' (T(X )) :=
@T
@X

(X )g(X ); 8X 2 � (7.16)

and such that, for any functionT � : Rn 7! Rn satisfying

T � (T(X )) = X (7.17)

the system
_Z (t) = DZ (t) + F �Y (t) + �' (Z (t)) �U(t) (7.18)

is an observer for system(7.14) initialized in � 0.
1The drift system of an input-a�ne ODE plant is the autonomous ODE which results from

setting the input �U � 0.
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Hence, to design a KKL observer for the system (7.14), it su�ces to �nd a
solution T to the PDE (7.15) and its corresponding left-inverse satisfying (7.17).
Finding such transformation numerically is the focus of Section 7.2. Note that the
ODE subsystem (2.45a) can be written in the form (7.14a) with

g(X ) :=
�
g1(X )
g2(X )

� >

; �U(t) :=

"
�V (0; t)

�V (0; t � � )

#

:

7.2 Numerical design of observer for Kornilov's �ame

7.2.1 Methodology

We propose here a methodology for data generation to train neural net-
works to estimate a static transformation satisfying (7.15), linking states of
the input-a�ne system (7.14a) to states of the corresponding observer (7.18).
In [da Costa Ramoset al. 2020] it was proposed to train a time varying transforma-
tion for input-a�ne nonlinear systems, which introduces an extra dimension (time)
into the transformation to be found. The approach was feasible there since toy
examples of dimensionn = 2 were considered; here we consider a state space model
of dimension n = 5 for a practically applied problem. At this dimension, �nding
a static transformation is already challenging enough due to the �curse of dimen-
sionality�, let alone �nding a spatially varying transformation. Also, the approach
previously considered relies on exploring the state space using a single nominal in-
put signal, which for higher dimensional state spaces could be di�cult to achieve
su�ciently well in practice.

In light of Theorem 7, it is su�cient to train a static transformation between
the drift system and the observer dynamics it cascades into, as given by

_X (t) = f (X (t)) ; (7.19a)
_Z (t) = DZ (t) + Fh(X (t)) : (7.19b)

To achieve this, data consisting of correspondingf X; Z g pairs in respectively the
plant and observer compact states spaces of interest� and Z needs to be established.
However, since the �ame model (2.45a) describes �ame behaviour under a locally
changing velocity �eld, simulating the drift system (7.19a) will not necessarily cause
the system to follow the trajectories in � that the plant follows under acoustic
forcing. Rather, one wants to samplef X; Z g at points corresponding to where the
states go under the in�uence of input signals one could expect in practice.

Having picked a D and F matrix for use in (7.18), we suggest applying the
following steps to generate thef X; Z g pairs necessary to train the static transfor-
mation.

1. Choose a representative set ofN input signals f �U i g1� i � N for the system.

2. For each �U i , solve the following IVP for t 2 [0; ts]:

_X i (t) = f (X i (t)) + g(X i (t)) �U i (t); X i (0) = X i; 0 2 � 0: (7.20)
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3. Sample state trajectories atM points in time 0 � t1 < � � � < t M � ts to obtain
N � M points f X i (t j )g1� i � N;1� j � M .

4. SolveN � M IVPs

_X b;ij (t) = � f (X b;ij (t)) ; X b;ij (0) = X i (t j ) (7.21)

for t 2 [0; to], with to being the estimated convergence time2 of the observer,
and " > 0 a time-scaling constant.

5. Solve the followingN � M IVPs for t 2 [0; t0]:

_X f;ij (t) = f (X f;ij (t)) ; X f;ij (0) = X b;ij (t0); (7.22a)
_Z ij (t) = DZ ij (t) + Fh(X f;ij (t)) ; Z ij (0) = Z ij; 0 2 Z 0: (7.22b)

6. Store N � M training data pairs as f X f;ij (to); Z ij (to)g.

In Step 1, the objective is to pick a set of input signals representing what the
plant would be subjected to in a practical setting. This is so that in Step 2, the
generated trajectories explore the regions of the state space we expect the plant
to visit during practical operating conditions, so that an observer able to estimate
states in this region is trained su�ciently well. Thereafter, Step 3 starts collecting
data points that will be used during training of the neural networks by sampling the
trajectories generated during Step 2. However, at this stage we only have half of
the data necessary to train the neural networks � the other half needs to come from
sampling of the observer state space at points corresponding to transformations of
the plant states through the unknown transformation T. This is what Steps 4�5 of
the data generation procedure are for. Since knowledge ofT is needed to calculate�'
de�ned by (7.16), the input signals chosen in Step 1 cannot be directly used to drive
the observer dynamics (7.18). Hence the data from the observer state space must be
generated without using the input signals directly. To do this, we consider �nding
points in the plant state space, which when used as initial conditions to the drift
dynamics (7.19a), end up at the points sampled in Step 3 after being integrated
for the time equal to the observer convergence timeto. Finding these points is
akin to backwards integration of the drift system, hence Step 4. Then, when the
cascade (7.19) is solved from these initial conditions for a time of durationto, the
plant states will move back to the initial values they were sampled at in Step 3, while
the observer states will be integrated to pointsZ ij = T(X ij ) in the observer state
space. This is achieved through Step 5. With the complete set of data generated,
the data generated in Step 5 is stored for further use in Step 6.
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7.2.2 Generation of training data

To generate the data for Step 1,N = 50 input signals �U i are chosen to simulate
trajectories X i of IVP (7.20) for t 2 [0 ts], where ts = 0 :4 s. To be representative
of what the �ame might be exposed to in a practical setting, the input signals are
selected as a mix of monofrequent and broadband signals containing frequencies
between f l = 50 Hz and f h = 300 Hz, and amplitudes betweenal = 0 :5 and
ah = 1 :5. For i 2 f 1; : : : ; 25g, the signals are monofrequent and are plotted in
Figure 7.1. The remaining signals fori 2 f 26; : : : ; 50g are broadband, generated
with the MATLAB idinput function and are plotted in Figure 7.2. Using the set of
input signals f �U i gN

i =1 shown in Figures 7.1�7.2, Step 2 of the procedure is performed
to generate a set of trajectoriesf X i gN

i =1 in � with the ode45function from MATLAB,
initialized from the same initial state X i; 0 = X 0 2 R5 given by the Dynamic ROM
model.

Figure 7.3: Three orthogonal 3�D projections of 5�D point cloud representing sam-
pled trajectories in � � R5.

In accordance with Step 3, each of these trajectories are sampled. This was done
at each time step giving M = 8001 samples for each of theN = 50 trajectories,
for a total of N � M = 400050 points in � � R5. Three di�erent 3�D projections
of the resultant 5�D point cloud are visualized in Figure 7.3. The red point cloud
represents the points projected onto theX 1� X 2� X 3 subspace of� , the green point
cloud the points projected to the X 1� X 2� X 4 subspace and the blue point cloud the

2We use here the estimate used in [da Costa Ramoset al. 2020], namely to := k
� min

where k = 3
or 5.
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points projected into the X 1� X 2� X 5 subspace.
With these points in R5 as initial conditions, N � M = 400050 IVPs of the

form (7.21) are solved for Step 4 of the data generation procedure. To perform this
step we need an estimate of the observer convergence time, and to estimate this
we need the observer eigenvalues. These are picked to correspond to a sixth-order
Bessel �lter , and are calculated using thebesself function in MATLAB. This results
in observerD and F matrices given by

D =

2

6
6
6
6
6
6
6
4

� 4285:38 � 875:10 0 0 0 0
875:10 � 4285:38 0 0 0 0

0 0 � 3768:3 � 2649:18 0 0
0 0 2649:18 � 3768:3 0 0
0 0 0 0 � 2537:76 � 4531:86
0 0 0 0 4531:86 � 2537:76

3

7
7
7
7
7
7
7
5

;

F =
�
600 600 600 600 600 600

� >

and using k = 3 an estimated observer convergence time of

to � 1:18� 10� 3 s:

Remark 11. The resultant observer matrix D 2 R6� 6 has complex eigenvalues
and implies the setZ for which the trajectories of (7.18) will be contained in is a
subset ofR6, which is of one dimension higher thanR5 which contains� . However,
Theorem 7 states thatZ should be contained inR5 and have real eigenvalues. These
are, however, the strictest necessary conditions and in some practical scenarios (such
as the one considered here) it is possible to use an observer state space of dimension
p > n and matrix D with complex eigenvalues. In the case considered here we found
choosingp = n+1 and complex eigenvalues inD gave better numerical performance.
Investigating the exact conditions under which this design �exibility is possible would
be valuable and interesting further work.

The IVPs (7.21) are solved using theode45 solver. To visualize this step, the
solution to 150 of the IVPs are plotted in Figure 7.4, using initial conditionsX 30(t j )
for j 2 f 1; : : : ; 150g. Subsequently, in Step 5 the IVP (7.22) is solvedN � M =
400050times using ode45 with initial data generated from Step 4 for X f;ij but
Z ij; 0 = 0 . This step is visualized in Figure 7.6 by showing the observer states for
150 of the IVPs, namelyZ 30;j for j 2 f 1; : : : ; 150g. Step 5 results inN � M = 400050
points Z ij in Z � R6. These are represented by four 3�D point clouds as shown in
Figure 7.6, where the black point cloud represents points in theZ1� Z2� Z3 subspace
of Z , the cyan point cloud is for the Z1� Z2� Z4 subspace, the magenta point cloud
represents points in theZ1� Z2� Z5 subspace and the yellow point cloud is forZ1�
Z2� Z6.

Next, in Section 7.2.3 the data shown in Figures 7.3, 7.6 is used to train nonlinear
transformations between the two point clouds (one forward transformationT : R5 7!
R6 and one left-inverseT � : R6 7! R5), with each triplet of points in 7.3 (one
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Figure 7.4: SolutionsX b;30;j for j 2 f 1; : : : ; 150g of (7.21). Represents backwards
integration of the drift system. For ease of viewing only state component number(j
mod 5) is shown for each sampling pointj .

Figure 7.5: SolutionsZ 30;j for j 2 f 1; : : : ; 150g of (7.22). Represents integration of
the observer driven by the drift system. For ease of viewing only state component
number (j mod 6) is shown for each sampling pointj .
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Figure 7.6: Four orthogonal 3�D projections of 6�D point cloud representing sam-
pled trajectories in Z � R6.

component from each of the three 3�D point clouds) together corresponding to a
quadruple of points in 7.6 (one component from each of the four 3�D point clouds).
An example of points corresponding to each other is shown in Figure 7.7, which
shows a set of pointsf X f; 45;j (to); Z 45;j (to)g for j 2 f 1; : : : ; 300g.

7.2.3 Training of neural networks

We employ neural networks to approximate the nonlinear transformationT and
its left-inverse T � necessary to implement the observer presented in Theorem 7.
Using a shallow network with a single hidden layer of sigmoid functions and a
linear output layer is su�cient to approximate any function with a �nite number
of discontinuities arbitrarily well [Beale et al. 2010], and because we have reduced
our observer design problem to a problem of approximating two static functions
T : R5 7! R6, T � : R6 7! R5, such an architecture is employed.

A diagram of the architecture used to approximateT is shown in Figure 7.8,
whereas the neural network architecture used to approximateT � is shown in Fig-
ure 7.9. They are both initialized using the feedforwardnet function in MATLAB,
and both consist of a hidden layer of 8tansig functions, a type of sigmoid function
de�ned by

tansig (x) :=
2

1 + exp( � 2x)
� 1: (7.23)

The input to each of the tansig functions is a weighted sum of the inputs (5 inputs
in the case ofT and 6 in the case ofT � ) in addition to a bias. All of the input
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Figure 7.7: Example of correspondingX and Z points for training of transformation.

Figure 7.8: Architecture of neural networks used to approximate forward transfor-
mation T.

Figure 7.9: Architecture of neural networks used to approximate left-inverse trans-
formation T � .



164 Chapter 7. Nonlinear Flame

weights are summarized in a matrix denotedW 1, of dimension 8 � 5 for T and
8 � 6 for T � , and the biases in the �rst layer are stored in a vector of dimension8
denotedb1. Linear combinations of the 8tansig functions are passed into an output
layer, which consists of 6 passthrough functions in the case ofT and 5 passthrough
functions in the case ofT � . A bias is also added to each of the linear combinations of
outputs from the tansig functions. In the case ofT, 6 di�erent linear combinations
are performed so the weights in the second layer are stored in a matrix denotedW 2

of dimension6� 8, whereas the second bias vector denotedb2 is of dimension 6. On
the other hand, for T � the second weight matrix W 2 is of dimension5 � 8 and the
bias vector b2 is of dimension 5. This gives a total of 101 hyperparameters to �t for
T � and 102 hyperparameters forT.

When initializing the neural networks, the parameters in W 1, W 2, b1 and b2

in each of the networks is randomized. Then, using the training data visually rep-
resented in Figures 7.3, 7.6, a backpropagation algorithm is employed to update
the network parameters to approximate the functionsT and T � . For this purpose,
conjugate gradient backpropogation with Polak-Ribiére updates is used. Because

Figure 7.10: Gradient of the hyperparameter search vector during backpropagation
training of neural networks. Shown for forward transformation (top) and inverse
transformation (bottom).

the training of neural networks is a randomized process and consists of solving a rel-
atively complex optimization problem, three separate neural networks are trained
for the sake of replication. Before training each the neural networks,10% of the
training data shown in Figures 7.3, 7.6 was picked out at random, and is used in
Section 7.2.4 to check how well the trained transformations predict data not used



7.2. Numerical design of observer for Kornilov's �ame 165

Figure 7.11: Step size of the hyperparameter search vector during backpropagation
training of neural networks. Shown for forward transformation (top) and inverse
transformation (bottom).

Figure 7.12: Validation performance of neural networks during backpropagation
training. Shown for forward transformation (top) and inverse transformation (bot-
tom).
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in the training.
The neural networks were trained with an upper limit of 1000 epochs, with the

training consistently running up to the limit. In Figure 7.10, the gradient of the
parameter update vector at each epoch is plotted for the three networks trained,
and in Figure 7.11 the corresponding step size is shown. Also, in Figure 7.12 the
validation performance at each epoch is compared for the three di�erent neural net-
works trained for each transformation. The three networks for the forward trans-
formation have similar gradient, step size and validation performance throughout
the training, and the same can be said for the left-inverse transformations. How-
ever, the left-inverse transformations systematically had larger gradients and mean
square errors in the validation performance tests throughout training, indicating
that training of these networks was more challenging. This is consistent with the
results of [Andrieu & Praly 2006] which give smoothness guarantees forT but not
for T � .

7.2.4 Resultant transformation

The hyperparameters in the weight and bias matricesW 1, W 2, b1 and b2 obtained
at the end of the training for each of the six networks is documented in Appendix A.
Despite approximating the same transformation and being trained with the same
data (disregarding the 10% that is randomly taken out before training each net-
work), the resultant hyperparameters take di�erent values over the three networks
for each transformation in general. This indicates that the networks converged to
di�erent local minima or did not fully converge to a minimal point in the hyper-
parameter search space during training. To test the performance of the resultant

Quantity Neural network 1 Neural network 2 Neural network 3

jj ~X 1jj=jjX 1jj 3:68� 10� 1 3:67� 10� 1 3:51� 10� 1

jj ~X 2jj=jjX 2jj 5:02� 10� 1 5:14� 10� 1 5:07� 10� 1

jj ~X 3jj=jjX 3jj 4:51� 10� 1 4:42� 10� 1 4:79� 10� 1

jj ~X 4jj=jjX 4jj 8:77� 10� 2 8:61� 10� 2 8:40� 10� 2

jj ~X 5jj=jjX 5jj 1:58� 10� 2 2:33� 10� 2 2:65� 10� 2

jj ~Z1jj=jjZ1jj 2:37� 10� 2 3:72� 10� 2 3:01� 10� 2

jj ~Z2jj=jjZ2jj 6:06� 10� 2 5:33� 10� 2 6:11� 10� 2

jj ~Z3jj=jjZ3jj 2:93� 10� 1 2:96� 10� 1 2:99� 10� 1

jj ~Z4jj=jjZ4jj 3:11� 10� 2 2:91� 10� 2 3:47� 10� 2

jj ~Z5jj=jjZ5jj 2:48� 10� 1 2:46� 10� 1 2:45� 10� 1

jj ~Z6jj=jjZ6jj 1:37� 10� 1 1:33� 10� 1 1:32� 10� 1

Table 7.1: Euclidean norms of scaled prediction errors.

transformations, after training the transformations are tested on the remaining10%
of the data that is not used during training. Firstly, for the left-inverse transforma-
tion, 120015 predictionsX̂ kl = T̂ �

l (Z kl ) for k 2 f 1; : : : ; 40005g and l 2 f 1; 2; 3g are
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made by evaluating the three neural networksT̂ �
l at the points Z kl in the valida-

tion data set. Subtracting the predictions from the correspondingX kl data points
gives the prediction errors ~X kl := X kl � X̂ kl . Scaling each of the components of
~X kl by the Euclidean norm jjX l

i jj :=
q P 40005

k=1 jX kl
i j2, the prediction errors for the

components can be compared. The same is done for the forward transformation,
namely 120015 predictions are made by computinĝZ kl = T̂l (X kl ) for each X kl in
the validation data set, T̂l being the neural network estimatel of T.

The Euclidean norm of these values are summarized in Table 7.1. The neural
networks have systematically relatively smaller prediction errors inX 4, X 5, Z1, Z2

and Z4 than in the remaining state components. None of the neural networks have
overall better performance in prediction of all state components than the others.

7.3 Simulation and veri�cation

7.3.1 Direct observer tests

With the transformation T satisfying the �Sylvester-like� PDE (7.15) and its left-
inverseT � having been approximated in Section 7.2, it is natural to test the trans-
formation in an implementation of the observer from Theorem 7. The same plant
and observer parameters as used for training are applied. For the input signal�U
to (7.14), we use the signal

�U(t) = 0 :4 sin(200�t ) + 0 :6 sin(300�t ) (7.24)

which was not part of the signals used to generate the training data, plotted in
Figures 7.1�7.2. To approximate �' de�ned as (7.16) appearing in (7.18), a �nite
di�erence approximation with � X i = 10 � 2 is used to approximate the Jacobian@T

@X.
The observer dynamics (7.18) are initialized fromZ0 = 0 in all three tests, and the
property (7.17) of the left-inverse transformation is applied to generate estimateŝX
from values ofZ via

X̂ (t) = T � (Z (t)) : (7.25)

In Figure 7.13, the plant states for the observer test simulations are plotted in solid
black versus the estimates produced by the observers using the three di�erent trans-
formations trained in Section 7.2, which are dashed and colour coded (see the Figure
legend). From the plot, all three observers estimate the state componentsX 4 and
X 5 fairly well, but have more error in estimating X 1, X 2 and X 3. This corresponds
to what is seen during the transformation validation tests in Section 7.2.4. Next, in
Figure 7.14 the estimation errors ~X i := X i � X̂ i are plotted to more easily compare
the performances between the three observers. Overall the three observers feature
similar error magnitudes. However, in estimatingX 4 and especially inX 5 observer
number 1 has a slightly larger error compared to observer 2 and 3 at various points
throughout the simulation.

Part of the reason in estimating the 5 internal states of the observer is for
their contribution in estimating the heat release rate from the Kornilov �ame. The
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Figure 7.13: Plant states versus observer estimates.
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Figure 7.14: Observer estimation errors.
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observer can then be placed as a subsystem in the combustor network model (6.2b)�
(6.2c), (6.2e), (7.1), and used in a PDE�ODE observer such as the one presented
in Theorem 6 to estimate heat release rate (together with pressure and velocity
perturbations) using a pressure measurement taken from afar. Another reason the
internal state estimates of the Dynamic ROMKornilov �ame model are of interest
could be for control purposes, where a complete knowledge of the state might be
needed for implementation of a control law, but this is outside the scope of this
chapter as we do not consider control design here. Since the internal states of the
Dynamic ROMODE model are in a sense �synthetic� (they do not necessarily have
a physical meaning), it is interesting to verify how well the observer estimates the
heat release in the original CFD data on which theDynamic ROMis based. This is
the focus of Section 7.3.2.

7.3.2 Veri�cation on Kornilov's �ame data

In this Section, the three observers are tested in their ability to reproduce the original
I/O data on which the nonlinear �ame ODE model is based. In Figure 7.15, the

Figure 7.15: Velocity �uctuation signal from CFD data used for testing.

input signal from the CFD data that is passed into the observers is plotted. This
data is �rstly passed as the input signal �U, together with the corresponding heat-
release �uctuation data as the output signal �Y , into the observer dynamics (7.18).
Then, the output estimate

Ŷ (t) = h(T � (Z (t))) (7.26)

is computed. The resultant estimates using the three di�erent neural networks
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Figure 7.16: Observer estimates of heat release versus CFD data. Using both I/O
signals from CFD as input to observer dynamics (7.18).

trained in Section 7.2 is plotted in Figure 7.16. In general the estimates track the
CFD data fairly well, but have a tendency to overshoot at times of abrupt change. To
more easily visualize and compare the performance, Figure 7.17 plots the estimation
error from the three respective observers. Indeed, at times when the heat release
�uctuations abruptly change corresponds to jumps in the error.

Next, it is of interest to test how well the observer estimates the heat release
rate �uctuations when the input signal �Y is not directly from the Kornilov CFD
data, but rather generated via the Dynamic ROMODE model, by passing the input
signal data shown in Figure 7.15 as the input�U to (7.14a), and then generating the
output data �Y from evaluating the measurement functionh in (7.14b).

In Figure 7.18 the heat release rate from the CFD data, plotted in solid black,
is compared to the resultant estimates from the three observers. Compared to
Figure 7.16, there is more error in the estimation of the heat release rate, especially
at points where the heat release rate experiences `spikes�. This is as expected, since
an extra source of error is introduced by generating the output data fed into the
observer via theDynamic ROMmodel. In Figure 7.19 the estimation errors computed
from subtracting the observer estimates in Figure 7.18 from the CFD output data
is plotted. Compared to Figure 7.17 the errors are larger at points where the heat
release changes quickly, but overall the estimation error stays close to the origin.
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Figure 7.17: Observer estimation errors. Using both I/O signals from CFD as input
to observer dynamics (7.18).

Figure 7.18: Observer estimates of heat release versus CFD data. Using data from
CFD as input and output data from nonlinear ODE �ame model as I/O data for
observer dynamics (7.18).
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Figure 7.19: Observer estimation errors. Using data from CFD as input and output
data from nonlinear ODE �ame model as I/O data for observer dynamics (7.18).

7.4 Discussion

We have in this chapter numerically designed a KKL observer for a nonlinear state-
space ROM of Kornilov's �ame. The observer was tested in reproducing �rstly the
states of the state-space model, and subsequently in estimating the heat release in
the data on which the state-space model was based. Its performance, although not
perfect, is fair and for the most part gives a decent prediction of the quantities
of interest. One thing that could be tested to see if the observer performance
improves is to design the observer to have equal dimension as the plant, as is possible
according to Theorem 7. This would reduce the complexity of the problem as one
less dimension needs to be considered in the target system space, and the forward
and inverse transformations would be of equal size. Reducing the dimension of the
target space has implications for both the data generation, since the number of points
needed to sample a compact space of equal radius increases exponentially for each
added dimension, and also for hyperparameter optimization, since fewer parameters
would be needed, all else being equal. Alternatively, if one is only interested in
estimating the heat release, the step of designing an ODE with �synthetic� states
could be bypassed by only considering the output prediction directly with the I/O
data describing the �ame generated from CFD simulations, as for instance very
recently studied for autonomous systems in [Jannyet al. 2021]. To apply this to the
problem considered in this chapter, the framework there would need to be extended
to input-a�ne systems. Taking this approach could be more �exible as no a priori
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restrictions on the structure of the f , g and h matrices in the plant model (7.14)
need to be taken, eliminating a possible source of error.

Although more complicated neural network architectures can be tested, the more
complex ones already tested by the author su�ered from over�tting, in which regu-
larization techniques must be applied. However, going in this direction could make
the problem more complicated than it needs to be, especially in light of the use case
of the neural network here being function approximation and hence in theory a sin-
gle hidden layer being su�cient. Keeping a single hidden layer, future investigations
could go into �nding the most suitable number of nodes in the hidden layer, as well
as testing alternative sigmoid functions. Also, during training the maximum num-
ber of epochs was capped at 1000, and especially for the forward transformation the
gradient and validation performance still had a slight downward trend in all cases
at this point in the training, as seen in Figures 7.10, 7.12. This indicates that the
training might have been stopped before a minimum in the hyperparameter search
spaced was reached, and investigating whether increasing this upper bound has an
impact on the observer perfomance could be a worthwhile further step.

From a testing point of view, a natural next step would be to integrate the ob-
server developed in this chapter into the PDE�ODE observer from Theorem 7.4, and
see how well it estimates heat release rate, pressure and velocity based on a pres-
sure measurement taken from afar. This observer could be compared to the linear
observer from Theorem 5, and conclusions about the advantages and disadvantages
of the two di�erent approaches could be drawn. It would be reasonable to expect to
�nd a trade-o� between computational e�ciency and estimation accuracy. In addi-
tion to testing how well the observers perform in a pure monitoring application, the
use of the linear and nonlinear observer approaches that have been explored could
be tested in the loop with a full-state feedback control law. One could start with
the linear control law from Theorem 4, before proceeding to designing a control law
taking into account nonlinearities in the heat release rate. Lastly, it is important
to not forget to mention that during development of the nonlinear observer in this
chapter, possible noise in the I/O signals was not taken into account. From a prac-
tical point of view, studying the sensitivity to noise of the observer is an important
direction in which to further develop this work.
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Dans ce chapitre �nal, nous résumons les travaux réalisés dans la thèse. Des
perspectives et des suggestions pour des travaux futurs sont o�ertes.

In this �nal chapter, we take a bird's-eye view of what has been achieved in the
thesis and make concluding statements. Perspectives and suggestions for further
work are o�ered.

8.1 Summary

We have in this thesis, in response to the objectives stated in Chapter 1, proposed
state and parameter estimation algorithms for thermoacoustic instabilities with dis-
tributed acoustics and, whenever possible, nonlinear heat release dynamics. The
�rst part of the work dealt with the electrically heated Rijke tube, a laboratory
setup for reproducing thermoacoustic instabilities. Here, an observer relying on a
boundary measurement is designed to provide globally convergent estimates of the
pressure, velocity and heat release rate using a model with distributed acoustics and
nonlinear heat release. It is identi�ed that the state estimates are sensitive to the
knowledge of boundary acoustic impedances, a parameter that is di�cult to know or
compute a priori. In response to this, we suggest a parameter identi�cation method
for estimating these parameters, also using a single pressure measurement.

As stated in the introductory Chapter 1, the literature on the topic of thermoa-
coustic instabilities has heavily relied on laboratory setups, and for model-based
estimation and active control this is not an exception. We have therefore proposed
to further the development of model-based estimation algorithms for thermoacous-
tics, using network models containing distributed models of the acoustics, towards
cases more directly applicable to industrial settings. This is here mainly via our pro-
posed model of distributed acoustics in ducts with variable cross-sectional area. As
noted in [Poinsot 2017] the combustor geometry is a �rst-order factor with regards
to thermoacoustics, and therefore taking this into account in the estimation algo-
rithm design is important for correct estimation in practical combustors outside of
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the laboratory. With the more general in�nite-dimensional acoustics model, to avoid
possible occurrence of the spillover e�ect we use it as basis for in�nite-dimensional
algorithm design, rather than lumping it into an ODE system �rst.

An extension of the parameter identi�cation method used for the Rijke tube is
considered next, �rstly in a theoretical setting by suggesting a boundary parame-
ter identi�cation method for 2 � 2 linear hyperbolic PDE systems where a single
boundary measurement is available. It is then suggested how this can be applied
to boundary parameter estimation in a duct with spatially varying cross section.
With the spatially varying acoustics coupled via a network model to a heuristically
designed linear �ame model, which we suggest can model the thermoacoustics in a
can combustor, we design an observer for estimating the distributed velocity and
pressure together with heat release from the �ame. This state estimator design
is paired with a collocated control law, which together can be used as an output
feedback controller for the thermoacoustic oscillations. In the �nal core Chapter,
we consider how a state estimator for a combustor can be designed when the �ame
model considered is nonlinear rather than linear. The mathematical analysis used
in Chapter 6 is not as straightforward for this case, so instead we take a di�erent
approach where the problem is, using previous results from the literature, simpli-
�ed to that of a nonlinear multidimensional function approximation problem. Data
is generated, and neural networks are trained to approximate the mapping. With
the learned mapping, an observer for the nonlinear �ame ODE subsystem is im-
plemented and �rst tested in estimating the internal states, before being tested on
estimating the heat release rate from CFD data.

8.2 Discussion

Concerning the performance of the algorithms from Part II in simulations and exper-
iments, there were mixed results. Although, to the best of the author's knowledge,
this Rijke tube observer is the �rst globally convergent observer for the electrically
heated Rijke tube that uses fully distributed acoustics and nonlinear heat release
to model the dynamics, the observer design was unconventional in the sense that
no tuning is possible. To prove the global convergence, an exponentially decreasing
error was introduced into the system. In the simulations this slowed the convergence
down compared to a �trivial observer� which, without any convergence guarantees,
converged much faster. Indeed, the heat release model used is self-stabilizing when
the conditions allow for it, with the nonlinear contribution coming from the coupling
to the acoustics. Despite this, the observer proposed had better robustness prop-
erties with respect to uncertainty in the boundary acoustic parameters, something
which was veri�ed in simulations. For the experimental tests, the estimate of the
pressure was phase-shifted away from the measured veri�cation signal. Also, com-
pared to the di�erence seen in the simulations, the di�erence in response was rather
large when di�erent values for the acoustic impedance are tested. After the acoustic
impedances were estimated using the method from Chapter 4, the amplitude of the
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estimated pressure signal was fairly close to the measured veri�cation signal. How-
ever, the estimate was still phase-shifted away from the measured pressure signal,
indicating that some modelling error might be present. Hence, as further work, a
model validation step needs to be taken to isolate the main causes of the issue.
Since the tube used in the construction of the Rijke tube was built of steel, one
possible cause of the error which had been neglected in the modelling step is heat
transfer between the gas and the tube, which could heat up the temperature of the
gas. Further work that could address this issue would be to include a model of the
heat evolution in the tube, and couple this to the acoustics model currently in place.
Within the framework used in this thesis, this could be formulated as a problem of
hyperbolic PDE system coupled in-domain to a parabolic PDE.

The parameter identi�cation method suggested for2 � 2 systems of linear hy-
perbolic PDEs in Chapter 5 is tested on a theoretical example and shown to work
well there. The extension required to apply it for ducts with spatially varying
cross-sectional area results in a parameter vector that is overparametrized with �ve
parameters to estimate two parameters, rather than three parameters to estimate
two as was the case previously. For further work, it would be interesting to test
this on a practical example of a duct with spatially varying cross section. It should
be compared to an algorithm that does not take into account the spatially varying
geometry, and the parameter estimates compared to a benchmark example.

For the state estimation of distributed pressure and velocity in a combustor, two
cases were considered - namely the case of a linear �ame model and the more general
scenario where a nonlinear input-a�ne �ame model is considered. Since a di�erent
approach was taken in considering these two cases, their performance on practical
examples should be compared. As discussed, we expect the state observer from
Chapter 6 to be more computationally e�cient than the one from Chapter 7, but in
cases where strong nonlinearities in the heat release model are present it could be at
a disadvantage. For practical implementation of these state estimators in practice,
it is also expected that model validation steps need to be taken to ensure the model
used for observer design matches the behaviour of the combustor the observer is
being applied to. Control design, which was considered for the combustor with the
linear �ame using acoustic actuation collocated with the pressure sensor, should also
be studied when the actuation is via fuel modulation at the �ame. Indeed, from the
literature [Dowling & Morgans 2005] we know this type of actuation is more feasible
to implement in practice. The control design for the case of nonlinear �ame should
also be studied.

Overall, as stated in Chapter 1, this thesis has only considered longitudinal
modes of thermoacoustic instabilities. Modelling and designing estimation schemes
for these is, however, a crucial step in developing estimation schemes for more general
models. Although the work presented here only scratches the surface of what is
possible and necessary to do, we believe many of the ideas the work in this thesis
is based on, as well as the contributions o�ered, can together form a basis for
extending the results here to more complex cases. One important extension that
should be considered in future work is the development of estimation algorithms
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for the thermoacoustic instabilities encountered in annular combustors, which are
featured in many modern combustion systems. Also, future extensions of this work
should consider noise robustness and methods of modifying the algorithms suggested
to such cases, if necessary and possible. Additionally, we believe the algorithms
suggested here can be built on in the form of incorporating more realistic e�ects,
in the form of e�ects such as internal damping contributions from the combustor
material or intrinsic instabilities in the �ame front, which could in certain settings
be important to describe the system dynamics more accurately.
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Appendix A

Trained Neural Network
Coe�cients

The hyperparameters for the neural networks described in Section 7.2.3 of Chap-
ter 7, as a result of the backpropagation training visualized in Figures 7.10�7.12,
are documented here. As desribed, three pairs of neural networks for the forward
and left-inverse transformations, T and T � respectively, are trained on simulation
data generated in Section 7.2.2. Due to the neural network architectures as shown
in Figures 7.8�7.9, the hyperparameters are summarized in six sets of weight and
bias matrices W 1, W 2, b1 and b2, with three of the sets being for the forward
transformation and the remaining three being for the left-inverse transformation.

We document here �rst the hyperparameters for the forward transformations,
and then the left-inverse transformations. In Tables 1.1-1.3,W 1 for the forward
transformation is shown, in Tables 1.4�1.6 W 2 is documented, and lastly in
Tables 1.7�1.9 the bias valuesb1 and b2 for T is shown. Likewise, in Tables 1.10�
1.12 W 1 for the left-inverse transformations is shown, in Tables 1.13�1.15 we have
W 2 documented, and �nally the bias vectorsb1 and b2 for T � are in Tables 1.16�1.18.

� w1
1;i w1

2;i w1
3;i w1

4;i w1
5;i

w1
j; 1 0:3334 0:2224 � 0:2287 1:4581 0:6641

w1
j; 2 1:3027 � 0:0620 0:0938 0:6231 � 0:7262

w1
j; 3 0:6840 � 0:5221 � 0:8297 1:5006 � 1:6470

w1
j; 4 0:1602 � 0:1410 � 0:7295 2:9956 � 1:8192

w1
j; 5 � 1:4785 � 1:2168 � 0:8630 1:5563 � 1:3585

w1
j; 6 0:3796 � 0:5499 0:4790 � 0:8672 � 0:6523

w1
j; 7 � 0:6092 � 0:9651 � 0:3413 � 1:2453 1:6277

w1
j; 8 � 0:7007 � 1:1893 0:2531 1:1828 � 0:8958

Table 1.1: W 1 parameters forward transformation 1.
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� w1
1;i w1

2;i w1
3;i w1

4;i w1
5;i

w1
j; 1 0:5038 � 1:3071 � 0:8413 � 0:9842 1:3483

w1
j; 2 � 0:6279 � 0:3470 0:4370 1:0616 � 0:0459

w1
j; 3 0:5308 0:1614 � 1:1873 0:0820 � 0:0649

w1
j; 4 � 0:8655 � 0:4273 0:5800 � 3:7819 2:6945

w1
j; 5 � 0:2274 � 0:3042 � 0:3390 0:4651 0:3101

w1
j; 6 � 1:4720 � 1:4519 � 0:8186 1:1868 � 0:7636

w1
j; 7 0:8490 0:8823 1:4739 � 1:3427 1:6188

w1
j; 8 1:1381 1:1290 0:4961 � 1:1869 1:4154

Table 1.2: W 1 parameters forward transformation 2.

� w1
1;i w1

2;i w1
3;i w1

4;i w1
5;i

w1
j; 1 0:4813 0:7649 0:3005 0:3120 � 1:5745

w1
j; 2 � 0:8229 � 1:6009 � 0:3431 � 0:8548 0:3393

w1
j; 3 � 0:2052 � 0:2204 0:0617 2:0540 � 1:6516

w1
j; 4 1:1871 0:8884 0:1848 2:3388 � 0:7672

w1
j; 5 0:1331 0:1593 0:1144 � 1:0263 2:0278

w1
j; 6 � 0:7291 0:0582 � 0:4825 1:4118 � 0:8644

w1
j; 7 � 0:7070 � 1:0129 � 1:6697 2:4584 � 1:6323

w1
j; 8 � 0:7438 � 0:6170 � 0:1600 � 0:9175 � 0:7153

Table 1.3: W 1 parameters forward transformation 3.

� w2
1;i w2

2;i w2
3;i w2

4;i w2
5;i w2

6;i w2
7;i w2

8;i

w2
j; 1 0:3201 � 0:0228 0:2226 1:8772 0:5404 � 0:0168 0:0592 0:7399

w2
j; 2 0:6274 0:3354 0:6133 2:4500 0:9959 0:2755 � 0:3686 0:5105

w2
j; 3 � 0:6225 � 1:0955 � 1:3432 � 0:8923 � 1:2631 0:0999 1:4896 0:2985

w2
j; 4 0:4113 0:1303 0:3624 2:0790 0:7718 0:0373 � 0:0811 0:6946

w2
j; 5 � 0:5021 � 0:8032 � 0:7103 � 1:9424 � 1:9465 0:1564 0:1971 0:3595

w2
j; 6 � 0:5429 � 0:7936 � 1:1580 � 0:1304 � 0:6629 � 0:2023 1:4700 0:1597

Table 1.4: W 2 parameters forward transformation 1.

� w2
1;i w2

2;i w2
3;i w2

4;i w2
5;i w2

6;i w2
7;i w2

8;i

w2
j; 1 � 0:1657 0:2266 � 0:0863 � 0:9835 0:8930 0:6365 � 0:1912 0:0722

w2
j; 2 0:8318 0:4713 0:0949 � 2:0117 0:6943 1:0213 � 0:7738 � 0:5028

w2
j; 3 � 0:5509 � 0:8292 � 0:1115 1:9340 1:6156 � 0:4174 1:1387 0:5838

w2
j; 4 0:5264 0:3620 0:0301 � 1:4995 0:7621 0:9535 � 0:5283 � 0:1632

w2
j; 5 0:2782 � 0:9275 � 0:4293 1:8116 0:3824 � 1:9266 0:9844 � 0:2666

w2
j; 6 � 1:2426 � 0:2833 � 0:9066 1:3566 1:2610 0:1815 0:8920 1:4710

Table 1.5: W 2 parameters forward transformation 2.
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� w2
1;i w2

2;i w2
3;i w2

4;i w2
5;i w2

6;i w2
7;i w2

8;i

w2
j; 1 � 0:7112 0:2200 0:7772 0:4105 0:1178 0:1325 0:8600 � 0:7485

w2
j; 2 � 0:6024 0:2641 1:1636 1:0484 � 0:5394 � 0:1591 1:7484 � 0:8470

w2
j; 3 � 0:5409 0:8519 � 0:4701 � 1:3555 2:0236 0:2848 � 1:2966 0:1467

w2
j; 4 � 0:6578 0:3702 1:0166 0:6543 � 0:1407 0:0385 1:3305 � 0:7560

w2
j; 5 0:3574 � 1:2891 � 1:5860 � 0:5538 0:5337 � 1:2078 � 1:7268 0:7355

w2
j; 6 � 0:7526 0:4911 0:0123 � 1:2909 1:9136 0:8269 � 1:0718 � 0:3092

Table 1.6: W 2 parameters forward transformation 3.

b1
i b2

i

� 0:8955 0:1458
� 1:9130 � 0:0853
0:5532 � 0:4572
0:5941 0:1767

� 0:1266 � 0:1982
1:7945 � 0:4110
0:0560 �

� 2:1165 �

Table 1.7: Bias parameters forward transformation1.

b1
i b2

i

2:1270 0:3248
1:7084 0:0677
2:2616 � 0:1119
0:0332 � 0:0001
0:1129 � 0:1299

� 0:0705 0:3702
0:9312 �
0:8654 �

Table 1.8: Bias parameters forward transformation2.
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b1
i b2

i

1:6039 � 0:0442
1:5545 � 0:2280
0:3010 � 0:2339

� 0:2271 � 0:1887
0:0090 0:4389

� 1:1221 0:0612
� 0:0589 �
� 1:9612 �

Table 1.9: Bias parameters forward transformation3.

� w1
1;i w1

2;i w1
3;i w1

4;i w1
5;i w1

6;i

w1
j; 1 1:3826 1:0679 0:1349 � 0:7569 � 0:5219 � 0:3797

w1
j; 2 � 0:6859 � 0:3986 � 1:0253 � 0:0161 � 0:9710 0:6847

w1
j; 3 � 0:5155 1:2254 1:8056 0:3121 2:7780 0:0689

w1
j; 4 0:3854 � 1:2561 0:0912 0:4432 � 1:6349 � 2:0053

w1
j; 5 0:0584 � 0:0800 � 1:0154 � 1:2928 0:0253 1:2015

w1
j; 6 � 0:2386 0:2284 � 0:9416 � 0:8623 � 1:1179 � 0:6938

w1
j; 7 � 0:0494 � 0:4422 0:7741 � 0:6775 3:1059 1:1577

w1
j; 8 � 0:8241 � 0:3227 � 0:3424 � 0:0287 � 0:5628 � 0:8046

Table 1.10: W 1 parameters inverse transformation1.

� w1
1;i w1

2;i w1
3;i w1

4;i w1
5;i w1

6;i

w1
j; 1 0:1975 0:4069 0:6537 0:7793 0:6590 � 1:2193

w1
j; 2 � 0:4519 � 0:7778 0:0474 � 0:5526 0:5512 � 0:6582

w1
j; 3 � 0:5670 � 1:3320 � 0:9198 0:9287 0:3282 0:9070

w1
j; 4 � 0:9230 � 0:0982 � 2:3961 0:6542 � 3:4710 � 0:1798

w1
j; 5 1:3613 0:5629 0:5792 0:0593 0:9104 � 0:2677

w1
j; 6 0:0718 0:0249 � 0:6638 0:3127 � 0:2835 � 1:0733

w1
j; 7 0:1668 � 0:0269 1:9695 0:1153 3:1783 � 0:0413

w1
j; 8 � 0:0951 � 0:4528 � 0:1362 1:4943 1:2534 0:6423

Table 1.11: W 1 parameters inverse transformation2.
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� w1
1;i w1

2;i w1
3;i w1

4;i w1
5;i w1

6;i

w1
j; 1 0:1902 � 1:1442 1:0069 � 0:9719 � 0:9339 � 0:8522

w1
j; 2 � 0:1182 � 0:3627 � 0:6432 � 0:5649 � 2:9620 � 1:4441

w1
j; 3 � 0:9654 1:1340 � 0:6392 0:0968 � 1:1007 0:0047

w1
j; 4 1:9488 � 0:3202 � 0:1038 0:2299 0:5180 0:1598

w1
j; 5 � 2:1316 0:2331 � 1:7588 0:5451 � 3:9605 � 0:4333

w1
j; 6 0:9969 � 1:0412 � 0:4697 � 0:5067 0:0790 � 0:1248

w1
j; 7 � 0:1513 1:1165 0:6779 0:4360 0:3397 � 0:5085

w1
j; 8 0:6043 0:7650 � 0:9803 � 1:0399 � 3:7434 � 0:9613

Table 1.12: W 1 parameters inverse transformation3.

� w2
1;i w2

2;i w2
3;i w2

4;i w2
5;i w2

6;i w2
7;i w2

8;i

w2
j; 1 1:1111 0:8534 2:0054 2:2950 � 1:2870 � 0:1903 � 1:2689 0:4631

w2
j; 2 0:4474 0:7015 � 0:8695 � 0:4933 0:4701 � 0:0433 1:0553 � 0:5836

w2
j; 3 0:8366 � 0:0170 0:4281 0:1099 � 0:4090 � 0:1221 � 0:6932 � 0:4362

w2
j; 4 0:2744 0:7040 0:1797 � 0:0099 � 1:3376 0:0481 � 0:1195 � 0:1050

w2
j; 5 0:2606 � 0:2738 � 0:0238 0:0416 � 1:2495 0:1155 � 0:0256 � 0:2391

Table 1.13: W 2 parameters inverse transformation1.

� w2
1;i w2

2;i w2
3;i w2

4;i w2
5;i w2

6;i w2
7;i w2

8;i

w2
j; 1 1:1268 � 0:6254 0:7815 � 1:5400 1:2364 1:1251 � 1:9268 � 0:5410

w2
j; 2 � 0:1764 � 0:0426 0:1778 0:7056 � 0:6279 � 0:1831 0:9001 � 0:5989

w2
j; 3 1:5557 0:1448 0:3831 � 0:3140 1:1849 � 0:5831 � 0:8169 � 0:2207

w2
j; 4 � 0:5958 � 0:2105 � 0:8427 � 0:1496 0:2332 0:0031 � 0:2307 0:4189

w2
j; 5 � 0:1629 � 0:1393 � 0:8389 � 0:0055 0:2325 0:0040 � 0:0400 0:8848

Table 1.14: W 2 parameters inverse transformation2.

� w2
1;i w2

2;i w2
3;i w2

4;i w2
5;i w2

6;i w2
7;i w2

8;i

w2
j; 1 � 0:7805 2:2374 � 1:1451 1:5314 � 1:8960 1:1208 0:7387 1:5783

w2
j; 2 0:0553 0:3161 0:7729 � 0:2290 0:3677 � 0:4795 � 0:3732 � 1:1368

w2
j; 3 � 0:5033 � 0:2137 � 0:2097 � 0:3307 � 0:1289 � 0:3757 0:3793 0:5064

w2
j; 4 0:1085 0:2132 0:0440 0:4149 � 0:2165 � 0:4756 0:6471 0:1822

w2
j; 5 0:0967 � 0:0341 0:1440 0:4536 � 0:0403 � 0:2991 0:7472 0:0289

Table 1.15: W 2 parameters inverse transformation3.
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b1
i b2

i

� 2:0478 � 0:8218
1:0630 0:2832

� 0:4552 � 0:2070
0:3042 � 0:4213
0:1500 0:2391

� 1:6803 �
� 2:0752 �
� 1:8550 �

Table 1.16: Bias parameters inverse transformation1.

b1
i b2

i

� 2:4217 � 0:9896
1:8845 0:2451

� 0:0358 0:1923
1:0175 � 0:5396
1:2121 0:3051
0:5690 �

� 1:6330 �
� 1:2409 �

Table 1.17: Bias parameters inverse transformation2.

b1
i b2

i

� 1:7773 � 1:1882
0:8481 0:3159
0:8387 � 0:9366

� 1:1999 � 0:1873
0:9280 � 0:1259
0:2137 �
0:7320 �
1:9011 �

Table 1.18: Bias parameters inverse transformation3.
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