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Margot, j’ai hâte de pouvoir discuter de cela avec toi, et que tu m’apprennes des choses à ton
tour.
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Abstract Free-surface flows have various natures in the environmental and industrial contexts.
It may be a smoothly-varying regular surface with waves from which one may want to extract
renewable energy, or an also smooth surface of an evaporating pool in case of recirculating
pumps deficiency, but also a flow down a spillway with a really disturbed free-surface.

Lagrange and/or Euler approaches can be used to solve the discretised Navier–Stokes
equations with a free-surface.

Among the Lagrangian methods, smoothed particle hydrodynamics (SPH) is a mesh-less
numerical method ideal for simulating potentially violent free-surface phenomena such as a
wave breaking, or a dam-break for which many Eulerian methods can be difficult to apply.

Gentle free-surface flows can also be tackled with the arbitrary Lagrangian Eulerian (ALE)
mesh-based finite volume method, where the free-surface faces of the mesh move so that the
kinematic boundary condition is fulfilled.

The first Chapter is made to introduce SPH and ALE finite volume and to draw links
between the two methods.

For SPH, dealing with boundary conditions (walls and open boundaries) is one of the
most challenging parts as it is declared as one of the Grand Challenges of the international
organisation representing the community of researchers and industrial users of smoothed
particle hydrodynamics (SPHERIC). Concerning walls, the proposed methodology introduced
in the second Chapter relies on the semi-analytical approach which consists in renormalising
the density field near a solid wall with respect to the missing kernel support area.The SPH part
of this work extends this semi-analytical methodology, where intrinsic gradient and divergence
operators that ensure conservation properties are employed. The accuracy of the physical
field such as the pressure next to walls is considerably improved, and the consistent manner
developed to wall-correct operators allows us to perform simulations with turbulence models.

The new model is demonstrated for cases including hydrostatic conditions for a channel
flow, still water in a tank of complex geometry and a dam-break over triangular bed profile
with sharp angle where a significantly-improved behaviour is obtained in comparison with
the conventional boundary techniques. Simulation of the benchmark test case of a square
object moving in an enclosed tank shows good agreement with the reference solution and no
voids are formed within the fluid domain. The performance of the model for a 2-D turbulent
flow in a channel is demonstrated as the profiles of velocity, turbulent kinetic energy and its
dissipation are in agreement with the theoretical ones. Finally, the performance of the model
is demonstrated for flow in a fish-pass where velocity field and turbulent viscosity field are
satisfactorily reproduced compared to mesh-based codes. This work has been published in
Ferrand et al. (2013b).

An axisymmetric formulation with a unified renormalisation factor taking both radial
correction and wall renormalisation is proposed as an extension of this work in Appendix D.5.

The third Chapter deals with open-boundaries for the SPH approach with the resolution
of a Riemann problem associated to the hyperbolic compressible SPH framework used. The
discretisation of the boundary in surface elements (segments in 2-D) and vertices is adequate
to make particles enter progressively so that no pressure wave are created by the release of
new fluid particles. This work has been published in Ferrand et al. (2017). Some details or
how to integrate the geometrical renormalisation factor used in the SPH boundary conditions
is presented in Appendix. This work has been published in Mayrhofer et al. (2015).

The fourth Chapter presents the ALE finite volume algorithm developed in the massively
parallel open-source code code_saturne (see Team (2021)). An original mixing of cell-based
numerical scheme used to get conservation of mass and momentum on each cell control
volume and a vertex-based scheme based on the compatible discrete operators (CDO) approach
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is presented with a particular care on the free-surface condition both on fluid and mesh-
displacement. Various verification and validation test cases are presented. This work has been
published in Ferrand and Harris (2021). Space discretisation of a Poisson equation, used for
the mass correction step in the ALE finite volume approach, is presented in Appendix A and
has been published in Ferrand et al. (2014).

Résumé Les écoulements à surface libre peuvent présenter des aspects très différentes dans
l’environnement et l’industrie. Il peut s’agir d’une surface tranquille, régulière mathématique-
ment parlant, avec des vagues dont on peut vouloir extraire de l’énergie renouvelable, ou
encore d’une surface, lisse également, d’une piscine s’évaporant suite à une défaillance des
pompes de recirculation, ou enfin d’un écoulement dans un déversoir de barrage avec une
surface libre vraiment perturbée et complexe dans sa forme et sa topologie. Les approches
lagrangiennes et / ou eulériennes peuvent être utilisées pour résoudre les équations discrétisées
de Navier–Stokes avec une surface libre.

Parmi les méthodes lagrangiennes, l’hydrodynamique des particules lissées (en anglais
“smoothed particule hydrodynamics” SPH) est une méthode numérique sans maillage idéale
pour simuler des phénomènes potentiellement violents de surface libre très déformée tels
qu’une vague déferlante ou un déversoir de barrage pour lequel de nombreuses méthodes
eulériennes peuvent être difficiles à appliquer.

Les écoulements à surface libre réguliers peuvent également être traités avec la méthode
des volumes finis sur maillage déformable avec une approche arbitrairement lagrangienne
eulérienne (ALE), où les faces de surface libre du maillage se déplacent de sorte que la
condition aux limites cinématique soit vérifiée.

Le premier chapitre a pour objectif de présenter les méthodes volumes finis ALE et SPH
et den établir des liens.

Pour SPH, la gestion des conditions aux limites (murs et frontières ouvertes) est l’une des
parties les plus difficiles car elle est déclarée comme l’un des grands défis de l’organisation
internationale représentant la communauté des chercheurs et des utilisateurs industriels de
l’hydrodynamique des particules lissées (SPHERIC). Concernant les murs, nos travaux
suivent lapproche semi-analytique, introduite au chapitre 2, qui consiste à renormaliser la
masse volumique près d’un mur plein par rapport à la zone de support de noyau manquante.
La partie SPH de ce travail étend cette méthodologie semi-analytique, où des opérateurs
de gradient et de divergence intrinsèques qui garantissent des propriétés de conservation
sont employés. La précision du champ physique telle que la pression à côté des murs est
considérablement améliorée, et la manière cohérente de prise en compte des parois développée
pour les opérateurs nous permet d’effectuer des simulations avec des modèles de turbulence.

Une formulation axisymétrique avec un facteur de renormalisation unifié prenant à la fois
la correction radiale et la renormalisation de la paroi est proposée en annexe.

Le chapitre 3 traite des frontières ouvertes pour l’approche SPH avec la résolution
d’un problème de Riemann associé au cadre SPH compressible hyperbolique utilisé. La
discrétisation de la frontière en éléments de surface (segments en 2-D) et en sommets est
adéquate pour faire entrer les particules progressivement afin qu’aucune onde de pression ne
soit créée par la libération de nouvelles particules fluides. Quelques autres aspects sur SPH
dont lintégration du facteur de renormalisation sont présentés en annexe.

Le chapitre 4 présente l’algorithme volumes finis ALE développé dans le code open-source
massivement parallèle code_saturne. Un mélange original de schéma numérique basé sur
les cellules utilisé pour obtenir la conservation de la masse et de la quantité de mouvement
sur chaque volume de contrôle de cellule et un schéma basé sur les sommets basé sur
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l’approche des opérateurs discrets compatibles (CDO) est présenté avec un soin particulier
sur la condition à la limite de la surface libre aussi bien du point de vue du fluide que du
déplacement du maillage. Différents cas de test de vérification et de validation sont présentés.
La discrétisation spatiale d’une équation de Poisson, utilisée pour l’étape de correction de
masse dans l’approche des volumes finis ALE, est présentée en annexe.

Contexte et organisation du manuscrit
Ce manuscrit rassemble une partie de mes travaux réalisés dans la modélisation et la simulation
numérique des écoulements depuis mon master de recherche (Mphil) réalisé à l’université de
Manchester en 2010 (Ferrand (2011)). Durant ma carrière d’ingénieur chercheur à EDF – R&D
(2010 – maintenant) et de pilote opérationnel du projet Plateforme ThermoHydraulique Locale
(PTHL, 2014 – 2019)1, puis maintenant au laboratoire Centre d’Enseignement et de Recherche en
Environnement Atmosphérique (CEREA), j’ai eu l’opportunité de mettre en œuvre des modèles
et des algorithmes pour apporter des réponses à des enjeux variés pour EDF (conditions d’entrée
libre pour les simulations d’incendies, algorithmes dilatables, modèles avec phase glissante pour
la simulation de la combustion charbon et biomasse, mise en place d’un module de simulation
de la ségrégation carbone dans les gros forgés, mise en place de modélisation permettant la
simulation de colmatage de tambour filtrant en cas d’arrivée massive de colmatants, mise en
place de modèles pour l’étude des piscines de stockage du bâtiment combustible en situation
incidentelle, étude du comportement des colis bitumineux de stockage des déchets radioactif sous
sollicitation thermique due à un incendie,...). J’ai eu l’occasion de participer au développement
d’outils de calcul scientifique, principalement code_saturne, code volumes finis, développé
depuis la fin du 20e siècle, open-source depuis 2006 ; mais aussi dans les codes particulaires
SPARTACUS-2D et Sphynx. Il m’a été permis d’encadrer une dizaine de stages, et de participer
au suivi de 5 thèses. Enfin, j’ai la chance d’enseigner la mécanique des fluides et la mécanique
des fluides numérique à l’École des Ingénieurs de la Ville de Paris (vacataire de 2010 à 2020,
responsable du module de mécanique des fluides de 2019 à 2020) et à l’École des Ponts ParisTech
(vacataire remplaçant de 2011 à 2015, puis vacataire depuis 2016 sur le cours de mécanique des
fluide, enseignant vacataire et responsable du cours de mécanique des fluides numérique depuis
2015).

La sélection des travaux présentée dans ce manuscrit est faite en suivant le fil rouge du point
de vue arbitrairement lagrangien-eulérien (ALE) pour les écoulements à surface libre.

Les écoulements à surface libre représentent un large spectre d’applications pour une
entreprise comme EDF : nous pouvons penser en premier lieu aux barrages hydro-électriques,
aux vagues comme menaces de constructions côtières ou d’éoliennes off-shore. Les surfaces
libres sont aussi à considérer lorsque l’on s’intéresse au comportement de piscine de stockage de
combustible nucléaire usé, notamment en prenant en compte l’expérience post-Fukushima ; mais
encore lorsque l’on s’intéresse au comportement d’un colis bitumeux sous sollicitation thermique
intense lors d’un incendie hypothétique d’un stockage profond : le bitume se comporte d’abord
comme un milieu continu visco-plastique puis comme un fluide newtonien, sa surface montant
dans le colis du fait de la dilatation thermique.

La première méthode développée, smoothed particle hydrodynamics (SPH) repose sur
une discrétisation en particules, et est principalement lagrangienne (mis à part les particules
discrétisant le bord du domaine étudié).

La seconde méthode repose sur l’approche des volumes finis en version ALE pour la

1 Projet qui développe le logiciel open-source code_saturne d’EDF, ses méthodes numériques, ses modélisations
physiques, ses algorithmes pour le calcul haute performance, sa vérification et validation, ainsi que son intégration
dans la plateforme Salome.



LIST OF TABLES 19

simulation des écoulements à surface libre.
Les travaux réalisés ont fait l’objet d’une attention particulière sur le traitement des conditions

aux limites, pour ce qui est du traitement des parois (Chapitre 2) ou des frontières ouvertes
(Chapitre 3) pour la méthode SPH (il est à noter que le traitement des conditions aux limites
constitue un des grands challenges de la communauté SPH), ou pour le traitement de la surface
libre pour la méthode des volumes finis ALE (Chapitre 4). Dans ce dernier point, l’usage de
schémas numériques sur le maillage dual, associé aux nœuds du maillage a permis d’améliorer la
robustesse globale du schéma.

Les deux méthodes développées et présentées dans ce manuscrit ont fait l’objet d’articles
publiés dans Ferrand et al. (2013b), Ferrand et al. (2017) et Ferrand and Harris (2021).



1. Introduction

1.1 System of equations, Lagrangian and Eulerian approaches and free-surface
1.1.1 Fluid motion equations

Fluid motion, when studied with the continuum hypothesis in an open space (usually bounded) Ω,
is described by conservative laws – mass, momentum and energy conservation – supplemented
with equations of state (EOS) or constitutive laws.

Conservation of mass and momentum leads to Cauchy equations:

∂ρ

∂t
+ div (ρu) = Ûm,

∂

∂t
(ρu) + div (u ⊗ ρ u) = div (σ) + f + Ûmuin, (1.1)

where u represents the fluid velocity, ρ is the density of the fluid, σ is the stress field, f is a field
of volume force (e.g., gravity force, Coriolis force, additional head losses force), Ûm is a possible
mass source, and uin the value of the corresponding injected velocity. For the sake of simplicity,
Ûm will be set to zero hereafter.

The stress tensor σ is decomposed into an isotropic component, called the pressure p, and
the deviatoric component, τ:

σ = −p1 + τ, (1.2)

and thus the Cauchy equations are:

∂ρ

∂t
+ div (ρu)= 0,

∂

∂t
(ρu) + div (u ⊗ ρ u)= f − ∇p + div (τ) .

(1.3)

For a Newtonian fluid, the constitutive law connecting the stress tensor to the deviatoric part
of the deformation rate tensor, given as SB 1

2
(
∇ u + ∇ uT

)
, is determined as:

τ (u) = µ
(
∇ u + ∇ uT

)
+

(
κ − 2

3
µ

)
tr (∇ u) 1, (1.4)
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where κ is the volume viscosity, usually neglected and therefore omitted hereafter. Note that at
the continuous level, tr (∇ u) = div (u).

The combination of terms in the Cauchy momentum Equations (1.1) and a Newtonian fluid,
Eq. (1.4) gives the Navier–Stokes equations:

∂ρ

∂t
+ div (ρu)= 0,

∂

∂t
(ρu) + div (u ⊗ ρ u)= f − ∇p + div

[
µ

(
∇ u + ∇ uT

)
− 2

3 µtr (∇ u) 1
]
.

(1.5)

For compressible flows, an EOS linking the pressure to the density and the total energy field
is added to Equation (1.5). Making the assumption of barotropic flow, the model for the EOS
reads:

p = P (ρ) . (1.6)

Tait’s EOS (see e.g. Hayward (1967)), also known as stiffened gas EOS, is commonly used to
model liquids:

P (ρ) = p0 +
ρ0c2

0
γ

(
ρ

ρ0
− 1

) γ
, (1.7)

where ρ0 is the reference density, and p0 and c0 are its corresponding reference pressure and
reference speed of sound, and γ is the Laplace coefficient.

For incompressible flows, the fluid flow is assumed to have a zero divergence, and the density
is either deduced from the energy equation or directly supposed to be constant over space and
time.

Finally, Equations (1.5) are completed by boundary conditions in time and space (i.e. initial
condition and boundary conditions when the space domain is bounded).

1.1.2 Lagrangian and Eulerian approaches
Equations (1.5) are written in a conservative form meaning that all terms are written as time or
space divergence, and thus give boundary terms when integrating over a time×space element.
This form is mandatory when dealing with non-regular solutions with shocks. For regular
solutions, Equations (1.5) are equivalent to the non-conservative form:

∂ρ

∂t
+ ∇ρ · u =−ρdiv (u),

ρ

(
∂u

∂t
+ ∇u · u

)
= f − ∇p + div

(
µ

(
∇ u + ∇ uT

)
− 2

3 µtr (∇ u) 1
)
.

(1.8)

When studying the time evolution of a transported variable ψ (x, t), one can adopt an Eulerian
point of view, that is to look at ∂

∂tψ (x, t), the space variable x being fixed.
As for the Lagrangian point of view, one looks at the time evolution of variable ψ following

the fluid particles, i.e. along the particle path x(t) defined by d
dt x(t) = u (x(t), t) and with an

initial condition. Thus:

d
dt
ψ (x(t), t) = ∂

∂t
ψ (x(t), t) + ∇ψ · u, (1.9)

is called the Lagrangian derivative or again the particle derivative. In the sequel, for the sake of
simplicity, we write d

dtψ (x(t), t) as dψ
dt .
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The non-conservative form of Navier–Stokes Equations (1.8) therefore have a Lagrangian
writing:

dρ
dt
=−ρdiv (u),

ρ
du
dt
= f − ∇p + div

[
µ

(
∇ u + ∇ uT

)
− 2

3 µtr (∇ u) 1
]
.

(1.10)

1.1.3 Free-surface and some examples
A free-surface ∂Fs is a material surface free to move with the fluid. It is thus a Lagrangian
surface. Mathematically speaking, the surface at time t can be defined as the kernel of a function
φs (x, t):

x ∈ ∂Fs i.f.f. φs (x, t) = 0. (1.11)

For instance, for a regular free surface whose elevation Zs can be determined only with x and y

components we can define φs (x, t) = z − Zs (x, y, t). Then nsB∇φs is a vector field normal to
the free surface. Therefore, taking a point xs(t) at the free surface, moving at the fluid velocity
(which is also the surface velocity), we get the kinematic condition:

dφs (xs(t), t)
dt

= 0 =
∂φs
∂t
+ ns · us . (1.12)

For a regular free surface, we get ∂Zs

∂t = ns · us. The evolution of the surface is therefore to
be tracked if one wants to study the fluid below the free-surface only. This is straightforward
for a purely Lagrangian method, and can also be done with an arbitrary Lagrangian–Eulerian
approach introduced in §1.2.

Various applications can benefit from numerical simulation of free-surface flows, and an
exhaustive list is out of the scope of this document. We illustrate it here with some examples we
encountered.

The most common free-surface is seen between water and air, with wave propagation. Waves
may be a concern for engineers to design dikes, offshore platforms, but also an opportunity to
retrieve some energy from them.

Free surface in pools are also of interest. For the swimmer at the Olympic Games, the
interaction of wakes with the free surface plays a key role in the athletes’ performance. In another
context, pools are used to store fuel assemblies after having used them in nuclear generators. The
behaviour of these pools in the event that pumps are out of service have been studied in details
since the Fukushima accident as shown in Figure 1.1.

When studying long term nuclear waste storage, one can use bitumen package. One important
question for the safety is therefore how does the package behave under fire conditions. Heated,
the bitumen of the package melts and behaves as a free-surface flow as displayed on Figure 1.2.

Another smooth free-surface can be observed in the Berre lagoon, and its modelling is of
importance to study the evolution of the brackish water ecosystem in this area connected to
the Mediterranean Sea as illustrated in Figure 1.3. For this type of turbulent flows, momentum
exchanges and turbulent kinetic energy next to the free-surface are key challenging quantities to
model (see Ferrand, 2009). The modelling of turbulence is out of the scope of this document,
and is briefly discussed in Chapter 2 to present how to impose standard wall functions in the SPH
method.

Open boundary conditions when studying atmospheric flows is a key challenge when
modelling at CFD scale the flow around an industrial site. Namely, the boundary condition on
the top of the simulation domain can lead to non-physical behaviour if we impose a zero flux
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(a) Snapshot at time t = 100 s. (b) Snapshot at time t = 500 s.

(c) Snapshot at time t = 1000 s. (d) Snapshot at time t = 2000 s.

Figure 1.1: Simulation of a fuel assembly storage pool free-surface evolution performed by
Romain Camy (EDF DT) using code_saturne. When cooling pumps stop working, heat is
released with natural convection only. Boiling may occur and there is a risk of pump failure.

(a) Snapshot at time t = 900 s. (b) Snapshot at time t = 5400 s. (c) Snapshot at time t = 7200 s.

Figure 1.2: Simulation of a slice of a 2 kg bitumen pot which is heated from the side using
code_saturne. This numerical model aims at reproducing the experimental temperature behaviour
of bituminous sludge. At room temperature, the transfers are very limited and heat exchange takes
place by conduction through the material. The density change is significant from a threshold
temperature rise. The presence of a density gradient is the establishment condition of a convection
loop. This case consists in studying a fluid flow, which is pseudo-Newtonian through a Bingham
law, inside a cylindrical bitumen package using ALE to catch the upper moving boundary
interface. The initial cylindrical domain is represented in transparent grey to show the swelling
of the sludge.
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(a) Snapshot when fresh water is realesed in the lagoon.

(b) Snapshot when the Mediterranean Sea is entering the lagoon.

(c) Snapshot when the channel is stratified.

Figure 1.3: Simulation of the exchange of salinity between the Berre lagoon and the Mediterranean
Sea through the channel between them, using TELEMAC-3D. Salinity may stratify due to buoyant
effect in the lagoon or mix when wind shear stress is sufficient. View from the top on the
left-hand-side, view from the bottom on the right-hand-side.
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such as in a wind tunnel experiment. Physically, the horizontal flow over a cliff can accelerate,
but vertical velocity will also be generated, making velocity boundary conditions at the top of the
domain complex to specify. One can therefore consider the top of the domain as a free surface of
imposed pressure.

All the previous examples can be modelled using arbitrary Eulerian-Lagrangian approach
introduced in section 1.2 or using fully Lagrangian approach such as SPH introduced in section
1.3.

1.2 Finite volume and arbitrary Lagrangian-Eulerian approach
1.2.1 Basic finite volume formulations for Newtonian fluids

The finite volume method has been introduced relatively recently (see e.g. Patankar (1980))
compared to the finite elements methods; a complete and valuable overview of the method can be
found in Leveque (1992), Eymard et al. (2000) and Toro (2013). When dealing with conservative
Equations (1.5), finite volume is a natural method that brings space and time integration over a
subset Vc × [tn, tn+1] into boundary terms1:

∫
Vc

ρ
(
x, tn+1

)
− ρ (x, tn) dΩ +

∫
∂Vc

∫ tn+1

tn
ρudt · dS = 0,∫

Vc

ρu
(
x, tn+1

)
− ρu (x, tn) dΩ +

∫
∂Vc

∫ tn+1

tn
u ⊗ ρ udt · dS =

∫
∂Vc

∫ tn+1

tn
σdt · dS

+

∫
Vc

∫ tn+1

tn
f dtdΩ.

(1.13)

Mean space values over cell Vc are denoted by:

(.)c B
1

Vc

∫
Vc

(.)dΩ, (1.14)

with Vc being the cell measure. Similarly, mean time values over time interval [tn, tn+1] are
denoted by:

(.)|n+1
n B

1
∆t

∫ tn+1

tn
(.)dt, (1.15)

with ∆t being the interval measure. Moreover, time values at time tn (respectively tn+1) are
written with the superscript (.)n (respectively (.)n+1). The time interval ∆t is tn+1 − tn. Using
these notations (1.13) reads:

Vc

(
ρn+1
c − ρnc

)
+ ∆t

∫
∂Vc

ρu |n+1
n · dS = 0,

Vc

(
(ρu)n+1

c − (ρu)nc
)
+ ∆t

∫
∂Vc

u ⊗ ρ u |n+1
n · dS =∆t

[
Vc f c |n+1

n +

∫
∂Vc

σ |n+1
n · dS

]
.

(1.16)

Therefore, space Ω is partitioned into a finite number of cells, supposed in the following to
be polyhedra: Ω =

⋃
c Ωc. Geometrical quantities of interest, such as faces and face centres,

nodes, cell centres are displayed on Figure 1.4.

1Note that the time integration of the time derivative using the fundamental theorem of calculus in 1-D is analogous
to the space integration of the divergence using the divergence theorem in 3-D.
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x

z

y

x f

xv

xci xc j

Figure 1.4: Labelling of information used for a mesh in code_saturne. In green, xci is the
barycentre of one cell ci whereas xc j is the one of cj . Each face f is split into portions of faces
associated to a vertex. The portion of face f associated to a vertex v is drawn in solid orange, and
is defined by x f , the barycentre of f , the middle of the two edges of f passing through vertex v,
and xv itself.

Equations (1.16) lead to the definition of the extensive quantities cell volume Vc, cell mass
Mc, cell momentum Qc and cell external force Fc (they are denoted by capital letters):

Vc B

∫
Vc

dΩ, Fc B

∫
Vc

f dΩ,

Mc B

∫
Vc

ρdΩ, Qc B

∫
Vc

ρudΩ.
(1.17)

As for the intensive quantities, let ρc be considered the cell-averaged density, let f c be the
cell-averaged force and let uc be the density-weighted cell-averaged velocity, defined as:

ρc B
Mc

Vc
,

f c B
Fc

Vc
,

uc B
Qc

Mc
.

(1.18)

Let us first start assuming the meshed domain is motionless, integrated mass equation of (1.13)
rewrites:

Mn+1
c − Mn

c + ∆t
∑
f ∈Fc

(ρ u) f
��n+1
n
· Sc> f = 0, (1.19)

where Fc is the ensemble of all the planar polygonal faces of cell c and Sc> f is the outward
surface vector. The surface measure is denoted by SfB

��Sc> f

��. Note that the quantity (.) f coming
from the integration of the divergence is defined as the average (in space) over the face of (.):

(.) f B
1
Sf

∫
f

(.)dS, (1.20)
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thus the mass flux over a face reads q f

��n+1
n
·Sc> f = (ρu) f

��n+1
n
·Sc> f , q being the local momentum.

The expression of mean face values with respect to the cell values will be given by the space
discretisation.

Performing the same computation for the momentum equation of (1.13) gives:

Qn+1
c − Qn

c + ∆t
∑
f ∈Fc

(u ⊗ ρ u − σ) f
��n+1
n
· Sc> f = ∆t Fc |n+1

n . (1.21)

The finite volume method has been very popular for computational fluid dynamics (CFD)
for both hyperbolic equations for compressible flows and incompressible flows. The goal of
numerical modellers is to express face fluxes in terms of cell values.

Discrete version of the differential operators:
In the finite volume method the divergence operator plays a key role, as it gives exact space
balance on fixed cells when applied on face-averaged field:

Divc
{
Ψ f

}
B

1
Vc

∑
f ∈Fc

Ψ f · Sc> f = (div (Ψ))c . (1.22)

Discrete cell gradient of scalars ψ is then defined as divergence of a tensor ψ1:

Gradc

{
ψf

}
B

1
Vc

∑
f ∈Fc

ψf Sc> f = (div (ψ1))c . (1.23)

Cell Laplacian operator applied to a scalar field ψ with a diffusivity field K writes:

Lapc ({K} , {ψ})B (div (K∇ψ))c =
1

Vc

∑
f ∈Fc

(K∇ψ) f · Sc> f . (1.24)

In what follows, a Two-Point Flux Approximation (TPFA, see Eymard et al., 2014) with non-
orthogonal reconstruction is used to discretise the Laplacian operator. See Ferrand et al. (2014)
and appendix A for the extension to non-Cartesian grids in code_saturne for an anisotropic
diffusion problem.

With these notations, the mass and momentum discrete balances over fixed cells are rewritten:

ρn+1
c − ρnc
∆t

+ Divc
{
q f

��n+1
n

}
= 0, (1.25)

(ρu)n+1
c − (ρu)nc
∆t

+Divc
{
(u ⊗ q) f

��n+1
n

}
= f c |n+1

n −Gradc

{
p f

��n+1
n

}
+Divc

{
τ f

��n+1
n

}
. (1.26)

Time stepping and space discretisation:
The steps to solve the 3-D Navier–Stokes equations in the legacy algorithm of code_saturne
are described in this paragraph. Following pioneer work of Chorin (1968) and Temam (1968),
equations are solved in two steps: one prediction step for the velocities from the explicit pressure
field, and a correction step, where the continuity equation is used to calculate a change of pressure,
which adjusts the mass flux to ensure mass conservation and then update the velocity field. It
is also possible to perform sub-iterations over these two steps, as for a Pressure-Implicit with
Splitting of Operators (PISO) algorithm (for a description of PISO see Issa et al., 1986; Versteeg
and Malalasekera, 2007, for a general presentation of pressure correction algorithms). We will
call it PISO-like algorithm and sub-iterations will be denoted by the superscript k starting at 1.
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For the prediction step, code_saturne uses by default an implicit Euler first-order scheme
(extension to second-order scheme will be presented in the next paragraph), where the viscous
shear stress is time-implicit2, the pressure is time-explicit, and the convective term is linearised
and when written in semi-implicit form as follows:

ρn+1,k−1
c ũk

c − ρncun
c

∆t
+ Divc

{〈
ũk

〉
f
⊗ q f

��n+1,k−1
n

}
= f c |n+1,k−1

n −Gradc

{〈
p|n+1,k−1

n

〉
f

}
+Divc

{ (
τ

(
ũk

) )
f

}
,

(1.27)

where ũk is the predicted velocity field to be solved, and the mass flux q f

��n+1,k−1
n

· Sc> f is
initialised by q f

��n+1,0
n

· Sc> f = q f

��n
n−1 · Sc> f , the mean pressure over interval [n, n + 1] is

initialised by p|n+1,0
n = p|nn−1, and the density ρn+1,0

c = ρnc . Note that in Eq. (1.27), cell

pressure gradient Gradc

{〈
p|n+1,k−1

n

〉
f

}
and external volume force f c |n+1,k−1

n appear at the

same time location, so if they are in (partial) balance, they will not create spurious velocities.
Face interpolation from cell values is denoted by 〈.〉 f and requires a space discretisation scheme.
Some standard convective schemes for

〈
ũk

〉
f

are available in code_saturne: either a full centred
scheme with optional slope test limiter (this will be used in §4.4), or a Second Order Linear
Upwind (SOLU), or a pure upwind scheme. Some details on convective schemes for scalars
are given in Appendix B, with some special treatment to ensure minimum-maximum principle.〈

p|n+1,k−1
n

〉
f

is discretised by a centred scheme.
The unsteady term of Eq. (1.27) is algebraically rewritten using the conservation of mass:

ρn+1,k−1
c ũk

c − ρncun
c

∆t
= ρnc

(
ũk
c − un

c

)
∆t

− Divc
{
q f

��n+1,k−1
n

}
ũk
c . (1.28)

Before the correction step, the density might be updated through an equation of state to be
specified by the user (e.g., ρn+1,k

c could be a function of buoyant scalars such as temperature or
salinity). A fully compressible algorithm is also available and presented in Colas et al. (2019).

During the correction step, a simplified momentum equation is solved under the mass balance
constraint:

ρn+1,k−1 u
n+1,k − ũk

∆t
+ ∇φk = δ f k,

q f

��n+1,k
n

· Sc> f =
〈
ρn+1,k−1un+1,k〉

f
· Sc> f ,

ρn+1,k
c − ρnc
∆t

+ Divc
{
q f

��n+1,k
n

}
= 0,

(1.29)

where potential φk = p|n+1,k
n − p|n+1,k−1

n is the pressure increment and δ f k = f |n+1,k
n − f |n+1,k−1

n

is the external volume force increment.
〈
ρn+1,k−1un+1,k〉

f
is discretised by a centred scheme.

2The transpose of the velocity gradient and the isotropic term are in fact time-implicit with an iterative process
used to reconstruct terms due to the non-orthogonalities of the mesh if present, for more details see Archambeau et al.
(2004).
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From Eq. (1.29), a Poisson equation is written for φk :

−Lapc
(
{∆t} ,

{
φk

} )
= −Divc

{
∆t∇ f φ

k
}
= −Divc

{〈
ρn+1,k−1 ũk

+ ∆tδ f k
〉
f

}
− ρ

n+1,k
c − ρnc
∆t

.

(1.30)

The Rhie and Chow filter (see Rhie and Chow, 1983) can be added to the right-hand side
of Eq. (1.30) (see Archambeau et al., 2004). This filter is necessary due to the co-located

algorithm. Term Divc
{〈
ρn+1,k−1 ũk

〉
f

}
requires face expression of a cell quantity (namely

ρn+1,k−1
c ũk

c), which contains somehow ∆tGradc

{〈
p|n+1,k

n

〉
f

}
. The kernel of the discrete

operator Divc
{
〈Grad {.}〉 f

}
is far too big, for instance on a 1-D Cartesian grid, +1, −1, +1

field, called checker-board is in the kernel of the operator. On the other hand the Laplacian
operator obtained from a TPFA scheme smoothes checker-board field. Eq. (1.30) is therefore
rewritten as:

−Lapc

©«
{∆t} ,


φk + p|n+1,k−1

n︸            ︷︷            ︸
= p |n+1,k

n


ª®®®®¬
= −Divc

{〈
ρn+1,k−1 ũk

+ ∆t∇ p|n+1,k−1
n + ∆tδ f k

〉
f

}

− ρ
n+1,k
c − ρnc
∆t

.

(1.31)

Space discretisation of the Laplacian operator is detailed in Ferrand et al. (2014) and presented
here in appendix A for an anisotropic diffusion. Note that the first line of Eq. (1.29) is then used
to update the cell velocity field un+1,k

c .

An extension to second order with time-staggered time stepping:
We present in this Section a conservative second-order time scheme for variable density flows
with a low Mach number we implemented in code_saturne. To reach second-order accuracy over
time, the Crank-Nicolson scheme is often used due to its simplicity and low storage requirement.
Most of the simulation codes actually use an implicit-explicit combination, thus combining an
implicit scheme such as Crank-Nicolson or Backward-Differentiation Formula with an explicit
one, such as Adams-Bashforth or Leap-Frog (Edwards et al., 2011).

The analysis of such combined schemes tends to be complex, as the stability condition of the
combination usually differs from the stability condition of the individual schemes. For instance,
the combination of Crank-Nicolson with Leap-Frog has been studied for decades but was proven
to be stable under the time step conditions suggested by linear stability theory only recently
(Layton and Trenchea, 2012).

The proposed scheme we integrated in code_saturne is similar to the one proposed by Wall
et al. (2002). However, here, the scheme is derived on different grounds, with the finite volume
discretisation perspective.

In the following, the time stepping is defined by the parameter θ, bounded in [0, 1]. When we
consider the case θ = 1, we fall back to the implicit Euler scheme presented earlier (1st order in
time), and, if θ = 1/2, we get the Crank–Nicolson scheme (2nd order in time).

For any field ψ, the time interpolation between times n and n + 1 writes:

Θ

(
ψn, ψn+1

)
= (1 − θ)ψn + θψn+1. (1.32)
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Figure 1.5: First-order in time Euler implicit time stepping for the finite volume approach,
variables localisation. Mass fluxes q f

��n+1
n

are stored at faces and bring cell density from time n
to time n + 1. They are computed with respect to un+1.

We use the notation Θ
(
ψn, ψn+1) to make clear what are the two boundaries of the time

interpolation during the iterative process.
The dual time interval around time n is denoted by [n − 1 + θ, n + θ], and is of length:

∆t |n+θn−1+θ = Θ
(
∆t |nn−1 , ∆t |n+1

n

)
,

where ∆t |nn−1 is the length of time interval [n − 1, n] and ∆t |n+1
n the one of [n, n + 1].

In case of non-equal time steps, θ̃ = θ ∆t |n+1
n

∆t |n+θn−1+θ
is also defined, and the time interpolation

between time intervals [n − 1, n] and [n, n + 1] writes:

Θ̃

(
q |nn−1 , q |

n+1
n

)
B
Θ

(
∆t |nn−1 q |nn−1 , ∆t |n+1

n q |n+1
n

)
∆t |n+θn−1+θ

=
(
1 − θ̃

)
q |nn−1 + θ̃ q |n+1

n .

Note that if the time steps are equal, then θ̃ = θ, and that is what is assumed in the following.

R On the time localisation of variables. Mass balance is chosen to be done on primal mesh
cell between primal time steps n and n + 1. Therefore, since they are linked by the equation
of state, scalar mass fractions ψ and density ρ are stored at the same space and the same
time location. The mass balance imposes that the mass fluxes denoted by q are stored on
time interval [n, n + 1] and on the primal mesh faces. Note that the time interval [n, n + 1]
is the dual space of time n + 1

2 . Therefore, the momentum equation will be solved between
times n − 1

2 and n + 1
2 when θ = 1/2.

Initialisation: The first sub-iteration is still denoted by k = 1 and therefore some values
have to be initialised for k = 0. For the density at time n, ρn,0c = ρ

n−1
c and for all other k, ρn,kc = ρnc .

For the density at time n + 1, ρn+1,0
c = ρnc . For the mass flux, q f

��n+1,0
n

· Sc> f = q f

��n
n−1 · Sc> f .
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Figure 1.6: Second-order in time time stepping for the finite volume approach, variables
localisation.

For the pressure, p|n+θ,0
n−1+θ = p|n−1+θ

n−2+θ . As a side note, at any iteration, the mass flux should verify
a mass balance equation for all cells:

∆t |n+1
n Divc

{
q f

��n+1,k
n

}
= −

(
ρn+1,k
c − ρnc

)
.

Buoyant scalars step, solve ψn+1,k and update ρn+1,k: During this stage, the values of
the buoyant scalars ψ and of the density ρ are updated.

Firstly, the transport equation of buoyant scalars is solved:

ρn+1,k−1
c ψn+1,k

c − ρn,k−1
c ψn

c

∆t |n+1
n

+ Divc
{〈
Θ

(
ψn, ψn+1,k

) 〉
f
q f

��n+1,k−1
n

}
= rhsn+θ,kc , (1.33)

where the right-hand-side term contains the source terms and the diffusion. For the first sub-
iteration in k, namely k = 1, the reader is reminded that ρn,k−1 is ρn−1. Therefore, there is a time
shift between ρ and ψ for the first sub-iteration.

Secondly, the density is updated with the equation of state: ρn+1,k = ρ
(
ψn+1,k ) . Note that

this new density is not balanced by any mass flux yet. This mass balance will be performed in
the upcoming correction step, which ensures mass conservation.

Momentum step, prediction of the velocity, solve ũk: During this stage, the values of the
predicted velocity ũ are estimated. With the velocity-pressure coupling in mind, the prediction
step is the preliminary one. The outcome of the velocity-pressure coupling is the mass flux
q |n+1,k

n , which is naturally centred on the time interval [n, n + 1]. Thus, the momentum equation
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is solved on the time interval [n − 1 + θ, n + θ]:

Θ

(
ρnc, ρ

n+1,k−1
c

)
ũk
c − Θ

(
ρn−1
c , ρn,k−1

c

)
un−1+θ
c

∆t |n+θn−1+θ
+ Divc

{〈
Θ̃

(
un−1+θ, ũk

) 〉
f
⊗ q f

��n+θ,k−1
n−1+θ

}
= + f c |n+θ,k−1

n−1+θ −Gradc

{〈
p|n+θ,k−1

n−1+θ

〉
f

}
+ Divc

{〈
τ

(
Θ̃

(
un−1+θ, ũk

) ) 〉
f

}
(1.34)

The mass flux q |n+θ,k−1
n−1+θ is defined by q |n+θ,k−1

n−1+θ = Θ̃
(
q |nn−1 , q |

n+1,k−1
n

)
and therefore verifies

the mass balance with ρn+θ,k−1−ρn−1+θ

∆t |n+θn−1+θ
= (1 − θ)ρ

n−ρn−1

∆t |n+1
n

+ θ
ρn+1,k−1−ρn
∆t |nn−1

.
Once again, unsteady term and convection of (1.34) can be rewritten as:

Θ

(
ρn−1
c , ρn,k−1

c

) ũk
c − un−1+θ

c

∆t |n+θn−1+θ
+ Divc

{〈
Θ

(
un−1+θ, ũk

) 〉
f
⊗ q f

��n+θ,k−1
n−1+θ

}
−Divc

{
q f

��n+θ,k−1
n−1+θ

}
ũk
c,

(1.35)

this algebraic manipulation facilitates the observation that the obtained matrix for an upwind
scheme on ũk is an M-matrix.

Mass step, correction of the velocity, solve φk: During this stage, the values of the
pressure increment φ, of the resulting pressure p, of the corrected velocity u and of the mass flux
are updated.

With the velocity-pressure coupling in mind, the correction step is the concluding one. The
resulting mass flux will balance the density obtained in the buoyancy step.


Θ

(
ρn,k−1, ρn+1,k−1) un+θ,k − ũk

∆t |n+θn−1+θ
+ ∇φk = δ f k,

Divc
{
q f

��n+1,k
n

}
+
ρn+1,k
c − ρnc
∆t |n+1

n

= 0,
(1.36)

After solving φ, the pressure over the time interval [n − 1 + θ, n + θ] is updated with:

p|n+θ,k
n−1+θ = p|n+θ,k−1

n−1+θ + φ
k . (1.37)

Taking into account the Rhie and Chow filter, and assembling pressure gradients and forces
which might be in partial equilibrium, the mass flux is therefore given by

q f

��n+1,k
n

=
〈
Θ

(
ρn,k−1, ρn+1,k−1) un+θ,k

〉
f

=
〈
Θ

(
ρn,k−1, ρn+1,k−1) ũk

+ ∆t
(
Grad

{〈
p|n+θ,k−1

n−1+θ

〉}
− f |n+θ,k−1

n−1+θ

) 〉
f

− ∆t |n+θn−1+θ

(
grad f p|n+θ,k

n−1+θ −
〈
f |n+θ,k

n−1+θ

〉
f

)
,

which verifies the mass balance with ρn+1,k
c −ρnc
∆t |n+1

n

. Note that no space indices are written for the
first equation of (1.36), because this equation is used both for cells (to update cell velocity) and
faces (to update mass fluxes).

At the end of this step, one gets the new velocity which is living at time n + θ.
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1.2.2 Arbitrary Lagrangian-Eulerian formulation
We now perform balances on moving subsets Vc(t), let us switch to the arbitrary Lagrangian-
Eulerian (ALE) approach. First it is necessary to formulate the equations governing the
conservation of momentum in the domain, Ω(t), which may also move in time. We denote
the velocity of mesh displacement field v (x, t), for points x (x0, t) originally located at x0 and
moving in the domain. The mesh velocity of Ω(t) is thus written:

v (x, t) = ∂x (x0, t)
∂t

. (1.38)

We now consider a sub-domain Vc(t) of Ω(t). This domain corresponds to a cell of the mesh
previously described. Note that there is no a priori guarantee that planar faces of Vc are kept
planar over time. Using the Leibniz integration rule, we can evaluate the variation of an arbitrary
tensor field Ψ in Vc(t) over time. This is written as:

d
dt

∫
Vc (t)
ΨdΩ =

∫
Vc (t)

∂Ψ

∂t
dΩ +

∫
∂Vc (t)

Ψ ⊗ v · dS. (1.39)

It is important to note that d
dt represents the total derivative of the integral quantity, that follows

the motion of Vc(t).
Applying the Leibniz integral rule, Eq. (1.39), to the unity scalar field gives the way cell

volumes evolve:

d
dt

∫
Vc (t)

dΩ =
∫
∂Vc (t)

v · dS. (1.40)

This last equation (in a form integrated in time) is often called the Geometrical Conservation
Law (GCL) and will be described in more detail in Chapter 4.

Performing the same calculation for the variation of mass d
dt

∫
Vc (t)

ρdΩ in the cell c and using
the first line of Eq. (1.1) we obtain:

d
dt

∫
Vc (t)

ρdΩ +
∫
∂Vc (t)

ρ (u − v) · dS = 0. (1.41)

Applying again the Leibniz integral rule (1.39) to establish the conservation of momentum in
the domain Vc(t):

d
dt

∫
Vc (t)

ρudΩ =
∫
Vc (t)

∂ρu

∂t
dΩ +

∫
∂Vc (t)

ρu ⊗ v · dS. (1.42)

We apply the Cauchy momentum equation to replace ∂ρu
∂t of Equation (1.42), which gives us:

d
dt

∫
Vc (t)

ρudΩ +
∫
∂Vc (t)

u ⊗ ρ (u − v) · dS =
∫
∂Vc (t)

σ · dS +
∫
Vc (t)

f . (1.43)

This thesis will not detail all the techniques developed for finite volume schemes (the reader
may look at Eymard et al. (2006)), but we will detail in Chapter 4 the space scheme and
time stepping of code_saturne for the moving mesh module, for which the legacy schemes are
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co-located in space (see e.g. Archambeau et al. (2004)). A particular attention will be paid to the
free-surface condition.

The software code_saturne also provides state-of-the-art schemes, based on the so-called
compatible discrete operators (CDO) framework developed in Bonelle and Ern (2014). Theses
schemes offer the ability to solve equations not only for variables cell-wise located (cell-based
schemes) but also vertex-based or hybrid cell-face based schemes on polyhedral meshes. This
will be favorably used for solving the vertex displacement of the moving mesh in Chapter 4.
These schemes can somehow be extended to high order approximations using the hybrid high
order (HHO) schemes (see Di Pietro and Ern (2015)).

An attempt to extend this scheme to second order in time is proposed in Appendix C.

1.3 Smoothed particle hydrodynamics with a pure Lagrangian particle approach
1.3.1 A short introduction to SPH

Smoothed particle hydrodynamics (SPH) is a mesh-less Lagrangian method used to simulate
continuous media motion, especially for fluids. The Lagrangian point of view may be compared
to the Eulerian one: the first one consists in studying a flow following fluid particles. Each
physical quantity is then attached to its fluid element and transported with it with respect to the
laws of physics. On the contrary, Eulerian approaches study physical quantities at a fixed position.
Many methods such as finite difference, finite volume and finite element are originally based on
that approach, which are also called mesh-based methods. Highly non-linear deformation such
as a 3-D dam break cannot be handled with the ALE finite volume approach without re-meshing,
because of the topology changing of the computational domain. Two phase models with the
computation of the volume of fluid fraction are an alternative. They can be either based on an
homogeneous approach, with only one velocity field, such as Volume Of Fluid (VOF, see Pilliod
and Puckett (2004)) or with two coupled momentum equations as in Méchitoua et al. (2003).
However, these methods require specific numerical treatments for the convective terms to avoid
numerical diffusion of sharp interfaces.

SPH is one of the most used Lagrangian techniques. Due to its mesh-less formulation, SPH
is easily able to simulate merging domains, and due to its Lagrangian formulation, it does not
diffuse any interface. It was first introduced by Lucy (1977), and Gingold and Monaghan (1977).
The use of SPH has since widely expanded in fluid dynamics and solid mechanics Monaghan
(1999). The basic concept of SPH is that continuous media are represented by discrete particles
with volume and mass. A kernel function is used to define particle’s range of interaction, and the
fields are approximated by integral interpolations which is nothing else but the convolution of
the variable with the kernel function.

The SPH method was invented primarily to investigate and carry out astrophysical simulations.
This method was particularly better suited than mesh-based Eulerian approach for: strong non-
linear interactions between cosmic objects and high deformations, concentration of masses and
empty areas. SPH was for instance used for the star collisions and galaxy formation predictions
(see Patsis and Athanassoula (2000)).

Secondly, although widely developed and used through finite elements methods, solid
mechanics found an interest to investigate the SPH method to compute cases where grid-based
approaches face problems: we may cite for instance fracture and fragmentation of a solid. Indeed,
when one studies fracture, one should be able to refine meshes where large distortion appears,
to be accurate. Knowing where a discontinuity will occur before the simulation is a difficult
problem to handle. On the contrary, as a grid-less method, SPH deals easily with this type of
problem. We could refer for example to Das and Cleary (2008) who used the SPH method to
successfully simulate the 3-D fracture and fragmentation in a thin plate.
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Last, but not least, SPH has been adapted to perform fluid mechanics simulation in many
cases, mainly for violent deformations with complex free-surface flow. Two major variants exist:

(i) a weakly compressible version where the pressure is obtained analytically by an equation of
state. The Mach number, based on a numerical speed of sound, is supposed to be less than
10%, and

(ii) an incompressible version, where the pressure field is obtained by solving a Poisson equation
to enforce incompressibility (see Xu (2009), Lind et al. (2012) or Leroy et al. (2016) for
more details).

The approach (i) was introduced first, and has as drawbacks a relatively small time step due
to the numerical speed of sound and a pressure field possibly impacted by small perturbations of
the density field. The main advantages is to ensure naturally free-surface condition for pressure
without imposing it. However, method (ii) allows larger time steps in the time schemes and gives
a smoother pressure field, but requires a Poisson problem to be solved and to enforce pressure
boundary condition at the free surface.

We have chosen here to investigate the weakly compressible version of SPH mainly because
of its simplicity. However, the framework developed to deal with wall and open boundaries can
be adapted to incompressible formulation, see Leroy et al. (2014, 2016).

Other variants of SPH were developed to better reproduce pressure fields. SPH, as code_sat-
urne’s finite volume scheme stores pressure and velocity in a co-located manner, and though
spurious pressure field can be generated and not filtered. Among the variants, we can cite δ-SPH
(see e.g. Sun et al., 2017) which add corrections terms which can be seen as a Rhie & Chow filter
presented in §1.2.

Finally, it is worth noting that ALE versions of SPH have been proposed over the last decades
to better perform transition where flows distorts rapidly and calm zones, but also to gain accuracy
on the pressure field. They are often used with hyperbolic solvers, introduced by pioneer work of
Inutsuka (1994), which allow correct treatment of shocks. Vila (1999) first introduced an ALE
and mathematical analysis of SPH and was followed by many authors (see e.g. Marongiu et al.,
2010) using Riemann solvers. Riemann solvers and fixed (therefore Eulerian) boundary particles
will be used in Chapter 3.

1.3.2 Basic SPH formulations for compressible Newtonian fluid
Smoothed particle approximation
Before starting with SPH, let us define particle approximation following the work of Vila (1999).
As before, let Ω be the domain, open, included in Rd, d being the space dimension.

Space is partitioned by volumes Va(t) moving in time, indexed by a or b, of volume also
denoted by Va(t). The centre of a volume (or particle) a is xa(t). The set of (fluid) particles is
denoted by F .

Space Ω is deformed by a velocity field v (x, t) supposed regular enough. Thus, particles
evolve as:

dxa
dt
= v (xa, t)Bva (t) . (1.44)

Concerning the volume of a particle, it evolves as previously seen:

dVa

dt
=

∫
Va

div (v) dΩ =
∫
∂Va

v · dS. (1.45)

Note that usually, the partition Ω =
⋃

a∈F Va is not explicitly known.
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We can now define the particle approximation distribution Π (ψ) of a field ψ as:

Π (ψ) (x)B
∑
a∈F

Vaψ (xa) δ (x − xa) , (1.46)

δ being the Dirac distribution. Distribution (1.46) is then smoothed / regularised using a kernel
function, noted w (x), assumed in the following to have a compact support Ωx (or in short Ωa if
at particle position xa) of smoothing length denoted h. The regularisation is noted ΠSPH

w (ψ)
and is the convolution between Π (ψ) and w:

Π
SPH
w (ψ) (x)B (Π (ψ)?w) (x) =

∑
a∈F

Vaψ (xa)w (x − xa) . (1.47)

The finite volume method can also be written as an interpolation operator:

Π
FV
w (ψ) (x)B

∑
c

Vcψc

1Vc (x)
Vc︸ ︷︷ ︸

BwFV
c (x)

. (1.48)

but cannot be written as a convolution between the particle projection distribution Π and a kernel
which is radial basis function. In a way SPH is more isotropic than FV.

Some kernel examples are given in §1.3.2, and a priori, ΠSPH
w does not interpolate exactly

constant fields, contrary to (1.48), which is known to be the unity partitioning property. As
reported in Vila (1999), the error tends to zero as the particle distance ∆r tends to zero and ∆r/h
tends to zero, meaning that one needs to decrease the kernel support size and increase the number
of particles in the domain but also in the kernel support3.

Note that we could also define the continuous interpolation of ψ as the convolution with the
kernel ψ ?w:

〈ψ〉 (x)B (ψ ?w) (x) =
∫
Ωx

ψ (x ′)w (x − x ′) dx ′, (1.49)

for which Π (ψ) ? w = ΠSPH
w (ψ) is a discrete approximation. In other words, the smoothed

particle approximation can either be seen as a particle approximation then smoothed with a
kernel, or as a continuous smoothed approximation then discretised over a set of particles (the
latter approach being more convenient to estimate the errors).

When studying bounded domain, the convolution with kernel w does not preserve constant
field functions ψ. To circumvent this issue, an analytical factor γ (x) of renormalisation is
introduced next to the boundary ∂Ω (see Benz (1990) and Herant (1994)):

γ (x)B (1?w) (x) =
∫
Ω∩Ωx

w (x ′ − x) dx ′. (1.50)

The introduction of this factor leads to the following smoothed particle approximation definition:

Π
γ
w (ψ) (x)B

(
Πw (ψ)
1?w

)
(x) = 1

γ (x)
∑
a∈F

Vaψ (xa)w (x − xa) . (1.51)

The use of analytical renormalisation will make boundary terms appear as detailed in Chapters 2
and 3.

Now equipped of these approximation interpolators, we will define the standard SPH operators
starting from the density variation.

3 Renormalisation techniques can improve the accuracy of the smoothed particle approximation as proven in Vila
(1999), and is quite popular in the SPH community (see for instance Bonet and Lok (1999)) but is out of the scope of
this thesis because it may break some conservation properties. Nevertheless, boundary terms proposed in this thesis
can be adapted to renormalisation, see Mayrhofer et al. (2014).
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Space discretised governing equations
The aim of this Section is to recover SPH operators. The (weakly) compressible Newtonian fluid
is modelled by a set of particles denoted by the subscripts (.)a and (.)b in a domain Ω. Each
particle a ∈ F possesses information such as its mass Ma, its position xa, its velocity va which
is here the Lagrangian derivative of the position4, its density ρa, and its pressure pa. Most of the
time, we use a pure Lagrangian framework and particle velocity va coincides with fluid velocity
at point xa, denoted by ua. This will not be the case for motionless open boundaries for instance,
where v is zero while u is not.

Volume, mass and density of particles are linked by the relation: Va =
Ma

ρa
. We assume in

the sequel that fluid particle mass is constant5 and only one phase is considered with no mass
fluxes between particles (see e.g. Fonty et al., 2019, for extension to multiphase flow).

We often denote by the subscripts (.)ab the difference of a quantity between the positions
a and b. For instance uabBua − ub and xabBxa − xb. Three exceptions are made with
the following notations rabB |xab | , wabBw (xab) and ∇wabB∇w (xab) = ∂w

∂x (xab)ex +
∂w
∂y (xab)ey +

∂w
∂z (xab)ez , (ex, ey, ez) being the basis vector triad of the Cartesian coordinate

system in 3-D.

Mass equation, everything comes from density variation definition:
With these notations, a commonly used form of the continuity equation is (see e.g. Monaghan
(1992)):

dρa
dt
=

∑
b ∈ F

Mb∇wab · uab . (1.52)

As mentioned in Vila (1999), as soon as fluid and particle velocities coincide, i.e. ua = va
and particle masses are constant, Equation (1.52) is strictly equivalent to:

dρa
dt
=

dΠw (ρ)
dt

(xa) =

d

( ∑
b ∈ F

Mbwab

)
dt

. (1.53)

Therefore, (1.53) is taken as the definition of the density variation, and allows us to compute
density over time for all particles knowing their displacements and supplemented with initial
conditions6.

Equation (1.52) can be used to define the discrete divergence operator:

Div−a {ub}B −
1
ρa

∑
b ∈ F

Mbuab · ∇wab . (1.54)

which gives:

dρa
dt
= −ρaDiv−a {ub} . (1.55)

4 Note that other authors consider the particle velocity to be arbitrary Lagrangian-Eulerian, see for instance
Marongiu et al. (2010); Neuhauser et al. (2014); Oger et al. (2016).

5 This assumption is not mandatory, some authors work using the ALE framework (see e.g. Marongiu et al., 2010;
Oger et al., 2016). This will not be assumed for open-boundary particles in Chapter 3.

6 Note that some authors (see e.g. Inutsuka, 2002) define the density to be ρa ' Πw (ρ) (xa) =
∑

b ∈ F Mbwab .
This formula requires to initialise particles’ masses correctly to get the initial condition on the density and may
disturb the free-surface. The choice made here is less restrictive because we only assume that the variation of ρa is
approximated by the variation of Πw (ρ) when particles move with their (fluid) velocity.
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Exponent (.)− stands for the minus in Equation (1.54) and therefore this operator is not conservative
in the finite volume sense. To understand this, we can write the divergence operator as in the
finite volume framework, defining the outward surface vector Sa>bBVaVb∇wab = −Sb>a:

VaDiv−a {ub} =
∑
b ∈ F

ρb
ρa

ub · Sa>b −
ua

ρa
·
∑
b ∈ F

ρbSa>b . (1.56)

The second summation in (1.56) cancels out for constant density flow in the finite volume method
because the integral on a closed volume Vc of ∇1 gives that

∑
fc |c Sc> f = 0. This property is only

approximately true in SPH without any other treatment which means that the operator Div−a {ub}
is not conservative.

Other choice in (1.53) would bring other discrete operator definition. Changing this definition
can be of interest for flows with highly variable density (multi-fluids, mixture models, see e.g.
Fonty et al. (2019) for a recent review).

Note that, using expression (1.53), exact time integration on [tn, tn+1] is trivial:

ρn+1
a − ρna =

∫ tn+1

tn
ρaDiv−a {ub} dt =

∑
b ∈ F

Mb

(
wn+1
ab − w

n
ab

)
. (1.57)

This is an interesting property of reversibility: if (all) particles move back to their initial position,
then densities also take back their initial values.

Please bear in mind that boundary terms are missing in these operators, and will be added in
Chapter 2 for walls and in Chapter 3 for open boundaries.

Momentum equation, pressure gradient derived from a Lagrangian:
The inviscid momentum equation is usually written as follows:

dua

dt
= −

∑
b ∈ F

Mb

(
pa

ρ2
a

+
pb
ρ2
b

)
∇wab + g, (1.58)

where g is the gravity field.
This formula can be deduced from the choice made on density variation (1.53), and from a

classical derivation of momentum from a Lagrangian for an insulated system:

d
dt

(
∂L
∂ua

)
−

(
∂L
∂xa

)
= 0, (1.59)

where the Lagrangian is defined by:

L (xa, ua) = Eke (ua) − Eint (xa) − Eext (xa) . (1.60)

Note that here we still assume that fluid and particle velocities coincide, i.e. ua = va. The
energies Eke, Eint and Eext are respectively the kinetic energy, the internal energy and the
external energy. The kinetic energy is given by (1.61a). If the external forces are due to the
gravitational field g, the external energy is given by (1.61b) and for an adiabatic reversible
process, the internal energy can be written as (1.61c):

EkeB
1
2

∑
b ∈ F

Mbu
2
b, (1.61a)

EextB −
∑
b ∈ F

Mbxb · g, (1.61b)

EintB
∑
b ∈ F

Mb eint (ρb) , (1.61c)
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and the energy accumulated per unit of mass eint varies with the density ρ according to (1.62).

p = ρ2 deint
dρ

. (1.62)

Note that (1.53) means that density is a continuous function of the position x and gives us a
way to compute the value of ρaBρ (xa) if we know the positions of all particles.

Now we are able to derive the momentum equation from the Euler-Lagrange equation (1.59)
and obtain for each particle a:

Ma
dua

dt
= Fint

a + Mag, (1.63)

where the internal force due to the pressure, Fint
a , is defined by:

Fint
a = −∂Eint

∂xa

= − ∂

∂xa

[ ∑
b ∈ F

Mb eint (ρb)
]

= −
∑
b ∈ F

Mb
deint
dρb

dρb
dxa

= −
∑
b ∈ F

Mb
pb
ρ2
b

dρb
dxa

,

(1.64)

but we can derive the density using its definition (1.53):

dρb
dxa

=
∑
c ∈ F

Mc
dwbc

dxa
= Ma∇awab + δab

∑
c ∈ F

Mc ∇awac,

and (1.64) becomes

Fint
a = −

∑
b ∈ F

Mb
pb
ρ2
b

dρb
dxa

= −
∑
b ∈ F

Mb
pb
ρ2
b

[
Ma∇awab + δab

( ∑
c ∈ F

Mc ∇awac

) ]
= −

∑
b ∈ F

MaMb

(
pb
ρ2
b

+
pa

ρ2
a

)
∇awab .

This derivation gives the natural definition for the discrete pressure gradient:

Grad+a {pb}Bρa
∑
b ∈ F

Mb

(
pa

ρ2
a

+
pb
ρ2
b

)
∇wab . (1.65)

The exponent (.)+ means that the pressure gradient fulfills the action/reaction principle (pressure
force exerted from particle a to particle b is minus the one exerted from particle b to particle a).
In other words it is a conservative form. Indeed VaGrad+a {pb} rewrites:

VaGrad+a {pb} =
∑
b ∈ F

pa |bSa>b, (1.66)



40 Chapter 1. Introduction

with pa |bBρaρb

(
pa

ρ2
a
+

pb

ρ2
b

)
= pb |a.

Thus the discrete momentum equation (1.58) can be rewritten as follows:

dua

dt
= − 1

ρa
Grad+a {pb} + g. (1.67)

The equation of state is considered barotropic:

pa =
ρ0c2

0
γ

[ (
ρa
ρ0

) γ
− 1

]
, (1.68)

where ρ0 is the reference density of the fluid, c0 is the speed of sound and γ = 7 for water.
One can check that these equations satisfy the following conservation equations of linear and

angular momentum:∑
a ∈ F

Fint
a = 0,∑

a ∈ F
xa × Fint

a = 0.
(1.69)

Properties (1.69) hold if the kernel w verifies properties of isotropy (which implies symmetry, i.e.
wab = wba and implies that ∇wab = −∇wba and ∇wab is collinear to xab).

Discrete operator definitions, gradient and divergence skew-adjointness:
We recall here the definition of the operators gradient (Grad+a {Ab}) and divergence (Div−a {Ab})
of discrete scalar or vector field ({Ab} or {Ab}):

Grad+a {Ab} B ρa
∑
b ∈ F

Mb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
∇wab,

Div−a {Ab} B − 1
ρa

∑
b ∈ F

MbAab · ∇wab,

(1.70)

where AabBAa − Ab.
The operators Grad+a {.} and Div−a {.} are said to be skew-adjoint (see Appendix D.3 for

details), in other words, for two arbitrary fields of scalar {Ab} and of vector {Bb}, we have the
property:

〈
Grad+b {Aa} , Bb

〉
= −

(
Ab, Div−b {Ba}

)
, (1.71)

where the inner products are defined by a sum over the domain:

〈Ab, Bb〉 B
∑
b ∈ F

VbAb · Bb,

(Ab, Bb) B
∑
b ∈ F

VbAbBb .

(1.72)

This property, which also holds for the continuous operators, could be used in simple
variational calculus as follows, which is important for the conservation of the energy for instance.
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Indeed, if we compute the work of pressure force associated with the virtual displacement field
{dxb}, we obtain:∑

b ∈ F
Fint

b · dxb =
〈
ρb
Mb

Fint
b , dxb

〉
(1.73a)

= −
∑

a,b ∈ F
Ma

pa

ρ2
a

dρa
dxb
· dxb (1.73b)

= −
∑
a ∈ F

Va
pa

ρa
dρa (1.73c)

=
∑
a ∈ F

VapaDiv−a {dxc} (1.73d)

=
(
pb, Div−b {dxc}

)
(1.73e)

= −
〈
Grad+b {pa} , dxb

〉
. (1.73f)

In the previous calculus, we have used the definition of the inner products (1.72) in (1.73a), then
the definition of the internal forces in (1.73b), then the definition of the differential in (1.73c),
(1.73d) is nothing but the continuity equation, and finally the adjoint property (1.71) is used in
(1.73f).

The previous calculus proves that for any virtual displacement field {dxb}, the inner products〈
ρb
Mb

Fint
b , dxb

〉
and −

〈
Grad+b {pa} , dxb,

〉
are equal, which implies that for each particle b:

1
Mb

Fint
b = −

1
ρb

Grad+b {pa} . (1.74)

That means that the continuity equation and the momentum equation are variationally consistent.
It is possible to define variants of these two operators conserving this property of skew-

adjointness. For more details see Violeau (2012).

Viscous forces
The viscous term is of second-order and hence, necessitates treatment of second order spatial
derivatives of the kernel. Usually in SPH, we avoid the use of such kernel derivatives, because
they are sensitive to the particle disorder and therefore generate numerical instabilities (see Issa
et al. (2005)). For this reason, the common used formulae for the discrete Laplacian are obtained
by decomposing into a divergence of a gradient. Then, the divergence is approximated by a
kernel derivative whereas the gradient is approximated by a finite differences formula.

The main two models for computing the viscous term ∇ · (µ∇ u) are:

∇ · (µ∇ u)a =
∑
b ∈ F

Mb
µa + µb
ρaρb

uab

r2
ab

xab · ∇wab, (1.75a)

∇ · (µ∇u)a = 2(n + 2)
∑
b ∈ F

Mb
µa + µb
ρaρb

uab · xab
r2
ab

∇wab, (1.75b)

where we recall that the dynamic viscosity µ is linked to the kinematic viscosity by µBνρ, and n
is the space dimension. The first model (1.75a) is due to Morris et al. (1997) and the second one
(1.75b) to Monaghan and Gingold (1983).

Basically, Monaghan’s model is obtained by assuming that ∇ ·
(
µ∇uT

)
= 0 which is true for

laminar of constant dynamic viscosity incompressible flows. A general formula could be derived
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(see Espanol and Revenga (2003) for algebraic details):

∇·
[
µ

(
∇u + ∇uT

) ]
a
=

∑
b ∈ F

Mb

µa+µb
2

ρaρb

[
(n + 2)uab · xab

r2
ab

∇wab +
∇wab · xab

r2
ab

uab

]
. (1.76)

Laplacian operator: divergence operator of a gradient field
The viscous force of Morris et al. (1997) can be derived as for the Laplacian operator in the finite
volume method:

Lap+a ({µb} , {ub})B∇ · (µ∇ u)a = Div+a {(µ∇ u})b , (1.77)

where the conservative divergence operator is defined for an arbitrary gradient field {∇Ab} and
a scalar field {Bb} by:

Div+a {Bb∇Ab} =
∑
b ∈ F

Vb (Ba∇Aa + Bb∇Ab) · ∇wab . (1.78)

This operator is indeed conservative as it can be rewritten:

VaDiv+a {Bb∇Ab} =
∑
b ∈ F
(Ba∇Aa + Bb∇Ab) · Sa>b . (1.79)

If then we use a Two Point Flux Approximation:

Ba∇Aa · eab ' Bb∇Ab · eab ' 〈B〉ab
Aab

rab
, (1.80)

where 〈B〉a |b is an interpolated value between Ba and Bb, taken here as the arithmetic mean
〈B〉a |b = Ba+Bb

2 . Note that continuity of the fluxes would give a geometric mean 〈B〉a |b =
2 BaBb

Ba+Bb
as used in Ghaïtanellis et al. (2018) for sediment transport and Fonty et al. (2019) for a

mixture model for two-phase flows.

Kernels used
Generally speaking, kernels used in the SPH formulation depend on the smoothing length-scale
h, on the dimension of the working space (n = 2 or n = 3) and on the norm of the position vector
r = |x | and can be written as:

w (r) =
αf ,n

hn
f (q), (1.81)

where q is given by

qB
r
h
, (1.82)

and αf ,n is a normalisation factor to ensure that the integral of the kernel on its support is 1, i.e.:∫
Ω0

w (r) dx = 1. (1.83)

The kernels used in the present work are:
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1. The spline based kernel of order 4 defined by:

f (q) =



(
5
2 − q

) 4
− 5

(
3
2 − q

) 4
+ 10

(
1
2 − q

) 4
when 0 ≤ q < 1

2,(
5
2 − q

) 4
− 5

(
3
2 − q

) 4
when 1

2 ≤ q < 3
2,(

5
2 − q

) 4
when 3

2 ≤ q < 5
2,

0 when 5
2 ≤ q,

(1.84)

with

αf ,2 =
96

1199π
,

αf ,3 =
1

20π
.

(1.85)

2. The quintic kernel (Wendland (1995)) defined by:

f (q) =


(
1 − q

2

) 4
(2q + 1) when 0 ≤ q < 2,

0 when 2 ≤ q,
(1.86)

with

αf ,2 =
7

4π
,

αf ,3 =
21

16π
.

(1.87)

The Fourier transform of (1.86) is positive decreasing (see Robinson (2009); Violeau and
Leroy (2014) for the calculation). This property is useful regarding to the stability of the
system of particles, for more information see Dehnen and Aly (2012).

1.3.3 Methods for wall modelling
Many ways of implementing solid walls in SPH have been developed over the past decades, and
boundary conditions topic is the second Grand Challenge of the SPHERIC community7. Among
the most popular and commonly used, we can cite:

(i) Lennard-Jones repulsive forces proposed by Monaghan (1994),

(ii) fictitious particles (or also ghost particles) which consist in filling the empty area of the
kernel support behind a wall with particles and giving them well-chosen physical quantities
(such as pressure and velocity) to enforce no slip or free slip condition for example,

7See www.spheric-sph.org.

www.spheric-sph.org
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(iii) semi-analytical (or boundary integrals) boundary conditions based on a variational formula-
tion introduced by Kulasegaram et al. (2004) where a wall renormalisation of the equations
is made with respect to the missing area of the kernel support. We will describe a variant
of this method in Chapter 2. Since the publication of this work in Ferrand et al. (2013),
boundary integrals methods has become more and more popular, and a recent review of
this is available in Vacondio et al. (2021). Chiron et al. (2019) recently propose an efficient
3-D version of the boundary integral method.

All of these include many variants and have advantages and drawbacks. The Lennard-Jones
potential force (i) originally describes the interaction between pairs of atoms and is used to model
the repulsion between a fluid particle and a boundary particle (see Figure 1.7(a)). This method
is then easy to implement, even for complex geometries and computationally cheap. However,
it leads to spurious behaviour: for instance it is impossible to maintain particles fixed along a
vertical wall in the presence of gravity.

The fictitious particles (ii) prevent such a non-physical behaviour (see Figure 1.7(b)). However,
the positioning of ghost particles in complex geometries can be really awkward, particularly in
3-D, even if recent a recent proposition Fourtakas et al. (2019) is applicable in 3-D and gives
smooth field next to the boundary are partially due to the use of the δ-SPH techniques introduced
in Antuono et al. (2010). Moreover, the computational effort required is not negligible, given
that we increase the number of particles to take into account in the discrete summations (1.52)
and (1.58).

Finally, the semi-analytical approach (iii) is attractive thanks to its variational formulation.
That means that some physical quantities such as momentum will be automatically conserved.
Unfortunately, the original attempt did not present a clear and simple way to compute renormali-
sation terms. Furthermore, the formulation proposed in Kulasegaram et al. (2004) was not able
to reproduce hydrostatic pressure field or to take into account the shear stress along a wall. That
is why Kulasegaram’s original methodology needs to be modified, particularly if we want to
focus on turbulence, heat transfer, etc.

(a) Sketch of the Lennard-Jones
repulsive forces: only edge parti-
cles are placed on the boundary
∂Ω.

(b) Sketch of the fictitious parti-
cles (in orange) used to complete
the kernel area support for fluid
particles on the "solid" side of
the wall.

Figure 1.7: Sketch of the two easiest methods to model a wall: repulsive forces and fictitious
particles.
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1.3.4 Methods for open boundaries
In practical use, it is often mandatory to restrict the computational domain to the zone of interest.
This implies enforcing boundary conditions where the fluid may enter or leave the domain,
depending on the sign of the dot product between the fluid velocity field and the (inward) normal
to the boundary.

This is natural when using the finite volume approach because all faces are seen as interfaces,
no distinction made for inner or boundary face. The "only" difficulty is to specify the "correct" or
"physical" value of the flow outside the domain (imposed entering mass flux, imposed pressure
profile with homogeneous Neumann on the velocity field, external state of the far field solution,
etc.).

As for SPH, that is less natural if the method is not seen as a flux method. A valuable
description of the different approaches proposed for SPH can be found in Fonty (2019) and can
be split into two families:

1. Buffer zone approach, where boundary is extruded and fluid quantities are imposed on a
volume (see e.g. Crespo et al., 2007; Marrone et al., 2011; Vacondio et al., 2011; Adami
et al., 2012; Bouscasse et al., 2013; Braun et al., 2015; Werdelmann et al., 2021). The
main advantage of doing so is that free fluid particles next to the open-boundary zones
see discrete contributions (for the pressure gradient in the momentum equation, and for
the density variation in the continuity equation) from their surrounding neighbours as in
the inner part of the domain. Therefore they are designed to limit spurious shocks when
particles enter / leave the studied area. However, one has to specify quantities not only in a
surface (as boundary conditions should do) but on a volume, which can be hazardous for
complex geometries or to impose complex velocity and / or pressure profiles.

2. Flux methods as SPH-ALE (Marongiu et al. (2010)) where classical Riemann problems
can be favorably used to impose wanted values. This method still requires to create
and / or delete particles, and, when creating a fluid particle, its neighbours see a Dirac
time-variation of the summation of fluxes. Renormalisation may become mandatory.

In Chapter 3, we present a methodology for weakly compressible SPH based on fluxes on the
boundary, discretised in surface elements (segments in 2-D, triangles or quadrangles in 3-D) as
introduced in Chapter 2. As for the finite volume method, integration by parts gives boundary
values (and boundary terms) to be imposed at the open-boundary. The vertex particles, located
at the ends of the surface element are used to inject mass in the domain: their mass is made
variable in time, and they have exactly the mass of a particle subtracted when it is released.
Therefore discrete operators do not suffer from Dirac time-variation. All classical methods based
on the Riemann problem can be used for the flux part. Finally, a special care is given to the time
integration of the mass equation.

Since the publication of this work in Ferrand et al. (2017), some valuable work has been
performed on open (transparent) boundary conditions using both buffer zones removing spurious
chocs using δ-SPH (see e.g., Bouscasse et al., 2017) and boundary integrals methods has become
more and more popular, and a recent review of this is available in Vacondio et al. (2021).

1.3.5 Computation of the renormalisation factor
Computation in 2-D of renormalisation factor γ and its gradient ∇γ are proposed in Chapter 2.
Note that computational effort can be saved integrating analytically only ∇γ, and using a time
evolution equation for γ itself.

Extension to 3-D was performed analytically with a decomposition of the boundary integral
in Mayrhofer et al. (2015). However, this algorithm is tedious and sensitive to truncation errors.
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A simpler algorithm has been published in Violeau et al. (2014), still requiring attention when
dealing with truncation errors.

Similar types of analytical integrations have been proposed by Chiron et al. (2019) both
in 2-D and 3-D where complex boundaries are handled with a triangulation. A recent and
efficient proposition is made by Kostorz and Esmail-Yakas (2021a) for 3-D and in Kostorz and
Esmail-Yakas (2021b) for spherical solids.
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2. Unified semi-analytical wall boundary conditions
for inviscid, laminar or turbulent flows in the mesh-
less SPH method

Abstract 2.1 Wall boundary conditions in smoothed particle hydrodynamics (SPH) are a
key issue to perform accurate simulations. We propose here a new approach based on a
renormalising factor for writing all boundary terms. This factor depends on the local shape of
the wall and on the position of a particle relative to the wall, which is described by segments
(in 2-D), instead of the cumbersome fictitious or ghost particles used in most of the existing
SPH models. By solving a dynamic equation for the renormalising factor, we significantly
improve traditional wall treatment in SPH, for pressure forces, wall friction and turbulent
conditions. The new model is demonstrated for cases including hydrostatic conditions for still
water in a tank of complex geometry and a dam break over triangular bed profile with sharp
angle where significant improved behaviour is obtained in comparison with the conventional
boundary techniques. The latter case is also compared to a VOF scheme. The performance
of the model is tested on a 2-D laminar flow which show that the profiles of velocity are
in good agreement with the theoretical ones. This demonstrates that the derived wall shear
stress balances correctly the pressure gradient. Finally, the performance of the model is
demonstrated for flow in a schematic fish-pass where velocity field and turbulent viscosity
field are satisfactorily reproduced compared to the result of mesh-based codes.

This chapter is an adaptation of Ferrand et al. (2013).

Résumé 2.1 Le traitement des conditions aux limites de paroi dans la méthode smoothed
particle Hydrodynamics (SPH) est fondamental pour effectuer des simulations précises. Nous
proposons ici une nouvelle approche basée sur un facteur de renormalisation permettant
d’expliciter tous les termes de bord. Ce facteur dépend uniquement de la forme des frontières
solides et de la position d’une particule par rapport à celles-ci, décrites par des segments en
dimension 2 en lieu et place de particules fictives ou fantômes encore largement utilisées. En
résolvant une équation d’évolution sur le facteur de renormalisation, le traitement proche
paroi des forces de pression, du frottement visqueux et des grandeurs turbulentes est amélioré
de manière significative comparé aux approches traditionnelles. Cette approche est confrontée
à différents cas tests comme l’équilibre hydrostatique dans un bassin de géométrie complexe,
une rupture de barrage par dessus une rampe triangulaire d’angle aigu avec des améliorations
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significatives comparé à des conditions aux limites conventionnelles (le dernier cas est aussi
comparé à une simulation VOF). Les performances du modèle sont testées sur écoulement
de Poiseuille laminaire plan permettant de vérifier les profils de vitesse et de démontrer que
les frottements visqueux équilibrent correctement le gradient de pression moteur. Pour finir,
le modèle est testé sur une configuration de passe à poisson schématique pour laquelle les
champs de vitesse, et turbulence sont cohérents avec des résultats obtenus avec la méthode
des volumes finis.

Ce chapitre est une adaptation de Ferrand et al. (2013).
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Chapter 2. Unified semi-analytical wall boundary conditions for inviscid, laminar or

turbulent flows in the mesh-less SPH method
2.1 Introduction

Treating wall boundary conditions is one of the most challenging parts of the smoothed particle
hydrodynamics (SPH) method and many different approaches have been developed before the
publication of this work in Ferrand et al. (2013) (see e.g. Kulasegaram et al. (2004); Oger et al.
(2007); Di Monaco et al. (2009); Monaghan and Kajtar (2009a); Marongiu et al. (2009); De Leffe
et al. (2009)). An updated review of progress on boundary conditions can be found in Vacondio
et al. (2021). Accurate boundary conditions are essential since in many applications where
precise loading on walls is required such as forces on floating bodies or shoreline structures, tank
walls, wind-wave exchanges, fluid-structure interactions in power-plants etc. It is an obvious
prerequisite to improve turbulence modelling near walls.

Many methods for implementing solid walls in SPH have been developed over the past two
decades. Among the most popular and commonly used include three broad categories:

1. repulsive forces such as Lennard-Jones potential Monaghan (1994), or more recently
Monaghan and Kajtar (2009b),

2. fictitious particles (or alternatively ghost particles) which fill the empty area of the kernel
support behind a boundary with artificial particles with prescribed physical quantities
(such as pressure and velocity) to enforce no slip or free slip condition,

3. semi-analytical boundary conditions based on a variational formulation introduced by
Kulasegaram et al. (2004) where a wall renormalisation of the equations is made with
respect to the missing area of the kernel support. We will describe a variant of this
method in § 2.3, where intrinsic gradient and divergence operators that ensure conservation
properties are employed.

All of these methods have advantages and drawbacks. The Lennard-Jones potential force
originally describes the interaction between pairs of atoms and is used to model the repulsion
between a fluid particle and a boundary particle. This method is easy to implement, even for
complex geometries and computationally cheap. However, it leads to spurious behaviour: for
instance it is impossible to maintain particles fixed along a vertical wall in the presence of gravity.

The fictitious particles recommended in Violeau and Issa (2007) prevent such a non-physical
behaviour. However, the positioning of ghost particles in complex geometries can be particularly
unwieldy, particularly in 3-D. Moreover, the computational effort required is not negligible, given
that we increase the number of particles to take into account in the discrete summations (2.1)
and (2.3). This might be rethought with recent proposition such as Fourtakas et al. (2019), but
smooth fields next to the boundary are partially due to the use of the δ-SPH techniques introduced
in Antuono et al. (2010).

Finally, the semi-analytical approach is attractive thanks to its variational derivation which
means that some physical quantities such as momentum will be automatically conserved. Unfor-
tunately, the original attempt did not present a clear and simple way to compute renormalisation
terms introduced. Furthermore, the formulation proposed was not able to reproduce hydrostatic
pressure fields or to take into account the shear stress along a wall.

This chapter therefore takes the semi-analytical approach of Kulasegaram et al. (2004)
and extends it so that the accuracy of the physical field such as the pressure next to walls is
considerably improved, and the consistent manner developed for wall-correct operators allows us
to perform simulations with turbulence models. This work belongs to the family of boundary
integrals which as become increasingly popular since the publication of this work (see e.g. Chiron
et al., 2019, for a recent review and development in 3-D). This work will present three key
advances:
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• The time integration scheme used for the continuity equation requires particular attention,
and as already mentioned by Vila (1999), we prove there is no point in using a dependence
in time of the particles’ density if no kernel gradient corrections are added. Thus, by
using a near-boundary kernel-corrected version of the time integration scheme of the form
proposed in Vila (1999), long-time simulations ideally suited for turbulent flows in the
context of accurate boundary conditions are possible.

• To compute the kernel correction, Feldman and Bonet (2007) use an analytical value which
is computationally expensive whereas Kulasegaram et al. (2004) and De Leffe et al. (2009)
use polynomial approximation which can be difficult to define for complex geometries.
We propose here to compute the renormalisation term of the kernel support near a solid
with a novel time integration scheme, allowing us any shape for the boundary.

• All boundary terms issued from the continuous approximation are given by surface
summations which only require information from a CAD mesh file of the boundary. The
technique developed here allows us to correct the pressure gradient and viscous terms and
hence provides a physically correct wall-shear stress so that even the diffusion equation of
a scalar quantity can be solved accurately using SPH such as the turbulent kinetic energy
or its dissipation in a k − ε model of turbulence.

This chapter is organised as follows: in the next Section we introduce the formulations for
weakly compressible SPH introducing the basic discretisations for operators, viscous forces,
and turbulence modelling. In the Section following, we then develop the consistent boundary
conditions with improved time integration and a position-dependent technique to compute the
density. This Chapter then presents the computation of the renormalisation terms using a novel
time integration scheme before presenting the enhanced behaviour in the Section on numerical
results.

2.2 Basic SPH formulations for weakly compressible Newtonian fluid
2.2.1 Conservative governing equations

The slightly compressible Newtonian fluid is modelled by a set of particles denoted by the
subscripts (.)a and (.)b in a domain Ω. The set of all the fluid particles is denoted by P where
each particle a ∈ P possesses information such as its mass Ma (assumed constant), its position
xa, its velocity ua (the Lagrangian derivative of the position), its density ρa, its volume Va =

Ma

ρa
,

and its pressure pa. The spatial discretisation is based on a weighting interpolation or kernel
function, w, with compact support. Ωa then refers to the support of the kernel function centred
or xa of radius R. We generally denote by the subscripts (.)ab the difference of a quantity
between the positions a and b. For instance uabBua − ub and xabBxa − xb. Two exceptions
are made with the following notations wabBw (xab) and ∇wabB∇aw (xab). Here, the symbol
∇a denotes the gradient at the point xa 1. With these notations, a commonly used form of the
continuity equation is (see e.g. Monaghan (1992)):

dρa
dt
=

∑
b ∈ P

Mb∇wab · uab, (2.1)

1The gradient operator is defined by ∇Bex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (ex, ey, ez ) being the basis vector triad of the

Cartesian coordinate system in 3-D.
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where d

dt denotes the Lagrangian derivative, that is to say the derivative along the particle path.
It can be derived from the following definition of the density:

ρa =
∑
b ∈ P

Mbwab . (2.2)

The inviscid momentum equation can be written as follows:

dua

dt
= −

∑
b ∈ P

Mb

(
pa

ρ2
a

+
pb
ρ2
b

)
∇wab + g, (2.3)

where g is gravity. The equation of state links density and pressure:

pa =
ρ0c2

0
γ

[ (
ρa
ρ0

) γ
− 1

]
, (2.4)

where ρ0 is the reference density of the fluid, c0 is the speed of sound and γ = 7 is generally
chosen for water.

2.2.2 Viscous forces

The viscous term is used in this work for computing the viscous term
1
ρ
∇ · (µ∇ u) is due to

Morris et al. (see Morris et al. (1997)):

1
ρa

∇ · (µ∇ u)a =
∑
b ∈ P

Mb
µa + µb
ρaρb

uab

r2
ab

rab · ∇wab, (2.5)

where the dynamic viscosity µ is given by:

µBνρ, (2.6)

and ν is the kinematic molecular viscosity.

Operator definitions:
For later analysis, we define discrete operators gradient (Grad+a {Ab}), divergence (Div−a {Ab})
and Laplacian (Lapa ({Bb} , {Ab})) of arbitrary discrete scalar ({Ab} and {Bb}) or vector fields
({Ab}) as:

Grad+a {Ab} B ρa
∑
b ∈ P

Mb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
∇wab,

Div−a {Ab} B − 1
ρa

∑
b ∈ P

MbAab · ∇wab,

Lapa ({Bb} , {Ab}) B ρa
∑
b ∈ P

Mb
Ba + Bb

ρaρb

Aab

r2
ab

rab · ∇wab,

(2.7)

where AabBAa − Ab. They are approximations of the continuous gradient, divergence and
Laplacian operators (respectively denoted by ∇a, ∇. and ∇ · ∇). Thus the equation of continuity
(2.1) and the momentum equation (2.3) can be rewritten as follows:

dρa
dt

= −ρaDiv−a {ub} ,

dua

dt
= − 1

ρa
Grad+a {pb} + g +

1
ρa

Lapa ({µb} , {ub}) .
(2.8)

The operators Grad+a {.} and Div−a {.} are said to be skew-adjoint. It is possible to define
variants of these three operators conserving this property of adjointness (see Violeau (2012)).
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2.2.3 Turbulence modelling in SPH
The Reynolds approach consists in considering only the mean part2 denoted by u of the velocity
field u in the equation of Navier–Stokes, then modelling the effects of the fluctuating part of the
velocity field on the mean velocity.

The k − ε turbulence model developed by Launder and Spalding (1972) add two transport
equations of k, the turbulent kinetic energy, and ε , its dissipation, to the momentum equation
(2.8) which is modified as follows:

Dρa
Dt

= −ρaDiv−a {ub} ,

Dua

Dt
=

1
ρa

Grad+a
{

pb +
2
3 ρkb

}
+ Lapa ({µb + µTb} , {ub}) + g,

Dka
Dt

=
1
ρa

Lapa
({
µb +

µTb

σk

}
, {kb}

)
+ Pa − εa,

Dεa
Dt

=
1
ρa

Lapa
({
µb +

µTb

σε

}
, {εb}

)
+
εa
ka
(Cε1Pa − Cε2εa) ,

(2.9)

where the derivative
D
Dt
B
∂

∂t
+ u · ∇ is the Lagrangian derivative along the Reynolds averaged

field {ub}. The k − ε model links the turbulent kinetic viscosity νTB µT
ρ to the turbulent kinetic

energy k and its dissipation ε by:

νTa = Cµ
k2
a

εa
, (2.10)

with constants σk , σε , Cε1 and Cε2 given by Launder and Spalding (1972).
The production term of k, Pa, is defined by:

Pa = νTaS2
a, (2.11)

where S2
aB2Sa : Sa is the scalar mean rate-of-strain. The tensor strain rate of the mean velocity

field is given by SaB
1
2

(
∇au + ∇au

T
)
; Violeau and Issa (2007) discretised in the SPH form the

velocity gradient:

Grad−a {ub}B −
1
ρa

∑
b ∈ P

Mbuab ⊗ ∇wab . (2.12)

In the following, for sake of simplicity we will drop all overbars to denote velocity and
pressure, and thus denote Lagrangian derivatives d

dt . The reader should keep in mind that under
turbulent conditions, the latter quantities are considered as Reynolds-averaged and the Lagrangian
derivative is along the Reynolds averaged velocity field.

2.3 New boundary conditions and accurate time stepping
2.3.1 Derivation of wall boundary terms using continuous interpolation

Kulasegaram et al.’s renormalisation:
Instead of assuming that ρa '

∑
b ∈ P Mbwab, which underestimates ρa when the particle a is

close to a boundary (see Figure 2.1), Kulasegaram et al. (2004) renormalise the estimation using
a function γa:

ρa '
1
γa

∑
b ∈ P

Mbwab, (2.13)

2in the stochastic point of view.
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where γa is defined by:

γaB

∫
Ω∩Ωa

w (x ′ − xa) dV ′. (2.14)

∂Ω

Ω

a

Ωa

R

Figure 2.1: Kernel-boundary interaction.

In general, γa is an Eulerian field depending only on the position of the particle a with
respect to boundaries of Ω. Far from a solid boundary γa = 1.

The introduction of γa into the derivation of the governing equations leads to some key
differences such as the new continuity equation of Kulasegaram et al. (2004). (2.13) is rewritten:

dρa
dt
=

1
γa

∑
b ∈ P

Mb∇wab · uab −
ρa
γa

∇γa · ua . (2.15)

This can be compared with (2.1). Accordingly, the gradient, ∇γa is defined by:

∇γaB
∫
Ω∩Ωa

∇aw (x ′ − xa) dV ′ =
∫
∂Ω∩Ωa

w (x ′ − xa) ndS′, (2.16)

where the second integral is obtained using the Gauss theorem and where n is the inward
boundary normal.
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In order to evaluate the new internal forces and contact forces, Kulasegaram et al. (2004)
derive the internal energy using the equation of Lagrange. They obtain a new internal force due
to the pressure. The correction of Kulasegaram et al. (2004) can be expressed in terms of new
compatible (in a variational sense) operators gradient and divergence. Indeed, one can define:

GradK
a {Ab} B ρa

∑
b ∈ P

Mb

(
Aa

γaρ
2
a

+
Ab

γbρ
2
b

)
∇wab −

Aa

γa
∇γa,

DivKa {Ab} B − 1
γaρa

∑
b ∈ P

MbAab .∇wab +
1
γa

Aa · ∇γa .
(2.17)

Thus the operators (2.17) verify the skew-adjointness property and variational calculus still
holds, thus proving the consistency between the momentum equation and the continuity equation.
The final term of GradK

a {Ab} was used by Kulasegaram et al. (2004) as a boundary force.
In the following, we propose an enhanced form of the latter model, giving a more accurate
representation of gradients on the wall.

General shape of the boundary:

θv0 θv1

θv2
θv3

v0 v1

v2 v3

ns0

ns1

ns2

s0

s1

s2

Figure 2.2: Boundary property definitions. Boundary with vertex semi particles v (in green) and
with segments s which have a surface Ss and an inward normal ns.

For boundaries of arbitrary shape, their shape, ∂Ω of the domain Ω, is approximated with
straight segments in 2-D denoted by the subscript (.)s which have a normal ns and a surface area
Ss (see Figure 2.2). The set containing all the segments is denoted by S. Each segment is defined
by two vertex points denoted by the subscripts (.)v1 and (.)v2 which have an initial volume Vv

given by Vv =
Mv

ρ0
where ρ0 is a reference density. The initial volume of vertex particles is a

fraction of the initial volume of fluid particles Vf . For instance, for a plane Vv =
1
2Vf . More

generally, for a vertex particle on a wedge with an angle θ displayed on the Figure 2.2, Vv =
θ

2πVf .
The set containing all the vertex particles is denoted byV. These vertex particles (also called

semi particles in the following) are of particular interest for recording the pressure field at the
solid boundary (and hence for fluid and structure coupling for example). They are also useful to
improve accuracy of the continuity equation, as they mimic a wet wall. It is important to notice
that they are taken into account in the continuity equation and in the momentum equation (i.e.
V ⊂ P), even if they are Eulerian particles, that is to say they are fixed if the wall is motionless
and does not depend on the momentum equation.

Next we define the contribution of the segment s in the value of ∇γa to be:

∇γasB
(∫ xv2

xv1

w (r) dl
)
ns, (2.18)

and then ∇γa can be decomposed in:

∇γa =
∑
s ∈ S

∇γas . (2.19)
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The description of the boundary geometry can be extended to 3-D by substituting the segments

by triangles. In this case this volume Vv of vertex particles would use the solid angle of the
wedge.

Wall corrected gradients:
The main disadvantage of previous techniques to evaluate ∇γa is that the gradient operator
defined by (2.17) is not accurate near a boundary or the free-surface. Indeed, we can see that
gradients of constants are non zero: if we simulate uniform overpressure in a periodic pipe
without any body force, the gradient (2.17) of the pressure is not zero everywhere and particles
rearrange themselves (see Figure 2.3(a)). To correct that, we can go back to the continuous
interpolation of an arbitrary integrable function f at a point x:

〈 f 〉 (x) = 1
γ (x)

∫
Ω∩Ωr

f (x ′)w (r̃) dV ′, (2.20)

where r̃B |x − x ′ | and Ωr is the kernel support centred in x. By interpolating the gradient of
the function f in the same way, it becomes:

〈∇ f 〉 (x) = − 1
γ (x)

∫
Ω∩Ωr

f (x ′)∇w (r̃) dV ′

− 1
γ (x)

∫
∂Ω∩Ωr

f (x ′)w (r̃) ndS′,
(2.21)

where the right-hand-side is obtained by an integration by parts and n is the inward normal of
the domain at the position r ′. Hence, we can see that the boundary conditions appear naturally
through the second integral of (2.21).

Moreover, if we consider that the gradient defined by (2.7) is a discrete approximation of the
continuous gradient ∇ fBρ∇ f

ρ +
f
ρ∇ρ (to obtain a symmetric formulation), we obtain (see also

De Leffe et al. (2009)):

〈∇ f 〉 (x) '
〈
ρ(x)∇ f

ρ
+

f
ρ
(x)∇ρ

〉
(x)

= − 1
γ (x)

∫
Ω∩Ωr

[
f
ρ
(x ′) ρ (x) + f

ρ
(x) ρ (x ′)

]
∇w (r̃) dV ′

− 1
γ (x)

∫
∂Ω∩Ωr

[
f
ρ
(x ′) ρ (x) + f

ρ
(r) ρ (x ′)

]
w (r̃) ndS′.

(2.22)

Once again the boundary conditions appear naturally, and we can now set the following
discrete operator gradient for an arbitrary field {Ab} as:

Gradγ
+

a {Ab} B
ρa
γa

∑
b ∈ P

Mb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
∇wab −

ρa
γa

∑
s ∈ S

(
Aa

ρ2
a

+
As

ρ2
s

)
ρs∇γas . (2.23)

The method to compute ∇γas will be discussed in § 2.3.5 whereas the computation of ρs and
As will be investigated in the paragraph on dynamic boundary conditions 2.3.2. Notice that the
discrete gradient (2.23) differs from Kulasegaram et al. (2004)’s defined by (2.17) only next to a
boundary, which means that conservation properties are still valid "far from" the walls.

Let us now correct using the same idea the SPH gradient of a vectorial field which appears
in the velocity gradient (2.12) for instance. The latter quantity plays a key role in the k − ε
turbulence model as it is responsible for the production of kinetic energy. Given the fact that in a
channel flow the strain rate is the largest in the vicinity of the boundary, it is important to be
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(a) Kulasegaram et al.’s gradient operator (2.17)
is unable to maintain uniform pressure field. Par-
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(b) The present gradient operator (2.23) is able
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equilibrium.

Figure 2.3: Comparison of gradient operators (2.17) and (2.23) in an over-pressurized periodic
pipe.

accurate in this area. This formula needs to be corrected with respect to the boundaries, given
that it tends to underestimate the strain rate next to a wall. To correct that we propose in a similar
way as (2.23):

Gradγ
−

a {ub} = −
1

γaρa

∑
b ∈ P

Mbuab ⊗ ∇wab +
1

γaρa

∑
s ∈ S

ρsuas ⊗ ∇γas . (2.24)

Hence, with the corrected components the strain rate S is computed according to the definition
given by (2.24).

Laplacian:
The Laplacian (2.7) resulting from the Morris model (2.5) can be seen as a discretisation of
the continuous interpolation 〈∇ · µ∇ f 〉 (x) (where f is the continuous scalar field and µ the
continuous viscosity field):

〈∆ (µ, f )〉 (x)B 〈∇ · µ∇ f 〉 (x) = 〈∇r′ · [(µ∇ f ) (x) + (µ∇ f ) (x′)]〉 (x)

= − 1
γ (x)

∫
Ω∩Ωr

[(µ∇ f ) (x) + (µ∇ f ) (x′)]∇w (x − x ′) dV ′

− 1
γ (x)

∫
∂Ω∩Ωr

[(µ∇ f ) (x) + (µ∇ f ) (x′)] · nw (x − x ′) dS′,

(2.25)

combined with the finite difference approximation:

∇ f (x) · (x − x ′) ' ( f (x) − f (x′)) ' −∇ f (r ′) · (x ′ − x) . (2.26)

As in § 2.3.1, the boundary terms appear naturally in the second line of (2.25) from an integration
by parts. Again, n is the inward normal of the domain at the position x ′. Wall contributions
vanish when the position x is far from the boundary since the kernel w has a compact support.
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Thus, the proposed wall-corrected Laplacian operator is:

1
ρa

Lapγa ({Bb} , {Ab})=
1
γa

∑
b ∈ P

Mb
Ba + Bb

ρaρb

Aab

r2
ab

xab · ∇wab

− 1
γaρa

∑
s ∈ S (Bs∇As + Ba∇Aa) · ∇γas .

(2.27)

The same calculus still holds with an arbitrary vector field {Ab} and is used to correct the
diffusion term (e.g. (2.5)) in the Navier–Stokes equation.

2.3.2 Wall corrected operators in the discrete Navier–Stokes equations
Dynamic boundary conditions on the pressure:
The gradient operator (2.23) applied to the pressure field gives:

Gradγ
+

a {pb} B
ρa
γa

∑
b ∈ P

Mb

(
pa

ρ2
a

+
pb
ρ2
b

)
∇wab −

ρa
γa

∑
s ∈ S

(
pa

ρ2
a

+
ps
ρ2
s

)
ρs∇γas . (2.28)

Hence, we are left to compute the pressure ps and the density ρs on the wall nodes defined in
Figure 2.2. A robust way but first order dynamic condition is ∂ρ

∂n = 0. This condition is consistent
with the renormalisation done in equation (2.13). In the presence of gravity and motion the
analogous condition on the pressure field is written as:

∂

∂n

(
p?

ρ
+

u2

2

)
= 0, (2.29)

where p?Bp − ρg · x and u is the magnitude of the velocity.
To compute the pressure and the density at the wall an SPH interpolation can be used for the

vertex particles inV. The choice made is to average in space to give a wall value:

ρv =
1
αv

∑
b ∈ F

Vbρbwbv,

pv
ρv
=

1
αv

∑
b ∈ F

Vb

(
pb
ρb
− g · xbv +

u2
b
− u2

v

2

)
wbv,

(2.30)

where the set F denotes all fluid particles P, excluding particles inV and where αv is defined
by:

αvB
∑
b ∈ F

Vbwbv . (2.31)

A description of the Shepard filter αv is given in § 2.3.4 (see Equation 2.47)).
Here, it is important to note that the interpolation done is based on fluid particles in P which

do not belong to the set of vertex particlesV. For simplicity, we remain in 2-D and define the
density and the pressure at the wall elements s to be:

ρs =
ρv1 + ρv2

2
,

ps
ρs
=

pv1/ρv1 + pv2/ρv2
2

,

(2.32)

where the wall nodes (or vertex particles) v1 and v2 are defined in § 2.3.1. This strategy to
evaluate quantities at the wall will be reused to compute the wall shear stress in § 2.3.2 and
also the wall value of a scalar transported by the flow in Appendix 2.A. There is no theoretical
restriction to the spacing of the wall nodes.
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Wall shear stress:
The wall-corrected formula (2.27) applied to the field u gives:

1
ρa

Lapγa ({µb} , {ub}) =
1
γa

∑
b ∈ P

Mb
µa + µb
ρaρb

uab

r2
ab

xab ·∇wab−
1

γaρa

∑
s ∈ S
|∇γas | (µa∇ua + µs∇us)·ns,

(2.33)

and should be used in place of Lapa ({.} , {.}) in (2.8-2.9).
The boundary terms are then treated using the friction velocity uτ defined by:

µ
∂u

∂n

����
wall

Bρuτuτ, (2.34)

which represents the shear stress at the wall. In the present article, by convention, uτ is chosen to
have the same direction as the local velocity field. This then replaces (µ∇u)s · ns in the boundary
term of (2.33) as in classical finite element or finite volume Navier–Stokes codes:

(µ∇u)a · ns ' ρuτsuτs . (2.35)

Computation of the friction velocity in a laminar case:
The friction velocity uτ is a quantity defined at the boundary. To compute it in a computational
fluid dynamic (CFD) code, instead of using its definition, we usually take the advantage of
knowing the physical behaviour of the velocity field in the vicinity of the boundary. For example,
in a laminar test case, the velocity profile is expected to be linear close to the wall and then the
following relationship between distance to the wall z and velocity along the wall u holds:

uτuτ = lim
z→0

νu

z
. (2.36)

The main advantage is that we do not need to estimate the derivative of the velocity field
next to the wall, where it is difficult to compute. Another advantage is that we can extend the
definition of the friction velocity in the area where particles interfere with the boundary, that is,
when the kernel support intersects the walls. Hence, we define:

uτauτa =
νua

za
, (2.37)

where za is the distance to the wall for a particle a.
Eventually, to evaluate ρsuτsuτs we use again the continuity of stresses (2.35) to establish:

ρvuτvuτv =
1
αv

∑
b ∈ F

Vbρbuτbuτbwbv, (2.38)

and ρsuτsuτs is the average value between the vertex particles v1 and v2 defined in § 2.3.1.
These formulae are similar to (2.32).

The same wall treatment is extended to a transport equation of a scalar such as k or ε in the
k − ε turbulence model in the Appendix 2.A.

2.3.3 Conservation issues: time integration for the continuity equation
The original time integration scheme used in previous work Violeau (2012), Violeau and Issa
(2007) was a simple first-order symplectic scheme where an implicit velocity value was used in
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the updated values of the position and density:

un+1
a = un

a −
∆t
ρna

Grad+,na

{
pn
b

}
+ g,

xn+1
a = xna + ∆tun+1

a ,

ρn+1
a = ρn

a + ∆t
∑
b ∈ P

Mb∇nwab · un+1
ab ,

(2.39)

where the superscript (.)n refers to the time step n and to the time t =
n∑
i=1
∆t.

In this semi-implicit scheme the velocities are explicit, whereas the positions are implicit. In
the continuity equation, positions are explicit whereas the velocities are implicit; for this reason
we do not write the right-hand side of Equation (2.39) as ρaDiv−a {ub}.

2.3.4 Improving the time integration of the continuity equation
To adapt the previous time integration scheme to the method of Kulasegaram et al. (2004) and
the present modified one, the following scheme is possible:

un+1
a = un

a −
∆t
ρna

Gradγ
+,n

a

{
pn
b

}
+ g,

xn+1
a = xna + ∆tun+1

a ,

ρn+1
a = ρna +

∆t
γna

[ ∑
b ∈ P

Mb∇nwab .u
n+1
ab − ρ

n
a∇nγa · un+1

a

]
,

(2.40)

where the operator Gradγ
+

a {.} is either (2.17) or (2.23). Experience of the authors has shown
this approach seems to give satisfactory results for a dam break case in a basin where the solid
walls are kept impermeable with a relatively small time step. However, when running long-time
simulations in a channel with a relatively large time step, particles near the wall move vertically
downwards slowly and eventually pass through the boundary as we see in Figure 2.4(a) (a
relatively big time step is set by decreasing the numerical speed of sound c0) .

The problem is caused by the continuity equation: when particles near the boundary are
oscillating, i.e. moving back and forth, their densities decrease, and then the pressure, related to
the density by the equation of state, becomes insufficient to create a repulsive force to balance the
other forces.

The origin of this phenomenon is the term ∆t
γna
ρna∇nγa · un+1

a in the time discretised continuity
equation (2.40). Indeed, if we consider a single particle moving towards the wall between the
times tn and tn+1 (from the distance zn to zn+1), the exact variation of the density is not reproduced
by the discrete form Ferrand et al. (2010). This systematic error of the time discretisation of the
continuity equation is undesirable .

Many other integration time schemes can be considered, such as a leap-frog time scheme,
which would reduce the errors in the integration of the continuity equation. The choice made in
the present work is to consider an approach that gives the density explicitly as a function of the
particles’ positions. This is a more robust approach, especially if there is a wall repulsive force
function of the pressure field (and hence of the density field in compressible flows).
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Figure 2.4: Comparison of the pressure field and the water depth in a periodic open channel
flowing from left to right for two different time schemes after the same physical time.

A completely position-dependent way to compute the density:
If we return to the main idea of correcting the incomplete kernel support, we can see that the
corrected continuity equation comes from:

d (γaρa)
dt

=
d
dt

( ∑
b ∈ P

Mbwab

)
.

q q

γa
dρa
dt
+ ρa

dγa
dt

=
∑
b ∈ P

Mb∇wab · uab

(2.41)

In a similar way, Vila (1999) stated that the continuity equation (2.1) is strictly equivalent to
dρa
dt
=

d
dt

( ∑
b ∈ P

Mbwab

)
if time is considered a continuous variable. Equation (2.41) gives us a

way to integrate exactly in time the quantity γaρa if the particles’ positions move from
{
xn
b

}
to

{
xn+1
b

}
. This prevents systematic time integration errors, and makes ρna depend only on the

positions of particles at the same time (this property, together with symplectic time-stepping,
ensures the conservation of a given energy, see Goldstein et al. (2002) for details).

This leads to the following time integration scheme:

un+1
a = un

a −
∆t
ρna

Gradγ
+,n

a

{
pn
b

}
+ g,

xn+1
a = xna + ∆tun+1

a

(γaρa)n+1 = (γaρa)n +
∑
b ∈ P

Mb

(
wn+1
ab − w

n
ab

)
.

(2.42)
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Figure 2.4 shows the result obtained by reducing the time-step (and hence the systematic error

in the density equation) in the time scheme (2.40) with the result we obtain with the time-scheme
(2.42) with a larger time step3. By doing so, scheme of (2.40) is forced to be stable and to
converge but it is clear that we have lost density during the stabilisation time: the water depth has
decreased (see 2.4(b)) whereas it is not the case on the Figure 2.4(c) with the new scheme.

Initialization of the density field:
The time-scheme (2.42) requires initial values for the density field. Many choices are possible.
First of all, a particle a can have the reference density ρ0 as initial value, i.e.

ρ0
a = ρ0. (2.43)

This was done previously with the continuity equation of (2.39). The advantage is that the
continuity equation only measures the variation of density and not the initial disorder of the
particles. However, the main drawback is an inhomogeneity between particles could lead to
non-physical behaviour, such as particles originally at the free-surface creating a region of
repulsion when surrounded by others later in the simulation. Hence, the initial density field,{
ρ0
a

}
, is initialized according to:

ρ0
a =

1
γ0
a

∑
b ∈ P0

Mbw
0
ab . (2.44)

This initialization has the advantage to maintain homogeneity between particles, but then requires
a free-surface correction.

Free-surface correction:
The γ correction presented so far does not take into account any free-surface correction. The
variable ρ̃aB

∑
b ∈ P

Mbwab depends only on the particles positions which is useful for conservation

properties. The problem is that ρ̃a measures two different quantities:

1. the divergence of the particles, which is a quantity of interest, and

2. the presence of voids within the kernel support of a particle.

It is required that the flow is corrected with γa next to a wall, but not next to the free-surface.
To achieve this, we use the following Shepard filter defined by:

α (x) =
∑
b ∈ P

Mb

ρb
w (x − xb) , (2.45)

so that, for a fluid particle a ∈ F , we have:

αaB
∑
b ∈ P

Mb

ρb
wab . (2.46)

For a vertex particle v ∈ V and for the middle of a segment s ∈ S two definitions of α are used:

αv B
∑
b ∈ F

Mb

ρb
wvb, αs B

∑
b ∈ F

Mb

ρb
wsb, (2.47)

3We have reduced the time step by setting the speed of sound at 100 m s−1 instead of 20 m s−1.
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since αv and αs are used to evaluate quantities such as the density or the pressure at the wall.
Hence we have chosen not to take into account vertex particles and have interpolation of the
physical quantities (such as the density ρ or the pressure p) at the walls (see § 2.3.2) using only
the fluid particles.

The aim is to apply the Shepard filter (2.46) on the density field at each time step but only
next to the free-surface so that the density field is not corrected everywhere with αa . Thus, in
the vicinity of a free-surface there is a continuous mix to correct the continuity equation :

ρa [βγa + (1 − β)αa] = ρ̃a =
∑
b ∈ P

Mbwab, (2.48)

where

β = exp

[
−K

(
min

{
αa
γa

; 1
}
− 1

) 2
]
, (2.49)

and K is taken to be an arbitrary high value of − ln(0.05)
0.012 ' 30000, so that β ≤ 0.05 when

αa

γa
≤ 0.99. Note β is in fact a surface-marker: inside the fluid its value is almost one whereas it

tends to zero as we approach the free-surface.
Note that this free-surface correction is used only in this chapter. This can be replaced by a

volume diffusion correction presented in Chapter 3, Section 3.2.6.

2.3.5 Computation of the renormalisation terms
The formal definitions of the geometrical quantities γa and ∇γa for a particle a are:

γa B

∫
Ω∩Ωa

w (x − xa) dx,

∇γa B

∫
Ω∩Ωa

∇aw (x − xa) dx =
∫
∂Ω∩Ωa

w (x − xa) ndS.
(2.50)

We recall that ∇γa represents an approximation of the normal to the wall for a particle located at
the position xa. Previous approaches proposed to compute it using polynomial approximation
Kulasegaram et al. (2004); De Leffe et al. (2009), or an analytical solution Feldman and Bonet
(2007), or again a discrete summation over boundary points Marongiu et al. (2007).

These approaches all had advantages and drawbacks discussed earlier. Herein, computation
of the renormalisation term of the kernel support near a solid wall is obtained with a time
integration scheme, thereby accounting more easily for any shape of boundaries presented in
§ 2.3.1.

Analytical value of ∇γa:
With the boundary of the domain composed of segments denoted with the subscript (.)s, each
segment has an inward normal ns, a beginning point xv1 and an ending point xv2 (see Figure
2.2). Then we can compute the analytical value of the contribution ∇γas (defined by 2.18):

∇γasB
(∫ xv2

xv1

w (r) dl
)
ns .

which gives for the quintic Wendland kernel used in this work:
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Figure 2.5: Schema showing the definitions of the geometrical parameters used to compute the
analytical value of ∇γas with (2.51).

h
∫ xv2

xv1

w (r) dl =
(q2 cosα2)

π
Pq0 (q2) −

(q1 cosα1)
π

Pq0 (q1)

+
q4

0
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)
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|q0 |

)

,

(2.51)

where the polynomial function Pq0 is defined by:

Pq0 (X) =
7

192
X5 − 21

64
X4 +

35
32

X3 − 35
24

X2 +
7
4

+q2
0

(
35
768

X3 − 7
16

X2 +
105
64

X − 35
12

)
+q4

0

(
35
512

X − 7
8

)
,

(2.52)

where q0B
|xaei .ns |

h , qiB
|xaei |

h and qi cosαi (i ∈ {1, 2}) are displayed in Figure 2.5.
These analytical values enable estimates of the error due to the approximations. In Figure

2.6 we compare the analytical and approximate values of ∇γa against the distance to a plane
wall. The discrete approximation used is given by:

∇γas ' wasSsns, (2.53)

where it is assumed that the kernel is constant on a segment s.
The kernel used is the quintic kernel (see Wendland (1995)) and the ratio ∆rh = 2 where ∆r is

the initial distance between two fluid particles and h is the smoothing length. The absolute errors
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are defined as:

ε∇γa =

���∇γanalytical
a − ∇γdiscrete

a

���
∇γanalytical

a

, (2.54)

(We consider only the component of ∇γa orthogonal to the wall). In Figure 2.6, the error for the
discretisation of ∇γa is very good for such a poor discretisation ratio ∆rh for a plane wall (less
than 0.1%) whereas the discretisation has a systematic error for the approximation of the value of
γa on the order of 3%.

0.0

0.5

1.0

0 0.5 1.0

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

h

24α
∇γa

z

R

(a) Values of the ∇γa function against the distance of the
wall.
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(b) Values of the error function ε∇γa against the distance
of the wall.

Figure 2.6: Analytical in red and computed values in green of the functions against the distance
to a plan wall.

The error is larger when considering the discretisation error of ∇γa in the presence of a
complex boundary such as a wedge. Moreover, the error is systematic, so that the magnitude of
∇γa is always underestimated. Within a simulation, this leads to non-physical behaviour, i.e.
particles slide towards the wedge boundary since the gravity is not balanced completely by the
wall repulsive force proportional to ∇γa.

Governing equation for γa:
Herein, a method to compute γa for a particle a near a solid boundary is suggested without the
need for fictitious particles and is also simpler than an analytic computation. The main idea of
the present method is to use a governing equation of γa:

dγa
dt

= ∇γa · ua ,

γa = 1 if ∂Ω ∩Ωa = ∅,
(2.55)
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where the definition of the gradient is combined with the fact that
dxa
dt
= ua. Another way to

consider this equation is to remark that (2.55) is equivalent to:
∂γa
∂t

= 0,

γa = 1 if ∂Ω ∩Ωa = ∅.
(2.56)

This means that the γa field does not depend on the time4, but only on position, and is therefore
an Eulerian field. Thus, it gives us a means to compute γa to be consistent with ∇γa which is
easier to compute, since it can be expressed as a surface integral.

The relation (2.55) can be extended for moving boundaries. Recalling the boundary defined
by Figure 2.2, if we have a moving deformable wall (in the sense that each segment or triangle
composing the wall is moving with its velocity) the following formula is obtained:

dγa
dt

=
∑
s ∈ S

∇γas · uRs
a

γa = 1 if ∂Ω ∩Ωa = ∅,
(2.57)

where uRs
a is the velocity of the particle a in a reference frame Rs where the segment s is fixed.

The field γa is now computed by solving the above equation, based on the knowledge of ∇γas,
computed from (2.51).

Initialisation of the γa field:
The initialization step of γ0

a is done by imagining a virtual transformation. For each particle
initially next to a solid wall (a criterion is

��∇γ0
a

�� > 0), we move it from its starting position x0
a to

an area where the function γ (x)B1. For instance:

xa = x0
a + l

∇γ0
a��∇γ0
a

��, (2.58)

where the length l is taken to be 2R (R is the radius of the compact kernel support). Note that the
factor 2 is to ensure that the particle is far enough from a zone where γa < 1 (for a square angle
the factor which ensures that is

√
2).

A sketch of the proposed method is displayed in Figure 2.7. For example, the circled particle
in Figure 2.7 is placed behind the dashed line where the value of γ is 1, and is moved back using
many sub-steps (here 200) to its initial position along the path of the large black arrow updating
the value of γa with respect to the governing Equation (2.57).

Note that the equation of γa is integrated in time with a second-order time integration scheme
to prevent systematic integration errors (see § 2.3.4), leading to:

{
γn+1
a = γna +

1
2

(
∇nγa + ∇n+1γa

)
·
(
xn+1
a − xna

)
, (2.59)

if the solid boundary is motionless. The general formula for a moving deformable wall is:{
γn+1
a = γna +

∆t
2

∑
s ∈ S

(
∇nγas + ∇n+1γas

)
·
(
uRs
a

) n+1
. (2.60)

4if the wall does not move.
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A condition on the time step is required, to keep the integration of γa stable:

∆t ≤ Ct,γ
1

max
a ∈ P; s ∈ S

{���∇nγas ·
(
uRs
a

) n���} , (2.61)

where Ct,γ = 0.005, from numerical experience. This is a natural condition, in the sense that the
time step decreases when particles have a fast velocity when approaching a boundary such as
splashing against a wall. The latter condition is considered in addition to the usual time-stepping
(CFL) conditions in SPH (see e.g. Monaghan (1994)).

2.4 Numerical results
2.4.1 Laminar channel flow test case

To test the friction terms and validate the wall shear stress formulation, laminar Poiseuille flow in
a closed-channel with periodic open boundaries is simulated. The channel has a diameter of 1m
while the viscosity ν is set at 10−1 m2 s−1 so that the Reynolds number is 10. The viscous term is
modelled with the wall-corrected model of Morris (2.33) combined with (2.37) to compute the
friction velocity. Figure 2.8 shows that the horizontal velocity profile is in good agreement with
the analytical solution (2.62) even in the vicinity of the wall, thus demonstrating that the wall
shear stress correctly balances the body force.

Computation of the strain:
The laminar case allows us to validate formula (2.24), since there is no influence of the strain rate
on the flow itself because the viscosity is constant. Thus, such a test case allows us to compare
the value of the computed strain rate to its analytical value. The analytical profile of velocity is:

ux (z) = 4 Re
ν z
D2

(
1 − z

D

)
, (2.62)

which leads to the following analytical value of S:

S (z) = 4 Re
ν

D2

���2 z
D
− 1

��� . (2.63)

We notice in Figure 2.9 that in this theoretical test case, the corrected method (2.24) gives a
satisfactory reproduction of the shear stress next to the wall unlike the previous methods.
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Figure 2.8: Poiseuille flow in a periodic pipe with a Reynolds number of 10. Coloured dots
represent the velocity of particles at the steady state whereas the black dots • are the analytical
profile (2.62).

2.4.2 Still water and dam break in a tank with a wedge
In this Section, the proposed scheme is tested on a more complex geometry which consists of a
basin of approximately 2m length and 1m height with a wedge of π

2 rad angle and
√

2
8 m of height

in the bottom middle of the tank. This geometry was chosen specifically since the wedge features
both a discontinuous point and a sloping profile which tests the correction of the kernel in the
presence of gravity. A comparison is made between different models in a still water case and a
dynamic case where the viscosity ν is set at 10−2 m2 s−1.

Still water case:
Some treatments for solid boundaries suffer from an inability to reproduce correctly a still water
case. Here we compare the results obtained when the basin is filled with 0.5m of water for three
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Figure 2.9: Comparison of the strain rate for different models in a laminar channel flow.
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cases: the Lennard-Jones repulsive forces (see Monaghan (1994)), the fictitious particles method
(see Violeau and Issa (2007)) and then the new proposed method. As expected, the repulsive
forces produce poor results (see Figures 2.10(b)) in the sense that particles keep sliding along
vertical wall. That is due to the fact that the missing area in the kernel support is not compensated,
and thus the gravity is not balanced sufficiently. The plot of the pressure of particles against
the depth is therefore noisy and badly reproduced next to the bottom. The fictitious particles
method (see Figure 2.10(a)) gives better results, but the condition (2.29) is not ensured and so the
pressure profile is still noisy, even if that conclusion could be improved with recent developments
(see e.g. Fourtakas et al., 2019). Moreover this approach is problematic to describe in complex
geometries and requires additional particles to mimic the boundary.The present method gives
superior results: a linear pressure profile even near the bottom and a zero velocity field as shown
in Figure 2.10(c).

Dynamic case:
A simulation of a dam break with the same geometry has been performed for the two boundary
techniques previously described and the present one. The water is initially a column of 1m
height and 0.5m width on the left-hand side of the basin. In the results shown in Figure 2.11,
all approaches ensure impermeable boundaries, but both repulsive forces method and fictitious
particles method give a noisier pressure field. Furthermore, a simulation with finer resolution
has been computed by doubling resolution and hence the number of particles. Snapshots of the
pressure field at the same physical time are plotted on the Figure 2.11.

The comparison with a VOF simulation (done with finite volume open-source code code_sat-
urne with similar refinements) of the pressure on the left side of the wedge is performed and
displayed on Figure 2.12. The two methods give similar pressure evolution, even if SPH does not
take air into account.

2.4.3 Comparison of the k − ε model with SPH and finite volumes: simulation of a fish pass
Once a dam is built on a river, the continuity of the flow is disrupted and the migration of fish is
interrupted. For species such as some salmons, the life cycle requires the fishes to migrate far
upriver. To restore the migration process, fish passes are installed which consist of many repeating
elements and can be considered as a periodic flow. The dimensioning of these components
requires a detailed knowledge of the turbulent flow within each section since the size of the large
eddies affects the ability of the fish to swim upstream.

Although the behaviour of the flow though a fish pass is a 3-D free-surface flow, we consider
here 2-D simulations where the vertical variations are assumed to be negligible. We repeat here
the simulations presented in Violeau et al. (2008). The geometry of the x−periodic simulation is
presented in Figure 2.13(a). The results obtained by SPH are compared to simulations done with
code_saturne, a widely validated finite volume code developed by EDF R&D (see Archambeau
et al. (2004) or Team (2021)). The aim of such a comparison is to evaluate the performance
of SPH for a turbulent simulation. The computation is compared effectively solving the same
equations (the Reynolds-averaged Navier–Stokes with the k − ε model) with the same pressure
gradient driving the flow ( ∆pρ∆x = 1.885 m s−2) but with two different approaches (Lagrangian
and Eulerian) with two different discretisation approaches (SPH and finite volume).

The velocity profiles at locations P1, P2 and P3 defined in Figure 2.13(a) are plotted in Figure
2.14. The results show that the mesh-based code gives profiles close to the ones obtained with
the present SPH scheme. It should be noted that with the standard SPH method Violeau et al.
(2008), the predicted velocity and eddy viscosity distributions did not fit the finite volume ones.
With the present model, one can see that the agreement is very satisfactory.
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Figure 2.10: Comparison of the vertical velocity and particles pressure against water depth for
still water in a tank with a wedge for different boundary conditions after 20 s.

2.5 Conclusion
The present article has presented a new approach to deal with solid boundary condition which is
both simple and robust. The simplicity lies in the manner we compute the Eulerian renormalisation
term γa with an integration in time which only requires the computation of its gradient ∇γa. The
robustness is due to the integration in time of the continuity equation which makes the density
field depend only on the particles’ positions. This allows a long time simulation with a relatively
higher time step and is a major advantage for conservation properties.

The definition of new boundary corrected gradient and Laplacian operators gives us the
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Figure 2.11: Comparison of the pressure field for a dam break test case in a tank with a wedge
for different boundary conditions. One can notice that the jet is more attached to the wall when
refining.
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Figure 2.12: Comparison of the time evolution of the pressure along the left side of the wedge
between the present SPH formulation and the finite volume VOF formulation at different spatial
discretisations. One can notice that SPH pressure monitoring oscillates more than the VOFones,
which can be due to the compressible model used.

opportunity to fix boundary conditions and fluxes on the pressure field, the wall shear stress and
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Figure 2.13: Comparison of the k − ε model (2.9) with the Lagrangian SPH approach and an
Eulerian finite volume method in a schematic fish pass.

even the scalar fields such as k and ε in a model of turbulence.
However, numerous issues still require investigation and development, namely:

1. Validate the present formulation on different test cases such as a periodic turbulent bump.

2. Adapt the wall renormalisation to 3-D; the main challenge is to find an analytical formula
for the computation of the contribution of a surface element s over the value of ∇γa
of a fluid particle a (which is denoted by ∇γas), or a way to compute accurately an
approximated value of it.

3. Study the theoretical conservation (or non-conservation) of momentum and angular
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Figure 2.14: Profiles of the velocity magnitude in three different plans in the fish pass. The k − ε
model (2.9) in red and the k − ε model with code_saturne in green.

momentum, and especially in periodic cases.

4. Combine the present approach with non-periodic entrance conditions. This point will be
addressed in Chapter 3.

2.A Turbulent wall conditions in SPH
2.A.1 Computation of the friction velocity in a turbulent case

We can apply the same wall correction of the diffusion term of the momentum equation as the
laminar one, noticing that (µ + µT ) S · n ' ρuτuτ in the vicinity of a wall5. Unlike the Equation
(2.37) which links friction velocity to the mean velocity, in the turbulent case, we need another
wall function. The viscosity is not constant anymore, and is supposed to be linear in the vicinity
of a wall6. Then it can be shown that the velocity profile in that area is a logarithmic shape: this
zone is called the log layer. If we consider the particle a to be in the log layer of a smooth wall,
uτ can be obtained from the following wall law, with an iterative algorithm:

|ua |
uτa
=

1
κ

ln
( zauτa

ν

)
+ 5.2. (2.64)

To be valid, Equation (2.64) must verify that the non-dimensional distance to the wall zauτa
ν is

greater than 11. We could also use log laws for rough walls, or use laws which hold both in the
laminar and the log layer such as Reichards’ law, but then the k − ε model (2.9) must also be
modified for low Reynolds effects. For more information see Pope (2000).

2.A.2 Velocity at the wall
We observe in the formula (2.24) that the velocity at the wall us is considered in the boundary
term. Formally, the no-slip condition would impose that the velocity at the wall is the velocity of
the wall itself (i.e. 0 for a motionless wall). This is imposed for a laminar flow. In the turbulent
case, it is preferable not to do so: the slope of the velocity profile is much larger at the wall than
in the log layer where fluid particles are assumed to be. Thus if we want to evaluate accurately
Sa next to the wall, we need to interpolate the velocity at the wall. To do so, we let the velocity

5Formally, at a wall k = 0 and then νT = 0 so that we recover the laminar case. However, the viscous sub-layer
where the laminar viscosity is more important than the turbulent one is usually, for environmental flows, very thin so
that we do not enforce k to be zero at a wall.

6In a channel flow, this assumption is well verified in 10% of the channel depth.
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uv of vertex particles balance the viscous and friction terms:

duv

dt
=

1
γv

∑
b ∈ P

Mb
µTe + µTb

ρvρb

uvb

r2
vb

xvb · ∇wvb︸                                             ︷︷                                             ︸
viscous term

− 2uτvuτv
γv

∑
s ∈ S
|∇γes |︸                    ︷︷                    ︸

friction term

. (2.65)

We notice here that Equation (2.65) is the momentum equation applied to a vertex particle with
neither gravity nor pressure gradient. And we define us to be the average value between wall
particles v1 and v2 defined in § 2.3.1. This tactic to allow a kind of "slip" velocity at the wall
in a high Reynolds number simulation is also used in many CFD codes such as TELEMAC-3D
in finite elements (see Hervouet (2007)). Eventually, we have to bear in mind that the vertex
particles inV are in fact Eulerian points and do not move with the velocity uv but with the wall
velocity. That is to say we only use the velocity uv to update viscous forces of fluid particles
interacting with the wall, and to compute the strain rate S.

2.A.3 Flux conditions on the kinetic energy
The Laplacian operator (2.27) applied to the turbulent kinetic energy reduces to:

1
ρa

Lapγa
({
µb +

µTb

σk

}
, {kb}

)
=

1
γa

∑
b ∈ P

Mb
2µ + µTa/σk + µTb/σk

ρaρb

kab
r2
ab

xab ·∇wab, (2.66)

because it is assumed that there is no flux of k from the boundary, i.e.
∂k
∂n
= 0 at the wall.

Equation (2.66) should be used in place of Lapa ({.} , {.}) in (2.9). The physical meaning is that
the turbulent kinetic energy is only created by the mean flow. Moreover, instead of specifying
boundary conditions at the wall, the "wall function" approach describes the balance of terms in

the vicinity of the wall where it is assumed that P = ε : this implies that the condition
∂k
∂n
= 0 is

valid not only at the wall, but in the whole vicinity of the solid boundary.
If we assume the flow to be highly turbulent, that is to say, with a thin viscous sub-layer, we

can use high Reynolds number laws for k − ε . In fact we do not solve the k − ε model up to the
wall, where k is theoretically expected to be 0, but up to a small distance δ from the wall, where
the turbulence is fully established (νT � ν). The main advantage of the present Lagrangian
approach compared to an Eulerian one is that all the Lagrangian fluid particles in F will be at
least at a distance of the order of ∆r from any wall. It is one of the main advantages compared to
the mesh-based methods where the boundary elements are supposed to be at a virtual distance to
the actual wall, here we only focus on particles which are effectively at a non-zero distance from
the walls.

To estimate k at the wall we can evaluate as we did for the density, the pressure or the wall
shear stress:

kv =
1
αv

∑
b ∈ F

Vbkbwbv . (2.67)

We notice that this approximation is consistent with the assumption
∂k
∂n
= 0. Finally:

ks =
kv1 + kv2

2
. (2.68)
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2.A.4 Flux conditions on the dissipation of kinetic energy
The Laplacian operator (2.27) applied to ε requires the value for ∂ε/∂n. Once again, if we
assume that the flow is highly turbulent, then every single particle in the area of influence of a
wall (i.e. ∃s ∈ S/|∇γas | > 0) is in the log layer where7:

k ' u?2√
Cµ
,

ε =
u?3

κz
,

νT = κu?z,

(2.69)

where z is the distance to the wall (if a particle a is interacting with a surface s, we state
z = max (xas · ns; ∆r)), where ∆r is the particle averaged initial spacing, κ is the Von Kármán
constant with the value of 0.41, and u? is a friction velocity measuring the turbulence:

u?s =
√

ks

C
1
4
µ

. (2.70)

Then, from Equation (2.69) we can deduce a value for the flux of ε :

νTa

σε

∂εa
∂ns
= − 2u?4

s

σε κδras
. (2.71)

The factor 2 is provided by a first-order approximation (i.e. the flux is evaluated at the distance
z
2 ). This accuracy is needed especially here because ε is supposed to vary as 1

z where z is the
distance to the wall.

Thus the Laplacian (2.27) becomes:

1
ρa

Lapγa
({
µb +

µTb

σε

}
, {εb}

)
=

1
γa

∑
b ∈ P

Mb
2µ + µTa/σε + µTb/σε

ρaρb

εab

r2
ab

xab .∇wab

+
4

γaρa

∑
s ∈ S
|∇γas | ρs

u?4
s

σε κδras
,

(2.72)

which is used in place of Lapa ({.} , {.}) in (2.9).
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3. Unsteady open boundaries for free-surface flows
using semi-analytical conditions and Riemann
solver in SPH

Abstract 3.1 Due to the Lagrangian nature of SPH, treating inlet/outlet boundaries (that are
intrinsically Eulerian) is a challenging issue. An extension to the unified semi-analytical
boundary conditions developed by Ferrand et al. (2013) is presented to deal with unsteady
open boundaries in free surface flows. The presented method uses Riemann invariants to
calculate fields of good quality near the open boundaries, thus allowing the possibility to
treat complex shapes. Furthermore this method is implemented in a GPU framework, for
which the specificities are presented. To finish, simple test cases are displayed to illustrate the
performance of the proposed method as well as the ability to deal with complex problems such
as generation of water waves and free-outlets. Appendix of Ferrand et al. (2013) has been
corrected as already done in Fonty (2019).

Résumé 3.1 De par la nature souvent lagrangienne de la méthode SPH, le traitement des
conditions aux limites de type entrée/sortie (ces limites sont intrinsèquement eulériennes) est
un challenge. Une extension des conditions aux limites unified semi-analytical développées
dans Ferrand et al. (2013) est présentée pour traiter les conditions aux limites de milieux
ouverts instationnaires pour des écoulements à surface libre. La méthode utilise les invariants
de Riemann pour imposer les variables sur les frontières ouvertes du domaine, permettant la
prise en compte de frontières de forme complexe. De plus, cette méthode est implémentée sur
carte graphique GPU et quelques spécificités de l’implémentation sont présentées. Enfin, des
cas tests simples sont exposés afin d’illustrer les performances de la méthode ainsi que sa
capacité à simuler la génération de vagues avec des sorties libres. L’annexe de Ferrand et al.
(2013) a été corrigée, conformément à la correction déjà effectuée dans Fonty (2019) .
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3.1 Introduction
The intrinsic computational cost of smoothed particle hydrodynamics (SPH) makes natural
the interest in simulations where only part of a larger problem is treated. More generally,
open boundaries are required in many fluid mechanics problems. For this kind of simulations,
inlet/outlet conditions need to be developed. Efficient inlet/outlet boundary treatment is also
required when solving coupled problems, especially when strong coupling algorithms are used,
since the fields near the open boundaries are shared by the coupled models, and perturbations
near the shared boundary can lead to instabilities Kassiotis et al. (2011).

The simplest way to treat inlet/outlet in SPH is to use a buffer layer, where the values of
the fields at the boundary are imposed on several layers of particles (“buffer particles”) that
complete the kernel support of free particles close to the open boundary Vacondio et al. (2011);
Bouscasse et al. (2013); Braun et al. (2015). In the inlet case, when entering the fluid domain a
buffer particle is marked as fluid particle and is then free to move. This sudden modification can
generate spurious shocks. Similarly, a fluid particle leaving the fluid domain through an outlet
is first marked as a buffer particle, and some of its physical quantities are suddenly prescribed,
generating shocks. In the framework of Weakly Compressible SPH (WCSPH), using Riemann
solvers can partially solve this issue Mahmood et al. (2012); Lastiwka et al. (2009), but modelling
a complex boundary where the flow can enter and/or leave the domain remains a difficult issue.

A slightly more complicated approach would be to use mirror particles at open boundaries.
This work is just starting and has been successfully applied to Dirichlet pressure boundaries by
Kunz et al. (2016).

The unified semi-analytical strategy proposed by Ferrand et al. (2013) has shown promising
results to treat both Dirichlet and Neumann conditions for wall boundary treatment in SPH
(see also Leroy et al. (2014)). In this approach, the boundaries are discretised using boundary
elements hereafter referred to as ‘segments’, as well as ‘vertex’ particles at their intersections
(see Figure 3.1). This treatment of the boundaries will be extended here to open boundaries. For
this purpose, the main novelties are the following:

• Two additional terms in the SPH continuity equation will be introduced, naturally derived
from the unified semi-analytical approach;

• The masses of vertex particles evolve over time according to the desired ingoing/outgoing
mass flux at the connected segments;

• The vertex particles are used to create or delete fluid particles which are free to move
according to the SPH momentum equation;

• The fields at the open boundaries are specified from the Riemann invariants of the Euler
equations.

All these changes allow the formulation to treat particles entering and exiting the domain
without perturbations of the fields for both confined and free surface flows.

The outline of this Chapter is as follows: first a short description of the unified semi-analytical
boundary conditions for walls as proposed in Ferrand et al. (2013) is given in Section 3.2. These
wall conditions will be extended to inlets and outlets (Section 3.3). It will be followed by a
method prescribing the fields of the ingoing/outgoing particles from Riemann invariants. These
developments will the be tested in Section 3.4, where the ability of the present method to treat
wall-bounded and free-surface flows with complex open boundaries will be tested.

All of this work will use only the WCSPH approach, assuming the reader is familiar with it
(for more details about this method, see Monaghan (2005)). Developing similar open boundaries
in an Incompressible SPH formulation is possible Leroy (2014), however the equations in this
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case are elliptic, which will change the treatment of fields at the open boundaries. The article
will focus on treating the hyperbolic equations of the WCSPH approach, and the specificities in
imposing compatible pressure and velocity fields on the open boundaries. Nonetheless, treating
the mass fluxes should be equivalent in both approaches.

Finally, this approach will be restricted to 2-D one-fluid flows.
This work has already been continued and adapted to incompressible formulation by Leroy

et al. (2016), and to two-phase flows with transport equation on air fraction by Fonty et al. (2020).
An updated review of the progress in open boundaries for SPH can be found in Vacondio et al.
(2021).

3.2 Weakly compressible SPH with semi-analytical boundary conditions

v

b

a

s

ns

wall

inlet/outlet

Figure 3.1: Space discretisation. Vertex particles are shown in green and segments in orange.

3.2.1 Space discretisation
As illustrated in Figure 3.1, the weakly compressible fluid domainΩ is discretised by a set of SPH
fluid particles F denoted by the subscripts (.)a and (.)b, while the boundaries ∂Ω are discretised
by a set of vertex particlesV denoted by (.)v and connected to boundary segments S denoted by
(.)s. Let P denote the particle set that is the union of the sets F andV. Each element (particle
or segment) stores information such as mass Ma, position centre xa, particle velocity va (i.e. the
Lagrangian derivative of the position), fluid velocity ua (i.e. the velocity field at position xa),
density ρa, dynamic viscosity µaBνρa, pressure pa and volume Va = Ma/ρa.

It is important to underline that two sets of velocities are needed here, since the vertex particles
and boundary segments at open boundaries are (most of the time) fixed in space but carry an
information on the fluid velocity, namely uv and us. In other words, we have ua = va except for
vertex particles and segments located onto the open boundaries. On the other hand, this equality
holds for wall segments and vertex particles, thanks to the no-slip condition. Furthermore, in our
model all particle masses Ma are constant in time, with the exception of the vertex particles of
open boundaries, as detailed later.

Let ρ0 be the reference density of the considered fluid. In the Weakly Compressible SPH
approach used herein, the pressure field is deduced from the density field using Tait’s equation of
state Tait (1888), given as:

pa =
ρ0c2

0
ξ

[ (
ρa
ρ0

) ξ
− 1

]
, (3.1)
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where c0 is the numerical speed of sound and the Laplace coefficient, denoted by ξ instead of γ
for the sake of clarity, is taken to 7 for water.

The SPH interpolation is based on a weighted interpolation from a kernel function w,
generally compactly supported. Here we use the Wendland kernel of order 5 Wendland (1995).
In our notation, Ωa refers to the support of the kernel function centred on xa. The subscripts
(.)ab generally denote the difference of a quantity between the particles a and b (unless stated
otherwise). For instance uabBua − ub and xabBxa − xb. Some exceptions are made, including
the following notations: wabBw (xab) and ∇wabB∇aw (xab). The symbol ∇a denotes the
gradient with respect to the position xa.

3.2.2 Boundary renormalisation
Following several authors, in particular Kulasegaram et al. (2004) and Ferrand et al. (2013), an
additional field denoted by γa is used to take boundary terms into account. This field measures
the part of the kernel support which is inside the computational domain and is defined as:

γaB

∫
Ωa∩Ω

w (xa − x) dx. (3.2)

The field γa is computed from a dynamic governing equation (see Section 3.2.5). The
discrete SPH operators presented in the next Section also require the computation of ∇γa, which
is performed by a decomposition onto the boundary segments. Each segment contribution ∇γas
is defined as:

∇γasB
(∫

s

w (r) dS
)
ns, (3.3)

where ns is the inward unit normal to the boundary segment s. Now ∇γa is written as:

∇γa =
∑
s ∈ S

∇γas . (3.4)

This gradient can be calculated analytically, see Ferrand et al. (2013).

3.2.3 Space differential corrected operators
In the present Section, space discretised differential operators defined by Ferrand et al. (2013)
will be used. These operator include Gradγ

+

a {Ab} which is a boundary corrected gradient of
the discrete scalar field {Ab}, Divγ

−
a {Ab} which is a boundary corrected divergence of the

discrete vector field {Ab}, and Lapγa ({Bb} , {Ab}) which is a boundary corrected Laplacian of
the discrete scalar (or vector) field {Ab} with discrete diffusion field {Bb}. They are defined by
the following equations:

Gradγ
+

a {Ab}B
ρa
γa

∑
b ∈ P

Mb

(
Aa

ρ2
a

+
Ab

ρ2
b

)
∇wab

− ρa
γa

∑
s ∈ S

(
Aa

ρ2
a

+
As

ρ2
s

)
ρs∇γas,

(3.5)
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Divγ
−

a {ub}B −
1

γaρa

∑
b∈P

Mbuab · ∇wab

+
1
γa

∑
s∈S

uas · ∇γas,
(3.6)

Lapγa ({Bb} , {Ab})B
1
γa

∑
b ∈ P

Vb2Bab
Aab

r2
ab

xab · ∇wab

− 1
γa

∑
s ∈ S
(Bs∇As + Ba∇Aa) · ∇γas .

(3.7)

The factor Bab is built with Ba and Bb. In most of the SPH literature, it is taken as their
arithmetic mean. However, to ensure continuity of shear flux, i.e. Ba∇Aa · xab = Bb∇Ab · xab,
it is taken here as their harmonic mean:

Bab =
2BaBb

Ba + Bb
. (3.8)

Furthermore, as a first order approximation, the two boundary terms of Equation 3.7 can
be equalised, so that (Bs∇As + Ba∇Aa) · ∇γas ≈ 2 |∇γas | Bs∇As · ns. This is the flux at the
boundary, therefore if a Neumann boundary condition is imposed, then it will replace this term
and if a Dirichlet condition is imposed then it can be replaced by −2 |∇γas | BasAas/(xas · ns),
as explained by Ferrand et al. (2013) and Leroy et al. (2014).

3.2.4 Space discretised equations
The equations to be solved are the momentum equation, the equation of motion, the governing
equation for γa and the continuity equation, which reads:

ρa
dua

dt
= −Gradγ

+

a {pb} + Lapγa ({µb} , {ub}) + ρag,

dxa
dt

= va,

dγa
dt

= ∇γas · vas,

dρa
dt

= −ρaDivγ
−

a {ub} .

(3.9)

It is important to underline that the particle velocity va is used to move the particles and
update γa, while the fluid velocity ua is used in viscous forces and density evolution.

When time is considered as continuous and in the absence of open-boundaries, the last two
lines of Equations (3.9) are fully equivalent to Ferrand et al. (2013):

d (γaρa) = d

(∑
b∈P

Mbwab

)
, (3.10)

This formulation allows exact integration with time, and thus will be preferred in the following.
However, in presence of inlet or outlet boundaries, the equivalence between Equations (3.9) and
Equation (3.10) needs to be modified. The necessary developments are detailed in §3.3.1.
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3.2.5 Time stepping without open boundaries
Time stepping scheme used in Ferrand et al. (2013) to solve the system of Equations (3.9) is
recalled hereafter:

f na =Lapγa
({
µn
b

}
,
{
un
b

} )
−Gradγ

+

a

{
pn
b

}
+ ρnag,

un+1
a = un

a +
∆t
ρna

f na,

vn+1
a = un+1

a ,

xn+1
a = xna + ∆tvn+1

a ,

γn+1
a = γna + ∆t

∑
s∈S

1
2

(
∇γn+1

as + ∇γnas
)
· vn+1

as ,

ρn+1
a =

1
γn+1
a

[
γnaρ

n
a +

∑
b∈P

Mb

(
wn+1
ab − w

n
ab

) ]
,

(3.11)

where pn = p(ρn) using Equation (3.1).
Ferrand et al. (2013) considered va = ua since they did not deal with open boundaries,

contrary to the present work.
In Section 3.3, this scheme will be adapted to account for ingoing or outgoing mass fluxes at

open boundaries.

3.2.6 Volume diffusion correction
In the SPH operators used in Equations (3.9), the pressure and velocities are collocated, i.e.
stored at the same points (the particle positions), and therefore require stabilisation. Several
authors have developed stabilisation terms for SPH in order to solve this issue. We will refer the
reader to the work by Fatehi and Manzari (2011) or to the work by Ferrari et al. (2009) whose
work was adapted to Semi-Analytical SPH boundaries by Mayrhofer et al. (2012).

In the present work the stabilisation factor is derived from the pressure-velocity coupling
on colocated methods available in the literature for the finite elements mesh-based method,
namely Brezzi and Pitkäranta (1984), which was adapted to Semi-Analytical SPH boundaries by
Ghaitanellis et al. (2015). The main principle behind this correction is to develop the term in
un+1
b

in the continuity equation. In the absence of viscosity, this gives:

ρn+1
a − ρna
∆t

= −ρnaDivγ
−

a

{
un
b −
∆t
ρna

Gradγ
+

a

{
pnb

}
+
∆t
ρna
ρnag

}
≈ −ρnaDivγ

−
a

{
un
b

}
−ρnaDivγ

−
a

{
−∆t
ρna

Gradγ
+

a

{
p̃nb

}
+ ∆tGradγ

+

a

{
g · xnb

}}
. (3.12)

From this reasoning, a diffusion term ∆ can be defined as:

∆
n = ρna

(
Lapγa

({
∆t
ρn
b

}
,
{

pnb
})
− Lapγa

(
{∆t} ,

{
g · xnb

} ) )
. (3.13)

Note that ∆ is not exactly equal to the second term of Equation (3.12) since with SPH
operators the Laplacian is not tantamount to the divergence of a gradient. Following Brezzi and
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Pitkäranta (1984) this diffusion term will be weighted by an arbitrary factor Λ ∈ [0; 1], and it will
be added to the continuity equation. The last part of Equations (3.11) will therefore be rewritten
as:

ρ̃a =
1

γn+1
a

[
γnaρ

n
a +

∑
b∈P

Mb

(
wn+1
ab − w

n
ab

) ]
,

ρn+1
a − ρ̃a
∆t

= Λρ̃a

(
Lapγa

({
∆t
ρb

}
, {pb}

)
− Lapγa ({∆t} , {g · xb})

)
,

(3.14)

where p̃b = p(ρ̃b), and Λ is usually set to 0.1. In addition, the Laplacian operator in Equation
(3.14) excludes the boundary elements. This correction is similar to the one developed by
Mayrhofer et al. (2012), but it is still valid when the density presents large variations. We prefer
the present proposition to the ones existing in the SPH literature because it comes from well
established stabilisation methods in the finite volume / finite element methods.

3.2.7 Boundary conditions
Discretising the boundary in terms of segments and vertices gives a method of dealing with
the boundaries on the domain, however the method for imposing boundary conditions is not
trivial. The approach chosen by Ferrand et al. (2013), and later extended in Leroy et al. (2015),
is that Dirichlet boundary conditions will be imposed on the vertices and Neumann boundary
conditions will be imposed on the segments. An averaging is then used to find the corresponding
values on the segments or vertices.

For example, the shear stress on the walls (calculated either through the no-slip condition or
through a turbulence wall function) is set by imposing the fluid velocity on the wall vertices, and
the shear stress of the segments is then found by averaging the velocity of the connected vertices.

3.3 Formulation for unified semi-analytical open boundary condition
3.3.1 Time integration of the continuity equation with unified semi-analytical open-boundary

conditions
In this Section, the continuity equation will be carefully integrated between two successive
iterations. The aim is to integrate exactly all the terms which depend only on particle positions,
in order to stop the imposed mass flux from introducing errors on the density at each time
step. Otherwise, these errors would lead to density discontinuities for fluid particles near open
boundaries, which would in turn result in spurious shock-waves when particles are created or
deleted.

While integrating the continuity equation, new boundary terms will naturally appear due
to the presence of open boundaries. Their time integration will be performed consistently with
the time stepping scheme proposed in Section 3.2.5, so that no artificial density perturbation is
induced by the open boundaries.

As stated above, the time-dependent SPH continuity equation is the fourth line of the system
(3.9) involving the fluid velocity ub. Let us now rewrite this equation as a total derivative so that
the time integration will be exact. To do so, the continuity equation is first rewritten using the
divergence-operator definition of Equation (3.6):

dρa =−ρaDivγ
−

a {ub} dt

=
1
γa

∑
b∈P

Mb∇wab · uabdt − ρa
γa

∑
s∈S

∇γas · uasdt .
(3.15)
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To transform the sums in Equation (3.15) into exact total derivatives, the fluid velocity ub

should be replaced by the particle velocity vb. This is possible for all particles except for the
sets of vertices and segments which belong to the open boundaries (denoted byV i/o and Si/o,
respectively), and thus the density variation reads:

dρa =
1
γa

∑
b∈P

Mb∇wab · vabdt − 1
γa

∑
v∈V i/o

Mv∇wav · (uv − vv) dt

− ρa
γa

∑
s∈S

∇γas · vasdt +
ρa
γa

∑
s∈Si/o

∇γas · (us − vs) dt .
(3.16)

In order to compute the first and third terms of Equation (3.16), we use the fact that in a
Lagrangian frame dx = vdt, so that:

dwab = ∇wab · vabdt,

dγa =
∑
s∈S

∇γas · vasdt .
(3.17)

Therefore Equation (3.16) can be rewritten as:

d (γaρa) = γadρa + ρadγa = d

(∑
b∈P

Mbwab

)
− γaδρi/o

a + ρaδγ
i/o
a , (3.18)

where δρi/o
a and δγi/o

a are defined by:

δρi/o
a B

1
γa

∑
v∈V i/o

Mv∇wav · (uv − vv) dt, (3.19)

δγi/o
a B

∑
s∈Si/o

∇γas · (us − vs) dt . (3.20)

It should be noted that Equation (3.18) is a generalized version of Equation (3.10). Furthermore
the terms in Equations (D.1) and (D.1) are non-zero because particle and fluid velocities do
not coincide at open boundaries, as already pointed out. In addition, for Equation (3.18) to be
valid, the particle masses should be constant over the time integration of γaρa. Therefore, the
particles masses Mb are kept constant on the time interval

]
tn; tn+1 [ equal to Mn

b
. Since the

vertex masses will vary in time (see §3.3.3), this implies that these variations will occur after the
time integration of the continuity equation.

Let us now integrate the continuity Equation (3.18) from time tn to tn+1 = tn + ∆t, to have a
consistent time marching scheme:

(γaρa)n+1 − (γaρa)n =
∑
b∈Pn

(
Mn

bw
n+1
ab − Mn

bw
n
ab

)
−

∫ tn+1

tn
γaδρ

i/o
a +

∫ tn+1

tn
ρaδγ

i/o
a .

(3.21)
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Note that the summation is over the particles existing at time n, denoted by Pn. The particle

creation/deletion algorithm is described in §3.3.3.

The two time-integrated terms
∫ tn+1

tn
γaδρ

i/o
a and

∫ t
n+1

t
n ρaδγ

i/o
a in Equation (3.21) will be

called virtual variation terms, and are the only modification of the time-independent continuity
equation proposed by Ferrand et al. (2013) (last line of Equation 3.11).

The key point in the time integration of the virtual variations is that they are expected to
maintain exactly a uniform flow field with a constant density. The term γaδρ

i/o
a represents the

variation experienced by
∑

v Mvwav, with v ∈ V i/o, if the vertex particles v were moved with
the velocity (uv − vv) while the fluid particle a is fixed. Similarly the term δγi/o

a represents the
variation experienced by γa if the segments s ∈ Si/o were moved with the velocity (us − vs)
while the fluid particle a is fixed.

Consequently the virtual displacement δxi/o
a B∆t

(
un
a − vna

)
is used to compute the virtual

variation terms. Thus the time-integration of δρi/o
a and δγi/o

a can be computed consistently with
the last two lines of Equation (3.11) as:

∫ tn+1

tn
γaδρ

i/o
a =

∑
v∈V i/o

Mn
v

[
w

(
xnav + δx

i/o
v

)
− w

(
xnav

) ]
, (3.22)

and:

∫ tn+1

tn
ρaδγ

i/o
a =

ρna
2

∑
s∈Si/o

[
∇γas

(
xnas + δx

i/o
s

)
+ ∇γas

(
xnas

) ]
· δxi/o

s , (3.23)

where δxi/o
s = ∆t(un

s − vns ), the velocity of the segments are defined by us = (uv1 + uv2)/2 and
δxi/o

v = ∆t(un
v − vnv ). In the above notation, v1 and v2 are the vertices connected to s.

Equation (3.23) is consistent with the way γ is calculated. If an analytical formulation of γ is
used (such as in Leroy et al. (2014)) it should be computed as:

∫ tn+1

tn
ρaδγ

i/o
a = ρ

n
a

∑
s∈Si/o

[
γas

(
xnas + δx

i/o
s

)
− γas

(
xnas

) ]
. (3.24)

The proposed continuity Equation (3.21) allows one to take account of ingoing/outgoing mass
flux through the last two terms, while other terms depend only on particle positions; Equation
(3.21) combined with Equations (3.22) and (3.23) gives:

ρn+1
a =

1
γn+1
a

{
γnaρ

n
a +

∑
b∈Pn

Mn
b

(
wn+1
ab − w

n
ab

)
+

∑
v∈V i/o

Mn
v

[
wn
av − w

(
xnav + δx

i/o
v

) ]
+
ρna
2

∑
s∈Si/o

[
∇γas

(
xnas + δx

i/o
s

)
+ ∇γas

(
xnas

) ]
· δxi/o

s

}
.

(3.25)

For simplicity the summations in the right-hand-side of Equation (3.25) will be noted as di/o
a ,

which gives:

ρn+1
a =

1
γn+1
a

(
γnaρ

n
a + di/o

a

)
. (3.26)
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3.3.2 Time stepping with open boundaries
The time stepping scheme used in Equation (3.11) is therefore adapted to take into account the
open boundaries with a volume diffusion correction (Section 3.2.6):

f na = Lapγa
({
µnb

}
,
{
un
b

} )
−Gradγ

+

a

{
pnb

}
+ ρnag,

un+1
a = un

a +
∆t
ρna

f na,

vn+1
a = un+1

a for a ∈ F ,
xn+1
a = xna + ∆tvn+1

a ,

γn+1
a = γna + ∆t

∑
s∈S

1
2

(
∇γn+1

as + ∇γnas
)
· vn+1

as , (3.27)

ρ̃a =
1

γn+1
a

(
γnaρ

n
a + di/o

a

)
,

ρn+1
a − ρ̃a
∆t

= Λρ̃a

(
Lapγa

({
∆t
ρb

}
, {pb}

)
− Lapγa ({∆t} , {g · xb})

)
.

As a reminder di/o
a is defined through Equations (3.25) and (3.26). Furthermore, the constraints

on the time step ∆t are described in §3.B.4.

3.3.3 Mass update of vertex particles
The method used to create or remove particles needs to be carefully developed in order to
keep a correct particle distribution near the open boundaries (this process can be understood as
re-meshing). The choice made is to make the vertex particles grow (resp. decrease) over time on
an inlet (resp. outlet) boundary. Thus their masses and volumes are not constant. However, the
mass evolution should not create any perturbation neither on the density nor on the momentum.
Therefore, as stated earlier a constant mass will be set between tn and tn+1 in Equations (3.27).
This is ensured by Equations (3.21), (3.22) and (3.23). The masses will therefore be updated
outside of the marching scheme.

Nonetheless, the total mass of the system should change smoothly in time. To do so the
masses of the vertex particles in v ∈ V i/o take into account the desired mass flux through the
open boundary ÛMv . This mass flux is computed as a weighted average of the mass fluxes through
the segments s ∈ Nsv, where Nsv is the set of all the segments connected to v (usually two
segments in 2-D):

ÛMv =
1
2

∑
s∈Ni/o

sv

ρsSs(us − vs) · ns, ∀v ∈ V i/o, (3.28)

where Ss is the length of a segment. The flux ÛMv is positive for an inlet and negative for an outlet.
The flux ÛMv is used to update the vertex masses. Instinctively one would assume that

Mn+1
v = Mn

v + ∆t ÛMn
v . However, in the case of an inlet, new fluid particles must be created

near the open boundary when the fluid particles go far away from it (see Figure 3.2). For this
purpose, each time the vertex particle mass Mv reaches a certain threshold θvMref, a fluid particle
is created at the same position with the reference mass Mref and this mass is subtracted from the
vertex particle mass to prevent from any density shock. For the sake of simplicity θv is the open
angle of the vertex divided by 2π (i.e. θv = 0.5 for a plane boundary) and Mref is the mass of a
fluid particle.

In the case of an outlet, particles are removed when they cross an open boundary segment. In
order to remain consistent the mass of an outgoing fluid particle is redistributed over the open
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Figure 3.2: Mass evolution and particle creation for an inlet: the mass of vertex particles v is
growing due to a positive flux us · ns at the segment s (times t0 to t3). When the masses of the
inlet vertices reach the defined threshold of Mref/2 (time t2), new fluid particles are created and
the mass of vertex particles is decreased.

boundary vertices connected to this segment. Each of these vertices receives the mass βa,vMa,
where βa,v is a distribution (or weighting) factor.

xv0

xv1

xa

p0

n

p1

Figure 3.3: Mass distribution process for an outgoing fluid particle a crossing a segment s
connecting vertices v0 and v1. The dark gray line represents the factor βa,v0 .

The factor βa,v is constructed so that most of the mass is distributed to the closest vertex.
For a segment s with vertices v0 and v1, vector pi is defined as the vector between vertex vi and
the projection of the particle a on the segment, i.e. pi = xavi −

(
xavi · n

)
n (see Figure 3.3).

Assuming that the projection belongs to the segment, then for v0 and v1 connected to s βa,vi is
defined as:

βa,v0 =
p1 · xv0v1

‖xv0v1 ‖2
,

βa,v1 =
p0 · xv1v0

‖xv1v0 ‖2
= 1 − βa,v0 .

(3.29)

Otherwise, βa,v is set to zero.
Therefore, the masses of vertex particles are updated as follows:

Mn+1
v = Mn

v + ∆t ÛMn
v + δMn

v , ∀v ∈ V i/o, (3.30)

where δMn
v quantifies the mass variation due to particle creation/destruction, i.e. −Mref each

time a fluid particle is created at position v, +βa,vMa each time a particle a crosses a segment
connected to v. As stated above, the step described by Equation (3.30) is added at the end of the
time stepping scheme (3.27).
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In Equation (3.30) only the mass flux positiveness determines whether an open boundary
repulses or attracts fluid particles. As illustrated later in the periodic wave test case, i.e.
Figure 3.12, it is possible to prescribe time-dependent velocities moving from negative to positive
values. Henceforth, the proposed strategy makes it straightforward to treat both inlet and outlet
at the same open boundary, depending on space and time.

Free-surface flows can also be treated that way. For example, for the periodic wave shown in
Figure 3.12 and later in Section 3.4.3, the mass flux ÛMv at the vertical open boundaries oscillates
consistently from positive values to negative values as the velocity is prescribed according to 5th
order solution to Stokes wave theory.

3.3.4 Imposing pressure and velocity
The Riemann problem formulation described in 3.A is used to define compatible pressure and
velocity fields. The principle is to use a method common in finite volumes, where characteristic
waves (λ−1, λ0 and λ+1) model discontinuities between the exterior state (the boundary conditions)
and the interior state (the fluid) through generalized Riemann invariants (GRI).

Imposed velocity
When a velocity field is imposed on a boundary, for instance an incoming free-surface wave
velocity profile at an inlet, it is imposed on the open boundary vertices (as it is a Dirichlet
boundary condition). Since the imposed velocity field is needed on the open boundary segments,
its value will be averaged from the neighbouring vertices:

us =
1
|Nvs |

∑
v∈Nvs

uv . (3.31)

This value will then be the prescribed velocity field on the exterior state, i.e. uext = us. In
this case the linearised Riemann problem is used to compute the value of the density (or pressure)
fields at the exterior state, and therefore at the boundary segments and vertices.

The GRI of wave λ+1 will therefore be used to calculate the external state pressure pext
from the internal state. However the type of discontinuity of the wave λ+1 needs to be defined.
It is known that since λ+1,ext = λ+1,2, then if λ+1,ext > λ+1,int the wave is a shock, however
since pext is unknown then cext cannot be calculated. Therefore assumptions needs to be made
regarding the relationship λ+1,ext > λ+1,int . It will be assumed that this condition is verified if
un,ext > un,int , but this assumption will need to be verified once cext is known. Therefore:

1. If un,ext > un,int , the λ+1 wave is a shock wave. The Rankine-Hugoniot relationships have
to be used through the following equation:

pext = pint + ρintun,int
(
un,int − un,ext

)
. (3.32)

2. If un,ext ≤ un,int , the λ+1 wave is an expansion wave. The corresponding Riemann
invariant R+1 must must be used (i.e. R+1,ext = R+1,int ):

un,ext − ψ (ρext ) = un,int − ψ (ρint ) , (3.33)

where ψ is defined by Equation (3.68).

Once the pressures are known on the segments (since ps = pext), then the pressure on the
vertices are found by averaging the connected segments:

pv =
1
|Nsv |

∑
s∈Nsv

ps . (3.34)
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The densities are once again calculated using Equation (3.1).
As mentioned earlier, if the imposed condition corresponds to an inlet then the tangential

velocity components need to be defined, otherwise they will be defined from the interior state.

Imposed pressure (or density)
When a pressure field is imposed on a boundary, for instance hydrostatic pressure at an outlet, it
is imposed on the vertices (as it is a Dirichlet boundary condition). Since the imposed pressure
field is needed on the open boundary segments, to do so its value will be averaged from the
neighbouring vertices:

ps =
1
|Nvs |

∑
v∈Nvs

pv . (3.35)

This value will then be the prescribed pressure field on the exterior state, i.e. pext = ps. In
this case the linearised Riemann problem is used to compute the value of the velocity fields at
the exterior state, and therefore at the boundary segment and vertices. The GRI of wave λ+1 will
therefore be used to calculate the normal velocity component from the internal state. However
the type of discontinuity of the wave λ+1 also needs to be defined. In this case it will be assumed
that this condition is verified if cext > cint , but this assumption will need to be verified once
un,ext is known. Therefore:

1. If cext > cint , the λ+1 wave is a shock wave. The Rankine-Hugoniot relationships have to
be used through the following equation:

un,ext =
pint − pext
ρintun,int

+ un,int . (3.36)

Note that because of the presence of un,int in the denominator of Equation (3.36), when
the pressure is imposed on a boundary adjacent to still water this formulation could pose
difficulties. This is why, when un,int → 0 the limit of Equation (3.36) should be considered,
i.e.:

lim
un, int→0

un,ext = un,int . (3.37)

Practically, this condition will be imposed when un,ext > c0/10.

2. If cext ≤ cint , the λ+1 wave is an expansion wave. The corresponding Riemann invariant
R+1 must be used (i.e. R+1,ext = R+1,int ):

un,ext − ψ (ρext ) = un,int − ψ (ρint ) . (3.38)

Once the velocities are known on the segments (since us = uext ), then the velocities on the
vertices are found by averaging the connected segments:

uv =
1
|Nsv |

∑
s∈Nsv

us . (3.39)

Again, if the imposed condition corresponds to an inlet then the tangential velocity components
need to be defined, otherwise they will be defined from the interior state. Finally, the densities
are still calculated using Equation (3.1).
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Imposed open boundary conditions algorithm
The linearised Riemann problem is used to calculate the open boundary conditions before the
time stepping is done. Therefore for an open boundary problem, the calculation steps are listed
below:

1. Calculation of the fields at the boundaries, using the method described in Ferrand et al.
(2013) for wall boundaries, and the method described in §3.3.4 and 3.3.4 for open
boundaries.

2. Time stepping of the fluid particles in the domain using Equations (3.27).

3. Update the mass of the vertex particles using Equation (3.30), create particles if Mv >

θvMref and delete particles that have crossed an open boundary.

The method for implementing properly this algorithm in a parallel implementation is described
in 3.B.

3.4 Numerical tests
For all the simulations, the quintic Wendland kernel with smoothing length h = 2∆r will be used.

3.4.1 Non-orthogonal flux on inlet/outlet in a square
The first test case presented is that of a 2-D square fluid domain of size L with only inlet/outlet
boundary conditions (see Figure 3.4). The flow is at an angle of π/4 to the normal to the
boundaries; in other words, the velocity imposed at all boundaries is u0 = |u0 |/

√
2(1, 1)T . It

illustrates one of the advantages of present Semi-Analytical inlet/outlet boundary treatment:
the absence of buffer layer makes it possible to prescribe a non-orthogonal flow quite easily,
regardless of the open boundary shape.

The initial conditions are of constant velocity and density fields with the same values as
imposed at the boundary. Particles are initially distributed onto a Cartesian grid, the inter-particle
distance ∆r and segment size are non-dimensionalised using the problem size, i.e. ∆r+ = ∆r/L
for all different tests performed (from 0.8k to 41.6k particles). Furthermore the speed of sound
at rest is set to c0 = 10|u0 |. The fluid viscosity ν is set to 10−2 m2 s−1 and the volume diffusion
factor Λ will be set to 0, so that the focus is put on the open boundary conditions.

The evolution of the L2 errors for both density and velocity is computed as:

ερ =

√
1

NP

∑
a ∈ P

(ρa − ρ0)2
ρ2

0
and εu =

√
1

NP

∑
a ∈ P

|ua − u0 |2
|u0 |2

, (3.40)

where NP is the number of fluid and vertex particles.
As a first test the Riemann invariants will not be used and both the velocity and density will

be imposed as u0 and ρ0 respectively. The evolution of the errors is displayed in Figure 3.5 with
respect to non-dimensional time t+ = t |u0 |/L. It is therefore shown that the errors are very small;
they are mainly linked to the round-off errors. Since the simulations presented are computed on
single precision GPU (Graphics Processing Units), the values observed are acceptable.

It should be emphasised that the additional terms in the continuity equation (Equation (3.18))
are essential, as the authors have observed that the simulations without those terms crashed
immediately.

As a second test, the velocity are imposed on inlets and the pressure on the outlets together
with Riemann invariants. As shown by Figure 3.6, the errors are slightly larger than previously.
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Figure 3.4: Non-orthogonal inlet/outlet in a square.

0 5 10 15 20
10−7

10−6

10−5

10−4

t+

ε ρ

0 5 10 15 20
10−7

10−6

10−5

10−4

t+

ε u

∆r+ = 1/25 ∆r+ = 1/50
∆r+ = 1/100 ∆r+ = 1/200

Figure 3.5: Non-orthogonal inlet/outlet in a square. Evolution of the L2 error in density (left)
and velocity (right) for different discretisations without using Riemann invariants.
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Figure 3.6: Non-orthogonal inlet/outlet in a square. Evolution of the L2 error in density (left)
and velocity (right) for different discretisations using Riemann invariants with imposed velocities
on the inlets and imposed pressure on the outlets.

This is because the previous case was over-constrained. Furthermore, when using Riemann
invariants at the open boundaries the error is almost independent of the particle size. However
the error on the velocity is of an order of magnitude higher than that of the density. This can
easily be explained by linearising the Euler equations for the numerical perturbations δρ and δu:

δu
τ
∼

c2
0
ρ0

δρ

λ
, (3.41)

δρ

τ
∼ ρ0

δu
λ
, (3.42)

where τ and λ are time and length scales corresponding to the perturbation propagation.
The order of magnitude of the errors are ερ ∼ δρ/ρ0 and εu ∼ δu/|u0 |. Combining the last

two equations in order to remove τ and λ yields εu ∼ (c0/|u0 |) ερ. The error on the velocity is
thus amplified by the numerical Mach number, which is taken as 10 as explained above.

3.4.2 Rapidly expanding pipe
In this next test case, the flow from a small pipe (named pipe 1) will enter a large pipe (named
pipe 2), creating a sudden expansion of the flow. See Figure 3.7 for details on the geometry. Far
from the expansion, the flow should follow the Hagen-Poiseuille equations, which for a flow
between two infinite plates is given by:

ux = Umax

(
1 − z2

W2

)
, (3.43)

dP
dx

= −2ρ0νUmax

W2 , (3.44)
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Figure 3.7: Configuration of the rapidly expanding pipe. The origin is placed at the beginning of
the second pipe, and on the central axis of the pipes.

where the origin of z is on the centre pipe axis, W is the half width of the pipe and Umax is the
maximum velocity. To ensure that the flow stays laminar, this maximum velocity will be defined
according to a Reynolds number Re:

Umax =
νRe
2W

. (3.45)

Equation (3.43) will therefore be used to impose a Poiseuille flow velocity profile on the inlet,
and a constant pressure will be imposed on the outlet. The geometrical parameters are chosen
to correspond to one of the experiments presented by Hammad et al. (1999): W1 = 0.13 m,
L1 = 3W1, W2 = 2W1 and L2 = 4W2. The particle spacing ∆r = W1/26 and the physical
parameters chosen are ρ0 = 1190 kg m−3, ν = 3.19 × 10−5 m2 s−1 and Re = 20.6. The numerical
parameters are c0 = 0.03 m s−1 and Λ = 0.1. A background pressure is used to help the flow
stabilize.

Figure 3.8 shows the horizontal velocity and density profiles at the inlet and outlet. As can be
seen the velocity profile at the outlet is very close to the Poiseuille flow. In addition, the density
at the inlet is greater than at the outlet, which is a necessary condition as the pressure is linked
to the density through the state Equation (3.1). Finally, integrating the profile in Figure 3.8 to
calculate the mass fluxes at the inlet and outlet we get the following time averaged values:

• Mass flux in: 0.523 kg m−1 s−1

• Mass flux out: 0.525 kg m−1 s−1

• Analytical mass flux: 0.521 kg m−1 s−1

The mass flux differences appear because even though the fluid particles have fixed masses
throughout the simulation, the open boundary vertices have a variable mass. The mass variations
are consistent with the boundary mass flow, and the differences between the inlet and the outlet are
a result of the compressible medium which cannot achieve a perfect steady state. The normalised
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Figure 3.8: Horizontal velocity and density profiles at the inlet and the outlet of the rapidly
expanding pipe. The dashed line shows the analytical solution for a Poiseuille flow, and the solid
line the simulation results.

error in the mass flux is therefore equal to 4 × 10−3, which is acceptable relative to the spatial
discretisation, and it does not have a significant impact on the simulation.

In Figure 3.9 the streamlines obtained from the stream function are compared with the
experimental results presented in Hammad et al. (1999) and a finite volume solution using
code_saturne Archambeau et al. (2004). The calculation of the stream function Ψ from a
velocity field can be done using different methods, which can be a source of differences with the
experimental values. To analyse the simulation results the following equation was used:

Ψ(x, z) =


∫ x(x,z)

x(L2,W2)
(uxdz − uzdx) above the central axis,∫ x(x,z)

x(L2,−W2)
(uxdz − uzdx) below the central axis.

(3.46)

Amongst the differences between the SPH simulation and the experimental results, the stream
line at Ψ = 0 does not cross the wall at the same distance from the expansion, meaning that the
recirculation zone is smaller in the simulations. This could be because in the state Equation (3.1)
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Figure 3.9: Streamlines in the rapidly expanding pipe from the SPH simulated flow (above),
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Figure 3.10: The three regions in the rapidly expanding pipe that can be defined to calculate the
head loss from the simulated flow.

the value of ξ for diethylene glycol (which was used in the experiment) is not readily available,
and therefore ξ = 7 was imposed, which is the value for water. This is also true for the simulations
using code_saturne, although the incompressible model used in this case allows these results to
be closer to the experimental values.

Nonetheless, at the outlet the streamlines of the simulations are close to the experimental
results. As a further check of the validity of the simulation, the head loss will be modelled.
Looking at the streamlines of the flow, plotted in Figure 3.10, the flow can be separated into 3
regions: a Poiseuille flow inside pipe 1, a recirculation zone created by the sudden expansion and
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a Poiseuille flow inside pipe 2. One can estimate the head loss in each Section by (see Hérard
and Martin (Preprint: hal-01166478) for more details):



1
2

(
Û2

1 − Û2
1′

)
=

1
ρ2
(P1′ − P1) ,

1
2

(
Û2

1′ − Û2
2′

)
+

1
ρ2
(P1′ − P2′) =

1
2

(
Û1′ − Û2′

) 2
,

1
2

(
Û2

2 − Û2
2′

)
=

1
ρ2
(P2′ − P2) ,

(3.47)

Where the subscript represents the interface between different zones of the flow. 1 denotes the
interface between the inlet and pipe one, 1′ the interface between the Poiseuille flow of pipe one
and the recirculation area, 2′ the interface between the recirculation area and the Poiseuille flow
of pipe two and 2 the interface between pipe two and the outlet (see Figure 3.10). Furthermore
Û2 = 1/(2W)

∫ W

−W U2dz̃, P = 1/(2W)
∫ W

−W pdz̃ and P′0 is the integral along one of the expansion
walls.

These three equations can be combined to give:

1
2

(
Û2

1 − Û2
2

)
+

1
ρ2
(P1 − P2) =

1
2

(
Û1 − Û2

) 2
+

1
ρ2
(P1 − P1′)

+
1
ρ2
(P2′ − P2) + O

(
νÛ1
W2

)
. (3.48)

Defining the head of the flow by:

H =
Û2

2g
+

P
gρ2

. (3.49)

The theoretical head loss between the inlet and the outlet is thus equal to (neglecting the last
term in Equation 3.48):

H1 − H2 =
1
2g

(
Û1 − Û2

) 2
+

1
gρ2
(P1 − P1′) +

1
gρ2
(P2 − P2′) . (3.50)

The expected head loss is therefore equal to the sum of head loss of the Poiseuille flows, and
Borda-Carnot head loss in the recirculation zone. Figure 3.11 shows the head along the x-axis.
Extracting the simulated head loss and calculating the theoretical head loss gives:

• Head loss from simulations = 5.04 × 10−7 m

• Theoretical head loss = 5.00 × 10−7 m

Therefore, the simulated head loss has less than a 1% difference with the theoretical head
loss.

3.4.3 2-D periodic free-surface water wave
The next test case shows that these new open boundary conditions can be used for both inflows
and outflows, and that open boundaries can alternate between the two without any difficulties,
even with a free surface. To do so, periodic water waves propagating on a flat bed will be imposed.
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Figure 3.11: Head profile plotted along the x-axis of the rapidly expanding pipe. The blue line is
the computed head, the dashed lines show the theoretical head gradient of the Poiseuille flows
(from Equations (3.44) and (3.45)) and the arrows around the dotted line show the head loss from
the Borda-Carnot equation.

The waves imposed are calculated from the 5th order solution to Stokes wave theory given by
Fenton (1985):

kη(x, t) =
5∑
i=1

ε i
i∑

j=1
Bi j cos

[
j k

(
x − ct + θ

k

) ]
, (3.51)

U
(
k
g

) 1/2
= C0 + ε

2C2 + ε
4C4, (3.52)

c = Uc +U, (3.53)

ux(x, z, t) =
(
c −U

)
+,

C0

(
g

k3

) 1/2 5∑
i=1

ε i
i∑

j=1
Ai j cosh ( j kz) j k cos

[
j k

(
x − ct + θ

k

) ]
, (3.54)

uz(x, z, t) = C0

(
g

k3

) 1/2 5∑
i=1

ε i
i∑

j=1
Ai j j k sinh ( j kz) sin

[
j k

(
x − ct + θ

k

) ]
, (3.55)

Rk
g = 1

2C2
0 + kD + ε2E2 + ε

4E4, (3.56)
p(x,z,t)
ρ0

= R − gz − 1
2
[
(ux − c)2 + u2

z

]
, (3.57)

where η is the free surface elevation (with the water depth h = D + η), A is the wave amplitude
(i.e. half of the wave height), D is the mean water depth, g is the acceleration due to gravity, k is
the wave number (defined as k = 2π/L, where L is the wave length), c is the wave velocity, Uc

is the mean current velocity, U is the mean horizontal velocity, θ is a phase constant and R is
the Bernoulli constant. The wave period T can be calculated from the wave number and wave
velocity, i.e. T = 2π/(kc). Furthermore the z-axis has its origin at the bed. The constants are
given in Table 3.1.
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Table 3.1: Constants for the 5th order solution to Stokes wave theory given by Fenton (1985) and
used in Equations (3.51) - (3.57).

A11 = 1/sinh (kD)

A22 = 3S2/[2(1 − S)2]

A31 = (−4 − 20S + 10S2 − 13S3)/[8 sinh(kD)(1 − s)3]

A33 = (−2S2 + 11S3)/[8 sinh(kD)(1 − s)3]

A42 = (12S − 14S2 − 264S3 − 45S4 − 13S5)/[24(1 − S)5]

A44 = (10S3 − 174S4 + 291S5 + 278S6)/[48(3 + 2S)(1 − S)5]

A51 = (−1184 + 32S + 13232S2 + 21712S3 + 20940S4 + 12554S5 − 500S6

−3341S7 − 670S8)/[64 sinh(kD)(3 + 2S)(4 + S)(1 − S)6]

A53 = (4S + 105S2 + 198S3 − 1376S4 − 1302S5 − 117S6 + 58S7)

/[32 sinh(kD)(3 + 2S)(1 − S)6]

A55 = (−6S3 + 272S4 − 1552S5 + 852S6 + 2029S7 + 430S8)

/[64 sinh(kD)(3 + 2S)(4 + S)(1 − S)6]

B11 = 1

B22 = coth(kd)(1 + 2S)/[2(1 − S)]

B31 = −3(1 + 3S + 3S2 + 2S3)/[8(1 − S)3]

B33 = −B31

B42 = coth(kd)(6 − 26S − 182S2 − 204S3 − 25S4 + 26S5/[6(3 + 2S)(1 − S)4])

B44 = coth(kd)(24 + 92S + 122S2 + 66S3 + 67S4 + 34S5)/[24(3 + 2S)(1 − S)4]

B51 = −(B53 + B55)

B53 = 9(132 + 17S − 2216S2 − 5897S3 − 6292S4 − 2687S5 + 194S6 + 467S7

+82S8)/[128(3 + 2S)(4 + S)(1 − S)6]

B55 = 5(300 + 1579S + 3176S2 + 2949S3 + 1188S4 + 675S5 + 1326S6 + 827S7

+130S8)/[384(3 + 2S)(4 + S)(1 − S)6]

C0 = [tanh(kD)]1/2

C2 = [tanh(kD)]1/2(2 + 7S2)/[4(1 − S)2]

C4 = [tanh(kD)]1/2(4 + 32S − 116S2 − 400S3 − 71S4 + 146S5)/[32(1 − S)5]

E2 = tanh(kD)(2 + 2S + 5S2)/[4(1 − S)2]

E4 = tanh(kD)(8 + 12S − 152S2 − 308S3 − 42S4 + 77S5)/[32(1 − S)5]

Where S = sech (2kD).

For the present test case a depth of 0.5 m, an amplitude of 0.05 m and a wave length of 2.5 m
have been chosen. Furthermore there will be no mean current in the flow. The Ursell number for
this case is 2AL2/d3 = 5 � 32π2/3, which would mean that linear wave theory is applicable.
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Figure 3.12: Propagation of a regular wave on a flat bottom with open boundaries given at 2
instances. A time varying velocity profile is prescribed on both vertical boundaries so they
alternate between inlets and outlets.

However, a higher order solution is used, as phase difference can occur after several time periods.
Finally, in the simulation the fluid viscosity ν is set to 10−6 m2 s−1, the particle spacing ∆r is set
to one tenth of the amplitude and the numerical parameters are c0 = 20 m s−1 and Λ = 0.1. An
illustration of this test case can be found in Figure 3.12 where it is shown that the open boundaries
alternate between inlets and outlets.

A simulation will be run where the fluid velocities calculated from the analytical solution
(Equations 3.51 - 3.57) will be imposed along the normal of the open boundaries, and Riemann
invariants will be used to calculate the pressure. This will be compared to the analytical solution
and a simulation with periodic conditions. Periodic conditions mean that particles exiting the
domain on one side will enter the domain on the other side, but more importantly particles on
one side will have as neighbours particles close to the other side, acting as if the domain was
truly infinite. This will therefore serve as a reference, because ideal open boundary conditions
would give the same values as an extension of the domain filled with fluid and wall particles.
Furthermore, it should be noted that if both the pressure and the velocities would be imposed,
then the problem would be over-constrained and particles would exit the domain.

Plots of the free surface are then presented in Figure 3.13. The first conclusion is that even
after several wave periods the free surface stays very close to the analytical solution for all types
of boundaries. Secondly, because of its nature, the simulation that uses periodic conditions
needs the domain to be a multiple of the wave length. This is not the case with open boundary
conditions (as can be seen from the fact that the green free surface particles extend over a longer
range than the blue free surface particles). Finally, the waves propagating through a periodic
domain are slightly slower than the analytical solution, which is not true for simulations with
open boundary conditions as the analytical solution is imposed on the velocities.

Furthermore, let us define the error on the free surface using the following equation:

εη =

√√
1

NFS

∑
a ∈ FS

(ηsim − η)2
A2 , (3.58)

where FS represents the free surface particles, NFS is the number of free surface particles, ηsim
is the free surface elevation of the simulations and η is the analytical solution given in Equation
(3.51).

These errors are plotted over time in Figure 3.14, which shows that for these discretisations
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Figure 3.13: Free surface particles for simulations using different boundary conditions compared
to the analytical solution of Equations (3.51) - (3.57).

the error (the solid line) is of the order of the particle spacing (the dashed line). Unfortunately,
this is not the case for particle size smaller than shown in Figure 3.14 as an instability develops,
increasing the error. These instabilities appear as a checker-boarding effect close to the inlets,
and work on the volume diffusion term close to open boundaries will be necessary in the future
to reduce those errors for very refined simulations.

In all cases the open boundary conditions seem to model properly the propagating waves,
and no discrepancies appear between the fluid and imposed free surfaces even after seven wave
periods.

3.4.4 2-D solitary wave
The Riemann invariants become particularly useful when the boundary conditions are not well
known, or not easy to predict. To illustrate this concept, a test case for the propagation of a
solitary wave on a bed with a step, that will cause it to break will be presented. See Figure 3.15.

At the inlet the solitary wave will be imposed from the Korteveg–De Vries solitary wave
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Figure 3.15: Configuration of the 2-D solitary wave on a sloped domain.

equation (see e.g. Dean and Dalrymple, 1991):

η(t) = A sech2 (k(ct − x0)) , (3.59a)
h(t) = D + η(t), (3.59b)

p(z, t) = ρg(z − h(t)), (3.59c)

ux(z, t) = c
η(t)
h(t), (3.59d)

uz(z, t) =
z

h(t)
∂η

∂t
(t). (3.59e)
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R One should bear in mind that Korteveg–De Vries equation is only an approximation of
the Euler equations. See e.g. Antonopoulos et al. (2017) for a valuable comparison of the
models.

η(x, t) = A sech2 (k(x − ct − x0)) , (3.60)

where A is the amplitude and x0 is the wave shifting length. The wave number and celerity are
computed as k =

√
3A/4D3, c =

√
g(A + D).

At the outlet a hydrostatic pressure corresponding to the reference level D will be imposed
and the velocities will be calculated using Riemann invariants.

The geometry chosen for the test case illustrated in Figure 3.15 has a reference depth
D = 0.6m, a wave amplitude A = D/2 and a characteristic length L = 2.5D. The wave shifting
length is set to ensure that the waves are not in the domain at the initialisation, i.e. x0 = −4k.

The fluid viscosity ν is set to 10−6 m2 s−1, the particle spacing will be set to one thirtieth of
the amplitude (∆r = A/30) and the numerical parameters are c0 = 20 m s−1 and Λ = 0.1.

The evolution of the solitary wave within the domain at different instances is shown in Figure
3.16. It shows that the step causes the wave to break, creating a highly disturbed flow to exit the
domain. Nonetheless, imposing a hydrostatic pressure and using Riemann invariants is enough
for the wave to exit the domain without any visible reflection in WCSPH. This shows the high
flexibility of these new open boundary conditions.

Finally, it should be noted that the small peak that appears in the last frame of Figure 3.16
appears because when the wave goes over the step, a portion of its energy is reflected back to the
inlet, which in turn reflects it back towards the step. This last reflection occurs because after the
wave has entered the domain the velocity is imposed as zero, making it essentially a wall.

3.5 Conclusion
The unified semi-analytical boundary condition have been extended to treat complex inlets
and outlets without spurious shocks. This was done by allowing the mass of the vertices to
vary according to the imposed flow rate, and then creating or deleting particles accordingly.
Furthermore, it was necessary to take into account the imposed Eulerian velocity field in order to
integrate properly in time the continuity equation, and thus avoid artificial density perturbations
near the boundary. Using Riemann invariants it is possible to impose compatible density and
velocity fields that can support both Neumann and Dirichlet boundary condition.

These new boundary conditions have been tested on several test cases. Firstly on a simple
flow entering and leaving the domain in a non-orthogonal way, on periodic waves where the
open boundaries were used as both inlets and outlets and on a solitary waves for which the
outlet boundary conditions were unknown. In all cases this formulation of open boundaries in a
smoothed particle hydrodynamics framework has proved to be very adaptive to complex confined
and free-surface flows.

Finally, the extension to 3-D should be straightforward, but since the boundary elements
will be more complex, greater care will be needed to allow fluid particles to enter and leave the
domain without creating any artificial perturbations.
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Figure 3.16: Propagation of a solitary wave on a bed with a step. As a reminder, the wave period
is T = 2π/(kc).
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3.A The Riemann problem formulation
In the present approach, the mass flux through an open boundary is calculated at the position
of the segments (although it is applied to the connected vertices), therefore the values of the
pressure and velocity fields on those segments are required. Since the weakly Compressible SPH
method is used, the boundary conditions can be derived using a linearised Riemann problem.
This methodology is widely used in the literature for finite volumes, but it is not as common
for SPH problems. The approach chosen here follows the work of Blondel et al. (2013), with
simplifying assumptions of barotropic fluid and subsonic flow. The latter assumption is justified
by the fact that weakly compressible SPH assumes the speed of sound to be significantly larger
than the flow velocity.

Let us consider a segment s on an open boundary and work in the local reference frame of
space dimension d relative to s, denoted by (n, t1, · · · , td−1), n being the local normal unit
vector and tk the tangential unit vectors. In this Section, for simplicity we will drop the label s
relative to all fields. The linearised Riemann problem (LRP) can now be written as:

∂Y

∂t
+ B (Y ) ∂Y

∂n
= 0, (3.61)

where the unknown vector is defined as:

YB

©«

ρ

un

ut1
...

utd−1

ª®®®®®®®®®®®®®®®®¬

=

©«

ρ

u · n

u · t1
...

u · td−1

ª®®®®®®®®®®®®®®®®¬

, (3.62)

and the matrix B as:

B (Y )B

©«

un ρ 0 · · · 0

c2

ρ
un 0 · · · 0

0 0 un 0 · · ·
...

... 0 . . . 0

0 0 · · · 0 un

ª®®®®®®®®®®®®®®®®¬

. (3.63)

Furthermore the speed of sound c is defined from the state Equation (3.1) as:

cB

√
∂p
∂ρ
= c0

(
ρ

ρ0

) ξ−1
2

. (3.64)

The eigenvalues of B are λ−1Bun − c, λ0Bun (with a multiplicity d − 1) and λ+1Bun + c.
Along the open boundary there is a discontinuity between the exterior state (upon which

we want to impose our values) and the interior state (i.e. the fluid domain). The eigenvalues
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Figure 3.17: Sketches of the Riemann problems.

of the problem, λi, represent the slope of the characteristic curves of the Riemann problem
(see Figure 3.17), which are discontinuities between the states on their right and left sides (for
example the wave λ0 is a discontinuity between the data states Y1 and Y2). The characteristic
waves can therefore be used to link the exterior state and the interior state. To go from one state
to another the Generalized Riemann Invariants (GRI) will be used, as these define relations that
hold true, for certain waves, across the wave structure. These are calculated from the relations
defined by Jeffrey (1976):

dY1

Vλ
r,1
=

dY2

Vλ
r,2
= ... =

dYd
Vλ
r,d

, (3.65)

where Yi is a component of vector Y and Vλ
r,i is a component of the right eigenvector of B

associated to the eigenvalue λ.
The GRI corresponding to the celerities λ−1 and λ+1 are respectively denoted by R−1 and

R+1:

R−1 B un + ψ, (3.66)
R+1 B un − ψ, (3.67)

where:

ψB

∫ ρ

ρ0

c
ρ̃

dρ̃, (3.68)

i.e. ψ =
2c0
ξ − 1

(
ρ

ρ0

) ξ−1
2

if ξ > 1, ψ = c0 ln
ρ

ρ0
if ξ = 1.

As displayed in Figure 3.17, the state of the segment value Y s is either defined by the first
state (see Figure 3.17a) or by the second state (see Figure 3.17b) which respectively correspond to
λ0 = un ≥ 0 (ingoing mass flux) and λ0 = un < 0 (outgoing mass flux). One should bear in mind
that λ−1 is supposed to be always negative and λ+1 always positive as the flow is to be subsonic.

Therefore to link the exterior state a first assumption is made, that the wave λ−1 is a “ghost”
wave, as it is outside of the domain. This means that the data Yext of the exterior state is assumed
equal to the data Y1 of state 1.

Wave λ0 is known as a contact discontinuity, i.e. λ0,1 = λ0,2 Toro (2009). This implies
that un,1 = un,2, which is consistent with the GRI relations. Through these relations it is also
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considered that dρ = 0 across λ0. Therefore ρ1 = ρ2, but also p1 = p2 as the pressure is defined
by Equation (3.1).

Therefore to link the fluid velocity along the normal of the segment and the pressure, one
needs only to find a relation between state 2 and the interior state; i.e. across the characteristic
wave λ+1 (the tangential velocities will be dealt with later on). In terms of notation, a distinction
will be made between this characteristic wave within state 2, λ+1,2, and its value within the
interior state, λ+1,int . As defined in Toro (2009) the characteristic wave λ+1 can belong to three
possible types of discontinuity:

1. Contact wave
In this case the characteristics are parallel in both states, this means that the following
condition is true:

λ+1,2 = λ+1,int, (3.69)

and the GRI relations hold across the characteristic wave:

R+1,2 = R+1,int . (3.70)

2. Expansion (or rarefaction) wave
In this case the characteristics are diverging, and the two data states are connected through
a smooth transition. This case is defined by the following condition:

λ+1,2 < λ+1,int, (3.71)

and the GRI relations hold across the characteristic wave:

R+1,2 = R+1,int . (3.72)

3. Shock wave
In this case the characteristics are converging towards the wave λ+1, meaning that this case
is defined by the following condition:

λ+1,2 > λ+1,int . (3.73)

In this case the GRI relations do not hold across the characteristic wave, and therefore the
Rankine-Hugoniot relationships have to be used:

Conservation of mass: σ [ρ2 − ρint ] = ρ2un,2 − ρintun,int,

Conservation of momentum: σ
[
ρ2un,2 − ρintun,int

]
= p2 + ρ2u2

n,2 − pint − ρintu2
n,int,

(3.74)

where σ is the shock speed to be computed. Combining Equations (3.74), one gets
ρ2ρint

[
un,2 − un,int

] 2
= [ρ2 − ρint ] [p2 − pint ]. If ρ2 is known, then un,2 can be deter-

mined directly through this relation. Otherwise, one may iterate to get ρ2 from a known
value of un,2.
Note that the published version assumed an infinite value for the shock speed σ.
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For the case of the tangential velocities the Riemann invariants relations make it possible to

write dut1 = ... = dutd−1 = 0 across the wave λ+1 (we will assume these relations still hold in the
case of a shock). Therefore the tangential velocities are equal between state 2 and the interior
state. However, the wave λ0 acts as a discontinuity.

Therefore if the problem is that of an inlet then the discontinuity prevents a relationship
between state 2 and state 1 to be defined for these velocities, all that is known is that dut1 = ... =
dutd−1 = Const. This means that these velocities need to be defined by the user for inlet open
boundaries. However for the case of an outlet then the λ0 will be assumed to be a “ghost” wave
and the exterior tangential velocities will be assumed to be equal to the tangential velocities of
state 1 and 2, and therefore equal to the velocities of the interior state.

In mesh-based methods, such as finite volumes, knowing the interior state data is simple as
boundary segments are only connected to one element. However in the SPH formulation there is
more than one fluid particle connected to a boundary segment. Therefore defining the interior
state is non-trivial. The method chosen is to use the SPH interpolations as defined by Ferrand
et al. (2013):

ps,int =
1
αs

∑
b∈F

Vbpbwbs, (3.75)

where, as a reminder, F contains only fluid particles and αs is the Shepard filter defined for a
segment s by:

αs =
∑
b∈F

Vbwbs . (3.76)

Similarly, the interior velocity is defined as:

us,int =
1
αs

∑
b∈F

Vbubwbs . (3.77)

Finally, the density will be calculated using Equation (3.1).

3.B Handling varying number of particles in a parallel implementation
Handling a varying number of particles in a parallel implementation can be difficult in a parallel
implementation. To allow the algorithm presented here to be easily implemented, several key
numerical considerations will be described in the following Sections.

3.B.1 Creating and deleting particles
As mentioned earlier this algorithm has been implemented in a parallel framework, and therefore
particle creation/deletion can be non-trivial. Namely, adding an extra particle needs to be an
atomic operation (i.e. an operation that will be done sequentially on all processors). The same is
true when deleting particles and the mass of the concerned vertex particles.

The implementation tested is based on a branch of the GPUSPH software Hérault et al. (2010,
2014), and therefore most of the memory is handled in the same manner. In addition to the
aforementioned problem, all the arrays are of a fixed size at the initialisation. As such, changing
the size of any array when a particle is removed or added can be quite expensive, especially when
it happens at each iteration. Thus it is suggested to allocate larger arrays. The user has to evaluate
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the total number of particles that will be added during the simulation time. Regardless of this
number, the loops are only done on the current number of particles at each iteration.

Furthermore it is very important that the masses of the open boundary vertices is kept constant
during the stepping algorithm, so that the condition Mb = Mn

b
during the open time interval

]tn, tn+1[ is maintained (i.e. excluding both tn and tn+1). The same is true for the set of particles,
i.e. during the continuity equation step, the particles that have crossed an open boundary are
considered, but not the particles that will be created.

3.B.2 Updating vertices and segments
When dealing with the semi-analytical boundary conditions, it has been established that Dirichlet
boundary conditions will be imposed on the vertices, and Neumann boundary conditions on the
segments Leroy et al. (2015). This implies that for walls the velocity will be imposed on the
vertices, and that velocity on the segments will be the average of the connected vertices. For the
pressure the condition ∂p/∂n = 0 will be used to calculate the pressure on the segments, and on
the vertices it will be the average of the connected segments.

When dealing with an open boundary, either the velocity or the pressure will be imposed
on the vertices and Riemann conditions will be used to calculate the corresponding pressure or
velocity on the segments. In all cases the missing values on the segments and vertices will be
calculated from the connected vertices or segments (see Sections 3.3.4 and 3.3.4). Furthermore
the mass flux will only affect the masses of vertices, even though it uses the densities, velocities
and lengths of the connected segments.

Imposed Velocity
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Du
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Wall

Du Du Du

Np Np Np

Imposed Pressure

DuDp

Dp

Dp

Nu

Nu

Fluid

Figure 3.18: Illustration of the different boundary conditions that can be imposed on vertices and
segments. The symbol D represents a Dirichlet boundary condition and the symbol N represents
a Neumann boundary condition. The superscripts show if these conditions are imposed on the
velocity u or on the pressure p.

However, as illustrated by Figure 3.18, dealing with the vertices that are in-between a wall
and an open boundary segment is not trivial. For the vertices that are in-between a segment
with an imposed velocity and a wall, it is recommended to impose the wall velocity, and to
deduce the pressure from the connected segments. For the vertices that are in-between a segment
with imposed pressure and a wall, it is recommended to impose the wall velocity and the open
boundary pressure. Furthermore, it is recommended to keep the masses of the vertices that are
in-between wall segments and open boundaries constant. Therefore, even though these particles
will be used to calculate the mass repartition factor β their masses will not evolve. This implies
that the open boundary vertices can be considered as an interpolation of the Eulerian fields
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imposed.
This means that in the implementation 4 loops would be necessary:

1. Calculate the values that are imposed

2. Update the vertices and segments according to the connected segments or vertices

3. Apply the marching scheme on the fluid particles

4. Update the masses of the open boundary vertices

Furthermore, it is good practice to impose the velocities on the inlets and to impose the
pressure on the outlets.

3.B.3 Mass of the vertices
For open boundaries segments it is strongly recommended that their masses stay between ±Mref.
For the vertices that are slightly above the free-surface or near walls, the SPH interpolation
can create mass fluxes that will break the condition −M0/2 < Mv < M0/2. This is particularly
critical at the outlets, and therefore it is recommended to clip the masses and for open boundaries
with imposed pressures, the mass flux above the free surface is only allowed to be negative.
Finally, above the free surface the mass is initialised at 0.

3.B.4 Constraints on the time-step
The marching scheme uses an adaptive time-stepping, where the time-step is calculated using the
following condition:

∆t ≤ 0.4h
c0

. (3.78)

And c0 is chosen so that the following rule is always true:

c0 ≥ 10 max
(
|umax | ,

√
gD

)
, (3.79)

where h is the smoothing length of the kernel w, D is the water depth (in case of free-surface
flows) and |umax | is the norm of the maximum fluid velocity in the domain (i.e. for the fluid
particles, but also for the open boundaries).

In addition, since γa is calculated through its gradient (see the marching scheme presented in
Equations (3.27)), this gives an additional constraint on the time step:

∆t ≤ 0.004
1

max
a ∈ F

{
max
s ∈ S
[|∇γas · (uas − vas)|]

} . (3.80)

Additional details about the numerical stability of WCSPH are available in Violeau and Leroy
(2014).
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4. Finite volume arbitrary Lagrangian-Eulerian
schemes using dual meshes

Abstract 4.1 For reasons of efficiency and accuracy, water wave propagation is often simulated
with potential or inviscid models rather than Navier–Stokes solvers, but for wave-induced flows,
such as wave-structure interaction, viscous effects are important under certain conditions.
Alternatively, general purpose Navier–Stokes (CFD) models can have limitations when applied
to such free-surface problems when dealing with large amplitude waves, run-up, or propagation
over long distances. Here we present an arbitrary Lagrangian-Eulerian (ALE) algorithm with
special care to the time-stepping and boundary conditions used for the free-surfaces, integrated
into code_saturne, and we test its capabilities for modelling a variety of water wave generation
and propagation benchmarks, and finally consider interaction with a vertical cylinder. Two
variants of the mesh displacement computation are proposed and tested against the discrete
geometric conservation law (GCL). The more robust variant, for highly curved or sawtoothed
free-surfaces, uses a compatible discrete operator scheme on the dual mesh for solving the
mesh displacement, which makes the algorithm valid for any polyhedral mesh. Results for
standard wave propagation benchmarks for both variants show that, when care is taken to
avoid grids with excessive numerical dissipation, this approach is effective at reproducing
wave profiles as well as forces on bodies.

This chapter is a reproduction of Ferrand and Harris (2021) with additional results.

Résumé 4.1 Pour des raisons de performance, la propagation des vagues est souvent simulée
en utilisant la théorie des écoulements potentiels, non visqueux, plutôt qu’en utilisant des
solveurs Navier–Stokes. Par contre, pour les écoulements induits par les vagues, comme
les interactions vagues/structures, les effets visqueux peuvent être importants. Les solveurs
Navier–Stokes (CFD) généralistes, quant à eux, peuvent avoir des difficultés pour simuler
des problèmes à surface libre avec des vagues de grande amplitude, des vagues qui montent
sur une plage ou encore leurs propagations sur de longues distances. Nous présentons ici un
algorithme arbitrairement lagrangien eulérien (ALE) intégré au logiciel code_saturne pour
lequel nous détaillons avec attention le schéma en temps et les conditions aux limites de
surface libre, et nous testons ses capacités sur une variété de cas tests de génération et de
propagation de vagues, ainsi que l’interaction d’une vague avec un cylindre. Deux variantes
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pour calculer le déplacement des nœuds du maillage sont présentées et testées (notamment la
loi de conservation géométrique discrète (GCL)). La version la plus robuste, notamment sur
les configurations avec courbure importante ou avec une surface libre en dents de scie, est
celle faisant appel aux schémas des opérateurs discrets compatibles (CDO) qui résolvent le
déplacement du maillage sur un maillage dual (à celui utilisé pour résoudre le fluide). Les
résultats démontrent que cette approche est capable de reproduire de façon satisfaisante les
profils des vagues et les efforts induits sur les structures.

Ce chapitre est une reproduction de Ferrand and Harris (2021) auquel s’ajoute quelques
résultats.
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4.1 Introduction
There are many applications to models of water waves, from understanding tsunami hazards,
to computing the forces on offshore structures, to understanding the performance of different
ship designs. Similarly, there are many different methods for modelling water waves; a recent
summary was given by Lin (2008). Due to the vast horizontal scales required to study ocean
waves, often a simplified approach is used, such as potential flow, with either nonlinear or
linearised free-surface boundary condition, or a depth-averaged approach, such as shallow water
or Boussinesq equations. Such specialised models efficiently propagate waves over long distances
without excessive numerical dissipation.

A direct approach to the physics would be to solve the full three-dimensional (3-D) Navier–
Stokes equations, in a domain covering both the water and air phases. In fact, some of the first
water wave models solved the Navier–Stokes equations in this way Chan and Street (1970), using
the Marker And Cell (MAC) method (Harlow and Welch, 1965). Many different methods for
tracking the free-surface have been developed, but variations of the Volume-Of-Fluid (VOF)
technique (Hirt and Nichols, 1981) have become quite popular for coastal engineering, using
it for wave modelling (e.g., Jacobsen et al., 2012) and wave-structure interaction (e.g., Chen
et al., 2014), as well as many others applications. Such approaches have the advantage of being
able to treat breaking waves, which is an important but complex issue ((e.g., Helluy, Philippe
et al., 2005)). One major drawback is that they require finer computational domains and tracking
the interface without diffusion is a challenge. For a recent discussion of wave propagation
benchmarks for VOF codes, see Wroniszewski et al. (2014).

Alternatively, one can use a boundary-fitted domain, and move the computational domain
at each time-step (Hirt et al., 1974). Such an arbitrary Lagrangian-Eulerian (ALE) approach
will be considered here. This is used in many ocean models (e.g., Telemac3D; Hervouet, 2007),
or non-hydrostatic wave models Ma et al. (2012), and these are able to solve such diverse
applications as landslide-generated tsunamis and surf-zone wave propagation. Many models
that use a boundary-fitted domain, however, are based on sigma-coordinate grids in the vertical,
which can have some limitations for dealing with complex grids or immersed bodies. These
limitations are removed with the present approach, where a more general mesh movement is
solved with specific free-surface condition for the mesh displacement. Although ALE cannot
model the details of overturning waves like a VOF approach, such non-hydrostatic wave models
are able to incorporate energy dissipation in order to represent breaking effects Zijlema and
Stelling (2008), and examples of this will be shown below.

In the context of ALE solvers, there have been many developments (see e.g., Donea et al.
(2004)). The sigma-coordinate grid mentioned above corresponds to a special case of the simplest
mesh regularisation approach, that of a transfinite mapping. To apply to more general meshes,
a common approach that will be discussed further below is a Laplacian smoothing approach
(e.g., Benson (1989)) where a Laplace or Poisson equation is solved for the mesh velocity in
the interior of the domain. One can consider other node solvers, and there exist more complex,
high-order shock-capturing schemes (e.g., Boscheri et al. (2014)). As well, general ALE solvers
often consider adaptive meshes, with a remeshing of the domain during the simulation, in order
to handle large mesh displacements (e.g., Re et al. (2017)). Such developments however can
be time-consuming (due to additional equations to solve), and are unnecessary for ocean wave
problems, as we consider waves that are not overturning. As a result, we consider only the
essential aspects of integrating an ALE scheme into an existing Navier–Stokes solver and the
resulting performance for ocean wave applications. For this, it is important to consider the
discrete geometric conservation law (GCL), which states that the volume change of a cell during
a timestep should be equal to the volume swept by the cell boundaries during that timestep. The
GCL is critical to ensure that the algorithm is robust (e.g., conserves mass and energy) for long
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time simulations (e.g. Thomas and Lombard, 1979; Zhang et al., 1993; Farhat et al., 2001; Storti
et al., 2012).

As a result, we consider below the numerical details required to develop a robust ALE finite
volume algorithm integrated in the open-source CFD solver code_saturne Archambeau et al.
(2004) for version 6.1 and newer, with particular attention to the discrete GCL. code_saturne
uses collocated finite volumes to solve the Navier–Stokes, Reynolds Averaged Navier–Stokes
(RANS), or Large Eddy Simulation (LES) equations, and has been used extensively in the
industry, from nuclear thermal hydraulic application (see Gauffre et al., 2020, for a recent
application), atmospheric modelling (e.g. Bahlali et al., 2020), electric arc modelling (e.g.
Chemartin et al., 2009), fire modelling (Ma et al., 2019), two-phase dispersed flows using hybrid
Moment/PDF approach (see Minier, 2016, for a valuable description of this method), ventilation,
combustion (e.g., coal, gas, biomass, Dal Secco et al. (2015)) and has also been used previously
for wave-current interaction (e.g. Teles et al., 2013; Benoit et al., 2018).

The Chapter is organised as follows. Before passing to the specific case of incompressible
flows of constant density used in all applications here, in Section 4.2, we present the governing
equations of the finite volume space and time discretisation for fixed meshes in terms that are
valid for both incompressible or compressible flows. Then in Section 4.3 we present the ALE
algorithm and specify the free-surface boundary condition, with special care on the time stepping
scheme to conserve uniform velocity fields. The original use of cell-based, for fluid quantities,
and vertex-based solvers (on the dual barycentric mesh), for the mesh displacement, is also
presented, and this improves on volume conservation. In order to facilitate very steep waves, a
filtering of spurious waves of length smaller than the mesh resolution is also introduced. Finally,
in Section 4.4, we consider numerous validation cases. This is first done with flow through a
valve, forced by a piston, showing that the velocity field remains accurate with a moving mesh,
then by looking at standing waves of a range of amplitudes to verify volume conservation and
model stability, a critical point for moving mesh algorithms. Then, satisfied that the model is
robust, we consider a number of different applications, including viscous damping of standing
waves, solitary wave propagation, wave propagation over a submerged bar, wave forces on a
monopile, and the modelling of a novel laboratory setup for long wave generation. This ensemble
of test cases demonstrates the ability of this approach to handle a wide variety of test cases of
interest to the ocean modelling community.

4.2 Methodology
4.2.1 Governing equations

To describe the governing equations, we begin with the conservative Cauchy momentum equations
written in vector notation:

∂ρ

∂t
+ div (ρu) = Ûm,

∂

∂t
(ρu) + div (u ⊗ ρ u) = div (σ) + f + Ûmuin, (4.1)

where u represents the fluid velocity, ρ is the density of the fluid, σ is the stress field, f is a field
of source terms (e.g., gravity, Coriolis, additional head losses), Ûm a possible mass source, and
uin the velocity of a possible injected fluid. For sake of simplicity, f = ρg and Ûm will be set to
zero hereafter.

The stress tensor σ is decomposed into an isotropic component, called the pressure p, and
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the deviatoric component, τ:

σ = −p1 + τ, (4.2)

and thus the Cauchy equations are:

∂ρ

∂t
+ div (ρu)= 0,

∂

∂t
(ρu) + div (u ⊗ ρ u)=−∇p + div (τ) .

(4.3)

For a Newtonian fluid, the constitutive law connecting the stress tensor to the deviatoric part
of the deformation rate tensor, given as SB 1

2
(
∇ u + ∇ uT

)
, is determined as:

τ (u) = µ
(
∇ u + ∇ uT

)
+

(
κ − 2

3
µ

)
tr (∇ u) 1, (4.4)

where κ is the volume viscosity, usually neglected and therefore omitted hereafter in this Chapter.
The combination of terms in the Cauchy momentum equations, Equations (4.1), and a

Newtonian fluid, Equation (4.4), gives the Navier–Stokes equations.
When ρ is considered constant, flow is incompressible and the mathematical model is

complete, otherwise the system should be supplemented with an energy equation and an equation
of state (EOS) between density, pressure and energy must be specified (see e.g. Colas et al.,
2019). Turbulent flows can also be considered subtracting the Reynolds stresses (for the RANS
approach) or the sub-grid stresses (for the LES approach) from the Cauchy stresses. In this
Chapter, only incompressible constant density flows will be considered.

4.2.2 Space and time discretisation
In this section, the time discretisation is detailed on a motionless meshed domain, and some
insight of the space discretisation are given. A finite volume scheme where the velocity and
pressure are stored at the cell barycentres, xc (see Fig. 4.1), is used.

Integrating conservative Equations (4.3) both in space and time leads to the definition of the
extensive quantities:

Vc =

∫
Vc

dΩ,

Mc =

∫
Vc

ρdΩ,

Qc =

∫
Vc

ρudΩ,

(4.5)

for cell volume Vc, cell mass Mc, and cell momentum Qc. As for the intensive quantities, let
ρc be considered the cell-averaged density, and let uc be the density-weighted cell-averaged
velocity, defined as:

ρc =
Mc

Vc
,

uc =
Qc

Mc
.

(4.6)
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Figure 4.1: Labelling of information used for a mesh. In green, xci is the barycentre of one cell
ci whereas xc j is the one of cj . Each face f is split into portions of faces associated to a vertex.
The portion of face f associated to a vertex v is drawn in solid orange, and is defined by x f , the
barycentre of f , the middle of the two edges of f passing through vertex v and xv itself. The
dual barycentric cell around a vertex v is defined by connecting surrounding cell centres, face
centres and edge centres.

We denote the exponent (.)n as the state at time-step tn, and similarly (.)n+1 as the state at time
tn+1, which is separated from tn by a time interval ∆t. Time-integrals over ∆t are denoted by

(.)|n+1
n B

1
∆t

∫ tn+1

tn
(.)dt.

Integrating the mass equation of Equations (4.1) over cell c and time interval ∆t and using
Gauss’ theorem gives:

Mn+1
c − Mn

c + ∆t
∑
f ∈Fc

(ρ u) f
��n+1
n
· Sc> f = 0, (4.7)

where Fc is the ensemble of all the planar polygonal faces of cell c and Sc> f is the outward
surface vector. Note that the quantity (.) f coming from the integration of the divergence is

defined as the average (in space) of (.) over the face: (.) f B
1
Sf

∫
f

(.)dS, and its expression with

respect to the cell values will be given by the space discretisation.
Performing the same computation for the momentum equation of Equations (4.1) gives:

Qn+1
c − Qn

c + ∆t
∑
f ∈Fc

(u ⊗ ρ u − σ) f
��n+1
n
· Sc> f = 0. (4.8)

There are many schemes for solving the Navier–Stokes equations with the finite volume
method (Versteeg and Malalasekera, 2007). Here, the Navier–Stokes equations are solved in two
steps: a prediction step for the velocities from the explicit pressure field, and a correction step,
where the continuity equation is used to calculate a change of pressure. The correction step adjusts
the mass flux to ensure mass conservation and then update the velocity field. Sub-iterations
for these two steps is also possible to perform a Pressure-Implicit with Splitting of Operators
(PISO)-like algorithm Issa et al. (1986). These iterations will be denoted below by the superscript
k, starting at 1.

For the prediction step, by default, an implicit Euler first-order scheme is used, where the
viscous shear stress is time-implicit, the pressure is time-explicit, and the convective term is
linearised and semi-implicit as follows:
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Vc

(
ρn+1,k−1
c ũk

c − ρncun
c

)
+∆t

∑
f ∈Fc

ũk
f

(
(ρ u) f

��n+1,k−1
n

· Sc> f

)
−∆t

∑
f ∈Fc

(
τ

(
ũk

) )
f
· Sc> f

= −∆t
∑
f ∈Fc

(
p f

��n+1,k−1
n

)
Sc> f , (4.9)

where ũk is the predicted velocity field to be solved, and the mass flux (ρ u) f
��n+1,k−1
n

· Sc> f is
initialised by (ρ u) f

��n+1,0
n

· Sc> f = (ρ u) f
��n
n−1 · Sc> f , p|n+1,0

n = p|nn−1, ρn+1,0 = ρn. Different
convective schemes for ũk

f have been implemented, including a pure upwind scheme, a Second-
Order Linear Upwind (SOLU), or a centred scheme with an optional slope test limiter. This last
approach is the one used for all test cases presented in this paper. The transpose of the velocity
gradient and the isotropic term are in fact implicit in time, with an iterative process used to
reconstruct terms due to the non-orthogonalities of the mesh if present Archambeau et al. (2004).

The unsteady term of Equation (4.9) is rewritten using the conservation of mass:

Vc

(
ρn+1,k−1
c ũk

c−ρncun
c

)
= Vcρ

n
c

(
ũk
c − un

c

)
− ∆t

∑
f ∈Fc

ũk
c

(
(ρ u) f

��n+1,k−1
n

· Sc> f

)
. (4.10)

(As mentioned above, although the density is taken to be constant in this paper, the density could
be updated through an equation of state, depending on scalars such as temperature or salinity; if
so, this modification would be applied here, before the correction step.)

During the correction step, a simplified momentum equation is solved under the mass balance
constraint:

ρn+1,k−1 u
n+1,k − ũk

∆t
+ ∇φk = 0,

(ρu) f
��n+1,k
n

· Sc> f =
(
ρn+1,k−1un+1,k

)
f
· Sc> f , (4.11)

Vc

(
ρn+1,k
c − ρnc

)
+ ∆t

∑
f ∈Fc

(
(ρu) f

��n+1,k
n

)
· Sc> f = 0,

where φk = p|n+1,k
n − p|n+1,k−1

n is the pressure increment. From Equation (4.11), a Poisson
equation is written for φk :

−
∑
f ∈Fc

(
∆t∇φk

)
f
· Sc> f = −

∑
f ∈Fc

(
ρn+1,k−1 ũk

)
f
· Sc> f − Vc

ρn+1,k
c − ρnc
∆t

. (4.12)

A Two-Point Flux Approximation (TPFA) with non-orthogonal reconstruction is used to discretise
the Laplace operator on φk Eymard et al. (2014), and the Rhie and Chow filter can be added to
the right-hand side of Equation (4.12) (see Archambeau et al. (2004) or Chapter 1, Section 1.2.1).
See Ferrand et al. (2014) for more details about the reconstruction process. Note that the first
line of Equation (4.11) is then used to update the cell velocity field un+1,k

c .
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4.3 ALE framework and free-surface condition
Next we consider the ALE formalism, and then present the time-stepping scheme used, showing
that volume is conserved when considering mesh displacement in a single dimension.

4.3.1 Governing equations
First it is necessary to formulate the equations governing the conservation of momentum in the
domain, Ω(t), which moves in time. We denote the velocity of mesh displacement field v (x, t),
for points x (x0, t) originally located at x0 and moving in the domain. The mesh velocity of Ω(t)
is thus written:

v (x, t) = ∂x (x0, t)
∂t

. (4.13)

We now consider a sub-domain Vc(t) of Ω(t). This domain corresponds to a cell of the mesh
previously described. Using the Leibniz integration rule (or Reynolds transport theorem), we can
evaluate the variation of an arbitrary tensor field Ψ in Vc(t) over time (here noted as a tensor of
order one, i.e., a vector, but the Leibniz integration rule is true for any order). This is written as:

d
dt

∫
Vc (t)
ΨdVc =

∫
Vc (t)

∂Ψ

∂t
dVc +

∫
∂Vc (t)

Ψ ⊗ v · dS. (4.14)

It is important to note that d
dt represents the total derivative of the integral quantity, that follows

the movement of Vc(t).
Applying the Leibniz integral rule, Equation (4.14), to the unity scalar field gives the way

cell volumes evolve:

d
dt

∫
Vc (t)

dΩ =
∫
∂Vc (t)

v · dS. (4.15)

This last equation (in a form integrated in time) is often called the geometrical conservation law
(GCL) and will be described in more detail in §4.3.2.

Performing the same calculation for the variation of mass d
dt

∫
Vc (t)

ρdΩ in the cell c and using
the first line of Equation (4.1) we obtain:

d
dt

∫
Vc (t)

ρdΩ +
∫
∂Vc (t)

ρ (u − v) · dS = 0. (4.16)

Applying again the Leibniz integral rule (4.14) to establish the conservation of momentum in
the domain Vc(t):

d
dt

∫
Vc (t)

ρudVc =

∫
Vc (t)

∂ρu

∂t
dVc +

∫
∂Vc (t)

ρu ⊗ v · dS. (4.17)

We apply the Cauchy momentum equation to replace ∂ρu
∂t of Equation (4.17), which gives us:

d
dt

∫
Vc (t)

ρudΩ +
∫
∂Vc (t)

u ⊗ ρ (u − v) · dS =
∫
∂Vc (t)

σ · dS. (4.18)
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4.3.2 Space and time discretisation
Let us start by integrating the volume conservation Equation (4.15) over a time step ∆t:

Vn+1
c − Vn

c =

∫ tn+1

tn

©«
∑
f ∈Fc

∫
f

v · dSª®¬ dt . (4.19)

For calculating the fluxes present in Equation (4.19), we must determine on which mesh we
will perform the calculations, whether on the mesh Ωn, or on Ωn+1, or on several meshes at
intermediate times between Ωn and Ωn+1.

If the mesh displacement is one-dimensional, as for smooth free-surface applications where
the movement of the mesh can be limited to the same direction as gravity (typically vertically),
without overturning, v = wez , the mesh velocity flux through cell faces can be discretised exactly
as:

Vn+1
c − Vn

c = ∆t
∑
f ∈Fc

v f
��n+1
n
· Sn

c> f (4.20)

=
∑
f ∈Fc

(
xn+1
f − xnf

)
· Sn

c> f ,

where xn
f

is the face barycentre at time tn. This choice will be motivated and justified in
Section 4.3.3.

Time integration of the conservation of mass and momentum, Equation (4.16) and (4.18),
gives:

Mn+1
c − Mn

c +
∑
f ∈Fc

∫ tn+1

tn
(ρ (u − v)) f · Sc> f dt = 0,

Qn+1
c − Qn

c +
∑
f ∈Fc

∫ tn+1

tn
u f (ρ (u − v)) f · Sc> f dt =

∑
f ∈Fc

∫ tn+1

tn
σ f · Sc> f dt . (4.21)

It is important to remark here that ρn+1
c and un+1

c correspond to the mean density and the mean
velocity of cell c at its location at time tn+1, and no reconstruction is needed.

At this point one must choose a discretisation in time to resolve the velocity field. As for the
discrete volume conservation, Equation (4.20), fluxes are written on the faces at time tn.

The prediction step for the velocity, which was written for fixed meshes in Eq. (4.9), can now
be written on moving meshes as:

Mn
c

ũk
c − un

c

∆t
−

∑
f ∈Fc

τ̃kf · Sn
c> f +

∑
f ∈Fc

(
ũk
f − ũk

c

)
(ρ (u − v)) f

��n+1,k−1
n

· Sn
c> f = −

∑
f ∈Fc

(
p|n+1,k−1

n

)
f
Sn
c> f .

(4.22)

We see that pressure and friction forces are applied on the mesh at time n and mass flux takes face
displacement into account. Again, the conservation of mass was used to transform the unsteady
term and rearranged with the convective terms.

The correction step of the velocity, Equation (4.11), remains unchanged on mesh at time tn. At
the end of this process, we obtain un+1,k

c , pc |n+1,k
n , and the fluid mass flux (ρu) f

��n+1,k
n
·Sn

c> f . Then,
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the mesh velocity is computed and the mass flux due to mesh displacement, (ρv) f
��n+1,k
n

· Sn
c> f ,

is subtracted from it. The total mass flux is used in any transport equation afterwards. We see
here that the mesh velocity has to be defined at the nodes of the mesh to move them, and it is
also used when calculating the flux (ρv) f

��n+1,k−1
n

· Sn
c> f at cell faces in Equation (4.22). Face

mesh-velocity is deduced from mesh-velocities at the vertices by:

v f
��n+1
n
=

∑
v∈Vf

vv |n+1
n · S f ,v

S2
f

Sc> f , (4.23)

where Sc> f ,v is the portion of face f outward vector associated to vertex v displayed in Fig. 4.1.

4.3.3 Verification of the discretised geometric conservation law
The geometric conservation law (GCL) states that a variation of volume Vc of a cell c between
time-step tn and tn+1 should be equal to the integral over this time interval of the mesh velocity
flux through faces of cell c:

Vn+1
c − Vn

c =

∫ tn+1

tn

∫
∂Vc

v · dS dt. (4.24)

The time integration scheme used for the mesh velocity allows one to rewrite the time integral as:

∫ tn+1

tn

∫
∂Vc

v · dS dt = ∆t
∫
∂V n

c

v |n+1
n · dSn. (4.25)

It is clear that the condition in Equation (4.24) does not hold true if the mesh velocity v contains
more than one direction of variation. The integration scheme must be modified if we want to
satisfy the GCL for mesh velocities which vary in two or three directions (see Farhat et al., 2001,
for a presentation of these types of schemes and their properties).

For one-dimensional mesh movement in z, one sees that
(
xn+1
f
− xn

f

)
·Sn

c> f =
(
zn+1
f
− zn

f

)
Sn
c> f , z

,
where Sc> f , z is the z component of S. Hence, volume of cell c can be computed as:

Vc =

∫
Vc (t)

div (0, 0, z) dΩ =
∑
f ∈Fc

z f Sc> f , z, (4.26)

and one can prove that Sc> f , z is constant over time. Indeed, we can first remark that Sc> f

can be defined using only surrounding vertices of f , even if the face is warped. Formulae
proposed by Carré et al. (2009) for a hexahedron can be extended for any polyhedron. We
can remark that Sc> f , x can be computed as Sc> f , x =

∫
f

curl r x · dS =
∮
∂ f

r x · dl with
r x =

1
2 (0, −z, y) such that curl r x = (1, 0, 0). Similarly, Sc> f , y =

∫
f

curl ry · dS =
∮
∂ f

ry · dl
and Sc> f , z =

∫
f

curl rz · dS =
∮
∂ f

rz · dl with ry =
1
2 (z, 0, −x) and rz =

1
2 (−y, x, 0) such that

curl ry = (0, 1, 0) and curl rz = (0, 0, 1). So Sc> f , z depends only on the x and y components of
the vertices of the surrounding edges of face f . Consequently, Equation (4.20) is exactly fulfilled
if faces remain planar. If the mesh displacement is 2-D or 3-D, the mesh velocity fluxes must be
split into two or three steps to exactly conserve the volume Farhat et al. (2001). Note also that the
calculation of Sc> f as a curl ensures that for any cell c,

∑
f ∈Fc Sc> f = 0 even for warped faces.
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Conservation of a uniform velocity field
The time integration scheme chosen has to have good properties to maintain a uniform velocity
field. This point is key if we would like to have a stable scheme and verify the maximum principle
(see Farhat et al., 2001).

Let us consider the numerical scheme of the prediction step, Equation (4.22), rewritten in
velocity increment δu = ũk − un for a constant pressure field:

Mn
c

∆t
δuc +

∑
f ∈Fc

(
δu f − δuc

)
(ρ (u − v)) f

��n+1,k−1
n

· Sn
c> f

= −
∑
f ∈Fc

(
un
f − un

c

)
(ρ (u − v)) f

��n+1,k−1
n

· Sn
c> f . (4.27)

We have not considered diffusive terms, but this does not change the conclusions here. From this,
it is easy to verify that for a uniform field un, the right-hand-side of Equation (4.27) is zero. For
an upwind convective scheme on the velocity increment, the system to solve is written as:

EMδun+1 = 0, (4.28)

with E Mcc =
Mn

c

∆t
+

∑
f ∈Fc

max
(
− (ρ (u − v)) f

��n+1,k−1
n

· Sn
c> f , 0

)
, and for c , c and f the face

between c and c,
E Mcc = −max

(
(ρ (u − v)) f

��n+1,k−1
n

· Sn
c> f , 0

)
. One can note that EM is a M-matrix (for all

c , c, E Mcc ≤ 0 and for all c, E Mcc >
∑

c |E Mcc |) and is therefore invertible.
Just like with a uniform zero velocity, the numerical verification of this assertion is presented

in Fig. 4.2, where an initial field u = ez1.0 m/s is not modified by the mesh displacement
imposed for all nodes by:

x − x0
L

= 4 sin
(
2πt
T

)
x0
L

(
1 − x0

L

) z0
L

(
1 − z0

L

) ©«

1

0

1

ª®®®®®®®¬
, (4.29)

where L = 1 m is also the size of the square computation domain, and T = 4 s is the period of the
mesh velocity variations.

4.3.4 Vector solving of the mesh velocity
Up to this point, we have considered a mesh velocity only to verify the boundary conditions of
the moving mesh, but any arbitrary velocity that satisfies these conditions is acceptable. Here,
the mesh velocity is given by solving a Poisson equation:

div (λ ∇ v) = 0, (4.30)
v |∂Ωimp (t) = Imposed velocity, (4.31)

∂ (v − v · n n)
∂n

����
∂Ω\∂Ωimp (t)

= 0, (4.32)

v · n |∂Ω\∂Ωimp (t) = 0, (4.33)



4.3 ALE framework and free-surface condition 129

(a) Mesh and velocity field at initial time. (b) Mesh and velocity field after 1 s.

Figure 4.2: Conservation of a uniform velocity field despite a two-dimensional deformation of
the mesh given by Equation (4.29).

where ∂Ωimp(t) represents the boundary of the domain with either a free-surface or imposed
velocity, and where ∂Ω \ ∂Ωimp(t) is the fixed boundary where we allow the mesh to slide along
this boundary. Of course one could also impose the mesh displacement within the domain, or
even zero (a fixed mesh), or impose a sliding condition on a free-surface (i.e., to fix a non-zero
value of v · n and fix a Neumann condition for the tangential part of the mesh velocity on the
boundary).

The tensor λ is normally taken to be the identity matrix, but an anisotropic heterogeneous
tensor can be chosen to make the mesh more rigid in a particular direction and in a given region.
Note that having an anisotropic λ induces a strong coupling between the components of the mesh
velocity v and therefore requires a coupled solver.

At this stage, it is important to note that it is more natural to solve Equation (4.30) with
each Degree of Freedom (DoF) stored at vertices of the mesh. code_saturne legacy schemes are
cell-based with the mesh velocity vc stored at the cell centres. Therefore, once vc is calculated,
nodes displacement must be deduced by interpolation.

code_saturne can make use of algorithms based on the compatible discrete operators (CDO)
framework Bonelle and Ern (2014), and DoFs can be either at cell centres (cell-based schemes)
or at vertices (vertex-based schemes). A CDO vector vertex-based solver on the dual barycentric
mesh is thus used to solve Equation (4.30) and is compared to the legacy approach detailed
hereafter.

Free-surface boundary condition
The next step is to make use of the ALE module for modelling a free-surface. This work is similar
to what is performed in other models like Telemac3D (Hervouet, 2007), in the sense that the
computational domain evolves with the free-surface, but contrary to Telemac3D, fluid velocity
and pressure are solved with a cell-based finite volume scheme and not with a vertex based finite
element scheme, and domain is meshed using cells of any star-shaped polyhedral type.

The aim of the proposed algorithm is to solve mesh velocity after solving fluid quantities
to impose correctly the kinematic condition at the free-surface without any sub-iterations. In
addition, the mesh-velocity solver is component-coupled so that sliding conditions are taken into
account in an exact manner.

To use the ALE module to simulate a free-surface, we first must specify the free-surface
boundary conditions for both the fluid and mesh velocities. For the first one, in the absence of
wind, a homogeneous Neumann condition is applied on the fluid as well as a constant pressure



130 Chapter 4. Finite volume arbitrary Lagrangian-Eulerian schemes using dual meshes

p0:

∂u

∂n

����
surface

= 0, p = p0. (4.34)

It would be possible to take into account wind by providing a shear stress between the air and
water (see Hervouet (2007) for an example of this approach). For simulations with turbulence, it
is also necessary to impose conditions for the turbulent quantities. Note that for a k − ε model, it
is preferable not to impose a homogeneous Neumann condition for these two quantities, as the
scale of the vortices (and thus turbulent viscosity) is reduced by the effect of the free-surface (see
Celik and Rodi, 1984, for more details).

The aim is to impose a kinematic condition for the mesh velocity:

v · n |surface = u · n |surface . (4.35)

For now we assume that the mesh velocity is unidirectional, for example v = wez . This
assumption is done following the remarks in 4.3.3 concerning the GCL.

Since mass flux is known explicitly when solving the mesh velocity, the flux u · n is used as
a boundary condition for the mesh velocity, as summarised below in Section 4.3.5.

Legacy approach: node displacements from the mesh velocity
In this section, cell-based mesh velocity vc is obtained with the vector coupled-solver and will be
denoted by the “legacy” version.

We differentiate first the nodes on the external boundaries (called the exterior nodes) and
others (called interior nodes). We specify here that the nodes which are on a sliding surface are
considered internal, with a specific treatment detailed hereafter. Thus, all nodes belonging to
∂Ωimp(t) are considered as external, all the others as internal.

Treatment of internal nodes
For an interior node v, we note Cv as the list of cells c which include node v. If xc is designated
the centre of a cell c ∈ Cv, the velocity vv of v is defined by:

vv =

∑
c∈Cv

1
Vc
(vc + ∇ vc · (xv − xc))∑

c∈Cv

1
Vc

. (4.36)

Treatment of exterior nodes
For an exterior node v, we set Fv as the list of external faces where v appears. If x f is designated
the centre of a face f ∈ Fv and xc is the centre of the cell where f appears, we then have a
velocity vv of v defined by:

vv =

∑
f ∈Fv

1��Sf

�� (
v f + ∇ vxc ·

(
xv − x f

) )
∑
f ∈Fv

1��Sf

�� . (4.37)
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xn+1
v

Figure 4.3: Illustration of the effect of the filtering (4.42) on the standing wave test case described
in Section 4.4.2 with an initial wavelength of 2∆x planned in one time step. Without filtering, no
fluid nor mesh motion is obtained.

Treatment of internal nodes at a sliding boundary
For an internal node v already treated by Equation (4.36) which also appears on a sliding face f
and with an exterior normal vector nc> f , we project vv on the face f as follows:

vv ← (1 − n ⊗ n) vv = vv − (vv · n) n. (4.38)

CDO approach: node displacements from the mesh velocity
In this section, mesh DoFs of the mesh velocity are directly associated to the nodes and the main
advantage is that no interpolation is needed to displace nodes:

xn+1
v = xnv + ∆t vv |n+1

n . (4.39)

At the same time, boundary conditions on primal boundary faces have to be translated in terms
of node mesh-velocity vv on the dual mesh for the free-surface condition. For a node v at the
free-surface, we set Fv as the list of external free-surface faces where v appears, and for each
face f of Fv , cf is the boundary cell to which f belongs to. The node mesh-velocity is therefore
defined as:

vv |n+1
n =

∑
f ∈Fv

ρu f

��n+1
n
· nc> f

ρc f

Sc> f ,v · ez∑
f ∈Fv

Sc> f ,v · ez
ez . (4.40)

Equation (4.40) does not ensure local conservation, because the face centre mesh velocity v f
��n+1
n

,

deduced from the nodes mesh velocity by (4.23) will not give back ρu f

��n+1
n
·nc> f

ρc f
. However, global

conservation is ensured:

∑
f ∈free-surface

ρc f v f
��n+1
n
· Sc> f =

∑
f ∈free-surface

ρu f

��n+1
n
· Sc> f . (4.41)

Repartition of mass fluxes from faces to nodes written in Equation (4.40) can be modified without
breaking the global conservation (4.41). Indeed, if we add any affine function of zero mean over
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face f , (4.41) still holds. This property is convenient to filter modes such as waves of length
λ = 2∆x where ∆x is the horizontal space grid, or to smooth too steep waves before they break
(from numerical, rather than physical, reasons). We modify Equation (4.40) by:

vv |n+1
n =

∑
f ∈Fv

(
ρu f

��n+1
n
· nc> f

ρc f

− αf

zv − z f
∆t

)
Sc> f ,v · ez∑

f ∈Fv

Sc> f ,v · ez
ez, (4.42)

where αf is a factor equal to 0 or 1 to activate the filter only when necessary. αf is set to 1
for face f when there is at least one of its nodes which is a local maximum (higher than all
the neighbouring face centres) and one of its nodes which is a local minimum (this criterion
corresponds to the characterisation of a wavelength 2∆x). αf is also set to 1 for face f which is
too steep (if one edge v0v1 is such that ∆x is smaller than ∆z, where ∆x and ∆z are defined by:

∆x =

(1 − ez ⊗ ez) ·
(
xv0+xv1

2 − x f

)  ,
∆z =

���( xv0+xv1
2 − x f

)
· ez

��� . (4.43)

Term αf
zv−z f
∆t acts as a volume-conservative smoother for nodes that have an elevation

different from the weighted mean elevation of the surrounding faces. The behavior of the filtering
given by Equation (4.42) is illustrated in Fig. 4.3 where the free-surface is initialised with a
sawtooth elevation of 2∆x wavelength, but quiescent domain (with zero fluid velocity). In this
case, water is supposed to be at rest and elevation modes cannot be suppressed by the legacy
scheme. The filtering is removing it in one step, without changing the potential energy based
on the elevation of free-surface faces. Similar types of instabilities have been known since
Longuet-Higgins and Cokelet (1976). More sophisticated approaches to removing this issue have
been illustrated by Mola et al. (2013).

4.3.5 Summary of the ALE algorithm
The algorithm described above to solve the Navier–Stokes equations on a moving mesh reads:

for time interval n to n + 1 do
for sub-iteration k do

Solve the predicted velocity ũn+1,k
c on Ωn;

Calculate corrected velocity un+1,k
c on Ωn and the flux u f

��n+1,k
n

· Sn
c> f ;

if using legacy solver for v then
Solve vc |n+1,k

n on the primal mesh Ωn with boundary conditions (4.35);
Reconstruct velocity from cell centred values at nodes vv |n+1,k

n ;
else if using CDO solver for v then

Calculate v boundary conditions at nodes;
Solve vv |n+1,k

n on the original dual mesh Ω0 with boundary conditions (4.35);
end if
Update mesh from Ωn to Ωn+1,k using vv |n+1,k

n ;
Calculate total mass flux ρ (u − v) f

��n+1,k
n

· Sn
c> f ;

end for
end for
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Figure 4.4: Sketch of the valve validation case.

4.4 Verification and validation test cases
In order to validate these developments for modelling wave propagation and wave-structure
interaction, we consider a variety of verification and validation test cases, showing the fluid
motion generated by a piston in order to validate the ALE module without free-surface condition;
standing waves in a closed basin with small and high initial wave amplitudes to verify volume
conservation; the viscous damping of waves, in order to validate the proper rate of decay due to
viscosity; the propagation of a solitary wave, showing the exact reproduction of a large amplitude
wave; the propagation of waves over a submerged bar, showing the ability to handle shoaling; the
force on a vertical cylinder in regular waves, showing issues of wave-structure interaction; and
finally comparisons against a novel type of wave-maker.

4.4.1 Test case of a 2-D axisymmetric piston
This case consists in studying a fluid flow inside a cylindrical valve (piston) with a sudden
expansion. Numerical results are compared to experimental data from Durst et al. (1989).
The simulated domain is axisymmetric. The flow is laminar (Re ' 320), with a density of
ρ = 1000 kg/m3 and a dynamic viscosity µ = 4 × 10−3 kg/m/s.

Fig. 4.4 describes the geometry and boundary conditions for the Navier-Stokes equations
and the mesh velocity. Two different kinds of “mobile wall condition” are implemented in
code_saturne:

• imposed velocity of the interface at the centre of each boundary face;

• given displacement of each node of the mobile interface.

When imposing piston motion, it is decomposed into six steps in which either the piston velocity
vp or the piston displacement dp are prescribed, as summarized in Table 4.1.

The piston extension is maximum at time TTDC (Top Dead Center, xp = Xmax = 0.141 m)
and minimum at time TBDC (Bottom Dead Center, xp = Xmin = 0.121 m) given in Eq. (4.44).
The maximum velocity during the injection phase is Vi = 0.006 22 m/s, and the time during the
acceleration phase in which the velocity passes from zero to Vi is given by Ti = 0.05 s. The
minimum velocity during the compression phase is Vc = 0.0265 m/s, and the time during the
acceleration phase in which the velocity passes from zero to −Vc is given by Tc = 0.18 s where
Xi =

Vi × Ti
2

, Xc =
Vc × Tc

2
. Note that for the maximum expansion time and the complete
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Time Piston velocity Piston displacement

0 ≤ t ≤ Ti vp =
Vi

Ti
t dp =

Vi

Ti

t2

2

Ti ≤ t ≤ TTDC − Ti vp = Vi dp = Xi + Vi (t − Ti)

TTDC − Ti ≤ t ≤ TTDC vp =
Vi

Ti
(TTDC − t)

dp = 2Xi + Vi (TTDC − 2Ti)

−Vi

Ti

(TTDC − t)2

2

TTDC ≤ t ≤ TTDC + Tc vp = −
Vc

Tc
(t − TTDC)

dp = 2Xi + Vi (TTDC − 2Ti)

−Vc

Tc

(t − TTDC)2

2

TTDC +Tc ≤ t ≤ TBDC −Tc vp = −Vc

dp = 2Xi + Vi (TTDC − 2Ti)

−x2 − Vc (t − TTDC − Tc)

TTDC − Tc ≤ t ≤ TBDC vp = −
Vc

Tc
(TBDC − t) dp =

Vc

Tc

(t − TTDC)2

2

Table 4.1: Piston prescribed velocity and displacement.

compression time the following equations holds:

TTDC =
Xmax − Xmin + 2Xi

Vi
' 3.265 s,

TBDC =TTDC +
Xmax − Xmin + 2Xc

Vc
' 4.200 s.

(4.44)

Axial velocity profiles and radial velocity profiles are respectively displayed in Fig. 4.6 and
in Fig. 4.7 for the compression step, and in Fig. 4.8 and in Fig. 4.9 for the injection step. The
sub-figures correspond to the different abscissae.

First, one can notice that same results are obtained with the CDO and legacy solver for the
mesh velocity, and from imposing mesh displacement or directly the mesh velocity. This is
expected because the code transforms the mesh displacement boundary condition into a mesh
velocity boundary condition to compute it. One can also verify that the incoming and outgoing
mass flux should be equal to the imposed mass flux due to the valve displacement. As the flow is
incompressible, the two fluxes displayed in Fig. 4.5 must be equal.

4.4.2 Standing wave in a closed basin
This case is initialised by a free-surface with a sinusoidal form with a wavelength λ. We consider
a basin with length L = 400 m, and average depth h0 = 10 m and we fix λ = L

2 . The domain is
two-dimensional (i.e, one cell thick) and the mesh used is composed of 10 cells in the z direction
and 400 in the x direction.

In order to fix a period of the wave close to 10 s, we take the acceleration due to gravity to be
g = 40 m/s2.

(Alternatively, we could start from a nonlinear standing wave solution instead of a pure
sinusoidal initial condition, but our goal here is not to look at the nonlinear wave dynamics, which
we will consider in the next cases, but simply to evaluate the volume conservation and stability.)
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Figure 4.5: Comparison of mass flux computed at the open boundary (green) and the value
imposed by the piston, represented in black dots.

The free-surface deforms over time, and with an initial amplitude A, one or several (particularly
for large amplitude initial conditions) modes become visible. To evaluate the numerical algorithm
used, we begin by studying a wave which is quasi-linear.

Linear standing wave
When A

h0
� 1, linear wave theory can be used to describe the free-surface, zsur f (x, t), which is

given by:

zsur f (x, t) = A cos
(
2πx
λ

)
cos

(
2πt
T

)
, (4.45)

where the period of the wave is given by the celerity c, as T = λ
c , with the dispersion relation

giving:

c2
0 = g

λ

2π
tanh

(
2πh0
λ

)
. (4.46)

In fact we consider a shallow water case, where h � λ, so we can approximate this as c0 '
√
gh0.

We obtain precisely:

c0 =

√
g
λ

2π
tanh

(
2πh0
λ

)
' 19.681 m/s, (4.47)

giving T0 =
λ
c0
' 10.162 s.

We choose to start with a case with wave amplitude A = 0.025 m. The simulation of one
hundred periods is shown in Figure 4.10 where we can observe the evolution of the wave height
in time at the point x = 0 (the centre of the domain).

The period obtained numerically is Tnum = 10.163 ± 0.001 s (the range obtained is taken to
be the time-step divided by the number of periods observed). This is therefore a good match for
the theoretical T0, which we see in Fig. 4.10, T = T0 ± 0.025 s.

We note that in Fig. 4.10, that for a relatively long duration, the wave-height remains nearly
constant which indicates that the model is not losing significant amounts of volume nor energy.
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Figure 4.6: Axial velocity profiles at different positions x for the compression step (xp = 0.127 m).
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Figure 4.7: Radial velocity profiles at different positions x for the compression step (xp = 0.127 m).
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Figure 4.8: Axial velocity profiles at different positions x for the injection step (xp = 0.135 m).
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Figure 4.9: Radial velocity profiles at different positions x for the injection step (xp = 0.135 m).
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Figure 4.10: Time series of wave elevation at the centre point in the case of a standing wave. The
initial wave amplitude is given as A = 0.025 m for an average water depth of h0 = 10 m.
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Nonlinear standing waves and the conservation of volume
When the amplitude A of the initial sinusoidal deformation is increased, linear theory is no
longer valid, and other modes of oscillation can appear. The goal here is not to study the other
modes, but to determine the validity of the numerical developments presented here. As the initial
amplitude increases from A = 0.025 m up to A = 2.5 m (a case that was numerically unstable in
earlier versions of code_saturne), we can consider the relative variation in volume over time.

We recall that from §4.3.3, this volume numerically does not necessarily remain constant
using the legacy approach because of the interpolations between nodes and cell centres cause
differences in how the mesh and fluid velocity are considered. On the contrary, the CDO approach
shows a good total volume conservation over time. The error remains under the precision used to
solve the mass equation.

In Figure 4.12, we see that the relative variation in volume for all amplitudes with the CDO
approach does not exceed 10−9, which is smaller than the mass solver precision (10−8 is the
tolerance used here for the pressure solver). As expected, for larger wave amplitudes with the
legacy approach, the loss of volume becomes larger, but this variation in volume seems to stabilise
after an initial adjustment period. For example, for an amplitude of 2.5 m, the quasi-total loss of
volume is made at the beginning of the simulation, when the wave of 2.5 m breaks into a number
of other wavelengths.

The most non-linear case can also be used to see the effect of the filtering introduced with
the CDO solver (see Figure 4.11).

4.4.3 Viscous damping of waves
To verify that the application of these ALE schemes has not affected the ability of the algorithm
to properly model viscous effects, we next consider a standing wave, similar to the previous
section, but with viscosity added. We consider a wave which normally would be considered a
deep water case, and then can use the solution from Lamb (1945) to describe the viscous decay
and also the extension to arbitrary depths as in Antuono and Colagrossi (2013).

The domain we consider is again two-dimensional, 128 × 64 cells (in the x- and z-directions,
respectively, with a width of L = 2 m and depth h0 = 1 m. The bottom boundary-condition
is no-slip, but the side boundaries are free-slip. For this test case, we take ρ = 1 kg m−3 and
g = 1 m s−2, to make all variables non-dimensional. A time-step of

√
π/50 s was used, which

corresponds to 1
100

th of the period of oscillation for an inviscid linear wave. Instead of having an
initial free-surface elevation, here we impose on an undisturbed domain the velocity field of a
standing Airy wave solution:

u (x, t = 0) =

©«

ωA sin k x
cosh (k(z + h0))

sinh (kh0)

0

−ωA cos k x
sinh (k(z + h0))

sinh (kh0)

ª®®®®®®®®¬
. (4.48)

Taking kh0 = π, and a wave amplitude of A = 0.005h0, the dispersion relationship, ω2 =

gk tanh kh0, reduces to the deep-water case. After, we examine the evolution of the kinetic
energy, EK (t) =

∫
Ω
| |u | |2/2dΩ, compared to the expected exponential decay, where EK (t) ∝

e
−β

√
g
h0

tEK (0) for a coefficient β.
In deep water, the viscous dissipation of waves due to the viscosity of the fluid has been

studied since the work of Lamb (1945), who predicted β = 4π2/Re. The exact rate of decay is
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(c) t = 20 s.
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(d) t = 30 s.
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Figure 4.11: Snapshots of free-surface for the filtered (in blue) and the non-filtered (in orange)
mesh-velocity boundary condition for the standing wave test case with an initial A = 4 m and an
average depth of h0 = 10 m; a close-up with three times magnification is added to emphasise the
differences, mainly next to the peaks.
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h0 = 10 m. Dashed line shows the precision of the solver for pressure (10−8).



144 Chapter 4. Finite volume arbitrary Lagrangian-Eulerian schemes using dual meshes

0 2 4 6 8 10

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E K
(t

)/
E K

(0
)

legacy

CDO

Lamb

Antuono, Colagrossi

0 2 4 6 8 10

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E K
(t

)/
E K

(0
)

0 2 4 6 8 10

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E K
(t

)/
E K

(0
)

Figure 4.13: Evolution of the kinetic energy for Re = 50 (left), Re = 500 (centre), and Re = 2500
(right), showing the decay of energy as compared to the theoretical solution from Lamb (1945)
and Antuono and Colagrossi (2013).

slightly different in this case, because for low Reynolds numbers (where Re = h0
√
gh0/ν), this

classic solution does not take into account the bottom boundary layer, and even though for inviscid
waves, for wave-numbers kh0 ≥ π, we are in the deep-water regime, a more complete solution was
provided by Antuono and Colagrossi (2013), who solved the linearised Navier–Stokes solution
that included the effect of the bottom boundary layer, thus β = 4π2Re−1 − 2

√
2π11/4Re−1.5, and

showed results that more closely match what is obtained here (Fig. 4.13). In this case, little
difference is seen between legacy and CDO solvers, as the amplitude of motion is very small.

4.4.4 Solitary wave
In addition to handling a moving free-surface, for ocean engineering applications it is important
to be able to generate waves, particularly steep waves. One form of this which can easily be
studied mathematically is a solitary wave, where the wave translates over constant depth without
changing shape.

Here we consider a domain L = 40 m long, a depth h0 = 1 m, and a wave with moderately
large relative height A/h0 = 0.6. Viscosity is reduced to a negligible value, so any changes to
the wave shape in the domain should be due entirely to numerical errors. Again we consider a
non-dimensional case, with ρ = 1 kg m−3, g = 1 m s−2, h0 = 1 m.

On the wave-maker (left) boundary, the solution of the Euler equations is approximated using
a highly accurate solution of the Korteweg–De Vries equation proposed by Dutykh and Clamond
(2014) to impose the horizontal and vertical velocity fields as a boundary condition. In order to
start with a wave tank initially at rest, the wave is shifted in time so that the wave crest passes
x = 0 m at t = 8.0 s.

On the other (right) side, an Orlanski-type radiative outlet is imposed, where all variables
(i.e., velocity and pressure) are assumed to propagate at the theoretical celerity of the wave; see
Orlanski (1976) or the code_saturne theory documentation Team (2021) for more detail. Note
that this outlet condition is only useful for this case, where the solitary wave-speed is known. For
more general cases where different waves propagate at different speeds, other damping methods
are required, as discussed in the next application.

We are able to reproduce a solitary wave elevation within a few percent at a gauge in the
middle of our domain (Fig. 4.14). The reflection is of similar magnitude, and likely due partly to
an inaccurate wave celerity (i.e., the speed of the numerically modelled wave is not the same as
the theoretical value, taken to be the convective outlet velocity).

In order to understand the errors associated with wave propagation, we consider three different
grids, with 200 × 5 cells (∆t = 0.01

√
h0
g ), 400 × 10 cells (∆t = 0.005

√
h0
g ), and 800 × 20 cells

(∆t = 0.0025
√

h0
g ). With ∆x = ∆z = 0.1h0, we get an arrival time (and thus wave-speed) error

of less than 1% for both legacy and CDO solvers.
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Figure 4.14: Wave elevation at x = 20 m over time for different discretisations (dotted: ∆x =
∆z = 0.2h0; dashed: ∆x = ∆z = 0.05h0), compared to the theoretical solution (solid line).

We also see a near linear convergence rate for the wave amplitude (Table 4.2), which is
expected for the low-order method used here.

4.4.5 Wave propagation over a submerged bar
A common test of non-hydrostatic wave models is propagation over a submerged bar, which is
beyond the range of a shallow-water assumption, or even some Boussinesq models (e.g., the
O(µ)2 model of Wei et al. (1995)). We consider here the experimental results of Beji and Battjes
(1993), comparing against time-series measured at various wave gauges.

In this test case, 17500 hexahedral cells are used to discretise the domain which is physically
30 m long, with a depth of 0.4 m, with a bar of minimum depth 0.1 m. For this case, a k − ε
turbulence model will be used, in part to demonstrate that it does not negatively impact the
propagation of the waves in non-breaking conditions.

Waves are absorbed on the right side through a surface pressure proportional to the vertical
velocity at the surface, similar to Grilli and Horrillo (1997). Here, we impose a surface absorbing
pressure, pabs(x, t) on the free-surface, which smoothly increases from zero inside the domain,
up to some maximum, depending on the vertical velocity, uz , at the free-surface:

pabs(x, t) =
{

CAB(ρuz
√
gh)

( x−xAB

h

) 2 x > xAB
0 x ≤ xAB

, (4.49)

where here xAB = 20 m and CAB = 0.003 (chosen by trial-and-error).
On the left side, the velocity is imposed as a boundary condition, using second-order Stokes

wave theory, similar to Ma et al. (2012), to ensure mass conservation, with a wave period of 2.5 s.
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Scheme ∆x
h0
= ∆zh0

Crest Rel. error Arrival time Rel. error Reflection Rel. error

Legacy 1/5 0.536 -10.75% 16.31 1.94% 0.064 10.67%

1/10 0.573 -4.51% 16.09 0.53% 0.062 10.36%

1/20 0.594 -1.05% 16.00 0.01% 0.064 10.58%

CDO 1/5 0.540 -9.93% 16.28 1.75% 0.037 6.25%

1/10 0.570 -5.00% 16.10 0.62% 0.037 6.22%

1/20 0.583 -2.92% 16.06 0.34% 0.045 7.52%

Table 4.2: Errors in wave-elevation at x = 20 m for solitary wave propagation test case at different
grid resolutions.

Two different test conditions are considered; one for non-breaking waves, and one with plunging
waves. The incident wave parameters were chosen to best represent the signal recorded at the
first wave gauge, at the toe of the submerged bar, in order to best match experimental conditions
and imprecision in the physical wavemaker.

For the non-breaking condition, a 2.9 cm incident wave-height was considered in the basin.
Looking at the wave elevation over time at both this wave-gauge (WG1, at x = 6 m), as well as at
the front and back of the shallowest region of the submerged bar (WG3 and WG5, at x = 12 m and
x = 14 m), we see that the waves are well-represented (Fig. 4.15). For this case, the differences
between legacy and CDO solvers are negligible.

For the plunging wave condition, 5.4 cm incident wave is considered for the same setup. Like
in the previous case, we are able to verify that the incident wave elevation at the toe of the bar is
well represented by the code, and while the peak elevation is overpredicted, the overall form of
the time-series is also captured over the bar (Fig. 4.16). Initially this is unexpected, as with the
ALE approach we do not consider an overturning wave, but others (e.g., Zijlema and Stelling,
2008; Bradford, 2011; Ma et al., 2012) have observed that non-hydrostatic models are able to
reproduce correctly some aspects of breaking waves. Notably, we see here that the turbulent
kinetic energy and dissipation rate show that the turbulence model is most active exactly in the
region where breaking waves are expected (Fig. 4.17), though clearly the exact dynamics of the
free-surface are not captured.

Note that a homogeneous Neumann condition is used at the free-surface, but as the scale of
the vortices (and thus turbulent viscosity) is reduced by the effect of the free-surface, in general a
more sophisticated free-surface boundary condition is needed for the turbulent quantities (see
Celik and Rodi, 1984, for more details).

One criticism of general-purpose CFD models for the applications being considered here
may be their computational speed in comparison with specialised wave propagation models. As
the submerged bar test case has frequently been considered for validation and demonstrating the
dispersive properties of wave models, this can be used as a basis of comparison. For this we use
the 3D code NHWAVE Ma et al. (2012), with an identical grid and identical starting timestep of
1/256th of one wave period. NHWAVE uses an adaptive timestep in function of CFL number,
but this does not vary significantly during this test case, so the two models should require a
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Figure 4.15: Wave elevation time-series at the toe of a submerged bar (at x = 6 m) and at the
front (at x = 12 m) and back (at x = 14 m) of the top of the bar for non-breaking wave conditions,
compared to Beji and Battjes (1993).
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Figure 4.16: Wave elevation time-series at the toe of a submerged bar (at x = 6 m) and at the
front (at x = 12 m) and back (at x = 14 m) of the top of the bar for plunging wave conditions,
compared to Beji and Battjes (1993).
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Figure 4.17: Turbulent kinetic energy (m2/s2) over a submerged bar under plunging wave
conditions, corresponding to the experimental test case of Beji and Battjes (1993), at t = 31.2594 s.

similar amount of computational effort. To minimize variations between the tests, results were
obtained on a single Intel Core i7 processor, with 645.0 s for code_saturne with the legacy
scheme of code_saturne (and 2680.0 s with the unoptimised conjugate gradient linear solvers
for CDO scheme) versus 559.0 s for NHWAVE. This is not meant to be an exact comparison
between the two codes, as NHWAVE can benefit from higher-order approaches which are not
present in code_saturne, and code_saturne can be used on types of grids which are not available
with NHWAVE, but merely to show that code_saturne can be used to provide a reasonable
performance.

4.4.6 Forces on a vertical cylinder in regular waves
A common application of wave-models is the understanding of forces on bodies. Here we
consider the nonlinear forces exerted on a vertical bottom-mounted cylinder (i.e., a monopile) in
regular waves. Huseby and Grue (2000) conducted a range of experiments which has commonly
been used for benchmarking numerical tools (Ferrant, 2000; Shao and Faltinsen, 2014) for the
forces of periodic forces on a cylinder of radius R = 3 cm, in a depth of 0.6 m, at a range of wave
conditions. Here we consider the case with kR = 0.245, and a wave steepness of k A = 0.10. For
this application, no turbulence model was used, but a viscosity of 1 × 10−5 m2/s was applied,
slightly higher than the molecular viscosity, in order to stabilize the model and account for some
viscous effects.

The grid used consists of 77406 hexahedral cells in a domain of width 0.5 m and length 3.5 m,
with the cylinder positioned in the centre of the domain, with a time-step of T/100. Second-order
Stokes waves are used to impose the incoming waves, and the same damping setup as the previous
case (Equation 4.49) is re-used here, with xdamp = 2.5 m and Cdamp = 0.25. The simulations
are performed for 10 wave periods T , with a quasi-steady state being reached for t > 7T . A
short-time Fourier transform is used to evaluate the convergence of the integrated force on the
cylinder in the x-direction, f (t) (Fig. 4.18):

F(m)(t) =
2
T

∫ t+T

t

F(t) eimωτdτ, (4.50)
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Figure 4.18: A vertical cylinder in regular waves (upper panel, at t = 10T), and the corresponding
variation in time of the first three harmonics of the horizontal force, as evaluated by a short-time
Fourier transform.

and we see that the computed force compares well to the experimentally determined values
(Table 4.3), using data from four periods, after a spin-up time of 7 periods has passed.

Further study of different amplitudes showed that local instabilities near the monopile are
found at higher incident wave-heights, likely due to local wave breaking or an importance of
local viscous effects that require a finer mesh than considered here. Here the legacy solver was
used for the presented calculations, though little change was seen with the CDO solver.

4.4.7 Bottom-tilting wave-maker
In the ocean, tsunamis exhibit extremely long wavelengths that can be difficult to realistically
replicate in a physical wave tank or basin, which are normally designed to handle conditions
representative of wind-waves. While there has been extensive studies with solitary waves, it is
known that solitary waves do not correctly represent the waves which are actually experienced
in a tsunami, as shown by Madsen et al. (2008). As a result, Lu et al. (2017) have developed a
bottom-tilting wave maker, testing on a small wave tank, 2 m long (see Fig. 4.19a; i.e., L = 1 m).
This provides a validation case where one of the boundaries is thus moving.

This 1 m long flap is either starting from a lowered position, moving up, or starting from a
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code_saturne Exp.

|F1 |/(ρgAR2) 6.42 6.45

|F2 |/(ρgA2R) 0.41 0.40

|F3 |/(ρgA3) 0.29 0.37

Table 4.3: Harmonic components of the surge force on a monopile in deep water, with kR = 0.245
and wave amplitude k A = 0.1, comparing with the experiments of Huseby and Grue (2000).

raised position, moving down, and stopping when the bed is flat. One can then propagate the
waves over a long time, reflecting between two walls, even from a very small tank. Numerically,
this is described such that the depth, h(x, t), is:

h(x, t) =



h0 x > L
or t > bL√

gh0
,

h0 +
L−x
L (ah0)[1 − t

√
gh0
Lb ] x < L

and t < bL√
gh0
,

(4.51)

where the prescribed motion has a non-dimensional amplitude a and time b. For validation,
we consider the results for a resting water depth of h0=5 cm, with a duration b = 1.4, and an
amplitude a = ±0.8.

The grid is discretised with 5 vertical levels and 100 cells in the lengthwise direction and
11 cells in the spanwise direction (i.e., ∆x = 2 cm, ∆y = 1 cm, and ∆z ≈ 1 cm), and a time-step
of 0.009 s is used. It is assumed that all boundaries are smooth walls. The flap motion itself is
imposed by fixing the mesh velocity.

The wave elevation was measured at a gauge at the centre of the tank (i.e., directly over the
hinge), and we are able to reproduce the experimental values to a reasonable degree of accuracy,
for both upward (Fig. 4.19b) and downward (Fig. 4.19c) motion.

4.5 Summary
Here we present recent developments of the ALE module of code_saturne for the simulation of
free-surface flows, and then the results of applying the resulting model to ocean waves. Although
certainly there are limitations to using a finite volume ALE model such as code_saturne in terms
of wave steepness, we can see that for certain circumstances, understanding the limitations of
numerical dissipation and lower-order elements, a general CFD solver not specialised for water
wave propagation can produce useful results in reasonable amount of time. Validation tests were
presented for multiple setups, showing that the model is able to exactly conserve mass with the
vertex-based solver on the dual barycentric mesh, correctly conserve energy, propagate waves,
and compute forces on structures.

In future work, comparisons will be made between the ALE module and the recently released
VOF module, which will enable the complex modelling of breaking waves, but at an increased
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Figure 4.19: Bottom-tilting wave-maker schematic, and the wave profiles that are generated by
an initial movement, compared to the experiments of Lu et al. (2017).

computational cost. In order to offset this increase in computational time, a coupling between
code_saturne and far-field inviscid models will be considered.
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5. Conclusion

This manuscript first introduced some basics for studying the fluid motion in presence of a
free-surface. As a material surface, a free-surface is naturally studied using Lagrangian approach.
Balance equations written in conservative form lead to discrete local balance on finite volume.
These balances can be performed on moving volumes with an arbitrary Euler / Lagrange view, and
a classical prediction – correction algorithm is proposed to time discretised the set of equations.
The SPH method in its Lagrangian form is introduced and derived from the Lagrange equations.
One of the key issue of the SPH method is to deal with (Eulerian) wall boundary conditions or
open (Eulerian) inlet – outlet boundaries.

Chapter 2 introduced an approach to deal with walls with the SPH method which is both
simple and robust. The simplicity lies in the manner we compute the Eulerian renormalisation
term γa with an integration in time which only requires the analytical computation of its gradient
∇γa. The robustness is due to the integration in time of the continuity equation which makes the
density field depend only on the particles’ positions. This allows long time simulations with a
relatively larger time step and is a major advantage for conservation properties. The definition of
new boundary corrected differential operators (gradient, Laplacian) allows one to fix boundary
conditions and fluxes on the pressure field, the wall shear stress but also any scalar fields such as
k and ε in a turbulence model.

Chapter 3 extended the semi-analytical approach in the SPH method to derive boundary
terms for unsteady open boundaries which can be of complex shape. This is performed using
the following main ingredients: divergence operator is boundary corrected, mass of boundary
particles is made time-variable and they are used to create new fluid particles for entering flow
and Riemann problem is solved to correctly impose the state on the boundary. A special care is
also given to the time integration of the mass equation.

Boundary condition presented in this manuscript can be extended to 3-D, and one of the main
challenge is to efficiently compute the renormalisation factor gradient. An algorithm is proposed
in Appendix D.4. An extension to axisymmetric formulation is also proposed in Appendix D.5
and gives encouraging results compared to the really few algorithms proposed in the literature.

Finally, the finite volume method in its ALE formulation is applied to (gentle) free-surfaces,
using an original mixing between a cell-based scheme for fluid conservation laws and a vertex-
based CDO scheme to compute nodes displacements. A special care to free-surface conditions at
the discrete level is given and the dual scheme is used with advantages to filter short-waves modes.
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Some insights are given to the space discretisation of the cell-based Poisson problem in Appendix
A and extension of the present algorithms to second time-order is proposed in Appendix C.



A. An anisotropic diffusion finite volume algorithm
using a small stencil

Abstract A.1 This chapter presents a finite volume algorithm to solve anisotropic heterogeneous
diffusion equations within the open source CFD software code_saturne. This algorithm has
the advantage to use a small stencil composed of face neighbouring cells only, which makes it
easy to parallelise. The resolution is performed through an iterative process (fixed point Picard
algorithm). Second order convergence in space is numerically obtained on various analytical
test-cases and mesh sequences of the FVCA6 benchmark and the results are compared to the
barycentric version of the SUSHI scheme Eymard et al. (2010).

This chapter is a reproduction of Ferrand et al. (2014). A description of a conjugate-gradient
type algorithm to solve the process is added.

Résumé A.1 Ce chapitre présente un algorithme de volumes finis pour résoudre des problèmes
de diffusion hétérogène anisotrope. Cet algorithme est intégré au logiciel open-source
code_saturne. Il présente l’avantage de ne faire appel qu’à un petit stencil composé uniquement,
pour une cellule donnée, des cellules voisines par les faces, ce qui le rend facilement
parallélisable (comme le reste des algorithmes historiques de code_saturne). La résolution du
problème est faite au travers d’un algorithme de type point fixe de Picard. Une convergence
d’ordre deux en espace est obtenue numériquement sur quelques cas tests et différentes
séries de maillages du benchmark FVCA6 (ces résultats sont comparés au schéma SUSHI
barycentrique Eymard et al. (2010)).

Ce chapitre est une reproduction de Ferrand et al. (2014) auquel s’ajoute la description
de l’algorithme de type gradient conjugué que l’on peut activer pour résoudre le processus
itératif de façon accélérée.

A.1 Introduction
Several discretisation schemes for anisotropic, heterogeneous diffusion problems are presented in
the literature, especially with the finite volume method (see Eymard et al. (2000), or the 2-D
Svyatskiy (2008) and 3-D Eymard et al. (2011) benchmarks). In this Appendix, we propose a
two-point flux approximation (TPFA) scheme for non-Cartesian grids within an industrial code
called code_saturne (see Team (2021) for more information), applied to various steps in the core



160 Chapter A. An anisotropic diffusion finite volume algorithm using a small stencil

solver (diffusion part of scalar transport equation with Generalised Gradient Diffusion Hypothesis
(GGDH) Dehoux et al. (2017), projection step of the predictor-corrector Navier-Stokes solver in
presence of head-losses, etc.). Therefore, the proposed scheme is aimed to be highly parallelised,
with a ghost-cells technique, and should use the smallest stencil possible to be run on large
meshes.

In this Appendix, the space discretisation is presented in Section A.2, then the scheme is
derived from the flux continuity property, the resolution is performed through an iterative process.
The obtained results are compared to the barycentric version of the SUSHI scheme Eymard et al.
(2010) and provided in Section A.3.

The tensor product denoted by ⊗ makes a tensor of order n + m from two tensors of order n
and m. The dot product denoted by · makes a tensor of order n − 1 + m − 1 from two tensors of
order n et m (n > 0, m > 0). This product is identified to the canonic dot product on vectors for
two first order tensors, to the canonic matrix/vector product for a second order tensor and a first
order tensor.

A.2 Space discretisation of the anisotropic heterogeneous diffusion equation
In this chapter, 0th-order tensors (identified to scalar fields) are not bold, whereas first-order
tensors (identified to vector fields) and second-order tensors (identified to matrix fields) are bold.

The studied Poisson equation reads:



−div (K · gradψ) = Sψ on Ω,

ψ = ψd on D ⊂ ∂Ω,

(K · gradψ) · n = Qd on N = ∂Ω \ D .

(A.1)

where we denote by ∂Ω = Ω \ Ω the boundary of the domain Ω, an open bounded connected
polyhedral subset of Rd (d is the space dimension), ψ is the scalar field defined on the domain Ω
and belongs to H1 (Ω), K is the tensor diffusivity field, assumed to be symmetric positive definite
on the whole domain, continuous by part and limited, and Sψ ∈ L2 (Ω) a source term. The
boundary conditions on the field ψ are composed of Dirichlet conditions on D, and of Neumann
conditions on N . D and N are partitions of the boundary ∂Ω.

Space discretisation
The domain is discretised into cells Vc on which K is supposed to be constant. The barycentre of
a cell c (respectively of a cell c) is denoted by xc (respectively by xc). Two cells c and c are said
to be neighbours if they share a face noted fc |c of centre x f . The intersection between fc |c and
the vector xc − xc is xo. The unit normal vector to the face fc |c oriented from c to c is nc>c,
the surface of fc |c is Sfc |c , and we define Sc>c = Sfc |c nc>c. The set of all interior faces of c is
denoted F int

c . Finally, x ′c (respectively x ′
c
) is the orthogonal projection of xc (respectively of

xc) with respect to the face fc |c.
Faces shared by one and only one cell c are said to be boundary faces and denoted fb. nc> fb

is the outward normal to the face fb, and Sc> fb is the normal vector to the face which norm is the
surface. The set of boundary faces of c is denoted by F ext

c , whereas Fc is the set of all faces
of c. Finally, x ′c is the orthogonal projection of xc with respect to face normal of fb. All the
geometric definitions are recalled on Figure A.1(a) and on Figure A.1(b). The cell mean of ψ in
c is defined by ψcB

1
Vc

∫
Vc

ψdΩ.
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code_saturne uses a finite volume scheme where the solved variables are stored at cell
centres: i.e. ψxc = ψc. The discretised field ψ is assumed to be affine on each cell. Therefore,
for every point x ′′c of a cell Vc, the following relationship reads:

ψx′′c = ψc + gradcψ ·
(
x ′′c − xc

)
, (A.2)

where gradcψ is the ψ gradient, constant within each cell. Face quantities are defined by:
ψf =

1
S f

∫
S f
ψdS. Thanks to the affinity of ψ, we have ψf = ψx f . Integrating Equation (A.1)

over a cell Vc gives:

−
∑
f ∈Fc

(K · gradψ) f · Sc> f = VcSψc . (A.3)

Two-point flux approximation scheme
The aim of this Section is to write a two-point flux as for isotropic diffusion problem on orthogonal
meshes (see Eymard et al. (2014) for a description of TPFA schemes). One can notice that for
the face fc |c, the diffusive flux seen by cell c can be written as:

(K c · gradψ) · nc>c = (gradψ) ·
(
KT

c · nc>c

)
. (A.4)

The tensor K is symmetric, therefore KT = K . The Equation (A.4) indicates that the direction
K c · nc>c is optimal to discretise the flux. Let x ′′c (resp. x ′′

c
) be a point on the line passing

through x f with direction vector K c · nc>c (resp. K c · nc>c). The diffusive flux seen from cell c
is then approximated by:

(K · gradψ)x f
· nc>c = (gradψ)x f

· (K c · nc>c) '
‖K c · nc>c ‖

x ′′c x f

(
ψx f − ψx′′c

)
, (A.5)

where x ′′c x fB
(
x f − x ′′c

)
· (K c ·nc>c )
‖K c ·nc>c ‖ is the algebraic distance between x ′′c and x f . The flux

seen from cell c is approximated by:

(K · gradψ)x f
· nc>c = (gradψ)x f

· (K · nc>c) '
‖K c · nc>c ‖

x f x
′′
c

(
ψx′′

c
− ψx f

)
, (A.6)

where x f x
′′
c
B

(
x ′′
c
− x f

)
· (K c ·nc>c )
‖K c ·nc>c ‖ is the algebraic distance between x f and x ′′

c
. Enforcing

the continuity of the fluxes (A.5) and (A.6) yields:

ψx f =

(
x ′′c x f

‖K c · nc>c ‖
+

x f x
′′
c

‖K c · nc>c ‖

) −1 (
ψx′′c

x f x
′′
c

‖K c · nc>c ‖
+ ψx′′

c

x ′′c x f

‖K c · nc>c ‖

)
. (A.7)

Therefore ψx f is the weighted harmonic mean depending on K · n in cells c and c. Injecting
(A.7) in (A.5) gives a two-point formula for the flux through face fc |c:

− (K · gradψ) fc |c · nc>c =
K fc |c

x ′′c x
′′
c

(
ψx′′c − ψx′′

c

)
,

where the equivalent scalar face diffusivity K fc |c is defined by:

K fc |c

x ′′c x
′′
c

=

(
x ′′c x f

‖K c · nc>c ‖
+

x f x
′′
c

‖K c · nc>c ‖

) −1

. (A.8)

Besides, boundary terms are discretised as:

− (K · gradψ) fb · nc> fb = Af
ψ + B f

ψψx′′c .
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Vc

Vc

fc |c

•xc

• xc
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x ′c

•
x ′
c•
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• x ′′
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K c · nc>c

−K c · nc>c

(a) Interior face.
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•
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nc> f

−K c · nc> f

(b) Boundary face.

Figure A.1: Sketch displaying interior and exterior faces with reconstruction points x ′′c and x ′′
c

.
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Non-orthogonalities reconstruction and iterative solving
As the field values of ψ at x ′′c and x ′′

c
are not degrees of freedom of the discretised field, they are

written in terms of ψc and ψc using the cell gradient through (A.2):

ψx′′c = ψxc + gradcψ ·
(
x ′′c − xc

)
,

ψx′′
c
= ψxc

+ gradcψ ·
(
x ′′
c
− xc

)
.

(A.9)

One should note that the choices for x ′′c and x ′′
c

are still arbitrary, the only requirement is
that x ′′c − x f should be collinear to K c · nc>c and x ′′

c
− x f should be collinear to K c · nc>c.

Eventually, inserting (A.9) in Equation (A.3) reads:

∑
fc |c ∈Fint

c

K fc |c

x ′′c x
′′
c

(
ψc − ψc +

(
gradcψ ·

(
x ′′c − xc

)
− gradcψ ·

(
x ′′c − xc

) ) )
+

∑
fb ∈Fext

c

(
Af
ψ + B f

ψ

(
ψc + gradcψ ·

(
x ′′c − xc

) ) )
− Vc fc = Ec (ψ) = 0,

(A.10)

where E (.) is the affine operator to be solved and ψ be the vector containing the degree of
freedom (vector of size Ncel) of the discretised field ψ: ψ =

[
ψ1, · · · , ψi, · · · , ψNcel

]
.

Equation (A.10) is solved using a Picard fixed-point. This approach is widely used in
industrial CFD codes because it gives a linear system with good invertibility properties and with
low memory consumption due to the small stencil. The problem (A.10) can be rewritten as: find
ψ so that E (ψ) = 0. Let

(
ψk

)
k∈N be a series initialised at 0 defined by:

EM
(
δψk+1

)
= E

(
ψk

)
,

ψk+1 = ψk + δψk+1,

(A.11)

where EM (·) is the linear operator built with non-reconstructed fluxes:

E Mc

(
δψk+1

)
=

∑
fc |c ∈Fint

c

K fc |c

x ′′c x
′′
c

(δψc − δψc) +
∑

fb ∈Fext
c

B f
ψδψc . (A.12)

EM can be considered as an approximation of the Hessian matrix of the affine operator1 E (·).
The incremental vector is computed at each sub-iteration solving a linear system of size

Ncel × Ncel . The sparse matrix EM is composed of a diagonal of size Ncel and an extra-diagonal
of size Nf ac (number of interior faces), The linear system (A.11) is rewritten into:

©«

D1 X i j

. . .

X ji DNcel

ª®®®®®®®¬︸                      ︷︷                      ︸
Size Ncel

©«

δψk+1
1

...

δψk+1
Ncel

ª®®®®®®®¬
=

©«

E
(
ψk

)
1

...

E
(
ψk

)
Ncel

ª®®®®®®®¬
. (A.13)

1 Operator E (·) is affine and not linear because of the right-hand-side or when boundary conditions are non-zero.
It will not be affine anymore if convection is taken into account, limiters or slope tests are non-linear.
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R EM is a M−matrix: each diagonal component is strictly positive (∀c, Dc > 0), each
extra-diagonal component is negative and the opposite of the sum of the extra-diagonal
terms of the same line is inferior to the diagonal term of the line (∀c, Dc ≥ −

∑
c

Xcc).

Thus, EM is invertible and its inverse is positive definite. In all the numerical test cases,
a conjugate gradient combined with an algebraic multi-grid algorithm is used to solve
(A.11).

R A conjugate-gradient type algorithm can be developed to improve the convergence speed
of the iterative process (A.11). Indeed, noting α such that the update of ψk+1 is now:

ψk+1 = ψk + αδψk+1, (A.14)

an optimal value for α can be derived, minimising the L2 norm
E (

ψk+1) . Noting A (.)
the linear part of E (.) and B = R (0), we obtain:

α = −
〈
A

(
δψk+1) , E

(
ψk

) 〉A (
δψk+1) 2 . (A.15)

Note that this only requires to store the vector of size Ncel E
(
ψk

)
and to compute (and

store) the vector A
(
δψk+1) . This can be improved again storing the last two increments of

the iterative process δψk+1 and δψk and replacing (A.14) by:

ψk+1 = ψk + αδψk+1 + βδψk . (A.16)

Minimising again
E (

ψk+1)  gives optimal values for α and β that are:

β =

〈
A

(
δψk+1) , A

(
δψk

) 〉 〈
A

(
δψk+1) , E

(
ψk

) 〉
−

A (
δψk+1) 2 〈

A
(
δψk

)
, E

(
ψk

) 〉A (
δψk+1) 2 A (

δψk
) 2 −

〈
A

(
δψk+1) , A

(
δψk

) 〉2 ,

α = −
〈
A

(
δψk+1) , E

(
ψk

) 〉
+ β

〈
A

(
δψk+1) , A

(
δψk

) 〉A (
δψk+1) 2 .

(A.17)

The denominator of β is zero if and only if A
(
δψk+1) and A

(
δψk

)
are collinear. In

this case, β is set to 0. Note that (A.17) does not require additional computation (only
additional storing of a vector of size Ncel) compared to (A.15). This dynamic relaxation
makes the present algorithm converge on Kershaw type meshes.

If x ′′c and x ′′
c

were chosen as orthogonal projections on the lines passing through x f with
respective direction vectors K c · nc>c and K c · nc>c , it would not ensure the positivity of the face
viscosity K fc |c defined by (A.8) and the resulting matrix EM defined in (A.12) would loose its
invertibility property. Hence, we choose to maintain x ′′c and x ′′

c
on the same side of the face fc |c

as xc and xc, by setting: x′′cx f

‖K c ·nc>c ‖ = max
[ (

x f −xc
)
·K c ·nc>c

‖K c ·nc>c ‖2
, ε

x′cx f

‖K c ·nc>c ‖

]
, with ε set to 0.1.

That tends to drive away the built matrix from the one defined in (A.10), and thus requires more
reconstruction sweeps, but keeps the matrix as a M−matrix. Finally, the reconstruction gradient
used in Equation (A.10), is the standard cell-gradient displayed in the theory documentation of
code_saturne Team (2021).

A.3 Verification test cases
In this Section, numerical results obtained on the FVCA6 benchmark test cases Eymard et al.
(2011) are presented and compared to the barycentric version of SUSHI scheme Eymard et al.
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(2010). The number of unknowns of the linear system is denoted by nu. We deliberately have not
chosen exactly the mandatory meshes of the benchmark, but all the presented cases are run on
hexahedral meshes (HEX), tetrahedral meshes (TET), prism meshes with triangle bases (BLS)
and prism meshes with general bases (DBLS) of the benchmark mesh database (see Figure A.2).

(a) HEX mesh. (b) TET mesh. (c) BLS mesh. (d) DBLS mesh.

Figure A.2: An overview of mesh sequences.

Then the following orders of convergence are defined:

ratiol2(i) = −3
log

(
erl2(i)
erl2(i−1)

)
log

(
nu(i)
nu(i−1)

) , ratiograd(i) = −3
log

(
ergrad(i)
ergrad(i−1)

)
log

(
nu(i)
nu(i−1)

) ,

where i is the number of the mesh (from the coarser to the finer), erl2(i) is the normalized
discrete L2-error on the solution of the mesh number i, ergrad(i) the normalized discrete
L2-error on the gradient. In all cases below, the value of the analytical solution is imposed as a
Dirichlet.

The first analytical test-case is defined by:

K =

©«

1 0.5 0

0.5 1 0.5

0 0.5 1

ª®®®®®®®¬
,

ψana = 1 + sin (πx) sin
(
π

(
y + 1

2

) )
sin

(
π

(
z + 1

3

) )
.

(A.18)

The second analytical test case is defined as follows:

K =

©«

1 + y2 + z2 −xy −xz

−xy 1 + x2 + z2 −yz

−xz −yz 1 + x2 + y2

ª®®®®®®®¬
,

ψana = x3y2z + x sin (2πxy) sin (2πxz) sin (2πz) .

(A.19)

This case is representative of the applications covered by the algorithm (GGDH on the diffusive
term of a scalar transport equation) with an heterogeneous and anisotropic tensor K , but not
discontinuous.
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The last analytical test-case presented here is:

K =

©«

1 0 0

0 1 0

0 0 1000

ª®®®®®®®¬
, ψana = sin (2πx) sin (2πy) sin (2πz) . (A.20)

(a) Case 1.

Meshes ratiol2 ratiograd

HEX 1.985 1.265

TET 2.136 1.029

BLS 1.888 1.016

DBLS 1.727 1.009

(b) Case 2.

Meshes ratiol2 ratiograd

HEX 1.968 1.447

TET 2.090 0.927

BLS 1.962 0.922

DBLS 1.728 1.467

(c) Case 3.

Meshes ratiol2 ratiograd

HEX 2.002 2.001

TET 2.321 1.691

BLS 1.702 1.012

DBLS 2.042 1.593

Table A.1: Orders of convergence for the two finest meshes of hexahedral (HEX), tetrahedral
(TET), prism with triangle bases (BLS) and prism with general bases (DBLS) mesh sequences
for cases (A.18), (A.19) and (A.20).

The Picard fixed-point algorithm is considered converged when the normed residual becomes
smaller than 10−10. Note that, by construction, no iteration is needed for cases with hexahedral
meshes and orthotropic diffusion coefficients (e.g. case (A.20) and HEX meshes). On presented
verification cases about 30 iterations are needed to obtain the required precision (up to 177
sweeps for (A.20) case with the finest TET mesh). A summary of convergence ratios is displayed
in Table A.1 for the two finest meshes of each mesh sequence. We can notice that the order of
convergence is around 2, even greater for the two finest tetrahedral meshes. This is due to the
fact that the penultimate mesh is of poorer quality than the finest one as displayed on Figure A.3.
One can remark that the numerical results have a precision of the order of the barycentric version
of the SUSHI scheme, but are more sensitive to the mesh quality. The worst accuracy is obtained
with the tetrahedral meshes. We also must admit that the results on Kershaw-type meshes are not
shown, since the present scheme is sensitive to the mesh quality criterion, which are worst as the
meshes are finer in the Kershaw-type sequence.

Conclusion
A new algorithm which solves anisotropic heterogeneous diffusion problem is presented. It gives
satisfactory results on various types of meshes with an approximate second order of convergence
in space in L2-norm and with a precision close to the one obtained with the SUSHI scheme.
Its main advantage is the small stencil needed, which allows an highly parallelisation of the
algorithm within the industrial CFD code code_saturne.
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Figure A.3: L2 error norm for Y and its gradient.
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B. A non-linear convective scheme to ensure
minimum-maximum principle for transported vari-
ables by an incompressible flow in code_saturne

Abstract B.1 This appendix recalls the finite volume time and space discretisation used in
code_saturne and introduce some classical non-linear convective schemes for scalar transport
equation in an incrompressible flow. This is of particular interest for many physical modelling,
such as fire modelling. This appendix presents a new continuous blending, originally proposed
by Jérôme Laviéville, which ensure minimum-maximum principle for the transported scalar at
the discrete level.

This work has been performed during the internship of David Iampietro in 2015 I
supervised, in collaboration with Bertrand Sapa, EDF R&D, MFEE, and has been integrated
in code_saturne by myself.

Résumé B.1 Cette annexe rappelle la discrétisation volumes finis en espace et en temps utilisée
dans code_saturne et introduit quelques schémas classiques non-linéaire pour la discrétisation
spatiale du terme convectif des équations de transport de scalaire pour un écoulement
incompressible. Cela est particulièrement intéressant pour beaucoup de modélisation physiques,
comme les incendies. Cette annexe présente aussi un nouveau schéma mélangeant continuement
le schéma choisi à un schéma décentré amont afin d’assurer le principe du minimum-maximum
au niveau discret pour le scalaire transporté. L’idée de ce schéma revient à Jérôme Laviéville.

Ce travail a été réalisé dans le cadre du stage de fin d’étude de David Iampietro que j’ai
encadré, en collaboration avec Bertrand Sapa, d’EDF R&D, département MFEE, et ce travail
a été intégré à code_saturne par mes soins.

B.1 Introduction
Convection is present in a wide class of fluid mechanics applications. Particularly in the case
of fire modelling where the flow is highly non stationary, the medium is expansible and where
many chemical species are transported. Convection is directly linked to hyperbolic conservation
laws which have been studied theoretically and numerically for almost forty years. In some gas
dynamics cases, physical solution has a sharp profile or is discontinuous across a propagation
front. Even if conservative monotone schemes have good properties in terms of entropy, and so,
on physical solution selection, they are at most first order accurate. Numerical diffusion corrupts
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dreadfully the nature of the solution especially during long time simulation. Although a large
panel of second-order finite difference schemes exists (e.g., P.D. Lax (1960), R. Beam (1976), or
the method proposed in Fromm (1968)), they trigger spurious oscillations in areas where the
computed solution gradients are sharp. As a consequence, new solution extrema appear in these
areas. This can considerably alter the CFD simulation quality, for example in the case where
convected chemical mass fractions are supposed to remain between zero and one overall the
simulation.

Many authors have found ways to pass through this difficulty by introducing non linearities
inside the numerical convective flux. Several methods have already been developed and tested
numerically. J.P. Borisi (1973) and Zalesak (1979) have designed the Flux Corrected Transport
(FCT) method which consist in adding successively diffusion in steep gradients areas and
anti-diffusion in smooth areas. Harten and Osher (1987) and Harten et al. (1986) have laid
the foundations of the Essentially Non Oscillatory (ENO) schemes. This method is based on
polynomial interpolation coupled with linear combinations of stencils maintaining the spurious
oscillations amplitude at the same level as the order of accuracy of the scheme. Eventually,
Harten (1982) has introduced the notion of Decreasing Total Variation (DTV) schemes which
prevent the non physical oscillations from appearing by imposing the discrete total variation
of the computed solution to decrease throughout simulation. Sweby (1984) provides the shape
of a limiter area in which a limiter function has to lie for the second order limited scheme to
become DTV. Yee (1989) goes through the different limiter-inspired methods to make sure that a
numerical scheme is DTV.

More recently in X. Zhang (2011), Zhang and Shu derive a high order finite volume scheme
respecting the maximum principle without using the DTV criterion. Their method involves
monotone fluxes1 and feed them with face values obtained thanks to a modified Gauss-Lobatto
quadrature ensuring accuracy and the maximum principle preservation.

Although these methods produce satisfying numerical results in one dimensional or multi-
dimensional structured meshes, it is hard to implement them on three dimensional unstructured
meshes. Indeed, even the notion of total variation does not hold any more in that case. Besides,
methods based on interpolation to build the discrete high order face values become expensive
computationally as the number of faces of the unstructured cell grow. In our work, as in X. Zhang
(2011), spurious oscillations issues have been put aside in order to focus on the minimum and
maximum principle. A new kind of limiter function has been designed to make sure that the
limited numerical scheme respect the minimum-maximum principle along the simulation. This
new limiter can directly be written in a 3-D unstructured formalism, is easy to compute and
requires limited computational time.

In a first part the system of equations looked on is presented and the three dimensional
unstructured finite volume scheme is described. Then, the new limiter formula is derived. Finally
different simulation results are presented using the finite volume unstructured open-source solver
code_saturne Team (2021). Firstly, the transport of a scalar at constant velocity and density is
performed. Secondly a variation of this case allows density to vary in space and time.

B.2 Conservation laws
B.2.1 System of continuous equations

The system of continuous equations at stake describes mass, momentum and intensive scalar
conservation:

1Which are known to provide numerical maximum principle if their arguments are cell values.
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∂ρ

∂t
+ div (ρ u) = Ûm, (B.1a)

∂

∂t
(ρu) + div (u ⊗ ρu) = div (σ) + f u, (B.1b)

∂

∂t
(ρψ) + div (ψ(ρu)) = div (Jψ) + Sψ, (B.1c)

ρ = ρ(ψ). (B.1d)

In Equations (B.1), ρ is the fluid density, u the flow velocity, ψ a given conserved scalar.
In our case it is supposed that E is constant. Ûm, f u and Sψ represent source terms. σ stands
for the stress tensor, containing the effect of pressure p, and viscous stress τ. Assuming σ is a
symmetric tensor, we have, for Newtonian fluids:

σ = τ − p1,

with τ = 2 µ S +

(
κ − 2

3
µ

)
tr(S) 1,

and S =
1
2
(∇u + ∇uT ).

(B.2)

In Equation (B.2), µ represents the dynamic molecular viscosity and κ is the secondary
viscosity, set to zero hereafter. 1 is the identity matrix.

Besides, Jψ is the diffusive vector flux of scalar, which, using the Fick-Fourier law can
usually be expressed as:

Jψ = Kψgradψ, (B.3)

with Kψ standing for the molecular diffusivity pertaining to ψ. For example, in the typical cases,
ψ can be either pressure or temperature. In fire dynamics it can also model the mass fraction of a
mix of two burning gas whose density are ρ1 and ρ2:

ρ (ψ) = 1/
(
ψ

ρ1
+
(1 − ψ)
ρ2

)
. (B.4)

Most of the cases met in code_saturne are said to be incompressible. This means that the
Mach number defined as MBU0

c where U0 is a reference speed linked to the flow and c the speed
of sound is widely smaller than 1. The effect of every pressure wave propagating at velocity close
to c can be neglected because it will not be seen by the flow.

Subsequently, the mass production Ûm, the diffusive flux and the source terms related to the
scalar ψ are no longer taken into account. Thus, Equations (B.1a) and (B.1c) become:

∂ρ

∂t
+ div (ρ u) = 0,

∂

∂t
(ρψ) + div (ψρu) = 0.

(B.5)

B.2.2 code_saturne: a multi-step finite volume code for incompressible flows
In this section, the whole algorithm to compute densities, velocity, mass fluxes and pressure in
described assuming the flow is incompressible.
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Time discretisation
The velocity pressure coupling in code_saturne is solved with a fractional step algorithm that
can be related to Semi-Implicit Method for Pressure Linked Equations-Consistent (SIMPLEC)
algorithm. Additional details can be found in Archambeau et al. (2004).

Let us consider time step n, extending from tn to tn+1 and define φn the value of a variable
φ(t) at time tn. Moreover, define ∆tBtn+1 − tn and momentum integrated over a time step is
written q |n+1

n B ρu |n+1
n . At time step n, pn, un, q |n+1

n and ψn are already known from the
preceding time step. In addition ρn+1 has been found thanks to equation of state: ρn+1 = ρ(ψn).
The algorithm can be split into three major steps:

Step 1: prediction step
Velocity is predicted using the explicit pressure gradient gradpn. Hence, the system finally reads:

ρnu∗ − ρn−1un

∆t
+ div

[
u∗ ⊗ q |nn−1 − µ

(
∇u∗ + (∇u∗)T − 2

3
div (u∗)1

) ]
= −gradpn + f nu .

(B.6a)
p and ψ remain unchanged in this step.

Step 2: correction step
In this step the predicted velocity is corrected by introducing a pressure variation gradient
grad(pn+1 − pn). The new momentum q |n+1

n is designed to enforce mass conservation equation
(B.1a). The system is therefore:

ρn+1un+1 − ρnu∗
∆t

= −grad(pn+1 − pn), (B.7a)

ρn+1 − ρn
∆t

+ div
(
q |n+1

n

)
= 0, (B.7b)

q |n+1
n = ρn+1un+1. (B.7c)

In practice, to derive a system for pressure variation, one takes the divergence of Equation
(B.7a) and uses Equation (B.7b) to eliminate q |n+1

n , which yields the following Poisson equation:

div
[
∆t grad(pn+1 − pn)

]
=
ρn+1 − ρn
∆t

+ div (ρnu∗). (B.8)

Step 3: scalar update step
In this step scalar advection Equation (B.1c) is solved. Contrary to the velocity derivation in this
appendix, ψ is discretised using a θ-scheme to reach second order in time. Indeed, ψ related
to the convective flux (inside the divergence operator) is approached by ψn+θBΘ

(
ψn, ψn+1) =

(1 − θ)ψn + θ ψn+1. Hence one gets:

ρn+1ψn+1 − ρnψn

∆t
+ div

[
ψn+θ q |n+1

n

]
= 0. (B.9a)

Space discretisation
Space discretisation is derived only for the scalar ψ which is the variable of first interest in our
simulations. By applying a spatial average 1

Vc

∫
Vc

. dΩ over an unstructured polygonal cell c and
defining the scalar average as:

ψ̃n
cB

ρψ
n
c

ρnc
B

1
Vc

∫
Vc

ρψ dΩ

1
Vc

∫
Vc

ρ dΩ
. (B.10)
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Notations in this section have been chosen to draw a link to the Reynolds and Favre averages in
turbulence modelling.

Defining Fc the set of faces delimiting the border of the cell c, one obtains:

ρc
n+1 = ρc

n − ∆t
Vc

∑
f ∈Fc

ÛMc> f

��n+1
n

, (B.11a)

ρc
n ψ̃

n+1
c − ψ̃n

c

∆t
− ψ̃

n+1
c

Vc

∑
f ∈Fc

ÛMc> f

��n+1
n
+

1
Vc

∑
f ∈Fc

ψn+θ
f

ÛMc> f

��n+1
n
= 0, (B.11b)

with:

ÛMc> f

��n+1
n
B

(∫
f

q |n+1
n dS

)
· nc> f , (B.11c)

ψn+θ
f B

(∫
f

ψn+θ q |n+1
n dS

)
· nc> f

ÛMc> f

��n+1
n

(B.11d)

' Θ

©«

(∫
f

ψn q |n+1
n dS

)
· nc> f

ÛMc> f

��n+1
n︸                           ︷︷                           ︸

ψn
f

,

(∫
f

ψn+1 q |n+1
n dS

)
· nc> f

ÛMc> f

��n+1
n︸                              ︷︷                              ︸

ψn+1
f

ª®®®®®®®®¬
. (B.11e)

Replacing Vc
ρc

n+1−ρc n

∆t ψ̃n+1
c by −ψ̃n+1

c

∑
f ∈Fc

ÛMc> f

��n+1
n

using the exact mass balance, a numer-

ical scheme for scalar ψ is obtained:

Vcρc
n

∆t

(
ψn+1
c − ψn

c

)
−

∑
f ∈Fc

ψn+1
c
ÛMc> f

��n+1
n
+ θ

∑
f ∈Fc

ψn+1
f
ÛMc> f

��n+1
n

+ (1 − θ)
∑
f ∈Fc

ψn
f
ÛMc> f

��n+1
n
= 0,

(B.12)

where .̃ are dropped for sake of simplicity from now on.

B.2.3 Face approximations
Consider Figure B.1 representing two unstructured cells sharing one common face f . ψn

c and ψn
c

are located at the barycentres of the cells. Point x f is the middle of the shared face whereas xo
is the middle of the segment made of the barycentres. Sc>c is the outward face normal vector
multiplied by the face surface. The face normal vector is actually oriented from cell c toward cell
c. Point x ′c and x ′

c
are the orthogonal projection of the barycentres on the line normal to the face,

passing through x f . In addition let us define ac>cB

���x′c−x f

������x′
c
−x′c

��� .
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Vc

Vc

fc |c

•xc

• xc

•
x ′c

•
x ′
c

•
x f

nc>c

Figure B.1: Two neighbouring unstructured cells.

In code_saturne, there are many options to approximate the face values ψn
f

using the
neighboring cell values. Table B.1 summarizes all the formulae:

Name Formula Notation

First-order upwind ψU,n
f
B

{
ψn
c if ÛMc> f

��n+1
n
≥ 0,

ψn
c

otherwise. 1U

Second-order
linear upwind
(SOLU)

ψ
2U upw,n
f

B

{
ψn
c +GradUc {ψn} ·

(
x f − xc

)
if ÛMc> f

��
n
≥ 0,

ψn
c
+GradU

c {ψ
n} ·

(
xc − x f

)
otherwise. 2U upw

SOLU variant of
code_saturne

ψ2U,n
f
B

{
ψn
c +Gradc {ψn} ·

(
x f − xc

)
if ÛMc> f

��
n
≥ 0,

ψn
c
+Gradc {ψn} ·

(
xc − x f

)
otherwise.

2U clas-
sic

Center ψC,n
f
Bac>cψn

c + (1 − ac>c)ψn
c

C

Table B.1: Different Space Numerical Schemes: ψn
f
.
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Here, GradUc {.} stands for a 3D unstructured upwind gradient:

GradUc {ψn}B 1
Vc

ψ
n
c

∑
f ∈Fc/ ÛMc> f

��n+1
n

>0

Sc> f +
∑

f ∈Fc/ ÛMc> f

��n+1
n
≤0

ψn
c Sc> f


=

1
Vc


∑

f ∈Fc/ ÛMc> f

��n+1
n
≤0

(
ψn
c − ψ

n
c

)
Sc> f

 .
(B.13)

In case of a 1-D structured mesh, expression (B.13) reduces to the classic expression which
can be found in Wang and Hutter (2001).

B.2.4 Roe–Sweby limiter
A fourth way to approximate the face value can be done using Roe–Sweby limiter theory:

Centered limited by Roe–Sweby ψ
RS/C,n
f

= ψU,n
f
+ φ

(
rn
c> f

) (
ψC,n
f
− ψU,n

f

)
RS/C

Table B.2: Non Linear Limited Face Value Approximation: ψn
f
.

In this expression, φ is a limiter function designed to remain in Sweby’s area derived in
Sweby (1984). Besides, rn

c> f
B
ψn
C
−ψn

U

ψn
D−ψ

n
C

is the rate between the upwind and the face slopes of the
computed scalar.

Let us first define ψn
C

respectively ψn
D , the "current" respectively the "downstream" values of

the scalar ψ as:


If: ÛMc> f

��n+1
n
≥ 0,

ψn
C = ψ

n
c , ψ

n
D = ψ

n
c .

If: ÛMc> f

��n+1
n

< 0,
ψn
C = ψ

n
c , ψ

n
D = ψ

n
c .

(B.14)

Then, the upstream value of the scalar ψ at face f is:

ψn
UBψ

n
C −

VC��Sc> f

��GradUC {ψ
n} · nc> f . (B.15)

The Roe–Sweby limiter applied to the centered scheme has been designed such that, in a 1-D
structured case with constant density and constant mass flux the scheme (B.12) be DTV.

B.2.5 Iterative algorithm

Because the numerical scheme (B.12) can become non linear in ψ =
{
ψn

1 , .., ψ
n
c , .., ψ

n
Ncells

}
if,

for example, the Roe–Sweby limiter function is used, an iterative process based on a fixed point
algorithm is triggered to compute the scalar values at time tn+1.

The principle of such iterative process is the following: first, identify the non linear discrete
operator En(.) associated with the numerical scheme in equation (B.12). Then apply an iterative
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fixed point algorithm: En(ψk + δψk+1) ≈ En(ψk) + ∇En(ψk) δψk+1 = 0. By looking at the
Roe–Sweby limited face value in Table B.2, a linear part EL

n (.) related to the first order upwind
scheme ψU

f
and a non linear part ENL

n (.) related to the limiter function can be identified. Then
neglecting the non linear operator, one can suppose that: ∇En(ψk) = ∇

(
EL
n + ENL

n

)
(ψk) =

EL
n +������∇ENL

n (ψk) ≈ EL
n . The iterative system solved is then:

∀c,∀k ≥ 1 :
ψ0
c = ψ

n
c ,

ψk+1
c = ψk

c + δψ
k+1
c ,(

EL
n δψ

k+1
)
c
= −

(
En(ψk)

)
c
,

(B.16)

with:

(En(ψ))cB
Vcρc

n

∆t
(
ψc − ψn

c

)
+

∑
f ∈Fc

(
θψf − ψc

) ÛMc> f

��n+1
n
+ (1 − θ)

∑
f ∈Fc

ψn
f
ÛMc> f

��n+1
n

,

(B.17a)(
EL
n (ψ)

)
c
B

Vcρc
n

∆t
(
ψc − ψn

c

)
+

∑
f ∈Fc

(
θψU

f − ψc

)
ÛMc> f

��n+1
n
+ (1 − θ)

∑
f ∈Fc

ψn
f
ÛMc> f

��n+1
n

.

(B.17b)

One can notice that, in the implicit case where θ = 1, the matrix EL
n is a diagonally dominant

matrix. In such a case the algorithm converges if a Jacobi linear solver is used.

B.2.6 New blending guaranteeing the discrete minimum-maximum principle of ψ
The idea behind the notion of β-limiter is to keep the same formalism as the one introduced in
Table B.2: ψβ,n

f
BψU,n

f
+ βf (ψ?,nf

− ψU,n
f
). Here, ψ?,n

f
is a second order face approximation2.

βf ∈ [0, 1] is a weight depending on the neighbouring cell values and designed such that
the numerical flux (B.12) preserves the minimum-maximum principle. This result has been
derived under the hypothesis that the values imposed by the inlet boundary conditions remained
between the bounds of the theoretical solution. Since it is known that first order scheme ψU,n

f

naturally preserves the minimum-maximum principle, one will require that, in non monotone or
discontinuous areas3, βf be close to zero. On the contrary, in smooth regions βf will be close to
one allowing the second order scheme to fully play its role and bring sufficient accuracy.

Theorem B.2.1 Consider ψinf the inferior bound of a theoretical solution of equation (B.1c).
For all cells c define:

βinf
c B

Vcρc
n

∆t
(
ψn
c − ψinf

)
− (1 − θ)

∑
f ∈Fc

(
ψU,n
f
− ψinf

)
ÛMc> f

��n+1
n∑

f ∈Fint
c

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

)
ÛMc> f

��n+1
n

] + , (B.18a)

with [a]+B a+ |a |
2 .

22U or C for example.
3Where ψ?,n

f
could produce non-physical oscillations.
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Assume that the time step respects the CFL condition:

∆t ≤ min
c

ρcVc

(
ψn
c − ψinf

)
(1 − θ)


∑
f ∈Fc

(
ψU,n
f
− ψinf

)
ÛMc> f

��n+1
n


+ . (B.19)

If βfc |c is defined such that βfc |cBmax
(
min

(
βinf
c , β

inf
c
, 1

)
, 0

)
, then the numerical scheme

(B.12) preserves the minimum principle meaning that:

∀ c ∈ [1, Ncells], ∀ n ≥ 0, ψn
c ≥ ψinf. (B.20)

R
1. Note that the CFL condition (B.19) if automatically fulfilled if θ = 1, i.e. for implicit

Euler scheme.
2. If the linear system is solved using a Jacobi solver, we can prove that the minimum-

maximum principle is preserve at each iteration of the linear solver, as the matrix
obtained is an M-matrix.

Proof. The iterative system (B.16) for a given cell c reads:

©«
Vcρc

n+1

∆t
+ θ

∑
f ∈Fc/ ÛMc> f

��n+1
n

>0

ÛMc> f

��n+1
n

ª®®¬ψk+1
c + θ

∑
f ∈Fc/ ÛMc> f

��n+1
n

<0

ψk+1
c
ÛMc> f

��n+1
n
=

Vcρc
n

∆t
ψn
c + θ

∑
f ∈Fc

(
ψk,U
f
− ψk

f

)
ÛMc> f

��n+1
n

− (1 − θ)
∑
f ∈Fc

ψn
f
ÛMc> f

��n+1
n

,

with:
Vcρc

n+1

∆t
=

Vcρc
n

∆t
−

∑
f ∈Fc

ÛMc> f

��n+1
n

thanks to (B.11a).

(B.21)

Equation (B.21) is invariant by a shifting of −ψinf, thanks to the mass equation (B.11a), so it is
sufficient to find βf so that ψc − ψinf remains positive, where ψc − ψinf also verifies (B.21).

The left hand side in Equation (B.21) provides the expression of the diagonal and extra-
diagonal coefficients of the matrix EL

n , which is a M-matrix. Then, it just needs to ensure that the
right-hand-side is positive:

Vcρc
n

∆t
ψn
c + θ

∑
f ∈Fc

(
ψk,U
f
− ψk

f

)
ÛMc> f

��n+1
n
− (1 − θ)

∑
f ∈Fc

ψn
f
ÛMc> f

��n+1
n
≥ 0, (B.22)

to enforce ψk+1
c ≥ 0. Subsequently one can rewrite (B.22) as:∑

f ∈Fint
c

βf

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

) ]
ÛMc> f

��n+1
n
≤ Vcρc

n

∆t
ψn
c−(1−θ)

∑
f ∈Fc

ψU,n
f
ÛMc> f

��n+1
n

.
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(B.23)

It has to be noticed that the sum over the pure upwind face value is done on all sets of face Fc
whereas the face values linked to βf are only internal face values ( fc |c ∈ F int

c ). This is simply
a consequence of the fact that in code_saturne, border face values follow an upwind scheme
(βf = 0 for these faces).

Now let βinf
c be a real numbers such that ∀ fc |c ∈ F int

c :

0 ≤ βfc |c ≤ βinf
c ≤ 1, (B.24)

and then the following inequality stands:∑
f ∈Fint

c

βfc |c

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

) ]
ÛMc> f

��n+1
n

≤ βinf
c

∑
f ∈Fint

c

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

)
ÛMc> f

��n+1
n

] +
;

(B.25)

It is therefore sufficient to impose:

βinf
c ≤

Vcρc
n

∆t
(
ψn
c − ψinf

)
− (1 − θ)

∑
f ∈Fc

(
ψU,n
f
− ψinf

)
ÛMc> f

��n+1
n∑

f ∈Fint
c

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

)
ÛMc> f

��n+1
n

] + , (B.26)

to ensure inequality (B.22), which implies the minimum principle.
Now, for a given face fc |c between the neighbouring cells c and c define:

βfc |cBmax
(
0, min

(
βinf
c , β

inf
c , 1

) )
∈ [0, 1]. (B.27)

Then the hypothesis (B.24) holds whatever cell is studied. The minimum principle is
fulfilled. �

Corollary B.2.2 Consider ψsup the superior bound of a theoretical solution of equation (B.1c).
For all cell c define:

β
sup
c B

Vcρc
n

∆t
(
ψsup − ψn

c

)
− (1 − θ)

∑
f ∈Fc

(
ψsup − ψU,n

f

)
ÛMc> f

��n+1
n

−
∑

f ∈Fint
c

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

)
ÛMc> f

��n+1
n

] − , (B.28a)

with [a]−B a−|a |
2 .

Assume that the time step respects the CFL condition:

∆t ≤ min
c

ρcVc

(
ψsup − ψn

c

)
(1 − θ)


∑
f ∈Fc

(
ψsup − ψU,n

f

)
ÛMc> f

��n+1
n


+ . (B.29)
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Inlet:


gradp · n = 0,
u = U0 ex,

ψ = 0.

Symmetric:


u · n = 0,
gradp · n = 0,
grad (u · τ) · n = 0.

Outlet:

{
gradψ · n = 0,
p = patm.

n

τ

Figure B.2: 1-D Case: passive transport of a scalar.

If βf is defined such that βfBmax
(
min

(
β

sup
c , β

sup
c
, 1

)
, 0

)
, then the numerical scheme

(B.12) preserves the maximum principle:

∀ c ∈ [1, Ncells], ∀ n ≥ 0, ψn
c ≤ ψsup. (B.30)

Proof. The proof is identical to the above one except that a new β
sup
c is defined such that

∀ f ∈ F int
c :

0 ≤ βf ≤ βsup
c ≤ 1, (B.31)

and inequality (B.25) transforms itself into:∑
f ∈Fint

c

−βf
[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

) ]
ÛMc> f

��n+1
n

≤ −βsup
c

∑
f ∈Fint

c

[
θ
(
ψk,?
f
− ψk,U

f

)
+ (1 − θ)

(
ψn,?
f
− ψn,U

f

)
ÛMc> f

��n+1
n

] −
.

(B.32)

The remaining part of the proof is similar. �

B.3 Numerical results
One wants to compare the classical first and second order numerical schemes described on
Table B.1, the Roe–Sweby limiter and the new β-limiter. Different verification cases with
analytical solutions have been implemented. The first one is one dimensional on a structured
mesh.

B.3.1 Passive scalar transported at constant velocity
The first case has been directly inspired from Leonard (1990). Here, density is constant in space
and time: ρ = ρ0 = 1.178 kg m−3. The domain is one dimensional as presented on Figure B.2.

Here, the theoretical velocity solution of Navier–Stokes equations is u(x, t) = U0ex . Thus
the theoretical scalar conservation law becomes: ∀ (x, t), ψ(x, t) = ψ0(x −U0 t), where ψ0 is the
solution at t = 0.

Two different kinds of initial inputs ψ0 have been tested: a smooth sinus-squared, and a
discontinuous step.

One can notice that the initial step is discontinuous at x = 4 m and x = 6 m. Besides a non
monotone area is present at the center of the squared-sinus and the ellipse. The length of the domain
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x4 6

ψ(x, 0) = sin2 (
π
2 x

)
ψ(x, 0) = 1

Figure B.3: Two initial conditions for the 1-D convection case.

is L = 20 m. In order to study the convergence of the numerical scheme order of accuracy different
cells numbers have been involved : Ncells ∈ [100, 200, 400, 800, 1600, 3200, 6400, 12800] , ∆x =
L/NCells. The physical simulation duration is Tsimu = 45 s. The inlet velocity norm is
U0 = 0.1 m s−1 and the time step is defined such that the Courant number νBU0∆t

∆x = 0.05, ∀∆x.
Besides, for both initial inputs the theoretical total variation TV(ψ)(t)B lim

ε→0
1
ε

∫
R
|ψ(x + ε, t) −

ψ(x, t)|dx = 2, ∀ t.

Case: Crank–Nicolson squared-sinus
Another simulation involving the squared-sinus is conducted with θ = 1/2. In that case, the
scheme is also not supposed to become second order accurate in time4 because the initial
condition is C1 and not C2. Hence, all the second order space accurate schemes should not be
perturbed by the time step. A line whose slope coefficient is equal to two should be observed.
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E
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2nd order error
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(a) Convergence study for the 2U schemes for the sinus intial
profile with θ = 1/2.
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(b) Convergence study for the C scheme for the sinus intial
profile with θ = 1/2.

Figure B.4(a) shows results a of the proposed β-limiter applied to variants of the second-order
linear upwind (SOLU) schemes and compared to the classical upwind scheme (denoted by “1U”),

4rt = 2 in eTsimu

∆t, ∆x
∼ C(Tsimu) ((∆x)rx + (∆t)rt ).
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Scheme (k = 3200) CO(k)

2U upw 1.77086782941

2U upw beta 1.68866658476

2U classic 1.75094816569

2U classic beta 1.59764641163

2U classic slope 1.26647185574

C 1.7618233958

C beta 1.69476449676

C slope 1.70750706693

Figure B.4: Convergence of space order for the sinus initial conditions and θ = 1/2.

the original SOLU (denoted by “2U upw”, see Fromm (1968)) without limiter, the code_saturne
variant of the SOLU scheme (denoted by “2U classic”, see Team (2021) for the details) without
limiter and with the original slope test of code_saturne (see again Team (2021) for the details).
Figure B.4(b) shows results a of the proposed β-limiter applied to the centered and compared
to the centered scheme (denoted by “C”) without limiter and with the original slope test of
code_saturne (see again Team (2021) for the details). Graphically, with the exception of 2U
classic slope, all space second order schemes seem to have a slope coefficient close to 1.7 which
is rather satisfying although additional simulations should be done. Table B.4 writes CO(3200)
for the different schemes.

Besides, even in that case the Roe–Sweby and the β-limited schemes work perfectly in terms
of min-max preservation. Note also that, by construction, the variable ψ is conserved locally at
the discrete level.

B.4 Conclusion
This appendix has presented the space and time discretisation of a scalar with a particular
attention on convective scheme. A new blending implemented on any 3-D cell shape and tested
with 1-D analytical solutions, called the β-limiter is introduced to ensure minimum-maximum
principle at the discrete level for the transported scalars.
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C. Extension of the ALE finite volumes scheme to
second-order in time

Abstract C.1 This appendix is an attempt to extend to second-order in time the ALE algorithm
presented in Chapter 4.

Résumé C.1 Cette annexe propose une écriture à l’ordre deux en temps pour l’algorithme
ALE présenté au Chapitre 4.

As in Chapter 4, we start with volume, mass an momentum balance equations written on
mobile volumes:

d
dt

∫
Vc (t)

dΩ =
∫
∂Vc (t)

v · dS, (4.15)

d
dt

∫
Vc (t)

ρdΩ +
∫
∂Vc (t)

ρ (u − v) · dS = 0, (4.16)

d
dt

∫
Vc (t)

ρudΩ +
∫
∂Vc (t)

u ⊗ ρ (u − v) · dS =
∫
∂Vc (t)

σ · dS. (4.18)

We supplemented that by a (buoyant) scalar balance equation transported by the fluid velocity
(e.g. energy or salinity):

d
dt

∫
Vc (t)

ρψdVc +

∫
∂Vc (t)

ψρ (u − v) · dS =
∫
∂Vc (t)

Φψ · dS, (C.1)

with Φψ being the molecular flux of ψ.
We propose in the next Section an extension to the time-segregated scheme presented in

Chapter 1, §1.2 and similar to the one proposed by Wall et al. (2002).
We recall that the time stepping is defined by the parameter θ, bounded in [0, 1] and we take

θ = 1/2 to get the Crank-Nicolson scheme, expected to be 2nd order in time.
For any field ψ, we recall that the time interpolation between times n and n + 1 writes:

Θ

(
ψn, ψn+1

)
= (1 − θ)ψn + θψn+1. (1.32)

For sake of simplicity, we take here constant time steps ∆t.
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We recall that extensive quantities integrated over cells are denoted by:

Vc =

∫
Vc

dΩ,

Mc =

∫
Vc

ρdΩ,

Qc =

∫
Vc

ρudΩ.

(1.17)

We also introduced two extensive face quantities, face volume flux over a time interval [n, n+ 1]:

ÛVc> f

��n+1
n
B

∫
f

v · dS
����n+1

n

, (C.2)

and face (total1) mass flux over a time interval [n, n + 1]:

ÛMc> f

��n+1
n
B

∫
f

ρ (u − v) · dS
����n+1

n

. (C.3)

With these notations, cell volume and mass balances rewrite:

[Vc]n+1
n

∆t
=

∑
f ∈Fc

ÛVc> f

��n+1
n

,

[Mc]n+1
n

∆t
=

∑
f ∈Fc

ÛMc> f

��n+1
n

,

(C.4)

where [X]n+1
n BXn+1 − Xn.

Initialisation: The first sub-iteration is still denoted by k = 1 and therefore some values
have to be initialised for k = 0. For the density at time n, ρn,0c = ρn−1

c and for all other k,
ρn,kc = ρnc . For the density at time n + 1, ρn+1,0

c = ρnc . Moreover, Vn+1,0
c = Vn

c . For the mass flux,
ÛMc> f

��n+1,0
n

= ÛMc> f

��n
n−1. For the pressure force, Fp

c> f

���n+θ,0
n−1+θ

B pSc> f

��n+θ,0
n−1+θ = pSc> f

��n−1+θ
n−2+θ .

Buoyancy, solve ψn+1,k and update ρn+1,k: During this stage, the values of the buoyant
scalars ψ and of the density ρ are updated.

Firstly, the transport equation of buoyant scalars is solved:

Mn+1,k−1
c ψn+1,k

c − Mn,k−1
c ψn

c

∆t |n+1,k−1
n

+
∑
f ∈Fc

〈
Θ

(
ψn, ψn+1,k

) 〉
f

ÛMc> f

��n+1
n
= RHSn+θ,k

c , (C.5)

where the right-hand side term contains the source terms and the diffusion and is integrated over
the (moving) cell. Note that for face interpolation

〈
Θ

(
ψn, ψn+1,k ) 〉

f
to be second order, the face

centre should be the one at n + θ: xn+θ
f
BΘ

(
xn
f
, xn+1

f

)
.

For the first sub-iteration in k, namely k = 1, the reader is reminded that Mn,k−1
c is Mn−1

c .
Secondly, the density is updated with the equation of state: ρn+1,k = f

(
ψn+1,k ) . Note that

this new density is not balanced by any mass flux yet. This mass balance will be performed in
the upcoming correction step, which ensures mass conservation.

1Total means here that the mass flux is due to fluid velocity going through the surface and that the surface is
moving.
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Figure C.1: Second-order in time time stepping for the finite volumes approach in ALE framework,
variables localisation.

Momentum, prediction of the velocity, solve ũk: During this stage, the values of the
predicted velocity ũ are estimated. With the velocity-pressure coupling in mind, the prediction
step is the preliminary one. The outcome of the velocity-pressure coupling is the total mass
flux ÛMc> f

��n+1,k
n

, which is naturally centred on the time interval [n, n + 1]. Thus, the momentum
equation is solved on the time interval [n − 1 + θ, n + θ]:

Θ

(
Mn

c , Mn+1,k−1
c

)
ũk
c − Θ

(
Mn−1

c , Mn,k−1
c

)
un−1+θ
c

∆t |n+θn−1+θ
+

∑
f ∈Fc

〈
Θ

(
un−1+θ, ũk

) 〉
f

ÛMc> f

��n+θ,k−1
n−1+θ

+
∑
f ∈Fc

〈
Fp |n+θ,k−1

n−1+θ

〉
c> f
= RHSn+θ,k,

(C.6)

where the right-hand side term is a cell integral and contains some source terms and the diffusion.
Note that here, for pressure force and velocities face interpolations to be second order, the face
centre should be the one centred between n − 1 + θ and n + θ, for θ = 1

2 , xn
f
.

The mass flux ÛM
��n+θ,k−1
n−1+θ is defined by ÛM

��n+θ,k−1
n−1+θ = Θ

(
ÛM
��n
n−1 ,

ÛM
��n+1,k−1
n

)
and therefore

verifies the mass balance with Mn+θ,k−1
c −Mn−1+θ

c

∆t |n+θn−1+θ
= θ

Mn+1,k−1
c −Mn

c

∆t |nn−1
+ (1 − θ)M

n
c −Mn−1

c

∆t |n+1
n

.
Once again, unsteady term and convection of (C.6) can be rewritten as:

Θ

(
Mn−1

c , Mn,k−1
c

) ũk
c − un−1+θ

c

∆t |n+θn−1+θ
+

∑
f ∈Fc

〈
Θ

(
un−1+θ, ũk

) 〉
f

ÛMc> f

��n+θ,k−1
n−1+θ

− ©«
∑
f ∈Fc

ÛMc> f

��n+θ,k−1
n−1+θ

ª®¬ ũk
c .

(C.7)
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Mass, correction of the velocity, solve Φk: During this stage, the values of the pressure
increment Φ, of the resulting pressure p, of the corrected velocity u and of the mass flux are
updated.

With the velocity-pressure coupling in mind, the correction step is the concluding one. The
resulting mass flux will balance the density obtained in the buoyancy step.


Θ

(
ρn,k−1, ρn+1,k−1) un+θ,k − ũk

∆t |n+θn−1+θ
+ gradΦk = 0,

ρn+1,k
c Vn+1,k−1

c − ρncVn
c

∆t |n+1
n

+
∑
f ∈Fc

Û̃Mc> f

���n+1,k

n
= 0,

(C.8)

with, a first estimation (mesh and thus volumes will be updated from k − 1 to k afterwards) of
the total mass flux given by:

Û̃Mc> f

���n+1,k

n
=

〈
Θ

(
ρn,k−1, ρn+1,k−1) (

un+θ − v |n+1,k−1
n

)
· S

〉
c> f

=
〈
Θ

(
ρn,k−1, ρn+1,k−1) (

ũk − v |n+1,k−1
n

)
· S

〉
c> f
+ ∆t |n+θn−1+θ grad fΦ

k · Sc> f ,

where v |n+1,0
n is initialised by 0, and in a consistent way Vn+1,k−1

c . Note that space interpolation
should be done at xn+θ

f
. We recall that no space indices are written for the first equation of (C.8),

because this equation is used both for cells (to update cell velocity) and faces (to update mass
fluxes).

At the end of the correction step, the pressure over the time interval [n − 1 + θ, n + θ] is
updated with:

p|n+θ,k
n−1+θ = p|n+θ,k−1

n−1+θ + Φ
k . (C.9)

At the end of this step, one gets the new velocity which is living in time n + θ.

Volume, update mesh and mass flux: We now consider that mesh nodes move, and
therefore cell volumes evolve with velocity v |n+1,k

n = δvk + v |n+1,k−1
n , this mesh velocity

increment should verify:

Vn+1,k
c − Vn+1,k−1

c

∆t
=

∑
f ∈Fc

ÛVc> f

��n+1,k
n

− ÛVc> f

��n+1,k−1
n

, (C.10)

with ÛVc> f

��n+1,k
n

− ÛVc> f

��n+1,k−1
n

= δvk · Sc> f =
xn+1,k
f

−xn+1,k−1
f

∆t · Sc> f . Finally mass flux can be
updated:

ÛMc> f

��n+1,k
n

=
Û̃Mc> f

���n+1,k

n
+

〈
Θ

(
ρn,k−1, ρn+1,k−1

)
· S

〉
c> f

δvk .
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D. SPH Appendices

Abstract D.1 First of all, this appendix presents a summary of the discretised equations solved
in the SPH solvers such as SPARTACUS-2D or Sphynx. Then the derivation of repulsive
forces from Lagrangian, as performed by Kulasegaram et al. (2004), is presented. This
derivation makes possible to derive skew-adjoint gradient and divergence operators, which is a
key property for conservation matter. Unfortunately, all this derivation is performed for an
insulated system of particles, which means that part of the boundary terms are missing.

An algorithm for the analytical computation in 3-D of the gradient of the renormalisation
factor (which is somehow an inward boundary normal vector) is proposed, as published in
Mayrhofer et al. (2015). This algorithm decompose boundary elements (triangular faces)
intersection with the kernel support sphere into basic integrals that can be analytically computed.
Its performances are demonstrated on a set of test cases.

Finally, an adaptation of boundary terms and SPH operators is given for axisymmetric
formulation (this work has been performed partly during Zixing Dong internship). The
proposed renormalisation factor and the deduced operators have no spurious behaviour next to
the axis and show good results for the Poiseuille flow.

Résumé D.1 Tout d’abord, cette annexe présente un résumé des équations discrètes résolues par
les solveurs SPH implantés dans les codes SPARTACUS-2D et Sphynx. Ensuite, la dérivation
des termes de bord en partant d’un lagrangien est reproduite en suivant Kulasegaram et al.
(2004). Cette dérivation rend possible la définition d’opérateurs gradient et divergence anti-
adjoints, ce qui constitue une propriété fondamentale pour conserver l’énergie cinétique.
Malheureusement, cette dérivation est faite en supposant que les particules constituent un
système isolé, ce qui signifie qu’une partie des termes de bord manquent.

Un algorithme pour intégrer de manière analytique en 3-D le gradient du facteur de
renormalisation est proposé (voir aussi Mayrhofer et al. (2015)). Cet algorithme décompose
l’intersection des éléments de frontières (des triangles ici) avec la sphère du noyau SPH en
une somme d’intégrales élémentaires pour lesquelles une formule analytique est donnée. Les
performances de l’algorithme sont démontrées sur quelques cas tests classiques.

Enfin, les formulations de bord ainsi que les opérateurs associés sont adaptés à la
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formulation axisymétrique (ce travail a été en partie réalisé durant le stage de Zixing Dong).
Le facteur de renormalisation obtenu et les opérateurs proposés n’induisent pas d’artefact
près de l’axe, contrairement aux peu de travaux publiés à ce sujet. Le cas d’un écoulement de
Poiseuille (dans un tuyau cylindrique) est traité avec succès.
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D.1 Reminder of equations solved in SPARTACUS-2D and Sphynx
The following are the equations solved by SPARTACUS-2D and Sphynx (see https://github.
com/remingtonCarmi/Sphynx). They concern only the turbulent case, as the laminar case is
formally identical, with average variables that coincide with the real variables, while the eddy
viscosity is constant and equal to the molecular kinematic viscosity. Furthermore the Lagrangian

derivative
D
Dt
B
∂

∂t
+ u · ∇ would be replaced by

d
dt
B
∂

∂t
+ u · ∇.

Continuity equation In Chapter 2

ρa [βγa + (1 − β)αa] = ρ̃a =
∑
b ∈ P

Mbwab, (2.48)

where

β = exp

[
−K

(
min

{
αa
γa

; 1
}
− 1

) 2
]
, (2.49)

and K = 30000. β could be 1 everywhere for confined flows.
The free-surface correction is removed in Chapter 3 and replaced by a density diffusion
formula:

d (γaρa) = γadρa + ρadγa = d

(∑
b∈P

Mbwab

)
− γaδρi/o

a + ρaδγ
i/o
a , (3.18)

where δρi/o
a and δγi/o

a are defined by:

δρi/o
a B

1
γa

∑
v∈V i/o

Mv∇wav · (uv − vv) dt,

δγi/o
a B

∑
s∈Si/o

∇γas · (us − vs) dt .

Shepard filter α
αaB

∑
b ∈ P

Mb

ρb
wab, (2.46)

αv B
∑
b ∈ F

Mb

ρb
wvb,

αs B
∑
b ∈ F

Mb

ρb
wsb .

(2.47)

Governing equation for γ

Dγa
Dt

=
∑
s ∈ S

∇γas · uRs
a ,

γa = 1 if ∂Ω ∩Ωa = ∅.
(2.57)

https://github.com/remingtonCarmi/Sphynx
https://github.com/remingtonCarmi/Sphynx
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Analytical value of ∇γas for the quintic kernel

∇γasB
(∫ xv2

xv1

w (r) dl
)
ns, (2.18)

with∫ xv2

xv1

w (r) dl =
(q2 cosα2)

π
Pq0 (q2) −

(q1 cosα1)
π

Pq0 (q1)

+
q4

0
π

(
105
64
+

35
512

q02
) 
sign (q2 cosα2) ln

(
q2 + |q2 cosα2 |

|q0|

)
−sign (q1 cosα1) ln

(
q1 + |q1 cosα1 |

|q0|

)

,

(2.51)
where:

Pq0 (q) =
7

192
q5 − 21

64
q4 +

35
32

q3 − 35
24

q2 +
7
4

+q2
0

(
35
768

q3 − 7
16

q2 +
105
64

q − 35
12

)
+q4

0

(
35
512

q − 7
8

)
.

(2.52)

Momentum equation

Dua

Dt
= − 1

ρa
Gradγ

+

a

{
pb + 2

3 kb
}
+ g

+
1
ρa

∇ · (µ∇ u)a .
(D.1)

Pressure gradient

Gradγ
+

a {pb} B
ρa
γa

∑
b ∈ P

Mb

(
pa

ρ2
a

+
pb
ρ2
b

)
∇wab −

ρa
γa

∑
s ∈ S

(
pa

ρ2
a

+
ps
ρ2
s

)
ρs∇γas .

(2.23)
Boundary pressure term

ρv =
1
αv

∑
b ∈ F

Vbρbwbv,

pv
ρv
=

1
αv

∑
b ∈ F

Vb

(
pb
ρb
− g · (xb − xv) +

u2
bv

2

)
,

(2.30)

ρs =
ρv1 + ρv2

2
,

ps
ρs
=

pv1/ρv1 + pv2/ρv2
2

,

(2.32)

where the vertex particles v1 and v2 are defined in §2.3.1.
Morris’ viscous term

1
ρa

∇ · (µ∇ u)a =
1
γa

∑
b ∈ P

Mb
µa + µb
ρaρb

uab

r2
ab

xab .∇wab −
2uτauτa

γa

∑
s ∈ S
|∇γas | .

(D.2)
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Velocity of vertex particles for turbulent flows

Duv

Dt
=

1
γv

∑
b ∈ P

Mb
µTe + µTb

ρvρb

uvb

r2
vb

xvb · ∇wvb −
2uτvuτv
γv

∑
s ∈ S
|∇γes | , (2.65)

us =
uv1 + uv2

2
.

Laminar friction velocity
uτauτa =

νua

za
. (2.37)

Smooth turbulent friction velocity

ua

uτa
=

1
κ

ln
( zauτa

ν

)
+ 5.2. (2.64)

Wall friction velocity

ρvuτvuτv =
1
αv

∑
b ∈ F

Vbρbuτbuτbwbv, (2.38)

ρsuτsuτs =
ρv1uτv1uτv1 + ρv2uτv2uτv2

2
.

Equation of motion

Dxa
Dt
= ua, (D.3)

Dxv
Dt

= velocity of the wall,

Dxs
Dt

= velocity of the wall.
(D.4)

Equation of state

pa =
ρ0c2

0
γ

[ (
ρa
ρ0

) γ
− 1

]
(2.4).

Eddy viscosity

νT = Cµ
k2

ε
. (2.10)

k − ε model

Dka
Dt

=
1
ρa

Lapγa
({
µb +

µTb

σk

}
, {kb}

)
+ Pa − εa,

Dεa
Dt

=
1
ρa

Lapγa
({
µb +

µTb

σε

}
, {εb}

)
+
εa
ka
(Cε1Pa − Cε2εa) .
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Diffusion terms

1
ρa

Lapγa
({
µb +

µTb

σk

}
, {kb}

)
=

1
γa

∑
b ∈ P

Mb
2µ + µTa/σk + µTb/σk

ρaρb

kab
r2
ab

xab ·∇wab,

(2.66)
1
ρa

Lapγa
({
µb +

µTb

σε

}
, {εb}

)
=

1
γa

∑
b ∈ P

Mb
2µ + µTa/σε + µTb/σε

ρaρb

εab

r2
ab

xab · ∇wab

+
4

γaρa

∑
s ∈ S
|∇γas | ρs

u?4
s

σε κδas
.

(2.72)
Boundary terms

kv =
u2
τv√
Cµ
,

ks =
u2
τs√
Cµ
,

u?s = uτs .

Production
Pa = νTaS2

a . (2.11)

Strain rate
S2B2S : S,

with

Gradγ
−

a {u} = −
1

γaρa

∑
b ∈ P

Mbuab ⊗ ∇wab +
1
γa

∑
s ∈ S

uas ⊗ ∇γas, (2.24)

or

νTaS2
a = −

1
2γa

∑
b ∈ P

Mb
µTa + µTb

ρaρb

u2
ab

r2
ab

xab .∇wab −
2
γa

∑
s ∈ S

u2
τsuas |∇γas | .

D.2 Derivation of the repulsive force from a Lagrangian
This derivation is done following Kulasegaram et al. (2004). In Lagrangian mechanisms, the
dynamics of particles can be derived from the Lagrange equations for an insulated system of
particles:

d
dt

(
∂L
∂ua

)
−

(
∂L
∂xa

)
= 0, (D.5)

where the Lagrangian L is defined by:

L (xa, ua) = Eke (ua) − Eint (xa) − Eext (xa) . (D.6)

The energies Eke, Eint and Eext are respectively the kinetic energy, the internal energy and the
external energy. The kinetic energy is given by (D.7a). If the external forces are due to the
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gravitational field g the external energy is given by (D.7b) and for an adiabatic reversible process,
the internal energy can be written as (D.7c)

Eke =
1
2

∑
b ∈ P

Mbu
2
b, (D.7a)

Eext = −
∑
b ∈ P

Mbxb · g, (D.7b)

Eint =
∑
b ∈ P

Mb eint (ρb) , (D.7c)

and the energy accumulated per unit of mass eint varies with the density ρ according to(D.8).

p = ρ2 deint
dρ

. (D.8)

Finally we define the density variation to be:

ρ(x) =

∫
Ω

∑
b ∈ P

Mbδ (x ′ − xb) w (x − x ′) dx ′∫
Ω

w (x − x ′) dx ′

=

∑
b ∈ P

Mb w (x − xb)∫
Ω∩Ωr

w (x − x ′) dx ′
.

(D.9)

Hence it follows:

γ (x) ρ (x) =
∑
b

Mb w (x − xb) , (D.10)

which is a continuous function of the position x and gives us a way to compute the value of
ρaBρ (xa) if we know the positions of all particles.

Now we are able to derive the momentum equation from the equation of Lagrange (D.5) and
obtain for each particle a:

Ma
dua

dt
= F

p
a + FB

a + Mag, (D.11)

where the internal forces due to the pressure F
p
a and due to the boundary effect FB

a are defined
by:

F
p
a + FB

a = −∂Eint

∂xa

= − ∂

∂xa

[ ∑
b ∈ P

Mb eint (ρb)
]

= −
∑
b ∈ P

Mb
deint
dρb

dρb
dxa

= −
∑
b ∈ P

Mb
pb
ρ2
b

dρb
dxa

,

(D.12)
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but we can derive the density using its definition (D.10):

d (γbρb)
dxa

= γb
dρb
dxa
+ ρb

dγb
dxa

= γb
dρb
dxa
+ δabρa∇γa

=
∑
c ∈ P

Mc
dwbc

dxa
= Ma∇awab + δab

∑
c ∈ P

Mc ∇awac,

and (D.12) becomes

F
p
a + FB

a = −
∑
b ∈ P

Mb
pb
ρ2
b

dρb
dxa

= −
∑
b ∈ P

Mb
pb
γbρ

2
b

[
Ma∇awab + δab

( ∑
c ∈ P

Mc ∇awac

)
− δabρa∇γa

]
= −

∑
b ∈ P

MaMb

(
pb
γbρ

2
b

+
pa

γaρ
2
a

)
∇awab +

Mapa

γaρa
∇γa .

We can see in these calculi that the density ρ and the function γ must depend only on positions if
we expect the correction to be effective. So we must use a time discretisation where the variation
of the quantity γaρa depends only on the variation of positions such as the temporal scheme
(2.42). Such a scheme gives in fact at any time:

γaρa =

(
γ0
aρ

0
a −

∑
b ∈ P

Mb w
0
ab

)
+

∑
b ∈ P

Mb wab . (D.13)

If the field ρ0
a is initialised at such that γ0

aρ
0
a =

∑
b ∈ P Mb w

0
ab

, the derivation from the
Lagrangian holds, but the pressure field will be chaotic. If the field ρ0

a is initialised at a density
reference, say, ρ0 the pressure field will be smoother. But, doing so, we will generate distinctions
between particles from a free surface and from the inner fluid for instance. Indeed, if a particle
initially next to a free surface with the same density ρ0 as an other particle in the fluid, is forced
to go in the middle of the fluid (due to a wave break for example), its density will be multiplied
by almost 3

2 . That is to say that we are setting a non-homogeneous fluid by initialising the density
at ρ0 to correct the error done by the interpolation (D.10).

D.3 Skew-adjointness of the operators gradient and divergence
The goal of this appendix is to prove that the two operators gradient and divergence defined by
Kulasegaram et al. (2004) method are skew-adjoint. We recall that they are defined by:

GradK
a {Ab} B ρa

∑
b ∈ P

Mb

(
Aa

γaρ
2
a

+
Ab

γbρ
2
b

)
∇wab −

Aa

γa
∇γa,

DivKa {Ab} B − 1
γaρa

∑
b ∈ P

MbAab · ∇wab +
1
γa

Aa · ∇γa,
(2.17)

for two arbitrary fields of scalar {Ab} and of vector {Bb}. We also recall that the skew-adjointness
property means that the following property holds when boundary terms are zero1:〈

GradK
b {Aa} , Bb

〉
= −

(
Ab, DivKb {Ba}

)
,

1For instance zero pressure at the free-surface and zero velocity at the wall boundaries, no inlet/outlet.
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where the dot products are defined by:

〈Ab, Bb〉 B
∑
b ∈ P

VbAb · Bb,

(Ab, Bb) B
∑
b ∈ P

VbAbBb .

Thus, we have:

〈
GradK

b {Aa} , Bb

〉
=

∑
b ∈ P

VbGradK
b {Aa} · Bb

=
∑
b ∈ P

Vb

[
ρb

∑
c ∈ P

Mc

(
Ab

γbρ
2
b

+
Ac

γcρ
2
c

)
∇wbc −

Ab

γb
∇γb

]
· Bb

=
∑

b, c ∈ P
MbMc

Ab

γbρ
2
b

∇wbc · Bb +
∑

b, c ∈ P
MbMc

Ac

γcρ
2
c

∇wbc · Bb︸                                 ︷︷                                 ︸
= −

∑
b, c ∈ P

MbMc
Ab

γbρ
2
b

∇wbc · Bc

−
∑
b ∈ P

VbAb
1
γb

Bb · ∇γb

= −
∑
b ∈ P

VbAb

[
− 1
γbρb

∑
c ∈ P

McAbc · ∇wbc +
1
γb

Ab · ∇γb

]
= −

∑
b ∈ P

VbAbDivKb {Bc}

= −
(
Ab, DivKb {Ba}

)
,

(D.14)

where we have used the antisymmetry of the kernel gradient and have exchanged the mute indices
b and c to complete the proof. The proof of the skew-adjointness of the operator (2.7) presented
in Chapter 1 is just a special case of the present proof where γa is fixed at 1 everywhere and
∇γ = 0.

D.4 Algorithm for the analytical computation of ∇γa in 3-D
This Section is to describe an exact integration of ∇γas in 3-D, and was published in Mayrhofer
et al. (2015).

The general principle will be discussed at first before describing the details of the domain
decomposition algorithm and the formulae for the special cases. This Section will be concluded
by showing the possibility to optimise the calculation on a plane wall.

Clearly the boundary of a three dimensional geometry is two dimensional. In order to
discretise the boundary it is required to generalise the 1-D line segments to a 2-D equivalent.
The most basic bounded 2-D element is a triangle. It can be described by 3 vertices which are
always coplanar. Thus in the following we will assume that a boundary segment is given by a
triangle and its virtual position, required for the imposition of boundary conditions, is set to be
the triangle’s barycentre.
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Figure D.1: Illustration of the general problem.

Thus, ∇γas is the integral of the Wendland kernel over a triangle. More precisely it is the
integration of a radial polynomial over the intersection of a triangle with a sphere as illustrated
in Figure D.1. Clearly this intersection is not necessarily a triangle, further complicating the
integration. Due to the inherent singularity of the Wendland kernel at the origin (only twice
continuously differentiable, i.e. w ∈ C2(Rn)) it is not advisable to use a numerical algorithm.
The authors tried several numerical approaches and the only one providing promising results was
an adaptive integration which was not viable due to its computational cost. Due to this it was
decided to develop an analytical formula, as it was done for 2-D in Ferrand et al. (2013b).

The integration of an arbitrary triangle / sphere intersection is too complicated and thus it
was decided to decompose the surface integration domain, denoted by s into certain building
blocks for which it would be easier to find an analytical solution. This domain decomposition
will be discussed in detail in the next Section. The formulae for the building blocks will be shown
in Section D.4.2.

In contrast to the approach by Amicarelli et al. (2012) which uses square segments the
triangular decomposition allows more flexibility. Additionally, traditional meshing software can
be used in order to create the surface mesh for arbitrary complex geometries.

D.4.1 The domain decomposition algorithm
Before the algorithm for the decomposition is given, consider the 8 possible configurations that
can result from the triangle / sphere intersection as shown in Figure D.2. As mentioned above,
the integration domain sas = ∂s ∩Ωa consists of an intersection between a triangle and a circle.
In the following, one segment s will be investigated with its three associated vertices {v1, v2, v3}.
The number nv will determine how many vertices are inside the integration domain and ne is the
number of edges intersecting with sas, the boundary of the integration domain.

A systematic description of the eight possible cases via a decision tree is given below.

• All vertices inside the domain (nv = 3⇒ ne = 0) ⇒ Case 1

• One vertex outside the domain (nv = 2⇒ ne = 2) ⇒ Case 2

• Two vertices outside the domain (nv = 1)

– Two edges intersecting (ne = 2) ⇒ Case 3
– All edges intersecting (ne = 3) ⇒ Case 4

• All vertices outside the domain (nv = 0)

– No edges intersecting (ne = 0) ⇒ Case 5
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(a) Case 1

(b) Case 2
(c) Case 3 (d) Case 4

(e) Case 5
(f) Case 6

(g) Case 7
(h) Case 8

Figure D.2: The 8 different cases.

– One edge intersecting (ne = 1) ⇒ Case 6
– Two edges intersecting (ne = 2) ⇒ Case 7
– All edges intersecting (ne = 3) ⇒ Case 8

•

(a) Circular sector.

•

(b) Circular segment.

•

(c) Full Circle.

Figure D.3: The 3 building blocks.

After identifying the different cases the next step is to decompose the specific domain into the
three basic building blocks shown in Figure D.3. From the left to right there is the circular sector,
the circular segment and the full circle. In Figure D.4 the different decomposition algorithms are
shown.

In the following Case 1 will be explained as an example. The detailed procedure for this
can be seen in Figure D.5. The integration domain is a triangle, completely inside the support.
In order to compute the integral, three circular sectors need to be computed. Circular Segment
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= - +

= -

=

= -

=

=

= - -

= - - -

Figure D.4: Illustration of the domain decompositioning algorithm.

1 contains the triangle and its centre is vertex v1. In the next step Circular Segment 2 will be
subtracted in order to remove the part of Circular Segment 1 that does not contain the triangle.
However, there is Circular Segment 3 that does not overlap with Circular Segment 1 and thus it
needs to be added in the final step so that the integral really only covers the triangle domain.

D.4.2 Analytical formulae for the basic domains
After decomposing the domain in the previous Section, the analytical formulae for the integral
(2.18) over the three basic domains will be given for the Wendland kernel (1.86). Let us first
introduce the non-dimensionalised integral I:

I =
1

hm−1αm

∫
s

wabdrb . (D.15)
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v1 v2

v3

= - +

︸                                                   ︷︷                                                   ︸
= +

=

Figure D.5: Algorithm for case 1 in detail.

Equation (2.18) then reads:

∇γas = αmhm−1Ins . (D.16)

Circular sector
The case of a circular sector needs to be simplified to two special circular sectors as illustrated in
Figure D.6(a). One special circular segment can be identified by the distance d of the particle to
the plane, the distance to the projected centre r and one angle θ as shown in Figure D.6(b). The
formula for one such special circular segment is then formally given by

Isector (d, r, θ) =
∫ 2

q=
√
d2+r2

w (q)
(
θ − arcsin

(
r sin θ√
q2 − d2

) )
qdq. (D.17)

With the help of a standard symbolic mathematics software it becomes

Isector (d, r, θ) =
2
7

(
θ − arcsin

(
r sin θ√
4−d2

) )
+

[
Ψd,r,θ (q) + Ψ−d,r,θ (q) − r sin θ Pd,r,θ (q)

√
q2 − d2 − r2 sin2(θ)

−r sin θQd,r,θ ln
(
q +

√
q2 − d2 − r2 sin2(θ)

) ] q=2

q=
√
r2+d2

,

(D.18)

where

Ψd,r,θ (q) =
1
14

arctan

(
r2 sin2 θ + (d + q)d

r sin θ
√

q2 − d2 − r2 sin2(θ)

) (
2 − (2 + 5d + 4d2)

(
1 − d

2

) 5
)
, (D.19)
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and

Pd,r,θ(X) =
1

2688
[−924d4 − 1120r2 sin2 θ − 2800d2 − 728r2 sin2 θd2 − 224r4 sin4 θ + 1344(D.20)

+(48d2r2 sin2 θ + 504r2 sin2 θ + 15r4 sin4 θ + 57d4 + 1176d2)X
+(−252d2 − 112r2 sin2 θ − 560)X2 + (22d2 + 10r2 sin2 θ + 336)X3 − 84X4 + 8X5],

Ψ(d, r) =
√

4 − d2 − r2, (D.21)

and

Qd,r,θ =
1

2688
[2520d4+105d6+(105d4+1680d2)r2 sin2 θ+(504+63d2)r4 sin4 θ+15r6 sin6 θ].

(D.22)

The above formula is valid for 0 < θ < π/2, 0 ≤ r ≤ 2 and 0 ≤ d ≤ 2.

Circular segment
Let r denote the minimum distance from the circular segment to ra projected to the plane πs.
Assume furthermore that the circular segment does not cover this projected point, then the
formula for the integral is given by

Isegment (d, r) = 2Isector
(
d, r,

π

2

)
. (D.23)

Note that many algebraic simplifications and optimisations can be done in Isector (d, r, θ) when
θ = π

2 .

•

(a) Decomposition of the circular sec-
tor.

(b) Variables of a special circular
sector.

Figure D.6: The circular sector in detail.

Full circle
The integral for the case of a full circle only depends on the distance to the plane d and can be
calculated as

I f ull (d) = 2Isegment (d, 0) =
2
7
π(2 + 5d + 4d2)

(
1 − d

2

) 5
, (D.24)

D.4.3 Optimisation on plane walls
On plane walls the values of γa and ∇γa can be easily computed in terms of the dimensionless
distance d normal to the wall, normalised by the smoothing length h. They are given as

γa(d) = 1 − 1
512
(2 − d)6

(
4 + 6d + 3d2

) 6
, (D.25)
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and

∇γa(d) = α3h2I f ull (d) . (D.26)

This avoids the time-integration of γ for particles only influenced by a plane wall. This reduces
the possible time-stepping error and in case a higher order time-stepping scheme is used, lowers
the computation time, as ∇γas has to be computed only once.

D.4.4 Simulations
In the following Section the algorithm provided above will be used to perform three different
simulations. The first one will be used to compare the proposed algorithm to the analytical value
when approaching a plane wall. The second simulation will show a box with a complex floor
that is filled with water in order to investigate the spurious velocities. Finally, a dynamic flow is
simulated based on the geometry of the second SPHERIC test case.

D.4.5 Plane wall

Figure D.7: Discretisations of the plane walls.

The first simulation will consist of three particles approaching six different plane walls. The
discretisation of these walls is illustrated in Figure D.7 and as it can be seen there are three planes
with a regular discretisation and three with a random mesh. For each of those two sets there
is one plane where the triangle size is of the order of ∆r (particle size), one with double and
one with quadruple resolution. Furthermore for each of those six walls there are three particles,
initially at z = 4∆r (h/∆r = 2) that approach the wall with constant speed c0/10, where c0 is the
numerical speed of sound in weakly compressible SPH Violeau (2012). The difference between
these three particles is that one is located on top of a vertex, one is on top of an edge and one is
located inside a triangle.

The analytical formula for ∇γ on a plane wall for the Wendland kernel (1.86) is given
by Equation (D.26). Note that the optimisation presented in Section D.4.3 is not used in this
simulation. In Figure D.8 the relative error for the different walls and particle positions can be
seen. Clearly, the error is as large as numerical epsilon for the used double precision variables
and no configuration showed any larger errors, indicating that the formulation adapts perfectly to
any given discretisation.
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Figure D.8: Error of ∇γ for different walls.

D.4.6 Still water

Figure D.9: Geometry of the still water test case.

After demonstrating the algorithm in a simple case the question of course is if the algorithm
also performs well when using highly complex geometries. In the following the box shown
in Figure D.9 will be used in order to quantify the decay of velocity in a flow at rest under
the influence of gravity. Note that for illustration purposes two side walls were removed to
allow viewing the inside of the box. The box is partially filled with water so that there is one
submerged half-sphere, one submerged cone and one cone which pierces the surface. Initially all
the particles have uniform density (thus uniform pressure) and thus an initial velocity is expected
which should die down rather quickly. The optimisation presented in Section D.4.3 is used in all
following computations.

The viscosity is given by ν = 0.1 m s−2 and the numerical speed of sound is c0 = 45 m s−1,
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Figure D.10: Residual velocity.

which is based on the initial water-depth of h0 = 2 m. The Neumann boundary conditions are
implemented using the technique described in Mayrhofer et al. (2013). In Figure D.10 the
magnitude of velocity can be seen in both L2 and L∞ norms. The L2 norm is given as

|v |2
c0
=

√√
1
|P |

∑
a∈P

(
‖va‖2

c0

) 2
. (D.27)

In order to see whether the formulation provides convergence, three different resolutions are
compared. After the expected initial damping, the velocity remains more or less constant and
convergence can be observed. The final pressure distribution can be seen in Figure D.11.
In Figure D.12 the present algorithm was compared to a simulation which was conducted using
the approximation

∇γas = Ssnswas, (D.28)

where Ss is the surface area of boundary segment s. In the lower left corner of Figure D.12(a) a
particle can be seen penetrating a wall with a value of γa significantly lower than the expected
value of γa ≈ 0.25. At later stages of the simulations further particles penetrate the wall. It shall
be noted that due to the modification presented in Section D.4.3 the particles along plane walls
do not penetrate due to their correct value of γa. It can be observed in Figure D.12(b) that no
particle penetrate the walls in case the algorithm presented in Section D.4 is used. This is due to
the fact that the value of ∇γa is correctly computed and so the only error in γa is coming from
the time-integration which is negligible.
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Figure D.11: Pressure of all particles at the end of the simulation.

(a) Approximate ∇γas , Equation (D.28)

(b) Analytical ∇γas , Section D.4

Figure D.12: Comparison between the approximate and the analytical approach.

D.4.7 Dam-break with obstacle
The final simulation will show a violent free-surface flow in form of a dam-break with an obstacle.
The geometry used is the same as given in the second SPHERIC validation test (https://wiki.
manchester.ac.uk/spheric/index.php/Test2). Compared to the proposed viscosity of
ν = 10−6 m s−2 a value of ν = 10−2 m s−2 is used in order to ensure a laminar flow. This is due to
the fact that no turbulence models have been implemented in our code and thus the results would
not be accurate enough with a smaller viscosity. The pressure probes and water depth probes are

https://wiki.manchester.ac.uk/spheric/index.php/Test2
https://wiki.manchester.ac.uk/spheric/index.php/Test2
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Figure D.13: Location of probes according to Kleefsman et al. (2005).

located at exactly the same position as in the SPHERIC validation test shown in Figure D.13. In
order to have a comparison with a different approach the same simulation was conducted using
a Volume-of-Fluid (VOF) code. It is expected that this reference solution will not match the
solution computed with the SPH method presented above as the former is computed using a
multiphase approach. However, before the impact of the fluid onto the obstacle we expect similar
results as the air phase has negligible impact on this stage of the flow.
The simulation was run for three different resolutions, the first corresponding to the one of the

validation test which is ∆r0 = 0.55/30 m and the other two being ∆r = ∆r0/
√

2 and ∆r = ∆r0/2.
The numerical speed of sound is set to c0 = 40 m s−1 and the modified volume diffusion term
presented in Mayrhofer et al. (2013) is used.

In Figure D.14 the result of two different probes measuring the water levels can be observed
and Figure D.15 shows the flow at different stages during the simulation. The probe on the
left-hand side is located inside the initial cube of water and the decay agrees nicely with the VOF
reference solution as expected. It can be seen that there is more fluid being held back by the
obstacle as indicated by the difference in levels in Probe H2. This also implies that the wave
reflected by the obstacle is only visible in the VOF solution as seen in the plot of Probe H4 after
3.5s. The cause for this difference is most likely related to be air entrapped downstream of the
obstacle, which causes the water to flow slower over the obstacle thus creating a higher wave
upstream.

In Figure D.16 the result of two pressure probes can be observed. The first probe is located
at the front face of the obstacle, whereas the second one is located on top of it. Probe P2
indicates that the pressure peak is not appropriately resolved indicating that either space or time
discretisation is not fine enough. In comparison with the VOF simulation it is expected that the
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Figure D.14: Water levels.
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(a) t = 0.513s (b) t = 0.66s

(c) t = 1.76s (d) t = 4.4s

Figure D.15: Snapshots of the simulation coloured according to velocity magnitude.

peak is appearing earlier and higher due to the absence of air. After the impact event the pressure
is slightly lower when compared to the reference simulation which is once again explained by
the difference in height of the wave reflected by the obstacle. This can also be observed in the
right-hand side of Figure D.16 where the pressure at Probe P5 is shown. Due to the lower water
level the pressure is reduced but both reflection events are captured.

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  1  2  3  4  5

pr
es

su
re

 [P
a]

t [s]

VOF
∆r = ∆r0/2

∆r = ∆r0/sqrt(2)
∆r = ∆r0

(a) Probe P2

-500

 0

 500

 1000

 1500

 2000

 2500

 0  1  2  3  4  5

pr
es

su
re

 [P
a]

t [s]

(b) Probe P5

Figure D.16: Pressure gauges.

As the goal of this section is to demonstrate the extension of the semi-analytical wall boundary
condition to 3-D it shall be mentioned that there were no particles penetrating the walls thanks to
the accurate imposition of the boundary terms. If again the approximation shown in Equation
(D.28) is used, the simulation behaves similar to the one presented in the previous chapter, there
are some particles which penetrate the wall. Finally, the computation with the approximative
value of ∇γas requires 0.8 s per iteration, whereas the simulation with the analytical value
requires 0.97 s per iteration. This means that the simulation is about 15% slower, an acceptable
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value considering the improved behaviour of the simulation.

D.5 Extension of wall boundary condition to axisymmetric formulation for SPH
This Section is to propose an extension of boundary terms in an axisymmetric framework. This
work has been performed in 2016 during the internship of Zixing Dong, a former student of
École des Ponts ParisTech in collaboration with Christophe Peniguel, EDF R&D, MFEE.

The motivation of this extension is to study the dynamic of falling cylindrical objects in
confined domains.

D.5.1 Recall of SPH interpolations and nomenclature
For a fluid flow represented by a domainΩ, the value of an arbitrary physical property A located at
position denoted in this Section2 by sa at time t can be expressed by using the Dirac distribution
as:

A(sa, t) =
∫
Ω

A(s′, t)δ(sa − s′)d s′. (D.29)

If the Dirac distribution is replaced by a continuous function with a compact support Ωa

centred on sa in space, called interpolation kernel in SPH, denoted as wh(sa − s′), A(sa) is
approximated by its continuous interpolation:

A(sa, t) ≈ [A]c(sa, t) =
∫
Ω∩Ωa

A(s′, t)wh(sa − s′)d s′. (D.30)

In SPH, Ω is discretised with a set of fluid particles P and any particle b has its own mass Mb,
density ρb and other physical properties. The continuous interpolation above is then discretised
over particles, which leads to the smoothed discretised interpolation:

[A]c(s, t) ≈ [A]da =
∑
b∈P

Mb

ρb
Abwab, (D.31)

where wab = wh(sa − sb).
In the Unified Semi-Analytical Wall (USAW) boundary conditions framework proposed in

Ferrand et al. (2013a), boundary is decomposed in a set of surface elements which are segments
in 2-D. The vertices of segments’ ends are truncated fluid particles, called vertex particles. Vertex
particle’s volume is a function of a ratio factor, noted θ, which is the angle between the boundary
segments that it belongs to, divided by 2π. For fluid particles, this ratio is set to be 1.

Vv = θvV0. (D.32)

Here are a list of notations used in this Section:

Ω: domain of the fluid flow to simulate;

P: set of fluid and vertex particles;

F : set of fluid particles;

V: set of vertex particles;

2 The change of notation is made here to make a clear distinction between the position vector s and the radial
component r .
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θv0 θv1

θv2
θv3

v0 v1

v2 v3

ns0

ns1

ns2

s0

s1

s2

Figure D.17: Segments and their vertex particles.

S: set of boundary surfaces which are segments in 2-D and triangular surfaces in 3-D;

s: an arbitrary element of S;

ns: inward normal to the segment s;

∆s: mean distance between particles;

ρ0: reference density of fluid particles, for water in standard condition of pressure and temperature,
ρ0 = 103kg/m3;

V̂0: reference pseudo-volume of fluid particles, in 2-D Cartesian SPH and 2-D axisymmetric
SPH it is a surface V̂0 = S0 = ∆s2;

Ma: mass associated to particle a;

M̂a: pseudo-mass associated to particle a: M̂a =
Ma

2πra ;

Aa: physical property A of particle a, for example, ρa is the density of a, pa its pressure, ua its
velocity, Va its the volume...

sa: position of a, in 2-D Cartesian SPH, sa = (xa, za) and in 2-D axisymmetric SPH, sa =
(ra, za);

sab = sa − sb

saσ: projected distance from particle a and the nearest boundary;

h: smoothing length, characterizing the dependence of wh with respect to sa − s;

wh(sa − s): (2-D) kernel interpolation centred on sa;

w(sa − s): wh(sa − s) when h is a constant;

Ωa: (compact) support of wh(sa − s);

wab: wab = wh(sa − sb);

q = r
h : dimensionless distance used in kernel interpolation;

Λ: dimensionless weighting coefficient of volume diffusion term.
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Figure D.18: Fluid domain and particles’ positions in 2-D axisymmetric SPH.
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z

a

Figure D.19: A particle in the plane (r, z) represents a donut of matter in 3-D space.
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D.5.2 Introduction of axisymmetric SPH and literature review
2-D axisymmetric SPH aims at solving in cylindrical coordinates problems independent of the
rolling angle θ.

The 3-D space, denoted by Ω3D can therefore be built by extruding by rotation of θ from
0 to 2π around the symmetric axis (denoted by z here) of a 2-D domain Ωaxi. Thus, each
particle represents a donut of the flow in 3-D space (see Figure D.5.2). The 2-D studied domain
can therefore be reduced to Ωaxi which is included in the half-plane (r ≥ 0, z). It can also be
convenient to define the symmetric domain of Ωaxi, denoted by (Ωaxi)s, with respect to the
symmetric axis. Then, the 2-D domain is defined by Ω2D = Ωaxi ∪ (Ωaxi)s and will be denoted
by Ω in the following.

Some works have already been done for 2-D axisymmetric SPH. Some pioneer work was
performed by Herant and Benz (1992), and gave the definition η, density divided by the radial
component, and their formulation of axisymmetric SPH is similar to the 2-D Cartesian SPH:

ηa B
∑
b∈P

Mbwab,

ρa =
ηa

2πra
,

dua

dt
= −

∑
b∈P

Mb

2πrb

[
pb
ρ2
b

+
pa

ρ2
a

+ Πab

]
∇wab,

(D.33)

where particle’s mass is defined at the beginning of simulation as a function of the distance to the
symmetric axis: M = 2πrρ0S and remains a constant in time, and Π is the artificial viscosity to
stabilise the system.

Brookshaw (2003) improves this formulation by using Lagrangian mechanisms. For an
isentropic compressible flow, the Lagrangian reads

L =
∑
b∈P
(Eke,b − Eint,b), (D.34)

where Eke,b =
1
2 Mbu

2
b

and dEint,b = Mb
pb

ρ2
b

dρb. As the Lagrange equations are

d
dt

(
∂L
∂ua

)
− ∂L
∂ sa
= 0, (D.35)

using the definition of ρ given in (D.33), the hoop-stress term 2π pa

ηa
er appears naturally and the

Lagrange equations become:

dua

dt
=−2π

∑
b∈P

Mb

(
para
η2
a

+
pbrb
η2
b

)
∇wab + 2π

pa

ηa
er . (D.36)

As mentioned in the conclusion of Brookshaw (2003), Brookshaw’s formulation is not suitable
for particles near the symmetric axis when r < 2h. In the thesis of Relaño Castillo (2012), a
renormalisation factor f1(r) is introduced to fix problems in the axis neighbourhood. Theoretically,
η should be zero at symmetric axis but if ηa =

∑
b∈P Mbwab is used, this property can not be

fulfilled. Forcing η to tend towards zero when particle moves towards the symmetric axis gives
rise to a renormalisation factor f1(r).

If the Gaussian kernel is used, as it reads

wG
2D

(
|s − s′ |

h

)
=K2D exp

(
−|r−r′ |2

h2

)
exp

(
−|z−z′ |2

h2

)
=K2

1Dw
G
1D

(
|r − r ′ |

h

)
wG

1D

(
|z − z′ |

h

)
.

(D.37)
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f1(r) can be expressed as

1
f1(r)

=
K1D
|r |

∫ +∞

−∞
|r ′ |wG

1D

(
|r − r ′ |

h

)
dr ′. (D.38)

The renormalised formulation reads:

η̂a = ηa f1(ra),

Aa =
∑
b∈P

Mb

η̂b
Abwab,

dua

dt
= 2π

pa

η̂a
er − 2π

∑
b∈P

[
Mb

(
para
η̂2
a

f1(ra) +
pbrb
η̂2
b

f1(rb)
)
∇wab

]
−

(
2πpara
η̂a f1(ra)

)
d f1(ra)

dra
.

(D.39)

In this document, f1 has not been used but another renormalisation factor is introduced to treat at
the same time boundary renormalisation presented in Chapter 2 and axis renormalisation.

The discrete interpolation in axisymmetric SPH used in Brookshaw (2003) and in Re-
laño Castillo (2012) to get smooth interpolation even if particle mass is heterogeneous reads:

[A]da =
∑
b∈P

Mb

ηb
Abwab . (D.40)

This proposition has the following characteristics:

• Mass of particles is defined at the beginning of the simulation and is conserved in time:

Ma = 2πra(t = 0)ρ0S0. (D.41)

Therefore, when a particle moves towards the symmetric axis, its density increases and it
repulses particles around;

• Smoothing length is taken variable, and depends on the surrounding particles to ensure
that each particle has a constant number of neighbour particles.

More recently, Li et al. (2020) proposed an axisymmetric formulation for multiphase flows,
however they get some spurious acceleration next to the axis for the hydrostatic test. They also
introduced radial shifting when particles are next to the axis and an artificial damping term.
Moreover they used mirror particles to deal with solid walls. Sun et al. (2021) proposed a
splitting–merging techniques to deal with the singularity of the axis.

In the next sub-sections, we want to keep the smoothing length constant over time and space,
which is the choice we made for 2-D Cartesian WCSPH. For this, a possible solution is to
conserve the surfacial mass (mass of the donut by unit of ring length) of particles in time and in
space. This implies that the mass of each fluid particle varies with its position in radial direction.

A constant mass by unit of ring length, M̂ , is defined as M̂B Ma

2πθara = ρaSa, and then M̂a is
defined as a new field attached to each particle such that M̂aBM̂θa.

As for SPH interpolations used in multi-fluid simulations (see e.g. Ghaïtanellis et al., 2018),
the proposed discrete interpolation for axisymmetric SPH, reads:

[A]da =
Ma

2πθara

∑
b∈P

Ab

ρb
θbwab =

∑
b∈P

M̂b
Ab

ρb
wab . (D.42)
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In the next Section D.5.3, we use definition (D.42) to discretise mass equation. Then discrete
divergence operator is derived, and, from Lagrangian mechanics, an attempt is made to get
discrete gradient operator which is the divergence skew-adjoint operator. Unfortunately, this
gradient operator is not accurate, especially gradient of constants are non-zero next to the axis.
Thus, as in Chapter 2, we step back to continuous interpolation to derive a gradient operator
which make boundary terms appear naturally. A renormalisation factor is introduced which
allows one to treat at the same time axis terms and boundary terms.

D.5.3 Present axisymmetric formulation based on mirroring particles and a unified renormalisa-
tion factor
In 3-D axisymmetric space, a particle is in fact a donut generated by the rotation around the
symmetric axis and a position sa stands for a ring.

Specular particles next to the axis
When 0 ≤ ra < 2h, the donut generated by the rotation around the axis of Ωa is composed of a
volume (generated by negative r ′ ∈ Ωa) which should be counted twice.

There are two possibilities to renormalise: either we define a renormalisation factor integrating
only onΩa∩Ωaxi , or we create mirroring particles on (Ωaxi)s and we integrate onΩ as proposed
by (Relaño Castillo, 2012). Here we prefer to introduce specular particles on the other side of the
symmetric axis, because this makes easier to satisfy the symmetry condition at the discrete level.

R The relations between the specular particles and the original particles are:

rs =−r,

zs = z,

Ms =M,

vsr =−vr,

vsz = vz .

(D.43)

Each particle located at (r, z) gives birth to a symmetric particle of the same mass at (−r, z)
(see Figure D.20). Note that this means that the radial parameter r can be negative due to
the symmetry.

Unified renormalisation factor and mass equation in axisymmetric SPH
Thus the continuous interpolation of density can be written as:

ρa =

∫
Ωa∩Ω

ρ(s)w(s − sa)|r |drdz∫
Ωa∩Ω

w(s − sa)|r |drdz
. (D.44)

And the integral renormalisation factor, depending on particles’ position, reads:

RaB

∫
Ωa∩Ω

w(s − sa)|r |drdz. (D.45)

It is a factor that combines the influence of the boundary and that of the symmetric axis. For
particle a far from the boundary and the symmetric axis, Ra = |ra |. However, when particle a is
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Figure D.20: Specular particles (orange) and original particles (blue).
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ra < 2h
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Figure D.21: Examples where Ra , |ra |.

near the symmetric axis (ra < 2h) or near the boundary (saσ < 2h), the support of its interpolation
kernel is no more a donut in 3-D space, the replacement of Ra by |ra | will underestimate the
value of volume density. In fact, Ra is an extension of Kulasegaram’s renormalisation factor γ
Kulasegaram et al. (2004).

It can be deduced that the discrete interpolation of density variation reads

d (Raρa) = d

(∑
b∈P

M̂b |rb |wab

)
. (D.46)

An attempt to derive skew-adjoint operators from Lagrange equations
Mass equation is already discretised in (D.46). Note that this equation already take walls into
account and has no singularity at the axis because R(r = 0) > 0. Equation (D.46) can be used
to formally define a discrete divergence operator. The choice made here to keep M̂a constant
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implies that mass is not conserved for a particle moving in the radial direction:

2πM̂a
d|ra |
dt
=

dMa

dt
=

d
dt

∫
Ω3D

a

ρdV

'V3D
a

dρa
dt
+ ρa

dV3D
a

dt

= 2π |ra |
M̂a

ρa

(
dρa
dt
+ ρa∇a · v

)
.

(D.47)

It should be noticed that v is not exactly equal to the fluid velocity, but is the velocity of the
moving control volume V3D

a , its centre is moved with the fluid velocity u under the constraint
that M̂a is kept constant. Note also here that for all particles a, we consider that va = ua, which
means that they are Lagrangian points moving with the fluid velocity. So with a little abuse of
notation, we replace ∇a · v by ∇a · u in the following.

The particle mass equation (D.47) rewrites:

d|ra |
dt
=
|ra |
ρa

dρa
dt
+ |ra |∇a · u, (D.48)

which is used to deduce the divergence of velocity:

∇a · u =
1
|ra |

d|ra |
dt
+

1
Ra

dRa

dt
− 1

Raρa

d(Raρa)
dt

, (D.49)

but, using (D.46) we get:

d(Raρa)
dt

=
d
dt

(∑
b∈P

M̂b |rb |wab

)
=

∑
b∈P

M̂b (wabub · ∇|rb | + |rb |uab · ∇wab) ,
(D.50)

Finally, we can define the discrete divergence operator in axisymmetric SPH:

DivL−
a {ub}B −

1
Raρa

∑
b∈P

M̂b (|rb |uab · ∇wab + wabub · ∇|rb |)

+
1
|ra |

ua · ∇|ra | +
1

Ra
ua · ∇Ra .

(D.51)

Note that this operator is not used in the time marching, (D.50) is integrated directly.
We will now derive the discrete pressure gradient from Lagrangian mechanics. Lagrange

equations (D.35) for variable mass rewrites (see e.g. Pesce et al., 2006) here:

d
dt

∂L
∂ua

− ∂L
∂ sa
=

∑
b∈P

ÛMbu
in
b ·

∂ sb
∂ sa
+

∑
b∈P

[
1
2

d
dt

(
∂Mb

∂ua
u2
b

)
− 1

2
∂Mb

∂ sa
u2
b

]
, (D.52)

where uin represents the velocity of the expelled or gained mass. It is set to zero as the system is
assumed to be closed here. Moreover, particle mass does not vary with particle velocity ∂Mb

∂ua
= 0.

For an isentropic flow, the Lagrangian can be written as

L =
∑
b∈P

Eke,b −
∑
b∈P

Eint,b, (D.53)
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where Eke,b and Eint,b are respectively particle b’s kinetic energy and internal energy and vary
as:

dEke,b = d
(
1
2

Mbu
2
b

)
= 1

2u
2
b
dMb + Mbub · dub,

dEint,b = Mb
pb
ρ2
b

dρb −
pb
ρb

dMb .

(D.54)

Lagrange equations (D.52) can be split into two parts (kinematic and dynamic parts):

d
dt

∂L
∂ua

= 2πM̂a
d
dt
(|ra |ua) , (D.55)

and

∂L
∂ sa
+

∑
b∈P

[
1
2

d
dt

(
∂Mb

∂ua
u2
b

)
− 1

2
∂Mb

∂ sa
u2
b

]
= −

∑
b∈P

∂Eint,b

∂ sa
. (D.56)

(D.56) can be developed as∑
b∈P

∂Eint,b

∂ sa
=

∑
b∈P

Mb
pb
ρ2
b

∂ρb
∂ sa
−

∑
b∈P

pb
ρb

∂Mb

∂ sa

=
∑
b∈P

2πM̂b
pb
ρ2
b

|rb |
Rb

∂(Rbρb)
∂ sa

− 2πM̂a
pa

ρa

|ra |
Ra

∂Ra

∂ sa

−2πM̂a
pa

ρa
∇|ra |,

(D.57)

where, using again (D.46), we have

d (Rbρb) = d

(∑
c∈P

M̂c |rc |wbc

)
. (D.58)

Combining Equations (D.55), (D.56) and (D.58), the expression of the equation of movement
reads

d(|ra |ua)
dt

=−
∑
b∈P

M̂b

(
pa

ρ2
a

|ra |
Ra
|rb | +

pb
ρ2
b

|rb |
Rb
|ra |

)
∇wab

+
pa

ρa

|ra |
Ra
∇Ra +

pa

ρa
∇|ra |

−
∑
b∈P

M̂b
pb
ρ2
b

|rb |
Rb

wab∇|ra |.

(D.59)

This expression can be used to define a discrete gradient operator of an arbitrary field A in 2-D
axisymmetric SPH as:

GradL+

a {Ab}B
ρa
|ra |

∑
b∈P

M̂b

(
Aa

ρ2
a

|ra |
Ra
|rb | +

Ab

ρ2
b

|rb |
Rb
|ra |

)
∇wab

− Aa

Ra
∇Ra −

Aa

|ra |
∇|ra |

+
ρa
|ra |

∑
b∈P

M̂b
Ab

ρ2
b

|rb |
Rb

wab∇|ra |,

(D.60)
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Figure D.22: Comparison of gradient operators in the radial direction ∂p
∂r , with the last two

terms in (D.60) (left) and without the last two terms in (D.60) (right) in a cylinder for a constant
pressure p = 28 000 Pa. Reference density ρ0 = 1000 kg m−3 and c0 = 20 m s−1.

and the momentum equation now writes d( |ra |ua )
dt = − |ra |ρa

GradL+

a {pb}. The exponent + means
that, considering only terms summed over neighbouring particles b, the pressure force can be
written as Ma

ρa
GradL+

a {Ab} =
∑

b∈P F
p
a→b
+ other terms, with F

p
a→b
= −Fp

b→a
, and thus (part

of) the pressure gradient verifies the action-reaction principle.
Using the definition made in equations (D.51) and (D.60), the skew-adjointness property

(Aa,DivL−
a {Bb}) = − < GradL+

a {Ab} , Ba > is well-verified.
However, note that Equation (D.60) is not accurate for particles near the symmetry axis,

because the last two terms lead up to a large radial pressure force for a constant pressure field and
make particles move radially. In fact, if the last two terms are removed, this problem does not
exist anymore (see Figure D.22).

Derivation of the discrete gradient operator from a continuous smoothed interpolation
As expressed in the Section above, the pressure gradient is not accurate near the axisymmetric
axis. To circumvent this problem we are stepping back to the continuous interpolation.

Another issue is that, similar to the problems in 2-D Cartesian SPH, the Lagrange equations
(D.52) are no more fulfilled for the particles next to the boundary: the force exerted by the
boundary on the fluid flow is not taken into account. In the following part of this Section, we
use the same methodology as in Chapter 2 and De Leffe et al. (2009): the discrete interpolation
which combines the boundary and symmetric term is built from the continuous interpolation.
Then, the derivation product rule in continuous interpolations is used to construct the discrete
interpolation of ∇|ra |.

If we go back to the continuous interpolation for an arbitrary field A

[A]axi,ca =
1

Ra

∫
Ω∩Ωa

A(s)w(s − sa)|r |drdz, (D.61)

and corresponding discrete interpolation is now defined as:

[A]axi,da =
1

Ra

∑
b∈P

M̂b

ρb
Ab |rb |wab . (D.62)
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Applying the continuous interpolation (D.61) to a field gradient gives:

[∇A]axi,ca =
1

Ra

∫
Ω∩Ωa

A(s)∇aw(s − sa)|r |drdz − 1
Ra

∫
∂(Ω∩Ωa )

|r |A(s)w(s − sa)ndl

− 1
Ra

∫
Ω∩Ωa

A(s)w(s − sa)drdz sign(r)er .
(D.63)

The corresponding discrete interpolation is

[∇A]axi,da =
1

Ra

∑
b∈P

M̂b

ρb
Ab |rb |∇wab −

1
Ra

∑
s∈S

As∇Ras

− 1
Ra

∑
b∈P
sign(rb)

M̂b

ρb
Abwaber,

(D.64)

where ∇Ras is defined by

∇RasB

∫
s

|r |w(s − sa)dlns . (D.65)

(D.64) applied to the pressure field does not fulfill action/reaction principle between two
neighbouring particles.

For particles far from the boundary and the symmetric axis, if we go back a while to the
operator derived from the Lagrangian, (D.60) becomes

GradL+

a {Ab} =
ρa
|ra |

∑
b∈P

M̂b

(
Aa

ρ2
a

|rb | +
Ab

ρ2
b

|ra |
)
∇wab

− 2
Aa

|ra |
∇|ra | +

ρa
|ra |

∑
b∈P

M̂b
Ab

ρ2
b

wab∇|ra |,
(D.66)

and can therefore be written as:

GradL+

a {Ab} =
Aa

ρa
[∇ρ]axi,da + ρa |ra |

[
∇

(
A
ρ|r |

) ] axi,d

a

− 2
Aa

|ra |
∇|ra | + ρa

[
A
ρ|r |

] axi,d

a

∇|ra |.
(D.67)

This decomposition is extended for all particles (including particles near the boundary and the
symmetric axis). To remove singularities, we propose to replace ∇|ra ||ra | by its discrete interpolation
[ ∇|r ||r | ]

axi,d
a and ρa[ A

ρ |r | ]
axi,d
a ∇|ra | by Aa[ ∇|r ||r | ]

axi,d
a , using definitions (D.62) and (D.64), equation

(D.66) is replaced by:

GradR+

a {Ab} =
ρa
Ra

∑
b∈P

M̂b

(
Aa

ρ2
a

|rb | +
Ab

ρ2
b

|ra |
)
∇wab

− Aa

Ra

∑
b∈P
sign(rb)

M̂b

ρb
waber

− ρa
Ra

∑
s∈S

ρs

(
Aa

ρ2
a

∇Ras +
As

ρ2
s

|ra |∇γ2D
as

)
.

(D.68)

Some comments can be made on the proposed gradient (D.68) compared to (D.60) and the
existing literature Brookshaw (2003); Relaño Castillo (2012); Li et al. (2020). First, (D.68) can
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be applied to a particle going on the symmetry axis without singularity, and, thanks to specular
particles, it is obvious that the gradient vanishes imposing at the discrete level ∂

∂r = 0. Second,
boundaries are treated with a unique renormalisation factor, without using additional correction
factor.

Laplacian operator in axisymmetric SPH
Morris et al. (1997) proposed that Laplacian can be written as the divergence of a gradient
where the divergence is in its SPH form and the gradient is expressed by a finite difference
approximation. Following this idea, (Leroy, 2014) proposed that the SPH form of divergence is
antisymmetric to ensure the action-reaction principle. The antisymmetric form derived from the
idea of (Monaghan, 1992) in axisymmetric framework reads:

DivR+

a {Ab} =
1

Ra

∑
b∈P

M̂b

ρb
(|rb |Aa + |ra |Ab) · ∇wab

− 1
Ra

∑
s∈S

(
Aa · ∇Ras + |ra |As · ∇γ2D

as

)
.

(D.69)

As LapR
a ({µb} , {ub}) = DivR+

a {µb∇ub}, after some algebra, Laplacian in 2-D axisymmetric
is deduced as

LapR
a ({µb} , {ub})=

1
Ra

∑
b∈P

M̂b

ρb
(|rb |µa∇ua + |ra |µb∇ub) · ∇wab

− 1
Ra

∑
s∈S

(
µa∇ua · ∇Ras + |ra |µs∇us · ∇γ2D

as

)
.

(D.70)

In Equation (D.70), a two-point flux approximation and flux continuity is used to replace
them by µa∇ua · eab ' µb∇ub · eab ' 2µaµb

µa+µb

uab ·eab

|sab | and next to the boundary µa∇ua · ns '
µs∇us · ns ' µa uas ·ns

sas ·ns
.

Time stepping in 2-D axisymmetric SPH
The time stepping proposed in 2-D axisymmetric SPH is similar to that in 2-D Cartesian SPH
used in Chapter 2:

Fn
a =− |r

n
a |
ρna

GradR+

a

{
pn
b

}
+
|rna |
ρna

LapR
a

(
{µb} ,

{
un
b

} )
+ |rna |g,

rn+1
a un+1

a = rna u
n
a + ∆tFn

a,

sn+1
a = sna + ∆tun+1

a ,

ρn+1
a =

1
Rn+1
a

[
Rn
aρ

n
a +

∑
b∈P

M̂b(|rn+1
b |wn+1

ab − |r
n
b |w

n
ab)

]
,
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where Ra, GradR+

a {pb} and LapR
a ({µb} , {ub}) are defined respectively by Equations (D.45),

(D.68) and (D.70).
The main specificity is that the velocity un+1 involves rn+1, and integration of positions from

time n to n + 1 leads to a second degree polynomial equation in rn+1:(
rna + ∆tun+1

a · er
)
un+1
a = rna u

n
a + ∆tFn

a . (D.72)
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The positive root of this equation is:

rn+1
a =

1
2

(
rna +

√
rn,2a + 4∆trna un

a · er + 4∆t2Fn
a · er

)
,

un+1
a · er = rn+1

a −rna
∆t ,

un+1
a · ez = rnau

n
a ·ez+∆tFn

a ·ez
rn+1
a

.

(D.73)

Volume diffusion term
As in WCSPH, the equation of state is used to calculate p from ρ. Small errors on ρ can lead to a
big error on p. A stabilisation method is required to smooth the field of pressure. The artificial
viscosity is one of these methods widely used. Another method that is used in this Section is the
addition of the volume diffusion term in the continuity equation. The original idea is proposed
by Brezzi and Pitkäranta (1984) for finite elements and then adapted in Semi-Analytical SPH
boundary conditions by Ghaitanellis et al. (2015).

First, we have the relationship between the divergence operator in cylindrical coordinates and
in Cartesian coordinates: rdiv cyl(v) = div cart (rv). We use this trick to write raDivR−

a {vb} =
Div−a {rbvb}. Equation (D.48) could be time-discretised as follows:
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a | ρ
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where ∆n is defined as

∆na = LapR
a

({
∆t
ρn
b

}
,
{

pn
b

} )
− LapR

a ({∆t} , {g}) . (D.75)

Adding the dimensionless weighting coefficient Λ, the density time scheme is improved as

ρn+1
a =

1
Rn+1
a

[
Rn
aρ

n
a +

∑
b∈P

M̂b(|rn+1
b |wn+1

ab − |r
n
b |w

n
ab) + ∆tΛ∆n

]
. (D.76)

Analytical calculation of the renormalisation factor
For a fluid particle a, the renormalisation factor Ra reads:

Ra B

∫
Ωa∩Ω

w (s − sa) |r |drdz

= |ra | −
∑
s∈S

∫
s

sign(r) (raW (s − sa) +Q (s − sa)) erdl · ns

− 2
∫
∂(Ωa∩Ω),r=0

(raW (s − sa) · er +Q (s − sa)) dz,

(D.77)
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Figure D.23: Renormalisation factor in axisymmetric SPH (Ra =
∫
Ωa

w |r |drdz) against the
radial direction.

where:

Q (s − sa) =− 1
2π (1 −

q
2 )5(1 +

5q
2 + 2q2),

W (s − sa)= Q(q)
h2q2 (s − sa),

(D.78)

with qB |s−sa |h .
Ra and its gradient are plotted against the radial direction r for particle a far from solid

boundaries (Ωa ∩Ω = Ωa) on Figure D.23.
For 0 < ra < 2 we obtain after some algebra:
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D.5.4 2-D axisymmetric SPH test-cases
Poiseuille flow in 2-D axisymmetric SPH
This test case is designed to check whether (or not) the viscous force is computationally consistent
with the theoretical one. For a Poiseuille flow in a periodical pipe D = 5 m which is presented in
Figure D.24, the velocity profile reads:

uana
z (r) = umax

(
1 − 4

r2

D2

)
, (D.80)

where umax is defined as:

umax =
D2

ν
g · ez . (D.81)
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r
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u

Figure D.24: Sketch of the Poiseuille flow in a circular pipe.

If the Reynolds number based on the maximum velocity is set to 10 and g = 1.0 m s−2ez we get{
Re = umaxD

2ν = 10,
umax =

D2

ν g · ez,
⇐⇒

{
umax = 2.5 m/s,
ν = 0.625 m2/s.

(D.82)

We also set ρ0 = 1000 kg m−3, c0 = 20 m s−1, a background pressure p0 = 28 000 Pa in the
for the Equation of State p =

ρ0c
2
0

γ

(
ρ
ρ0
− 1

) γ
, with γ = 7.0.

In the simulations, we impose true periodic conditions on z with a computational pitch of
L = 10 m length (particles leaving the computational domain at z = 10 m are instantaneously
shifted one meter below, all particles next to z = 0 m and z = 10 m see neighbouring particles
form the other part of the torus domain as if they were shifted from 10 m). In all this computations,
the volume diffusion factor Λ is set to 0.

Velocities are initialised by the analytical values, as can be seen in Figure D.25, which gives
the comparison of the velocity fields at the beginning (t = 0 s) and at the end (t = 8 s) of the
simulation, which corresponds to 2 passes for particles next to the axis. The comparison of the
velocity profile at t = 5 s with the theoretical one which is imposed at t = 0 s is presented on
Figure D.28. The profile is well conserved during the simulation.

The variation of maximum velocity in time is presented in Figure D.27 for three space
discretisations (∆sD = 0.01, ∆sD = 0.005 and ∆sD = 0.0025). After the stabilisation at the beginning
of simulation (during ≈ 1 s), the absolute error is:

ε =
|umax − umax,computed |

umax
≈ 0.4%. (D.83)

The discrete L2 errors for the vertical velocity is defined as:

εuz =

√√
8

LD2

∑
b ∈ P/rb>0

V̂0rb
(
uz,b − uana

z (rb)
) 2
. (D.84)

Its evolution over time for the same discretisations is presented in Figure D.26.
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Figure D.25: Vertical component of the velocity field at t = 0 s (left) and at t = 8 s (right)
(∆sD = 0.01).

D.5.5 Conclusion
A 2-D axisymmetric formulation is proposed for SPH with a renormalisation factor unifying
wall and axis correction. No singularity is present in the proposed scheme and particles are able
to reach the axis. A basic test-case is proposed to check the correct behavior of the proposed
operators (pressure gradient, mass equation and Laplacian used to compute shear stresses).

Future work could be made to increase the validation database and to extend this proposition
to open boundaries as done in Chapter 3. The analytical expression used to compute the
renormalisation factor has also to be extended to other shapes than horizontal or vertical segments
treated in this Section.
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E. Tensors, differential operators and some nota-
tions

Abstract E.1 This appendix is made to define tensor notations, differential operators and to
recall classical theorems and relationships.

Résumé E.1 Cette annexe est faite pour définir les notations tensorielles utilisées, les opérateurs
différentiels et rappelle quelques résultats classiques d’intégration.
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E.1 Tensor and index notations
In a fixed reference-frame (e1, e2, e3), with Einstein convention of sum over repeated indices we
have:

0th-order tensor: e.g. scalar T

1st -order tensor: e.g. vector u = ui ei

2nd-order tensor: e.g. matrix σ = σi j ei ⊗ e j

3rd-order tensor: a = ai jk ei ⊗ e j ⊗ ek

order tensor
...

nth-order tensor: a(n) = ai1i2 · · ·in ei1 ⊗ ei2 ⊗ · · · ⊗ ein

Operation Symbol Formula

tensor product ⊗ u ⊗ u = uiu j ei ⊗ e j

a(n) ⊗ b(m) = ai1 · · ·in bj1 · · · jm ei1 ⊗ · · · ⊗ ein ⊗ e j1 ⊗ · · · ⊗ e jm

inner product · u · u = uiui

a(n) · b(m) = ai1 · · ·in−1kbk j2 · · · jm ei1 ⊗ · · · ⊗ ein−1 ⊗ e j2 ⊗ · · · ⊗ e jm

double inner : σ : σ =σi jσji

product a(n) : b(m) = ai1 · · ·in−2klblk j3 · · · jm ei1 ⊗ · · · ⊗ ein−2 ⊗ e j3 ⊗ · · · ⊗ e jm

cross product

×

or

∧

u ∧ v =

©«

u1

u2

u3

ª®®®®®®®¬
∧

©«

v1

v2

v3

ª®®®®®®®¬
=

©«

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

ª®®®®®®®¬
Table E.1: Operations on tensors.

E.2 Differential operators and classical results

div (curl u) = 0 curl (∇T) = 0

div (αu) = αdiv u + ∇ α · u curl (αu) = αcurl u + ∇ α ∧ u

div (u ∧ v) = v · curl u − u · curl v curl (curl u) = grad (div u) − ∆ u

grad (u · v) = (grad u) · v + (grad v) · u + u ∧ curl v + v ∧ curl u
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Operator Symbol Definition Cartesian formula

gradient grad ∇(n+1) [a(n)] · dx = da(n)
��
dx ∇T =

∂T
∂xi

ei

or ∇ u =
∂u

∂xj
⊗ e j =

∂ui
∂xj

ei ⊗ e j

∇ ∇(n+1) [a(n)] =
∂a(n)

∂xin+1

⊗ ein+1

divergence ∇· ∇(n−1) ·
[
a(n)

]
= ∇(n+1) [a(n)] : 1 div u =

∂ui
∂xi

or div σ =
∂σi j

∂xj
ei

div div (n−1) [a(n)] =
∂ai1 · · ·in
∂xin

ei1 ⊗ · · · ⊗ ein−1

Laplacian ∆ ∆a(n) = div (n)
{
∇(n+1) [a(n)] } ∆T =

∂2T
∂xi∂xi

or ∆ u =
∂2u

∂xj∂xj
=

∂2ui
∂xj∂xj

ei

Lap ∆(n)a(n) =
∂2a(n)

∂xin+1∂xin+1

=
∂2ai1 · · ·in

∂xin+1∂xin+1

ei1 ⊗ · · · ⊗ ein

curl

∇∧

or

curl

curl u =

©«

∂
∂x1

∂
∂x2

∂
∂x3

ª®®®®®®®¬
∧

©«

u1

u2

u3

ª®®®®®®®¬
=

©«

∂u3
∂x2
− ∂u2
∂x3

∂u1
∂x3
− ∂u3
∂x1

∂u2
∂x1
− ∂u1
∂x2

ª®®®®®®®¬
Table E.2: Differential operators.

Kelvin-Stokes theorem∫
S

curl u · dS =
∫
∂S

u · dl

where dS is the out-warding surface element.

Divergence theorem [Green-Ostrogradski]∫
Ω

div (n−1)
[
a(n)

]
dΩ =

∫
∂Ω

a(n) · dS

Curl theorem∫
Ω

curl u dΩ = −
∫
∂Ω

u ∧ dS

Leibniz theorem
d
dt

∫
Ω(t)

a(n) dΩ =
∫
Ω(t)

∂a(n)

∂t
dΩ +

∫
∂Ω(t)

a(n)v · dS

where v is the velocity of the control volume Ω(t) displacement.
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n
curl u

u · dl
u · dl

u · dl
u · dl

(a) Kelvin-Stokes theorem.

x

y

z

a(n) · dS

a(n) · ex

a(n) · ey

a(n) · ez

(b) Divergence theorem.

Figure E.1: Illustrations of the Kelvin-Stokes and the divergence theorems.
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Figure E.2: Illustration of Leibniz theorem.
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