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Notations

• Tensors

Description Notation
Vector A

Second-order tensor A
∼

Transpose A
∼

T

Inverse A
∼

−1

Time derivative Ȧ
∼

• Contractions

Description Index notation
Simple contraction (a ·b) aib j

Double contraction (A
∼

: B
∼

) Ai jBi j

• Tensor product

Description Index notation
a⊗b aib jei⊗ e j
A
∼
⊗B
∼

Ai jBklei⊗ e j⊗ ek⊗ el
A
∼
⊗B
∼

AikB jlei⊗ e j⊗ ek⊗ el
A
∼
⊗B
∼

AilB jkei⊗ e j⊗ ek⊗ el

• Curl and spin operator

Description Index notation
(curlA

∼
)i j ϵipqA jq,pei⊗ e j

(spinN)i j −ϵi jqNqei⊗ e j

• Other notations

Description Notation
Nabla operator

(with respect to the Lagrange coordinates) ∇X

Nabla operator
(with respect to the Euler coordinates) ∇

v



Abbreviations

ENABLE European network for alloy behavior law enhancement
ESR Early stage researcher
WP Work package

CPFEM Crystal plasticity finite element method
FCC Face-centered cubic
SSD Statistically stored dislocation

GND Geometrically necessary dislocation
CRSS Critical resolved shear stress
ASB Adiabatic shear band
DRX Dynamic recrystallization
TQC Taylor-Quinney coefficient
FE Finite element

DOF Degree of freedom
PDE Partial differential equation
RVE Representative volume element
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Chapter 1

Introduction

Ce chapitre présente le projet European Network for Alloy Law Behavior Enhancement (ENABLE),
ses objectifs ainsi que la méthode utilisée. Le projet ENABLE est financé par le réseau Marie
Skłodowska-Curie Actions Innovative Training Networks dans le cadre du programme Horizon
2020. Ce projet implique activement des partenaires industriels et universitaires dans la
formation d’une nouvelle génération de jeunes chercheurs pour l’avenir de l’industrie
manufacturière. Le projet ENABLE a été conçu pour exploiter l’expertise complémentaire
des membres du réseau et, par conséquent, aborder des questions ambitieuses et interdisci-
plinaires. Le thème de recherche comprend plusieurs disciplines telles que la science des
matériaux, la mécanique, la thermodynamique, les mathématiques et l’informatique.

De plus, les objectifs de la thèse et la méthodologie utilisée pour atteindre ces objectifs
sont détaillé. En outre, l’état de la technique concernant le présent travail est brièvement
présenté. Ce chapitre présente la déformation plastique dans les matériaux métalliques,
les observations expérimentales du comportement plastique non conventionnel comme le
renforcement dépendant de la taille et la localisation des déformations, ansi que les mesures
de l’énergie stockée dans les matériaux métalliques. Ensuite, l’état de l’art des différentes
approches numériques utilisées pour prédire les effets de taille, régulariser les bandes de
cisaillement formées dans les problèmes de localisation de déformation, et prédire l’énergie
stockée est détaillé.

1.1 European Network for Alloy Law Behavior Enhance-
ment (ENABLE)

The ENABLE1 project is financed by the Marie Skłodowska-Curie Actions Innovative Training
Networks under the Horizon 2020 program. It is coordinated by Prof. Olivier Cahuc from
the University of Bordeaux, France. The ENABLE project actively involves industrial
and academic partners in training a new generation of young researchers for the future
of the manufacturing industry. The ENABLE project has been designed to exploit the

1https://enable-project.com/
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complementary expertise of the network members and, therefore, to address ambitious
and interdisciplinary problems. The research theme consists of several disciplines such as
materials science, mechanics, thermodynamics, mathematics, and computer science.

The ever-increasing prominence of sustainable growth has affected manufacturing
engineering. Manufacturing is often recognized as a process to convert raw materials or parts
into finished goods. Innovative solutions to reduce weight and costs without compromising
performance and service life require the expertise of the entire manufacturing chain.
Developing a competitive manufacturing industry is mainly based on an interdisciplinary
research program.

ENABLE aims to include all metallurgical aspects of materials such as hardening,
grain size, precipitation, phase transformation, etc., to study the microstructural evolution
under extreme environmental conditions. Moreover, ENABLE proposes a complete re-
evaluation of usual process simulation methods in metallic alloys by developing new
solutions. Furthermore, innovative multi-scale (from microscopic to macroscopic scales)
and multi-physics (strong thermo-mechanical and microstructural couplings) approaches
are addressed in advanced multi-level simulations.

A group of 9 Early Stage Researchers (ESRs) is trained within world-leading research
teams, which consists of 17 institutes/companies located within 5 countries (Table 1.1).

Table 1.1 Different institutes/companies involved in the ENABLE project.

France

Institutes
Mines ParisTech (MAT), Engineering school of Tarbes (ENIT),

University of Bordeaux (UBx)

Companies
Safran Tech (SAF), ESI Group (ESI), Timet (TI),

Metallicadeour (MET), Innovation Plasturgie Composites (IPC)
Spain

Institutes University of the Basque Country - UPV/EHU (UPV)
Companies Tecnalia (TEC), Lortek (LOR), Basque Center for Applied Mathematics (BCA)
Sweden
Institutes Luleå University of Technology (LTU)

Companies GKN Aerospace Sweden (GK), Sandvik Coromant (SVK)
Belgium
Institutes

Companies SIRRIS (SIR)
Denmark
Institutes

Companies Danish Advanced Manufacturing Research Center (DA)

2



ESRs have been introduced to novel approaches and applications while exploiting
advances in fundamental research. Additional cross-disciplinary training such as commu-
nication, entrepreneurship, open science, intellectual property, patenting, gender balance
awareness, etc., are provided to ESRs. In addition, ESRs are provided with transferable
skills and complementary competencies, which improve their research abilities and enhance
their future employability.

1.2 Objectives of the ENABLE project

Each manufactured structure results from the collective efforts of various processes encoun-
tered along the whole manufacturing chain. Manufacturers must improve their production
processes to meet the high demand for new products of excellent value in productivity,
profitability, and quality.

The production processes are difficult to control due to the presence of complex
phenomena related to continuum mechanics, thermo-mechanics, metallurgy, and chemistry.
These phenomena are even more complicated in the presence of high stains, high strain
rates, and high temperatures. A component’s final mechanical state subjected to dynamic
loading goes through severe inhomogeneous deformations processes. Predicting such
deformation behavior using numerical calculations requires a complete description of the
material’s dynamic behavior.

Many companies’ research and development departments need appropriate models
to predict material behavior under severe deformation. Unfortunately, companies are
forced to use empirical laws that are poorly suited to an ever-greater need for precision.
Moreover, the changes in materials occurring during severe deformation, such as residual
stresses, phase transformation or particle precipitation, recrystallization, etc., are still
insufficiently considered. The physics-based approach of ENABLE using advances in
information technologies (High-performance computing, Crystal plasticity modeling, etc.)
and advanced material characterization tools (Scanning electron microscope, Transmission
electron microscopy, Electron backscatter diffraction, etc.) will be able to link the micro-
and macro-scopic responses of the materials.

The modeling approach provided by ENABLE can be used to create specifically tailored
materials that will improve the component’s material properties required for improving
performance. These advances will lead to new service life improved tools and ultimately
reduce production time and hence production costs.

To extend the benefits of the ENABLE project to a wide range of industrial sectors, the
numerical simulation will be performed on several widely-used processes such as friction
stir welding, machining, and additive manufacturing. These processes are chosen because
they are all thermo-mechanical and challenging to model and accomplish in practice. The
most popular metallic materials in the industry, namely nickel-based super-alloys, titanium,
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and aluminum alloys, are chosen for the scientific investigation. All the obtained results
can be extended to other types of alloy.

The 9 ESRs involved in this project are divided into three work packages (WPs) (3 ESRs
in each WP), namely, materials, modeling, and processes. Different WPs and collaborative
partners involved in ENABLE project are shown in Fig. 1.1.

• WP1 (Materials): This package aims to identify the mechanisms governing the
evolution of plastic behavior covering a wide range of strains, temperatures, and
strain rates. Three ESRs working in this WP are Marie-Anna Moretti (ESR1), Biswajit
Dalai (ESR2), and Trunal Dhawale (ESR3). Marie-Anna Moretti is studying phases
transformations, recrystallization, and grain growth during hot deformation of
Inconel 718 alloy. Biswajit Dalai is investigating, among other things: phases
transformations, recrystallization, and grain growth during hot deformation of two
grades of aluminum alloys commonly used in additive manufacturing and shaping
processes. Besides, Trunal Dhawale provides a detailed experimental behavior law
and performs microstructural investigations to establish interdependences between
microstructure and strain.

• WP2 (Modeling): The global aim of this WP is to develop a new finite element
theory based on the strain gradients approach to enable thermo-mechanical and
microstructural coupling. This multi-scale modeling will then be optimized for
high-performance computing and implemented in digital simulation software for
new generation processes. Three ESRs working in this WP are Vikram Phalke (ESR4),
Raffaele Russo (ESR5), and Tamara Dancheva (ESR6). The global objective of Vikram
Phalke is to work on a finite deformation crystal plasticity model implemented in
the implicit finite element code Zset (common code for Mines ParisTech and Safran
Tech) to investigate the thermo-mechanical response of the single and poly-crystals.
The global aim of Raffaele Russo (ESR5) is the formulation of a visco-plastic strain
gradient continuum theory for macro-scale applications such as machining, friction
stir welding, etc. Tamara Dancheva is developing and implementing computational
methods for the future of metals manufacturing in the open-source automated
massively parallel FEniCS framework in collaboration with leading researchers and
companies in the ENABLE project.

• WP3 (Processes): The global aim of this WP is to identify and measure kinematic
and temperature fields for standard test cases and thereby understand and improve
the manufacturing processes. The three ESRs involved in this WP are Haythem
Zouabi (ESR7), Danilo Ambrosio (ESR8), and Pinku Yadav (ESR9). Haythem Zouabi
aims to measure kinematic and temperature fields in machining operations on a new
experimental bench. The objective of Danilo Ambrosio is to determine kinematic and
temperature fields during friction stir welding of the aluminum and nickel-based
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super-alloys. Finally, Pinku Yadav investigates the metallurgical changes during
additive manufacturing of AlSi7Mg0.6 aluminum alloy.

1.3 Objectives of this thesis as ESR4 in ENABLE project

This thesis is a part of WP2 presented above. The global aim of this thesis is to predict the
thermo-mechanical response of the single and poly-crystalline metallic materials subject to
severe inhomogeneous deformation taking the strain gradient crystal plasticity approach.
The global aim of this thesis is divided into the following principle objectives.

When micron-scale components are subjected to inhomogeneous deformation, they
show non-conventional plastic behavior such as size–dependent strengthening called
size effect. It is well known that the classical crystal plasticity models fail to capture
experimentally observed size effects due to the lack of characteristic length scales in the
constitutive framework. This limitation of the classical crystal plasticity models can be
overcome using strain gradient crystal plasticity models. Therefore, the first objective of
the thesis is to predict the size–dependent response of the micron-scale components such
as microwires under severe deformation using the strain gradient crystal plasticity model.

Strain softening, mainly due to the temperature rise, is a common phenomenon in severe
deformation processes. This, in turn, reduces the stress carrying capacity of the material
and results in the formation of an intense shear band called the adiabatic shear band
(ASB). ASB formation is a common phenomenon observed in manufacturing processes
such as machining, shearing, metal forming, and so forth. Applications of the classical
crystal plasticity models to strain localization problems have limitations as the localization
phenomenon shows spurious mesh dependency. Strain gradient crystal plasticity models
can be used to overcome this limitation of classical crystal plasticity models. Therefore,
another objective of the present work is to apply the strain gradient crystal plasticity model
for numerical analysis of the ASB formation in single and poly-crystalline FCC metallic
materials.

The recent experimental work from the literature has shown that the ASB formation
process is governed by dynamic recrystallization along with thermal softening. Stored
energy is the main driving force for the dynamic recrystallization and recovery process. The
prediction of stored energy is vital to understanding the plastic deformation and subsequent
recrystallization and recovery processes. Another important aspect related to stored energy
is the fraction of plastic work converted into heat called the Taylor-Quinney coefficient
(TQC). Numerical prediction of stored energy and TQC in line with the experimental
measurements is a challenging task. The experimental observations showed that the TQC
is not a constant but an evolving parameter during the deformation process. Therefore,
another objective of this thesis is to predict the stored energy and TQC for single crystals
and polycrystalline FCC metallic materials.
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Fig. 1.1 Different work packages and collaborative partners in ENABLE project.
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Implementing strain gradient plasticity theory in the FE code is challenging due to
its complicated constitutive framework. Therefore, the final objective of this thesis is
to propose a method to implement the strain gradient plasticity model in commercial
FE software with little effort to regularize strain localization problems and predict size effects.

The principal objectives of this thesis and collaborative partners to achieve these objectives
are summarized below.

• Prediction of size effect using strain gradient crystal plasticity model (Mines ParisTech,
Safran Tech)

• Investigation of the ASB formation in single and poly-crystalline metallic materials
(Mines ParisTech, Safran Tech, Luleå University of Technology)

• Prediction of stored energy and evolution of TQC in single and poly-crystalline
metallic materials (Mines ParisTech, Safran Tech, University of the Basque Country
- UPV/EHU)

• Implementation of the micromorphic plasticity model in commercial FE software (ESI
Group, Mines ParisTech, Safran Tech). This objective is fulfilled by collaborating
with Raffaele Russo (ESR5), a Ph.D. student at the University of the Basque Country
- UPV/EHU and Mines ParisTech.

1.4 Methodology

Strain gradient crystal plasticity models have limited applications for practical engineering
problems due to their high computational cost. As a simplified strain gradient crystal
plasticity model, a reduced-order model has been introduced for complex applications with
reduced computational cost in terms of CPU time. This model will be used to fulfill the
first objective of predicting the size effect in single crystals microwire torsion tests.

Various types of strain gradient crystal plasticity theories can be found in the literature.
Differences in the formulation of these strain gradient crystal plasticity theories result in
distinct and sometimes non-physical responses, which raises the necessity of verifying
the validity of the selected model for chosen applications. At first, a comparison of the
reduced-order micromorphic and Lagrange multiplier-based models will be performed
in predicting the size effect. These models were implemented in implicit FE code Zset2,
former model by Ling et al. (2018) and latter model by Scherer et al. (2020). Both models
are a type of reduced-order models, but the Lagrange multiplier-based model has one
more additional degree of freedom than the one used for the reduced-order micromorphic
model. The second part compares the CurlFp model proposed by Kaiser and Menzel (2019a),

2http://www.zset-software.com/
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which is a typical strain gradient plasticity model without simplification, and the Lagrange
multiplier-based model in predicting the size effect under monotonic and cyclic loading of
the microwire torsion tests.

To fulfill the second objective of studying the ASB formation process in single and
polycrystalline FCC metallic materials, a thermodynamically consistent framework of
the reduced-order micromorphic crystal plasticity model will be developed. Simulations
will be performed on the single and polycrystalline hat-shaped specimens using this
thermodynamically consistent framework.

A dislocation density-based hardening model will be used to fulfill the third objective
of predicting the stored energy and TQC in single and poly-crystals. Firstly, the stored
energy will be predicted by considering the contribution of Statistically Stored Dislocations
(SSDs) only, i.e. using the classical crystal plasticity model. Next, the stored energy will
be predicted considering the contribution of both SSDs and Geometrically Necessary
Dislocations (GNDs), i.e. using the micromorphic crystal plasticity model and will be
compared to that of the prediction made by considering SSDs only.

Finally, we propose an easy way to implement the micromorphic plasticity model in
commercial explicit FE software VPS/Pam-Crash® from ESI Group3. We will use an analogy
between the reduced-order micromorphic plasticity theory and classical thermo-mechanical
analysis to easily implement this model for practical engineering problems.

3https://www.esi-group.com/pam-crash
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(a) (b)

Fig. 1.2 (a) Burgers circuit around the edge dislocation in a distorted lattice (b) same Burgers
circuit in the perfect crystal; closure failure denotes the Burgers vector (Hull and Bacon,
2011).

1.5 State of the art in brief

This section introduces the plastic deformation in metallic materials, experimental observa-
tions of the non-conventional plastic behavior such as size–dependent strengthening and
strain localization, and measurements of stored energy in metallic materials. Then, the state
of the art of different numerical approaches used to predict size effects, regularize the shear
bands formed in strain localization problems, and predict the stored energy is presented.

1.5.1 Plastic deformation in metallic materials

All crystalline materials contain imperfections in the crystal lattice which may be point, line,
surface, or volume defects (Hull and Bacon, 2011). Plastic deformation in metallic materials
occurs due to the presence, generation, multiplication, interaction, and movement of these
defects present in the crystal lattice (Kubin et al., 1992; Arsenlis and Parks, 2002; Uchic et al.,
2004). The line defects are called dislocations and are the main contributors to material strain
hardening. The definition of dislocation can be given in terms of the Burgers circuit. The
Burgers circuit is a close loop circuit formed by joining an atom-to-atom path in the crystal.
Such a path is shown in Fig. 1.2a (i.e. MNOPQ). If the same atom-to-atom path is made in a
perfect crystal (dislocation free), the circuit does not close (see Fig. 1.2b). This indicates
that the circuit in Fig. 1.2a must contains one or more dislocations. The vector needed to
complete the circuit is called the Burgers vector (Hull and Bacon, 2011) (QM in Fig. 1.2b). The
specification of dislocation involves both the displacement vector and dislocation line, such
that when the displacement vector is parallel to the dislocation line, then the dislocations
are called edge dislocations. On the other hand, when the Burgers vector is perpendicular
to the dislocation line, they are termed as screw dislocations (Hull and Bacon, 2011).

There are two main dislocation motions. The dislocation motion that happens due to
the gliding along its direction is called glide. On the other hand, climb is the motion that
occurs when the dislocation moves out of the glide surface. The glide of many dislocations
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results in slip. Dislocation glide is the most common phenomenon in plastic deformation
at room temperature. During plastic deformation, dislocations move along particular
planes located between closest-packed atomic layers, called slip planes. The direction
of dislocation motion is called the slip direction. The combination of slip plane and slip
direction form the slip system. In FCC crystals, the crystallographic slip occurs on the
twelve {111}<110> slip systems; four {111} planes and three <110> directions (see Fig.
A.1). The definition of the octahedral slip systems can be found in appendix A (Table A.1).
The dislocation glide depends on the number of independent slip systems. At least five
independent slip systems are necessary for a homogeneous plastic flow by dislocation glide
(Groves and Kelly, 1963).

Taylor and Elam (1923) established a relationship between the resolved shear stress and
plastic yielding to facilitate the determination of active slip systems, commonly known
as Schmid law. According to them, the active slip system is defined as the one with the
highest component of shear stress (i.e., the resolved shear stress) in the direction of shear.
In addition, they noted the influence of active slip systems on the hardening of inactive slip
systems called latent hardening. Another important observation made by Koehler (1941)
suggests that the amount of energy required for a certain amount of slip inside the solid is
twice that needed for the same amount of slip at the surface.

These generated dislocations are hindered by other dislocations, precipitates, grains, and
sub-grain boundaries in polycrystals. The presence of grain boundaries in polycrystalline
materials results in a non-conventional plastic behavior, where the decrease in grain size
leads to an increase in flow stress required for the plastic deformation (Hall, 1951).

The macroscopic behavior of materials stems from the underlying microstructure. The
plastic deformation in materials at micron and sub-micron scales is due to the presence of
characteristic length scales. In single crystals that are free from grain boundaries and defects
other than dislocations, the characteristic length scale is described as the mean spacing
between the dislocations. On the other hand, in polycrystalline materials, which consist
of grain boundaries or defects beyond dislocations such as precipitates, the characteristic
length scale is determined by the smallest distance between the dislocations and the next
obstacle (Zhang et al., 2014; Bayerschen, 2017). In the next section, experimental evidence
of different size–dependent behaviors due to the presence of characteristic length scales in
the micron-scale structures are summarized.

1.5.2 Size effects in plasticity

When a material is deformed plastically, dislocations are generated, moved, and stored.
There are two main types of dislocation families to be considered. The typical ensemble of
dislocations generated during the plastic deformation through random trapping with each
other is called SSDs. The other type, GNDs are required for the compatible deformation
of the crystal under inhomogeneous plastic deformation processes (see Fig. 1.3) (Ashby,
1970). The GNDs are generated either due to the inhomogeneous local loading applied
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(a) (b) (c)

Fig. 1.3 Non-homogeneous deformation in polycrystals: (a) undeformed specimen, (b)
homogeneous deformation of grains leads to the formation of overlaps and voids (c)
non-homogeneous and local deformation provided by the GNDs removes overlaps and
voids (Voyiadjis and Yaghoobi, 2019).

to the specimen, or if the material itself is non-homogeneous, e.g. due to the presence of
precipitates. The GNDs can be quantified using Nye’s dislocation density tensor D

∼ d (Nye,
1953) given by

D
∼ d =Ndbt, (1.1)

where Nd is the number of dislocation lines with Burgers vector b, crossing a unit area
normal to their unit tangent line vector t. The gradient of shear strain is associated with the
storage of GNDs described by Nye’s tensor. As a result, GNDs along with SSDs control the
material strain hardening and the size effects.

The size effects can be described as the change in material strength with a change in
characteristic length scale. For instance, the indentation hardness of metals and ceramics
increases as the size of the indenter decreases (Nix and Gao, 1998; Gao and Huang, 2001;
Liu and Ngan, 2001). Micro-torsion tests show increasing shear strength with decreasing
diameter of the microwire (Fleck and Hutchinson, 1997; Gao and Huang, 2001; Liu et al.,
2012; Guo et al., 2017), and micro-bending tests show an increase of material strength with
a decrease in beam thickness (Stölken and Evans, 1998; Gao and Huang, 2001; Haque and
Saif, 2003).

One of the first size effects studied is the relation between precipitate size and flow
strength. The flow strength of a material is affected by both the precipitate size and
spacing. Fisher et al. (1953) showed that the presence of precipitates in the material causes
the dislocations generated from Franck-Read sources to form a closed loop around the
particles, and the back-stress thus generated increases the effective stress of the Franck-Read
sources. Arzt (1998) reviewed the size effects due to the microstructural constraints such as
precipitates and grain boundaries. He used a concept of Orowan mechanism (Orowan,
1947), i.e. obstacle (precipitates) spacing and dislocation curvature, to capture the size
effects. Recently, Ralston et al. (2010) investigated the precipitate size effects for aluminum
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Fig. 1.4 (a) Plot of experimental results of polycrystalline copper microwire torsion tests
for different diameters showing size effects (Fleck and Hutchinson, 1993). (b) Plot of
experimental results of bending tests for different thicknesses of Nickel foil showing size
effects (Stölken and Evans, 1998).

alloy Al-2.5 Cu-1.5 Mg (wt.%). It is shown that the fine nano-particles formed for the aging
times less than 2 h at 200◦C have a substantial effect on the yield stress.

Fleck et al. (1994) performed tension and torsion tests on polycrystalline copper
microwires ranging in diameter from 12µm to 170µm to investigate the effect of loading
type and specimen size on the torsional hardening response. It was observed that, in uniaxial
tension tests, the plastic strain gradient is negligible, and no size effect is observed. On the
other hand, it was observed that the torsion of microwires induces a strong strain gradient
(dγR/dR) along the radial direction from the axis of twisting. In torsion of microwires, the
surface strain γR varies along the radius R, such that γR = κR, where κ is the twist per unit
length. The hardening in the microwires is due to the presence of SSDs and GNDs. For a
given surface strain, the thinner wire has the highest strain gradient (dγR/dR) and highest
GND density, which causes faster work hardening. It can be seen from Fig. 1.4a that the
torsion hardening increases systematically with a decrease in the diameter of the microwire.

More experimental evidence of size effects can be found in the micro-bending tests
performed by Stölken and Evans (1998) on thin Nickel foils. They performed micro-bending
tests for three thicknesses of 12.5µm, 25µm, and 50µm. The normalized bending moment
vs. surface strain curves are shown in Fig. 1.4b from the work of (Stölken and Evans, 1998).
The normalized bending moment for a 12µm foil is significantly higher compared to the
other two foils (see Fig. 1.4b), confirming the presence of a size effect.

The intrinsic size effect can be attributed to the dependency of material yield strength
on microstructural characteristics, such as average distance of precipitates, mean free path
of the dislocations, and grain size (Arzt, 1998). In polycrystal aggregates, generally, two
size effects are responsible for the increased strength and are called specimen size effect
and grain size effect (Armstrong, 1961). The specimen size effect occurs when there are
few grains in the specimen cross-section and due to the orientation dependency of the
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crystal plastic flow. On the other hand, the grain size effect occurs when many grains are in
the specimen cross-section. Moreover, the internal concentrations of stress are necessary
at grain boundaries to cause yielding and subsequent plastic flow and the orientation
dependence of plastic flow within grains. The well-known grain size effect in polycrystalline
materials is often called the Hall-Petch size effect. Hall and Petch (Hall, 1951; Petch, 1953)
gave an inverse relationship between flow stress and the square root of grain size, i.e.,
σ−σ0 ∝ d−1/2

g , where σ is the yield strength of the material, σ0 is the yield strength of single
crystal, and dg is the grain size. Generalizing the work of (Hall, 1951), the relation between
the dependency of material strength on grain size is given by

σ = σ0+KHP d−nx
g , (1.2)

with KHP being a material constant, and nx is a constant in the range of 0 to 1.
According to the Hall-Petch relation (Eq. 1.2), the flow stress or yield stress increases as

grain size decreases. However, material strength can not be unlimited. In general, two limit
cases can be observed. In the first case, the flow stress shows a saturation with decreasing
grain size after reaching a certain grain size. In the other case, the material strength starts
decreasing with grain size, a phenomenon called inverse grain size effect. The first evidence
of inverse grain size effect is reported in (Chokshi et al., 1989).

The grain size effect is associated with the spatial strain gradient in the grains because
of the heterogeneous plastic deformation. The grain boundaries act as an obstacle to
dislocation motion, and the strain gradient-induced GNDs pile up at the grain boundaries.
In addition, with the decrease in grain size, the area at the grain boundaries with GND
density increases and results in increased yield strength.

Another important size effect observed during the micro- and nano-indentation tests is
called indentation size effect. Micro- and nano-indentation tests are popular tests to predict
material behavior at the sub-micron scale. In micro- and nano-indentation tests, a hard
indenter is pressed against the material to measure the applied load and penetration
depth. In conventional indentation tests (at macro-scale), measured material hardness
is independent of indentation depth. In contrast, in micro- and nano-indentation tests,
the hardness decreases as the indentation depth increases, and the size effect is typically
explained with an accumulation of GNDs beneath the indenter (Stelmashenko et al., 1993;
Ma and Clarke, 1995).

Early attempts to measure the indentation size effect can be found in (Ma and Clarke,
1995; Poole et al., 1996; McElhaney et al., 1998). Ma and Clarke (1995) performed indentation
tests on single crystal silver using a Berkovich indenter. They found that the hardness
almost doubled with a decrease in indent size from 10µm to 1µm. Similar size effects were
observed by Poole et al. (1996) in copper using a Vickers indenter. McElhaney et al. (1998)
performed nano-indentation tests on carefully prepared (111) copper single crystal using a
Berkovich indenter. Liu and Ngan (2001) showed that the indentation size effect is very
sensitive to surface preparation. In polycrystalline indentation tests, GNDs are piled up at
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(a) (b)

Fig. 1.5 (a) Indentation size effect for single and polycrystalline metallic samples showing a
decrease in hardness with an increase in indentation depth, from (Voyiadjis et al., 2011).
(b) Schematic showing GND interaction with grain boundaries in nano-indentation tests
(Voyiadjis and Zhang, 2015).

the grain boundaries to accommodate the imposed displacement (Fig. 1.4). The variation
of hardness with indentation depth in nano-indentation of single and polycrystalline
aluminum is shown in Fig. 1.5a. Voyiadjis et al. (2011) observed that the hardness of
polycrystals decreases as indentation depth increases. After a certain indentation depth, it
shows local hardening after which it decreases as indentation depth increases further (Fig.
1.5a).

Several attempts have been made to investigate experimental evidence of characteristic
length scale and its correlation with material microstructure, for instance, in (Nix and Gao,
1998; Fleck et al., 1994; Stölken and Evans, 1998). Microwire torsion (Fleck et al., 1994)
and micro-bending (Stölken and Evans, 1998) tests have been conducted to estimate the
characteristic length scale, and the estimated value for nickel was 5µm and 4µm for copper.
The micro- and nano-indentation tests carried out by (Abu Al-Rub and Voyiadjis, 2004;
Voyiadjis and Al-Rub, 2005) found that the characteristic length scale is proportional to the
mean free path of the dislocations. Qian et al. (2013) calibrated temperature-dependent
characteristic length scale using indentation tests. This characteristic length scale is then
used for the FE simulations based on strain gradient plasticity theory.

1.5.3 Strain localization: Theoretical and experimental aspects

Besides size effects, another non-conventional plastic behavior observed in the materials
under severe deformation is called strain localization which may lead to initiation and
propagation of fracture. This common phenomenon occurs in many metallic materials
over a broad range of scales: from macro- to nano-scale. Strain localization phenomenon
ultimately results in the loss of material strain hardening capacity and the formation of
an intense strained band called shear band (Fig. 1.6). Early attempts of material modeling
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Fig. 1.6 Shear band in AA7055 aluminum alloy formed during the dynamic compression
tests. (a)-(c) Transmission electronic micrograph of formed shear band, and (d) magnified
micrograph of the formed shear band (Xiong et al., 2014).

for this phenomenon can be found in (Asaro, 1985). Strain localization can be associated
with numerous mechanisms, for instance, non-uniform temperature rise caused by thermal
softening and high strain rate deformation, microfractures due to void initiation and growth,
and microstructural instabilities (Asaro and Rice, 1977; Bandstra and Koss, 2001; Gama
et al., 2004; Dodd and Bai, 2012). There is experimental evidence of strain localization even
in the strain hardening of materials caused by constitutive instabilities (Harren et al., 1988).
Furthermore, the experimental and computational work performed by Harren et al. (1988)
showed that the geometrical softening caused by non-uniform lattice rotation is responsible
for the formation of shear bands in strain hardening materials.

There is numerous experimental and theoretical work available on shear banding.
The two most common theories of shear banding are summarized here. The first theory,
proposed by Hill (1962); Rudnicki and Rice (1975); Anand and Spitzig (1980), states that the
shear band forms in the material undergoing plastic deformation due to the instabilities in
the constitutive description of homogeneous deformation. The instability can be understood
as the constitutive relations that may allow the homogeneous deformation to lead to a
bifurcation point. The non-homogeneous deformation leads to a planar band while
maintaining homogeneous deformation and equilibrium outside the localization region.
According to this theory, shear banding is possible even in the strain hardening of materials.

The second theory proposed by Dillamore et al. (1979) has the following criterion: If σ
is the stress measure and ε is the strain measure then localization of deformation occurs
according to the condition dσ/dε ≤ 0. Similar to the first theory, this theory also leads to
localization in strain hardening materials considering the geometrical softening.

In general, the formed shear bands are categorized into two: the shear bands formed
parallel to the slip planes are called slip bands, while the formed bands normal to the slip
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planes are termed as kink bands (Frank and Stroh, 1952; H. Neuhäuser, 1983). High lattice
rotations are associated with the kink bands (Forest, 1998). In the experimental work of
(Orowan, 1942), the cadmium single crystals having glide plane-parallel of the loading axis
were compressed axially. In his work, as the load increased, the usual glide mechanism
did not occur during the deformation; rather, crystals suddenly collapsed by forming kink
bands.

The shear band formation under adiabatic conditions is a topic of practical importance
in severe deformation processes associated with low energy or low ductility fracture. Such
a deformation mode is encountered in materials that are subjected to dynamic deformation.
The fundamental requirement to form an adiabatic shear band (ASB) is that no heat is
exchanged with the surroundings. The materials with low heat capacity promote a local
high-temperature rise and subsequently the ASB formation. The first evidence of ASB
formation at a very high strain rate was found by Tresca (1878). Later on, the seminal work
of (Basinski and Hume-Rothery, 1957) showed the interaction between applied strain rate
and the physical material properties as a function of temperature. An extensive review
of the ASB formation can be found in (Rogers, 1979; Timothy, 1987). Recently, it has
been shown that dynamic recrystallization plays an important role in strain softening
and subsequent adiabatic shear band formation (Mourad et al., 2016; Landau et al., 2016;
Longère, 2018). Therefore, the stored energy is considered an important factor in the ASB
formation process which will be reviewed in the next section.

1.5.4 Stored energy in metallic materials

When a material undergoes plastic deformation, part of the mechanical energy dissipates
as heat, and part of it remains in the material as stored energy, which results in an increase
of the internal energy (Bever et al., 1973; Aravas et al., 1990). There are three main types of
stored energy, namely elastic energy, energy stored due to the dislocations, and energy due
to the mean stresses in polycrystals (Biermann et al., 1993). Then the total stored energy Es

can be written as When a material undergoes plastic deformation, part of the mechanical
energy dissipates as heat, and part of it remains in the material as stored energy, which
results in an increase of the internal energy (Bever et al., 1973; Aravas et al., 1990). There
are three main types of stored energy, namely elastic energy, energy stored due to the
dislocations, and energy due to the mean stresses in polycrystals (Biermann et al., 1993).
Then the total stored energy Es can be written as

Es = Ee+Ed+Em, (1.3)

where Ee is the elastic energy, Ed is the energy due to dislocations, and Em is the energy due
to mean stresses in the polycrystals. The elastic energy can be given by

Ee =
σ2

2E
, (1.4)
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where σ is the stress, and E is the Young’s modulus. The elastic energy is recoverable energy
during unloading and hence does not contribute to total stored energy in crystals. Moreover,
if the energy of the dislocation core is neglected and isotropic elasticity is considered, then
the energy per unit length of dislocation line Eunit is given by

Eunit =
µb2 f (ν)

4π
ln

(
R0

r0

)
, (1.5)

with R0 and r0 being the outer and inner cut-off radius of the dislocations, respectively. The
radius r0 is of the order of the Burgers vector. The core energy within the radius r0 is only a
fraction of the total stored energy (Bever et al., 1973). It is assumed that the volume fraction
f (ν) of the dislocations is a function of Poisson’s ratio ν and expressed as follows:

f (ν) = 1 for screw dislocations, (1.6)

f (ν) =
1

1−ν
for edge dislocations. (1.7)

The stored energy due to SSDs is given by

Ed =

N∑
r=1

ρrEunit =

N∑
r=1

ρrµb2 f (ν)
4π

ln
(

R0

r0

)
, (1.8)

with ρr being the SSD density on slip system r and N denote the total number of slip
systems. An approximated form of the previous equation reads

Ed = cµb2
N∑

r=1

ρr, with c =
f (ν)
4π

ln
(

R0

r0

)
, (1.9)

where c is a constant approximately equal to 0.5.
The expression of the energy stored due to dislocations accounting for the energy of

the dislocation core can be found in (Čebron and Kosel, 2014) assuming that the edge-type
dislocations are predominately accumulated during the deformation process. It reads

Ed =

N∑
r=1

ρrµb2

4π(1−ν)

(
ln

[
P1
√
ρrb

]
+P2

)
, (1.10)

where P1 and P2 are the constants and P1/
√
ρr is used as the outer cut-off radius.

Finally, the term Em in (1.3) is due to mean stresses in the polycrystals and can be
approximated by taking into account GNDs as follows:

Em =

N∑
r=1

ρr
GEunit =

N∑
r=1

ρr
G
µb2 f (ν)

4π
ln

(
R0

r0

)
, (1.11)
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with ρr
G denoting GND density.

A review on stored energy measurements in materials deformed by cold working using
experimental methods can be found in the pioneering work of (Bever et al., 1973). There
are mainly two methods used for the measurement of stored energy: single-step methods
and two-step methods. In single-step methods, all the measurements are made during the
deformation process. Correspondingly, in two-step methods, the deformation is carried
out first, and the stored energy is measured later. In single-step methods, the difference
between the work applied to the specimen and the heat generated during the deformation
process is used to measure the stored energy. The work applied to the specimen can be
measured from the force-displacement curve. The heat generated during the deformation
process can be measured by measuring the change in the temperature of the specimen and
using the density and specific heat of the material. On the other hand, in two-step method
difference in enthalpy between the cold worked specimen and standard state is determined
to measure the stored energy.

Numerous experimental work has been performed to investigate the fraction of the
plastic work converted into heat, for instance, in (Macdougall, 2000; Knysh and Korkolis,
2015; Fekete and Szekeres, 2015; Rittel et al., 2017). Early attempts made by Taylor and
Quinney (1934) found this fraction to be constant between 0.8 and 0.95, which is the
so-called Taylor-Quinney coefficient (TQC). When TQC reaches a value of one, most of
the plastic work dissipates through heat, and it indicates that there is no energy stored
in the material. Later experiments, for instance by Oliferuk et al. (1993) showed that this
fraction varies between 0.6 and 1.0 for polycrystalline austenitic steel and depends upon the
accumulated strain. Kapoor and Nemat-Nasser (1998) investigated the fraction of plastic
work converted into heat by measuring the temperature using an infrared method during
the plastic deformation of Tantalum-2.5% W alloy. They found a TQC (β) of the order of
0.68.

In high strain rate deformation processes, for instance, orthogonal cutting, shearing, or
trimming operation, adiabatic shear band (ASB) formation occurs due to the rapid increase
of temperature locally. The main source for the temperature rise in the absence of external
sources is plastic dissipation (Mason et al., 1994; Rittel, 1999; Zaera et al., 2013). Following
these pioneering contributions, β is defined as the fraction of plastic work converted into
heat. The differential form of β, emphasizing the rate quantities, can be expressed as follows
(Rittel, 1999):

βdi f f =
Q̇

Ẇp
=
ρCεṪ
Ẇp
, (1.12)

where ρ is the mass density of the material, Cε is the specific heat and Ẇp denotes the
plastic power. The β ratio can also be expressed in integral form, which denotes the total
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plastic work converted into heat (Rittel, 1999):

βint =
ρCε△T∫

Ẇp dt
, (1.13)

where △T is the increment of temperature during the deformation. The advantage of
selecting the βint as a measure of the fraction of plastic work converted to heat is that its
value cannot exceed one due to thermodynamic limitations unless the latent heat in the
material is delivered (Rittel, 1999). There is no such limitation for the βdi f f .

Experimental measurement of the rise of temperature during high strain rate plastic
deformation of Tantalum-2.5 % W alloy was performed by Kapoor and Nemat-Nasser
(1998). They predicted the stored energy based on the dislocation theory (Eq. (1.9)), and
compared it with experimental measurements. The analytically calculated value of βwas
0.995, in contrast to the experimentally observed value of 0.7. The analytical expression
used by them is well known and widely used for the stored energy predictions. In a recent
study, Nieto-Fuentes et al. (2018) showed that the universal expression for the stored energy
is inadequate and needs modifications. They introduced an ad-hoc factor ξ to the analytical
expression of the stored energy based on the dislocation theory as follows:

Ed = ξcµb2
N∑

r=1

ρr, with ξ =
(1−βint)

∫ t
0 Ẇp dt

cµb2 ∑N
r=1ρ

r
, (1.14)

as βint is an evolving parameter with strain and strain rate; hence the ξ evolves with strain
and strain rate.

With developments of numerical methods and increased capabilities of modern comput-
ers, numerical approaches are becoming popular. The next section summarizes numerical
techniques used to predict the size effects and stored energy, and investigate the strain
localization phenomenon.

1.5.5 Numerical approaches: size effects, strain localization and predic-
tion of stored energy

• Numerical approaches to predict size effects

From the numerical point of view, classical continuum theories assume that the material
properties are size–independent for the materials undergoing plastic deformation. However,
the experimental results show that the material exhibits a size–dependent behavior at
the sub-micron scale. Size–dependent crystal plasticity modeling is required when the
specimen or grain size becomes comparable to the characteristic lengths of the underlying
plastic deformation mechanisms (Fleck and Hutchinson, 1997; Kocks and Mecking, 2003).

19



(a) (b)

Fig. 1.7 (a) Macroscopic stress-strain curve for the simple shear shear tests of different
average grain size d. (b) Contours of cumulative plastic strain for different average grain
size d (Cordero et al., 2013).

Strain gradient plasticity theories make use of the characteristic length scale(s) in the
constitutive framework. These theories can be used to bridge the gap between plasticity at
the macro-mechanical scale and plasticity at the micro-mechanical scale (Abu Al-Rub and
Voyiadjis, 2004). A review of strain gradient plasticity models in the context of experimental,
theoretical, and numerical investigations can be found in (Voyiadjis and Song, 2019). There
are many names in this group of theories, but there is no dominant theory widely accepted.
But all of these theories are proposed to account for the size effect phenomenon and
introduce the characteristic length scales in the constitutive framework.

Strain gradient plasticity models can be used to predict grain size effects in polycrystalline
materials, for instance, in (Acharya and Bassani, 2000; Evers et al., 2004; Aifantis and Willis,
2005; Borg, 2007; Cordero et al., 2013). Borg (2007) found the value of a constant nx (refer
Eq. (1.2)) to be in the range of 0.82− 1.25 at initial yield and in the range of 0.77− 1.09
after a true strain of 0.1. Cordero et al. (2013) used a micromorphic theory to introduce
the dislocation density tensor in the classical crystal plasticity model to predict the grain
size effect. An introduction of dislocation density tensor into the constitutive framework
intrinsically gives rise to kinematic hardening, which is responsible for strong size effects.
The predicted grain size effect for different average grain sizes and plastic strain fields
taken from the work of (Cordero et al., 2013) are shown in Fig. 1.7a and 1.7b, respectively.

Size effects induced in microwire torsion tests or bending of thin foils are because of the
inhomogeneous plastic deformation. The prediction of size effects in microwire torsion tests
using strain gradient crystal plasticity, including full dislocation tensor into the constitutive
framework, can be found in (Kaiser and Menzel, 2019b). Their paper analyzed the response
of three microwires of different radii under monotonic loading. They observed that the
decrease in the size of the microwire results in a significant increase in the overall strain
hardening rate. Size effects predictions in monotonic and cyclic loading of polycrystalline
microwires can be found in (Bardella and Panteghini, 2015) using a strain gradient plasticity
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Fig. 1.8 Indentation size effect: Dependency of normalized load-penetration curve on
the maximum indetation depth hmax varied from 200µm to 1µm. (Lewandowski and
Stupkiewicz, 2018).

approach that includes plastic spin in the constitutive framework called distortion gradient
plasticity. They found that this theory is satisfactory to capture the size effects in monotonic
loading. Scherer et al. (2020) recently studied the size effect in microwire torsion tests using
the reduced-order micromorphic crystal plasticity and Lagrange multiplier-based models.

Another important size effect observed due to inhomogeneous plastic deformation is
in micro-bending tests. The non-local plasticity models often used to explore the size–
dependent bending moment, for instance, in (Wang et al., 2003; Kuroda and Tvergaard,
2006; Keller et al., 2012). Gupta et al. (2015) studied the effect of crystal orientation on size–
dependent response of single crystal beams using a higher-order nonlocal crystal plasticity
model. They observed that the crystal orientation significantly affects the size effect. In
addition, the slip system activity is important to analyze the orientation dependency.

The study of indentation size effect using the FE modeling is popular among the
continuum mechanics community. Lewandowski and Stupkiewicz (2018) studied the
indentation size effect in wedge indentation for nickel single crystal using gradient-enhanced
crystal plasticity model. They compared the numerical results such as load-penetration
depth curve, GND density distribution, lattice rotation, and net Burgers vector with
the experimental results, and good agreement was found. In addition, they studied
the indentation size effects for the indentation depth varied between 200µm to 1µm. It
was observed that the maximum normalized load increases drastically with a decrease
in indentation depth from 200µm to 1µm. The load is normalized by the maximum
penetration depth hmax. Fig. 1.8 taken from (Lewandowski and Stupkiewicz, 2018) shows the
dependence of the normalized load-penetration depth curve on the maximum penetration
depth for three different wedge angles.
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• Numerical approaches to strain localization problems

FE simulations of strain localization phenomenon show spurious mesh dependency, and
classical plasticity models are inadequate to solve such strain localization problems (Asaro
and Rice, 1977). The possible loss of ellipticity of the partial differential equations in
strain-softening materials results in an ill-posed boundary-value problem and classically
shows dependency on mesh size or density (Fig. 1.9a). Without regularization, meaning
that mesh independent solution, the classical continuum models can not be used to solve
strain localization problems (Needleman, 1988).

Shear band dependency on the mesh size or density can be overcome by introducing
characteristic length scales in the classical plasticity models according to (Kuroda and
Tvergaard, 2006; Voyiadjis and Al-Rub, 2005; Anand et al., 2012; Vignjevic et al., 2018; Wolf
et al., 2019; Kaiser and Menzel, 2019b). Strain gradient plasticity models, which include
a characteristic length scale in the constitutive framework, are often used to regularize
the strain localization problems, e.g., Aifantis (1984); Abu Al-Rub and Voyiadjis (2006);
Anand et al. (2012); Ahad et al. (2014). Aifantis (Aifantis, 1984, 1987) proposed a strain
gradient theory by adding the gradient of plastic strain term in the yield function of
classical plasticity theory to solve the issues related to the thickness of the localization
regime. The characteristic length scales introduced in the gradient plasticity models can
be associated with the width of the shear band as demonstrated in (Aifantis, 1984, 1987;
Zbib and Aifantis, 1988; Chambon et al., 1998). The effect of higher-order gradients on ASB
formation was investigated by Zhu et al. (1995) and two length scales, respectively, the
deformation and thermal were considered in the analysis. They showed that the width
of shear bands scales with the square root of strain gradient coefficient in the absence of
heat conduction and the square root of the thermal conductivity in the absence of strain
gradients. The micromorphic theory proposed by Eringen (1999) relies on the second-
order microdeformation tensor as an additional degree of freedom. The application of
micromorphic theory for the strain localization phenomenon can be found in (Dillard et al.,
2006; Anand et al., 2012; Mazière and Forest, 2015). In contrast to Eringen’s micromorphic
theory, a reduced-order micromorphic crystal plasticity theory proposed by Ling et al.
(2018) involving a scalar-valued variable as the additional degree of freedom is used for the
strain localization phenomenon in (Scherer et al., 2019). The mesh dependency issues in
the shear localization problem can also be eliminated by the sub-grid method proposed in
(Mourad et al., 2017; Jin et al., 2018).

• Numerical approaches to predict stored energy

Stored energy is a function of total dislocation density. The prediction of stored energy
related to an internal stress field surrounding dislocation structures using the discrete
dislocation dynamic simulations can be found in (Zehnder, 1991; Mura, 1994; Benzerga
et al., 2005; Déprés et al., 2006). The use of a CPFEM for prediction of stored energy
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(a) (b)

Fig. 1.9 Simulation of plane strain tension tests with three different meshes using the (a)
classical plasticity model, and (b) gradient-regularization (Anand et al., 2012).

can be found in (Čebron and Kosel, 2014; Jafari et al., 2017). Čebron and Kosel (2014)
used a dislocation density-based crystal plasticity model to predict the stored energy in
polycrystalline copper under tensile loading. Jafari et al. (2017) used a thermodynamically
consistent framework for the prediction of stored energy in FCC single and bi-crystals.
Furthermore, molecular dynamics simulations are proven to be advantageous in dislocation
density evolution and, consequently, in predicting stored energy. Prediction of stored
energy by employing molecular dynamics simulations can be found in (Kositski and
Mordehai, 2021; Xiong et al., 2021). Kositski and Mordehai (2021) performed molecular
dynamics simulations to study the TQC parameter evolution in single and polycrystalline
aluminum, iron, copper, and tantalum at high strain rates. They found that some energy
stored in polycrystalline simulations is due to the distribution of grain boundaries and the
evolution of the morphology.

1.5.6 Gradient plasticity models: Applications to practical engineering
problems

Nowadays, micro-machining and micro-forming processes have become increasingly
important due to the extensive use of micron-scale components in the defense, automotive,
medical, and aerospace industries. From a numerical point of view, strain gradient
plasticity models can be used to simulate real-life manufacturing processes. In this
section, applications of the gradient plasticity models to practical engineering problems are
reviewed.

Most of the real-life manufacturing processes involve severe deformation. A review on
the influence of size effects in micro-manufacturing processes can be found in (Pradeep
Raja and Ramesh, 2021). Numerical modeling of the non-conventional plastic behavior
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of micron-scale structures needs strain gradient crystal plasticity models. However, the
complexity of the numerical implementation and increased computational cost leads to
limited use of these models in practical engineering problems. An extensive review of the
application of strain gradient plasticity models to manufacturing processes can be found in
(Russo et al., 2020b).

The application of strain gradient plasticity model to micro-machining of FCC single
crystal copper is discussed in (Demiral et al., 2014). They implemented this model in
commercial software ABAQUS/Explicit using a user-defined subroutine VUMAT. They
investigated the influence of strain gradients on the deformation mechanism in crys-
talline materials. Micro-forming such as micro-bending is a promising technology in
manufacturing micron-scale components in mass production, for example, connectors and
contact springs (Engel and Eckstein, 2002). Zhang et al. (2013) used a non-local crystal
plasticity model to micro-bending of metallic foils to study the deformation mechanism
and dislocation density evolution.

Despite several attempts in applying strain gradient plasticity models to practical
engineering problems, for instance, in (Royer et al., 2011, 2012) for machining, they
still have limited applications. Ease of implementation in commercial FE software and
reduced computational cost in terms of CPU time may expand their applications to various
engineering problems. One of the easy and efficient ways to implement these models
in commercial FE software is by use of an analogy between the non-local model and
classical continuum mechanics. For instance, an analogy between the chemical diffusion
and mechanics is used to implement gradient plasticity and gradient damage models in an
implicit version of the code ABAQUS in (Seupel et al., 2018).

1.6 Outline of the thesis

The outline of this work is as follows:
• Chapter 2 is dedicated to presenting an overview of the constitutive frameworks of

crystal plasticity modeling. Firstly, the kinematic of the large deformation framework,
definition of stresses, single crystal elasto-visco-plastic flow rule, and dislocation density-
based hardening model used in this work are presented. Then, the constitutive framework
of the reduced-order micromorphic crystal plasticity model, Lagrange multiplier-based
model, and CurlFp model is summarized. Finally, polycrystalline plasticity models from
the literature are discussed.
• In Chapter 3, the size effects in monotonic loading of the single crystal microwire torsion

tests are predicted using the micromorphic crystal plasticity and Lagrange multiplier-based
models. Furthermore, a comparison is presented and discussed for the prediction of size
effects using the reduced-order micromorphic crystal plasticity and CurlFp models under
monotonic and cyclic loading of the microwire torsion tests. In addition, SSD and GND
density distribution using the Lagrange multiplier-based model for the monotonic and
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cyclic loading of the microwire torsion tests is presented. To this end, scaling laws are
developed using the reduced-order models for the monotonic loading of the microwire
torsion tests.
• Chapter 4 is devoted to the investigation of the ASB formation process in single

crystals and polycrystalline FCC metallic materials subjected to the adiabatic heating.
A thermodynamically consistent framework of the classical and micromorphic crystal
plasticity models is introduced. The capability of the micromorphic crystal plasticity model
for the regularization of ASB formation in single and poly-crystals is demonstrated. In
addition, the prediction of the grain size effect is performed in polycrystalline simulations
under isothermal condition.
• In chapter 5, a thermodynamically consistent classical and micromorphic crystal

plasticity models are used to predict the stored energy and TQC in single and poly-
crystalline FCC metallic materials.
• Chapter 6 is dedicated to the implementation of the micromorphic plasticity theory

in an explicit FE software VPS/Pam-Crash® from ESI Group. Then, this implemented
model is employed for the regularization of shear band formation in shearing operation and
prediction of size effect in micro-bending tests.
• Conclusions and outlook follow in chapter 7.

Note that the results shown in chapter 3, 4, and 5 are from the classical and micro-
morphic single crystal plasticity model implemented in implicit FE code Zset4. In addition,
the results shown in chapter 6 are from the classical and micromorphic plasticity model
implemented in explicit FE software VPS/Pam-Crash® from ESI Group5.

4http://www.zset-software.com/
5https://www.esi-group.com/pam-crash

25



Chapter 2

Overview of constitutive frameworks:
From classical to strain gradient crystal
plasticity models

2.1 Introduction

The continuum crystal plasticity model considers the material strain hardening in plastically
deforming material due to dislocation glide, dislocation multiplication, and interaction.
Single crystals are of interest in structural materials, such as turbine blades and propellers,
and are considered as a basis for polycrystalline materials. An early attempt to define the
plastic deformation of single crystals can be found in (Taylor and Elam, 1923, 1925). This
single crystal model was further utilized to analyze the deformation of polycrystalline
aggregates in (Taylor, 1938). Furthermore, the single crystal model proposed by Taylor and
Elam (1923, 1925) was put into a continuum framework by Mandel (1965) and Hill (1966)
for small deformations. The extension based on a general thermodynamic formulation for
finite deformation was proposed in (Rice, 1971; Hill and Rice, 1972; Mandel, 1973a; Asaro
and Rice, 1977).

Metallic materials are generally polycrystalline in nature. When polycrystalline aggre-
gates are subjected to severe deformation, significant changes in the microstructural and
mechanical properties can be observed. One of the significant changes in microstructure is
the re-orientation of crystal lattice towards a preferential orientation distribution, called
crystallographic texture (Marin and Dawson, 1998). The prediction of plastic anisotropy
and texture is the essence of polycrystal models. An anisotropic elasto-plastic deformation
of crystalline aggregates, including shape change, crystallographic texture, and strain
hardening, can be predicted by continuum crystal plasticity models (Cailletaud et al.,
2003b; Roters et al., 2010). Moreover, it is possible to infer the behavior of polycrystalline
aggregates from single crystals.
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This chapter is dedicated to an overview of the constitutive framework of the CPFEM
used in this work. The outline of the chapter is as follows: section 2.2 summarizes the
kinematics of the large deformation framework and elasto-viscoplastic flow rule to evaluate
the slip rate and internal variables. Section 2.3 is dedicated to the constitutive framework of
the strain gradient crystal plasticity models, specifically the reduced-order micromorphic
crystal plasticity model, Lagrange multiplier-based model, and CurlFp model. Finally, in
section 2.4 different homogenization methods used in polycrystalline simulations to study
the mechanics of heterogeneous materials from the literature are summarized.

2.2 Finite deformation framework

2.2.1 Kinematics

A finite deformation framework is used throughout the work and is based on the multi-
plicative decomposition of the total deformation gradient F

∼
into an elastic part F

∼

e and a
plastic part F

∼

p (see Fig. 2.1), i.e. F
∼
= F
∼

e
·F
∼

p (see, e.g., Lee and Liu (1967); Willis (1969); Rice
(1971); Mandel (1973b); Teodosiu and Sidoroff (1976)). The volumetric mass densities with
respect to the reference, the intermediate and the current configuration are ρ0, ρ#, and ρ,
respectively, and related via

J = det(F
∼
) =
ρ0

ρ
, Je = det(F

∼

e) =
ρ#

ρ
, Jp = det(F

∼

p) =
ρ0

ρ#
. (2.1)

Moreover, it is assumed that the plastic flow is incompressible such that

Jp = detF
∼

p = 1, Je = J = detF
∼
. (2.2)

The spatial, a plastic, and an elastic velocity gradients are l
∼
, l
∼

p, and l
∼

e, respectively, and
defined as follows:

l
∼
= Ḟ
∼
·F
∼

−1, l
∼

p = Ḟ
∼

p
·F
∼

p−1, l
∼

e = Ḟ
∼

e
·F
∼

e−1. (2.3)

The multiplicative decomposition of F
∼

leads to the partition of the spatial velocity gradient
l
∼

into l
∼

e and l
∼

p as follows:

l
∼
= l
∼

e+ l
∼

p, l
∼
= l
∼

e+F
∼

e
· l
∼

p
·F
∼

e−1. (2.4)

The Green-Lagrange strain tensor E
∼

e
GL is introduced as

E
∼

e
GL =

1
2

(F
∼

eT
·F
∼

e
−1
∼
), (2.5)

with 1
∼

denoting the second-order identity tensor.
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F
∼

F
∼

p F
∼

e

Fig. 2.1 A schematic representation of multiplicative decomposition of the total deformation
gradient F

∼
into an elastic F

∼

e and a plastic part F
∼

p.

2.2.2 Definition of stresses

The second Piola-Kirchhoff stress tensor Π
∼

e is defined with respect to the intermediate
configuration by

Π
∼

e = JeF
∼

e−1
·σ
∼
·F
∼

e−T. (2.6)

where σ
∼

is the Cauchy stress tensor. The tensor Π
∼

e is related to the Green-Lagrange strain
tensor E

∼

e
GL by elastic law

Π
∼

e = Λ
≈

: E
∼

e
GL. (2.7)

where Λ
≈

is the fourth-order tensor of elastic moduli. The first Piola-Kirchhoff stress tensor

Π
∼

p related to the Cauchy stress tensor σ
∼

is given by

Π
∼

p = Jσ
∼
F
∼

−T. (2.8)

Moreover, the Mandel stress tensor Π
∼

M which is work-conjugate to l
∼

p can be defined with
respect to the intermediate configuration as follows:

Π
∼

M = JeF
∼

eT
·σ
∼
·F
∼

e−T. (2.9)

2.2.3 Flow rule

Most rate-independent crystal plasticity theories lead to an ill-conditioned problem re-
garding the selection of active slip systems and the increments of shear on the active
slip systems as emphasized in (Anand and Kothari, 1996; Miehe et al., 1999; Busso and
Cailletaud, 2005). This difficulty can be overcome by using rate-dependent framework.
Here, a rate-dependent overstress-type flow rule is adopted to facilitate the determination
of the set of active slip systems. It is based on a Schmid-type yield function defined as

f r = |τr
| −τr

c, (2.10)
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involving the resolved shear stress τr on the slip system r, which is the driving force to
trigger plastic slip, and the corresponding critical resolved shear stress τr

c. The resolved
shear stress τr on slip system r is defined as

τr =Π
∼

M : (mr
⊗nr), (2.11)

where mr is the slip direction and nr is the slip normal.
The slip rate γ̇r on each slip system r is then given by the following rate-dependent flow

rule

γ̇r =

〈
f r

K

〉m

sign(τr), (2.12)

with Macauley brackets < • > denoting the positive part of •, and K and m are the viscosity
parameters. The higher value of power m and lower value of K lead to an almost ideal
elasto-plastic behavior in a given strain rate range.

It is assumed that the plastic deformation rate is the result of slip processes on N distinct
slip systems, i.e.

l
∼

p =

N∑
r=1

γ̇r(mr
⊗nr). (2.13)

The validity of the finite deformation framework presented above is checked with the single
crystal volume element undergoing simple shear. The details can be found in appendix B.

2.2.4 Dislocation density-based hardening model

Phenomenological flow rules are frequently used in crystal plasticity modeling. They have
a drawback that the material state is only described in terms of critical resolved shear stress
and not in terms of lattice defect population such as dislocation densities. This limitation can
be overcome by the physics-based crystal plasticity models. The physics-based plasticity
models provide a strong physical relationship with the microscopic mechanisms of plastic
deformation by introducing microscopic internal variables such as dislocation density in the
constitutive framework. The dislocation density-based models have better predictability
compared to the phenomenological models over a wide range of strain, strain rates, and
temperatures (Čebron and Kosel, 2014).

In the present work strain hardening behaviour is based on the dislocation density-based
hardening model, which takes into account dislocation interactions. Following Kubin et al.
(2008), the rate of the critical resolved shear stress τr

c is based on the scalar dislocation
density as follows:

τr
c = τ0+µ

√√√ N∑
u=1

hruϱu, (2.14)

where τ0 is the initial critical resolved shear stress, hru is the interaction matrix describing
long-range interaction between the dislocations, ϱu (= ρub2) is the adimentional dislocation
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density, and ρu is the usual dislocation density, i.e. the length of dislocation lines per unit
volume with b being the norm of the dislocation Burgers vector b. The following equation
gives the evolution of the dislocation density

ϱ̇r = |γ̇r
|


√∑N

u=1bruϱu

κc
−dcϱ

r

 . (2.15)

The dislocation interaction is described by the matrix bru, κc is a constant material parameter
proportional to the number of obstacles crossed by a dislocation before being immobilized,
and dc is the critical distance controlling the annihilation of dislocations with opposite
signs. The structure of the matrices hru and bru can be found in appendix A. The total
adimensional dislocation density can be expressed as follows:

ϱs =
N∑

r=1

ϱr
0+

∫ t

0

N∑
r=1

ϱ̇rdt, (2.16)

where ϱr
0 is the initial adimensional dislocation density.

2.3 Strain gradient crystal plasticity theory

2.3.1 Reduced-order micromorphic crystal plasticity model

According to the micromorphic approach, the variables carrying the targeted gradient
effects are selected from the available state variables and can be tensors of any rank (Forest,
2016b). The model is called reduced-order micromorphic when the micromorphic variable
is a scalar quantity, as in the model proposed by Ling et al. (2018) summarized in this
section.

The material points are defined by the position vector X in the reference configuration
Ω0 and the position vector x in the current configuration Ωt. They possess two types of
degrees of freedom: the displacement vector u(X, t) = x−X and the micromorphic scalar
microslip variable γχ(X, t). The associated scalar internal variable is the cumulative plastic
strain γcum introduced as

γcum =

∫ t

0

N∑
r=1

|γ̇r
|dt. (2.17)

In the present formulation, the set of degrees of freedom (DOFs) is, therefore

DOFs = {u,γχ}. (2.18)
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The gradients of the degrees of freedom with respect to the reference configuration are

H
∼
=
∂u
∂X
=Gradu, K =

∂γχ
∂X
=Gradγχ. (2.19)

The static balance equations and Neumann boundary conditions expressed with respect to
the reference configuration are as follows:

DivΠ
∼

p = 0 and DivM−S = 0, ∀X ⊂Ω0, (2.20)

T =Π
∼

p
·N and M =M ·N, ∀X ⊂ ∂Ω0, (2.21)

with S and M being the generalized stresses, M is the generalized surface traction and N
the outward unit normal vector at a boundary of the reference body.

The cumulative plastic strain γcum is related to the microslip variable γχ via the relative
plastic strain ep(X, t) as

ep(X, t) := γcum−γχ. (2.22)

The material under consideration is assumed to be characterized by the Helmholtz free
energy density function

Ψ= Ψ̃(E
∼

e
GL,ep,K,ζ), (2.23)

in terms of the Green-Lagrange strain tensor E
∼

e
GL (Eq. (2.5)), the relative plastic strain ep, the

gradient of the microslip variables K and the internal hardening variable ζ. The Helmholtz
free energy density function is taken as a quadratic potential in the form:

ρ0Ψ̃(E
∼

e
GL,ep,K,ζ) =

1
2

E
∼

e
GL :Λ

≈
: E
∼

e
GL+

1
2

Hχe2
p+

1
2

K ·A
∼
·K+ρ0Ψ̃(ζ), (2.24)

In the micromorphic approach, two additional material parameters are introduced, namely
the coupling modulus Hχ and the higher-order micromorphic stiffness A

∼
.

The Clausius-Duhem inequality takes the form(
Π
∼

e
−ρ0

∂Ψ̃
∂E
∼

e
GL

)
: Ė
∼

e
GL−

(
S+ρ0

∂Ψ̃
∂ep

)
ėp+

(
M−ρ0

∂Ψ̃
∂K

)
· K̇+Π

∼

M : l
∼

p+Sγ̇cum−ρ0
∂Ψ̃
∂ζ
ζ̇ ≥ 0, (2.25)

from which the following state laws and residual dissipation inequality are adopted:

Π
∼

e = ρ0
∂Ψ̃
∂E
∼

e
GL
, S = −ρ0

∂Ψ̃
∂ep
, M = ρ0

∂Ψ̃
∂K
, X = ρ0

∂Ψ̃
∂ζ
. (2.26)

where X is the thermodynamic force associated with internal hardening variable ζ. The
definition of the second Piola-Kirchhoff stress tensor Π

∼

e can be found in Eq. (2.6).
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Moreover, the specific quadratic form of the potential (2.24) then leads to the following
relations:

Π
∼

e = Λ
≈

: E
∼

e
GL, S = −Hχep = −Hχ(γcum−γχ), M = A

∼
·K. (2.27)

For isotropic and cubic materials, the second-order tensor A
∼
= A1

∼
involves a single

generalized modulus A which is assumed to be constant in space. Additionally, PDE
connecting γχ and γcum follows from the previous state laws and the balance equation in
(2.20) as

γχ−
A

Hχ
△X γχ = γcum, (2.28)

where △X stands for the Laplace operator with respect to the reference configuration.
The residual dissipation inequality takes the form

Dres =Π
∼

M : l
∼

p+Sγ̇cum−

N∑
r=1

Xrζ̇r =

N∑
r=1

τrγ̇r+Sγ̇cum−

N∑
r=1

Xrζ̇r
≥ 0, (2.29)

after consideration of (2.13) and of plastic incompressibility. The part of the free energy
ρ0Ψ̃(ζr) due to the internal hardening variable ζr is assumed to be of the form (Abrivard
et al., 2012):

ρ0Ψ̃
r(ζr) =

1
2
µ(ζr)2, (2.30)

where ρ0Ψ̃
r(ζr) is the free energy function related to the internal hardening variable ζr on

slip system r (= 1,2......,N) with N being the total number of slip systems. The dissipation
due to the internal hardening variable ζr in (2.25) on each slip system r is given by

Xr = ρ0
∂Ψ̃r

∂ζr = µζ
r, with ζr =

√√√ N∑
u=1

hruϱu. (2.31)

The dissipation rate form from Eq. (2.29) suggests introducing the following generalized
Schmid yield function:

f r = |τr
|+S−τr

c = |τ
r
| − (τr

c−S), (2.32)

which leads to a yield function of the form

f r = |τr
| − (τr

c−S) = |τr
| − (τr

c−DivM), (2.33)

once the generalized static balance law (2.20) is taken into account. In that way, the
generalized stress S in the previous equation results in an enhancement of the hardening
law and can be regarded as a source of isotropic hardening (or softening). After inserting
(2.19) and (2.27) in (2.33), the yield function can be expressed as

f r = |τr
| − (τr

c−ADiv(Gradγχ)) = |τr
| − (τr

c−A△X γχ). (2.34)
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This generalized yield function is then inserted into the flow rule (2.12) to compute the
plastic slip rate of each slip system.

The application of this model in numerical simulations can be found in chapter 3, 4 and
5. A thermodynamically consistent framework of this model is derived in chapter 4.

2.3.2 Lagrange multiplier-based model

The Lagrange multiplier-based model was proposed by Fortin and Glowinski (1983) and
successfully implemented in (Zhang et al., 2018; Scherer et al., 2020). In this section, the
Lagrange multiplier-based model presented in (Scherer et al., 2020) is summarized. The
Lagrange multiplier λ is introduced to enforce the strict equality between γcum and γχ in
order to transform the previous micromorphic model into a strain gradient crystal plasticity
model. It replaces the penalty coefficient represented by the coupling modulus Hχ of the
micromorphic model summarized in section 2.3.1. Therefore, the set of DOFs is given by

DOFs = {u,γχ,λ}. (2.35)

It turns out that the free energy density function in (2.23) becomes a Lagrangian
function L0. More specifically speaking, the material under consideration is assumed to be
characterized by the Lagrangian function L0(E

∼

e
GL,ep,K,λ,ζ), in terms of the Green-Lagrange

strain tensor E
∼

e
GL, the relative plastic strain ep, the gradient of the microslip variable K, the

Lagrange multiplier λ, which is treated as an additional degree of freedom and the internal
hardening variable ζ. The considered form of the Lagrangian function is

ρ0L0(E
∼

e
GL,ep,K,λ,ζ) =

1
2

E
∼

e
GL :Λ

≈
: E
∼

e
GL+

1
2
µχe2

p+
1
2

K ·A
∼
·K+λep+ρ0L0(ζ), (2.36)

where µχ is a Lagrangian penalty modulus. The Clausius-Duhem inequality then takes the
form(
Π
∼

e
−ρ0

∂L0

∂E
∼

e
GL

)
: Ė
∼

e
GL−

(
S+ρ0

∂L0

∂ep

)
ėp+

(
M−ρ0

∂L0

∂K

)
· K̇+Π

∼

M : l
∼

p+Sγ̇cum−ρ0
∂L0

∂ζ
ζ̇ ≥ 0. (2.37)

This gives rise to the following state laws:

Π
∼

e = ρ0
∂L0

∂E
∼

e
GL
, S = −ρ0

∂L0

∂ep
, M = ρ0

∂L0

∂K
, X = ρ0

∂L0

∂ζ
. (2.38)

Furthermore, evaluating (2.38) for the specific quadratic form of the Lagrangian (2.36) leads
to the following relations

Π
∼

e = Λ
≈

: E
∼

e
GL, S = λ−µχ(γcum−γχ), M = A

∼
·K. (2.39)

33



The part of the free energy ρ0L0(ζr) due to the internal hardening variable ζr has the form
as given in Eq. (2.30). Moreover, the expression for the thermodynamic force Xr is as given
in Eq. (2.31).

The residual dissipation has the same form as (2.29) and leads to the introduction of the
following generalized Schmid yield function:

f r = |τr
|+S−τr

c = |τ
r
| − (τr

c−S) = |τr
| − (τr

c−λ+µχ(γcum−γχ)). (2.40)

Again, this generalized yield function can be inserted into the flow rule (2.12) to evaluate the
plastic slip rate of each slip system. The penalty parameter µχ is similar to the micromorphic
penalization term Hχ but bears a different meaning. In simulations, the parameter µχ can
take a much lower value than Hχ and provides additional coercivity.

The application of this model in numerical simulations can be found in chapter 3.

2.3.3 CurlFp model

In this section, the gradient plasticity theory based on the complete dislocation density tensor
elaborated in (Kaiser and Menzel, 2019b) is briefly summarized. The CurlFp framework
proposed by Kaiser and Menzel (2019b) relies on the interpretation of incompatible plastic
deformation processes in terms of the dislocation density tensor. The model formulation
is based on introducing the dislocation density tensor as an argument of the free energy
density function and assumes an extended non-local form of the dissipation inequality as
proposed by Polizzotto and Borino (1998).

The material under consideration is assumed to be characterized by the free energy
density function

Ψ= Ψ̃(F
∼
,F
∼

p,D
∼ d,ζ), (2.41)

with ζ denoting a scalar-valued internal variable, which may be interpreted as of measure
of the cumulative plastic strain. Moreover, it is assumed that the gradient-enhanced energy
density function can additively be decomposed as

ρ0Ψ̃ = ρ0Ψ̃
e(F
∼
,F
∼

p)+ρ0Ψ̃
g(D
∼ d)+ρ0Ψ̃

p(ζ), (2.42)

where Ψ̃e, Ψ̃g, and Ψ̃p are the elastic contribution, the energy contribution due to the gradient
effect and the energy contribution due to the internal hardening variable, respectively. The
energy contribution Ψ̃g is expressed as a quadratic function

ρ0Ψ̃
g(D
∼ d) =HDD

∼ d : D
∼ d, (2.43)

where HD is a material parameter proposed in (Kaiser and Menzel, 2019b), which can be
interpreted as a characteristic length scale parameter. The part of the free energy due to the
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hardening variable ζ is chosen as

ρ0Ψ̃
p(ζ) = τ0ζ+

(τ∞−τ0)2

H0
ln

(
cosh

(
H0ζ
τ∞−τ0

))
, (2.44)

where the material parameters τ∞ and H0 are the saturation strength and the initial
hardening rate, respectively. The extended form of the dissipation inequality is

Dres =Π
∼

p : Ḟ
∼
−

(
ρ0
∂Ψ̃
∂F
∼

: Ḟ
∼
+ρ0
∂Ψ̃
∂F
∼

p : Ḟ
∼

p+ρ0
∂Ψ̃
∂D
∼ d

: Ḋ
∼ d+ρ0

∂Ψ̃
∂ζ

: ζ̇
)
+P0 ≥ 0, (2.45)

with P0 denoting the non-locality residual. The first Piola-Kirchhoff stress tensor is given
by

Π
∼

p = ρ0
∂Ψ̃
∂F
∼

. (2.46)

The reduced form of the dissipation inequality reads

Dres =Π
∼

M : l
∼

p+Ξ
∼

: Ḋ
∼ d−Xζ̇+P0 ≥ 0. (2.47)

where Π
∼

M is a Mandel-type stress tensor defined in the intermediate configuration by

Π
∼

M = F
∼

eT
·Π
∼

p
·F
∼

pT, (2.48)

and related to the Mandel stress tensor Π
∼

M defined in (2.9) by Π
∼

M = JpΠ
∼

M, as the incom-
pressibility condition (Jp = 1) is not explicitly assumed in this particular model.

The thermodynamic force associated with the internal hardening variable is defined as

X = ρ0
∂Ψ̃
∂ζ
=

(
τ0+ (τ∞−τ0)tanh

(
H0ζ
τ∞−τ0

))
, (2.49)

and the energetic dual to the dislocation density tensor reads

Ξ
∼
= −ρ0

∂Ψ̃
∂D
∼ d
. (2.50)

Moreover, the evaluation of (2.50) for the specific form of the energy contribution (2.43)
yields

Ξ
∼
= −2HDCurlT(F

∼

p). (2.51)

The balance equation of linear momentum expressed with respect to the reference configu-
ration

DivΠ
∼

p = 0, in B0 (2.52)
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which is complemented by boundary condition

T =Π
∼

p
·N, on ∂B0

t , (2.53)

By considering an insulation condition P0 = 0 as in (Kaiser and Menzel, 2019a), the reduced
form of the dissipation inequality may be written in terms of

Dres =M
∼

: l
∼

p
−Xζ̇ ≥ 0, (2.54)

giving rise to a balance equation for the generalized stress tensor as

M
∼
=Π
∼

M+CurlT(Ξ
∼

) ·F
∼

pT, in B0
dis. (2.55)

The generalized stress tensor M
∼

consist of the Mandel-type stress tensor Π
∼

M defined in the
intermediate configuration and a back-stress term CurlT(Ξ

∼
) ·F
∼

pT, which is closely related
to incompatibilities in the plastic deformation field such that when gradient effects are
neglected, M

∼
reduces to Π

∼

M. The generalized stress tensor is identified as the driving force
for plastic deformation processes based on (2.54). The yield function and the evolution
equations are accordingly formulated in terms of the generalized stress tensor. Moreover,
the non-ambiguous constitutive boundary condition associated with (2.55) reads

Ξ
∼
· Spin(N) ·F

∼

pT = 0, on ∂B0
dis,ext, (2.56)

where Spin is a spin operator which relate the axial vector to the corresponding skew-
symmetric second-order tensor in the reference configuration is defined as (SpinN)i j =

−ϵi jqNq ei ⊗ e j. The detailed derivation of (2.55) and (2.56) can be found in (Kaiser and
Menzel, 2019b). The generalized stress tensor in (2.55) and the constitutive boundary
condition in (2.56) are originally derived on the domain B0

dis, where dissipative processes
occur, and on the corresponding external boundary ∂B0

dis,ext.
In addition, the relative Mandel stress tensor is introduced as a primary field variable

M
∼

(rel) =M
∼
−Π
∼

M, (2.57)

so that (2.55) can be written as

M
∼

(rel)
−CurlT(Ξ

∼
) ·F
∼

pT = 0
∼
, in B0

dis. (2.58)

Substituting (2.51) in (2.58) yields the specific form of the relative Mandel stress tensor

M
∼

(rel) = −2HDCurlT(CurlT(F
∼

p)) ·F
∼

pT, (2.59)

which is responsible for the back-stress associated with the kinematic hardening. Addition-
ally, field variable θ

∼

p is introduced which is coupled to F
∼

p in terms of an L2-projection as
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follows:

0 =
∫

B0
η
∼

θp
: (F
∼

p
−θ
∼

p)dV, (2.60)

where η
∼

θp
is the corresponding test function.

Different definitions of the curl of a second-order tensor often used by researchers and
analytical expressions of the dislocation density tensor in small and large deformation
frameworks are given in appendix C.

In order to identify the differences between the Lagrange multiplier-based model and
the CurlFp model, the constitutive equations of both models are summarized in Table 2.1.

Table 2.1 Summary of constitutive equations used in reduced-order and the CurlFp models.

Constitutive equations
Reduced-order model

(Lagrange multiplier-based)
(Scherer et al., 2020)

CurlFp model
(Kaiser and Menzel, 2019b)

DOFs
(three-dimensional setting)

{u,γχ,λ}
Total DOFs per node = 5

{u,M
∼

(rel),θ
∼

p
}

Total DOFs per node = 21
Free energy

density function L0(E
∼

e
GL,e,K,λ,ζ) Ψ= Ψ̃(F

∼
,F
∼

p,D
∼

d,ζ)

State laws
Π
∼

e = ρ0
∂L0
∂E
∼

e
GL

S = −ρ0
∂L0
∂e

M = ρ0
∂L0
∂K X = ρ0

∂L0
∂ζ

Π
∼

p = ρ0
∂Ψ̃
∂F
∼

Ξ
∼
= −ρ0

∂Ψ̃
∂D
∼ d

X = ρ0
∂Ψ
∂ζ

Balance laws
DivΠ

∼

p = 0 and DivM−S = 0,
∀X ⊂Ω0

DivΠ
∼

p = 0 in B0 and
M
∼
=Π
∼

M+Curl(Ξ
∼

) ·F
∼

pT

in B0
dis

Boundary conditions
T =Π

∼

p
·N and M =M ·N,
∀X ⊂ ∂Ω0

T =Π
∼

p
·N on ∂B0

t and
Ξ
∼
· Spin(N) ·F

∼

pT = 0
∼
, on ∂B0

dis,ext
Residual dissipation

inequality
Π
∼

M : l
∼

p+Sγ̇cum
−Xζ̇ ≥ 0

Π
∼

M : l
∼

p+Ξ
∼

: Ḋ
∼

d
−Xζ̇+P0 ≥ 0

Thermodynamic force
associate with the internal

hardening variable
X = µ

√∑N
u=1hruϱu X =

(
τ0+ (τ∞−τ0)tanh

(
H0ζ
τ∞−τ0

))
Material parameters

related to
characteristic length scale

A, H HD

In the comparison of gradient crystal plasticity models, the Lagrange multiplier-based
model is used to compare the size effects predicted by the CurlFp model because the CurlFp

model is a strain gradient plasticity model and thus should be compared more directly to
the Lagrange multiplier-based model. This comparison can be found in chapter 3.
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2.4 Polycrystalline plasticity models

The single crystal behavior can be used to predict the behavior of polycrystalline aggregates.
Grains in a polycrystal are defined according to crystal orientations such that grains
having the same Euler angles with a given tolerance are all within the same class. The
homogenization models proposed for polycrystals differ in the scale transition rule used to
predict the local stresses and strains. Several authors made various hypotheses for strain
redistribution within the phases. For instance, Taylor (1938) made an assumption of a
uniform plastic strain, ε

∼

pg = E
∼

p. The assumption of uniform plastic strain is somewhat crude,
and it fails because the experimental results show evidence of plastic strain heterogeneity,
for instance, in uniaxial compression of FCC metallic materials. Furthermore, Lin-Taylor
(Lin, 1957) assumed a uniform total strain such that ε

∼

g = E
∼

. All uniform strain theories
satisfy the compatibility condition; however, they do not satisfy the equilibrium at grain
boundaries.

The scale transition rule links the mean local stress σ
∼

g to macroscopic stress Σ
∼

and mean
visco-plastic strain E

∼

p to local visco-plastic strain ε
∼

pg (Cailletaud and Pilvin, 1994; Barbe
et al., 2001b) such that

Σ
∼
=

Ng∑
g=1

fgσ
∼

g, Ė
∼

p =

Ng∑
g=1

fgε̇
∼

pg, (2.61)

where g denotes the grain or phase, Ng is the number of grains and fg is the volume fraction
of grain or phase g.

The homogenization models such as mean-field and full-field models are quite ex-
tensively used to determine macroscopic properties from geometrical features of the
microstructure. In the following sections, these homogenization models are reviewed.

•Mean-field models

Generalizing the work of (Eshelby and Peierls, 1957) different mean-field homogenization
models were developed for instance in (Kröner, 1958; Hill, 1965; Berveiller and Zaoui, 1978;
Tandon and Weng, 1988). Kröner’s (Kröner, 1958) model gives an elastic accommodation
such that in case of isotropic materials, the local stress σ

∼

g is given by

σ
∼

g = Σ
∼
+2µ(1−Λ)(E

∼

p
−ε
∼

pg), with Λ =
2(4−5ν)
15(1−ν)

, (2.62)

where the constant Λ only depends on the Poisson ratio and is approximately equal to 0.5.
Kröner’s model results in very high value of internal stresses due to assumption of elastic
accommodation, 2µ(1−Λ)(E

∼

p
−ε
∼

pg), via large value of shear modulus µ. The approximation
can be made to consider the plastic accommodation by replacing the elastic shear modulus
with an adequate elastoplastic modulus.
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A more precise formulation can be derived from Hill’s approximation (Hill, 1965) by
assuming an isotropic elasto-plastic interaction between one grain and the matrix of other
grains. The self-consistent approximation considers each phase as an ellipsoid embedded
in a homogeneous equivalent medium.

There are two main limitations of mean-field models. First, these models consider the
description of microstructure based on average grain size, shape, and orientation and
cannot take into account the local heterogeneity within grains. The second limitation
concerns micro-mechanical fields, which are considered constant within grains. Therefore,
these models cannot be applied to the phenomenon in which micromechanical fields are
localized in narrow bands (Segurado et al., 2018). Full-field models can overcome these
limitations.

• Full-field models

Full-field homogenization models predict the macroscopic response and microscopic field
distribution in heterogeneous materials based on the simulation of representative volume
element (RVE) (Böhm, 2004). The method is computationally expensive because it involves
the solution of the boundary-value problem, which may contain a large number of degrees
of freedom. Full-field models are more accurate than the mean-field models and are
generally used as reference models (Segurado et al., 2018). They can predict the local
stress-strain fields and state variables throughout the microstructure, which is important
information, for instance, in damage prediction and localization problems.

Several numerical methods are available to predict the response of RVE. One of the most
common methods is based on FE modeling as demonstrated in (Cailletaud et al., 2003b,a;
Coudon et al., 2019; Flipon et al., 2020). Early attempts to simulate polycrystals using the
FE method can be found in (Kalidindi et al., 1992; Bronkhorst et al., 1992). They considered
a 2D model where each element represents a grain. This model is similar to a mean-field
model in that the local fields are missing. Moreover, the field in each grain is considered
to be constant, hence not able to model the strong deformation gradient usually seen in
polycrystals. Later on, 3D microstructure modeled with each grain represented by several
elements with the regular mesh was presented by (Mika and Dawson, 1999). Finally, a
more realistic microstructure with several elements per grain was modeled in (Barbe et al.,
2001b).

The homogenization using FE methods requires solving boundary-value problems that
require a mesh discretized geometry of the microstructure. The first approach, sometimes
called the multiphase element technique, consists of superposing a regular 3D mesh on
the image of the microstructure (Fig. 2.2a). The drawback of this method is an inadequate
description of interfaces. The proper meshing of the interfaces is possible with the second
approach of Voronoï polyhedra using standard 2D and 3D free meshing techniques (Fig.
2.2b). Fig. 2.3 taken from (Marchenko et al., 2016) shows 2D and 3D polycrystalline
aggregates with several grains generated using Voronoï tessellation.
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(a) (b)

Fig. 2.2 Two meshing techniques used for RVE: (a) regular mesh, and (b) mesh representing
grain boundaries created using Voronoï tessellation. Color represents the each individual
grain.

The application of boundary conditions to RVEs is one of the main issues in full-
field modeling. Four different types of boundary conditions can be applied to RVEs
(Barbe et al., 2001b; Cailletaud et al., 2003b; Segurado et al., 2018): (a) periodic boundary
conditions, (b) statically uniform boundary conditions, where applied surface tractions
are homogeneous over RVE faces, (c) kinematically uniform boundary conditions in
which uniform displacements are applied to the RVE boundary, and (d) mixed boundary
conditions combining uniform tractions and displacements on RVE surfaces.

Furthermore, it is essential to define the size of the RVE properly. An early attempt
to determine the size of the RVE can be found in (Kanit et al., 2003). The size of the
RVE depends upon the studied properties (mechanical, thermal), phase morphology, and
boundary conditions. The effective properties can be determined using large size RVE with
a small number of realizations. A smaller size of the RVE is possible when a sufficient
number of realizations of the microstructure are considered.

In the present work, we use a full-field model to simulate the behavior of polycrystalline
aggregates. A single crystal plasticity model is used to represent the behavior of each grain
of the polycrystalline aggregate. Besides, mixed boundary conditions presented above are
applied to the RVE surface.
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(a) (b) (c)

Fig. 2.3 Polycrystal morphologies generated using Voronoï tessellation: (a) 71 2D grains (b)
432 2D grains, and (c) 150 3D grains (Marchenko et al., 2016).
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Chapter 3

Prediction of size effect in microwire
torsion tests

Abstract

The size-dependent response of metallic microwires under monotonic and cyclic torsion is modeled
taking a reduced-order strain gradient crystal plasticity approach involving a single scalar-valued
micromorphic variable. At first, size effects predicted by the reduced-order micromorphic and
Lagrange multiplier-based formulations are assessed under monotonic microwire torsion tests. Then
it is compared with the response predicted by the CurlFp model proposed in (Kaiser and Menzel,
2019a), which is based on the complete dislocation density tensor. It is shown that, in cyclic
non-uniform plastic deformation processes, the gradient of the scalar-valued internal variable in the
reduced-order model predicts isotropic hardening in contrast to kinematic-type hardening produced
by the CurlFp model due to a dislocation-induced back-stress component. The arising size effect
in the monotonic torsion tests is described by the normalized torque T/R3 as a function of the
ratio of the microwire radius R and the characteristic length scale ℓ. In the size-dependent domain,
characterized by an inflection point on the corresponding curve, the scaling law T/R3

∼ (R/ℓ)n can
be identified, and explicit relations are found for the power n. The relative evolution of Statistically
Stored Dislocation (SSD) and Geometrically Necessary Dislocation (GND) densities during torsion
is described in detail.

3.1 Introduction

The torsion of single and polycrystal wires has been the subject of intensive experimental
and computational research. Nouailhas and Cailletaud (1995) discovered that the torsion
of a single crystal bar or tube is characterized by two types of strain gradients: a radial
gradient from the center to the outer surface due to the loading, but also a gradient along

Part of this chaper has been published in Lagrange multiplier based vs micromorphic gradient-enhanced rate-
(in)dependent crystal plasticity modelling and simulation. Computer Methods in Applied Mechanics and Engineering
372, 113426. Also, part of this chapter has been submitted to a journal.
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the outer circumference due to the anisotropic activation of slip systems. This was observed
experimentally using strain gauges placed along the circumference (Forest et al., 1996). The
transition from single to poly-crystals for microwires of increasing diameters was computed
using CPFEM in (Quilici et al., 1998) and more recently in (Bayerschen et al., 2016).

Implementation of strain gradient crystal plasticity theory in a finite element code is
a challenging task that has been performed for example by Shu (1998); Borg et al. (2008);
Yalcinkaya et al. (2012); Bardella et al. (2013); Nellemann et al. (2017, 2018); Panteghini
and Bardella (2016) at small strains and by Niordson and Kysar (2014); Lewandowski and
Stupkiewicz (2018); Ling et al. (2018); Kaiser and Menzel (2019b) at finite deformations.
An efficient method to implement strain gradient plasticity models is to resort to the
micromorphic approach proposed by Forest (2009) at small strains and Forest (2016a) at
finite deformation, as demonstrated by Anand et al. (2012) and Brepols et al. (2017) for
conventional plasticity, and by Cordero et al. (2010); Aslan et al. (2011); Ryś et al. (2020)
for crystal plasticity based on the dislocation density tensor. According to this approach,
additional plastic microdeformation degrees of freedom, in the sense of (Eringen and
Suhubi, 1964), are introduced at each node, and the curl part of the microdeformation tensor
is assumed to expend work with a conjugate couple stress tensor. A penalty parameter,
which can be interpreted as a higher-order elasticity modulus, is used to constrain the
plastic microdeformation to be as close as possible to the usual plastic deformation. As a
consequence, the curl of the microdeformation tensor almost coincides with the dislocation
density tensor.

Gradient plasticity and micromorphic models involving the gradient or rotational part
of the plastic deformation tensor generally requires a large number of additional internal
variables and nodal degrees of freedom leading to a significant increase in the computational
cost. For instance, the full-order microcurl model proposed by Cordero et al. (2010) and
the gradient plasticity model by Panteghini and Bardella (2018) require at least 16 and
12 additional nodal degrees of freedom, respectively, in a two-dimensional setting. The
complexity in the numerical implementation further increases the computational modeling
efforts. The differences in the formulation of various gradient plasticity theories result in
distinct and sometimes non-physical responses, which raises the necessity of comparing
different gradient plasticity models (Peerlings et al., 2001). A comparison between five
gradient-enhanced phenomenological approaches in a continuum damage setting can be
found in (Geers et al., 2000), and between implicit and explicit gradient formulations in
(Peerlings et al., 2001). The computational advantages of an implicit formulation, which
includes the equivalent plastic strain as an additional degree of freedom over an explicit
formulation, are investigated in (Wulfinghoff and Böhlke, 2012). Moreover, the non-local
crystal plasticity theory proposed by Gurtin (2002) is used in (Bittencourt et al., 2003)
to explore to which extent the results from the discrete dislocation simulations can be
reproduced. It is found that the non-local plasticity reproduces the behavior seen in the
discrete dislocation simulations in remarkable detail. However, only a few studies are
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Fig. 3.1 Schematic log-log plot characterizing the effect of the ratio of the microwire radius R
to the characteristic length scale ℓ on the normalized torque T/R3: size effect with bounded
(solid line) and unbounded (dashed line) asymptotic regimes, power law in the transition
domain (dotted line), n is the slope of the size dependent domain and i is the inflection
point of the curve.

dedicated to comparing various gradient crystal plasticity approaches and determining
the advantages and drawbacks of the many existing theories. For instance, the detailed
comparison of the micropolar crystal plasticity model (Mayeur et al., 2011) and the non-local
crystal plasticity model proposed by Gurtin (2002) can be found in (Mayeur and McDowell,
2014).

Therefore, the first objective of the present chapter is to compare the micromorphic
crystal plasticity and Lagrange multiplier-based implementation of strain gradient crystal
plasticity for the prediction of size effect in microwire torsion tests. The size and orientation
dependent torsion of FCC single crystal wires is investigated showing that both models
coincide at intermediate wire diameters but differ in their asymptotic behavior.

Another original objective of this work is to compare a computationally efficient Lagrange
multiplier-based model that involves a single scalar-valued variable with the CurlFp model
proposed in (Kaiser and Menzel, 2019a) for monotonic and cyclic microwire torsion tests.
The scaling law T/R3

∝ (R/ℓ)n for the microwire torsion tests, which characterizes the effect
of the ratio of the microwire radius R and characteristic length scale ℓ on the normalized
torque T/R3, is obtained using both reduced-order micromorphic crystal plasticity and
Lagrange multiplier-based models. Such scaling laws were derived for the periodic
shearing of a laminate at small strains and small rotations in (Cordero et al., 2010; Ryś
et al., 2020). Fig. 3.1 schematically shows the effect of R/ℓ ratios on the normalized torque
T/R3, which is found in the present work. The main features of the diagram are the
inflection point i and the slope n of the size-dependent domain. For small values of R/ℓ
ratio, a bounded (for the micromorphic crystal plasticity model), or an unbounded (for the
Lagrange multiplier-based model), asymptotic behavior can be obtained. At large values of
R/ℓ ratio, the observed asymptotic behavior corresponds to the size-independent response
of classical crystal plasticity models.
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The outline of the chapter is as follows: In section 3.2, geometry and boundary conditions
of the single crystal microwire torsion tests for the comparison of the micromorphic crystal
plasticity and Lagrange multiplier-based models are presented. Moreover, comparison of
the predicted size effect using the micromorphic crystal plasticity and Lagrange multiplier-
based models is demonstrated. In section 3.3, the equivalence between the higher-order
modulus A from the Lagrange multiplier-based model and the material parameter HD from
the CurlFp model are demonstrated in the single-slip problem. In addition, this section
dedicated to the simulation of representative boundary-value problems, and size effects
predicted by the Lagrange multiplier-based model are compared to the CurlFp model
predictions for monotonic and cyclic microwire torsion tests. Concluding remarks follow
in section 3.4.

3.2 Size effect: Comparison of micromorphic crystal plas-
ticity and Lagrange multiplier-based models

3.2.1 Geometry, boundary conditions and material parameters

Simulations are performed with a single crystal cylindrical microwire of diameter D (= 2R)
meshed with quadratic elements for displacements DOF and linear for γχ and λ. Quadratic
shape functions are used for displacements DOF because they are known to provide better
interpolation accuracy than linear shape functions. Furthermore, quadratic elements are
also known to be less subject to locking issues. However, linear shape functions are used for
γχ to limit the number of degrees of freedom. In fact, it is assumed that plastic deformations
differ less rapidly than displacements in such a way that linear shape functions provide
sufficient precision to interpolate accumulated plastic slip.

The bottom face of the microwire is clamped, while the top surface undergoes a rigid
body rotation around the wire axis. The lateral faces are kept traction free, which means
that T = 0 and M = 0 from Eq. (2.21). Two orientations of the single crystal considered are
<001> and <111>with crystallographic direction [001] and [111], respectively aligned with
the microwire axis. The geometry and the boundary conditions are as shown in Fig. 3.2.
The basis vectors of the Cartesian coordinate system are parallel to the cubic lattice unit cell
vectors:

e1 = [110] e2 = [11̄0] e3 = [001], (3.1)

and
e1 = [1̄1̄2] e2 = [11̄0] e3 = [111], (3.2)

respectively.
The various characteristic length scale to diameter ratios (ℓ/2R) considered in the

simulations are given in Table 3.2.
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Fig. 3.2 Microwire torsion tests: (a) boundary conditions (b) example mesh from the top side
in which the black line represents an initial material line. For the <001> crystal orientation,
the black line is oriented along a <110> direction. For the <111> crystal orientation, it is
oriented along a <112̄> direction.

Table 3.1 Numerical values of material parameters for the simulation of microwires in
torsion.

C11 C12 C44
τ0

Eq. (2.14)
m

Eq. (2.12)
K

Eq. (2.12)
µ

Eq. (2.14)
259.6 GPa 179 GPa 109.6 GPa 320 MPa 20 15 MPa.s1/m 77.2 GPa

dc
Eq. (2.15)

κc
Eq. (2.15)

ϱr
0

Eq. (2.16)
hru

Eq. (2.14)
bru(r , u)
Eq. (2.15)

buu

Eq. (2.15)
Hχ

Eq. (2.27)
10.4 42.8 5.38×10−11 0.124 1 0 104 MPa
µχ

Eq. (2.39)
103 MPa

Table 3.2 Numerical values of ℓ/2R ratios for the simulation of microwires in torsion.

ℓ/2R <001> 0.03 0.07 0.10 0.31 0.44 0.54
ℓ/2R <111> 0.03 0.08 0.11 0.35 0.50 0.61
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3.2.2 Application to microwire torsion tests

Fig. 3.3 and 3.4 show the accumulated plastic strain fields in the deformed configuration for
FCC single crystals with wire axis parallel to <001> and <111> respectively. A cross-section
of each sample is illustrated in Fig. 3.3 and 3.4. The radial and circumferential plastic strain
gradients are clearly visible. A four-fold pattern is observed for the <001> specimen with
maximum plastic strain values along <100> directions. A six-fold pattern is observed for
the <111> specimen with maximum plastic strain values along <112̄> directions. The
overall curves are presented using normalized torque T/R3 as a function of surface strain
γR defined as

γR = κR, (3.3)

where κ is the applied twist per unit length (θ/L). They are given in Fig. 3.5 for the two
single crystal orientations <001> and <111> using classical crystal plasticity. This definition
of γR is only an approximation of the actual slip value along the circumference since the
plastic activity is not constant along the circumference for a cubic single crystal. The
<001> crystal orientation is found to be significantly stronger than the <111> wire. The
orientation of the crystal to the loading direction causes different slip activities and results
in different mechanical responses. The twist angle at the cross-section of the microwire is
calculated as θh = θht/L, where ht is the height from the bottom end. The initial material
line for <001> and <111> crystal orientation is shown in Fig. 3.2b. The rotation of material
line with increasing surface strain is as shown in Fig. 3.3 and 3.4. The response of the
micromorphic wire is also provided in Fig. 3.5 for comparison for a given characteristic
length scale value. In the micromorphic crystal plasticity approach, the penalty parameter
Hχ is chosen sufficiently large for γcum and γχ to almost coincide. The chosen value of Hχ
in the simulation is 104 MPa. The characteristic length scale ℓ considered in the simulation
is defined by ℓ =

√
A/|H|, as proposed in (Ling et al., 2018), where H is the initial equivalent

linear hardening modulus. Moreover, H is estimated by performing a uniaxial tensile test
on one element as proposed in (Ling, 2017). Its value is given by the ratio of τr and γr for
one activated slip system at the beginning of its activation. Thus the estimated H values
for <001> and <111> crystal orientation are 2500 MPa and 2000 MPa, respectively. The
characteristic length scale can be varied by varying the gradient parameter A (MPa mm2 or
N). The various values of A and of the characteristic length scale to diameter ratio (ℓ/2R) of
microwires are given in Table 3.2. The micromorphic response in Fig. 3.5 exhibits a linear
hardening of the wire in contrast to the saturated classical crystal plasticity response.

The effect of different ℓ/2R ratios on the size effects in torsion microwires have been
studied for the two models considered in this work, namely the micromorphic crystal
plasticity and Lagrange multiplier-based formulations. The torque vs. surface strain
curves of the micromorphic crystal plasticity model (section 2.3.1) is compared with
the Lagrange multiplier-based model (section 2.3.2). The cumulative plastic strain γcum

fields for different ℓ/2R ratio of microwire (ℓ/2R = 0.03,0.07,0.10 and 0.44 for <001> and
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γR = 6% ,θh = 23◦ γR = 10% ,θh = 37◦ γR = 14% ,θh = 52◦

Fig. 3.3 Cumulative plastic strain γcum field in FCC single crystal (<001> crystal orientation)
using the classical crystal plasticity model according to section 2.2.3 with respect to deformed
configuration. The rotation of material line shown in Fig. 3.2b with increasing surface strain
is shown by a black line on the cross-section.
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γR = 6% ,θh = 23◦ γR = 10% ,θh = 37◦ γR = 14% ,θh = 52◦

Fig. 3.4 Cumulative plastic strain γcum field in FCC single crystal (<111> crystal orientation)
using the classical crystal plasticity model with respect to deformed configuration. The
material line shown in Fig. 3.2b and its rotation with increasing surface strain are shown by
a black line on the cross-section.
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Fig. 3.5 Shear stress vs. surface strain in FCC single crystal wires for <001> and <111>
crystal orientations using the classical crystal plasticity and micromorphic crystal plasticity
models.
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(a)

ℓ/2R = 0.03 ℓ/2R = 0.07 ℓ/2R = 0.10 ℓ/2R = 0.31
(b)

Fig. 3.6 Cumulative plastic strain distribution in FCC single crystal (<001> crystal orienta-
tion) for different values ℓ/2R ratio using the (a) micromorphic crystal plasticity, and (b)
Lagrange multiplier-based models at surface strain of 0.08 (fields reported on the reference
configuration).

ℓ/2R = 0.03,0.08,0.11 and 0.50 for <111> crystal orientation) obtained using both models
are shown in Fig. 3.6 and 3.7. It can be seen that, for low and intermediate values of the
ratio ℓ/2R, the two models predict the same accumulated plastic slip fields. In contrast, for
the larger value ℓ/2R = 0.31, the circumferential gradient has almost disappeared according
to the Lagrange multiplier-based model. In contrast, it is still present in the micromorphic
crystal plasticity simulation. Increasing the characteristic length scale for a fixed wire
diameter leads to a substantial decrease in the plastic strain gradient. This can be attributed
to the fact that the energetic cost of plastic strain gradient increases with ℓ and the free
energy of the sample is minimum for a limited value of the gradient. These observations
are valid for both orientations <001> and <111>. It is remarkable that the four-fold and
six-fold patterns disappear for large enough characteristic length scale values.
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(a)

ℓ/2R = 0.03 ℓ/2R = 0.08 ℓ/2R = 0.11 ℓ/2R = 0.50
(b)

Fig. 3.7 Cumulative plastic strain distribution in FCC single crystal (<111> crystal orienta-
tion) for different values ℓ/2R ratio using the (a) micromorphic crystal plasticity, and (b)
Lagrange multiplier-based models at surface strain of 0.08 (fields reported on the reference
configuration).
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Fig. 3.8 Normalized torque vs. surface strain curves (<001> crystal orientation) for different
values ℓ/2R ratio using the (a) micromorphic crystal plasticity, and (b) Lagrange multiplier-
based models.

The corresponding torque vs. surface strain curves are provided in Fig. 3.8 and 3.9.
They clearly show the size–dependent hardening effect for both models. For small and
intermediate values of the characteristic length scale, the micromorphic crystal plasticity
and Lagrange multiplier-based models are found to deliver the same overall responses.
This result is expected since the value of the penalty parameter in the micromorphic crystal
plasticity model has been chosen so as to ensure such a correspondence. However, keeping
the same value of the penalty parameter Hχ and increasing the characteristic length scale,
or equivalently the value of the parameter A, leads to a saturation of the torque vs. surface
strain curves for the micromorphic crystal plasticity model. In contrast, the Lagrange
multiplier-based model predicts ever-increasing hardening. Fig. 3.8a and 3.9a show almost
the same response obtained by the micromorphic crystal plasticity model for the two
largest ℓ/2R ratios, whereas distinct curves are obtained with the Lagrange multiplier-based
approach, see Fig. 3.8b and 3.9b. This saturation of size effects predicted by a micromorphic
crystal plasticity formulation has already been demonstrated analytically for the microcurl
theory by Cordero et al. (2010) in the case of periodic shearing of a laminate at small strains
and small rotations. The present new results show that this feature also exists at large
strains for torsion. These observations apply to both orientations <001> and <111>. As
expected, the strongest additional hardening effect is obtained when the characteristic
length scale takes values comparable to the wire diameter.

The predictions of the Lagrange multiplier-based formulation can be considered, in
fact, as the limit case when the penalty modulus Hχ goes to infinity in the micromorphic
crystal plasticity formulation. The predictions obtained with the micromorphic crystal
plasticity formulation for several values of Hχ are plotted in Fig. 3.10. As Hχ rises, the
prediction of the micromorphic crystal plasticity formulation goes closer to the prediction
obtained with the Lagrange multiplier-based formulation. However, increasing Hχ builds
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Fig. 3.9 Normalized torque vs. surface strain curves (<111> crystal orientation) for different
values ℓ/2R ratio using the (a) micromorphic crystal plasticity (b) Lagrange multiplier-based
models.

up drastically the computation time since the penalization becomes very stiff. In practice,
one could use the penalty term Hχ in the micromorphic crystal plasticity formulation as a
parameter to fit the scaling law measured in experiments. This possibility was discussed
for the micromorphic crystal plasticity and Cosserat models in (Cordero et al., 2010).

3.3 Size effect: Comparison of reduced-order model with
CurlFp model

In this section, the predicted size effects using the reduced-order model (Lagrange multiplier-
based model) are compared against the predictions by CurlFp model for the monotonic
and cyclic loading of microwire torsion tests. The constitutive framework of the Lagrange
multiplier-based model and CurlFp model is presented in section 2.3.2 and 2.3.3, respectively.

3.3.1 Equivalence of higher-order modulus A and material parameter
HD in single-slip

The higher-order modulus A from the reduced-order model, refer (2.34), and material
parameter HD from the CurlFp theory, refer (2.51), bear similar physical interpretations.
This is demonstrated in this section for a simplified two-dimensional single-slip problem.

A single crystal with a single-slip system is considered. The slip direction m and the
slip plane normal n are

m = (1,0,0), n = (0,1,0). (3.4)
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Fig. 3.10 Normalized torque vs. surface strain curves (FCC <001> crystal orientation) for
different values of Hχ and for ℓ/2R = 0.44.

Consider a situation where only one slip system is active. In the absence of lattice
distortion and rotation, the plastic part of the deformation gradient F

∼

p takes the form

F
∼

p = 1
∼
+γ (m⊗n), (3.5)

[F
∼

p]i j =


1 γ 0
0 1 0
0 0 1

 . (3.6)

The dislocation density tensor [D
∼ d]i j = [CurlT(F

∼

p)]i j is given by

[D
∼ d]i j =


Fp

13,2−Fp
12,3 Fp

11,3−Fp
13,1 Fp

12,1−Fp
11,2

Fp
23,2−Fp

22,3 Fp
21,3−Fp

23,1 Fp
22,1−Fp

21,2
Fp

33,2−Fp
32,3 Fp

31,3−Fp
33,1 Fp

32,1−Fp
31,2

 . (3.7)

Therefore, for the 2-dimensional case and the specific simple shear problem studied,

[D
∼ d]i j =


0 0 γ,1
0 0 0
0 0 0

 . (3.8)

The only active component of the dislocation density tensor is

(Dd)13 = γ,1 . (3.9)
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The equivalence of higher-order modulus A and the material parameter HD from the CurlFp

model can be derived as follows. For a crystal deforming under single-slip conditions, the
plastic deformation rate is given by

Ḟ
∼

p = γ̇(m⊗n). (3.10)

Inserting (2.57) in (2.54) for M
∼

gives

(τ+ JpM
∼

(rel) : m⊗n)γ̇+Xζ̇ ≥ 0. (3.11)

In absence of hardening variable, ζ, for simplicity, the generalized Schmid law for the
CurlFp model, in the rate-independent case, can be defined as

|τ−x| = τc, with x = −JpM
∼

(rel) : m⊗n. (3.12)

From the specific form of the generalized stress tensor M
∼

(rel) given by (2.59), the back-stress
x can be written as

x = 2HD[CurlT(CurlT(F
∼

p)) ·F
∼

pT] : m⊗n, (3.13)

and

[CurlT(CurlT(F
∼

p))]i j =


Fp

12,12+Fp
13,13 Fp

11,21+Fp
13,23 Fp

11,31+Fp
12,32

Fp
22,12+Fp

23,13 Fp
21,21+Fp

23,23 Fp
21,31+Fp

22,32
Fp

32,12+Fp
33,13 Fp

31,21+Fp
33,23 Fp

31,31+Fp
32,32


−


Fp

11,22+Fp
11,33 Fp

12,11+Fp
12,33 Fp

13,11+Fp
13,22

Fp
21,22+Fp

21,33 Fp
22,11+Fp

22,33 Fp
23,11+Fp

23,22
Fp

31,22+Fp
31,33 Fp

32,11+Fp
32,33 Fp

33,11+Fp
33,22

 . (3.14)

For the particular single-slip problem considered, the back-stress takes the form

2HD[CurlT(CurlT(F
∼

p)) ·F
∼

pT] : m⊗n = −2HDγ,11 . (3.15)

Substituting (3.15) in (3.12) leads to another form of the generalized Schmid law

|τ+2HDγ,11 | = τc. (3.16)

This equation clearly shows the emerging kinematic hardening component proportional to
the second gradient of slip in the slip direction.

On the other hand, the generalized Schmid law for a single-slip problem with the
Lagrange multiplier-based model can be written from (2.40) in the rate-independent case as

|τ|+S = τc. (3.17)
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Recalling the balance law in (2.20), the generalized Schmid law in (3.17) can be written as

|τ|+DivM = τc. (3.18)

Making use of (2.27) in the previous equation leads to another form of the generalized
Schmid law

|τ|+A(DivK) = τc, (3.19)

A(DivK) = ADiv
(
∂γχ
∂X1

m+
∂γχ
∂X2

n
)
= A
∂2γχ

∂X2
2

= Aγ,11 with γχ ≃ γ. (3.20)

Finally, the form of the generalized Schmid law in (3.19) can be written as

|τ|+Aγ,11= τc. (3.21)

This equation clearly shows the emerging isotropic hardening component proportional to
the second gradient of slip in the slip direction. From (3.16) and (3.21), it is concluded that
the higher-order moduli A and HD can be related to each other for monotonic loading such
that τ > 0 and τ+2HDγ,11> 0. In this instance, we can identify A = 2HD. The Lagrange
multiplier-based and CurlFp models are equivalent in this specific situation. It will not be
the case anymore, in general, under multi-slip conditions and considering the different
hardening laws. Proving the importance of these differences is the subject of the following
sections for monotonic and cyclic loading conditions.

In the presence of linear hardening with modulus H, it is possible to derive from (3.19)
the definition of a characteristic length scale

ℓ =
√

A/|H|, (3.22)

as demonstrated in (Ling et al., 2018; Scherer et al., 2019). For more general hardening laws,
a similar characteristic length scale can be defined as discussed in section 3.3.2.3.

3.3.2 Application to microwire torsion tests

Recently, experimental investigations of microwire torsion tests on single crystal copper
under monotonic loading were performed by Horstemeyer et al. (2002) with the [110]
crystallographic direction being aligned with the axis of rotation. An observation of the
kinematics of the deformation fields at the outer surface of the specimen was made. A wavy
deformation pattern of sinusoidal waves comprising of four periods was observed and
believed to be the result of four-fold symmetry of the slip plane around the circumference.
Moreover, experimental assessments of polycrystalline microwire torsion tests with different
specimen diameters and same grain size to study the size effects under monotonic loading
were performed in (Liu et al., 2012; Guo et al., 2017). Furthermore, the experimental studies
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of size effects, hysteresis loops, Bauschinger effects, and anomalous plastic recovery in
polycrystalline cyclic torsion tests can be found in (Liu et al., 2013; Guo et al., 2020).

From a numerical point of view, Weinberger and Cai (2010) investigated the orientation
dependent plasticity in metallic nanowires by using molecular dynamics and dislocation
dynamics simulations. Molecular dynamics simulations showed that the mechanism
of plastic deformation is controlled by the orientation of the single crystal wires. The
wires oriented along <110> direction shows the coaxial dislocation nucleation, making
the deformation homogeneous. Furthermore, these wires maintain most of their strength
after yielding. On the other hand, <001> and <111> crystal orientations deform through
formation of twist boundaries which localizes the deformation and lose most of their
strength after yielding. Besides, dislocation dynamics simulations are used to investigate
the stability of the dislocation structures observed in molecular dynamics simulations. The
prediction of size effects in monotonic and cyclic loading of polycrystalline microwires were
performed in (Bardella and Panteghini, 2015). To this end, they used a phenomenological
strain gradient plasticity approach called distortion gradient theory which relies on the
dislocation density tensor with taking less-than-quadratic defect energies into consideration.
These less-than-quadratic defect energies allow the prediction of size effects consisting of
an increase of the yield point with diminishing size. It was observed that this distortion
gradient theory is satisfactory to capture the size effects in monotonic loading. However, it
leads to anomalous cyclic behavior in the case of cyclic loading due to the less-than-quadratic
defect energies. They related the anomalous cyclic behavior to the changes of concavity of
the stress-strain curves, which is absent in the experiments. Panteghini and Bardella (2020)
recently proposed a strain gradient plasticity theory characterized by a higher-order plastic
potential to overcome this issue in the cyclic loading of polycrystalline microwires. The
predictions made by taking the above-mentioned approach are in good agreement with the
experimental data of (Liu et al., 2013) and predictions on the size-dependent response of
microwires under cyclic loading.

In this section, the size effect predicted by the Lagrange multiplier-based model for
monotonic or cyclic microwire torsion tests is compared to the predictions by the CurlFp

model taken from Kaiser and Menzel (2019a). The relation A= 2HD is used in the simulations,
following the identification presented in section 3.3.1.

Moreover, in the present work, the GND density distribution in monotonic and cyclic
loading of microwires using the Lagrange multiplier-based model is calculated from the
Euclidean norm of CurlT(F

∼

p). A post-processing technique is used to evaluate CurlT(F
∼

p)
(see also, Busso et al. (2000); Abrivard (2009)). The first step in determining CurlT(F

∼

p) is to
calculate the gradient of F

∼

p at the integration points. To this end, the known values of F
∼

p at
the integration points are extrapolated to nodes using the shape functions of the elements.
The gradients of F

∼

p at the nodes can next be obtained from the spatial derivatives of the
shape functions. Finally, known nodal values of the gradient of F

∼

p are interpolated back to
the integration points. The Euclidean norm of the dislocation density tensor D

∼ d provides
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an effective measure of GND density as follows:

||CurlT(F
∼

p)|| = b
N∑

r=1

ρr
G, (3.23)

where || • || denotes the Euclidean norm of •. FE validation of the above mentioned post-
processing technique is performed using pure bending tests. This validation can be found
in appendix C.

3.3.2.1 Problem setup

The simulations are performed using single crystal cylindrical microwires with a height
of 80 mm and three different radii R = 20 mm, 10 mm and 5 mm, that are meshed with
reduced integration 20 node brick elements. The simulation results are not affected by
the absolute values of the wire dimensions but rather by the ratio of their radii to the
characteristic length scale ℓ.

The applied boundary conditions are shown in Fig. 3.2. The geometry is discretized
with 3600 elements for monotonic loading and with 450 elements for cyclic loading. The
same finite element meshes as in (Kaiser and Menzel, 2019a) are used for the simulations
performed with the Lagrange multiplier-based model in order to allow for direct comparison.
The latter model was recently used to simulate torsion tests of single crystals with various
orientations and finer meshes in (Scherer et al., 2020). Isotropic elasticity is considered. The
bottom face of the microwire is clamped, while the top surface undergoes a rigid body
rotation around the wire axis. The lateral faces are kept traction-free and free of generalized
forces. The relative rotation between the upper and lower face is linearly increased to an
angle of 45◦ for monotonic loading. For the cyclic loading test, the following conditions are
enforced: The relative rotation between the upper and lower faces is first linearly increased
to an angle value of 45◦. Next, the relative rotation is linearly decreased to −45◦. Finally,
the loading is again reversed, and simulation is stopped when a relative rotation of 45◦ is
reached.

The orientation of the single crystal considered is such that the [001] crystal direction is
aligned with the wire axis. The basis vectors of the Cartesian coordinate system are parallel
to the cubic lattice unit cell vectors:

e1 = [100] e2 = [010] e3 = [001],

and are indicated in Fig. 3.2.

3.3.2.2 Identification of material parameters

The material parameters of the FCC single crystal for the dislocation-density based model
presented in section 2.2.4 are now calibrated based on simple tension and simple shear
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Fig. 3.11 Constitutive response of the classical crystal plasticity formulation (section 2.2.3)
and the material model considered in (Kaiser and Menzel, 2019b) for a <001> FCC single
crystal and material parameters according to Table 3.3: (a) tensile test, (b) shear test.

predictions obtained on a single volume element with the constitutive law considered in
(Kaiser and Menzel, 2019b) and recalled in section 3.3. Such a calibration is necessary
because the two models compared in the present work rely on different hardening rules.
The CurlFp model includes a phenomenological hardening law with internal variables ζ
whereas the reduced-order model incorporates evolution equations for dislocation densities
according to the section 2.2.4. The calibrated material parameters used in the numerical
simulations and the material parameters used in the CurlFp model are summarized in Table
3.3. Moreover, the corresponding tensile and shear stress-strain responses of a <001> FCC
single crystal are provided for both models in Fig. 3.11.

The FCC crystal possesses the usual 12 slip systems with 6 slip directions <110> and 4
slip planes {111}.

3.3.2.3 Results and discussion

• Comparison of predicted size effects

Fig. 3.13 and 3.18 respectively show the cumulative plastic strain γcum fields plotted in the
reference configuration for the considered single crystal microwire under monotonic and
cyclic loading with wire axis parallel to [001] crystal direction. The characteristic length
scale ℓ considered in the simulations is defined as ℓ =

√
A/|H| , cf. section 3.3.1, (Eq. (3.22)).

The hardening modulus H varies during straining, and an approximate expression of the
characteristic length scale is chosen to normalize the presented results. For that purpose,
the initial equivalent linear hardening modulus for the tensile test is selected. Its value
is given by the ratio of resolved shear stress τr and shear strain γr for one activated slip
system at the beginning of its activation as proposed in (Ling, 2017). In the present case,
the estimated H value for <001> crystal orientation is 3100 MPa. It is not possible to derive
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Table 3.3 Numerical values of material parameters used for the simulation of microwire
torsion tests in the reduced-order model and by Kaiser and Menzel (2019a) in the CurlFp

model.

E
τ0

Eq. (2.14)
m

Eq. (2.12)
K

Eq. (2.12)
µ

Eq. (2.14) b
dc

Eq. (2.15)
60.8 MPa 60 MPa 10 10 MPa.s1/m 23400 MPa 0.286 nm 100.5
κc

Eq. (2.15)
ϱr

0
Eq. (2.16)

h0
Eq. (2.14)

h1
Eq. (2.14)

h2
Eq. (2.14)

h3
Eq. (2.14)

h4
Eq. (2.14)

10.92 5.38×10−11 1.0 0 0 0 0
h5

Eq. (2.14)
bru(r , u)
Eq. (2.15)

buu

Eq. (2.15)
µχ

Eq. (2.39)
A

Eq. (2.34)
τ∞

Eq. (2.49)
H0

Eq. (2.49)
0 1 0 103 MPa 104,2×104 N 110MPa 540

HD
Eq. (2.51)

5×103,104 N

an analytical expression of the relevant characteristic length scale emerging in the torsion
problem. That is why the proposed estimate is chosen.

The comparison of the size effects predicted by the Lagrange multiplier-based model and
the CurlFp model for three different values of the radius of the microwire under monotonic
loading using higher-order modulus A = 20000 N is shown in Fig. 3.12a. This feature can
be observed in Fig. 3.13. The slip activity is maximal at four locations corresponding to the
direction [110]. Fig. 3.12a shows that for the radii R = 20 mm and R = 10 mm, the torque vs.
surface strain responses predicted by both models are almost the same, while for the radius
R = 5 mm, the Lagrange multiplier-based model leads to a slightly harder response.

The cumulative plastic strain and dislocation density fields shown next are based on
a finite element discretization with 10000 elements for resolution reasons. Moreover, the
computational efficiency of the Lagrange multiplier-based model in terms of CPU time
allows the faster computation of size effect even with finer mesh discretization. Fig. 3.14
and 3.16 respectively shows the spatial distributions of SSD and GND density for the
three considered radii. It is observed that the dislocation density nucleation starts at the
surface of the microwire and driven towards the center. During the deformation process,
the evolution of the SSD density is due to the dislocation generation and annihilation
mechanisms. The initial dislocation density ρr(= ϱu/b2) is assumed to be 6.5×108 m−2 and
chosen to be the same for all slip systems. Distinct four-fold patterns of the SSD density
distribution are observed for all three radii of the microwire. On the other hand, the GND
density distribution shows distinct four-fold patterns for the radii R = 5mm and R = 10mm,
while it shows more localized distribution for R = 20mm making the four-fold symmetry of
FCC single-crystal almost disappear. Furthermore, the SSD and GND density distribution
at different stages of the relative rotation are shown in Fig. 3.15 and 3.17, respectively. At
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Fig. 3.12 Comparison of normalized torque vs. surface strain curves (<001> crystal orienta-
tion) using the Lagrange multiplier-based model and the CurlFp model for: (a) monotonic
loading (R = 20 mm,10 mm,and5 mm), and (b) cyclic loading (R = 10 mm).

the initial stage of the deformation, the maximum SSD density is observed at four locations
corresponding to the [110] crystal direction (see Fig. 3.15a). However, as the deformation
progresses, the maximal dislocation density locations are observed at the corresponding
[100] crystal direction as shown in Fig. 3.15c for the relative rotation of 22.5◦. With the
deformation, the difference between the magnitude of the maximal and minimal increment
of the cumulative plastic strain,

∑N
r=1 |△γ

r
|, along the circumference decreases and the field

becomes almost homogeneous. This may explain the shift in the maximal SSD density
locations with the deformation. On the other hand, at the initial stage of the relative rotation,
the GND density is maximal at four locations corresponding to the direction [100] (see Fig.
3.17a) and remains at the corresponding [100] crystal direction with further increase in the
relative rotation (see Fig. 3.17c). Moreover, it is observed that there is a slight evolution of
the GND density field with more localized distribution compared to the SSD density field.

Fig. 3.21a and 3.21b show the profiles of the cumulative plastic strain γcum for three
different radii along the circumferential and radial direction, respectively. For the given
relative rotation angle, distinct four-fold patterns of the plastic strain field can be observed
for R = 20mm and R = 10mm. The plastic strain field is smoother along the circumference
for R = 5mm because the smaller radius gives a stiffer response and limits the strain
localization in these zones. The radial distributions in Fig. 3.21b are almost linear.

The comparison of the size effect predicted by the Lagrange multiplier-based model
and the CurlFp model in the case of cyclic loading conditions is shown in Fig. 3.12b. These
simulations were performed for two values of the gradient parameter, namely A = 10000 N
and 20000 N. The ratio A = 2HD is kept constant in both cases to allow for the comparison of
both models. The Lagrange multiplier-based model predicts isotropic hardening as shown
in Fig. 3.12b. In contrast, the higher-order stresses act as a back-stress in the CurlFp model,
resulting in kinematic hardening. Fig. 3.22a shows the saturation of cyclic curves after 5
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Fig. 3.13 Cumulative plastic strain field in <001> FCC single crystals predicted by a
Lagrange multiplier-based model with A = 20000 N and a finite element discretization
featuring 10000 elements. The results for an applied relative rotation of 45◦ between the
upper and lower face are shown on the undeformed configuration.
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Fig. 3.14 SSD density distribution in FCC single crystals (<100> crystal orientation)
predicted by using a Lagrange multiplier-based model with A = 20000 N and a finite
element discretization featuring 10000 elements. The results for an applied relative rotation
of 45◦ between the upper and lower face are shown on the undeformed configuration.
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Fig. 3.15 SSD density distribution in FCC single crystal (<100> crystal orientation, R= 10 mm)
predicted by using a Lagrange multiplier-based model with A= 20000 N and a finite element
discretization featuring 10000 elements at an applied relative rotation of (a) 4.5◦ (b) 9◦ and
(c) 22.5◦ shown on the undeformed configuration.
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Fig. 3.16 GND density distribution in FCC single crystals (<100> crystal orientation)
predicted by using a Lagrange multiplier-based model with A = 20000 N and a finite
element discretization featuring 10000 elements. The results are shown on the undeformed
configuration for an applied relative rotation of 45◦ between the upper and lower face.
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Fig. 3.17 GND density distribution in FCC single crystal (<100> crystal orientation,
R = 10 mm) predicted by using the Lagrange multiplier-based model with A = 20000 N
at an applied relative rotation of (a) 4.5◦, (b) 9◦, and (c) 22.5◦ shown on the undeformed
configuration.
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Fig. 3.18 Cumulative plastic strain γcum distribution in FCC single crystal (<100> crystal
orientation, R = 10 mm) predicted by using the Lagrange multiplier-based model with
A = 20000 N and a finite element discretization featuring 3600 elements.
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Fig. 3.19 SSD density distribution in FCC single crystal (<100> crystal orientation, R= 10 mm,
A = 20000 N) predicted by using the Lagrange multiplier-based model and a finite element
discretization featuring 3600 elements.
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Fig. 3.20 GND density distribution in FCC single crystal (<100> crystal orientation,
R = 10 mm, A = 20000 N) predicted by using the Lagrange multiplier-based model and a
finite element discretization featuring 3600 elements.
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Fig. 3.21 Cumulative plastic strain γcum variation predicted by the Lagrange multiplier-
based model along the (a) circumferential and (b) radial direction of the microwire for
monotonic loading and for three radii of microwire using A = 20000 N. The radial distance
from the center of the specimen is denoted by x and the radius of the microwire by R.

cycles using classical crystal plasticity model with dislocation density-based hardening. In
contrast, the gradient effect associated with parameter A leads to strong additional isotropic
hardening as depicted in Fig. 3.22b with no apparent saturation.

The cumulative plastic strain and dislocation density fields shown next are plotted
for the microwire of radius R = 10mm and based on a finite element discretization with
3600 elements for resolution reasons.. Fig. 3.19 and 3.20 show the SSD and GND density
distribution over the cross section at the end of each cycle. As the deformation progresses,
the dislocation density significantly increases with the plastic strain, and SSD density gets
much larger than GND density. In particular, the SSD and GND densities increase from an
initial value of 6.5×108 m−2 to 9.7×1014 m−2 and 4.9×1011 m−2, respectively at the end of
cycle 3. In addition, the dislocation density distribution maintains the distinct four-fold
symmetry pattern even at the end of cycle 3.

The plastic strain distribution and profiles along the circumferential and radial directions
for cyclic loading are shown in Fig. 3.18 and 3.23. Accumulation of plastic deformation
during cycling in the four zones of favored plastic slip leads to an increased gradient
values and subsequent additional hardening, thus explaining the cyclic hardening of Fig.
3.22b. With further increase in number of cycles, the cumulative plastic strain increases and
becomes homogeneous along the circumference, making the four-fold symmetry of FCC
single crystal almost disappear as shown in Fig. 3.18 and 3.23a. This may explain the trend
to some saturation of cyclic hardening in Fig. 3.22b. It is observed that the magnitude of
the plastic strain field increases in the radial direction with an increasing number of cycles
as shown in Fig. 3.23b.
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Fig. 3.22 Comparison of normalized torque vs. surface strain curves (<001> crystal orienta-
tion) and for cyclic loading using the (a) classical crystal plasticity formulation according to
section 2.2.3, and (b) Lagrange multiplier-based model using A = 20000 N. The microwire
of radius R = 10 mm discretized using 3600 finite elements.
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Fig. 3.23 Cumulative plastic strain γcum variation along the (a) circumferential and (b) radial
direction of the microwire for cyclic loading using the Lagrange multiplier-based model
(A = 20000 N, R = 10 mm, and a finite element discretization with 3600 elements). The radial
distance from the center of the specimen is denoted by x and the radius of the microwire by
R.
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Fig. 3.24 Normalized torque vs. surface strain curves for <001> crystal orientation: (a)
influence of the microwire radius when using a Lagrange multiplier-based model, (b)
normalized torque as a function of R/ℓ ratio at a surface strainγR of 0.01 for the micromorphic
crystal plasticity and Lagrange multiplier-based models.

• Scaling law

In this section, the scaling behavior is studied for the micromorphic crystal plasticity model
presented in section 2.3.1 and the Lagrange multiplier-based model presented in section
2.3.2. The dependence of the normalized torque on the R/ℓ ratios is analyzed for the
monotonic microwire torsion tests. The simulations are performed for several radii of the
microwire ranging from R = 2 mm to R = 30 mm and by using the value of the higher-order
modulus A = 20000 N. The scaling laws in the form of the power law T/R3

∝ (R/ℓ)n for
microwire torsion tests characterizing the effect of the R/ℓ ratio on the normalized torque
T/R3 are shown in Fig 3.24a. The characteristic length scale ℓ defined as

√
A/|H| is 2.55 mm.

The log-log plot of the normalized torque values as a function of R/ℓ ratio at a surface
strain of 0.01 are plotted in Fig. 3.24b for the micromorphic crystal plasticity model using
Hχ = 104 MPa and Hχ = 3×104 MPa, and for the Lagrange multiplier-based model using
µχ = 103 MPa, respectively. For lower values of the coupling modulus Hχ the micromorphic
crystal plasticity model predicts a typical tanh shape (Cordero et al., 2010) with saturation
for small (R/ℓ < 0.8) and large (R/ℓ > 6) values of the R/ℓ ratio. The slope of the bounded
intermediate regime for the micromorphic crystal plasticity model using Hχ = 104 MPa
and Hχ = 3×104 MPa is found to be n = −0.6 and n = −0.85, respectively. The Lagrange
multiplier-based model can be considered as a limiting case of the micromorphic crystal
plasticity model for large values of Hχ, which leads to a power-law exponent n = −1.0 of
asymptotic regime towards zero. In the latter case, no saturation is expected.

The power-law exponent n of the micromorphic crystal plasticity model depends on
the material parameters Hχ and A, whereas it is independent of material parameters in
the Lagrange multiplier-based model. The critical value of the R/ℓ ratio is defined by the
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inflection point i of the plot in Fig. 3.24b. The value of i depends on the coupling modulus
Hχ and is found to be 4 and 3 for Hχ = 104 MPa and Hχ = 3×104 MPa, respectively, which
represents the size-dependent domain of the material response.

3.4 Concluding remarks

The main findings obtained in this contribution can be summarized as follows:

1. The prediction of size effects with the micromorphic crystal plasticity and Lagrange
multiplier-based approaches are compared for single crystals torsion tests. It is shown
that both models provide similar results for small and intermediate characteristic
length scales. However, for larger characteristic length scales, the hardening due to
strain gradients saturates according to the micromorphic crystal plasticity approach.
A similar saturation effect is observed on the grain size effect on the yield stress in
polycrystals using the microcurl model at small strains in (Cordero et al., 2012b). The
scaling law is different for the Lagrange multiplier-based formulation since such a
saturation is not observed.

2. The size effects predicted by the Lagrange multiplier-based model are found to be in
good agreement with the predictions made by the CurlFp model. They are analyzed
for monotonic and cyclic microwire torsion tests.

3. The Lagrange multiplier-based model induces an isotropic hardening because it is
based on the gradient of a scalar-valued cumulative plastic strain variable. This is in
contrast to the kinematic hardening induced by the CurlFp model due to the back-
stress resulting from the action of higher-order stresses. This leads to significantly
different responses under cyclic loading conditions.

4. The analysis of the cyclic torsion tests shows the evolution of plastic slip gradients
along the circumference with a trend towards more homogeneous distributions for
larger cycle numbers according to the Lagrange multiplier-based model. A significant
increase in SSD and GND density is observed at the end of each cycle compared to
previous cycles.

5. The size effects are characterized by power law relationships between the normalized
torque and R/ℓ, with ℓ being a characteristic length of the model. The reduced
micromorphic crystal plasticity model saturates for small and large values of this
ratio. It possesses an intermediate domain with powers n = −0.6 and = −0.85, which
were found for Hχ = 104 MPa and Hχ = 3×104 MPa, respectively. In contrast, the
augmented Lagrangian version of the model, which corresponds to a strict strain
gradient plasticity model, predicts no saturation at small R/ℓ ratios and a power law
with n = −1.
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An equivalence between the Lagrange multiplier-based model and the CurlFp model
exists in the case of a single-slip under monotonic loading. The CurlFp model has a
clear physical interpretation in terms of the dislocation density tensor in contrast to the
reduced-order models, which incorporate the gradient of cumulative slip in a purely
phenomenological way. Reduced-order models are advantageous from a computational
point of view and lead to significantly lower computation times in the presented examples.
The computational efficiency in terms of CPU time of the Lagrange multiplier-based model
and of the micromorphic crystal plasticity model that was studied in this contribution is
investigated in (Scherer et al., 2020). The CurlFp model, which includes 21 DOF at each node
in three-dimensional settings, is computationally expensive compared to the Lagrange
multiplier-based model, which includes 5 DOF per node. It has been demonstrated that the
CurlFp and reduced-order models can deliver similar predictions related to size effect, at
least for monotonic tests. The reduced-order models can therefore be applied for faster
evaluation of size effects in structural computations. More physical understanding can be
gained using the full gradient model.

The full gradient and reduced-order models could further be compared in the case of
localization phenomena in crystalline materials as recently explored by Marano et al. (2021).
Regularization of strain localization phenomena in single crystals such as slip, kink, and
shear bands was demonstrated in (Ling et al., 2018).

A limitation of the reduced-order micromorphic crystal plasticity and Lagrange
multiplier-based formulations presented in this work is that the gradient terms essentially
affect the isotropic hardening and do not incorporate a size-dependent back-stress, in
contrast to full-order micromorphic crystal plasticity and the gradient plasticity models.
The simulation of kinematic-type hardening is, in fact, possible with a reduced-order
model using an alternative formulation in which the free energy potential depends on
the gradient of the microslip variable as pointed out in (Forest, 2016b; Ling et al., 2018).
Another possibility is to consider the gradient of the equivalent plastic strain instead of the
cumulative one. This will cause size-dependent kinematic hardening effects, as recently
demonstrated by Jebahi and Forest (2021).
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Chapter 4

Adiabatic shear banding in single and
poly-crystals: Numerical approach

Abstract

Finite element (FE) simulations are performed for hat-shaped specimens made of face-centered
cubic (FCC) metallic single and poly–crystals in order to investigate the adiabatic shear band
(ASB) formation process. A micromorphic crystal plasticity model is used to overcome the main
limitation of classical plasticity models, namely the mesh size dependency in strain localization
problems. A thermodynamically consistent formulation of the constitutive equations is proposed
for micromorphic thermo-elasto-viscoplasticity of single crystals. The temperature evolution under
adiabatic conditions is derived from the competition between plastic power and energy storage.
The micromorphic crystal plasticity model is used first to simulate strain localization induced by
thermal softening in a metallic single crystal strip loaded in simple shear undergoing single-slip.
The FE solution of this boundary-value problem is validated using an analytical solution. Regarding
single crystal hat-shaped specimen simulations, five different crystal orientations are considered
to study the formation, intensity and orientation of shear bands. In particular, one special crystal
orientation is found resistant to shear banding. In addition, the formation of shear bands in
hat-shaped polycrystalline aggregates is investigated. The specimens are polycrystalline aggregates
with different grain sizes, namely the coarse-grained and fine-grained specimens with random crystal
orientation distribution. Furthermore, several realizations of the microstructures are taken into
account for statistical considerations. The micromorphic crystal plasticity model incorporates a
characteristic length scale, which induces a grain size effect in the simulation of polycrystalline
specimens. The grain boundaries act as obstacles against shear band formation. A significant grain
size effect, namely the finer the grain size the higher the resulting load, is predicted by the simulations
under isothermal conditions. However, the fine-grained specimens are found to fail earlier by shear
banding than some coarse–grained samples, the latter being associated with significant dispersion of
the results depending on grain orientations. The effect of grain size on the width of the shear band is

This chapter has been submitted to a journal.
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also analyzed. The temperature-dependent material parameters and shear band widths considered
in the paper correspond to Nickel-based superalloy Inconel 718 in a large temperature range. The
considered material behavior is elastic-perfectly plastic.

4.1 Introduction

The ASB formation process originates from the rapid increase of local temperature due to
plastic work dissipation under high strain rate loading conditions. This, in turn, reduces
the stress carrying capacity of the material and results in highly localized and unstable
plastic deformation (Gilman, 1994; Zhu et al., 1995; Dodd and Bai, 2012). The flow stress
dependency on temperature is associated with thermal softening, causing the stress to
drop from its maximum point, thus leading to intense shear band formation. In addition,
microscopic deformation mechanisms in the material play a crucial role in triggering the
shear band when the wavelength of the deformation field is larger than the characteristic
length scale of the material microstructure (Zhao et al., 2005). The formation of shear bands
may not be considered as failure of ductile material, but as a precursor to the catastrophic
fracture (Anand et al., 1987; Zhu et al., 1995). It influences the texture development and the
material constitutive behavior (Dève and Asaro, 1989). The phenomenon of ASB formation
can be observed in many industrial processes, for instance, machining and high-speed
shaping, shearing, metal forming (Burns and Davies, 2002; Molinari et al., 2002; Longère
et al., 2008; Dodd and Bai, 2012), and so forth.

In recent years, considerable experimental research has been conducted to investigate
the ASB formation in FCC metallic materials. The experimental shear tests on hat-shaped
specimens using Split-Hopkinson pressure bars in compression mode are often used to
study the material resistance to shear localization, for instance, in (Nemat-Nasser et al.,
1998; Meyers et al., 2003; Xue et al., 2005; Xu et al., 2008). Meyers et al. (2003) studied the
microstructural evolution of adiabatic shear localization in stainless steel. Experimental
investigations of the effect of strain rates, heat treatments, and grain size on the ASB
formation in hat-shaped polycrystalline Inconel 718 specimens using Split-Hopkinson
pressure bar test can be found in (Johansson et al., 2016, 2017; dong Song et al., 2018).
Furthermore, dong Song et al. (2018) observed that the aged top-hat sample with small
grain size and fillet radius has the largest tendency to form a shear band compared to the
solution treated Inconel 718 specimens. They observed shear bands of 10µm width in
aged Inconel 718 samples of average grain size 28µm and 10−13µm in solution treated
samples of average grain size 18µm. DeMange et al. (2009) found that the precipitation
hardened material more readily exhibits shear localization than the solution treated material
in the shear deformation of top-hat samples. Moreover, in metallic materials and alloys,
it was believed that only the dislocation mobility due to a rise in temperature causes the
strain-softening. However, the recent studies, e.g. (Landau et al., 2016; Mourad et al., 2017;
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Longère, 2018) showed that the dynamic recrystallization (DRX) is also playing an essential
part in strain softening.

From the computational perspective, it is well–known that finite element simulations of
strain localization phenomena exhibit spurious mesh dependency, and the classical plasticity
models are inadequate to solve the strain localization problems (Asaro and Rice, 1977;
de Borst et al., 1993; Besson, 2009). The possible loss of ellipticity of the partial differential
equations in strain-softening materials results in an ill-posed boundary-value problem and
classically displays dependency on mesh size or density and element orientation. The loss
of ellipticity of the PDE is a local condition that concerns rate-independent constitutive
equations in the static case. It implies the non-positive value of the determinant of the
material’s acoustic tensor (Forest and Lorentz, 2004; Wcisło et al., 2018). Rate-dependence
of the material behavior can improve the situation but it is not sufficient to regularize the
general localization problem (Needleman, 1988). Numerical analyses of strain localization
problems within the conventional continuum mechanics framework can be found in (Batra
and Kim, 1991, 1992; Duszek-Perzyna and Perzyna, 1993, 1996; Perzyna and Korbel, 1996,
1998). Moreover, a large scale postulate to simulate the ASB formation can be found in
(Longère et al., 2003; Longère et al., 2005). In large scale postulate, shear band is considered
as a structure contained within the representative volume element (RVE), and not the
opposite as usually assumed (Dorothy, 2018).

The shear band width dependency on mesh size can be overcome by introducing
a characteristic length scale in the classical plasticity models according to (Kuroda and
Tvergaard, 2006; Voyiadjis and Al-Rub, 2005; Anand et al., 2012; Pamin et al., 2017; Vignjevic
et al., 2018; Kaiser and Menzel, 2019b). Strain gradient plasticity models, which include
an characteristic length scale in the constitutive framework, are often used to regularize
strain localization problems, e.g., (Aifantis, 1984; Abu Al-Rub and Voyiadjis, 2006; Anand
et al., 2012; Ahad et al., 2014). Aifantis (1984, 1987) proposed a strain gradient theory
by adding the Laplacian of a scalar measure of plastic strain in the yield function of the
classical plasticity theory to solve the issues related to the width of the shear bands. The
characteristic length scale introduced in the gradient plasticity models can be associated
with the width of the shear band as demonstrated in (Zbib and Aifantis, 1988; Chambon
et al., 1998). The effect of higher-order gradients on ASB formation was investigated by
Zhu et al. (1995) and more recently by Tsagrakis and Aifantis (2015). Two length scales,
respectively associated with strain gradients and thermal conduction, were considered in
the analysis. They showed that the width of the shear band scales with the square root
of strain gradient coefficient in the absence of conduction and square root of the thermal
conductivity in absence of strain gradient effects. The micromorphic theory proposed by
Eringen (1999) relies on the second-order microdeformation tensor as an additional degree
of freedom. The application of micromorphic theory for the strain localization phenomenon
can be found in (Dillard et al., 2006; Anand et al., 2012; Mazière and Forest, 2015). In
contrast to Eringen’s full micromorphic theory, a reduced-order micromorphic crystal
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plasticity theory was proposed by Ling et al. (2018) involving a scalar-valued variable as
the additional degree of freedom. It was used to analyze strain localization phenomena
at finite deformation by Scherer et al. (2019). The mesh dependency issues in the shear
localization problem can also be eliminated by the sub-grid method proposed in (Mourad
et al., 2017; Jin et al., 2018) in the case dynamic loading conditions applied to hat-shaped
specimens.

As the yielding starts in a metallic material, the work done by the stresses is partly
transferred to heat and partly to the reversible or irreversible microstructural changes in
the material and leads to a rise in temperature locally affecting the elastic-plastic behavior
of the material. Therefore, it is necessary to introduce thermodynamics into the plasticity
framework (Bertram and Krawietz, 2012). Thermodynamically consistent formulations of
the constitutive equations in classical plasticity models for the small strain strain can be
found in (Bertram and Krawietz, 2012) and for finite strain gradient plasticity in (Forest
and Sievert, 2003; Bertram, 2015). The second law of thermodynamics in the form of
Clausius-Duhem inequality is used to find the necessary conditions required for the
thermodynamically consistent formulation. A fully coupled thermo-plasticity model can
also be found in (Simo and Miehe, 1992; Duszek-Perzyna and Perzyna, 1993; Yang et al.,
2006; Ristinmaa et al., 2007). In many works in the literature (see, e.g., Osovski et al. (2013);
Zhang et al. (2016); Lieou et al. (2019)), use is made of the TQC (Taylor and Quinney, 1934),
a constant parameter related to the amount of plastic work converted into heat. A more
precise thermodynamic description requires the definition of the stored energy function
with appropriate internal variables and of the dissipative mechanisms. Thermo-mechanical
couplings can in that way be derived in the heat equation.

Many numerical studies on adiabatic shear localization in metallic single crystals have
been completed in recent years, for instance, in (Baucom and Zikry, 1999; Perzyna, 2002;
Zhang et al., 2016). However, less attention has been given to the effect of crystal orientation
on the shear band formation in single crystals. It is, therefore, one of the objectives of
the present work to investigate the effect of various initial crystal orientations on the ASB
formation in single crystals. In the present study, the ASB formation is only related to
thermal softening, letting aside the effect of DRX. The applicability of the reduced-order
micromorphic crystal plasticity model involving a single scalar-valued variable as a degree
of freedom (Ling et al., 2018) is demonstrated for regularizing the ASB. A thermodynamically
consistent formulation of the constitutive equations for the micromorphic crystal plasticity
model is presented. At first, an analytical reference solution is developed in the case
of a periodic strip loaded in simple shear undergoing single-slip with linear strain and
thermal softening. The FE solution of the same boundary-value problem is validated using
an analytical solution initially developed for the rate-independent isothermal case. The
temperature-dependent material parameters and shear band widths considered in the
paper correspond to Nickel-based super-alloy Inconel 718 in a large temperature range.
Furthermore, simulations are performed with the single crystals hat-shaped specimens with
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different initial crystal orientations. The considered material behavior is elastic-perfectly
plastic.

The second original objective of the present work is to study the transition of ASB
formation from single to polycrystals. To this end, the micromorphic approach is applied to
polycrystalline hat-shaped specimens simulations to predict the role of grain boundaries as
obstacles to ASB, the orientation dependency, and the influence of grain size on the width
of the ASB.

The outline of the chapter is as follows: Section 4.3 is dedicated to the validation of the
numerical solution for a periodic strip loaded in simple shear undergoing single-slip with
linear thermal softening based on the analytical solution developed for the rate-independent
case. Section 4.4 reports on the simulations of single crystals hat-shaped specimens under
static loading conditions. In section 4.5, the micromorphic crystal plasticity model is used
to investigate ASB formation in polycrystalline hat-shaped specimens. Concluding remarks
follow in section 4.6.

4.2 Thermo-elasto-viscoplasticity of single crystals at finite
deformation

4.2.1 Kinematics

In the present work, a large deformation framework of thermo-plasticity is adopted, based
on the multiplicative decomposition of total deformation gradient F

∼
into a recoverable

thermo-elastic part F
∼

the and a plastic part F
∼

p combining concepts put forward by (Bertram,
2003; Ristinmaa et al., 2007):

F
∼
= F
∼

the
·F
∼

p. (4.1)

The volume mass densities with respect to the reference configuration, the intermediate
configuration, and the current configuration are ρ0, ρ# and ρ, respectively, given by

J = det(F
∼
) =
ρ0

ρ
, Jthe = det(F

∼

the) =
ρ#

ρ
, Jp = det(F

∼

p) =
ρ0

ρ#
. (4.2)

It is assumed that plastic flow is isochoric such that

Jp = detF
∼

p = 1, Jthe = detF
∼

the = J = detF
∼
. (4.3)

Crystal plasticity in dense metals is incompressible so that Jp = 1. However, Jp can be
different from one in the case of compressible plasticity. This situation was studied
for ductile fracture of porous the single crystals in (Ling et al., 2016). Moreover, the
thermo-elastic strain tensor E

∼

the is introduced as follows:

E
∼

the =
1
2

[(F
∼

the)T
· (F
∼

the)−1
∼
], (4.4)
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with 1
∼

denoting the second order identity tensor. The Mandel stress tensor Π
∼

M with
respect to the intermediate configuration is related to the Cauchy stress tensor σ

∼
by

Π
∼

M = Jthe(F
∼

the)T
·σ
∼
· (F
∼

the)−T.

4.2.2 Thermodynamic formulation

The energy balance (first law of thermodynamics) with respect to the current configuration
is written in the local form:

ρė = σ
∼

: D
∼
+Q, (4.5)

with D
∼
= (l

∼
+ l
∼

T)/2 as the strain rate tensor, e the internal energy per unit mass and Q the
heat supply per unit volume and unit time, which results from an external heat source r
and heat conduction q such that

Q = r−divq. (4.6)

The second law of thermodynamics in the form of the local dissipation rate inequality with
respect to the current configuration can be written as

ρη̇+div
q

T
−

r
T
≥ 0, (4.7)

where η is the entropy per unit mass and T is the absolute temperature. The Helmholtz
free energy density function is introduced as

Ψ := e−Tη. (4.8)

The Clausius-Duhem inequality is now expressed with respect to the reference configuration
as

Jσ
∼

: D
∼
−ρ0(Ψ̇+ηṪ)−Q ·

∇XT
T
≥ 0, (4.9)

where Q is the heat conduction with respect to the reference configuration and given by
Q = JtheF

∼

−1
·q and ∇XT is the Lagrangian gradient of temperature. The stress power term

Jσ
∼

: D
∼

is given by
Jσ
∼

: D
∼
= JpΠ

∼

e : Ė
∼

the+ JpΠ
∼

M : l
∼

p, (4.10)

with Π
∼

e the second Piola-Kirchhoff stress tensor defined with respect to the intermediate
configuration by Π

∼

e = Jthe(F
∼

the)−1
·σ
∼
· (F
∼

the)−T.
The dissipation rate in the Clausius-Duhem inequality consists of mechanical and

thermal dissipation rates. The mechanical dissipation rate is given by

∆m = Jσ
∼

: D
∼
−ρ0(Ψ̇+ηṪ), (4.11)

and the thermal dissipation by

∆th = −Q ·
∇XT

T
. (4.12)
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The material under consideration is assumed to be characterized by the Helmholtz free
energy density function

Ψ= Ψ̃(E
∼

the,T,ζ), (4.13)

The quadratic form of the free energy familiar from the thermo-elasticity is assumed to
be a function of the thermo-elastic strain tensor E

∼

the, the temperature T and the internal
hardening variables ζ as follows:

ρ0Ψ̃(E
∼

the,T,ζ)=
1
2

E
∼

the :Λ
≈

: E
∼

the+ρ0Cε
[
(T−T0)−T log

( T
T0

)]
+ (T−T0)P

∼
: E
∼

the+ρ0Ψ̃(ζ), (4.14)

where Λ
≈

is the fourth-order tensor of elastic moduli, T0 is a reference temperature, Cε is the

specific heat of the material and P
∼

is a constant symmetric thermal stress tensor.
Expanding the time derivative of the free energy density function gives(
Π
∼

e
−ρ0
∂Ψ̃(E

∼

the,T)
∂E
∼

the

)
: Ė
∼

the+Π
∼

M : l
∼

p
−ρ0

(
η+
∂Ψ̃
∂T

)
Ṫ−ρ0

∂Ψ̃
∂ζ
ζ̇−Q ·

∇XT
T
≥ 0, (4.15)

The following state laws are adopted:

Π
∼

e = ρ0
∂Ψ̃(E

∼

the,T)
∂E
∼

the
, η = −

∂Ψ̃
∂T
, X = ρ0

∂Ψ̃
∂ζ
, (4.16)

where X is the thermodynamic force associated with the internal variable ζ. The reduced
dissipation rate, which restricts the material flow and hardening rules in connection with
the yield condition, is given by

Π
∼

M : l
∼

p
−Xζ̇−Q ·

∇XT
T
≥ 0. (4.17)

Based on the potential (4.14) the thermoelastic relation for the second Piola-Kirchhoff stress
tensor is obtained as

Π
∼

e = Λ
≈

: E
∼

the
−P
∼

(T−T0) = Λ
≈

: (E
∼

the
−Λ
≈

−1 : P
∼

(T−T0)) = Λ
≈

: (E
∼

the
−E
∼

th), (4.18)

and the thermal strain tensor E
∼

th is defined as

E
∼

th = (T−T0)Λ
≈

−1 : P
∼
= (T−T0)α1

∼
, (4.19)

which involves the thermal expansion coefficient α in the case of isotropic or cubic thermo-
elasticity.
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4.2.3 Reduced-order micromorphic crystal plasticity model

The material under consideration is assumed to be characterized by the coupled thermo-
mechanical Helmholtz free energy density function defined in terms of the thermo-elastic
strain tensor E

∼

the, the relative plastic strain ep, the gradient of the microslip variable K,
temperature T and the internal hardening variable ζ as follows:

Ψ= Ψ̃(E
∼

the,ep,K,T,ζ). (4.20)

It is assumed that the Helmholtz free energy density function takes the form:

ρ0Ψ̃(E
∼

the,ep,K,T,ζ) =
1
2

E
∼

the :Λ
≈

: E
∼

the+
1
2

Hχe2
p+

1
2

K ·A
∼
·K+ρ0Cε

[
(T−T0)−T log

( T
T0

)]
+ (T−T0)P

∼
: E
∼

the+ρ0Ψ̃(T,ζ). (4.21)

Expanding the time derivative of the free energy density function leads to the following
form of the Clausius-Duhem inequality(

Π
∼

e
−ρ0

∂Ψ̃

∂E
∼

the

)
: Ė
∼

the
−

(
S+ρ0

∂Ψ̃
∂ep

)
ėp+

(
M−ρ0

∂Ψ̃
∂K

)
· K̇+Sγ̇cum+Π

∼

M : l
∼

p (4.22)

−ρ0

(
η+
∂Ψ̃
∂T

)
Ṫ−ρ0

∂Ψ̃
∂ζ
ζ̇−Q ·

∇XT
T
≥ 0.

The following state laws are adopted:

Π
∼

e = ρ0
∂Ψ̃

∂E
∼

the
, S = −ρ0

∂Ψ̃
∂ep
, M = ρ0

∂Ψ̃
∂K
, η = −

∂Ψ̃
∂T
, X = ρ0

∂Ψ̃
∂ζ
. (4.23)

The residual dissipation rate, which restricts the material flow and hardening rules in
connection with the yield condition, is given by

Π
∼

M : l
∼

p+Sγ̇cum−Xζ̇−Q ·
∇XT

T
≥ 0. (4.24)

The thermodynamic forces associated with arguments of the Helmholtz free energy function
are derived from the potential (4.21):

Π
∼

e = Λ
≈

: (E
∼

the
−E
∼

th), S = −Hχep = −Hχ(γcum−γχ), M = A
∼
·K. (4.25)

77



4.2.4 Temperature evolution under adiabatic conditions

The energy balance for the micromorphic crystal plasticity model with respect to the
reference configuration is written in the form

ρ0ė = Jσ
∼

: D
∼
+Sγ̇χ+M · K̇+Q. (4.26)

The Clausius-Duhem inequality then reads

Jσ
∼

: D
∼
+Sγ̇χ+M · K̇−ρ0( ˙̃Ψ+ηṪ)−Q ·

∇XT
T
≥ 0. (4.27)

The previous equation consists of mechanical and thermal dissipation. The mechanical
dissipation is given by

∆m = Jσ
∼

: D
∼
+Sγ̇χ+M · K̇−ρ0( ˙̃Ψ+ηṪ), (4.28)

and the thermal dissipation is still given by Eq. (4.12). Substituting free energy production
rate obtained from Eq. (4.8) and (4.26) in previous equation lead to

Jσ
∼

: D
∼
+Sγ̇χ+M · K̇−divq+r= ρ0ė= ρ0

[
∂Ψ̃

∂E
∼

the
: Ė
∼

the+
∂Ψ̃
∂ep

ėp+
∂Ψ̃
∂K
· K̇+

∂Ψ̃
∂T

Ṫ+
∂Ψ̃
∂ζ
ζ̇+ Ṫη+Tη̇

]
.

(4.29)
Simplification of the previous equation after taking the state laws from (4.23) into account
provides

Π
∼

M : Ḟ
∼

pF
∼

p−1+Sγ̇cum−divq+ r = ρ0

[
∂Ψ̃
∂ζ
ζ̇+Tη̇

]
. (4.30)

The expression for the entropy from (4.21) is given by

ρ0η = −ρ0
∂Ψ̃
∂T
= −

1
2

E
∼

the :
∂Λ
≈

∂T
: E
∼

the+ρ0Cε log
( T
T0

)
−ρ0
∂Cε
∂T

[
(T−T0)−T log

( T
T0

)]
(4.31)

+ (T−T0)
∂P
∼

∂T
: E
∼

the+P
∼

: E
∼

the
−ρ0
∂Ψ̃
∂T
.

Furthermore, the variation of entropy with respect to time is computed as

ρ0η̇ = −E
∼

the :
∂Λ
≈

∂T
: Ė
∼

the
− Ṫ

1
2

E
∼

the :
∂2Λ
≈

∂T2 : E
∼

the+ρ0CεṪ+ρ0
∂Cε
∂T

[
log

( T
T0

)]
Ṫ

−ρ0
∂2Cε
∂T2

[
(T−T0)−T log

( T
T0

)]
Ṫ+ Ṫ

∂P
∼

∂T
: E
∼

the+ Ṫ(T−T0)
∂2P
∼

∂T2 : E
∼

the (4.32)

+ (T−T0)
∂P
∼

∂T
: Ė
∼

the+ Ṫ
∂P
∼

∂T
: E
∼

the+P
∼

: Ė
∼

the
−ρ0

(
∂2Ψ̃

∂T2 Ṫ+
∂2Ψ̃

∂T∂ζ
ζ̇

)
.

78



Substituting the previous equation into the right hand side of (4.30)

ρ0

[
∂Ψ̃
∂ζ
ζ̇+Tη̇

]
= ρ0
∂Ψ̃
∂ζ
ζ̇+T

[
−E
∼

the :
∂Λ
≈

∂T
: Ė
∼

the
− Ṫ

1
2

E
∼

the :
∂2Λ
≈

∂T2 : E
∼

the+ρ0CεṪ (4.33)

+ρ0
∂Cε
∂T

[
log

( T
T0

)]
Ṫ−ρ0

∂2Cε
∂T2

[
(T−T0)−T log

( T
T0

)]
Ṫ+ Ṫ

∂P
∼

∂T
: E
∼

the

+ Ṫ(T−T0)
∂2P
∼

∂T2 : E
∼

the+ (T−T0)
∂P
∼

∂T
: Ė
∼

the+ Ṫ
∂P
∼

∂T
: Ė
∼

the+P
∼

: Ė
∼

the

−ρ0

(
∂2Ψ̃

∂T2 Ṫ+
∂2Ψ̃

∂T∂ζ
ζ̇

)]
. (4.34)

Finally, the rate of temperature change is obtained as

Ṫ =
[
Π
∼

M : l
∼

p+Sγ̇cum−divq+ r−ρ0
∂Ψ̃
∂ζ
ζ̇−T

(
−E
∼

the :
∂Λ
≈

∂T
: Ė
∼

the+ (T−T0)
∂P
∼

∂T
: Ė
∼

th

+P
∼

: Ė
∼

the
−ρ0

∂2Ψ̃

∂T∂ζ
ζ̇

)][
−T

1
2

E
∼

the :
∂2Λ
≈

∂T2 : E
∼

the+ρ0Cε+ρ0
∂Cε
∂T

[
log

( T
T0

)]
T

−ρ0
∂2Cε
∂T2

[
(T−T0)−T log

( T
T0

)]
T+T

∂P
∼

∂T
: E
∼

the+T(T−T0)
∂2P
∼

∂T2 : E
∼

the

+T
∂P
∼

∂T
: E
∼

the
−ρ0
∂2Ψ̃

∂T2 T
]−1

, (4.35)

up to T = Tmelt, where Tmelt is the melting temperature of the material.

• Adiabatic processes

In this work, the thermodynamic processes are assumed to be adiabatic in nature, wherein
there is no heat transfer to the surrounding and no external heat source present such that

q = 0, r = 0. (4.36)

Therefore, terms divq and r in (4.35) vanish. The following two simplified cases can be
considered for the temperature evolution:

case 1: It is assumed that the contribution of the temperature dependence of the elastic
constants and specific heat of the material can be neglected compared to plastic power.
Also, the contributions of second order derivatives (variation of thermal stress with respect
to the temperature) are considered very small compared to internal dissipation terms. Then
(4.35) can be written as follows:

ρCεṪ =Π
∼

M : l
∼

p+Sγ̇cum−Xζ̇ with X = ρ0
∂Ψ̃
∂ζ
. (4.37)
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In addition, in the present work, hat-shaped specimen simulations are performed in the
absence of classical hardening, which means that τr

c = τ0 is a constant in (2.32). Therefore,
the contribution of internal hardening variable to the stored energy is not considered. The
resulting form of temperature evolution is given in case 2.

case 2: The two first terms in (4.37) denote the heat generated by the plastic power and
represent the main contribution to thermo-mechanical phenomenon. It is assumed that all
the plastic work done is converted into heat so that

ρCεṪ =Π
∼

M : l
∼

p+Sγ̇cum. (4.38)

4.3 Simple shear test with strain or thermal softening

An analytical reference solution initially developed for the rate-independent case with
linear strain softening for a periodic strip loaded in simple shear undergoing single-slip in
(Scherer et al., 2019) is first recalled. The introduction of softening induces strain localization
in a band of finite width characterized by the parameters of the micromorphic model. This
solution will be adapted to account for thermal softening and provide a validation test for
the FE implementation of the thermomechanical micromorphic model in the code.

4.3.1 Analytical solution

Consider a periodic strip made of a thick rectangular plate of width W along the X1 direction,
length L along the X2 direction, and thickness T along the X3 direction (Fig. 4.1). It is made
of a single crystal material possessing a single slip system under simple shear conditions.
The slip direction m and the normal to the slip plane n are respectively parallel to X1 and
X2. The strain rate sensitivity parameters m,K in Eq. (2.12) are chosen in such a way that
the material response is almost rate-independent. A macroscopic deformation gradient F̄

∼
is

applied such that

u = (F̄
∼
−1
∼
) ·X+ν(X), with F̄

∼
= 1
∼
+ F̄12(m⊗n), (4.39)

where ν is a periodic fluctuation of the displacement. The origin O of the strip is constrained
such that

u(X1 = 0,X2 = 0,X3 = 0) = 0. (4.40)

It is assumed that elastic deformations remain small in the absence of lattice rotation in
the considered slip configuration, i.e. |Fe

12| ≪ 1 with

F
∼

e = F
∼
·F
∼

p−1 = 1
∼
+Fe

12(m⊗n), (4.41)
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Fig. 4.1 Single crystal trip with a central defect (red line).

and therefore, the Green-Lagrange elastic strain tensor can be expressed as follows:

E
∼

the
≃

Fe
12

2
(m⊗n+n⊗m). (4.42)

where thermal expansion is set to zero in the present isothermal example. Moreover, the
second Piola-Kirchhoff stress tensor Π

∼

e in this instance is given by

Π
∼

e = Λ
≈

: E
∼

the
≃Πe

12(m⊗n+n⊗m). (4.43)

For small elastic deformations, the second Piola-Kirchhoff and Mandel stresses coincide:
Π
∼

M
≃Π
∼

e. The resolved shear stress τr on the single slip system is given by

τ =Π
∼

M : (m⊗n). (4.44)

Furthermore, equilibrium requires the shear stress component to be uniform which implies
that the resolved shear stress τ is also invariant along X1, X2 and X3.
The quasi-equality between the microslip variable γχ and the accumulated plastic strain γ
is ensured by the coupling modulus Hχ. The yield condition including the linear strain
softening can be written as follows:

f = |τ| − (τ0+Hγ+Hχ(γ−γχ)) = 0 with H < 0. (4.45)

A partial differential equation governing the microslip is given by

A
∂2γχ

∂X2
2

=Hχ(γχ−γ). (4.46)

Substituting (4.45) for γ into (4.46) leads to another form of the partial differential equation

A
∂2γχ

∂X2
2

−
HHχ

H+Hχ
γχ+

Hχ
H+Hχ

(|τ| −τ0) = 0. (4.47)
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In the case of linear strain softening, it can be shown that (4.47) takes the form

∂2γχ

∂X2
2

−

(
2π
λ

)2

γχ = −

(
2π
λ

)2

κ, (4.48)

where λ is a characteristic length and κ a constant. They are defined as follows:

λ = 2π

√
A(H+Hχ)
|H|Hχ

, κ =

(
λ

2π

)2 Hχ
A(H+Hχ)

(|τ| −τ0). (4.49)

The differential equation in (4.48) governing γχ is only valid in the region where plastic
loading takes place which can be identified with the interval X2 ∈ [−λ2 ,

λ
2 ]. This interval is

the strain localization zone and outside elastic unloading takes place. The solution is of the
form

γχ(X2) = a1 cos
(
2π

X2

λ

)
+ a2 sin

(
2π

X2

λ

)
−κ. (4.50)

where a1,a2 are integration constants. For symmetry reasons, γχ(X2) = γχ(−X2) which
requires that a2 = 0. At the elastic/plastic interfaces, i.e at X2 = ±

λ
2 , continuity of microslip

γχ and of the generalized stress normal to the interface M ·X2 must hold, therefore

γχ

(
±
λ
2

)
≃ γ

(
±
λ
2

)
= 0, (4.51)

M
(
±
λ
2

)
·X2 = A

dγχ
dX2

∣∣∣∣∣
X2=±

λ
2

= 0. (4.52)

In (4.51), we have assumed that the penalty parameter Hχ is high enough for γχ and γ
almost to coincide, i.e. ep ≃ 0. Combining (4.51) and (4.52) with (4.50) gives

a1 =
|τ| −τ0

H
. (4.53)

Moreover, the resolved shear stress is expressed as

τ =Πe
12 = 2C44Ethe

12 =
2C44

L

∫ L
2

−L
2

(
F12−γ

2

)
dX2, (4.54)

with C44 being the elastic shear modulus. From the yield condition given in (4.45), γ can be
replaced by |τ|−τ0+Hχγχ

H+Hχ in (4.54) and integration gives an expression for τ as a function of
applied macroscopic shear F̄12:

τ =
F̄12+

τ0
Ze

1
C44
+ 1

Ze

, with
1

Ze
=
λ

HL
. (4.55)
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Table 4.1 Numerical values of material parameters used for the numerical simulation of
simple shear test at the initial temperature of 923 K.

C11 C12 C44
τ0

Eq. (4.45)
H

Eq. (4.45)
Hχ

Eq. (4.45)
208.1 GPa 144.7 GPa 97.6 GPa 303 MPa −45 MPa 103MPa

A
λ

Eq. (4.49)
L

Eq. (4.55)
0.04 N 0.073 mm 1.0mm

4.3.2 FE solution with linear strain softening

The implementation of the isothermal micromorphic single crystal plasticity model in the
finite element code Zset is described in detail in (Ling et al., 2018). The interpolation of
displacement and microslip degrees of freedom is respectively quadratic and linear. The
geometry considered in the FE simulations is shown in Fig. 4.1. It is discretized into 400
C3D20R elements, which are 20 node reduced integration brick elements. A material
defect is introduced at the center to trigger strain localization in the periodic strip, (see Fig.
4.1). The defect is of one element size and assigned with an initial critical resolved shear
stress 1% smaller than the matrix. The material parameters used for the FE solution are
summarized in Table 4.1. The elasticity moduli correspond to a nickel–base superalloy at
923 K, see Abdul-Aziz and Kalluri (1991). Periodicity conditions are applied and the tensor
F̄
∼

is prescribed according to Eq. (4.39).
Fig. 4.2a displays the cumulative plastic strain field predicted by the micromorphic

crystal plasticity model. The FE solution is validated with respect to the variation of
γχ along X2 direction at F̄12 = 0.01 with the analytical solution given by Eq. (4.51). This
comparison is shown in Fig. 4.2b. Perfect agreement is observed for F̄12 = 0.01 and for all
other values of F̄12. The analytically calculated, refer Eq. (4.49), and numerically observed
width of the localization zone is measured to be 2.6λ.

4.3.3 FE solution with linear thermal softening

In the studied simplified problem of single-slip periodic strip undergoing simple shear, the
rate of plastic workΠ

∼

M : l
∼

p+Sγ̇cum becomes(τ+S)γ̇, which gives the temperature evolution
according to (4.38) as

Ṫ =
(τ+S)γ̇
ρCε

. (4.56)

In the rate independent limit, the yield function (2.32) is equal to zero under plastic loading
so that τ+S= τ0 in the absence of classical hardening. The critical resolved shear stress τ0(T)

http://www.zset-software.com/
with appropriate choice of the orientation of slip direction vector m so that τ > 0.

83



0 0.0760.006 0.012 0.019 0.025 0.032 0.038 0.044 0.051 0.057 0.063 0.070

(a)

−0.4 −0.2 0.0 0.2 0.4

X2 (mm)

0.00

0.02

0.04

0.06

0.08

γ
χ

FE solution

Analytical solution

(b)

Fig. 4.2 (a) Contour plot of cumulative plastic strain γcum in a single-slip simple shear test
with linear strain softening using the micromorphic crystal plasticity model (H = −45MPa,
A=0.04N). (b) Comparison of FE solution with the analytical solution for the variation of
γχ along X2 at F̄12 = 0.01.
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is a function of temperature. An affine dependence is chosen for this analytical example

τ0 = τRT+HT(T−TRT), (4.57)

where HT < 0 is the negative slope of the linear variation of τ0 with temperature, TRT is
the room temperature and τRT is the critical resolved shear stress (CRSS) value at room
temperature. Then, Eq. (4.56) becomes

Ṫ =
τ0γ̇

ρCε
. (4.58)

In order to obtain a simple analytic solution for the temperature, τ0 is approximated by the
constant value: τ̂0 = τRT+HT(Ti−TRT) where Ti is some initial temperature value. In that
conditions, the previous equation can be integrated, assuming monotonic loading, which
leads to the following form of the temperature rise:

T =
τ0γ

ρCε
+Ti, when γ = 0, T = Ti. (4.59)

The yield condition (2.32), which includes the temperature dependent softening can now
be written as follows:

f = |τ| − (τ̂0(1+
HTγ

ρCε
)+Hχ(γ−γχ)) = 0. (4.60)

Combining (4.46) and (4.60) leads to the same partial differential equation governing the
microslip variable as (4.47) provided that τ0 is replaced by τ̂0 and the hardening modulus
H has the following definition

H ≡
HTτ0

ρCε
. (4.61)

The solution of the PDE (4.47) still has the form (4.50) where the constants λ and κ are given
by Eq. (4.49) with the new definition of H and τ0 ≡ τ̂0.

This approximate solution is now compared to the FE prediction. For that purpose,
the evolution of the temperature driven by the adiabatic condition (4.38) is numerically
integrated in the code by means of a second order Runge-Kutta method with automatic
time stepping Besson (2009). The material parameters used for the FE solution with the
linear thermal softening are given in Table 4.2. The value of HT has been chosen so that the
associated modulus given by (4.61) takes the same value H = −45 MPa as in the example of
linear strain softening, see Section 4.3.2.

In the FE analysis, no approximation is introduced and the CRSS has the temperature
dependent expression (4.57). The cumulative plastic strain and temperature fields predicted
by the micromorphic crystal plasticity model with linear thermal softening are shown
in Fig. 4.3a and 4.3b, respectively. The temperature evolution due to adiabatic heating is
considered as in the case 2 presented in section 4.2.3, cf. Eq. (4.38). The comparison of the
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Table 4.2 Numerical values of the material parameters used in the simulations of single-slip
periodic strip undergoing simple shear with thermal softening using the micromorphic
crystal plasticity model.

C11 C12 C44
Hχ

Eq. (4.60)
HT

Eq. (4.60) TRT

208.1 MPa 144.7 MPa 97.6 MPa 103 MPa −0.48 MPaK−1 293 K

τRT τ1523K A Ti
ρ

Eq. (4.58)
Cε

Eq. (4.58)
606 MPa 10 MPa 0.04 N 923 K 7.8×10−6 kgmm−3 412Jkg−1K−1

FE solution for γχ variation with the approximate analytical solution obtained from Eq.
(4.50) is displayed in Fig. 4.3c at F̄12 = 0.01. The analytically calculated and numerically
simulated width of the deformation zone is 2.6λ, which is equal to the value obtained with
linear strain softening. This is due to the fact that the temperature softening modulus HT

has been chosen so that the equivalent modulus H is the same as the softening modulus
used in Section 4.3.2. The approximation of τ0 by τ̂0 in the analytical solution does not
lead to significant differences compared to the full FE solution, due to the fact that the
temperature changes remain limited, see Fig. 4.3cb. The limited heating was however
sufficient to trigger plastic strain localization.

This study shows that the analytical solution initially developed for the rate-independent
case for the linear strain softening can be used in the linear thermal softening case after
establishing a relation between the slope of the linear variation of the CRSS with respect to
temperature, HT, and an equivalent linear strain softening modulus H. Furthermore, the
FE implementation with linear strain, and thermal softening has been validated by means
of this analytical solution.

4.4 Application to single crystals hat-shaped specimens

This section presents the application of the proposed thermo-mechanical micromorphic
constitutive framework to single crystal hat-shaped specimens. The aim is to investigate
the effects of initial crystal orientation on the formation and orientation of adiabatic shear
bands. The material behavior considered in the simulations is elastic-perfectly plastic, and
the material parameters correspond to nickel-based super-alloy Inconel 718. Furthermore,
the temperature evolution due to adiabatic heating is considered as in the case 2 presented
in section 4.2.3 (Eq. (4.38)).

The outline of this section is as follows. The temperature-dependent material parameters
of Inconel 718 are summarized in section 4.4.1. The criteria for the selection of gradient
parameters (A and Hχ) are given in section 4.4.2. Then, the geometry, boundary conditions
and considered crystal orientations are presented in section 4.4.3. In section 4.4.4, mesh
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Fig. 4.3 Contour plots of (a) cumulative plastic strain γcum, and (b) temperature in the
single-slip simple shear test with thermal softening using the micromorphic crystal plasticity
model (Ti=923 K, A=0.04 N) subjected to adiabatic heating. (c) Comparison of the FE solution
obtained using the micromorphic crystal plasticity model with the analytical solution for
the variation of microslip variable γχ along X2 at F̄12 = 0.01.
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sensitivity analysis is performed with the classical and micromorphic crystal plasticity
models. Results and discussion follow in section 4.4.5.

4.4.1 Material properties of Inconel 718

The temperature-dependent material parameters considered in this paper correspond to
Nickel-based superalloy Inconel 718 in a large temperature range. The characterization
of high strain rate compressive loading behavior within a wide range of temperature for
Inconel 718 was performed in (Iturbe et al., 2017). In this paper, the material properties
investigated are in the temperature range of 294−1323 K, close to those found in machining
at high strain rates (1−100 s−1). The stress-strain behavior of Inconel 718 in the temperature
range of 294− 1323 K (strain rate = 1 s−1) and variation of the yield strength (YS) and
ultimate tensile strength (UTS) with respect to the temperature are shown in Fig. 4.4a and
Fig. 4.4b, respectively. In general, the flow stress of Inconel 718 increases with increasing
strain rate and decreasing temperature. It can be seen from Fig. 4.4b that the strength of
the material decreases with increasing temperature at a specified strain rate. This thermal
softening behavior is not very noticeable until the temperature of 923 K.

The material parameters τ0, K, and m are identified against the experimental stress-strain
curves obtained from the work of (Iturbe et al., 2017) with simple tension tests performed
on a single Gauss point using the classical crystal plasticity model presented in section
4.2. The material constants used in the numerical simulations are presented in Table 4.3.
Moreover, the material parameters τ0, K, and m are introduced as functions of temperature
in the present simulations as given in Table 4.4. Linear interpolation is used for temperature
values other than those listed in the table. For simplicity, elasticity moduli are taken
as temperature independent since their variation is not the main driving force for shear
banding. A typical value of 1550 K is considered for the melting temperature.

The thermodynamically consistent framework of the constitutive equations for the
micromorphic crystal plasticity model presented in this work can predict a more realistic
temperature rise in line with the experimental measurements in the case of elasto-plastic
material behavior. With consideration of elasto-plastic material behavior, including
strain-hardening, the stored energy rate term in Eq. (4.37) will significantly contribute
to temperature evolution under adiabatic conditions. It is common practice to assume
a constant value 0.9 of the Taylor-Quinney parameter. However, in reality, its value
can be much less than 0.9. This framework with work-hardening will allow for evolving
Taylor-Quinney parameters predicted by suitable free energy density functions. The present
work is limited to no-hardening crystals for the sake of simplicity. Evolution equations for
dislocation densities were used in the micromorphic model by Ling et al. (2018) and could
also be considered in the hat-shaped specimen tests.
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Table 4.3 Values of the material parameters used in the single crystalline and polycrystalline
hat-shaped specimen simulations.

C11 C12 C44 Hχ A
208.1 MPa 144.7 MPa 97.6 MPa 103 MPa 0.004 - 0.04 N

TRT Ti
ρ

Eq. (4.38)
Cε

Eq. (4.38)
293 K 923 K 7.8×10−6 kgmm−3 412Jkg−1K−1
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Fig. 4.4 Influence of the temperature on (a) stress-strain behavior (b) yield strength and
ultimate tensile strength of the Inconel 718 when compressed at a strain rate of 1 s−1 (Iturbe
et al., 2017).

Table 4.4 Temperature dependent material parameters used in the single crystalline and
polycrystalline hat-shaped specimen simulations. These parameters are related to the strain
rate range of 0.1s−1 to 1s−1.

Temperature (K)
τ0 (MPa)
Eq. (4.57)

K (MPa.s1/m)
Eq. (2.12)

m
Eq. (2.12)

298 570 5 15
923 520 5 15

1073 340 8 10
1173 170 20 5.5
1323 61 35 4
1523 10 50 2
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4.4.2 Selection of the gradient parameters A and Hχ

The characteristic length scale emerges in the development of shear bands and is related to
their width. The width of the shear band is finite and set by the material microstructure.
In general, this characteristic length scale differs depending on the specific localization
pattern observed for the particular boundary-value problem considered. The width of the
shear band exhibited by the solution of the multislip boundary-value problems is generally
linked to the characteristic length scale ℓ defined as

ℓ =

√
A(H+Hχ)
|H|Hχ

. (4.62)

This definition is taken from the simple localization analysis of Section 4.3.1 and involves
the coupling modulus Hχ, the higher order modulus A, and the strain softening modulus
H. Moreover, the size effects in crystal plasticity occur at a scale ranging from hundreds
of nanometers to a few tens of microns. This sets bounds for the values of the chosen
characteristic length scale of the model. Usually, the coupling modulus Hχ is chosen large
enough so that the cumulative plastic strain γcum and microslip variable γχ almost coincide.
In that case, the micromorphic model can be regarded as an actual strain gradient plasticity
model. On the other hand, the micromorphic model response saturates for smaller sizes if
the chosen value of Hχ is not large enough as demonstrated for single crystal microwire
torsion test simulations in (Scherer et al., 2020) and in polycrystal simulations when davg is
of the order of or smaller than ℓ (Cordero et al., 2012a). When the average grain size davg≫ ℓ,
strain gradient effects vanish and the deformation field predicted by the micromorphic
crystal plasticity model is almost identical to that of the classical crystal plasticity model.
The gradient parameter A controls the width of the shear band in strain localization problem.
Based on these requirements, the gradient parameters A and Hχ are chosen such that the
width of formed shear band in the single crystal simulations remains always smaller than
horizontal shift of the corners which is 0.1 mm. On the other hand, the gradient parameters
are such that ℓ is of the order of the smallest grain size to be considered in the shear region
in polycrystalline simulations. Two values of the gradient parameter A, 0.004 N, and 0.04 N
are chosen for the analysis which satisfy the aforementioned conditions. Moreover, the
selected value of Hχ is 103 MPa. It has been checked to be high enough to get values of ep

sufficiently close to zero, and in the mean time small enough to avoid numerical problems
associated with ill-conditioned matrices in the presence of penalty terms.

4.4.3 Simulation setup, slip systems, and initial crystal orientations

In the first part of the study, shear tests of single crystal hat-shaped specimens are performed
to investigate the development of ASB in the post-localization regime. The shape and
geometry of the hat-shaped specimen promote shear failure even in materials which are not
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Table 4.5 Initial crystal orientations used in the single crystal hat-shaped specimen simula-
tions.

Crystal orientations Short notation
[100]-[010]-[001] [100]-[010]
[110]-[001]-[11̄0] [110]-[001]
[001]-[110]-[11̄0] [001]-[110]
[1̄1̄2]-[111]-[11̄0] [1̄1̄2]-[111]
[111]-[1̄1̄2]-[11̄0] [111]-[1̄1̄2]

sensitive to shear localization (Peirs et al., 2008). A symmetric hat-shaped specimen under
plane strain condition with one element along the thickness of 0.025 mm is considered for
the study. In practice, axi-symmetric geometries are often used but their analysis would
require too large 3D simulations in the case of polycrystals considered in the present work.
The geometry, dimensions, and the applied boundary conditions of the specimen are shown
in Fig. 4.5. The height of the shear zone is h = 1 mm. The corners of the shear region
are rounded with a radius of R = 0.05 mm. Rounded corners allow for the reduction of
stress concentration and postpone strain localization (Peirs et al., 2008). Note that the
geometry is such that there is an horizontal shift of 0.1 mm between the two corners, see
Fig. 4.5. The FE mesh of this geometry is made of 20 node brick elements with reduced
integration (C3D20R). The macroscopic strain rate which the specimens are subjected to
in the numerical simulations is defined a ∆U/h∆t, where ∆U is the relative displacement
linearly applied during the test duration of ∆t. It has the value of 0.1s−1.

The five different initial crystal orientations investigated in the study are given in Table
4.5. The crystal orientations are defined with respect to the basis frame e1e2e3, with e2 being
in the direction of applied load and e3 in the direction normal to the plane. For instance,
the single crystal orientation [100]− [010]− [001] is such that the axes of the specimen are

e1 = [100] e2 = [010] e3 = [001],

as shown in Fig. 4.5. For the sake of simplicity, crystal orientations are represented only
by the basis plane e1− e2 (see Table 4.5) in the following sections. The definition of the
octahedral slip systems in FCC lattice structure is specified in Table A.1.

4.4.4 Mesh sensitivity analysis

Three distinct mesh discretizations in the shear region with 66720, 88560, and 135540 nodes
shown in Fig. 4.6 are used to investigate the effect of mesh density on the normalized
load–displacement curves and the shear band structure. The load and displacements are
normalized by the height of the shear region h = 1 mm. The simulations are performed

91



8

5

8

4

4.1

e1e3

e2

Shear region

(a)

Node line crossing
the shear region

(b)

Fig. 4.5 Hat-shaped specimen: (a) geometry, boundary conditions and FE mesh (all
dimensions are in mm). (b) Zoom at the shear region: mesh in the shear region; the black
line on the figure denotes a line of nodes of the FE mesh crossing the shear region along
which the cumulative plastic strain and temperature fields will be plotted.

with the classical and micromorphic crystal plasticity models with adiabatic heating for
[001]− [110] initial crystal orientation. The initial temperature, Ti, of the specimens is
assumed to be 923 K. The limitation of the classical crystal plasticity model, namely the
mesh size dependency in strain localization problems, is demonstrated by Fig. 4.7a. The
load-displacement curves with the classical crystal plasticity model are different for the
three discretizations and do not converge upon mesh refinement as demonstrated in Fig.
4.7a. In contrast, the load-displacement curves with the micromorphic crystal plasticity
model for three discretizations are almost the same and converge upon mesh refinement
as shown in Fig. 4.7b. The cumulative plastic strain fields and corresponding deformed
geometries for the three discretizations with the classical and the micromorphic crystal
plasticity models are shown in Fig. 4.8a and 4.8b, respectively. The formed shear bands
width with the classical crystal plasticity model exhibits well-known pathological mesh
dependency, which always collapses to one element size irrespective of the mesh size. In
contrast, with the micromorphic crystal plasticity model, the width of the formed shear
band is finite and independent of used spatial discretization. This suggests that the 88560
nodes in the shear region are sufficient to produce mesh-independent results. However,
discretization with 135540 nodes in the shear region is used for further investigations.
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(a) (b) (c)

Fig. 4.6 Three discretizations in the shear region used for the mesh sensitivity analysis with
(a) 66720, (b) 88560, and (c) 135540 nodes.
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Fig. 4.7 Load-displacement curves for [001]− [110] initially oriented crystal subjected to
adiabatic heating (Ti =923 K) for three discretizations using the (a) classical crystal plasticity
model (b) micromorphic crystal plasticity model (A = 0.004 N).
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Fig. 4.8 Contour plots of cumulative plastic strain γcum for [001]− [110] initially oriented
crystal with three discretizations (66720, 88560, and 135540 nodes in the shear region)
subjected to adiabatic heating using the (a) classical crystal plasticity model, and (b)
micromorphic crystal plasticity model (A = 0.004 N) at a normalized displacement of
0.041 mm/mm and Ti =923 K, with and without showing the mesh.
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4.4.5 Results and discussion

4.4.5.1 Slip system activity

The activated slip systems for different initially oriented crystals are listed in Table 4.6 as
significant plastic deformation occurs on these slip systems. Numerically, the activated slip
systems are identified when the shear band is fully formed and before the temperature within
the band reaches the melting temperature. The four activated slip systems (B4,D1,A2andC3)
for [100]− [010] initially oriented crystal are neither co-planar nor co-directional to each
other and show identical absolute slip rates (|γ̇B4

|=|γ̇D1
|=|γ̇A2

|=|γ̇C3
|). For [110]− [001]

initially oriented crystal, one pair of co-directional (C3andC1, |γ̇C3
|=|γ̇C1

|) and one pair of
co-planar (D6andA6, |γ̇D6

|=|γ̇A6
|) slip systems are activated, while in [001]− [110] initially

oriented crystal, one pair of co-directional (D6,A6, |γ̇D6
|=|γ̇A6

|) and two pairs of co-planar
(B4,B2 |γ̇B4

|=|γ̇B2
|andC3,C1, |γ̇C3

|=|γ̇C1
|) slip systems are activated. On the other hand, for

both asymmetric initially oriented crystals, [1̄1̄2]-[111] and [111]-[1̄1̄2] activated pairs of
slip system are co-planar, (B4,B2,C3,C1, |γ̇B4

|=|γ̇B2
| = |γ̇C3

|=|γ̇C1
|) and (B4,B2, |γ̇B4

|=|γ̇B2
|),

respectively.

4.4.5.2 Influence of initial crystal orientation on the shear band formation

Fig. 4.9 shows the load-displacement curves for five different crystal orientations. The
resulting load on the hat-shaped specimen increases to its peak value, and then drops
abruptly from its peak value as a consequence of thermal softening inside the bands.
Furthermore, it is observed that the initiation of shear band is orientation-dependent. The
normalized displacement needed for the initiation of shear band for the asymmetric crystal
orientations [1̄1̄2]− [111] and [111]− [1̄1̄2] is lower than that for the symmetric crystal
orientations [100]− [010], [001]− [110] and [110]− [001] (see Fig. 4.9). The evolution of the
cumulative plastic strain within shear bands at various deformation stages is shown in Fig.
4.10 for [001]− [110] crystal orientation at the normalized displacement values of 0.04, 0.045,
0.050 and 0.055. The onset of ASB is observed at the specimen’s corner at a normalized
displacement of 0.04. It propagates from the corners with further increase in deformation,
and the shear band is fully formed at a normalized displacement of 0.055.

The cumulative plastic strain and temperature fields in the single crystals hat-shaped
specimens for five different initial crystal orientations are shown in Fig. 4.11 and 4.12,
respectively. High values are observed at the corners of the specimens and lower ones
at the center of the sheared region. The simulation results show that the formation and
orientation of the ASB with respect to the loading axis significantly depends on the initial
crystal orientation. The [100]− [010] initial crystal orientation shows a stiffer response
to the shear banding than the other ones. A remarkable feature is that no shear band
forms connecting the corners. Instead, two parallel shear bands tend to form, oriented at
an angle of about 16◦ clockwise with respect to the loading axis. With further straining,
only one shear band remains. This band does not seem to have a crystallographic nature
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Table 4.6 Slip systems activity inside the ASB in single crystal hat-shaped specimens.

Crystal orientations Activated slip systems
[100]-[010] B4,D1,A2,C3
[110]-[001] D6,A6,C3,C1
[001]-[110] B4,B2,D6,A6,C3,C1
[1̄1̄2]-[111] B4,B2,C3,C1
[111]-[1̄1̄2] B4,B2

Fig. 4.9 Load-displacement curves for five different crystal orientations subjected to adiabatic
heating using the micromorphic crystal plasticity model (Ti = 923 K, A = 0.004 N). Circles
on the plot are corresponding to the normalized displacement at which cumulative plastic
strain, temperature and lattice rotation fields shown next are plotted.
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because the activated slip systems are neither co-planar nor co-directional. This particular
situation does not favor the shear band formation. On the other hand, activated pairs of
co-planar and co-directional slip systems in [001]− [110], [110]− [001] and [1̄1̄2]− [111]
favor the shear band formation. The initially oriented crystal [111]− [1̄1̄2], exhibits the
lowest tendency to shear band formation, and no evident shear banding is observed prior
to melting temperature as it promotes less octahedral slip systems (only two slip systems
are activated). On the other hand, distinct shear banding patterns are observed for the other
four initially oriented crystals as it facilitates the activation of more numerous octahedral
slip systems.

As the deformation becomes unstable and the shear band is fully formed, the plastic
strain within the shear band increases with further deformation, but the gradient parameter
A limits the width of the shear band. Fig. 4.13 show the γcum variation along the node
line crossing the shear region of Fig. 4.5 when the shear band is fully formed for different
initial crystal orientations. The band width w is defined as the width of the shear region
surrounding the band center over which the cumulative plastic strain remains larger than
10% of the its peak value (Batra and Chen, 2001). Moreover, the observed width of the
shear band is also orientation-dependent. The observed widths of the shear band from Fig.
4.13a in symmetric crystal orientations [100]− [010], [110]− [001] and [001]− [110] using
gradient parameter A of 0.004 N are 0.05 mm, 0.075 mm and 0.08 mm, respectively. On
the other hand, for both asymmetric crystal orientations [1̄1̄2]− [111] and [111]− [1̄1̄2] the
observed width is 0.075 mm (see Fig. 4.13b). In addition, the predicted temperature fields
and variation of temperature across the node line crossing the shear region is shown in Fig.
4.12 and 4.14. The peak temperature is observed at the center of the shear band.

4.4.5.3 Lattice rotation fields

Non-homogeneous plastic strain fields are usually accompanied with significant lattice
rotation. The non-uniform lattice rotation in strain localization problems results in a local
geometrical softening of the slip plane with which the shear band is aligned according to
(Chang and Asaro, 1980; Lisiecki et al., 1982). Shear band formation is therefore possible
even in work-hardening materials due to such geometric softening (Dillamore et al., 1979).
Strain softening and non-homogeneous lattice rotations induce instabilities in the plastic
deformation. The formation of deformation bands in crystalline materials is very often
associated with lattice rotations. The lattice rotation angle ϕL can be measured using the
polar decomposition of the elastic part of the deformation gradient F

∼

e into elastic rotation
tensor R

∼

e and the elastic right stretch tensor U
∼

e as F
∼

e = R
∼

e
·U
∼

e. For small elastic distortions
usual in metals, the elastic rotation tensor R

∼

e is interpreted as the lattice rotation. The
corresponding lattice rotation angle ϕL is computed as

ϕL = arccos
[1
2

(
tr(R

∼

e)−1
∼

)]
. (4.63)
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Fig. 4.10 Contour plots of cumulative plastic strain at different stages showing the shear
band formation with adiabatic heating using the micromorphic crystal plasticity model
([001]− [110] crystal orientation, Ti = 923 K, A = 0.004 N) at normalized displacements of (a)
0.04 mm/mm, (b) 0.045 mm/mm, (c) 0.050 mm/mm, and (d) 0.055 mm/mm.
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Fig. 4.11 Contour plots of cumulative plastic strain γcum in the shear region with adiabatic
heating using the micromorphic crystal plasticity model (Ti = 923 K, A = 0.004 N) for (a)
[100]− [010], (b) [110]− [001], (c) [001]− [110], (d) [1̄1̄2]− [111], and (e) [111]− [1̄1̄2] initially
oriented crystals. The fields are shown at loading steps corresponding to the circles in Fig.
4.9. Compensation of the loading direction by Burgers vector of the activated slip systems
is also shown.
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Fig. 4.12 Contour plots of temperature using the micromorphic crystal plasticity model
(Ti = 923 K, A = 0.004 N) in the shear region for (a) [100]− [010], (b) [110]− [001], (c)
[001]− [110], (d) [1̄1̄2]− [111], and (e) [111]− [1̄1̄2] initially oriented crystals. The fields are
shown at the loading steps corresponding to the circles in Fig. 4.9.
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Fig. 4.13 Cumulative plastic strain variation along the node line crossing the shear region
(see Fig. 4.5) with adiabatic heating using the micromorphic crystal plasticity model (Ti = 923
K, A = 0.004 N) for (a) symmetric, and (b) asymmetric crystal orientations. The variation of
cumulative plastic strain is plotted at loading steps corresponding to the circles in Fig. 4.9.
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Fig. 4.14 Temperature variation along the node line crossing the shear region for (a)
symmetric, and (b) asymmetric crystal orientations. The variation of temperature across
the shear band is plotted at loading steps corresponding to the circles in Fig. 4.9.

The lattice rotation fields for the various initially oriented crystals are shown in Fig. 4.15.
The rotation of crystal lattice in the fully formed shear band is different for each considered
initially oriented crystal and increases with increase in deformation. The discontinuous
lattice rotation field is observed in [001]− [110] and [111]− [1̄1̄2] initially oriented crystals
as a consequence of the complex plastic strain fields observed in Fig. 4.11. In comparison,
single lattice rotation bands with smaller magnitude are observed for the [100]− [010],
[110]− [001] and [1̄1̄2]− [111] crystal orientations. Some lattice rotation field patterns are
reminiscent of kink banding structures studied in (Marano et al., 2021) but the situation
is more complicated in the shear bands due to the simultaneous activation of several slip
systems.

4.4.5.4 Effect of the gradient parameter A on shear band structure

The cumulative plastic strain γcum fields and formed ASB for the three different values
of the gradient parameter A are shown in Fig. 4.16. With a decreasing value of A, the
severity of plastic strain localization within the shear band increases, and a significant
thermal softening is observed in the post-localization regime (see Fig. 4.17a). The effect
of parameter A on the width of the shear bands can be seen from Fig. 4.17b. As expected
from the analytical expression of the characteristic length scale, Eq. (4.62), the width of the
shear band decreases with decrease in A value. The observed widths of the shear band
with three different values of A, 0.04 N, 0.02 N, and 0.004 N are found to be 0.085 mm, 0.07
mm, and 0.05 mm, respectively.
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Fig. 4.15 Contour plots of lattice rotation fields in the shear region (Ti = 923 K, A = 0.004 N)
for (a) [100]− [010], (b) [110]− [001], (c) [001]− [110], (d) [1̄1̄2]− [111], and (e) [111]− [1̄1̄2]
initially oriented crystals subjected to adiabatic heating. Fields are shown at loading steps
corresponding to the circles in Fig. 4.9.

0

1.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Fig. 4.16 Contour plots of cumulative plastic strain γcum using the micromorphic crystal
plasticity model (Ti = 923 K) with three different values of (a) A = 0.04 N, (b) A = 0.02 N,
and (c) A = 0.004 N. Fields are shown for the [001]− [110] initially oriented crystal subjected
to adiabatic heating. Fields are shown at a normalized displacement of 0.06 mm/mm
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Fig. 4.17 Effect of different values of the gradient parameter A on the (a) load-displacement
curves, and (b) cumulative plastic strain γcum variation along the node line crossing the
shear region for [001]− [110] initially oriented crystal plotted at a normalized displacement
of 0.06 mm/mm.

4.5 Application to polycrystalline hat-shaped specimens

In this section, the micromorphic crystal plasticity model is applied to study the ASB
formation in polycrystalline hat-shaped specimens. The single crystal constitutive behavior
used in the numerical simulations is elastic-perfectly plastic and involves the same parameter
values as in the previous sections. The material parameters used in the simulations are
given in Table 4.3 and 4.4. First, orientation dependency of the shear band formation is
investigated. Next, the grain size effect is predicted in the isothermal case. Then, the effect
of adiabatic heating on the resulting load is evaluated for the considered polycrystalline
aggregates. The temperature evolution due to adiabatic heating is computed using the
expression in case 2 presented in section 4.2.3 (Eq. (4.38)). Finally, the grain size effect on
shear band width is predicted by the micromorphic model.

4.5.1 Polycrystal generation and finite element meshing

Polycrystalline aggregates generated by the Voronoï tessellation using the polycrystal
generation package Neper (Quey and Renversade, 2018) are shown in Fig. 4.18 and 4.19.
The application of Voronoï tessellation to create an actual geometry with the grains is a
powerful tool to predict grain size effects, for example on the overall mechanical response of
the material under deformation. Two polycrystalline aggregates, namely the coarse-grained
and fine-grained with an average grain size of 0.80mm and 0.15mm, respectively, are
generated. The smallest grain size in the shear region of the generated polycrystalline
aggregates is 0.38mm and 0.10mm, respectively. Moreover, the pole figure showing the
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crystallographic texture for each realization is plotted by means of the open-source software
toolbox MTEX (Bachmann et al., 2010).

Mesh independent numerical results are ensured using fine enough mesh size within
the grains of the shear region combined with the use of the micromorphic crystal plasticity
model. Meshing is performed using an open-source package Gmsh (Geuzaine and Remacle,
2009). A bottom-up approach is used for the meshing, i.e. in the order of 0D, 1D, and
2D entities (i.e. vertices, edges, and polygons) for the 2D simulations under plane strain
conditions (Quey et al., 2011).

The applied boundary conditions in the present polycrystalline simulations were
described in section 4.4.3. In addition, each realization of polycrystalline aggregate is
assigned with different random crystal orientations. No special interface condition is
applied to grain boundaries. The interface conditions arise from balance equations in the
continuum model: Continuity of the displacement vector components, and continuity of
the traction vector components at least in the weak form according to the finite element
method.

In the present work, γχ is assumed to be continuous at the interface. This type of
interface condition is intermediate between microfree and microhard. In microfree interface
condition, dislocations are free to escape interfaces; thus, no dislocation pile-up occurs at the
interface. This interface condition corresponds to vanishing tractions for the micro-stresses.
The surface traction (T) and generalized surface traction (M) in Eq. (2.21) are also continuous.
On the other hand, microhard interface condition. corresponds to a large plastic strain on
one side of the interface and a small on the other side. In this interface condition, plastic
slip vanishes at the interfaces (γχ = 0); hence dislocation pile-up occurs. Furthermore, the
traction vectors in Eq. (2.21) are discontinuous. These two choices are discussed in (Gurtin
and Needleman, 2005). However, these two interface conditions are not applicable to all
sorts of interface behavior. One approach to obtain interface behavior inbetween these two
extreme conditions is by introducing interface energy as in (Aifantis and Willis, 2005).

In the present work we believed that the continuity of γχ carries the main physical
constituent to predict the grain size effects in polycrystals.

4.5.2 Results and discussion

4.5.2.1 Grain orientation dependency of the shear band

The effect of grain orientations on the shear band predicted by the numerical simulations is
investigated first for polycrystalline aggregates subjected to isothermal deformation using
the micromorphic crystal plasticity model. Two distinct crystal orientation distributions
are assigned to the grains in the shear region, namely the orientation 1 and orientation
2. The realizations of the coarse-grained and fine-grained polycrystalline aggregates with
corresponding pole figures are shown in Fig. 4.20a and 4.20b, respectively. The predicted
load-displacement curves for the coarse-grained and fine-grained polycrystalline aggregates
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Fig. 4.18 Different realizations of the coarse-grained polycrystalline aggregates and corre-
sponding pole figures: (a) Realization 1, (b) realization 2, and (3) realization 3. Colors
represent individual grains and the red points in pole figures denote the orientation assigned
to the grains in the shear region.
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Fig. 4.19 Different realizations of the fine-grained polycrystalline aggregates and correspond-
ing pole figures: (a) Realization 1, and (b) realization 2. Colors represent individual grains
and the red points in the pole figures denote the orientation assigned to the grains in the
shear region.
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Fig. 4.20 Polycrystalline aggregates with two distinct orientation distributions assigned to
the grains in the shear region (orientation 1 and orientation 2) for the (a) coarse-grained, and
(b) fine-grained with corresponding pole figures. The red points in the pole figure denote
the orientations assigned to the grains in the shear region

are given in Fig. 4.21a and 4.21b, respectively. As shown in these figures, the resulting
load required to deform the orientation 2 in both polycrystalline aggregates is greater than
the orientation 1, which indicates that the development and propagation of the shear band
highly depends on the orientation of the grains crossed by the bands, grain boundaries
acting as obstacles to shear band propagation. In orientation 1 case, the orientations of the
grains in the shear region are such that they favor plastic flow and subsequent shear band
formation compared to orientation 2. Furthermore, less orientation dependency is observed
in the fine-grained polycrystalline aggregates compared to the coarse-grained polycrystalline
aggregates (see Fig. 4.21b). The formed shear bands are shown in Fig. 4.22. More significant
strain localization is observed in orientation 1 than in orientation 2. This indicates that some
grains in orientation 1 represent stronger obstacles to shear band transmission from grain to
grain. This effect is reduced when a larger number of grains are available along the shear
band path.
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Fig. 4.21 Effect of the change in orientation of the grains in the shear region on the load-
displacement curve using the micromorphic crystal plasticity model (A = 0.04 N) for the (a)
coarse-grained polycrystal aggregate, and (b) fine-grained polycrystal aggregates subjected to
isothermal conditions.

4.5.2.2 Grain size effect in the polycrystalline hat-shaped specimens

There are mainly two types of size effects to be considered, which are responsible for
the increased strength of polycrystalline aggregates compared to single crystals, namely
the specimen size effect and grain size effect (Armstrong, 1961). The specimen size effect
occurs when there are few grains in the specimen cross-section. It is mainly related to
the orientation dependency of the crystal plastic flow, as demonstrated in the previous
subsection about the influence of number of grains along the shear band path. On the other
hand, the grain size effect occurs when there are sufficiently many grains in the specimen
cross-section. In addition to the orientation dependence of the plastic flow within the
grains, internal stress concentration takes place at the grain boundaries and causes yielding
and subsequent plastic flow (Armstrong, 1961). The well-known grain size effect in a
polycrystalline material is the Hall-Petch size effect, which indicates that the yield strength
of material is inversely proportional to the square root of grain size (Hall, 1951; Petch, 1953).
Numerically, strain gradient plasticity models can be used to predict the grain size effects
in polycrystalline materials, as done for instance in (Acharya and Bassani, 2000; Evers et al.,
2004; Aifantis and Willis, 2005; Borg, 2007).

In the present work, firstly, the grain size effect is studied in the isothermal case for
polycrystalline hat-shaped specimens. The realizations of polycrystalline aggregates
investigated are shown in Fig. 4.18b and 4.19a for the coarse-grained and fine-grained
polycrystalline aggregates, respectively. The shape and geometry of the hat-shaped
specimen are such that it allows for the spontaneous formation of a shear band even in
the absence of thermal softening in the numerical simulations due to the perfectly plastic
crystal behavior. The cumulative plastic strain fields with the classical and micromorphic
crystal plasticity models are shown in Fig. 4.23. The classical crystal plasticity model, which
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Fig. 4.22 Contour plots of cumulative plastic strain γcum using the micromorphic crystal
plasticity model (A = 0.04 N) for the (a) coarse-grained polycrystalline aggregates assigned
with orientation 1, and (b) orientation 2. (c) The fine-grained polycrystalline aggregates
assigned with orientation 1, and (d) orientation 2. Fields are shown at the normalized
imposed displacement of 0.06 mm/mm under isothermal conditions (Ti=923 K). For clarity
the fields are shown with and without the finite element mesh.
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does not feature any characteristic length scale, exhibits a pathological mesh dependency
and the width of the formed shear band collapses to one element size (more precisely one
Gauss point size, see Fig. 4.23a and 4.23b). Therefore, the classical crystal plasticity models
cannot be used to study strain localization problems in polycrystals. In contrast, the width
of the formed shear band predicted by the micromorphic crystal plasticity model is finite,
see Fig. 4.23c and 4.23d. The normalized load-normalized displacement curves using the
classical and micromorphic crystal plasticity models in the isothermal case are shown in
Fig. 4.24. The predicted size effect is linked to the characteristic length scale ℓ through the
gradient parameters A and Hχ as in Eq. (4.62). The micromorphic crystal plasticity model
merely influences the hardening rate and does not affect the initial yield strength. This is
because any gradient plasticity formulation based on a quadratic potential with respect
to the gradient of plastic distortion cannot result in an increase in yield strength but only
increases the hardening rate. The initial yield can be influenced by rank one potentials
according to (Wulfinghoff et al., 2015) or using the recent approach by (Steinmann et al.,
2019). The grain size effect is associated with spatial strain gradients inside the grains
because of the heterogeneous plastic deformation resulting from grain-to-grain plastic
strain incompatibilities. The grain boundaries act as obstacles to dislocation motion, and the
strain gradient-induced GNDs pile up at grain boundaries. In addition, with the decrease
in grain size, the area at the grain boundaries with GNDs density increases and leads to
increased local stresses and of the resulting load. The larger number of grain boundaries in
the shear region of the fine-grained polycrystalline aggregates obstructs the initiation and
subsequent plastic flow and results in a higher resulting load.

Moreover, the effect of grain size on the load-carrying capacity subjected to adiabatic
heating condition is now studied. Simulations are performed with two different values of
the gradient parameter A, namely 0.004N, and 0.04N. The corresponding load-displacement
curves for the realizations of the coarse-grained and fine-grained polycrystalline aggregates
are given in Fig. 4.25a, 4.25b and Fig. 4.25c and 4.25d, respectively. The load-displacement
curves exhibited by the different realizations of each polycrystalline aggregate with the same
gradient parameter A are distinct from each other because of the assigned different random
orientations and distinct shape of the grains in the shear region. A broader dispersion of
the resulting loads is observed in realizations of the coarse-grained polycrystal aggregates
(see Fig. 4.25a and 4.25b) compared to fine-grained polycrystal aggregates (see Fig. 4.25c
and 4.25d). It is found that the average resulting load in fine-grained polycrystal aggregate
remain below the coarse-grained polycrystal aggregate as seen from the average curves in
Fig. 4.25e and 4.25f. This is probably due to the insufficient number of realizations which
does not allow for statistical representativity. The results also show that higher values of A
parameters lead to a reduced softening of the overall curves.
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Fig. 4.23 Contour plots of cumulative plastic strain γcum using (a) the classical crystal plas-
ticity model in coarse-grained (orientation 1), and (b) fine-grained (orientation 1) polycrystalline
aggregates, (c) using the micromorphic crystal plasticity model (A=0.04 N) in coarse-grained
(orientation 1), and (d) fine-grained (orientation 1) polycrystalline aggregates. Fields are shown
at a normalized displacement of 0.06 mm/mm and under isothermal conditions.
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Fig. 4.24 Load-displacement curves obtained using the classical and micromorphic crystal
plasticity models for the coarse-grained (realization 2), and fine-grained (realization 1)
polycrystalline aggregates (hat–shaped specimens under isothermal conditions).

4.5.2.3 Effect of grain size on the shear band width

In this section the grain size effect on the width of shear bands is studied under adiabatic
heating conditions. In the present polycrystalline simulations, deformation is highly
localized within the grains of the shear region. Moreover, the grain size in the shear region
plays a crucial role in the shear band formation. The shear band is triggered at the corners
of the specimen, and strongly heterogeneous plastic deformation takes place between the
corners. Furthermore, it is observed that some grains exhibit a larger amount of shear, while
other grains remain almost undeformed. The formation of the shear band in coarse-grained
polycrystalline aggregates for the realizations 1 and 3 (Fig. 4.26a and 4.26c) is restricted
probably due to the unfavorable orientations of the grains in the shear region. In contrast,
the shear band is easily formed in the realization 2 as seen from Fig. 4.26b. The orientation
dependency in the shear band formation is the main reason for the wide dispersion of
the resulting loads observed in coarse-grained polycrystalline aggregates. In contrast, in
fine-grained polycrystalline aggregates, plastic flow in some grains is limited because of
their grain boundaries and the orientation of the neighboring grains, causing subsequent
plastic flow in more favorable grains as seen from Fig. 4.27a. However, less orientation
dependency of the grains in the shear region is observed in the fine-grained polycrystalline
aggregates compared to coarse-grained (see Fig. 4.27a and 4.27b). Fig. 4.28a and 4.28b show
the cumulative plastic strain γcum variation along a node line crossing the shear region
for the coarse-grained polycrystalline aggregates using gradient parameters A = 0.004 N
and A = 0.04 N, respectively. Significant strain localization is observed for lower values
of A, i.e. 0.004N compared to 0.04N. Fig. 4.28c and 4.28d show the cumulative plastic
strain variation along the node line crossing the shear region for fine-grained polycrystalline
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Fig. 4.25 Load-displacement curves using the micromorphic crystal plasticity model
for various realizations of the polycrystalline aggregates subjected to adiabatic heating
conditions: (a) the coarse-grained polycrystalline aggregates with A = 0.004 N, and (b)
A = 0.04 N, (c) the fine-grained polycrystalline aggregates with A = 0.004 N, and (d) A = 0.04
N, (e) Average load-displacement curves with A = 0.004 N, and (f) A = 0.04 N.
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aggregates with A = 0.004 N and A = 0.04 N, respectively. The shear band width is defined
by the following criterion: The region in which the cumulative plastic strain is larger than
10% of the peak value. The measured widths of the shear band for the coarse-grained and
fine-grained polycrystalline aggregates with the gradient parameter A of 0.004N, and 0.04N
are given in Table 4.7. A larger dispersion of the shear band width is observed in the
coarse-grained polycrystal realizations compared to the fine-grained, in a way similar to the
predicted resulting loads.

The measurement of the shear band width along one single node line may not be
sufficient in polycrystalline simulations. Therefore, the surface of the elements satisfying
a specific criterion is calculated using the post-processing technique. The surface of the
elements having cumulative plastic strain more than 10% of the peak value is measured.
Finally, the width of the shear band w is calculated by dividing the surface of the band by
the shear zone height h (see section 4.4.3 for specimen dimensions). The obtained values of
the shear band widths are given in Table 4.7. The two definitions of shear band with provide
similar results. Typical values of 50 micron (resp. 100 micron) are found for A = 0.004 N
(resp. A = 0.04 N) irrespective of the grain size.

The present simulations are limited to adiabatic conditions although it is well-known
that heat conduction can also contribute to the band structure (Yan et al., 2021). It is
worth checking the typical lengths associated with heat conduction under the strain rate
conditions of the simulations. The characteristic length scale of heat diffusion during a
time interval t can be estimated as

√
ktt/ρCε, where kt is the thermal conductivity. The

parameter values considered in the work and time interval of one second result in diffusion
distances of the order of 1 mm. This shows that heat conduction induced length scale is
in competition with the microstructure related one. Adiabatic conditions are therefore a
strong assumption in the present simulations. This pleads for coupling the present model
to heat conditions in future work. This also strongly depends on the strain rate and grain
size ranges in the simulations. The diffusion term in heat equation has a regularizing
effect even though the involved length scales are sometimes too small for efficient FE
modeling, as discussed in (Pamin et al., 2017). However, the strain gradient plasticity model
should not be solely seen as a regularization method. It also introduces in the modeling
microstructure aspects related to dislocation activity like pile-up formation and ensuing
grain size effects, as studied in the present work. As mentioned in the introduction, Zhu
et al. (1995); Tsagrakis and Aifantis (2015) analytically derived two characteristic lengths
emerging from the coupling of strain gradient plasticity. The first one is related to the ratio
of the strain gradient plasticity parameter and the hardening modulus. The second one
involves the heat conductivity and strain gradient plasticity parameters. We have evaluated
these length scales for the parameter values used in the present work. The second length
scale is found to be close to 100 micron which confirms the importance of heat conduction
and the competition with the microstructural length.
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A = 0.004 N
(a)

A = 0.04 N

A = 0.004 N
(b)

A = 0.04 N

A = 0.004 N
(c)

A = 0.04 N

Fig. 4.26 Contour plots of cumulative plastic strain γcum in the coarse-grained polycrystalline
aggregates subjected to adiabatic heating using the micromorphic crystal plasticity model
(A = 0.004 N and A = 0.04 N) for three different realizations (a) realization 1, (b) realization
2, and (c) realization 3. Fields are shown at a normalized displacement of 0.052 mm/mm.

114



A = 0.004 N
(a)

A = 0.04 N

A = 0.004 N
(b)

A = 0.04 N

Fig. 4.27 Contour plots of cumulative plastic strain γcum in the fine-grained polycrystalline
aggregates subjected to adiabatic heating using the micromorphic crystal plasticity model
(A= 0.004 N and A= 0.04 N) for two different realizations (a) realization 1, and (b) realization
2. Fields are shown at a normalized displacement of 0.052 mm/mm.
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Fig. 4.28 Cumulative plastic strain variation along the node line crossing shear region
using the micromorphic crystal plasticity model subjected to adiabatic heating in (a) coarse-
grained polycrystalline aggregates with A = 0.004 N, and (b) A = 0.04 N. (c) The fine-grained
polycrystalline aggregates with A = 0.004 N, and (d) A = 0.04 N. All the variations are
plotted for the normalized displacement of 0.052 mm/mm.
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Table 4.7 Shear band width w measured along the node line crossing the shear region and
using a post-processing method.

coarse-grained
w (mm)

(A = 0.004 N)

w (mm)
Post-processing

(A = 0.004 N)

w (mm)
(A = 0.04 N)

w (mm)
Post-processing

(A = 0.04 N)
Realization 1 0.05 0.042 0.12 0.12
Realization 2 0.03 0.049 0.13 0.072
Realization 3 0.12 0.065 0.15 0.11
fine-grained

Realization 1 0.03 0.036 0.05 0.12
Realization 2 0.03 0.033 0.05 0.098

4.6 Conclusions

The numerical simulation work presented here was intended to provide an insight into the
mechanism of ASB formation in single and polycrystalline FCC metallic materials. The
main findings obtained in this contribution can be summarized as follows:

1. A thermodynamically consistent constitutive framework for the micromorphic crystal
plasticity model was used to derive temperature evolution under adiabatic conditions.

2. The micromorphic crystal plasticity model pursues the objective of regularization of
the adiabatic shear band formation.

3. The orientation of the formed ASB with respect to the loading axis is affected by the
crystal initial orientation. [100]− [010] crystal orientation shows the stiffest response to
ASB formation. On the other hand, crystals initially oriented at [111]− [1̄1̄2] show the
lowest tendency to shear band formation, and no evident shear banding is observed.
Moreover, it is observed that the formed shear band width depends on the initial
crystal orientation.

4. The grain size effect, namely the finer the grain size the higher the stress, was illustrated
in the response of polycrystalline FCC metallic materials using the micromorphic
crystal plasticity model subjected to isothermal deformation. It is shown that the
micromorphic crystal plasticity model merely influences the hardening rate but does
not affect the initial yield strength.

5. The resulting load and the formation of shear band is highly orientation dependent
in polycrystalline simulations in the case of coarse grained polycrystal. The favorable
orientation of the grains in the shear region results in decreased resulting load and
ease of shear band formation. Furthermore, wide dispersion of the resultant load
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and width of the shear band is observed in different realizations of the coarse grained
polycrystalline aggregates.

6. The relation between observed shear band widths, characteristic length scale of the
micromorphic model and grain size was analyzed. It shows that the characteristic
length scale mainly controls the shear band width and that grain boundaries serve as
obstacles to ASB propagation thus controlling the intensity of strain localization.

It is possible to predict stronger grain size effects in the polycrystalline simulations
by considering larger number of grains in the shear region of the hat-shaped specimen.
However, due to high computational costs, only two grain sizes were considered in the
present work. Moreover, work-hardening was not included in the simulations to clearly
isolate the micromorphic and grain size effects from classical hardening. The consideration
of dislocation–based hardening in the future will require the evaluation of stored energy in
order to evaluate temperature evolution under adiabatic conditions. It is common practice
to consider a constant value 0.9 of the TQC. However, the experimental evidence, for
instance, (Kapoor and Nemat-Nasser, 1998; Rittel et al., 2012), showed that, in reality, its
value can be much less than 0.9. The thermodynamically consistent framework of the
constitutive equations for the gradient crystal plasticity (reduced-order micromorphic)
model presented in this work must be extended to allow for evolving TQC predicted by
suitable free energy density functions. It is hoped that the predictions made in the present
work will serve as incentives to perform experimental tests on single and oligo-crystalline
hat–shaped specimens to precisely determine the relation between ASB width and grain
size. The analysis of such tests may require the extension of the present computational
approach to more realistic 3D computations.
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Chapter 5

Prediction of stored energy and
Taylor-Quinney coefficient in single and
poly-crystals

Abstract

During the plastic deformation of metallic materials, part of expended mechanical energy diffuse as
heat. The remaining portion of the plastic work is called stored energy which later converts into
microstructural rearrangements. Stored energy is the main driving force for dynamic or static
recovery and recrystallization. The critical aspect related to the measurement of stored energy is
the fraction of plastic work converted into heat, called the Taylor-Quinney coefficient (TQC), often
assumed to be a constant parameter of the order of 0.9. The prediction of the stored energy and TQC
is important to understand the plastic deformation and subsequent recovery and recrystallization
mechanism. An adequate prediction of stored energy and TQC in line with the experimental
measurements using numerical simulations is challenging. In this work, first of all, the stored
energy and TQC are predicted using a thermodynamically consistent classical crystal plasticity
model for the single crystals copper and aluminum. Next, the application is made to polycrystalline
aggregates. The stored energy predicted for the polycrystalline austenitic steel is compared with
the experimentally measured stored energy from the literature. Besides, the predicted stored energy
considering contribution of both statistically stored dislocations (SSDs) and geometrically necessary
dislocations (GNDs) is compared to that obtained by considering the contribution of SSDs only. To
this end, the contribution of GNDs along with SSDs is considered in the prediction of stored energy
using two different grain boundary conditions, i.e. intermediate and microhard.

5.1 Introduction

During the plastic deformation of metallic materials, part of expended mechanical energy
diffuses as heat. The remaining portion of the plastic work is called stored energy which
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later converts into microstructural rearrangements. Stored energy is the main driving
force for dynamic or static recovery and recrystallization. Different techniques used
in experimental measurements of stored energy are summarized in (Bever et al., 1973).
Extensive experimental work has been performed in the past to measure the stored energy
in metallic materials, for instance, in (Bailey, 1963; Williams, 1965; Bever et al., 1973; Oliferuk
et al., 1993, 1995).

A well-known analytical expression for the stored energy, which is a function of
dislocation density, can be found in (Bailey, 1963; Bever et al., 1973). Bailey (1963)
measured the stored energy of polycrystalline silver and copper under tensile loading. The
analytical expression used by Bailey (1963) for the prediction of stored energy is given by

Es =
(τc)2

µ , where τc is given by τc = 0.5µb√ρavg, with ρavg being the average dislocation
density. Furthermore, he plotted the experimentally measured stored energy, Es, as a

function of (τc)2

µ . The results for both metals lie close to the straight line of equation

Es ≃ 7.7 (τc)2

µ ≃ 2µb2ρavg.
Several attempts have been made to investigate the effect of grain size on stored energy,

for instance, in (Williams, 1965; Baker et al., 1995; Oliferuk et al., 1995). All these researchers
concluded that with an increase in grain size the stored energy decreases. Williams (1965)
found that an increase in grain size by a factor of ten decreases the stored energy by 8% at a
strain of 0.3. Recently, Rittel et al. (2012) measured the stored energy of single crystal and
polycrystalline copper in the strain rate range of 1000−8000 s−1undergoing compressive
loading. Higher stored energy was found in polycrystals than single crystals because of the
presence of grain boundaries in polycrystals.

The critical aspect related to the measurement of stored energy is the fraction of plastic
work converted into heat, called the Taylor-Quinney coefficient (TQC), often assumed to be
a constant parameter of the order of 0.9 (Taylor and Quinney, 1934). Ravichandran et al.
(2002) investigated the TQC evolution in aluminum 2024-T3 alloy and α-titanium. They
found that the TQC is a function of strain but not of strain rate in the case of aluminum
2024-T3 alloy. On the other hand, TQC was strongly dependent on strain rate in α-titanium.
Rittel et al. (2012) investigated the thermo-mechanical response of single and polycrystalline
copper at low and high strain rates. They observed that the TQC linearly increases with
strain rate and remains considerably lower than the classical value of 0.9. Rittel et al.
(2017) recently measured the TQCs for 7 different metals and alloys, namely, Ti6Al4V,
commercially pure titanium, Al5086, Al2024, 304L, 1020 steel, and maraging C300 under
tension, compression, and dominant shear loading. A significant variation of TQC with
values other than 0.9 was observed. Except for commercially pure titanium, identical TQCs
were measured under tension, compression, and shear loading. In commercially pure
titanium due to the presence of twinning activity in compression and shear loading results
in different TQC in different deformation modes as twinning is related to heat generation.

Numerically, dislocation density-based models are often used to describe material
hardening. The obtained total dislocation density is further used to calculate stored energy.
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The stored energy prediction in single crystals copper under tensile loading using discrete
dislocation plasticity was performed by Benzerga et al. (2005). They showed that the
dislocation distribution influences the stored energy along with the total dislocation density.
Moreover, they found TQCs in the range of 0.75-0.95 up to the strain of 10% and strain
rate of 100 s−1. In addition, crystal plasticity modeling is an essential tool to determine the
stored energy and evolution of the material microstructure in thermo-mechanical processes.
Håkansson et al. (2008) investigated the effect of initial texture on the stored energy in
polycrystalline austenitic steel using a rate-dependent crystal plasticity model for large
deformations formulated within a thermodynamic framework. A finite strain framework
of crystal plasticity in a thermodynamically consistent manner is used by Jafari et al. (2017)
to predict the stored energy in single and poly-crystalline aluminum under tensile loading
and bi-crystal aluminum under compressive loading. The phase-field approach to predict
the stored energy in polycrystalline aggregates can be found in (Abrivard et al., 2012).

A reliable dislocation density-based model is necessary to adequately represent the total
dislocation density and consequently the stored energy according to (Nieto-Fuentes et al.,
2018). Kositski and Mordehai (2021) showed using the molecular dynamics simulations
that the dislocation mechanism is not the only mechanism responsible for the stored energy.
They resort to grain boundary evolution as an additional mechanism responsible for energy
storage.

Models of plastic deformation fall into two categories. On the one hand, phenomeno-
logical models are frequently used in crystal plasticity modeling. However, these models
do not give a physical connection with the microscopic mechanisms of plastic deforma-
tion. The physics-based crystal plasticity models can overcome this limitation. On the
other hand, the physics-based plasticity models strongly connect with the microscopic
mechanisms of plastic deformation by introducing microscopic internal variables such
as dislocation density in the constitutive framework. The constitutive equations must be
derived in a thermodynamically consistency manner. In particular, it is necessary to check
the positivity of the residual dissipation in the local balance equation. Failure to do so
can violate the first and second laws of thermodynamics (Ottosen and Ristinmaa, 2005).
The thermodynamic consistency of the physics-based models has received less attention
compared to phenomenological models (Wu and Zaiser, 2021). Therefore, in this work, the
necessity to ensure the positivity of the residual dissipation is emphasized. In addition,
it is shown that the positivity of the residual dissipation in physics-based models can be
ensured by imposing constraints on the model parameters.

The prediction of the stored energy and TQC is important to understand the plastic
deformation and subsequent recovery and recrystallization mechanism. An adequate
prediction of stored energy and TQC in line with the experimental measurements using
numerical simulations is challenging. Analytical expressions used to predict the stored
energy may not consider all the mechanisms responsible for stored energy. Nieto-Fuentes
et al. (2018) introduced an ad-hoc factor in the analytical expression of stored energy to
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represent the experimentally measured stored energy adequately. However, calibration of
this factor for several dynamically loaded materials is necessary to get a common pattern.
The present work uses a thermodynamically consistent formulation of the classical and
micromorphic crystal plasticity models to predict the stored energy and TQC for single
and poly-crystalline FCC metallic materials. A constant ad-hoc factor, ξ, in the expression
of stored energy is treated as a fitting parameter so that the predicted stored energy
adequately represents the experimental measurements. The stored energy is predicted for
two different polycrystalline metallic materials under different loading conditions to check
the predictability of this factor. To the best of our knowledge, most of the numerical work
on the prediction of stored energy considers the contribution of SSDs only. The study on
the prediction of stored energy considering the contribution of GNDs along with SSDs is
relatively rare.

In this work, first of all, the stored energy and TQC are predicted using the classical
crystal plasticity model for the single crystals copper and aluminum. Next, the application
is made to polycrystalline aggregates. As the first application to polycrystalline simulations,
the effect of mesh size and grain morphology on the stress-strain response is studied in
detail. The stored energy predicted for the polycrystalline austenitic steel is compared with
the experimentally measured stored energy from the literature. Besides, the application is
made to predict the stored energy in annealed Inconel 718 deformed at high strain rates
(1900 s−1-2000 s−1) and high temperatures (293 K-1273 K). Besides, the predicted stored
energy considering contribution of both SSDs and GNDs is compared to that obtained by
considering the contribution of SSDs only. Finally, the contribution of GNDs along with
SSDs is considered in the prediction of stored energy using two different grain boundary
conditions, i.e. intermediate and microhard.

This chapter is organized as follows: section 5.2 is devoted to analyzing the positivity of
the dissipation rate to ensure thermodynamic consistency. The summary of the constitutive
equations used for the numerical prediction of stored energy and TQC is given in section 5.3.
In section 5.4, single crystals aluminum and copper simulations are performed to predict
the stored energy and evolution of TQCs. Section 5.5 is dedicated to the prediction of
stored energy and evolution of TQC in polycrystalline FCC metallic materials. Conclusions
follow in section 5.6.

5.2 Positivity of the dissipation rate to ensure thermody-
namic consistency

In this part we establish the constitutive framework for deriving models that are considered
with thermodynamics. Let us recall the first and second laws of thermodynamics. The first
law of thermodynamics with respect to the current configuration is written in the local
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form as follows:
ρė = σ

∼
: D
∼
+Q, (5.1)

with D
∼

being the strain rate tensor, e the internal energy per unit mass and Q (= r−divq) the
heat supply per unit volume and unit time, which results from an external heat source r and
heat conduction q. The second law of thermodynamics in the form of the local dissipation
rate inequality with respect to the current configuration can be written as

ρη̇+div
q

T
−

r
T
≥ 0, (5.2)

where η is the entropy per unit mass and T is the absolute temperature.
The Helmholtz free energy density function is introduced as

Ψ := e−Tη. (5.3)

The material under consideration is assumed to be characterized by the coupled thermo-
mechanical Helmholtz free energy density function defined as

Ψ= Ψ̃(E
∼

the,T,ζ). (5.4)

where E
∼

the is the thermo-elastic strain tensor, T is the temperature, and ζ is the internal
hardening variable. Moreover, it is assumed that the free energy function can additively be
decomposed as

ρ0Ψ= ρ0Ψ̃(E
∼

the)+ρ0Ψ̃(T)+ρ0

N∑
r=1

Ψ̃r(ζr), (5.5)

where ρ0 is the volume mass density with respect to the reference configuration and ρ0Ψ̃
r(ζr)

is the free energy function related to the internal hardening variable ζr on slip system r
(= 1,2......,N) with N being the total number of slip systems.

The Clausius-Duhem inequality is now expressed with respect to the reference configu-
ration as

D = Jσ
∼

: D
∼
−ρ0(Ψ̇+ηṪ)−Q ·

∇XT
T
≥ 0, (5.6)

with Q being the heat conduction with respect to the reference configuration and given by
Q = JtheF

∼

−1
·q and ∇XT the Lagrangian gradient of temperature.

The non-negative dissipation D can be split into two: non-negative mechanical dissipa-
tion Dm ≥ 0 and non-negative thermal dissipation Dth ≥ 0 such that

D =Dm+Dth ≥ 0, (5.7)

where Dm = Jσ
∼

: D
∼
−ρ0(Ψ̇+ηṪ) and Dth = −Q · ∇XT

T .
The thermal inequality can also be called Fourier’s inequality which states that heat

must flow from hot regions to cold regions. We assume that the constitutive equation for
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the heat flux vector Q is such that the thermal inequality holds:

Dth = −Q ·
∇XT

T
≥ 0. (5.8)

The Clausius-Duhem inequality from Eq. (4.15) reads(
Π
∼

e
−ρ0
∂Ψ̃(E

∼

the,T)
∂E
∼

the

)
: Ė
∼

the
−ρ0

(
η+
∂Ψ̃
∂T

)
Ṫ−Q ·

∇XT
T
+Dres ≥ 0, (5.9)

where Dres is the residual dissipation given by

Dres =Π
∼

M : l
∼

p
−Xζ̇, (5.10)

whereΠ
∼

M is the Mandel stress tensor defined with respect to the intermediate configuration.
The definition of the Mandel stress tensor can be found in section 4.2.1. The residual
dissipation in Eq. (5.10) can be further expressed as

Dres =

N∑
r=1

τrγ̇r
−

N∑
r=1

Xrζ̇r, with Π
∼

M : l
∼

p =

N∑
r=1

τrγ̇r, (5.11)

where Xr is a thermodynamic force associated with the internal hardening variable ζr given
by

Xr = ρ0
∂Ψ̃r(ζr)
∂ζr . (5.12)

Any acceptable constitutive relation must fulfill the dissipation inequality. Therefore, it
is crucial to select proper free energy function related to the internal hardening variable
ρ0Ψ̃

r(ζr) (cf. Eq. (4.14)) and the evolution equations for ζr. Various approaches for the
establishment of the evolution of ζr to ensure that the dissipation inequality is fulfilled
can be found in (Ottosen and Ristinmaa, 2005). In the first approach called direct approach,
some evolution laws are assumed for ζr. The positivity of the dissipation inequality is
checked at each time step of the computation. The drawback of this approach is that a
check needs to be performed for each material model, and general information cannot be
derived for a group of models. The second approach is called Onsager approach in which
linear relationship between internal hardening variable ζr and thermodynamic force Xr is
assumed. This approach is proposed by Onsager (1931a,b). The linear relationship cannot
be used for general plasticity and visco-plasticity as realistic materials show nonlinearity.
However, it can be used for some other phenomena in which relevant material description
can be derived. The third approach is called potential approach which generalizes the
Onsager’s linear approach to nonlinear theory. In this approach, dissipation potential is
chosen from which internal variable evolution equations are derived. Another approach is
called convex potential function in which the dissipation potential is a convex function of
its argument such that the positivity of the dissipation rate is ensured at any instance. A
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thermodynamic consistency of the constitutive equations is also discussed in the pioneering
work of (Germain et al., 1983).

According to the first law of thermodynamics, a free energy potential for materials must
exist, and it is important to give approximate expressions. In contrast, the existence of a
dissipation potential is not necessary, but it can ease the development of thermodynamically
consistent models, i.e. models that fulfill the second law of thermodynamics related to the
positivity of dissipation rate. These potentials are not always provided in the literature, but
they are useful to finally evaluate the TQC.

Moreover, it is crucial to select proper free energy function ρ0Ψ̃
r(ζr) and expression for

the evolution of ζr to ensure that the difference between the plastic power and stored energy
rate is positive in temperature evolution equation (Eq. (4.37)). Many different expressions
for ρ0Ψ̃

r(ζr) based on phenomenological and physics-based models can be found in the
literature. In the next section, we establish the framework for phenomenological and
physics-based models that are provided by thermodynamics.

5.2.1 Examples of phenomenological models

At first, a simple thermodynamically consistent phenomenological model is considered in
which contribution of the internal hardening variable ζr to the free energy is assumed to
have the quadratic form:

ρ0Ψ̃
r(ζr) =

1
2

Qζr
N∑

s=1

hrsζs, (5.13)

where Q is a material parameter. The thermodynamic force Xr associated with the internal
hardening variable ζr can be given by

Xr = ρ0
∂Ψ̃r(ζr)
∂ζr =Q

N∑
s=1

hrsζs. (5.14)

In this model, the existence of a convex dissipation potential Ω(Π
∼

M,X) is assumed from
which flow rule and internal variable evolution equations are derived:

Ḟ
∼

p
·F
∼

p−1 =
∂Ω

∂Π
∼

M , ζ̇ = −
∂Ω
∂X
. (5.15)

In addition, the dissipation potential is assumed to be of the power law form:

Ω(Π
∼

M,τr
c) =

K
1+m

N∑
r=1

〈
f r

K

〉m+1

, (5.16)

125



where τr
c is the critical resolved shear stress and f r is the Schmid-type yield function of the

flow rule in the visco-plastic framework given by

f r = |τr
| −τr

c. (5.17)

Based on the dissipation potential in Eq. (5.16), the flow and hardening rules are derived

Ḟ
∼

p
·F
∼

p−1 =
∂Ω

∂Π
∼

M =

N∑
r=1

∂Ω
∂ f r
∂ f r

∂Π
∼

M =

N∑
r=1

γ̇r(mr
⊗nr), ζ̇r = −

∂Ω
∂τr

c
= v̇r, (5.18)

with vr being the cumulative slip variable and γ̇r is the slip rate on slip system r computed
as follows:

γ̇r =
∂Ω
∂ f r sign(τr) = v̇r sign(τr), v̇r = |γ̇|r. (5.19)

The residual dissipation in Eq. (5.11) can be written as:

Dres =

N∑
r=1

τrγ̇r
−Q

N∑
r=1

N∑
s=1

hrsvs
|γ̇r
|, with ζ̇r = |γ̇r

|. (5.20)

which further can be expressed as

Dres =

N∑
r=1

(
|τr
| −

[
τ0+Q

N∑
s=1

hrsvs
]
+τ0

)
|γ̇r
|. (5.21)

The residual dissipation inequality (Dres ≥ 0) of the previous equation can be fulfilled in
two ways: either the |γ̇|r is zero or the term in the brackets must be positive. The second
term in the brackets of the previous equation is τr

c with ζr = vr. Therefore, first two terms
of the previous equation denote a yield function (Eq. (5.17)) of the visco-plastic flow rule,
which is positive. Moreover, τ0 ≥ 0 and hence in this simple case positivity of the residual
dissipation is ensured.

The constitutive formulation presented above is simple as ζr = vr. It is preferred to use
a saturating variable ζr instead of the cumulative slip vr, which is not a satisfactory internal
variable. In phenomenological models, ζr is reminiscent of a dislocation density-like
variable. The realistic materials show nonlinear hardening behavior therefore a nonlinear
isotropic hardening rule for ζr is assumed of the form:

ζr = 1−exp(−Bνr), with ν̇r = |γ̇|r, (5.22)

where B is a material parameter. The contribution of ζr to the free energy is assumed to be
of the form given in Eq. (5.13). Then the thermodynamic force associated with the internal
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hardening variable becomes

Xr = ρ0
∂Ψ̃r(ζr)
∂ζr =Q

N∑
s=1

hrs(1−exp(−Bνs)). (5.23)

In addition, the nonlinear evolution of the isotropic hardening variable τr
c is assumed to be

of the form

τr
c = τ0+Q

N∑
s=1

hrs(1−exp(−Bνs). (5.24)

The residual dissipation in (5.11) reads

Dres =

N∑
r=1

(
|τr
| −Q

N∑
s=1

hrs(1−exp(−Bνs)(Bexp(−Bvs))
)
|γ̇r
|, (5.25)

which can be further expressed as follows:

Dres =

N∑
r=1

(
|τr
| −

[
τ0+Q

N∑
s=1

hrs(1−exp(−Bνs))
]
+τ0+Xr(1−Bexp(−Bvr))

)
|γ̇r
|. (5.26)

Similar to the previously considered simple case, the inequality Dres ≥ 0 can be fulfilled in
two ways: either the |γ̇|r is zero or the corresponding terms in the brackets are positive. The
second term in the brackets of the previous equation is τr

c. Therefore, first two terms of the
previous equation denote a yield function (Eq. (5.17)) of the visco-plastic flow rule, which is
positive. Besides, τ0 ≥ 0 and the last term is also positive. The thermodynamic consistency
of this phenomenological model can also be found in (Busso and Cailletaud, 2005).

Phenomenological models have the advantage that free energy functions are explicitly
postulated; sometimes, a dissipation potential is also proposed. But the models may be too
simple compared to experimental results. In contrast, physics-based internal variables have
been proposed in the literature. But explicit expressions of free energy function are not
provided in most cases. In the next section, we establish the framework that is provided by
thermodynamics for physics-based models taken from the literature and the model used in
the present work.

5.2.2 Examples of physics-based models

This section constructs the dislocation density-based model that ensures thermodynamic
consistency. In many conventional dislocation density-based crystal plasticity theories,
dislocation density ρr on the slip system r is considered as an internal variable, for instance,
in (Kubin et al., 2008; Knezevic and Beyerlein, 2018; Bronkhorst et al., 2019). Unlike the
conventional theories, Lieou and Bronkhorst (2020) derived the evolution of dislocation
density from energetic and entropic considerations alone with constraints of the first and
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second laws of thermodynamics. The formulation is based on the Langer-Bouchbinder-
Lookman thermodynamic dislocation theory proposed in (Langer et al., 2010; Langer,
2015). Based on the energetic considerations alone, the evolution of dislocation density is
proportional to plastic work rate and not only to the plastic slip rate as in conventional
theories.

5.2.2.1 Physics-based model from the literature

Model by Abrivard et al. (2012)

Following the work of (Abrivard et al., 2012), the free energy function associated with the
internal hardening variable ζr is given by

ρ0Ψ̃
r(ζr) =

1
2
ξµ(ζr)2, (5.27)

where ξ is the statistical constant of the order of 0.3. The thermodynamic force associated
with the internal hardening variable becomes

Xr = ρ0
∂Ψ̃r(ζr)
∂ζr = ξµζr. (5.28)

In (Abrivard et al., 2012) it is assumed that the internal hardening variable ζr depends on
the SSDs as follows:

ζr = b

√√√ N∑
s=1

hrsρs, (5.29)

and ζ̇r can be written as

ζ̇r =
b

2
√∑N

s=1hrsρs

N∑
s=1

hrsρ̇s. (5.30)

From (5.28) and (5.30) the dissipation related to the internal hardening variable reads

N∑
r=1

Xrζ̇r =
1
2
ξµb2

N∑
r=1

N∑
s=1

hrsρ̇s. (5.31)

One possible evolution equation for the dislocation density is given by

ρ̇r =
1
b

(
kc

√√√ N∑
s=1

ρs−2ycρ
r
)
, (5.32)

where kc is the mobility constant and yc is the critical annihilation distance between opposite
sign dislocations. The first term in the previous equation corresponding to dislocation
generation, and the second term to dislocation annihilation. Inserting (5.32) in (5.31) leads
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to
N∑

r=1

Xrζ̇r =
1
2
ξµb2

N∑
r=1

N∑
s=1

hrs 1
b

[
kc

√√√ N∑
u=1

ρu−2ycρ
r
]
|γ̇r
|. (5.33)

Inserting previous equation in (5.11) gives

Dres =

N∑
r=1

(
|τr
| −
ξµb

2

N∑
s=1

hrs
[
kc

√√√ N∑
u=1

ρu−2ycρ
r
])
|γ̇r
|. (5.34)

In addition, the nonlinear evolution of the isotropic hardening variable τr
c is assumed to be

dependent on the SSD density as follows:

τr
c = τ0+µb

√√√ N∑
s=1

hrsρs. (5.35)

To ensure the positivity of the residual dissipation in (5.34) by imposing constraints on
the model parameters, a simplified case can be considered where all components of the
interaction matrix hrs are unity. Then (5.34) reads

Dres =

N∑
r=1

(
|τr
| −
ξµb

2

[
kc

√√√ N∑
s=1

ρs−2ycρ
r
])
|γ̇r
|, (5.36)

which further can be written by introducing τr
c from Eq. (5.35) as follows:

Dres =

N∑
r=1

(
(|τr
| −τr

c)+τ0+µb

√√√ N∑
s=1

ρs

[
1−
ξkc

2

]
+µbdcρ

r
)
|γ̇r
|. (5.37)

The residual dissipation inequality (Dres ≥ 0) in the previous equation holds when |γ̇r
| is

0 or the corresponding terms in the brackets are positive. The first term in the previous
equation is a Schmid-type yield function (Eq. 5.17) which is positive. Moreover, τ0 ≥ 0 and
the third term can be made positive by imposing constraints on the model parameter kc

such that kc ≥
2
ξ . Besides, the last term of the previous equation is also positive.

5.2.2.2 Physics-based model used in present work

In the present work, the contribution of the internal hardening variable ζr to the free energy
function is assumed to have the quadratic form:

ρ0Ψ̃
r(ζr) =

1
2
µξ(ζr)2, with ζr =

√√√ N∑
s=1

hrsϱs, (5.38)
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where ξ is an ad-hoc factor of the order unity. The adimentional dislocation density ϱr(= ρrb2)
is expressed by Eq. (2.15). Then, the thermodynamic force Xr associated with ζr can be
expressed as follows:

Xr = ρ0
∂Ψ̃r(ζr)
∂ζr = µξζr. (5.39)

The expression for dissipation related to the internal hardening variable by inserting for ϱ̇r

from Eq. (2.15) becomes

N∑
r=1

Xrζ̇r =
1
2
µξ

N∑
r=1

N∑
s=1

hrsϱ̇r =
1
2
µξ

N∑
r=1

N∑
s=1

hrs
[( √∑N

u=1bruϱu

κc
−dcϱ

r
)
|γ̇r
|

]
. (5.40)

Inserting previous equation in (5.11) gives the residual dissipation of the form:

Dres =

N∑
r=1

(
|τr
| −

1
2
µξ

[ N∑
s=1

hrs
( √∑N

u=1bruϱu

κc
−dcϱ

r
)])
|γ̇r
|. (5.41)

Moreover, in the present work, the evolution of the isotropic hardening variable τr
c is

assumed to be of the form:

τr
c = τ0+µ

√√√ N∑
s=1

hrsϱs. (5.42)

The following two simplified cases can be considered to ensure the positivity of the residual
dissipation in Eq. (5.41) by imposing constraints on the model parameters.

Case 1: It is assumed that all components of the dislocation interaction matrix hrs and
brs, which determine the Taylor stress τr

c and dislocation mean free path, respectively, are
unity such that

Dres =

N∑
r=1

(
|τr
| −

1
2
µξ

[( √∑N
u=1ϱ

u

κc
−dcϱ

r
)])
|γ̇r
|, (5.43)

which further can be written as

Dres =

N∑
r=1

(
|τr
| −
µξ

2κc

√√√ N∑
u=1

ϱu+
1
2
µξdcϱ

r
)
|γ̇r
|. (5.44)

The residual dissipation in the previous equation can also be expressed by using τr
c as

follows:

Dres =

N∑
r=1

(
|τr
| −τr

c+τ0+µ

√√√ N∑
u=1

ϱu−
µξ

2κc

√√√ N∑
u=1

ϱu+
1
2
µξdcϱ

r
)
|γ̇r
|, (5.45)
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which further gives

Dres =

N∑
r=1

(
(|τr
| −τr

c)+τ0+µ

√√√ N∑
u=1

ϱu

[
1−
ξ

2κc

]
+

1
2
µξdcϱ

r
)
|γ̇r
|. (5.46)

The residual dissipation inequality (Dres ≥ 0) of the previous equation holds when |γ̇r
| is 0

or the corresponding terms in the brackets are positive. The first term in the brackets is
a Schmid-type yield function (Eq. (5.17)) which is positive. The third term can be made
positive by imposing constraints on the model parameter κc such that κc ≥

ξ
2 . Besides,

τ0 ≥ 0 and the last term of the previous equation is also positive.
Case 2: It is assumed that the dislocation interaction matrices hrs and brs are diagonal

matrices with all diagonal components equal to 1 such that the evolution of the isotropic
hardening variable τr

c becomes
τr

c = τ0+µ
√
ϱr, (5.47)

and (5.41) can be expressed as follows:

Dres =

N∑
r=1

(
(|τr
| −τr

c)+τ0+µ
√
ϱr

[
1−
ξ

2κc

]
+

1
2
µξdcϱ

r
)
|γ̇r
|. (5.48)

The residual dissipation inequality (Dres ≥ 0) in the previous equation holds when |γ̇r
| is 0

or the corresponding terms in the brackets are positive. The first term in the brackets of the
previous equation is a yield function of the flow rule (Eq. (5.17)) which is positive. The
third term can be made positive by imposing constraints on the model parameter κc such
that κc ≥

ξ
2 . Besides, τ0 ≥ 0 and the last term of the previous equation is also positive.

Explicit expressions for the free energy density function are typically not provided in
dislocation density-based models in contrast to phenomenological models. These expres-
sion assists in establishing the constitutive framework in a thermodynamic manner. In
this study, we analytically demonstrated that the positivity of the residual dissipation in
dislocation density-based models could be ensured by imposing constraints on the model
parameters.

In the present work, general case of residual dissipation presented in Eq. (5.41) is
considered. Furthermore, in the simulations, the positivity of the residual dissipation is
ensured by checking the monotonic increase of temperature with the deformation. In the
next sections, expressions used for predicting the stored energy, Taylor-Quinney coefficient,
and temperature evolution in the context of classical and micromorphic crystal plasticity
models are summarized.
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5.3 Expression for stored energy, temperature rise and
Taylor-Quinney coefficient

In this section, the expressions used for numerical prediction of the stored energy, tempera-
ture evolution, and TQC are summarized.

Expressions in the context of classical crystal plasticity

• Stored energy

The expression for the stored energy based on the proposed thermodynamically consistent
framework, cf. Eq. (5.38), for the classical crystal plasticity model is given by

Ec = ρ0

N∑
r=1

Ψ̃r(ζr) =
1
2
µξ

N∑
r=1

(ζr)2, with ζr =

√√√ N∑
s=1

hrsϱs. (5.49)

The volume averaged stored energy over whole FE model is given by

Ec
avg =

1
V

∫
V

Ec dV. (5.50)

• Total adimensional dislocation density

ϱs =
N∑

r=1

ϱr
0+

∫ t

0

N∑
r=1

ϱ̇rdt (5.51)

The volume averaged adimensional dislocation density over whole FE model is given by

ϱavg =
1
V

∫
V

ϱs dV. (5.52)

• Temperature evolution under adiabatic conditions

The temperature evolution for the classical crystal plasticity model can be given by

Ṫ =
Π
∼

M : Ḟ
∼

pF
∼

p−1
−Xζ̇

ρCε
. (5.53)

Inserting (5.11) and (5.40) into the previous equation gives

Ṫ =

N∑
r=1
τrγ̇r
−

1
2µξ

N∑
r=1

N∑
s=1

hrsϱ̇r

ρCε
. (5.54)
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• Taylor-Quinney coefficient (TQC)

The integral form of TQC is given by

βint =

∫ t
0

N∑
r=1
τrγ̇r dt− 1

2µξ
∫ t

0

N∑
r=1

N∑
s=1

hrsϱ̇r dt

∫ t
0

N∑
r=1
τrγ̇r dt

. (5.55)

The volume averaged Taylor-Quinney coefficient over whole FE model is given by

βavg =
1
V

∫
V

βint dV. (5.56)

Expressions in the context of micromorphic crystal plasticity

• Stored energy

We assume that an inelastic part of the free energy function which includes the contribution
of GNDs along with SSDs to be of the form given by

Ψ= Ψ̃(ζr,ep,K). (5.57)

Moreover, it is assumed that the free energy density function can additively be decomposed
as

ρ0Ψ= ρ0

N∑
r=1

Ψ̃r(ζr)+ρ0Ψ̃(ep)+ρ0Ψ̃(K). (5.58)

The quadratic form of the free energy function, ρ0Ψ̃
r(ζr), associated with the internal

hardening variable ζr is given in Eq. (5.49). This free energy function takes into account the
contribution of SSDs. The quadratic form of the free energy Ep related to the ep is given by

Ep = ρ0Ψ̃(ep) =
1
2

Hχe2
p, with ep = γcum−γχ. (5.59)

Furthermore, the quadratic form of the free energy Eg, which includes the characteristic
length scale and takes into account the contribution of GNDs, is given by

Eg = ρ0Ψ̃(K) =
1
2

AK ·K, with K =
∂γχ
∂X
=Gradγχ. (5.60)

Therefore, from Eq. (5.40), (5.60) and (5.59) the free energy function in (5.57) becomes

Es = ρ0

N∑
r=1

Ψ̃r(ζr)+ρ0Ψ̃(ep)+ρ0Ψ̃(K) =
1
2
µξ

N∑
r=1

(ζr)2+
1
2

Hχe2
p+

1
2

AK ·K. (5.61)
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The volume averaged stored energy over whole FE model is given by

Ep
avg =

1
V

∫
V

Ep dV, Eg
avg =

1
V

∫
V

Eg dV, Es
avg =

1
V

∫
V

Es dV. (5.62)

• Temperature evolution under adiabatic conditions

The temperature evolution for the micromorphic crystal plasticity model is given by Eq.
(4.37). Inserting (5.11) and (5.40) into (4.37) gives

Ṫ =

N∑
r=1
τrγ̇r+Sγ̇cum−

1
2µξ

N∑
r=1

N∑
s=1

hrsϱ̇r

ρCε
. (5.63)

• Taylor-Quinney coefficient (TQC)

The integral form of TQC is given by

βint =

∫ t
0

N∑
r=1

(τrγ̇r+Sγ̇cum)dt− 1
2µξ

∫ t
0

N∑
r=1

N∑
s=1

hrsϱ̇r dt

∫ t
0

N∑
r=1

(τrγ̇r+Sγ̇cum)dt
. (5.64)

The volume averaged Taylor-Quinney coefficient over whole FE model is given by Eq.
(5.56).

5.4 Single crystals simulations

5.4.1 Simulation setup

In a preliminary study, simulations are performed for aluminum and copper single
crystals subjected to tensile loading to predict the evolution of stored energy and TQC. FE
simulations are performed based on the constitutive framework of classical crystal plasticity
model presented in section 4.2.1 and 4.2.2. Besides, simulations are performed with a
simplified geometry of 0.06mm×0.06mm×0.06mm cube having 8 C3D8 type elements
which are 8 node linear brick elements. The applied boundary conditions are presented in
Fig. 5.1.

Two orientations of the single crystal considered are <001> and <111> such that the
[001] and [111] crystal direction align with the loading direction, respectively. In FCC
crystals, the crystallographic slip occurs on the 12 {111}<110> slip systems (see Table A.1).
The experimental stress-strain responses from the work of (Hosford et al., 1960) for single
crystals aluminum and (Takeuchi, 1975) for single crystals copper are used to calibrate
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U2 = 0 (Bottom surface)

U2 (Top surface)

U1 = 0 (Back surface) U3 = 0
(Side surface)

e3

e2

e1

Fig. 5.1 Schematic showing the applied boundary conditions, namely BC1, in single and
poly-crystalline simulations.

Table 5.1 Euler angles for the crystal orientations with misorientation of < 1◦(Abrivard,
2009).

Crystal orientations Euler angles (◦)
<001> ϕ1 = 0.4, ϕ = 1.0 , ϕ2 = 0.0
<111> ϕ1 = 54.8, ϕ = 135.0 , ϕ2 = 180.0

material parameters. A misorientation of < 1◦ is applied from the tensile axis as in the
experimental tests of (Hosford et al., 1960) and (Takeuchi, 1975). The corresponding Euler
angles are given in Table 5.1. All their experiments were performed at room temperature
and applied strain rates of 7.5×10−5 s−1 and 10−3 s−1 for single crystals aluminum and
copper, respectively. Simulations are performed with these strain rates.

5.4.2 Results and discussion

• <001> and <111> crystal orientations

The dislocation density-based hardening model captures the stress-strain responses in
good agreement with the experimentally measured responses for <001> and <111> crystal
orientations as shown in Fig. 5.2. The material hardening parameter κc mainly governs
the initial slope of the stress-strain curve, while parameter dc controls the saturation.
Numerical values of the material constants and fitted material parameters for the single
crystals aluminum and copper are summarized in Table 5.2 and 5.3, respectively. The
material parameters are fitted using <001> crystal orientation (Fig. 5.2). The tensile axis
<001> and <111> are oriented for multi-slip with 8 and 6 equally favored slip systems,
respectively. The initial hardening rate of the <111> crystal orientation is higher than <001>
crystal orientation. The initial dislocation density ρr(= ϱr

0/b
2) is assumed to be 1×1010 m−2
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Table 5.2 Material constants and fitted material parameters for the simulations of single
crystals aluminum under tensile loading. The interaction matrix coefficients (h0−h5) are
taken from (Kubin et al., 2008).

C11 C12 C44
ρ

Eq. (5.54)
Cε

Eq. (5.54)
τ0 (fitted)
Eq. (5.42) b

108 GPa 61.3 GPa 28.5 GPa 2700 kg m−3 900 Jkg−1K−1 0.6 MPa 0.286 nm

µ
ϱr

0 (fitted)
Eq. (5.51)

K (fitted)
Eq. (2.12)

m (fitted)
Eq. (2.12)

κc (fitted)
Eq. (2.15)

dc (fitted)
Eq. (2.15)

h0
Eq. (5.42)

27 GPa 8×10−10 0.5 MPa.s1/m 5 27 100 0.122
h1

Eq. (5.42)
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
ξ

Eq. (5.49)
0.122 0.07 0.625 0.137 0.122 1

Table 5.3 Material constants and fitted material parameters for simulations of the single
crystals copper under tensile loading. The interaction matrix coefficients (h0−h5) are taken
from (Kubin et al., 2008).

C11 C12 C44
ρ

Eq. (5.54)
Cε

Eq. (5.54)
τ0 (fitted)
Eq. (5.42) b

170 GPa 124 GPa 75 GPa 8960 kgm−3 385 Jkg−1K−1 0.5 MPa 0.257 nm

µ
ϱr

0 (fitted)
Eq. (5.51)

K (fitted)
Eq. (2.12)

m (fitted)
Eq. (2.12)

κc (fitted)
Eq. (2.15)

dc (fitted)
Eq. (2.15)

h0
Eq. (5.42)

41 GPa 8×10−10 0.5 MPa.s1/m 4 20 25 0.122
h1

Eq. (5.42)
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
ξ

Eq. (5.49)
0.122 0.07 0.625 0.137 0.122 1
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Fig. 5.2 Comparison of stress-strain responses for <001> and <111> crystal orientations at
298K temperature: (a) aluminum single crystals validated against the experimental results
of (Hosford et al., 1960), and (b) copper single crystals validated against the experimental
results of (Takeuchi, 1975).

for both single crystals and chosen the same for all slip systems. The total dislocation
density evolution for single crystals aluminum and copper is presented in Fig. 5.3a and
5.3b, respectively. As shown in these figures, the dislocation density increases rapidly and
saturates with further increase in plastic strain.

The stored energy is predicted using a thermodynamically consistent formulation
of the classical crystal plasticity model, (cf. Eq. (5.38)). Fig. 5.4 shows that the stored
energy is strongly orientation dependent. Similar to the dislocation density evolution,
the stored energy increases rapidly and saturates with further increase in plastic strain.
The variation of TQCs for single crystals aluminum and the copper is shown in Fig. 5.5a
and 5.5b, respectively. These figures show that the TQCs predicted for the single crystals
aluminum and copper remain above the commonly used value of 0.9 because of the
negligible difference between plastic power and stored energy rate.

The experimental measurements of TQC are available in the literature for single crystal
copper of <123> orientation. In the next section, numerically predicted TQC is compared
with experimental measurements for this particular crystal orientation.

• <123> crystal orientation

Rittel et al. (2012) measured the TQC for single crystal copper of <123> orientation
under compressive loading subjected to quasi-static and high strain rates deformation.
The average TQC values were in the range of 0.2−0.3 in quasi-static deformation while
0.65−0.85 in high-strain rates deformation. To compare the experimentally measured TQC
values, simulations are performed with <123> crystal orientation subjected to compressive
loading with direction [123] parallel to the loading direction.
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Fig. 5.3 Predicted dislocation densities ρr(= ϱr
0/b

2) within the single crystals (<001> and
<111>) at an initial temperature of 298 K for (a) aluminum and (b) copper.

0.00 0.02 0.04 0.06 0.08 0.10

Strain

0.00

0.02

0.04

0.06

0.08

0.10

S
to

re
d

en
er

gy
(M

Jm
−

3
)

< 111 >

< 001 >

(a)

0.00 0.02 0.04 0.06 0.08 0.10

Strain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
to

re
d

en
er

gy
(M

Jm
−

3
)

< 111 >

< 001 >

(b)

Fig. 5.4 Predicted stored energy using the thermodynamically consistent formulation (Eq.
(5.49)) for the single crystals (<001> and <111>) at an initial temperature of 298 K for (a)
aluminum and (b) copper.
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Fig. 5.5 Predicted Taylor-Quinney coefficient (βint) using the thermodynamic formulation
(Eq. (5.55)) for the single crystals (<001> and <111>) at an initial temperature of 298 K for
(a) aluminum and (b) copper.

The material parameters used in simulations are given in Table 5.3. The experimentally
measured stress-strain responses and corresponding predicted responses are shown in
Fig. 5.6a. The <123> compression axis is oriented for single slip. The used viscosity
parameters capture the strain rate sensitivity observed in the experimental work. However,
a discrepancy can be observed in overall stress-strain responses. A reason for this
discrepancy may be that numerically <123> crystal orientation triggers a single slip at the
initial deformation stage, but multiple slip systems are activated in a later stage. The effect
of boundary conditions on the responses is also investigated in the next section.

The predicted dislocation density evolution using boundary conditions shown in Fig.
5.1 is presented in Fig. 5.6b. The predicted stored energy and TQCs at two strain rates
(0.1 s−1and 3000 s−1) are shown in Fig. 5.7a and 5.7b, respectively. The high strain rate
deformation stores more energy compared to low strain rate where heat dissipation is
dominant (Fig. 5.7a). Moreover, the predicted TQCs are higher than the experimentally
measured values by Rittel et al. (2012) (Fig. 5.7b). One of the possible reasons for this
discrepancy can be that total dislocation density predicted by the model is significantly
lower than the actual experimental values which were not measured. The total dislocation
density necessary to predict the stored energy and consequently the TQC need to be at
least of the order of 1015 m−2. However, the dislocation density obtained by numerical
simulations is of the order of 1014 m−2 (Fig. 5.6b). To use an analytical expression of stored
energy (Eq. (5.38)) in numerical predictions, a reliable dislocation density-based model
may be necessary accounting for the total dislocation density. Another possible reason can
be the analytical expression of the stored energy itself, which does not take into account all
the mechanisms responsible for the stored energy.
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Fig. 5.6 (a) Comparison of stress-strain responses against the experimental data obtained
from the work of (Rittel et al., 2012) for single crystal copper (<123>) under compressive
loading using boundary condition BC1 (Fig. 5.1). (b) Predicted dislocation densityρr(= ϱr/b2)
evolution at two different strain rates for single crystal copper (<123>).
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Fig. 5.7 Evolution of the predicted (a) stored energy according to Eq. (5.49) and (b)
Taylor-Quinney coefficient (Eq. (5.55)) for single crystal copper (<123>) with ξ = 1 under
compressive loading using boundary condition BC1 (Fig. 5.1).
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Fig. 5.8 Schematic showing the alternative boundary conditions applied in single crystal
copper simulations (a) BC2 and (b) BC3.

• Effect of boundary conditions on the stress-strain response

To investigate the effect of boundary conditions on the responses, the simulations are per-
formed with two alternative boundary conditions, namely BC2 and BC3, presented in Fig.
5.8a and 5.8b, respectively. The material parameters used in simulations are summarized
in Table 5.3. The specimen geometry considered for the BC2 is as described in section 5.4.1.
On the other hand, for the BC3, a cylindrical specimen having a diameter of 6 mm and
height 6 mm as in the experimental work of (Rittel et al., 2012) is considered. The geometry
is discretized with 1000 C3D8 elements. The predicted stress-strain responses for <001>
and <111> crystal orientations using BC2 and corresponding experimental responses are
presented in Fig. 5.9. As presented in these figures, the predicted stress-strain responses
with BC2 are in good agreement with the experimental responses. Besides, the predicted
responses for <123> crystal orientation with BC2 and BC3 are shown in Fig. 5.10a and
5.10b, respectively. These figures show that the discrepancy still exist with the alternative
boundary conditions. The BC2 boundary conditions give a too soft responses, while BC3
gives a too stiff responses compared to experimental results.

5.5 Polycrystals simulations

In this section, polycrystalline simulations are performed to predict the stored energy and
TQC. First of all, study of the effect of mesh size and grain morphology on the volume
averaged stress-strain responses over whole FE model and local fields is performed. Next,
the prediction of stored energy and TQC is carried out using the classical crystal plasticity
model, i.e. considering contribution of SSDs only. Finally, a comparison of the predicted
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Fig. 5.9 Comparison of stress-strain responses using boundary condition BC2 for <001>
and <111> copper single crystal against the experimental data obtained from the work of
(Takeuchi, 1975) under tensile loading.
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Fig. 5.10 Comparison of stress-strain responses for <123> crystal orientation against the
experimental data obtained from the work of (Rittel et al., 2012) under compressive loading
using boundary condition (a) BC2 (Fig. 5.8a) and (b) BC3 (Fig. 5.8b).
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stored energy by considering both the contribution of SSDs and GNDs to that of the
simulations with contribution of SSDs only is performed.

5.5.1 Effect of mesh size and grain morphology

In general, RVEs with cubic meshes are used to predict the texture evolution and the
global stress-strain responses, for instance, in (Kalidindi et al., 1992; Alankar et al., 2009).
They found that the global stress-strain curves using RVEs having cubic meshes are well
represented. However, the local fields inside grains were not considered. The more realistic
microstructure can be presented using dodecahedra, for instance, in (Mika and Dawson,
1998, 1999). In addition, a more realistic shape of the grains can be represented by the
meshes generated using Voronoï tessellation as in (Barbe et al., 2001a; Diard et al., 2005).
Some studies are devoted to include experimentally determined 3D microstructure in
crystal plasticity modeling so that the local fields and global stress-strain responses can be
compared to experimental results, for instance in (Musienko et al., 2007).

• RVEs with cubic meshes

In this work, a detailed study of the effect of mesh size and grain morphology on the
stress-strain behavior is performed using the classical crystal plasticity model according to
section 4.2.1 and 4.2.2. At first, three RVEs of 0.3mm×0.3mm×0.3mm, discretized with
structured mesh using C3D20R elements, which are 20 node quadratic reduced integration
brick elements, are considered for the study (Fig. 5.11). Furthermore, each RVE consists of
64 grains assigned with random orientations. To study the mesh size effect, each grain of
the RVE is discretized with 1 element (Fig. 5.11a), 8 elements (Fig. 5.11b), and 27 elements
(Fig. 5.11c). The material parameters used in this polycrystalline study are given in Table
5.3. Besides, the applied boundary conditions to the RVE are presented in Fig. 5.1.

The predicted volume averaged stress-strain responses over whole FE model using
three RVEs consisting of the structured mesh are displayed in Fig. 5.12a. The stress-strain
curves obtained using RVE having 27 elements per grain show softer response compared
to RVEs with 1 and 8 elements per grain (keeping 64 grains per RVE). In addition, tests are
performed to study the effect of the number of grains on the stress-strain behavior using
RVEs having 64, 512, and 1000 grains (keeping 1 elements per grain). Fig. 5.12b show that
there is no considerable effect of number of grains on the stress-strain behavior.

• RVEs generated by Voronoï tessellations

In addition to cuboidal grains, RVEs of 0.3mm×0.3mm×0.3mm are generated by Voronoï
tessellations (see Fig. 5.13). To study the effect of mesh size, RVE of 64 grains is meshed
with two different mesh sizes, namely the coarse (1774 nodes, 8274 elements) and fine (16402
nodes, 85251 elements) using C3D4R elements, which are 4 node linear reduced integration
tetrahedral elements. The cumulative plastic strain fields are shown in Fig. 5.15. As shown
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(a) (b) (c)

Fig. 5.11 Structured FE mesh; 64 grains with random orientation: (a) 1 element per grain, (b)
8 elements per grain, and (c) 27 elements per grain. Color represents the individual grains.

in these figures, fine meshed RVE captures the heterogeneity of the local fields in contrast
to almost homogeneous field predicted by coarse meshed RVE. This suggests that more
elements per grain or fine enough mesh size within the grain is required to predict the
heterogeneity of the local fields. Moreover, the predicted stress-curves are shown in Fig.
5.16a. From this figure, the fine meshed RVE show stiffer response compared to coarse
meshed RVE (keeping the same total number of grains in both RVEs).

In addition to the effect of mesh size, the effect of grain morphology on the averaged
stress-strain response is studied. Three RVEs considered for the study are with 64, 125, and
200 grains (Fig. 5.14). The predicted averaged stress-strain curves are shown in Fig. 5.16b.
This figure shows that no significant difference between the predicted averaged stress-strain
curves is observed with changing the total number of grains in the RVE. However, it may
give a softer response by further increasing the total number of grains as observed in the
simulations of RVEs with cuboidal grains.

This study shows that the 64-grain RVE having cuboidal grains with 27 elements per
grain and 64 grain fine meshed RVE generated by Voronoï tessellations give a satisfactory
global stress-strain response. Concerning the prediction of local fields, a fine enough mesh
size is necessary for each grain. For further study on the prediction of stored energy and
TQC, both RVEs mentioned above are used.

5.5.2 Prediction of stored energy considering contribution of SSDs

In this section, firstly, stored energy and TQC are predicted for the polycrystalline austenitic
steel under tensile loading considering contribution of only SSDs (using the classical crystal
plasticity model). The predicted stored energy is compared with the experimental data
obtained from the work of (Oliferuk et al., 1993). Then the application is made to predict
the stored energy in Inconel 718 under compressive loading at high strain rates and high
temperatures.
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Fig. 5.12 Volume averaged stress-strain responses over whole FE model obtained under
tensile loading using cuboidal grains to study the effect of (a) number of elements per grain
(RVE of 64 grains) and (b) total number of grains in the RVE (1 element per grain).

(a) (b)

Fig. 5.13 FE mesh of grains generated by Voronoï tessellation; 64 grains with random
orientation: (a) coarse (1774 nodes, 8274 elements) and (b) fine (16402 nodes, 85251 elements)
meshed. Color represents the individual grains.

(a) (b) (c)

Fig. 5.14 RVE generated by Voronoï tessellation: (a) 64 grains, (b) 125 grains, and (c) 200
grains. Color represents the individual grains.
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Fig. 5.15 Cumulative plastic strain fields in unstructured FE mesh for the tensile loading
of polycrystalline copper using 64 grains Voronoï tessellation assigned with random
orientation: (a) coarse and (b) fine meshed. The fields are shown on the deformed
configuration.
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Fig. 5.16 Volume averaged stress-strain responses over whole FE model obtained using
grains created by Voronoï tessellation to study the effect of (a) mesh size (RVE of 64 grains)
and (b) total number of grains in the RVE.
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• Stored energy and TQC in polycrystalline austenitic steel

The material parameters τ0, ϱr
0, κc, dc, K, and m are calibrated against the experimental

stress-strain data of (Oliferuk et al., 1993) for an average grain size of 80µm. The coefficients
of interaction matrix (h0−h5) are adopted from the work of (Hure et al., 2016). The initial
dislocation density ρr(= ϱr

0/b
2) is assumed to be 1×1010 m−2 and chosen the same for all slip

systems. The RVE of 0.27mm×0.27mm×0.27mm is used to describe the polycrystalline
austenitic steel. It is generated using Voronoï tessellation having 64 grain assigned with a
random orientation. Besides, each grain of the RVE is approximately of 80µm size. The
applied boundary conditions to the RVE are presented in Fig. 5.1. The fitted averaged
stress-strain response against the experimental response is shown in Fig. 5.17a. The material
constants and fitted material parameters are summarized in Table 5.4.

The prediction of stored energy and TQC is performed using the expressions (5.49) and
(5.55), respectively. A comparison of the predicted volume average stored energy over
whole FE model (Eq. (5.50)) with the classical crystal plasticity model using ξ of 1 against the
experimental data of (Oliferuk et al., 1993) is shown in Fig. 5.17b. As shown in this figure,
with ξ = 1 predicted stored energy is underestimated. Similar observations are also made in
single crystal copper (<123> crystal orientation) simulations where numerically predicted
stored energy and, consequently, the TQC is underestimated compared to experimental
results (cf. section 5.4.2). Therefore, next, ξ is increased in such a way that it gives good
agreement with the experimental measurements.

The predicted volume average stored energy over whole FE model with ξ = 10 is shown
in Fig. 5.17b. This figure shows that with ξ = 10, the predicted stored energy is in line with
the experimental measurements. Moreover, the evolution of TQC with strain is predicted
using ξ of 1 and 10 (Fig. 5.18). The predicted evolution of TQC with ξ = 1 is varies between
0.95 to 0.98. The lowest value of TQC measured by (Oliferuk et al., 1993) was about 0.58.
With ξ = 10, the predicted TQC is in the range of 0.55 to 0.70. The expression of stored
energy given by Bailey (1963) for both polycrystalline silver and copper gives an ad-hoc
factor of the order of 2 as explained in section 5.1. However, in this work, for polycrystalline
austenitic steel based on the numerical simulations, we found an ad-hoc factor of the order
of 10.

In the next section, simulations are performed on annealed Inconel 718 subjected to high
strain rates and temperature compressive loading with ξ = 10 to check the predictability of
the stored energy and TQC.

• Stored energy and TQC in Inconel 718

After emphasizing the importance of an ad-hoc factor in the prediction of stored energy
and TQC, the application is made to polycrystalline Inconel 718 undergoing high strain
rates and high temperatures compressive loading. The predicted stress-strain responses
and corresponding experimental responses from the work of (Moretti et al., 2021) for the
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Table 5.4 Numerical values of material parameters used for the numerical simulation of
polycrystalline austenitic steel under tensile loading. The elastic constants and dislocation
interaction coefficient are taken from (Hure et al., 2016).

C11 C12 C44
ρ

Eq. (5.54)
Cε

Eq. (5.54)
τ0 (fitted)
Eq. (5.42) b

199 GPa 136 GPa 105 GPa 7965 kgm−3 532 Jkg−1K−1 80 MPa 0.254 nm

µ
ϱr

0 (fitted)
Eq. (5.51)

K (fitted)
Eq. (2.12)

m (fitted)
Eq. (2.12)

κc (fitted)
Eq. (2.15)

dc (fitted)
Eq. (2.15)

h0
Eq. (5.42)

65.6 GPa 6.4×10−10 10 MPa.s1/m 15 19.4 22.8 0.124
h1

Eq. (5.42)
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
A

Eq. (5.61)
Hχ

Eq. (5.61)
0.124 0.07 0.625 0.137 0.122 0.02 N 5×104 MPa
ξ

Eq. (5.49)
1 and 10
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Fig. 5.17 Polycrystalline austenitic steel under tensile loading: (a) averaged stress-strain
curve validated against the experimental work of (Oliferuk et al., 1993), and (b) predicted
volume averaged stored energy over whole FE model (ξ = 1 and 10) (Eq. (5.49), (5.50)) and
comparison against the experimental measurements from the work of (Oliferuk et al., 1993).
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Fig. 5.18 Predicted evolution of volume averaged Taylor-Quinney coefficient over whole
FE model (Eq. (5.55), (5.56)) using numerical simulations with two different values of an
ad-hoc factor (1 and 10).

Table 5.5 Numerical values of material parameters used for the numerical simulation of
polycrystalline Inconel 718 under compressive loading. The elastic constants and dislocation
interaction coefficient are taken from (Kubin et al., 2008).

C11 C12 C44
ρ

Eq. (5.54)
Cε

Eq. (5.54) b µ

194 GPa 142 GPa 90 GPa 7800 kgm−3 435 Jkg−1K−1 0.249 nm 77.2 GPa

ϱr
0 (fitted)

Eq. (5.51)
κc (fitted)
Eq. (2.15)

dc (fitted)
(293K)

Eq. (2.15)

dc (fitted)
(673K)

Eq. (2.15)

dc (fitted)
(1073K)

Eq. (2.15)

h0
Eq. (5.42)

h1
Eq. (5.42)

6.2×10−9 18.8 18.4 31.4 42.4 0.124 0.124
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
ξ

Eq. (5.49)
0.07 0.625 0.137 0.122 10

annealed specimens using the classical crystal plasticity model are shown in Fig. 5.19a. The
material constants and fitted material parameters are summarized in Table 5.5. In addition,
the material parameters τ0, K, m are considered as temperature-dependent. These calibrated
temperature-dependent material parameters are given in Table 5.6. Moreover, the constant
parameter dc in the dislocation density-based model, which controls the saturation of the
stress-strain behavior, is taken as temperature-dependent (Table 5.5). The initial dislocation
density ρr(= ϱr

0/b
2) is assumed to be 1×1011 m−2 and chosen the same for all slip systems.

The material parameters are calibrated against the experimental stress-strain response
at a temperature of 673 K and strain rate of 1900s−1. There is no considerable difference in
the strain rates used (1900 s−1 and 2000 s−1); therefore, no significant effect of strain rates
on the flow strength is observed. As a general trend, with increasing temperature, the
flow strength of Inconel 718 decreases and consequently the plastic work and dislocation
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Table 5.6 Temperature dependent material parameters used in the numerical simulations
for the annealed Inconel 718. The temperature dependent τ0 is used in the evolution of
critical resolved shear stress given in Eq. (5.42). The temperature dependent viscosity
parameter K and m are involved in rate–dependent flow rule according to Eq. (2.12).

Temperature (K)
τ0 (MPa)
Eq. (5.42)

K(MPa.s1/m)
Eq. (2.12)

m
Eq. (2.12)

298 210 5 10
923 150 5 10

1073 80 8 6
1173 60 17 4.5
1323 10 40 4
1523 1 50 2

density. The dislocation density evolution is shown in Fig. 5.19b. As shown in this figure,
the dislocation density rapidly increases in an initial deformation stage and saturates in
the later deformation stage. Moreover, samples deformed at lower temperatures show
higher dislocation density evolution than those deformed at a high temperature. Note that
the calibrated material parameters of Inconel 718 presented in chapter 4 are for the aged
samples against the experimental work of (Iturbe et al., 2017). The stored energy evolution
is shown in Fig. 5.20a. The stored energy evolution shows a similar trend as dislocation
density evolution. It increases rapidly at the initial stage of deformation and saturates
with a further increase in deformation. Moreover, the evolution of TQCs is displayed in
Fig. 5.20b. From this figure, the predicted lowest value of TQC using ξ = 10 is 0.825. As
discussed in the previous section, polycrystalline austenitic steel shows a lowest TQC value
of 0.58 with ξ = 10 (Fig. 5.18).

This study suggests that the precise determination of ξ needs experimental calibration.
Moreover, ξ parameter vary from material to material and may depend on the strain rate,
temperature, and type of loading.

5.5.3 Prediction of stored energy considering contribution of SSDs and
GNDs

In this section, the stored energy and TQC are predicted considering contribution of both
SSDs and GNDs, i.e. using the micromorphic crystal plasticity model. The predicted stored
energy is compared with the predictions made by considering the contribution of SSDs
only, i.e. using the classical crystal plasticity model. The constitutive framework of the
micromorphic crystal plasticity model used in this study can be found in section 4.2.3. The
analytical expressions used for the prediction of the stored energy and TQC are given in Eq.
(5.61) and (5.64), respectively.
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Fig. 5.19 Annealed Inconel 718 under compressive loading: (a) predicted averaged stress-
strain curves at high strain rates (1900 s−1-2000 s−1) and high initial temperatures (293
K-1273 K) and comparison against the experimental data obtained from the work of
(Moretti et al., 2021) and (b) predicted evolution averaged dislocation density (Eq. (5.52)) as
a function of strain.
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Fig. 5.20 Predicted evolution of volume averaged (a) stored energy (Eq. (5.49), (5.50)) and
(b) Taylor-Quinney coefficient (Eq. (5.55), (5.56)) as a function of strain for Inconel 718 under
compressive loading using ξ = 10.
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The material constants and calibrated material parameters are summarized in Table
5.4. The grain boundary conditions are considered as an intermediate between microfree
and microhard conditions. The microslip variable γχ is assumed to be continuous at the
interface. The surface traction T and generalized surface traction M in Eq. (2.21) are also
continuous. The gradient parameter A is chosen as 0.02 N such that predicted stress-strain
response remains close to experimental response obtained from the work of (Oliferuk et al.,
1993). The fitted average stress-strain response against the experimental data is shown in

Fig. 5.21a. The expression used for the characteristic length scale is given by ℓ =
√

A(H+Hχ)
|H|Hχ

.
The hardening modulus H is found by the procedure described in section 3.3.2.3. The
calculated characteristic length scale is about 2µm (A = 2×10−2 N, Hχ = 5×104 MPa, and
H = 3000 MPa). The calibration of gradient parameter and consequently the characteristic
length scale is possible based on the tensile stress-strain responses obtained at different
grain sizes. However, in this study only one grain size is considered.

Stored energy is predicted using an ad-hoc factor ξ of 1. The comparison of the predicted
stored energy using the classical and micromorphic crystal plasticity models is shown
in Fig. 5.21b. This figure shows that the predicted volume averaged stored energy over
whole FE model using the micromorphic crystal plasticity model is higher than that
of the classical crystal plasticity model. The classical crystal plasticity model lacks a
characteristic length scale that is associated with the GNDs. On the other hand, the presence
of characteristic length scale in the micromorphic crystal plasticity model can take into
account the contribution of GNDs along with SSDs and therefore gives an increased total
dislocation density and, consequently, the stored energy.

The contribution of each term in the micromorphic crystal plasticity model to the total
stored energy, refer to Eq. (5.61), is presented in Fig. 5.22a. As shown in this figure, the
contribution of term Ec

avg, which takes into account the contribution of SSDs is higher than
Eg

avg and Ep
avg (Ec

avg > Eg
avg > Ep

avg). The contribution of GNDs in total stored energy is taken
account by the term Eg (Eq. (5.60)).

Furthermore, additional simulations are performed with microhard grain boundary
conditions. The microhard grain boundary conditions corresponds to vanishing microslip
γχ at the grain boundaries, i.e. γχ = 0. This grain boundary condition is accomplished by
setting the nodal values of γχ on the grain surface to zero. The comparison of the obtained
responses using microhard with A = 2×10−2 N and 2×10−5 N to that of the results from
the experimental test is presented in Fig. 5.22b. The response obtained using A = 2×10−2 N
is too strong compared to experimental results. On the other hand, A = 2×10−5 N gives
a significantly lower response than A = 2×10−2 N. However, the gradient parameter A
should be reduced further for more realistic predictions. A comparison of the predicted
total stored energy with intermediate and microhard grain boundary conditions is shown in
Fig. 5.23. The predicted total stored energy with the microhard grain boundary conditions
is significantly higher than that of the intermediate grain boundary conditions due to the
high hardening rate obtained due to the former grain boundary conditions.

152



0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

True strain

0

100

200

300

400

500

600

700

800

T
ru

e
st

re
ss

(M
P

a)

Experiment

Simulation (Contribution of SSDs and GNDs)

Simulation (Contribution of SSDs)

(a)

0.000 0.025 0.050 0.075 0.100 0.125 0.150

Strain

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
to

re
d

en
er

gy
(M

Jm
−

3
)

Contribution of SSDs and GNDs (Esavg)

Contribution of SSDs (Ecavg)

(b)

Fig. 5.21 Polycrystalline austenitic steel under tensile loading: (a) average stress-strain
responses predicted considering the contribution of SSDs and GNDs, and SSDs only.
(b) Predicted evolution of volume averaged stored energy (using ξ = 1) considering the
contribution of SSDs and GNDs (Eq. (5.61), (5.62)), and SSDs only (Eq. (5.49), (5.50)). The
stress-strain responses are validated against the experimental work of (Oliferuk et al., 1993).
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Fig. 5.22 (a) Contribution of each term to the total stored energy in micromorphic crystal
plasticity model (Eq. (5.61)). (b) Predicted stress-strain responses using microhard grain
boundary condition using A = 2×10−2 N and 2×10−5 N. The experimental stress-strain
responses are from the work of (Oliferuk et al., 1993).
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Fig. 5.23 Comparison of the predicted volume averaged stored energy (Eq. (5.61), (5.62))
over whole FE model using microhard and intermediate grain boundary conditions with
ξ = 1.

The grain boundary conditions play an essential role in polycrystals as they affect the
dislocation motion and hence, the strain hardening behavior. The microfree and microhard
grain boundary conditions respectively lead to lower and upper bounds for the polycrystal
response. These two grain boundary conditions do not apply to all sorts of grain boundary
behavior as they cannot capture the underlying physics. One approach to obtain interface
behavior between these two extreme conditions is by introducing interface energy as in
(Aifantis and Willis, 2005). The intermediate grain boundary conditions, for instance,
in (Fredriksson and Gudmundson, 2006; Ekh et al., 2011; Husser et al., 2017) with finite
resistance against the dislocation gliding gives more realistic dislocation-grain boundary
interactions. More general grain boundary conditions have been proposed allowing for the
transition from microhard conditions to microfree (or constant generalized tractions) once
a threshold is reached at the grain boundary by Wulfinghoff and Böhlke (2013).

5.6 Conclusions

The numerical simulation work presented in this chapter was intended to provide an insight
into the prediction of the stored energy and evolution of TQC in single and poly-crystalline
FCC metallic materials. The following conclusions can be drawn from the study:

• It is necessary to check the positivity of the residual dissipation in the local balance
equation. Failure to do so can violate the first and second laws of thermodynamics.
We analytically demonstrated using simplified cases that the positivity of the residual
dissipation rate in dislocation density-based models could be ensured by imposing
constraints on the model parameters.

• The numerical prediction of stored energy and TQC for aluminum and copper single
crystals (<001> and <111> crystal orientations) is performed using the classical

154



crystal plasticity model. The predicted TQC values for aluminum and copper single
crystals are higher than the common value of 0.9. The experimentally measured
average TQC values from the work of (Rittel et al., 2012) for single crystals copper
having <123> orientation was in the range of 0.2−0.3 in quasi-static deformation
while 0.65− 0.85 in high-strain rates deformation. However, in the present study
numerically predicted values are in the range of 0.95−0.98 for both quasi-static and
high strain rate deformation. This suggests that a reliable dislocation density-based
model is necessary to predict the dislocation density and consequently the stored
energy and TQC in line with the experimental measurements.

• In the polycrystalline simulations, the role of an ad-hoc factor ξ is discussed. The value
of ξ = 1 underestimates the predicted stored energy compared to the experimentally
measured values for the austenitic steel. On the other hand, predicted stored energy
with ξ = 10 shows good agreement with the experimentally measured values.

• A comparison of the predicted stored energy considering the contribution of SSDs
only to that of the prediction made by considering the contribution of both SSDs and
GNDs is carried out using the intermediate grain boundary conditions. It is found that
the predicted stored energy is moderately higher in a latter consideration.

• The microhard grain boundary conditions show too strong response compared to
experimental results. The material hardening parameters which takes into account
the contribution of SSDs should be calibrated using the classical crystal plasticity
model for single crystals. The calibration of gradient parameter A and consequently
the characteristic length scale which takes into account the contribution of GNDs
should be performed using the micromorphic crystal plasticity model based on the
experimental stress-strain responses obtained using different grain sizes.
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Chapter 6

Implementation of micromorphic
plasticity theory in commercial FE
software

The work presented in this chapter is performed by collaborating with ESI Group and
Raffaele Russo (ESR5), a Ph.D. student at the University of the Basque Country - UPV/EHU
and Mines ParisTech.

Abstract

Good quality manufacturing operation simulations are essential to obtain reliable numerical
predictions of the processes. In many cases, it is possible to observe that the deformation localizes
in narrow areas, and since the primary deformation mode is under shear, these areas are called
shear bands. In classical continuum mechanics models, the deformation localization may lead to
spurious mesh dependency if the material locally experiences thermal or plastic strain softening.
One option to regularize such a non-physical behavior is to resort to non-local continuum mechanics
theories. This paper adopts a scalar micromorphic approach, which includes a characteristic length
scale in the constitutive framework to enforce the plastic strain gradient theory to regularize the
solution. Since many manufacturing process simulations are often assessed through finite element
methods with an explicit solver to facilitate convergence, we present an original model formulation
and procedure for the implementation of the micromorphic continuum in an explicit finite element
code. The approach is illustrated in the case of the VPS explicit solver from ESI Group. According to
the original formulation, we propose an easy way to implement a scalar micromorphic approach by
taking advantage of an analogy with the thermal balance equation. The numerical implementation
is verified against the analytical solution of a semi-infinite glide problem. Finally, the correctness of
the method is addressed by successfully predicting size effects both in a cutting and a bending tests.

This chapter has been submitted to a journal.
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6.1 Introduction

The micromorphic scheme has been proven to be a straightforward and relatively simple
procedure to govern an additional degrees of freedom or additional state variables of the
continuum to achieve non-local regularization effects (Forest, 2009, 2016b). It has been used
already in several other contributions (Poh et al., 2011; Anand et al., 2012; Mazière and
Forest, 2013; Saanouni and Hamed, 2013; Diamantopoulou et al., 2017; Davaze et al., 2021).
Among the cited works, the only ones to adapt and implement the micromorphic approach
for an explicit time-dependent problems can be found in (Saanouni and Hamed, 2013;
Diamantopoulou et al., 2017; Davaze et al., 2021). These authors presented a time-dependent
framework, in which the governing equations for the micromorphic variables include
a second-order time derivative of the micromorphic variables. Additional coefficients
associated with this term were included to characterize the inertia of the micromorphic
variables, a role that is usually assigned to the density of the governing equations of
displacement fields. Furthermore, (Davaze et al., 2021) included some dissipation terms
associated with the first-order time derivative of the micromorphic variable in governing
equation so to avoid any oscillation of the solution caused by the form of the partial
differential equation (PDE) (specifically induced by the presence of a second-order time
derivative term). They used the theory to achieve mesh-regularization for fracture growth
simulations in metals. Exploring the extent of such an approach for manufacturing
operation simulations was not their target.

In this work, we make use of a scalar micromorphic approach to govern the strain
gradient effect and to restore mesh independency. The classical continuum mechanics
model is enhanced with one additional degree of freedom. The governing equation for
such an additional variable will be directly derived by the definition of an internal power.
The micromorphic approach will be used to control the distribution of the cumulative
plastic strain. Therefore, the additional degree of freedom will be enforced to follow this
quantity through a penalty term.

In this context, our contribution aims at investigating the size effect predictions and
regularization properties of a time-dependent strain gradient plasticity theory. This theory
is implemented through a scalar micromorphic framework using an explicit formulation, in
which a viscous micromorphic-related variable is included, but no micromorphic inertia is
present. The main novelty of the proposed method lies in the easiness of the implementation
of the theory in an already-well-structured finite element solver. The framework that we
will present can, in fact, simply be solved through a common thermal-field solver, and such
crucial aspect will be properly addressed in the present chapter.

The formulation of the analytical model is provided in section 6.2 in which both the
kinematics and the energetic aspects of the theory are presented, alongside its thermo-
dynamic description, so that the recoverable and dissipative contributions are explicitly
stated as such. The section concludes with the pivotal analogy between the thermal and the
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micromorphic balance equations, which further simplifies any possible implementation of
the theory in a FE software.

The layout of the chapter is as follows. Section 6.3 will be used to present a simple
analytical solution that will be useful to verify the implementation of the model in a
finite element framework. Finally, in Section 6.4 the numerical method will be used to
simulate two manufacturing operations in which significant strain gradients effect are
expected to take place, namely the shear/trimming operation and the bending test. The
mesh-dependency will be analyzed, along with the size-effect in terms of cumulative plastic
strain distribution. Conclusion follow in section 6.5.

6.2 Theoretical formulation: Micromorphic plasticity in ex-
plicit scheme

In this section, the theoretical formulation of the micromorphic plasticity model imple-
mented in the explicit FE software VPS/Pam-Crash® from ESI is presented. At first, the
kinematics of the theory will be provided, from which the balance equations can be derived,
the definition of the Helmholtz free energy, and of the Clausius-Duhem inequality will fol-
low. Finally, the section will conclude with the numerical implementation of micromorphic
theory in VPS explicit.

6.2.1 Kinematics and balance equations

The kinematics of the model follows the one commonly used in the classical continuum
mechanics. The second-order strain tensor is defined as

ε
∼
= sym[u⊗∇], (6.1)

with u being the displacement vector and ∇ denotes the gradient of a vector. Furthermore,
the total strain tensor is additively decomposed into an elastic part ε

∼

e and a plastic part ε
∼

p

as follows:
ε
∼
= ε
∼

e+ε
∼

p, (6.2)

ε̇
∼
= sym[v⊗∇]. (6.3)

where v is the velocity vector. Two types of DOF are applied to the material point:
the classical displacement vector u and the additional scalar micromorphic variable pχ
associated with the cumulative plastic strain p through the penalty term Hχ. Then every
node is endowed with 3 displacement and 1 micromorphic variable:

DOF = {u,pχ}. (6.4)
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Based on the definition of the strain and micromorphic variable, we can write the internal
and kinetic power densities of the body as dependent on the strain, the micromorphic
variable and its gradient:

p(i) = σ
∼

: ε̇
∼
+ a∗ ṗχ+b∗ ·∇ ṗχ, (6.5)

p(k) = ρü · u̇, (6.6)

where ρ is the mass density and ü is the acceleration vector. The parameters a∗ and
b∗ are generalized stresses associated with the micromorphic variable and its gradient,
respectively. In this formulation, the densities of power generated by external forces and
contact forces can be written as follows:

p(e) = f (e)
· u̇+ aeṗχ+ be

·∇ṗχ, (6.7)

p(c) = f c
· u̇+ acṗχ, (6.8)

with f e being the density of body force, ae and be are the generalized body stresses associated
to pχ and its gradient, respectively. In addition, f c and ac are the classical traction and the
micromorphic traction, respectively. The contact power density defined in Eq. (6.8) clearly
states that the gradient of the micromorphic variable is not linked to any boundary effect.
The global power balance law can be written as:∫

Ω

(
p(i)+p(k)

)
dΩ=

∫
Ω

p(e)dΩ+
∫
∂Ω

p(c)dS, (6.9)

which, through Eq. (6.5), (6.6), (6.7) and (6.8), transforms into:∫
Ω

u̇ · [−σ ·∇− f e+ρü]dΩ+
∫
Ω

ṗχ[(be
−b∗) ·∇+ a∗− ae]dΩ (6.10)

+

∫
∂Ω

u̇ · [− f c+σ
∼
·n]dS+

∫
∂Ω

ṗχ[−ac+ (be
−b∗) ·n]dS = 0.

Based on the principle of virtual power (Forest, 2009), the equilibrium equations are
obtained as: 

ρü = σ
∼
·∇+ f e,(

b∗− be
)
·∇ = a∗− ae,

(6.11)

(6.12)

There is a possibility here to explicitly define the kinetic and damping energy of the continuum as
function of the micromorphic variable as well. Such type of descriptions have already been proposed by
other researchers, for instance, in (Nedjar, 2001; Saanouni and Hamed, 2013; Davaze et al., 2021). In the
present work, however, we will include instead a viscous contribution of the micromorphic variable in the
constitutive model of the continuum.
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which are bounded by the following Neumann boundary conditions:


σ
∼
·n = f c,(
b∗−be

)
·n = ac,

(6.13)

(6.14)

where n is the outer normal to the surface closing the domain Ω.

6.2.2 Helmholtz free energy potential

The constitutive model of the medium characterizing the shape of both the classical and
the generalized stresses are provided via the definition of their associated potential. The
free energy density function is assumed to depend on the following state variables:

Ψ{ε
∼

e,p,pχ,∇pχ}, (6.15)

namely, the elastic strain ε
∼

e, the cumulative plastic strain p, the micromorphic variable pχ,
and its gradient ∇pχ. The chosen potential has the form:

Ψ(ε
∼

e,p,pχ,∇pχ) =
1
2
ε
∼

e :Λ
≈

: ε
∼

e+Ψ̃(p)+Ψ̃(p,pχ,∇pχ) (6.16)

where Ψ̃(p) is the plastic contribution to the Helmholtz free energy (in case of harden-
ing/softening it accounts for the expansion/shrinking of the yield surface in the stress space).
The following linear isotropic plastic behavior is assigned to the material:

Ψ̃(p) =
1
2

Hp2, (6.17)

with H being the hardening modulus. A simple quadratic potential gives

Ψ̃(p,pχ,∇pχ) =
1
2

Hχ(p−pχ)2+
1
2
∇pχ ·A

∼
·∇pχ (6.18)

where A
∼

is the gradient parameter assumed to be constant in space such that A
∼
= AI

∼
.

Moreover, nonlinear hardening laws are possible but not considered here for simplicity.

6.2.3 Clausius-Duhem inequality

Expanding the time derivative of Helmholtz free potential with respect to the variables on
which it depends, and by retrieving the additive elasto-plastic decomposition of the strain,
the Clausius-Duhem inequality reads:(

σ
∼
−
∂Ψ̃
∂ε
∼

e

)
: ε̇
∼

e+σ
∼

: ε̇
∼

p+

(
a∗−
∂Ψ̃
∂pχ

)
+

(
b∗−
∂Ψ̃
∇pχ

)
·∇ṗχ−

∂Ψ̃
∂p

ṗ ≥ 0. (6.19)
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Based on the Clausius-Duhem inequality following state laws can be derived:

σ
∼
=
∂Ψ̃
∂ε
∼

e = Λ≈ : ε
∼

e, b∗ =
∂Ψ̃
∇pχ
, XR =

∂Ψ̃
∂p
, (6.20)

with XR as the thermodynamic force associated to variation of the cumulative plastic
strain. Regarding the dissipation produced by variation of the micromorphic variable, its
positiveness can be ensured, as originally suggested by Gurtin (1996) and Forest (2009), by
imposing that the generalized stress possesses a recoverable part and a dissipative part
that depends on ṗχ itself:

a∗ =
∂Ψ̃
∂pχ
+Cχṗχ, (6.21)

where Cχ is a parameter related to viscous micromorphic effects. The residual dissipation
rate can now be written as:

σ : ε̇p
−XRṗ+Cχṗ2

χ ≥ 0. (6.22)

The positiveness of the new parameters A and Cχ then ensures the positive definiteness of
the micromorphic contributions in the free energy density and in the dissipation rate.

6.2.4 Partial differential equation governing the micromorphic variable
and enhanced hardening law

By considering the explicit definition of the Helmholtz free energy potential given in
Eq. (6.18), the generalized stresses reads:

a∗ = −Hχ
(
p−pχ

)
+Cχ ṗχ, b∗ = A∇pχ. (6.23)

The previous equation indicates that the micromorphic variable pχ and the cumulative
plastic strain p are related to each other through the penalty term Hχ. In order for the
micromorphic variable to closely match the value of the cumulative plastic strain, it is
necessary to ensure that the value of Hχ is relatively large. At this stage, it is possible
to re-write the additional PDE governing the micromorphic distribution by plugging the
selected constitutive behavior into it. In absence of higher-order body forces (ae and be),
Eq. (6.12) can be written as:

Cχṗχ = A∇2pχ+Hχ
(
p−pχ

)
, (6.24)

where ∇2 indicates the Laplacian. The previous equation represent the only additional
equation that must be solved combined with the ones governing the displacement fields.

Previous researchers already explored the potential of the micromorphic theory in
rate-dependent analysis under explicit integration schemes using a modified version of
Eq. (6.24). For instance, (Saanouni and Hamed, 2013) proposed a theory in which the
the second-order time derivative of pχ takes the place of the first-order time derivative in
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Eq. (6.24). Therefore, in analogy with the PDE governing the displacement fields, a form
of inertia was associated to the micromorphic variable, whereas, in case of the present
investigation, a viscous term associated to the micromorphic variable is considered. The
PDE governing the micromorphic field can be rewritten as:

Cχ
Hχ

ṗχ = ℓ2∇2pχ+ (p−pχ) with, ℓ =

√
A

Hχ
, (6.25)

with ℓ being the characteristic length scale endowing the theory with the regularization and
capturing size–dependent strengthening property. To fully solve (6.25), it must be coupled
with a constitutive model for the plastic behavior of the medium. Starting from the yield
function:

f (σ
∼
,XR) = σeq−σ0−XR, (6.26)

where σeq is the von Mises equivalent stress measure and σ0 is the initial yield stress.
Assuming associated plasticity and the normality rule to hold, the rate of the plastic strain
can be written as:

ε̇
∼

p = ṗ
∂ f
∂σ
∼

= ṗn
∼
, (6.27)

and the dissipation in Eq. (6.22) takes the form:

(σ
∼

: n
∼
−XR) ṗ+Cχṗ2

χ ≥ 0, (6.28)

and in case of plastic loading:

(σeq−XR) ṗ+Cχṗ2
χ = σ0 ṗ+Cχṗ2

χ ≥ 0. (6.29)

The thermodynamic force associated with the cumulative plastic strain can be given as
follows:

XR =H p+Hχ(p−pχ). (6.30)

6.2.5 Micromorphic-thermal analogy

The comparison between the scalar micromorphic model described in the previous section
and the classical thermo-mechanical theory will be outlined here. The development of
the latter theory will not be fully reported, but we will make use of the main governing
equations of the thermal field to draw the comparison with the micromorphic theory
previously developed. On the one hand, the additional variable in the present theory, pχ,
ought to be solved through the PDE (6.24), whereas, on the other hand, the additional
degree of freedom of the classical thermo-mechanical theory, that is temperature T, must
be solved through a different PDE, and here the two equations are reported (where the
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Table 6.1 Analogy between the micromorphic gradient plasticity model and thermal
analysis.

Micromorphic Heat

DOF pχ T

Constitutive law b∗ = A∇pχ q = −kt∇T

Balance law Cχṗχ = A∇2pχ+Hχ
(
p−pχ

)
ρCεṪ = kt∇

2T+ r

Fourier conduction law is assumed to be valid for the heat flux)

Cχṗχ = A∇2pχ+Hχ(p−pχ), (6.31)

ρCεṪ = kt∇
2T+ r, (6.32)

where Cε is the specific heat capacity of the material, r is a source term and kt is the
thermal conductivity of the material, that we assumed to be independent from temperature.
Although the two equations are used to govern completely different fields, a straightforward
parallelism among them can be identified. In Table 6.1, a comparison between different
aspects of the two theories are reported. The analogy between these two theories inspired
the idea of adapting an already implemented numerical resolution scheme (meant to be
used for the thermal field) for the micromorphic variable. The main objective of the present
investigation is, in fact, the analysis of the feasibility of such idea. The main advantage
of the proposed method is that the micromorphic theory can be easily implemented in
an explicit resolution scheme, while requiring very limited access and marginal effort in
modify the original code. This aspect obviously makes the implementation of this theory
more attractive than others methodology which would require high level of accessibility
to the main solver, since both new element and material definitions would need to be
developed. Such an analogy has been used in the past for coupling chemical diffusion
and mechanics in the implicit version of ABAQUS (Diaz et al., 2016). The analogy has
also been recognized and used to implement gradient plasticity and gradient damage
models in the implicit version of the code ABAQUS (Seupel et al., 2018). Note that in these
implementations, the viscous term, i.e. the transient term proposed in the present work, is
absent.

The two PDEs are in fact so similar that in order to solve for the micromorphic variable,
instead of the temperature, only two minor modifications need to be done. Given the
comparison between the two PDEs (Eq. (6.31) and Eq. (6.32)), and given the form of the
yield function in Eq. (6.26), the elements that require non-trivial modifications are the source
term r and the yield radius: the former has to coincide with the difference between the
cumulative plastic strain and the micromorphic variable (amplified by the Hχ parameter),
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and the latter has to take into account the extra hardening due to the micromorphic variable:

r =Hχ(p−pχ), (6.33)

f = σeq−σ0−H p−Hχ(p−pχ), (6.34)

whereas the coefficients present in the thermal balance equation can be easily substituted
with the parameters characterizing the micromorphic PDE. Implementing the condi-
tions (6.33) and (6.34) represents the only real, yet minor, effort that is required to make
use of the present theory, assuming the existence of a thermal solver and the possibility of
applying small modifications.

6.2.6 Influence on the Cχ parameter

The additional parameter Cχ naturally arises from the development of the chosen consti-
tutive material model for the generalized stress a. In order to obtain the final form of the
governing Eq. (6.24), so that the thermal-micromorphic analogy is valid, the presence of the
Cχ parameter is required, and it should not vanish in the case of the implementation of the
transient problem. However, from the analysis of Eq. (6.23), it is clear that the parameter Cχ
regulates the development of the viscous part of the micromorphic variable, and therefore
that a viscous part of the micromorphic variable exists. Being this an additional material
parameter, the question on the calibration of such value must be addressed.

The purpose of using the micromorphic analysis, in the present investigation, is to gain
indirect control on the distribution of the cumulative plastic strain and its gradient, thus the
constraint on the micromorphic variable to closely follow the value of the cumulative plastic
strain through the penalty parameter. The present theory also accounts for the development
of viscous stresses generated by non-negligible strain rates, and the micromorphic variable
follows the value of the cumulative plastic strain, regardless of whether the plastic strain
increment is caused by quasi-static or viscous stresses. The adoption of large values of the
Cχ parameters (compared to Hχ) would allow the viscous part of the micromorphic variable
to produce additional meaningful generalized stress (see Eq. (6.23)), therefore altering the
value that it should have, based only on the difference between micromorphic variable and
cumulative plastic strain (effectively producing the same stress as if this difference was
larger). Therefore, too large values of Cχ would somehow corrupt and interfere with the
equivalence between cumulative plastic strain and micromorphic variable. On the contrary,
by neglecting any meaningful contribution of the viscous micromorphic term to exist, we
lose the analogy with transient thermal analysis proposed here for the implementation.

Therefore, for the present investigation, the Cχ parameter must exist, so that the thermal-
micromorphic analogy holds, but its value should not be too large. The allowed magnitude
for this parameter will be tested by checking an analytical solution in the static case,
considered in Section 6.3.1.
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6.2.7 Numerical implementation

The micromorphic plasticity model has been implemented in VPS Explicit (Group et al.,
2000), a FE software developed by ESI Group solving both dynamics and heat problems.
In order to account for the large deformation expected during manufacturing operations,
the theory has been developed according to the VPS standard method, that is, using
rate-type constitutive equations. This does not alter the theory so far presented, since the
micromorphic part remains unchanged. The additive decomposition is applied to the strain
rate tensor D

∼
, which can be split into an elastic D

∼

e and a plastic contributions D
∼

p:

D
∼
=D
∼

e+D
∼

p. (6.35)

The elastic constitutive model is rewritten by means of a hypoelasticity relation:

σ̊
∼
= Λ
≈

: D
∼

e, (6.36)

where σ̊
∼

is the Jaumann stress rate, and it can be re-written as:

σ̊
∼
= σ̇
∼
−W
∼
·σ
∼
+σ
∼
·W
∼
, (6.37)

where W
∼

is the spin tensor. The FE solution is obtained by establishing the weak form
of Eq. (6.11) and (6.12) using the Galerkin method. The dynamic balance equation (6.11)
is weighted with the test velocities u̇ whereas the micromorphic balance equation (6.12)
is weighted with the test micromorphic variable rates ṗχ. Integration over the domain is
achieved by the use of the divergence theorem to lower the order of the derivatives. The
natural boundary conditions are incorporated as forcing terms, leading to the equations
to be discretized by finite-element interpolations. The discretization of the displacement
and micromorphic fields over the domain is achieved by using proper-order interpolation
functions. The following algebraic equations are derived:

M
∼

m · ü = Fext−Fint, (6.38)

C
∼
χ · ṗ

χ
= ar− aint, (6.39)

where M
∼

m is the mass matrix, Fext is the vector of external nodal forces, Fint is the vector
of internal nodal forces, C

∼
χ is the viscosity parameter matrix, ar is the vector containing

the nodal generalized forces generated by the source terms and aint is the vector of nodal
generalized forces induced by Laplacian of the micromorphic variable. In Eq. (6.39) the
similarity with the discretized algebraic equation to solve the heat equation in thermal
analysis can be appreciated once again. In fact, VPS Explicit uses the same form of equation
to solve the heat equation:

C
∼
· ṪN =Q

∂Ω
+Q

Ω
−Q

K
, (6.40)

165



where TN is the nodal temperature vector, C
∼

is the heat capacity matrix, Q
∂Ω

is the nodal
heat flow depending on the heat flux on the outer surface ∂Ω, Q

Ω
is the nodal heat flow

depending on the internal heat source and Q
K

is the internal nodal heat flow depending on
the heat flux inside the domain Ω.

A central difference explicit scheme associated to the lumped mass matrix is used to
solve Eq. (6.38), whereas a forward Euler scheme associated with the viscosity lumped
matrix is implemented to solve Eq. (6.39). A weak micromorphic-mechanical coupling is
implemented in VPS Explicit, that is, the two equations are solved separately. The micro-
morphic field influences the plastic behavior of the continuum (through condition (6.33)),
and, in return, the cumulative plastic strain (the difference between the cumulative plastic
strain and the micromorphic variable) acts as a source term in the micromorphic balance
equation (in condition (6.34)).

Regarding the mechanical behavior, a user material routine implements the mechanical
model as previously defined. The values of the micromorphic variables at the Gauss
quadrature points are interpolated by mean of the interpolation functions from the nodal
values. So the user material routine not only integrates the mechanical behavior but also
computes the source term Hχ(p− pχ) at the Gauss points. Regarding the micromorphic
treatment, a specific function is developed inside the thermal solver in order to recover the
source term from the material computations previously evaluated. The main algorithmic
steps of the explicit resolution over a time step ∆t may be summarized by the following
scheme:

Algorithm 1 Algorithmic steps of the explicit resolution scheme implemented in VPS
Explicit.
Mechanics: at time tn, compute M

∼
m, Fext and Fint;

Micromorphic: at time tn, compute C
∼
χ, ar and aint;

Stability condition: compute the time step ∆t;
Micromorphic: explicit time integration, compute pχt1 ;
Mechanics: explicit time integration, compute u̇n+1/2 and u̇n+1;
Next Step: compute tn+1 = tn+∆t.

6.3 Validation of the implemented numerical model

6.3.1 Analytical solution

The analytical solution is developed for the rate-independent static case as a reference for
validation of the FE scheme at the static limit. It is inspired from similar solution proposed
by Mazière and Forest (2015); Scherer et al. (2019, 2020). Further to that, similar solution in
the context of crystal plasticity model can be found in section 4.3.1. Consider a periodic
strip made of a thick rectangular plate of the width W along X1 direction, the length L along
X2 direction, and the thickness T along X3 direction (cf. Fig. 4.1) undergoing simple shear.
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A macroscopic deformation ε̄ is applied such that

u = ε̄
∼
·X+ν(X), with ε̄

∼
= ε̄12(e1⊗ e2+ e2⊗ e1), (6.41)

where ν is the periodic displacement fluctuation. Due to equilibrium conditions, the shear
stress component is homogeneous so that the equivalent stress σeq is invariant along X1, X2
and X3, hence

σeq(X1,X2,X3) = σeq. (6.42)

The yield condition including the linear softening term and the micromorphic contribution
(with Cχ = 0 here) can be written as

f = σeq− (σ0+Hp+Hχ(p−pχ)) = 0 with H < 0. (6.43)

The PDE governing the micromorphic variable is given by

A
∂2pχ
∂X2

2

=Hχ(pχ−p). (6.44)

Elimination of the variable p in the previous equation by means of the yield condition (6.43)
leads to the following form of the PDE to be solved for pχ:

A
∂2pχ
∂X2

2

−
HHχ

H+Hχ
pχ+

Hχ
H+Hχ

(σeq−σ0) = 0. (6.45)

In case of linear softening (6.45) takes the form

∂2pχ
∂X2

2

−

(
2π
λ

)2

pχ = −
(

2π
λ

)2

κ, (6.46)

where λ is the characteristic width of the deformation zone. The PDE (6.46) governing pχ is
only valid in the region X2 ∈ [−λ2 ,

λ
2 ] and the solution is of the form given in Eq. (4.50).

For symmetry reasons, pχ(X2) = pχ(−X2) leads to α2 = 0. At the elastic/plastic interfaces,
i.e at X2 = ±

λ
2 , continuity of micromorphic variable pχ and of the generalized stress normal

to the interface M ·X2 must hold, hence

pχ

(
±
λ
2

)
≃ p

(
±
λ
2

)
= 0, (6.47)

M
(
±
λ
2

)
·X2 = A

dpχ
dX2

∣∣∣∣∣
X2=±

λ
2

= 0. (6.48)
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where we make the approximation that pχ is sufficiently close to p, i.e. that the penalty
coefficient is large enough. Combining (6.47) and (6.48) with (4.50) leads to

α1 =
(σeq−σ0)

H
. (6.49)

The constants λ is as given in Eq. (4.49) and κ are defined by

κ =

(
λ

2π

)2 Hχ
A(H+Hχ)

(σeq−σ0). (6.50)

Moreover, the equivalent stress is expressed as

σeq =
µ

L

∫ L
2

−L
2

(
ε12−p

2

)
dX2, (6.51)

where µ is the elastic shear modulus. From the yield condition, p can be replaced by
σeq−σ0+Hχpχ

H+Hχ
in Eq. (6.51) and integration gives an expression for σeq as a function of

applied macroscopic shear ε̄12 and then the uniform shear stress writes

σeq =
ε̄12+

σ0
Ze

1
µ +

1
Ze

, with
1

Ze
=
λ

HL
. (6.52)

6.3.2 FE solution

The FE simulations are performed with a periodic strip subjected to shear loading. The
associated 2D coordinate system and geometry are shown in Fig. 4.1. The strip has been
meshed with 3D 8-nodes elements onto which plane strain conditions were applied by
imposing zero out-of-plane displacement to all the nodes. The nodes at the bottom of the
strip (X2 = −L/2) were clamped along X1 and X2. The nodes on the top surface (X2 = L/2)
were clamped along X2 and a Dirichlet type of boundary condition was applied along X1

whereas the displacements along X2 were fixed. Linear shape functions have been used to
interpolate the nodal fields, and full integration schemes have been used for the material
behavior. Numerically, in order to trigger the strain localization in a periodic strip, a small
defect is introduced at the centre (Fig. 4.1). The defect is one element having an initial yield
stress 3% less than the matrix. Isotropic elasticity is considered. The material parameters
used for the analytical solution and FE simulations are presented in Table 6.2.

Fig. 6.1a and 6.1b show the cumulative plastic strain fields with the classical and
micromorphic plasticity models using two different mesh discretizations, namely the
coarse and the fine mesh (using 101 and 303 elements respectively). The classical plasticity
model exhibits pathological mesh dependency and width of the formed shear band always
collapse to one element irrespective of the mesh size. In contrast, the width of the formed
shear band with the micromorphic model is finite and independent of the mesh size. This
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Table 6.2 Numerical values of material parameters used for the simulation of a periodic
strip undergoing simple shear.

E ν ρ
σ0

Eq. (6.43)
H

Eq. (6.43)
Hχ

Eq. (6.43)
75 GPa 0.3 2.8×103 Kgm−3 100 MPa -500 MPa 106 MPa

A
Eq. (6.24)

Cχ
Eq. (6.24)

L
Eq. (6.52)

0.08N 90 MPa.s 1.0 mm

indicates the capabilities of the implemented micromorphic theory in an explicit scheme
to solve the shear strain localization problem. Furthermore, the cumulative plastic strain
variation along X2 obtained from the FE solution is validated against the analytical solution
developed for the rate-independent case (cf. Eq. (4.50)), see Fig. 6.2a. The FE simulation is
validated for ε̄12 = 0.01. Moreover, simulations are performed by changing the simulation
time while keeping the same applied total shear strains. Fig. 6.2b shows that the perfect
agreement with an analytical solution is obtained for t = 10 sec. which corresponds to
low enough strain rate to make the viscous contribution in 6.25 negligible. Larger strain
rates are seen to limit the localization since the maximum strain in the band decreases for
increasing strain rates. Since the total strain is imposed, this means that a higher elastic
strain compensates the lower plastic strain which means that stress values are higher.

In order to retrieve the quasi-static solution, also the viscous parameter Cχ have to be
chosen small enough. The reason is to minimize as much as possible any viscous-like
component of the generalized stress a∗ in Eq. (6.23) to retrieve the rate–independent solution.
Metals at high temperatures are known to be strain rate sensitive. This effect is generally
taken into account by means of an appropriate visco-plastic flow rule, for instance based on
a Norton-type power law. In the present work, rate-independent plasticity only has been
considered but the generalization to visco-plasticity is straightforward in the proposed
framework. Note that the proposed model presents an additional strain rate sensitivity,
via the viscosity parameter Cχ. This will require appropriate calibration for instance using
strain field measurements during localization.

6.4 Numerical examples

In this section, the applicability of the implemented scalar micromorphic strain gradient
theory is tested for two additional cases: a shearing operation process and a bending test.
The aim of this section is to exploit the analogy explained in section 6.2.5, whose numerical
implementation has been previously presented, to prove that simulations of manufacturing
operations using the micromorphic continuum under an explicit integration scheme can be
successfully performed.
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(a) (b)

Fig. 6.1 Localization of plastic strain in a periodic strip undergoing simple shear for
two different mesh sizes (fine and coarse) using the (a) classical plasticity model, and (b)
micromorphic plasticity model.

(a) (b)

Fig. 6.2 Bending tests using micromorphic plasticity model: (a) cumulative plastic strain
field during bending process, and (b) normalized bending moment vs. rotation angle for
different values of high-order modulus A.
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Industry best practice discourages the employment of complex numerical methods to
produce simulations, mainly to guarantee a high degree of reliability of the results and
computational efficiency in terms of CPU time. Regarding this reasonable concerns, the
results that will be presented here are to be considered as proof of the simplicity of the
method, which requires only one additional parameter to be calibrated, that is A (see the
discussion on the Cχ parameter in section 6.2.6).

As previously explained in the introduction, the relevance of the application of regu-
larization procedures in manufacturing operations is vital, especially in cases in which
the thermal power has a major presence. Thermal softening can take place when high
rates of plastic strain are produced, and similar softening can be reproduced by assigning a
negative slope to the hardening function in Eq. (6.30). The regularization potential of the
proposed method is investigated in the shearing operation section. Moreover, one of the
missing features of the classical continuum mechanics is the capability of predicting any
size effect. This becomes of major relevance whenever the deformation localizes is small
regions or in the case of forming of micro-components (Zhu et al., 2020; Li et al., 2009). The
ability of the proposed method to capture the size effect is proven in the bending section.

6.4.1 Shearing operation

The shear band formation is a commonly observed phenomenon in manufacturing opera-
tions in case of heavy deformation, for instance, high-speed shaping, forging, machining,
and several other processes (Molinari et al., 2002; Burns and Davies, 2002). Numerically,
the shear band simulation shows spurious mesh dependency when we consider a classical
plasticity approach with strain softening. Dynamics combined with viscosity or/and heat
conduction are known to provide regularization but the involved length scales are often
too small for efficient FE modeling so that strain gradient or micromorphic plasticity is
still useful to introduce physically more realistic length scales (Stathas and Stefanou, 2021;
Wcisło and Pamin, 2017). Shearing operation is most commonly used in the metal forming
industries for sheet metal cutting. In this section, the implemented micromorphic approach
is used for the regularization of shear band formation in shearing operation.

The shearing operation is performed on a sheet of 5 mm thickness under plane strain
conditions with one element across the width. The geometry and applied boundary
conditions are shown in Fig. 6.3. The sheet has been meshed with 3D 8-nodes elements
with linear shape functions and full integration schemes. The lower tool is fixed, while
velocity is applied to the upper tool in the downward direction. At the initial deformation
stage, a linearly increasing velocity up to 4mms−1 is applied. Once the velocity of 4mms−1

is achieved, it is kept constant in the later stage of the deformation. The contact between the
deformable sheet and tools is taken into account using a constant coefficient of friction 0.3.
The tools are considered as rigid bodies, while the sheet is assigned with an elasto-plastic
material behavior using linear strain softening. Isotropic elasticity is considered. The used
material parameters in the numerical simulations are presented in Table 6.3.

171



Table 6.3 Numerical values of material parameters used for the simulation of the shearing
operation.

E ν ρ
σ0

Eq. (6.43)
H

Eq. (6.43)
75 GPa 0.3 2.8 ×103 kgm−3 100 MPa -500 MPa

Hχ
Eq. (6.43)

A
Eq. (6.24)

Cχ
Eq. (6.24)

106MPa [128, 320, 800] N 90 MPa.s

Fig. 6.3 Geometry used for the shear operation simulation..

At first, simulations are performed with classical plasticity using two different mesh
discretizations: the coarse mesh and the fine mesh, with 3200 and 105600 nodes in the shear
region, respectively. The limitation of the classical plasticity model, known as pathological
mesh dependency in the strain localization problem can be observed from Fig. 6.4a and 6.4e
by the contours of the cumulative plastic strain. The magnitude of the cumulative plastic
strain is different for two different mesh discretizations, and it increases with finer mesh.
Furthermore, the observed width of the shear band is different for two different mesh
discretizations and it always collapses to one element size irrespective of the mesh size. In
contrast, the formed width of the shear band using the micromorphic approach is finite
and does not depend on the mesh density as seen from Fig. 6.4b and 6.4f. In addition, the
magnitude of the cumulative plastic strain reaches asymptotic values while reducing the
mesh size. Furthermore, the effect of the diffusivity coefficient A on the shear band widths
is investigated. Fig. 6.5 shows the variation of cumulative plastic strain for three different
values of the gradient parameters A, 128 N, 320 N, and 800 N. As the value of A increases
the intensity of plastic strain gradient within the shear region reduces. As expected from
the analytical expression for the length scale in Eq. (4.49), the width of the shear band
increases with an increase in the A value. For the three different values of the A parameter,
128 N, 320 N and 800 N, the observed widths of the shear bands are 2.4 mm, 2.8 mm, and
3.5 mm, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.4 Mesh size effect on the plastic strain localization during shearing simulation using
(a), (c) and the (e) classical plasticity model (b), (d) and the (f) micromorphic plasticity
model. From the top to the bottom, increasing mesh size.
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Fig. 6.5 Effect of the variation of the characteristic length scale on the plastic strain
distribution during shearing simulation.

Fig. 6.6 Geometry and the applied boundary conditions on the beam used for the bending
simulations.

6.4.2 Bending tests

The bending tests are used to verify that the implemented micromorphic model is able to
capture the size effect for hardening plasticity. Many studies have been experimentally
highlighted the presence of extra hardening in the bending moment, whenever the specimen
geometry was reaching sub-micron dimension, approaching grain size. (Fleck et al., 1994)
reported hardening behavior in a copper wire under torsion for wire diameters in the order
of 10−100µm, whereas tensile tests performed on the same wires found no evidence of
size effect. (Stölken and Evans, 1998) designed a micro-bend test to measure the plastic
characteristic length scale associated with the strain gradient, subsequently reporting the
results pertaining to thin (12.5µm 7→ 50µm) Nickel foils.

In Fig. 6.6, the geometry and boundary conditions applied to the specimen are reported.
The specimen has been discretized using 3D type of elements under plane strain conditions.
Linear shape functions are used to interpolate nodal values, and full integration scheme
is used for the elements. One element spans the 1 mm width. The left face of the beam
is fixed, whereas a material rotation is enforced on the nodes of the right face through a
coupling involving the nodes of the right face and an auxiliary node. The resultant bending
moment is probed at the auxiliary node. A total rotation of 45◦ is applied. The size effect
can be experimentally encountered whenever the geometry of the specimen reduces down
to approximately the grain size of the metal. Virtually, the same phenomenon could be
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Table 6.4 Numerical values of material parameters used for the simulation of the bending
test

E ν ρ σ0 H Hχ
75 GPa 0.3 2.8×103 kgm−3 100 MPa 200 MPa 106MPa

A Cχ
128-800 N 103 MPa.s
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Fig. 6.7 Bending tests using micromorphic plasticity model: (a) cumulative plastic strain
field during bending process, and (b) normalized bending moment vs. rotation angle for
different values of high-order modulus A.

achieved by keeping constant the geometry of the specimen and simultaneously increasing
the characteristic length scale. The effectiveness of the formulation in predicting the size
effect through the bending test has been verified by employing the latter method. The
numerical framework previously presented does not explicitly make use of the grain size,
but a characteristic length scale in Eq. (6.25) was identified, and this will serve the same
purpose. The use of larger or smaller characteristic length scale will respectively induce
a stiffer or softer global response of the specimen. Three different values of the gradient
parameter A have been used. The other material parameters used in the simulation of
the bending tests are reported in Table 6.4. In the attempt of replicating a quasi-static
bending test, the chosen value of the Cχ parameters is relatively small, so that any viscous
contribution of the micromorphic variable would be negligible.

In Fig. 6.7a the distribution of the cumulative plastic strain for the bending test using
the micromorphic plasticity model is reported. Besides the edge effect induced by the
boundary condition at the right surface, the solution appears to be invariant along the
longitudinal direction of the strip. The FE solutions obtained using the classical and
micromorphic plasticity models in terms of normalized bending moment vs. applied
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rotation are shown in Fig. 6.7b. The probed bending moment has been normalized with
respect to the first moment of area of the beam cross-section, that is wh h2, where wh is the
width of the rectangular cross-section, and h is the height of the rectangular cross-section.
From Figure 6.7b, it can be appreciated that the classical solution is retrieved by using the
micromorphic approach with a null penalty term Hχ and null gradient parameter A. Three
values of the gradient parameter (respectively three different characteristic lengths scales)
are used for the test: 128 N, 320 N, and 800 N. The curves belonging to the micromorphic
plasticity theory clearly demonstrate the ability of the method to capture the size effect.
The extra hardening reported in Fig. 6.7b follows the same trend as the one relative to the
experimental tests reported by (Stölken and Evans, 1998).

In the case of bending, the micromorphic medium does not need to regularize any
localization phenomenon; rather, it has to predict an additional hardening, as presented in

the manuscript. The characteristic length scale can be identified in this case by ℓ =
√

A(H+Hχ)
|H|Hχ

.
The obtained characteristic length scales using A = 128 N, 320 N, and 800 N are 0.8 mm,
1.26 mm, and 2.0 mm, respectively. These characteristic length scales can be normalized by
the thickness h of the beam. The obtained ℓ/h ratio for A = 128 N, 320 N and 800 N are 0.40
mm, 0.63 mm and 1.0 mm, respectively. Fig. 6.7b shows that for high ℓ/h ratio, i.e. high A
value, stronger response can be predicted.

The plasticity material model used for the bending test is characterized by a linear
hardening behavior (Tab. 6.4). From the analysis of the curves, it can be inferred that
the regularization, and subsequently the size effect, is affecting the solution only in the
plastic regime, whereas the initial elastic stiffness of the curves is the same regardless of the
characteristic length scale used in the model. This is the expected behavior, given the fact
that the present micromorphic plasticity theory regulates the localization of the plastic field.
Thus, there should be no difference between the curves in the elastic regime. In hardening
plasticity, the plastic strain gradient contribution leads to an increased apparent hardening
of the beam in the plastic regime.

6.5 Conclusions

In this chapter, a micromorphic strain gradient plasticity model has been formulated and
implemented in a commercial explicit finite element code in order to perform simulations
of manufacturing operations in time-dependent environments. The reasons to account for
the strain gradient while simulating manufacturing operations deal with regularization of
strain localization phenomena in softening plasticity, on the one hand, and prediction of
size effects in hardening plasticity. The originality of the approach lies in the use of the
micromorphic model instead of strict strain gradient plasticity and in the introduction of a
viscosity contribution to the micromorphic plastic evolution. The advantage of these two
ingredients is that they ease the numerical implementation in a commercial finite element
code by mimicking the transient heat equations. Earlier formulations are based on strict
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strain gradient plasticity without transient term, on the one hand, or on the introduction of
micromorphic inertia instead of the proposed viscous term.

The main outcome of the present research lies in the proof that it is possible to implement
an explicit micromorphic model in a relatively easy and straightforward manner. This was
achieved by slightly modifying the pre-existing routines of material integration and thermal
field resolution in the VPC/PAMCRASH software developed by ESI. This proof of concept
is meant to demonstrate that limited effort is required to implement the micromorphic
theory in any other software that allows for minor modification in their procedures.

The implemented theory has been demonstrated to recover the analytical solution for a
semi-infinite glide layer under quasi-static loading conditions. The supplementary shearing
tests highlighted the need to use of the strain gradient theory in case deformation localizes,
and the typical extra hardening in bending has also been modeled.

Most importantly, it has been proven that the size effect can be predicted with this
method and that manufacturing operations can be simulated with such theory with a
limited increase in computational cost and only one additional material parameter (the
characteristic length). The same model can therefore be used to address regularization
issues in softening plasticity and smaller is harder size effects in microforming. Further work
should be dedicated to develop case studies involving real material data and more complex
3D specimen geometries. In particular the consideration of adiabatic shear banding can
be included in the approach in a way similar to the work done in (Russo et al., 2020a)
whereas full coupling with heat conduction phenomenon would require more intrusive
programming in the considered commercial code.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

Inhomogeneous deformation of micron-scale components shows non-conventional plastic
behavior such as size–dependent strengthening called size effect. It is well known that the
classical crystal plasticity models fail to capture size effects due to the lack of characteristic
length scales in the constitutive framework. This limitation of the classical crystal plasticity
models can be overcome using strain gradient crystal plasticity models. Therefore, the first
objective of this thesis was to predict the size effects in single crystal microwire torsion tests
under severe deformation.

Strain softening, mainly due to the temperature rise, is a common phenomenon in severe
deformation processes, which ultimately results in the formation of an intense shear band
called the adiabatic shear band (ASB). Applications of classical crystal plasticity models
to strain localization problems show spurious mesh dependency. Strain gradient crystal
plasticity models can be used to overcome this limitation of classical crystal plasticity
models. Therefore, the second objective was to investigate the ASB formation process in
single and poly-crystalline FCC metallic materials.

Strain gradient crystal plasticity models, specifically the reduced-order micromorphic
crystal plasticity and Lagrange multiplier-based models, are used to predict the size effect
and investigate the ASB formation process.

Recent experimental studies, for instance (Landau et al., 2016; Mourad et al., 2017;
Longère, 2018), showed that the ASB formation process is influenced by dynamic recrystal-
lization along with thermal softening. Stored energy is the main driving force for dynamic
recrystallization. The prediction of the stored energy and Taylor-Quinney coefficient
(TQC) is essential to understand the plastic deformation and subsequent recovery and
recrystallization processes. Therefore, the third objective of this thesis was to predict the
stored energy and TQC in single and poly-crystalline FCC metallic materials.

The computational cost of strain gradient plasticity models is high due to the additional
degrees of freedom. Therefore, these models have limited applications in practical engineer-
ing problems. Moreover, the numerical implementation of strain gradient plasticity models
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is challenging due to the complicated constitutive framework. Therefore, the final objective
of this work was to propose an easy way to implement this model in commercial FE software.

In the first part of the thesis, the size effects in monotonic loading of the single crystal
microwire torsion tests were predicted using the micromorphic crystal plasticity and
Lagrange multiplier-based models. These are reduced-order models with one additional
degree of freedom called Lagrange multiplier present in the former model compared to
the latter model. The predicted size effect using the Lagrange multiplier-based model
under monotonic and cyclic loading of the microwires was compared with the CurlFp

model proposed by Kaiser and Menzel (2019b). Note that the CurlFp model is a strain
gradient plasticity model and thus should be compared more directly to the Lagrange
multiplier-based model. Moreover, a post-processing technique was used to predict the
SSD and GND density distribution in monotonic and cyclic loading of microwires. To this
end, the reduced-order models were used to develop a scaling law based on the monotonic
loading of the microwires. The main findings of the study were as follows:

• It was shown that both reduced-order models deliver the same response for small
characteristic length scales. However, for large characteristic length scales, the
micromorphic crystal plasticity model shows saturation in torque vs. surface strain
response in contrast to the Lagrange multiplier-based model, which did not show
saturation.

• The predicted size effect using the Lagrange multiplier-based and CurlFp models
were in good agreement for the monotonic loading of the microwire torsion tests.
However, for cyclic loading, the Lagrange multiplier-based model shows isotropic
hardening in contrast to the kinematic hardening shown by the CurlFp model.

• The evolution of SSD and GND density was investigated for monotonic and cyclic
loading of the microwire torsion tests using the Lagrange multiplier-based model. In
cyclic loading, a significant increase in SSD and GND density was observed at the
end of each cycle compared to previous cycles.

• The size effects are characterized by power law relationships between the normalized
torque and R/ℓ, with R being the radius of the microwire and ℓ being a characteristic
length of the model. The scaling laws were developed using the reduced-order
models for monotonic loading of the microwires. The micromorphic crystal plasticity
model showed a power-law with exponent n = −0.6 and −0.85 for Hχ = 104 MPa
and 3×104 MPa, respectively. In contrast, the Lagrangian multiplier-based model
predicted no saturation at small R/ℓ ratios and showed a power law with n = −1.

In the second part of the thesis, a thermodynamically consistent framework for the
classical and micromorphic crystal plasticity models was developed. This framework
was used to investigate adiabatic shear banding in single and poly-crystals FCC metallic
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materials. The formation of ASB was studied using single and poly-crystalline hat-shaped
specimens. The main conclusions drawn from the study were as follows:

• The orientation of the formed ASB with respect to the loading axis in single crystals
was affected by the initial crystal orientation. In particular, one special crystal
orientation is found resistant to shear banding.

• The grain size effect, the finer the grain size the higher the resulting load, was illustrated
in polycrystalline FCC metallic materials using the micromorphic crystal plasticity
model subjected to isothermal deformation.

• The resulting load and the formation of the shear band were highly orientation
dependent in polycrystalline simulations.

In the third part of the thesis, an advanced thermodynamically consistent crystal
plasticity framework was used to predict the stored energy and TQC in FCC metallic
materials. The importance of ensuring the positivity of the dissipation rate was emphasized.
Furthermore, the predictions of stored energy and TQC were performed for single crystals
using the classical crystal plasticity model. As the first application to polycrystalline
simulations, the effect of the mesh size and grain morphology on the average stress-strain
response was studied in detail. Then, the stored energy was predicted for the polycrystalline
austenitic steel, and a comparison was made with the experimental measurements from the
literature. An ad-hoc factor was defined to represent the experimentally measured stored
energy adequately. Finally, the predicted stored energy considering contribution of both
SSDs and GNDs was compared to that obtained by considering the contribution of SSDs
only. The following conclusions were drawn from the study:

• The predicted values of the TQC for single crystals copper and aluminum showed
that a reliable dislocation density-based model is necessary to adequately represent
the experimental measurements.

• In the polycrystalline simulations, the role of an ad-hoc factor was discussed. This
factor was considered as a fitting parameter in order for the predicted stored energy
to agree with the experimental measurements.

• The predicted stored energy by considering contributions of both SSDs and GNDs
was found to be higher than those of SSDs only, but still insufficient to account for
experimental results.

In the last part of the thesis, we proposed an easy way to implement micromorphic plas-
ticity model in a commercial FE software. We used an analogy between the micromorphic
plasticity theory and classical thermo-mechanics for the implementation. This model was
implemented in the explicit finite element software VPS/Pam-Crash® from ESI. The main
conclusions of the study were as follows:
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• It was shown that the micromorphic plasticity theory could be implemented in an
explicit framework in a relatively easy and straightforward manner, with only minor
modifications in their procedures.

• The implemented theory in commercial FE software was able to predict the size effect
and regularize shear band formation.

7.2 Outlook

In the present work, the shortcoming of the reduced-order model to predict the size effect in
cyclic loading of the microwire torsion tests was shown. The simulation of kinematic-type
hardening is, in fact, possible with a reduced-order model using an alternative formulation
in which the free energy potential depends on the gradient of the microslip variable. In
future works, efforts will be devoted to developing this alternative formulation to take into
account kinematic hardening.

In polycrystalline hat-shaped simulations due to high computational costs, only two
grain sizes were considered to predict the grain size effect. Future work will be dedicated
to predict grain size effect considering more number of grains in the shear region of the
hat-shaped specimen. Moreover, heat conduction was neglected in hat-shaped simulations,
although it plays a significant role at the grain scale for the strain rates and grain sizes
considered in this work. Extension of the work considering the coupling of strain gradient
crystal plasticity and heat conduction is therefore necessary in the future to highlight the
competition between characteristic length scales emerging from microstructure and thermal
effects. In addition, grain boundary sliding and decohesion are additional important
deformation and damage mechanisms at high temperatures. They are not included in the
present work, but this is possible as demonstrated in (Musienko et al., 2004). Coupling
strain gradient crystal plasticity and grain boundary sliding/opening remain challenging
tasks.

The work performed on the ASB formation can be extended to more severe loading
conditions (including remeshing techniques) and relate to the experimental results on
machining process at high strain rates obtained by Haythem Zouabi (ESR7). Moreover,
future work will be devoted to implementing a thermodynamically consistent framework
of the classical and micromorphic crystal plasticity models in an open-source automated
massively parallel FEniCS framework in collaboration with Tamara Dancheva (ESR6).

In the present work, the predicted stored energy, which is a function of total dislocation
density, does not adequately represent the experimental measurements from the literature.
The used dislocation density-based model may not be reliable to predict the total dislocation
density evolution and consequently the stored energy. Future work will be devoted to
giving more physical meaning to the dislocation density-based model.
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Moreover, implemented micromorphic plasticity model in explicit FE software VPS/Pam-
Crash® from ESI Group will be applied to the industrial manufacturing processes which
involve strain localization due to the severe deformation, for instance: deep drawing,
stamping, rolling, and so forth.
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Ryś, M., Forest, S., Petryk, H., 2020. A micromorphic crystal plasticity model with the
gradient-enhanced incremental hardening law. International Journal of Plasticity ,
102655doi:10.1016/j.ijplas.2019.102655.
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Appendix A

Slip systems in FCC unit cell and form of
the dislocation interaction matrices

• Slip systems in FCC unit cell

In FCC crystals, the crystallographic slip occurs on the twelve {111}<110> slip systems;
four {111} planes and three <110> directions (Fig. A.1). The definition of the octahedral slip
systems is given in Table A.1.

Fig. A.1 Octahedral slip systems in FCC metallic materials (Guan et al., 2017).

Table A.1 Definition of the octahedral slip systems.

Normal vector n (111) (11̄1) (1̄11) (111̄)
Slip direction m [1̄01] [01̄1] [1̄10] [1̄01] [011] [110] [01̄1] [110] [101] [1̄10] [101] [011]

Slip system index B4 B2 B5 D4 D1 D6 A2 A6 A3 C5 C3 C1
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Form of the dislocation interaction matrices

In FCC single crystals, the matrix hru (r, u=1,2,...,12) has 12×12 coefficients. The matrix hru

is constructed as follows (Ling et al., 2018):

[hru] =



h0 h1 h1 h3 h4 h4 h2 h4 h5 h2 h5 h4

h0 h1 h4 h2 h5 h4 h3 h4 h5 h2 h4

h0 h4 h5 h2 h5 h4 h2 h4 h4 h3

h0 h1 h1 h2 h5 h4 h2 h4 h5

h0 h1 h5 h2 h4 h4 h3 h4

h0 h4 h4 h3 h5 h4 h2

h0 h1 h1 h3 h4 h4

h0 h1 h4 h2 h5

h0 h4 h5 h2

h0 h1 h1

h0 h1

h0



symmetric

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6
A2
A3

A6

B2

B4

B5

C1

C3

C5

D1

D4

D6

(A.1)

For symmetry reason number of coefficients are reduced to 6, i.e. h0−h5. In the matrix
coefficient h0 corresponds to self hardening, h1 to coplanar interaction, h2 to Hirth locks, h3

to collinear interaction, h4 to glissile junctions and h5 to Lomer locks. The matrix bru has the
same structure as hru.
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Appendix B

Single crystal simple shear test

Simple shear test at a finite strain on a single volume element is performed using the classical
crystal plasticity model to study the validity of the used finite deformation constitutive
framework in the present work (cf. chapter 2, section 2.2). The validity of the model is
performed via a brief comparison of the predicted shear stress-shear strain response with
the results presented in (Boukadia and Sidoroff, 1988; J. Boukadia, 1993).

An elasto-viscoplastic single crystal formulation is used for the simulation of simple
shear case according to section 2.2.3. The material behavior is considered as an elastic-
perfectly plastic. A rate–dependent flow rule is adopted to facilitate the determination of
active slip systems. The schematic of the simple glide test is shown in Fig. B.1. The initial
orientation of the crystal with respect to loading axes of simple shear is as follows:

e1 = [100] e2 = [010] e3 = [001].

The numerical values of the material parameters used are given in Table B.1. The shear
stress-strain response plotted at one Gauss point of the volume element is shown in Fig.
B.2a. As shown in this figure, cyclic behavior is obtained for the stress distribution. Such
a cyclic behavior is also observed by Boukadia and Sidoroff (1988); J. Boukadia (1993)
under large deformations and rotations for simple shear tests. The crystal follows the
corotational frame, and during the endless rotation of the crystal, some slip systems are
successively activated and deactivated during the endless rotation of the crystal. However,
8 slip systems are always simultaneously activated as shown in Fig. B.2b. The effect of
different crystal orientations on the stress-strain response in simple shear tests is studied in
(Besson et al., 2010).
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Table B.1 Numerical values of material parameters used for the numerical simulation of
simple shear test.

C11 C12 C44 τ0 m K
198.6 GPa 136.2 GPa 104.7 GPa 150 MPa 10 10 MPa.s1/m

e2

e3 e1e1e3

e2

Fig. B.1 Schematic of the simple shear test.
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Fig. B.2 Simple shear test of a single crystal of initial orientation<001>: (a) shear stress-strain
response, and (b) slip system activity.
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Appendix C

Dislocation density tensor calculation

In this appendix, several topics about curl operation and related dislocation density
calculations are presented.

• Curl of a second-order tensor

There are several definitions available in the literature to compute the curl of a second-order
tensor. However, consistent application of these curl definition leads to same results as
demonstrated in (Das et al., 2018). The derivation of the three most commonly used
definitions to compute the curl of a second-order tensor in a Cartesian orthonormal
coordinate frame are as follows:
• curl1(T

∼
) (Malvern, 1969; Segel, 1977):

curl1(T
∼

) = (▽×T
∼

)i j =

(
er
∂
∂xr

)
×Tsj es⊗ e j = (er× es)⊗ e j

∂Tsj

∂xr
, (C.1)

which can be further written as

curl1(T
∼

) = (▽×T
∼

)i j = ϵrsiTsj,r. (C.2)

• curl2(T
∼

) (Acharya and Bassani, 2000; Cordero et al., 2010; Aslan et al., 2011):

curl2(T
∼

) = (T
∼
×▽)i j = (Tis ei⊗ es)×

(
er
∂
∂ei

)
= Tis ei⊗ (es× er)

∂
∂xr

(C.3)

Thus,

curl2(T
∼

) = (T
∼
×▽)i j = (ei⊗ e j)ϵsrj

∂Tis

∂xr
= ϵsrjTis,r = −ϵ jrsTis,r. (C.4)

• curl3(T
∼

) (Arsenlis and Parks, 1999; Cermelli and Gurtin, 2001):
If f is a vector then,

▽×( f ·T
∼

) = (▽×T
∼

) · f , (C.5)

v = f ·T
∼
= f jT jses. (C.6)
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Therefore,

(▽×v)k =

(
er
∂
∂xr

)
× f jT jses = (er× es) f j

(
∂
∂xr

)
T js = ϵrsi f jT js,r ek,

= (ϵrsiT js,rei⊗ e j) · f = (▽×T
∼

) · f . (C.7)

Finally,
curl3(T

∼
) = (▽×T

∼
)i j = ϵrsiT js,r. (C.8)

Let c be the line integral with respect to the current configuration bounding surface s
having unit normal n, then the application of Stokes’ theorem to smooth vector field f∮

c
f ·dx =

∫
s
(curl f ) ·nds, (C.9)

and to the tensor field gives ∮
c
T
∼
·dx =

∫
s
(curlT

∼
) · nds. (C.10)

• Dislocation density tensor calculation

In the finite strain crystal plasticity, it is assumed that the lattice is only distorted elastically.
In continuum theories of plasticity, it is commonly accepted that intermediate plastic
configuration is not compatible (Acharya and Bassani, 1995). This incompatibility of the
intermediate configuration is due to presence of GNDs (closure failure of the Burgers
circuit). An elastic and a plastic part of the deformation gradient are incompatible tensor
fields such that

CurlF
∼

e , 0, CurlF
∼

p , 0, (C.11)

even though the total deformation gradient is compatible

CurlF
∼
= 0. (C.12)

The definition of the dislocation density tensor based on the small and finite deformation
theory is given in the following sections. Used notations are as follows: grad, div, and
curl for the differential operators defined with respect to the current configuration, and
Grad, Div, and Curl for the differential operators defined with respect to the reference
configuration. Besides, the curl of a second-order tensor is defined according to Eq. (C.4).

• Small deformation

Gurtin and Anand (2005) proposed a theory for small deformation strain gradient plasticity
for isotropic materials in absence of rotations. The theory of classical small deformation is
based on the decomposition of displacement gradient additively into an elastic and the
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plastic part such that
Gradu =H

∼

e+H
∼

p, trH
∼

p
≡ 0, (C.13)

with H
∼

e being the rotation and stretch tensor, H
∼

p is the lattice distortion tensor, and tr stands
for the trace of a second-order tensor. Moreover, in this plasticity theory, an elastic and a
plastic strain tensors are given by

E
∼

e =
1
2

(H
∼

e+H
∼

eT), E
∼

p =
1
2

(H
∼

p+H
∼

pT). (C.14)

Furthermore, the plastic rotation tensor is expressed as

W
∼

p =
1
2

(H
∼

p
−H
∼

pT). (C.15)

In addition, the resultant Burgers vector in the reference configuration is given by

B =
∮

C
H
∼

p
·dX, (C.16)

where C denote the line integral with respect to the reference configuration bounding
surface S having unit normal N. The application of Stokes’ theorem to previous equation
gives

B =
∫

S
(CurlH

∼

p) ·N dS. (C.17)

The dislocation density tensor for small deformation plasticity is defined by

(D
∼ d)i j = (CurlH

∼

p)i j = −ϵ jrsHis,r ei⊗ e j. (C.18)

• Finite deformation

The closure failure with respect to the current configuration is defined as follows (Acharya
and Bassani, 2000):

b =
∮

c
F
∼

e−1
·dx. (C.19)

Applying Stokes’ theorem to the previous equation gives

b =
∫

s
(curlF

∼

e−1) ·nds. (C.20)

Therefore, the dislocation density tensor D
∼ d with respect to the current configuration is

given by
(D
∼ d)i j = (curlF

∼

e−1)i j = −ϵ jrsFe−1
is,r ei⊗ e j, . (C.21)
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The resultant Burgers vector in the reference configuration is given by

B =
∮

C
F
∼

e−1
·F
∼
·dX =

∮
C

F
∼

p
·dX =

∫
S
(Curl (F

∼

p)) ·N dS. (C.22)

Applying Nanson’s formula, NdS = F
∼

T n
J ds, gives

B =
∫

s
(Curl (F

∼

p)) ·F
∼

T
·
nds

J
. (C.23)

Therefore, the alternative definition of the dislocation density tensor

D
∼ d =

1
J

(Curl (F
∼

p)) ·F
∼

T = curl (F
∼

e−1). (C.24)

• Dislocation density tensor in pure bending of a single crystal

As the crystal is subjected to a plastic strain gradient, GNDs must be stored to accommodate
this plastic strain gradient. The approximation of GND density in a single-slip problem is
given by Fleck et al. (1994) as follows:

ρG =
1
b
∂γ

∂e1
, (C.25)

where ∂γ∂e1
denote the variation of shear strain γ in e1 direction. Let dϕi be the lattice rotation

angle associated with the displacement vector dei then

dϕi = ki jde j, (C.26)

with ki j being the curvature tensor. The relation between curvature tensor k
∼

and dislocation
density tensor D

∼ d is given by Ashby (1970) as follows:

ki j = (Dd) ji−
1
2
δi j(Dd)kk. (C.27)

In the case of pure bending, the only non-vanishing component of the curvature tensor is

k31 =
dϕ3

de1
, (C.28)

which corresponds to the bending about e3-axis. Therefore, the dislocation density tensor
for pure bending is given by

D
∼ d =


0 0 (Dd)13

0 0 0
0 0 0

 . (C.29)
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Table C.1 Numerical values of material parameters used for the numerical simulation of
pure bending test.

E ν τ0 m K
200 GPa 0.33 150 MPa 10 10 MPa.s1/m

Moreover, in the present work, the dislocation density tensor components are computed
with FE simulation for the single crystal pure bending tests using the classical crystal
plasticity model. A post-processing technique is used to evaluate Curl (F

∼

p) (see also, Busso
et al. (2000); Abrivard (2009)). The four-point bending test provides the validity of the
implemented post-processing code to compute the dislocation density tensor because of
the known active component in the pure bending test. The linear variation of plastic strain
across the section of the beam results in a constant strain gradient at a region of plastic strain
and consequently the GND density as demonstrated in (Dunne et al., 2012). Moreover, the
definition of the curl presented in Eq. (C.4) is used. The details of the used post-processing
technique can be found in section 3.3.2.

This study considers a single crystal symmetric rectangular beam of 0.5 mm × 0.1 mm
× 0.08 mm dimension having one element across the thickness. The applied boundary
conditions are reported in Fig. C.1a. The beam is discretized with C3D20R elements under
plane strain conditions. The left face of the beam is fixed in e1 direction. The support
and load are applied at a distance of 0.14 mm and 0.38 mm from the left face. The initial
orientation of the crystal is

e1 = [100] e2 = [010] e3 = [001].

Isotropic elasticity is considered. The material behavior is considered as an elastic-perfectly
plastic. The material parameters used in the simulation are summarized in Table C.1. The
distribution of cumulative plastic strain field is shown in Fig. C.1b. As shown in this figure,
the plastic strain is concentrated at the center portion of the beam. The components of
the dislocation density tensor are computed on the element set shown with red color in
Fig. C.1a. The evolution of the components of the dislocation density tensor over this
element set is shown in Fig. C.2. As shown in this figure, the only active component of
the dislocation density tensor is the (Dd)13, which corresponds to the definition of the
dislocation density tensor in pure being presented above (Eq. (C.29)). This shows that the
implemented post-processing code to compute the dislocation density tensor is valid.
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e1
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u2 = 0

u2 imposed

(a) (b)

Fig. C.1 (a) Geometry and applied boundary conditions in four-point bending test. The
dislocation density tensor components are computed on the elements marked with red
color. (b) Cumulative plastic strain field in single crystal pure bending test.

0.2 0.4 0.6 0.8 1.0

Time (s)

0

1

2

3

4

5

6

C
om

p
on

en
ts

of
th

e
di

sl
o

ca
ti

on
de

ns
it

y
te

ns
or

,
(D

d
) i
j

(Dd)11

(Dd)12

(Dd)13

(Dd)21

(Dd)22

(Dd)23

(Dd)31

(Dd)32

(Dd)33

Fig. C.2 Evolution of the dislocation density tensor components obtained using post-
processing on the elements marked with red color in Fig. C.1a.
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MOTS CLÉS

Effet de taille, Bande de cisaillement adiabatique, Monocristalline, Polycristalline, Plasticité cristalline à gradient de
déformation, Modèle réduit, énergie stockée, thermomécanique.

RÉSUMÉ

Les modèles classiques de plasticité cristalline ne parviennent pas à capturer les effets de taille observés expérimentalement, à savoir,
plus la taille est petite, plus la force est grande. Ces modèles montrent également une dépendance du maillage dans les problèmes
de localisation de déformation due à l’absence d’une échelle de longueur caractéristique dans le cadre constitutif. Les modèles de
plasticité cristalline à gradient de déformation peuvent surmonter les limites susmentionnées des modèles de plasticité de cristalline
classiques. Cependant, la mise en œuvre du modèle de plasticité à gradient de déformation dans le logiciel commercial des techniciens
de maintenance est difficile en raison du cadre constitutif complexe. Dans le présent travail, les modèles de plasticité des cristalline à
gradient de déformation, spécifiquement la plasticité des cristalline micromorphique réduit et les modèles fondés sur le multiplicateur
de Lagrange, sont utilisés pour prédire l’effet de taille dans des tests de torsion de microfils monocristallins. Une comparaison est
effectuée entre l’effet de taille prévu en utilisant le modèle fondés sur le multiplicateur de Lagrange et celui fait par le modèle CurlFp

de la littérature, qui est fondés sur le tenseur de densité de dislocation complet. De plus, la localisation des déformations due à
l’élévation de la température est étudiée. Une formulation thermodynamique cohérente des équations constitutives est proposée pour
les modèles de plasticité cristalline classique et micromorphique. Ce cadre thermodynamique cohérent est appliqué pour étudier
le processus de formation de bandes de cisaillement adiabatique dans des matériaux métalliques cubiques à face centrées (CFC)
monocristallins et poly-cristallins. Cinq orientations cristallines différentes d’un seul spécimen en forme de chapeau sont considérées
pour étudier la formation, l’intensité et l’orientation des bandes de cisaillement. La formation de bandes de cisaillement adiabatiques
et l’effet granulométrique sont étudiés dans des agrégats polycristallins en forme de chapeau. Il est également essentiel de prévoir
l’énergie stockée pour comprendre la déformation plastique et les mécanismes de récupération et de recristallisation qui en découlent.
Des modèles thermodynamiques de plasticité des cristalline classiques et micromorphique sont utilisés pour prédire l’énergie stockée
dans des matériaux métalliques CFC monocristallins et polycristallins. À cette fin, nous proposons un moyen facile de mettre en
œuvre le modèle de plasticité micromorphique dans le logiciel commercial modèle d’éléments finis en utilisant l’analogie entre la
thermomécanique classique et la théorie de la plasticité micromorphique.

ABSTRACT

Classical crystal plasticity models fail to capture experimentally observed size effects, namely, the smaller the size the greater the

strength. These models also show spurious mesh dependency in strain localization problems due to the lack of a characteristic

length scale in the constitutive framework. Strain gradient crystal plasticity models can overcome above mentioned limitations of

the classical crystal plasticity models. However, implementing the strain gradient plasticity model in commercial finite element (FE)

software is challenging due to the complex constitutive framework. In the present work, strain gradient crystal plasticity models,

specifically reduced-order micromorphic crystal plasticity and Lagrange multiplier-based models, are used to predict the size effect in

single crystals microwire torsion tests. A comparison is performed between the predicted size effect using the Lagrange multiplier-

based model and that made by the CurlFp model from the literature, which is based on the complete dislocation density tensor.

Moreover, strain localization due to temperature rise is investigated. A thermodynamically consistent formulation of the constitutive

equations is proposed for the classical and micromorphic crystal plasticity models. This thermodynamically consistent framework is

applied to investigate the adiabatic shear band (ASB) formation process in single and poly-crystalline Face-Centered Cubic (FCC)

metallic materials. Five different crystal orientations of a single crystal hat-shaped specimen are considered to study the formation,

intensity, and orientation of shear bands. The formation of ASB and the grain size effect are investigated in hat-shaped polycrystalline

aggregates. Moreover, predicting the stored energy is essential to understand the plastic deformation and subsequent recovery and

recrystallization mechanisms. Thermodynamically consistent classical and micromorphic crystal plasticity models are used to predict

the stored energy in single and poly-crystalline FCC metallic materials. To this end, we propose an easy way to implement the

micromorphic plasticity model in commercial FE software using the analogy between classical thermo-mechanics and micromorphic

plasticity theory.

KEYWORDS

Size effect, Adiabatic shear band; Single crystals; Polycrystalline; FCC metallic materials; Strain gradient crystal plasticity;
reduced-order models; Stored energy; Thermo-mechanics.
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