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Notations

� Tensors

Description Notation
Vector A

Second-order tensor A
�

Transpose A
�

T

Inverse A
�

� 1

Time derivative �A
�

� Contractions

Description Index notation
Simple contraction (a� b) aibj

Double contraction ( A
�

: B
�
) A i j Bi j

� Tensor product

Description Index notation
a
 b aibjei 
 ej
A
�


 B
�

A i j Bklei 
 ej 
 ek 
 el
A
�


 B
�

A ikBjl ei 
 ej 
 ek 
 el

A
�


 B
�

A il Bjkei 
 ej 
 ek 
 el

� Curl and spin operator

Description Index notation
(curlA

�
)i j � ipqA jq;pei 
 ej

(spin N)i j � � i jqNqei 
 ej

� Other notations

Description Notation
Nabla operator

(with respect to the Lagrange coordinates) r X

Nabla operator
(with respect to the Euler coordinates) r
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Abbreviations

ENABLE European network for alloy behavior law enhancement
ESR Early stage researcher
WP Work package

CPFEM Crystal plasticity �nite element method
FCC Face-centered cubic
SSD Statistically stored dislocation
GND Geometrically necessary dislocation
CRSS Critical resolved shear stress
ASB Adiabatic shear band
DRX Dynamic recrystallization
TQC Taylor-Quinney coe � cient
FE Finite element

DOF Degree of freedom
PDE Partial di � erential equation
RVE Representative volume element
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Chapter 1

Introduction

Ce chapitre présente le projetEuropean Network for Alloy Law Behavior Enhancement (ENABLE),

ses objectifs ainsi que la méthode utilisée. Le projet ENABLE est �nancé par le réseau Marie

Sk�odowska-Curie Actions Innovative Training Networksdans le cadre du programme Horizon

2020. Ce projet implique activement des partenaires industriels et universitaires dans la

formation d'une nouvelle génération de jeunes chercheurs pour l'avenir de l'industrie

manufacturière. Le projet ENABLE a été conçu pour exploiter l'expertise complémentaire

des membres du réseau et, par conséquent, aborder des questions ambitieuses et interdisci-

plinaires. Le thème de recherche comprend plusieurs disciplines telles que la science des

matériaux, la mécanique, la thermodynamique, les mathématiques et l'informatique.

De plus, les objectifs de la thèse et la méthodologie utilisée pour atteindre ces objectifs

sont détaillé. En outre, l'état de la technique concernant le présent travail est brièvement

présenté. Ce chapitre présente la déformation plastique dans les matériaux métalliques,

les observations expérimentales du comportement plastique non conventionnel comme le

renforcement dépendant de la taille et la localisation des déformations, ansi que les mesures

de l'énergie stockée dans les matériaux métalliques. Ensuite, l'état de l'art des di � érentes

approches numériques utilisées pour prédire les e� ets de taille, régulariser les bandes de

cisaillement formées dans les problèmes de localisation de déformation, et prédire l'énergie

stockée est détaillé.

1.1 European Network for Alloy Law Behavior Enhance-

ment (ENABLE)

The ENABLE1 project is �nanced by the Marie Sk�odowska-Curie Actions Innovative Training

Networksunder the Horizon 2020 program. It is coordinated by Prof. Olivier Cahuc from

the University of Bordeaux, France. The ENABLE project actively involves industrial

and academic partners in training a new generation of young researchers for the future

of the manufacturing industry. The ENABLE project has been designed to exploit the

1https://enable-project.com/
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complementary expertise of the network members and, therefore, to address ambitious

and interdisciplinary problems. The research theme consists of several disciplines such as

materials science, mechanics, thermodynamics, mathematics, and computer science.

The ever-increasing prominence of sustainable growth has a� ected manufacturing

engineering. Manufacturing is often recognized as a process to convert raw materials or parts

into �nished goods. Innovative solutions to reduce weight and costs without compromising

performance and service life require the expertise of the entire manufacturing chain.

Developing a competitive manufacturing industry is mainly based on an interdisciplinary

research program.

ENABLE aims to include all metallurgical aspects of materials such as hardening,

grain size, precipitation, phase transformation, etc., to study the microstructural evolution

under extreme environmental conditions. Moreover, ENABLE proposes a complete re-

evaluation of usual process simulation methods in metallic alloys by developing new

solutions. Furthermore, innovative multi-scale (from microscopic to macroscopic scales)

and multi-physics (strong thermo-mechanical and microstructural couplings) approaches

are addressed in advanced multi-level simulations.

A group of 9 Early Stage Researchers (ESRs) is trained within world-leading research

teams, which consists of 17 institutes/companies located within 5 countries (Table 1.1).

Table 1.1 Di� erent institutes/companies involved in the ENABLE project.

France

Institutes
Mines ParisTech (MAT), Engineering school of Tarbes (ENIT),

University of Bordeaux (UBx)

Companies
Safran Tech (SAF), ESI Group (ESI), Timet (TI),

Metallicadeour (MET), Innovation Plasturgie Composites (IPC)
Spain

Institutes University of the Basque Country - UPV /EHU (UPV)

Companies Tecnalia (TEC), Lortek (LOR), Basque Center for Applied Mathematics (BCA)

Sweden

Institutes Luleå University of Technology (LTU)

Companies GKN Aerospace Sweden (GK), Sandvik Coromant (SVK)

Belgium

Institutes

Companies SIRRIS (SIR)

Denmark

Institutes

Companies Danish Advanced Manufacturing Research Center (DA)

2



ESRs have been introduced to novel approaches and applications while exploiting

advances in fundamental research. Additional cross-disciplinary training such as commu-

nication, entrepreneurship, open science, intellectual property, patenting, gender balance

awareness, etc., are provided to ESRs. In addition, ESRs are provided with transferable

skills and complementary competencies, which improve their research abilities and enhance

their future employability.

1.2 Objectives of the ENABLE project

Each manufactured structure results from the collective e � orts of various processes encoun-

tered along the whole manufacturing chain. Manufacturers must improve their production

processes to meet the high demand for new products of excellent value in productivity,

pro�tability, and quality.

The production processes are di� cult to control due to the presence of complex

phenomena related to continuum mechanics, thermo-mechanics, metallurgy, and chemistry.

These phenomena are even more complicated in the presence of high stains, high strain

rates, and high temperatures. A component's �nal mechanical state subjected to dynamic

loading goes through severe inhomogeneous deformations processes. Predicting such

deformation behavior using numerical calculations requires a complete description of the

material's dynamic behavior.

Many companies' research and development departments need appropriate models

to predict material behavior under severe deformation. Unfortunately, companies are

forced to use empirical laws that are poorly suited to an ever-greater need for precision.

Moreover, the changes in materials occurring during severe deformation, such as residual

stresses, phase transformation or particle precipitation, recrystallization, etc., are still

insu� ciently considered. The physics-based approach of ENABLE using advances in

information technologies (High-performance computing, Crystal plasticity modeling, etc.)

and advanced material characterization tools (Scanning electron microscope, Transmission

electron microscopy, Electron backscatter di� raction, etc.) will be able to link the micro-

and macro-scopic responses of the materials.

The modeling approach provided by ENABLE can be used to create speci�cally tailored

materials that will improve the component's material properties required for improving

performance. These advances will lead to new service life improved tools and ultimately

reduce production time and hence production costs.

To extend the bene�ts of the ENABLE project to a wide range of industrial sectors, the

numerical simulation will be performed on several widely-used processes such as friction

stir welding, machining, and additive manufacturing. These processes are chosen because

they are all thermo-mechanical and challenging to model and accomplish in practice. The

most popular metallic materials in the industry, namely nickel-based super-alloys, titanium,
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and aluminum alloys, are chosen for the scienti�c investigation. All the obtained results

can be extended to other types of alloy.

The 9 ESRs involved in this project are divided into three work packages (WPs) (3 ESRs

in each WP), namely, materials, modeling, and processes. Di� erent WPs and collaborative

partners involved in ENABLE project are shown in Fig. 1.1.

ˆ WP1 (Materials): This package aims to identify the mechanisms governing the

evolution of plastic behavior covering a wide range of strains, temperatures, and

strain rates. Three ESRs working in this WP are Marie-Anna Moretti (ESR1), Biswajit

Dalai (ESR2), and Trunal Dhawale (ESR3). Marie-Anna Moretti is studying phases

transformations, recrystallization, and grain growth during hot deformation of

Inconel 718 alloy. Biswajit Dalai is investigating, among other things: phases

transformations, recrystallization, and grain growth during hot deformation of two

grades of aluminum alloys commonly used in additive manufacturing and shaping

processes. Besides, Trunal Dhawale provides a detailed experimental behavior law

and performs microstructural investigations to establish interdependences between

microstructure and strain.

ˆ WP2 (Modeling): The global aim of this WP is to develop a new �nite element

theory based on the strain gradients approach to enable thermo-mechanical and

microstructural coupling. This multi-scale modeling will then be optimized for

high-performance computing and implemented in digital simulation software for

new generation processes. Three ESRs working in this WP are Vikram Phalke (ESR4),

Ra� aele Russo (ESR5), and Tamara Dancheva (ESR6). The global objective of Vikram

Phalke is to work on a �nite deformation crystal plasticity model implemented in

the implicit �nite element code Zset (common code for Mines ParisTech and Safran

Tech) to investigate the thermo-mechanical response of the single and poly-crystals.

The global aim of Ra� aele Russo (ESR5) is the formulation of a visco-plastic strain

gradient continuum theory for macro-scale applications such as machining, friction

stir welding, etc. Tamara Dancheva is developing and implementing computational

methods for the future of metals manufacturing in the open-source automated

massively parallel FEniCS framework in collaboration with leading researchers and

companies in the ENABLE project.

ˆ WP3 (Processes): The global aim of this WP is to identify and measure kinematic

and temperature �elds for standard test cases and thereby understand and improve

the manufacturing processes. The three ESRs involved in this WP are Haythem

Zouabi (ESR7), Danilo Ambrosio (ESR8), and Pinku Yadav (ESR9). Haythem Zouabi

aims to measure kinematic and temperature �elds in machining operations on a new

experimental bench. The objective of Danilo Ambrosio is to determine kinematic and

temperature �elds during friction stir welding of the aluminum and nickel-based
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super-alloys. Finally, Pinku Yadav investigates the metallurgical changes during

additive manufacturing of AlSi7Mg0.6 aluminum alloy.

1.3 Objectives of this thesis as ESR4 in ENABLE project

This thesis is a part of WP2 presented above. The global aim of this thesis is to predict the

thermo-mechanical response of the single and poly-crystalline metallic materials subject to

severe inhomogeneous deformation taking the strain gradient crystal plasticity approach.

The global aim of this thesis is divided into the following principle objectives.

When micron-scale components are subjected to inhomogeneous deformation, they

show non-conventional plastic behavior such as size–dependent strengthening called

size e� ect. It is well known that the classical crystal plasticity models fail to capture

experimentally observed size e� ects due to the lack of characteristic length scales in the

constitutive framework. This limitation of the classical crystal plasticity models can be

overcome using strain gradient crystal plasticity models. Therefore, the �rst objective of

the thesis is to predict the size–dependent response of the micron-scale components such

as microwires under severe deformation using the strain gradient crystal plasticity model.

Strain softening, mainly due to the temperature rise, is a common phenomenon in severe

deformation processes. This, in turn, reduces the stress carrying capacity of the material

and results in the formation of an intense shear band called the adiabatic shear band

(ASB). ASB formation is a common phenomenon observed in manufacturing processes

such as machining, shearing, metal forming, and so forth. Applications of the classical

crystal plasticity models to strain localization problems have limitations as the localization

phenomenon shows spurious mesh dependency. Strain gradient crystal plasticity models

can be used to overcome this limitation of classical crystal plasticity models. Therefore,

another objective of the present work is to apply the strain gradient crystal plasticity model

for numerical analysis of the ASB formation in single and poly-crystalline FCC metallic

materials.

The recent experimental work from the literature has shown that the ASB formation

process is governed by dynamic recrystallization along with thermal softening. Stored

energy is the main driving force for the dynamic recrystallization and recovery process. The

prediction of stored energy is vital to understanding the plastic deformation and subsequent

recrystallization and recovery processes. Another important aspect related to stored energy

is the fraction of plastic work converted into heat called the Taylor-Quinney coe � cient

(TQC). Numerical prediction of stored energy and TQC in line with the experimental

measurements is a challenging task. The experimental observations showed that the TQC

is not a constant but an evolving parameter during the deformation process. Therefore,

another objective of this thesis is to predict the stored energy and TQC for single crystals

and polycrystalline FCC metallic materials.
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Fig. 1.1 Di� erent work packages and collaborative partners in ENABLE project.
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Implementing strain gradient plasticity theory in the FE code is challenging due to

its complicated constitutive framework. Therefore, the �nal objective of this thesis is

to propose a method to implement the strain gradient plasticity model in commercial

FE software with little e � ort to regularize strain localization problems and predict size e � ects.

The principal objectives of this thesis and collaborative partners to achieve these objectives

are summarized below.

ˆ Prediction of size e� ect using strain gradient crystal plasticity model ( Mines ParisTech,

Safran Tech)

ˆ Investigation of the ASB formation in single and poly-crystalline metallic materials

(Mines ParisTech, Safran Tech, Luleå University of Technology )

ˆ Prediction of stored energy and evolution of TQC in single and poly-crystalline

metallic materials ( Mines ParisTech, Safran Tech, University of the Basque Country

- UPV/EHU)

ˆ Implementation of the micromorphic plasticity model in commercial FE software ( ESI

Group, Mines ParisTech, Safran Tech ). This objective is ful�lled by collaborating

with Ra� aele Russo (ESR5), a Ph.D. student at the University of the Basque Country

- UPV/EHU and Mines ParisTech.

1.4 Methodology

Strain gradient crystal plasticity models have limited applications for practical engineering

problems due to their high computational cost. As a simpli�ed strain gradient crystal

plasticity model, a reduced-order model has been introduced for complex applications with

reduced computational cost in terms of CPU time. This model will be used to ful�ll the

�rst objective of predicting the size e � ect in single crystals microwire torsion tests.

Various types of strain gradient crystal plasticity theories can be found in the literature.

Di � erences in the formulation of these strain gradient crystal plasticity theories result in

distinct and sometimes non-physical responses, which raises the necessity of verifying

the validity of the selected model for chosen applications. At �rst, a comparison of the

reduced-order micromorphic and Lagrange multiplier-based models will be performed

in predicting the size e � ect. These models were implemented in implicit FE code Zset2,

former model by Ling et al. (2018) and latter model by Scherer et al. (2020). Both models

are a type of reduced-order models, but the Lagrange multiplier-based model has one

more additional degree of freedom than the one used for the reduced-order micromorphic

model. The second part compares theCurlFp model proposed by Kaiser and Menzel (2019a),

2http: //www.zset-software.com /

7



which is a typical strain gradient plasticity model without simpli�cation, and the Lagrange

multiplier-based model in predicting the size e � ect under monotonic and cyclic loading of

the microwire torsion tests.

To ful�ll the second objective of studying the ASB formation process in single and

polycrystalline FCC metallic materials, a thermodynamically consistent framework of

the reduced-order micromorphic crystal plasticity model will be developed. Simulations

will be performed on the single and polycrystalline hat-shaped specimens using this

thermodynamically consistent framework.

A dislocation density-based hardening model will be used to ful�ll the third objective

of predicting the stored energy and TQC in single and poly-crystals. Firstly, the stored

energy will be predicted by considering the contribution of Statistically Stored Dislocations

(SSDs) only, i.e. using the classical crystal plasticity model. Next, the stored energy will

be predicted considering the contribution of both SSDs and Geometrically Necessary

Dislocations (GNDs), i.e. using the micromorphic crystal plasticity model and will be

compared to that of the prediction made by considering SSDs only.

Finally, we propose an easy way to implement the micromorphic plasticity model in

commercial explicit FE software VPS/Pam-Crash® from ESI Group 3. We will use an analogy

between the reduced-order micromorphic plasticity theory and classical thermo-mechanical

analysis to easily implement this model for practical engineering problems.

3https://www.esi-group.com /pam-crash
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(a) (b)

Fig. 1.2 (a) Burgers circuit around the edge dislocation in a distorted lattice (b) same Burgers
circuit in the perfect crystal; closure failure denotes the Burgers vector (Hull and Bacon,
2011).

1.5 State of the art in brief

This section introduces the plastic deformation in metallic materials, experimental observa-

tions of the non-conventional plastic behavior such as size–dependent strengthening and

strain localization, and measurements of stored energy in metallic materials. Then, the state

of the art of di � erent numerical approaches used to predict size e� ects, regularize the shear

bands formed in strain localization problems, and predict the stored energy is presented.

1.5.1 Plastic deformation in metallic materials

All crystalline materials contain imperfections in the crystal lattice which may be point, line,

surface, or volume defects (Hull and Bacon, 2011). Plastic deformation in metallic materials

occurs due to the presence, generation, multiplication, interaction, and movement of these

defects present in the crystal lattice (Kubin et al., 1992; Arsenlis and Parks, 2002; Uchic et al.,

2004). The line defects are calleddislocationsand are the main contributors to material strain

hardening. The de�nition of dislocation can be given in terms of the Burgers circuit. The

Burgers circuit is a close loop circuit formed by joining an atom-to-atom path in the crystal.

Such a path is shown in Fig. 1.2a (i.e. MNOPQ). If the same atom-to-atom path is made in a

perfect crystal (dislocation free), the circuit does not close (see Fig. 1.2b). This indicates

that the circuit in Fig. 1.2a must contains one or more dislocations. The vector needed to

complete the circuit is called the Burgers vector(Hull and Bacon, 2011) (QM in Fig. 1.2b). The

speci�cation of dislocation involves both the displacement vector and dislocation line, such

that when the displacement vector is parallel to the dislocation line, then the dislocations

are called edgedislocations. On the other hand, when the Burgers vector is perpendicular

to the dislocation line, they are termed as screwdislocations (Hull and Bacon, 2011).

There are two main dislocation motions. The dislocation motion that happens due to

the gliding along its direction is called glide. On the other hand, climb is the motion that

occurs when the dislocation moves out of the glide surface. The glide of many dislocations
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results in slip. Dislocation glide is the most common phenomenon in plastic deformation

at room temperature. During plastic deformation, dislocations move along particular

planes located between closest-packed atomic layers, called slip planes. The direction

of dislocation motion is called the slip direction. The combination of slip plane and slip

direction form the slip system. In FCC crystals, the crystallographic slip occurs on the

twelve {111}<110> slip systems; four {111} planes and three <110> directions (see Fig.

A.1). The de�nition of the octahedral slip systems can be found in appendix A (Table A.1).

The dislocation glide depends on the number of independent slip systems. At least �ve

independent slip systems are necessary for a homogeneous plastic �ow by dislocation glide

(Groves and Kelly, 1963).

Taylor and Elam (1923) established a relationship between the resolved shear stress and

plastic yielding to facilitate the determination of active slip systems, commonly known

as Schmid law. According to them, the active slip system is de�ned as the one with the

highest component of shear stress (i.e., the resolved shear stress) in the direction of shear.

In addition, they noted the in�uence of active slip systems on the hardening of inactive slip

systems called latent hardening. Another important observation made by Koehler (1941)

suggests that the amount of energy required for a certain amount of slip inside the solid is

twice that needed for the same amount of slip at the surface.

These generated dislocations are hindered by other dislocations, precipitates, grains, and

sub-grain boundaries in polycrystals. The presence of grain boundaries in polycrystalline

materials results in a non-conventional plastic behavior, where the decrease in grain size

leads to an increase in �ow stress required for the plastic deformation (Hall, 1951).

The macroscopic behavior of materials stems from the underlying microstructure. The

plastic deformation in materials at micron and sub-micron scales is due to the presence of

characteristic length scales. In single crystals that are free from grain boundaries and defects

other than dislocations, the characteristic length scale is described as the mean spacing

between the dislocations. On the other hand, in polycrystalline materials, which consist

of grain boundaries or defects beyond dislocations such as precipitates, the characteristic

length scale is determined by the smallest distance between the dislocations and the next

obstacle (Zhang et al., 2014; Bayerschen, 2017). In the next section, experimental evidence

of di � erent size–dependent behaviors due to the presence of characteristic length scales in

the micron-scale structures are summarized.

1.5.2 Size e� ects in plasticity

When a material is deformed plastically, dislocations are generated, moved, and stored.

There are two main types of dislocation families to be considered. The typical ensemble of

dislocations generated during the plastic deformation through random trapping with each

other is called SSDs. The other type, GNDs are required for the compatible deformation

of the crystal under inhomogeneous plastic deformation processes (see Fig. 1.3) (Ashby,

1970). The GNDs are generated either due to the inhomogeneous local loading applied
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(a) (b) (c)

Fig. 1.3 Non-homogeneous deformation in polycrystals: (a) undeformed specimen, (b)
homogeneous deformation of grains leads to the formation of overlaps and voids (c)
non-homogeneous and local deformation provided by the GNDs removes overlaps and
voids (Voyiadjis and Yaghoobi, 2019).

to the specimen, or if the material itself is non-homogeneous, e.g. due to the presence of

precipitates. The GNDs can be quanti�ed using Nye's dislocation density tensor D
� d (Nye,

1953) given by

D
� d = Ndbt; (1.1)

where Nd is the number of dislocation lines with Burgers vector b, crossing a unit area

normal to their unit tangent line vector t. The gradient of shear strain is associated with the

storage of GNDs described by Nye's tensor. As a result, GNDs along with SSDs control the

material strain hardening and the size e � ects.

The size e� ects can be described as the change in material strength with a change in

characteristic length scale. For instance, the indentation hardness of metals and ceramics

increases as the size of the indenter decreases (Nix and Gao, 1998; Gao and Huang, 2001;

Liu and Ngan, 2001). Micro-torsion tests show increasing shear strength with decreasing

diameter of the microwire (Fleck and Hutchinson, 1997; Gao and Huang, 2001; Liu et al.,

2012; Guo et al., 2017), and micro-bending tests show an increase of material strength with

a decrease in beam thickness (Stölken and Evans, 1998; Gao and Huang, 2001; Haque and

Saif, 2003).

One of the �rst size e � ects studied is the relation between precipitate size and �ow

strength. The �ow strength of a material is a � ected by both the precipitate size and

spacing. Fisher et al. (1953) showed that the presence of precipitates in the material causes

the dislocations generated from Franck-Read sources to form a closed loop around the

particles, and the back-stress thus generated increases the e� ective stress of the Franck-Read

sources. Arzt (1998) reviewed the size e� ects due to the microstructural constraints such as

precipitates and grain boundaries. He used a concept of Orowan mechanism (Orowan,

1947), i.e. obstacle (precipitates) spacing and dislocation curvature, to capture the size

e� ects. Recently, Ralston et al. (2010) investigated the precipitate size e� ects for aluminum
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Fig. 1.4 (a) Plot of experimental results of polycrystalline copper microwire torsion tests
for di � erent diameters showing size e� ects (Fleck and Hutchinson, 1993). (b) Plot of
experimental results of bending tests for di � erent thicknesses of Nickel foil showing size
e� ects (Stölken and Evans, 1998).

alloy Al-2.5 Cu-1.5 Mg (wt.%). It is shown that the �ne nano-particles formed for the aging

times less than 2 h at 200� C have a substantial e� ect on the yield stress.

Fleck et al. (1994) performed tension and torsion tests on polycrystalline copper

microwires ranging in diameter from 12� m to 170� m to investigate the e� ect of loading

type and specimen size on the torsional hardening response. It was observed that, in uniaxial

tension tests, the plastic strain gradient is negligible, and no size e� ect is observed. On the

other hand, it was observed that the torsion of microwires induces a strong strain gradient

(d
 R=dR) along the radial direction from the axis of twisting. In torsion of microwires, the

surface strain 
 R varies along the radius R, such that 
 R = � R, where � is the twist per unit

length. The hardening in the microwires is due to the presence of SSDs and GNDs. For a

given surface strain, the thinner wire has the highest strain gradient ( d
 R=dR) and highest

GND density, which causes faster work hardening. It can be seen from Fig. 1.4a that the

torsion hardening increases systematically with a decrease in the diameter of the microwire.

More experimental evidence of size e� ects can be found in the micro-bending tests

performed by Stölken and Evans (1998) on thin Nickel foils. They performed micro-bending

tests for three thicknesses of12:5� m, 25� m, and 50� m. The normalized bending moment

vs. surface strain curves are shown in Fig. 1.4b from the work of (Stölken and Evans, 1998).

The normalized bending moment for a 12� m foil is signi�cantly higher compared to the

other two foils (see Fig. 1.4b), con�rming the presence of a size e� ect.

The intrinsic size e� ect can be attributed to the dependency of material yield strength

on microstructural characteristics, such as average distance of precipitates, mean free path

of the dislocations, and grain size (Arzt, 1998). In polycrystal aggregates, generally, two

size e� ects are responsible for the increased strength and are calledspecimen size e� ect

and grain size e� ect (Armstrong, 1961). The specimen size e� ect occurs when there are

few grains in the specimen cross-section and due to the orientation dependency of the
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crystal plastic �ow. On the other hand, the grain size e � ect occurs when many grains are in

the specimen cross-section. Moreover, the internal concentrations of stress are necessary

at grain boundaries to cause yielding and subsequent plastic �ow and the orientation

dependence of plastic �ow within grains. The well-known grain size e � ect in polycrystalline

materials is often called the Hall-Petch size e� ect. Hall and Petch (Hall, 1951; Petch, 1953)

gave an inverse relationship between �ow stress and the square root of grain size, i.e.,

� � � 0 / d� 1=2
g , where � is the yield strength of the material, � 0 is the yield strength of single

crystal, and dg is the grain size. Generalizing the work of (Hall, 1951), the relation between

the dependency of material strength on grain size is given by

� = � 0 + KHP d� nx
g ; (1.2)

with KHP being a material constant, and nx is a constant in the range of 0 to 1.

According to the Hall-Petch relation (Eq. 1.2), the �ow stress or yield stress increases as

grain size decreases. However, material strength can not be unlimited. In general, two limit

cases can be observed. In the �rst case, the �ow stress shows a saturation with decreasing

grain size after reaching a certain grain size. In the other case, the material strength starts

decreasing with grain size, a phenomenon called inverse grain size e� ect. The �rst evidence

of inverse grain size e� ect is reported in (Chokshi et al., 1989).

The grain size e� ect is associated with the spatial strain gradient in the grains because

of the heterogeneous plastic deformation. The grain boundaries act as an obstacle to

dislocation motion, and the strain gradient-induced GNDs pile up at the grain boundaries.

In addition, with the decrease in grain size, the area at the grain boundaries with GND

density increases and results in increased yield strength.

Another important size e � ect observed during the micro- and nano-indentation tests is

called indentation size e� ect. Micro- and nano-indentation tests are popular tests to predict

material behavior at the sub-micron scale. In micro- and nano-indentation tests, a hard

indenter is pressed against the material to measure the applied load and penetration

depth. In conventional indentation tests (at macro-scale), measured material hardness

is independent of indentation depth. In contrast, in micro- and nano-indentation tests,

the hardness decreases as the indentation depth increases, and the size e� ect is typically

explained with an accumulation of GNDs beneath the indenter (Stelmashenko et al., 1993;

Ma and Clarke, 1995).

Early attempts to measure the indentation size e� ect can be found in (Ma and Clarke,

1995; Poole et al., 1996; McElhaney et al., 1998). Ma and Clarke (1995) performed indentation

tests on single crystal silver using a Berkovich indenter. They found that the hardness

almost doubled with a decrease in indent size from 10� m to 1� m. Similar size e� ects were

observed by Poole et al. (1996) in copper using a Vickers indenter. McElhaney et al. (1998)

performed nano-indentation tests on carefully prepared (111) copper single crystal using a

Berkovich indenter. Liu and Ngan (2001) showed that the indentation size e � ect is very

sensitive to surface preparation. In polycrystalline indentation tests, GNDs are piled up at
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(a) (b)

Fig. 1.5 (a) Indentation size e� ect for single and polycrystalline metallic samples showing a
decrease in hardness with an increase in indentation depth, from (Voyiadjis et al., 2011).
(b) Schematic showing GND interaction with grain boundaries in nano-indentation tests
(Voyiadjis and Zhang, 2015).

the grain boundaries to accommodate the imposed displacement (Fig. 1.4). The variation

of hardness with indentation depth in nano-indentation of single and polycrystalline

aluminum is shown in Fig. 1.5a. Voyiadjis et al. (2011) observed that the hardness of

polycrystals decreases as indentation depth increases. After a certain indentation depth, it

shows local hardening after which it decreases as indentation depth increases further (Fig.

1.5a).

Several attempts have been made to investigate experimental evidence of characteristic

length scale and its correlation with material microstructure, for instance, in (Nix and Gao,

1998; Fleck et al., 1994; Stölken and Evans, 1998). Microwire torsion (Fleck et al., 1994)

and micro-bending (Stölken and Evans, 1998) tests have been conducted to estimate the

characteristic length scale, and the estimated value for nickel was 5� m and 4� m for copper.

The micro- and nano-indentation tests carried out by (Abu Al-Rub and Voyiadjis, 2004;

Voyiadjis and Al-Rub, 2005) found that the characteristic length scale is proportional to the

mean free path of the dislocations. Qian et al. (2013) calibrated temperature-dependent

characteristic length scale using indentation tests. This characteristic length scale is then

used for the FE simulations based on strain gradient plasticity theory.

1.5.3 Strain localization: Theoretical and experimental aspects

Besides size e� ects, another non-conventional plastic behavior observed in the materials

under severe deformation is called strain localization which may lead to initiation and

propagation of fracture. This common phenomenon occurs in many metallic materials

over a broad range of scales: from macro- to nano-scale. Strain localization phenomenon

ultimately results in the loss of material strain hardening capacity and the formation of

an intense strained band called shear band(Fig. 1.6). Early attempts of material modeling
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Fig. 1.6 Shear band in AA7055 aluminum alloy formed during the dynamic compression
tests. (a)-(c) Transmission electronic micrograph of formed shear band, and (d) magni�ed
micrograph of the formed shear band (Xiong et al., 2014).

for this phenomenon can be found in (Asaro, 1985). Strain localization can be associated

with numerous mechanisms, for instance, non-uniform temperature rise caused by thermal

softening and high strain rate deformation, microfractures due to void initiation and growth,

and microstructural instabilities (Asaro and Rice, 1977; Bandstra and Koss, 2001; Gama

et al., 2004; Dodd and Bai, 2012). There is experimental evidence of strain localization even

in the strain hardening of materials caused by constitutive instabilities (Harren et al., 1988).

Furthermore, the experimental and computational work performed by Harren et al. (1988)

showed that the geometrical softening caused by non-uniform lattice rotation is responsible

for the formation of shear bands in strain hardening materials.

There is numerous experimental and theoretical work available on shear banding.

The two most common theories of shear banding are summarized here. The �rst theory,

proposed by Hill (1962); Rudnicki and Rice (1975); Anand and Spitzig (1980), states that the

shear band forms in the material undergoing plastic deformation due to the instabilities in

the constitutive description of homogeneous deformation. The instability can be understood

as the constitutive relations that may allow the homogeneous deformation to lead to a

bifurcation point. The non-homogeneous deformation leads to a planar band while

maintaining homogeneous deformation and equilibrium outside the localization region.

According to this theory, shear banding is possible even in the strain hardening of materials.

The second theory proposed by Dillamore et al. (1979) has the following criterion: If �

is the stress measure and" is the strain measure then localization of deformation occurs

according to the condition d�= d" � 0. Similar to the �rst theory, this theory also leads to

localization in strain hardening materials considering the geometrical softening.

In general, the formed shear bands are categorized into two: the shear bands formed

parallel to the slip planes are called slip bands, while the formed bands normal to the slip
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planes are termed askink bands(Frank and Stroh, 1952; H. Neuhäuser, 1983). High lattice

rotations are associated with the kink bands (Forest, 1998). In the experimental work of

(Orowan, 1942), the cadmium single crystals having glide plane-parallel of the loading axis

were compressed axially. In his work, as the load increased, the usual glide mechanism

did not occur during the deformation; rather, crystals suddenly collapsed by forming kink

bands.

The shear band formation under adiabatic conditions is a topic of practical importance

in severe deformation processes associated with low energy or low ductility fracture. Such

a deformation mode is encountered in materials that are subjected to dynamic deformation.

The fundamental requirement to form an adiabatic shear band (ASB) is that no heat is

exchanged with the surroundings. The materials with low heat capacity promote a local

high-temperature rise and subsequently the ASB formation. The �rst evidence of ASB

formation at a very high strain rate was found by Tresca (1878). Later on, the seminal work

of (Basinski and Hume-Rothery, 1957) showed the interaction between applied strain rate

and the physical material properties as a function of temperature. An extensive review

of the ASB formation can be found in (Rogers, 1979; Timothy, 1987). Recently, it has

been shown that dynamic recrystallization plays an important role in strain softening

and subsequent adiabatic shear band formation (Mourad et al., 2016; Landau et al., 2016;

Longère, 2018). Therefore, the stored energy is considered an important factor in the ASB

formation process which will be reviewed in the next section.

1.5.4 Stored energy in metallic materials

When a material undergoes plastic deformation, part of the mechanical energy dissipates

as heat, and part of it remains in the material as stored energy, which results in an increase

of the internal energy (Bever et al., 1973; Aravas et al., 1990). There are three main types of

stored energy, namely elastic energy, energy stored due to the dislocations, and energy due

to the mean stresses in polycrystals (Biermann et al., 1993). Then the total stored energyEs

can be written as When a material undergoes plastic deformation, part of the mechanical

energy dissipates as heat, and part of it remains in the material as stored energy, which

results in an increase of the internal energy (Bever et al., 1973; Aravas et al., 1990). There

are three main types of stored energy, namely elastic energy, energy stored due to the

dislocations, and energy due to the mean stresses in polycrystals (Biermann et al., 1993).

Then the total stored energy Es can be written as

Es = Ee+ Ed + Em; (1.3)

where Ee is the elastic energy,Ed is the energy due to dislocations, and Em is the energy due

to mean stresses in the polycrystals. The elastic energy can be given by

Ee =
� 2

2E
; (1.4)
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where � is the stress, andE is the Young's modulus. The elastic energy is recoverable energy

during unloading and hence does not contribute to total stored energy in crystals. Moreover,

if the energy of the dislocation core is neglected and isotropic elasticity is considered, then

the energy per unit length of dislocation line Eunit is given by

Eunit =
� b2 f (� )

4�
ln

 
R0

r0

!

; (1.5)

with R0 and r0 being the outer and inner cut-o � radius of the dislocations, respectively. The

radius r0 is of the order of the Burgers vector. The core energy within the radius r0 is only a

fraction of the total stored energy (Bever et al., 1973). It is assumed that the volume fraction

f (� ) of the dislocations is a function of Poisson's ratio � and expressed as follows:

f (� ) = 1 for screw dislocations; (1.6)

f (� ) =
1

1� �
for edge dislocations: (1.7)

The stored energy due to SSDs is given by

Ed =
NX

r=1

� rEunit =
NX

r=1

� r � b2 f (� )

4�
ln

 
R0

r0

!

; (1.8)

with � r being the SSD density on slip system r and N denote the total number of slip

systems. An approximated form of the previous equation reads

Ed = c� b2
NX

r=1

� r ; with c=
f (� )
4�

ln

 
R0

r0

!

; (1.9)

where c is a constant approximately equal to 0 :5.

The expression of the energy stored due to dislocations accounting for the energy of

the dislocation core can be found in ( �Cebron and Kosel, 2014) assuming that the edge-type

dislocations are predominately accumulated during the deformation process. It reads

Ed =
NX

r=1

� r � b2

4� (1� � )

 

ln

"
P1p
� rb

#

+ P2

!

; (1.10)

where P1 and P2 are the constants andP1=
p

� r is used as the outer cut-o� radius.

Finally, the term Em in (1.3) is due to mean stresses in the polycrystals and can be

approximated by taking into account GNDs as follows:

Em =
NX

r=1

� r
GEunit =

NX

r=1

� r
G

� b2 f (� )

4�
ln

 
R0

r0

!

; (1.11)
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with � r
G denoting GND density.

A review on stored energy measurements in materials deformed by cold working using

experimental methods can be found in the pioneering work of (Bever et al., 1973). There

are mainly two methods used for the measurement of stored energy: single-stepmethods

and two-stepmethods. In single-step methods, all the measurements are made during the

deformation process. Correspondingly, in two-step methods, the deformation is carried

out �rst, and the stored energy is measured later. In single-step methods, the di � erence

between the work applied to the specimen and the heat generated during the deformation

process is used to measure the stored energy. The work applied to the specimen can be

measured from the force-displacement curve. The heat generated during the deformation

process can be measured by measuring the change in the temperature of the specimen and

using the density and speci�c heat of the material. On the other hand, in two-step method

di � erence in enthalpy between the cold worked specimen and standard state is determined

to measure the stored energy.

Numerous experimental work has been performed to investigate the fraction of the

plastic work converted into heat, for instance, in (Macdougall, 2000; Knysh and Korkolis,

2015; Fekete and Szekeres, 2015; Rittel et al., 2017). Early attempts made by Taylor and

Quinney (1934) found this fraction to be constant between 0:8 and 0:95, which is the

so-called Taylor-Quinney coe� cient (TQC). When TQC reaches a value of one, most of

the plastic work dissipates through heat, and it indicates that there is no energy stored

in the material. Later experiments, for instance by Oliferuk et al. (1993) showed that this

fraction varies between 0.6 and 1.0 for polycrystalline austenitic steel and depends upon the

accumulated strain. Kapoor and Nemat-Nasser (1998) investigated the fraction of plastic

work converted into heat by measuring the temperature using an infrared method during

the plastic deformation of Tantalum-2.5% W alloy. They found a TQC ( � ) of the order of

0:68.

In high strain rate deformation processes, for instance, orthogonal cutting, shearing, or

trimming operation, adiabatic shear band (ASB) formation occurs due to the rapid increase

of temperature locally. The main source for the temperature rise in the absence of external

sources is plastic dissipation (Mason et al., 1994; Rittel, 1999; Zaera et al., 2013). Following

these pioneering contributions, � is de�ned as the fraction of plastic work converted into

heat. Thedi� erentialform of � , emphasizing the rate quantities, can be expressed as follows

(Rittel, 1999):

� di f f =
�Q
�Wp

=
� C" �T

�Wp
; (1.12)

where � is the mass density of the material, C" is the speci�c heat and �Wp denotes the

plastic power. The � ratio can also be expressed inintegral form, which denotes the total
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plastic work converted into heat (Rittel, 1999):

� int =
� C" 4T
R

�Wpdt
; (1.13)

where 4T is the increment of temperature during the deformation. The advantage of

selecting the � int as a measure of the fraction of plastic work converted to heat is that its

value cannot exceed one due to thermodynamic limitations unless the latent heat in the

material is delivered (Rittel, 1999). There is no such limitation for the � di f f .

Experimental measurement of the rise of temperature during high strain rate plastic

deformation of Tantalum-2.5 % W alloy was performed by Kapoor and Nemat-Nasser

(1998). They predicted the stored energy based on the dislocation theory (Eq. (1.9)), and

compared it with experimental measurements. The analytically calculated value of � was

0:995, in contrast to the experimentally observed value of 0:7. The analytical expression

used by them is well known and widely used for the stored energy predictions. In a recent

study, Nieto-Fuentes et al. (2018) showed that the universal expression for the stored energy

is inadequate and needs modi�cations. They introduced an ad-hocfactor � to the analytical

expression of the stored energy based on the dislocation theory as follows:

Ed = � c� b2
NX

r=1

� r ; with � =
(1� � int )

Rt
0

�Wpdt

c� b2
P N

r=1 � r
; (1.14)

as � int is an evolving parameter with strain and strain rate; hence the � evolves with strain

and strain rate.

With developments of numerical methods and increased capabilities of modern comput-

ers, numerical approaches are becoming popular. The next section summarizes numerical

techniques used to predict the size e� ects and stored energy, and investigate the strain

localization phenomenon.

1.5.5 Numerical approaches: size e� ects, strain localization and predic-

tion of stored energy

� Numerical approaches to predict size e � ects

From the numerical point of view, classical continuum theories assume that the material

properties are size–independent for the materials undergoing plastic deformation. However,

the experimental results show that the material exhibits a size–dependent behavior at

the sub-micron scale. Size–dependent crystal plasticity modeling is required when the

specimen or grain size becomes comparable to the characteristic lengths of the underlying

plastic deformation mechanisms (Fleck and Hutchinson, 1997; Kocks and Mecking, 2003).

19



(a) (b)

Fig. 1.7 (a) Macroscopic stress-strain curve for the simple shear shear tests of di� erent
average grain sized. (b) Contours of cumulative plastic strain for di � erent average grain
size d (Cordero et al., 2013).

Strain gradient plasticity theories make use of the characteristic length scale(s) in the

constitutive framework. These theories can be used to bridge the gap between plasticity at

the macro-mechanical scale and plasticity at the micro-mechanical scale (Abu Al-Rub and

Voyiadjis, 2004). A review of strain gradient plasticity models in the context of experimental,

theoretical, and numerical investigations can be found in (Voyiadjis and Song, 2019). There

are many names in this group of theories, but there is no dominant theory widely accepted.

But all of these theories are proposed to account for the size e� ect phenomenon and

introduce the characteristic length scales in the constitutive framework.

Strain gradient plasticity models can be used to predict grain size e � ects in polycrystalline

materials, for instance, in (Acharya and Bassani, 2000; Evers et al., 2004; Aifantis and Willis,

2005; Borg, 2007; Cordero et al., 2013). Borg (2007) found the value of a constantnx (refer

Eq. (1.2)) to be in the range of 0:82� 1:25 at initial yield and in the range of 0:77� 1:09

after a true strain of 0:1. Cordero et al. (2013) used a micromorphic theory to introduce

the dislocation density tensor in the classical crystal plasticity model to predict the grain

size e� ect. An introduction of dislocation density tensor into the constitutive framework

intrinsically gives rise to kinematic hardening, which is responsible for strong size e � ects.

The predicted grain size e� ect for di � erent average grain sizes and plastic strain �elds

taken from the work of (Cordero et al., 2013) are shown in Fig. 1.7a and 1.7b, respectively.

Size e� ects induced in microwire torsion tests or bending of thin foils are because of the

inhomogeneous plastic deformation. The prediction of size e � ects in microwire torsion tests

using strain gradient crystal plasticity, including full dislocation tensor into the constitutive

framework, can be found in (Kaiser and Menzel, 2019b). Their paper analyzed the response

of three microwires of di � erent radii under monotonic loading. They observed that the

decrease in the size of the microwire results in a signi�cant increase in the overall strain

hardening rate. Size e� ects predictions in monotonic and cyclic loading of polycrystalline

microwires can be found in (Bardella and Panteghini, 2015) using a strain gradient plasticity
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Fig. 1.8 Indentation size e� ect: Dependency of normalized load-penetration curve on
the maximum indetation depth hmax varied from 200� m to 1� m. (Lewandowski and
Stupkiewicz, 2018).

approach that includes plastic spin in the constitutive framework called distortion gradient

plasticity. They found that this theory is satisfactory to capture the size e � ects in monotonic

loading. Scherer et al. (2020) recently studied the size e� ect in microwire torsion tests using

the reduced-order micromorphic crystal plasticity and Lagrange multiplier-based models.

Another important size e � ect observed due to inhomogeneous plastic deformation is

in micro-bending tests. The non-local plasticity models often used to explore the size–

dependent bending moment, for instance, in (Wang et al., 2003; Kuroda and Tvergaard,

2006; Keller et al., 2012). Gupta et al. (2015) studied the e� ect of crystal orientation on size–

dependent response of single crystal beams using a higher-order nonlocal crystal plasticity

model. They observed that the crystal orientation signi�cantly a � ects the size e� ect. In

addition, the slip system activity is important to analyze the orientation dependency.

The study of indentation size e � ect using the FE modeling is popular among the

continuum mechanics community. Lewandowski and Stupkiewicz (2018) studied the

indentation size e� ect in wedge indentation for nickel single crystal using gradient-enhanced

crystal plasticity model. They compared the numerical results such as load-penetration

depth curve, GND density distribution, lattice rotation, and net Burgers vector with

the experimental results, and good agreement was found. In addition, they studied

the indentation size e� ects for the indentation depth varied between 200� m to 1� m. It

was observed that the maximum normalized load increases drastically with a decrease

in indentation depth from 200� m to 1� m. The load is normalized by the maximum

penetration depth hmax. Fig. 1.8 taken from (Lewandowski and Stupkiewicz, 2018) shows the

dependence of the normalized load-penetration depth curve on the maximum penetration

depth for three di � erent wedge angles.
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� Numerical approaches to strain localization problems

FE simulations of strain localization phenomenon show spurious mesh dependency, and

classical plasticity models are inadequate to solve such strain localization problems (Asaro

and Rice, 1977). The possible loss of ellipticity of the partial di � erential equations in

strain-softening materials results in an ill-posed boundary-value problem and classically

shows dependency on mesh size or density (Fig. 1.9a). Without regularization, meaning

that mesh independent solution, the classical continuum models can not be used to solve

strain localization problems (Needleman, 1988).

Shear band dependency on the mesh size or density can be overcome by introducing

characteristic length scales in the classical plasticity models according to (Kuroda and

Tvergaard, 2006; Voyiadjis and Al-Rub, 2005; Anand et al., 2012; Vignjevic et al., 2018; Wolf

et al., 2019; Kaiser and Menzel, 2019b). Strain gradient plasticity models, which include

a characteristic length scale in the constitutive framework, are often used to regularize

the strain localization problems, e.g., Aifantis (1984); Abu Al-Rub and Voyiadjis (2006);

Anand et al. (2012); Ahad et al. (2014). Aifantis (Aifantis, 1984, 1987) proposed a strain

gradient theory by adding the gradient of plastic strain term in the yield function of

classical plasticity theory to solve the issues related to the thickness of the localization

regime. The characteristic length scales introduced in the gradient plasticity models can

be associated with the width of the shear band as demonstrated in (Aifantis, 1984, 1987;

Zbib and Aifantis, 1988; Chambon et al., 1998). The e� ect of higher-order gradients on ASB

formation was investigated by Zhu et al. (1995) and two length scales, respectively, the

deformation and thermal were considered in the analysis. They showed that the width

of shear bands scales with the square root of strain gradient coe� cient in the absence of

heat conduction and the square root of the thermal conductivity in the absence of strain

gradients. The micromorphic theory proposed by Eringen (1999) relies on the second-

order microdeformation tensor as an additional degree of freedom. The application of

micromorphic theory for the strain localization phenomenon can be found in (Dillard et al.,

2006; Anand et al., 2012; Mazière and Forest, 2015). In contrast to Eringen's micromorphic

theory, a reduced-order micromorphic crystal plasticity theory proposed by Ling et al.

(2018) involving a scalar-valued variable as the additional degree of freedom is used for the

strain localization phenomenon in (Scherer et al., 2019). The mesh dependency issues in

the shear localization problem can also be eliminated by the sub-grid method proposed in

(Mourad et al., 2017; Jin et al., 2018).

� Numerical approaches to predict stored energy

Stored energy is a function of total dislocation density. The prediction of stored energy

related to an internal stress �eld surrounding dislocation structures using the discrete

dislocation dynamic simulations can be found in (Zehnder, 1991; Mura, 1994; Benzerga

et al., 2005; Déprés et al., 2006). The use of a CPFEM for prediction of stored energy
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(a) (b)

Fig. 1.9 Simulation of plane strain tension tests with three di � erent meshes using the (a)
classical plasticity model, and (b) gradient-regularization (Anand et al., 2012).

can be found in ( �Cebron and Kosel, 2014; Jafari et al., 2017).�Cebron and Kosel (2014)

used a dislocation density-based crystal plasticity model to predict the stored energy in

polycrystalline copper under tensile loading. Jafari et al. (2017) used a thermodynamically

consistent framework for the prediction of stored energy in FCC single and bi-crystals.

Furthermore, molecular dynamics simulations are proven to be advantageous in dislocation

density evolution and, consequently, in predicting stored energy. Prediction of stored

energy by employing molecular dynamics simulations can be found in (Kositski and

Mordehai, 2021; Xiong et al., 2021). Kositski and Mordehai (2021) performed molecular

dynamics simulations to study the TQC parameter evolution in single and polycrystalline

aluminum, iron, copper, and tantalum at high strain rates. They found that some energy

stored in polycrystalline simulations is due to the distribution of grain boundaries and the

evolution of the morphology.

1.5.6 Gradient plasticity models: Applications to practical engineering

problems

Nowadays, micro-machining and micro-forming processes have become increasingly

important due to the extensive use of micron-scale components in the defense, automotive,

medical, and aerospace industries. From a numerical point of view, strain gradient

plasticity models can be used to simulate real-life manufacturing processes. In this

section, applications of the gradient plasticity models to practical engineering problems are

reviewed.

Most of the real-life manufacturing processes involve severe deformation. A review on

the in�uence of size e � ects in micro-manufacturing processes can be found in (Pradeep

Raja and Ramesh, 2021). Numerical modeling of the non-conventional plastic behavior
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of micron-scale structures needs strain gradient crystal plasticity models. However, the

complexity of the numerical implementation and increased computational cost leads to

limited use of these models in practical engineering problems. An extensive review of the

application of strain gradient plasticity models to manufacturing processes can be found in

(Russo et al., 2020b).

The application of strain gradient plasticity model to micro-machining of FCC single

crystal copper is discussed in (Demiral et al., 2014). They implemented this model in

commercial software ABAQUS /Explicit using a user-de�ned subroutine VUMAT. They

investigated the in�uence of strain gradients on the deformation mechanism in crys-

talline materials. Micro-forming such as micro-bending is a promising technology in

manufacturing micron-scale components in mass production, for example, connectors and

contact springs (Engel and Eckstein, 2002). Zhang et al. (2013) used a non-local crystal

plasticity model to micro-bending of metallic foils to study the deformation mechanism

and dislocation density evolution.

Despite several attempts in applying strain gradient plasticity models to practical

engineering problems, for instance, in (Royer et al., 2011, 2012) for machining, they

still have limited applications. Ease of implementation in commercial FE software and

reduced computational cost in terms of CPU time may expand their applications to various

engineering problems. One of the easy and e� cient ways to implement these models

in commercial FE software is by use of an analogy between the non-local model and

classical continuum mechanics. For instance, an analogy between the chemical di� usion

and mechanics is used to implement gradient plasticity and gradient damage models in an

implicit version of the code ABAQUS in (Seupel et al., 2018).

1.6 Outline of the thesis

The outline of this work is as follows:

� Chapter 2 is dedicated to presenting an overview of the constitutive frameworks of

crystal plasticity modeling. Firstly, the kinematic of the large deformation framework,

de�nition of stresses, single crystal elasto-visco-plastic �ow rule, and dislocation density-

based hardening model used in this work are presented. Then, the constitutive framework

of the reduced-order micromorphic crystal plasticity model, Lagrange multiplier-based

model, and CurlFp model is summarized. Finally, polycrystalline plasticity models from

the literature are discussed.

� In Chapter 3, the size e� ects in monotonic loading of the single crystal microwire torsion

tests are predicted using the micromorphic crystal plasticity and Lagrange multiplier-based

models. Furthermore, a comparison is presented and discussed for the prediction of size

e� ects using the reduced-order micromorphic crystal plasticity and CurlFp models under

monotonic and cyclic loading of the microwire torsion tests. In addition, SSD and GND

density distribution using the Lagrange multiplier-based model for the monotonic and
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cyclic loading of the microwire torsion tests is presented. To this end, scaling laws are

developed using the reduced-order models for the monotonic loading of the microwire

torsion tests.

� Chapter 4 is devoted to the investigation of the ASB formation process in single

crystals and polycrystalline FCC metallic materials subjected to the adiabaticheating.

A thermodynamically consistent framework of the classical and micromorphic crystal

plasticity models is introduced. The capability of the micromorphic crystal plasticity model

for the regularization of ASB formation in single and poly-crystals is demonstrated. In

addition, the prediction of the grain size e � ect is performed in polycrystalline simulations

under isothermalcondition.

� In chapter 5, a thermodynamically consistent classical and micromorphic crystal

plasticity models are used to predict the stored energy and TQC in single and poly-

crystalline FCC metallic materials.

� Chapter 6 is dedicated to the implementation of the micromorphic plasticity theory

in an explicit FE software VPS/Pam-Crash® from ESI Group. Then, this implemented

model is employed for the regularization of shear band formation in shearing operationand

prediction of size e� ect in micro-bendingtests.

� Conclusions and outlook follow in chapter 7.

Note that the results shown in chapter 3, 4, and 5 are from the classical and micro-

morphic single crystal plasticity model implemented in implicit FE code Zset 4. In addition,

the results shown in chapter 6 are from the classical and micromorphic plasticity model

implemented in explicit FE software VPS /Pam-Crash® from ESI Group 5.

4http: //www.zset-software.com /
5https://www.esi-group.com /pam-crash
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Chapter 2

Overview of constitutive frameworks:

From classical to strain gradient crystal

plasticity models

2.1 Introduction

The continuum crystal plasticity model considers the material strain hardening in plastically

deforming material due to dislocation glide, dislocation multiplication, and interaction.

Single crystals are of interest in structural materials, such as turbine blades and propellers,

and are considered as a basis for polycrystalline materials. An early attempt to de�ne the

plastic deformation of single crystals can be found in (Taylor and Elam, 1923, 1925). This

single crystal model was further utilized to analyze the deformation of polycrystalline

aggregates in (Taylor, 1938). Furthermore, the single crystal model proposed by Taylor and

Elam (1923, 1925) was put into a continuum framework by Mandel (1965) and Hill (1966)

for small deformations. The extension based on a general thermodynamic formulation for

�nite deformation was proposed in (Rice, 1971; Hill and Rice, 1972; Mandel, 1973a; Asaro

and Rice, 1977).

Metallic materials are generally polycrystalline in nature. When polycrystalline aggre-

gates are subjected to severe deformation, signi�cant changes in the microstructural and

mechanical properties can be observed. One of the signi�cant changes in microstructure is

the re-orientation of crystal lattice towards a preferential orientation distribution, called

crystallographic texture (Marin and Dawson, 1998). The prediction of plastic anisotropy

and texture is the essence of polycrystal models. An anisotropic elasto-plastic deformation

of crystalline aggregates, including shape change, crystallographic texture, and strain

hardening, can be predicted by continuum crystal plasticity models (Cailletaud et al.,

2003b; Roters et al., 2010). Moreover, it is possible to infer the behavior of polycrystalline

aggregates from single crystals.
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This chapter is dedicated to an overview of the constitutive framework of the CPFEM

used in this work. The outline of the chapter is as follows: section 2.2 summarizes the

kinematics of the large deformation framework and elasto-viscoplastic �ow rule to evaluate

the slip rate and internal variables. Section 2.3 is dedicated to the constitutive framework of

the strain gradient crystal plasticity models, speci�cally the reduced-order micromorphic

crystal plasticity model, Lagrange multiplier-based model, and CurlFp model. Finally, in

section 2.4 di� erent homogenization methods used in polycrystalline simulations to study

the mechanics of heterogeneous materials from the literature are summarized.

2.2 Finite deformation framework

2.2.1 Kinematics

A �nite deformation framework is used throughout the work and is based on the multi-

plicative decomposition of the total deformation gradient F
�

into an elastic part F
�

e and a

plastic part F
�

p (see Fig. 2.1), i.e.F
�

= F
�

e� F
�

p (see, e.g., Lee and Liu (1967); Willis (1969); Rice

(1971); Mandel (1973b); Teodosiu and Sidoro� (1976)). The volumetric mass densities with

respect to the reference, the intermediate and the current con�guration are � 0, � #, and � ,

respectively, and related via

J= det(F
�
) =

� 0

�
; Je = det(F

�
e) =

� #

�
; Jp = det(F

�
p) =

� 0

� #
: (2.1)

Moreover, it is assumed that the plastic �ow is incompressible such that

Jp = detF
�

p = 1; Je = J= detF
�
: (2.2)

The spatial, a plastic, and an elastic velocity gradients are l
�
, l

�
p, and l

�
e, respectively, and

de�ned as follows:

l
�

= �F
�

� F
�

� 1; l
�

p = �F
�

p � F
�

p� 1; l
�

e = �F
�

e� F
�

e� 1: (2.3)

The multiplicative decomposition of F
�

leads to the partition of the spatial velocity gradient

l
�

into l
�

e and l
�

p as follows:

l
�

= l
�

e+ l
�

p; l
�

= l
�

e+ F
�

e� l
�

p � F
�

e� 1: (2.4)

The Green-Lagrange strain tensorE
�

e
GL is introduced as

E
�

e
GL =

1
2

(F
�

eT� F
�

e� 1
�
); (2.5)

with 1
�

denoting the second-order identity tensor.
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Fig. 2.1 A schematic representation of multiplicative decomposition of the total deformation
gradient F

�
into an elastic F

�
e and a plastic part F

�
p.

2.2.2 De�nition of stresses

The second Piola-Kirchho� stress tensor�
�

e is de�ned with respect to the intermediate

con�guration by

�
�

e = JeF
�

e� 1 � �
�

� F
�

e� T: (2.6)

where �
�

is the Cauchy stress tensor. The tensor�
�

e is related to the Green-Lagrange strain

tensor E
�

e
GL by elastic law

�
�

e = �
�

: E
�

e
GL: (2.7)

where �
�

is the fourth-order tensor of elastic moduli. The �rst Piola-Kirchho � stress tensor

�
�

p related to the Cauchy stress tensor�
�

is given by

�
�

p = J�
�
F
�

� T: (2.8)

Moreover, the Mandel stress tensor �
�

M which is work-conjugate to l
�

p can be de�ned with

respect to the intermediate con�guration as follows:

�
�

M = JeF
�

eT� �
�

� F
�

e� T: (2.9)

2.2.3 Flow rule

Most rate-independent crystal plasticity theories lead to an ill-conditioned problem re-

garding the selection of active slip systems and the increments of shear on the active

slip systems as emphasized in (Anand and Kothari, 1996; Miehe et al., 1999; Busso and

Cailletaud, 2005). This di� culty can be overcome by using rate-dependent framework.

Here, a rate-dependent overstress-type �ow rule is adopted to facilitate the determination

of the set of active slip systems. It is based on a Schmid-type yield function de�ned as

f r = j� r j � � r
c; (2.10)
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involving the resolved shear stress � r on the slip system r, which is the driving force to

trigger plastic slip, and the corresponding critical resolved shear stress � r
c. The resolved

shear stress� r on slip system r is de�ned as

� r = �
�

M : (mr 
 nr); (2.11)

where mr is the slip direction and nr is the slip normal.

The slip rate �
 r on each slip systemr is then given by the following rate-dependent �ow

rule

�
 r =

*
f r

K

+m

sign(� r); (2.12)

with Macauley brackets < � > denoting the positive part of � , and K and m are the viscosity

parameters. The higher value of power m and lower value of K lead to an almost ideal

elasto-plastic behavior in a given strain rate range.

It is assumed that the plastic deformation rate is the result of slip processes on N distinct

slip systems, i.e.

l
�

p =
NX

r=1

�
 r(mr 
 nr): (2.13)

The validity of the �nite deformation framework presented above is checked with the single

crystal volume element undergoing simple shear. The details can be found in appendix B.

2.2.4 Dislocation density-based hardening model

Phenomenological �ow rules are frequently used in crystal plasticity modeling. They have

a drawback that the material state is only described in terms of critical resolved shear stress

and not in terms of lattice defect population such as dislocation densities. This limitation can

be overcome by the physics-based crystal plasticity models. The physics-based plasticity

models provide a strong physical relationship with the microscopic mechanisms of plastic

deformation by introducing microscopic internal variables such as dislocation density in the

constitutive framework. The dislocation density-based models have better predictability

compared to the phenomenological models over a wide range of strain, strain rates, and

temperatures ( �Cebron and Kosel, 2014).

In the present work strain hardening behaviour is based on the dislocation density-based

hardening model, which takes into account dislocation interactions. Following Kubin et al.

(2008), the rate of the critical resolved shear stress� r
c is based on the scalar dislocation

density as follows:

� r
c = � 0 + �

vut NX

u=1

hru%u; (2.14)

where � 0 is the initial critical resolved shear stress, hru is the interaction matrix describing

long-range interaction between the dislocations, %u (= � ub2) is the adimentional dislocation
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density, and � u is the usual dislocation density, i.e. the length of dislocation lines per unit

volume with b being the norm of the dislocation Burgers vector b. The following equation

gives the evolution of the dislocation density

�%r = j �
 r j

0
BBBBBBBBB@

q P N
u=1bru%u

� c
� dc%r

1
CCCCCCCCCA
: (2.15)

The dislocation interaction is described by the matrix bru , � c is a constant material parameter

proportional to the number of obstacles crossed by a dislocation before being immobilized,

and dc is the critical distance controlling the annihilation of dislocations with opposite

signs. The structure of the matrices hru and bru can be found in appendix A. The total

adimensional dislocation density can be expressed as follows:

%s =
NX

r=1

%r
0 +

Z t

0

NX

r=1

�%rdt; (2.16)

where %r
0 is the initial adimensional dislocation density.

2.3 Strain gradient crystal plasticity theory

2.3.1 Reduced-order micromorphic crystal plasticity model

According to the micromorphic approach, the variables carrying the targeted gradient

e� ects are selected from the available state variables and can be tensors of any rank (Forest,

2016b). The model is called reduced-order micromorphic when the micromorphic variable

is a scalar quantity, as in the model proposed by Ling et al. (2018) summarized in this

section.

The material points are de�ned by the position vector X in the reference con�guration


 0 and the position vector x in the current con�guration 
 t. They possess two types of

degrees of freedom: the displacement vector u(X;t) = x � X and the micromorphic scalar

microslip variable 
 � (X;t). The associated scalar internal variable is the cumulative plastic

strain 
 cum introduced as


 cum =
Z t

0

NX

r=1

j �
 r jdt: (2.17)

In the present formulation, the set of degrees of freedom (DOFs) is, therefore

DOFs = fu; 
 � g: (2.18)
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The gradients of the degrees of freedom with respect to the reference con�guration are

H
�

=
@u

@X
= Grad u; K =

@
�
@X

= Grad 
 � : (2.19)

The static balance equations and Neumann boundary conditions expressed with respect to

the reference con�guration are as follows:

Div �
�

p = 0 and Div M � S= 0; 8 X � 
 0; (2.20)

T = �
�

p �N and M = M �N; 8 X � @
 0; (2.21)

with Sand M being the generalized stresses,M is the generalized surface traction and N

the outward unit normal vector at a boundary of the reference body.

The cumulative plastic strain 
 cum is related to the microslip variable 
 � via the relative

plastic strain ep(X;t) as

ep(X;t) := 
 cum� 
 � : (2.22)

The material under consideration is assumed to be characterized by the Helmholtz free

energy density function

	 = ˜	 (E
�

e
GL;ep;K; � ); (2.23)

in terms of the Green-Lagrange strain tensor E
�

e
GL (Eq. (2.5)), the relative plastic strain ep, the

gradient of the microslip variables K and the internal hardening variable � . The Helmholtz

free energy density function is taken as a quadratic potential in the form:

� 0 ˜	 (E
�

e
GL;ep;K; � ) =

1
2

E
�

e
GL : �

�
: E

�
e
GL +

1
2

H� e2
p +

1
2

K �A
�

� K + � 0 ˜	 (� ); (2.24)

In the micromorphic approach, two additional material parameters are introduced, namely

the coupling modulus H� and the higher-order micromorphic sti � nessA
�

.

The Clausius-Duhem inequality takes the form

 

�
�

e� � 0
@̃	

@E
�

e
GL

!

: �E
�

e
GL �

 

S+ � 0
@̃	
@ep

!

�ep +

 

M � � 0
@̃	
@K

!

� �K + �
�

M : l
�

p + S �
 cum� � 0
@̃	
@�

�� � 0; (2.25)

from which the following state laws and residual dissipation inequality are adopted:

�
�

e = � 0
@̃	

@E
�

e
GL

; S= � � 0
@̃	
@ep

; M = � 0
@̃	
@K

; X = � 0
@̃	
@�

: (2.26)

where X is the thermodynamic force associated with internal hardening variable � . The

de�nition of the second Piola-Kirchho � stress tensor�
�

e can be found in Eq. (2.6).
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Moreover, the speci�c quadratic form of the potential (2.24) then leads to the following

relations:

�
�

e = �
�

: E
�

e
GL; S= � H� ep = � H� (
 cum� 
 � ); M = A

�
� K: (2.27)

For isotropic and cubic materials, the second-order tensor A
�

= A1
�

involves a single

generalized modulus A which is assumed to be constant in space. Additionally, PDE

connecting 
 � and 
 cum follows from the previous state laws and the balance equation in

(2.20) as


 � �
A
H�

4X 
 � = 
 cum; (2.28)

where 4X stands for the Laplace operator with respect to the reference con�guration.

The residual dissipation inequality takes the form

Dres= �
�

M : l
�

p + S �
 cum�
NX

r=1

Xr �� r =
NX

r=1

� r �
 r + S �
 cum�
NX

r=1

Xr �� r � 0; (2.29)

after consideration of (2.13) and of plastic incompressibility. The part of the free energy

� 0 ˜	 (� r) due to the internal hardening variable � r is assumed to be of the form (Abrivard

et al., 2012):

� 0 ˜	 r(� r) =
1
2

� (� r)2; (2.30)

where � 0 ˜	 r(� r) is the free energy function related to the internal hardening variable � r on

slip system r (= 1;2::::::;N) with N being the total number of slip systems. The dissipation

due to the internal hardening variable � r in (2.25) on each slip systemr is given by

Xr = � 0
@̃	 r

@�r
= �� r ; with � r =

vut NX

u=1

hru%u: (2.31)

The dissipation rate form from Eq. (2.29)suggests introducing the following generalized

Schmid yield function:

f r = j� r j + S� � r
c = j� r j � (� r

c � S); (2.32)

which leads to a yield function of the form

f r = j� r j � (� r
c � S) = j� r j � (� r

c � Div M); (2.33)

once the generalized static balance law (2.20) is taken into account. In that way, the

generalized stressS in the previous equation results in an enhancement of the hardening

law and can be regarded as a source of isotropic hardening (or softening). After inserting

(2.19) and (2.27) in (2.33), the yield function can be expressed as

f r = j� r j � (� r
c � A Div(Grad 
 � )) = j� r j � (� r

c � A 4X 
 � ): (2.34)
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This generalized yield function is then inserted into the �ow rule (2.12) to compute the

plastic slip rate of each slip system.

The application of this model in numerical simulations can be found in chapter 3, 4 and

5. A thermodynamically consistent framework of this model is derived in chapter 4.

2.3.2 Lagrange multiplier-based model

The Lagrange multiplier-based model was proposed by Fortin and Glowinski (1983) and

successfully implemented in (Zhang et al., 2018; Scherer et al., 2020). In this section, the

Lagrange multiplier-based model presented in (Scherer et al., 2020) is summarized. The

Lagrange multiplier � is introduced to enforce the strict equality between 
 cum and 
 � in

order to transform the previous micromorphic model into a strain gradient crystal plasticity

model. It replaces the penalty coe� cient represented by the coupling modulus H� of the

micromorphic model summarized in section 2.3.1. Therefore, the set of DOFs is given by

DOFs = fu; 
 � ; � g: (2.35)

It turns out that the free energy density function in (2.23) becomes a Lagrangian

function L0. More speci�cally speaking, the material under consideration is assumed to be

characterized by the Lagrangian function L0(E
�

e
GL;ep;K; �; � ), in terms of the Green-Lagrange

strain tensor E
�

e
GL, the relative plastic strain ep, the gradient of the microslip variable K, the

Lagrange multiplier � , which is treated as an additional degree of freedom and the internal

hardening variable � . The considered form of the Lagrangian function is

� 0L0(E
�

e
GL;ep;K; �; � ) =

1
2

E
�

e
GL : �

�
: E

�
e
GL +

1
2

� � e2
p +

1
2

K �A
�

� K + � ep + � 0L0(� ); (2.36)

where � � is a Lagrangian penalty modulus. The Clausius-Duhem inequality then takes the

form

 

�
�

e� � 0
@L0

@E
�

e
GL

!

: �E
�

e
GL �

 

S+ � 0
@L0

@ep

!

�ep +

 

M � � 0
@L0

@K

!

� �K+ �
�

M : l
�

p + S �
 cum� � 0
@L0

@�
�� � 0: (2.37)

This gives rise to the following state laws:

�
�

e = � 0
@L0

@E
�

e
GL

; S= � � 0
@L0

@ep
; M = � 0

@L0

@K
; X = � 0

@L0

@�
: (2.38)

Furthermore, evaluating (2.38)for the speci�c quadratic form of the Lagrangian (2.36)leads

to the following relations

�
�

e = �
�

: E
�

e
GL; S= � � � � (
 cum� 
 � ); M = A

�
� K: (2.39)
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The part of the free energy � 0L0(� r) due to the internal hardening variable � r has the form

as given in Eq. (2.30). Moreover, the expression for the thermodynamic force Xr is as given

in Eq. (2.31).

The residual dissipation has the same form as (2.29) and leads to the introduction of the

following generalized Schmid yield function:

f r = j� r j + S� � r
c = j� r j � (� r

c � S) = j� r j � (� r
c � � + � � (
 cum� 
 � )): (2.40)

Again, this generalized yield function can be inserted into the �ow rule (2.12) to evaluate the

plastic slip rate of each slip system. The penalty parameter � � is similar to the micromorphic

penalization term H� but bears a di� erent meaning. In simulations, the parameter � � can

take a much lower value than H� and provides additional coercivity.

The application of this model in numerical simulations can be found in chapter 3.

2.3.3 CurlFp model

In this section, the gradient plasticity theory based on the complete dislocation density tensor

elaborated in (Kaiser and Menzel, 2019b) is brie�y summarized. The CurlFp framework

proposed by Kaiser and Menzel (2019b) relies on the interpretation of incompatible plastic

deformation processes in terms of the dislocation density tensor. The model formulation

is based on introducing the dislocation density tensor as an argument of the free energy

density function and assumes an extended non-local form of the dissipation inequality as

proposed by Polizzotto and Borino (1998).

The material under consideration is assumed to be characterized by the free energy

density function

	 = ˜	 (F
�
;F

�
p;D

� d; � ); (2.41)

with � denoting a scalar-valued internal variable, which may be interpreted as of measure

of the cumulative plastic strain. Moreover, it is assumed that the gradient-enhanced energy

density function can additively be decomposed as

� 0 ˜	 = � 0 ˜	 e(F
�
;F

�
p) + � 0 ˜	 g(D

� d) + � 0 ˜	 p(� ); (2.42)

where ˜	 e, ˜	 g, and ˜	 p are the elastic contribution, the energy contribution due to the gradient

e� ect and the energy contribution due to the internal hardening variable, respectively. The

energy contribution ˜	 g is expressed as a quadratic function

� 0 ˜	 g(D
� d) = HDD

� d : D
� d; (2.43)

where HD is a material parameter proposed in (Kaiser and Menzel, 2019b), which can be

interpreted as a characteristic length scale parameter. The part of the free energy due to the
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hardening variable � is chosen as

� 0 ˜	 p(� ) = � 0� +
(� 1 � � 0)2

H0
ln

 

cosh

 
H0�

� 1 � � 0

!!

; (2.44)

where the material parameters � 1 and H0 are the saturation strength and the initial

hardening rate, respectively. The extended form of the dissipation inequality is

Dres= �
�

p : �F
�

�

 

� 0
@̃	
@F

�

: �F
�

+ � 0
@̃	
@F

�
p : �F

�
p + � 0

@̃	
@D

� d
: �D

� d + � 0
@̃	
@�

: ��

!

+ P0 � 0; (2.45)

with P0 denoting the non-locality residual. The �rst Piola-Kirchho � stress tensor is given

by

�
�

p = � 0
@̃	
@F

�

: (2.46)

The reduced form of the dissipation inequality reads

Dres= �
�

M : l
�

p + �
�

: �D
� d � X �� + P0 � 0: (2.47)

where �
�

M is a Mandel-type stress tensor de�ned in the intermediate con�guration by

�
�

M = F
�

eT� �
�

p � F
�

pT; (2.48)

and related to the Mandel stress tensor �
�

M de�ned in (2.9)by �
�

M = Jp�
�

M , as the incom-

pressibility condition ( Jp = 1) is not explicitly assumed in this particular model.

The thermodynamic force associated with the internal hardening variable is de�ned as

X = � 0
@̃	
@�

=

 

� 0 + (� 1 � � 0)tanh

 
H0�

� 1 � � 0

!!

; (2.49)

and the energetic dual to the dislocation density tensor reads

�
�

= � � 0
@̃	
@D

� d
: (2.50)

Moreover, the evaluation of (2.50)for the speci�c form of the energy contribution (2.43)

yields

�
�

= � 2HDCurl T(F
�

p): (2.51)

The balance equation of linear momentum expressed with respect to the reference con�gu-

ration

Div �
�

p = 0; in B0 (2.52)
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which is complemented by boundary condition

T = �
�

p �N; on @B0
t ; (2.53)

By considering an insulation condition P0 = 0 as in (Kaiser and Menzel, 2019a), the reduced

form of the dissipation inequality may be written in terms of

Dres= M
�

: l
�

p � X �� � 0; (2.54)

giving rise to a balance equation for the generalized stress tensor as

M
�

= �
�

M + Curl T(�
�

) � F
�

pT; in B0
dis: (2.55)

The generalized stress tensorM
�

consist of the Mandel-type stress tensor �
�

M de�ned in the

intermediate con�guration and a back-stress term Curl T(�
�
) � F

�
pT, which is closely related

to incompatibilities in the plastic deformation �eld such that when gradient e � ects are

neglected,M
�

reduces to �
�

M . The generalized stress tensor is identi�ed as the driving force

for plastic deformation processes based on (2.54). The yield function and the evolution

equations are accordingly formulated in terms of the generalized stress tensor. Moreover,

the non-ambiguous constitutive boundary condition associated with (2.55) reads

�
�

� Spin(N) �F
�

pT = 0; on @B0
dis;ext; (2.56)

where Spin is a spin operator which relate the axial vector to the corresponding skew-

symmetric second-order tensor in the reference con�guration is de�ned as (SpinN)i j =

� � i jqNqei 
 ej. The detailed derivation of (2.55) and (2.56) can be found in (Kaiser and

Menzel, 2019b). The generalized stress tensor in(2.55) and the constitutive boundary

condition in (2.56)are originally derived on the domain B0
dis, where dissipative processes

occur, and on the corresponding external boundary @B0
dis;ext.

In addition, the relative Mandel stress tensor is introduced as a primary �eld variable

M
�

(rel) = M
�

� �
�

M ; (2.57)

so that (2.55) can be written as

M
�

(rel) � Curl T(�
�

) � F
�

pT = 0
�
; in B0

dis: (2.58)

Substituting (2.51) in (2.58) yields the speci�c form of the relative Mandel stress tensor

M
�

(rel) = � 2HDCurl T(Curl T(F
�

p)) � F
�

pT; (2.59)

which is responsible for the back-stress associated with the kinematic hardening. Addition-

ally, �eld variable �
�

p is introduced which is coupled to F
�

p in terms of an L2-projection as
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follows:

0 =
Z

B0
�
�

� p
: (F

�
p � �

�
p)dV; (2.60)

where �
�

� p
is the corresponding test function.

Di � erent de�nitions of the curl of a second-order tensor often used by researchers and

analytical expressions of the dislocation density tensor in small and large deformation

frameworks are given in appendix C.

In order to identify the di � erences between the Lagrange multiplier-based model and

the CurlFp model, the constitutive equations of both models are summarized in Table 2.1.

Table 2.1 Summary of constitutive equations used in reduced-order and the CurlFp models.

Constitutive equations
Reduced-order model

(Lagrange multiplier-based)
(Scherer et al., 2020)

CurlFp model
(Kaiser and Menzel, 2019b)

DOFs
(three-dimensional setting)

fu; 
 � ; � g
Total DOFs per node = 5

fu;M
�

(rel) ; �
�

pg
Total DOFs per node = 21

Free energy
density function

L0(E
�

e
GL;e;K; �; � ) 	 = ˜	 (F

�
;F

�
p;D

� d; � )

State laws
�
�

e = � 0
@L0

@E
�

e
GL

S= � � 0
@L0
@e

M = � 0
@L0
@K X = � 0

@L0
@�

�
�

p = � 0
@̃	
@F

�
�
�

= � � 0
@̃	

@D
� d

X = � 0
@	
@�

Balance laws
Div �

�
p = 0 and Div M � S= 0;

8 X � 
 0

Div �
�

p = 0 in B0 and
M
�

= �
�

M + Curl( �
�
) � F

�
pT

in B0
dis

Boundary conditions
T = �

�
p �N and M = M �N;

8 X � @
 0
T = �

�
p �N on @B0

t and
�
�

� Spin(N) �F
�

pT = 0
�
; on @B0

dis;ext
Residual dissipation

inequality
�
�

M : l
�

p + S �
 cum

� X �� � 0
�
�

M : l
�

p + �
�

: �D
� d

� X �� + P0 � 0
Thermodynamic force

associate with the internal
hardening variable

X = �
q P N

u=1hru%u X =

 

� 0 + (� 1 � � 0)tanh

 
H0�

� 1 � � 0

!!

Material parameters
related to

characteristic length scale
A, H HD

In the comparison of gradient crystal plasticity models, the Lagrange multiplier-based

model is used to compare the size e� ects predicted by the CurlFp model because theCurlFp

model is a strain gradient plasticity model and thus should be compared more directly to

the Lagrange multiplier-based model. This comparison can be found in chapter 3.
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2.4 Polycrystalline plasticity models

The single crystal behavior can be used to predict the behavior of polycrystalline aggregates.

Grains in a polycrystal are de�ned according to crystal orientations such that grains

having the same Euler angles with a given tolerance are all within the same class. The

homogenization models proposed for polycrystals di � er in the scale transition rule used to

predict the local stresses and strains. Several authors made various hypotheses for strain

redistribution within the phases. For instance, Taylor (1938) made an assumption of a

uniform plastic strain, "
�

pg = E
�

p. The assumption of uniform plastic strain is somewhat crude,

and it fails because the experimental results show evidence of plastic strain heterogeneity,

for instance, in uniaxial compression of FCC metallic materials. Furthermore, Lin-Taylor

(Lin, 1957) assumed a uniform total strain such that "
�

g = E
�
. All uniform strain theories

satisfy the compatibility condition; however, they do not satisfy the equilibrium at grain

boundaries.

The scale transition rule links the mean local stress �
�

g to macroscopic stress�
�

and mean

visco-plastic strain E
�

p to local visco-plastic strain "
�

pg (Cailletaud and Pilvin, 1994; Barbe

et al., 2001b) such that

�
�

=

NgX

g=1

fg�
�

g; �E
�

p =

NgX

g=1

fg �"
�

pg; (2.61)

where g denotes the grain or phase,Ng is the number of grains and fg is the volume fraction

of grain or phase g.

The homogenization models such as mean-�eld and full-�eld models are quite ex-

tensively used to determine macroscopic properties from geometrical features of the

microstructure. In the following sections, these homogenization models are reviewed.

� Mean-�eld models

Generalizing the work of (Eshelby and Peierls, 1957) di � erent mean-�eld homogenization

models were developed for instance in (Kröner, 1958; Hill, 1965; Berveiller and Zaoui, 1978;

Tandon and Weng, 1988). Kröner's (Kröner, 1958) model gives an elastic accommodation

such that in case of isotropic materials, the local stress�
�

g is given by

�
�

g = �
�

+ 2� (1� � )(E
�

p � "
�

pg); with � =
2(4� 5� )
15(1� � )

; (2.62)

where the constant � only depends on the Poisson ratio and is approximately equal to 0.5.

Kröner's model results in very high value of internal stresses due to assumption of elastic

accommodation, 2� (1� � )(E
�

p � "
�

pg), via large value of shear modulus � . The approximation

can be made to consider the plastic accommodation by replacing the elastic shear modulus

with an adequate elastoplastic modulus.
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A more precise formulation can be derived from Hill's approximation (Hill, 1965) by

assuming an isotropic elasto-plastic interaction between one grain and the matrix of other

grains. The self-consistent approximation considers each phase as an ellipsoid embedded

in a homogeneous equivalent medium.

There are two main limitations of mean-�eld models. First, these models consider the

description of microstructure based on average grain size, shape, and orientation and

cannot take into account the local heterogeneity within grains. The second limitation

concerns micro-mechanical �elds, which are considered constant within grains. Therefore,

these models cannot be applied to the phenomenon in which micromechanical �elds are

localized in narrow bands (Segurado et al., 2018). Full-�eld models can overcome these

limitations.

� Full-�eld models

Full-�eld homogenization models predict the macroscopic response and microscopic �eld

distribution in heterogeneous materials based on the simulation of representative volume

element (RVE) (Böhm, 2004). The method is computationally expensive because it involves

the solution of the boundary-value problem, which may contain a large number of degrees

of freedom. Full-�eld models are more accurate than the mean-�eld models and are

generally used as reference models (Segurado et al., 2018). They can predict the local

stress-strain �elds and state variables throughout the microstructure, which is important

information, for instance, in damage prediction and localization problems.

Several numerical methods are available to predict the response of RVE. One of the most

common methods is based on FE modeling as demonstrated in (Cailletaud et al., 2003b,a;

Coudon et al., 2019; Flipon et al., 2020). Early attempts to simulate polycrystals using the

FE method can be found in (Kalidindi et al., 1992; Bronkhorst et al., 1992). They considered

a 2D model where each element represents a grain. This model is similar to a mean-�eld

model in that the local �elds are missing. Moreover, the �eld in each grain is considered

to be constant, hence not able to model the strong deformation gradient usually seen in

polycrystals. Later on, 3D microstructure modeled with each grain represented by several

elements with the regular mesh was presented by (Mika and Dawson, 1999). Finally, a

more realistic microstructure with several elements per grain was modeled in (Barbe et al.,

2001b).

The homogenization using FE methods requires solving boundary-value problems that

require a mesh discretized geometry of the microstructure. The �rst approach, sometimes

called the multiphase element technique, consists of superposing a regular 3D mesh on

the image of the microstructure (Fig. 2.2a). The drawback of this method is an inadequate

description of interfaces. The proper meshing of the interfaces is possible with the second

approach of Voronoï polyhedra using standard 2D and 3D free meshing techniques (Fig.

2.2b). Fig. 2.3 taken from (Marchenko et al., 2016) shows 2D and 3D polycrystalline

aggregates with several grains generated using Voronoï tessellation.
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(a) (b)

Fig. 2.2 Two meshing techniques used for RVE: (a) regular mesh, and (b) mesh representing
grain boundaries created using Voronoï tessellation. Color represents the each individual
grain.

The application of boundary conditions to RVEs is one of the main issues in full-

�eld modeling. Four di � erent types of boundary conditions can be applied to RVEs

(Barbe et al., 2001b; Cailletaud et al., 2003b; Segurado et al., 2018): (a) periodic boundary

conditions, (b) statically uniform boundary conditions, where applied surface tractions

are homogeneous over RVE faces, (c) kinematically uniform boundary conditions in

which uniform displacements are applied to the RVE boundary, and (d) mixed boundary

conditions combining uniform tractions and displacements on RVE surfaces.

Furthermore, it is essential to de�ne the size of the RVE properly. An early attempt

to determine the size of the RVE can be found in (Kanit et al., 2003). The size of the

RVE depends upon the studied properties (mechanical, thermal), phase morphology, and

boundary conditions. The e � ective properties can be determined using large size RVE with

a small number of realizations. A smaller size of the RVE is possible when a su � cient

number of realizations of the microstructure are considered.

In the present work, we use a full-�eld model to simulate the behavior of polycrystalline

aggregates. A single crystal plasticity model is used to represent the behavior of each grain

of the polycrystalline aggregate. Besides, mixed boundary conditions presented above are

applied to the RVE surface.
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(a) (b) (c)

Fig. 2.3 Polycrystal morphologies generated using Voronoï tessellation: (a) 71 2D grains (b)
432 2D grains, and (c) 150 3D grains (Marchenko et al., 2016).
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Chapter 3

Prediction of size e � ect in microwire

torsion tests

Abstract

The size-dependent response of metallic microwires under monotonic and cyclic torsion is modeled

taking a reduced-order strain gradient crystal plasticity approach involving a single scalar-valued

micromorphic variable. At �rst, size e� ects predicted by the reduced-order micromorphic and

Lagrange multiplier-based formulations are assessed under monotonic microwire torsion tests. Then

it is compared with the response predicted by theCurlFp model proposed in (Kaiser and Menzel,

2019a), which is based on the complete dislocation density tensor. It is shown that, in cyclic

non-uniform plastic deformation processes, the gradient of the scalar-valued internal variable in the

reduced-order model predicts isotropic hardening in contrast to kinematic-type hardening produced

by theCurlFp model due to a dislocation-induced back-stress component. The arising size e� ect

in the monotonic torsion tests is described by the normalized torqueT=R3 as a function of the

ratio of the microwire radiusR and the characteristic length scale` . In the size-dependent domain,

characterized by an in�ection point on the corresponding curve, the scaling lawT=R3 � (R=`)n can

be identi�ed, and explicit relations are found for the powern. The relative evolution of Statistically

Stored Dislocation (SSD) and Geometrically Necessary Dislocation (GND) densities during torsion

is described in detail.

3.1 Introduction

The torsion of single and polycrystal wires has been the subject of intensive experimental

and computational research. Nouailhas and Cailletaud (1995) discovered that the torsion

of a single crystal bar or tube is characterized by two types of strain gradients: a radial

gradient from the center to the outer surface due to the loading, but also a gradient along

Part of this chaper has been published in Lagrange multiplier based vs micromorphic gradient-enhanced rate-
(in)dependent crystal plasticity modelling and simulation. Computer Methods in Applied Mechanics and Engineering
372, 113426. Also, part of this chapter has been submitted to a journal.
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the outer circumference due to the anisotropic activation of slip systems. This was observed

experimentally using strain gauges placed along the circumference (Forest et al., 1996). The

transition from single to poly-crystals for microwires of increasing diameters was computed

using CPFEM in (Quilici et al., 1998) and more recently in (Bayerschen et al., 2016).

Implementation of strain gradient crystal plasticity theory in a �nite element code is

a challenging task that has been performed for example by Shu (1998); Borg et al. (2008);

Yalcinkaya et al. (2012); Bardella et al. (2013); Nellemann et al. (2017, 2018); Panteghini

and Bardella (2016) at small strains and by Niordson and Kysar (2014); Lewandowski and

Stupkiewicz (2018); Ling et al. (2018); Kaiser and Menzel (2019b) at �nite deformations.

An e� cient method to implement strain gradient plasticity models is to resort to the

micromorphic approach proposed by Forest (2009) at small strains and Forest (2016a) at

�nite deformation, as demonstrated by Anand et al. (2012) and Brepols et al. (2017) for

conventional plasticity, and by Cordero et al. (2010); Aslan et al. (2011); Ryś et al. (2020)

for crystal plasticity based on the dislocation density tensor. According to this approach,

additional plastic microdeformation degrees of freedom, in the sense of (Eringen and

Suhubi, 1964), are introduced at each node, and the curl part of the microdeformation tensor

is assumed to expend work with a conjugate couple stress tensor. A penalty parameter,

which can be interpreted as a higher-order elasticity modulus, is used to constrain the

plastic microdeformation to be as close as possible to the usual plastic deformation. As a

consequence, the curl of the microdeformation tensor almost coincides with the dislocation

density tensor.

Gradient plasticity and micromorphic models involving the gradient or rotational part

of the plastic deformation tensor generally requires a large number of additional internal

variables and nodal degrees of freedom leading to a signi�cant increase in the computational

cost. For instance, the full-order microcurl model proposed by Cordero et al. (2010) and

the gradient plasticity model by Panteghini and Bardella (2018) require at least 16 and

12 additional nodal degrees of freedom, respectively, in a two-dimensional setting. The

complexity in the numerical implementation further increases the computational modeling

e� orts. The di� erences in the formulation of various gradient plasticity theories result in

distinct and sometimes non-physical responses, which raises the necessity of comparing

di � erent gradient plasticity models (Peerlings et al., 2001). A comparison between �ve

gradient-enhanced phenomenological approaches in a continuum damage setting can be

found in (Geers et al., 2000), and between implicit and explicit gradient formulations in

(Peerlings et al., 2001). The computational advantages of an implicit formulation, which

includes the equivalent plastic strain as an additional degree of freedom over an explicit

formulation, are investigated in (Wul�ngho � and Böhlke, 2012). Moreover, the non-local

crystal plasticity theory proposed by Gurtin (2002) is used in (Bittencourt et al., 2003)

to explore to which extent the results from the discrete dislocation simulations can be

reproduced. It is found that the non-local plasticity reproduces the behavior seen in the

discrete dislocation simulations in remarkable detail. However, only a few studies are
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Fig. 3.1 Schematic log-log plot characterizing the e� ect of the ratio of the microwire radius R
to the characteristic length scale ` on the normalized torque T=R3: size e� ect with bounded
(solid line) and unbounded (dashed line) asymptotic regimes, power law in the transition
domain (dotted line), n is the slope of the size dependent domain and i is the in�ection
point of the curve.

dedicated to comparing various gradient crystal plasticity approaches and determining

the advantages and drawbacks of the many existing theories. For instance, the detailed

comparison of the micropolar crystal plasticity model (Mayeur et al., 2011) and the non-local

crystal plasticity model proposed by Gurtin (2002) can be found in (Mayeur and McDowell,

2014).

Therefore, the �rst objective of the present chapter is to compare the micromorphic

crystal plasticity and Lagrange multiplier-based implementation of strain gradient crystal

plasticity for the prediction of size e � ect in microwire torsion tests. The size and orientation

dependent torsion of FCC single crystal wires is investigated showing that both models

coincide at intermediate wire diameters but di � er in their asymptotic behavior.

Another original objective of this work is to compare a computationally e � cient Lagrange

multiplier-based model that involves a single scalar-valued variable with the CurlFp model

proposed in (Kaiser and Menzel, 2019a) for monotonic and cyclic microwire torsion tests.

The scaling law T=R3 / (R=`)n for the microwire torsion tests, which characterizes the e � ect

of the ratio of the microwire radius R and characteristic length scale` on the normalized

torque T=R3, is obtained using both reduced-order micromorphic crystal plasticity and

Lagrange multiplier-based models. Such scaling laws were derived for the periodic

shearing of a laminate at small strains and small rotations in (Cordero et al., 2010; Ryś

et al., 2020). Fig. 3.1 schematically shows the e� ect of R=` ratios on the normalized torque

T=R3, which is found in the present work. The main features of the diagram are the

in�ection point i and the slope n of the size-dependent domain. For small values of R=`

ratio, a bounded (for the micromorphic crystal plasticity model), or an unbounded (for the

Lagrange multiplier-based model), asymptotic behavior can be obtained. At large values of

R=` ratio, the observed asymptotic behavior corresponds to the size-independent response

of classical crystal plasticity models.
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The outline of the chapter is as follows: In section 3.2, geometry and boundary conditions

of the single crystal microwire torsion tests for the comparison of the micromorphic crystal

plasticity and Lagrange multiplier-based models are presented. Moreover, comparison of

the predicted size e� ect using the micromorphic crystal plasticity and Lagrange multiplier-

based models is demonstrated. In section 3.3, the equivalence between the higher-order

modulus A from the Lagrange multiplier-based model and the material parameter HD from

the CurlFp model are demonstrated in the single-slip problem. In addition, this section

dedicated to the simulation of representative boundary-value problems, and size e � ects

predicted by the Lagrange multiplier-based model are compared to the CurlFp model

predictions for monotonic and cyclic microwire torsion tests. Concluding remarks follow

in section 3.4.

3.2 Size e� ect: Comparison of micromorphic crystal plas-

ticity and Lagrange multiplier-based models

3.2.1 Geometry, boundary conditions and material parameters

Simulations are performed with a single crystal cylindrical microwire of diameter D (= 2R)

meshed with quadratic elements for displacements DOF and linear for 
 � and � . Quadratic

shape functions are used for displacements DOF because they are known to provide better

interpolation accuracy than linear shape functions. Furthermore, quadratic elements are

also known to be less subject to locking issues. However, linear shape functions are used for


 � to limit the number of degrees of freedom. In fact, it is assumed that plastic deformations

di � er less rapidly than displacements in such a way that linear shape functions provide

su� cient precision to interpolate accumulated plastic slip.

The bottom face of the microwire is clamped, while the top surface undergoes a rigid

body rotation around the wire axis. The lateral faces are kept traction free, which means

that T = 0 and M = 0 from Eq. (2.21). Two orientations of the single crystal considered are

<001> and <111> with crystallographic direction [001] and [111], respectively aligned with

the microwire axis. The geometry and the boundary conditions are as shown in Fig. 3.2.

The basis vectors of the Cartesian coordinate system are parallel to the cubic lattice unit cell

vectors:

e1 = [110] e2 = [11̄0] e3 = [001]; (3.1)

and

e1 = [1̄1̄2] e2 = [11̄0] e3 = [111]; (3.2)

respectively.

The various characteristic length scale to diameter ratios (`=2R) considered in the

simulations are given in Table 3.2.
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e1

e2
e3

(a)

e1

e2

e3

(b)

Fig. 3.2 Microwire torsion tests: (a) boundary conditions (b) example mesh from the top side
in which the black line represents an initial material line. For the <001> crystal orientation,
the black line is oriented along a <110> direction. For the <111> crystal orientation, it is
oriented along a <112̄> direction.

Table 3.1 Numerical values of material parameters for the simulation of microwires in
torsion.

C11 C12 C44
� 0

Eq. (2.14)
m

Eq. (2.12)
K

Eq. (2.12)
�

Eq. (2.14)
259:6 GPa 179 GPa 109:6 GPa 320 MPa 20 15 MPa.s1=m 77:2 GPa

dc
Eq. (2.15)

� c
Eq. (2.15)

%r
0

Eq. (2.16)
hru

Eq. (2.14)
bru(r , u)
Eq. (2.15)

buu

Eq. (2.15)
H�

Eq. (2.27)
10.4 42:8 5:38� 10� 11 0.124 1 0 104 MPa
� �

Eq. (2.39)
103 MPa

Table 3.2 Numerical values of `=2R ratios for the simulation of microwires in torsion.

`=2R <001> 0:03 0:07 0:10 0:31 0:44 0:54

`=2R <111> 0:03 0:08 0:11 0:35 0:50 0:61
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3.2.2 Application to microwire torsion tests

Fig. 3.3 and 3.4 show the accumulated plastic strain �elds in the deformed con�guration for

FCC single crystals with wire axis parallel to <001> and <111> respectively. A cross-section

of each sample is illustrated in Fig. 3.3 and 3.4. The radial and circumferential plastic strain

gradients are clearly visible. A four-fold pattern is observed for the <001> specimen with

maximum plastic strain values along <100> directions. A six-fold pattern is observed for

the <111> specimen with maximum plastic strain values along <112̄> directions. The

overall curves are presented using normalized torque T=R3 as a function of surface strain


 R de�ned as


 R = � R; (3.3)

where � is the applied twist per unit length ( �= L). They are given in Fig. 3.5 for the two

single crystal orientations <001> and <111> using classical crystal plasticity. This de�nition

of 
 R is only an approximation of the actual slip value along the circumference since the

plastic activity is not constant along the circumference for a cubic single crystal. The

<001> crystal orientation is found to be signi�cantly stronger than the <111> wire. The

orientation of the crystal to the loading direction causes di � erent slip activities and results

in di � erent mechanical responses. The twist angle at the cross-section of the microwire is

calculated as� h = � ht=L, where ht is the height from the bottom end. The initial material

line for <001> and <111> crystal orientation is shown in Fig. 3.2b. The rotation of material

line with increasing surface strain is as shown in Fig. 3.3 and 3.4. The response of the

micromorphic wire is also provided in Fig. 3.5 for comparison for a given characteristic

length scale value. In the micromorphic crystal plasticity approach, the penalty parameter

H� is chosen su� ciently large for 
 cum and 
 � to almost coincide. The chosen value of H�

in the simulation is 104 MPa. The characteristic length scale` considered in the simulation

is de�ned by ` =
p

A=jHj, as proposed in (Ling et al., 2018), whereH is the initial equivalent

linear hardening modulus. Moreover, H is estimated by performing a uniaxial tensile test

on one element as proposed in (Ling, 2017). Its value is given by the ratio of � r and 
 r for

one activated slip system at the beginning of its activation. Thus the estimated H values

for <001> and <111> crystal orientation are 2500 MPa and 2000 MPa, respectively. The

characteristic length scale can be varied by varying the gradient parameter A (MPa mm2 or

N). The various values of A and of the characteristic length scale to diameter ratio ( `=2R) of

microwires are given in Table 3.2. The micromorphic response in Fig. 3.5 exhibits a linear

hardening of the wire in contrast to the saturated classical crystal plasticity response.

The e� ect of di� erent `=2R ratios on the size e� ects in torsion microwires have been

studied for the two models considered in this work, namely the micromorphic crystal

plasticity and Lagrange multiplier-based formulations. The torque vs. surface strain

curves of the micromorphic crystal plasticity model (section 2.3.1) is compared with

the Lagrange multiplier-based model (section 2.3.2). The cumulative plastic strain 
 cum

�elds for di � erent `=2R ratio of microwire ( `=2R = 0:03;0:07;0:10and 0:44 for <001> and
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 R = 6%;� h = 23� 
 R = 10%;� h = 37� 
 R = 14%;� h = 52�

Fig. 3.3 Cumulative plastic strain 
 cum �eld in FCC single crystal ( <001> crystal orientation)
using the classical crystal plasticity model according to section 2.2.3 with respect to deformed
con�guration. The rotation of material line shown in Fig. 3.2b with increasing surface strain
is shown by a black line on the cross-section.
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 R = 6%;� h = 23� 
 R = 10%;� h = 37� 
 R = 14%;� h = 52�

Fig. 3.4 Cumulative plastic strain 
 cum �eld in FCC single crystal ( <111> crystal orientation)
using the classical crystal plasticity model with respect to deformed con�guration. The
material line shown in Fig. 3.2b and its rotation with increasing surface strain are shown by
a black line on the cross-section.

Fig. 3.5 Shear stress vs. surface strain in FCC single crystal wires for<001> and <111>
crystal orientations using the classical crystal plasticity and micromorphic crystal plasticity
models.
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(a)

`=2R = 0:03 `=2R = 0:07 `=2R = 0:10 `=2R = 0:31
(b)

Fig. 3.6 Cumulative plastic strain distribution in FCC single crystal ( <001> crystal orienta-
tion) for di � erent values `=2R ratio using the (a) micromorphic crystal plasticity, and (b)
Lagrange multiplier-based models at surface strain of 0.08 (�elds reported on the reference
con�guration).

`=2R = 0:03;0:08;0:11and 0:50 for <111> crystal orientation) obtained using both models

are shown in Fig. 3.6 and 3.7. It can be seen that, for low and intermediate values of the

ratio `=2R, the two models predict the same accumulated plastic slip �elds. In contrast, for

the larger value `=2R = 0:31, the circumferential gradient has almost disappeared according

to the Lagrange multiplier-based model. In contrast, it is still present in the micromorphic

crystal plasticity simulation. Increasing the characteristic length scale for a �xed wire

diameter leads to a substantial decrease in the plastic strain gradient. This can be attributed

to the fact that the energetic cost of plastic strain gradient increases with ` and the free

energy of the sample is minimum for a limited value of the gradient. These observations

are valid for both orientations <001> and <111>. It is remarkable that the four-fold and

six-fold patterns disappear for large enough characteristic length scale values.
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(a)

`=2R = 0:03 `=2R = 0:08 `=2R = 0:11 `=2R = 0:50
(b)

Fig. 3.7 Cumulative plastic strain distribution in FCC single crystal ( <111> crystal orienta-
tion) for di � erent values `=2R ratio using the (a) micromorphic crystal plasticity, and (b)
Lagrange multiplier-based models at surface strain of 0.08 (�elds reported on the reference
con�guration).
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(a) (b)

Fig. 3.8 Normalized torque vs. surface strain curves (<001> crystal orientation) for di � erent
values `=2R ratio using the (a) micromorphic crystal plasticity, and (b) Lagrange multiplier-
based models.

The corresponding torque vs. surface strain curves are provided in Fig. 3.8 and 3.9.

They clearly show the size–dependent hardening e� ect for both models. For small and

intermediate values of the characteristic length scale, the micromorphic crystal plasticity

and Lagrange multiplier-based models are found to deliver the same overall responses.

This result is expected since the value of the penalty parameter in the micromorphic crystal

plasticity model has been chosen so as to ensure such a correspondence. However, keeping

the same value of the penalty parameter H� and increasing the characteristic length scale,

or equivalently the value of the parameter A, leads to a saturation of the torque vs. surface

strain curves for the micromorphic crystal plasticity model. In contrast, the Lagrange

multiplier-based model predicts ever-increasing hardening. Fig. 3.8a and 3.9a show almost

the same response obtained by the micromorphic crystal plasticity model for the two

largest `=2R ratios, whereas distinct curves are obtained with the Lagrange multiplier-based

approach, see Fig. 3.8b and 3.9b. This saturation of size e� ects predicted by a micromorphic

crystal plasticity formulation has already been demonstrated analytically for the microcurl

theory by Cordero et al. (2010) in the case of periodic shearing of a laminate at small strains

and small rotations. The present new results show that this feature also exists at large

strains for torsion. These observations apply to both orientations <001> and <111>. As

expected, the strongest additional hardening e� ect is obtained when the characteristic

length scale takes values comparable to the wire diameter.

The predictions of the Lagrange multiplier-based formulation can be considered, in

fact, as the limit case when the penalty modulus H� goes to in�nity in the micromorphic

crystal plasticity formulation. The predictions obtained with the micromorphic crystal

plasticity formulation for several values of H� are plotted in Fig. 3.10. As H� rises, the

prediction of the micromorphic crystal plasticity formulation goes closer to the prediction

obtained with the Lagrange multiplier-based formulation. However, increasing H� builds
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(a) (b)

Fig. 3.9 Normalized torque vs. surface strain curves (<111> crystal orientation) for di � erent
values `=2Rratio using the (a) micromorphic crystal plasticity (b) Lagrange multiplier-based
models.

up drastically the computation time since the penalization becomes very sti � . In practice,

one could use the penalty term H� in the micromorphic crystal plasticity formulation as a

parameter to �t the scaling law measured in experiments. This possibility was discussed

for the micromorphic crystal plasticity and Cosserat models in (Cordero et al., 2010).

3.3 Size e� ect: Comparison of reduced-order model with

CurlFp model

In this section, the predicted size e� ects using the reduced-order model (Lagrange multiplier-

based model) are compared against the predictions by CurlFp model for the monotonic

and cyclic loading of microwire torsion tests. The constitutive framework of the Lagrange

multiplier-based model and CurlFp model is presented in section 2.3.2 and 2.3.3, respectively.

3.3.1 Equivalence of higher-order modulus A and material parameter

HD in single-slip

The higher-order modulus A from the reduced-order model, refer (2.34), and material

parameter HD from the CurlFp theory, refer (2.51), bear similar physical interpretations.

This is demonstrated in this section for a simpli�ed two-dimensional single-slip problem.

A single crystal with a single-slip system is considered. The slip direction m and the

slip plane normal n are

m = (1;0;0); n = (0;1;0): (3.4)
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Fig. 3.10 Normalized torque vs. surface strain curves (FCC <001> crystal orientation) for
di � erent values of H� and for `=2R = 0:44.

Consider a situation where only one slip system is active. In the absence of lattice

distortion and rotation, the plastic part of the deformation gradient F
�

p takes the form

F
�

p = 1
�

+ 
 (m
 n); (3.5)

[F
�

p] i j =

2
6666666664

1 
 0

0 1 0

0 0 1

3
7777777775
: (3.6)

The dislocation density tensor [ D
� d] i j = [Curl T(F

�
p)] i j is given by

[D
� d] i j =

2
66666666664

Fp
13;2 � Fp

12;3 Fp
11;3 � Fp

13;1 Fp
12;1 � Fp

11;2

Fp
23;2 � Fp

22;3 Fp
21;3 � Fp

23;1 Fp
22;1 � Fp

21;2

Fp
33;2 � Fp

32;3 Fp
31;3 � Fp

33;1 Fp
32;1 � Fp

31;2

3
77777777775
: (3.7)

Therefore, for the 2-dimensional case and the speci�c simple shear problem studied,

[D
� d] i j =

2
6666666664

0 0 
; 1

0 0 0

0 0 0

3
7777777775
: (3.8)

The only active component of the dislocation density tensor is

(Dd)13 = 
; 1 : (3.9)
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The equivalence of higher-order modulus A and the material parameter HD from the CurlFp

model can be derived as follows. For a crystal deforming under single-slip conditions, the

plastic deformation rate is given by

�F
�

p = �
 (m
 n): (3.10)

Inserting (2.57) in (2.54) for M
�

gives

(� + JpM
�

(rel) : m
 n) �
 + X �� � 0: (3.11)

In absence of hardening variable, � , for simplicity, the generalized Schmid law for the

CurlFp model, in the rate-independent case, can be de�ned as

j� � xj = � c; with x = � JpM
�

(rel) : m
 n: (3.12)

From the speci�c form of the generalized stress tensor M
�

(rel) given by (2.59), the back-stress

x can be written as

x = 2HD [Curl T(Curl T(F
�

p)) � F
�

pT] : m
 n; (3.13)

and

[Curl T(Curl T(F
�

p))] i j =

2
66666666664

Fp
12;12+ Fp

13;13 Fp
11;21+ Fp

13;23 Fp
11;31+ Fp

12;32

Fp
22;12+ Fp

23;13 Fp
21;21+ Fp

23;23 Fp
21;31+ Fp

22;32

Fp
32;12+ Fp

33;13 Fp
31;21+ Fp

33;23 Fp
31;31+ Fp

32;32

3
77777777775

�

2
66666666664

Fp
11;22+ Fp

11;33 Fp
12;11+ Fp

12;33 Fp
13;11+ Fp

13;22

Fp
21;22+ Fp

21;33 Fp
22;11+ Fp

22;33 Fp
23;11+ Fp

23;22

Fp
31;22+ Fp

31;33 Fp
32;11+ Fp

32;33 Fp
33;11+ Fp

33;22

3
77777777775
: (3.14)

For the particular single-slip problem considered, the back-stress takes the form

2HD [Curl T(Curl T(F
�

p)) � F
�

pT] : m
 n = � 2HD 
; 11: (3.15)

Substituting (3.15) in (3.12) leads to another form of the generalized Schmid law

j� + 2HD 
; 11 j = � c: (3.16)

This equation clearly shows the emerging kinematic hardening component proportional to

the second gradient of slip in the slip direction.

On the other hand, the generalized Schmid law for a single-slip problem with the

Lagrange multiplier-based model can be written from (2.40) in the rate-independent case as

j� j + S= � c: (3.17)
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Recalling the balance law in (2.20), the generalized Schmid law in (3.17) can be written as

j� j + Div M = � c: (3.18)

Making use of (2.27) in the previous equation leads to another form of the generalized

Schmid law

j� j+ A(Div K) = � c; (3.19)

A(Div K) = A Div

 
@
�
@X1

m+
@
�
@X2

n

!

= A
@2
 �

@X2
2

= A
; 11 with 
 � ' 
: (3.20)

Finally, the form of the generalized Schmid law in (3.19) can be written as

j� j + A
; 11= � c: (3.21)

This equation clearly shows the emerging isotropic hardening component proportional to

the second gradient of slip in the slip direction. From (3.16)and (3.21), it is concluded that

the higher-order moduli A and HD can be related to each other for monotonic loading such

that � > 0 and � + 2HD 
; 11> 0. In this instance, we can identify A = 2HD. The Lagrange

multiplier-based and CurlFp models are equivalent in this speci�c situation. It will not be

the case anymore, in general, under multi-slip conditions and considering the di � erent

hardening laws. Proving the importance of these di � erences is the subject of the following

sections for monotonic and cyclic loading conditions.

In the presence of linear hardening with modulus H, it is possible to derive from (3.19)

the de�nition of a characteristic length scale

` =
p

A=jHj; (3.22)

as demonstrated in (Ling et al., 2018; Scherer et al., 2019). For more general hardening laws,

a similar characteristic length scale can be de�ned as discussed in section 3.3.2.3.

3.3.2 Application to microwire torsion tests

Recently, experimental investigations of microwire torsion tests on single crystal copper

under monotonic loading were performed by Horstemeyer et al. (2002) with the [110]

crystallographic direction being aligned with the axis of rotation. An observation of the

kinematics of the deformation �elds at the outer surface of the specimen was made. A wavy

deformation pattern of sinusoidal waves comprising of four periods was observed and

believed to be the result of four-fold symmetry of the slip plane around the circumference.

Moreover, experimental assessments of polycrystalline microwire torsion tests with di � erent

specimen diameters and same grain size to study the size e� ects under monotonic loading

were performed in (Liu et al., 2012; Guo et al., 2017). Furthermore, the experimental studies
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of size e� ects, hysteresis loops, Bauschinger e� ects, and anomalous plastic recovery in

polycrystalline cyclic torsion tests can be found in (Liu et al., 2013; Guo et al., 2020).

From a numerical point of view, Weinberger and Cai (2010) investigated the orientation

dependent plasticity in metallic nanowires by using molecular dynamics and dislocation

dynamics simulations. Molecular dynamics simulations showed that the mechanism

of plastic deformation is controlled by the orientation of the single crystal wires. The

wires oriented along <110> direction shows the coaxial dislocation nucleation, making

the deformation homogeneous. Furthermore, these wires maintain most of their strength

after yielding. On the other hand, <001> and <111> crystal orientations deform through

formation of twist boundaries which localizes the deformation and lose most of their

strength after yielding. Besides, dislocation dynamics simulations are used to investigate

the stability of the dislocation structures observed in molecular dynamics simulations. The

prediction of size e� ects in monotonic and cyclic loading of polycrystalline microwires were

performed in (Bardella and Panteghini, 2015). To this end, they used a phenomenological

strain gradient plasticity approach called distortion gradient theory which relies on the

dislocation density tensor with taking less-than-quadraticdefect energies into consideration.

These less-than-quadratic defect energies allow the prediction of size e� ects consisting of

an increase of the yield point with diminishing size. It was observed that this distortion

gradient theory is satisfactory to capture the size e � ects in monotonic loading. However, it

leads to anomalous cyclic behavior in the case of cyclic loading due to the less-than-quadratic

defect energies. They related the anomalous cyclic behavior to the changes of concavity of

the stress-strain curves, which is absent in the experiments. Panteghini and Bardella (2020)

recently proposed a strain gradient plasticity theory characterized by a higher-order plastic

potential to overcome this issue in the cyclic loading of polycrystalline microwires. The

predictions made by taking the above-mentioned approach are in good agreement with the

experimental data of (Liu et al., 2013) and predictions on the size-dependent response of

microwires under cyclic loading.

In this section, the size e� ect predicted by the Lagrange multiplier-based model for

monotonic or cyclic microwire torsion tests is compared to the predictions by the CurlFp

model taken from Kaiser and Menzel (2019a). The relation A = 2HD is used in the simulations,

following the identi�cation presented in section 3.3.1.

Moreover, in the present work, the GND density distribution in monotonic and cyclic

loading of microwires using the Lagrange multiplier-based model is calculated from the

Euclidean norm of Curl T(F
�

p). A post-processing technique is used to evaluate Curl T(F
�

p)

(see also, Busso et al. (2000); Abrivard (2009)). The �rst step in determining Curl T(F
�

p) is to

calculate the gradient of F
�

p at the integration points. To this end, the known values of F
�

p at

the integration points are extrapolated to nodes using the shape functions of the elements.

The gradients of F
�

p at the nodes can next be obtained from the spatial derivatives of the

shape functions. Finally, known nodal values of the gradient of F
�

p are interpolated back to

the integration points. The Euclidean norm of the dislocation density tensor D
� d provides
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an e� ective measure of GND density as follows:

jjCurl T(F
�

p)jj = b
NX

r=1

� r
G; (3.23)

where jj � jj denotes the Euclidean norm of � . FE validation of the above mentioned post-

processing technique is performed using pure bending tests. This validation can be found

in appendix C.

3.3.2.1 Problem setup

The simulations are performed using single crystal cylindrical microwires with a height

of 80 mm and three di � erent radii R = 20 mm, 10 mm and 5 mm, that are meshed with

reduced integration 20 node brick elements. The simulation results are not a � ected by

the absolute values of the wire dimensions but rather by the ratio of their radii to the

characteristic length scale` .

The applied boundary conditions are shown in Fig. 3.2. The geometry is discretized

with 3600 elements for monotonic loading and with 450 elements for cyclic loading. The

same �nite element meshes as in (Kaiser and Menzel, 2019a) are used for the simulations

performed with the Lagrange multiplier-based model in order to allow for direct comparison.

The latter model was recently used to simulate torsion tests of single crystals with various

orientations and �ner meshes in (Scherer et al., 2020). Isotropic elasticity is considered. The

bottom face of the microwire is clamped, while the top surface undergoes a rigid body

rotation around the wire axis. The lateral faces are kept traction-free and free of generalized

forces. The relative rotation between the upper and lower face is linearly increased to an

angle of 45� for monotonic loading. For the cyclic loading test, the following conditions are

enforced: The relative rotation between the upper and lower faces is �rst linearly increased

to an angle value of 45� . Next, the relative rotation is linearly decreased to � 45� . Finally,

the loading is again reversed, and simulation is stopped when a relative rotation of 45� is

reached.

The orientation of the single crystal considered is such that the [001] crystal direction is

aligned with the wire axis. The basis vectors of the Cartesian coordinate system are parallel

to the cubic lattice unit cell vectors:

e1 = [100] e2 = [010] e3 = [001];

and are indicated in Fig. 3.2.

3.3.2.2 Identi�cation of material parameters

The material parameters of the FCC single crystal for the dislocation-density based model

presented in section 2.2.4 are now calibrated based on simple tension and simple shear
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(a) (b)

Fig. 3.11 Constitutive response of the classical crystal plasticity formulation (section 2.2.3)
and the material model considered in (Kaiser and Menzel, 2019b) for a <001> FCC single
crystal and material parameters according to Table 3.3: (a) tensile test, (b) shear test.

predictions obtained on a single volume element with the constitutive law considered in

(Kaiser and Menzel, 2019b) and recalled in section 3.3. Such a calibration is necessary

because the two models compared in the present work rely on di � erent hardening rules.

The CurlFp model includes a phenomenological hardening law with internal variables �

whereas the reduced-order model incorporates evolution equations for dislocation densities

according to the section 2.2.4. The calibrated material parameters used in the numerical

simulations and the material parameters used in the CurlFp model are summarized in Table

3.3. Moreover, the corresponding tensile and shear stress-strain responses of a<001> FCC

single crystal are provided for both models in Fig. 3.11.

The FCC crystal possesses the usual 12 slip systems with 6 slip directions<110> and 4

slip planes f111g.

3.3.2.3 Results and discussion

� Comparison of predicted size e � ects

Fig. 3.13 and 3.18 respectively show the cumulative plastic strain 
 cum �elds plotted in the

reference con�guration for the considered single crystal microwire under monotonic and

cyclic loading with wire axis parallel to [001] crystal direction. The characteristic length

scale` considered in the simulations is de�ned as ` =
p

A=jHj , cf. section 3.3.1, (Eq.(3.22)).

The hardening modulus H varies during straining, and an approximate expression of the

characteristic length scale is chosen to normalize the presented results. For that purpose,

the initial equivalent linear hardening modulus for the tensile test is selected. Its value

is given by the ratio of resolved shear stress � r and shear strain 
 r for one activated slip

system at the beginning of its activation as proposed in (Ling, 2017). In the present case,

the estimated H value for <001> crystal orientation is 3100 MPa. It is not possible to derive
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Table 3.3 Numerical values of material parameters used for the simulation of microwire
torsion tests in the reduced-order model and by Kaiser and Menzel (2019a) in the CurlFp

model.

E
� 0

Eq. (2.14)
m

Eq. (2.12)
K

Eq. (2.12)
�

Eq. (2.14)
b

dc

Eq. (2.15)

60:8 MPa 60 MPa 10 10 MPa:s1=m 23400 MPa 0:286 nm 100:5
� c

Eq. (2.15)
%r

0
Eq. (2.16)

h0

Eq. (2.14)
h1

Eq. (2.14)
h2

Eq. (2.14)
h3

Eq. (2.14)
h4

Eq. (2.14)
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Eq. (2.14)
bru(r , u)
Eq. (2.15)

buu
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� �

Eq. (2.39)
A

Eq. (2.34)
� 1

Eq. (2.49)
H0

Eq. (2.49)

0 1 0 103 MPa 104;2� 104 N 110MPa 540
HD

Eq. (2.51)

5� 103;104 N

an analytical expression of the relevant characteristic length scale emerging in the torsion

problem. That is why the proposed estimate is chosen.

The comparison of the size e� ects predicted by the Lagrange multiplier-based model and

the CurlFp model for three di � erent values of the radius of the microwire under monotonic

loading using higher-order modulus A = 20000N is shown in Fig. 3.12a. This feature can

be observed in Fig. 3.13. The slip activity is maximal at four locations corresponding to the

direction [110]. Fig. 3.12a shows that for the radii R = 20 mm and R = 10 mm, the torque vs.

surface strain responses predicted by both models are almost the same, while for the radius

R = 5 mm, the Lagrange multiplier-based model leads to a slightly harder response.

The cumulative plastic strain and dislocation density �elds shown next are based on

a �nite element discretization with 10000elements for resolution reasons. Moreover, the

computational e � ciency of the Lagrange multiplier-based model in terms of CPU time

allows the faster computation of size e � ect even with �ner mesh discretization. Fig. 3.14

and 3.16 respectively shows the spatial distributions of SSD and GND density for the

three considered radii. It is observed that the dislocation density nucleation starts at the

surface of the microwire and driven towards the center. During the deformation process,

the evolution of the SSD density is due to the dislocation generation and annihilation

mechanisms. The initial dislocation density � r(= %u=b2) is assumed to be6:5� 108m� 2 and

chosen to be the same for all slip systems. Distinct four-fold patterns of the SSD density

distribution are observed for all three radii of the microwire. On the other hand, the GND

density distribution shows distinct four-fold patterns for the radii R = 5mm and R = 10mm,

while it shows more localized distribution for R = 20mm making the four-fold symmetry of

FCC single-crystal almost disappear. Furthermore, the SSD and GND density distribution

at di � erent stages of the relative rotation are shown in Fig. 3.15 and 3.17, respectively. At
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(a) (b)

Fig. 3.12 Comparison of normalized torque vs. surface strain curves (<001> crystal orienta-
tion) using the Lagrange multiplier-based model and the CurlFp model for: (a) monotonic
loading ( R = 20 mm;10 mm;and5 mm), and (b) cyclic loading ( R = 10 mm).

the initial stage of the deformation, the maximum SSD density is observed at four locations

corresponding to the [110] crystal direction (see Fig. 3.15a). However, as the deformation

progresses, the maximal dislocation density locations are observed at the corresponding

[100] crystal direction as shown in Fig. 3.15c for the relative rotation of 22:5� . With the

deformation, the di � erence between the magnitude of the maximal and minimal increment

of the cumulative plastic strain,
P N

r=1 j4 
 r j, along the circumference decreases and the �eld

becomes almost homogeneous. This may explain the shift in the maximal SSD density

locations with the deformation. On the other hand, at the initial stage of the relative rotation,

the GND density is maximal at four locations corresponding to the direction [100] (see Fig.

3.17a) and remains at the corresponding [100] crystal direction with further increase in the

relative rotation (see Fig. 3.17c). Moreover, it is observed that there is a slight evolution of

the GND density �eld with more localized distribution compared to the SSD density �eld.

Fig. 3.21a and 3.21b show the pro�les of the cumulative plastic strain 
 cum for three

di � erent radii along the circumferential and radial direction, respectively. For the given

relative rotation angle, distinct four-fold patterns of the plastic strain �eld can be observed

for R = 20mm and R = 10mm. The plastic strain �eld is smoother along the circumference

for R = 5mm because the smaller radius gives a sti� er response and limits the strain

localization in these zones. The radial distributions in Fig. 3.21b are almost linear.

The comparison of the size e� ect predicted by the Lagrange multiplier-based model

and the CurlFp model in the case of cyclic loading conditions is shown in Fig. 3.12b. These

simulations were performed for two values of the gradient parameter, namely A = 10000N

and 20000N. The ratio A = 2HD is kept constant in both cases to allow for the comparison of

both models. The Lagrange multiplier-based model predicts isotropic hardening as shown

in Fig. 3.12b. In contrast, the higher-order stresses act as a back-stress in theCurlFp model,

resulting in kinematic hardening. Fig. 3.22a shows the saturation of cyclic curves after 5
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R = 20 mm R = 10 mm R = 5 mm

Fig. 3.13 Cumulative plastic strain �eld in <001> FCC single crystals predicted by a
Lagrange multiplier-based model with A = 20000N and a �nite element discretization
featuring 10000 elements. The results for an applied relative rotation of 45� between the
upper and lower face are shown on the undeformed con�guration.
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[001]

R = 20 mm R = 10 mm R = 5 mm

Fig. 3.14 SSD density distribution in FCC single crystals (<100> crystal orientation)
predicted by using a Lagrange multiplier-based model with A = 20000N and a �nite
element discretization featuring 10000 elements. The results for an applied relative rotation
of 45� between the upper and lower face are shown on the undeformed con�guration.
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]

[001]

(a) (b) (c)

Fig. 3.15 SSD density distribution in FCC single crystal (<100> crystal orientation, R= 10mm)
predicted by using a Lagrange multiplier-based model with A = 20000N and a �nite element
discretization featuring 10000 elements at an applied relative rotation of (a) 4:5� (b) 9� and
(c) 22:5� shown on the undeformed con�guration.
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Fig. 3.16 GND density distribution in FCC single crystals ( <100> crystal orientation)
predicted by using a Lagrange multiplier-based model with A = 20000N and a �nite
element discretization featuring 10000 elements. The results are shown on the undeformed
con�guration for an applied relative rotation of 45 � between the upper and lower face.
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[001]

(a) (b) (c)

Fig. 3.17 GND density distribution in FCC single crystal ( <100> crystal orientation,
R = 10 mm) predicted by using the Lagrange multiplier-based model with A = 20000N
at an applied relative rotation of (a) 4:5� , (b) 9� , and (c) 22:5� shown on the undeformed
con�guration.
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[001]

Cycle 1 Cycle 2 Cycle 3

Fig. 3.18 Cumulative plastic strain 
 cum distribution in FCC single crystal ( <100> crystal
orientation, R = 10 mm) predicted by using the Lagrange multiplier-based model with
A = 20000 N and a �nite element discretization featuring 3600 elements.
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Fig. 3.19 SSD density distribution in FCC single crystal (<100> crystal orientation, R= 10mm,
A = 20000N) predicted by using the Lagrange multiplier-based model and a �nite element
discretization featuring 3600 elements.
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[001]

Cycle 1 Cycle 2 Cycle 3

Fig. 3.20 GND density distribution in FCC single crystal ( <100> crystal orientation,
R = 10mm, A = 20000N) predicted by using the Lagrange multiplier-based model and a
�nite element discretization featuring 3600 elements.
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(a) (b)

Fig. 3.21 Cumulative plastic strain 
 cum variation predicted by the Lagrange multiplier-
based model along the (a) circumferential and (b) radial direction of the microwire for
monotonic loading and for three radii of microwire using A = 20000N. The radial distance
from the center of the specimen is denoted by x and the radius of the microwire by R.

cycles using classical crystal plasticity model with dislocation density-based hardening. In

contrast, the gradient e� ect associated with parameter A leads to strong additional isotropic

hardening as depicted in Fig. 3.22b with no apparent saturation.

The cumulative plastic strain and dislocation density �elds shown next are plotted

for the microwire of radius R = 10mm and based on a �nite element discretization with

3600 elements for resolution reasons.. Fig. 3.19 and 3.20 show the SSD and GND density

distribution over the cross section at the end of each cycle. As the deformation progresses,

the dislocation density signi�cantly increases with the plastic strain, and SSD density gets

much larger than GND density. In particular, the SSD and GND densities increase from an

initial value of 6:5� 108m� 2 to 9:7� 1014m� 2 and 4:9� 1011m� 2, respectively at the end of

cycle 3. In addition, the dislocation density distribution maintains the distinct four-fold

symmetry pattern even at the end of cycle 3.

The plastic strain distribution and pro�les along the circumferential and radial directions

for cyclic loading are shown in Fig. 3.18 and 3.23. Accumulation of plastic deformation

during cycling in the four zones of favored plastic slip leads to an increased gradient

values and subsequent additional hardening, thus explaining the cyclic hardening of Fig.

3.22b. With further increase in number of cycles, the cumulative plastic strain increases and

becomes homogeneous along the circumference, making the four-fold symmetry of FCC

single crystal almost disappear as shown in Fig. 3.18 and 3.23a. This may explain the trend

to some saturation of cyclic hardening in Fig. 3.22b. It is observed that the magnitude of

the plastic strain �eld increases in the radial direction with an increasing number of cycles

as shown in Fig. 3.23b.
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(a) (b)

Fig. 3.22 Comparison of normalized torque vs. surface strain curves (<001> crystal orienta-
tion) and for cyclic loading using the (a) classical crystal plasticity formulation according to
section 2.2.3, and (b) Lagrange multiplier-based model using A = 20000N. The microwire
of radius R = 10 mm discretized using 3600 �nite elements.

(a) (b)

Fig. 3.23 Cumulative plastic strain 
 cum variation along the (a) circumferential and (b) radial
direction of the microwire for cyclic loading using the Lagrange multiplier-based model
(A = 20000N, R = 10mm, and a �nite element discretization with 3600 elements). The radial
distance from the center of the specimen is denoted by x and the radius of the microwire by
R.
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(a) (b)

Fig. 3.24 Normalized torque vs. surface strain curves for <001> crystal orientation: (a)
in�uence of the microwire radius when using a Lagrange multiplier-based model, (b)
normalized torque as a function of R=` ratio at a surface strain 
 R of 0.01 for the micromorphic
crystal plasticity and Lagrange multiplier-based models.

� Scaling law

In this section, the scaling behavior is studied for the micromorphic crystal plasticity model

presented in section 2.3.1 and the Lagrange multiplier-based model presented in section

2.3.2. The dependence of the normalized torque on the R=` ratios is analyzed for the

monotonic microwire torsion tests. The simulations are performed for several radii of the

microwire ranging from R = 2 mm to R = 30mm and by using the value of the higher-order

modulus A = 20000N. The scaling laws in the form of the power law T=R3 / (R=`)n for

microwire torsion tests characterizing the e � ect of the R=` ratio on the normalized torque

T=R3 are shown in Fig 3.24a. The characteristic length scalè de�ned as
p

A=jHj is 2:55mm.

The log-log plot of the normalized torque values as a function of R=` ratio at a surface

strain of 0.01 are plotted in Fig. 3.24b for the micromorphic crystal plasticity model using

H� = 104 MPa and H� = 3� 104 MPa, and for the Lagrange multiplier-based model using

� � = 103 MPa, respectively. For lower values of the coupling modulus H� the micromorphic

crystal plasticity model predicts a typical tanhshape (Cordero et al., 2010) with saturation

for small ( R=` < 0:8) and large (R=` > 6) values of the R=` ratio. The slope of the bounded

intermediate regime for the micromorphic crystal plasticity model using H� = 104MPa

and H� = 3� 104MPa is found to be n = � 0:6 and n = � 0:85, respectively. The Lagrange

multiplier-based model can be considered as a limiting case of the micromorphic crystal

plasticity model for large values of H� , which leads to a power-law exponent n = � 1:0 of

asymptotic regime towards zero. In the latter case, no saturation is expected.

The power-law exponent n of the micromorphic crystal plasticity model depends on

the material parameters H� and A, whereas it is independent of material parameters in

the Lagrange multiplier-based model. The critical value of the R=` ratio is de�ned by the
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in�ection point i of the plot in Fig. 3.24b. The value of i depends on the coupling modulus

H� and is found to be 4 and 3 for H� = 104MPa and H� = 3� 104MPa, respectively, which

represents the size-dependent domain of the material response.

3.4 Concluding remarks

The main �ndings obtained in this contribution can be summarized as follows:

1. The prediction of size e� ects with the micromorphic crystal plasticity and Lagrange

multiplier-based approaches are compared for single crystals torsion tests. It is shown

that both models provide similar results for small and intermediate characteristic

length scales. However, for larger characteristic length scales, the hardening due to

strain gradients saturates according to the micromorphic crystal plasticity approach.

A similar saturation e � ect is observed on the grain size e� ect on the yield stress in

polycrystals using the microcurl model at small strains in (Cordero et al., 2012b). The

scaling law is di � erent for the Lagrange multiplier-based formulation since such a

saturation is not observed.

2. The size e� ects predicted by the Lagrange multiplier-based model are found to be in

good agreement with the predictions made by the CurlFp model. They are analyzed

for monotonic and cyclic microwire torsion tests.

3. The Lagrange multiplier-based model induces an isotropic hardening because it is

based on the gradient of a scalar-valued cumulative plastic strain variable. This is in

contrast to the kinematic hardening induced by the CurlFp model due to the back-

stress resulting from the action of higher-order stresses. This leads to signi�cantly

di � erent responses under cyclic loading conditions.

4. The analysis of the cyclic torsion tests shows the evolution of plastic slip gradients

along the circumference with a trend towards more homogeneous distributions for

larger cycle numbers according to the Lagrange multiplier-based model. A signi�cant

increase in SSD and GND density is observed at the end of each cycle compared to

previous cycles.

5. The size e� ects are characterized by power law relationships between the normalized

torque and R=`, with ` being a characteristic length of the model. The reduced

micromorphic crystal plasticity model saturates for small and large values of this

ratio. It possesses an intermediate domain with powers n = � 0:6 and = � 0:85, which

were found for H� = 104 MPa and H� = 3� 104 MPa, respectively. In contrast, the

augmented Lagrangian version of the model, which corresponds to a strict strain

gradient plasticity model, predicts no saturation at small R=` ratios and a power law

with n = � 1.
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An equivalence between the Lagrange multiplier-based model and the CurlFp model

exists in the case of a single-slip under monotonic loading. The CurlFp model has a

clear physical interpretation in terms of the dislocation density tensor in contrast to the

reduced-order models, which incorporate the gradient of cumulative slip in a purely

phenomenological way. Reduced-order models are advantageous from a computational

point of view and lead to signi�cantly lower computation times in the presented examples.

The computational e� ciency in terms of CPU time of the Lagrange multiplier-based model

and of the micromorphic crystal plasticity model that was studied in this contribution is

investigated in (Scherer et al., 2020). TheCurlFp model, which includes 21DOF at each node

in three-dimensional settings, is computationally expensive compared to the Lagrange

multiplier-based model, which includes 5 DOF per node. It has been demonstrated that the

CurlFp and reduced-order models can deliver similar predictions related to size e � ect, at

least for monotonic tests. The reduced-order models can therefore be applied for faster

evaluation of size e� ects in structural computations. More physical understanding can be

gained using the full gradient model.

The full gradient and reduced-order models could further be compared in the case of

localization phenomena in crystalline materials as recently explored by Marano et al. (2021).

Regularization of strain localization phenomena in single crystals such as slip, kink, and

shear bands was demonstrated in (Ling et al., 2018).

A limitation of the reduced-order micromorphic crystal plasticity and Lagrange

multiplier-based formulations presented in this work is that the gradient terms essentially

a� ect the isotropic hardening and do not incorporate a size-dependent back-stress, in

contrast to full-order micromorphic crystal plasticity and the gradient plasticity models.

The simulation of kinematic-type hardening is, in fact, possible with a reduced-order

model using an alternative formulation in which the free energy potential depends on

the gradient of the microslip variable as pointed out in (Forest, 2016b; Ling et al., 2018).

Another possibility is to consider the gradient of the equivalent plastic strain instead of the

cumulative one. This will cause size-dependent kinematic hardening e � ects, as recently

demonstrated by Jebahi and Forest (2021).
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Chapter 4

Adiabatic shear banding in single and

poly-crystals: Numerical approach

Abstract

Finite element (FE) simulations are performed for hat-shaped specimens made of face-centered

cubic (FCC) metallic single and poly–crystals in order to investigate the adiabatic shear band

(ASB) formation process. A micromorphic crystal plasticity model is used to overcome the main

limitation of classical plasticity models, namely the mesh size dependency in strain localization

problems. A thermodynamically consistent formulation of the constitutive equations is proposed

for micromorphic thermo-elasto-viscoplasticity of single crystals. The temperature evolution under

adiabatic conditions is derived from the competition between plastic power and energy storage.

The micromorphic crystal plasticity model is used �rst to simulate strain localization induced by

thermal softening in a metallic single crystal strip loaded in simple shear undergoing single-slip.

The FE solution of this boundary-value problem is validated using an analytical solution. Regarding

single crystal hat-shaped specimen simulations, �ve di� erent crystal orientations are considered

to study the formation, intensity and orientation of shear bands. In particular, one special crystal

orientation is found resistant to shear banding. In addition, the formation of shear bands in

hat-shaped polycrystalline aggregates is investigated. The specimens are polycrystalline aggregates

with di� erent grain sizes, namely the coarse-grained and �ne-grained specimens with random crystal

orientation distribution. Furthermore, several realizations of the microstructures are taken into

account for statistical considerations. The micromorphic crystal plasticity model incorporates a

characteristic length scale, which induces a grain size e� ect in the simulation of polycrystalline

specimens. The grain boundaries act as obstacles against shear band formation. A signi�cant grain

size e� ect, namely the �ner the grain size the higher the resulting load, is predicted by the simulations

under isothermal conditions. However, the �ne-grained specimens are found to fail earlier by shear

banding than some coarse–grained samples, the latter being associated with signi�cant dispersion of

the results depending on grain orientations. The e� ect of grain size on the width of the shear band is

This chapter has been submitted to a journal.
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also analyzed. The temperature-dependent material parameters and shear band widths considered

in the paper correspond to Nickel-based superalloy Inconel 718 in a large temperature range. The

considered material behavior is elastic-perfectly plastic.

4.1 Introduction

The ASB formation process originates from the rapid increase of local temperature due to

plastic work dissipation under high strain rate loading conditions. This, in turn, reduces

the stress carrying capacity of the material and results in highly localized and unstable

plastic deformation (Gilman, 1994; Zhu et al., 1995; Dodd and Bai, 2012). The �ow stress

dependency on temperature is associated with thermal softening, causing the stress to

drop from its maximum point, thus leading to intense shear band formation. In addition,

microscopic deformation mechanisms in the material play a crucial role in triggering the

shear band when the wavelength of the deformation �eld is larger than the characteristic

length scale of the material microstructure (Zhao et al., 2005). The formation of shear bands

may not be considered as failure of ductile material, but as a precursor to the catastrophic

fracture (Anand et al., 1987; Zhu et al., 1995). It in�uences the texture development and the

material constitutive behavior (Dève and Asaro, 1989). The phenomenon of ASB formation

can be observed in many industrial processes, for instance, machining and high-speed

shaping, shearing, metal forming (Burns and Davies, 2002; Molinari et al., 2002; Longère

et al., 2008; Dodd and Bai, 2012), and so forth.

In recent years, considerable experimental research has been conducted to investigate

the ASB formation in FCC metallic materials. The experimental shear tests on hat-shaped

specimens using Split-Hopkinson pressure bars in compression mode are often used to

study the material resistance to shear localization, for instance, in (Nemat-Nasser et al.,

1998; Meyers et al., 2003; Xue et al., 2005; Xu et al., 2008). Meyers et al. (2003) studied the

microstructural evolution of adiabatic shear localization in stainless steel. Experimental

investigations of the e� ect of strain rates, heat treatments, and grain size on the ASB

formation in hat-shaped polycrystalline Inconel 718 specimens using Split-Hopkinson

pressure bar test can be found in (Johansson et al., 2016, 2017; dong Song et al., 2018).

Furthermore, dong Song et al. (2018) observed that the aged top-hat sample with small

grain size and �llet radius has the largest tendency to form a shear band compared to the

solution treated Inconel 718 specimens. They observed shear bands of10� m width in

aged Inconel 718 samples of average grain size28� m and 10� 13� m in solution treated

samples of average grain size18� m. DeMange et al. (2009) found that the precipitation

hardened material more readily exhibits shear localization than the solution treated material

in the shear deformation of top-hat samples. Moreover, in metallic materials and alloys,

it was believed that only the dislocation mobility due to a rise in temperature causes the

strain-softening. However, the recent studies, e.g. (Landau et al., 2016; Mourad et al., 2017;
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Longère, 2018) showed that the dynamic recrystallization (DRX) is also playing an essential

part in strain softening.

From the computational perspective, it is well–known that �nite element simulations of

strain localization phenomena exhibit spurious mesh dependency, and the classical plasticity

models are inadequate to solve the strain localization problems (Asaro and Rice, 1977;

de Borst et al., 1993; Besson, 2009). The possible loss of ellipticity of the partial di� erential

equations in strain-softening materials results in an ill-posed boundary-value problem and

classically displays dependency on mesh size or density and element orientation. The loss

of ellipticity of the PDE is a local condition that concerns rate-independent constitutive

equations in the static case. It implies the non-positive value of the determinant of the

material's acoustic tensor (Forest and Lorentz, 2004; Wcis�o et al., 2018). Rate-dependence

of the material behavior can improve the situation but it is not su � cient to regularize the

general localization problem (Needleman, 1988). Numerical analyses of strain localization

problems within the conventional continuum mechanics framework can be found in (Batra

and Kim, 1991, 1992; Duszek-Perzyna and Perzyna, 1993, 1996; Perzyna and Korbel, 1996,

1998). Moreover, a large scale postulate to simulate the ASB formation can be found in

(Longère et al., 2003; Longère et al., 2005). In large scale postulate, shear band is considered

as a structure contained within the representative volume element (RVE), and not the

opposite as usually assumed (Dorothy, 2018).

The shear band width dependency on mesh size can be overcome by introducing

a characteristic length scale in the classical plasticity models according to (Kuroda and

Tvergaard, 2006; Voyiadjis and Al-Rub, 2005; Anand et al., 2012; Pamin et al., 2017; Vignjevic

et al., 2018; Kaiser and Menzel, 2019b). Strain gradient plasticity models, which include

an characteristic length scale in the constitutive framework, are often used to regularize

strain localization problems, e.g., (Aifantis, 1984; Abu Al-Rub and Voyiadjis, 2006; Anand

et al., 2012; Ahad et al., 2014). Aifantis (1984, 1987) proposed a strain gradient theory

by adding the Laplacian of a scalar measure of plastic strain in the yield function of the

classical plasticity theory to solve the issues related to the width of the shear bands. The

characteristic length scale introduced in the gradient plasticity models can be associated

with the width of the shear band as demonstrated in (Zbib and Aifantis, 1988; Chambon

et al., 1998). The e� ect of higher-order gradients on ASB formation was investigated by

Zhu et al. (1995) and more recently by Tsagrakis and Aifantis (2015). Two length scales,

respectively associated with strain gradients and thermal conduction, were considered in

the analysis. They showed that the width of the shear band scales with the square root

of strain gradient coe� cient in the absence of conduction and square root of the thermal

conductivity in absence of strain gradient e � ects. The micromorphic theory proposed by

Eringen (1999) relies on the second-order microdeformation tensor as an additional degree

of freedom. The application of micromorphic theory for the strain localization phenomenon

can be found in (Dillard et al., 2006; Anand et al., 2012; Mazière and Forest, 2015). In

contrast to Eringen's full micromorphic theory, a reduced-order micromorphic crystal
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plasticity theory was proposed by Ling et al. (2018) involving a scalar-valued variable as

the additional degree of freedom. It was used to analyze strain localization phenomena

at �nite deformation by Scherer et al. (2019). The mesh dependency issues in the shear

localization problem can also be eliminated by the sub-grid method proposed in (Mourad

et al., 2017; Jin et al., 2018) in the case dynamic loading conditions applied to hat-shaped

specimens.

As the yielding starts in a metallic material, the work done by the stresses is partly

transferred to heat and partly to the reversible or irreversible microstructural changes in

the material and leads to a rise in temperature locally a � ecting the elastic-plastic behavior

of the material. Therefore, it is necessary to introduce thermodynamics into the plasticity

framework (Bertram and Krawietz, 2012). Thermodynamically consistent formulations of

the constitutive equations in classical plasticity models for the small strain strain can be

found in (Bertram and Krawietz, 2012) and for �nite strain gradient plasticity in (Forest

and Sievert, 2003; Bertram, 2015). The second law of thermodynamics in the form of

Clausius-Duhem inequality is used to �nd the necessary conditions required for the

thermodynamically consistent formulation. A fully coupled thermo-plasticity model can

also be found in (Simo and Miehe, 1992; Duszek-Perzyna and Perzyna, 1993; Yang et al.,

2006; Ristinmaa et al., 2007). In many works in the literature (see, e.g., Osovski et al. (2013);

Zhang et al. (2016); Lieou et al. (2019)), use is made of the TQC (Taylor and Quinney, 1934),

a constant parameter related to the amount of plastic work converted into heat. A more

precise thermodynamic description requires the de�nition of the stored energy function

with appropriate internal variables and of the dissipative mechanisms. Thermo-mechanical

couplings can in that way be derived in the heat equation.

Many numerical studies on adiabatic shear localization in metallic single crystals have

been completed in recent years, for instance, in (Baucom and Zikry, 1999; Perzyna, 2002;

Zhang et al., 2016). However, less attention has been given to the e� ect of crystal orientation

on the shear band formation in single crystals. It is, therefore, one of the objectives of

the present work to investigate the e � ect of various initial crystal orientations on the ASB

formation in single crystals. In the present study, the ASB formation is only related to

thermal softening, letting aside the e � ect of DRX. The applicability of the reduced-order

micromorphic crystal plasticity model involving a single scalar-valued variable as a degree

of freedom (Ling et al., 2018) is demonstrated for regularizing the ASB. A thermodynamically

consistent formulation of the constitutive equations for the micromorphic crystal plasticity

model is presented. At �rst, an analytical reference solution is developed in the case

of a periodic strip loaded in simple shear undergoing single-slip with linear strain and

thermal softening. The FE solution of the same boundary-value problem is validated using

an analytical solution initially developed for the rate-independent isothermalcase. The

temperature-dependent material parameters and shear band widths considered in the

paper correspond to Nickel-based super-alloy Inconel 718 in a large temperature range.

Furthermore, simulations are performed with the single crystals hat-shaped specimens with
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di � erent initial crystal orientations. The considered material behavior is elastic-perfectly

plastic.

The second original objective of the present work is to study the transition of ASB

formation from single to polycrystals. To this end, the micromorphic approach is applied to

polycrystalline hat-shaped specimens simulations to predict the role of grain boundaries as

obstacles to ASB, the orientation dependency, and the in�uence of grain size on the width

of the ASB.

The outline of the chapter is as follows: Section 4.3 is dedicated to the validation of the

numerical solution for a periodic strip loaded in simple shear undergoing single-slip with

linear thermal softening based on the analytical solution developed for the rate-independent

case. Section 4.4 reports on the simulations of single crystals hat-shaped specimens under

static loading conditions. In section 4.5, the micromorphic crystal plasticity model is used

to investigate ASB formation in polycrystalline hat-shaped specimens. Concluding remarks

follow in section 4.6.

4.2 Thermo-elasto-viscoplasticity of single crystals at �nite

deformation

4.2.1 Kinematics

In the present work, a large deformation framework of thermo-plasticity is adopted, based

on the multiplicative decomposition of total deformation gradient F
�

into a recoverable

thermo-elastic part F
�

the and a plastic part F
�

p combining concepts put forward by (Bertram,

2003; Ristinmaa et al., 2007):

F
�

= F
�

the� F
�

p: (4.1)

The volume mass densities with respect to the reference con�guration, the intermediate

con�guration, and the current con�guration are � 0, � # and � , respectively, given by

J= det(F
�
) =

� 0

�
; Jthe = det(F

�
the) =

� #

�
; Jp = det(F

�
p) =

� 0

� #
: (4.2)

It is assumed that plastic �ow is isochoric such that

Jp = detF
�

p = 1; Jthe = detF
�

the = J= detF
�
: (4.3)

Crystal plasticity in dense metals is incompressible so that Jp = 1. However, Jp can be

di � erent from one in the case of compressible plasticity. This situation was studied

for ductile fracture of porous the single crystals in (Ling et al., 2016). Moreover, the

thermo-elastic strain tensor E
�

the is introduced as follows:

E
�

the =
1
2

[(F
�

the)T � (F
�

the) � 1
�
]; (4.4)
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with 1
�

denoting the second order identity tensor. The Mandel stress tensor �
�

M with

respect to the intermediate con�guration is related to the Cauchy stress tensor �
�

by

�
�

M = Jthe(F
�

the)T � �
�

� (F
�

the)� T.

4.2.2 Thermodynamic formulation

The energy balance (�rst law of thermodynamics) with respect to the current con�guration

is written in the local form:

� �e= �
�

: D
�

+ Q; (4.5)

with D
�

= (l
�

+ l
�

T)=2 as the strain rate tensor,ethe internal energy per unit mass and Q the

heat supply per unit volume and unit time, which results from an external heat source r

and heat conduction q such that

Q = r � div q: (4.6)

The second law of thermodynamics in the form of the local dissipation rate inequality with

respect to the current con�guration can be written as

� �� + div
q

T
�

r
T

� 0; (4.7)

where � is the entropy per unit mass and T is the absolute temperature. The Helmholtz

free energy density function is introduced as

	 := e� T�: (4.8)

The Clausius-Duhem inequality is now expressed with respect to the reference con�guration

as

J�
�

: D
�

� � 0( �	 + � �T) � Q �
r XT

T
� 0; (4.9)

where Q is the heat conduction with respect to the reference con�guration and given by

Q = JtheF
�

� 1 � q and r XT is the Lagrangian gradient of temperature. The stress power term

J�
�

: D
�

is given by

J�
�

: D
�

= Jp�
�

e : �E
�

the+ Jp�
�

M : l
�

p; (4.10)

with �
�

e the second Piola-Kirchho� stress tensor de�ned with respect to the intermediate

con�guration by �
�

e = Jthe(F
�

the)� 1 � �
�

� (F
�

the)� T.

The dissipation rate in the Clausius-Duhem inequality consists of mechanical and

thermal dissipation rates. The mechanical dissipation rate is given by

� m = J�
�

: D
�

� � 0( �	 + � �T); (4.11)

and the thermal dissipation by

� th = � Q �
r XT

T
: (4.12)
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The material under consideration is assumed to be characterized by the Helmholtz free

energy density function

	 = ˜	 (E
�

the;T; � ); (4.13)

The quadratic form of the free energy familiar from the thermo-elasticity is assumed to

be a function of the thermo-elastic strain tensor E
�

the, the temperature T and the internal

hardening variables � as follows:

� 0 ˜	 (E
�

the;T; � ) =
1
2

E
�

the : �
�

: E
�

the+ � 0C"

h
(T � T0) � T log

� T
T0

�i
+ (T � T0)P

�
: E

�
the+ � 0 ˜	 (� ); (4.14)

where �
�

is the fourth-order tensor of elastic moduli, T0 is a reference temperature,C" is the

speci�c heat of the material and P
�

is a constant symmetric thermal stress tensor.

Expanding the time derivative of the free energy density function gives

 

�
�

e� � 0
@̃	 (E

�
the;T)

@E
�

the

!

: �E
�

the+ �
�

M : l
�

p � � 0

 

� +
@̃	
@T

!
�T � � 0

@̃	
@�

�� � Q �
r XT

T
� 0; (4.15)

The following state laws are adopted:

�
�

e = � 0
@̃	 (E

�
the;T)

@E
�

the
; � = �

@̃	
@T

; X = � 0
@̃	
@�

; (4.16)

where X is the thermodynamic force associated with the internal variable � . The reduced

dissipation rate, which restricts the material �ow and hardening rules in connection with

the yield condition, is given by

�
�

M : l
�

p � X �� � Q �
r XT

T
� 0: (4.17)

Based on the potential (4.14) the thermoelastic relation for the second Piola-Kirchho� stress

tensor is obtained as

�
�

e = �
�

: E
�

the� P
�
(T � T0) = �

�
: (E

�
the� �

�

� 1 : P
�
(T � T0)) = �

�
: (E

�
the� E

�
th); (4.18)

and the thermal strain tensor E
�

th is de�ned as

E
�

th = (T � T0)�
�

� 1 : P
�

= (T � T0)� 1
�
; (4.19)

which involves the thermal expansion coe � cient � in the case of isotropic or cubic thermo-

elasticity.
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4.2.3 Reduced-order micromorphic crystal plasticity model

The material under consideration is assumed to be characterized by the coupled thermo-

mechanical Helmholtz free energy density function de�ned in terms of the thermo-elastic

strain tensor E
�

the, the relative plastic strain ep, the gradient of the microslip variable K,

temperature T and the internal hardening variable � as follows:

	 = ˜	 (E
�

the;ep;K;T; � ): (4.20)

It is assumed that the Helmholtz free energy density function takes the form:

� 0 ˜	 (E
�

the;ep;K;T; � ) =
1
2

E
�

the : �
�

: E
�

the+
1
2

H� e2
p +

1
2

K �A
�

� K + � 0C"

h
(T � T0) � T log

� T
T0

�i

+ (T � T0)P
�

: E
�

the+ � 0 ˜	 (T; � ): (4.21)

Expanding the time derivative of the free energy density function leads to the following

form of the Clausius-Duhem inequality

 

�
�

e� � 0
@̃	

@E
�

the

!

: �E
�

the�

 

S+ � 0
@̃	
@ep

!

�ep +

 

M � � 0
@̃	
@K

!

� �K + S �
 cum+ �
�

M : l
�

p (4.22)

� � 0

 

� +
@̃	
@T

!
�T � � 0

@̃	
@�

�� � Q �
r XT

T
� 0:

The following state laws are adopted:

�
�

e = � 0
@̃	

@E
�

the
; S= � � 0

@̃	
@ep

; M = � 0
@̃	
@K

; � = �
@̃	
@T

; X = � 0
@̃	
@�

: (4.23)

The residual dissipation rate, which restricts the material �ow and hardening rules in

connection with the yield condition, is given by

�
�

M : l
�

p + S �
 cum� X �� � Q �
r XT

T
� 0: (4.24)

The thermodynamic forces associated with arguments of the Helmholtz free energy function

are derived from the potential (4.21):

�
�

e = �
�

: (E
�

the� E
�

th); S= � H� ep = � H� (
 cum� 
 � ); M = A
�

� K: (4.25)
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4.2.4 Temperature evolution under adiabatic conditions

The energy balance for the micromorphic crystal plasticity model with respect to the

reference con�guration is written in the form

� 0 �e= J�
�

: D
�

+ S �
 � + M � �K + Q: (4.26)

The Clausius-Duhem inequality then reads

J�
�

: D
�

+ S �
 � + M � �K � � 0( �̃	 + � �T) � Q �
r XT

T
� 0: (4.27)

The previous equation consists of mechanical and thermal dissipation. The mechanical

dissipation is given by

� m = J�
�

: D
�

+ S �
 � + M � �K � � 0( �̃	 + � �T); (4.28)

and the thermal dissipation is still given by Eq. (4.12). Substituting free energy production

rate obtained from Eq. (4.8) and (4.26) in previous equation lead to

J�
�

: D
�

+ S �
 � + M � �K � div q+ r = � 0 �e= � 0

"
@̃	

@E
�

the
: �E

�
the+

@̃	
@ep

�ep+
@̃	
@K

� �K+
@̃	
@T

�T +
@̃	
@�

�� + �T� + T ��

#

:

(4.29)

Simpli�cation of the previous equation after taking the state laws from (4.23)into account

provides

�
�

M : �F
�

pF
�

p� 1 + S �
 cum� div q+ r = � 0

"
@̃	
@�

�� + T ��

#

: (4.30)

The expression for the entropy from (4.21) is given by

� 0� = � � 0
@̃	
@T

= �
1
2

E
�

the :
@�

�

@T
: E

�
the+ � 0C" log

� T
T0

�
� � 0

@C"

@T

h
(T � T0) � T log

� T
T0

�i
(4.31)

+ (T � T0)
@P

�

@T
: E

�
the+ P

�
: E

�
the� � 0

@̃	
@T

:

Furthermore, the variation of entropy with respect to time is computed as

� 0 �� = � E
�

the :
@�

�

@T
: �E

�
the� �T

1
2

E
�

the :
@2�

�

@T2
: E

�
the+ � 0C" �T + � 0

@C"

@T

"

log
� T
T0

� #
�T

� � 0
@2C"

@T2

h
(T � T0) � T log

� T
T0

�i
�T + �T

@P
�

@T
: E

�
the+ �T(T � T0)

@2P
�

@T2
: E

�
the (4.32)

+ (T � T0)
@P

�

@T
: �E

�
the+ �T

@P
�

@T
: E

�
the+ P

�
: �E

�
the� � 0

 
@2 ˜	
@T2

�T +
@2 ˜	
@T@�

��

!

:
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Substituting the previous equation into the right hand side of (4.30)

� 0

"
@̃	
@�

�� + T ��

#

= � 0
@̃	
@�

�� + T

"

� E
�

the :
@�

�

@T
: �E

�
the� �T

1
2

E
�

the :
@2�

�

@T2
: E

�
the+ � 0C" �T (4.33)

+ � 0
@C"

@T

"

log
� T
T0

� #
�T � � 0

@2C"

@T2

h
(T � T0) � T log

� T
T0

�i
�T + �T

@P
�

@T
: E

�
the

+ �T(T � T0)
@2P

�

@T2
: E

�
the+ (T � T0)

@P
�

@T
: �E

�
the+ �T

@P
�

@T
: �E

�
the+ P

�
: �E

�
the

� � 0

 
@2 ˜	
@T2

�T +
@2 ˜	
@T@�

��

!#

: (4.34)

Finally, the rate of temperature change is obtained as

�T =

"

�
�

M : l
�

p + S �
 cum� div q+ r � � 0
@̃	
@�

�� � T

 

� E
�

the :
@�

�

@T
: �E

�
the+ (T � T0)

@P
�

@T
: �E

�
th

+ P
�

: �E
�

the� � 0
@2 ˜	
@T@�

��

!#"

� T
1
2

E
�

the :
@2�

�

@T2
: E

�
the+ � 0C" + � 0

@C"

@T

"

log
� T
T0

� #

T

� � 0
@2C"

@T2

h
(T � T0) � T log

� T
T0

�i
T + T

@P
�

@T
: E

�
the+ T(T � T0)

@2P
�

@T2
: E

�
the

+ T
@P

�

@T
: E

�
the� � 0

@2 ˜	
@T2

T

#� 1

; (4.35)

up to T = Tmelt, where Tmelt is the melting temperature of the material.

� Adiabatic processes

In this work, the thermodynamic processes are assumed to be adiabaticin nature, wherein

there is no heat transfer to the surrounding and no external heat source present such that

q= 0; r = 0: (4.36)

Therefore, terms div q and r in (4.35)vanish. The following two simpli�ed cases can be

considered for the temperature evolution:

case 1:It is assumed that the contribution of the temperature dependence of the elastic

constants and speci�c heat of the material can be neglected compared to plastic power.

Also, the contributions of second order derivatives (variation of thermal stress with respect

to the temperature) are considered very small compared to internal dissipation terms. Then

(4.35) can be written as follows:

� C" �T = �
�

M : l
�

p + S �
 cum� X �� with X = � 0
@̃	
@�

: (4.37)
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In addition, in the present work, hat-shaped specimen simulations are performed in the

absence of classical hardening, which means that� r
c = � 0 is a constant in (2.32). Therefore,

the contribution of internal hardening variable to the stored energy is not considered. The

resulting form of temperature evolution is given in case 2.

case 2:The two �rst terms in (4.37)denote the heat generated by the plastic power and

represent the main contribution to thermo-mechanical phenomenon. It is assumed that all

the plastic work done is converted into heat so that

� C" �T = �
�

M : l
�

p + S �
 cum: (4.38)

4.3 Simple shear test with strain or thermal softening

An analytical reference solution initially developed for the rate-independent case with

linear strain softening for a periodic strip loaded in simple shear undergoing single-slip in

(Scherer et al., 2019) is �rst recalled. The introduction of softening induces strain localization

in a band of �nite width characterized by the parameters of the micromorphic model. This

solution will be adapted to account for thermal softening and provide a validation test for

the FE implementation of the thermomechanical micromorphic model in the code.

4.3.1 Analytical solution

Consider a periodic strip made of a thick rectangular plate of width W along the X1 direction,

length L along the X2 direction, and thickness T along the X3 direction (Fig. 4.1). It is made

of a single crystal material possessing a single slip system under simple shear conditions.

The slip direction m and the normal to the slip plane n are respectively parallel to X1 and

X2. The strain rate sensitivity parameters m;K in Eq. (2.12)are chosen in such a way that

the material response is almost rate-independent. A macroscopic deformation gradient F̄
�

is

applied such that

u = (F̄
�

� 1
�
) �X + � (X); with F̄

�
= 1

�
+ F̄12(m
 n); (4.39)

where � is a periodic �uctuation of the displacement. The origin O of the strip is constrained

such that

u(X1 = 0;X2 = 0;X3 = 0) = 0: (4.40)

It is assumed that elastic deformations remain small in the absence of lattice rotation in

the considered slip con�guration, i.e. jFe
12j � 1 with

F
�

e = F
�

� F
�

p� 1 = 1
�

+ Fe
12(m
 n); (4.41)
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Matrix
� 0 = 303MPa

Defect
� 0 = 300MPa

X2

X1

O

Fig. 4.1 Single crystal trip with a central defect (red line).

and therefore, the Green-Lagrange elastic strain tensor can be expressed as follows:

E
�

the '
Fe

12

2
(m
 n+ n 
 m): (4.42)

where thermal expansion is set to zero in the present isothermal example. Moreover, the

second Piola-Kirchho� stress tensor�
�

e in this instance is given by

�
�

e = �
�

: E
�

the ' � e
12(m
 n+ n 
 m): (4.43)

For small elastic deformations, the second Piola-Kirchho � and Mandel stresses coincide:

�
�

M ' �
�

e. The resolved shear stress� r on the single slip system is given by

� = �
�

M : (m
 n): (4.44)

Furthermore, equilibrium requires the shear stress component to be uniform which implies

that the resolved shear stress� is also invariant along X1, X2 and X3.

The quasi-equality between the microslip variable 
 � and the accumulated plastic strain 


is ensured by the coupling modulus H� . The yield condition including the linear strain

softening can be written as follows:

f = j� j � (� 0 + H
 + H� (
 � 
 � )) = 0 with H < 0: (4.45)

A partial di � erential equation governing the microslip is given by

A
@2
 �

@X2
2

= H� (
 � � 
 ): (4.46)

Substituting (4.45)for 
 into (4.46)leads to another form of the partial di � erential equation

A
@2
 �

@X2
2

�
HH �

H + H�

 � +

H�

H + H�
(j� j � � 0) = 0: (4.47)

81



In the case of linear strain softening, it can be shown that (4.47) takes the form

@2
 �

@X2
2

�

 
2�
�

! 2


 � = �

 
2�
�

! 2

�; (4.48)

where � is a characteristic length and � a constant. They are de�ned as follows:

� = 2�

s
A(H + H� )

jHjH�
; � =

 
�
2�

! 2
H�

A(H + H� )
(j� j � � 0): (4.49)

The di� erential equation in (4.48)governing 
 � is only valid in the region where plastic

loading takes place which can be identi�ed with the interval X2 2 [ � �
2 ; �

2 ]. This interval is

the strain localization zone and outside elastic unloading takes place. The solution is of the

form


 � (X2) = a1 cos

 

2�
X2

�

!

+ a2 sin

 

2�
X2

�

!

� �: (4.50)

where a1;a2 are integration constants. For symmetry reasons, 
 � (X2) = 
 � (� X2) which

requires that a2 = 0. At the elastic/plastic interfaces, i.e at X2 = � �
2 , continuity of microslip


 � and of the generalized stress normal to the interface M �X2 must hold, therefore


 �

 

�
�
2

!

' 


 

�
�
2

!

= 0; (4.51)

M

 

�
�
2

!

�X2 = A
d
 �

dX2

�����
X2=� �

2

= 0: (4.52)

In (4.51), we have assumed that the penalty parameter H� is high enough for 
 � and 


almost to coincide, i.e. ep ' 0. Combining (4.51) and (4.52) with (4.50) gives

a1 =
j� j � � 0

H
: (4.53)

Moreover, the resolved shear stress is expressed as

� = � e
12 = 2C44E

the
12 =

2C44

L

Z L
2

� L
2

 
F12 � 


2

!

dX2; (4.54)

with C44 being the elastic shear modulus. From the yield condition given in (4.45), 
 can be

replaced by
j� j� � 0+H� 
 �

H+H�
in (4.54)and integration gives an expression for � as a function of

applied macroscopic shear F̄12:

� =
F̄12+ � 0

Ze

1
C44

+ 1
Ze

; with
1
Ze

=
�

HL
: (4.55)
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Table 4.1 Numerical values of material parameters used for the numerical simulation of
simple shear test at the initial temperature of 923 K.

C11 C12 C44
� 0

Eq. (4.45)
H

Eq. (4.45)
H�

Eq. (4.45)
208:1 GPa 144:7 GPa 97:6 GPa 303 MPa � 45 MPa 103MPa

A
�

Eq. (4.49)
L

Eq. (4.55)
0.04 N 0.073 mm 1:0mm

4.3.2 FE solution with linear strain softening

The implementation of the isothermal micromorphic single crystal plasticity model in the

�nite element code Zset is described in detail in (Ling et al., 2018). The interpolation of

displacement and microslip degrees of freedom is respectively quadratic and linear. The

geometry considered in the FE simulations is shown in Fig. 4.1. It is discretized into 400

C3D20R elements, which are 20 node reduced integration brick elements. A material

defect is introduced at the center to trigger strain localization in the periodic strip, (see Fig.

4.1). The defect is of one element size and assigned with an initial critical resolved shear

stress1% smaller than the matrix. The material parameters used for the FE solution are

summarized in Table 4.1. The elasticity moduli correspond to a nickel–base superalloy at

923 K, see Abdul-Aziz and Kalluri (1991). Periodicity conditions are applied and the tensor

F̄
�

is prescribed according to Eq. (4.39).

Fig. 4.2a displays the cumulative plastic strain �eld predicted by the micromorphic

crystal plasticity model. The FE solution is validated with respect to the variation of


 � along X2 direction at F̄12 = 0:01 with the analytical solution given by Eq. (4.51). This

comparison is shown in Fig. 4.2b. Perfect agreement is observed forF̄12 = 0:01and for all

other values of F̄12. The analytically calculated, refer Eq. (4.49), and numerically observed

width of the localization zone is measured to be 2 :6� .

4.3.3 FE solution with linear thermal softening

In the studied simpli�ed problem of single-slip periodic strip undergoing simple shear, the

rate of plastic work �
�

M : l
�

p + S �
 cum becomes(� + S) �
 , which gives the temperature evolution

according to (4.38) as

�T =
(� + S) �


� C"
: (4.56)

In the rate independent limit, the yield function (2.32) is equal to zero under plastic loading

so that � + S= � 0 in the absence of classical hardening. The critical resolved shear stress� 0(T)

http: //www.zset-software.com /
with appropriate choice of the orientation of slip direction vector m so that � > 0.
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(a)

(b)

Fig. 4.2 (a) Contour plot of cumulative plastic strain 
 cum in a single-slip simple shear test
with linear strain softening using the micromorphic crystal plasticity model ( H = � 45MPa,
A=0.04N). (b) Comparison of FE solution with the analytical solution for the variation of

 � along X2 at F̄12 = 0:01.
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is a function of temperature. An a � ne dependence is chosen for this analytical example

� 0 = � RT + HT(T � TRT); (4.57)

where HT < 0 is the negative slope of the linear variation of � 0 with temperature, TRT is

the room temperature and � RT is the critical resolved shear stress (CRSS) value at room

temperature. Then, Eq. (4.56) becomes

�T =
� 0 �

� C"

: (4.58)

In order to obtain a simple analytic solution for the temperature, � 0 is approximated by the

constant value: �̂ 0 = � RT + HT(Ti � TRT) where Ti is some initial temperature value. In that

conditions, the previous equation can be integrated, assuming monotonic loading, which

leads to the following form of the temperature rise:

T =
� 0

� C"

+ Ti ; when 
 = 0; T = Ti : (4.59)

The yield condition (2.32), which includes the temperature dependent softening can now

be written as follows:

f = j� j � (�̂ 0(1+
HT

� C"

) + H� (
 � 
 � )) = 0: (4.60)

Combining (4.46)and (4.60)leads to the same partial di � erential equation governing the

microslip variable as (4.47) provided that � 0 is replaced by �̂ 0 and the hardening modulus

H has the following de�nition

H �
HT� 0

� C"
: (4.61)

The solution of the PDE (4.47)still has the form (4.50)where the constants � and � are given

by Eq. (4.49) with the new de�nition of H and � 0 � �̂ 0.

This approximate solution is now compared to the FE prediction. For that purpose,

the evolution of the temperature driven by the adiabatic condition (4.38) is numerically

integrated in the code by means of a second order Runge-Kutta method with automatic

time stepping Besson (2009). The material parameters used for the FE solution with the

linear thermal softening are given in Table 4.2. The value of HT has been chosen so that the

associated modulus given by (4.61)takes the same valueH = � 45MPa as in the example of

linear strain softening, see Section 4.3.2.

In the FE analysis, no approximation is introduced and the CRSS has the temperature

dependent expression (4.57). The cumulative plastic strain and temperature �elds predicted

by the micromorphic crystal plasticity model with linear thermal softening are shown

in Fig. 4.3a and 4.3b, respectively. The temperature evolution due to adiabaticheating is

considered as in the case 2presented in section 4.2.3, cf. Eq.(4.38). The comparison of the
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Table 4.2 Numerical values of the material parameters used in the simulations of single-slip
periodic strip undergoing simple shear with thermal softening using the micromorphic
crystal plasticity model.

C11 C12 C44
H�

Eq. (4.60)
HT

Eq. (4.60) TRT

208:1 MPa 144:7 MPa 97:6 MPa 103 MPa � 0:48 MPaK� 1 293 K

� RT � 1523K A T i
�

Eq. (4.58)
C"

Eq. (4.58)
606 MPa 10 MPa 0.04 N 923 K 7:8� 10� 6kgmm � 3 412Jkg� 1K � 1

FE solution for 
 � variation with the approximate analytical solution obtained from Eq.

(4.50)is displayed in Fig. 4.3c at F̄12 = 0:01. The analytically calculated and numerically

simulated width of the deformation zone is 2.6 � , which is equal to the value obtained with

linear strain softening. This is due to the fact that the temperature softening modulus HT

has been chosen so that the equivalent modulusH is the same as the softening modulus

used in Section 4.3.2. The approximation of � 0 by �̂ 0 in the analytical solution does not

lead to signi�cant di � erences compared to the full FE solution, due to the fact that the

temperature changes remain limited, see Fig. 4.3cb. The limited heating was however

su� cient to trigger plastic strain localization.

This study shows that the analytical solution initially developed for the rate-independent

case for the linear strain softening can be used in the linear thermal softening case after

establishing a relation between the slope of the linear variation of the CRSS with respect to

temperature, HT, and an equivalent linear strain softening modulus H. Furthermore, the

FE implementation with linear strain, and thermal softening has been validated by means

of this analytical solution.

4.4 Application to single crystals hat-shaped specimens

This section presents the application of the proposed thermo-mechanical micromorphic

constitutive framework to single crystal hat-shaped specimens. The aim is to investigate

the e� ects of initial crystal orientation on the formation and orientation of adiabatic shear

bands. The material behavior considered in the simulations is elastic-perfectly plastic, and

the material parameters correspond to nickel-based super-alloy Inconel 718. Furthermore,

the temperature evolution due to adiabaticheating is considered as in the case 2presented

in section 4.2.3 (Eq. (4.38)).

The outline of this section is as follows. The temperature-dependent material parameters

of Inconel 718 are summarized in section 4.4.1. The criteria for the selection of gradient

parameters (A and H� ) are given in section 4.4.2. Then, the geometry, boundary conditions

and considered crystal orientations are presented in section 4.4.3. In section 4.4.4, mesh
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(a)

(b)

(c)

Fig. 4.3 Contour plots of (a) cumulative plastic strain 
 cum, and (b) temperature in the
single-slip simple shear test with thermal softening using the micromorphic crystal plasticity
model (Ti=923 K,A=0.04 N) subjected toadiabaticheating. (c) Comparison of the FE solution
obtained using the micromorphic crystal plasticity model with the analytical solution for
the variation of microslip variable 
 � along X2 at F̄12 = 0:01.
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sensitivity analysis is performed with the classical and micromorphic crystal plasticity

models. Results and discussion follow in section 4.4.5.

4.4.1 Material properties of Inconel 718

The temperature-dependent material parameters considered in this paper correspond to

Nickel-based superalloy Inconel 718 in a large temperature range. The characterization

of high strain rate compressive loading behavior within a wide range of temperature for

Inconel 718 was performed in (Iturbe et al., 2017). In this paper, the material properties

investigated are in the temperature range of 294� 1323K, close to those found in machining

at high strain rates (1� 100s� 1). The stress-strain behavior of Inconel 718 in the temperature

range of 294� 1323K (strain rate = 1 s� 1) and variation of the yield strength (YS) and

ultimate tensile strength (UTS) with respect to the temperature are shown in Fig. 4.4a and

Fig. 4.4b, respectively. In general, the �ow stress of Inconel 718 increases with increasing

strain rate and decreasing temperature. It can be seen from Fig. 4.4b that the strength of

the material decreases with increasing temperature at a speci�ed strain rate. This thermal

softening behavior is not very noticeable until the temperature of 923 K.

The material parameters � 0, K, and mare identi�ed against the experimental stress-strain

curves obtained from the work of (Iturbe et al., 2017) with simple tension tests performed

on a single Gauss point using the classical crystal plasticity model presented in section

4.2. The material constants used in the numerical simulations are presented in Table 4.3.

Moreover, the material parameters � 0, K, and m are introduced as functions of temperature

in the present simulations as given in Table 4.4. Linear interpolation is used for temperature

values other than those listed in the table. For simplicity, elasticity moduli are taken

as temperature independent since their variation is not the main driving force for shear

banding. A typical value of 1550 K is considered for the melting temperature.

The thermodynamically consistent framework of the constitutive equations for the

micromorphic crystal plasticity model presented in this work can predict a more realistic

temperature rise in line with the experimental measurements in the case of elasto-plastic

material behavior. With consideration of elasto-plastic material behavior, including

strain-hardening, the stored energy rate term in Eq. (4.37)will signi�cantly contribute

to temperature evolution under adiabatic conditions. It is common practice to assume

a constant value 0:9 of the Taylor-Quinney parameter. However, in reality, its value

can be much less than0:9. This framework with work-hardening will allow for evolving

Taylor-Quinney parameters predicted by suitable free energy density functions. The present

work is limited to no-hardening crystals for the sake of simplicity. Evolution equations for

dislocation densities were used in the micromorphic model by Ling et al. (2018) and could

also be considered in the hat-shaped specimen tests.
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Table 4.3 Values of the material parameters used in the single crystalline and polycrystalline
hat-shaped specimen simulations.

C11 C12 C44 H� A

208:1 MPa 144:7 MPa 97:6 MPa 103 MPa 0.004 - 0.04 N

TRT Ti
�

Eq. (4.38)
C"

Eq. (4.38)
293 K 923 K 7:8� 10� 6kgmm � 3 412Jkg� 1K � 1

(a) (b)

Fig. 4.4 In�uence of the temperature on (a) stress-strain behavior (b) yield strength and
ultimate tensile strength of the Inconel 718 when compressed at a strain rate of 1 s� 1 (Iturbe
et al., 2017).

Table 4.4 Temperature dependent material parameters used in the single crystalline and
polycrystalline hat-shaped specimen simulations. These parameters are related to the strain
rate range of 0:1s� 1 to 1s� 1.

Temperature (K)
� 0 (MPa)
Eq. (4.57)

K(MPa:s1=m)
Eq. (2.12)

m
Eq. (2.12)

298 570 5 15

923 520 5 15

1073 340 8 10

1173 170 20 5.5

1323 61 35 4

1523 10 50 2
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4.4.2 Selection of the gradient parameters A and H�

The characteristic length scale emerges in the development of shear bands and is related to

their width. The width of the shear band is �nite and set by the material microstructure.

In general, this characteristic length scale di� ers depending on the speci�c localization

pattern observed for the particular boundary-value problem considered. The width of the

shear band exhibited by the solution of the multislip boundary-value problems is generally

linked to the characteristic length scale ` de�ned as

` =

s
A(H + H� )

jHjH�
: (4.62)

This de�nition is taken from the simple localization analysis of Section 4.3.1 and involves

the coupling modulus H� , the higher order modulus A, and the strain softening modulus

H. Moreover, the size e� ects in crystal plasticity occur at a scale ranging from hundreds

of nanometers to a few tens of microns. This sets bounds for the values of the chosen

characteristic length scale of the model. Usually, the coupling modulus H� is chosen large

enough so that the cumulative plastic strain 
 cum and microslip variable 
 � almost coincide.

In that case, the micromorphic model can be regarded as an actual strain gradient plasticity

model. On the other hand, the micromorphic model response saturates for smaller sizes if

the chosen value of H� is not large enough as demonstrated for single crystal microwire

torsion test simulations in (Scherer et al., 2020) and in polycrystal simulations when davg is

of the order of or smaller than ` (Cordero et al., 2012a). When the average grain sizedavg � ` ,

strain gradient e � ects vanish and the deformation �eld predicted by the micromorphic

crystal plasticity model is almost identical to that of the classical crystal plasticity model.

The gradient parameter A controls the width of the shear band in strain localization problem.

Based on these requirements, the gradient parametersA and H� are chosen such that the

width of formed shear band in the single crystal simulations remains always smaller than

horizontal shift of the corners which is 0:1 mm. On the other hand, the gradient parameters

are such that ` is of the order of the smallest grain size to be considered in the shear region

in polycrystalline simulations. Two values of the gradient parameter A, 0:004N, and 0:04N

are chosen for the analysis which satisfy the aforementioned conditions. Moreover, the

selected value of H� is 103 MPa. It has been checked to be high enough to get values ofep

su� ciently close to zero, and in the mean time small enough to avoid numerical problems

associated with ill-conditioned matrices in the presence of penalty terms.

4.4.3 Simulation setup, slip systems, and initial crystal orientations

In the �rst part of the study, shear tests of single crystal hat-shaped specimens are performed

to investigate the development of ASB in the post-localization regime. The shape and

geometry of the hat-shaped specimen promote shear failure even in materials which are not
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Table 4.5 Initial crystal orientations used in the single crystal hat-shaped specimen simula-
tions.

Crystal orientations Short notation

[100]-[010]-[001] [100]-[010]

[110]-[001]-[11̄0] [110]-[001]

[001]-[110]-[11̄0] [001]-[110]

[1̄1̄2]-[111]-[11̄0] [1̄1̄2]-[111]

[111]-[1̄1̄2]-[11̄0] [111]-[1̄1̄2]

sensitive to shear localization (Peirs et al., 2008). A symmetric hat-shaped specimen under

plane strain condition with one element along the thickness of 0:025mm is considered for

the study. In practice, axi-symmetric geometries are often used but their analysis would

require too large 3D simulations in the case of polycrystals considered in the present work.

The geometry, dimensions, and the applied boundary conditions of the specimen are shown

in Fig. 4.5. The height of the shear zone ish = 1 mm. The corners of the shear region

are rounded with a radius of R = 0:05 mm. Rounded corners allow for the reduction of

stress concentration and postpone strain localization (Peirs et al., 2008). Note that the

geometry is such that there is an horizontal shift of 0.1 mm between the two corners, see

Fig. 4.5. The FE mesh of this geometry is made of 20 node brick elements with reduced

integration (C3D20R). The macroscopic strain rate which the specimens are subjected to

in the numerical simulations is de�ned a � U=h� t, where � U is the relative displacement

linearly applied during the test duration of � t. It has the value of 0:1s� 1.

The �ve di � erent initial crystal orientations investigated in the study are given in Table

4.5. The crystal orientations are de�ned with respect to the basis frame e1e2e3, with e2 being

in the direction of applied load and e3 in the direction normal to the plane. For instance,

the single crystal orientation [100] � [010]� [001] is such that the axes of the specimen are

e1 = [100] e2 = [010] e3 = [001];

as shown in Fig. 4.5. For the sake of simplicity, crystal orientations are represented only

by the basis plane e1 � e2 (see Table 4.5) in the following sections. The de�nition of the

octahedral slip systems in FCC lattice structure is speci�ed in Table A.1.

4.4.4 Mesh sensitivity analysis

Three distinct mesh discretizations in the shear region with 66720, 88560, and 135540nodes

shown in Fig. 4.6 are used to investigate the e� ect of mesh density on the normalized

load–displacement curves and the shear band structure. The load and displacements are

normalized by the height of the shear region h = 1 mm. The simulations are performed
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5

8

4

4.1

e1e3

e2

Shear region

(a)

Node line crossing
the shear region

(b)

Fig. 4.5 Hat-shaped specimen: (a) geometry, boundary conditions and FE mesh (all
dimensions are in mm). (b) Zoom at the shear region: mesh in the shear region; the black
line on the �gure denotes a line of nodes of the FE mesh crossing the shear region along
which the cumulative plastic strain and temperature �elds will be plotted.

with the classical and micromorphic crystal plasticity models with adiabaticheating for

[001] � [110] initial crystal orientation. The initial temperature, Ti, of the specimens is

assumed to be923K. The limitation of the classical crystal plasticity model, namely the

mesh size dependency in strain localization problems, is demonstrated by Fig. 4.7a. The

load-displacement curves with the classical crystal plasticity model are di � erent for the

three discretizations and do not converge upon mesh re�nement as demonstrated in Fig.

4.7a. In contrast, the load-displacement curves with the micromorphic crystal plasticity

model for three discretizations are almost the same and converge upon mesh re�nement

as shown in Fig. 4.7b. The cumulative plastic strain �elds and corresponding deformed

geometries for the three discretizations with the classical and the micromorphic crystal

plasticity models are shown in Fig. 4.8a and 4.8b, respectively. The formed shear bands

width with the classical crystal plasticity model exhibits well-known pathological mesh

dependency, which always collapses to one element size irrespective of the mesh size. In

contrast, with the micromorphic crystal plasticity model, the width of the formed shear

band is �nite and independent of used spatial discretization. This suggests that the 88560

nodes in the shear region are su� cient to produce mesh-independent results. However,

discretization with 135540 nodes in the shear region is used for further investigations.

92



(a) (b) (c)

Fig. 4.6 Three discretizations in the shear region used for the mesh sensitivity analysis with
(a) 66720, (b) 88560, and (c) 135540 nodes.

(a) (b)

Fig. 4.7 Load-displacement curves for [001]� [110] initially oriented crystal subjected to
adiabaticheating (Ti =923 K) for three discretizations using the (a) classical crystal plasticity
model (b) micromorphic crystal plasticity model ( A = 0:004 N).
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(a)

(b)

Fig. 4.8 Contour plots of cumulative plastic strain 
 cum for [001]� [110] initially oriented
crystal with three discretizations ( 66720, 88560, and 135540nodes in the shear region)
subjected to adiabaticheating using the (a) classical crystal plasticity model, and (b)
micromorphic crystal plasticity model ( A = 0:004 N) at a normalized displacement of
0:041 mm/mm and Ti =923 K, with and without showing the mesh.
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4.4.5 Results and discussion

4.4.5.1 Slip system activity

The activated slip systems for di � erent initially oriented crystals are listed in Table 4.6 as

signi�cant plastic deformation occurs on these slip systems. Numerically, the activated slip

systems are identi�ed when the shear band is fully formed and before the temperature within

the band reaches the melting temperature. The four activated slip systems (B4;D1;A2andC3)

for [100]� [010] initially oriented crystal are neither co-planar nor co-directional to each

other and show identical absolute slip rates ( j �
 B4j=j �
 D1j=j �
 A2j=j �
 C3j). For [110] � [001]

initially oriented crystal, one pair of co-directional ( C3andC1; j �
 C3j=j �
 C1j) and one pair of

co-planar (D6andA6; j �
 D6j=j �
 A6j) slip systems are activated, while in [001]� [110] initially

oriented crystal, one pair of co-directional ( D6;A6; j �
 D6j=j �
 A6j) and two pairs of co-planar

(B4;B2j �
 B4j=j �
 B2jandC3;C1; j �
 C3j=j �
 C1j) slip systems are activated. On the other hand, for

both asymmetric initially oriented crystals, [ 1̄1̄2]-[111] and [111]-[1̄1̄2] activated pairs of

slip system are co-planar, (B4;B2;C3;C1; j �
 B4j=j �
 B2j = j �
 C3j=j �
 C1j) and (B4;B2; j �
 B4j=j �
 B2j),

respectively.

4.4.5.2 In�uence of initial crystal orientation on the shear band formation

Fig. 4.9 shows the load-displacement curves for �ve di � erent crystal orientations. The

resulting load on the hat-shaped specimen increases to its peak value, and then drops

abruptly from its peak value as a consequence of thermal softening inside the bands.

Furthermore, it is observed that the initiation of shear band is orientation-dependent. The

normalized displacement needed for the initiation of shear band for the asymmetric crystal

orientations [1̄1̄2] � [111] and [111] � [1̄1̄2] is lower than that for the symmetric crystal

orientations [100]� [010], [001]� [110] and [110]� [001] (see Fig. 4.9). The evolution of the

cumulative plastic strain within shear bands at various deformation stages is shown in Fig.

4.10 for [001]� [110] crystal orientation at the normalized displacement values of 0.04, 0.045,

0.050 and 0.055. The onset of ASB is observed at the specimen's corner at a normalized

displacement of 0.04. It propagates from the corners with further increase in deformation,

and the shear band is fully formed at a normalized displacement of 0.055.

The cumulative plastic strain and temperature �elds in the single crystals hat-shaped

specimens for �ve di � erent initial crystal orientations are shown in Fig. 4.11 and 4.12,

respectively. High values are observed at the corners of the specimens and lower ones

at the center of the sheared region. The simulation results show that the formation and

orientation of the ASB with respect to the loading axis signi�cantly depends on the initial

crystal orientation. The [100] � [010] initial crystal orientation shows a sti � er response

to the shear banding than the other ones. A remarkable feature is that no shear band

forms connecting the corners. Instead, two parallel shear bands tend to form, oriented at

an angle of about 16� clockwise with respect to the loading axis. With further straining,

only one shear band remains. This band does not seem to have a crystallographic nature
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Table 4.6 Slip systems activity inside the ASB in single crystal hat-shaped specimens.

Crystal orientations Activated slip systems

[100]-[010] B4,D1,A2,C3

[110]-[001] D6,A6,C3,C1

[001]-[110] B4,B2,D6,A6,C3,C1

[1̄1̄2]-[111] B4,B2,C3,C1

[111]-[1̄1̄2] B4,B2

Fig. 4.9 Load-displacement curves for �ve di � erent crystal orientations subjected to adiabatic
heating using the micromorphic crystal plasticity model ( Ti = 923K, A = 0:004N). Circles
on the plot are corresponding to the normalized displacement at which cumulative plastic
strain, temperature and lattice rotation �elds shown next are plotted.
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because the activated slip systems are neither co-planar nor co-directional. This particular

situation does not favor the shear band formation. On the other hand, activated pairs of

co-planar and co-directional slip systems in [001]� [110], [110]� [001] and [1̄1̄2] � [111]

favor the shear band formation. The initially oriented crystal [111]� [1̄1̄2], exhibits the

lowest tendency to shear band formation, and no evident shear banding is observed prior

to melting temperature as it promotes less octahedral slip systems (only two slip systems

are activated). On the other hand, distinct shear banding patterns are observed for the other

four initially oriented crystals as it facilitates the activation of more numerous octahedral

slip systems.

As the deformation becomes unstable and the shear band is fully formed, the plastic

strain within the shear band increases with further deformation, but the gradient parameter

A limits the width of the shear band. Fig. 4.13 show the 
 cum variation along the node

line crossing the shear region of Fig. 4.5 when the shear band is fully formed for di � erent

initial crystal orientations. The band width w is de�ned as the width of the shear region

surrounding the band center over which the cumulative plastic strain remains larger than

10% of the its peak value (Batra and Chen, 2001). Moreover, the observed width of the

shear band is also orientation-dependent. The observed widths of the shear band from Fig.

4.13a in symmetric crystal orientations [100]� [010], [110]� [001] and [001]� [110] using

gradient parameter A of 0:004N are 0:05 mm, 0:075mm and 0:08 mm, respectively. On

the other hand, for both asymmetric crystal orientations [1̄1̄2] � [111] and [111]� [1̄1̄2] the

observed width is 0:075mm (see Fig. 4.13b). In addition, the predicted temperature �elds

and variation of temperature across the node line crossing the shear region is shown in Fig.

4.12 and 4.14. The peak temperature is observed at the center of the shear band.

4.4.5.3 Lattice rotation �elds

Non-homogeneous plastic strain �elds are usually accompanied with signi�cant lattice

rotation. The non-uniform lattice rotation in strain localization problems results in a local

geometrical softening of the slip plane with which the shear band is aligned according to

(Chang and Asaro, 1980; Lisiecki et al., 1982). Shear band formation is therefore possible

even in work-hardening materials due to such geometric softening (Dillamore et al., 1979).

Strain softening and non-homogeneous lattice rotations induce instabilities in the plastic

deformation. The formation of deformation bands in crystalline materials is very often

associated with lattice rotations. The lattice rotation angle � L can be measured using the

polar decomposition of the elastic part of the deformation gradient F
�

e into elastic rotation

tensor R
�

e and the elastic right stretch tensor U
�

e asF
�

e = R
�

e�U
�

e. For small elastic distortions

usual in metals, the elastic rotation tensor R
�

e is interpreted as the lattice rotation. The

corresponding lattice rotation angle � L is computed as

� L = arccos
h1
2

�
tr(R

�
e) � 1

�

�i
: (4.63)
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(a) (b) (c) (d)

Fig. 4.10 Contour plots of cumulative plastic strain at di � erent stages showing the shear
band formation with adiabatic heating using the micromorphic crystal plasticity model
([001]� [110] crystal orientation, Ti = 923K, A = 0:004N) at normalized displacements of (a)
0.04 mm/mm, (b) 0.045 mm/mm, (c) 0.050 mm/mm, and (d) 0.055 mm/mm.
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Fig. 4.11 Contour plots of cumulative plastic strain 
 cum in the shear region with adiabatic
heating using the micromorphic crystal plasticity model ( Ti = 923K, A = 0:004N) for (a)
[100]� [010], (b) [110]� [001], (c) [001]� [110], (d) [1̄1̄2] � [111], and (e) [111]� [1̄1̄2] initially
oriented crystals. The �elds are shown at loading steps corresponding to the circles in Fig.
4.9. Compensation of the loading direction by Burgers vector of the activated slip systems
is also shown.
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(a) (b) (c) (d) (e)

Fig. 4.12 Contour plots of temperature using the micromorphic crystal plasticity model
(Ti = 923 K, A = 0:004 N) in the shear region for (a) [100] � [010], (b) [110] � [001], (c)
[001]� [110], (d) [1̄1̄2] � [111], and (e) [111]� [1̄1̄2] initially oriented crystals. The �elds are
shown at the loading steps corresponding to the circles in Fig. 4.9.

(a) (b)

Fig. 4.13 Cumulative plastic strain variation along the node line crossing the shear region
(see Fig. 4.5) withadiabaticheating using the micromorphic crystal plasticity model ( Ti = 923
K, A = 0:004N) for (a) symmetric, and (b) asymmetric crystal orientations. The variation of
cumulative plastic strain is plotted at loading steps corresponding to the circles in Fig. 4.9.
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(a) (b)

Fig. 4.14 Temperature variation along the node line crossing the shear region for (a)
symmetric, and (b) asymmetric crystal orientations. The variation of temperature across
the shear band is plotted at loading steps corresponding to the circles in Fig. 4.9.

The lattice rotation �elds for the various initially oriented crystals are shown in Fig. 4.15.

The rotation of crystal lattice in the fully formed shear band is di � erent for each considered

initially oriented crystal and increases with increase in deformation. The discontinuous

lattice rotation �eld is observed in [001]� [110] and [111]� [1̄1̄2] initially oriented crystals

as a consequence of the complex plastic strain �elds observed in Fig. 4.11. In comparison,

single lattice rotation bands with smaller magnitude are observed for the [100] � [010],

[110]� [001] and [1̄1̄2] � [111] crystal orientations. Some lattice rotation �eld patterns are

reminiscent of kink banding structures studied in (Marano et al., 2021) but the situation

is more complicated in the shear bands due to the simultaneous activation of several slip

systems.

4.4.5.4 E� ect of the gradient parameter A on shear band structure

The cumulative plastic strain 
 cum �elds and formed ASB for the three di � erent values

of the gradient parameter A are shown in Fig. 4.16. With a decreasing value of A, the

severity of plastic strain localization within the shear band increases, and a signi�cant

thermal softening is observed in the post-localization regime (see Fig. 4.17a). The e� ect

of parameter A on the width of the shear bands can be seen from Fig. 4.17b. As expected

from the analytical expression of the characteristic length scale, Eq. (4.62), the width of the

shear band decreases with decrease inA value. The observed widths of the shear band

with three di � erent values of A, 0:04 N, 0:02 N, and 0:004N are found to be 0:085mm, 0:07

mm, and 0:05 mm, respectively.
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(a) (b) (c) (d) (e)

Fig. 4.15 Contour plots of lattice rotation �elds in the shear region ( Ti = 923K, A = 0:004N)
for (a) [100]� [010], (b) [110]� [001], (c) [001]� [110], (d) [1̄1̄2] � [111], and (e) [111]� [1̄1̄2]
initially oriented crystals subjected to adiabaticheating. Fields are shown at loading steps
corresponding to the circles in Fig. 4.9.

(a) (b) (c)

Fig. 4.16 Contour plots of cumulative plastic strain 
 cum using the micromorphic crystal
plasticity model ( Ti = 923K) with three di � erent values of (a) A = 0:04 N, (b) A = 0:02 N,
and (c) A = 0:004N. Fields are shown for the [001]� [110] initially oriented crystal subjected
to adiabaticheating. Fields are shown at a normalized displacement of 0 :06 mm/mm
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(a) (b)

Fig. 4.17 E� ect of di� erent values of the gradient parameter A on the (a) load-displacement
curves, and (b) cumulative plastic strain 
 cum variation along the node line crossing the
shear region for [001]� [110] initially oriented crystal plotted at a normalized displacement
of 0:06 mm/mm.

4.5 Application to polycrystalline hat-shaped specimens

In this section, the micromorphic crystal plasticity model is applied to study the ASB

formation in polycrystalline hat-shaped specimens. The single crystal constitutive behavior

used in the numerical simulations is elastic-perfectly plastic and involves the same parameter

values as in the previous sections. The material parameters used in the simulations are

given in Table 4.3 and 4.4. First, orientation dependency of the shear band formation is

investigated. Next, the grain size e� ect is predicted in the isothermalcase. Then, the e� ect

of adiabaticheating on the resulting load is evaluated for the considered polycrystalline

aggregates. The temperature evolution due to adiabaticheating is computed using the

expression in case 2presented in section 4.2.3 (Eq.(4.38)). Finally, the grain size e� ect on

shear band width is predicted by the micromorphic model.

4.5.1 Polycrystal generation and �nite element meshing

Polycrystalline aggregates generated by the Voronoï tessellation using the polycrystal

generation package Neper (Quey and Renversade, 2018) are shown in Fig. 4.18 and 4.19.

The application of Voronoï tessellation to create an actual geometry with the grains is a

powerful tool to predict grain size e � ects, for example on the overall mechanical response of

the material under deformation. Two polycrystalline aggregates, namely the coarse-grained

and �ne-grained with an average grain size of 0:80mm and 0:15mm, respectively, are

generated. The smallest grain size in the shear region of the generated polycrystalline

aggregates is0:38mm and 0:10mm, respectively. Moreover, the pole �gure showing the
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crystallographic texture for each realization is plotted by means of the open-source software

toolbox MTEX (Bachmann et al., 2010).

Mesh independent numerical results are ensured using �ne enough mesh size within

the grains of the shear region combined with the use of the micromorphic crystal plasticity

model. Meshing is performed using an open-source package Gmsh (Geuzaine and Remacle,

2009). A bottom-up approach is used for the meshing, i.e. in the order of 0D, 1D, and

2D entities (i.e. vertices, edges, and polygons) for the 2D simulations under plane strain

conditions (Quey et al., 2011).

The applied boundary conditions in the present polycrystalline simulations were

described in section 4.4.3. In addition, each realization of polycrystalline aggregate is

assigned with di � erent random crystal orientations. No special interface condition is

applied to grain boundaries. The interface conditions arise from balance equations in the

continuum model: Continuity of the displacement vector components, and continuity of

the traction vector components at least in the weak form according to the �nite element

method.

In the present work, 
 � is assumed to be continuous at the interface. This type of

interface condition is intermediate between microfree and microhard. In microfree interface

condition, dislocations are free to escape interfaces; thus, no dislocation pile-up occurs at the

interface. This interface condition corresponds to vanishing tractions for the micro-stresses.

The surface traction (T) and generalized surface traction (M) in Eq. (2.21)are also continuous.

On the other hand, microhard interface condition. corresponds to a large plastic strain on

one side of the interface and a small on the other side. In this interface condition, plastic

slip vanishes at the interfaces (
 � = 0); hence dislocation pile-up occurs. Furthermore, the

traction vectors in Eq. (2.21)are discontinuous. These two choices are discussed in (Gurtin

and Needleman, 2005). However, these two interface conditions are not applicable to all

sorts of interface behavior. One approach to obtain interface behavior inbetween these two

extreme conditions is by introducing interface energy as in (Aifantis and Willis, 2005).

In the present work we believed that the continuity of 
 � carries the main physical

constituent to predict the grain size e � ects in polycrystals.

4.5.2 Results and discussion

4.5.2.1 Grain orientation dependency of the shear band

The e� ect of grain orientations on the shear band predicted by the numerical simulations is

investigated �rst for polycrystalline aggregates subjected to isothermaldeformation using

the micromorphic crystal plasticity model. Two distinct crystal orientation distributions

are assigned to the grains in the shear region, namely the orientation 1and orientation

2. The realizations of the coarse-grainedand �ne-grainedpolycrystalline aggregates with

corresponding pole �gures are shown in Fig. 4.20a and 4.20b, respectively. The predicted

load-displacement curves for the coarse-grainedand �ne-grainedpolycrystalline aggregates
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e2

e3

f100g

(a)

f100g

(b)

f100g

(c)

Fig. 4.18 Di� erent realizations of the coarse-grainedpolycrystalline aggregates and corre-
sponding pole �gures: (a) Realization 1, (b) realization 2, and (3) realization 3. Colors
represent individual grains and the red points in pole �gures denote the orientation assigned
to the grains in the shear region.
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(a)

f100g

(b)

Fig. 4.19 Di� erent realizations of the �ne-grainedpolycrystalline aggregates and correspond-
ing pole �gures: (a) Realization 1, and (b) realization 2. Colors represent individual grains
and the red points in the pole �gures denote the orientation assigned to the grains in the
shear region.
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f100g
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f100g
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f100g
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f100g
Orientation 2

Fig. 4.20 Polycrystalline aggregates with two distinct orientation distributions assigned to
the grains in the shear region (orientation 1and orientation 2) for the (a) coarse-grained, and
(b) �ne-grainedwith corresponding pole �gures. The red points in the pole �gure denote
the orientations assigned to the grains in the shear region

are given in Fig. 4.21a and 4.21b, respectively. As shown in these �gures, the resulting

load required to deform the orientation 2in both polycrystalline aggregates is greater than

the orientation 1, which indicates that the development and propagation of the shear band

highly depends on the orientation of the grains crossed by the bands, grain boundaries

acting as obstacles to shear band propagation. Inorientation 1case, the orientations of the

grains in the shear region are such that they favor plastic �ow and subsequent shear band

formation compared to orientation 2. Furthermore, less orientation dependency is observed

in the �ne-grainedpolycrystalline aggregates compared to the coarse-grainedpolycrystalline

aggregates (see Fig. 4.21b). The formed shear bands are shown in Fig. 4.22. More signi�cant

strain localization is observed in orientation 1than in orientation 2. This indicates that some

grains in orientation 1represent stronger obstacles to shear band transmission from grain to

grain. This e� ect is reduced when a larger number of grains are available along the shear

band path.
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(a) (b)

Fig. 4.21 E� ect of the change in orientation of the grains in the shear region on the load-
displacement curve using the micromorphic crystal plasticity model ( A = 0:04 N) for the (a)
coarse-grainedpolycrystal aggregate, and (b) �ne-grainedpolycrystal aggregates subjected to
isothermalconditions.

4.5.2.2 Grain size e� ect in the polycrystalline hat-shaped specimens

There are mainly two types of size e� ects to be considered, which are responsible for

the increased strength of polycrystalline aggregates compared to single crystals, namely

the specimen sizee� ect and grain sizee� ect (Armstrong, 1961). The specimen size e� ect

occurs when there are few grains in the specimen cross-section. It is mainly related to

the orientation dependency of the crystal plastic �ow, as demonstrated in the previous

subsection about the in�uence of number of grains along the shear band path. On the other

hand, the grain sizee� ect occurs when there are su� ciently many grains in the specimen

cross-section. In addition to the orientation dependence of the plastic �ow within the

grains, internal stress concentration takes place at the grain boundaries and causes yielding

and subsequent plastic �ow (Armstrong, 1961). The well-known grain size e � ect in a

polycrystalline material is the Hall-Petch size e � ect, which indicates that the yield strength

of material is inversely proportional to the square root of grain size (Hall, 1951; Petch, 1953).

Numerically, strain gradient plasticity models can be used to predict the grain size e � ects

in polycrystalline materials, as done for instance in (Acharya and Bassani, 2000; Evers et al.,

2004; Aifantis and Willis, 2005; Borg, 2007).

In the present work, �rstly, the grain size e � ect is studied in the isothermalcase for

polycrystalline hat-shaped specimens. The realizations of polycrystalline aggregates

investigated are shown in Fig. 4.18b and 4.19a for the coarse-grainedand �ne-grained

polycrystalline aggregates, respectively. The shape and geometry of the hat-shaped

specimen are such that it allows for the spontaneous formation of a shear band even in

the absence of thermal softening in the numerical simulations due to the perfectly plastic

crystal behavior. The cumulative plastic strain �elds with the classical and micromorphic

crystal plasticity models are shown in Fig. 4.23. The classical crystal plasticity model, which
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(a) (b)

(c) (d)

Fig. 4.22 Contour plots of cumulative plastic strain 
 cum using the micromorphic crystal
plasticity model ( A = 0:04N) for the (a) coarse-grainedpolycrystalline aggregates assigned
with orientation 1, and (b) orientation 2. (c) The �ne-grained polycrystalline aggregates
assigned with orientation 1, and (d) orientation 2. Fields are shown at the normalized
imposed displacement of 0.06 mm/mm under isothermalconditions ( Ti=923 K). For clarity
the �elds are shown with and without the �nite element mesh.
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does not feature any characteristic length scale, exhibits a pathological mesh dependency

and the width of the formed shear band collapses to one element size (more precisely one

Gauss point size, see Fig. 4.23a and 4.23b). Therefore, the classical crystal plasticity models

cannot be used to study strain localization problems in polycrystals. In contrast, the width

of the formed shear band predicted by the micromorphic crystal plasticity model is �nite,

see Fig. 4.23c and 4.23d. The normalized load-normalized displacement curves using the

classical and micromorphic crystal plasticity models in the isothermal case are shown in

Fig. 4.24. The predicted size e� ect is linked to the characteristic length scale ` through the

gradient parameters A and H� as in Eq. (4.62). The micromorphic crystal plasticity model

merely in�uences the hardening rate and does not a � ect the initial yield strength. This is

because any gradient plasticity formulation based on a quadratic potential with respect

to the gradient of plastic distortion cannot result in an increase in yield strength but only

increases the hardening rate. The initial yield can be in�uenced by rank one potentials

according to (Wul�ngho � et al., 2015) or using the recent approach by (Steinmann et al.,

2019). The grain size e� ect is associated with spatial strain gradients inside the grains

because of the heterogeneous plastic deformation resulting from grain-to-grain plastic

strain incompatibilities. The grain boundaries act as obstacles to dislocation motion, and the

strain gradient-induced GNDs pile up at grain boundaries. In addition, with the decrease

in grain size, the area at the grain boundaries with GNDs density increases and leads to

increased local stresses and of the resulting load. The larger number of grain boundaries in

the shear region of the �ne-grainedpolycrystalline aggregates obstructs the initiation and

subsequent plastic �ow and results in a higher resulting load.

Moreover, the e� ect of grain size on the load-carrying capacity subjected to adiabatic

heating condition is now studied. Simulations are performed with two di � erent values of

the gradient parameter A, namely 0:004N, and 0:04N. The corresponding load-displacement

curves for the realizations of the coarse-grainedand �ne-grainedpolycrystalline aggregates

are given in Fig. 4.25a, 4.25b and Fig. 4.25c and 4.25d, respectively. The load-displacement

curves exhibited by the di � erent realizations of each polycrystalline aggregate with the same

gradient parameter A are distinct from each other because of the assigned di� erent random

orientations and distinct shape of the grains in the shear region. A broader dispersion of

the resulting loads is observed in realizations of the coarse-grainedpolycrystal aggregates

(see Fig. 4.25a and 4.25b) compared to�ne-grainedpolycrystal aggregates (see Fig. 4.25c

and 4.25d). It is found that the average resulting load in �ne-grainedpolycrystal aggregate

remain below the coarse-grainedpolycrystal aggregate as seen from the average curves in

Fig. 4.25e and 4.25f. This is probably due to the insu� cient number of realizations which

does not allow for statistical representativity. The results also show that higher values of A

parameters lead to a reduced softening of the overall curves.
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(a) (b)

(c) (d)

Fig. 4.23 Contour plots of cumulative plastic strain 
 cum using (a) the classical crystal plas-
ticity model in coarse-grained (orientation 1), and (b) �ne-grained (orientation 1)polycrystalline
aggregates, (c) using the micromorphic crystal plasticity model (A =0.04 N) in coarse-grained
(orientation 1), and (d) �ne-grained (orientation 1)polycrystalline aggregates. Fields are shown
at a normalized displacement of 0 :06 mm/mm and under isothermalconditions.
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Fig. 4.24 Load-displacement curves obtained using the classical and micromorphic crystal
plasticity models for the coarse-grained(realization 2), and �ne-grained (realization 1)
polycrystalline aggregates (hat–shaped specimens under isothermal conditions).

4.5.2.3 E� ect of grain size on the shear band width

In this section the grain size e� ect on the width of shear bands is studied under adiabatic

heating conditions. In the present polycrystalline simulations, deformation is highly

localized within the grains of the shear region. Moreover, the grain size in the shear region

plays a crucial role in the shear band formation. The shear band is triggered at the corners

of the specimen, and strongly heterogeneous plastic deformation takes place between the

corners. Furthermore, it is observed that some grains exhibit a larger amount of shear, while

other grains remain almost undeformed. The formation of the shear band in coarse-grained

polycrystalline aggregates for the realizations 1 and 3 (Fig. 4.26a and 4.26c) is restricted

probably due to the unfavorable orientations of the grains in the shear region. In contrast,

the shear band is easily formed in the realization 2 as seen from Fig. 4.26b. The orientation

dependency in the shear band formation is the main reason for the wide dispersion of

the resulting loads observed in coarse-grainedpolycrystalline aggregates. In contrast, in

�ne-grainedpolycrystalline aggregates, plastic �ow in some grains is limited because of

their grain boundaries and the orientation of the neighboring grains, causing subsequent

plastic �ow in more favorable grains as seen from Fig. 4.27a. However, less orientation

dependency of the grains in the shear region is observed in the �ne-grainedpolycrystalline

aggregates compared tocoarse-grained(see Fig. 4.27a and 4.27b). Fig. 4.28a and 4.28b show

the cumulative plastic strain 
 cum variation along a node line crossing the shear region

for the coarse-grainedpolycrystalline aggregates using gradient parameters A = 0:004N

and A = 0:04 N, respectively. Signi�cant strain localization is observed for lower values

of A, i.e. 0:004N compared to 0:04N. Fig. 4.28c and 4.28d show the cumulative plastic

strain variation along the node line crossing the shear region for �ne-grainedpolycrystalline
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.25 Load-displacement curves using the micromorphic crystal plasticity model
for various realizations of the polycrystalline aggregates subjected to adiabaticheating
conditions: (a) the coarse-grainedpolycrystalline aggregates with A = 0:004 N, and (b)
A = 0:04N, (c) the �ne-grainedpolycrystalline aggregates with A = 0:004N, and (d) A = 0:04
N, (e) Average load-displacement curves with A = 0:004 N, and (f) A = 0:04 N.
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aggregates with A = 0:004N and A = 0:04 N, respectively. The shear band width is de�ned

by the following criterion: The region in which the cumulative plastic strain is larger than

10% of the peak value. The measured widths of the shear band for the coarse-grainedand

�ne-grainedpolycrystalline aggregates with the gradient parameter A of 0:004N, and 0:04N

are given in Table 4.7. A larger dispersion of the shear band width is observed in the

coarse-grainedpolycrystal realizations compared to the �ne-grained, in a way similar to the

predicted resulting loads.

The measurement of the shear band width along one single node line may not be

su� cient in polycrystalline simulations. Therefore, the surface of the elements satisfying

a speci�c criterion is calculated using the post-processing technique. The surface of the

elements having cumulative plastic strain more than 10%of the peak value is measured.

Finally, the width of the shear band w is calculated by dividing the surface of the band by

the shear zone height h (see section 4.4.3 for specimen dimensions). The obtained values of

the shear band widths are given in Table 4.7. The two de�nitions of shear band with provide

similar results. Typical values of 50 micron (resp. 100 micron) are found for A = 0:004N

(resp. A = 0:04 N) irrespective of the grain size.

The present simulations are limited to adiabatic conditions although it is well-known

that heat conduction can also contribute to the band structure (Yan et al., 2021). It is

worth checking the typical lengths associated with heat conduction under the strain rate

conditions of the simulations. The characteristic length scale of heat di � usion during a

time interval t can be estimated as
p

ktt=� C" , where kt is the thermal conductivity. The

parameter values considered in the work and time interval of one second result in di � usion

distances of the order of 1 mm. This shows that heat conduction induced length scale is

in competition with the microstructure related one. Adiabatic conditions are therefore a

strong assumption in the present simulations. This pleads for coupling the present model

to heat conditions in future work. This also strongly depends on the strain rate and grain

size ranges in the simulations. The di� usion term in heat equation has a regularizing

e� ect even though the involved length scales are sometimes too small for e� cient FE

modeling, as discussed in (Pamin et al., 2017). However, the strain gradient plasticity model

should not be solely seen as a regularization method. It also introduces in the modeling

microstructure aspects related to dislocation activity like pile-up formation and ensuing

grain size e� ects, as studied in the present work. As mentioned in the introduction, Zhu

et al. (1995); Tsagrakis and Aifantis (2015) analytically derived two characteristic lengths

emerging from the coupling of strain gradient plasticity. The �rst one is related to the ratio

of the strain gradient plasticity parameter and the hardening modulus. The second one

involves the heat conductivity and strain gradient plasticity parameters. We have evaluated

these length scales for the parameter values used in the present work. The second length

scale is found to be close to100micron which con�rms the importance of heat conduction

and the competition with the microstructural length.
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A = 0:004 N
(a)

A = 0:04 N

A = 0:004 N
(b)

A = 0:04 N

A = 0:004 N
(c)

A = 0:04 N

Fig. 4.26 Contour plots of cumulative plastic strain 
 cum in the coarse-grainedpolycrystalline
aggregates subjected toadiabaticheating using the micromorphic crystal plasticity model
(A = 0:004N and A = 0:04 N) for three di � erent realizations (a) realization 1, (b) realization
2, and (c) realization 3. Fields are shown at a normalized displacement of 0:052 mm/mm.
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A = 0:004 N
(a)

A = 0:04 N

A = 0:004 N
(b)

A = 0:04 N

Fig. 4.27 Contour plots of cumulative plastic strain 
 cum in the �ne-grainedpolycrystalline
aggregates subjected toadiabaticheating using the micromorphic crystal plasticity model
(A = 0:004N and A = 0:04N) for two di � erent realizations (a) realization 1, and (b) realization
2. Fields are shown at a normalized displacement of 0:052 mm/mm.
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(a) (b)

(c) (d)

Fig. 4.28 Cumulative plastic strain variation along the node line crossing shear region
using the micromorphic crystal plasticity model subjected to adiabaticheating in (a) coarse-
grainedpolycrystalline aggregates with A = 0:004N, and (b) A = 0:04 N. (c) The �ne-grained
polycrystalline aggregates with A = 0:004 N, and (d) A = 0:04 N. All the variations are
plotted for the normalized displacement of 0 :052 mm/mm.
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Table 4.7 Shear band width w measured along the node line crossing the shear region and
using a post-processing method.

coarse-grained
w (mm)

(A = 0:004 N)

w (mm)
Post-processing

(A = 0:004 N)

w (mm)
(A = 0:04 N)

w (mm)
Post-processing

(A = 0:04 N)
Realization 1 0.05 0.042 0.12 0.12

Realization 2 0.03 0.049 0.13 0.072

Realization 3 0.12 0.065 0.15 0.11

�ne-grained

Realization 1 0.03 0.036 0.05 0.12

Realization 2 0.03 0.033 0.05 0.098

4.6 Conclusions

The numerical simulation work presented here was intended to provide an insight into the

mechanism of ASB formation in single and polycrystalline FCC metallic materials. The

main �ndings obtained in this contribution can be summarized as follows:

1. A thermodynamically consistent constitutive framework for the micromorphic crystal

plasticity model was used to derive temperature evolution under adiabatic conditions.

2. The micromorphic crystal plasticity model pursues the objective of regularization of

the adiabatic shear band formation.

3. The orientation of the formed ASB with respect to the loading axis is a � ected by the

crystal initial orientation. [100]� [010] crystal orientation shows the sti � est response to

ASB formation. On the other hand, crystals initially oriented at [111]� [1̄1̄2] show the

lowest tendency to shear band formation, and no evident shear banding is observed.

Moreover, it is observed that the formed shear band width depends on the initial

crystal orientation.

4. The grain size e� ect, namely the �ner the grain size the higher the stress, was illustrated

in the response of polycrystalline FCC metallic materials using the micromorphic

crystal plasticity model subjected to isothermaldeformation. It is shown that the

micromorphic crystal plasticity model merely in�uences the hardening rate but does

not a� ect the initial yield strength.

5. The resulting load and the formation of shear band is highly orientation dependent

in polycrystalline simulations in the case of coarse grainedpolycrystal. The favorable

orientation of the grains in the shear region results in decreased resulting load and

ease of shear band formation. Furthermore, wide dispersion of the resultant load
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and width of the shear band is observed in di � erent realizations of the coarse grained

polycrystalline aggregates.

6. The relation between observed shear band widths, characteristic length scale of the

micromorphic model and grain size was analyzed. It shows that the characteristic

length scale mainly controls the shear band width and that grain boundaries serve as

obstacles to ASB propagation thus controlling the intensity of strain localization.

It is possible to predict stronger grain size e � ects in the polycrystalline simulations

by considering larger number of grains in the shear region of the hat-shaped specimen.

However, due to high computational costs, only two grain sizes were considered in the

present work. Moreover, work-hardening was not included in the simulations to clearly

isolate the micromorphic and grain size e � ects from classical hardening. The consideration

of dislocation–based hardening in the future will require the evaluation of stored energy in

order to evaluate temperature evolution under adiabatic conditions. It is common practice

to consider a constant value 0:9 of the TQC. However, the experimental evidence, for

instance, (Kapoor and Nemat-Nasser, 1998; Rittel et al., 2012), showed that, in reality, its

value can be much less than 0:9. The thermodynamically consistent framework of the

constitutive equations for the gradient crystal plasticity (reduced-order micromorphic)

model presented in this work must be extended to allow for evolving TQC predicted by

suitable free energy density functions. It is hoped that the predictions made in the present

work will serve as incentives to perform experimental tests on single and oligo-crystalline

hat–shaped specimens to precisely determine the relation between ASB width and grain

size. The analysis of such tests may require the extension of the present computational

approach to more realistic 3D computations.
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Chapter 5

Prediction of stored energy and

Taylor-Quinney coe � cient in single and

poly-crystals

Abstract

During the plastic deformation of metallic materials, part of expended mechanical energy di� use as

heat. The remaining portion of the plastic work is called stored energy which later converts into

microstructural rearrangements. Stored energy is the main driving force for dynamic or static

recovery and recrystallization. The critical aspect related to the measurement of stored energy is

the fraction of plastic work converted into heat, called the Taylor-Quinney coe� cient (TQC), often

assumed to be a constant parameter of the order of 0.9. The prediction of the stored energy and TQC

is important to understand the plastic deformation and subsequent recovery and recrystallization

mechanism. An adequate prediction of stored energy and TQC in line with the experimental

measurements using numerical simulations is challenging. In this work, �rst of all, the stored

energy and TQC are predicted using a thermodynamically consistent classical crystal plasticity

model for the single crystals copper and aluminum. Next, the application is made to polycrystalline

aggregates. The stored energy predicted for the polycrystalline austenitic steel is compared with

the experimentally measured stored energy from the literature. Besides, the predicted stored energy

considering contribution of both statistically stored dislocations (SSDs) and geometrically necessary

dislocations (GNDs) is compared to that obtained by considering the contribution of SSDs only. To

this end, the contribution of GNDs along with SSDs is considered in the prediction of stored energy

using two di� erent grain boundary conditions, i.e. intermediate and microhard.

5.1 Introduction

During the plastic deformation of metallic materials, part of expended mechanical energy

di � uses as heat. The remaining portion of the plastic work is called stored energy which
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later converts into microstructural rearrangements. Stored energy is the main driving

force for dynamic or static recovery and recrystallization. Di � erent techniques used

in experimental measurements of stored energy are summarized in (Bever et al., 1973).

Extensive experimental work has been performed in the past to measure the stored energy

in metallic materials, for instance, in (Bailey, 1963; Williams, 1965; Bever et al., 1973; Oliferuk

et al., 1993, 1995).

A well-known analytical expression for the stored energy, which is a function of

dislocation density, can be found in (Bailey, 1963; Bever et al., 1973). Bailey (1963)

measured the stored energy of polycrystalline silver and copper under tensile loading. The

analytical expression used by Bailey (1963) for the prediction of stored energy is given by

Es = (� c)2

� , where � c is given by � c = 0:5� b
p

� avg, with � avg being the average dislocation

density. Furthermore, he plotted the experimentally measured stored energy, Es, as a

function of (� c)2

� . The results for both metals lie close to the straight line of equation

Es ' 7:7 (� c)2

� ' 2� b2� avg.

Several attempts have been made to investigate the e� ect of grain size on stored energy,

for instance, in (Williams, 1965; Baker et al., 1995; Oliferuk et al., 1995). All these researchers

concluded that with an increase in grain size the stored energy decreases. Williams (1965)

found that an increase in grain size by a factor of ten decreases the stored energy by8%at a

strain of 0:3. Recently, Rittel et al. (2012) measured the stored energy of single crystal and

polycrystalline copper in the strain rate range of 1000� 8000s� 1undergoing compressive

loading. Higher stored energy was found in polycrystals than single crystals because of the

presence of grain boundaries in polycrystals.

The critical aspect related to the measurement of stored energy is the fraction of plastic

work converted into heat, called the Taylor-Quinney coe � cient (TQC), often assumed to be

a constant parameter of the order of 0:9 (Taylor and Quinney, 1934). Ravichandran et al.

(2002) investigated the TQC evolution in aluminum 2024-T3 alloy and � -titanium. They

found that the TQC is a function of strain but not of strain rate in the case of aluminum

2024-T3 alloy. On the other hand, TQC was strongly dependent on strain rate in � -titanium.

Rittel et al. (2012) investigated the thermo-mechanical response of single and polycrystalline

copper at low and high strain rates. They observed that the TQC linearly increases with

strain rate and remains considerably lower than the classical value of 0:9. Rittel et al.

(2017) recently measured the TQCs for7 di � erent metals and alloys, namely, Ti6Al4V,

commercially pure titanium, Al5086, Al2024, 304L, 1020 steel, and maraging C300 under

tension, compression, and dominant shear loading. A signi�cant variation of TQC with

values other than 0:9 was observed. Except for commercially pure titanium, identical TQCs

were measured under tension, compression, and shear loading. In commercially pure

titanium due to the presence of twinning activity in compression and shear loading results

in di � erent TQC in di � erent deformation modes as twinning is related to heat generation.

Numerically, dislocation density-based models are often used to describe material

hardening. The obtained total dislocation density is further used to calculate stored energy.
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The stored energy prediction in single crystals copper under tensile loading using discrete

dislocation plasticity was performed by Benzerga et al. (2005). They showed that the

dislocation distribution in�uences the stored energy along with the total dislocation density.

Moreover, they found TQCs in the range of 0:75-0:95 up to the strain of 10%and strain

rate of 100s� 1. In addition, crystal plasticity modeling is an essential tool to determine the

stored energy and evolution of the material microstructure in thermo-mechanical processes.

Håkansson et al. (2008) investigated the e� ect of initial texture on the stored energy in

polycrystalline austenitic steel using a rate-dependent crystal plasticity model for large

deformations formulated within a thermodynamic framework. A �nite strain framework

of crystal plasticity in a thermodynamically consistent manner is used by Jafari et al. (2017)

to predict the stored energy in single and poly-crystalline aluminum under tensile loading

and bi-crystal aluminum under compressive loading. The phase-�eld approach to predict

the stored energy in polycrystalline aggregates can be found in (Abrivard et al., 2012).

A reliable dislocation density-based model is necessary to adequately represent the total

dislocation density and consequently the stored energy according to (Nieto-Fuentes et al.,

2018). Kositski and Mordehai (2021) showed using the molecular dynamics simulations

that the dislocation mechanism is not the only mechanism responsible for the stored energy.

They resort to grain boundary evolution as an additional mechanism responsible for energy

storage.

Models of plastic deformation fall into two categories. On the one hand, phenomeno-

logical models are frequently used in crystal plasticity modeling. However, these models

do not give a physical connection with the microscopic mechanisms of plastic deforma-

tion. The physics-based crystal plasticity models can overcome this limitation. On the

other hand, the physics-based plasticity models strongly connect with the microscopic

mechanisms of plastic deformation by introducing microscopic internal variables such

as dislocation density in the constitutive framework. The constitutive equations must be

derived in a thermodynamically consistency manner. In particular, it is necessary to check

the positivity of the residual dissipation in the local balance equation. Failure to do so

can violate the �rst and second laws of thermodynamics (Ottosen and Ristinmaa, 2005).

The thermodynamic consistency of the physics-based models has received less attention

compared to phenomenological models (Wu and Zaiser, 2021). Therefore, in this work, the

necessity to ensure the positivity of the residual dissipation is emphasized. In addition,

it is shown that the positivity of the residual dissipation in physics-based models can be

ensured by imposing constraints on the model parameters.

The prediction of the stored energy and TQC is important to understand the plastic

deformation and subsequent recovery and recrystallization mechanism. An adequate

prediction of stored energy and TQC in line with the experimental measurements using

numerical simulations is challenging. Analytical expressions used to predict the stored

energy may not consider all the mechanisms responsible for stored energy. Nieto-Fuentes

et al. (2018) introduced an ad-hocfactor in the analytical expression of stored energy to
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represent the experimentally measured stored energy adequately. However, calibration of

this factor for several dynamically loaded materials is necessary to get a common pattern.

The present work uses a thermodynamically consistent formulation of the classical and

micromorphic crystal plasticity models to predict the stored energy and TQC for single

and poly-crystalline FCC metallic materials. A constant ad-hocfactor, � , in the expression

of stored energy is treated as a �tting parameter so that the predicted stored energy

adequately represents the experimental measurements. The stored energy is predicted for

two di � erent polycrystalline metallic materials under di � erent loading conditions to check

the predictability of this factor. To the best of our knowledge, most of the numerical work

on the prediction of stored energy considers the contribution of SSDs only. The study on

the prediction of stored energy considering the contribution of GNDs along with SSDs is

relatively rare.

In this work, �rst of all, the stored energy and TQC are predicted using the classical

crystal plasticity model for the single crystals copper and aluminum. Next, the application

is made to polycrystalline aggregates. As the �rst application to polycrystalline simulations,

the e� ect of mesh size and grain morphology on the stress-strain response is studied in

detail. The stored energy predicted for the polycrystalline austenitic steel is compared with

the experimentally measured stored energy from the literature. Besides, the application is

made to predict the stored energy in annealed Inconel 718 deformed at high strain rates

(1900s� 1-2000s� 1) and high temperatures ( 293K-1273K). Besides, the predicted stored

energy considering contribution of both SSDs and GNDs is compared to that obtained by

considering the contribution of SSDs only. Finally, the contribution of GNDs along with

SSDs is considered in the prediction of stored energy using two di � erent grain boundary

conditions, i.e. intermediateand microhard.

This chapter is organized as follows: section 5.2 is devoted to analyzing the positivity of

the dissipation rate to ensure thermodynamic consistency. The summary of the constitutive

equations used for the numerical prediction of stored energy and TQC is given in section 5.3.

In section 5.4, single crystals aluminum and copper simulations are performed to predict

the stored energy and evolution of TQCs. Section 5.5 is dedicated to the prediction of

stored energy and evolution of TQC in polycrystalline FCC metallic materials. Conclusions

follow in section 5.6.

5.2 Positivity of the dissipation rate to ensure thermody-

namic consistency

In this part we establish the constitutive framework for deriving models that are considered

with thermodynamics. Let us recall the �rst and second laws of thermodynamics. The �rst

law of thermodynamics with respect to the current con�guration is written in the local
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form as follows:

� �e= �
�

: D
�

+ Q; (5.1)

with D
�

being the strain rate tensor, ethe internal energy per unit mass and Q(= r � div q) the

heat supply per unit volume and unit time, which results from an external heat source r and

heat conduction q. The second law of thermodynamics in the form of the local dissipation

rate inequality with respect to the current con�guration can be written as

� �� + div
q

T
�

r
T

� 0; (5.2)

where � is the entropy per unit mass and T is the absolute temperature.

The Helmholtz free energy density function is introduced as

	 := e� T�: (5.3)

The material under consideration is assumed to be characterized by the coupled thermo-

mechanical Helmholtz free energy density function de�ned as

	 = ˜	 (E
�

the;T; � ): (5.4)

where E
�

the is the thermo-elastic strain tensor, T is the temperature, and � is the internal

hardening variable. Moreover, it is assumed that the free energy function can additively be

decomposed as

� 0	 = � 0 ˜	 (E
�

the) + � 0 ˜	 (T)+ � 0

NX

r=1

˜	 r(� r); (5.5)

where � 0 is the volume mass density with respect to the reference con�guration and � 0 ˜	 r(� r)

is the free energy function related to the internal hardening variable � r on slip system r

(= 1;2::::::;N) with N being the total number of slip systems.

The Clausius-Duhem inequality is now expressed with respect to the reference con�gu-

ration as

D = J�
�

: D
�

� � 0( �	 + � �T) � Q �
r XT

T
� 0; (5.6)

with Q being the heat conduction with respect to the reference con�guration and given by

Q = JtheF
�

� 1 � q and r XT the Lagrangian gradient of temperature.

The non-negative dissipation D can be split into two: non-negative mechanical dissipa-

tion Dm � 0 and non-negative thermal dissipation Dth � 0 such that

D = Dm + Dth � 0; (5.7)

where Dm = J�
�

: D
�

� � 0( �	 + � �T) and Dth = � Q � r XT
T .

The thermal inequality can also be called Fourier's inequality which states that heat

must �ow from hot regions to cold regions. We assume that the constitutive equation for
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the heat �ux vector Q is such that the thermal inequality holds:

Dth = � Q �
r XT

T
� 0: (5.8)

The Clausius-Duhem inequality from Eq. (4.15) reads

 

�
�

e� � 0
@̃	 (E

�
the;T)

@E
�

the

!

: �E
�

the� � 0

 

� +
@̃	
@T

!
�T � Q �

r XT
T

+ Dres � 0; (5.9)

where Dres is the residual dissipation given by

Dres= �
�

M : l
�

p � X ��; (5.10)

where �
�

M is the Mandel stress tensor de�ned with respect to the intermediate con�guration.

The de�nition of the Mandel stress tensor can be found in section 4.2.1. The residual

dissipation in Eq. (5.10) can be further expressed as

Dres=
NX

r=1

� r �
 r �
NX

r=1

Xr �� r ; with �
�

M : l
�

p =
NX

r=1

� r �
 r ; (5.11)

where Xr is a thermodynamic force associated with the internal hardening variable � r given

by

Xr = � 0
@̃	 r(� r)

@�r
: (5.12)

Any acceptable constitutive relation must ful�ll the dissipation inequality. Therefore, it

is crucial to select proper free energy function related to the internal hardening variable

� 0 ˜	 r(� r) (cf. Eq. (4.14)) and the evolution equations for � r. Various approaches for the

establishment of the evolution of � r to ensure that the dissipation inequality is ful�lled

can be found in (Ottosen and Ristinmaa, 2005). In the �rst approach called direct approach,

some evolution laws are assumed for � r. The positivity of the dissipation inequality is

checked at each time step of the computation. The drawback of this approach is that a

check needs to be performed for each material model, and general information cannot be

derived for a group of models. The second approach is called Onsager approachin which

linear relationship between internal hardening variable � r and thermodynamic force Xr is

assumed. This approach is proposed by Onsager (1931a,b). The linear relationship cannot

be used for general plasticity and visco-plasticity as realistic materials show nonlinearity.

However, it can be used for some other phenomena in which relevant material description

can be derived. The third approach is called potential approachwhich generalizes the

Onsager's linear approach to nonlinear theory. In this approach, dissipation potential is

chosen from which internal variable evolution equations are derived. Another approach is

called convex potential functionin which the dissipation potential is a convex function of

its argument such that the positivity of the dissipation rate is ensured at any instance. A
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thermodynamic consistency of the constitutive equations is also discussed in the pioneering

work of (Germain et al., 1983).

According to the �rst law of thermodynamics, a free energy potential for materials must

exist, and it is important to give approximate expressions. In contrast, the existence of a

dissipation potential is not necessary, but it can ease the development of thermodynamically

consistent models, i.e. models that ful�ll the second law of thermodynamics related to the

positivity of dissipation rate. These potentials are not always provided in the literature, but

they are useful to �nally evaluate the TQC.

Moreover, it is crucial to select proper free energy function � 0 ˜	 r(� r) and expression for

the evolution of � r to ensure that the di � erence between the plastic power and stored energy

rate is positive in temperature evolution equation (Eq. (4.37)). Many di � erent expressions

for � 0 ˜	 r(� r) based on phenomenological and physics-based models can be found in the

literature. In the next section, we establish the framework for phenomenological and

physics-based models that are provided by thermodynamics.

5.2.1 Examples of phenomenological models

At �rst, a simple thermodynamically consistent phenomenological model is considered in

which contribution of the internal hardening variable � r to the free energy is assumed to

have the quadratic form:

� 0 ˜	 r(� r) =
1
2

Q� r
NX

s=1

hrs� s; (5.13)

where Q is a material parameter. The thermodynamic force Xr associated with the internal

hardening variable � r can be given by

Xr = � 0
@̃	 r(� r)

@�r
= Q

NX

s=1

hrs� s: (5.14)

In this model, the existence of a convex dissipation potential 
 (�
�

M ;X) is assumed from

which �ow rule and internal variable evolution equations are derived:

�F
�

p � F
�

p� 1 =
@


@�
�

M
; �� = �

@

@X

: (5.15)

In addition, the dissipation potential is assumed to be of the power law form:


 (�
�

M ; � r
c) =

K
1+ m

NX

r=1

*
f r

K

+m+1

; (5.16)
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where � r
c is the critical resolved shear stress and f r is the Schmid-type yield function of the

�ow rule in the visco-plastic framework given by

f r = j� r j � � r
c: (5.17)

Based on the dissipation potential in Eq. (5.16), the �ow and hardening rules are derived

�F
�

p � F
�

p� 1 =
@


@�
�

M
=

NX

r=1

@

@f r

@f r

@�
�

M
=

NX

r=1

�
 r(mr 
 nr); �� r = �
@

@�rc

= �vr ; (5.18)

with vr being the cumulative slip variable and �
 r is the slip rate on slip system r computed

as follows:

�
 r =
@

@f r sign(� r) = �vr sign(� r); �vr = j �
 jr : (5.19)

The residual dissipation in Eq. (5.11) can be written as:

Dres=
NX

r=1

� r �
 r � Q
NX

r=1

NX

s=1

hrsvsj �
 r j; with �� r = j �
 r j: (5.20)

which further can be expressed as

Dres=
NX

r=1

 

j� r j �

"

� 0 + Q
NX

s=1

hrsvs
#

+ � 0

!

j �
 r j: (5.21)

The residual dissipation inequality ( Dres � 0) of the previous equation can be ful�lled in

two ways: either the j �
 jr is zero or the term in the brackets must be positive. The second

term in the brackets of the previous equation is � r
c with � r = vr. Therefore, �rst two terms

of the previous equation denote a yield function (Eq. (5.17)) of the visco-plastic �ow rule,

which is positive. Moreover, � 0 � 0 and hence in this simple case positivity of the residual

dissipation is ensured.

The constitutive formulation presented above is simple as � r = vr . It is preferred to use

a saturating variable � r instead of the cumulative slip vr , which is not a satisfactory internal

variable. In phenomenological models, � r is reminiscent of a dislocation density-like

variable. The realistic materials show nonlinear hardening behavior therefore a nonlinear

isotropic hardening rule for � r is assumed of the form:

� r = 1� exp(� B� r); with �� r = j �
 jr ; (5.22)

where B is a material parameter. The contribution of � r to the free energy is assumed to be

of the form given in Eq. (5.13). Then the thermodynamic force associated with the internal
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hardening variable becomes

Xr = � 0
@̃	 r(� r)

@�r
= Q

NX

s=1

hrs(1� exp(� B� s)): (5.23)

In addition, the nonlinear evolution of the isotropic hardening variable � r
c is assumed to be

of the form

� r
c = � 0 + Q

NX

s=1

hrs(1� exp(� B� s): (5.24)

The residual dissipation in (5.11) reads

Dres=
NX

r=1

 

j� r j � Q
NX

s=1

hrs(1� exp(� B� s)(Bexp(� Bvs))

!

j �
 r j; (5.25)

which can be further expressed as follows:

Dres=
NX

r=1

 

j� r j �

"

� 0 + Q
NX

s=1

hrs(1� exp(� B� s))

#

+ � 0 + Xr(1� Bexp(� Bvr))

!

j �
 r j: (5.26)

Similar to the previously considered simple case, the inequality Dres � 0 can be ful�lled in

two ways: either the j �
 jr is zero or the corresponding terms in the brackets are positive. The

second term in the brackets of the previous equation is � r
c. Therefore, �rst two terms of the

previous equation denote a yield function (Eq. (5.17)) of the visco-plastic �ow rule, which is

positive. Besides,� 0 � 0 and the last term is also positive. The thermodynamic consistency

of this phenomenological model can also be found in (Busso and Cailletaud, 2005).

Phenomenological models have the advantage that free energy functions are explicitly

postulated; sometimes, a dissipation potential is also proposed. But the models may be too

simple compared to experimental results. In contrast, physics-based internal variables have

been proposed in the literature. But explicit expressions of free energy function are not

provided in most cases. In the next section, we establish the framework that is provided by

thermodynamics for physics-based models taken from the literature and the model used in

the present work.

5.2.2 Examples of physics-based models

This section constructs the dislocation density-based model that ensures thermodynamic

consistency. In many conventional dislocation density-based crystal plasticity theories,

dislocation density � r on the slip system r is considered as an internal variable, for instance,

in (Kubin et al., 2008; Knezevic and Beyerlein, 2018; Bronkhorst et al., 2019). Unlike the

conventional theories, Lieou and Bronkhorst (2020) derived the evolution of dislocation

density from energetic and entropic considerations alone with constraints of the �rst and
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second laws of thermodynamics. The formulation is based on the Langer-Bouchbinder-

Lookman thermodynamic dislocation theory proposed in (Langer et al., 2010; Langer,

2015). Based on the energetic considerations alone, the evolution of dislocation density is

proportional to plastic work rate and not only to the plastic slip rate as in conventional

theories.

5.2.2.1 Physics-based model from the literature

Model by Abrivard et al. (2012)

Following the work of (Abrivard et al., 2012), the free energy function associated with the

internal hardening variable � r is given by

� 0 ˜	 r(� r) =
1
2

�� (� r)2; (5.27)

where � is the statistical constant of the order of 0:3. The thermodynamic force associated

with the internal hardening variable becomes

Xr = � 0
@̃	 r(� r)

@�r
= ��� r : (5.28)

In (Abrivard et al., 2012) it is assumed that the internal hardening variable � r depends on

the SSDs as follows:

� r = b

vut NX

s=1

hrs� s; (5.29)

and �� r can be written as

�� r =
b

2
q P N

s=1hrs� s

NX

s=1

hrs �� s: (5.30)

From (5.28) and (5.30) the dissipation related to the internal hardening variable reads

NX

r=1

Xr �� r =
1
2

�� b2
NX

r=1

NX

s=1

hrs �� s: (5.31)

One possible evolution equation for the dislocation density is given by

�� r =
1
b

 

kc

vut NX

s=1

� s � 2yc� r
!

; (5.32)

where kc is the mobility constant and yc is the critical annihilation distance between opposite

sign dislocations. The �rst term in the previous equation corresponding to dislocation

generation, and the second term to dislocation annihilation. Inserting (5.32)in (5.31)leads
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to
NX

r=1

Xr �� r =
1
2

�� b2
NX

r=1

NX

s=1

hrs1
b

"

kc

vut NX

u=1

� u � 2yc� r
#

j �
 r j: (5.33)

Inserting previous equation in (5.11) gives

Dres=
NX

r=1

 

j� r j �
�� b

2

NX

s=1

hrs
"

kc

vut NX

u=1

� u � 2yc� r
#!

j �
 r j: (5.34)

In addition, the nonlinear evolution of the isotropic hardening variable � r
c is assumed to be

dependent on the SSD density as follows:

� r
c = � 0 + � b

vut NX

s=1

hrs� s: (5.35)

To ensure the positivity of the residual dissipation in (5.34)by imposing constraints on

the model parameters, a simpli�ed case can be considered where all components of the

interaction matrix hrs are unity. Then (5.34) reads

Dres=
NX

r=1

 

j� r j �
�� b

2

"

kc

vut NX

s=1

� s � 2yc� r
#!

j �
 r j; (5.36)

which further can be written by introducing � r
c from Eq. (5.35) as follows:

Dres=
NX

r=1

 

(j� r j � � r
c) + � 0 + � b

vut NX

s=1

� s

"

1�
� kc

2

#

+ � bdc� r
!

j �
 r j: (5.37)

The residual dissipation inequality ( Dres � 0) in the previous equation holds when j �
 r j is

0 or the corresponding terms in the brackets are positive. The �rst term in the previous

equation is a Schmid-type yield function (Eq. 5.17) which is positive. Moreover, � 0 � 0 and

the third term can be made positive by imposing constraints on the model parameter kc

such that kc � 2
� . Besides, the last term of the previous equation is also positive.

5.2.2.2 Physics-based model used in present work

In the present work, the contribution of the internal hardening variable � r to the free energy

function is assumed to have the quadratic form:

� 0 ˜	 r(� r) =
1
2

�� (� r)2; with � r =

vut NX

s=1

hrs%s; (5.38)
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where � is an ad-hocfactor of the order unity. The adimentional dislocation density %r(= � rb2)

is expressed by Eq.(2.15). Then, the thermodynamic force Xr associated with � r can be

expressed as follows:

Xr = � 0
@̃	 r(� r)

@�r
= ��� r : (5.39)

The expression for dissipation related to the internal hardening variable by inserting for �%r

from Eq. (2.15) becomes

NX

r=1

Xr �� r =
1
2

��
NX

r=1

NX

s=1

hrs �%r =
1
2

��
NX

r=1

NX

s=1

hrs
" 

q P N
u=1bru%u

� c
� dc%r

!

j �
 r j

#

: (5.40)

Inserting previous equation in (5.11) gives the residual dissipation of the form:

Dres=
NX

r=1

 

j� r j �
1
2

��

" NX

s=1

hrs
 

q P N
u=1bru%u

� c
� dc%r

!#!

j �
 r j: (5.41)

Moreover, in the present work, the evolution of the isotropic hardening variable � r
c is

assumed to be of the form:

� r
c = � 0 + �

vut NX

s=1

hrs%s: (5.42)

The following two simpli�ed cases can be considered to ensure the positivity of the residual

dissipation in Eq. (5.41) by imposing constraints on the model parameters.

Case 1:It is assumed that all components of the dislocation interaction matrix hrs and

brs, which determine the Taylor stress � r
c and dislocation mean free path, respectively, are

unity such that

Dres=
NX

r=1

 

j� r j �
1
2

��

" 
q P N

u=1%u

� c
� dc%r

!#!

j �
 r j; (5.43)

which further can be written as

Dres=
NX

r=1

 

j� r j �
��

2� c

vut NX

u=1

%u +
1
2

�� dc%r
!

j �
 r j: (5.44)

The residual dissipation in the previous equation can also be expressed by using � r
c as

follows:

Dres=
NX

r=1

 

j� r j � � r
c+ � 0 + �

vut NX

u=1

%u �
��

2� c

vut NX

u=1

%u +
1
2

�� dc%r
!

j �
 r j; (5.45)
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which further gives

Dres=
NX

r=1

 

(j� r j � � r
c) + � 0 + �

vut NX

u=1

%u

"

1�
�

2� c

#

+
1
2

�� dc%r
!

j �
 r j: (5.46)

The residual dissipation inequality ( Dres � 0) of the previous equation holds when j �
 r j is 0

or the corresponding terms in the brackets are positive. The �rst term in the brackets is

a Schmid-type yield function (Eq. (5.17)) which is positive. The third term can be made

positive by imposing constraints on the model parameter � c such that � c � �
2. Besides,

� 0 � 0 and the last term of the previous equation is also positive.

Case 2:It is assumed that the dislocation interaction matrices hrs and brs are diagonal

matrices with all diagonal components equal to 1 such that the evolution of the isotropic

hardening variable � r
c becomes

� r
c = � 0 + �

p
%r ; (5.47)

and (5.41) can be expressed as follows:

Dres=
NX

r=1

 

(j� r j � � r
c) + � 0 + �

p
%r

"

1�
�

2� c

#

+
1
2

�� dc%r
!

j �
 r j: (5.48)

The residual dissipation inequality ( Dres � 0) in the previous equation holds when j �
 r j is 0

or the corresponding terms in the brackets are positive. The �rst term in the brackets of the

previous equation is a yield function of the �ow rule (Eq. (5.17)) which is positive. The

third term can be made positive by imposing constraints on the model parameter � c such

that � c � �
2. Besides,� 0 � 0 and the last term of the previous equation is also positive.

Explicit expressions for the free energy density function are typically not provided in

dislocation density-based models in contrast to phenomenological models. These expres-

sion assists in establishing the constitutive framework in a thermodynamic manner. In

this study, we analytically demonstrated that the positivity of the residual dissipation in

dislocation density-based models could be ensured by imposing constraints on the model

parameters.

In the present work, general case of residual dissipation presented in Eq. (5.41) is

considered. Furthermore, in the simulations, the positivity of the residual dissipation is

ensured by checking the monotonic increase of temperature with the deformation. In the

next sections, expressions used for predicting the stored energy, Taylor-Quinney coe� cient,

and temperature evolution in the context of classical and micromorphic crystal plasticity

models are summarized.

131



5.3 Expression for stored energy, temperature rise and

Taylor-Quinney coe � cient

In this section, the expressions used for numerical prediction of the stored energy, tempera-

ture evolution, and TQC are summarized.

Expressions in the context of classical crystal plasticity

� Stored energy

The expression for the stored energy based on the proposed thermodynamically consistent

framework, cf. Eq. (5.38), for the classical crystal plasticity model is given by

Ec = � 0

NX

r=1

˜	 r(� r) =
1
2

��
NX

r=1

(� r)2; with � r =

vut NX

s=1

hrs%s: (5.49)

The volume averaged stored energy over whole FE model is given by

Ec
avg =

1
V

Z

V

EcdV: (5.50)

� Total adimensional dislocation density

%s =
NX

r=1

%r
0 +

Z t

0

NX

r=1

�%rdt (5.51)

The volume averaged adimensional dislocation density over whole FE model is given by

%avg =
1
V

Z

V

%sdV: (5.52)

� Temperature evolution under adiabatic conditions

The temperature evolution for the classical crystal plasticity model can be given by

�T =
�
�

M : �F
�

pF
�

p� 1 � X ��
� C"

: (5.53)

Inserting (5.11) and (5.40) into the previous equation gives

�T =

NP

r=1
� r �
 r � 1

2��
NP

r=1

NP

s=1
hrs �%r

� C"
: (5.54)
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� Taylor-Quinney coe � cient (TQC)

The integral form of TQC is given by

� int =

Rt
0

NP

r=1
� r �
 r dt � 1

2��
Rt
0

NP

r=1

NP

s=1
hrs �%r dt

Rt
0

NP

r=1
� r �
 r dt

: (5.55)

The volume averaged Taylor-Quinney coe � cient over whole FE model is given by

� avg =
1
V

Z

V

� int dV: (5.56)

Expressions in the context of micromorphic crystal plasticity

� Stored energy

We assume that an inelastic part of the free energy function which includes the contribution

of GNDs along with SSDs to be of the form given by

	 = ˜	 (� r ;ep;K): (5.57)

Moreover, it is assumed that the free energy density function can additively be decomposed

as

� 0	 = � 0

NX

r=1

˜	 r(� r) + � 0 ˜	 (ep) + � 0 ˜	 (K): (5.58)

The quadratic form of the free energy function, � 0 ˜	 r(� r), associated with the internal

hardening variable � r is given in Eq. (5.49). This free energy function takes into account the

contribution of SSDs. The quadratic form of the free energy Ep related to the ep is given by

Ep = � 0 ˜	 (ep) =
1
2

H� e2
p; with ep = 
 cum� 
 � : (5.59)

Furthermore, the quadratic form of the free energy Eg, which includes the characteristic

length scale and takes into account the contribution of GNDs, is given by

Eg = � 0 ˜	 (K) =
1
2

AK �K; with K =
@
�
@X

= Grad 
 � : (5.60)

Therefore, from Eq. (5.40), (5.60) and (5.59) the free energy function in (5.57) becomes

Es = � 0

NX

r=1

˜	 r(� r) + � 0 ˜	 (ep) + � 0 ˜	 (K) =
1
2

��
NX

r=1

(� r)2 +
1
2

H� e2
p +

1
2

AK �K: (5.61)
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The volume averaged stored energy over whole FE model is given by

Ep
avg =

1
V

Z

V

EpdV; Eg
avg =

1
V

Z

V

EgdV; Es
avg =

1
V

Z

V

EsdV: (5.62)

� Temperature evolution under adiabatic conditions

The temperature evolution for the micromorphic crystal plasticity model is given by Eq.

(4.37). Inserting (5.11) and (5.40) into (4.37) gives

�T =

NP

r=1
� r �
 r + S �
 cum� 1

2��
NP

r=1

NP

s=1
hrs �%r

� C"
: (5.63)

� Taylor-Quinney coe � cient (TQC)

The integral form of TQC is given by

� int =

Rt
0

NP

r=1
(� r �
 r + S �
 cum)dt � 1

2��
Rt
0

NP

r=1

NP

s=1
hrs �%r dt

Rt
0

NP

r=1
(� r �
 r + S �
 cum)dt

: (5.64)

The volume averaged Taylor-Quinney coe � cient over whole FE model is given by Eq.

(5.56).

5.4 Single crystals simulations

5.4.1 Simulation setup

In a preliminary study, simulations are performed for aluminum and copper single

crystals subjected to tensile loading to predict the evolution of stored energy and TQC. FE

simulations are performed based on the constitutive framework of classical crystal plasticity

model presented in section 4.2.1 and 4.2.2. Besides, simulations are performed with a

simpli�ed geometry of 0:06mm � 0:06mm � 0:06mm cube having 8 C3D8 type elements

which are 8 node linear brick elements. The applied boundary conditions are presented in

Fig. 5.1.

Two orientations of the single crystal considered are <001> and <111> such that the

[001] and [111] crystal direction align with the loading direction, respectively. In FCC

crystals, the crystallographic slip occurs on the 12 {111}<110> slip systems (see Table A.1).

The experimental stress-strain responses from the work of (Hosford et al., 1960) for single

crystals aluminum and (Takeuchi, 1975) for single crystals copper are used to calibrate
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U2 = 0 (Bottom surface)

U2 (Top surface)

U1 = 0 (Back surface) U3 = 0
(Side surface)

e3

e2

e1

Fig. 5.1 Schematic showing the applied boundary conditions, namely BC1, in single and
poly-crystalline simulations.

Table 5.1 Euler angles for the crystal orientations with misorientation of < 1� (Abrivard,
2009).

Crystal orientations Euler angles ( � )
<001> � 1 = 0:4, � = 1:0 , � 2 = 0:0
<111> � 1 = 54:8, � = 135:0 , � 2 = 180:0

material parameters. A misorientation of < 1� is applied from the tensile axis as in the

experimental tests of (Hosford et al., 1960) and (Takeuchi, 1975). The corresponding Euler

angles are given in Table 5.1. All their experiments were performed at room temperature

and applied strain rates of 7:5� 10� 5 s� 1 and 10� 3 s� 1 for single crystals aluminum and

copper, respectively. Simulations are performed with these strain rates.

5.4.2 Results and discussion

� <001> and <111> crystal orientations

The dislocation density-based hardening model captures the stress-strain responses in

good agreement with the experimentally measured responses for <001> and <111> crystal

orientations as shown in Fig. 5.2. The material hardening parameter � c mainly governs

the initial slope of the stress-strain curve, while parameter dc controls the saturation.

Numerical values of the material constants and �tted material parameters for the single

crystals aluminum and copper are summarized in Table 5.2 and 5.3, respectively. The

material parameters are �tted using <001> crystal orientation (Fig. 5.2). The tensile axis

<001> and <111> are oriented for multi-slip with 8 and 6 equally favored slip systems,

respectively. The initial hardening rate of the <111> crystal orientation is higher than <001>

crystal orientation. The initial dislocation density � r(= %r
0=b2) is assumed to be1� 1010m� 2
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Table 5.2 Material constants and �tted material parameters for the simulations of single
crystals aluminum under tensile loading. The interaction matrix coe � cients (h0 � h5) are
taken from (Kubin et al., 2008).

C11 C12 C44
�

Eq. (5.54)
C"

Eq. (5.54)
� 0 (�tted)
Eq. (5.42) b

108 GPa 61:3 GPa 28:5 GPa 2700 kg m� 3 900 Jkg� 1K � 1 0:6 MPa 0.286 nm

�
%r

0 (�tted)
Eq. (5.51)

K (�tted)
Eq. (2.12)

m (�tted)
Eq. (2.12)

� c (�tted)
Eq. (2.15)

dc (�tted)
Eq. (2.15)

h0
Eq. (5.42)

27 GPa 8� 10� 10 0:5 MPa.s1=m 5 27 100 0.122
h1

Eq. (5.42)
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
�

Eq. (5.49)
0.122 0:07 0:625 0:137 0.122 1

Table 5.3 Material constants and �tted material parameters for simulations of the single
crystals copper under tensile loading. The interaction matrix coe � cients (h0 � h5) are taken
from (Kubin et al., 2008).

C11 C12 C44
�

Eq. (5.54)
C"

Eq. (5.54)
� 0 (�tted)
Eq. (5.42) b

170 GPa 124 GPa 75 GPa 8960 kgm� 3 385 Jkg� 1K � 1 0:5 MPa 0.257 nm

�
%r

0 (�tted)
Eq. (5.51)

K (�tted)
Eq. (2.12)

m (�tted)
Eq. (2.12)

� c (�tted)
Eq. (2.15)

dc (�tted)
Eq. (2.15)

h0
Eq. (5.42)

41 GPa 8� 10� 10 0:5 MPa.s1=m 4 20 25 0.122
h1

Eq. (5.42)
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
�

Eq. (5.49)
0.122 0:07 0:625 0:137 0.122 1
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(a) (b)

Fig. 5.2 Comparison of stress-strain responses for<001> and <111> crystal orientations at
298K temperature: (a) aluminum single crystals validated against the experimental results
of (Hosford et al., 1960), and (b) copper single crystals validated against the experimental
results of (Takeuchi, 1975).

for both single crystals and chosen the same for all slip systems. The total dislocation

density evolution for single crystals aluminum and copper is presented in Fig. 5.3a and

5.3b, respectively. As shown in these �gures, the dislocation density increases rapidly and

saturates with further increase in plastic strain.

The stored energy is predicted using a thermodynamically consistent formulation

of the classical crystal plasticity model, (cf. Eq. (5.38)). Fig. 5.4 shows that the stored

energy is strongly orientation dependent. Similar to the dislocation density evolution,

the stored energy increases rapidly and saturates with further increase in plastic strain.

The variation of TQCs for single crystals aluminum and the copper is shown in Fig. 5.5a

and 5.5b, respectively. These �gures show that the TQCs predicted for the single crystals

aluminum and copper remain above the commonly used value of 0:9 because of the

negligible di � erence between plastic power and stored energy rate.

The experimental measurements of TQC are available in the literature for single crystal

copper of <123> orientation. In the next section, numerically predicted TQC is compared

with experimental measurements for this particular crystal orientation.

� <123> crystal orientation

Rittel et al. (2012) measured the TQC for single crystal copper of <123> orientation

under compressive loading subjected to quasi-static and high strain rates deformation.

The average TQC values were in the range of 0:2� 0:3 in quasi-static deformation while

0:65� 0:85 in high-strain rates deformation. To compare the experimentally measured TQC

values, simulations are performed with <123> crystal orientation subjected to compressive

loading with direction [123] parallel to the loading direction.

137



(a) (b)

Fig. 5.3 Predicted dislocation densities � r(= %r
0=b2) within the single crystals ( <001> and

<111>) at an initial temperature of 298 K for (a) aluminum and (b) copper.

(a) (b)

Fig. 5.4 Predicted stored energy using the thermodynamically consistent formulation (Eq.
(5.49)) for the single crystals (<001> and <111>) at an initial temperature of 298 K for (a)
aluminum and (b) copper.

138



(a) (b)

Fig. 5.5 Predicted Taylor-Quinney coe� cient (� int ) using the thermodynamic formulation
(Eq. (5.55)) for the single crystals (<001> and <111>) at an initial temperature of 298 K for
(a) aluminum and (b) copper.

The material parameters used in simulations are given in Table 5.3. The experimentally

measured stress-strain responses and corresponding predicted responses are shown in

Fig. 5.6a. The<123> compression axis is oriented for single slip. The used viscosity

parameters capture the strain rate sensitivity observed in the experimental work. However,

a discrepancy can be observed in overall stress-strain responses. A reason for this

discrepancy may be that numerically <123> crystal orientation triggers a single slip at the

initial deformation stage, but multiple slip systems are activated in a later stage. The e � ect

of boundary conditions on the responses is also investigated in the next section.

The predicted dislocation density evolution using boundary conditions shown in Fig.

5.1 is presented in Fig. 5.6b. The predicted stored energy and TQCs at two strain rates

(0.1 s� 1and 3000s� 1) are shown in Fig. 5.7a and 5.7b, respectively. The high strain rate

deformation stores more energy compared to low strain rate where heat dissipation is

dominant (Fig. 5.7a). Moreover, the predicted TQCs are higher than the experimentally

measured values by Rittel et al. (2012) (Fig. 5.7b). One of the possible reasons for this

discrepancy can be that total dislocation density predicted by the model is signi�cantly

lower than the actual experimental values which were not measured. The total dislocation

density necessary to predict the stored energy and consequently the TQC need to be at

least of the order of 1015m� 2. However, the dislocation density obtained by numerical

simulations is of the order of 1014m� 2 (Fig. 5.6b). To use an analytical expression of stored

energy (Eq. (5.38)) in numerical predictions, a reliable dislocation density-based model

may be necessary accounting for the total dislocation density. Another possible reason can

be the analytical expression of the stored energy itself, which does not take into account all

the mechanisms responsible for the stored energy.
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(a) (b)

Fig. 5.6 (a) Comparison of stress-strain responses against the experimental data obtained
from the work of (Rittel et al., 2012) for single crystal copper ( <123>) under compressive
loading using boundary condition BC1 (Fig. 5.1). (b) Predicted dislocation density � r(= %r=b2)
evolution at two di � erent strain rates for single crystal copper (<123>).

(a) (b)

Fig. 5.7 Evolution of the predicted (a) stored energy according to Eq. (5.49) and (b)
Taylor-Quinney coe � cient (Eq. (5.55)) for single crystal copper ( <123>) with � = 1 under
compressive loading using boundary condition BC1 (Fig. 5.1).
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U2 = 0 (Bottom surface)

U1 = U2 = 0
(Left corner node)

U1 = U2 = U3 = 0
(Right corner node)

U2 (Top surface)

e3

e2

e1

(a)

U1 = U2 = U3 = 0 (Bottom surface)

U1 = U3 = 0; U2 (Top surface)

e3

e2

e1

(b)

Fig. 5.8 Schematic showing the alternative boundary conditions applied in single crystal
copper simulations (a) BC2 and (b) BC3.

� E� ect of boundary conditions on the stress-strain response

To investigate the e� ect of boundary conditions on the responses, the simulations are per-

formed with two alternative boundary conditions, namely BC2 and BC3, presented in Fig.

5.8a and 5.8b, respectively. The material parameters used in simulations are summarized

in Table 5.3. The specimen geometry considered for the BC2 is as described in section 5.4.1.

On the other hand, for the BC3, a cylindrical specimen having a diameter of 6 mm and

height 6 mm as in the experimental work of (Rittel et al., 2012) is considered. The geometry

is discretized with 1000C3D8 elements. The predicted stress-strain responses for<001>

and <111> crystal orientations using BC2 and corresponding experimental responses are

presented in Fig. 5.9. As presented in these �gures, the predicted stress-strain responses

with BC2 are in good agreement with the experimental responses. Besides, the predicted

responses for <123> crystal orientation with BC2 and BC3 are shown in Fig. 5.10a and

5.10b, respectively. These �gures show that the discrepancy still exist with the alternative

boundary conditions. The BC2 boundary conditions give a too soft responses, while BC3

gives a too sti� responses compared to experimental results.

5.5 Polycrystals simulations

In this section, polycrystalline simulations are performed to predict the stored energy and

TQC. First of all, study of the e � ect of mesh size and grain morphology on the volume

averaged stress-strain responses over whole FE model and local �elds is performed. Next,

the prediction of stored energy and TQC is carried out using the classical crystal plasticity

model, i.e. considering contribution of SSDs only. Finally, a comparison of the predicted
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Fig. 5.9 Comparison of stress-strain responses using boundary condition BC2 for <001>
and <111> copper single crystal against the experimental data obtained from the work of
(Takeuchi, 1975) under tensile loading.

(a) (b)

Fig. 5.10 Comparison of stress-strain responses for<123> crystal orientation against the
experimental data obtained from the work of (Rittel et al., 2012) under compressive loading
using boundary condition (a) BC2 (Fig. 5.8a) and (b) BC3 (Fig. 5.8b).
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stored energy by considering both the contribution of SSDs and GNDs to that of the

simulations with contribution of SSDs only is performed.

5.5.1 E� ect of mesh size and grain morphology

In general, RVEs with cubic meshes are used to predict the texture evolution and the

global stress-strain responses, for instance, in (Kalidindi et al., 1992; Alankar et al., 2009).

They found that the global stress-strain curves using RVEs having cubic meshes are well

represented. However, the local �elds inside grains were not considered. The more realistic

microstructure can be presented using dodecahedra, for instance, in (Mika and Dawson,

1998, 1999). In addition, a more realistic shape of the grains can be represented by the

meshes generated using Voronoï tessellation as in (Barbe et al., 2001a; Diard et al., 2005).

Some studies are devoted to include experimentally determined 3D microstructure in

crystal plasticity modeling so that the local �elds and global stress-strain responses can be

compared to experimental results, for instance in (Musienko et al., 2007).

� RVEs with cubic meshes

In this work, a detailed study of the e � ect of mesh size and grain morphology on the

stress-strain behavior is performed using the classical crystal plasticity model according to

section 4.2.1 and 4.2.2. At �rst, three RVEs of0:3mm � 0:3mm � 0:3mm, discretized with

structured mesh using C3D20R elements, which are 20 node quadratic reduced integration

brick elements, are considered for the study (Fig. 5.11). Furthermore, each RVE consists of

64 grains assigned with random orientations. To study the mesh size e � ect, each grain of

the RVE is discretized with 1 element (Fig. 5.11a), 8 elements (Fig. 5.11b), and 27 elements

(Fig. 5.11c). The material parameters used in this polycrystalline study are given in Table

5.3. Besides, the applied boundary conditions to the RVE are presented in Fig. 5.1.

The predicted volume averaged stress-strain responses over whole FE model using

three RVEs consisting of the structured mesh are displayed in Fig. 5.12a. The stress-strain

curves obtained using RVE having 27elements per grain show softer response compared

to RVEs with 1 and 8 elements per grain (keeping 64 grains per RVE). In addition, tests are

performed to study the e � ect of the number of grains on the stress-strain behavior using

RVEs having 64, 512, and 1000grains (keeping 1 elements per grain). Fig. 5.12b show that

there is no considerable e� ect of number of grains on the stress-strain behavior.

� RVEs generated by Voronoï tessellations

In addition to cuboidal grains, RVEs of 0:3mm � 0:3mm � 0:3mm are generated by Voronoï

tessellations (see Fig. 5.13). To study the e� ect of mesh size, RVE of64 grains is meshed

with two di � erent mesh sizes, namely thecoarse(1774 nodes, 8274 elements) and�ne (16402

nodes, 85251 elements) using C3D4R elements, which are4 node linear reduced integration

tetrahedral elements. The cumulative plastic strain �elds are shown in Fig. 5.15. As shown
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(a) (b) (c)

Fig. 5.11 Structured FE mesh;64grains with random orientation: (a) 1 element per grain, (b)
8 elements per grain, and (c) 27 elements per grain. Color represents the individual grains.

in these �gures, �ne meshed RVE captures the heterogeneity of the local �elds in contrast

to almost homogeneous �eld predicted by coarsemeshed RVE. This suggests that more

elements per grain or �ne enough mesh size within the grain is required to predict the

heterogeneity of the local �elds. Moreover, the predicted stress-curves are shown in Fig.

5.16a. From this �gure, the �ne meshed RVE show sti� er response compared to coarse

meshed RVE (keeping the same total number of grains in both RVEs).

In addition to the e � ect of mesh size, the e� ect of grain morphology on the averaged

stress-strain response is studied. Three RVEs considered for the study are with 64, 125, and

200grains (Fig. 5.14). The predicted averaged stress-strain curves are shown in Fig. 5.16b.

This �gure shows that no signi�cant di � erence between the predicted averaged stress-strain

curves is observed with changing the total number of grains in the RVE. However, it may

give a softer response by further increasing the total number of grains as observed in the

simulations of RVEs with cuboidal grains.

This study shows that the 64-grain RVE having cuboidal grains with 27elements per

grain and 64 grain �ne meshed RVE generated by Voronoï tessellations give a satisfactory

global stress-strain response. Concerning the prediction of local �elds, a �ne enough mesh

size is necessary for each grain. For further study on the prediction of stored energy and

TQC, both RVEs mentioned above are used.

5.5.2 Prediction of stored energy considering contribution of SSDs

In this section, �rstly, stored energy and TQC are predicted for the polycrystalline austenitic

steel under tensile loading considering contribution of only SSDs (using the classical crystal

plasticity model). The predicted stored energy is compared with the experimental data

obtained from the work of (Oliferuk et al., 1993). Then the application is made to predict

the stored energy in Inconel 718 under compressive loading at high strain rates and high

temperatures.
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(a) (b)

Fig. 5.12 Volume averaged stress-strain responses over whole FE model obtained under
tensile loading using cuboidal grains to study the e � ect of (a) number of elements per grain
(RVE of 64 grains) and (b) total number of grains in the RVE (1 element per grain).

(a) (b)

Fig. 5.13 FE mesh of grains generated by Voronoï tessellation;64 grains with random
orientation: (a) coarse(1774 nodes, 8274 elements) and (b)�ne (16402 nodes, 85251 elements)
meshed. Color represents the individual grains.

(a) (b) (c)

Fig. 5.14 RVE generated by Voronoï tessellation: (a) 64 grains, (b) 125 grains, and (c)200
grains. Color represents the individual grains.
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(a) (b)

Fig. 5.15 Cumulative plastic strain �elds in unstructured FE mesh for the tensile loading
of polycrystalline copper using 64 grains Voronoï tessellation assigned with random
orientation: (a) coarseand (b) �ne meshed. The �elds are shown on the deformed
con�guration.

(a) (b)

Fig. 5.16 Volume averaged stress-strain responses over whole FE model obtained using
grains created by Voronoï tessellation to study the e � ect of (a) mesh size (RVE of 64 grains)
and (b) total number of grains in the RVE.
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� Stored energy and TQC in polycrystalline austenitic steel

The material parameters � 0, %r
0, � c, dc, K, and m are calibrated against the experimental

stress-strain data of (Oliferuk et al., 1993) for an average grain size of80� m. The coe� cients

of interaction matrix ( h0 � h5) are adopted from the work of (Hure et al., 2016). The initial

dislocation density � r(= %r
0=b2) is assumed to be1� 1010m� 2 and chosen the same for all slip

systems. The RVE of0:27mm � 0:27mm � 0:27mm is used to describe the polycrystalline

austenitic steel. It is generated using Voronoï tessellation having 64 grain assigned with a

random orientation. Besides, each grain of the RVE is approximately of 80� m size. The

applied boundary conditions to the RVE are presented in Fig. 5.1. The �tted averaged

stress-strain response against the experimental response is shown in Fig. 5.17a. The material

constants and �tted material parameters are summarized in Table 5.4.

The prediction of stored energy and TQC is performed using the expressions (5.49)and

(5.55), respectively. A comparison of the predicted volume average stored energy over

whole FE model (Eq. (5.50)) with the classical crystal plasticity model using � of 1 against the

experimental data of (Oliferuk et al., 1993) is shown in Fig. 5.17b. As shown in this �gure,

with � = 1 predicted stored energy is underestimated. Similar observations are also made in

single crystal copper (<123> crystal orientation) simulations where numerically predicted

stored energy and, consequently, the TQC is underestimated compared to experimental

results (cf. section 5.4.2). Therefore, next,� is increased in such a way that it gives good

agreement with the experimental measurements.

The predicted volume average stored energy over whole FE model with � = 10 is shown

in Fig. 5.17b. This �gure shows that with � = 10, the predicted stored energy is in line with

the experimental measurements. Moreover, the evolution of TQC with strain is predicted

using � of 1 and 10 (Fig. 5.18). The predicted evolution of TQC with � = 1 is varies between

0:95 to 0:98. The lowest value of TQC measured by (Oliferuk et al., 1993) was about 0:58.

With � = 10, the predicted TQC is in the range of 0:55 to 0:70. The expression of stored

energy given by Bailey (1963) for both polycrystalline silver and copper gives an ad-hoc

factor of the order of 2 as explained in section 5.1. However, in this work, for polycrystalline

austenitic steel based on the numerical simulations, we found an ad-hocfactor of the order

of 10.

In the next section, simulations are performed on annealed Inconel 718 subjected to high

strain rates and temperature compressive loading with � = 10 to check the predictability of

the stored energy and TQC.

� Stored energy and TQC in Inconel 718

After emphasizing the importance of an ad-hocfactor in the prediction of stored energy

and TQC, the application is made to polycrystalline Inconel 718 undergoing high strain

rates and high temperatures compressive loading. The predicted stress-strain responses

and corresponding experimental responses from the work of (Moretti et al., 2021) for the
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Table 5.4 Numerical values of material parameters used for the numerical simulation of
polycrystalline austenitic steel under tensile loading. The elastic constants and dislocation
interaction coe� cient are taken from (Hure et al., 2016).

C11 C12 C44
�

Eq. (5.54)
C"

Eq. (5.54)
� 0 (�tted)
Eq. (5.42) b

199 GPa 136 GPa 105 GPa 7965 kgm� 3 532 Jkg� 1K � 1 80 MPa 0.254 nm

�
%r

0 (�tted)
Eq. (5.51)

K (�tted)
Eq. (2.12)

m (�tted)
Eq. (2.12)

� c (�tted)
Eq. (2.15)

dc (�tted)
Eq. (2.15)

h0
Eq. (5.42)

65:6 GPa 6:4� 10� 10 10 MPa.s1=m 15 19:4 22.8 0.124
h1

Eq. (5.42)
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
A

Eq. (5.61)
H�

Eq. (5.61)
0.124 0:07 0:625 0:137 0.122 0:02 N 5� 104 MPa

�
Eq. (5.49)
1 and 10

(a) (b)

Fig. 5.17 Polycrystalline austenitic steel under tensile loading: (a) averaged stress-strain
curve validated against the experimental work of (Oliferuk et al., 1993), and (b) predicted
volume averaged stored energy over whole FE model ( � = 1 and 10) (Eq. (5.49), (5.50)) and
comparison against the experimental measurements from the work of (Oliferuk et al., 1993).
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Fig. 5.18 Predicted evolution of volume averaged Taylor-Quinney coe � cient over whole
FE model (Eq. (5.55), (5.56)) using numerical simulations with two di � erent values of an
ad-hocfactor (1 and 10).

Table 5.5 Numerical values of material parameters used for the numerical simulation of
polycrystalline Inconel 718 under compressive loading. The elastic constants and dislocation
interaction coe� cient are taken from (Kubin et al., 2008).

C11 C12 C44
�

Eq. (5.54)
C"

Eq. (5.54) b �

194 GPa 142 GPa 90 GPa 7800 kgm� 3 435 Jkg� 1K � 1 0.249 nm 77:2 GPa

%r
0 (�tted)

Eq. (5.51)
� c (�tted)
Eq. (2.15)

dc (�tted)
(293K)

Eq. (2.15)

dc (�tted)
(673K)

Eq. (2.15)

dc (�tted)
(1073K)

Eq. (2.15)

h0
Eq. (5.42)

h1
Eq. (5.42)

6:2� 10� 9 18:8 18:4 31:4 42:4 0:124 0:124
h2

Eq. (5.42)
h3

Eq. (5.42)
h4

Eq. (5.42)
h5

Eq. (5.42)
�

Eq. (5.49)
0:07 0:625 0:137 0:122 10

annealed specimens using the classical crystal plasticity model are shown in Fig. 5.19a. The

material constants and �tted material parameters are summarized in Table 5.5. In addition,

the material parameters � 0, K, mare considered as temperature-dependent. These calibrated

temperature-dependent material parameters are given in Table 5.6. Moreover, the constant

parameter dc in the dislocation density-based model, which controls the saturation of the

stress-strain behavior, is taken as temperature-dependent (Table 5.5). The initial dislocation

density � r(= %r
0=b2) is assumed to be 1� 1011m� 2 and chosen the same for all slip systems.

The material parameters are calibrated against the experimental stress-strain response

at a temperature of 673K and strain rate of 1900s� 1. There is no considerable di� erence in

the strain rates used (1900s� 1 and 2000s� 1); therefore, no signi�cant e � ect of strain rates

on the �ow strength is observed. As a general trend, with increasing temperature, the

�ow strength of Inconel 718 decreases and consequently the plastic work and dislocation
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Table 5.6 Temperature dependent material parameters used in the numerical simulations
for the annealed Inconel 718. The temperature dependent � 0 is used in the evolution of
critical resolved shear stress given in Eq. (5.42). The temperature dependent viscosity
parameter K and m are involved in rate–dependent �ow rule according to Eq. (2.12).

Temperature (K)
� 0 (MPa)
Eq. (5.42)

K(MPa:s1=m)
Eq. (2.12)

m
Eq. (2.12)

298 210 5 10

923 150 5 10

1073 80 8 6

1173 60 17 4.5

1323 10 40 4

1523 1 50 2

density. The dislocation density evolution is shown in Fig. 5.19b. As shown in this �gure,

the dislocation density rapidly increases in an initial deformation stage and saturates in

the later deformation stage. Moreover, samples deformed at lower temperatures show

higher dislocation density evolution than those deformed at a high temperature. Note that

the calibrated material parameters of Inconel 718 presented in chapter 4 are for the aged

samples against the experimental work of (Iturbe et al., 2017). The stored energy evolution

is shown in Fig. 5.20a. The stored energy evolution shows a similar trend as dislocation

density evolution. It increases rapidly at the initial stage of deformation and saturates

with a further increase in deformation. Moreover, the evolution of TQCs is displayed in

Fig. 5.20b. From this �gure, the predicted lowest value of TQC using � = 10 is 0:825. As

discussed in the previous section, polycrystalline austenitic steel shows a lowest TQC value

of 0:58 with � = 10 (Fig. 5.18).

This study suggests that the precise determination of � needs experimental calibration.

Moreover, � parameter vary from material to material and may depend on the strain rate,

temperature, and type of loading.

5.5.3 Prediction of stored energy considering contribution of SSDs and

GNDs

In this section, the stored energy and TQC are predicted considering contribution of both

SSDs and GNDs, i.e. using the micromorphic crystal plasticity model. The predicted stored

energy is compared with the predictions made by considering the contribution of SSDs

only, i.e. using the classical crystal plasticity model. The constitutive framework of the

micromorphic crystal plasticity model used in this study can be found in section 4.2.3. The

analytical expressions used for the prediction of the stored energy and TQC are given in Eq.

(5.61) and (5.64), respectively.
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(a) (b)

Fig. 5.19 Annealed Inconel 718 under compressive loading: (a) predicted averaged stress-
strain curves at high strain rates (1900 s� 1-2000s� 1) and high initial temperatures (293
K-1273 K) and comparison against the experimental data obtained from the work of
(Moretti et al., 2021) and (b) predicted evolution averaged dislocation density (Eq. (5.52)) as
a function of strain.

(a) (b)

Fig. 5.20 Predicted evolution of volume averaged (a) stored energy (Eq. (5.49), (5.50)) and
(b) Taylor-Quinney coe � cient (Eq. (5.55), (5.56)) as a function of strain for Inconel 718 under
compressive loading using � = 10.
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The material constants and calibrated material parameters are summarized in Table

5.4. The grain boundary conditions are considered as an intermediatebetween microfree

and microhardconditions. The microslip variable 
 � is assumed to be continuous at the

interface. The surface traction T and generalized surface traction M in Eq. (2.21)are also

continuous. The gradient parameter A is chosen as0:02 N such that predicted stress-strain

response remains close to experimental response obtained from the work of (Oliferuk et al.,

1993). The �tted average stress-strain response against the experimental data is shown in

Fig. 5.21a. The expression used for the characteristic length scale is given bỳ =
q

A(H+H� )
jHjH�

.

The hardening modulus H is found by the procedure described in section 3.3.2.3. The

calculated characteristic length scale is about2� m (A = 2� 10� 2 N, H� = 5� 104 MPa, and

H = 3000MPa). The calibration of gradient parameter and consequently the characteristic

length scale is possible based on the tensile stress-strain responses obtained at di� erent

grain sizes. However, in this study only one grain size is considered.

Stored energy is predicted using an ad-hocfactor � of 1. The comparison of the predicted

stored energy using the classical and micromorphic crystal plasticity models is shown

in Fig. 5.21b. This �gure shows that the predicted volume averaged stored energy over

whole FE model using the micromorphic crystal plasticity model is higher than that

of the classical crystal plasticity model. The classical crystal plasticity model lacks a

characteristic length scale that is associated with the GNDs. On the other hand, the presence

of characteristic length scale in the micromorphic crystal plasticity model can take into

account the contribution of GNDs along with SSDs and therefore gives an increased total

dislocation density and, consequently, the stored energy.

The contribution of each term in the micromorphic crystal plasticity model to the total

stored energy, refer to Eq. (5.61), is presented in Fig. 5.22a. As shown in this �gure, the

contribution of term Ec
avg, which takes into account the contribution of SSDs is higher than

Eg
avg and Ep

avg (Ec
avg > Eg

avg > Ep
avg). The contribution of GNDs in total stored energy is taken

account by the term Eg (Eq. (5.60)).

Furthermore, additional simulations are performed with microhard grain boundary

conditions. The microhard grain boundary conditions corresponds to vanishing microslip


 � at the grain boundaries, i.e. 
 � = 0. This grain boundary condition is accomplished by

setting the nodal values of 
 � on the grain surface to zero. The comparison of the obtained

responses using microhard with A = 2� 10� 2 N and 2� 10� 5 N to that of the results from

the experimental test is presented in Fig. 5.22b. The response obtained usingA = 2� 10� 2 N

is too strong compared to experimental results. On the other hand, A = 2� 10� 5 N gives

a signi�cantly lower response than A = 2� 10� 2 N. However, the gradient parameter A

should be reduced further for more realistic predictions. A comparison of the predicted

total stored energy with intermediateand microhardgrain boundary conditions is shown in

Fig. 5.23. The predicted total stored energy with the microhard grain boundary conditions

is signi�cantly higher than that of the intermediate grain boundary conditions due to the

high hardening rate obtained due to the former grain boundary conditions.
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(a) (b)

Fig. 5.21 Polycrystalline austenitic steel under tensile loading: (a) average stress-strain
responses predicted considering the contribution of SSDs and GNDs, and SSDs only.
(b) Predicted evolution of volume averaged stored energy (using � = 1) considering the
contribution of SSDs and GNDs (Eq. (5.61), (5.62)), and SSDs only (Eq.(5.49), (5.50)). The
stress-strain responses are validated against the experimental work of (Oliferuk et al., 1993).

(a) (b)

Fig. 5.22 (a) Contribution of each term to the total stored energy in micromorphic crystal
plasticity model (Eq. (5.61)). (b) Predicted stress-strain responses using microhard grain
boundary condition using A = 2� 10� 2 N and 2� 10� 5 N. The experimental stress-strain
responses are from the work of (Oliferuk et al., 1993).

153



Fig. 5.23 Comparison of the predicted volume averaged stored energy (Eq. (5.61), (5.62))
over whole FE model using microhardand intermediategrain boundary conditions with
� = 1.

The grain boundary conditions play an essential role in polycrystals as they a � ect the

dislocation motion and hence, the strain hardening behavior. The microfree and microhard

grain boundary conditions respectively lead to lower and upper bounds for the polycrystal

response. These two grain boundary conditions do not apply to all sorts of grain boundary

behavior as they cannot capture the underlying physics. One approach to obtain interface

behavior between these two extreme conditions is by introducing interface energy as in

(Aifantis and Willis, 2005). The intermediate grain boundary conditions, for instance,

in (Fredriksson and Gudmundson, 2006; Ekh et al., 2011; Husser et al., 2017) with �nite

resistance against the dislocation gliding gives more realistic dislocation-grain boundary

interactions. More general grain boundary conditions have been proposed allowing for the

transition from microhard conditions to microfree (or constant generalized tractions) once

a threshold is reached at the grain boundary by Wul�ngho � and Böhlke (2013).

5.6 Conclusions

The numerical simulation work presented in this chapter was intended to provide an insight

into the prediction of the stored energy and evolution of TQC in single and poly-crystalline

FCC metallic materials. The following conclusions can be drawn from the study:

ˆ It is necessary to check the positivity of the residual dissipation in the local balance

equation. Failure to do so can violate the �rst and second laws of thermodynamics.

We analytically demonstrated using simpli�ed cases that the positivity of the residual

dissipation rate in dislocation density-based models could be ensured by imposing

constraints on the model parameters.

ˆ The numerical prediction of stored energy and TQC for aluminum and copper single

crystals (<001> and <111> crystal orientations) is performed using the classical
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crystal plasticity model. The predicted TQC values for aluminum and copper single

crystals are higher than the common value of 0:9. The experimentally measured

average TQC values from the work of (Rittel et al., 2012) for single crystals copper

having <123> orientation was in the range of 0:2� 0:3 in quasi-static deformation

while 0:65� 0:85 in high-strain rates deformation. However, in the present study

numerically predicted values are in the range of 0:95� 0:98 for both quasi-static and

high strain rate deformation. This suggests that a reliable dislocation density-based

model is necessary to predict the dislocation density and consequently the stored

energy and TQC in line with the experimental measurements.

ˆ In the polycrystalline simulations, the role of an ad-hocfactor � is discussed. The value

of � = 1 underestimates the predicted stored energy compared to the experimentally

measured values for the austenitic steel. On the other hand, predicted stored energy

with � = 10 shows good agreement with the experimentally measured values.

ˆ A comparison of the predicted stored energy considering the contribution of SSDs

only to that of the prediction made by considering the contribution of both SSDs and

GNDs is carried out using the intermediategrain boundary conditions. It is found that

the predicted stored energy is moderately higher in a latter consideration.

ˆ The microhardgrain boundary conditions show too strong response compared to

experimental results. The material hardening parameters which takes into account

the contribution of SSDs should be calibrated using the classical crystal plasticity

model for single crystals. The calibration of gradient parameter A and consequently

the characteristic length scale which takes into account the contribution of GNDs

should be performed using the micromorphic crystal plasticity model based on the

experimental stress-strain responses obtained using di� erent grain sizes.

155



Chapter 6

Implementation of micromorphic

plasticity theory in commercial FE

software

The work presented in this chapter is performed by collaborating with ESI Group and

Ra� aele Russo(ESR5), a Ph.D. student at the University of the Basque Country - UPV/EHU

and Mines ParisTech.

Abstract

Good quality manufacturing operation simulations are essential to obtain reliable numerical

predictions of the processes. In many cases, it is possible to observe that the deformation localizes

in narrow areas, and since the primary deformation mode is under shear, these areas are called

shear bands. In classical continuum mechanics models, the deformation localization may lead to

spurious mesh dependency if the material locally experiences thermal or plastic strain softening.

One option to regularize such a non-physical behavior is to resort to non-local continuum mechanics

theories. This paper adopts a scalar micromorphic approach, which includes a characteristic length

scale in the constitutive framework to enforce the plastic strain gradient theory to regularize the

solution. Since many manufacturing process simulations are often assessed through �nite element

methods with an explicit solver to facilitate convergence, we present an original model formulation

and procedure for the implementation of the micromorphic continuum in an explicit �nite element

code. The approach is illustrated in the case of the VPS explicit solver from ESI Group. According to

the original formulation, we propose an easy way to implement a scalar micromorphic approach by

taking advantage of an analogy with the thermal balance equation. The numerical implementation

is veri�ed against the analytical solution of a semi-in�nite glide problem. Finally, the correctness of

the method is addressed by successfully predicting size e� ects both in a cutting and a bending tests.

This chapter has been submitted to a journal.
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6.1 Introduction

The micromorphic scheme has been proven to be a straightforward and relatively simple

procedure to govern an additional degrees of freedom or additional state variables of the

continuum to achieve non-local regularization e � ects (Forest, 2009, 2016b). It has been used

already in several other contributions (Poh et al., 2011; Anand et al., 2012; Mazière and

Forest, 2013; Saanouni and Hamed, 2013; Diamantopoulou et al., 2017; Davaze et al., 2021).

Among the cited works, the only ones to adapt and implement the micromorphic approach

for an explicit time-dependent problems can be found in (Saanouni and Hamed, 2013;

Diamantopoulou et al., 2017; Davaze et al., 2021). These authors presented a time-dependent

framework, in which the governing equations for the micromorphic variables include

a second-order time derivative of the micromorphic variables. Additional coe � cients

associated with this term were included to characterize the inertia of the micromorphic

variables, a role that is usually assigned to the density of the governing equations of

displacement �elds. Furthermore, (Davaze et al., 2021) included some dissipation terms

associated with the �rst-order time derivative of the micromorphic variable in governing

equation so to avoid any oscillation of the solution caused by the form of the partial

di � erential equation (PDE) (speci�cally induced by the presence of a second-order time

derivative term). They used the theory to achieve mesh-regularization for fracture growth

simulations in metals. Exploring the extent of such an approach for manufacturing

operation simulations was not their target.

In this work, we make use of a scalar micromorphic approach to govern the strain

gradient e� ect and to restore mesh independency. The classical continuum mechanics

model is enhanced with one additional degree of freedom. The governing equation for

such an additional variable will be directly derived by the de�nition of an internal power.

The micromorphic approach will be used to control the distribution of the cumulative

plastic strain. Therefore, the additional degree of freedom will be enforced to follow this

quantity through a penalty term.

In this context, our contribution aims at investigating the size e � ect predictions and

regularization properties of a time-dependent strain gradient plasticity theory. This theory

is implemented through a scalar micromorphic framework using an explicit formulation, in

which a viscous micromorphic-related variable is included, but no micromorphic inertia is

present. The main novelty of the proposed method lies in the easiness of the implementation

of the theory in an already-well-structured �nite element solver. The framework that we

will present can, in fact, simply be solved through a common thermal-�eld solver, and such

crucial aspect will be properly addressed in the present chapter.

The formulation of the analytical model is provided in section 6.2 in which both the

kinematics and the energetic aspects of the theory are presented, alongside its thermo-

dynamic description, so that the recoverable and dissipative contributions are explicitly

stated as such. The section concludes with the pivotal analogy between the thermal and the
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micromorphic balance equations, which further simpli�es any possible implementation of

the theory in a FE software.

The layout of the chapter is as follows. Section 6.3 will be used to present a simple

analytical solution that will be useful to verify the implementation of the model in a

�nite element framework. Finally, in Section 6.4 the numerical method will be used to

simulate two manufacturing operations in which signi�cant strain gradients e � ect are

expected to take place, namely the shear/trimming operation and the bending test. The

mesh-dependency will be analyzed, along with the size-e � ect in terms of cumulative plastic

strain distribution. Conclusion follow in section 6.5.

6.2 Theoretical formulation: Micromorphic plasticity in ex-

plicit scheme

In this section, the theoretical formulation of the micromorphic plasticity model imple-

mented in the explicit FE software VPS/Pam-Crash® from ESI is presented. At �rst, the

kinematics of the theory will be provided, from which the balance equations can be derived,

the de�nition of the Helmholtz free energy, and of the Clausius-Duhem inequality will fol-

low. Finally, the section will conclude with the numerical implementation of micromorphic

theory in VPS explicit.

6.2.1 Kinematics and balance equations

The kinematics of the model follows the one commonly used in the classical continuum

mechanics. The second-order strain tensor is de�ned as

"
�

= sym[u 
 r ]; (6.1)

with u being the displacement vector and r denotes the gradient of a vector. Furthermore,

the total strain tensor is additively decomposed into an elastic part "
�

e and a plastic part "
�

p

as follows:

"
�

= "
�

e+ "
�

p; (6.2)

�"
�

= sym[v 
 r ]: (6.3)

where v is the velocity vector. Two types of DOF are applied to the material point:

the classical displacement vector u and the additional scalar micromorphic variable p�

associated with the cumulative plastic strain p through the penalty term H� . Then every

node is endowed with 3 displacement and 1 micromorphic variable:

DOF = fu;p� g: (6.4)
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Based on the de�nition of the strain and micromorphic variable, we can write the internal

and kinetic power densities of the body as dependent on the strain, the micromorphic

variable and its gradient:

p(i) = �
�

: �"
�

+ a� �p� + b� � r �p� ; (6.5)

p(k) = � ü � �u; (6.6)

where � is the mass density and ü is the acceleration vector. The parametersa� and

b� are generalized stresses associated with the micromorphic variable and its gradient,

respectively. In this formulation, the densities of power generated by external forces and

contact forces can be written as follows:

p(e) = f (e) � �u+ ae �p� + be� r �p� ; (6.7)

p(c) = f c � �u+ ac �p� ; (6.8)

with f ebeing the density of body force, aeand beare the generalized body stresses associated

to p� and its gradient, respectively. In addition, f c and ac are the classical traction and the

micromorphic traction, respectively. The contact power density de�ned in Eq. (6.8)clearly

states that the gradient of the micromorphic variable is not linked to any boundary e � ect.

The global power balance law can be written as:

Z




�
p(i) + p(k)

�
d
 =

Z



p(e)d
+

Z

@

p(c)dS; (6.9)

which, through Eq. (6.5), (6.6), (6.7) and (6.8), transforms into:

Z



�u � [� � � r � f e+ � ü]d
 +

Z



�p� [(be� b� ) � r + a� � ae]d
 (6.10)

+
Z

@

�u � [� f c+ �

�
� n]dS+

Z

@

�p� [� ac+ (be� b� ) � n]dS= 0:

Based on the principle of virtual power (Forest, 2009), the equilibrium equations are

obtained as:
8
>>><
>>>:

� ü = �
�

� r + f e;
�
b� � be

�
� r = a� � ae;

(6.11)

(6.12)

There is a possibility here to explicitly de�ne the kinetic and damping energy of the continuum as
function of the micromorphic variable as well. Such type of descriptions have already been proposed by
other researchers, for instance, in (Nedjar, 2001; Saanouni and Hamed, 2013; Davaze et al., 2021). In the
present work, however, we will include instead a viscous contribution of the micromorphic variable in the
constitutive model of the continuum.
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which are bounded by the following Neumann boundary conditions:

8
>>><
>>>:

�
�

� n = f c;
�
b� � be

�
� n = ac;

(6.13)

(6.14)

where n is the outer normal to the surface closing the domain 
 .

6.2.2 Helmholtz free energy potential

The constitutive model of the medium characterizing the shape of both the classical and

the generalized stresses are provided via the de�nition of their associated potential. The

free energy density function is assumed to depend on the following state variables:

	 f"
�

e;p;p� ;r p� g; (6.15)

namely, the elastic strain "
�

e, the cumulative plastic strain p, the micromorphic variable p� ,

and its gradient r p� . The chosen potential has the form:

	 ("
�

e;p;p� ;r p� ) =
1
2

"
�

e : �
�

: "
�

e+ ˜	 (p)+ ˜	 (p;p� ;r p� ) (6.16)

where ˜	 (p) is the plastic contribution to the Helmholtz free energy (in case of harden-

ing/softening it accounts for the expansion/shrinking of the yield surface in the stress space).

The following linear isotropic plastic behavior is assigned to the material:

˜	 (p) =
1
2

Hp2; (6.17)

with H being the hardening modulus. A simple quadratic potential gives

˜	 (p;p� ;r p� ) =
1
2

H� (p� p� )2 +
1
2

r p� � A
�

� r p� (6.18)

where A
�

is the gradient parameter assumed to be constant in space such thatA
�

= AI
�
.

Moreover, nonlinear hardening laws are possible but not considered here for simplicity.

6.2.3 Clausius-Duhem inequality

Expanding the time derivative of Helmholtz free potential with respect to the variables on

which it depends, and by retrieving the additive elasto-plastic decomposition of the strain,

the Clausius-Duhem inequality reads:

 

�
�

�
@̃	
@"

�
e

!

: �"
�

e+ �
�

: �"
�

p +

 

a� �
@̃	
@p�

!

+

 

b� �
@̃	
r p�

!

� r �p� �
@̃	
@p

�p � 0: (6.19)
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Based on the Clausius-Duhem inequality following state laws can be derived:

�
�

=
@̃	
@"

�
e = �

�
: "

�
e; b� =

@̃	
r p�

; XR =
@̃	
@p

; (6.20)

with XR as the thermodynamic force associated to variation of the cumulative plastic

strain. Regarding the dissipation produced by variation of the micromorphic variable, its

positiveness can be ensured, as originally suggested by Gurtin (1996) and Forest (2009), by

imposing that the generalized stress possesses a recoverable part and a dissipative part

that depends on �p� itself:

a� =
@̃	
@p�

+ C� �p� ; (6.21)

where C� is a parameter related to viscous micromorphic e � ects. The residual dissipation

rate can now be written as:

� : �" p � XR �p+ C� �p2
� � 0: (6.22)

The positiveness of the new parameters A and C� then ensures the positive de�niteness of

the micromorphic contributions in the free energy density and in the dissipation rate.

6.2.4 Partial di � erential equation governing the micromorphic variable

and enhanced hardening law

By considering the explicit de�nition of the Helmholtz free energy potential given in

Eq. (6.18), the generalized stresses reads:

a� = � H�

�
p� p�

�
+ C� �p� ; b� = A r p� : (6.23)

The previous equation indicates that the micromorphic variable p� and the cumulative

plastic strain p are related to each other through the penalty term H� . In order for the

micromorphic variable to closely match the value of the cumulative plastic strain, it is

necessary to ensure that the value of H� is relatively large. At this stage, it is possible

to re-write the additional PDE governing the micromorphic distribution by plugging the

selected constitutive behavior into it. In absence of higher-order body forces ( ae and be),

Eq. (6.12) can be written as:

C� �p� = A r 2p� + H�

�
p� p�

�
; (6.24)

where r 2 indicates the Laplacian. The previous equation represent the only additional

equation that must be solved combined with the ones governing the displacement �elds.

Previous researchers already explored the potential of the micromorphic theory in

rate-dependent analysis under explicit integration schemes using a modi�ed version of

Eq. (6.24). For instance, (Saanouni and Hamed, 2013) proposed a theory in which the

the second-order time derivative of p� takes the place of the �rst-order time derivative in
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Eq. (6.24). Therefore, in analogy with the PDE governing the displacement �elds, a form

of inertia was associated to the micromorphic variable, whereas, in case of the present

investigation, a viscous term associated to the micromorphic variable is considered. The

PDE governing the micromorphic �eld can be rewritten as:

C�

H�
�p� = ` 2r 2p� + (p� p� ) with ; ` =

s
A
H�

; (6.25)

with ` being the characteristic length scale endowing the theory with the regularization and

capturing size–dependent strengthening property. To fully solve (6.25), it must be coupled

with a constitutive model for the plastic behavior of the medium. Starting from the yield

function:

f (�
�
;XR) = � eq� � 0 � XR; (6.26)

where � eq is the von Mises equivalent stress measure and � 0 is the initial yield stress.

Assuming associated plasticity and the normality rule to hold, the rate of the plastic strain

can be written as:

�"
�

p = �p
@f
@�

�

= �pn
�
; (6.27)

and the dissipation in Eq. (6.22) takes the form:

(�
�

: n
�

� XR) �p+ C� �p2
� � 0; (6.28)

and in case of plastic loading:

(� eq� XR) �p+ C� �p2
� = � 0 �p+ C� �p2

� � 0: (6.29)

The thermodynamic force associated with the cumulative plastic strain can be given as

follows:

XR = Hp+ H� (p� p� ): (6.30)

6.2.5 Micromorphic-thermal analogy

The comparison between the scalar micromorphic model described in the previous section

and the classical thermo-mechanical theory will be outlined here. The development of

the latter theory will not be fully reported, but we will make use of the main governing

equations of the thermal �eld to draw the comparison with the micromorphic theory

previously developed. On the one hand, the additional variable in the present theory, p� ,

ought to be solved through the PDE (6.24), whereas, on the other hand, the additional

degree of freedom of the classical thermo-mechanical theory, that is temperature T, must

be solved through a di � erent PDE, and here the two equations are reported (where the
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Table 6.1 Analogy between the micromorphic gradient plasticity model and thermal
analysis.

Micromorphic Heat

DOF p� T

Constitutive law b� = Ar p� q= � ktr T

Balance law C� �p� = A r 2p� + H�

�
p� p�

�
� C" �T = kt r 2T + r

Fourier conduction law is assumed to be valid for the heat �ux)

C� �p� = Ar 2p� + H� (p� p� ); (6.31)

� C" �T = ktr 2T + r; (6.32)

where C" is the speci�c heat capacity of the material, r is a source term and kt is the

thermal conductivity of the material, that we assumed to be independent from temperature.

Although the two equations are used to govern completely di � erent �elds, a straightforward

parallelism among them can be identi�ed. In Table 6.1, a comparison between di � erent

aspects of the two theories are reported. The analogy between these two theories inspired

the idea of adapting an already implemented numerical resolution scheme (meant to be

used for the thermal �eld) for the micromorphic variable. The main objective of the present

investigation is, in fact, the analysis of the feasibility of such idea. The main advantage

of the proposed method is that the micromorphic theory can be easily implemented in

an explicit resolution scheme, while requiring very limited access and marginal e � ort in

modify the original code. This aspect obviously makes the implementation of this theory

more attractive than others methodology which would require high level of accessibility

to the main solver, since both new element and material de�nitions would need to be

developed. Such an analogy has been used in the past for coupling chemical di� usion

and mechanics in the implicit version of ABAQUS (Diaz et al., 2016). The analogy has

also been recognized and used to implement gradient plasticity and gradient damage

models in the implicit version of the code ABAQUS (Seupel et al., 2018). Note that in these

implementations, the viscous term, i.e. the transient term proposed in the present work, is

absent.

The two PDEs are in fact so similar that in order to solve for the micromorphic variable,

instead of the temperature, only two minor modi�cations need to be done. Given the

comparison between the two PDEs (Eq. (6.31)and Eq. (6.32)), and given the form of the

yield function in Eq. (6.26), the elements that require non-trivial modi�cations are the source

term r and the yield radius: the former has to coincide with the di � erence between the

cumulative plastic strain and the micromorphic variable (ampli�ed by the H� parameter),
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and the latter has to take into account the extra hardening due to the micromorphic variable:

r = H� (p� p� ); (6.33)

f = � eq� � 0 � Hp � H� (p� p� ); (6.34)

whereas the coe� cients present in the thermal balance equation can be easily substituted

with the parameters characterizing the micromorphic PDE. Implementing the condi-

tions (6.33)and (6.34)represents the only real, yet minor, e� ort that is required to make

use of the present theory, assuming the existence of a thermal solver and the possibility of

applying small modi�cations.

6.2.6 In�uence on the C� parameter

The additional parameter C� naturally arises from the development of the chosen consti-

tutive material model for the generalized stress a. In order to obtain the �nal form of the

governing Eq. (6.24), so that the thermal-micromorphic analogy is valid, the presence of the

C� parameter is required, and it should not vanish in the case of the implementation of the

transient problem. However, from the analysis of Eq. (6.23), it is clear that the parameter C�

regulates the development of the viscous part of the micromorphic variable, and therefore

that a viscous part of the micromorphic variable exists. Being this an additional material

parameter, the question on the calibration of such value must be addressed.

The purpose of using the micromorphic analysis, in the present investigation, is to gain

indirect control on the distribution of the cumulative plastic strain and its gradient, thus the

constraint on the micromorphic variable to closely follow the value of the cumulative plastic

strain through the penalty parameter. The present theory also accounts for the development

of viscous stresses generated by non-negligible strain rates, and the micromorphic variable

follows the value of the cumulative plastic strain, regardless of whether the plastic strain

increment is caused by quasi-static or viscous stresses. The adoption of large values of the

C� parameters (compared to H� ) would allow the viscous part of the micromorphic variable

to produce additional meaningful generalized stress (see Eq. (6.23)), therefore altering the

value that it should have, based only on the di � erence between micromorphic variable and

cumulative plastic strain (e � ectively producing the same stress as if this di � erence was

larger). Therefore, too large values of C� would somehow corrupt and interfere with the

equivalence between cumulative plastic strain and micromorphic variable. On the contrary,

by neglecting any meaningful contribution of the viscous micromorphic term to exist, we

lose the analogy with transient thermal analysis proposed here for the implementation.

Therefore, for the present investigation, the C� parameter must exist, so that the thermal-

micromorphic analogy holds, but its value should not be too large. The allowed magnitude

for this parameter will be tested by checking an analytical solution in the static case,

considered in Section 6.3.1.
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6.2.7 Numerical implementation

The micromorphic plasticity model has been implemented in VPS Explicit (Group et al.,

2000), a FE software developed by ESI Group solving both dynamics and heat problems.

In order to account for the large deformation expected during manufacturing operations,

the theory has been developed according to the VPS standard method, that is, using

rate-type constitutive equations. This does not alter the theory so far presented, since the

micromorphic part remains unchanged. The additive decomposition is applied to the strain

rate tensor D
�

, which can be split into an elastic D
�

e and a plastic contributions D
�

p:

D
�

= D
�

e+ D
�

p: (6.35)

The elastic constitutive model is rewritten by means of a hypoelasticity relation:

	�
�

= �
�

: D
�

e; (6.36)

where 	�
�

is the Jaumann stress rate, and it can be re-written as:

	�
�

= ��
�

� W
�

� �
�

+ �
�

�W
�

; (6.37)

where W
�

is the spin tensor. The FE solution is obtained by establishing the weak form

of Eq. (6.11)and (6.12)using the Galerkin method. The dynamic balance equation (6.11)

is weighted with the test velocities �u whereas the micromorphic balance equation (6.12)

is weighted with the test micromorphic variable rates �p� . Integration over the domain is

achieved by the use of the divergence theorem to lower the order of the derivatives. The

natural boundary conditions are incorporated as forcing terms, leading to the equations

to be discretized by �nite-element interpolations. The discretization of the displacement

and micromorphic �elds over the domain is achieved by using proper-order interpolation

functions. The following algebraic equations are derived:

M
� m � ü = Fext � Fint ; (6.38)

C
� � � �p

�
= ar � aint ; (6.39)

where M
� m is the mass matrix, Fext is the vector of external nodal forces, Fint is the vector

of internal nodal forces, C
� � is the viscosity parameter matrix, ar is the vector containing

the nodal generalized forces generated by the source terms andaint is the vector of nodal

generalized forces induced by Laplacian of the micromorphic variable. In Eq. (6.39)the

similarity with the discretized algebraic equation to solve the heat equation in thermal

analysis can be appreciated once again. In fact, VPS Explicit uses the same form of equation

to solve the heat equation:

C
�

� �TN = Q
@


+ Q



� Q
K
; (6.40)
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where TN is the nodal temperature vector, C
�

is the heat capacity matrix, Q
@


is the nodal

heat �ow depending on the heat �ux on the outer surface @
 , Q



is the nodal heat �ow

depending on the internal heat source and Q
K

is the internal nodal heat �ow depending on

the heat �ux inside the domain 
 .

A central di � erence explicit scheme associated to the lumped mass matrix is used to

solve Eq. (6.38), whereas a forward Euler scheme associated with the viscosity lumped

matrix is implemented to solve Eq. (6.39). A weak micromorphic-mechanical coupling is

implemented in VPS Explicit, that is, the two equations are solved separately. The micro-

morphic �eld in�uences the plastic behavior of the continuum (through condition (6.33)),

and, in return, the cumulative plastic strain (the di � erence between the cumulative plastic

strain and the micromorphic variable) acts as a source term in the micromorphic balance

equation (in condition (6.34)).

Regarding the mechanical behavior, a user material routine implements the mechanical

model as previously de�ned. The values of the micromorphic variables at the Gauss

quadrature points are interpolated by mean of the interpolation functions from the nodal

values. So the user material routine not only integrates the mechanical behavior but also

computes the source term H� (p� p� ) at the Gauss points. Regarding the micromorphic

treatment, a speci�c function is developed inside the thermal solver in order to recover the

source term from the material computations previously evaluated. The main algorithmic

steps of the explicit resolution over a time step � t may be summarized by the following

scheme:

Algorithm 1 Algorithmic steps of the explicit resolution scheme implemented in VPS
Explicit.
Mechanics: at time tn, compute M

� m, Fext and Fint ;

Micromorphic: at time tn, compute C
� � , ar and aint ;

Stability condition: compute the time step � t;

Micromorphic: explicit time integration, compute p� t1;

Mechanics: explicit time integration, compute �un+1=2 and �un+1;

Next Step: compute tn+1 = tn + � t.

6.3 Validation of the implemented numerical model

6.3.1 Analytical solution

The analytical solution is developed for the rate-independent static case as a reference for

validation of the FE scheme at the static limit. It is inspired from similar solution proposed

by Mazière and Forest (2015); Scherer et al. (2019, 2020). Further to that, similar solution in

the context of crystal plasticity model can be found in section 4.3.1. Consider a periodic

strip made of a thick rectangular plate of the width W along X1 direction, the length L along

X2 direction, and the thickness T along X3 direction (cf. Fig. 4.1) undergoing simple shear.
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A macroscopic deformation "̄ is applied such that

u = "̄
�

� X + � (X); with "̄
�

= "̄ 12(e1 
 e2 + e2 
 e1); (6.41)

where � is the periodic displacement �uctuation. Due to equilibrium conditions, the shear

stress component is homogeneous so that the equivalent stress� eq is invariant along X1, X2

and X3, hence

� eq(X1;X2;X3) = � eq: (6.42)

The yield condition including the linear softening term and the micromorphic contribution

(with C� = 0 here) can be written as

f = � eq� (� 0 + Hp+ H� (p� p� )) = 0 with H < 0: (6.43)

The PDE governing the micromorphic variable is given by

A
@2p�

@X2
2

= H� (p� � p): (6.44)

Elimination of the variable p in the previous equation by means of the yield condition (6.43)

leads to the following form of the PDE to be solved for p� :

A
@2p�

@X2
2

�
HH �

H + H�
p� +

H�

H + H�
(� eq� � 0) = 0: (6.45)

In case of linear softening (6.45) takes the form

@2p�

@X2
2

�

 
2�
�

! 2

p� = �

 
2�
�

! 2

�; (6.46)

where � is the characteristic width of the deformation zone. The PDE (6.46)governing p� is

only valid in the region X2 2 [ � �
2 ; �

2 ] and the solution is of the form given in Eq. (4.50).

For symmetry reasons, p� (X2) = p� (� X2) leads to � 2 = 0. At the elastic/plastic interfaces,

i.e at X2 = � �
2 , continuity of micromorphic variable p� and of the generalized stress normal

to the interface M �X2 must hold, hence

p�

 

�
�
2

!

' p

 

�
�
2

!

= 0; (6.47)

M

 

�
�
2

!

�X2 = A
dp�

dX2

�����
X2=� �

2

= 0: (6.48)
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where we make the approximation that p� is su� ciently close to p, i.e. that the penalty

coe� cient is large enough. Combining (6.47) and (6.48) with (4.50) leads to

� 1 =
(� eq� � 0)

H
: (6.49)

The constants� is as given in Eq. (4.49) and� are de�ned by

� =

 
�
2�

! 2
H�

A(H + H� )
(� eq� � 0): (6.50)

Moreover, the equivalent stress is expressed as

� eq=
�

L

Z L
2

� L
2

 
" 12 � p

2

!

dX2; (6.51)

where � is the elastic shear modulus. From the yield condition, p can be replaced by
� eq� � 0 + H� p�

H + H�
in Eq. (6.51)and integration gives an expression for � eq as a function of

applied macroscopic shear "̄ 12 and then the uniform shear stress writes

� eq=
"̄ 12+ � 0

Ze

1
� + 1

Ze

; with
1
Ze

=
�

HL
: (6.52)

6.3.2 FE solution

The FE simulations are performed with a periodic strip subjected to shear loading. The

associated 2D coordinate system and geometry are shown in Fig. 4.1. The strip has been

meshed with 3D 8-nodes elements onto which plane strain conditions were applied by

imposing zero out-of-plane displacement to all the nodes. The nodes at the bottom of the

strip ( X2 = � L=2) were clamped along X1 and X2. The nodes on the top surface (X2 = L=2)

were clamped along X2 and a Dirichlet type of boundary condition was applied along X1

whereas the displacements alongX2 were �xed. Linear shape functions have been used to

interpolate the nodal �elds, and full integration schemes have been used for the material

behavior. Numerically, in order to trigger the strain localization in a periodic strip, a small

defect is introduced at the centre (Fig. 4.1). The defect is one element having an initial yield

stress3% less than the matrix. Isotropic elasticity is considered. The material parameters

used for the analytical solution and FE simulations are presented in Table 6.2.

Fig. 6.1a and 6.1b show the cumulative plastic strain �elds with the classical and

micromorphic plasticity models using two di � erent mesh discretizations, namely the

coarseand the �ne mesh (using 101 and 303 elements respectively). The classical plasticity

model exhibits pathological mesh dependency and width of the formed shear band always

collapse to one element irrespective of the mesh size. In contrast, the width of the formed

shear band with the micromorphic model is �nite and independent of the mesh size. This
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Table 6.2 Numerical values of material parameters used for the simulation of a periodic
strip undergoing simple shear.

E � �
� 0

Eq. (6.43)
H

Eq. (6.43)
H�

Eq. (6.43)
75 GPa 0.3 2:8� 103 Kgm � 3 100 MPa -500 MPa 106 MPa

A
Eq. (6.24)

C�
Eq. (6.24)

L
Eq. (6.52)

0:08N 90 MPa.s 1.0 mm

indicates the capabilities of the implemented micromorphic theory in an explicit scheme

to solve the shear strain localization problem. Furthermore, the cumulative plastic strain

variation along X2 obtained from the FE solution is validated against the analytical solution

developed for the rate-independent case (cf. Eq. (4.50)), see Fig. 6.2a. The FE simulation is

validated for "̄ 12 = 0:01. Moreover, simulations are performed by changing the simulation

time while keeping the same applied total shear strains. Fig. 6.2b shows that the perfect

agreement with an analytical solution is obtained for t = 10 sec. which corresponds to

low enough strain rate to make the viscous contribution in 6.25 negligible. Larger strain

rates are seen to limit the localization since the maximum strain in the band decreases for

increasing strain rates. Since the total strain is imposed, this means that a higher elastic

strain compensates the lower plastic strain which means that stress values are higher.

In order to retrieve the quasi-static solution, also the viscous parameter C� have to be

chosen small enough. The reason is to minimize as much as possible any viscous-like

component of the generalized stressa� in Eq. (6.23)to retrieve the rate–independent solution.

Metals at high temperatures are known to be strain rate sensitive. This e � ect is generally

taken into account by means of an appropriate visco-plastic �ow rule, for instance based on

a Norton-type power law. In the present work, rate-independent plasticity only has been

considered but the generalization to visco-plasticity is straightforward in the proposed

framework. Note that the proposed model presents an additional strain rate sensitivity,

via the viscosity parameter C� . This will require appropriate calibration for instance using

strain �eld measurements during localization.

6.4 Numerical examples

In this section, the applicability of the implemented scalar micromorphic strain gradient

theory is tested for two additional cases: a shearing operation process and a bending test.

The aim of this section is to exploit the analogy explained in section 6.2.5, whose numerical

implementation has been previously presented, to prove that simulations of manufacturing

operations using the micromorphic continuum under an explicit integration scheme can be

successfully performed.
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(a) (b)

Fig. 6.1 Localization of plastic strain in a periodic strip undergoing simple shear for
two di � erent mesh sizes (�ne and coarse) using the (a) classical plasticity model, and (b)
micromorphic plasticity model.

(a) (b)

Fig. 6.2 Bending tests using micromorphic plasticity model: (a) cumulative plastic strain
�eld during bending process, and (b) normalized bending moment vs. rotation angle for
di � erent values of high-order modulus A.
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Industry best practice discourages the employment of complex numerical methods to

produce simulations, mainly to guarantee a high degree of reliability of the results and

computational e � ciency in terms of CPU time. Regarding this reasonable concerns, the

results that will be presented here are to be considered as proof of the simplicity of the

method, which requires only one additional parameter to be calibrated, that is A (see the

discussion on the C� parameter in section 6.2.6).

As previously explained in the introduction, the relevance of the application of regu-

larization procedures in manufacturing operations is vital, especially in cases in which

the thermal power has a major presence. Thermal softening can take place when high

rates of plastic strain are produced, and similar softening can be reproduced by assigning a

negative slope to the hardening function in Eq. (6.30). The regularization potential of the

proposed method is investigated in the shearing operation section. Moreover, one of the

missing features of the classical continuum mechanics is the capability of predicting any

size e� ect. This becomes of major relevance whenever the deformation localizes is small

regions or in the case of forming of micro-components (Zhu et al., 2020; Li et al., 2009). The

ability of the proposed method to capture the size e � ect is proven in the bending section.

6.4.1 Shearing operation

The shear band formation is a commonly observed phenomenon in manufacturing opera-

tions in case of heavy deformation, for instance, high-speed shaping, forging, machining,

and several other processes (Molinari et al., 2002; Burns and Davies, 2002). Numerically,

the shear band simulation shows spurious mesh dependency when we consider a classical

plasticity approach with strain softening. Dynamics combined with viscosity or /and heat

conduction are known to provide regularization but the involved length scales are often

too small for e � cient FE modeling so that strain gradient or micromorphic plasticity is

still useful to introduce physically more realistic length scales (Stathas and Stefanou, 2021;

Wcis�o and Pamin, 2017). Shearing operation is most commonly used in the metal forming

industries for sheet metal cutting. In this section, the implemented micromorphic approach

is used for the regularization of shear band formation in shearing operation.

The shearing operation is performed on a sheet of 5 mm thickness under plane strain

conditions with one element across the width. The geometry and applied boundary

conditions are shown in Fig. 6.3. The sheet has been meshed with 3D 8-nodes elements

with linear shape functions and full integration schemes. The lower tool is �xed, while

velocity is applied to the upper tool in the downward direction. At the initial deformation

stage, a linearly increasing velocity up to 4mms� 1 is applied. Once the velocity of 4mms� 1

is achieved, it is kept constant in the later stage of the deformation. The contact between the

deformable sheet and tools is taken into account using a constant coe� cient of friction 0:3.

The tools are considered as rigid bodies, while the sheet is assigned with an elasto-plastic

material behavior using linear strain softening. Isotropic elasticity is considered. The used

material parameters in the numerical simulations are presented in Table 6.3.
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Table 6.3 Numerical values of material parameters used for the simulation of the shearing
operation.

E � �
� 0

Eq. (6.43)
H

Eq. (6.43)
75 GPa 0.3 2:8 � 103kgm � 3 100 MPa -500 MPa

H�
Eq. (6.43)

A
Eq. (6.24)

C�
Eq. (6.24)

106MPa [128, 320, 800] N 90 MPa.s

Fig. 6.3 Geometry used for the shear operation simulation..

At �rst, simulations are performed with classical plasticity using two di � erent mesh

discretizations: the coarsemesh and the �ne mesh, with 3200 and 105600 nodes in the shear

region, respectively. The limitation of the classical plasticity model, known as pathological

mesh dependency in the strain localization problem can be observed from Fig. 6.4a and 6.4e

by the contours of the cumulative plastic strain. The magnitude of the cumulative plastic

strain is di � erent for two di � erent mesh discretizations, and it increases with �ner mesh.

Furthermore, the observed width of the shear band is di � erent for two di � erent mesh

discretizations and it always collapses to one element size irrespective of the mesh size. In

contrast, the formed width of the shear band using the micromorphic approach is �nite

and does not depend on the mesh density as seen from Fig. 6.4b and 6.4f. In addition, the

magnitude of the cumulative plastic strain reaches asymptotic values while reducing the

mesh size. Furthermore, the e� ect of the di� usivity coe � cient A on the shear band widths

is investigated. Fig. 6.5 shows the variation of cumulative plastic strain for three di � erent

values of the gradient parameters A, 128 N, 320 N, and 800 N. As the value ofA increases

the intensity of plastic strain gradient within the shear region reduces. As expected from

the analytical expression for the length scale in Eq. (4.49), the width of the shear band

increases with an increase in theA value. For the three di � erent values of the A parameter,

128 N, 320 N and 800 N, the observed widths of the shear bands are2:4 mm, 2:8 mm, and

3:5 mm, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.4 Mesh size e� ect on the plastic strain localization during shearing simulation using
(a), (c) and the (e) classical plasticity model (b), (d) and the (f) micromorphic plasticity
model. From the top to the bottom, increasing mesh size.
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Fig. 6.5 E� ect of the variation of the characteristic length scale on the plastic strain
distribution during shearing simulation.

Fig. 6.6 Geometry and the applied boundary conditions on the beam used for the bending
simulations.

6.4.2 Bending tests

The bending tests are used to verify that the implemented micromorphic model is able to

capture the size e� ect for hardening plasticity. Many studies have been experimentally

highlighted the presence of extra hardening in the bending moment, whenever the specimen

geometry was reaching sub-micron dimension, approaching grain size. (Fleck et al., 1994)

reported hardening behavior in a copper wire under torsion for wire diameters in the order

of 10� 100� m, whereas tensile tests performed on the same wires found no evidence of

size e� ect. (Stölken and Evans, 1998) designed a micro-bend test to measure the plastic

characteristic length scale associated with the strain gradient, subsequently reporting the

results pertaining to thin (12 :5� m 7! 50� m) Nickel foils.

In Fig. 6.6, the geometry and boundary conditions applied to the specimen are reported.

The specimen has been discretized using 3D type of elements under plane strain conditions.

Linear shape functions are used to interpolate nodal values, and full integration scheme

is used for the elements. One element spans the 1 mm width. The left face of the beam

is �xed, whereas a material rotation is enforced on the nodes of the right face through a

coupling involving the nodes of the right face and an auxiliary node. The resultant bending

moment is probed at the auxiliary node. A total rotation of 45� is applied. The size e� ect

can be experimentally encountered whenever the geometry of the specimen reduces down

to approximately the grain size of the metal. Virtually, the same phenomenon could be
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Table 6.4 Numerical values of material parameters used for the simulation of the bending
test

E � � � 0 H H �

75 GPa 0.3 2:8� 103kgm � 3 100 MPa 200 MPa 106MPa

A C�

128-800 N 103 MPa.s

(a) (b)

Fig. 6.7 Bending tests using micromorphic plasticity model: (a) cumulative plastic strain
�eld during bending process, and (b) normalized bending moment vs. rotation angle for
di � erent values of high-order modulus A.

achieved by keeping constant the geometry of the specimen and simultaneously increasing

the characteristic length scale. The e� ectiveness of the formulation in predicting the size

e� ect through the bending test has been veri�ed by employing the latter method. The

numerical framework previously presented does not explicitly make use of the grain size,

but a characteristic length scale in Eq. (6.25)was identi�ed, and this will serve the same

purpose. The use of larger or smaller characteristic length scale will respectively induce

a sti� er or softer global response of the specimen. Three di� erent values of the gradient

parameter A have been used. The other material parameters used in the simulation of

the bending tests are reported in Table 6.4. In the attempt of replicating a quasi-static

bending test, the chosen value of the C� parameters is relatively small, so that any viscous

contribution of the micromorphic variable would be negligible.

In Fig. 6.7a the distribution of the cumulative plastic strain for the bending test using

the micromorphic plasticity model is reported. Besides the edge e � ect induced by the

boundary condition at the right surface, the solution appears to be invariant along the

longitudinal direction of the strip. The FE solutions obtained using the classical and

micromorphic plasticity models in terms of normalized bending moment vs. applied
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rotation are shown in Fig. 6.7b. The probed bending moment has been normalized with

respect to the �rst moment of area of the beam cross-section, that is whh2, where wh is the

width of the rectangular cross-section, and h is the height of the rectangular cross-section.

From Figure 6.7b, it can be appreciated that the classical solution is retrieved by using the

micromorphic approach with a null penalty term H� and null gradient parameter A. Three

values of the gradient parameter (respectively three di � erent characteristic lengths scales)

are used for the test: 128 N, 320 N, and 800 N. The curves belonging to the micromorphic

plasticity theory clearly demonstrate the ability of the method to capture the size e � ect.

The extra hardening reported in Fig. 6.7b follows the same trend as the one relative to the

experimental tests reported by (Stölken and Evans, 1998).

In the case of bending, the micromorphic medium does not need to regularize any

localization phenomenon; rather, it has to predict an additional hardening, as presented in

the manuscript. The characteristic length scale can be identi�ed in this case by ` =
q

A(H+H� )
jHjH�

.

The obtained characteristic length scales usingA = 128N, 320 N, and 800 N are 0.8 mm,

1.26 mm, and 2.0 mm, respectively. These characteristic length scales can be normalized by

the thickness h of the beam. The obtained `=h ratio for A = 128N, 320 N and 800 N are 0.40

mm, 0.63 mm and 1.0 mm, respectively. Fig. 6.7b shows that for high `=h ratio, i.e. high A

value, stronger response can be predicted.

The plasticity material model used for the bending test is characterized by a linear

hardening behavior (Tab. 6.4). From the analysis of the curves, it can be inferred that

the regularization, and subsequently the size e� ect, is a� ecting the solution only in the

plastic regime, whereas the initial elastic sti � ness of the curves is the same regardless of the

characteristic length scale used in the model. This is the expected behavior, given the fact

that the present micromorphic plasticity theory regulates the localization of the plastic �eld.

Thus, there should be no di � erence between the curves in the elastic regime. In hardening

plasticity, the plastic strain gradient contribution leads to an increased apparent hardening

of the beam in the plastic regime.

6.5 Conclusions

In this chapter, a micromorphic strain gradient plasticity model has been formulated and

implemented in a commercial explicit �nite element code in order to perform simulations

of manufacturing operations in time-dependent environments. The reasons to account for

the strain gradient while simulating manufacturing operations deal with regularization of

strain localization phenomena in softening plasticity, on the one hand, and prediction of

size e� ects in hardening plasticity. The originality of the approach lies in the use of the

micromorphic model instead of strict strain gradient plasticity and in the introduction of a

viscosity contribution to the micromorphic plastic evolution. The advantage of these two

ingredients is that they ease the numerical implementation in a commercial �nite element

code by mimicking the transient heat equations. Earlier formulations are based on strict
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strain gradient plasticity without transient term, on the one hand, or on the introduction of

micromorphic inertia instead of the proposed viscous term.

The main outcome of the present research lies in the proof that it is possible to implement

an explicit micromorphic model in a relatively easy and straightforward manner. This was

achieved by slightly modifying the pre-existing routines of material integration and thermal

�eld resolution in the VPC /PAMCRASH software developed by ESI. This proof of concept

is meant to demonstrate that limited e � ort is required to implement the micromorphic

theory in any other software that allows for minor modi�cation in their procedures.

The implemented theory has been demonstrated to recover the analytical solution for a

semi-in�nite glide layer under quasi-static loading conditions. The supplementary shearing

tests highlighted the need to use of the strain gradient theory in case deformation localizes,

and the typical extra hardening in bending has also been modeled.

Most importantly, it has been proven that the size e � ect can be predicted with this

method and that manufacturing operations can be simulated with such theory with a

limited increase in computational cost and only one additional material parameter (the

characteristic length). The same model can therefore be used to address regularization

issues in softening plasticity and smaller is hardersize e� ects in microforming. Further work

should be dedicated to develop case studies involving real material data and more complex

3D specimen geometries. In particular the consideration of adiabatic shear banding can

be included in the approach in a way similar to the work done in (Russo et al., 2020a)

whereas full coupling with heat conduction phenomenon would require more intrusive

programming in the considered commercial code.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

Inhomogeneous deformation of micron-scale components shows non-conventional plastic

behavior such as size–dependent strengthening called size e� ect. It is well known that the

classical crystal plasticity models fail to capture size e � ects due to the lack of characteristic

length scales in the constitutive framework. This limitation of the classical crystal plasticity

models can be overcome using strain gradient crystal plasticity models. Therefore, the �rst

objective of this thesis was to predict the size e� ects in single crystal microwire torsion tests

under severe deformation.

Strain softening, mainly due to the temperature rise, is a common phenomenon in severe

deformation processes, which ultimately results in the formation of an intense shear band

called the adiabatic shear band (ASB). Applications of classical crystal plasticity models

to strain localization problems show spurious mesh dependency. Strain gradient crystal

plasticity models can be used to overcome this limitation of classical crystal plasticity

models. Therefore, the second objective was to investigate the ASB formation process in

single and poly-crystalline FCC metallic materials.

Strain gradient crystal plasticity models, speci�cally the reduced-order micromorphic

crystal plasticity and Lagrange multiplier-based models, are used to predict the size e � ect

and investigate the ASB formation process.

Recent experimental studies, for instance (Landau et al., 2016; Mourad et al., 2017;

Longère, 2018), showed that the ASB formation process is in�uenced by dynamic recrystal-

lization along with thermal softening. Stored energy is the main driving force for dynamic

recrystallization. The prediction of the stored energy and Taylor-Quinney coe � cient

(TQC) is essential to understand the plastic deformation and subsequent recovery and

recrystallization processes. Therefore, the third objective of this thesis was to predict the

stored energy and TQC in single and poly-crystalline FCC metallic materials.

The computational cost of strain gradient plasticity models is high due to the additional

degrees of freedom. Therefore, these models have limited applications in practical engineer-

ing problems. Moreover, the numerical implementation of strain gradient plasticity models

178



is challenging due to the complicated constitutive framework. Therefore, the �nal objective

of this work was to propose an easy way to implement this model in commercial FE software.

In the �rst part of the thesis, the size e � ects in monotonic loading of the single crystal

microwire torsion tests were predicted using the micromorphic crystal plasticity and

Lagrange multiplier-based models. These are reduced-order models with one additional

degree of freedom called Lagrange multiplierpresent in the former model compared to

the latter model. The predicted size e� ect using the Lagrange multiplier-based model

under monotonic and cyclic loading of the microwires was compared with the CurlFp

model proposed by Kaiser and Menzel (2019b). Note that the CurlFp model is a strain

gradient plasticity model and thus should be compared more directly to the Lagrange

multiplier-based model. Moreover, a post-processing technique was used to predict the

SSD and GND density distribution in monotonic and cyclic loading of microwires. To this

end, the reduced-order models were used to develop a scaling law based on the monotonic

loading of the microwires. The main �ndings of the study were as follows:

ˆ It was shown that both reduced-order models deliver the same response for small

characteristic length scales. However, for large characteristic length scales, the

micromorphic crystal plasticity model shows saturation in torque vs. surface strain

response in contrast to the Lagrange multiplier-based model, which did not show

saturation.

ˆ The predicted size e� ect using the Lagrange multiplier-based and CurlFp models

were in good agreement for the monotonic loading of the microwire torsion tests.

However, for cyclic loading, the Lagrange multiplier-based model shows isotropic

hardening in contrast to the kinematic hardening shown by the CurlFp model.

ˆ The evolution of SSD and GND density was investigated for monotonic and cyclic

loading of the microwire torsion tests using the Lagrange multiplier-based model. In

cyclic loading, a signi�cant increase in SSD and GND density was observed at the

end of each cycle compared to previous cycles.

ˆ The size e� ects are characterized by power law relationships between the normalized

torque and R=`, with R being the radius of the microwire and ` being a characteristic

length of the model. The scaling laws were developed using the reduced-order

models for monotonic loading of the microwires. The micromorphic crystal plasticity

model showed a power-law with exponent n = � 0:6 and � 0:85 for H� = 104 MPa

and 3� 104 MPa, respectively. In contrast, the Lagrangian multiplier-based model

predicted no saturation at small R=` ratios and showed a power law with n = � 1.

In the second part of the thesis, a thermodynamically consistent framework for the

classical and micromorphic crystal plasticity models was developed. This framework

was used to investigate adiabatic shear banding in single and poly-crystals FCC metallic
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materials. The formation of ASB was studied using single and poly-crystalline hat-shaped

specimens. The main conclusions drawn from the study were as follows:

ˆ The orientation of the formed ASB with respect to the loading axis in single crystals

was a� ected by the initial crystal orientation. In particular, one special crystal

orientation is found resistant to shear banding.

ˆ The grain size e� ect, the �ner the grain size the higher the resulting load, was illustrated

in polycrystalline FCC metallic materials using the micromorphic crystal plasticity

model subjected to isothermal deformation.

ˆ The resulting load and the formation of the shear band were highly orientation

dependent in polycrystalline simulations.

In the third part of the thesis, an advanced thermodynamically consistent crystal

plasticity framework was used to predict the stored energy and TQC in FCC metallic

materials. The importance of ensuring the positivity of the dissipation rate was emphasized.

Furthermore, the predictions of stored energy and TQC were performed for single crystals

using the classical crystal plasticity model. As the �rst application to polycrystalline

simulations, the e� ect of the mesh size and grain morphology on the average stress-strain

response was studied in detail. Then, the stored energy was predicted for the polycrystalline

austenitic steel, and a comparison was made with the experimental measurements from the

literature. An ad-hocfactor was de�ned to represent the experimentally measured stored

energy adequately. Finally, the predicted stored energy considering contribution of both

SSDs and GNDs was compared to that obtained by considering the contribution of SSDs

only. The following conclusions were drawn from the study:

ˆ The predicted values of the TQC for single crystals copper and aluminum showed

that a reliable dislocation density-based model is necessary to adequately represent

the experimental measurements.

ˆ In the polycrystalline simulations, the role of an ad-hocfactor was discussed. This

factor was considered as a �tting parameter in order for the predicted stored energy

to agree with the experimental measurements.

ˆ The predicted stored energy by considering contributions of both SSDs and GNDs

was found to be higher than those of SSDs only, but still insu � cient to account for

experimental results.

In the last part of the thesis, we proposed an easy way to implement micromorphic plas-

ticity model in a commercial FE software. We used an analogy between the micromorphic

plasticity theory and classical thermo-mechanics for the implementation. This model was

implemented in the explicit �nite element software VPS /Pam-Crash® from ESI. The main

conclusions of the study were as follows:
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ˆ It was shown that the micromorphic plasticity theory could be implemented in an

explicit framework in a relatively easy and straightforward manner, with only minor

modi�cations in their procedures.

ˆ The implemented theory in commercial FE software was able to predict the size e � ect

and regularize shear band formation.

7.2 Outlook

In the present work, the shortcoming of the reduced-order model to predict the size e � ect in

cyclic loading of the microwire torsion tests was shown. The simulation of kinematic-type

hardening is, in fact, possible with a reduced-order model using an alternative formulation

in which the free energy potential depends on the gradient of the microslip variable. In

future works, e � orts will be devoted to developing this alternative formulation to take into

account kinematic hardening.

In polycrystalline hat-shaped simulations due to high computational costs, only two

grain sizes were considered to predict the grain size e� ect. Future work will be dedicated

to predict grain size e � ect considering more number of grains in the shear region of the

hat-shaped specimen. Moreover, heat conduction was neglected in hat-shaped simulations,

although it plays a signi�cant role at the grain scale for the strain rates and grain sizes

considered in this work. Extension of the work considering the coupling of strain gradient

crystal plasticity and heat conduction is therefore necessary in the future to highlight the

competition between characteristic length scales emerging from microstructure and thermal

e� ects. In addition, grain boundary sliding and decohesion are additional important

deformation and damage mechanisms at high temperatures. They are not included in the

present work, but this is possible as demonstrated in (Musienko et al., 2004). Coupling

strain gradient crystal plasticity and grain boundary sliding /opening remain challenging

tasks.

The work performed on the ASB formation can be extended to more severe loading

conditions (including remeshing techniques) and relate to the experimental results on

machining process at high strain rates obtained by Haythem Zouabi (ESR7). Moreover,

future work will be devoted to implementing a thermodynamically consistent framework

of the classical and micromorphic crystal plasticity models in an open-source automated

massively parallel FEniCS framework in collaboration with Tamara Dancheva (ESR6).

In the present work, the predicted stored energy, which is a function of total dislocation

density, does not adequately represent the experimental measurements from the literature.

The used dislocation density-based model may not be reliable to predict the total dislocation

density evolution and consequently the stored energy. Future work will be devoted to

giving more physical meaning to the dislocation density-based model.
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Moreover, implemented micromorphic plasticity model in explicit FE software VPS /Pam-

Crash® from ESI Group will be applied to the industrial manufacturing processes which

involve strain localization due to the severe deformation, for instance: deep drawing,

stamping, rolling, and so forth.
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Appendix A

Slip systems in FCC unit cell and form of

the dislocation interaction matrices

� Slip systems in FCC unit cell

In FCC crystals, the crystallographic slip occurs on the twelve {111} <110> slip systems;

four {111} planes and three <110> directions (Fig. A.1). The de�nition of the octahedral slip

systems is given in Table A.1.

Fig. A.1 Octahedral slip systems in FCC metallic materials (Guan et al., 2017).

Table A.1 De�nition of the octahedral slip systems.

Normal vector n (111) (11̄1) (1̄11) (111̄)

Slip direction m [1̄01] [01̄1] [1̄10] [1̄01] [011] [110] [01̄1] [110] [101] [1̄10] [101] [011]

Slip system index B4 B2 B5 D4 D1 D6 A2 A6 A3 C5 C3 C1
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Form of the dislocation interaction matrices

In FCC single crystals, the matrix hru (r, u=1,2,...,12) has12� 12 coe� cients. The matrix hru

is constructed as follows (Ling et al., 2018):

[hru ] =

2
666666666666666666666666666666666666666666666666666666664

h0 h1 h1 h3 h4 h4 h2 h4 h5 h2 h5 h4

h0 h1 h4 h2 h5 h4 h3 h4 h5 h2 h4

h0 h4 h5 h2 h5 h4 h2 h4 h4 h3

h0 h1 h1 h2 h5 h4 h2 h4 h5

h0 h1 h5 h2 h4 h4 h3 h4

h0 h4 h4 h3 h5 h4 h2

h0 h1 h1 h3 h4 h4

h0 h1 h4 h2 h5

h0 h4 h5 h2

h0 h1 h1

h0 h1

h0

3
777777777777777777777777777777777777777777777777777777775

symmetric

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

A2

A3

A6

B2

B4

B5

C1

C3

C5

D1

D4

D6

(A.1)

For symmetry reason number of coe� cients are reduced to 6, i.e. h0 � h5. In the matrix

coe� cient h0 corresponds to self hardening, h1 to coplanar interaction, h2 to Hirth locks, h3

to collinear interaction, h4 to glissile junctions and h5 to Lomer locks. The matrix bru has the

same structure ashru .
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Appendix B

Single crystal simple shear test

Simple shear test at a �nite strain on a single volume element is performed using the classical

crystal plasticity model to study the validity of the used �nite deformation constitutive

framework in the present work (cf. chapter 2, section 2.2). The validity of the model is

performed via a brief comparison of the predicted shear stress-shear strain response with

the results presented in (Boukadia and Sidoro � , 1988; J. Boukadia, 1993).

An elasto-viscoplastic single crystal formulation is used for the simulation of simple

shear case according to section 2.2.3. The material behavior is considered as an elastic-

perfectly plastic. A rate–dependent �ow rule is adopted to facilitate the determination of

active slip systems. The schematic of the simple glide test is shown in Fig. B.1. The initial

orientation of the crystal with respect to loading axes of simple shear is as follows:

e1 = [100] e2 = [010] e3 = [001]:

The numerical values of the material parameters used are given in Table B.1. The shear

stress-strain response plotted at one Gauss point of the volume element is shown in Fig.

B.2a. As shown in this �gure, cyclic behavior is obtained for the stress distribution. Such

a cyclic behavior is also observed by Boukadia and Sidoro� (1988); J. Boukadia (1993)

under large deformations and rotations for simple shear tests. The crystal follows the

corotational frame, and during the endless rotation of the crystal, some slip systems are

successively activated and deactivated during the endless rotation of the crystal. However,

8 slip systems are always simultaneously activated as shown in Fig. B.2b. The e� ect of

di � erent crystal orientations on the stress-strain response in simple shear tests is studied in

(Besson et al., 2010).
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Table B.1 Numerical values of material parameters used for the numerical simulation of
simple shear test.

C11 C12 C44 � 0 m K

198:6 GPa 136:2 GPa 104:7 GPa 150 MPa 10 10 MPa.s1=m

e2

e3 e1e1e3

e2

Fig. B.1 Schematic of the simple shear test.

(a) (b)

Fig. B.2 Simple shear test of a single crystal of initial orientation <001>: (a) shear stress-strain
response, and (b) slip system activity.
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Appendix C

Dislocation density tensor calculation

In this appendix, several topics about curl operation and related dislocation density

calculations are presented.

� Curl of a second-order tensor

There are several de�nitions available in the literature to compute the curl of a second-order

tensor. However, consistent application of these curl de�nition leads to same results as

demonstrated in (Das et al., 2018). The derivation of the three most commonly used

de�nitions to compute the curl of a second-order tensor in a Cartesian orthonormal

coordinate frame are as follows:

� curl 1(T
�
) (Malvern, 1969; Segel, 1977):

curl 1(T
�
) = (5 � T

�
)i j =

 

er
@

@xr

!

� Tsjes 
 ej = (er � es) 
 ej

@Tsj

@xr
; (C.1)

which can be further written as

curl 1(T
�
) = (5 � T

�
)i j = � rsiTsj;r : (C.2)

� curl 2(T
�
) (Acharya and Bassani, 2000; Cordero et al., 2010; Aslan et al., 2011):

curl 2(T
�
) = (T

�
� 5 )i j = (Tisei 
 es) �

 

er
@

@ei

!

= Tisei 
 (es � er)
@

@xr
(C.3)

Thus,

curl 2(T
�
) = (T

�
� 5 )i j = (ei 
 ej) � sr j

@Tis

@xr
= � sr jTis;r = � � jrsTis;r : (C.4)

� curl 3(T
�
) (Arsenlis and Parks, 1999; Cermelli and Gurtin, 2001):

If f is a vector then,

5 � ( f � T
�
) = (5 � T

�
) � f ; (C.5)

v = f �T
�

= f jT jses: (C.6)
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Therefore,

(5 � v)k =

 

er
@

@xr

!

� f jT jses = (er � es) f j

 
@

@xr

!

T js = � rsi f jT js;r ek;

= (� rsiT js;rei 
 ej) � f = (5 � T
�
) � f : (C.7)

Finally,

curl 3(T
�
) = (5 � T

�
)i j = � rsiT js;r : (C.8)

Let c be the line integral with respect to the current con�guration bounding surface s

having unit normal n, then the application of Stokes' theorem to smooth vector �eld f

I

c
f � dx =

Z

s
(curl f ) � nds; (C.9)

and to the tensor �eld gives

I

c
T
�

� dx =
Z

s
(curl T

�
) � nds: (C.10)

� Dislocation density tensor calculation

In the �nite strain crystal plasticity, it is assumed that the lattice is only distorted elastically.

In continuum theories of plasticity, it is commonly accepted that intermediate plastic

con�guration is not compatible (Acharya and Bassani, 1995). This incompatibility of the

intermediate con�guration is due to presence of GNDs (closure failure of the Burgers

circuit). An elastic and a plastic part of the deformation gradient are incompatible tensor

�elds such that

Curl F
�

e , 0; Curl F
�

p , 0; (C.11)

even though the total deformation gradient is compatible

Curl F
�

= 0: (C.12)

The de�nition of the dislocation density tensor based on the small and �nite deformation

theory is given in the following sections. Used notations are as follows: grad, div, and

curl for the di � erential operators de�ned with respect to the current con�guration, and

Grad, Div, and Curl for the di � erential operators de�ned with respect to the reference

con�guration. Besides, the curl of a second-order tensor is de�ned according to Eq. (C.4).

� Small deformation

Gurtin and Anand (2005) proposed a theory for small deformation strain gradient plasticity

for isotropic materials in absence of rotations. The theory of classical small deformation is

based on the decomposition of displacement gradient additively into an elastic and the
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plastic part such that

Grad u = H
�

e+ H
�

p; tr H
�

p � 0; (C.13)

with H
�

e being the rotation and stretch tensor, H
�

p is the lattice distortion tensor, and tr stands

for the trace of a second-order tensor. Moreover, in this plasticity theory, an elastic and a

plastic strain tensors are given by

E
�

e =
1
2

(H
�

e+ H
�

eT); E
�

p =
1
2

(H
�

p + H
�

pT): (C.14)

Furthermore, the plastic rotation tensor is expressed as

W
�

p =
1
2

(H
�

p � H
�

pT): (C.15)

In addition, the resultant Burgers vector in the reference con�guration is given by

B =
I

C
H
�

p � dX; (C.16)

where C denote the line integral with respect to the reference con�guration bounding

surface Shaving unit normal N. The application of Stokes' theorem to previous equation

gives

B =
Z

S
(Curl H

�
p) �N dS: (C.17)

The dislocation density tensor for small deformation plasticity is de�ned by

(D
� d)i j = (Curl H

�
p)i j = � � jrsH is;r ei 
 ej : (C.18)

� Finite deformation

The closure failure with respect to the current con�guration is de�ned as follows (Acharya

and Bassani, 2000):

b=
I

c
F
�

e� 1 � dx: (C.19)

Applying Stokes' theorem to the previous equation gives

b=
Z

s
(curl F

�
e� 1) � nds: (C.20)

Therefore, the dislocation density tensor D
� d with respect to the current con�guration is

given by

(D
� d)i j = (curl F

�
e� 1)i j = � � jrsFe� 1

is;r ei 
 ej ; : (C.21)
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The resultant Burgers vector in the reference con�guration is given by

B =
I

C
F
�

e� 1 � F
�

� dX =
I

C
F
�

p � dX =
Z

S
(Curl ( F

�
p)) �N dS: (C.22)

Applying Nanson's formula, NdS= F
�

T n
Jds, gives

B =
Z

s
(Curl ( F

�
p)) � F

�
T �

nds

J
: (C.23)

Therefore, the alternative de�nition of the dislocation density tensor

D
� d =

1
J
(Curl ( F

�
p)) � F

�
T = curl (F

�
e� 1): (C.24)

� Dislocation density tensor in pure bending of a single crystal

As the crystal is subjected to a plastic strain gradient, GNDs must be stored to accommodate

this plastic strain gradient. The approximation of GND density in a single-slip problem is

given by Fleck et al. (1994) as follows:

� G =
1
b

@

@e1

; (C.25)

where @

@e1

denote the variation of shear strain 
 in e1 direction. Let d� i be the lattice rotation

angle associated with the displacement vector dei then

d� i = ki j dej ; (C.26)

with ki j being the curvature tensor. The relation between curvature tensor k
�

and dislocation

density tensor D
� d is given by Ashby (1970) as follows:

ki j = (Dd) ji �
1
2

� i j (Dd)kk: (C.27)

In the case of pure bending, the only non-vanishing component of the curvature tensor is

k31 =
d� 3

de1
; (C.28)

which corresponds to the bending about e3-axis. Therefore, the dislocation density tensor

for pure bending is given by

D
� d =

2
6666666664

0 0 (Dd)13

0 0 0

0 0 0

3
7777777775
: (C.29)
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Table C.1 Numerical values of material parameters used for the numerical simulation of
pure bending test.

E � � 0 m K

200 GPa 0:33 150 MPa 10 10 MPa.s1=m

Moreover, in the present work, the dislocation density tensor components are computed

with FE simulation for the single crystal pure bending tests using the classical crystal

plasticity model. A post-processing technique is used to evaluate Curl (F
�

p) (see also, Busso

et al. (2000); Abrivard (2009)). The four-point bending test provides the validity of the

implemented post-processing code to compute the dislocation density tensor because of

the known active component in the pure bending test. The linear variation of plastic strain

across the section of the beam results in a constant strain gradient at a region of plastic strain

and consequently the GND density as demonstrated in (Dunne et al., 2012). Moreover, the

de�nition of the curl presented in Eq. (C.4) is used. The details of the used post-processing

technique can be found in section 3.3.2.

This study considers a single crystal symmetric rectangular beam of 0:5 mm � 0:1 mm

� 0:08 mm dimension having one element across the thickness. The applied boundary

conditions are reported in Fig. C.1a. The beam is discretized with C3D20R elements under

plane strain conditions. The left face of the beam is �xed in e1 direction. The support

and load are applied at a distance of 0:14mm and 0:38mm from the left face. The initial

orientation of the crystal is

e1 = [100] e2 = [010] e3 = [001]:

Isotropic elasticity is considered. The material behavior is considered as an elastic-perfectly

plastic. The material parameters used in the simulation are summarized in Table C.1. The

distribution of cumulative plastic strain �eld is shown in Fig. C.1b. As shown in this �gure,

the plastic strain is concentrated at the center portion of the beam. The components of

the dislocation density tensor are computed on the element set shown with red color in

Fig. C.1a. The evolution of the components of the dislocation density tensor over this

element set is shown in Fig. C.2. As shown in this �gure, the only active component of

the dislocation density tensor is the (Dd)13, which corresponds to the de�nition of the

dislocation density tensor in pure being presented above (Eq. (C.29)). This shows that the

implemented post-processing code to compute the dislocation density tensor is valid.
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u2 = 0
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(a) (b)

Fig. C.1 (a) Geometry and applied boundary conditions in four-point bending test. The
dislocation density tensor components are computed on the elements marked with red
color. (b) Cumulative plastic strain �eld in single crystal pure bending test.

Fig. C.2 Evolution of the dislocation density tensor components obtained using post-
processing on the elements marked with red color in Fig. C.1a.
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