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Résumé

Des capacités d’interaction flexible et centrée sur I’humain, en robotique collaborative, est un aspect
essentiel de I'industrie 4.0/5.0. Les robots collaboratifs peuvent désormais fournir une assistance dans
de nombreuses taches, contribuant ainsi a réduire les risques de troubles musculo-squelettiques pour
les travailleurs humains. Cependant, le niveau de collaboration reste encore loin du niveau naturel
entre deux collegues humains. En effet, la reconfiguration des robots collaboratifs manque encore de
flexibilité et est souvent hors de portée du travailleur du quotidien, qui n’est ni un programmeur ni
un expert en robotique. Un robot collaboratif idéal devrait devenir un Assistant Robotique Intelligent
(SRA) capable d’adapter dynamiquement son comportement a la diversité de chaque situation, y
compris les taches, les changements d’environnement, les caractéristiques des travailleurs et leurs
préférences. De telles exigences conduisent a un changement de paradigme dans la fagon dont les

robots collaboratifs sont programmeés.

Tout au long de cette these, pour répondre aux spécifications d’'un SRA, nous avons exploré la
conception d’un prototype d’architecture cognitive autour de la notion d’Enseignement Robotisé en
Interaction (IRL). L’agent robotique peut apprendre, en s’appuyant sur des connaissances antérieures,
comment représenter et exécuter des taches inconnues avec des capacités de généralisation, selon les
préférences et les caractéristiques des travailleurs. L’apprentissage se fait tout au long de I'interaction,
dans un cadre d’initiative mixte, de maniére incrémentale, rapide et naturelle, par des personnes non

expertes en programmation.

En nous inspirant d’approches complémentaires de la littérature en Intelligence Artificielle (IA) et
en I'TL, nous avons mis en évidence les avantages d’une architecture hybride, entrelacant les approches
symbolique et connexionniste en IA. Suivant les spécifications du SRA, nous avons choisi de développer
un nouveau systeme cognitif basé sur des modeles de représentations relationnelles et I'intégration

de modules d’apprentissage spécifiques basés sur ’apprentissage profond. En particulier, nous nous

iii



sommes concentrés sur ’exploitation de représentations modulaires pour les comportements du SRA,
intervenant pour le processus d’apprentissage délibératif et incrémental de 'agent. Cela a conduit a
considérer les arbres de comportements réactifs au coeur du modele de comportement de ’architecture.
Cela permet d’apprendre des niveaux hiérarchisés de représentations, de la perception motrice du

monde réel aux représentations symboliques abstraites.

Des validations expérimentales, avec de vrais robots collaboratifs, ont été effectuées tout au long
de la theése pour évaluer le comportement de ’actuel prototype d’architecture par rapport aux spé-
cifications du SRA. Comme les taches de manipulation sont courantes dans de nombreuses applica-
tions industrielles, nous avons choisi de concentrer ces validations expérimentales sur des scénarios de
préhension planaires, orientés vers la tache. Ceci a motivé le développement et 'intégration de modules
d’apprentissage en A basés sur des démonstrations humaines pour 'apprentissage de la préhension.
A partir de quelques démonstrations, un humain peut enseigner rapidement et naturellement les em-

placements autorisés et interdits, en fonction de la tache et/ou de leurs propres préférences.

En outre, et en tant que perspectives d’intégration futures, nous discutons de la fagon dont les
techniques d’incertitude et d’estimation pour I'apprentissage profond pourraient étre exploitées au

coeur de ’architecture, pour les prédictions d’échec et pour I'apprentissage actif.



Abstract

Human-centric and flexible interaction in collaborative robotics is a key aspect of industry 4.0/5.0.
Collaborative robots can now assist in many tasks, helping to reduce musculoskeletal disorders risks
for human workers. However, the level of collaboration remains far from the natural one between two
human coworkers. Indeed, reconfiguration of collaborative robots still lacks flexibility and is often out
of reach of the everyday worker, who is neither a programmer nor a robotics expert. An ideal collabo-
rative robot should become a Smart Robotic Assistant (SRA) that can adapt dynamically its behavior
to the diversity of each situation, including tasks, environment changes, workers characteristics and
their preferences. Such SRA requirements lead to a paradigm shift in the way collaborative robots are

programmed.

Throughout this thesis, to fulfill SRA specifications, we have explored the design of a prototype
of cognitive architecture around the notion of Interactive Robot Learning (IRL). The robotic agent
can be taught, by leveraging prior knowledge, how to represent and carry out unknown tasks with
generalization abilities, according to workers preferences and characteristics. Teaching is done through-
out interactions, in a mixed-initiative setting, incrementally, and in a fast and natural way by non

programming experts.

Taking inspiration from complementary Al and IRL paradigms found in the literature, we have
highlighted the benefits of a hybrid architecture, interleaving symbolic and connectionist approaches.
With SRA specifications in mind, we chose to develop a new cognitive system based on relational rep-
resentations models and integration of specific learning modules based on deep learning. In particular,
we have focused on exploiting modularity of behaviors representations for the agent deliberative and
incremental learning process, which led to consider Behaviors Trees (BT) at the core of the behavior
model. It helps to learn a hierarchical level of representations, from real world moto-perception to

symbolic abstract representations.



ABSTRACT

Experimental validations, with real collaborative robots, were made throughout the thesis to as-
sess the behavior of the current architecture prototype with respect to our SRA specifications. As
manipulation tasks are common in many industrial applications, we chose to focus these experimental
validations on planar, task-oriented grasping scenarios. This has motivated the development and inte-
gration of specific based Al learning modules, leveraging humans demonstrations for learning grasping.
From a few demonstrations, workers can teach quickly and naturally authorized and prohibited loca-

tions concerning the task and/or their own preferences.

In addition and as future integration perspectives, we discuss how uncertainty and estimation
techniques for deep learning could be leveraged in the core of the architecture, for failure predictions

and active learning.
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In recent years, industrial robots have left their cages to become more collaborative thanks to better
sensors and higher level programming libraries. Yet, in real world scenarios, flexibility and interaction
abilities of robots remains far from the natural interaction expected between two human co-workers.
This new paradigm requires both better hardware and software. Particularly for the latter, artificial
intelligence is playing an increasing role to cope with environment variability and complexity of human
interactions. This chapter introduces the global context of the thesis. Section 1.1 first motivates this
work by drawing through an industrial collaborative perspective, the required paradigm shift to build
a Smart Robotic Assistant (SRA). Then, we introduce in section 1.2 the field of cognitive robots. We
emphasise the need of a cognitive architecture and the integration of several Al paradigms as the basis
of an SRA that learns in interaction with humans. This path has led to contributions to Learning
From Humans Demonstrations and Interactive Robot Learning, described in section 1.3.



1.1. MOTIVATIONS: CHALLENGES IN FULLY RECONFIGURABLE ROBOTICS
FOR INDUSTRY

1.1 Motivations: challenges in fully reconfigurable robotics for industry

In the ideal Industry 4.0, robots are expected to work hand to hand with humans. Collaborative
robots will have a predominant place, but humans will be at the center. It is therefore up to the robot
to adapt to diversity: each person, each task, each situation. This will be the generation of Smart
Robot Assistant (SRA). The road is still long and requires a paradigm shift and the development of
solutions allowing the robot to acquire all these adaptive capabilities in a way that is both generalizable

and explainable.

1.1.1 Classical industrial robots: one task specialist for robots programmer experts

The idea of building complex mechanical systems that can mimic animals or humans capabilities,
inspired humans centuries before the first computer. The first automata, which come from the an-
cient Greek mythological word automaton, were purely mechanical animated devices. For instance in
1734, Jacques de Vaucanson built one of the first documented biomechanical inspired automaton: the
Digesting Duck. It was a purely mechanical device, able to quack, to flap its wing, to process food
and that was programmed by a set of well-designed cams. These mechanical devices of course were

too limited to be more than curiosities, but they can be seen as precursors to modern robotics.

According to a brief historical overview in [1], industrial robotics evolved through four generations

which have been summarized in the timeline Figure 1.1.

Lo
Vo b
[ b you
H '
[ .

1 1 s
[ i Learn, do
I '
b I explain

I I

I

'

|
T A § T ; i i : i
! Industrial robot precursors : ! | Generalization of industrial robot Lo Classical industrial robot | ! Collaborative industrial robot ! i Smart interactive robotic agent !
: ! slectr ics i QOO ] n P ' H
! purely hydro-mechanical | electronics Lol In cages \ . close to human v learn and interact !
very specific ' ' in cages . better programming | ' high level programming ' H naturally with human '
specific tasks [ specific ] specific task H '
________________________________________________ ' g S S i g gy | g g Sy |
I ! I ! !
T T T T T
IN] AN N ) A
& N N N AN The : N . 5 - .
,g° First generation ,§ Second generation S) Third generation & Fourth generation bg Py Next generation
SN N

Figure 1.1: Evolution of industrial robotics.

A few decades after the Industrial Revolution, in the 1950s, the idea of automatizing industrial
processes with mechanical manipulators emerged and gave birth to the first generation of industrial

robots. In 1961, the first true commercialized industrial robot, Unimate, was introduced in General
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Motors factories. Many competitors followed but as purely hydro-mechanical devices, they were
specifically designed for a task. Therefore, despite many successes, their use was defined at the time

of integration as welding, pick and place or painting, and this was extremely difficult to modify.

With the development of electronics and computer science, the second generation of industrial
robots appeared (1968-1977). They consisted of basic programmable machines leveraging the comput-
ing power of microprocessors and programmable logic controllers to accomplish more complex tasks.
However, here again, because of robots diversity and low-level programming, changing from a task to
another was requiring a high-level of expertise, with vendor-specific language to update the controller.
Several improvements occur in these decades with the development of 6DoF manipulators and the use
of embedded sensors to measure joints positions and velocities. Nevertheless, because of their lack of

versatility, robots early successes were mostly focused on highly specific and redundant tasks.

During 1978-1999, the third generation of robots began to leverage human interaction interfaces
such as pre-programmed vision or voice commands. High-level command libraries were also developed
allowing more high-level control, such as point to point motion planning, in an offline or online context
with a computer. The use of more complex sensors such as cameras allowed to bring more adaptability
in well-controlled environment for mass production or where high-precision was needed such as in
automotive or spatial industry. These robots had in common that they were dedicated to specific

tasks, not very adaptable to changes and dangerous, therefore unsuited to interactions with humans.

A new evolution has led to the fourth generation of industrial robots started from the year 2000
and was marked by the release of a new kind of robot: collaborative industrial robots also called

cobots.

1.1.2 Collaborative industrial robots at the dawn of a new social industrial robotic context

With the development of industrial collaborative robots has emerged a new paradigm shift in the
way workers use and interact with them. While classical robots are used to be isolated from humans
and tailored to very narrow and repetitive tasks in a predictable environment, collaborative robots
evolve close or even in contact with humans. Their commercialization is a first step towards effective
human /robot interaction as they are now able to go outside of their cages, thanks to better sensors
and more accessible high-level programming libraries. For instance, force sensors at the different joints

of the robot can help operators to program a desired trajectory with hand guiding [2] and make them
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safe for human interactions. This makes it easier to program or reprogram robots in a simple industrial
setting. It also provides assistance in hard and tedious tasks that were previously beyond the reach
of robots. Hence, collaborative robots have social benefits, like reducing physical work-load, and thus
preventing many musculoskeletal disorders (MSDs) risks among human workers in a much wider set
of tasks. However, to collaborate with human workers in everyday tasks and to become smart robotics
assistants, collaborative robots have to be endowed with much higher abilities. The authors of [3]
surveyed industry on the general requirements for cobots. Although limited to Finnish industry, their
questions and analysis are relevant to industry in general. We compare in table 1.1 some of the main

asked requirements of cobots against classical robots.

Overall these results shows that cobots are likely to be used in companies of all kinds. Their
integration is still difficult because the environment, tasks and human agents are not taken into account
and are difficult to predict. Moreover, as the tasks can change, the robots need to be reconfigured while
the resources of expert robotics programmers remain scarce. In that context, robots manufacturers
and integrators have developed user interfaces with high-level libraries that non-experts can quickly
learn in order to program specific tasks. Yet these interfaces are far from natural communications
between two human coworkers and programmed tasks are often too specialized and not transferable
to other tasks.

Table 1.1: Paradigm shift in industrial robotics

Classical industrial robots Cobots requirements from [3]

highly repetitive, usually only programmed for one
specific task

multiple reconfigurable tasks by non-expert users

well structured and predictable environment unstructured environment

works on cages far from humans or other unpre-

dictabl t .
tetable agents speech,. ..) and better allocation procedures

works with or even in contact with other agents
such as humans : need of natural HRI (vision,

robots are unsafe

safer but can still be dangerous if bad behaviors
(need of explainable and interpretable behaviors)

1.2 Positioning in the broader cognitive robotics field

This substantial paradigm shift requires a cognitive system defining a Smart Robotic Assistant
(SRA) [4]. It should be able to interpret and react to human natural interactions for incremental

learning. This incremental learning should improve and leverage a knowledge base of modular skills
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that can be used, composed and transferred to a broad set of tasks, with adaptation to individual
preferences and characteristics. These abilities should be integrated in a decision-making process
which should be made as explainable as possible for the non programming experts, with high-level,
trustful explanations. Such a SRA could have a great impact for the next generation of collaborative

industrial robots.

To handle such complexity in a meaningful and understandable way, we need to implement an

artificial agent by leveraging several artificial intelligence and human robot interaction paradigms.

1.2.1 What is a collaborative artificial intelligence ?

Broad understanding of cognitive abilities: Defining Artificial Intelligence (AI) is a complex task with
many scientific, technical, philosophical and ethical ramifications, as there is actually no consensus on
what "Intelligence” is. Yet, progresses has been made in different sub-fields of Al and expectations
are higher and higher. This is especially true with robots, which are embodied agents as they act
in the same real-world environment as us, humans. In this setting, Al field usually distinguishes
several levels of autonomy: narrow Al, broad Al, animal and human level Al and General AI (AGI).
Narrow Al agents learn to solve tasks and generalize only in a very narrow setting close to training.
Broad Al agents are able to leverage prior knowledge in tasks far from training but still with domain
specialization. Animals level Al and especially human level Al can generalize and adapt quickly
across domains with very few data examples. General Al (or strong Al) is sometimes referred to the
human level Al or superhuman level Al in all tasks that could be done by humans. AGI is one of
the ultimate dream goal of some Al research. It has fueled several fantasies since birth of Al, such
as the concept of singularity, where an AGI could achieve consciousness, continuously improving until

creating knowledge and technologies beyond human understanding.

A measure of intelligence can be seen as the ability to learn how to accomplish tasks and to
leverage what was learned to new target tasks. Another interesting property of human intelligence is
that knowledge is built incrementally throughout their lives. Generalization and adaptation could take
root in this ability of autonomous continuous learning capabilities and from exchanging information
with others. It seems that this is done by leveraging a certain level of prior knowledge and common
sense knowledge built at the early stage of life. For instance, cognitive sciences and neurosciences have

shown that during their cognitive development, infants progressively build more and more complex



1.2. POSITIONING IN THE BROADER COGNITIVE ROBOTICS FIELD

knowledge of the world. Figure 1.2 taken from [5], illustrates the emergence of physical concepts that
babies learn, such as visual properties and acting abilities in the real-world. However, the amount
of required prior knowledge in this process is still unknown. This interaction takes place in a social
context which allows infants and other agents to exchange information to built a shared, structured
and abstract representation that is usually referred as common sense knowledge. While human level
AT is probably still far from reach, this encourages the development of broad Al agents which learn
throughout their lives, in an online, incremental and interactive way as we do. The implementation

of such robotic agents could be facilitated by the design of cognitive robotic architectures.

5 helping vs o—na false perceptual
f: track
acetracking l hindering [polntmg lbeliefs
biological I rational, goal-
motion directed actions
I causality gravity, inertia

: : conservation of
momentum
[ stability, support

shape

ofaject permanence o
| solidity, rigidity
[ natural kind categories
1:2:3:4:5:6:7:8:9:10:11:12:13:14 ?
proto-imitation
emotional contagion |crawling I walking

Figure 1.2: This figure was reproduced based on Figure 1 from [5] (Creative Commons Attribution 4.0
License). Based on psychological findings, it depicts general landmarks of how infants incrementally
learn to build a world model during their early cognitive development.

Cognitive architecture: Cognitive science is concerned with understanding the mechanisms of action
and thought, including the notions of perception, learning, knowledge, reasoning, decision-making
through deliberation. There is still no real consensus on human cognition, but for some cognitive
specialists such as Newell [0], it has appeared necessary to integrate different theories and hypotheses
into a unified theory of cognition. Several visions, based on symbolic and connectionist views have been
conceptualized and developed, giving birth to a large number of software architectures over the last
few decades. Among cognitive systems, called cognitive architectures some focus on psychologically
(ACT-R [7]) or biologically (SPAUN [8, 9] ) plausible features in order to study living being cognition.

Some are more pragmatic and focus on exhibiting cognitive abilities for practical applications (such as
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SOAR [10], SIGMA [11], DIARC [12]) without biological plausibility concerns. These approaches are
of particular interest, when one wants to build reliable and flexible agents, as they aim at explaining

how cognition allows us to learn representations and use them to better adapt in the world.

Cognitive robots as embodied cognitive systems: Robots are specific agents are they are embodied.
This means that in contrast to virtual agents such as conversational agent, they have a physical body
that interacts with the real-world and other physical agents. While embodiment is not a subject of
this thesis, keeping in mind the notion in the broader field is important as it has several implications.
Cognition is closely related to body capabilities. A striking example comes from passive dynamic robot
walker [13], which can mimic human walk without involving complex control and planning. Thus, the
kind of high-level representations and reasoning that an embodied agent can build, are likely to be
related to the complex interaction between its body, extension of its body (such as tools) and the
environment including other agents. For instance, a rigid bi-arm industrial manipulator is likely to
solve a storing task, in a different manner than a single rigid arm manipulator or than a compliant
soft robot. Different bodies can lead to different representations. Therefore a SRA needs to have a
good representation of its body and abilities, what is called proprioceptive perception. In the case
of industrial collaborative robotics, we want a SRA to share a certain level of common ground with
human knowledge and representations. This motivates the integration of humans in the embodied

learning process of robots.

1.2.2 Human in the loop for flexible interactive robot learning

Integrating human in the loop, is also of particular interest as it can lead to system with much more
flexibility and potential acceptability. For illustration, we can take the viewpoint of a human interface
designer. Human centered interfaces, including collaborative robots, must often rely on careful human
and task specific requirements. In traditional design, the designer has to think about a great number
of possible interactions situations between humans and the designed object. Of course, in practice this
assumption is unrealistic and limits are quickly reached. One striking visual example, coming from

user experience field and often used in design courses is illustrated in Figure 1.3.
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Figure 1.3: Image taken at ”Citadelle” park in Lille (59000), France.

An architect has defined a certain path walk in a park that people should follow. However, as
each people has preferences, they cross in different ways. Some follow the designed path but it can be
seen by grass wear that, actually, a lot of people just go straight to the shortest path while a fewer
choose a more isolated path on the left. This simple example can be generalized to every interactive
system and bring to light the need of adaptive systems that take people into account. For instance,
Global Positioning System devices (GPS) can be considered as such adaptive systems. For a same goal
destination but different people, a GPS can be reconfigured to favour high-speed highway or touristic
paths with several point of interests, while avoiding toll roads. It can also dynamically adapt its answer
to minimize travel time, with respect to environmental changes, such as traffic jams or a driver which
has not followed the suggested path. In industrial collaborative robotics, task achievements are also
likely to depend on specific tasks and people preferences. The design of an interactive collaborative
robot must be able to take them into account. But in contrast with previous systems, the complexity

of human-robot interactions prevents full a priori specifications, as stated in [11] (chapter 1.1).

Ideally, most of the robot capabilities should be naturally reconfigurable and extendable by end-
users. The designer builds a general task learner, whose learning abilities are directly leveraged by the
end-user for task adaptation. Such systems can be studied from complementary viewpoints in artificial
intelligence for human-robot interaction: learning from demonstrations (LfD) [14], Interactive Task
Learning (ITL)[15], Interactive Machine Learning, or the in our case the more specific Interactive

Robot Learning (IRL) [16].
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1.3 Towards a smart robotic assistant

1.3.1 Objectives

Overall the design of a SRA requires a multidisciplinary approach. In this thesis, we aimed at
building a core prototype of IRL for Industry 4.0 setting. We have fixed several specifications that
should be fulfilled. An IRL agent should be able to:

e reason and to have at least partial explanations abilities. An industrial collaborative robot must

be able to provide some insights to its predictions and its behaviors.

e interpret and react to human interactions in real-time. A robotic system should be able to

perceive and interpret quickly to humans.

e interact intuitively with non-programmers. The IRL agent should specifically understand human
natural communication means such as vision, speech, gaze, touch. Its explanations should be
understandable by non-programmers. This could help build more acceptable cobots and help

non-expert users to reconfigure the system in an intuitive way.

e learn quickly and incrementally a new task from low level to high-level abstractions. Carrying
out a task requires both knowledges at high-level for general understanding and at low level for
perception and execution in the real-world. This can be done by transferring knowledge and it

needs representations and processes that foster modularity throughout the system.

e leverage a prior knowledge base for tasks execution and learning online. We do not want to teach
everything from scratch to a robot. Therefore, an IRL agent should be able to leverage some

prior knowledge while doing and learning modular skills to solve tasks.

e adapt to preferences and specificities such as disabilities. While the IRL agent learns new tasks, it
must be able to adapt with a certain automation level its behaviors according to each individual

preferences and characteristics.

e handle uncertainty in moto-perception and its inner knowledge. We want the IRL agent to
know what it does not know. For that, the notion of uncertainty is important. As a measure

of confidence in its own actions, it can give the IRL agent, the ability to reason about its own
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predictions in order to decide to act or not to act. As a measure of curiosity, it can be a drive

for learning.

1.3.2 Contributions and thesis organization

This thesis has aimed at developing and integrating the main building blocks to create a cognitive
robotic architecture for collaborative robotics that is likely to get closer to the aforementioned specifi-
cations. Since pick and place related tasks are common in many industrial applications, we decided to
choose planar grasping as use-case for validation on real robots. A main part of the literature review
is detailed in chapter 2 which presents the main principles in the design of a cognitive architecture
and a state of the art on ITL and IRL. Specific state of the art is then enriched throughout the thesis
chapters. Chapter 3 details the current architecture we proposed, in terms of main building blocks,
interactive learning processes and modules organization at a high-level overview. We then further
detail in chapter 4, different skills learning paradigms that were investigated during the thesis. Learn-
ing grasping with real robots were used as a validation of specifications integration. Specifically, a
contribution to learning from demonstration and task oriented grasping was made by the development
of a specific module, developed in section B.3.2. Chapter 5, reviews the specific problems of learning
uncertainty with deep neural networks and introduces how it can be used in an active learning set-
ting. Chapter 6 describes the implementation of the architecture, integrated modules and validates
the overall thesis approach with a real robot. Finally, chapter 7 introduces ongoing perspectives and

future works.

Work done during this thesis was valorized through international publications:

e Contribution in learning by demonstration and task oriented grasping: [17]

e Contribution in architecture approach for interactive robot learning in industrial collaborative

robotics: [1§]

e An international journal article gathering, and updating the contributions with the last devel-

opments and validations for our ITL architecture, is close to be submitted.
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Chapter 2

State of the art on cognitive systems

Contents
2.1 Connectionist and symbolic approaches . . . ... ... ... ... 12
2.1.1  System understandability . . . . .. ... oo 12
2.1.2  Connectionism . . . . . . . . . .. 13
2.1.3 Symbolic . . . . . 15
2.1.4 Hybrid . . . . . . 16
2.2 Main building blocks of a cognitive architecture . . . . . . ... ... ... . 0L 17
2.2.1 Ontology as an explainable structure for components interoperability . . . . . . 17
2.2.2 Behavior model . . . . . ..o 17
2.2.3 Teaching complex behaviors to robots : Interactive robot learning . . . . . . . 23
2.3 Conclusion . . . . . v i i i e e e e e e e e e e e e e e e e e e e e 25

This chapter describes the main required components to build a cognitive architecture. An em-
phasis was made on various trade-offs between the connectionist and the symbolic view in artificial
intelligence in order to justify the development of an hybrid architecture for skill learning. Works on
interactive robot learning with human in the loop embrace many different research topics in learn-
ing, communications modalities, decision-making and acting in situated interaction. While there is
no consensus on the ideal cognitive architecture, several decades of research work led to core design
principles. Managing reasoning, planning and acting abilities at several temporal and abstract scales
is determinant for smart behaviors whereas modularity is key to knowledge reuse and for architec-
ture long term evolution. We position our work in the extensive taxonomy of cognitive architectures
developed in [1] and compared it to existing ITL/IRL against our specifications, motivating the devel-
opment of our own IRL architecture. Section B.2.1 introduces the two approaches one can adopt on
a cognitive systems: a connectionist and a symbolic point of view. We motivate the use of a hybrid
architecture to develop an IRL agent. Section 2.2 then focus on the main building blocks required to
develop a cognitive system and how such systems have been used for IRL.

11
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2.1 Connectionist and symbolic approaches
2.1.1 System understandability

Practical deployment of Al techniques in the industrial collaborative setting needs to have a certain
level of understandability to be trust. In [2], authors draw a comprehensive overview of eXplainable
AT (XAI) field. They emphasize the need of different levels of explainability depending on the target
audience, as an engineer or a non expert, and the importance of a conceptual taxonomy of understand-
ability. In particular, they distinguish interpretability and explainability of a model. Interpretability
is a passive characteristic of the model related to the ability to extract meaning from the model in
understandable terms for human. Explainability is related to an active characteristic of the model,
where the model itself acts to clarify its decision according to a specific audience. In an IRL set-
ting, ideally, we would like models that are both explainable and interpretable. In other words, after
making a prediction, if asked, the model should be able to give some insights on its decision process
(explainability) in a human understandable way (interpretability). In practice, there are two main

research directions in XAI literature [2]:

e Post-hoc explanations of fully black box models, where technical methods are developed to

analyze model predictions after training.

e Inherently interpretable or transparent models such as decision trees or hierarchical symbolic

models, which thanks to their structure, help managing complexity in an interpretable way.

In the IRL setting, we specifically want non experts to trust the robotic agent. To be accepted by
non technical users, we want the IRL agent to present in a common sense manner its prediction and
decision process. As human, we trust each other because we share some common world representations
and we are able to explain at high level our behaviors in an interpretable way. Understanding the
lower level brain processes is not mandatory. For instance, explanations requirements is likely to vary
between non user experts of the system and an engineer. Non user experts of our IRL would likely
expect qualitative information, in an everyday language form or as images about robot behaviors and
decision processes. In that direction, authors in [3] highlight that in the context of social robotics,
robots are likely to be trust by non technical users if they are given the ability to share their intents,

goals and beliefs. Allowing sharing information at that level is important, if we want a non expert

12
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being able to provide valuable feedback to teach the IRL agent. On the other hand, an engineer could
be interested in more quantitative information and a finer grained analysis of inner decision processes
and algorithms. This requires some hierarchies in the explanation abilities and therefore in the IRL

architecture.

AT agent systems can roughly be approached given two points of view: a top-down view where
a complex model starts from high level and relational abstract knowledge, where most of reasoning
and planing occurs, (sometimes refers as system 2 in the literature) to the sensory motor capabilities
of the agent. It has usually been the territory of symbolic Al which exploits symbols for internal
representations. At the opposite, bottom-up view is related to connectionist Al and aims at leveraging
the interaction of several simple models from which complex behaviors emerge (at system 1 level).
Both approaches have their upsides and downsides for building a robotics cognitive architecture. We
present some of them to justify a hybrid approach in our architecture. We illustrate in Figure 2.1 the
trade-off, in term of ease of implementation and representations, between symbolic and connectionist
architectures with respect to abstract representations, data efficiency for learning, and explainability

of the system.
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Figure 2.1: General hybrid architecture design

2.1.2 Connectionism

One of the most powerful tools used in connectionist approach are currently deep learning tech-
niques which are now state of the art in many domains [4]. They consist in building end to end deep

neural networks architectures which learn from data in a bottom-up, parallel process. Architectural
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design and stacking layers have shown improved performances in learning by leveraging higher level of
abstractions. Moreover, these networks are robust to noise provided that inputs are close enough to
the training data. Processing of rare cases, however, as a sample outside of the distribution of training
data is still an open problem. Thus, deep neural networks systems hardly generalize outside of narrow
AT tasks. These techniques are very data-hungry: learning from scratch often requires much more
data than what would be required for a human. Data efficiency is a serious issue when it comes to
online interactive learning in robotics as data is scarce with only one or a few available data examples.
Nevertheless, several techniques such as transfer learning and data augmentation can help mitigate
the amount of data. Finally, high-level learned abstractions are also different from those we learn as
human [, 5]. This leads for instance to failure modes very different from those of humans, as proved
adversarial examples. This lack of interpretability hinders understandability and the ability to enforce

high-level prior knowledge in the system.

In deep reinforcement learning, planning and reasoning seem hard. Indeed, in most of the current
deep learning models, the agent is not enforced to learn a causal model of the world. Thus, it is
difficult for the agent to explain why it did something, to reuse behaviors across tasks or to correct
biases. In the Natural Language Processing (NLP) literature for instance, GPT-3 [0], is one of the
largest and most powerful model. It has shown impressive results on standard benchmarks and even
few shots learning but they are also strong limitations when it comes to understanding with negative
biases in language generation tasks [5]. Such system do not learn as we do in a real-world, they only
learn from a big corpora of unimodal text data. Therefore it might not be enough to get a good

understandability of the world, which is multimodal.

Otherwise, in order to be acceptable and trustable, interactive robots have to explain their behav-
iors as their actions decisions can have annoying consequences. In a real industrial and collaborative
world setting, wrong robot actions could indeed be unsafe for humans, or damage goods including the

cobot itself.

In that context, several promising methods are currently investigated. Most XAl techniques explore
post-hoc explainability. For instance, some techniques try to produce examples to explain predictions
abilities. Given a test input, we can try to find the closest train input example to explain the predictions
[7]. Some works approximate locally a model prediction with more simple model such as linear models

[8]. Finally many techniques rely on features based on features visualization or attribution or by gener-
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ating input example based on layer activations [9]. While theses techniques improve interpretability of
models predictions, inner decision process of the model can still be hardly understandable, as learned
representations can be far from the one we learned. To learn more efficient, inherently interpretable
and transferable model representations, this require building architecture with more inner constraints
during training. For instance, in vision, authors in [10] build a specific deep neural network architec-
tures for classification, where the model has to learn images classification based on image prototypes.
Prototypes are patches examples, sampled from images of the train dataset, learned during the train-
ing phase and that explain well the network predictions. In deep RL, learning an embedding space for
skill representations [I 1] has shown improvements in data efficiency and for transfer learning. Other
works aim at learning more modular representation such as in meta-learning of distangled features
[12—14] or in bridging causal learning with machine learning [15] which could bring more abilities for
planing and reasoning to deep networks architectures. It is believed that these networks and learning

paradigms, given enough time and data, should be able to learn those high-level Al functions.

2.1.3 Symbolic

In contrast to connectionist approaches, many early advances have relied on the notion of symbolic
programming by modeling relationships and using meaningful symbols to create smart Al systems.
As they use symbols close to human language, their decision-making process is usually more concrete

and understandable (section 5.3 of [2]).

Symbols are also very practical for logical reasoning and to express causality at a high-level [16].
As explicit relations and hierarchical modeling are the bases of symbolic representations, this approach
allows building modular systems, which can generalize quickly and with much fewer data than current
connectionist systems. They can indeed exploit objectness and functional principles. This is especially
useful in the setting of IRL in industrial settings where robots are expected to be reconfigured quickly.
Nevertheless, whereas connectionist approaches can start from almost tabula rasa, symbolic ones re-
quire the system designer to build prior common sense knowledge from scratch. There is no consensus
of what common sense knowledge is and how to build it. This means that the system could embed
biases and misunderstanding about the world because of erroneous designed prior knowledge. When it
comes to low level moto-perception learning, symbolic approach quickly reaches limits as this type of

knowledge is often not verbally explainable even for humans or because the number of rules to describe
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simple behaviors can potentially explode due to low level variations in the task. Fundamentally, a
unified symbolic representation referring to the outside world through motor-perception is difficult to

construct. This issue is often viewed in cognitive literature as the "Symbol grounding problem” [17].

Finally in terms of understandability, a symbolic model that becomes too complex can also produce
hardly interpretable explanations for humans, such as very deep and wide ensembles of decision trees
(section 4.2.1 of [2] ). That means that we might need some trade-off between a model complexity
and its accuracy in the context of understandable IRL agent. These limitations hamper the symbolic
system’s ability to scale and take into account all the data variability and noise that a robotic agent

faces in the real-world.

2.1.4 Hybrid

A purely connectionist or symbolic approaches do not seem to be able to take account for all
the capabilities required by a truly interacting SRA. However, pros and cons of connectionist and
symbolic approaches are complementary. Therefore, more and more works exploit best of both world
paradigms in hybrid systems. For instance early symbolic architectures such as SOAR [18], ACT-R [19]
have progressively integrated or exploited connectionist components to handle more diverse situations
while recent one such as SIGMA [20] are built form start as hybrid. We can refer to [1] for a deep
overview of hybrid cognitive architectures. Most of ITL/IRL systems discussed in section 2.2.3 fall
under hybrid cognitive systems definition. There is no consensus, however, on how such hybridization
should be done [21]. Overall, it is essentially a matter of trade-off between the different views. Usually,
hybrid approaches use connectionist methods to process raw sensory data, while symbolic methods

provides reasoning and planning abilities at higher levels.

Hybrid models allow to build architectures that can leverage modular explainable and interpretable
models integrating more black-box models. Developing a fully explainable agent with good perfor-
mance might be impossible, as humans themselves after all, are not fully explainable agent. However,
decomposing knowledge in a hierarchical and modular way, even with specialized black box modules,

is likely to improve the overall understandability of the system.

The architecture we propose can be classified as hybrid. We have chosen to exploit symbolic struc-
tures for high-level representations and learning of tasks structure whereas a combination connectionist

techniques based on classical methods and deep learning are used for low perceptual learning. Both
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approaches are integrated in an interactive decisional process to learn and carry out tasks. Next sec-
tion provides the main building blocks for a general IRL architecture in terms of representations and

behavior models.

2.2 Main building blocks of a cognitive architecture
2.2.1 Ontology as an explainable structure for components interoperability

Many architectures relies on more or less complex ontologies. An ontology is informally “an explicit
specification of a conceptualization”[22] or, in other words, it is an object oriented conceptual repre-
sentation build around classes, attributes/properties, and relations between these concepts. Cognitive
systems often come with an ontology which provides a base symbolic structure that eases compatibility
between the different modules and sub-systems, or even across different independent systems (such
as other robots) [23]. An ontology allows to model and integrate expert knowledge over a domain.
Composed of explicit symbols, it helps in building transparent knowledge as required for our IRL.
However, building a whole ontology from scratch can be a hard task, as it requires programming
abilities to build and update the ontology on complex system such as robots. Therefore, learning the
ontology in an IRL setting by leveraging interaction principles with domain experts is a convenient
way to build this complex ontology for real-world use cases. Conversely, ontologies have been used
as bases to build coherently different kind of semantic memories, that the IRL agent can leverage to
learn, reason and act more efficiently [241]. Practically ontology can be seen as a graph knowledge base

that can be queried and updated depending on the current situation faced by the agent.

2.2.2 Behavior model

As robots are acting agents, we also need a behavior model that can exploit the prior and learned
ontology. To act in the real-world, an IRL agent has to develop the ability to generate relevant complex
behaviors. For this, it needs to be controlled to simultaneously plan and react while learning in an

online way.

Robotic cognitive architecture have progressively identified three main layers of interest |

, 20]

(see Figure 2.2): a functional layer tailored to action, perception and learning; a decision layer tailored

to planning or supervision; and an execution layer where the behavior model intervenes, for interfacing
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and coordinating other layers of the system according to the current task requirements.

e N

Deliberative ¢ Reactive to events from lower levels
(Planning/Scheduling)

i}

Executive o Converts goals to a sequence of actions

Upper level
e Time and computationnaly intensive

Intermediate level .
(Task level sequencing) o Interprets sensing as events

o Environment monitoring

Lower perceptions and actions
(Functional level)

o Sense/act processes
Below level

e Small time constants

e Need of modularity

Physical and Social
‘World

Figure 2.2: Robotics architecture can be represented through three layers of control.

Planning is used to predict actions effects and to search for the best sequence of actions in order
to reach a given goal, while acting consists in the executive parts. As the environment dynamically
changes during execution, due to agent own actions or external effect, it might need to re-plan and
refine its plan, given new and past information (see for instance section 2.6 of [27]). In order to account
for the tight integration between planning, acting and learning in an architecture, behavior models
are needed to encompass the descriptive part (the what) and the executive part (the how) of the skill

while being open and modular enough to have adaptation capabilities.

Adaptation capabilities should also be extended to preference learning and handling. Indeed,
cobots could interact with different human workers, having, even for the same task, their own char-
acteristics and preferences during interaction. It has been shown in [28] that preferences learning is
associated with higher confidence in robots motivating this integration in the architecture. In the
literature several methods has been used for specific tasks, such as the use of Markov Decision Pro-
cess (MDP) in closed scenarios [29], , implicit discovery based on user defined constraints [30] or on

bayesian networks (BAN) [31] for words to actions learning.

Finally, we can determine the following requirements for an interactive robot. The behavior model

should:

e be explainable. With respect with our specifications and section 2.1.1, the behavior of the robot
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should be at least partly understandable. Therefore, the behavior should be complex enough to
allow the agent to execute tasks but also simple and interpretable enough to be understood by

non-expert users.

e describe both the descriptive and executive parts of behaviors. The IRL agent must especially

be able to describe the what, why and the how of its actions.

e interface with databases of priors knowledge (such as users preferences). The behavior model
should allow integration of prior knowledge of different types such as rule based knowledge like
users specificities and preferences. For instance, this can be the dominant hand, or bio-metrics

information for security access in industrial restricted area.

e be interoperable with world model built from sensing and acting modalities (such as speech,
gestures, touch). As the agent builds a world model, the behavior model must be able to use it

with respect to the ontology.

e interface low level and high-level skills in a multimodal way. Learning skills need both information

at high and at low level and therefore the behavior model acts as a bridge between them.

e interface with learning techniques such as deep neural networks. As deep learning techniques
has emerged as very powerful tools for learning, the behavior model must easily interface with

those systems

e allow fast learning and strong generalization thanks to behavior reuse with composable and
parameterizable representations. In the IRL setting, learning is done online when interacting
with a human teacher. Therefore, we want learning to be fast while keeping good generalization
abilities. This can be done by exploiting parameterized modular behaviors, as actions template.

It allows, indeed, to reuse a learned behavior in several related task with minimal updates.

e allow refining actions in a reactive way. As environment is dynamic and can change under the
IRL actions or other agent actions, the robot must permanently alternate between perception

coming from sensory streams, learning, planing and acting in a deliberative loop.

In order to choose the paradigm to implement, we have reviewed the literature on ITL/IRL and

the behavior models they used. We based our comparison by updating the state of the art in [32]
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(part 2.) with regards to our requirements. We can distinguish procedural models that explicit the
temporal structure of behaviors and those that only map state to actions. For instance, in [33], use of
probabilistic models in order to learn a mapping between the best action command given the current
utterance. In [29, 31] authors extend the MDPs framework with relational activity processes (RAPs)
[35], giving them more relational representation power to model concurrent actions between the robot
and the instructor. They use these models to learn a RAP where instructor preferences are learned as
specific paths in the overall process. Communication modality is limited to touch screen interface to
send utterances to the robot. These techniques are interesting to produce efficient behaviors. However,
they roughly maps a state to the best action according to the learned policy without modelization
and understanding of the effects of actions. Moreover, because they rely purely on data driven with
gradient based learning technique, learning a new policy could take several trials even for simple tasks.
These limitations hamper the symbolic system’s ability to scale and take into account all the data

variability and data noise that a robotic agent will face the real-world.

Many more ITL use classical behavior models based on symbolic procedural models [31, 32, 36-61].
This is interesting because the symbolic nature of these models make them explainable, and it allows
them to learn fast (typically in a one shot manner) by leveraging the use of high-level abstractions. In
the simplest models, procedural knowledge can be represented as a mere sequence of primitive actions
(SEP) [14, 18, 56]. It eases the implementation of behaviors but it limits the modularity of the system
and the ability for action branching. Complex reasoning such as changing actions procedure based
on preferences could not be handle in this framework. Most ITL/IRL however rely on more complex
representations with skills than can be modeled in terms of preconditions which are conditions that
must hold true before carrying out the action, postconditions (or effects) which will be true action and
operating conditions which must hold true during the action. In contrast to simple action sequence
it allows more modularity and the integration with standard planning techniques. There are several
technical frameworks that were used in the literature. There is no widespread framework for IRL

architecture, but most of them share common characteristics, with slight nuances:

e Finite State Machine (FSM) and Hierarchical Finite State Machine (HFSM) [62]. A Finite state
machine defines a list of states and an explicit set of transitions between states. When complexity
of behaviors grows, FSM can become unmanageable due to state-space explosion. HFSM is an

evolution of FSM as one can now define one transition between set of states (superstates), rather
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than individual transitions for all sub-states. Thus, they are easier to design and implement, as

they reduce the state explosion problem in complex scenario. They were used in [(0)]

Action Script (AS) [63] (section Action Representation) specifically used in DIARC cognitive
architecture [59, 63, (4], is described as a compact way of specifying hierarchical robot behavior.
An AS is an expression «(py : t1,p2 : t2,...,Pm : tm)) where « is an action symbol and p; : ¢; a
parameter p; of type ¢; (such as a reference to a graspable object). Types are used as abstract
classes for generalization. Each AS contains a sequence of action ay, s, ..., a;; and is associated
with a set of pre-conditions, post-conditions and operating conditions. Each action «; can be an

action script or an action primitive which contains a single action.

Operator with production rules used in the Soar cognitive architecture (SPR) and with pre and
post conditions in Rosie ITL agent [16, 57, 65]. To achieve a goal, production rules conditions
are matched to the SOAR working memory and trigger other operators acting on inner memories

or on external modules for action.

Percept-Response (PR) which is essentially event-driven behavior. Used in [10], perceived events

directly associated to a sequence of actions. Modularity and refinement abilities seem limited.

Shared Plans (SHP) with preconditions and postconditions in [11, 12, 45] which integrates rep-

resentation of other agents to deal with behavior synchronization for collaboration.

Task Description Language (TDL) used in [66]. TDL is a language used to describe tasks as

sequence of actions or conditionals and are represented as a Petri Net Plan (PNP) [67].

CRAM Plan (CP) used in [68] with KnowRob [51, 52]. CRAM uses a custom language called
CPL (for CRAM plan language) based on Common Lisp for both planning and reasoning at task
level. It exploits KnowRob, a web knowledge base of skills and facts with reasoning capabilities

based on Prolog [69].

Some models do not seem to have been used in interactive learning setting but interesting
properties in terms of action refinement such as Procedural Reasoning System (PRS) [70, 71]

and Refinement Acting Engine (RAE) [27] (chapitre 3.2) in [72].
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e Hierarchical Task networks (HTN) [73, 74] used in [32, 47, 19, 54, 75]. HTN is a tree that
consists of primitive task nodes that can be executed directly and non primitive nodes (called
compound tasks) that can be decomposed and refined before execution. Different decompositions

are allowed and depend of specific methods.

e Behavior Networks (BN) used in [31, 38, 39]. A behavior maps a set of inputs such as sensor
information to a set of actions. A BN is a graph of behavior where each edge represent a
transition between different behaviors. Internally, every behavior is defined as a finite state
machine with an explicit start state (preconditions) and termination states (postconditions),

depending on whether the behavior reach or does not reach the goal.

e Network Abstract Behavior (NAB) [76] used in [37]. A NAB is a hierarchical representation
of Abstract Behaviours (AB). An abstract behavior is a process composed of several input
ports and output ports. Input ports consists of action status of the behavior, its preconditions,
sensory inputs, activation and inhibition levels by other behaviors. Output ports consists of
primitive action activation/deactivation, and postconditions status. There are different types of
preconditions depending on wether conditions must be valid during the whole action (permanent

preconditions) or can change during action (enabling conditions).

e Behavior Trees (BT) [77] used in [50, 60] and in our architecture [61]. BTs are introduced here

after and detail in section 3.1.4 of chapter 3.

In our architecture, we chose Behavior Trees (BTs) as the behavior model. BTs are tree based
models which allows a clear separation between the tree structure (the descriptive part as a control
flow of behaviors) and the implementation of the nodes (the executive part). They are heavily used in
the game industry over FSM that are prone to state explosion as behaviors become more complex. The
use of explicit parallel nodes also ease the execution of parallel processes as required in a multimodal
interactive setting. Failure handling is much easier and is at the core of the learning process in our
architecture (see section 3.3 in next chapter for more information). The hierarchical nature of BTs
eases the implementation of refinement methods: given high-level actions, it is possible according to
environment changes, to branch in a reactive way through different and more concrete sub actions.

This appealing properties in terms of behavior modularity make them a relevant alternative to HFSM.
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Furthermore, subtrees can be added or removed anywhere in the BT without modifying other compo-
nents, while in FSM such modifications implies to redefine all transitions leading to or starting from
the state. Finally, the flexibility of these models allows to extend standard BTs with preconditions

and postconditions nodes [78], which helps build representations for planning.

PR on its own does not seem to be able to propose refinement methods as it only maps one
perception to one behavior. In contrast, refinement methods are also at the core of the following
models: TDL, AS, CRAM Plan, PRS, RAE, HTN, BN. In Soar, SPR, thanks to sub-goaling is also
capable to provide re-planning ability. One drawback is that those models are either tightly integrated
within the underlying architecture, which make them hard to transfer to another one or because they
use specific language that are not easily integrable and interoperable with python and deep learning

frameworks (Common Lisp for CRAM, C/C++ for openPRS and SPR, java for RAE).

HTN and BTs are close in terms of representation as they both leverage a graph structure with
refinement abilities. HTN has traditionally been more focused on long term planning, while BTs, are
specifically designed for execution of behaviors with reactivity concerns. This of particular interest for
the online interactive learning setting of the IRL. Therefore, BTs might be not the most suitable tool
for long term planning. However, thanks to pre/post conditions extension, it has been shown that
they can be combined with proven traditional planners such as HTN planners [78, 79], bringing best

of both frameworks.

2.2.3 Teaching complex behaviors to robots : Interactive robot learning

Once we have an ontology and a behavior model we can organize an architecture for IRL. In the
literature, most IRL have particularly focused on learning high-level procedural knowledge through
the chosen behavior model. Usually low level perception such as object recognition and low level
motor abilities are given a priori and are a fixed knowledge. Only a few works in IRL have tackled
and demonstrated interactive learning of both high-level and low level skills requirements to solve a
given task, we focus on these works. In [54], the IRL agent learns action primitives by observing the
human during the interaction. In [10], author teaches pick and place tasks to a simulated tabletop
arm. The agent can learn online, through KNN classifiers, simple perceptual cues such as color,
size and shape. Similarly in [30], authors also teach online to a real-world manipulator, color, size

and shape of unknown objects. Visual perception is based on clustering objects based on color and
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depth. Nevertheless, learning online more complex perceptual features in an IRL setting is rare. Such
features can be location affordance and complex visual features learned by deep neural networks. Our
architecture aims at learning both high-level procedural knowledge about the tasks but also complex
low perceptual features necessary to solve a tasks. Another point of discrepancies concerns the way
behaviors are taught to the agent. A behavior can be taught in a one sided way where the teacher
explain sequentially all the tasks to the agent. This method is not always adapted as it puts a lot of
cognitive burden on the teacher. It is indeed not easy for the teacher to know what the agent does
not know. IRL can use a mixed initiative approach [31] with an emphasis on language as suggested
in collaborative discourse theory [32] or with active learning by demonstration [33]. In these settings,
during the interaction, the IRL asks the teacher for the missing knowledge it needs to carry out the
task. This enables a flexible, natural and incremental way to teach new behaviors to the IRL agent.
Finally, to our knowledge, preferences learning to adapt the behavior according to the human in ITL
architecture has rarely been demonstrated, such as in [29, 341]. As stated in ours specifications, a
robotic agent in an industrial setting is likely to be used by several different humans with specificities
or disabilities. Being able to quickly reconfigure learned behavior according to an identified human
is therefore an import feature we added in our architecture. As learning knowledge happens both at

high and low levels, preferences learning has also to take into account both of them.

We synthesize in table 2.1 a general comparison of different ITL/IRL agents and some cognitive
agent in interaction with humans and we show that to our knowledge, our IRL is the only one to
handle all our specific requirements. We point out interaction modalities leveraged by the agent, the
modularity and reusability of the learned behaviors, the ability of the agent to adapt behaviors to
preferences, the type of used robotics plateforms, exhibition of perceptual and procedural learning in

a mixed initiative and incremental way.
We list here the legends used in the table:
e v : implemented
e x : not implemented/no real robot

o ¥)! : speech modality

!These icons were used from open source repositories at and
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o ¥ gesture demonstration
e [J ! GUI, tactile or mouse

(]
° ﬁ\ L kinestetic demonstration, imitation

e o5l ease of behaviors composition, 7 behaviors composition is limited or not possible

o itu’&!: preferences learning,

e &': demonstration of speaker location and/or skeleton
e E3': written words (on keyboard)
e [J!: touch screen,

° r.‘ : mobile robot

° flz manipulator
. o ,f: mobile robotic manipulator

e @' humanoid torso, AIBO humanoid robot, multiple humanoid social robot such as iCub,

Baxter

2.3 Conclusion

In this chapter, we have developed a state of the art of IRL agents and cognitive systems within a
symbolic/connectionist view and how these approaches exhibit complementary upsides and downsides.
Exploiting existing I'TL was difficult, as most ITL/IRL were either platform specifics, not open source
or seem not maintained. Moreover, most IRL agents could not validate all our specifications in the same
and unique approach, in particular learning both high-level and complex low level features, related to
human preferences and with ease of integration of deep learning modules. This has motivated exploring
the development of our own hybrid cognitive architecture for our collaborative industrial use cases.
Eventually, our main objective and contribution is to integrate several complementary ideas from the
literature in a single architecture, to build an IRL exhibiting interactive and incremental learning

capabilities, not only at high-level but also at low level, with deep learning modules, while being able
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Table 2.1: Comparison of properties exhibited in cognitive and interactive robotics learning systems.
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to be quickly reconfigured according to human preferences. The next chapter (chapter 3) focuses on

the design of this hybrid architecture.
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Design of a cognitive architecture for
Industry 4.0
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By taking inspiration from the state of the art in IRL/ITL, cognitive architecture, and recent
advances in deep learning architectures, several design choices were made to build a base architecture
that could handle our specifications. This chapter illustrates and details the architecture organization
in terms of representation and decision processes at the symbolic level. We first focus in section 3.1
on the base ontology used in the system, for knowledge interoperability and high-level abstractions
for IRL. We further detail in section 3.2, the complementary inner symbolic memories of the system
that are used as high-level relational representations, grounded by connectionist learning components
to real-world data. Finally, we explain in section 3.3, the main deliberation processes used by the IRL
agent for learning a task structure and related skills by leveraging an incremental and mixed initiative
interaction process. This process is based on the concept of failure and success of goal-driven behaviors
while representations are leveraged to learn and take into account human specificities and preferences

during interaction.
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We detail in this chapter the main organization of our architecture, its representations and its

learning processes. Figure 3.1 provides a high-level overview of the architecture. It presents the

different representations and how they interact in order to build complex behaviors. Each block is

explained in this section.

ITL/IRL Agent (3.3)
(6) Action (3.1.4)
—] e steps @ - ® — generates behaviours from utterance and knowledge (as BT)
e steps @— — generates questions from failure type and knowledge
@ Grounding E Concept lcarnlng
v With contextual preferences
Working Memory and :{ Semantic Memory (3.2.1) } ' @ Prior
current model of the { Procedural Memory (3.2.4) }(— ; '
ived world (3.2.2) : j|  Knowledge
percerve o :{ Episodic Memory (3.2.3) }<— Ontology (3.1) !

(3]or (2)

Dialog

@ Anchoring

Cognitive Reasoning Module

Perception of
humans

Perception of the
environmental
working space

Proprioceptive
perception

Perception Memory (3.2.5)
with prior knowledge @

F

©

Human
>
(Instructor)

Working
Space

Perception based on
deep neural networks

Perception learning
with contextual preferences

Environment (3.1.2)

Figure 3.1: High-level overview of the architecture. The architecture consists of perceptual modules
based on connectionist approaches, symbolic relational representations, and a deliberative process for
interactive robot learning with human. The IRL process consists of two interleaved paths (a plain
path with circled number and a dashed path with boxed number) which are described in section 3.3.

3.1 Base ontology for our ITL/IRL

As stated in section 2.2.1, an IRL agent needs an ontology for the interoperability of its components.

We describe in this section the base ontology that our IRL agent leverages during the interaction to

express and to learn new behaviors, or relevant perceptual features with preferences. For now, the

ontology is quite standard as our current goal is more focused on the global architecture foundations

and validation. More complex ontology could serve as a basis, such as the DOLCE ontology [!]

leveraged in the IRL from [2] (chapter 4.2) or KnowRob [3] used in CRAM architecture [!]. Figure
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3.2 illustrates a simple ontology.

Qo o>
T GEDICIOIO)=
QDS G > &

w ShapeFeatures > GO

Figure 3.2: Base ontology example overview.

3.1.1 Robotic Agent as a goal driven agent

The IRL agent, represented as Self, has to solve tasks that are driven by Goals. A Goal can be
described as a first-order logic statement of predicates over the environment, that the IRL agent must
satisfy to validate the goal (i.e each predicate is considered True). For that, it builds a plan based on
its Skills. Goals are built from Utterances of humans and from agent inner representations in terms
of post-conditions requirements. The IRL agent has also proprioceptive abilities such as its Location,
joints or Cartesian state in space, that are leveraged to carry out actions. The IRL agent is also able

to Focus its attention on an Object.

3.1.2 Environment representation

The environment is seen as a continuous 3D space which is composed of entities. Among entities,
we specifically distinguish Human and Physical Object. Entities are given a Location (a 3D vector
coordinate) and a 2D surface Area. Moreover, it is possible to describe some spatial relations between
entities such as right of, in, left of. Those symbolic representations can be grounded to language and

real-world data by specialized connectionist modules for scene and human detection and understanding.

Human: The human agent is represented in the ontology as Human. Human is a complex, structured
class that consists of specificities such as Name or sub-parts like its dominant Hand, which help

represent the human characteristics.

A Human can communicate Utterances to the robot, equivalent to a set of rules, that should be
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interpreted and executed by the IRL agent to learn how to solve a task. Currently we make the
limited assumption that the human is an oracle. Therefore, it always provides unambiguous, trustful
information to the robot and there is no implemented corrective feedbacks [5] of previously learned

rules.

The Focus of the IRL agent can be triggered by a Human. Hence, it allows a shared and explicit

representation of which Object of the working space the human wants to work on.

Example of technical integration of connectionist modules to ground Human to the real-world are

given in the experimental validation in chapter 6, section 6.2.3.

Physical Objects: The world is assumed to be composed of salient physical objects. They consist of a
set of perceptual properties which are built from a stream of data provided by sensors. It assumes that
the IRL agent has prior segmentation capabilities that are used to discover proto-objects [6]. These
proto-objects are given by a Location, an Area, and can be tracked according to perceptual features,

and are used as object precursors.

For instance, by equipping an industrial manipulator with an RGBD camera, an Object can be
categorised from a detected proto-object according to different perceptual properties such as its Color,

Visual Patterns, Shape, Affordances, Locations, Areas.

More specifically, for an affordance, we use the classical definition with contextualization [7, &]: an
affordance aff is a triplet aff = (0;ca;e) where o is an object, ca a contextualized action, and e the
effect of the action on the world. A contextualized action ca is an action accounting for a context that
can be for instance preference learning. A contextualized action will be validated if the effect e are in

the relevant postconditions.

Learning connectionist components can be leveraged to ground those symbolic representations
into data. The IRL agent can then learn objects perceptual properties such as visual features and
affordance, given the context of the task and Human preferences and characteristics. An example
of technical integration of such connectionist modules will be given in the experimental validation

chapter (chapter 6), section 6.2.2 and 6.2.4.
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3.1.3 Utterances

An Utterance can be built from a verbal or a non verbal perceived interactions act such as speech,
pose, gesture. It is either interpreted as a Goal to achieve or as information for learning events. This is
done through the use of a communication protocol and semantic analysis. Connectionist components
are used to ground perceived interaction into a symbolic Utterance of words which are then further
mapped into Human’s intents. Each word is given a type called a Part Of Speech (POS) tags. Verbs
in sentences are related to the tasks and actions to carry out. Nouns are related to objects on which
to accomplish the task. Adjectives can refer to object attributes. Prepositions refer to temporal or
spatial relations between several objects. Each word in the Utterance has to be grounded to the
physical world, giving the IRL agent a better understanding. An integration example of connectionist

components is provided in the experimental validation chapter (chapter 6), section 6.2.1.

3.1.4 Skills and actions primitive

With respect to the comparison in section 2, we chose Behavior Trees (BTs) [9] as the behav-
ior model of our architecture. BTs were originally developed in the video games industry [10] for
virtual agents, commonly known as Non Playable Characters (NPC). While NPC evolve in known

environments, robots usually evolve in partially known or unknown ones.

Yet, BTs have several interesting properties which explain their growing use in control architecture
for robotics. They have been proven to generalize several well-known control architectures such as
the one based on finite state machines or decision trees [9] (chapter 2). Their graphical nature fosters
modularity and explainability, as each individual BT can be run independently or can be combined

with other trees. Furthermore, they allow to design reactive behaviors to unexpected events.

As such, they have been used and extended in various robotics contexts such as learning from

demonstrations [11, 12], mobile robotics [13], unmanned aerial vehicle [141] and more general robotics
architecture [15, 16]. In terms of BTs technical development, there is a growing amount of libraries
available in various languages [17, 18]. They can leverage different programming paradigms for their

practical implementations, such as multithreading with preemption, or asynchronous programming
[19]

Behavior trees (BTs) are composed of several (usually six) kinds of nodes illustrated in Table 3.1:
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a set of control nodes that helps manage the decision flow, a set of executive nodes that carry out
actions, a decorator node that helps build more complex control nodes such as retrying an action or a
subtree until success. Each node can return a status, usually success or failure. Control nodes return

success or failure according to the return status of their children and the rules defined in table 3.1.

In order to define complex modular behaviors, compatible with planning and reasoning purposes,
we have designed skills with BTs using the traditional precondition, execution, postconditions (also
called effects) model (see Figure 3.3). In [9], authors provide a detailed formal overview of BTs and
their use in robotics. The fallback node executes children in order (from left to right). If the first child
fails, the execution continues to the following child, which act as a fallback. If a child succeeds, the
fallback returns success without visiting the following child. The sequence node tries to execute all its

children in order. If any child fails, the sequence stops and propagates the failure back.

In our architecture, we specifically exploit BT's failures mechanisms as a high-level signal for learn-
ing purposes by leveraging the fallback node. This allows to incrementally refine or expand the tree
during the interaction of the IRL agent similarly to [20]. Transparency, modularity, and efficiency of
BTs appear naturally as behaviors reuse, update and composition can be done by leveraging graphs.
Finally, the parallel node is used for simultaneous multimodal sensing. For now, modalities are assumed
to have orthogonal effect on memory, so that there is no need for low level and complex concurrency
management. Postconditions help in checking if the skill execution is a success while preconditions
determine if the agent has the knowledge to carry out the skill. Another interesting property of skills
modularization with conditions is the fact that it helps the agent in doing active perception: the agent

only checks conditions that are relevant to the task, according to the previously learned skills.

A primitive action is a leaf in the overall behavior model. Therefore, it is directly performed
without further refinement by the robot. Examples of primitive actions are the opening or closing of

a gripper, point to point motion, sending questions to the human.
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Table 3.1: Control flow and action nodes in the standard behavior tree framework

Execution nodes Symbol | Success Failure
Action L] Execution is carried out Exception during execution
Condition O Condition is true Condition is false

Control nodes

Sequence — All children must succeeds One child fails

Parallel = More than M € N* children succeeds | More than N € N* children fail
Fallback (or Selector) | ? One child succeeds All child fail

Decorator ‘ & User defined User defined

sub skills \ ?2)

primitive action failure handling

Figure 3.3: Base skill model

3.2 Hierarchical, modular representations

Given our ontology, we exploit different kind of memories, useful for different aspect of task learning:

a Semantic Declarative Memory

a Working Memory

an Episodic Memory

a Procedural Memory

We leverage relational graph representations for modularity, better explainability and learning with

respect to our specifications.
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3.2.1 Semantic declarative memory

A semantic declarative memory is a kind of database of semantic expressions. It stores terms in a
way that is grounded to language. This allows to represent the high-level knowledge base on concepts
and facts. By querying the semantic memory, one can then leverage language to get access to the agent
knowledge. Figure 3.4 illustrates an example of semantic memory. Practically, this is implemented as
a semantic graph network, whose nodes point to the conceptual instances provided by the ontology.
This memory can be linked to other databases of facts such as humans specificities for preferences

handling.

Gue> O Gomnd

Human instances

Object instances

T "E Ontology I~

Figure 3.4: Example of a semantic memory database derived from the ontology

3.2.2 Working memory

The working memory is a short-term memory that provides an explainable representation tool for
learning and reasoning on the current situation. This is where links between the low-level perception
and the high-level symbolic representations take place. This enables to instantiate objects of the
ontology and to ground symbols with the current perception and belief of the agent. It is represented

and implemented as a semantic, relational graph network. This memory contains:

e entities that are categorized for instance as objects or humans and the robot (Self).

e predicates which are relations and properties over entities, for instances: spatial relations, colors,

affordance, neural networks features.
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During a session, each entity and predicate is given a unique integer Id when it is first created. This
Id allows to have a general cross-referencing system in memories. It is used as a standard querying

cue in the different inner representations.

Figure 3.5 present an example of the working memory representation when an object is detected

by the IRL agent.

A

id
139690255408272

pose
[ 77.37057872 146.24976046 436. 1 [336 300 64 180]

Figure 3.5: Example of the working memory derived from the ontology

3.2.3 Episodic memory

The episodic memory is a set of working memory episodes that are stored across the time according
to specific rules. Thanks to this memory, an agent can remember previous encountered situations and
decisions. It can also track objects properties within time. Defining the right rule to decide when
to store an episode is not a straightforward task as change in the environment can be the fact of
observable or partially observable external events. Ideally the agent should be able to detect these
changes and build hypothesis about the causal nature of these changes. In the current architecture
state, we store episodes between two actions of the robot. This rule is enough to limit the memory
requirements of the system while allowing some interesting temporal reasoning: bringing back an
object which was first taken by querying its location property. The memory is session dependent and

therefore it is erased when the agent is shut down.

3.2.4 Procedural memory

The procedural memory is a set of skills that are represented as specific BT's. As describe in section

3.1.4, skills can be related thanks to the modular properties of BTs.
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3.2.5 Perceptual memory

The perceptual memory is set of isolated or interacting modules based on connectionist approaches,
mostly deep learning, and traditional signal processing approaches specific to each modality such as
vision, speech, torque sensing. Humans are likely to expect that an IRL agent can quickly learn to
recognize and interact with various objects. Reaching these needs in terms of reconfigurability is hard

with classical deep learning modules because of their data requirements.

In that context, transfer learning [21, 22] is used as a way to leverage in a hierarchical manner
features learning, where prior deep networks are pre-trained on the sensory modality, in a supervised
or unsupervised manner. This first training is usually long, data-hungry and is done offline. Once the
network learns features, these can be leveraged by transfer learning to define new, specialized networks
that are more quickly optimized, online, with less data. This neural modularity has also a positive
side effect as it allows to better manage memory resources which can be limiting in some settings.
Figure 3.6 illustrates the main architectural principles in the perceptual memory. For instance for
vision modality, popular variations of pretrained neural networks can be used such as Densenet [23]

or MobileNet [21] .

E Hidden E
| Layers Discriminatives! 7 i
! features o~
; S ;g e
N . ’ .
Sensory ! : I
Input i ! —:>: :
— ! : :
i i =
: S !
| iTransfer ! !
| ! -,

oo ! Specific networks
General pretrained network
for downstream tasks

Figure 3.6: Transfer learning in deep neural networks is leveraged to allow fast reconfiguration and

ressource management. To simplify the figure, we represent here a dense network but any kind of
neural networks layers can be used if relevant for the sensory modality.
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3.3 IRL process with preferences

The interactive learning process is based on error handling called failure or impasse during the
program execution flow. It is built in the architecture by leveraging the tree structure and the on-
tological representations in the behavior trees framework. Figure B.7 illustrates more specifically the
decisional process that occurs during a skill execution. Here we mainly focus on the deliberative
interaction process. More details on the architecture implementation and the choice of sensors and
interaction modalities are given in chapter 6. Figure 3.7 describes two paths, one in plain line and
one in dashed line. Plain line path represents what happens when the agent has all the knowledge to
act, the steps ordering are represented by surrounded numbers. Dashed path represents what happens
when a failure occurs, the steps ordering are represented by boxed number. The interleaved execution
of these two paths is at the core of the mixed initiative interaction cycle during which the robotic

agent acts according to human instructions or learns from failure and interaction.

For the plain line path, the typical interactive cycle is the following: we suppose the agent has
some prior knowledge (@) The agent proprioceptive state, the working space and the instructor
interaction means are perceived by various sensors and deep learning perceptual modules (@) The
agent build a symbolic representation of its environment by anchoring perceived information to sym-
bolic representations and processes (@) according to its prior knowledge. It asks request for a task
(@) Once it has a determined human’s intents through semantic analysis (@), goal formulation
and grounding to memories (@) and behaviors selection (@), the agent tries to carry out the task
according to its skills (@) When executing its skills, the core decision-making IRL process browses
the agent’s knowledge by checking sequentially or in parallel the conditions ¢; (figure B.7) that are
grounded to the current perception and world belief. The agent determines if it knows how to solve

the task and exploits the corresponding BT before executing it.

When it deals with a lack of information (@), however, a failure is generated (), leading to build
a request from the interaction state ((2]). The TRL agent then make a request to the human ([3)):
learning the missing parts in the skill knowledge () A failure can be a lack of perceptual (the what)
or procedural (the how) knowledge. BT control flow lets us easily design failures handling as they
necessary happen in conditions nodes during the execution. We can thus easily and automatically

define a new branch in the BT that leverages the known information about the task, the current state
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of the world and the failure type, in order to have an explainable description of the failure properties.
Currently in our architecture, we rely on the mixed initiative teacher/learner setting to overcome

failures and incrementally learn perceptual or procedural features to complete new tasks ()

Humans’ identity and preferences knowledge are managed in by the use of a specific preconditions
before executing skills. In the current implementation, the IRL agent interacts only with one human
at a time and a human teacher must be identified by the system in order to link the teacher id to his
preferences. If the system does not know the human, while checking the precondition, the IRL agent
asks for some basic information such as the name of the human. A new branch is built in the BTs skill
representation. Branch selection is then governed by the current human identifier. The first branch
represents a default skill that is used to drive preferences learning. Each branch represents a preference
for a different person. Hence, while learning a skill, learned perceptual and procedural information are
personalized in function of the interacting human. This is done by leveraging specific preconditions in
the procedural skill structure. Therefore, once a skill has been learned, these preconditions allow the

agent to branch to the personalized behaviors.
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Figure 3.7: It is the same figure as figure 3.1 and is reproduced here for reading convenience.
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Figure 3.8: The failure handling process triggers interactive learning of symbolic or perceptual repre-
sentations.

3.4 Conclusion

In this chapter, we introduced the core design of our cognitive architecture for collaborative in-
dustrial robotics in the context of IRL. We have described its organization in terms of ontology and
hierarchical relational memories. This has led to semantically meaningful, high-level symbolic repre-
sentations for complexity management and better explainability of the systems behavior. The IRL
deliberative process leverages these representations to drive connectionist learning modules, through
a goal-driven and mixed initiative human/robot interactive process. Reciprocally, these connectionist
modules help anchor lower level data to the higher symbolic representations. By this way, the IRL
agent can incrementally learn new task and related skills both at high-level and low level representa-
tions. The next chapter (chapter 4) focuses on complementary machine learning approaches that have
been used during the thesis in order to develop, with co-authors, connectionist modules for the IRL

setting.
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Chapter 4

Complementary ML approaches for IRL on
planar grasping use cases
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As the IRL agent learns interactively a task and related skill structure, we saw that it needs to
ground its representations by learning from real-world data. In this chapter, we further detail for
that purpose, how the IRL agent can exploit complementary Machine Learning (ML) paradigms in
a connectionist approach. Following our ITL specifications, we want to exploit modules that allow
a fast online learning, from datasets built on the fly, during interaction. Because of the importance
of pick and place related tasks in many industrial applications, we focus our use-case on planar
grasping related tasks. We first present in section 4.1 the general ML approaches that we leveraged
for learning planar grasping relevant parameters. Then, we present two learning modules tailored to
grasping related skills. The first one, presented in section B.3.1, leverages a deep reinforcement learning
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approach from [l] for autonomous learning of bin picking. We adapted their work for an industrial
context. The second and most important contribution, developed in section B.3.2, presents a module
for learning task oriented grasping affordance from a few human demonstrations, with respect to our
IRL specifications. Individual modules were developed in collaboration with a co-author, Laurent
Bimont.
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4.1 Learning planar grasping
4.1.1 Theoretical general formulation

We first define some important notions in machine learning to better understand what we means

by learning from data and how this notions are used in the learning modules for planar grasping.

Dataset: Machine Learning (ML) techniques rely on the use of data, and require building datasets.
We usually consider an input domain X and a target domain Y. In the IRL setting, we aim to build
online predictive models based on a finite datasets Diygin(Xtrain C X, Yirain C Y'), which represent
the associative nature of the problem the robot is facing. These datasets can be a mix of prior data

and data collected, online, during the interaction.

Risk minimization: A ML model f, aims to learn a map from the input domain X to the target
domain Y, given datasets Dipain. From a very general point of view, this is expressed as a minimization

optimization problem.

We would like to be able to predict from x € X the value y € Y. For that we have to introduce a
loss (or cost) function £, such as the Mean Square Error (MSE), which measures a notion of distance
between predictions f(z) and the real target data y. Then, we can compute a theoretical quantity,
the risk R(f), which is the expectation of the loss function, evaluated for the model, given an infinite

amount of data:

R(f) = Ep(L(f(x),y)) (4.1)

A learning problem then consist in finding a model f which minimizes R(f).

J = argmin (B(/) (4.2)

Of course, in practice and especially in the IRL setting, we are only given a finite amount of data, a

training dataset Dyirqain(Xtain, Yirain) = (1,91), (Ziy Yi)s -y (Tny Yn). We can only search f* minimizing
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an empirical risk Rey,p(f) while targeting R(f) minimization.

Rengf) = -3 2(2(f ). (43
=1
fr= arg;nin (Remp(f)) (4.4)

When considering a parametric model such as in deep learning, we use specific family of function
fo parameterized by weights #. Minimizing the empirical risk consists then in finding 6* such that fy

minimize Repmp(fo).

0" = arg min Repp(fo) (4.5)
0

In general f is different from f*. Moreover, as f is trained on finite data, a valid solution for the
empirical risk minimization can be to overfit the dataset by simply learning a one/one correspondence
between Xirqin and Yirqin. Such solutions do not generalize to the real risk minimization. Many
techniques can be used to limit overfitting, and lack of data for real risk minimization improvements.

We discuss in next section some common ML paradigms we used to develop our learning modules.
4.1.2 Some common techniques

There are several learning paradigms in machine learning depending on the problem considered
(classification or regression) and how data is used to train the model (supervised learning, unsupervised
learning and reinforcement learning). Various principles can be used to improve data efficiency and

improve generalization of these learning paradigms, such as transfer learning and data augmentation.

Classification: Given data inputs x and a finite discrete number of classes y, the goal of classification
is to separate those inputs and assign a class to each one of them. In the IRL setting, it is linked to
categorize perceptual inputs x by assigning a meaningful, human understandable concept (y) to these

data.

Regression: Regression allows to learn and predict continuous representations. In the IRL setting,
it can be used to explicit non verbal concepts. For instance when grasping a part, the agent can learn
to categorize the object (classification task) or directly output a grasping location in the continuous

space (regression task).
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Supervised: In a supervised learning context, data is collected as pairs of inputs x and output targets
provided by a human. In an IRL setting, this is one of the most used paradigm. Target collection
is done through Learning from Demonstration (LfD) [2], therefore, these type of learning is costly in
terms of human resources. However, as stated in our specification, it is necessary to build a common
ground between humans and the IRL agent. This requires the ability for knowledge sharing between

humans and the IRL agent.

Unsupervised learning/Self-supervised learning: In an unsupervised learning context, data is col-
lected without explicit targets. This type of learning is cheap as the agent do not need supervision. In
that setting, data can be grouped by various similarity measures, depending on the nature of the data.
Similarity measures can then be used with unsupervised clustering techniques to classify the data
without supervision [3]. Learning can also be done through various specific techniques which apply
known transformations to the dataset before training a model to reconstruct original data, based on
the transformed ones. Ideally, the model learns relevant features leveraging structure in the data. As
no labels are explicitly given by humans, the agent learns in a self-supervised manner. The simplest
technique is to train the model to predict its input, without transformation. Such model is called
an autoencoder [1]. Another common technique is to mask part of the data to predict the remaining
data. For instance, in natural language processing, some models are pre-trained on text corpora [7]
by predicting hidden words in the text, taking into account adjacent words. In our architecture, we
do not exploit directly unsupervised learning but some modules exploit deep learning models which

were pretrained in an unsupervised fashion (see chapter 6).

Reinforcement learning: The last major ML learning paradigm is Reinforcement Learning (RL) [0].
RL allows to deal with a sequential decision-making and control problem and is well adapted for
robotics. Indeed, in the reinforcement framework, a robotic agent can be controlled in a partially
unknown environment without necessarily needing to know its dynamic model (see Figure 4.1). To
do so, an agent learns by trial and error after each action A; and in interaction with its environment,
the best way to reach its goal: maximizing the expected cumulative rewards, given reward feedback

R; from the environment when it arrives at state S;.

Of course, at startup, the robotic agent does not know which state will give which reward. Therefore

47



4.1. LEARNING PLANAR GRASPING

the agent needs to explore the world first in order to discover what is good or bad for him. On the
other hand, it also wants to maximize reward, and therefore have to ezploit its knowledge of the world.
This is referred as the exploitation/exploration dilemma. A common choice to deal with this trade-off
is the epsilon-greedy method where the agent can choose with a certain time-decreasing probability, a

random action instead of the best action according to the current policy.

Agent

Zji action A;
. Rt

B (Environment ——

' Sitt

Y N

state S; reward R;

Figure 4.1: Reinforcement learning base description

Transfer learning: Transfer learning [7, 8] is related to any techniques that help transfer knowledge
acquired in some domain to another domain. This is useful when a model has to be trained on a
domain with few data or costly access to data. In deep learning models this can be done between
closely related domains, by pretraining a model on a domain with rich available datasets and/or with
unsupervised techniques. By leveraging these prior learned knowledge, another model can learn quickly
on a new adjacent domain with much fewer data. For instance, by leveraging hierarchical nature of
neural networks, one can extract discriminating features from hidden layers of a model and use them

to train another model on a close domain.

Data augmentation: Data augmentation represents a set of techniques which consists in leveraging a
dataset, in our context collected during the IRL interaction, and prior knowledge about a task to create
artificial data. For instance, in visual classification tasks, classes are often invariant given orientation.
In that case, datasets can be augmented with rotation and flipping to account for this invariance. We

can also have some knowledge about sensors noise and augment data accordingly.

These different learning techniques are at the core of the connectionist components we can integrate
in the architecture. We develop in the next section how they were leveraged to develop planar grasping

modules.
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4.1.3 Planar grasping formulation

The planar robotic grasping problem aims to find a good set of grasping parameters, given an
image Z of a single object as input. For a vertical antipodal grasp, parameters (Figure 4.2) can be
expressed as the Cartesian position (x,y) of the tool center point of the gripper in image coordinate
system, the angle 6 relative to the abscissa of the image, the width opening of the gripper w, the height
h (representing the maximum gripper size) and finally the z coordinate of the gripper elevation, in
the frame of the local plan on which lie the object: g = (x,y, z,0,w,h). According to the task some
of parameters of g can be fixed. For instance one can fix the opening of the gripper. An example of

common metric to evaluate planar grasping quality is the Jacquard metric (see appendix A.1).

4.1.4 Base approaches in deep learning

Many approaches have been developed to address this vision challenge, based on various techniques
such as geometric calculation [9], SVM [10]. Many of them use an underlying deep learning model
for robotic grasping. Theses deep learning approaches can be split up into two categories: quality

evaluation of grasp candidates [ 1] and direct regression of grasping parameters [12].

In the case evaluation of grasp candidates, one defines a quality metric S depending on the grasp
parameters and the state of the object [11]. Such metric can be based, for instance, on the ability to lift
the object or based on force closure. Then, given grasp candidates, the idea is to train a binary neural
network classifier which predict, given the image, if the grasping candidates are good according to the
chosen metrics. Through a direct regression approach, several methods have been developed [13-15].

They mostly rely on end-to-end deep learning architecture predicting g from an image Z. Learning

Figure 4.2: Grasping parameters
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is usually done using online available datasets such as the Cornell dataset [10] (~ 885 images) or
the Jacquard dataset [16] (~ 22.000 images) ones. They are composed of vertical RGB views z € 7
of objects with several acceptable grasping parameters ¢;n.. When it comes to learning with few
data, such as in the online IRL setting, different methods can be used such as decreasing the input
space size, using data augmentation or/and using transfer learning to initialise the network. In [17,
18], authors reduced their input space size using only the depth from the RGB-D camera. Data
augmentation techniques increase the size and variance of the training set, while Convolutional Neural
Networks (CNN) pretrained on image classification tasks are leveraged for transfer learning. The very
rich ecosystem of image classication research provides access to a lot of high-performance architectures
(VGG [19] , Resnet [20], Densenet [21] ), pre-trained on large image databases (ImageNet [22], Coco
[23] ). Despite being trained on RGB images, we can use those architectures for the creation of CNN
processing depth images. In the grasping domain, many works have used this technique to create a

grasping predictor.

For instance, some co-authors developed a variant of the uni-modal architecture proposed by [11].
This architecture is an end-to-end approach achieving an accuracy of 88.4% on image-wise split of
Cornell Grasping dataset. The complete module, called GraspNet, uses VGG16 [21] extracted features
(Figure 4.3). Since several grasping parameters g,y are available for the same image, training can be

made with the minimzation of the mean squared error loss function:

L = min (gi_gpred)2- (46)
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Figure 4.3: GraspNet architecture

In the following section, we now explain how we deal with planar grasping in bin picking and task
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oriented grasping tasks by developing deep learning modules. For a comprehensive and more general

overview on the use of deep learning for grasping, one can refer to [27].

4.2 Learning autonomously bin picking

All tasks in an IRL setting cannot be explained easily in a procedural manner. In that context, we
would just like to fix the goal, constrained available actions and let the agent learns intuitively, how

to carry out this specific task.

4.2.1 Bin picking module

Collaborative industrial robots often use parallel-plates gripper for manipulating objects. However,
in industrial tasks, objects are often cluttered, in highly disorganized heaps such as in bin picking
industrial applications. This is a very challenging task because of occlusion, unknown dynamics of
objects and noise which limits the use of traditional grasping techniques. Traditionally, a CAD model
of a part is used in problems of part gripping. However, it is not always possible to have a model of a

part and it can be expensive to make one.

To overcome these challenges, bin picking techniques based on deep learning and reinforcement
learning approaches have started to emerges [26], to predict the best grasp given an image of the heap.
Yet, because parts are very close, there can still have grasp failures. A solution is to give more action
capabilities to the robot. For instance, the IRL agent can be allowed not only to grasp but also to
push objects. Pushing can help spread parts in the heap in order to ease future grasping. Authors in
[1] proposed to adapt deep Q-Learning [27], a deep reinforcement learning algorithm, to learn grasping
and pushing actions. They validated their approach on examples with toys. We developed a module
based on an extension of their work, presented in section B.3.1 and validated with screw and bolts as

can be found in an industrial setting.

The bin picking use case is a typical example of action where it can be hard to explain procedurally
how to carry it out. Actually, explaining in a procedural manner how to carry out such a task is hard
even for a human. We could hardly explicit why we would spread the heap in one way rather than in

another way. Still, we have some goal which is to pick all the parts.

Reinforcement learning fit well to learn such task in an autonomous way. Therefore, we reproduced
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[1] and have extended it experimentally to our industrial context. We addressed the bin picking
problems as an autonomous reinforcement learning strategy where the robot agent learns synergies
between pushing and grasping as illustrated in Figure 4.4. Moreover, the use of reinforcement and
deep learning allows the robot to learn to pick-up parts without the need of any CAD model. This is
important as collaborative robots can be expected to work with parts that were not modeled by CAD

specialists, especially in small scale industry.

(a) Heap of objects (b) Pushing action to spread parts (c) Grasping of an isolated part

Figure 4.4: Example of synergy between pushing and gripping. A pile of objects is presented none of
which can be retrieved by direct grasping (a). The robot will first push the pile (b) and then separate
the objects (b) and then grab an isolated object (c).

This work was valorized through a demonstration during the closing day of the European project
ColRobot ! in the presence of members of the European Commission, various academic partners and

industrial partners (Renault and Thales). A video of this work can be found 2,

The experimental setup was the following (Figure 4.5): we installed an industrial grade, high
definition depth sensor (a photoneo3D camera?®) on top of a UR5 collaborative robot equipped with
a Robotiq two-finger gripper. For industrial validation, we collected screws and bolts as objects of

interest for the bin picking operation and carried out the experiment in a warehouse.

The task is to catch all objects from a cluttered heap of objects present in the workspace. So, the

state is represented as an image of the global workspace using the affordance formalism.
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Figure 4.5: Hardware pipeline of the algorithm

4.2.2 Methodology

We reproduced the architecture of the network by implementing a DQN (Deep Q network) al-
gorithm, illustrated in the learning pipeline (see Figure 4.6). The DQN algorithm allows to exploit
neural networks to infer Q-maps (see outputs on Figure 4.6) from the state of the workspace. For a
given action, a Q-map associates to each pixel of the input image a value determining the quality of

the action at the considered location to maximize expected return.

As the state/action space can be large, following [1], we discretize the actions by considering 8
pushing acts, in the plane parallel to the working space, following 8 different directions. In the same
way, for gripping, we consider 8 actions corresponding to 8 different angles of rotation of the gripper,
always supposed to be perpendicular to the working space. The reward is sparse. Each action is
associated to a Q-map. A pretrained neural network is used for transfer learning in order to reduce

the amount of needed data.

In [1] for the gripping actions, if an object is picked up then the agent receives a reward of 1,
otherwise he receives nothing. Pushing actions are rewarded if there is a change in the image by
measuring the euclidean distance between the image before pushing and the image after pushing.

As grasping is more important that pushing to solve the task, pushing actions get a 0.5 reward. In
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practice, this has led in some training failures where the model optimized for the wrong objectives. In
some training sequences, the robot was likely to push all parts outside of the working space rather than
spreading parts for better grasping success. This is actually not surprising given the pushing reward
function; pushing actions which spread parts outside of the working space lead to a high distance
between successive images. In order to have better stability in the learning process, we investigated a
simple change of the reward function. As we want to spread object to have room for grasping, a better
reward function is to actually compute a metrics telling how well parts spread apart after pushing.
For that we compute objects dispersion, between two images after pushing. If dispersion increases,

there is a 0.5 reward, else their is no reward.

At each cycle, the action with the highest Q-value is selected among the Q-maps. In order to explore
environment, during the training phase, an epsilon-greedy strategy is leveraged with a decreasing
probability over training. After a few hours, the robot is able to pick-up and store a bunch of screws

and bolts without any CAD model of the parts.
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Figure 4.6: Pipeline of the algorithm
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4.2.3 Experimental results

The results presented in [1] are as follows: the completion rate (i.e., all objects in the workspace
have been removed) reaches 82.7% and the rate of pushing actions that were followed by successful
grasping is 60.9%. Once trained, we obtained close results in terms of performance. On our system, the
best performance is achieved after 2000 moves, with a success rate of 82%. On our implementation,
this represents a time of about 11h (20 seconds per iteration). We made several training and we

qualitatively observe less training failures with the updated reward function.

4.2.4 Module conclusion

In the end, the agent improves its performance over time and is able to adapt to objects it has
never seen autonomously. However, there are some limitations. During our tests, we noticed that the
robot can learn to catch coins in an unstable way depending on the first successes. For example, in
some cases the robot learned to take the screws by the net, which shows the difficulty of developing a
good reward function given a target goal. Indeed, taking the screws by the net was seen as a success
since the robot was indeed taking “something”. On the other hand, in an industrial context, objects
may have specifications and should be captured in very specific way according to the object and the

task. This motivates the fact that this type of learning is not enough.

There should be more interaction between the operator and the robot during the learning process,
so that the robot can learn to adapt to the specific needs of the operators, always with our IRL

specifications in mind.

4.3 Learning grasping location affordance from demonstration

With this module, we investigate the problem of an operator wanting to configure a robot to grasp
an industrial object in a specific area. Our motivation is to create a fast learner grasping system which
does not require any databases, CAD models or simulators, so that it can be easily reconfigured by the
operator himself, which is a non programming expert. The transfer of knowledge from the operator
to the robot is done through the most natural interaction: manual demonstrations of authorised and

prohibited grasping locations (Figure 4.7).

This work was valorized in the following conference article [25]. A synthetic video of presentation
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Figure 4.7: First, for a new object, the system learns from operator’s demonstration. After few minutes
of training, the system will be able to retrieve the demonstrated area on a depthmap.

4.3.1 Task oriented grasping

In task oriented grasping, the IRL agent faces different use case:

e grasp a tool by the handle or head depending on the task the robot has to perform.

e grasp an industrial object so that it can be placed in a chosen orientation as part of a pick and

place operation
e grasp a fragile object in a safe area.
The use of Convolutional Neural Networks (CNN) partly solves this problem since they offer great

results for object recognition and grasping [29-31]. However, they come with constraints such as the

use of specific databases (Cornell database [29] ) or huge training time [32].

4
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In Table 4.1 , we provide a summary of some task-oriented grasping works and compare them with

our approach in section B.3.1-I1.

Table 4.1: Summary of existing task oriented grasping works

Ref Data generation CAD model Observation
& simulator
133] From CAD model v Training took 6 hours on Titan X
GPU
[34] From simulation v 1.5' M of data are generated for
training
[35] ShapeNet and ModelNet40 v Bayesian Optimization
RGB-D  Part  Affordance
[30] Dataset Large dataset
) 20 minutes to reconstruct 3D map-
[37] From few views X . .
ping of object
. < 5 minutes of training on RTX
our 28]  From few demonstration X 9080 GPU
Task-oriented grasping uses the concept of affordance introduced by Gibson [38] which describes

parts of objects according to their functional utility. In robotics, this concept is used for gripping and

handling objects considering the work to perform afterwards [39, 40]. A task-oriented grasper can
be created using behavior grounded affordance [31] or spatial maps [39] for instance. The semantic
labels technique on images can also be applied [33, 11, 12] : using specic large datasets such as UMD

[36] or shape database [35], each pixel is labelled independently according to the part of the object to
which it belongs. Our work uses semantic labelization of images without databases, learning from a

few examples demonstrations.

Demonstration learning can be used to transfer knowledge from an operator to a system, in our
case to teach a robot a precise grasping location. Most previous works address this problem with a
trial and error phase via a simulator or directly on the real system (Table 4.1). In [13], the authors
propose a network architecture and data augmentation pipeline to design a controller able to grasp
very simple objects (cube, cylinders...) from a single demonstration. However, the controller can not
integrate important constraints into task-oriented grasping, like prohibited locations while defining
such constraint is relevant to increase safety by putting emphasis on what can be done and what

cannot be done.

In [37] authors learns a dense descriptors map for objects after building a 3D dense reconstruction
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model of the object. As a result, they obtain a semantic representation of the object allowing them
to grasp the desired location. In our work, we decided to work directly on images without any 3D

reconstruction techniques which may take time.

4.3.2 Methodology

We study the problem of performing an antipodal grasp perpendicular to a planar surface, on
a specific object for which an operator has taught authorised/prohibited grasping areas. A RGB-D

camera is mounted on the robot’s wrist and capture a fixed height top view.

We define a pixel-wise semantic segmentation pipeline, based on grasping from a few demonstra-
tions methods, where the input is a depth image of the scene and the output is the grasping parameters
g = (z,y, z,0) for grasping the object on the demonstrated area. Coordinates (x,y, z) represent the
tool-centre of the gripper, and 0 is the angle of the gripper in the plane. Grasping parameters are
directly derived from the image segmentation. We define a structure of our pipeline allowing fast
training from a few demonstrations. This problem creates constraints that motivated the design of

our pipeline:

e learn fast authorised /prohibited grasping areas

e generalize from a few demonstrations.

4.3.2-1 Training dataset:

Data Capture: Training is done directly from an operator’s demonstration without using any
external databases. The operator’s thumb and index fingers are covered with coloured pads so that
they can be easily identied by the camera. Grasping gestures on authorised and/or prohibited areas

are stored by recording the fingers coordinates (Figure 4.8 -a).

Then (Figure 4.8 -b), a 2D shape of the object is obtained from the binarization of the depth
image: the table’s pixels are set to 0, and the objects’ pixels (above the table) are set to 1. We note
it as I € {0,1}"*™ where (n,m) are the dimensions of the image. Labels are generated as images
L € {-1,0,1}"*™ where authorized pixels have value of 1, 0 for pixels without information and —1
for prohibited pixels. The use of 2D shape I reduces the size of the input space and contributes to our

goal of generalization. If necessary, several demonstrations of the same object in different locations
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are collected and stored as tuples (Input, Label). Note that demonstration can be done in several
ways like with a computer interface. We chose to use the operator’s fingers to benefit directly from
human-robot interaction without any hardware intermediate. In the remainder of this article, objects
with/without demonstrations (i.e. for which we trained or not a specific network) will be referred to

as referenced/unreferenced objects.

Data Augmentation: The number of tuples (I, L) is then increased by random translations and

rotations (Figure 4.8 -c). We also randomly erase some areas of the input image to give variability
in the training data, to reflect both the noise of the camera’s depth sensor and the objects’ shapes

variations with its relative position according to the camera.

In an industrial context, the solution also needs to be robust in a dynamic setting such as lighting
conditions and background variations. Since input 2D shapes I do not incorporate any brightness,
color and texture information, our pipeline is robust provided that effects of such variations on the

resulting 2D shape are reflected in the data augmentation.

) ’ -
Data Augmentation :

1 rotation and translation
e

| O

¢ s ° - N .
© Authorized Grasping location 2D shape (1)

@ Prohibited Grasping location
(a) (b) (c)

Generated Label (L)

Figure 4.8: Data capture and data augmentation pipeline.

4.3.2-I1 Network pipeline:

Architecture: To map I to L, we address this problem as a regression one, and use a CNN composed
of a partial pre-trained Densenet 121 [11] and a light CNN. The overall architecture is presented in
Figure 4.9 -b, activation functions are "RELU” except at the output where we use the "tanh” function
to distribute the values between —1 and 1. Dropout rates are set to 40% to prevent the network from
over-fitting and to generalize well to unseen data. This small convolutional network only has 6914
parameters and can be trained with our training dataset in a few batches using an appropriate loss

function.
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Output: Once trained, this network outputs a grasping affordance pixel-wise representation G €
[—1,1]"*™ (Figure 4.9 -c). To determine the grasping parameters g, we post-process the raw output
G. First, all pixels belonging to the table (0 in I) are set to 0 in G. Then, to determine grasping
parameters, we select the highest grasping affordance pixel (uy,v,) = arg max, ,) G(u, v) as the target
tool-centre point. The grasping angle « in the image’s frame is calculated by performing a PCA on
a sub-region of the input centred around the grasping point (Figure 4.9 -d). Finally, geometrical
transformations based on hand eye calibration are made to convert (ug, vg, &) to g. Therefore, the

robot can directly perform a grasping action in its workspace.

We also tried to address this problem as a classification one, where output GG provides class prob-
abilities (prohibited/neutral/authorised) for each pixel. Tests have shown lower performances than

those of the regression approach, with convergence issues in some cases.
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Figure 4.9: Overview of our CNN pipeline.

The Loss function (L) should allow our pipeline to generalize from a few demonstrations and to
classify a pixel-wise representation with unbalanced area sizes (as shown in Figure 4.8 -b , prohibited,
neutral, and authorised areas have different sizes). In order to accomplish this, we introduce a modified

version of the pixel-wise L2-loss function [15] by multiplying each pixel error by a specific weight:

1 nxm
Lueighted—L2 = pv—" ; Wi tabel; (pred; — label;)? (4.7)

The weighted factor w; jqper; is chosen as follows:
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Wi label; = |pred;| + A1 X (4.8)

1
Niabe;

where Njgper; represents the number of pixels in L containing label value label;. The first component
|pred;| in Equation 4.8 used to focus the network’s attention on interesting parts by focusing the
gradient descent over areas of interest. The second component is used to accentuate learning over
underrepresented areas of the label map by reducing the importance of large areas. The parameter A\q
balances the two components. The benefit of this weighted loss function is studied in section 4.3.3-1V.
To prevent overfitting, we use the L2-regularization loss L2 .4 applied on the weights and bias of the

network. The finale composite loss-function is:
L= [fweighted—L2 + )\2 »CL2 reg

We trained the network using stochastic gradient descent, with a learning rate of 10™#, a momentum

of 0.9, A\; = 20 and Ay = 5.107°.

4.3.3 Experiments results

To evaluate the proposed algorithm, we plan a series of experiments. We studied 5 points:

1. grasping referenced objects at the right area in different positions

2. the benefits of our modified Ly — loss function

3. the benefits of using both authorised and prohibited demonstrations

4. the ability of the algorithm to generalize to unreferenced similar objects

5. performing grasp in an environment composed of several unreferenced similar objects

4.3.3-1 real-world experiment:

We use a modified Python version of the Matlab Kuka sunrise toolbox [16] to control a Kuka
iitwa LBR 7 DOF robot equipped with a Robotiq 2F-140 gripper. The robot’s workspace is a 30 x 30
cm flat square. An Intel®Realsense™ Depth Camera D415 is mounted on the wrist of the robot.

Computations were made on a PC with an Nvidia RTX 2080 8Gb graphic cards and Intel®8 Core™
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i7 9700K 3.6 GHz CPU. The implementation was done in Python 3.6 using Tensorflow 1.13. We train
a network using online data augmentation generating 1600 tuples randomly. On average the training

lasts 250 seconds per object.

4.3.3-I Grasping in the right area:

We measure the ability of our network to find a specific grasping area learned during the demon-
stration phase. In Figure 4.10, we present our panel of referenced objects with the name of their

grasping areas. We focus on simple industrial objects.

Protocol: For each object, we train a specific network from 1 to 3 demonstrations of the same
authorised grasping area (with eventually a prohibited grasping area) under different object positions.
Then we evaluate the network’s ability to find those areas on 36 unseen positions of the referenced
object. The evaluation is done by placing the object at 9 points of the workspace and by rotating it
in 4 orientations (0°, 90°, 180° and 270°). A grasp is considered valid each time the object is caught

by the authorised area.

Results & Discussion: Our pipeline achieved good results (Table 4.2) with only one demonstration.

For bulb, screw and pliers, the grasp success in the authorised area is over 90%. For socket wrench
(81% and 86%) and cup (70%), the decrease in performance comes respectively from the geometric
similarity of the authorised/prohibited grasping area and a more complex geometry. Adding 1 or 2
demonstrations from other positions seems to solve that issue. For socket wrench and cup grasping,
results raised over 90% of success with 2 demonstrations. In these worst cases, we suppose that data
augmentation does not reproduce efficiently the different possible views of the shape of an object.
Prediction quality evolves depending on the input image. In Figure 4.11, we can see different cases
where the system outputs a good, an average and a bad segmentation of the object. Bad segmentation
occurs when the current shape is very different from the demonstrated one. It shows a limitation in

the generalization abilities of our system.
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Figure 4.10: Objects used for our experiment, with the name of grasping areas. Green colour (resp
red colour) denotes authorised (resp prohibited) grasping area. The yellow colour is used to illustrate
authorised /prohibited area and vice versa, depending on the task (for example the accessibility of the
screwing operation). For the pliers, two different authorised areas are tested separately

Object | Area 1 Numl:|)er of de2m0nstra|tion(s) .
Socket | handle || 81% (29/36) | 92% (33/36) | 94% (34/36)
wrench | head || 86% (31/36) | 97% (35/36) | 100% (36,/36)
Pliers handle || 97% (35/36) | 100% (36/36) | 100% (36/36)
head || 92% (33/36) | 97% (35/36) | 97% (35/36)
Bulb | foot | 97% (35/36) | 100% (36/36) | 100% (36,/36)
Cup | handle || 70% (25/36) | 92% (33/26) | 97% (35/36)
Screw | head || 97% (35/36) | 100% (36/36) | 100% (36/36)

Table 4.2: Results of our grasping test, percentage (number) of good grasps over the 36 unseen

positions
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Figure 4.11: Different segmentation quality results. The top images (cups) were trained showing
one authorised grasping area (handle). The bottom images (socket wrench) were trained showing one
authorised (handle) and one prohibited (head) grasping area. The left column shows bad segmentation
resulting in a bad grasping decision, the middle one shows average segmentation, and the right one
shows good segmentation of the object. For the purpose of illustration, outputs were reoriented and
resized. Those outputs were obtained using networks trained on 3 demonstrations.

4.3.3-II1 Benefits of learning both authorised and prohibited areas: We measure the benefits of

indicating both authorised and prohibited areas on objects.

Protocol: We train our pipeline with exactly the same training data than in section 4.3.3-11, but
without prohibited areas (by replacing -1 by 0 in the labels L), and we compare performances on the

same inputs.

Results & Discussion: In Table 4.3 and Figure 4.12 we present the grasping success rate for this

experiment. In parenthesis, we recall the grasping success obtained while training with both authorised
and prohibited areas. Performance is less than or equal to that of the experience in section 4.3.3-11.
The rate drop is particularly significant when only one demonstration is provided or for the socket
wrench caught by the handle. Indeed, for the socket wrench, the similarity between the handle and the
head makes a task-oriented grasping more difficult, by learning only from authorised area. This shows
a first relevance of indicating both an authorised and prohibited areas. This relevance is even more
important when comparing qualitatively networks’ outputs trained with and without a prohibited area.
In Figure 4.13, on the top row (without prohibited areas), the semantic segmentation is inaccurate
resulting in values close to +1 for undesired areas (instead of value close to 0). Indicating prohibited
areas is, therefore, a safety guarantee since their outputs tend to have negative values (bottom row).

As a result, even if the network fails, the robot will tend to catch an object in a neutral area rather
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than in a prohibited one, thus avoiding to damage fragile objects.

Object Area Number of demonstration(s)
1 | 2 | 3
Socket handle || 42% (81%) | 72% (92%) 75% (94%)
wrench (Figure 4.12a) | head || 77% (86%) | 97% (97%) | 100% (100%)
Bulb (Figure 4.12b) | foot || 77% (97%) | 97% (100%) | 97% (100%)

Table 4.3: Comparing grasping results with only one authorised area and with both authorised/pro-
hibited areas (in parenthesis)

Grasping success rate for socket wrench handle (36 trials)

100 Grasping success rate for a light bulb (36 trials
92 94 ] 0
41 100 100
- —— -
81 - 100 97 97 97 ’ ‘
g % 75 S
2 2 =
g s 90 2
g =
S eof ﬁ g
«\ 3
w0
801 77 . ‘
42
40 |_| 8 |_|
1 demo 2 demo 3 demo
1 demo 2 demo 3 demo

||:|Elw/ o prohibited demollTw/ prohibited demo |
[08w/o prohibited demo [l w/ prohibited demo |

(a) Results for the wrenches handle (b) Results for the bulbs

Figure 4.12: Illustration of grasping results with respect to the number of demonstrations

4.3.3-1V  Benefits of the weighted L2 loss function: We measure the impact of our weighted loss

function by comparing networks trained with our proposed loss function and with its non weighted

version.

Protocol: We followed the same protocol as presented in section 4.3.3-I1 and we only changed
the training method by setting all weights wj jape;, to 1 (regularization parameter Ao remains equal to

5.107%). Training is performed using 3 demonstrations and results are compared with the correspond-

ing ones of the previous experiment.

Results & Discussion: Table 4.4 highlights that adding our weights in the Ly cost function has

improved the system performances in every case. Moreover, without weights, we noticed that bad
behavior could occur: the training fails to focus on the important area (+1 and —1) and does not

converge to a solution. This experiment validates the relevance of our proposed loss function.
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Figure 4.13: Qualitative comparison between pipeline output. Networks were trained using 3 demon-
strations

Authorized
locations only

Authorized
& Prohibited
locations

| Object ‘ Area || Lo loss ‘ weighted Lo loss ‘
Socket | handle || 61% (22/26) 94% (34/36)
wrench | head || 86% (31/36) | 100% (36/36)
handle || 92% (33/36) | 100% (36/36)

( )

( )

( )

Pliers

head || 72% (26/36) | 97% (35/36)
Bulb | foot || 94% (34/36) | 100% (36/36)
Cup | handle || 75% (27/36) | 97% (35/36)

Table 4.4: Influence of the weighted Lo loss. Training was made with a set of 3 demonstrations.

4.3.3-V  Grasping similar unreferenced objects: We measure the ability of our algorithm to gener-

alize the grasping area learned for an object to another similar one.

Protocol: We used specific networks trained in section 4.3.3-1I to perform the test with similar

unreferenced objects (Figure 4.14). Similar objects were close from the referenced one varying in their

size and geometry.

Results & Discussion: In Table 4.5 | except for bulb 2, we can observe a good ability of the

network to generalize grasping area to other similar unreferenced objects with no degradation of the
performances compared to those obtained on the referenced one. By taking a closer look at the different

bulbs grasping affordance pixel-wise representations (Figure 4.15), the demonstrated knowledge is
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Figure 4.14: Similar objects used to test our algorithm generalization abilities

quite well transferred to bulb 1 with a precise segmentation of the unreferenced object. However, the
shape of bulb 2 is quite different from the one of the referenced bulb, and the segmentation gives an
inaccurate result, especially for the authorised area where grasping affordance values are low. In an

industrial context, if a grasp fails for a similar object, then a (or a few) demonstration(s) can be done

by the operator to train a specific network for this object (i.e.g bulb 2).

133

LI

Figure 4.15: Bulbs grasping affordance pixel wise representations. From left to right : referenced bulb
on which the training was done, bulb 1, and bulb 2.

Number of demonstration(s)

Object | Loc. T | 5 | 3
Smaller |\ a | 78% 81%) | 92% (92%) | 94% (94%)
wrench

E‘X hand. | 97% (97%) | 100% (100%) | 100% (100%)

Bulb 1 | foot || 100% (100%) | 92% (92%) | 97% (97%)
Bulb 2 | foot | 89% (100%) | 78% (92%) | 81% (97%)

Table 4.5: Ability of the Network to generalize to an unreferenced similar object. The network was
trained after demonstrations on a referenced object and the test was performed on unreferenced similar
objects. In parenthesis, results obtained in section 4.3.3-1I are recalled.
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Comparison with other works presented in section 4.3.1:. In some other works, the ability to

generalize has also been quantified. In [33] authors achieved a grasping success rate between 69% and

82% while in [31], authors obtained results between 71.1% and 86.6%.

In an industrial situation, those methodologies are not applicable since it would require the operator
to generate a 3D CAD model for each new unreferenced object. In [17], generalization ability was not
quantified explicitly and requires more than 20 minutes to create a precise 3D representation of an

object. However it requires more than 20 minutes to create a precise 3D representation of an object.

4.3.3-VI  Grasping several similar objects: Grasping several identical or similar objects laying on a
workspace surface is an important skill to the industry. It allows thereafter to place these objects in
boxes for example. We measure the ability of our pipeline to grasp several similar objects laying on a

surface while being trained with only one of them.

Protocol: Experiments are done on three different groups of similar objects (Figure 4.16) with
their corresponding specific network trained from 3 demonstrations. For each group, several objects
are placed in the robot’s workspace without touching each other. We let the robot grasp the objects
one by one until the workspace is cleared. When a failure occurs, we remove the object manually. We

repeat this process with other object’s configurations until we reach 20 attempts for each group.

Figure 4.16: The three groups of similar objects used in our test.

Results & Discussion: Table 4.6 shows performances slightly under those of individual objects. It

is a promising result as our proposed algorithm, despite being trained with one object in its workspace,
achieves relevant actions when several spaced similar objects are presented to it. We also evaluate
the grasping capacity of our system when objects are in contact with each other. However it leads to
failed grasping predictions because of very different 2D images. This highlights the limitation of our

2D representation in a cluttered environment, for example in the context of a bin picking task.
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Bulbs ‘ Socket wrench ‘ Screws
19/20 (95%) | 17/20 (85%) | 19/20 (95%)

Table 4.6: Grasping accuracy results for groups of similar objects

4.3.4 Module conclusion

In this work, we have shown that a fast reconfiguration of a grasping robot is possible with one
(or a few) demonstration. Furthermore, our proposed pipeline is able to generalize grasping strategies
for several unreferenced similar objects. Our method combines a reduced state space, a light CNN
and a weighted loss function. It is able to quickly learn from few data without requiring any datasets,
CAD models or simulations. Our CNN network pipeline fulfills our initial motivation of creating a
task-oriented grasping system that can be fastly and easily reconfigured by an operator. Moreover, the
learning of prohibited areas, makes this process safer. Thus, it shows a good potential for integration

in an industrial context.

This work is a powerful module that the IRL architecture can leverage for better teacher/learner

interaction and for affordance location learning.

However, it presents limits that suggest further work. The selected input space limits our algorithm
to simple 2D shapes. Working directly with the depthmap from the RGB-D camera will allow to
consider more complex 3D objects and cluttered environments. In addition, the semantic segmentation
of objects might be erroneous in some cases. Detecting these failures would allow to ask the operator

for help when needed in a continuous learning scenario.

4.4 Conclusion

We have presented two modules in this chapter that leverage different learning paradigms according
to the IRL situation. Given some reward function and constrained actions, we can teach an IRL agent
how to carry out some tasks in an autonomous way. This is useful when teaching the procedure is
hardly explainable. However, the behavior of the agent depends on how well the reward is defined,
which is a hard task. Moreover, the learning duration can be quite long (several hours) for an online
IRL setting. We have studied and developed a learning from demonstration module [28], which can

learn fast and from a few natural demonstrations, object grasping affordance, with respect to our initial
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specifications. A comprehensive experimental validation of this module has been made highlighting the
interest of this approach. Finally, each module can be used for specific needs, and could be integrated
and even coupled in the wider architecture in order to carry out more complex tasks. Integration
and validation of the specific learning from demonstration module is discussed on chapter 6. But at
first, we can observe that without a notion of known and unknown, these models will predict grasping
location even on objects, or objects views far from the training ones. This could lead to potential
wrong predictions and thus, to risky behaviors. In order to improve robustness, modules should also
be able to account with the uncertainty of their predictions, which is investigated in next chapter

(chapter 5).
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Chapter 5

Learning under uncertainty
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Until now, we have described skills learning abilities in terms of symbolic and connectionist compo-
nents. We showed that a lack of symbolic knowledge about a task, in terms of procedural or perceptual
information, leads to a failure and triggers a mixed initiative, interactive learning event. However, this
is not sufficient as perceptual modules, such as modules based on deep neural networks, can be brittle
when facing new situations. As a consequences, failed predictions can lead to erroneous decisions.
The TRL agent needs to know the level of certainty or uncertainty in its perceptual and reasoning
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processes. This is a key indicator to endow the IRL agent with more insight about what it knows,
what it does not know and what it is not certain about before taking a decision.

This chapter first develops in 5.1, through examples, the main principles of uncertainty that can be
used for an IRL agent. We further illustrate in 5.2, several estimations techniques to derive uncertainty
in learning modules. A focus has been made on the main underlying uncertainty principles and the
state of the art for deep learning techinques. Then, we introduce how this uncertainty can be leveraged
for decision-making (section 5.3) as a base for active learning (section 5.4). We specifically introduce
in section 5.4.3, how uncertainty can be integrated in the IRL architecture by extending the behavior
model. Uncertainty integration for active learning in our architecture is an on going work, which is
further investigated in terms of short term perspectives in chapter 7.
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5.1 What does uncertainty means ?

5.1.1 Stochasticity and data shift

Some machine learning models, especially in deep learning, give only prediction values without
relevant tools to assess for the quality of these predictions. However, many physical phenomena are
inherently stochastic and the lack of experiments and therefore of training data can lead to under-
confident or overconfident predictions. As in most machine learning problems, we can distinguish

categorical classification problems and regression ones.

For classification, a model should output a label with its confidence. For instance, asking a deep
neural network to predict a result with 100% of confidence for a "head or tails” when flipping a coin
is meaningless. We would like the network to be uncertain about its prediction and ideally, to output
a distribution of possible outcomes (1/2 — head, 1/2 — tails). In a general way, for a classification
problem, uncertainty should output a prediction distribution over the classes. By this way, confidence
in a predicted class, as well as particular confusions with other classes, can be highlighted. Even if
softmax outputs of a classification network looks like such a distribution, they are known to be prone
to miscalibration and overconfidence [1]. Consequenlty, they can not be trusted as a confidence and

uncertainty measure.

For regression, a model should output a mean value with its variance which can be interpreted
as a confidence interval around the predicted value. For instance, in our grasping location learning
module, we mitigated risks of grasping in forbidden area, by learning a separating neutral area. Even
in that case, the self-occluded cup example presented in previous chapter (Figure 4.11), shows that
failures are still possible when the agent has not seen enough demonstrations, for some of the objects.

The agent needs a way to estimate the relevance of the predicted authorized grasping location.

An TRL agent is most likely, especially in its infancy, to face things it does not know rather than
things it does know. This is related to the fact that most of the world is unknown and that new
perceived data can be far from the known world. In the machine learning literature, it is referred as

Out-of-Distribution (OOD) robustness.

Currently, most deep learning systems assume an Independent and Identically Distributed (IID)

data setting. Therefore, the network assumes test data domain Dy.s and train data domain Dypgn
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are taken from the same distribution: p((x,y) € Diest) = p((x,y) € Dirain), with y the target value
and x the input features. In classification problems, y is a class label commonly represented as the
vector of the theoretical softmax output (1 for the class of the input, 0 for other classes). Concerning
regression, y is the vector(scalar) of real output(s). Same distribution assumption, however, is regularly

broken as in most real-world settings, Dy is a mixture of a train and OOD domain Dpop leading
to p(($7 y) € Dtest) = p((xa y) € Dirain U DOOD) 7‘é p((x, y) S Dtrain)-

p((z,y) € Diest) can differ from p((x,y) € Dyrain) in various biased ways that can appear si-
multaneously. This has resulted in an active fields of research in OOD robustness specification and

mitigation. We list below some of the main types of dataset shifts found in the literature:

e Covariate shift occurs when distribution of features p(z) changes but p(y|x) is fixed. Often
covariate shift occurs when x causes y. For instance, in classification based on vision, this can
be related to a change of view, noisy data such as illumination of a previously learned object:
the raw image or computed features vary while the object label remains the same. In the case of
a regression problem, such as in our module for affordance location prediction, a change of light
or view change features x and therefore might affect prediction. This kind of shift, if detected,
can be mitigated by collecting relevant data such as more examples or data augmentation as

proved our approach in B.3.2.

o Label shift or prior distribution shift [2] occurs when distribution of label p(y) changes and p(z|y)
is fixed. Often label shift occurs when y causes x, so when we try to learn an inverse model that
is not stationary across time or space. Such setting has been studied a lot in medical setting
for disease diagnostic modelling. For instance in [3], authors argue that one can train a binary
classification model p(z,y) to predict the diagnostic y to have flu based on symptoms x. The
distribution p(y) of flu prevalence (the number of case at a given time) varies throughout the
year, but as symptoms are caused by the flu, p(z|y) does not change. However, p(y|z) does
change, as given the same symptoms z, it is more likely to have flu y during an epidemic (i.e.
p(y|x) increases). Therefore, if the model has been trained on data outside of the epidemic, it
might underestimate flu prevalence during the epidemic. In our case, let’s imagine an ideal IRL
agent observing the behavior of a human to induce, among several tasks, the current procedure

he is working on. For instance, it could learn an intent classification model, predicting the task
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intent y based on some observed features x such as facial expressions and human movements.
Because a task procedure is well-defined, one can assume that the task specification causes x
and that p(z|y) is mostly fixed. However, across time, tasks relative frequency, and thus p(y),

can change according to demand or supply chains.

e Open-set-recognition issues occurs when new classes appears at test time. An overview on recent
advances in this field is presented in [1]. For an IRL agent, for instance, it occurs when new

objects are learned.

e Subpopulation shift occurs when a model has to generalize at test time to new sub-classes that
were not seen in training [5]. For instance, if a network has been trained to recognize different
tools, but that the dataset contains some biases such as only blue screwdrivers, the model might

underperform when trying to predict the class of a red screwdriver.

Standard deep learning networks are not efficient and usually overconfident given these shifts [1],
especially for deep neural networks using ReLu activation function [6] (almost all modern architec-
tures). Overall, a good uncertainty estimation and taxonomy could help in quantifying the confidence
that one can have in the IRL architecture predictions. Moreover, it could serve as a quantified basis
to help cope with those biases. From the human perspectives, it could improve safety guarantees
and acceptability which are strong requirement for industry. From the IRL agent side, it is a way to
question and reason about its own behavior in a flexible way. In the rest of the chapter, we will focus

on dealing with covariate shift and open-set-recognition as they are the most studied shifts.

There is an extensive literature on uncertainty taxonomy (see [7] for a comprehensive survey). We
briefly describe the main characteristics of an uncertainty metrics. First, in general, uncertainty 7 of
machine learning model can be decomposed in two types of uncertainty, aleatoric (1,) and epistemic

(Te) uncertainty.

An intuitive way and quite general way to obtain this decomposition, in the supervised learning
context, is through the traditional decomposition of mean square error into bias, variance and noise [8,
| (equation 5.2). Given a finite dataset D(x,y) with x the inputs and y labels, let’s assume that there
is some data generative process h and a zero-mean noise N(z) such that y = h(x) + N(x). Ideally,
we would like to approximate h by learning a function f given a rich family of function from some

hypothesis space. In case of deep learning it is a function fy parameterized by weights 6. The classical
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training method is to minimize the mean squared error (y — fg(x|D))? for the training dataset and to
expect generalization for test data. Because of the noise, of limitations of the chosen family function
and of non infinite data, learning h is near impossible in real wold use case. In general, the learning
algorithm can produce many fy that can be compatible with the dataset D. We can then compute the
mean predictor jy between different model solutions given the data and decompose the error in terms

of uncertainty.

py(x) = Eolfo(2)|D] (5.1)

The total expected error of the model given the data is then computed as [3, 9]:

E|[(fo(x) — y)*|D] =E| fo(@) = pp() + s (2) = h(z) = N(@)]*|D

——
|4 B N
= E[V?D| +E[B?D]+E[(N -0)*D] (5.2)
——— —_— —
Model variance Biases Variance of noise

Let’s illustrate uncertainty estimation with simple examples. We first develop the case of classifi-
cation which has been the most studied. The different method are extensible to regression task which

is briefly illustrated in section 5.2.5.

For classification let’s exploit the traditional two moons distribution datasets with an additional
out-of-distribution data cluster. We based this work on the following libraries: uncertaintypaselines
Edward2 [10], Tensorflow Probability [l 1], which add high-level probabilistic layers to Keras and
Tensorflow [12]. The dataset was produced with scikit-learn [13] utility tools (Figure 5.1a presents the
dataset). There is an additional OOD cluster that the network cannot see during its training phase.
We train a neural network based on ResNet to classify the dataset in two classes using a distance aware
learning method to reproduce work presented in [14]. This method is explained in section 5.2.3 and is
use here for illustration. The method is called Spectral-normalized Neural Gaussian Process (SNGP).
This network is compared with a traditional ResNet deep network that is not trained with uncertainty

handling in mind. Once training is done, we can plot for all points in the plan, the class probability

1
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p and the corresponding predictive uncertainty p(1 — p) (variance for a Bernoulli distributed random

variable). It is then possible to analyse how confident the network is about its prediction.

Figure 5.9a, and Figure 5.9b represents respectively the probability prediction and the predictive
uncertainty for the ResNet network with a traditional training procedure. Figure 5.9a shows that as
the network has not be trained with dataset shift awareness, it simply learns to separate the plan in
two regions. Unfortunately, Figure 5.9b shows that the network, is also highly overconfident in its
prediction, except at the separation boundary. It is no surprise that the third cluster is classified with

high confidence as belonging to the blue moon (upper moon on the Figure 5.9a).

On the other hand, Figure 5.1d, and Figure 5.1e illustrate the probability prediction and the
predictive uncertainty for an uncertainty aware based on a residual network ([14]). We can observe
in this setting that now the model learns to classify data by proximity and not by merely cutting the
plan in half. Therefore, even if the third cluster is still classified as belonging to the blue moon, it is

now associated with an uncertainty which increases as the cluster get farther from the moons.
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(a) Two moons distribution dataset with an OOD clus-
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(b) Two moons classification: standard predictions for (¢) Two moons classification: standard uncertainties
a trained ResNet [15] for trained ResNet
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(d) Two moons classification predictions with the (¢) Two moons classification uncertainties with SNGP
SNGP (Spectral-normalized Neural Gaussian Process)
[14] uncertainty method

Figure 5.1: Behaviors of deep learning classification models given the two moons distribution dataset
with an additional OOD cluster, with and without uncertainty aware leveraged techniques.
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5.1.2 Aleatoric uncertainty 7,

Aleatoric uncertainty refers to the inherent stochasticity of physical phenomena. This is the ir-
reducible part of uncertainty as it is not linked to IRL agent representations but it is purely related
to nature. In other words, even with an unlimited amount of data, it is not possible to reduce this
uncertainty. For instance, aleatoric uncertainty about the coin flipping problem could no go below 1/2.
In the case of the two moons distribution dataset, the aleatoric uncertainty, denoted 7, is associated
with the variance of data around the true moon represented in dark blue in Figure 5.2. The network,
whatever the amount of train samples, will never be able to predict a sharper representation of the
moon without better sensing or without additional assumptions such as the physical nature of the

noise.

-2 -1 0 1 2 3

Figure 5.2: Two moons classification with an uncertainty aware model (here SNGP). We illustrate the
aleatoric uncertainty 7, and the learned epistemic uncertainty 7. given the two moons dataset.

The notion of aleatoric uncertainty can even be further decomposed in heteroscedastic and ho-

moscedastic uncertainty given a model.

Homoscedastic uncertainty: it is the part of uncertainty that stays constant for different inputs and
through time. For instance aleatoric uncertainty in head and tails does not depend on the coin and

date. It will be the same for all instance of coins on earth and at every time.

Heteroscedastic uncertainty: it is the part of uncertainty that depends on model inputs and can vary

with time.
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Aleatoric uncertainty can be learned from data. For instance, in [16], author learn heteroscedastic
aleatoric uncertainty in visual segmentation tasks as a loss attenuation by computing the following

loss for the neural network fy:

1 1 1
LNN(z,y,0) = Nzi]\ilm”yi — folzo)” + 5108 o(xi,0)%, where 0° =7, (5.3)

By minimizing this loss over weights 6 and o (which is an output of the network), they are able

to learn implicitly heteroscedastic uncertainty in various visual segmentation tasks.

5.1.3 Epistemic uncertainty 7,

Epistemic uncertainty on the other hand is the part of uncertainty that is linked to the inner
model ignorance, not to the physical underlying process. Therefore, this uncertainty can be reduced by
collecting more data and by updating the model. In Figure 5.2, we represent the epistemic uncertainty;,
T. which is associated with the predictive uncertainty of the model. Far from the moons, aleatoric

uncertainty is low, therefore epistemic uncertainty can be supposed equal to the predictive uncertainty.

5.1.4 Total uncertainty 7

The total uncertainty for an input x is then 7(x) = 74(x) + 7e(x). Ideally, as the IRL agent collect
more data, it should be able to reduce its epistemic uncertainty 7.(z) to zero. The only remaining
uncertainty is then the irreducible aleatoric uncertainty. If the predicted physical phenomenon is

deterministic, then 7,(x) ~ 0. If it is stochastic, then 7,(z) > 0.

In Figure 5.3, we can observe as expected that epistemic uncertainty is reducing, during training
over epochs, around data close to training domain while increasing on unseen points. As expected, at
the end of training the epistemic uncertainty is almost zero close to data, only aleatoric uncertainty

remains.
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Ll M

2 1 0 1 2

Learning epochs

Figure 5.3: Two moons classification: evolution of prediction (top) and uncertainty (bottom) with
time (learning epochs)

5.2 Uncertainty estimation methods

Representing a neural network uncertainty is an open topic in deep learning. A good uncertainty
metric 7 should be least intrusive by limiting the amount of architectural modification. Ideally, it
should not decrease the performance and additional computation requirements should be minimized.
In the literature, several approaches are being investigated to learn such models. The main techniques
are based on models which rely on external measures and the ones that learn their own uncertainty.

In the latter, we can further distinguish :

e bayesian based learning techniques

ensemble methods

distance aware model

external measure
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5.2.1 Bayesian and variational inference methods

In deep bayesian learning methods (illustrated in Figure 5.4), one model fg(z) of parameters 6 is
explicitly built to learn an output distribution p(y|z,6) of mean u(x) and variance o(z)? based on a

given input x € R™ (see equation 5.4. This is done through different variational inference techniques:
(@) = Epglay) (p(yl2,0)) and  7(z) = o(2)® = Epgx,v) ((yl2, 0) — p(2))?). (5.4)

Standard variational inference techniques for deep learning [17], such as stochastic variational
inference or sampling based on variational inference, learn a Gaussian distribution at each weights of
the neural network, see Figure 5.4a. If the target value y is a vector composed of N components, the
uncertainty metric is given as the mean value of the variances over each components o;: 7 = % Zfil 0.
With a mean p and a standard deviation o, the amount of required parameters is doubled compared
to standard networks. Therefore training such networks, can be computationally difficult as it requires
much more data and memory. For this reason, some works learn a distribution only at last layer, see
Figure 5.4b. This kind of network is then referred as proper scoring networks [18]. In this approach,
each neuron on the output layer learns a Gaussian distribution N (p;(z),02(x), with 7;(z) = o2(x)
output both, for each component i of target vector y, a prediction p;(x) with its uncertainty aiz. As
each neuron learns a mean and a variance, it doubles the number of outputs parameters. Training
of these Gaussian distributions is done using the negative likelihood loss function (equation 5.5).
Learning log(c?) is sometimes prefer to o2 for numerical stabilities.

1 N

og o2 — 2
£, (), 0(a)) = 5 S 2870 4 (- P) (5.5

n=1
These methods require a change of architecture, but many other approximation methods, like

Monte Carlo dropout for instance, have been developed allowing to minimize architecture changes.

Monte Carlo Dropout method, proposed by [19] makes this approximation by using Dropout layers
[20]. Dropout layers are already widely used in standard neural architectures to prevent overfitting by
deactivating a neuron with a probability p. Performing several inferences with active dropout layers
on the same input z* is equivalent having an ensemble of networks sharing some weights in contrast
to ensemble presented in 5.2.2 and is illustrated in Figure 5.5a. This technique is easy to implement

since it requires minor changes in the original architecture or no changes if dropout is already used.
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Reported performances of this approach in the literature are not even. While working well in some

cases as regression task [19] or image segmentation [21], this approach does not perform well in others
like in some active learning scenario [22] or classification’s failure prediction [23]. An updated version
called Monte Carlo Concrete Dropout [24] consists in learning the dropout parameter p during the

training process. Each dropout layer is replaced by a continuous concrete distribution relaxation
allowing to compute gradient and to tune parameter p. This technique requires to replace common
Dropout layers by custom ones, however the learning scheme remains unchanged. It has been shown

to perform slightly better than standard dropout in uncertainty estimation [24].

In complex tasks, dropout approach might be too simple and underperforms. More recent works,
such as SWAG (Stochastic Weight Averaging-Gaussian) [25], take a different approach by exploiting
the space of solution during the gradient descent optimization process. The key idea of SWAG is
to leverage iterations of Stochastic Gradient Descent (SGD) via a specific learning rate schedule [20]
based on Stochastic Weight Averaging (SWA). Learned weights at the end of each iteration are seen
as samples from a Gaussian distribution. We illustrate this idea in Figure 5.4c. Authors store the
network weight parameters § and the average weights parameters fgy 4 and weight covariance 6 over
different epochs. The weights covariance matrix is then exploited to provide a measure of uncertainty.
In that setting only 6 is learned during training, and 6 can easily be computed as a moving weights
average. In practice, that means that computation overhead is low. Memory requirements is tripled

but additional variables, § and @ can be stored outside of the GPU memory according to authors [27].

Dropout methods are less memory and computationally intensive than standard variational infer-
ence methods. However, as several forward passes are required to estimate uncertainty, the inference
cost can still be prohibiting in high rate demanding tasks such as in vision. Most recent approaches,
like SWAG, reduce the amount of computational power while still being competitive but it requires

learning an architecture from scratch, preventing the used of most of pretrained networks.

5.2.2 Deep ensemble methods

In [27], authors proposed a method based on a pure ensemble approach (see Figure 5.5b). From
different weight’s initialization, they trained an ensemble of networks using the same architecture on
the same data. Trained networks have different weights values ;. The idea is that in the prediction

features space, regions with fewer training points should have greater uncertainty, which is reflected in
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(a) Illustration of a bayesian deep network. In this
setting gaussian parameters are learned for each indi-
vidual neurons.
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(¢) Mustration of the SWAG principle. After each
epoch, SGD can get stuck at some boundary in the
optimal parameter plan. By computing means and co-
variance of networks weights, one can get closer to the
optimal parameter while having a notion of weights un-
certainty.
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Bayesian deep network at the last layer

(b) Illustration of a bayesian deep network where only
the last layer learn an output distribution.

Figure 5.4: Bayesian methods for uncertainty estimation of deep neural networks
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greater variance in the predictions. Prediction and uncertainty estimation are then straightforward to
compute using equation 5.4. Additionally, they also proposed to use proper scoring networks by mixing
ensemble with the bayesian techniques seen in previous section 5.2.1, where the network learns its own
uncertainty during training. Finally, by gathering T proper scoring networks within an ensemble,
prediction and uncertainty can be computed as the mean and the variance of a mixture of Gaussian

distributions [27]:

1 X1 1 X
- N Z ( Z Utn + Mtn - :u_n) with = T Zﬂt,n . (5'6)
t=1

n=1 t=1

5.2.3 Distance aware uncertainty model

The last type of model estimates uncertainty by computing a relevant distance between the features

space and the input space or between samples in the feature space.

Learning a distance between the feature space and the input space: In this first approach, we want
the measure to be low if the test data is close to training and high in the contrary. In [28], authors train
a deep auto-encoder in visual navigation tasks, to reconstruct data seen during training. Denoting
x — f(x) the input reconstruct from latent learned features, we want the lowest discrepancy between
x and f(x) on the training data i.e. (f(Z¢rqin) = Tirain). The chosen discrepency function 7(f(z) — z)
can be simply the euclidean distance over images as features are the outputs. Test inputs close to
training are likely to have a low reconstruction error while OOD data are badly reconstructed and
have a high reconstruction error. Therefore, authors exploit this error as a proxy of the network

uncertainty.

Learning a distance in the feature space: Another approach is to learn directly a latent features space
where, if predicted features are close, then input are also likely to be close. Conversely, if predicted
features are distant, then input features are distant. This motivates training distance aware uncertainty
models, which can quantify the uncertainty of new data, by preserving a notion of distance between
points in the input space and points in a latent features space. Figure 5.6 illustrates the general

principle:
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(a) Mustration of dropout principles. Colored neurons,
without arrows, represent the set of neurons that are in-
activated during inference with probability p; for each
layer i.
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(b) Tlustration of deep ensembles

Figure 5.5: Ensemble methods for uncertainty estimation of deep neural networks
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Formally and ideally, for a predictive model f, such as a neural network, for every input z1, xo,

we would like to have:

killzy — 22| features < ||f(x1) = f(22)|linput < k2l|z1 — 22|| features With k1, kz € R and
(5.7)
|[-|input and ||.|| features, respectively a distance in input and features space

In that case, features that are close in the input space are more guarantied to be close in the
output space. In other words, we would like to reduce the class of learnable function to bi-Lipschitz
functions. While this setting is interesting in terms of uncertainty estimation and for safer learning, it
reduces the expressive power and consequently might affect the accuracy of the network if the problem
to solve is more complex than what the learned space can represent. Authors in [29] reviews some
related techniques in the area of safe robotics and control. Authors notably show that integrating
Lipschitz deep network with reinforcement learning and more traditional techniques on control theory
help in building safe and more general controllers. One can indeed build a controller with a trade-off
between safety guaranty, provided by stability analysis, and prediction accuracy provided by Lipschitz-
constrained deep networks. Moreover theses methods are especially suitable for out-of-distribution
detection as shown in the simple two moons distribution dataset presented in 5.1. One of the of
the current advanced method on distance awareness at current writing is SNGP (Spectral-normalized
Neural Gaussian Process) in [30]. SNGP combines standard deep neural networks, which do not handle
uncertainty by default, with traditional gaussian processes which are the standard when it comes to
uncertainty estimation in classical machine learning. This last approach can adapt to several existing
residual architecture by applying spectral normalization (SN) to the hidden residual layers and by
replacing the dense output layer with a Gaussian process (GP) based layer. Spectral normalization
detailed in the paper, allows a residual network to be distance preserving and therefore bound || f(z1)—
f(@2)||input relatively to ||z — x2||, as required. Features output can then be fed to a distance aware

GP that model uncertainty.
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Figure 5.6: Illustration of the general principle of distance aware based model. SNGP is specific case.
Plotting does not come from real data and serve just as an illustration.

5.2.4 External measure

External metrics can refer to methods that compute uncertainty based on a posteriori exploitation
of the trained neural network architecture and without modifying the network structure. Various
approaches were developed. Figure 5.7 shows the most simple method, temperature scaling, illustrated
in Figure 5.7a in comparaison to standard classification networks (Figure 5.7b). In [1], authors have
shown that, while adding more layers to a deep networks improve accuracy, it also affects the network
uncertainty quality. Typically in classification tasks, the softmax outputs will result in either overcon-
fident or underconfident prediction for certain classes. A not intrusive method, that do not assume
to change the neural network architecture, is to add a temperature scaling parameter in the softmax
output. Once the model has been trained, a parameter 7' is trained on a validation set such as the
confidence ¢; = softmax(z;) become ¢; = softmaz(z;/T). Parameter T helps smooth output confi-
dences leading an overconfident network to be less confident and reciprocally. Such external methods
also are likely to better estimate epistemic uncertainty than other methods as they are less sensible
to misspecification and bias of the model [31]. A disadvantage is the need to train two networks with
different dataset which can be difficult in low data setting. The second network also add computing
and memory overhead which can be limiting in complex robotics systems which leverage several deep

learning modules.

88



5.2. UNCERTAINTY ESTIMATION METHODS

Output Last )
layer layer (logits)

= Gn = softmax(z,)

2.
) qs = softmax(zs)

2
= softmaz ()
g = so ftmax ()

—% g3 = softmax(F)

= q3 = softmax(zs)
22 z

+—— @2 = softmax(E) 2
L RN ¢2 = softmaz(zs)

—Z—1> q = softmaz(Z) 2
— 1 = softmax(z1)

Calibrated softmax outputs. T is
learned on a validation set after

. e the network has been trained
Standard trained classification network

Standard trained classification network

(a) lustration of temperature scaling to correct confi-
dence (b) Ilustration of standard classification outputs

Figure 5.7: Illustration of temperature scaling against standard classification

Competitive techniques approaches learn uncertainty based on an external model (Figure 5.8). In
[32], author learn a trust score based on nearest-neighbours methods. Model can also be a deep neural
network (Figure 5.8a). For instance, in [23], authors proposed to add an external deep neural network
called ConfidNet trained to predict the True Class Probability of a prediction. This methodology seems
promising since it is simple to implement and to use. Moreover, it has seen competitive results against
other existing methods in classification problems. In aim of integrating uncertainty in our architecture,
with a grasping scenario for validation, we have tested this approach and explored integration in the

architecture with grasping modules. This study is presented as perspective in section 7.2.

Finally, a rather different approach rely on computing a measure quantifying how much vary the
pattern of neurons activations between training and test data (Figure 5.8b). In [33] for instance,
authors use topological data analysis, a data analysis field, that study the shape of data in high
dimension in order to build topological descriptors characterizing the networks. They validated their
method, on simple datasets, which is able to detect OOD data by analyzing changes in activation
patterns. Overall, the interest of these methods is that they can be used on any existing networks
without architectural change, or retraining of weight parameters. It can be especially interesting when
using pretrained neural networks which has not been trained to predict their uncertainty with the

methods presented the next sections.
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(b) Tlustration of an external measure approach where
(a) Tlustration of an external measure approach based an external measure predict uncertainty based on neu-
on an external learned model. rons activations.

Figure 5.8: External measures of uncertainty estimation of deep neural networks

5.2.5 Conclusion on uncertainty review in deep learning

We compare here some of the aforementioned metrics in the classification case, still with the two

moon distribution dataset. Then, we show some examples on a regression task.

Case of classification: We compare different methods on the simple moon distribution dataset in

Figure 5.9:

Standard ResNet is overall overconfident except on a thin layer around the separation curve. In
this example, they Monte Carlo Dropout and Ensemble are ouput very close results but that is not

true in general. They improve uncertainty on the separation line and are likely to provide more
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robustness for OOD samples and slight covariate shift close to this separation. For dataset shift and
OOD data that are farther to the separation line, they fail as the standard ResNet. Only SNGP based
ResNet provide a good OOD uncertainty performance. This impressive results comes from the use of
Gaussian Processesthat are learned on top of the regularized (distance aware) neural network. The
dataset is very simple and generalizing this analysis to higher dimension seems risky. However, it
is worth noticed that author from [14] still outperforms other methods on OOD data, in traditional
images classification benchmark such as CIFAR-100. Interestingly authors in [34] compared several
approach on image classification and natural language processing tasks. Despite the simplicity of the
approach, they suggested that ensemble models can be robust and outperform other methods when
it comes to dataset shift such as dropout and variational methods. If temperature scaling calibration
methods can be fine to quantify uncertainty for IID data, it significantly underperforms when it comes

to dataset shift and OOD data.

An upside of classic dropout, ensemble methods is that we don’t need to change the architecture
of the network. Moreover one can use pretrained networks weights found in the literature for transfer
learning. One downside of dropout and ensemble, however, is that they need several forward pass
which can dramatically increase the inference time and memory and computing requirement. Thus
these methods can’t be easily used in setting where inference speed is a high requirement. Distance
aware based methods and external metrics in this regards are interesting as they can use a single model
in a single pass. They seems to be the best suited tool for OOD data detection in the toy benchmarks
we carried out as stated in [11]. The method has yet to be validated on harder, real-world problem. As
a downside, their specific regularization techniques imposes to learn new weights even for traditional

architecture, therefore one could not benefit from pretrained available weights.
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Figure 5.9: Classification probability with uncertainty for different uncertainty metrics 7.

Case of regression: Aforementioned methods can be extended to regression tasks. For instance, in a
simple curve fitting example, we can obtain results where uncertainty represent the confidence interval
around some mean value with respect to input features x. We compare here bayesian Monte Carlo
dropout (Figure 5.10), learning of uncertainty (Figure 5.11) at last layer and a 5 network ensemble
methods (Figure 5.12). For Figure 5.12, top graph shows individual predictions while bottom one
presents total uncertainty related to the ensemble. Pros and cons of each methods are the same than
in the classification case. We can see that close to data, total uncertainty is low and actually close
to aleatoric uncertainty. In OOD region, uncertainty rises, but the ability to detect OOD samples is
limited and not consistent accross regions. Inference at the last layer method have limited abilities
cause uncertainty remains low in regions with lack of data (regions [5,8], [1.5,3]) where predictions
are not relevant. The same behavior is observed for ensemble method in region [1.5,3]. In this simple
example, only Monte Carlo dropout has a relevant predictive uncertainty through all the domain for

OOD data.

92



5.2. UNCERTAINTY ESTIMATION METHODS

MonteCarlo Dropout prediction and uncertainty

5
—_u /\\
=== Truth ION /N
44 H*20 P / \ /
uto “‘ ! v
e training data \ J el
3 \‘ ’
\\,’
5]
>
1]
oA
14
0 2 a 6 8
X
Figure 5.10: Regression task with Monte Carlo Dropout
s Predictive uncertainty on regression task
— ,J /\\
-=- Truth o~ ;N
7N, 1
4 Hx20 ’ \\ 1
uxo \ /
e training data \ K
34 N\
\\,I
2 -
>
1 -
O .
_1 4
0 2 4 6
X

Figure 5.11: Predicted uncertainty inference at the last layer
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Figure 5.12: Estimating uncertainty using predictive uncertainty of the ensemble

5.3 Uncertainty for decision-making

Once the model has learned an uncertainty, the quality of this uncertainty estimation can be
qualified by specific metrics on validation set and on tested data once in production. Determining the

best metrics according to the model or the task is still an open research.

5.3.1 Calibration and sharpness

Once we have an uncertainty metrics, we have to characterize the quality of the uncertainty for
two reasons. First, it allows to compare uncertainty estimation methods for a given task and second
it provides a way to interpret and reason about the uncertainty level of the agent. Ideally, in order

to create a safe decision system, we want some properties in terms of prediction accuracy on test
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data and confidence. In general and intuitively, it is considered that a model has a good predictive
uncertainty estimation when its accuracy is close to its confidence. In other words, calibration means
that the true and predicted frequencies of an event should match. In that case the model is said to

be calibrated [1]. Calibration A,y can be simply expressed in both cases as:

Acq = |accuracy — con fidence| (5.8)

In classification tasks, to be calibrated means that predictive uncertainty should be close to 0
(respectively close to 1) when class prediction is good (respectively wrong). For regression, that

means that confidence interval should be larger with the prediction error value.

It is important to notice that a good calibration, do not imply a good accuracy. For instance, if a
model has to classify two balanced classes, a random classifier with 50% of confidence imply a perfect
calibration. That’s why notion of sharpness is also introduce in calibration literature. A model is said

sharp if its accuracy is high.

We can find several metrics deriving from the base definition (equation 5.8). Several measures and
calibration errors have been used in the literature to quantify a posterior: the uncertainty calibration.
Integrating such information in the IRL decision process would allow to reason at higher level about

learning modules.

Assessing the calibration uncertainty can be done by building a reliability histograms [1]. The idea
is to partition predictions into M bins according to their output confidence. From this partitioning,

the following metric can be computed:

e ECE (Expected Calibration Error) [35]: the accuracy is computed for each of the M bins. Then
ECE is obtained by averaging the error across bins, weighted by the number of points n; in each

bin. (Figure 5.13 illustrates a reliability diagram).

M
ECE = z %.Acal(b), with Acq(b) = |accuracy(b) — con fidence(b)] (5.9)
i=1
e MCE [35]: While averaging uncertainty in ECE can be relevant to reduce noise, in some cases we

might want to be much more cautious. In MCE instead of averaging, we consider the maximum

bin uncertainty. This could be required in tasks with a risky consequences in case of failure.
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MCE = bIélb%SL(s Acqi(b) (5.10)

Overall, by binning predictive uncertainty, we can have more insight on the model behavior ac-
cording to datasets, both in terms of accuracy and in terms of calibrated uncertainty which can then
serve as input for higher level process. One downside, however, is the lack of relevance of bins with a

low number of samples.

 — Underconfident
 — Overconfident
N Ideal reliability diagram
O Real reliability diagram

Accuracy

0 0.2 0.4 0.6 0.8 1
Confidence

Figure 5.13: Confidence histogram illustrating ECE metrics applied to the predictive uncertainty of
an uncalibrated classification network based on EfficientNetb0 [3(], pretrained on ImageNet and fine-
tuned on cifar100 with coarse label (20 different classes).

e Proper scoring rules : several metrics called proper scoring rules derive for instance from con-
vex functions, information and entropy measure. Each metric has its upsides and downsides
according to specific problems but they have not been further investigated during the thesis. For

further detail, a comprehensive list is given in [37].

The aforementioned metrics help in measuring uncertainty calibration in a global way after training
uncertainty aware module. In our ITL setting, as learning from new data changes network parameters,
these metrics can be used as a monitoring tool, to check if uncertainty calibration remains stable

across learning. This is important for performance and safety. Network predictive uncertainty can be
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checked with a calibration dataset that is maintained and enriched across time and interaction. Given

calibration metrics results, a re-calibration of the network might be necessary.

5.3.2 Performance metrics of a system

Once uncertainty is well calibrated, it is possible to use performance metric for selective predictions
or reject options [38—10].

Following [11], we can adapt the classical contingency matrix [12] used in failure predictions meth-
ods, to exploit an uncertainty measure, as shown in Table 5.1. From this matrix, we can derive
performance metrics, as well as an active learning process for our IRL which is discussed in next

section .

Prediction result
Wrong Good

High || True Positive (TP) | False Positive (FP)
(Ask) (correct alarm) (false alarm)
Tthresh

Uncertainty

Low || False Negative (FN) | True Negative (TN)
(Act) (missing alarm) (correct non-alarm)

Table 5.1: Contingency table with uncertainty measure 7. Upper a threshold uncertainty, an alarm is
triggered, for instance in an active learning framework.

Given a threshold uncertainty 7ip.esn, predictions can be classified in two categories: confident
("Low” uncertainty) and uncertain ("High” uncertainty), for which the respective decision is to trigger
("Positive”) and not ("Negative”) an alarm. Relevance in triggering or not an alarm is denoted by
"True”. Given a prediction, "True” corresponds to the main diagonal of the contingent matrix that is

to say to have triggered (resp not triggered) an alarm if the prediction was indeed wrong (resp good).

This contingent matrix can be seen as a binary classification to evaluate failed predictive selections,
for instance concerning predictions of a neural network. A good uncertainty metric should maximize
the proportions in the main diagonal (TP and TN), and eradicate missing alarms (FN) corresponding
to failed predictions which are viewed as certain, while at the same time limiting the number of false

alarms (FP). Indeed missing alarms (FN) could lead to safety issues in industrial collaborative robotics
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applications, and false alarms (FP) represent an additional cost in an industrial context. An alarm
will trigger a failure in the system which has to be solved by human interactions (demonstrations and
utterances) in the IRL process. Therefore, we want to limit the number of unnecessary interactions
(FP).

Various statistical tools and Key Point Indicators (KPI) relying on computing several ratios can be
leveraged to assess the performances. One of the main classical tool for predictive selection given this
binary classification problem is The Receiver Operating Characteristic (ROC) illustrated on Figure
5.14. This curve plots, by varying the threshold, the False Positive Rate or specificity (FPR = %)
representing proportion of false alarms among good predictions, against the True Positive Rate or
sensitivity T PR = TPZF% representing the proportion of relevant alarms among failed predictions.
Alternative curves exists such as the Risk-Coverage curve. This curve plots, by varying the threshold,
the risk which is usually the accuracy of the model against the coverage, which is the ratio of the

- ‘g FN+TN
number of confident predictions over total number of predictions 7 TFNATNTEP

From the ROC curves we can extract three different scores also represented in Figure 5.14:

100 e Perfect classifier

— Classifier Example
--- Random Classifier
AUROC
+  FPR-80%-TPR
] S-10%-FPR

30

6ol

40

TPR(%)

20

O 20 40 60 80 100

FPR(%)

Figure 5.14: ROC curve.

e The AUROC (Area under the ROC Curve) score [12] which represents the ratio Area Under the
ROC curve. A random detector has a score of 50% while a perfect detector has a score of 100%.
Use of AUROC, however, can sometimes be misleading when comparing different models. In [11]
authors showed that between two slightly different trained DenseNet models, in certain cases,
one with a greater AUROC metrics can have less total accuracy. They proposed the AURC

metric (Area under the RC curve) to solve this limitation.
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e FPR-a%-TPR : False Positive Rate for a given percentage « of TPR. It represents the rate of

false alarms for a given security level.

e S-5%-FPR : Compute the success rate (TPR) at 8% of FPR. This score is representative of an

economic cost due to the number of false alarms it can yield.

The contingency table can be leveraged to set the threshold 7i,csn Oon the amount of acceptable
true positives with respect to false positives, represented in Table 5.1. Above this threshold, the
agent is confident enough and decide to Act. Below this threshold, it must decide to Ask. This is
illustrated in Figure 5.15. Given an histogram of predictions, we represent in green the histogram
of good predictions and in red histogram of wrong predictions for a given uncertainty 7. A good
predictive model associated to a well-calibrated uncertainty model should be able to separate clearly
the two distributions. By setting 7y, esh, We can put more or less emphasis on how safely the IRL

must act.

Occurrences

Figure 5.15: Illustration of 7Typ,esp usage to limit wrong actions

The same idea is represented in Figure 5.16 directly on the ROC curve. It shows that the IRL
agent can choose a compromise between safety level (TPR) and false-alarm cost (FPR), by setting

this Typresh-

Overall, in function of Typresn, We can also derive and exploit the two following KPI to assess the

performance of the I'TL decision process:

e The accuracy ACC = 5 H?;igﬁ —7p to evaluate the relevance of decisions between acting
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and asking (main diagonal density). When this ratio tends to 1, this means a good expertise
of the IRL. In that case, distributions of good and wrong predictions are well separated among
uncertainty 7.

e The Negative Predictive Value NPV = % which represents the number of TN (correct
non-alarm) against the total number of negative alarms. This score is a key indicator of the

safety level in acting decisions, and we want this ratio to be close as 1 as possible for our ITL.

100 e Perfect classifier
% — Classifier Example
--- Random Classifier

_ AUROC
§ 60 - TPR(Tthrcs)
a7
& 40

20

0 20 40 60 80 100

FPR(%)

Figure 5.16: Based on the ROC curve, one can choose a threshold to balance the trade-off between
the amount of true and false positive.

5.4 Active learning setting
5.4.1 Uncertainty for active learning setting

Now that we got a better idea of what is uncertainty and how it can be estimate, we can focus on
how integrating it in real-world robotics application. Notion of uncertainty have been used in several
works in robotics for self active learning purposes. There is no clear definition, but it is usually related
to novelty detection [28], curiosity [13, 14] or motivational intrinsic reward [15], play [10, 17]. Overall,
these methods exploit unknown to drive specific behaviors. Active learning field focuses on strategies
which can reduce the unknown and improve the underlying learned model. In this active learning
review, [18], authors distinguish a query system and an oracle as the two main building components
of an active learning systems. Then they discuss two methods to retrieve more information: human
feedback and semi-supervised/transfer learning. As suggested in [19] they are strong connections

between active learning and robotic interactive learning.
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e The query system is the component that is responsible to ask an oracle for more information
when needed. In an IRL system, this component is build around communication modules to

inform an oracle about the lack of knowledge when a failure occurs.

e The oracle is the component that answers to the query system. It can be a fully supervised
human feedback where a human give all label each time the system is not certain. A more
flexible approach is the semi-supervised setting, where the agent uses a proximity metrics to

label unknown data based on already labeled ones.

As real-world data are scarce and domain specific, there is a growing interest in integrating active
learning with deep learning in robotics. It has been experimentally proven, indeed, that modeling
uncertainty can be crucial for better exploration vs exploitation tradeoff. For instance in [50], authors
took inspiration from an early active learning querying techniques called query-by-committee [51]: they
exploit an ensemble of deep neural network to learn an intrinsic reward function, that is then leveraged
in an end to end deep RL application. They validated this framework in navigation simulation and on
learning pushing and grasping objects on a real manipulator. However, they do not try to represent
and explicit inner learned models, making it a black box. In [52], authors proposed an uncertainty
aware deep RL framework that aims at disentangling both aleatoric and epistemic uncertainty. They
exploit auxiliary networks that learn both the epistemic and the aleatoric uncertainty. They validated
their framework by adapting a distributional RL variant of the DQN algorithm on simulation and
Atari games tasks. Though interesting to learn specific skills in predefined tasks, these methods still
lack, however, general high-level representations that are needed for better interpretability and better
cross domain generalization in interaction. Adapting such techniques to the robotics context in an

IRL architecture is a promising area of research for interactive task learning.
5.4.2 General active learning process for ITL

More precisely we can exploit uncertainty notions presented in section 5.3 in order to reason about
uncertainty in the active learning context and for integration within the IRL agent architecture. A

general methodology is illustrated in figure 5.17 and can be summarized with the following procedure:

1. A neural network is trained on a dataset with a loss L. According to estimation techniques,

such as the one presented in 5.2, uncertainty can be learned during this training. For external
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measure, uncertainty is learned on a validation dataset.

2. Calibration can be checked with metrics mentioned in 5.3.1 and assess the quality of uncertainty
estimation at time being. If calibration is not good, that means that the uncertainty estimation
techniques have not learned a representative uncertainty suited for the task, given the provided
datasets. That means that we should train with more data or change inner predictive and

uncertainty models if more data is not sufficient.

3. Then, the model prediction and uncertainty are exploited within the IRL agent process loop.

4. After a prediction is done, uncertainty is propagated in upper level and predictive selection is

carried out following 5.3.2 to decide between act or ask.

(a) If it is uncertain (f(7) > 0 given Typresn), then a request for label is asked to the human
according to the current task knowledge. Labeled data are collected and can be augmented
to update learning and calibration datasets. Then back to 1. Ideally, the TPR, ACC and

NPV should get closer to 1 after this active learning step.

(b) If it is certain (f(7) < 0 given Typresh), then the IRL agents acts. If uncertainty estimation
is representative and threshold 7y,,.sp is adapted, then missing alarms should be rare but
can still occur. In case of a missing alarm, humans should be able to stop the action. As a
last resort, unmet post-conditions leading to a failure in the architecture could be leveraged
by the IRL agent. Then, the IRL agent should also ask help to correct its behavior. Then
back to 1. FN is likely to decrease, reducing the risk of unexpected actions, while TPR and
ACC should increase.

This is a first approach to active learning that is quite general and might be used for different
learning (such as learning perception) modules in the architecture. To be fully adaptable, we need
more research on how to manage efficiently datasets and 7yp..sp, updates as the agent learns new data.
Moreover, tests should be done to validate practical use and evolution of the different rates. This is

discussed as perspectives in chapter 7
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Figure 5.17: General pipeline for active learning

5.4.3 Uncertainty aware behavior model

In order to integrate aforementioned works on the architecture, at the action/decision-making
level, we must extend the behavior model with uncertainty handling and propagation capabilities. A
natural extension of traditional BTs with uncertainty is to consider that tests do not works only in
a fully deterministic way, that is to say are not reduced to binary outputs true or false. Uncertainty
propagation can be carried out through Belief Behavior Trees (BBTSs) [53]. In that setting, the agent
can reason over a belief state within its working memory b,,,, and propagate uncertainty through
nodes of the tree. This belief b, is a distribution of states s; over a set S, associated to a predictive
uncertainty 7;: bym = Us,es(Ti,8i). The actions of the IRL agent are also allowed to have non

deterministic outcomes.

For illustration in the most general case, we can consider a simple planar grasping use case. An IRL

agent has a hypothetical uncertainty aware model, able to predict 3 grasping rectangles candidates
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along with their predictive uncertainty. The IRL agent is asked to pick-up an object on the working
space. Figure 5.18 represents the kind of decision process that could occur in such a scenario with
BBTs for a specific behavior. In practice, following [53], BBTs extend nodes representations for

conditions and actions.

Conditions node: Conditions node by, — ¢(bym) are functions of the belief states (the three pre-
dicted rectangles). According to some tests s;, 7¥ — f(si, 77), condition node also return a set of belief
states along with their termination status r; (success or failure) and the level of associated uncertainty

7¢. More specifically, we can express condition nodes as :
C(bwm) = Usic(si) = U, (Ticv Siy Ti’f(sia Tic))

According to the return status (two grasping rectangle are certains, one is not certain), the con-
dition node can decide to propagate the belief state and uncertainty in parents and following nodes,

such as action nodes.

Actions nodes: Action nodes a(by,) in the general case can have probabilistic outcomes. For in-
stance, even for a good grasp prediction, the object might slip after a grasping attempt. In general,
an action a is executed if preconditions are validated and certain for some believed states s;. Action
a is then applied to those valid state s; and can be associated to non deterministic postconditions.
Indeed, for each specific starting state s;, an action can lead to different outcomes a(s;) = s;J with
an uncertainty 77'. The uncertainty 7;' can be a probability over possible states such as >, 77" = 1.

Assuming individual postconditions are independant events, a postcondition can then be expressed as:

b (si) = alsi) = Uy (17, 57)

By considering an independence between action and the perceptual state, we can assume the overall

2. = 77%. Therefore, the set of possible outcomes when applying

uncetainty of being in state s; is 715 TS
R

the action to the belief state is:

a(bs) = Usi,s; (TiCT](‘lvsg') , keN
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Such a view can then be leveraged for acting and local planning by propagating uncertainty in the

tree.

Parent node

o {(rirf, s1), (1578, 85), (7§75, s5), (7475, s4)}

Certain: Grasping rectangle given s is ok . a c .t ac
& gee a(7'1a51) N--~--"~-"="~"="-- > (7'17'1751)>(7'27'1>52)

Certain: Grasping rectangle given so is ok i o )
J &eE a(7s, 52) H==========-- - (1§75, s3), (7475, 54)
should cause

Grasp given s
a(bym): Action

Not certain: Grasping rectangle given sz is ok for each poten-

Precondition 24 (by,,) tial valid state

Figure 5.18: General extension of belief behavior trees for condition and action nodes for uncertainty
propagation. Dotted arrow represent what is returned by the node after its termination.

In that setting, we can use uncertainty estimation and predictive selection function f°¢ (section

Tthresh
5.3.2) as the test function for the condition nodes.

We can then integrate the active learning process within this framework and the interactive pipeline
(see Figure 5.19). Given several conditions and uncertainty aware perceptual modules, the IRL agent
selects predictions based on predefined threshold 7yp..s. Predictions and uncertainties are propagated
back to upper nodes, a failure occurs and can be solved by asking demonstrations in an active learning

setting, if no grasping candidate is valid.
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Figure 5.19: The IRL agent can exploit specific BBTs structure to handle uncertainty provided by
lower level modules and the belief state in working memory.

5.5 Conclusion

In this chapter, we defined how uncertainty can be viewed as a composition of different types of
uncertainties, aleatoric and epistemic uncertainty which are related respectively to stochastic nature of
data and to the nature of the model. Learning such an uncertainty is determinant, if we want an IRL
agent being able to reason and to cope with several types of biases related to dataset shift. The most
studied ones, being out-of-distribution samples and covariate shifts. We explained the main techniques
used to adapt deep learning modules to learn uncertainty and we present a few metrics to qualify the
calibration of model uncertainty: how well predicted uncertainty matches with the observed accuracy
on test data. Furthermore, we showed that a tradeoff uncertainty can be at the core of an active
learning process. Indeed, by applying a threshold to the amount of acceptable uncertainty, we can
derive a notion of curiosity or motivation that can be leveraged by the agent during interaction for
active learning by deciding to ask rather than act. Thus, an IRL agent can have much more insight on

its predictions abilities, leading to safer behaviors and the ability to ask for help in richer scenarios.
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Chapter 6

Implementation and validation on a planar
pick and place learning task
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In this chapter, given design choices made in chapter 3, we implemented an architecture proto-
type for interactive task learning (ITL) with preferences, in a human/robot collaborative industrial
context. We first explain our sensors choice in terms of human/robot interaction modalities in section
6.1. Then, we explain which modules were integrated in the architecture to validate our main spec-
ifications 6.2. Finally section 6.3, validate the integration experimentally on a real UR10e industrial
collaborative robot. The cobot is taught, online and incrementally, a simple task with variations based
on human preferences. During the interaction, it leverages some prior knowledge to learn, online and
incrementally, both low level and high-level task information in the most natural way as possible for

humans.
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6.1.

CHOICES OF SENSORS FOR IRL PERCEPTION AND INTERACTION

We recall in Figure 6.1 the organization of the architecture and we now provide a justification

for the choices of sensors and modules we integrated, in terms of interaction modalities, for the

implementation and validation of the architecture.
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Figure 6.1: Details view of the architecture in terms of integrated modules.

6.1 Choices of sensors for IRL perception and interaction

Action

A robot can sense the environment using exteroceptive sensors. Specifically, we want the IRL agent

to adapt to the human and therefore, sensors must be the least cumbersome for workers and allow to

sense and perceive semantically meaningful communications means. This led to a non exhaustive listing

of sensors types, that could be used for different interaction modalities to validate the architecture.

We can distinguish non-verbal and verbal communications means. Both are important when defining

a task, as some information can be more easily shared by words or by non verbal interaction.
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6.1.1 Non-verbal communication

Vision in general: Vision sensors are interesting because they allow to capture rich information on
the environment (images and stream of images) and with a wide spatio-temporal perceptive field.
Technological solutions are very diversified. They are non-contact devices, non-intrusive and very

flexible sensors.

Thanks to their non-invasive upsides and the important quantity of information that can be ex-
tracted from an image or video, vision is one of the key modalities in most of human /robot interactions.
For example, in the same video, we can both detect the pose of the operator and more generally do
scene analysis. Classical cameras are passive sensors that convert the light emitted and reflected by the
environment into a grid of color pixels. There are different spaces of representation of the colors. The
RGB space (red, green, blue) is the most traditional but to limit the effects of change in brightness,

we can prefer other color spaces such as the HSV space (hue, saturation, value).

We can distinguish these sensors according to their sensitivity to the wavelength of light. Thus,
most cameras allow to have information in the visible light range. The use of sensors using other
areas of the spectrum of light may be relevant to improve the knowledge of the environment, but in
that case the IRL agent could perceive more than the human, and therefore should provide insights
on its perception. For instance in the case of thermal cameras, for example, the body temperature of
a human can be used as a means of presence detection while avoiding the problems of reverberation

and illumination of conventional cameras [2].

Compared to 2D sensors, 3D sensors naturally provide more information about the scene. For
example, it is easier to segment a scene with an area of interest by simply filtering on the depth. We
can distinguish between passive 3D sensors such as stereoscopic cameras that rely on depth inference
via parallax, and active 3D sensors that rely on the emission of light rays and the processing of
reflected rays, such as structured light cameras. Cameras that can output both RGB data and depth

are referred to as RGBD cameras.

Finally, we can mention the TOF (time of flight) cameras and the LIDAR. These sensors send a
light beam, generally in the infrared range, and measure the return time of flight of the beam. By
knowing the speed of light one can compute the distance between the laser emitter and surrounding

objects. They allow in general a scan of 360° at the opposite of classical cameras and are thus very
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used in the field of mobile robotics.

Communication requires a common representation of the environment. Therefore, the IRL agent
must be able to create a semantic representation of its environment that can be understood by an
operator. Scene detection and segmentation techniques based on vision are then relevant for a high-

level communication between humans and robot.

Biological signals: Biological signals are also a way for human-robot collaboration. They usually
involve the use of sensors to be worn by the user. Having sensors directly connected to the operator’s
body has advantages. They can give information on elements that are difficult to access with external
sensors, either because they are internal signals of the human body, or because of occlusions in the
case of vision sensors. On the other hand, wearing a sensor can be annoying for some people. Many

sensors exploit various biological signals:

e Myoelectric sensors (EMG sensors), such as the Myo sensors measure the electrical activity of

muscles. This type of sensor can be used for gesture recognition [3].

e We are beginning to see the development of electrical impedance tomography (EIT) based sensors
for body imaging. In [1], authors showed that it is possible to use these impedance images for

gesture recognition.

e EEG (electroencephalogram) headsets measure the electrical activity of the brain with contact
electrodes. A distinction is made between wet and dry electrode systems. Dry electrode systems
are less accurate than wet electrode systems because of the less controlled skin/electrode contact.
However, the installation of dry electrodes is easier and less restrictive. When an EEG headset
is used in a system interacting with a computer or robot, it is called a BCI (brain computer
interface). The location and number of electrodes influence the quality and type of brain signals
that can be measured by the EEG headset, such as some emotions or ideas. In [5] authors
implemented the possibility of controlling a robotic arm using brain signals measured with an
EEG headset. However, this requires significant learning on the part of the human to perform

this task.

e Some types of brain signals can limit the need for people to learn. For example, the use of

SSVEP (Steady state evoked potential) is quite common in BCI applications. These are specific
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signals that appear in the brain at the same frequency as periodic visual stimuli (flashing leds).
In the context of human-machine interfaces in robotics [(], authors use flashing icons on a screen
to generate SSVEP signals in a BCI helmet wearer. The latter can then mentally select the icons
on the screen to send commands to a robot. To gain mobility, some authors evoke the use of
augmented reality glasses as a display medium instead of a screen. In [7] authors show that it is
possible to direct a mobile robot using a BCI interface and augmented reality glasses (hololens
glasses). The SSVEP has the advantage of requiring little or no learning but requires a focus
of the human to limit noise. Overall, BCI interfaces return noisy signals which still makes it

difficult to leverage for robust real-world applications.

Pose estimation: Pose detection is of great interest in human-robot interaction because it is a repre-
sentation that can then be used in scene analysis and gesture detection. Also locating the pose of an
operator, is often used for human demonstrations to robots or for emotions recognition by tracking

facial key points [2].

In the field of co-manipulation, pose detection is also used, so that the robot helps the operator to
reach more ergonomic positions [9]. From the sensor point of view, there are wearable sensors like the
Xsens suit [10], and more generally devices leveraging Inertial Measurement Units (IMU) and visions.
For instance, authors in [11] leverage IMU, magnetic sensors and lasers to track the pose of humans

and adapt off-line generated motion paths.

Actually from the processing of the video stream of a simple RGB camera, it is possible to estimate
the pose in a less invasive way. On the other hand, the sensitivity to occlusions is higher. Among
pose estimation methods, we can distinguish between methods based on joint detection [12] and dense
methods. In the first case a neural network produces a probability map of presence for each joint of
the body, and we obtain the skeleton of the individual. In the case of dense detection, the network
assigns to each pixel the limb to which it belongs. As instance of joint detection method, in [13],
authors estimate a 3D body pose from the 2D pose provided by Openpose [12]. They then exploit this

pose to make a robot learns trajectories such as opening a small chest with a handle.

Movement: Some signals can require the IRL agent to have especially good temporal resolution

representations to fully understand its surrounding and human interactions. Indeed, movement can
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be key in several cases such as high speed gestures interpretation. Depending on the dynamic of
the observed phenomenon and cost, several sensors can be considered for the accurate detection of

environmental and human movements.

Wearable sensors such as Xsens [10] and IMU based devices, can have a good temporal resolution
for human gesture recognition, but vision sensors are less cumbersome. For low dynamic movements,
such as low movement human gestures, standard cheap RGB-D camera can be leveraged by computing
optical flow between successive frames. For higher dynamic movements, however, motion blur can
become too important and make optical flow not exploitable. In that setting, much costlier or bulky

RGB-D sensors, such as high-speed cameras can be used.

Recent specialized vision sensors, neuromorphic cameras, also called event cameras, have spe-
cialized in high dynamic and high temporal resolution vision with more affordable costs. They are
composed of cells that are not able to sense colors, but respond asynchronously to a change in light
intensity. Therefore, at each time step, in contrast to standard RGB-D cameras which outputs a syn-
chronous image of pixels, event cameras output, asynchronously, a sparse point cloud, as only pixels
that undergo a change of intensity are triggered. This allows these cameras to be very efficient for high
dynamic range and high temporal resolution tasks, such as hand gestures recognition [11], tracking,

simultaneously localization and mapping or structure from motion [15].

Eye gaze analysis: Gaze detection can also be used for nonverbal communication. In [16], authors use
an eye-tracking system, combined with an object detection system to infer which part of the object
to pick-up based on where the operator is looking. Thus, the operator can indicate to the robot
an intention to pick-up an object simply by looking at it. It can also select various actions such as
pouring the contents of a cup into another container. The occulometric sensors (e.g. Tobii Pro Glasses
2) generally consist in using glasses equipped with a camera which ensures a precise tracking of eye

gaze.

Tactile and haptic: The use of tactile sensors, such as force sensors, provides information about the
robot’s contacts with the environment. This allows better management of collisions and facilitates
the control of robots under stress. Artificial skin systems capable of detecting pressure variations are

beginning to appear but are still usually at the state of research prototype. These sensors can be
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used alone or with other perception modalities. Thus, in [17] authors combine a tactile sensor uSkin,
a vision system and a neural network model to qualify the texture of some materials with a simple

image.

In [18] authors developed an artificial skin by exploiting the variation of impedance of a conductive
fabric submitted to a certain pressure. This impedance variation is measured by an imaging method:
electrical impedance tomography (EIT). Using a neural map it was possible to infer the pressure

location of a robotic arm and control it by touch.

Giving tactile capabilities to a robot can also help improving its grasping abilities. Thus in [19]
authors use the Biotac sensor on a robotic gripper to determine the normal and tangential force during
the gripping of different objects. From the tangential force information, they were able to create a
controller that adapts the gripping force to prevent the object from slipping when it is carried, while

normal force information prevents the object from being crushed.

Force control: Using force and torque sensors, it is possible to teach trajectories, with kinesthetic
learning, to a robot in a fairly natural way. By adapting its compliance, a robot can be controlled
in effort by an operator. The operator can show the robot a sequence of points. The robot can
then interpolate a trajectory. Combined with reinforcement learning, this type of control can provide
demonstrations that can accelerate learning for a given task. Authors in [20] leverage a force/torque
sensors mounted on a collaborative robot for a precise and smooth hand guiding at the end effector
level. Such methods can be leverage in kinestetic learning. In [21] for instance, authors teach a robot
how to insert a part by demonstration and deep reinforcement learning. They first record human
movements sequences via effort control. The robot then learns by reinforcement the insertion task by

leveraging demonstration data, which accelerates the convergence of the network.

6.1.2 Verbal communication

As with images, deep learning techniques have made great progress in speech processing, both in
speech recognition and speech synthesis. The interest of speech recognition and synthesis in human-
robot communication is the ability to program a robot in a natural way and share information at a

high-level. That’s why most of the IRL decided to exploit speech as their main modality.

Microphones are generally used for speech recognition. One or more microphones may be used de-
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pending on the application. For example, source location requires several microphones. In the context
of human/robot interaction, in addition to the ability to capture the frequencies of the human voice,
the microphone must also be robust to surrounding noise. Among the most noise-robust technologies,

we can cite

1. unidirectional microphones, which focus the recording only in the direction of the speaker, thus

limiting the phenomena of reverberation and external noise.

2. Throat microphones or laryngophones which convert vibrations in the throat into speech sounds.
Some studies show that voice recognition capabilities in noisy environments, such as industrial

one, are far superior to traditional microphones [22]

Voice classification can be relevant in the context of human-robot collaboration because it can
allow a robot to detect who is speaking based on its voice. For instance, in [23] authors propose a
neural network architecture based on LSTM to obtain an encoded representation of the voice, in order

to classify different speakers.

Speech synthesis capabilities are also interesting. Its use in social robots is common and could be
interesting in an industrial context. By integrating a vocal synthesis, the robot could then share its

decisions not only visually through a screen but also naturally and orally.

Choice of sensors for validation

After listing some of the main sensors and associated interaction modalities, we have selected the
ones that seem the most useful for a first integration and validation in the architecture. We want
to ensure the most possible natural communications between man and the IRL agent. This requires
comparing sensors and signal types to determine which ones are the most relevant and how they
can be combined for more robustness and complementarity. The main considered criteria to fulfill or

interaction specifications are the following:

1. Potential perceptions after processing signals must be semantically meaningful and natural for

a human

2. Sensors must be as non-invasive as possible to be accepted by the people interacting with the

robot.
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3. Programming and processing must be simple and fast to allow near real-time communication.

4. Sensors must be robust enough with respect to environmental disturbances.

The choice of signals was centered on humans, therefore we fostered natural and non-invasive
communication means criteria. Of course, the choice of sensors is likely to depend on each individual
specificities. For instance for a disabled person, such as someone that cannot speak or cannot move,
even if a BCI can be seen as invasive, it could be the best sensor for human/robot interaction. For
our validation, we decided to consider a valid worker for our sensors choices. Table 6.1 shows a
qualitative comparison of the proposed signals and modalities according to these criteria. The sign
"+7 (respectively ”-”) means that the signal is evaluated positively (respectively negatively) for the
criteria. Some commercial sensors at the time of writing are also provided as illustration. Our sensors

choices are represented in green.

One of the most natural ways of non-verbal communication is through gestures which can be
easily detected by vision sensors, provided there are no occlusions. Vision sensors are among the
least invasive and most easily acceptable sensors, because unlike wearable sensors (BCI, EMG, EIT
or motion capture sensors) it is not likely to interfere with the operator’s movements, or to lead to
cumbersome contacts. For their versatility and ease of use for environment understanding, we have

considered using RGBD camera.

Speech remains our main way of communication. Therefore it is essential to equip robots with
spoken language processing capabilities in order to ensure a natural communication for the high-level
components of the architecture. As for vision, microphones are relatively non-invasive sensors. To

limit the phenomena of ambient noise, we have chosen a unidirectional headset.
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Table 6.1: Summary table of sensors and perception modalities with qualitative comparison. Green sensors were chosen for the

validation and the implemantion of the architecture

. Acceptability (non L
. . Perception and . . Commercial sensors
Modality Sensors Sensory input ) Robustness cumbersome or Ease of integration
semantics . . example
invasive)
RGB camera 2D Image Intel Realsense D435,
RGBD camera 2.5D Image Photoneo
Light intensity Pose, d-"f_lt + <I;Mui?l ¢
Event camera variation Movement. Gestures modalty and withow DAVIS346, DVS-Gen4
. . . U ’ cumbersome wearable
(asynchronous output) Facial detection, ++ (sensible to sensors)
Vision Emotions, Scene occlusion/more or less
LIDAR 3D Point cloud analysis, to light changes) RPLIDAR, Velodyne,
++ ( important
+ (use of tags is pre/post-processing to
Camera + scannable Predefined patterns Dictionary o'f pattern, simple but does not (3xt}ract useful Tags, QR code,
figures meaning scale well when a lot semantics, but we can ArUCo code
of tags are necessary) extract a lot of
Omnidirectional + (sensitive to noise information and there
mic(ro ;liori)e in the environment, ++ (natural modality, | is a rich ecosystem of | Classical microphone
I Speech ( air voice reverberation) wearing a headset can | devices and libraries)
propagation) be slightly
Unidirectional Speech, emotion from ++ (less sensitive to cumbersome)
Sound microphone speech noise) Jabra headset
+ + + (far less
. sensitivity ¢ —— (wearing a throe
Throat microphone 501%51t1v1ty to 1'101%, ; (wearing a throat
. . Speech ideal for noisy microphone can be
(throat vibration) . .
industrial very cumbersome)
environment)
) . + (sensitive to contact . ++ (data is usually
EMG Muscuhﬂ. e.lecmcal Gesture between + (foream.l wearable accessible and at a MyoWare sensors
activity . device) L
skin/electrodes ) high rate)
. — (data seems not
—— (sensitive to .
. T — (head wearable always easily
.. . Emotions, mental individual change, . R .
Neurons activity (skin . R device, several accessible in current Muse/Emotiv/Open-
EEG ) images, SSVEP skin/electrodes X .
based BCI) . . electrodes, operator commercial headsets Bci BCI
detection contact, involuntary . .
) . often needs to learn) | which focus on specific
muscle activity) L
applications)
Biologi- ~ (mostly sensitive to + (forearm wearable — — — (not easily
cal EIT Impedance variation Gesture, images skin/electrodes . . Sty Not to our knowledge
device) accessible technology)
contact)
o § — — — (wearing a .
— Tracking of wearable Gesture, pose, face + + + (no risk of self complete motion -t .(good proprietary
Motion capture frames attached to the ; . . . solution, seems easy to Xsens
and emotion detection occlusion) capture device is
human body/face setup)
cumbersome)
— (wearing glasses is
slighty cumbersome, ++ (good proprietary . o
Occulometric glasses Ocular tracking Visual attention ++ but could be solution, seems easy to TOblhlzlr( ?Lillis;eb 2,
integrated to existing setup) o
protections )
- . — — — (quite new
Tactile skin Varm.tlon o d1\./e‘r 5 ++ (touch is a natural technology, not very Biotac
physical quantities . . .
interaction means) accessible)
Tactile Texture, touch + + + (accessible as
Force/torque sensors Force, torque ++ already 1ntegratefi n .HWA./ UR
most collaborative proprioceptive sensors
robots)
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6.2 Perceptual and acting modules integration

The chosen sensors are then leveraged by the IRL agent thanks to several perceptual modules we
integrated in the architecture for workspace understanding and human/robot interaction. Specifically
we integrated modules for speech recognition, semantic processing, pose and gesture estimation, and

teaching from demonstrations.

6.2.1 Speech recognition and understanding

Speech recognition: For our validation, we adapted an online speech recognizer, Google Speech plate-
form combined with a voice activity detector (python interface to WebRTCVad)!, in order to carry out
speech to text STT (Speech To Text) part. Spoken words are processed one by one and are ordered by
confidence level according to speech recognizer. Speech recognition is often faulty and there is no way
to update the speech recognizer. Therefore, we exploit a predefined base of written words to check if
the recognized words are compatible with the current working domain. If it is not the case, the human

agent has to repeat.

Semantic analysis: Once the utterance has been converted in textual entry, it is possible to infer
human intents by exploiting a simple natural language understanding module based on FLAIR [24].
FLAIR implements an architecture based on bidirectional LSTM networks for text analysis [25]. The

architecture is based on:

1. A first bidirectional LSTM network (BiLSTM) that has been pretrained on a very large and
unlabeled text corpus. The training consists in predicting the next character from a sequence of
characters. At the end of the training, the network is then able to provide a representation of

each word incorporating the context related to the surrounding words.
2. The representation from this first network can then be used in a second network for semantic
processing tasks

Pretrained neural networks are used to parse semantically the utterances, with Part Of Speech

(POS) tags. For now, we also assume that the parser is perfect and that sentences are simple as
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we only exploit verbs, nouns and prepositions. However, this is sufficient to validate the main

principles of our architecture, perceptual grounding and the interaction between modules.

6.2.2 Prior object segmentation and tracking

We want the IRL agent to be able to learn online new unknown objects and to reason about
them. However, this is possible only if the IRL agent can first detect object locations and create a
proto-object in the working memory. In order to detect the object, we rely on a hand crafted module
that exploit a pretrained agnostic object detector neural network (tensorflow hub)?, and computer
vision algorithm based on depth and color of a RGBD vision system. Moreover a very simple tracking

algorithm is implemented based on centroid distance of detected proto-objects.

6.2.3 Joints pose estimation for non verbal interaction

To build a human aware IRL agent, one of the most important feature is to be able to detect
the human pose and location. To build real-time, interpretable representations of humans in our
interactive setting we developed a first module to detect human pose by integrating Openpose [26,

|, pretrained deep neural network predicting joint pose estimation. It takes as input an RGB image
and output joints estimation. We also exploit the depth channel of the RGB-D camera in order to
be able to locate the joints in the robot frame. Joints estimations are then at the base of the non
verbal communication. Vision often conveys a lot of information that we do not naturally explain
by speech but rather with body cues such as pointing gesture. Pointing is indeed a very important
non verbal cue that is commonly used to focus on the same spacial location. By exploiting the joint
poses output of the Openpose based module, we track the current pointing location of the dominant
hand. When the human points to a salient object during a learning interaction, it is assumed that the
IRL agent should focus its attention to the pointed object or location. By this way there is a strong
but natural signal that helps the teacher describe the non verbal cues of the tasks for the learning by

demonstration module.

6.2.4 Location affordance learning

One of the upmost task for an industrial robot manipulator is grasping and manipulation. This

motivates a module to teach the IRL agent how to grasp unknown object in a reconfigurable way. We
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integrated to that purpose the learning by demonstration module detailed in section B.3.2. We recall
that this module aims at giving the IRL agent the ability to learn visually specific affordance locations
on an unknown object. It exploits object shape information within a natural interaction. By showing
the agent authorized and prohibited locations on an object, a human can teach how to perform a task
oriented grasping according to its preferences or the task specificities. For instance one could require

the robot to avoid the fragile parts of an object.

Figure 6.2 and 6.3 recall the main stages of the deep network learning pipeline algorithm for a

wrench.
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Figure 6.3: Convolutional Neural Network (CNN) pipeline and prediction illustration. The approach

used is a regression one, where CNN outputs a pixel-wise affordance map (pixels values are between
-1 and 1).
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6.2.5 Acting

In practice, modularity in robotic architecture software and I'TL agent is usually promoted through
the exploitation of message passing and data marshalling based open source middlewares. Such mid-
dlewares are for instance ROS [28], YARP [29] used mainly in iCub robots, LCM [30] or proprietary
ones such as NAOqi from SoftBank Robotics. They are used for data exchange between modules and
actuation of robots. The choice of the middleware can depend on several technical requirements such
as accessibility of source, programming language, available packages for a specific robotic platforms,
integration with simulation tools, requirements in terms of true real time ability, resilience to networks
disturbance for distributed systems. Authors in [31] review such requirements. In our architecture,
we mainly focused in simple integration of reasoning, learning and acting without true real-time re-
quirements and in a single computer system. Those parts we developed in python3. Acting on the
real robotic plateform, however, is provided by bridging on a specific robot middelware, ROS in our
experiment. It is indeed one of the most used open source middleware with a strong community sup-
port and with up to date package for our robotic plateform (UR robots). Moreover ROS comes with
several tools that are helpful in terms of interface and debugging tools to visualize the agent inner

processes and perceptions.

6.3 Validation scenario

The current architecture has been validated on a UR10e 6 DOF collaborative robot. The cobot
leverages prior knowledge to learn variations of the task to give, for different objects and according
to human grasping preferences. This prior knowledge is integrated at different level and is presented
in Table 6.2. As stated in our specifications, learning is done through an online, mixed-initiative,
incremental process taking into account human preferences. Table 6.3 presents the main unknown
and the knowledge that is acquired at the end of the interactive teaching scenario. Table 6.4 details
the scenario and shows the incremental and interactive learning process which leverages both prior

knowledge, learned information and humans demonstrations or instructions.

The interactive teaching scenario used for validation can be decomposed in two main phases :

e An interaction with a human H; to validate the IRL’s ability to leverage knowledge, to ask only

for the missing knowledge and to learn incrementally variations of the task "to give” for different
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objects.

e An interaction with a human Hy who is unknown to the IRL and have different characteristics
and preferences than H;. The task "to give”, which is now a known task, is asked by Hy for
an object learned with H;. This phase, during which the IRL naturally asks and learns Hs’s

preferences, validates adaptation to individual.

The teaching scenario is initialised by H;. This is done by presenting the robot an ArUco tag
[32, 33] linked to a unique identifier. The IRL agent has only the prior knowledge given in Table 6.2
During the interaction H; asks the robot to give him a screwdriver but ”give” is an unknown task
and "screwdriver” is an unknown object for the IRL agent. By natural interaction with Hp, the IRL
agent incrementally learns what is the task "to give” and a skill to solve it. During this process, the
IRL agent learns visual features of the screwdriver and a grasping location affordance by asking Hj
demonstrations and leveraging our developed learning from demonstrations module [34]. Finally, the
IRL agent gives the screwdriver by locating and moving to the right hand of H; in order to adapt to
its characteristics. Then, Hp asks the agent to give him the wrench. As now the IRL agent know what
“to give” is, it only learns the specific missing information: what a wrench is and a grasping location
affordance, specific to H; (the head of the wrench). This second part highlights the modularity and

reuse abilities of the learned representations.

In the second phase, Hs is also identified by presenting an ArUco tag. This human is unknown
to the agent and is asked for information about its characteristics. Hs informs the agent about his
name and that he is left handed, leading to an update in the database. Hy then asks to give the
wrench. The IRL agent can leverage all its knowledge about the "to give” task by just learning Hs’s
preferences. It learns that Hy prefers the wrench to be taken by the tail by requesting Hs for a grasping
demonstration. Finally the IRL agent adapts to Hs by taking the wrench by the tail and giving it to
the left hand of Hs. Figure 6.4, illustrates preference adaptation according to the grasping location

affordance.

Thanks to the provided human demonstrations, neural network is trained to efficiently predict the
grasping affordances (prohibited, neutral and authorised locations) for the require object according to
grasping preferences. Concretely the respective branch of BT’s for H; and Hs points towards a specific

set of weights stored in a relational manner. This is done through the incrementally updated database,
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with respect to identifiers, gathering known characteristics and preferences for each individual.

A video of demonstration can be found

2

Table 6.2: Overview of prior knowledge

Egiresenta— Prior knowledge built in the architecture (Step -1)
Features extraction from pretrained neural networks
Sensory segmentation abilities : background removal, proto-object segmentation
Human pose recognition
Perception | ArUco tags detection
Word recognition abilities from Speech to text (STT)
Semantic analysis with a base communication protocol
éi:i{l;)ns/— to pickup(obj) as a behavior tree (BT)
to putin(location) as a BT
Preferences | Humans have preferences and characteristics, H; is known and is right-handed

Table 6.3: Synthesis of what will be learned during the incremental interactive learning process of the

unknown task to give

R senta-
VCPEESERA™ | Unknowns Learned knowledge
tion
Perception | wrench and screwdriver perceptual features and grasping .
location affordance of wrench and screwdriver

Actions/- . .
tasks / to give(obj) to give(obj) as a BT

Affordances and  acting Preferred grasping affordance (wrench caught by the head or
Preferences f the handle)

prelerences Adaptation to give the object in the dominant hand
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Table 6.4: Detail of the learning process during the incremental interactive learning process of the

unknown task to give

. Unknowns — Learned Human interactive inter-
Interaction steps Leveraged knowledge .
Knowledge vention
e Built-in prior knowl-
edge with vision and
. speech (BPK) see table
Step 0: | 6.2 ArUco identifier
Hy inits interaction ..
Database containing
H,’s characteristics and
known preferences.
Step 1: N e to glve(ob.]). — | e Bullt-.ln prior knowl- Speech recognition and
H, asks: 7give screw- | new goal Gl: give = | edge with vision and semantic analvsis
driver” In(screwdriver, hand) speech (BPK) Y
e Built-in prior knowl-
Step 2: e screwdriver — percep- | edge with vision and | Pointing demonstration
H, asks: 7"The goal is

screwdriver in hand”

tual features

speech (BPK) ,

with speech validation

e Gl

Step 3: . . "
Hy, explains: "pickup * to glve(ob_]) — | « BPK Speech. recoganlon and
serewdriver” pickup(obj) + ... e G1 semantic analysis

e to give(obj) —

pickup(obj) + ...

e affordances preferences | ¢ BPK Authorized and prohib-
Step 4: of H; for screwdriver — | e G1 ited locations demon-

Hy shows its preference

screwdriver  affordance
as Hi’s preference (the

e pickup(obj) needs

grasping affordance

stration with speech val-
idation

agent  stores  specific
neural networks weights)
. . e BPK
Step 5: o ° to .glve(ob:]) - t'o e Gl Speech recognition and
Hy ezplams: putin hand | give(obj) = pickup(obj) e putin(loc) semantic analysis
(screwdriver)” + putin(hand) o dominant hand of H,
Step 6: e wrench — wrench per- : Blzle{W oal G2 — Pointing demonstration
H, asks “give wrench” ceptual features . & " | with speech validation
give(wrench)
e BPK
e affordance preference | e goal

Step 7:
H, shows its preference

of H; for wrench —
grasping location affor-
dance as H;i’s preference

e to give(obj) whose sub-
action pickup needs a
grasping affordance

e dominant hand of H;

Authorized and prohib-
ited locations demon-
stration

Step 8:

e name of Hy
o dominant hand of H,

Hos inits interaction — H>y’s characteristics in * BPK Keyboard entries
database
e BPK
e affordance preference o hew goal  G3 = Authorized and prohib-
Step 9: of H, for wrench — glve(w.rench)- ited locations demon-
Hy shows its preference wrench affordance as | © fo give(obj) + need of stration with speech val-

Hy’s preference

grasping affordance for
pickup
e dominant hand of Hy
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Operator H,’s preference Operator Hy’s preference
AN

1 Authorized
I 0.8
0.6

0.4

\ 0.2
\ 0 Neutral
—0.2

N\ || |04

—0.6
\ ‘ I —0.8
-1 Prohibited

Figure 6.4: The IRL agent can dynamically adapt its affordance prediction according to the interacting
human as shown here on a wrench example. On the left, H; has taught the IRL agent to grasp the
wrench by the head. On the right, Hy has taught the IRL agent to grasp the wrench by the tail. The
agent can then dynamically choose the preference according to the interacting human.

6.4 Conclusion

In this chapter, we provided an implementation and a validation of several of the main architec-
ture specifications. The core architecture was developed in python3 to be easily linked with different
modules (perception, learning,...). We made a real robot learns an unknown task, by building pro-
cedural and perceptual knowledge taking humans preferences and characteristics into account. The
use of behavior trees provides an efficient way to handle knowledge representations, task sequences
learning and execution. Indeed, by this way, when the agent faces failures while executing behaviors,
it only has to request for the missing features. Information is provided interactively by human in a
mixed initiative teacher/learner setting. Using speech and gestures as means of communications and
by using integrated modules such as our learning by demonstration module, non-programmers experts
can naturally reconfigure the robots. Thus, we have shown that the choices we made have brought
our architecture closer to our smart robotic assistant specifications. However, there is still a long way

to go before reaching the ideal SRA, such as integration and validation of multimodal uncertainty
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in the overall architecture. The next chapter (chapter 7) concludes our work and discusses several

perspectives.
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Chapter 7

Conclusion and perspectives
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The work carried out throughout this thesis has led to the design and development of a first core
architecture for skills learning in a collaborative industrial context. As a conclusion, we review in
section 7.1 our main specifications and the developed methodology to fulfill them. We balance our
results by underlying the current limitations of our system and how it opens many research paths.
Section 7.2 presents how a first uncertainty aware, deep learning module developed by Laurent Bimont,
a former PhD student, can be integrated with our learning from demonstration module. We present
finally in section 7.3, thoughts on longer terms perspectives and cross domain research that could

benefit the architecture.
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7.1 Main points

The main objectives of the thesis were to build a Smart Robotic Assistant for industrial collabo-
rative robotics. Inspired by works in cognitive architecture and interactive robot learning, we defined
several specifications for our cognitive architecture to contribute to Interactive Robot Learning and
Human Robot Interaction (HRI). Throughout this thesis, we discussed the main building blocks of the

core cognitive architecture and the integrated learning modules to fulfill them. The IRL agent must:

e reason and have at least partial explanations abilities
— The IRL agent has been endowed with several symbolic memories for an interpretable
representation of high-level knowledge and reasoning over those representations.
— An ontology is used to share coherently representations across the different memories
— The choice of Behavior Trees as a behavior model eases the representation of a goal directed,
procedural knowledge and allow a certain level of reactivity.
e learn quickly and incrementally a new task from low level to high-level abstractions

e leverage a prior knowledge base for tasks execution and learning online

— Use of symbolic memories allows to leverage symbolic prior knowledge.

— Behavior Trees help to build a modular system and therefore promote quick behavior reuse

within the decision process architecture

— Transfer learning with deep neural networks is leveraged for learning and interpreting the

world and human interactions.

Transfer learning also allows to learn fast, to reconfigure behaviors as we showed with our

learning from demonstration module
e interpret and react to human interactions in real-time
e interact intuitively with non-programmer experts

— Several perceptual learning modules, developed and adapted from the literature were inte-

grated into the architecture.
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— Failure handling through the behavior model allows to teach the IRL agent in a mixed

initiative human/robot interaction loop, an unknown task at both high and low levels.

— The choice of sensors and perceptual modules for validation, based on speech and vision of

gestures, were chosen to exploit natural communication means for information sharing

— The developed learning from demonstration module eases non verbal interactions.

e adapt to preferences and specificities such as disabilities

— The architecture is human centered and therefore, the IRL agent specifically represents

human preferences and learns them during the interaction.

— Validation has been made on a real-world system to assess the relevance of the approach.

e handle uncertainty in moto-perception and its knowledge

— A state of the art was made on uncertainty definition and its estimation with deep learning

module

— Uncertainty handling and reasoning is a work in progress and will leverage extension of the

behavior model and aforementioned uncertainty estimation techniques.

This work is a first step in the development of a powerful IRL cognitive system for a non-
programmer expert human to teach, more naturally, flexible behaviors to an industrial collaborative
robot. Overall, we have built the architecture with modularity in mind, as using modular components
is key for better understanding, confidence assessment and the potential evolution of the architecture.
Teaching behaviors is a complex task, so we took inspiration from the iterative learning process in
humans. Robots are taught incrementally, how to represent the world with and for human agent.
This type of learning is promising as it gives much more control and likely confidence to the end users,
by teaching the robots behaviors according to their needs. In the long run, it could help build more
interpretable representations of the real-world environment. Of course, the ideal IRL is still far from
being achieved. We develop in the next section some limitations and relevant paths of research, with

a focus on ongoing work in uncertainty integration.
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7.2 Integration of an uncertainty aware grasping module

In section 6.2.4, we developed a module that could learn grasping location affordance with a good
accuracy level. However, the agent can still predict wrong grasping location (for example, if the
training dataset is not diverse enough). In an industrial scenario, for safety concerns, it can be much
more acceptable not to act rather than doing wrong. In that context, we want the IRL agent to
be able to measure its confidence in grasping prediction. If it is not sure, it does not act and this
specific failure can interactively be handled by asking for new demonstrations. Once the IRL agent
is confident enough, it can act. Therefore, to exploit uncertainty in the architecture and later in a
multimodal way, we have started to develop a specific module to evaluate uncertainty at the same
time as learning grasping parameters. It consists in two neural networks: Graspnet presented in
section 4.1.4 which is responsible for learning the rectangle grasping parameters and Trustnet which
is responsible for predicting the uncertainty of Graspnet. It is a reproduction of the work done in our
laboratory by Laurent Bimont, a former PhD student. Constraints due to the Covid situation, limited
the maturity of this work. Therefore it has not yet been valorized in a publication and integrated
into the overall architecture. We first introduce in section 7.2.1 grasping under uncertainty before
presenting a global overview of Trustnet module and its use for grasping under uncertainty in section
7.2.2. Main experimental results are provided in section 7.2.2. Finally, in section 7.2.3, we present how
it can extend the IRL learning from demonstration capabilities. Annex A.2, provides the experimental

details obtained by Laurent Bimont.

7.2.1 Grasping under uncertainty

In the deep learning community, estimating network uncertainty has been addressed in various
works (section 5.2). As to the best of our knowledge, few papers have investigated uncertainty mea-
surement of vision regression problem in grasping, we decided to focus on the direct regression of
the grasping parameters along with uncertainty. Learning to grasp and prevent failed attempts has
already raised interest in the robotic community. Several approaches rely on leveraging geometric
characteristics of the grasping contact area [1—3] to compute a grasp quality metric. To obtain good
performances, those approaches require knowledge about mechanical properties and a 3D model of

the objects and the gripper. Such information are hardly available in an online interactive setting
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such as the one we face with an IRL agent. Predicting a confident grasp directly from a real-world
image can therefore be a very flexible approach. In that context, we have seen in section 4.1.4 that
an important part of current research explores deep learning. However, compared to geometric and
analytical methods, traditional deep learning approaches are much more opaque. This has led to bring
uncertainty estimation techniques with deep learning to the visual grasping context. For instance, in
[1], authors train a network to predict, given CNN features computed on an RGB image, several po-
tential grasps as belief heatmaps, which are then fitted to 2D Gaussian Mixture Models (GMM). This
allows the model to predict several possible grasping poses which are then ranked according to the
fitted GMMs likelihood. The mean of each predicted belief maps represents the center of a gripper
plate, while the variance has been related to a measure of uncertainty. The methods gains in accuracy

before staggering, as the number of predicted heatmap increases.

7.2.2 Trustnet

With Trustnet, we chose another uncertainty estimation approach as we only want to predict
one grasping pose. We have extended a methodology [5] where authors proposed to leverage an
external neural network called ConfidNet, trained to predict the True Class Probability of a prediction.
This technique is related to the external measure approach (section 5.2.4) in uncertainty estimation
techniques. Here, TrustNet has been applied to predict an uncertainty associated with GraspNet
predictions. The overall module architecture is presented in Figure 7.1. We note ¢ = G(X) =
(z,y,0,w,h) a prediction of GraspNet and 7 = T (X) a prediction of TrustNet for an image input
X. TrustNet outputs an uncertainty metric representing the probability of failure given the trained

GraspNet, 7 = P(Y = failure | G, X) for any input X.

The steps of the main method is the following:

1. We train GraspNet on a dataset Dyrqin = (Xtrain, Yerain)-

2. Based on a validation set Dyq = (Xya1, Yoar), we build an uncertainty calibration dataset Dy =
(Xcal, 7) where the target value 7 is related to a certain grasp (0) or an uncertain grasp (1)

determined thanks to the Jacquard metrics (equation A.l in annexe A.1).

3. Then, this dataset D, is used to train TrustNet as a classification problem.
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4. Finally, for any unseen image X, we can compute the tuple result (g, 7) for an image X.

Since Graspnet and TrustNet work in parallel (Figure 7.1), it makes this technique non-intrusive

for GraspNet and with little inference time overhead.
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Figure 7.1: TrustNet architecture

The Neural Network architecture used for TrustNet is similar to the GraspNet’s one except for the
last layer which outputs a single value with a sigmoid activation function to provide an uncertainty
measure. Since we trained TrustNet as a classification Network, we used the classical binary cross-

entropy loss between the predicted T and the true one 7 as loss function:

L(r,#) =tlog#+ (1 —7)log# . (7.1)
Qualitative analysis.

To qualitatively estimate an uncertainty metric 7, we plot in Figure 7.2 the histograms distributions
of bad/good predictions according to 7, on the Cornell dataset. Different estimations methods were

compared against TrustNet.
1. Dropout and Simple Ensemble methods do not separate well good and bad predictions. Moreover,
their respective distributions along 7 look similar.

2. Proper Scoring methods show two partially shifted distributions which is a first step toward
a clear separation. We can expect a good failure prediction capacity for those approaches, in

particular for the Ensemble Proper Scoring method for which the drift is higher.

132



7.2. INTEGRATION OF AN UNCERTAINTY AWARE GRASPING MODULE

3. TrustNet also shows shifted distributions with more good grasps located at a low level of uncer-
tainty. Distributions of good and bad predictions can not be clearly separated, but once again we
can expect a good failure detection performance for this metric. We should note that TrustNet
is the only metric proposing a bounding uncertainty metric between 0 and 1, making it easier

to set an uncertainty threshold thereupon.

None of the tested uncertainty metrics clearly separate the good prediction distribution from

the bad one. But still, TrustNet method shows promising behaviors for failure detection.
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Figure 7.2: Histogram of 7 for good (green) and bad (red) predictions for different uncertainty methods
on Cornell grasping datasets. Bad predictions are represented by negative occurrences

7.2.3 Extension for active learning by demonstration

GraspNet /Trustnet methodology can serve as a base in the architecture to improve grasp quality
and safety. We show, as illustration, in Figure 7.3, what we could obtain by integrating TrustNet with
our learning from demonstration module. The learning from demonstration would output forbidden,
neutral and authorized grasping area from which we derived grasping rectangles while TrustNet can
be used to predict an uncertainty estimates for the authorized grasping area. This would allow safer
prediction, as now, the IRL agent has a mechanism to decide to act or not to act. Moreover, it opens
the gate for uncertainty driven active learning of grasping demonstration. In that direction, Figure
7.4 shows how this module could be integrated as a condition node of Belief Behavior Trees (BBT)

presented in section 5.4.3. Given the grasping parameters and associated uncertainty, a Failure can
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be generated according the uncertainty threshold 7..sn. Uncertainty can be propagated back in the
tree and if the agent is not certain, it can be solve in the BBT, leveraging active learning. Figure 7.5,

presents the high-level integration of the module based on the methodology presented in section 5.3.

In the long term, we hope to reach a success rate of 100% for grasping trials while limiting the
number of irrelevant requests. It can indeed generate a cognitive burden for humans and an economic
cost if re-configuring the robot is required too frequently. Hopefully, as it increases its experience, the

IRL agent will be less and less likely to ask for help.
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--- Predicted grasping rectangles | uncertainty
Antipodal grasping line 1 High uncertainty — Ask

Position of human fingers
egiven by the learning from

demonstration module Trustnet
0.9
/
Learning .-
authorized o
location '
0.5
' |04
Learning 05
prohibited .
. F10.2
location B.3.2
0.1

L10 Low uncertainty — Act

Figure 7.3: Graspnet and TrustNet integration can be used in a task oriented setting for active learning
by demonstration.

134



7.2. INTEGRATION OF AN UNCERTAINTY AWARE GRASPING MODULE
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processes of the IRL architecture.

135



7.3. LONG TERMS PERSPECTIVES

7.3 Long terms perspectives
7.3.1 Continuous active learning setting

This active learning pipeline depends on the level of uncertainty of the system, Ty esn (see figure
7.5) and on how datasets can be updated. During the IRL process, in first steps, we aim at drastically
limit the number of missing alarms (FN). Therefore, we should start with a rather high TP R(7¢presn)
corresponding to a low 74,55, before progressively increasing it as the IRL agent predictive and uncer-
tainty models improve. The idea is represented in Figure B.21 where we illustrate for an hypothetical
model the proportion of good predictions (in green) and of wrong predictions (in red) given the un-
certainty level. The agent will ask the operator for inputs labels of uncertain predictions. Training
on few epochs from the current weights/knowledge will enable the agent to significantly improve its
expertise over time. In order to not forget what was previously learned while avoiding the storage
of unnecessary data, the IRL agent needs a way to select the most relevant data to keep, as new
data are collected. Various techniques based on experience replay, a dataset of past experiences, [0,

], commonly used in reinforcement learning, could be leveraged to select the most relevant data as

suggested in [3].

Ideally, after a few iteration steps, the distribution of good and wrong predictions should be well
separated among uncertainty 7 (ACC' tending to 1), with no missing alarms and less uncertain and
wrong predictions. Expertise of the IRL will be seen when asking decisions becomes sparse with an
NPV ratio equal to 1, and TN proportion very close to 1. Remaining asking decisions should happen
with scarce unseen inputs (particular cases). This would allow to adujst Typ,esh, as the agent becomes
expert. However, defining the right way to do this automatically is open, as the level of acceptable

uncertainty is likely to be task specific.

7.3.2 Reasoning about specific uncertainties

In terms of architecture integration, in the long term, thinking about distinction between aleatoric
and epistemic uncertainty in the architecture seems important. Indeed, if the IRL agent has to deal
with a task inherently stochastic, it should explore more, usually by asking a demonstration to a
human, in order to reduce its epistemic uncertainty. Once the epistemic uncertainty is low, collecting

more perceptual data by asking demonstrations to a human becomes meaningless and the agent can
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Figure 7.6: Illustration of 7yp..sn usage to prevent wrong actions, given the uncertainty 7

then effectively compute the aleatoric uncertainty. For instance, if a visual sensor becomes very noisy
in low light conditions, the aleatoric uncertainty of a classification model can become very high, even
if the networks parameters have been adjusted and that epistemic uncertainty is low. Such model can

then lead to specific strategies, such as ignoring vision sensing for decision making.

7.3.3 Multimodal fusion

We have seen that there are many modalities of perception. A complex collaborative applica-
tion will probably need to combine even more sensors and perception modalities than we have done.
Multimodal learning is based on fusing and relating information coming from those different sources.
This could be helpful to provide various information and redundancy from different physical sources.
Variety is likely to help in a better understanding of the environment. Many sources redundancy can
help perform tasks more robustly. An ideal multimodal TRL agent should be able to exploit at least
the same modality as humans such as vision, speech, textual data, force or haptic sensing [9, 10]. For
instance, haptic could be especially useful in some context such as when the gripper is occluding the

robot vision, or for better grasping prediction that could take object texture into account [11].
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One of the challenges in multimodal processing is how to deal with data heterogeneity. To solve
this difficulty in deep learning, several techniques exist. For example, in [12], authors categorize

multimodal learning in deep learning according to three framework:

1. Joint representation: Each modality is encoded by a neural network. The joint representation
consists in concatenating the last layer of the networks in order to force a joint representation

during the learning process.

2. Constrained Coordinated Representation: The networks are trained in parallel for each modality
and then a suitable loss function is used to update the networks. This involves establishing a
similarity measure between the two modalities at the output of the parallel networks (called

constraint).

3. Encoder-decoder system: An encoder encodes a modality in a latent vector then a decoder
generates a sample of the targeted modality. At the end of the learning process, the network has

learned a representation to switch from one modality to the other.

In recent works, cross-modality can also be leveraged in a sequential but related manner. For
instance, in [13], authors proposed Cross-Modal Deep Clustering (XDC), where a firstly pretrained
unsupervised model for a modality (audio) is used to supervise the training of another modality
(video).

Sensors are likely to not have the same reliability in dynamic settings. For instance, when the
sight is clear, vision based system is ideal, but in highly occluded setting such as insertion tasks,
touch, force/torque sensing is likely to be more appropriate. To mitigate these limitations, use of
uncertainty can represent a strong cue. That could help drive major improvements in sensing fusion,
for active learning and for better decision-making. At high-level, we can distinguish two main views
on multimodal sensing and perception in an online adaptive setting: when they complement and when

they contradict each other.

When perceptions are complementary, they can provide redundant or additional information about
the perceived concept. Perceptual uncertainty is a convenient tool that can help in this reasoning
process. For instance [14], authors adapt uncertainty based techniques in specific audiovisual speech

recognition task by exploiting Gaussian mixture model. According to the uncertainty estimation they
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can rely on the different streams of data (vision of the mouth and speech).

When perceptions are contradictory, the problem becomes more complex. Indeed, for instance,
if a human asks a robot "Give me the screwdriver” while pointing an object, whereas the IRL agent

actually sees a wrench. In that case several interpretations are possible:

e The perception by the IRL agent of the pointing hand location, of the tool and of speech are

true. As a consequence, the human made a mistake, this is not a screwdriver.

e Some perceptions are faulty. For instance, perceptions of the pointing hand location and speech
could be true whereas perception of the tool is faulty. The object is a screwdriver but the IRL

agent sees a wrench.

In the first case, the robot should infer, based on its confidence level and its knowledge of the
current situation where the human was wrong. Assuming all perceptions are confident, it could ask

to repeat the question or suggest to grasp the wrench instead.

The second case is the more complex but is interesting as this type of situation can be leveraged
for a kind of multimodal self-active learning. In [15], authors use a Bayesian method, the Independent
Opinion Pool, to reinforce or mitigate the overall uncertainty about human intent between several
modalities (gesture, gaze, speech and objects recognition). In our example, we have two modules
that predict the same information, the object recognition module and the speech recognition module.
Assuming the object recognition module is uncertain and the speech recognition module is confident,
we can exploit the fact they designate the same object. For example, we could update the object
recognition module on behalf of the speech recognition module, without human intervention, by being
optimistic and assuming that the speech recognition module must be right. Another approach, more
conservative, could be to make the IRL agent asks a question to the human, based on the current
situation understanding. The IRL agent could ask "Are you sure ? I don’t see a screwdriver ? I see a

wrench with uncertainty, should I learn that it is a screwdriver 7”.

7.3.4 Improve preferences generalization

As the agent accumulates knowledge with several users preferences, some of them are likely to be

redundant. For instance, it is likely that several users will share the same grasping location affordance.
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Currently, a new neural network is learned for each new user which means learning and saving a lot
of models which predict the same affordance. We need more general mechanisms for better scaling.
For instance, when the IRL agent is given a new preference, it should have a mechanism to search in
its perceptual memory for similar preference. If such preference has already been encountered, it can

just point to this preference without relearning. Several strategies could be investigated:

e The IRL agent could propose a grasping affordance based on past demonstrations. This could
simply be done by enumerating previously learned preferences and asking the human to select one
of them. However, it could scale badly with the number of preferences. By computing statistical
information about previously learned preferences, such as their frequencies, the enumeration

could be done after a relevant ranking of preferences.

e On the other hand, the human could be asked to give a demonstration. In order to avoid learn
again a similar demonstration, the IRL agent could leverage its prior perceptual knowledge stored
as neural networks weights. We need a way to compare the demonstrated preference against
previous one. This could be done, by exploiting clustering techniques [16]. The IRL agent would
assign the closest known preference. Determining the best metric to compare preferences is likely

to be task specific and should be discussed.

7.3.5 Improve behavior models in terms of learning and representations

Concurrency of behaviors: While classical BTs allow a parallel execution of perceptual modalities
and actions, they can lead to unexpected behaviors when synchronization is not enforced between
nodes as what is encountered in concurrent programming. For instance, controlling a bi-arm robot
could require the parallel execution of both arms for a collaborative task. The BT model should be
updated to take such setting into account as what was done in [17, 18] to formalize concurrency in

Behavior Trees.

Multiparadigm learning with Hierarchical Reinforcement Learning and Learning From Demonstra-
tion: Hierarchical reinforcement learning (HRL) decomposes a reinforcement learning problem in
several subtasks that can themselves be modeled as reinforcement learning problems. HRL has proved

to be more data efficient than standard RL probably thanks to a better exploration ability. The
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hierarchical nature of the framework, can help decompose tasks into simpler tasks for learning. In-
tegration of reinforcement learning has been leveraged in several cognitive architectures such as Soar
[19]. RL is also exploited in the IRL architecture in [20]. In this systems, the IRL agent can learn and
coordinate new behaviors through model-based algorithm corresponding to goal directed behaviors,

and model-free RL corresponding to habitual behaviors (a kind of reflexes).

Several extensions have demonstrated that it is possible to integrate RL in BTs framework, such

as in video games with QL-BT : [21], BT-RL: [22] or in [23].

Another important point is the fact that, in the current architecture, we have mostly focused
on learning discrete actions. Fach action being a point to point continuous motion computed by a
classical inverse kinematic motion planner. Learning lower level continuous action such as in [24] could

be interesting and could be modeled with RL based learning modules.

Finally, while we first focused on the integration of learning from demonstration (LfD) techniques
in the architecture, having a synergy between LfD modules and RL based modules seems a promising

path where LfD would serve as a basis that could be refined by RL based approaches.

Knowledge update and repair: We are currently expecting that the human is an oracle, but in real-
world, we can not always expect a perfect understanding between the human expectations in terms
of task specifications and what the IRL agent understood. Actually, even human often fail when
explaining a procedure to others. We need to integrate what is referred to as interactive misalignment
repair [25] where the agent can be triggered by humans, if they see the robot doing the task wrong while
it think the contrary. This could be done via specific keywords, such as ”stop”, "you are wrong”, which
would help in correcting a past misunderstanding. The structured nature of the procedural memory
and episodic memory are likely to help for that types of introspection and for learning. During a repair

phase, the agent could simulate what it did thanks to its skills representation and what it remembers

thanks to the episodic memory while asking humans for correction.

Causal Learning: We have seen throughout this thesis that building an interactive robotic learning
agent requires quite a cross disciplinary approach, merging works from several research area and built
in a more general cognitive architecture. An approach, that we had not the time to investigate is causal

learning and discovery literature. Causal research literature is gaining an increasing traction in the
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machine learning and deep learning communities [26]. While machine learning research has usually
mostly focused on learning correlations between data, causal learning research aims at formalizing
causality relations between data. Cognitive robotics and design of architecture, are likely to benefit
from this research area, through relevant connections in terms of world modelling. Yet, it seems there
has been only a limited set of work, in robotics [27], focusing on this cross disciplinary approach. It is
likely that integrating concepts and results from this framework could help learn better representations

for our cognitive system.

One of the most prominent framework, the do causal framework, was introduced by Pearl [28].
Reader can refer to [29], for a comprehensive introduction in the field. This framework entails to model
causality in a hierarchical manner, through the lens of the "Ladder of Causality” [30]. This framework
highlights the difference between three layers that intervene in causality: seeing, doing, imagining [29]
which corresponds to different level of inferences from data observation to higher reasoning level. Table
7.1 presents Pearl’s Causal Hierarchy, reproduced from [29] (Table 1.1), with an adapted example.
This is done by building and leveraging a specific type of Bayesian Network graphical models called a
Structural Causal Model (SCM) (see figure 7.7). In a classical Bayesian Network, we are given several
random variables (observable or not observable) and their dependencies are represented through the
graph edges. Assuming Markov properties, we can associate each variable with a certain conditional
probability distribution (CPD) given its direct parents. In contrast with a classical Bayesian Network,
SCM however, use causal dependencies in the graph. That means that the graph is built explicitly
to represent real-world causal directions where edge direction implicitly encodes time. This nuance
is important as we saw in chapter 5, that, the way a variable causes others is linked to dataset shift

issues in deep learning.

For instance, let’s imagine we want to teach an IRL agent, that a variation of illumination might
change how well it perceives the world. Such a representation could help the agent better handle
its uncertainty representation by explaining why it is uncertain. If its visual uncertainty increases,
given the causal model, it might assume that its visual uncertainty was caused by a high illumination.
Reciprocally, if the agent detects a change of illumination, but that its uncertainty remains low, it
is possible that the predictive model for uncertainty prediction is ill-calibrated. In that context, the
causal representation through an SCM, could help correct the model, such as the one in figure 7.7:

the Sun causes light that affects objects visibility. There can be some hidden variables, also affecting
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visibility, such as dust in the air or material properties of the object. In the non causal Baysian
Network, while probabilities distribution can be computed, they do not represent the true causal
structure of the physical phenomena: light affect visibility and not the contrary. Only the SCM allows
to represent directly the object visibility probability given the presence of light. Therefore, with the
SCM, the agent is likely to build a better and more flexible understanding of the world. Then, the
question is how to build such a SCM given observation data. In [29, 30] authors proved that a valid
SCM could not be learned given observational data alone (seeing layer), but it requires what is called
intervention data. An intervention (action layer) consists in an external action, which fixes some
(usually one) variables that supersedes the current SCM representation. For instance the agent or the
human can control the light. This is modeled via the do operator which defines a new mutilated model
which can be used to infer more information about concept causal interaction. Finally counterfactual
(imaging layer) aims at giving the agent the ability to make hypothesis (without intervention), to
imagine what can happen in its model given this hypothesis. Here, if the agent sees nothing, it can
make the hypothesis that it could see an object if light is on. By this way, it could decide to turn a

the light or suggest a human to do it.

Humans have a natural intuition of causality that is learned throughout of their lives. In that
context IRL could be exploited from the robotic agent perspective as a causal discovery mechanism
where the human share its knowledge of the world to build the SCM. Conversely notions from causal
learning is likely to help build more principled representations on the way we build and develop the dif-
ferent memories. In particular, it might impact procedural memory as precondition and postcondition

already embed a notion of causality.
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Table 7.1: Pearl’s Causal Hierarchy, adapted from Table 1.1 [29].
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Figure 7.7: Different Bayesian Networks graphical models can represent the same data. But not all
graphs represent causal relations. Gray variables are observed variables, white one is a hidden variable
that could influence object visiblity.

7.4 General conclusion

While industrial collaborative robots programming becomes more and more accessible, building
adaptable and modular behaviors is still out of reach for most non programmer experts. Allowing any
humans to teach cobots complex and personalized behaviors, with natural communications means,
would likely ease their acceptability and long-term co-integration in industry of all sizes. We have pre-
sented a core architecture prototype focusing on integrating reactive planning, acting and incremental

learning of skills in an interactive learning setting. The current development state of the architecture
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could validate most of our specifications. Experimental validations were made in teaching task oriented
grasping related tasks, with preferences handling to an industrial collaborative manipulator. The ILR
agent is able to learn both high-level and low level representations of the task online, during a mixed
initiative interaction. Use of BTs as behavior model help build modular, explicit task representations
which help in explainability and interpretability of robot behaviors. The cognitive process exploit
perceptual modules based on neural networks to learn complex perceptual features such as grasping
location affordance on plan. Learning is fast thanks to pretrained networks, transfer learning to specific
downstream tasks and augmentation techniques with specialized sub-networks. Moreover, as bigger
neural networks are hardly interpretable, the use of specialized sub-networks is likely to help interpret
and correct system failures. Thanks to modularity, if a sub network prediction fails, it can be possible
to correct only this sub networks without affecting other modules. We have shown that it is possible
through a mixed initiative scenario to teach a task and its variation with respect to most of our IRL
specifications. Adaptation to human preferences, here validated on grasping affordance preferences
and adaptation to dominant hand, is an important requirement in our architecture. Indeed, it offers

personalized interaction which is likely to help in acceptability of robotic systems by the operators.

Our work is a first step towards a smart collaborative industrial robotics assistant. The architecture
is opened and extensible to several improvements as integration of better perceptual abilities, language
understanding and communication protocol in order to allow richer real world interaction. Finally, as
the architecture matures to handle more complex tasks, it will become necessary to test it on more
complex setting and with true non-experts, based on HRI metrics [31] and following standard HRI

evaluation protocols (chapter 7 of [32]).
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Appendix A

Evaluation of grasping quality and
uncertainty

A.1 Jacquard metric

To evaluate whether or not a grasping prediction g = (z,y,0,w, h) is a success, one can use the
Jacquard metric [1] with several grasping parameters g; € girye Which are available for the same image
in the dataset. For an image = € Z, valid grasping representation g; are converted to their rectangle
representations R;. Then, one can compute the area of intersection over union of the predicted grasping

rectangle Ry,¢q from g and R;:

R red [ Rz
J(Rprea; R) = max (RZredURi) : (A1)

As a rule of thumb, one can consider successful a grasping prediction if J is above 0.25 and the

difference between 0,,.q and 0y is below 30°.

A.2 GraspNet/Trustnet experimental details

This section details the experimental work done on GraspNet/TrustNet. This is based on the work

of Laurent Bimont.

A.2.1 Implémentation details

To perform computations, we used a computer with a Nvidia RTX 2080 8Gb graphic card and
Intel®8 Core™ i7 9700K 3.6 GHz CPU. Implementation was done in Python 3.6 using Tensorflow
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1.13. To train GraspNet, we used the adam optimiser with a learning rate set to 0.001. We reduced the
learning rate by a factor 0.9 each time the validation loss did not decrease for 5 epochs, and stopped
the learning process after 20 epochs without validation loss improvement. Training dataset is based on
the Cornell and Jacquard dataset. We performed data augmentation on the Cornell dataset leading
to a database of approximately ~ 6000 grasping examples. To implement the different uncertainty

metrics 7, we used the following scheme:

e For MonteCarlo Dropout and Concrete Dropout, we performed T" = 100 inferences with Dropout
layers actives. For Monte Carlo Concrete Dropout we used the concrete keras version available

on Yarin Gal’s GitHub.

e For Ensemble Proper Scoring network, we used adam optimizer with a learning rate of 0.001. We

reduced the learning rate by a factor 0.9 after 5 epochs without validation loss improvements.

e For Simple Ensemble and Proper Scoring Ensemble, we used T' = 5 networks

e For Trust Net’s %7T training, we used a learning rate of 0.001 with adam optimizer. We used
learning rate decay of 0.9 after 5 epochs without validation loss improvements. During training,

VGG16’s weights were frozen.

Effects of architectural changes on GraspNet performance.

Changes on GraspNet architecture and training scheme lead to different grasping accuracy summed
up in Table A.1. Performances stay at the same level for Concrete Dropout, and Simple Ensemble.
However, the Proper Scoring method leads to a drop in performances (—24% for Cornell and —42%
for Jacquard). Despite our effort to improve accuracy of this technique, we were not able to find
a good set of hyper-parameters to reach an equivalent level of performance. We remark that for
the Jacquard dataset, Proper Scoring networks had some difficulties to converge. We trained several
identical networks leading to heterogeneous accuracy results (ranging from 0.4% to 20.6%). We believe
that Proper Scoring networks need deeper architectural changes (like changing the number of hidden
layers and neurons) to work well. However as we wanted a fair comparison between the different

GraspNet models, we did not make any change for this study.
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Table A.1: Accuracy for various GraspNet architectures and learning scheme

.. Concrete Simple Proper Ensemble
GraspNet || Original Dropout | Ensemble | Scoring | Proper Scoring
Cornell 86.6% 85.7% 87.3% 62.5% 78.8%
Jacquard 62.5% 63.5% 63.1% 20.6% 0.8%

Quantitative analysis

The quantitative analysis is made through the curves and scores proposed in Section 5.3.2. We
plot the ROC and S — 8% — FPR curves for both the Cornell and the Jacquard dataset in Figure
A.1. Dropout methods do not perform better than a random detector, since ROC curves follow the
random performance and grasping accuracy is not improving with FPR (Figure A.1-(c)-(d)). This poor
performance does not seems to be related to fixed Dropout rates p since the results are equivalent
for Concrete Dropout. Such poor performances of Dropout methods have already been highlighted
in some papers as mentioned in section 5.2. Simple Ensemble has results with ROC curves better
than the random detector and an increase in grasping accuracy, however it is outperformed by other
methodologies. Proper Scoring methods and TrustNet show equivalent good ROC curves. However,
for the Proper Scoring on the Jacquard dataset, the ROC curve is obtained with so few number of
good predictions (as shown in Table A.1 and recovered on the S-FPR curve) that it does not allow us

to draw a conclusion.

The S-FPR curve of TrustNet is much better and relevant for an industrial use case. Indeed for an
FPR (~ economic cost) of 15% we reach a grasping success rate up to 93.7% for the Cornell dataset.
We should note that despite starting from a lower grasping success rate, after 20% FPR, Ensemble
Proper Scoring outperforms other methodologies (except TrustNet) for tempted grasp success rate for

the Cornell dataset, showing the relevance of Proper Scoring as predictive uncertainty.

On Figure A.1-(d), we can notice that TrustNet is the only one for which the grasping success
at 0% FPR (71.1%) is better than the initial GraspNet accuracy (62.5%). This result is particularly
interesting as it shows that TrustNet can improve grasping accuracy without increasing the number

of false alarms.
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True Positive Rate (%)

Success Rate on Tempted Grasp (%)

Table A.2 gathers the different scores defined in chapter 5.2. AUROC scores of Ensemble Proper
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Figure A.1: ROC and S-FPR curves for different uncertainty metrics 7

Scoring and TrustNet are both very similar (~ 80% for Cornell and Jacquard) showing an equivalent

relevance between those two metrics 7. For FPR—100% —T PR, none of the methods achieve relevant

results for the Jacquard dataset (100% of FPR is equivalent to asking for help all the time) making

them useless for a very cautious use. However, we can spot promising results for Ensemble Proper

Scoring and TrustNet as their value is significantly lower than the baseline 100% for Cornell dataset.

Relaxing the security level by 5% (FPR—95% — T PR) decreases a lot the FPR rate (down to 58.2%)

showing that a trade off between security and economic cost may be found. Improving those scores is

equivalent to separate the distributions in Figure A.2. We believe that this can be done by continuously

learning from an external oracle in an active learning setting.
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Figure A.2: Histogram of 7 for good (green) and bad (red) predictions for different uncertainty methods
on Cornell grasping datasets. Bad predictions are represented by negative occurrences

Table A.2: Uncertainty metric performance for grasping cornell|jacquard datasets

Method AURO.C GS—15%—FPR FPR—IOO%‘—TPR FPR—95%jTPR

corn.  jacq. | corn.  jacq. CoTT. jacq. corn.  jacq.

Simple Ensemble 64.6% 59.7% | 90.1% 68.9% | 100.0% 100% | 92.4% 94.1%
Proper Scoring 79.5% 59.5% | 724% 23.2% | 97.2%  100% | 60.0% 75.3%
Ens. Proper Scoring | 81.4% 81.5% | 89.0% 0.8% | 86.9% 100% | 58.2% 72.3%
MC Dropout 52.8% 50.5% | 88.8% 63.4% 100% 100% | 94.8% 94.7%

MC Concrete Dropout | 50.4%  48.6% | 89.3% 63.3% | 99.9%  100% | 95.0% 95.3%
Trust Net 80.0% 82.0% | 93.7% 85.4% | 94.4% 100% | 66.5% 69.9%

A.2.2 TrustNet improvement study

We have shown that, besides outperforming uncertainties metrics baselines, our approach Trust-
Net revealed an interesting potential to separate good predictions distribution from bad one, along
uncertainty measure 7. It is a first step toward the goal of reaching a perfect graps success rate on
tempted graps (FN = 0), while limiting the number of irrelevant requests F'P. In this section, we

experiment different configurations of TrustNet to improve its behavior.

Different features representations and Ensemble TrustNet experimentations, done with Cornell

dataset, have not led to significant improvements:
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e VGG16 with frozen weights remains the most appropriate features extractor for TrustNet with
an AUROC score of 80.0%, against respectively 74.0%, 73.9%, 56.9% and 55.5% for Xception,
MobileNet, Resnetb0, and Densenet121.

e We trained an ensemble of T" = 10 TrustNet Networks and computed an uncertainty metric
in the same way than for Deep Ensemble methods. The AUROC score slightly increases from

80.0% to 81.2%, however inference computation increases by a factor T

Weighted loss. We also studied the impact of a weighted loss function to tune our failure predictor

based on our risk appetite :

L(1,7) =wo X TlogT +wy x (1 —7)log7 . (A.2)

Figure A.3 shows the evolution of FPR-95%TPR score and histogram distributions for different ratios
v = w1 /wp, on Cornell dataset. Those histograms distributions are very different according to the ratio,
leading to different behavior of failure predictor. Depending on this ratio, we can set the sensibility
of TrustNet depending on our risk appetite. We would like to highlight that this fine tuning of the
T metric according to risk appetite of the user is not possible for other tested existing uncertainty

methods.

For a small v around 1, most of the good predictions are concentrated around low 7 values while
bad predictions have a more uniform distribution. For high ~ values (around 100), we highlight an
opposite behavior. Therefore, we tried to benefit from this complementary behaviors by considering
an ensemble of two TrustNet networks respectively trained with v = 1 and 100 (we called it Ensemble
Weighted Trustnet). The resulting uncertainty metric outperforms the original TrustNet (Figure A.4)
with an AUROC score increasing by 4% (84.1% > 80%). Moreover, FPR-100%-TPR and FPR-95%-
TPR scores obtained are 76.5% and 50.4%, which is a major improvement compare to those of the

original TrustNet (94.4% and 66.5% respectively).
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Figure A.3: FPR-95%-TPR evolution for different 7. For some 7, we also plot similar histograms as
presented in the qualitative analysis.
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Résumé étendu en francais
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Cette annexe propose un résumé étendu en francais du manuscrit de these. Les travaux présentés
ont été réalisés au sein du LISPEN - Campus de Lille (Laboratoire d’Ingénierie des Systémes Physiques
et Numériques).

B.1 Introduction: vers un Assistant Robotique Intelligent

B.1.1 Motivations

Ces dernieres années, les robots industriels ont quitté leur cage pour devenir plus collaboratifs
grace a des robots plus stirs (plus légers avec des cadences plus lentes, et équipés de capteurs d’effort),
a de meilleurs capteurs et a des bibliotheques de programmation de plus haut niveau (voir Figure
B.1). Pourtant, dans les scénarios du monde réel, la flexibilité et les capacités d’interaction des
robots restent éloignés de l'interaction naturelle attendue entre deux collegues humains. Ce nouveau
paradigme nécessite des robots avec de meilleures capacités matérielles et logicielles. Dans ce dernier
cas en particulier, l'intelligence artificielle joue un role croissant pour faire face a la variabilité de
I’environnement et a la complexité des interactions avec les humains.

Dans I'Industrie du Futur idéale, les robots collaboratifs travailleront main dans la main avec les
humains et occuperont une place prépondérante centrée sur I’humain. C’est donc au robot de s’adapter
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a la diversité de chaque personne, chaque tache, chaque situation. Ce sera la génération des assistants
robotiques intelligents (SRA pour "Smart Robotic Assistant”). La route est encore longue et nécessite
un changement de paradigme et le développement de solutions permettant au robot d’acquérir des
capacités d’adaptation d’une maniere qui soit a la fois généralisable et explicable.
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dans des cages !
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Figure B.1: Evolution des robots industriels.

B.1.2 Positionnement

Ce changement de paradigme nécessite un systéme cognitif définissant un assistant robotique intel-
ligent SRA [1]. Il doit étre capable d’interpréter et de réagir aux interactions naturelles des humains
pour un apprentissage incrémental, en particulier au contact d’un instructeur humain non nécessaire-
ment expert en robotique et programmation. Il est essentiel que cette interaction soit la plus naturelle
et intuitive possible pour 'humain. Cet apprentissage incrémental doit améliorer et exploiter une base
de connaissances et de compétences modulaires qui peuvent étre utilisées, associées et transférées a
un large éventail de taches, avec une adaptation aux préférences et aux caractéristiques individuelles
pour une interaction personnalisée. Ces capacités devraient étre intégrées dans un processus de prise
de décision rendu aussi explicable que possible pour les non experts en programmation, avec des ex-
plications de haut niveau. Un tel SRA aurait un impact important sur la prochaine génération de
robots industriels collaboratifs , et est également au coeur d’enjeux societaux tels que la réduction des
troubles musculosquelettiques (TMS) et I'handicap au travail.

Pour gérer une telle complexité de maniere significative et compréhensible, nous devons mettre en
oeuvre un agent artificiel en tirant parti de plusieurs paradigmes d’intelligence artificielle et d’interac-
tion homme-robot.

Une mesure de l'intelligence peut étre considérée comme la capacité d’apprendre comment accom-
plir des taches et de tirer parti de ce qui a été appris pour transfert a de nouvelles taches cibles.
Une autre propriété intéressante de l'intelligence humaine est que les connaissances sont construites
de maniere incrémentale tout au long de la vie. La généralisation et 'adaptation pourraient prendre
racine dans cette capacité d’apprentissage continu de maniere supervisée ou autonome et dans 1’échange
d’informations avec les autres. Cela nécessite aussi un certain niveau de connaissances préalables et
de sens commun.

Bien que I'TA de niveau humain soit probablement encore loin d’étre atteinte, cela encourage
le développement d’agents qui apprennent tout au long de leur vie, au fil de temps, de maniere
incrémentale et interactive comme le font les humains depuis leur enfance. Pour le développement et
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la mise en ceuvre de tels agents robotiques, la conception d’architectures robotiques cognitives est un
point central.

B.1.3 Objectifs

Globalement, la conception d’'un SRA nécessite une approche multidisciplinaire. Dans cette these,
nous avons visé la conception d’un prototype de base d’architecture cognitive dans le contexte de
I'Industrie 4.0. Nous avons fixé les spécifications a remplir par un SRA dans un contexte industriel :

e Perception et adaptation robuste, flexibilité. Un SRA doit pouvoir percevoir, interpréter, et
réagir en temps réel a la complexité d’'un environnement dynamique, de maniere flexible et
robuste. Cette complexité inclus bien entendu les interactions humaines. Des modules & base
d’apprentissage automatique seront intégrés pour I'adaptation a la variabilité des situations ne
pouvant étre traitée de maniere discrete et combinatoire.

e Interaction naturelle, intuitive, et personnalisée. Reconfigurabilité aisée. Un SRA doit interagir
intuitivement avec des non-experts (non-programmeurs et non experts en robotique). Il doit donc
comprendre spécifiquement les moyens de communication naturels des humains tels que la vision,
la parole, le regard, le toucher, mais aussi fournir durant l'interaction des réponses/demandes
compréhensibles par des non-experts et non ambigués. Un SRA doit également s’adapter aux
préférences et spécificités des utilisateurs tels que la main dominante, un handicap. Pendant
que I'agent SRA apprend de nouvelles taches, il doit étre capable d’adapter avec un certain
niveau d’automatisation ses comportements en fonction des préférences et des caractéristiques
de chaque individu, pour une interaction personnalisée. L’acceptabilité sera d’autant facilitée et
des utilisateurs non experts pourront intuitivement reconfigurer le systeme a leur guise pour une
autre tache.

e Apprentissage incrémental modulaire. Un SRA doit avoir la capacité d’apprendre rapidement
et de maniere incrémentale une nouvelle tache, du bas niveau aux abstractions de haut niveau.
L’exécution d’une tache requiert a la fois des connaissances de haut niveau pour la compréhension
générale et de bas niveau pour la perception et I’exécution dans le monde réel. Cela peut se faire
par transfert de connaissances et nécessite des représentations et des processus qui favorisent
la modularité dans tout le systeme. Le SRA pourra ainsi exploiter une base de connaissances
antérieures pour 'exécution des taches et ’apprentissage en ligne. Nous ne voulons pas tout
apprendre a partir de zéro a un robot. Par conséquent, un agent SRA doit étre capable de tirer
parti de certaines connaissances antérieures tout en exécutant et en apprenant des compétences
modulaires pour résoudre des taches.

e Comportements explicables et siirs. Un SRA doit étre capable de raisonner et d’avoir des
capacités d’explication aux moins partielles, pour fournir des explications sur ses prédictions et
ses comportements. Un comportement erroné peut générer des problemes de sécurité dans un
contexte industriel, pouvant porter intégrité a des objets, a ’agent robotique lui-méme, voir plus
grave aux opérateurs. Pour avoir un comportement sir, le SRA doit savoir gérer I'incertitude
dans la moto-perception, ses représentations internes, ses prédictions. Nous voulons que I'agent
SRA sache ce qu’il ne sait pas. Pour cela, la notion d’incertitude est importante. En tant que
mesure de confiance et de curiosité, elle donne a 'agent SRA la capacité de raisonner sur ses
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propres prédictions afin de décider d’agir ou de ne pas agir (questionner). L’agent devient alors
acteur de son propre apprentissage, et de plus en plus expert.

B.1.4 Contributions et organisation

Cette these a pour but de développer et d’intégrer les briques principales afin de créer une ar-
chitecture robotique cognitive pour la robotique collaborative permettant d’intégrer ’ensemble des
spécifications requises décrites en section B.1.3. Dans ce résumé, la section B.2 (correspondant au
chapitre 2 et 3) détaille 'architecture actuelle que nous avons proposée, en termes de blocs princi-
paux, de processus d’apprentissage interactif et d’organisation des modules, dans une vue d’ensemble
de haut niveau et au regard de 1’état de l'art. Nous détaillons ensuite dans la section B.3 (chapitre
4), les différents paradigmes d’apprentissage qui ont été étudiés au cours de la these. L’apprentissage
d’une préhension orientée avec des robots réels a été utilisé comme application pour une validation de
Iintégration des spécifications. Plus précisément, une contribution a 'apprentissage de la préhension
orientée par démonstration a été apportée par le développement d’un module spécifique. La section
B.4 (chapitre 6) décrit la mise en oeuvre de l'architecture ainsi que des modules intégrés en validant
Papproche globale sur un robot réel. Enfin, la section B.5 (chapitre 5 et 7 ) présente les perspectives
de développement. L’importance de la gestion des incertitudes y est particulierement abordée.

Les travaux réalisés au cours de cette these ont été valorisés par des publications et soumissions
internationales et la réalisation de vidéos de présentations : |1, 22, 33, déposées sur la chaine youtube
du laboratoire 4,

e Contribution a I’apprentissage par démonstration et & la préhension orientée : [2]

e Contribution sur ’architecture cognitive pour ’apprentissage interactif pour les robots collabo-
ratifs industriels : [3]

e Un article de revue internationale regroupant et mettant a jour les contributions avec les derniers
développements et validations de notre architecture : soumis, processus de révision en cours.

=W N =
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B.2. CONCEPTION D’UNE ARCHITECTURE COGNITIVE INSPIREE DE
L’ETAT DE L’ART

B.2 Conception d’une architecture cognitive inspirée de I’état de I’art

Cette section décrit les principaux composants nécessaires a la construction d’une architecture
cognitive [1] vis a vis de I’état de l'art. L’accent a été mis sur les différents compromis entre la vision
connexionniste et la vision symbolique en intelligence artificielle afin de justifier le développement d’une
architecture hybride pour 'apprentissage de taches. Les architectures existantes n’étant pas totalement
adaptées a nos spécifications, nous avons développé notre propre architecture. En s’inspirant de ’état
de I'art en matiére de SRA pour Papprentissage interactif de tache, d’architecture cognitive et des
avancées récentes dans les architectures d’apprentissage profond, plusieurs choix de conception ont été
faits pour construire un prototype d’architecture cognitive hybride permettant d’intégrer I’ensemble
de nos spécifications.

La Figure B.2 fournit une vue d’ensemble de haut niveau de ’architecture hybride. Elle présente les
différentes représentations et la maniere dont elles interagissent afin de construire des comportements
complexes. Pour plus d’informations sur les différents blocs et leur interaction, le lecteur peut se
référer a 3.

Agent ARI (3.3)
(6) Action (3.1.4)

e étapes @ - ® — géneére des comportements & partir des ordres et des connais-
sances (comme BT)

e étapes @» — génere des questions a partir du type d’échec et des connaissances

@ Grounding E Apprentissage de concepts

y avec prcfcrcnces

Mémoire de travail et

@

Connaissance
a priori

modele courant du <—>:{ Memoire procédurale (3.2.4) }<— "

monde pergu (3.2.2) E{ Memoire épisodique (3.2.3) }«— Ontologie (3.1)

( or @) @ Ancrage Module cognitif

Dialogue

Perception de Perception de Perception pro-
I'humain I’espace de travail prioceptive

Mémoire perceptuelle
(3.2.5) avec connais-

A

sance a priori

1
1
|
@ Perception basée sur ! Apprentis-
des réseaux de neu- sage perceptuel
Humain rones profonds | avec préférences
Espace :
---3 (Instruc- de t 1
feur) e travai

Environnement (3.1.2)

Figure B.2: Apercu de haut niveau de ’architecture. L’architecture se compose de modules perceptifs
basés sur des approches connexionnistes, de représentations relationnelles symboliques et d’un proces-
sus délibératif pour ’apprentissage en interaction avec ’humain.
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B.2.1 Approches connexionnistes et symboliques

Les systemes d'TA peuvent étre abordés de deux points de vue : un point de vue descendant ot 'on
part d’une connaissance abstraite, relationnelle et de haut niveau, ou la plupart des raisonnements et
des planifications ont lieu (parfois appelé systeme 2 dans la littérature), jusqu’aux capacités sensori-
motrices de I'agent. C’est généralement le territoire de I'IA symbolique qui exploite des symboles pour
ses représentations internes. A l'opposé, une vision ascendante est liée a I'TA connexionniste et vise
a exploiter I'interaction de plusieurs modeles simples a partir desquels des comportements complexes
émergent (au niveau du systeme 1). Les deux approches ont leurs avantages et leurs inconvénients pour
la construction d’une architecture cognitive pour la robotique. Nous illustrons, Figure B.3, I’existence
d’un compromis, en termes de facilité d’implémentation et de représentations, entre les architectures
symboliques et connexionnistes en ce qui concerne les représentations abstraites, 'efficacité des données
pour 'apprentissage et 'explicabilité du systeme. Cela a justifier une approche hybride au sein de
notre architecture.

En particulier, I’approche symbolique sera utilisée pour permettre une représentation modulaire
et explicable de la connaissance, mais combinatoire donc rigide. La flexibilité nécessaire pour 'adap-
tation a la variabilité/complexité d’un environnement dynamique sera apportée grace a I’approche
connexioniste (en particulier des réseaux de neurones) au détriment d’un manque d’interprétabilité.
C’est pourquoi I'intégration de l'incertitude au regard des prédictions des modules sera d’autant plus
primordiale.

Abstractions . Données Explicabilité
Discret, represen-
N L 1T TTTTTooooosooooooooooooooooooes i | Plannification et tations symbol-
Systéme cognitif Approche connexionniste Approche symbolique | | raisonnement ique
pour | | Combinatoire Explicable, ¢
. . N 2 , plicable, au
’ : Modele d c .
Vinteraction | | odete ae processus itératif — niveau du lan-
I i | comportement s .
! . | Efficacité en gage, modulaire
. ) Systeme 2 ++ | Sens commun termes de
I A
Niveau de } '| et connaissance données
N } ' | social (ontologie) — Rigide
compromis I 1
(non nécessairement | !
|
fixe dans le temps) ! Systeme 1 ) 3 Intuition, incerti-  Continu, rep-
! +F ! tude resentation Encore un
! [ . N distribué manque d’inter-
! 1| Réflexes, controle 1stribue , 4 1o s
I e I s AL . Traitement prétabilité et des
bas niveau N .
P " . parallele questions ouvertes
ereeption Action Moto-perception Avide de données  sur la modularité
Enseignants avec Flexible
Environment o i Sens

ses préferences

Figure B.3: Conception générale de I’architecture hybride

Les principaux éléments constitutifs d’une architecture cognitive reposent sur une ontologie et un
modele de comportement. Une ontologie joue le réle d’une structure explicable pour I'interopérabilité
des composants de l’architecture [5]. C’est une représentation conceptuelle orientée objet construite
autour de classes, d’attributs/de propriétés et de relations entre ces concepts. Les systémes cognitifs
sont souvent accompagnés d’une ontologie qui fournit une structure symbolique de base facilitant la
compatibilité entre les différents modules et sous-systemes, ou méme entre différents systemes indépen-
dants (tels que d’autres robots) [(]. Les robots étant des agents agissant, nous avons également besoin
d’un modele de comportement capable d’exploiter I’ontologie. La figure B.4 illustre une ontologie sim-
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ple. Des ontolgies plus complexes existes telles que KnowRob [7] utilisée dans I’architecture CRAM

[]-

@ e Bt > Cnonts > Carie> Garoned Cemete) (i)'

CaractéristiquePerceptuelles

oy Citesse CBitort >
Cattordance > Cision > Ceonter> CForme @ @

Figure B.4: Exemple haut niveau d’une ontologie

PropriétésPerceptuelles

Compte tenu de notre ontologie, nous exploitons différents types de mémoires, détaillées dans
la section 3.2, et utiles pour différents aspects de 'apprentissage des taches : une mémoire séman-
tique, une mémoire de travail, une mémoire épisodique, une mémoire procédurale, et une mémoire
perceptuelle.

Ces représentations sont sous formes de graphes relationnels pour leur caractere hiérarchique,
modulaire, leur explicabilité et pour faciliter I’apprentissage par rapport a nos spécifications.

Les composants connexionnistes d’apprentissage peuvent ensuite étre exploités pour ancrer ces
représentations symboliques dans le réel via une collection de données d’apprentissage. L’agent
SRA peut alors apprendre les propriétés des objets telles que les caractéristiques visuelles et 'af-
fordance (comment prendre un objet pour une tache donnée), compte tenu du contexte de la tache,
des préférences et caractéristiques humaines. Un exemple d’intégration technique de tels modules
connexionnistes est donné dans la section de validation expérimentale (chapitre B.4).

B.2.2 Choix du modele de comportements

Les robots étant des agents agissant, nous avons spécifiquement besoin d’un modele de comporte-
ment capable d’exploiter 'ontologie. Pour agir dans le monde réel, un agent SRA doit étre capable
de générer des comportements complexes pertinents pour une situation donnée, méme nouvelle. Pour
cela, il doit étre capable de planifier et de réagir tout en apprenant en ligne aupres de ’humain.

On distingue en générale dans les architectures trois couches principales [9, 10] (voir Figure B.5):
une couche fonctionnelle adaptée a I’action, a la perception et & ’apprentissage ; une couche de décision
adaptée a la planification ou a la supervision ; et une couche d’exécution ou le modele de comportement
intervient, pour interfacer et coordonner les autres couches du systeme en fonction des exigences de la
tache en cours.
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Deliberatif e Réactif aux événements des niveaux inférieurs

Niveau supérieur . . .
P (Planification/Programmation)

!

Exécutif
(Séquencement des téaches)

e Intensif en temps et en calcul

e Traduire un but en une séquence d’actions
Niveau intermédiaire

e Interpréter les événements

e Surveillance de I’environnement

Perceptions et actions & bas niveau ® Processus sensation/action

Bas niveau . .
(Niveau fonctionnel)

e Petites constantes de temps

e Composants modulaires

Monde
physique et social

Figure B.5: L’architecture robotique cognitive peut étre représentée par trois couches de controle.

Au niveau d’un Assistant Robotique Intelligent, le modele de comportement doit pouvoir répondre
a un certain nombre d’exigences pour obtenir un robot interactif. Le modele de comportement doit :

e ¢tre explicable. Le comportement du robot doit étre au moins partiellement compréhensible.
Par conséquent, le comportement doit étre suffisamment complexe pour permettre a ’agent
d’exécuter des taches, mais aussi suffisamment simple et interprétable pour étre compris par des
utilisateurs non experts.

e décrire a la fois les parties descriptives et exécutives des comportements. L’agent SRA doit
notamment étre capable de décrire le quoi, le pourquoi et le comment de ses actions.

e s’interfacer avec des bases de données de connaissances préalables (telles que les préférences
des utilisateurs). Le modeéle de comportement doit permettre l'intégration de connaissances
préalables de différents types, comme les connaissances basées sur des regles, les spécificités
et les préférences des utilisateurs. Par exemple, il peut s’agir de la main dominante, ou d’un
handicap nécéssitant une adaptation de I'agent a ’opérateur.

e étre interopérable avec le modele du monde. Lorsque ’agent construit un modele du monde, le
modele de comportement doit étre capable de 1'utiliser en respectant 1’ontologie.

e interfacer les compétences de bas niveau et de haut niveau de maniere multimodale. Les com-
pétences d’apprentissage nécessitent a la fois des informations de haut et de bas niveau et le
modele de comportement sert donc de passerelle entre les deux.

e s’interfacer avec des techniques d’apprentissage telles que les réseaux neuronaux profonds. Les

techniques d’apprentissage profond étant devenues des outils d’apprentissage trés puissants, le
modele comportemental doit s’interfacer facilement avec ces systemes.
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e permettre un apprentissage rapide et une forte généralisation grace a la réutilisation de com-
pétences avec des représentations composables et paramétrables. Dans le cadre de ’enseigne-
ment interactif de tache, 'apprentissage se fait en ligne en interagissant avec un enseignant
humain. Par conséquent, nous voulons que I’apprentissage soit rapide tout en conservant de
bonnes capacités de généralisation. Ceci peut étre fait en exploitant des comportements mod-
ulaires paramétrés. Cela permet, en effet, de réutiliser un comportement appris dans plusieurs
taches connexes avec un minimum de mises a jour.

e permettre de raffiner les actions de maniere réactive. Comme ’environnement est dynamique
et peut changer en fonction des actions du SRA ou d’autres agents, le robot doit alterner en
permanence entre la perception provenant des flux sensoriels, ’apprentissage, la planification et
I’action dans une boucle délibérative prenant en compte 'humain.

Afin de choisir le paradigme & mettre en oeuvre, nous avons passé en revue la littérature sur les
architectures pour ’enseignement interactif de taches et les modeles de comportement qu’ils utili-
saient. Nous avons basé notre comparaison en mettant a jour 1'état de l’art dans [11] (partie 2.) par
rapport a nos besoins. Les différents modeles sont détaillés dans le chapitre 2 de la these. Dans notre
architecture, nous avons choisi les arbres de comportement (BTs pour Behavior Trees) comme modele
de comportement. Les BTs sont des modeles basés sur des arbres qui permettent une séparation claire
entre la structure de arbre (la partie descriptive en tant que flux de controle des comportements) et
Iimplémentation des noeuds (la partie exécutive). Ils sont largement utilisés dans I'industrie des jeux
vidéo au lieu d’autres modeles que les machines a états qui sont enclins a ’explosion d’états lorsque les
comportements deviennent complexes. L’utilisation de noeuds paralleles facilite également ’exécution
de processus paralleles, comme cela est nécessaire dans un cadre d’une interaction multimodale. La
gestion des échecs est aisée et est au coeur du processus d’apprentissage dans notre architecture. La
nature hiérarchique des BTs facilite I'implémentation de méthodes de raffinement : étant donné des
actions de haut niveau, il est possible, en fonction des changements de I’environnement, de ramifier
I’arbre vers des sous-actions de plus bas niveau. Ces propriétés attrayantes en termes de modular-
ité du comportement en font une alternative pertinente a d’autres modeles de comportements. De
plus, des sous-arbres peuvent étre ajoutés ou supprimés n’importe ou dans le BT sans modifier les
autres composants ce qui augmente la flexibilité de ces modeles. Enfin, il est possible d’étendre les
BTs standards avec des noeuds de préconditions et postconditions [12], ce qui aide & construire des
représentations pour la planification.

Plus précisément, les arbres de comportement (BT) sont composés de plusieurs (généralement six)
types de noeuds illustrés dans le tableau B.1 : un ensemble de noeuds de contréle qui aide a gérer le
flux de décision, un ensemble de noeuds d’ exécution qui exécute les actions, un noeud le décorateur qui
aide a construire des noeuds de controle plus complexes, comme réessayer une action ou un sous-arbre
jusqu’au succes. Chaque noeud peut renvoyer un état, généralement succes ou échec. Les noeuds de
controle renvoient succes ou échec en fonction du statut de retour de leurs enfants et des regles définies
dans le tableau B.1.
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Table B.1: Flux de controle et noeuds d’exécution dans le cadre standard des arbres de comportement

Noeud d’exécu- R ,
Loenas exeet Symbole Succes Echec
tion
) 74 . . : .
Action 0 L exe,cutlon est ef- Ej]xc?ptlf)n pendant
fectuée I'exécution
Condition O Condition est vraie Condition est
fausse
Noeuds de controle
, T 1 fant ,
Séquence — ous - 1es  CMAMS | 1 enfant échoue
doivent réussir
. Plus de M € N* en- | Plus de N € N* en-
Parallele — .. .
fants réussissent fants échouent
. Un seul enfant | Tous les enfants
Repli ? L. .
réussit échouent
Décorateur o Défini par 'utilisa- | Défini par l'utilisa- | Défini par 'utilisa-
teur teur teur

Afin de définir des comportements modulaires complexes, compatibles avec des objectifs de plan-
ification et de raisonnement, nous représentons les compétences avec des BT en utilisant le modele
traditionnel préconditions, exécution, postconditions (également appelé effets dans la littérature) (voir
Figure B.6). Dans [13], les auteurs fournissent un apercu formel détaillé des BT et de leur utilisation
en robotique. Les postconditions permettent de vérifier si I’exécution de la compétence est un succes,
tandis que les préconditions déterminent si 'agent possede les connaissances nécessaires pour exécuter
la compétence, telles que par exemple ’existence de préférences dans ’exécution d’une tache. Une
autre propriété intéressante de la modularisation des compétences avec des conditions est le fait qu’elle
aide 'agent a faire de la perception active : ’agent ne vérifie que les conditions qui sont pertinentes
pour la tache, selon les compétences précédemment apprises.

Une action primitive est une feuille dans le modele de comportement global. Par conséquent, elle est
directement exécutée sans raffinement supplémentaire par le robot. Des exemples d’actions primitives
sont 'ouverture ou la fermeture d’une pince, un mouvement point a point, I’envoi de questions a
I’humain.

Plus de détails sont disponibles dans la section 3.1.4 du manuscrit et dans |
théoriques.

| pour les aspects

9
/ - ’\'
- N
postconditions —
N
X
. >

preconditions {0 postconditions

/\ .7
sous compétences

.- l\
action primitive gestion des échecs

Figure B.6: Modele de base pour une compétence
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B.2.3 Processus décisionnel du SRA prenant en compte les préférences

Dans notre architecture, nous exploitons spécifiquement les mécanismes d’échec des BT comme
un signal de haut niveau a des fins d’apprentissage. Cela permet d’affiner ou d’étendre I'arbre de
maniere incrémentale pendant 'interaction du SRA, de maniére similaire a [14]. La transparence, la
modularité et efficacité des BT apparaissent naturellement puisque la réutilisation, la mise a jour
et la composition des comportements peuvent étre effectuées en exploitant les graphes. Le processus
d’apprentissage interactif est basé sur la gestion des erreurs (échecs ou impasses) pendant le flux
d’exécution du programme. La figure B.7 illustre plus spécifiquement le processus décisionnel qui
se produit pendant ’exécution d’une compétence. Ici, nous nous concentrons principalement sur le
processus d’interaction et ses aspects délibératifs. En reprenant la figure B.2, on peut observer qu’il
y a différents chemins. Le chemin en trait plein représente ce qui se passe lorsque ’agent a toutes
les connaissances pour agir, 'ordre des étapes est représenté par des chiffres encerclés. Le chemin en
pointillé représente ce qui se passe lorsqu’un échec se produit, les étapes sont représentées par des
nombres encadrés. L’exécution entrelacée de ces deux chemins est au coeur du cycle d’interaction, au
cours de laquelle I’agent robotique agit selon les instructions de ’humain ou apprend de ses échecs a
la fois au niveau symbolique et connexioniste.

i-f: peut étre un test symbolique; w
| ou perceptuel |
I I
-wm: Mémoire de travail !

I oy
i -¢;: les conditions sont

ivraies (v) ou fausses (X) . \@

R Demander et Apprentissage
Searching , .
collecter des données | | perceptuel ou symbolique
v v

Figure B.7: Le processus de résolution des échecs déclenche ’apprentissage de représentations sym-
boliques ou perceptuelles grace a l'interaction avec ’humain.

B.2.4 Conclusion

L’exploitation des architectures existantes était difficile, car la plupart des SRA étaient soit spéci-
fiques a une plateforme, soit non open source, soit non maintenus. De plus, la plupart des agents ne
pouvaient pas valider toutes nos spécifications dans une méme et unique approche. Cela a motivé 'ex-
ploration du développement de notre propre architecture cognitive hybride pour nos cas d’utilisation
industrielle collaborative. Finalement, notre principal objectif et contribution est d’intégrer plusieurs
idées complémentaires de la littérature dans une seule architecture, pour construire un SRA présentant
des capacités d’apprentissage interactif et incrémental, non seulement a haut niveau mais aussi a bas
niveau, avec des modules d’apprentissage profond, tout en étant capable d’étre rapidement reconfig-
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uré selon les préférences humaines. Cela a conduit a des représentations symboliques de haut niveau,
sémantiquement compréhensible, pour la gestion de la complexité et une meilleure explicabilité du
comportement du systeme. Le processus délibératif du SRA exploite ces représentations pour piloter
des modules d’apprentissage connexionnistes, par le biais d’un processus interactif humain/robot axé
sur des objectifs et le dialogue. Le chapitre suivant (chapitre B.3) se concentre sur les approches com-
plémentaires d’apprentissage automatique qui ont été utilisées au cours de la these afin de développer
des modules connexionnistes exploitable dans le contexte de I’enseignement interactif de taches.

B.3 Approche ML pour la préhension planaire

Etant donnée que le SRA apprend de maniére interactive une tache et la structure des compé-
tences associées, nous avons vu qu’il doit fonder ses représentations en apprenant a partir de données
du monde réel. Nous détaillons a cette fin la maniere dont ’agent peut exploiter des paradigmes
complémentaires d’apprentissage machine (ML) dans une approche connexionniste. En suivant nos
spécifications, nous voulons exploiter des modules qui permettent un apprentissage rapide en ligne, a
partir de jeux de données construits a la volée, pendant 'interaction. En raison de 'importance des
taches liées a la préhension dans de nombreuses applications industrielles, nous nous sommes concen-
trés sur des taches liées a la préhension orientée dans le plan. Nous présentons les résultats principaux
pour deux modules d’apprentissage adaptés a l'acquisition de compétences liées a la préhension. Le
premier s’appuie sur une approche d’apprentissage profond par renforcement, adaptée de [15], pour
I’apprentissage autonome d’une tache de devracage. La deuxieme et plus importante contribution dans
le cadre de la these, présente un module d’apprentissage d’affordance de préhension orientée a la tache,
a partir de quelques démonstrations humaines, respectant nos spécifications d’SRA. Les modules ont
été développés en collaboration avec un co-auteur, Laurent Bimont.

B.3.1 Apprentissage autonome du devracage

B.3.1- Module de dévracage: Le cas du devracage est un exemple typique de tache pour laquelle il
est difficile d’expliquer de maniere procédurale comment I’exécuter, méme pour un humain. En effet,
nous pourrions difficilement expliquer pourquoi nous répartissons le tas d’une certaine maniere plutot
que d’une autre et I'ordre des actions effectuées.

L’apprentissage par renforcement convient bien pour apprendre une telle tiche de maniere au-
tonome. Par conséquent, nous avons reproduit [15] et avons étendue expérimentalement & notre con-
texte industriel. Nous avons abordé les problemes de devracage comme une stratégie d’apprentissage
par renforcement autonome ou ’agent robotique apprend les synergies entre poussée et préhension,
comme illustré dans la figure B.8. En outre, I'utilisation de I’apprentissage par renforcement et de ’ap-
prentissage profond permet au robot d’apprendre a prendre des piéces sans avoir besoin d’un modele
CAOQ. Cet aspect est important car on peut s’attendre a ce que les robots collaboratifs travaillent avec
des pieces qui n’ont pas été modélisées par des spécialistes de la CAO, notamment dans 'industrie a
petite échelle.
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(a) Tas de pieces (b) Actions de poussée pour séparer  (c) Préhension de piece isolée
des pieces

Figure B.8: Exemple de synergie entre actions de poussée et de préhension. On présente une pile
d’objets dont aucun ne peut étre récupéré par préhension directe (a). Le robot va d’abord pousser la
pile pour séparer des objets (b) afin de saisir un premier objet isolé (c).

Ce travail a été valorisé par une démonstration lors de la journée de cléture du projet européen Col-
Robot ° en présence de membres de la Commission européenne, de différents partenaires académiques
et de partenaires industriels (Renault et Thales). Une vidéo de ce travail peut étre trouvée ici5.

Le dispositif expérimental était le suivant (Figure B.9) : nous avons installé un capteur de pro-
fondeur haute définition de qualité industrielle (une caméra photoneo3D 7) au sommet dun robot
collaboratif UR5 équipé d’une pince deux doigts Robotiq. Pour la validation, nous avons collecté
des vis et des boulons pour 'opération de devracage et avons réalisé I’expérience sur une plateforme
industrielle.
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Figure B.9: Dispositif expérimental

B.3.1-II Méthodologie et résultats: Nous avons reproduit ’architecture du réseau en implémentant
un algorithme DQN (Deep Q network), illustré Figure B.10. L’algorithme DQN permet d’exploiter
des réseaux neuronaux pour inférer des Q-maps (voir les sorties sur la Figure B.10) & partir de I'état
de l'espace de travail. Une Q-map associe a chaque pixel de 'image d’entrée une valeur prédisant la
récompense attendue de laction (respectivement poussée et préhension) a ’endroit considéré, compte
tenu des récompenses des actions précédentes. L’action décidée est alors celle qui maximise la récom-
pense attendue. A chaque action, le systeme a été récompensé de la maniere suivante :

e pour une action de poussée, la récompense attribuée dans ]0,1[ est fonction de la différence de
dispersion des pieces entre le nouvel état et 1’état précédent (modification apportée par rapport
a larticle [15]).

e pour une action de préhension la récompense est de type "tout ou rien” a savoir 1 si la préhension
a réussi et 0 si elle a échoué.

En effet, une action de poussée est considérée comme bonne si elle augmente la dispersion entre les
pieces. Par contre, la récompense d’une telle action doit rester inférieure a celle d’'une bonne action
de préhension pour privilégier une action de préhension a une action de poussée, sinon le systeme
pourrait développer la stratégie de pousser indéfiniment.

Apres quelques heures d’apprentissage par renforcement, le robot a acquis la capacité de prendre
et de ranger un tas de vis et de boulons sans aucun modele CAO des pieces.
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Figure B.10: Architecture de 'algorithme

B.3.1-II1 Conclusion du module: Au final, 'agent robotique a été capable d’améliorer ses perfor-
mances au fil du temps et est capable de s’adapter de manieére autonome a des objets qu’il n’a jamais
vus. Cependant, il existe certaines limites. Dans un contexte industriel, les objets peuvent avoir des
spécifications et doivent étre capturés de manieére tres spécifique en fonction de l'objet et de la tache
a accomplir (préhension orientée). Cela a motivé le fait que ce type d’apprentissage seul n’est pas
suffisant. Nous avons en outre besoin de plus d’interaction entre 'opérateur et le robot pendant le
processus d’apprentissage, afin que le robot puisse apprendre a s’adapter aux besoins spécifiques de la
tache et des opérateurs, en gardant toujours a 'esprit nos spécifications. Cela a motivé le développe-
ment d’un deuxiéme module (prochaine section B.3.2) qui a été intégré a l’architecture plus globale
dans le cadre de sa validation.

B.3.2 Apprendre ’affordance de la position de saisie a partir de quelques démonstrations

Avec ce module, nous avons étudié le probleme d’un opérateur qui souhaite configurer un robot
pour saisir un objet industriel par une zone spécifique. Notre motivation a été de créer un systeme
d’apprentissage rapide de la préhension et qui ne nécessite pas de bases de données, de modeles CAO
ou de simulateurs. Ce systeme doit étre simple et intuitif pour pouvoir étre facilement reconfiguré par
lopérateur lui-méme sans expertise en programmation ou robotique. Le transfert de connaissances
de lopérateur vers le robot se fait par des interactions naturelles : la démonstration a la main des
emplacements de préhension autorisés et interdits (Figure B.11).

Ce travail a été valorisé dans l'article de conférence suivant [2]. Une vidéo synthétique de présen-
tation peut étre trouvée 1%,

8
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Entrée: forme de
I'objet

Apprend [Notre
de ~ |systéeme

Zones interdites

L”e
" Sortie: zone de préhension

el

Zone de préhension

Démonstrations de 'opérateur

Figure B.11: Tout d’abord, pour un nouvel objet, le systeme apprend a partir de la démonstration
de l'opérateur. Apreés quelques minutes d’entrainement, le systéme est capable de retrouver la zone
désignée sur une carte de profondeur.

B.3.2-1 Méthodologie: Nous avons défini une pipeline de segmentation sémantique par pixel, ou
I'entrée est une image de profondeur de la scéne et la sortie, les parametres de préhension g = (x,y, 2, 0)
pour saisir 'objet sur la zone désignée. Les coordonnées (x,y,z) représentent le centre de l'outil
de préhension, et 6 est I'angle de la préhension dans le plan. Les parametres de préhension sont
directement dérivés de I'image de sortie. Afin d’assurer un apprentissage rapide et de généraliser avec
peu de démonstration, plusieurs axes ont da étre exploités.

Pour ce faire un jeu de données d’apprentissage est généré directement a partir d’une ou plusieurs
démonstration(s) de 'opérateur de zones autorisées et de zones interdites (Figure B.12). La constitu-
tion du jeu de données se fait directement a partir de la démonstration d’un opérateur sans utiliser
de bases de données externes. Les gestes de préhension sur les zones autorisées et/ou interdites sont
mémorisés en enregistrant les coordonnées des doigts (Figure B.12 -a). Ensuite (Figure B.12 -b), une
forme 2D de 'objet est obtenue a partir de la binarisation de I'image de profondeur. Des étiquettes
sont générées sous la forme d’images ou les pixels autorisés ont une valeur de 1 pour les zones autorisés,
0 pour les zones neutre —1 pour les pixels des zones interdites. L’utilisation de la forme 2D réduit la
taille de ’espace d’entrée et contribue a notre objectif de généralisation. Si nécessaire, plusieurs dé-
monstrations du méme objet a différents endroits sont collectées Nous avons choisi d’utiliser les doigts
de l'opérateur pour bénéficier directement de l'interaction homme-robot (la démonstration pourrait
également se faire intuitivement via une interface graphique ol 'opérateur renseigne les zones sur la
forme 2D). Le nombre de couples (images, étiquettes) est ensuite augmenté suivant plusieurs types de
transformations afin d’augmenter la variabilité du jeu d’entrainement (Figure B.12 -c) avant exploita-
tion par un réseau de neurones profond.
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Figure B.12: Capture de données et augmentation

L’architecture a base de réseau de neurones est présentée dans la Figure B.13 -b et exploite la notion
de transfert d’apprentissage. Nous utilisons un CNN (réseau de neurones convolutionnel) composé d'un
réseau Densenet 121 [16] pré-entrainé et un réseau CNN léger spécifique. L’approche utilisée est une
régression, la fonction d’activation de la derniere couche du CNN léger étant une "tanh”. Le CNN
léger est entrainé a produire une représentation pixelisée de l'affordance de saisie (Figure B.13 -c).

Enfin cette carte d’affordance est post-traitée afin de déterminer les parametres de préhension,
localisation et orientation de l'objet (Figure B.13 -d), avant expression dans le repere robot des
parametres (z,y,z,0) ainsi prédits (la préhension s’effectue alors par le robot muni d’'une pince 2
doigts centrée en (z,y,z) dont lorientation € est perpendiculaire & celle de I'objet). La petite taille
du CNN ainsi que la dimension des entrées permet un apprentissage tres rapide de 'affordance en
quelques minutes.

Par ailleurs, étant donné que les zones autorisées/neutres/interdites n’occupent pas la méme sur-
face, une fonction de cotit particuliere a di étre développée afin que le réseau puisse prendre ce
déséquilibre en compte au cours de son apprentissage.
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Figure B.13: Apercu de notre pipeline CNN.

Le lecteur peut se référer a la section 4.3.2 pour plus de détails sur la méthodologie.
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B.3.2-II Résultats expérimentaux: Pour évaluer la méthode proposée, nous avons réalisé une vaste
série d’expériences sur un robot industriel collaboratif et divers objets (illustrés en B.14) . Nous avons
étudié les performances de notre approche suivant différents parametres liés a I’apprentissage :

1. la saisie d’objets référencés a la bonne zone dans différentes positions

2. les avantages de la pondération dans notre fonction de cofit

3. les avantages de l'utilisation de démonstrations autorisées et interdites

4. la capacité de I'algorithme a généraliser a des objets similaires non référencés.

5. la réalisation de la saisie dans un environnement composé de plusieurs objets non référencés
similaires

Figure B.14: Objets utilisés pour notre expérience, avec le nom des zones de préhension. La couleur
verte (resp. la couleur rouge) indique la zone de préhension autorisée (resp. interdite). La couleur
jaune est utilisée pour illustrer la zone autorisée/interdite et vice versa, en fonction de la tache. Pour
les pinces, deux zones autorisées différentes sont testées séparément

Le détail des expériences et leurs résultats est disponible dans le manuscrit (voir section 4.3.3).
Dans la figure B.15, nous présentons le taux de réussite de saisie pour différents objets apres en-
trainement, en fonction du nombre de démonstration(s). On remarque que le réseau est capable de
généraliser a de nouvelles données avec seulement quelques démonstrations et que le taux de succes
augmente avec le nombre de démonstrations de fagon plus ou moins importante en fonction de la
complexité de l'objet. Pour la clé par exemple, la similitude entre le manche et la téte rend plus dif-
ficile une préhension orientée, en apprenant uniquement a partir de la zone autorisée. Ceci montre la
pertinence d’indiquer a la fois une zone autorisée et une zone interdite pour améliore la précision. Par
ailleurs, l'indication des zones interdites est aussi une garantie de sécurité puisque si le réseau réalise
une mauvaise prédiction, le robot aura tendance & attraper un objet dans une zone neutre (espace de
travail ou zone neutre de I'objet) plutot que dans une zone interdite.
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Figure B.15: Illustration des résultats de préhension suivant le nombre de démonstrations

B.3.2-II1 Conclusion du module: Dans ce travail, nous avons montré qu’'une reconfiguration rapide
d’un robot de préhension est possible avec une (ou quelques) démonstration(s). Notre méthode com-
bine un espace d’état réduit, un CNN léger et une fonction de perte pondérée. Le réseau est capable
d’apprendre rapidement a partir de quelques démonstrations sans nécessiter de jeux de données, de
modeles de CAO ou de simulations répondant & notre motivation initiale de créer un systeme de
préhension orientée qui puisse étre rapidement et facilement reconfiguré par un opérateur. De plus,

I'apprentissage des zones interdites rend ce processus plus str. Ainsi, il montre un bon potentiel
d’intégration dans un contexte industriel.

Cependant, il présente des limites qui suggerent des travaux supplémentaires. L’espace d’entrée
choisie limite notre algorithme & des formes simples en 2D. Travailler directement avec la carte de
profondeur de la caméra RGB-D permettrait de considérer des objets 3D plus complexes et/ou des
objets en contact, au détriment du temps d’entralnement et donc de reconfiguration qui augmenterait
en conséquence. De plus, la segmentation des objets peut étre erronée dans certains cas. La détection
de ces erreurs permettrait de demander de l'aide a l'opérateur en cas de besoin dans un scénario
d’apprentissage continu.

B.4 Mise en oeuvre et validation sur une tache d’apprentissage de type
”prendre et placer”

L’organisation générale en terme d’implémentation, de modules, de modalité d’interaction et de
choix de capteurs est illustrée Figure B.16. L’architecture a été validée sur un probleme de type
"prendre et placer”.
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Figure B.16: Vue détaillée de I'architecture en termes de modules intégrés.

B.4.1 Choix des capteurs pour la perception et I'interaction SRA

Nous avons voulu que 'agent SRA s’adapte & ’humain et, par conséquent, que les capteurs soient
les moins génants possibles pour les travailleurs tout en permettant de détecter et de percevoir des actes
de communication. Ceci a conduit a une liste non exhaustive de types de capteurs, qui pourraient étre
utilisés pour différentes modalités d’interaction. Nous pouvons distinguer les moyens de communication
verbaux et non verbaux. Les deux sont importants lors de la définition d’une tache, car certaines
informations peuvent étre plus facilement partagées par des mots ou par une interaction non verbale.
Apres avoir listé les principaux capteurs et les modalités d’interaction associées, nous avons sélectionné
ceux qui semblent les plus utiles pour une premiere intégration et validation dans I’architecture. Nous
avons voulu assurer une communication la plus naturelle possible entre ’homme et I'agent SRA. Les
principaux criteres considérés pour remplir nos spécifications d’interaction ont été les suivants :

pour un humain.

interagissant avec le robot.

nication quasi temps-réel.
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Les perceptions potentielles apres traitement des signaux doivent faire sens et étre naturelles
Les capteurs doivent étre aussi non-invasifs que possible pour étre acceptés par les personnes

La programmation et le traitement doivent étre simples et rapides pour permettre une commu-

Action



B.4. MISE EN OEUVRE ET VALIDATION SUR UNE TACHE
D’APPRENTISSAGE DE TYPE "PRENDRE ET PLACER”

4. Les capteurs doivent étre suffisamment robustes par rapport aux perturbations de l’environ-
nement.

Le choix des signaux étant centré sur ’homme, nous avons privilégié des criteres de moyens de
communication naturels et non invasifs.

L’un des moyens les plus naturels de communication non verbale est le geste, qui peut étre facile-
ment détectée par les capteurs de vision, a condition qu’il n’y ait pas d’occlusion. Pour leur polyvalence
et leur facilité d’utilisation pour la compréhension de I’environnement, nous avons envisagé d’utiliser
une caméra RGBD.

La parole reste notre principal moyen de communication. Il est donc essentiel d’équiper les robots
de capacités de traitement du langage parlé afin d’assurer une communication naturelle pour les
composants de haut niveau de I'architecture. Comme pour la vision, les microphones sont des capteurs
relativement peu invasifs. Pour limiter les phénomeénes de bruit ambiant, nous avons choisi un casque
unidirectionnel.

La section 6.1 du manuscrit détaille de maniére plus significative les capteurs envisagés avec une
comparaison qualitative dans le tableau 6.1.

B.4.2 Intégration des modules de perception et d’action

Les capteurs choisis sont ensuite exploités par 'agent SRA grace a plusieurs modules perceptifs
que nous avons intégrés dans ’architecture pour la compréhension de I’espace de travail et 'interaction
homme/robot. Plus précisément, nous avons adapté et intégré des modules pour la reconnaissance
vocale (basée sur Google Speech), le traitement sémantique du langage (basé sur FLAIR), I'estimation
de la pose et des gestes (basé sur OpenPose), et Ienseignement a partir de démonstrations (basé
sur notre module d’apprentissage par démonstration). Plus d’informations sur cette intégration sont
disponibles dans la section 6.2 de la these.

B.4.3 Scénario de validation

L’architecture actuelle a été validée sur un robot collaboratif UR10e 6 DOF pour 'apprentissage
de la tache "donner”. Le cobot exploite des connaissances antérieures pour apprendre les variations
de la tache a effectuer, pour différents objets et suivant les préférences de préhension de diffférents
opérateurs. Ces connaissances préalables sont intégrées a différents niveaux et sont présentées dans
le tableau B.2. Comme indiqué dans nos spécifications, I’apprentissage se fait par un processus en
ligne, mixte, incrémental et prenant en compte les préférences humaines. Le tableau B.3 présente
les principales inconnues et les connaissances acquises a la fin du scénario d’enseignement interactif.
Le tableau B.4 détaille le scénario et montre le processus d’apprentissage incrémental et interactif
qui exploite a la fois les connaissances antérieures, les informations apprises et les démonstrations ou
instructions humaines.

Le scénario d’enseignement interactif utilisé pour la validation peut étre décomposé en deux phases
principales :

e Une interaction avec un humain Hy pour valider la capacité du SRA a exploiter les connaissances,
a demander uniquement les connaissances manquantes et a apprendre de maniére incrémentale

175



B.4. MISE EN OEUVRE ET VALIDATION SUR UNE TACHE
D’APPRENTISSAGE DE TYPE "PRENDRE ET PLACER”

des variations de la tache "donner” pour différents objets.

e Une interaction avec un humain Hs qui est inconnu du SRA et qui a des caractéristiques et
des préférences différentes de celles de Hy. La tache "donner”, qui est maintenant une tache
connue, est demandée par Hy pour un objet appris avec Hy. Cette phase, durant laquelle le
SRA demande et apprend naturellement les préférences de Hs, valide ’adaptation & I'individu.

La figure B.17, illustre comment le module d’apprentissage par démonstration est exploité au sein
de l'architecture pour que ’agent puisse adapter ’affordance de préhension en fonction de la personne
interagissant avec le robot.

Le détails des phases est disponible dans la section 6.3 du manuscrit. Une vidéo de démonstration
de cette validation est également disponible i¢1?.

Table B.2: Apercu des connaissances a priori

Représenta-

tion Connaissances préalables construites dans I’architecture (étape -1)

Extraction de caractéristiques a partir de réseaux neuronaux pré-entrainés.

Capacités de segmentation sensorielle : suppression de I'arriére-plan, segmentation des proto-
objets

Reconnaissance de la pose humaine

Perceptions | Détection de tag ArUco.

Reconnaissance de mots et de la parole (STT).

Analyse sémantique avec un protocole de communication de base.

Action-

s /taches prendre(objet) sous la forme d’un arbre de comportement (BT).

placer(position) comme un BT

Préférences | Les humains ont des préférences et des caractéristiques, H; est connu et est droitier

Table B.3: Synthése de ce qui sera appris au cours du processus d’apprentissage interactif incrémentale
de la tache inconnue donner

Representa-

t Inconnues Connaissances apprises
ion

caractéristiques perceptives et capacité de préhension de la

Perception | clé et tournevis . .
clé et du tournevis.

Action- .

s /taches donner(objet) donner(objet) comme un BT

Dréérences Affordances et préférences aff.ord?r;ce de préhension préférée (clé prise par la téte ou la
poignée

d’action

Adaptation pour donner I'objet dans la main dominante
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Table B.4: Détail du processus d’apprentissage pendant le processus d’apprentissage interactif incré-
mentiel de la tache inconnue "donner”

Etapes de l'interaction

Inconnues — Connais-
sances apprises

Connaissances exploitées

Intervention humaine

Etape 0:
H, initie linteraction

e Connaissances a Pri-
ori (CP) intégrées avec la
vision et la parole voir
tableau B.2

Base de données con-
tenant caractéristiques et
préférences connues de
H,.

Identifiant ArUco

Etape 1 : e donner(objet) — nou- C .. Reconnaissance de la pa-
) e CP intégrée avec vision ,
H, demande : ’“donner | veau but G1 : donner = role et analyse séman-
o . . et parole .
tournevis Dans(tournevis, main) tique
Etape 2 : . .. .
P R . - e CP intégrée avec vision | Démonstration de
H, demande : ”L’objec- | e tournevis — caractéris- . N
. . . et parole, pointage avec validation
tif est le tournevis dans | tiques perceptuelles
o o G1 vocale
la main
Etape 3 : . .
. ” e donner(objet) — pren- | ¢ CP Reconnaissance vocale et
Hy explique : “prendre le . . .
g dre(objet) + ... e Gl analyse sémantique
tournevis
e donner(obj) — pren-
dre(obj) i J) g * CP . .
e G1 Démonstration des zones

Etape 4:
H, montre sa préférence

e préférences de H, pour
I’affordance du tournevis
— poids de réseaux spé-
cifiques

e prendre(obj) a be-
soin d’une affordance de
préhension

autorisées et interdites
avec validation vocale

Etape 5
Hy explique "placer
dans main (tournevis)”

e donner(objet) — don-
ner(objet) = prendre(ob-
jet) + placer dans(main)

e CP

e G1

e placer dans(loc)

e main dominante H;

Reconnaissance vocale et
analyse sémantique

Step 6: o clé — caractéristiques | ® CP Démonstration en
H, demande “donner q e nouveau but G2 = don- | pointant avec validation
o perceptuelles de la clé , .
clé ner(clé) par la voix
e CP
. référence  d’affor- | ° but
Step 7: P e donner(obj) dont la | Zones autorisées et inter-

Hy montre sa préférence

dance pour H; pour clé
— préférence de H;

sous action prendre re-
quiere une affordance
e main dominante H;

dites

e nom H,
Etape 8 : e main dominante H, .
T . o CP trées cl
Hy initie linteraction — caractéristiques de Hy * entrees clavier
dans la base de données
e CP
. , e nouveau but G3 = don-
e préférence d’affor- , , .
ner(clé) Démonstration des zones

Etape 9:
Hy montre sa préférence

dance de H; pour clé
— affordance de la clé
comme préférence de Ho

e donner(objet) + be-
soin de laffordance de
préhension pour prendre
e main dominante Ho

autorisées et interdites
avec validation vocale
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Figure B.17: L’agent SRA peut adapter dynamiquement sa prédiction d’affordance en fonction de
I’humain avec lequel il interagit, comme le montre I'’exemple de la clé. A gauche, H| a appris a I’agent
SRA & saisir la clé par la téte. A droite, Hy a appris a I’agent a saisir la clé par le manche. En fonction
de l'opérateur avec lequel le SRA interagit, le robot apporte alors la clé dans sa main dominante et
selon sa préférence.

B.4.4 Conclusion

Dans ce chapitre, nous avons fourni une implémentation et une validation de plusieurs des prin-
cipales spécifications de l'architecture. L’architecture de base a été développée en python3 pour
étre facilement liée a différents modules (perception, apprentissage, ...). Nous avons fait en sorte
qu’un robot réel apprenne une tache inconnue, en construisant des connaissances procédurales et per-
ceptuelles prenant en compte les préférences et les caractéristiques des humains. L’utilisation d’arbres
de comportement fournit un moyen efficace de gérer la représentation des connaissances, I’apprentis-
sage et 'exécution des séquences de taches. En effet, de cette fagon, lorsque 'agent fait face a des
échecs lors de l'exécution de comportements, il n’a qu’a demander les caractéristiques manquantes.
Les informations sont fournies de maniere interactive par I’humain dans un contexte d’initiative mixte
enseignant /apprenant. En utilisant la parole et les gestes comme moyens de communication et en util-
isant des modules intégrés tels que notre module d’apprentissage par la démonstration, les personnes
sans expertise en programmation peuvent plus naturellement reconfigurer les robots.

B.5 Vers plus de flexibilités

Ce travail est une premiere étape dans le développement d’'un systéme cognitif permettant a un
humain non programmeur d’enseigner plus naturellement des comportements flexibles & un robot in-
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dustriel collaboratif. Dans ’ensemble, nous avons construit ’architecture en gardant a l’esprit la
modularité, car 'utilisation de composants modulaires est essentielle pour une meilleure compréhen-
sion, une évaluation de la confiance et 1’évolution potentielle de I'architecture. Bien str, le SRA idéal
est encore loin d’étre atteint. Plusieurs perspectives et dont celle de 'intégration des incertitudes sont
abordée dans le manuscrit. En particulier cette derniere est primordiale vis a vis de nos spécifications
et fait 'objet d’une description détaillée dans le chapitre 5.

B.5.1 Obtenir un niveau d’incertitude

Jusqu’a présent, nous avons décrit les capacités d’apprentissage des compétences en termes de
composantes symboliques et connexionnistes. Nous avons montré qu'un manque de connaissances
symboliques sur une tache, en termes d’informations procédurales ou perceptives, conduit a un échec
et déclenche un événement d’apprentissage interactif. Cependant, cela n’est pas suffisant car les
modules perceptifs, tels que les modules basés sur des réseaux neuronaux profonds, peuvent étre non
fiables face a de situations nouvelles. Par conséquent, de mauvaise prédictions peuvent conduire a
des décisions potentiellement dommageables. L’agent SRA doit connaitre le niveau de certitude ou
d’incertitude relatifs aux processus de perception et de raisonnement. Il s’agit d’un indicateur clé pour
doter ’agent SRA d’une meilleure compréhension de ce qu’il sait, de ce qu’il ne sait pas et de ce dont
il n’est pas certain pour prendre de meilleure décisions.

Par exemple, dans notre module d’apprentissage d’affordance de préhension, nous avons réduit
les risques de saisie dans une zone interdite en apprenant une zone neutre de séparation. Cependant
des échecs restent possibles lorsque 'agent n’a pas vu suffisamment de démonstrations pour certains
objets. Ainsi, I'agent a besoin d’un moyen d’estimer si la zone de préhension autorisé prédite est
pertinente ou non. Il doit avoir du recul sur ses prédictions.

Il existe une littérature abondante sur la taxonomie de l'incertitude (voir [18] pour une étude
complete). Brievement, en général I'incertitude 7 d’'un modele d’apprentissage automatique peut étre
décomposée a haut niveau en deux types d’incertitude, 'incertitude aléatoire (7,) liée a la nature
physique du phénomene (inhérent au phénomene, quelque soit le nombre de données) et I'incertitude
épistémique (1) liée au manque d’expérience (et donc de données) de 'agent.

Comme dans la plupart des problemes d’apprentissage automatique, nous pouvons distinguer les
problemes de classification et les problemes de régression.

Pour la classification, un modele doit fournir une étiquette avec son degré de confiance. Par
exemple, demander & un réseau de neurones profond de prédire un résultat avec 100% de confiance pour
“un pile ou face” n’a aucun sens. Nous aimerions que le réseau soit incertain quant a sa prédiction et,
dans 'idéal, qu’il produise une distribution des résultats possibles (1/2 — pile, 1/2 — face). Le réseau
doit également avoir un comportement similaire avec des données éloignées de celles sur lesquelles il
a été entrainé ou "a la frontiere” entre des classes. D’une maniere générale, pour un probléeme de
classification, l'incertitude devrait produire une distribution de prédiction sur les classes. De cette
fagon, la confiance dans une classe prédite, ainsi que les confusions particulieres avec d’autres classes,
peuvent étre mises en évidence. Méme si les sorties softmax d’un réseau de classification ressemblent
a une telle distribution, elles sont connues pour étre sujettes a une mauvaise calibration et a une
confiance excessive [19]. Par conséquent, on ne peut pas s’y fier en tant que mesure de confiance et
d’incertitude.

La représentation de l'incertitude liée aux prédictions d’un réseau de neurones est un sujet ouvert
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en apprentissage profond. Dans la littérature, plusieurs approches sont étudiées pour apprendre de
tels modeles afin de dériver une métrique d’incertitude fiable. On peut citer quelques exemples et
illustrées dans la section 5.2 du manuscrit :

les techniques d’apprentissage basées sur la méthode bayésienne

les méthodes ensemblistes

les modeles tenant compte d’une notion de distance dans ’espace des prédictions

e les mesures externes

Prenons ’exemple des méthodes ensemblistes qui permettent de générer et d’agréger un N-échantillon
de prédictions. Pour un probleme de classification, la classe retenue est celle la plus prédite, et la mesure
d’incertitude correspond a la proportion des prédictions dans I’ensemble des autres classes. Pour un
probleme de régression la valeur moyenne et ’écart-type des prédictions fournissent un intervalle de
confiance autour de la valeur moyenne prédite.

Une bonne estimation et taxonomie de l'incertitude aidera a quantifier la confiance que l'on peut
avoir dans les prédictions de ’agent SRA et pour faire face aux potentiels biais. Du point de vue de
l'opérateur, cela pourrait améliorer les garanties de sécurité et d’acceptabilité qui sont des exigences
fortes pour I'industrie. Du c¢6té de I'agent SRA, c¢’est un moyen de questionner et de raisonner sur son
propre comportement.

B.5.2 Incertitude dans la prise de décision

Une fois que I'on dispose d’une mesure d’incertitude bien calibrée [19] (lorsque la précision prédic-
tive est proche de la confiance en les prédictions), il est possible d’utiliser cette mesure d’incertitude
dans la prise de décision.

En suivant [20], nous pouvons adapter la matrice de contingence classique [21] comme indiqué dans
le tableau B.5. A partir de cette matrice, nous pouvons dériver des mesures de performance, ainsi
qu’un processus d’apprentissage actif pour notre SRA.

Résultats de prédictions

Mauvaise Bonne
Elevée Vrai Positif (VP) Faux Positif (FP)
(Question) (fausse alarme)

Tthresh

Incertitude

Faible Faux Négatifs (FN) | Vrai Negatifs (VN)
(Action) (non détection)

Table B.5: Tableau de contingence avec mesure d’incertitude 7. Au-dela d’un seuil d’incertitude
Tehresh, une alarme est déclenchée, par exemple dans un cadre d’apprentissage actif.
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Etant donné un seuil d’incertitude Tenresh, l€s prédictions peuvent étre classées en deux catégories :
confiantes (incertitude "faible”) et incertaines (incertitude "élevée”), pour lesquelles la décision respec-
tive est de déclencher ("Positive”) ou non ("Négative”) une alarme. La pertinence du déclenchement
ou non d’une alarme est désignée par ”Vrai”. Etant donné une prédiction, "Vrai” correspond a la di-
agonale principale de la matrice de contingence, c’est a dire d’avoir déclenché (resp ne pas déclenché)
une alarme si la prédiction était effectivement mauvaise (resp bonne). La proportion de "Vrai” est
ainsi une mesure d’expertise de ’agent a déclencher ou non une alarme a bon escient.

Cette matrice de contingence peut étre considérée comme une classification binaire permettant
d’évaluer les potentielles mauvaise prédictions, par exemple concernant les prédictions d’un réseau
de neurones. Une bonne métrique d’incertitude devrait maximiser les proportions dans la diagonale
principale (VP et VN), et éradiquer les non détections (FN) correspondant aux mauvaises prédictions
qui sont considérées comme juste et certaines, tout en limitant le nombre de fausses alarmes (FP). En
effet, les non détections (FN) peuvent entrainer des problemes de sécurité dans les applications indus-
trielles de robotique collaborative, et les fausses alarmes (FP) représentent un cotit supplémentaire
dans un contexte industriel. Une alarme déclenche un échec du systeme qui doit étre résolue par des
interactions humaines (démonstrations et énoncés) dans le processus d’apprentissage interactif. Par
conséquent, nous voulons limiter le nombre d’interactions inutiles (FP).

La table de contingence peut étre exploitée pour fixer le seuil 7p,csn de la quantité de vrais positifs
acceptables par rapport aux faux positifs, représenté dans le tableau B.5. Au-dessus de ce seuil,
I’agent est suffisamment confiant et décide d’agir. En dessous de ce seuil, il doit décider de demander.
Ceci est illustré dans la figure B.18. Etant donné un histogramme de prédictions, on représente en
vert I’histogramme des bonnes prédictions et en rouge ’histogramme des mauvaises prédictions pour
une incertitude 7 donnée. Divers outils statistiques (tels que les courbes ROC) et indicateurs clés
de performance (KPI) dérivée de la table de contingence et reposant sur le calcul de plusieurs ratios
peuvent étre utilisés pour affiner I'analyse et pour la prise de décision (voir section 5.3.2 du manuscrit).

Dans un contexte industriel, il nous faut éradiquer les non détections (FN) tout en limitant les
fausses alarmes (FP). Cela motive la mise en place d’un apprentissage actif ol Typresh, évoluera (aug-
mentera) dans le temps. Un bon modele de prédiction associé & un modele d’incertitude bien calibré
et un apprentissage actif devrait permettre de séparer clairement les deux distributions, c’est a dire
de rendre expert notre agent (matrice de contingence diagonale).

Occurrences

Figure B.18: Illustration de 'utilisation de Typ,.esp pour limiter les mauvaises actions

181



B.5. VERS PLUS DE FLEXIBILITES

B.5.3 Apprentissage actif

Maintenant que nous avons une meilleure idée de ce qu’est l'incertitude et de la fagon dont elle
peut étre estimée, nous pouvons nous concentrer sur la fagon de I'intégrer dans une application robo-
tique réelle. La notion d’incertitude a été utilisée dans plusieurs travaux en robotique a des fins
d’apprentissage. Il n’existe pas de définition claire, mais ces méthodes exploitent une certaine notion
d’inconnu pour susciter des comportements spécifiques d’exploration. Le domaine de 'apprentissage
actif se concentre sur les stratégies qui peuvent réduire I'inconnu et améliorer le modele sous-jacent.

Nous pouvons donc exploiter les notions d’incertitude dans le contexte de ’apprenti

ssage actif et de

I'intégrer dans ’architecture de I'agent SRA. Une méthodologie générale est illustrée dans la figure

B.19 et peut étre résumée a haut niveau par la procédure suivante :

e Un réseau de neurones est entrainé sur un ensemble de données avec une fonction de perte L et

avec une notion d’incertitude, idéalement calibrée.

e Ensuite, la prédiction et I'incertitude du modele sont exploitées au cours du pro
tissage interactif de 'agent SRA.

e Une fois la prédiction effectuée, 'incertitude est propagée au niveau supérieur
décide si il doit agir ou demander en fonction du parametre d’incertitude 7 par
Tthresh (t) qui évolue au fil de Papprentissage actif. Plusieurs cas sont possibles
dans la section 5.4.2 du manuscrit.

cessus d’appren-

afin que l'agent
rapport au seuil
et sont précisés

l Apprentissage
1) (Pré)entrainement
)ty © € Dirain, Yirain v L(Ypred: Ytrain)
standard v
Réseau de Ypred

Regression/Classification *

T=

x € D, ions Yo
validations Yualidation Yval Lum'ﬂ’mm?y(ypwd‘yvalulai[(m)

(2) Apprentisage/calibration |

de l'incertitude l
Learning,
z € Dy, T Métrique d’incertitude I
. - (Tpreds T)
Données de calibration externe
Tt
2 € Doty y

[Données de test en production

Phase décisionelle

Réseau de
[Regression/Classification ¥ Ypred

a t avec

F(T) =T = Tinresn(t)

(3) Apprentissage
actif avec

Prpcessus de 'agent ARI

Data collection

incertitude. Tored™

f(r) <=0 Act

Métrique d’incertitude
externe Tpred

* Le réseau peut apprendre sa propre incertitude pendant I"apprentissage initiale en fonction des méthodes

Figure B.19: Processus général pour I'apprentissage actif
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Afin d’intégrer les travaux sus-mentionnés sur l’architecture, au niveau de la prise de décision,
nous devons étendre le modele de comportement de I’architecture avec des capacités de traitement et
de propagation de l'incertitude. Cette derniere peut étre effectuée par des arbres de comportements
spécifiques (BBT) [22]. Dans ce cadre, ’agent peut raisonner sur un état de croyance dans sa mémoire
de travail et propager l'incertitude a travers les noeuds de ’arbre. L’agent ne raisonne plus des lors
sur des valeurs uniques mais sur des distributions d’états et d’actions.

Nous pouvons ensuite intégrer le processus d’apprentissage actif dans ce cadre par exemple dans
l’exemple de préhension (voir la figure B.20). Etant donné plusieurs conditions et modules perceptifs
intégrant la notion d’incertitude, 'agent SRA sélectionne les prédictions en fonction du seuil T¢presn (1).
Les prédictions et les incertitudes sont propagées vers les noeuds supérieurs, une impasse se produit
et peut étre résolue en demandant des démonstrations dans un cadre d’apprentissage actif, si aucun
état candidat s pour la préhension n’est valide.

parent

{(7—167 Gpred,1, X)7 (7—207 Gpred,2; X)} ________ PN
R e

7y s1m1 =00 (Trean)

is_object_grasped Gestion d’échec

|Gestion d’échec lié a l’incertitude|

ramena(Tored2)

(Spred,2, Tpred:2) } %

C —
Ty, 82, T2 = X‘.

¥
module(monde)— {(Spred.1, Tpred.1)s

Demander Apprentissage
11 des d 4 perceptuel actif
et collecter des données (SM‘ue) pour le module de préhension

! 1

Figure B.20: L’agent SRA peut exploiter la structure spécifique des BBTs pour gérer I'incertitude
fournie par les modules de niveau inférieur

En reconsidérant 1’histogramme de prédiction (Figure B.21a), idéalement, apres quelques itérations,
la distribution des bonnes et mauvaises prédictions devrait étre bien séparée (B.21b). Le SRA devient
expert lorsque les demandes deviennent rares et que les actions sont bonnes. Les demandes ne devraient
concerné que certains cas exceptionnels particulierement éloignés des données d’apprentissage. Cela
pourrait étre réalisé en faisant varier le seuil d’incertitude au fur et a mesure que I'agent gagne en
expertise.
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(a) L’histogramme des prédictions n’est pas bien sé- (b) Histogramme idéal de prédictions. Etant donnée

paré au début de I’apprentissage. le seuil d’incertitude, une action certaine est toujours
bonne, tandis qu’une non-action pour cause d’incer-
titude est toujours justifiée car elle aurait conduit a
une erreur. Les non-détections sont éliminées.

Figure B.21: Illustration de I'utilisation de 7yj,esp pour éviter les mauvaises actions, compte tenu de
I'incertitude .

B.5.4 Conclusion

Dans ce chapitre, nous avons défini comment I'incertitude peut étre vue comme une composition
de différents types d’incertitudes. Son intégration est déterminante, si 'on veut qu’'un agent SRA
soit capable de raisonner et de faire face a plusieurs types de biais. De plus, nous avons montré
que 'exploitation de l'incertitude peut étre au coeur d’un processus d’apprentissage actif au sein de
I’architecture. En effet, en appliquant un seuil a la quantité d’incertitude acceptable, nous pouvons
dériver une notion de curiosité ou de motivation qui peut étre exploitée par ’agent pendant l'interaction
en décidant de demander plutét que d’agir. Ainsi, un agent SRA peut avoir beaucoup plus de recul
sur ses capacités de prédiction, ce qui conduit a des comportements plus strs et a la possibilité de
demander de 'aide dans des scénarios plus riches ou éloignés de ceux sur lesquels il a appris.

D’autre perspectives de plus long terme sont également abordée dans le manuscrit (voir section
7.3) et questionnent certaines limites et potentiels d’amélioration de I’architecture en termes :

e de raisonnement sur une taxonomie plus fine d’incertitudes intégrant une distinction entre les
différents types d’incertitude

e de fusion de données multimodales qui devrait permettre a I'agent de raisonner sur les incerti-
tudes en fonctions de la nature des modalités de perception

e d’amélioration de la généralisation des préférences dans le cadre multi-utilisateur ot des préférences
similaires peuvent se retrouver chez plusieurs individus.
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e d’amélioration des modeles de comportement en termes d’apprentissage et de représentations,
par example en exploitant des modeles causaux.

B.6 Conclusion générale

Nous avons présenté un prototype d’architecture de base axé sur l'intégration de plusieurs fonctions
relatifs & la planification, a 'action et a Iapprentissage incrémentale de compétences dans un cadre
d’apprentissage interactif. L’état actuel de développement de l'architecture a pu valider dans un
scénario simple la plupart de nos spécifications. Des validations expérimentales ont été faites avec
robot collaboratif industriel pour I'enseignement de taches liées a la préhension, avec des préférences
pour la manipulation. L’agent SRA est capable d’apprendre en ligne des représentations de haut
niveau et de bas niveau de la tache, pendant une interaction d’initiative mixte. L’utilisation d’
arbres de comportements comme modele permet de construire des représentations modulaires et
explicites de la tache qui aident & expliquer et interpréter les comportements du robot. Le processus
décisionnel exploite des modules perceptifs basés sur des réseaux de neurones pour apprendre des
caractéristiques perceptives complexes telles que ’affordance de préhension. L’apprentissage est rapide
grace a I’exploitation de réseaux pré-entrainés, a ’apprentissage par transfert vers des taches spécifiques
et aux techniques d’augmentation avec des sous-réseaux spécialisés. De plus, comme les réseaux
neuronaux les plus grands sont difficilement interprétables, 'utilisation de sous-réseaux spécialisés est
susceptible d’aider a interpréter et corriger les défaillances du systéme. Grace a la modularité, si la
prédiction d’un sous-réseau échoue, il peut étre possible de corriger uniquement ce sous-réseau sans
affecter les autres modules. Nous avons montré qu’il est possible, a travers un scénario d’initiative
mixte, d’enseigner une tache avec des variations. L’adaptation aux préférences humaines, validée ici
sur les préférences d’affordance de préhension et ’adaptation a la main dominante, est une exigence
importante de notre architecture. En effet, elle offre une interaction personnalisée qui est susceptible
d’aider a l'acceptabilité des systemes robotiques par les opérateurs.

Notre travail est un premier pas vers un assistant robotique industriel collaboratif intelligent.
L’architecture est ouverte et extensible a plusieurs améliorations. Enfin, au fur et a mesure que
I’architecture murira, il deviendra nécessaire de la tester dans des contextes plus complexes et avec de
vrais non-experts.
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Francois Hélénon
Architecture robotique et cognitive pour

NN Arts Papprentissage de taches en interaction avec | HESAM i
et Métiers I’humain. Une application pour la UNIVERSITE
collaboration homme/robot dans ’Industrie
4.0.

Résumé : Dans I'Industrie 4.0/5.0, les robots collaboratifs peuvent désormais assister dans de nom-
breuses taches, contribuant ainsi a réduire les risques de troubles musculo-squelettiques pour les tra-
vailleurs humains. Cependant, la reconfiguration des robots collaboratifs manque encore de flexibilité
et est souvent hors de portée du travailleur du quotidien, qui n’est ni un programmeur ni un expert en
robotique. De telles exigences conduisent a un changement de paradigme dans la fagcon dont les robots
collaboratifs doivent étre programmés. Un robot collaboratif idéal devrait devenir un Assistant Robotique
Intelligent (SRA), centré sur I’humain, capable d’adapter dynamiquement son comportement a la diver-
sité de chaque situation, y compris les taches, les changements d’environnement, les caractéristiques des
travailleurs et leurs préférences. Durant cette these, nous avons choisi de développer un type d’architec-
ture cognitive pour la robotique collaborative dans un contexte industriel, prenant en compte différentes
spécifications pour qu’un humain puisse enseigner des taches a un robot de maniere incrémentale et avec
des modalités d’interaction naturelles.

Mots clés : Apprentissage robotique en intéraction, Apprentissage de taches en intéraction, Architecture
cognitive hybride, Apprendre par démontrations humaines, Robotique Collaborative

Abstract : In Industry 4.0/5.0, collaborative robots can now assist in many tasks, helping to reduce the
risk of musculoskeletal disorders for human workers. However, the reconfiguration of collaborative robots
still lacks flexibility and is often beyond the reach of the everyday worker, who is neither a programmer
nor a robotics expert. Such requirements lead to a paradigm shift in the way collaborative robots should
be programmed. An ideal collaborative robot should become a human-centered Smart Robotic Assistant
(SRA), capable of dynamically adapting its behavior to the diversity of each situation, including tasks,
environment changes, workers’ characteristics and preferences. During this thesis, we chose to develop
a type of cognitive architecture for collaborative robotics in an industrial context, taking into account
different specifications so that a human can teach tasks to a robot in an incremental way and with natural
interaction modalities.

Keywords : Interactive Robot Learning, Interactive Task Learning, Hybrid cognitive architecture, Learn-
ing from human demonstrations, Collaborative robotics
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