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pour ces courts, mais sympathiques moments passés au laboratoire ; Dorian pour sa gentillesse et sa

rapide intégration dans l’équipe ; Anthony avec qui j’ai partagé la plateforme robotique et les mois
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Résumé

Des capacités d’interaction flexible et centrée sur l’humain, en robotique collaborative, est un aspect

essentiel de l’industrie 4.0/5.0. Les robots collaboratifs peuvent désormais fournir une assistance dans

de nombreuses tâches, contribuant ainsi à réduire les risques de troubles musculo-squelettiques pour

les travailleurs humains. Cependant, le niveau de collaboration reste encore loin du niveau naturel

entre deux collègues humains. En effet, la reconfiguration des robots collaboratifs manque encore de

flexibilité et est souvent hors de portée du travailleur du quotidien, qui n’est ni un programmeur ni

un expert en robotique. Un robot collaboratif idéal devrait devenir un Assistant Robotique Intelligent

(SRA) capable d’adapter dynamiquement son comportement à la diversité de chaque situation, y

compris les tâches, les changements d’environnement, les caractéristiques des travailleurs et leurs

préférences. De telles exigences conduisent à un changement de paradigme dans la façon dont les

robots collaboratifs sont programmés.

Tout au long de cette thèse, pour répondre aux spécifications d’un SRA, nous avons exploré la

conception d’un prototype d’architecture cognitive autour de la notion d’Enseignement Robotisé en

Interaction (IRL). L’agent robotique peut apprendre, en s’appuyant sur des connaissances antérieures,

comment représenter et exécuter des tâches inconnues avec des capacités de généralisation, selon les

préférences et les caractéristiques des travailleurs. L’apprentissage se fait tout au long de l’interaction,

dans un cadre d’initiative mixte, de manière incrémentale, rapide et naturelle, par des personnes non

expertes en programmation.

En nous inspirant d’approches complémentaires de la littérature en Intelligence Artificielle (IA) et

en ITL, nous avons mis en évidence les avantages d’une architecture hybride, entrelaçant les approches

symbolique et connexionniste en IA. Suivant les spécifications du SRA, nous avons choisi de développer

un nouveau système cognitif basé sur des modèles de représentations relationnelles et l’intégration

de modules d’apprentissage spécifiques basés sur l’apprentissage profond. En particulier, nous nous
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sommes concentrés sur l’exploitation de représentations modulaires pour les comportements du SRA,

intervenant pour le processus d’apprentissage délibératif et incrémental de l’agent. Cela a conduit à

considérer les arbres de comportements réactifs au coeur du modèle de comportement de l’architecture.

Cela permet d’apprendre des niveaux hiérarchisés de représentations, de la perception motrice du

monde réel aux représentations symboliques abstraites.

Des validations expérimentales, avec de vrais robots collaboratifs, ont été effectuées tout au long

de la thèse pour évaluer le comportement de l’actuel prototype d’architecture par rapport aux spé-

cifications du SRA. Comme les tâches de manipulation sont courantes dans de nombreuses applica-

tions industrielles, nous avons choisi de concentrer ces validations expérimentales sur des scénarios de

préhension planaires, orientés vers la tâche. Ceci a motivé le développement et l’intégration de modules

d’apprentissage en IA basés sur des démonstrations humaines pour l’apprentissage de la préhension.

À partir de quelques démonstrations, un humain peut enseigner rapidement et naturellement les em-

placements autorisés et interdits, en fonction de la tâche et/ou de leurs propres préférences.

En outre, et en tant que perspectives d’intégration futures, nous discutons de la façon dont les

techniques d’incertitude et d’estimation pour l’apprentissage profond pourraient être exploitées au

coeur de l’architecture, pour les prédictions d’échec et pour l’apprentissage actif.



Abstract

Human-centric and flexible interaction in collaborative robotics is a key aspect of industry 4.0/5.0.

Collaborative robots can now assist in many tasks, helping to reduce musculoskeletal disorders risks

for human workers. However, the level of collaboration remains far from the natural one between two

human coworkers. Indeed, reconfiguration of collaborative robots still lacks flexibility and is often out

of reach of the everyday worker, who is neither a programmer nor a robotics expert. An ideal collabo-

rative robot should become a Smart Robotic Assistant (SRA) that can adapt dynamically its behavior

to the diversity of each situation, including tasks, environment changes, workers characteristics and

their preferences. Such SRA requirements lead to a paradigm shift in the way collaborative robots are

programmed.

Throughout this thesis, to fulfill SRA specifications, we have explored the design of a prototype

of cognitive architecture around the notion of Interactive Robot Learning (IRL). The robotic agent

can be taught, by leveraging prior knowledge, how to represent and carry out unknown tasks with

generalization abilities, according to workers preferences and characteristics. Teaching is done through-

out interactions, in a mixed-initiative setting, incrementally, and in a fast and natural way by non

programming experts.

Taking inspiration from complementary AI and IRL paradigms found in the literature, we have

highlighted the benefits of a hybrid architecture, interleaving symbolic and connectionist approaches.

With SRA specifications in mind, we chose to develop a new cognitive system based on relational rep-

resentations models and integration of specific learning modules based on deep learning. In particular,

we have focused on exploiting modularity of behaviors representations for the agent deliberative and

incremental learning process, which led to consider Behaviors Trees (BT) at the core of the behavior

model. It helps to learn a hierarchical level of representations, from real world moto-perception to

symbolic abstract representations.
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ABSTRACT

Experimental validations, with real collaborative robots, were made throughout the thesis to as-

sess the behavior of the current architecture prototype with respect to our SRA specifications. As

manipulation tasks are common in many industrial applications, we chose to focus these experimental

validations on planar, task-oriented grasping scenarios. This has motivated the development and inte-

gration of specific based AI learning modules, leveraging humans demonstrations for learning grasping.

From a few demonstrations, workers can teach quickly and naturally authorized and prohibited loca-

tions concerning the task and/or their own preferences.

In addition and as future integration perspectives, we discuss how uncertainty and estimation

techniques for deep learning could be leveraged in the core of the architecture, for failure predictions

and active learning.
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B.13 Aperçu de notre pipeline CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.14 Objets utilisés pour notre expérience, avec le nom des zones de préhension. La couleur
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fonction de la tâche. Pour les pinces, deux zones autorisées différentes sont testées
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Chapter 1

Introduction

Contents

1.1 Motivations: challenges in fully reconfigurable robotics for industry . . . . . . . . . . 2

1.1.1 Classical industrial robots: one task specialist for robots programmer experts . 2

1.1.2 Collaborative industrial robots at the dawn of a new social industrial robotic
context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Positioning in the broader cognitive robotics field . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 What is a collaborative artificial intelligence ? . . . . . . . . . . . . . . . . . . . 5

1.2.2 Human in the loop for flexible interactive robot learning . . . . . . . . . . . . . 7

1.3 Towards a smart robotic assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Contributions and thesis organization . . . . . . . . . . . . . . . . . . . . . . . 10

In recent years, industrial robots have left their cages to become more collaborative thanks to better
sensors and higher level programming libraries. Yet, in real world scenarios, flexibility and interaction
abilities of robots remains far from the natural interaction expected between two human co-workers.
This new paradigm requires both better hardware and software. Particularly for the latter, artificial
intelligence is playing an increasing role to cope with environment variability and complexity of human
interactions. This chapter introduces the global context of the thesis. Section 1.1 first motivates this
work by drawing through an industrial collaborative perspective, the required paradigm shift to build
a Smart Robotic Assistant (SRA). Then, we introduce in section 1.2 the field of cognitive robots. We
emphasise the need of a cognitive architecture and the integration of several AI paradigms as the basis
of an SRA that learns in interaction with humans. This path has led to contributions to Learning
From Humans Demonstrations and Interactive Robot Learning, described in section 1.3.
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1.1. MOTIVATIONS: CHALLENGES IN FULLY RECONFIGURABLE ROBOTICS
FOR INDUSTRY

Motors factories. Many competitors followed but as purely hydro-mechanical devices, they were

specifically designed for a task. Therefore, despite many successes, their use was defined at the time

of integration as welding, pick and place or painting, and this was extremely difficult to modify.

With the development of electronics and computer science, the second generation of industrial

robots appeared (1968-1977). They consisted of basic programmable machines leveraging the comput-

ing power of microprocessors and programmable logic controllers to accomplish more complex tasks.

However, here again, because of robots diversity and low-level programming, changing from a task to

another was requiring a high-level of expertise, with vendor-specific language to update the controller.

Several improvements occur in these decades with the development of 6DoF manipulators and the use

of embedded sensors to measure joints positions and velocities. Nevertheless, because of their lack of

versatility, robots early successes were mostly focused on highly specific and redundant tasks.

During 1978-1999, the third generation of robots began to leverage human interaction interfaces

such as pre-programmed vision or voice commands. High-level command libraries were also developed

allowing more high-level control, such as point to point motion planning, in an offline or online context

with a computer. The use of more complex sensors such as cameras allowed to bring more adaptability

in well-controlled environment for mass production or where high-precision was needed such as in

automotive or spatial industry. These robots had in common that they were dedicated to specific

tasks, not very adaptable to changes and dangerous, therefore unsuited to interactions with humans.

A new evolution has led to the fourth generation of industrial robots started from the year 2000

and was marked by the release of a new kind of robot: collaborative industrial robots also called

cobots.

1.1.2 Collaborative industrial robots at the dawn of a new social industrial robotic context

With the development of industrial collaborative robots has emerged a new paradigm shift in the

way workers use and interact with them. While classical robots are used to be isolated from humans

and tailored to very narrow and repetitive tasks in a predictable environment, collaborative robots

evolve close or even in contact with humans. Their commercialization is a first step towards effective

human/robot interaction as they are now able to go outside of their cages, thanks to better sensors

and more accessible high-level programming libraries. For instance, force sensors at the different joints

of the robot can help operators to program a desired trajectory with hand guiding [2] and make them
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safe for human interactions. This makes it easier to program or reprogram robots in a simple industrial

setting. It also provides assistance in hard and tedious tasks that were previously beyond the reach

of robots. Hence, collaborative robots have social benefits, like reducing physical work-load, and thus

preventing many musculoskeletal disorders (MSDs) risks among human workers in a much wider set

of tasks. However, to collaborate with human workers in everyday tasks and to become smart robotics

assistants, collaborative robots have to be endowed with much higher abilities. The authors of [3]

surveyed industry on the general requirements for cobots. Although limited to Finnish industry, their

questions and analysis are relevant to industry in general. We compare in table 1.1 some of the main

asked requirements of cobots against classical robots.

Overall these results shows that cobots are likely to be used in companies of all kinds. Their

integration is still difficult because the environment, tasks and human agents are not taken into account

and are difficult to predict. Moreover, as the tasks can change, the robots need to be reconfigured while

the resources of expert robotics programmers remain scarce. In that context, robots manufacturers

and integrators have developed user interfaces with high-level libraries that non-experts can quickly

learn in order to program specific tasks. Yet these interfaces are far from natural communications

between two human coworkers and programmed tasks are often too specialized and not transferable

to other tasks.

Table 1.1: Paradigm shift in industrial robotics

Classical industrial robots Cobots requirements from [3]

highly repetitive, usually only programmed for one
specific task

multiple reconfigurable tasks by non-expert users

well structured and predictable environment unstructured environment

works on cages far from humans or other unpre-
dictable agents

works with or even in contact with other agents
such as humans : need of natural HRI (vision,
speech,. . . ) and better allocation procedures

robots are unsafe
safer but can still be dangerous if bad behaviors
(need of explainable and interpretable behaviors)

1.2 Positioning in the broader cognitive robotics field

This substantial paradigm shift requires a cognitive system defining a Smart Robotic Assistant

(SRA) [4]. It should be able to interpret and react to human natural interactions for incremental

learning. This incremental learning should improve and leverage a knowledge base of modular skills
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that can be used, composed and transferred to a broad set of tasks, with adaptation to individual

preferences and characteristics. These abilities should be integrated in a decision-making process

which should be made as explainable as possible for the non programming experts, with high-level,

trustful explanations. Such a SRA could have a great impact for the next generation of collaborative

industrial robots.

To handle such complexity in a meaningful and understandable way, we need to implement an

artificial agent by leveraging several artificial intelligence and human robot interaction paradigms.

1.2.1 What is a collaborative artificial intelligence ?

Broad understanding of cognitive abilities: Defining Artificial Intelligence (AI) is a complex task with

many scientific, technical, philosophical and ethical ramifications, as there is actually no consensus on

what ”Intelligence” is. Yet, progresses has been made in different sub-fields of AI and expectations

are higher and higher. This is especially true with robots, which are embodied agents as they act

in the same real-world environment as us, humans. In this setting, AI field usually distinguishes

several levels of autonomy: narrow AI, broad AI, animal and human level AI and General AI (AGI).

Narrow AI agents learn to solve tasks and generalize only in a very narrow setting close to training.

Broad AI agents are able to leverage prior knowledge in tasks far from training but still with domain

specialization. Animals level AI and especially human level AI can generalize and adapt quickly

across domains with very few data examples. General AI (or strong AI) is sometimes referred to the

human level AI or superhuman level AI in all tasks that could be done by humans. AGI is one of

the ultimate dream goal of some AI research. It has fueled several fantasies since birth of AI, such

as the concept of singularity, where an AGI could achieve consciousness, continuously improving until

creating knowledge and technologies beyond human understanding.

A measure of intelligence can be seen as the ability to learn how to accomplish tasks and to

leverage what was learned to new target tasks. Another interesting property of human intelligence is

that knowledge is built incrementally throughout their lives. Generalization and adaptation could take

root in this ability of autonomous continuous learning capabilities and from exchanging information

with others. It seems that this is done by leveraging a certain level of prior knowledge and common

sense knowledge built at the early stage of life. For instance, cognitive sciences and neurosciences have

shown that during their cognitive development, infants progressively build more and more complex
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knowledge of the world. Figure 1.2 taken from [5], illustrates the emergence of physical concepts that

babies learn, such as visual properties and acting abilities in the real-world. However, the amount

of required prior knowledge in this process is still unknown. This interaction takes place in a social

context which allows infants and other agents to exchange information to built a shared, structured

and abstract representation that is usually referred as common sense knowledge. While human level

AI is probably still far from reach, this encourages the development of broad AI agents which learn

throughout their lives, in an online, incremental and interactive way as we do. The implementation

of such robotic agents could be facilitated by the design of cognitive robotic architectures.

face tracking
helping vs

hindering
pointing false perceptual

beliefs

biological

motion

rational, goal-

directed actions

causality gravity, inertia

conservation of

momentum
stability, support

object permanence
shape

constancy

solidity, rigidity

natural kind categories

1 2 3 4 5 6 7 8 9 10 11 12 13 14

proto-imitation

emotional contagion crawling walking

Figure 1.2: This figure was reproduced based on Figure 1 from [5] (Creative Commons Attribution 4.0
License). Based on psychological findings, it depicts general landmarks of how infants incrementally
learn to build a world model during their early cognitive development.

Cognitive architecture: Cognitive science is concerned with understanding the mechanisms of action

and thought, including the notions of perception, learning, knowledge, reasoning, decision-making

through deliberation. There is still no real consensus on human cognition, but for some cognitive

specialists such as Newell [6], it has appeared necessary to integrate different theories and hypotheses

into a unified theory of cognition. Several visions, based on symbolic and connectionist views have been

conceptualized and developed, giving birth to a large number of software architectures over the last

few decades. Among cognitive systems, called cognitive architectures some focus on psychologically

(ACT-R [7]) or biologically (SPAUN [8, 9] ) plausible features in order to study living being cognition.

Some are more pragmatic and focus on exhibiting cognitive abilities for practical applications (such as
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SOAR [10], SIGMA [11], DIARC [12]) without biological plausibility concerns. These approaches are

of particular interest, when one wants to build reliable and flexible agents, as they aim at explaining

how cognition allows us to learn representations and use them to better adapt in the world.

Cognitive robots as embodied cognitive systems: Robots are specific agents are they are embodied.

This means that in contrast to virtual agents such as conversational agent, they have a physical body

that interacts with the real-world and other physical agents. While embodiment is not a subject of

this thesis, keeping in mind the notion in the broader field is important as it has several implications.

Cognition is closely related to body capabilities. A striking example comes from passive dynamic robot

walker [13], which can mimic human walk without involving complex control and planning. Thus, the

kind of high-level representations and reasoning that an embodied agent can build, are likely to be

related to the complex interaction between its body, extension of its body (such as tools) and the

environment including other agents. For instance, a rigid bi-arm industrial manipulator is likely to

solve a storing task, in a different manner than a single rigid arm manipulator or than a compliant

soft robot. Different bodies can lead to different representations. Therefore a SRA needs to have a

good representation of its body and abilities, what is called proprioceptive perception. In the case

of industrial collaborative robotics, we want a SRA to share a certain level of common ground with

human knowledge and representations. This motivates the integration of humans in the embodied

learning process of robots.

1.2.2 Human in the loop for flexible interactive robot learning

Integrating human in the loop, is also of particular interest as it can lead to system with much more

flexibility and potential acceptability. For illustration, we can take the viewpoint of a human interface

designer. Human centered interfaces, including collaborative robots, must often rely on careful human

and task specific requirements. In traditional design, the designer has to think about a great number

of possible interactions situations between humans and the designed object. Of course, in practice this

assumption is unrealistic and limits are quickly reached. One striking visual example, coming from

user experience field and often used in design courses is illustrated in Figure 1.3.
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Designed path

User goal

Preference of

several users

Preference of

a few users

Figure 1.3: Image taken at ”Citadelle” park in Lille (59000), France.

An architect has defined a certain path walk in a park that people should follow. However, as

each people has preferences, they cross in different ways. Some follow the designed path but it can be

seen by grass wear that, actually, a lot of people just go straight to the shortest path while a fewer

choose a more isolated path on the left. This simple example can be generalized to every interactive

system and bring to light the need of adaptive systems that take people into account. For instance,

Global Positioning System devices (GPS) can be considered as such adaptive systems. For a same goal

destination but different people, a GPS can be reconfigured to favour high-speed highway or touristic

paths with several point of interests, while avoiding toll roads. It can also dynamically adapt its answer

to minimize travel time, with respect to environmental changes, such as traffic jams or a driver which

has not followed the suggested path. In industrial collaborative robotics, task achievements are also

likely to depend on specific tasks and people preferences. The design of an interactive collaborative

robot must be able to take them into account. But in contrast with previous systems, the complexity

of human-robot interactions prevents full a priori specifications, as stated in [14] (chapter 1.1).

Ideally, most of the robot capabilities should be naturally reconfigurable and extendable by end-

users. The designer builds a general task learner, whose learning abilities are directly leveraged by the

end-user for task adaptation. Such systems can be studied from complementary viewpoints in artificial

intelligence for human-robot interaction: learning from demonstrations (LfD) [14], Interactive Task

Learning (ITL)[15], Interactive Machine Learning, or the in our case the more specific Interactive

Robot Learning (IRL) [16].
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1.3 Towards a smart robotic assistant

1.3.1 Objectives

Overall the design of a SRA requires a multidisciplinary approach. In this thesis, we aimed at

building a core prototype of IRL for Industry 4.0 setting. We have fixed several specifications that

should be fulfilled. An IRL agent should be able to:

• reason and to have at least partial explanations abilities. An industrial collaborative robot must

be able to provide some insights to its predictions and its behaviors.

• interpret and react to human interactions in real-time. A robotic system should be able to

perceive and interpret quickly to humans.

• interact intuitively with non-programmers. The IRL agent should specifically understand human

natural communication means such as vision, speech, gaze, touch. Its explanations should be

understandable by non-programmers. This could help build more acceptable cobots and help

non-expert users to reconfigure the system in an intuitive way.

• learn quickly and incrementally a new task from low level to high-level abstractions. Carrying

out a task requires both knowledges at high-level for general understanding and at low level for

perception and execution in the real-world. This can be done by transferring knowledge and it

needs representations and processes that foster modularity throughout the system.

• leverage a prior knowledge base for tasks execution and learning online. We do not want to teach

everything from scratch to a robot. Therefore, an IRL agent should be able to leverage some

prior knowledge while doing and learning modular skills to solve tasks.

• adapt to preferences and specificities such as disabilities. While the IRL agent learns new tasks, it

must be able to adapt with a certain automation level its behaviors according to each individual

preferences and characteristics.

• handle uncertainty in moto-perception and its inner knowledge. We want the IRL agent to

know what it does not know. For that, the notion of uncertainty is important. As a measure

of confidence in its own actions, it can give the IRL agent, the ability to reason about its own
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predictions in order to decide to act or not to act. As a measure of curiosity, it can be a drive

for learning.

1.3.2 Contributions and thesis organization

This thesis has aimed at developing and integrating the main building blocks to create a cognitive

robotic architecture for collaborative robotics that is likely to get closer to the aforementioned specifi-

cations. Since pick and place related tasks are common in many industrial applications, we decided to

choose planar grasping as use-case for validation on real robots. A main part of the literature review

is detailed in chapter 2 which presents the main principles in the design of a cognitive architecture

and a state of the art on ITL and IRL. Specific state of the art is then enriched throughout the thesis

chapters. Chapter 3 details the current architecture we proposed, in terms of main building blocks,

interactive learning processes and modules organization at a high-level overview. We then further

detail in chapter 4, different skills learning paradigms that were investigated during the thesis. Learn-

ing grasping with real robots were used as a validation of specifications integration. Specifically, a

contribution to learning from demonstration and task oriented grasping was made by the development

of a specific module, developed in section B.3.2. Chapter 5, reviews the specific problems of learning

uncertainty with deep neural networks and introduces how it can be used in an active learning set-

ting. Chapter 6 describes the implementation of the architecture, integrated modules and validates

the overall thesis approach with a real robot. Finally, chapter 7 introduces ongoing perspectives and

future works.

Work done during this thesis was valorized through international publications:

• Contribution in learning by demonstration and task oriented grasping: [17]

• Contribution in architecture approach for interactive robot learning in industrial collaborative

robotics: [18]

• An international journal article gathering, and updating the contributions with the last devel-

opments and validations for our ITL architecture, is close to be submitted.
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Chapter 2

State of the art on cognitive systems
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This chapter describes the main required components to build a cognitive architecture. An em-
phasis was made on various trade-offs between the connectionist and the symbolic view in artificial
intelligence in order to justify the development of an hybrid architecture for skill learning. Works on
interactive robot learning with human in the loop embrace many different research topics in learn-
ing, communications modalities, decision-making and acting in situated interaction. While there is
no consensus on the ideal cognitive architecture, several decades of research work led to core design
principles. Managing reasoning, planning and acting abilities at several temporal and abstract scales
is determinant for smart behaviors whereas modularity is key to knowledge reuse and for architec-
ture long term evolution. We position our work in the extensive taxonomy of cognitive architectures
developed in [1] and compared it to existing ITL/IRL against our specifications, motivating the devel-
opment of our own IRL architecture. Section B.2.1 introduces the two approaches one can adopt on
a cognitive systems: a connectionist and a symbolic point of view. We motivate the use of a hybrid
architecture to develop an IRL agent. Section 2.2 then focus on the main building blocks required to
develop a cognitive system and how such systems have been used for IRL.
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2.1 Connectionist and symbolic approaches

2.1.1 System understandability

Practical deployment of AI techniques in the industrial collaborative setting needs to have a certain

level of understandability to be trust. In [2], authors draw a comprehensive overview of eXplainable

AI (XAI) field. They emphasize the need of different levels of explainability depending on the target

audience, as an engineer or a non expert, and the importance of a conceptual taxonomy of understand-

ability. In particular, they distinguish interpretability and explainability of a model. Interpretability

is a passive characteristic of the model related to the ability to extract meaning from the model in

understandable terms for human. Explainability is related to an active characteristic of the model,

where the model itself acts to clarify its decision according to a specific audience. In an IRL set-

ting, ideally, we would like models that are both explainable and interpretable. In other words, after

making a prediction, if asked, the model should be able to give some insights on its decision process

(explainability) in a human understandable way (interpretability). In practice, there are two main

research directions in XAI literature [2]:

• Post-hoc explanations of fully black box models, where technical methods are developed to

analyze model predictions after training.

• Inherently interpretable or transparent models such as decision trees or hierarchical symbolic

models, which thanks to their structure, help managing complexity in an interpretable way.

In the IRL setting, we specifically want non experts to trust the robotic agent. To be accepted by

non technical users, we want the IRL agent to present in a common sense manner its prediction and

decision process. As human, we trust each other because we share some common world representations

and we are able to explain at high level our behaviors in an interpretable way. Understanding the

lower level brain processes is not mandatory. For instance, explanations requirements is likely to vary

between non user experts of the system and an engineer. Non user experts of our IRL would likely

expect qualitative information, in an everyday language form or as images about robot behaviors and

decision processes. In that direction, authors in [3] highlight that in the context of social robotics,

robots are likely to be trust by non technical users if they are given the ability to share their intents,

goals and beliefs. Allowing sharing information at that level is important, if we want a non expert
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being able to provide valuable feedback to teach the IRL agent. On the other hand, an engineer could

be interested in more quantitative information and a finer grained analysis of inner decision processes

and algorithms. This requires some hierarchies in the explanation abilities and therefore in the IRL

architecture.

AI agent systems can roughly be approached given two points of view: a top-down view where

a complex model starts from high level and relational abstract knowledge, where most of reasoning

and planing occurs, (sometimes refers as system 2 in the literature) to the sensory motor capabilities

of the agent. It has usually been the territory of symbolic AI which exploits symbols for internal

representations. At the opposite, bottom-up view is related to connectionist AI and aims at leveraging

the interaction of several simple models from which complex behaviors emerge (at system 1 level).

Both approaches have their upsides and downsides for building a robotics cognitive architecture. We

present some of them to justify a hybrid approach in our architecture. We illustrate in Figure 2.1 the

trade-off, in term of ease of implementation and representations, between symbolic and connectionist

architectures with respect to abstract representations, data efficiency for learning, and explainability

of the system.
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Figure 2.1: General hybrid architecture design

2.1.2 Connectionism

One of the most powerful tools used in connectionist approach are currently deep learning tech-

niques which are now state of the art in many domains [4]. They consist in building end to end deep

neural networks architectures which learn from data in a bottom-up, parallel process. Architectural
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design and stacking layers have shown improved performances in learning by leveraging higher level of

abstractions. Moreover, these networks are robust to noise provided that inputs are close enough to

the training data. Processing of rare cases, however, as a sample outside of the distribution of training

data is still an open problem. Thus, deep neural networks systems hardly generalize outside of narrow

AI tasks. These techniques are very data-hungry: learning from scratch often requires much more

data than what would be required for a human. Data efficiency is a serious issue when it comes to

online interactive learning in robotics as data is scarce with only one or a few available data examples.

Nevertheless, several techniques such as transfer learning and data augmentation can help mitigate

the amount of data. Finally, high-level learned abstractions are also different from those we learn as

human [4, 5]. This leads for instance to failure modes very different from those of humans, as proved

adversarial examples. This lack of interpretability hinders understandability and the ability to enforce

high-level prior knowledge in the system.

In deep reinforcement learning, planning and reasoning seem hard. Indeed, in most of the current

deep learning models, the agent is not enforced to learn a causal model of the world. Thus, it is

difficult for the agent to explain why it did something, to reuse behaviors across tasks or to correct

biases. In the Natural Language Processing (NLP) literature for instance, GPT-3 [6], is one of the

largest and most powerful model. It has shown impressive results on standard benchmarks and even

few shots learning but they are also strong limitations when it comes to understanding with negative

biases in language generation tasks [5]. Such system do not learn as we do in a real-world, they only

learn from a big corpora of unimodal text data. Therefore it might not be enough to get a good

understandability of the world, which is multimodal.

Otherwise, in order to be acceptable and trustable, interactive robots have to explain their behav-

iors as their actions decisions can have annoying consequences. In a real industrial and collaborative

world setting, wrong robot actions could indeed be unsafe for humans, or damage goods including the

cobot itself.

In that context, several promising methods are currently investigated. Most XAI techniques explore

post-hoc explainability. For instance, some techniques try to produce examples to explain predictions

abilities. Given a test input, we can try to find the closest train input example to explain the predictions

[7]. Some works approximate locally a model prediction with more simple model such as linear models

[8]. Finally many techniques rely on features based on features visualization or attribution or by gener-
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ating input example based on layer activations [9]. While theses techniques improve interpretability of

models predictions, inner decision process of the model can still be hardly understandable, as learned

representations can be far from the one we learned. To learn more efficient, inherently interpretable

and transferable model representations, this require building architecture with more inner constraints

during training. For instance, in vision, authors in [10] build a specific deep neural network architec-

tures for classification, where the model has to learn images classification based on image prototypes.

Prototypes are patches examples, sampled from images of the train dataset, learned during the train-

ing phase and that explain well the network predictions. In deep RL, learning an embedding space for

skill representations [11] has shown improvements in data efficiency and for transfer learning. Other

works aim at learning more modular representation such as in meta-learning of distangled features

[12–14] or in bridging causal learning with machine learning [15] which could bring more abilities for

planing and reasoning to deep networks architectures. It is believed that these networks and learning

paradigms, given enough time and data, should be able to learn those high-level AI functions.

2.1.3 Symbolic

In contrast to connectionist approaches, many early advances have relied on the notion of symbolic

programming by modeling relationships and using meaningful symbols to create smart AI systems.

As they use symbols close to human language, their decision-making process is usually more concrete

and understandable (section 5.3 of [2]).

Symbols are also very practical for logical reasoning and to express causality at a high-level [16].

As explicit relations and hierarchical modeling are the bases of symbolic representations, this approach

allows building modular systems, which can generalize quickly and with much fewer data than current

connectionist systems. They can indeed exploit objectness and functional principles. This is especially

useful in the setting of IRL in industrial settings where robots are expected to be reconfigured quickly.

Nevertheless, whereas connectionist approaches can start from almost tabula rasa, symbolic ones re-

quire the system designer to build prior common sense knowledge from scratch. There is no consensus

of what common sense knowledge is and how to build it. This means that the system could embed

biases and misunderstanding about the world because of erroneous designed prior knowledge. When it

comes to low level moto-perception learning, symbolic approach quickly reaches limits as this type of

knowledge is often not verbally explainable even for humans or because the number of rules to describe
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simple behaviors can potentially explode due to low level variations in the task. Fundamentally, a

unified symbolic representation referring to the outside world through motor-perception is difficult to

construct. This issue is often viewed in cognitive literature as the ”Symbol grounding problem” [17].

Finally in terms of understandability, a symbolic model that becomes too complex can also produce

hardly interpretable explanations for humans, such as very deep and wide ensembles of decision trees

(section 4.2.1 of [2] ). That means that we might need some trade-off between a model complexity

and its accuracy in the context of understandable IRL agent. These limitations hamper the symbolic

system’s ability to scale and take into account all the data variability and noise that a robotic agent

faces in the real-world.

2.1.4 Hybrid

A purely connectionist or symbolic approaches do not seem to be able to take account for all

the capabilities required by a truly interacting SRA. However, pros and cons of connectionist and

symbolic approaches are complementary. Therefore, more and more works exploit best of both world

paradigms in hybrid systems. For instance early symbolic architectures such as SOAR [18], ACT-R [19]

have progressively integrated or exploited connectionist components to handle more diverse situations

while recent one such as SIGMA [20] are built form start as hybrid. We can refer to [1] for a deep

overview of hybrid cognitive architectures. Most of ITL/IRL systems discussed in section 2.2.3 fall

under hybrid cognitive systems definition. There is no consensus, however, on how such hybridization

should be done [21]. Overall, it is essentially a matter of trade-off between the different views. Usually,

hybrid approaches use connectionist methods to process raw sensory data, while symbolic methods

provides reasoning and planning abilities at higher levels.

Hybrid models allow to build architectures that can leverage modular explainable and interpretable

models integrating more black-box models. Developing a fully explainable agent with good perfor-

mance might be impossible, as humans themselves after all, are not fully explainable agent. However,

decomposing knowledge in a hierarchical and modular way, even with specialized black box modules,

is likely to improve the overall understandability of the system.

The architecture we propose can be classified as hybrid. We have chosen to exploit symbolic struc-

tures for high-level representations and learning of tasks structure whereas a combination connectionist

techniques based on classical methods and deep learning are used for low perceptual learning. Both
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approaches are integrated in an interactive decisional process to learn and carry out tasks. Next sec-

tion provides the main building blocks for a general IRL architecture in terms of representations and

behavior models.

2.2 Main building blocks of a cognitive architecture

2.2.1 Ontology as an explainable structure for components interoperability

Many architectures relies on more or less complex ontologies. An ontology is informally ”an explicit

specification of a conceptualization”[22] or, in other words, it is an object oriented conceptual repre-

sentation build around classes, attributes/properties, and relations between these concepts. Cognitive

systems often come with an ontology which provides a base symbolic structure that eases compatibility

between the different modules and sub-systems, or even across different independent systems (such

as other robots) [23]. An ontology allows to model and integrate expert knowledge over a domain.

Composed of explicit symbols, it helps in building transparent knowledge as required for our IRL.

However, building a whole ontology from scratch can be a hard task, as it requires programming

abilities to build and update the ontology on complex system such as robots. Therefore, learning the

ontology in an IRL setting by leveraging interaction principles with domain experts is a convenient

way to build this complex ontology for real-world use cases. Conversely, ontologies have been used

as bases to build coherently different kind of semantic memories, that the IRL agent can leverage to

learn, reason and act more efficiently [24]. Practically ontology can be seen as a graph knowledge base

that can be queried and updated depending on the current situation faced by the agent.

2.2.2 Behavior model

As robots are acting agents, we also need a behavior model that can exploit the prior and learned

ontology. To act in the real-world, an IRL agent has to develop the ability to generate relevant complex

behaviors. For this, it needs to be controlled to simultaneously plan and react while learning in an

online way.

Robotic cognitive architecture have progressively identified three main layers of interest [25, 26]

(see Figure 2.2): a functional layer tailored to action, perception and learning; a decision layer tailored

to planning or supervision; and an execution layer where the behavior model intervenes, for interfacing
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and coordinating other layers of the system according to the current task requirements.

Upper level Deliberative
(Planning/Scheduling)

• Reactive to events from lower levels

• Time and computationnaly intensive

Intermediate level
Executive

(Task level sequencing)
• Converts goals to a sequence of actions

• Interprets sensing as events

Below level
Lower perceptions and actions

(Functional level)

• Environment monitoring

• Sense/act processes

• Small time constants

• Need of modularity

Physical and Social
World

Figure 2.2: Robotics architecture can be represented through three layers of control.

Planning is used to predict actions effects and to search for the best sequence of actions in order

to reach a given goal, while acting consists in the executive parts. As the environment dynamically

changes during execution, due to agent own actions or external effect, it might need to re-plan and

refine its plan, given new and past information (see for instance section 2.6 of [27]). In order to account

for the tight integration between planning, acting and learning in an architecture, behavior models

are needed to encompass the descriptive part (the what) and the executive part (the how) of the skill

while being open and modular enough to have adaptation capabilities.

Adaptation capabilities should also be extended to preference learning and handling. Indeed,

cobots could interact with different human workers, having, even for the same task, their own char-

acteristics and preferences during interaction. It has been shown in [28] that preferences learning is

associated with higher confidence in robots motivating this integration in the architecture. In the

literature several methods has been used for specific tasks, such as the use of Markov Decision Pro-

cess (MDP) in closed scenarios [29], , implicit discovery based on user defined constraints [30] or on

bayesian networks (BAN) [31] for words to actions learning.

Finally, we can determine the following requirements for an interactive robot. The behavior model

should:

• be explainable. With respect with our specifications and section 2.1.1, the behavior of the robot
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should be at least partly understandable. Therefore, the behavior should be complex enough to

allow the agent to execute tasks but also simple and interpretable enough to be understood by

non-expert users.

• describe both the descriptive and executive parts of behaviors. The IRL agent must especially

be able to describe the what, why and the how of its actions.

• interface with databases of priors knowledge (such as users preferences). The behavior model

should allow integration of prior knowledge of different types such as rule based knowledge like

users specificities and preferences. For instance, this can be the dominant hand, or bio-metrics

information for security access in industrial restricted area.

• be interoperable with world model built from sensing and acting modalities (such as speech,

gestures, touch). As the agent builds a world model, the behavior model must be able to use it

with respect to the ontology.

• interface low level and high-level skills in a multimodal way. Learning skills need both information

at high and at low level and therefore the behavior model acts as a bridge between them.

• interface with learning techniques such as deep neural networks. As deep learning techniques

has emerged as very powerful tools for learning, the behavior model must easily interface with

those systems

• allow fast learning and strong generalization thanks to behavior reuse with composable and

parameterizable representations. In the IRL setting, learning is done online when interacting

with a human teacher. Therefore, we want learning to be fast while keeping good generalization

abilities. This can be done by exploiting parameterized modular behaviors, as actions template.

It allows, indeed, to reuse a learned behavior in several related task with minimal updates.

• allow refining actions in a reactive way. As environment is dynamic and can change under the

IRL actions or other agent actions, the robot must permanently alternate between perception

coming from sensory streams, learning, planing and acting in a deliberative loop.

In order to choose the paradigm to implement, we have reviewed the literature on ITL/IRL and

the behavior models they used. We based our comparison by updating the state of the art in [32]
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(part 2.) with regards to our requirements. We can distinguish procedural models that explicit the

temporal structure of behaviors and those that only map state to actions. For instance, in [33], use of

probabilistic models in order to learn a mapping between the best action command given the current

utterance. In [29, 34] authors extend the MDPs framework with relational activity processes (RAPs)

[35], giving them more relational representation power to model concurrent actions between the robot

and the instructor. They use these models to learn a RAP where instructor preferences are learned as

specific paths in the overall process. Communication modality is limited to touch screen interface to

send utterances to the robot. These techniques are interesting to produce efficient behaviors. However,

they roughly maps a state to the best action according to the learned policy without modelization

and understanding of the effects of actions. Moreover, because they rely purely on data driven with

gradient based learning technique, learning a new policy could take several trials even for simple tasks.

These limitations hamper the symbolic system’s ability to scale and take into account all the data

variability and data noise that a robotic agent will face the real-world.

Many more ITL use classical behavior models based on symbolic procedural models [31, 32, 36–61].

This is interesting because the symbolic nature of these models make them explainable, and it allows

them to learn fast (typically in a one shot manner) by leveraging the use of high-level abstractions. In

the simplest models, procedural knowledge can be represented as a mere sequence of primitive actions

(SEP) [44, 48, 56]. It eases the implementation of behaviors but it limits the modularity of the system

and the ability for action branching. Complex reasoning such as changing actions procedure based

on preferences could not be handle in this framework. Most ITL/IRL however rely on more complex

representations with skills than can be modeled in terms of preconditions which are conditions that

must hold true before carrying out the action, postconditions (or effects) which will be true action and

operating conditions which must hold true during the action. In contrast to simple action sequence

it allows more modularity and the integration with standard planning techniques. There are several

technical frameworks that were used in the literature. There is no widespread framework for IRL

architecture, but most of them share common characteristics, with slight nuances:

• Finite State Machine (FSM) and Hierarchical Finite State Machine (HFSM) [62]. A Finite state

machine defines a list of states and an explicit set of transitions between states. When complexity

of behaviors grows, FSM can become unmanageable due to state-space explosion. HFSM is an

evolution of FSM as one can now define one transition between set of states (superstates), rather
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than individual transitions for all sub-states. Thus, they are easier to design and implement, as

they reduce the state explosion problem in complex scenario. They were used in [60]

• Action Script (AS) [63] (section Action Representation) specifically used in DIARC cognitive

architecture [59, 63, 64], is described as a compact way of specifying hierarchical robot behavior.

An AS is an expression α(p1 : t1, p2 : t2, ..., pm : tm)) where α is an action symbol and pi : ti a

parameter pi of type ti (such as a reference to a graspable object). Types are used as abstract

classes for generalization. Each AS contains a sequence of action α1, α2, ..., αn and is associated

with a set of pre-conditions, post-conditions and operating conditions. Each action αi can be an

action script or an action primitive which contains a single action.

• Operator with production rules used in the Soar cognitive architecture (SPR) and with pre and

post conditions in Rosie ITL agent [46, 57, 65]. To achieve a goal, production rules conditions

are matched to the SOAR working memory and trigger other operators acting on inner memories

or on external modules for action.

• Percept-Response (PR) which is essentially event-driven behavior. Used in [40], perceived events

directly associated to a sequence of actions. Modularity and refinement abilities seem limited.

• Shared Plans (SHP) with preconditions and postconditions in [41, 42, 45] which integrates rep-

resentation of other agents to deal with behavior synchronization for collaboration.

• Task Description Language (TDL) used in [66]. TDL is a language used to describe tasks as

sequence of actions or conditionals and are represented as a Petri Net Plan (PNP) [67].

• CRAM Plan (CP) used in [68] with KnowRob [51, 52]. CRAM uses a custom language called

CPL (for CRAM plan language) based on Common Lisp for both planning and reasoning at task

level. It exploits KnowRob, a web knowledge base of skills and facts with reasoning capabilities

based on Prolog [69].

• Some models do not seem to have been used in interactive learning setting but interesting

properties in terms of action refinement such as Procedural Reasoning System (PRS) [70, 71]

and Refinement Acting Engine (RAE) [27] (chapitre 3.2) in [72].
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• Hierarchical Task networks (HTN) [73, 74] used in [32, 47, 49, 54, 75]. HTN is a tree that

consists of primitive task nodes that can be executed directly and non primitive nodes (called

compound tasks) that can be decomposed and refined before execution. Different decompositions

are allowed and depend of specific methods.

• Behavior Networks (BN) used in [31, 38, 39]. A behavior maps a set of inputs such as sensor

information to a set of actions. A BN is a graph of behavior where each edge represent a

transition between different behaviors. Internally, every behavior is defined as a finite state

machine with an explicit start state (preconditions) and termination states (postconditions),

depending on whether the behavior reach or does not reach the goal.

• Network Abstract Behavior (NAB) [76] used in [37]. A NAB is a hierarchical representation

of Abstract Behaviours (AB). An abstract behavior is a process composed of several input

ports and output ports. Input ports consists of action status of the behavior, its preconditions,

sensory inputs, activation and inhibition levels by other behaviors. Output ports consists of

primitive action activation/deactivation, and postconditions status. There are different types of

preconditions depending on wether conditions must be valid during the whole action (permanent

preconditions) or can change during action (enabling conditions).

• Behavior Trees (BT) [77] used in [50, 60] and in our architecture [61]. BTs are introduced here

after and detail in section 3.1.4 of chapter 3.

In our architecture, we chose Behavior Trees (BTs) as the behavior model. BTs are tree based

models which allows a clear separation between the tree structure (the descriptive part as a control

flow of behaviors) and the implementation of the nodes (the executive part). They are heavily used in

the game industry over FSM that are prone to state explosion as behaviors become more complex. The

use of explicit parallel nodes also ease the execution of parallel processes as required in a multimodal

interactive setting. Failure handling is much easier and is at the core of the learning process in our

architecture (see section 3.3 in next chapter for more information). The hierarchical nature of BTs

eases the implementation of refinement methods: given high-level actions, it is possible according to

environment changes, to branch in a reactive way through different and more concrete sub actions.

This appealing properties in terms of behavior modularity make them a relevant alternative to HFSM.
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Furthermore, subtrees can be added or removed anywhere in the BT without modifying other compo-

nents, while in FSM such modifications implies to redefine all transitions leading to or starting from

the state. Finally, the flexibility of these models allows to extend standard BTs with preconditions

and postconditions nodes [78], which helps build representations for planning.

PR on its own does not seem to be able to propose refinement methods as it only maps one

perception to one behavior. In contrast, refinement methods are also at the core of the following

models: TDL, AS, CRAM Plan, PRS, RAE, HTN, BN. In Soar, SPR, thanks to sub-goaling is also

capable to provide re-planning ability. One drawback is that those models are either tightly integrated

within the underlying architecture, which make them hard to transfer to another one or because they

use specific language that are not easily integrable and interoperable with python and deep learning

frameworks (Common Lisp for CRAM, C/C++ for openPRS and SPR, java for RAE).

HTN and BTs are close in terms of representation as they both leverage a graph structure with

refinement abilities. HTN has traditionally been more focused on long term planning, while BTs, are

specifically designed for execution of behaviors with reactivity concerns. This of particular interest for

the online interactive learning setting of the IRL. Therefore, BTs might be not the most suitable tool

for long term planning. However, thanks to pre/post conditions extension, it has been shown that

they can be combined with proven traditional planners such as HTN planners [78, 79], bringing best

of both frameworks.

2.2.3 Teaching complex behaviors to robots : Interactive robot learning

Once we have an ontology and a behavior model we can organize an architecture for IRL. In the

literature, most IRL have particularly focused on learning high-level procedural knowledge through

the chosen behavior model. Usually low level perception such as object recognition and low level

motor abilities are given a priori and are a fixed knowledge. Only a few works in IRL have tackled

and demonstrated interactive learning of both high-level and low level skills requirements to solve a

given task, we focus on these works. In [54], the IRL agent learns action primitives by observing the

human during the interaction. In [46], author teaches pick and place tasks to a simulated tabletop

arm. The agent can learn online, through KNN classifiers, simple perceptual cues such as color,

size and shape. Similarly in [80], authors also teach online to a real-world manipulator, color, size

and shape of unknown objects. Visual perception is based on clustering objects based on color and
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depth. Nevertheless, learning online more complex perceptual features in an IRL setting is rare. Such

features can be location affordance and complex visual features learned by deep neural networks. Our

architecture aims at learning both high-level procedural knowledge about the tasks but also complex

low perceptual features necessary to solve a tasks. Another point of discrepancies concerns the way

behaviors are taught to the agent. A behavior can be taught in a one sided way where the teacher

explain sequentially all the tasks to the agent. This method is not always adapted as it puts a lot of

cognitive burden on the teacher. It is indeed not easy for the teacher to know what the agent does

not know. IRL can use a mixed initiative approach [81] with an emphasis on language as suggested

in collaborative discourse theory [82] or with active learning by demonstration [83]. In these settings,

during the interaction, the IRL asks the teacher for the missing knowledge it needs to carry out the

task. This enables a flexible, natural and incremental way to teach new behaviors to the IRL agent.

Finally, to our knowledge, preferences learning to adapt the behavior according to the human in ITL

architecture has rarely been demonstrated, such as in [29, 34]. As stated in ours specifications, a

robotic agent in an industrial setting is likely to be used by several different humans with specificities

or disabilities. Being able to quickly reconfigure learned behavior according to an identified human

is therefore an import feature we added in our architecture. As learning knowledge happens both at

high and low levels, preferences learning has also to take into account both of them.

We synthesize in table 2.1 a general comparison of different ITL/IRL agents and some cognitive

agent in interaction with humans and we show that to our knowledge, our IRL is the only one to

handle all our specific requirements. We point out interaction modalities leveraged by the agent, the

modularity and reusability of the learned behaviors, the ability of the agent to adapt behaviors to

preferences, the type of used robotics plateforms, exhibition of perceptual and procedural learning in

a mixed initiative and incremental way.

We list here the legends used in the table:

• ✓ : implemented

• × : not implemented/no real robot

• Volume-Up1 : speech modality

1These icons were used from open source repositories at https://fonts.google.com/about and https://

fontawesome.com/
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to be quickly reconfigured according to human preferences. The next chapter (chapter 3) focuses on

the design of this hybrid architecture.
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Design of a cognitive architecture for
Industry 4.0
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By taking inspiration from the state of the art in IRL/ITL, cognitive architecture, and recent
advances in deep learning architectures, several design choices were made to build a base architecture
that could handle our specifications. This chapter illustrates and details the architecture organization
in terms of representation and decision processes at the symbolic level. We first focus in section 3.1
on the base ontology used in the system, for knowledge interoperability and high-level abstractions
for IRL. We further detail in section 3.2, the complementary inner symbolic memories of the system
that are used as high-level relational representations, grounded by connectionist learning components
to real-world data. Finally, we explain in section 3.3, the main deliberation processes used by the IRL
agent for learning a task structure and related skills by leveraging an incremental and mixed initiative
interaction process. This process is based on the concept of failure and success of goal-driven behaviors
while representations are leveraged to learn and take into account human specificities and preferences
during interaction.
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We detail in this chapter the main organization of our architecture, its representations and its

learning processes. Figure 3.1 provides a high-level overview of the architecture. It presents the

different representations and how they interact in order to build complex behaviors. Each block is

explained in this section.

Working Memory and
current model of the

perceived world (3.2.2)

Semantic Memory (3.2.1)

Procedural Memory (3.2.4)

Episodic Memory (3.2.3) Ontology (3.1)

Prior
Knowledge

ITL/IRL Agent (3.3)

• steps 3⃝ - 5⃝ → generates behaviours from utterance and knowledge (as BT)

• steps 0 - 3 → generates questions from failure type and knowledge

Cognitive Reasoning Module

Perception of the
environmental
working space

Perception of
humans

Proprioceptive
perception

Perception Memory (3.2.5)

with prior knowledge -1

Perception based on
deep neural networks

Human
(Instructor)

Working
Space

Environment (3.1.2)

-1

0

1 Anchoring

4 Grounding

( 3 or 2 )
Dialog

6 Action (3.1.4)

4 Concept learning
with contextual preferences

4 Perception learning
with contextual preferences

Figure 3.1: High-level overview of the architecture. The architecture consists of perceptual modules
based on connectionist approaches, symbolic relational representations, and a deliberative process for
interactive robot learning with human. The IRL process consists of two interleaved paths (a plain
path with circled number and a dashed path with boxed number) which are described in section 3.3.

3.1 Base ontology for our ITL/IRL

As stated in section 2.2.1, an IRL agent needs an ontology for the interoperability of its components.

We describe in this section the base ontology that our IRL agent leverages during the interaction to

express and to learn new behaviors, or relevant perceptual features with preferences. For now, the

ontology is quite standard as our current goal is more focused on the global architecture foundations

and validation. More complex ontology could serve as a basis, such as the DOLCE ontology [1]

leveraged in the IRL from [2] (chapter 4.2) or KnowRob [3] used in CRAM architecture [4]. Figure
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3.2 illustrates a simple ontology.

root

Self

Goal Belief Proprioception

Pose Speed Torque …

Object

Properties

PerceptualFeatures

AffordancesFeatures VisualFeatures ColorFeatures ShapeFeatures …

Human

Utterance Parts

MainHand

…

…

SpatialRelations

right left in …

Figure 3.2: Base ontology example overview.

3.1.1 Robotic Agent as a goal driven agent

The IRL agent, represented as Self, has to solve tasks that are driven by Goals. A Goal can be

described as a first-order logic statement of predicates over the environment, that the IRL agent must

satisfy to validate the goal (i.e each predicate is considered True). For that, it builds a plan based on

its Skills. Goals are built from Utterances of humans and from agent inner representations in terms

of post-conditions requirements. The IRL agent has also proprioceptive abilities such as its Location,

joints or Cartesian state in space, that are leveraged to carry out actions. The IRL agent is also able

to Focus its attention on an Object.

3.1.2 Environment representation

The environment is seen as a continuous 3D space which is composed of entities. Among entities,

we specifically distinguish Human and Physical Object. Entities are given a Location (a 3D vector

coordinate) and a 2D surface Area. Moreover, it is possible to describe some spatial relations between

entities such as right of, in, left of. Those symbolic representations can be grounded to language and

real-world data by specialized connectionist modules for scene and human detection and understanding.

Human: The human agent is represented in the ontology as Human. Human is a complex, structured

class that consists of specificities such as Name or sub-parts like its dominant Hand, which help

represent the human characteristics.

A Human can communicate Utterances to the robot, equivalent to a set of rules, that should be
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interpreted and executed by the IRL agent to learn how to solve a task. Currently we make the

limited assumption that the human is an oracle. Therefore, it always provides unambiguous, trustful

information to the robot and there is no implemented corrective feedbacks [5] of previously learned

rules.

The Focus of the IRL agent can be triggered by a Human. Hence, it allows a shared and explicit

representation of which Object of the working space the human wants to work on.

Example of technical integration of connectionist modules to ground Human to the real-world are

given in the experimental validation in chapter 6, section 6.2.3.

Physical Objects: The world is assumed to be composed of salient physical objects. They consist of a

set of perceptual properties which are built from a stream of data provided by sensors. It assumes that

the IRL agent has prior segmentation capabilities that are used to discover proto-objects [6]. These

proto-objects are given by a Location, an Area, and can be tracked according to perceptual features,

and are used as object precursors.

For instance, by equipping an industrial manipulator with an RGBD camera, an Object can be

categorised from a detected proto-object according to different perceptual properties such as its Color,

Visual Patterns, Shape, Affordances, Locations, Areas.

More specifically, for an affordance, we use the classical definition with contextualization [7, 8]: an

affordance aff is a triplet aff = (o; ca; e) where o is an object, ca a contextualized action, and e the

effect of the action on the world. A contextualized action ca is an action accounting for a context that

can be for instance preference learning. A contextualized action will be validated if the effect e are in

the relevant postconditions.

Learning connectionist components can be leveraged to ground those symbolic representations

into data. The IRL agent can then learn objects perceptual properties such as visual features and

affordance, given the context of the task and Human preferences and characteristics. An example

of technical integration of such connectionist modules will be given in the experimental validation

chapter (chapter 6), section 6.2.2 and 6.2.4.
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3.1.3 Utterances

An Utterance can be built from a verbal or a non verbal perceived interactions act such as speech,

pose, gesture. It is either interpreted as a Goal to achieve or as information for learning events. This is

done through the use of a communication protocol and semantic analysis. Connectionist components

are used to ground perceived interaction into a symbolic Utterance of words which are then further

mapped into Human’s intents. Each word is given a type called a Part Of Speech (POS) tags. Verbs

in sentences are related to the tasks and actions to carry out. Nouns are related to objects on which

to accomplish the task. Adjectives can refer to object attributes. Prepositions refer to temporal or

spatial relations between several objects. Each word in the Utterance has to be grounded to the

physical world, giving the IRL agent a better understanding. An integration example of connectionist

components is provided in the experimental validation chapter (chapter 6), section 6.2.1.

3.1.4 Skills and actions primitive

With respect to the comparison in section 2, we chose Behavior Trees (BTs) [9] as the behav-

ior model of our architecture. BTs were originally developed in the video games industry [10] for

virtual agents, commonly known as Non Playable Characters (NPC). While NPC evolve in known

environments, robots usually evolve in partially known or unknown ones.

Yet, BTs have several interesting properties which explain their growing use in control architecture

for robotics. They have been proven to generalize several well-known control architectures such as

the one based on finite state machines or decision trees [9] (chapter 2). Their graphical nature fosters

modularity and explainability, as each individual BT can be run independently or can be combined

with other trees. Furthermore, they allow to design reactive behaviors to unexpected events.

As such, they have been used and extended in various robotics contexts such as learning from

demonstrations [11, 12], mobile robotics [13], unmanned aerial vehicle [14] and more general robotics

architecture [15, 16]. In terms of BTs technical development, there is a growing amount of libraries

available in various languages [17, 18]. They can leverage different programming paradigms for their

practical implementations, such as multithreading with preemption, or asynchronous programming

[19]

Behavior trees (BTs) are composed of several (usually six) kinds of nodes illustrated in Table 3.1:
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a set of control nodes that helps manage the decision flow, a set of executive nodes that carry out

actions, a decorator node that helps build more complex control nodes such as retrying an action or a

subtree until success. Each node can return a status, usually success or failure. Control nodes return

success or failure according to the return status of their children and the rules defined in table 3.1.

In order to define complex modular behaviors, compatible with planning and reasoning purposes,

we have designed skills with BTs using the traditional precondition, execution, postconditions (also

called effects) model (see Figure 3.3). In [9], authors provide a detailed formal overview of BTs and

their use in robotics. The fallback node executes children in order (from left to right). If the first child

fails, the execution continues to the following child, which act as a fallback. If a child succeeds, the

fallback returns success without visiting the following child. The sequence node tries to execute all its

children in order. If any child fails, the sequence stops and propagates the failure back.

In our architecture, we specifically exploit BTs failures mechanisms as a high-level signal for learn-

ing purposes by leveraging the fallback node. This allows to incrementally refine or expand the tree

during the interaction of the IRL agent similarly to [20]. Transparency, modularity, and efficiency of

BTs appear naturally as behaviors reuse, update and composition can be done by leveraging graphs.

Finally, the parallel node is used for simultaneous multimodal sensing. For now, modalities are assumed

to have orthogonal effect on memory, so that there is no need for low level and complex concurrency

management. Postconditions help in checking if the skill execution is a success while preconditions

determine if the agent has the knowledge to carry out the skill. Another interesting property of skills

modularization with conditions is the fact that it helps the agent in doing active perception: the agent

only checks conditions that are relevant to the task, according to the previously learned skills.

A primitive action is a leaf in the overall behavior model. Therefore, it is directly performed

without further refinement by the robot. Examples of primitive actions are the opening or closing of

a gripper, point to point motion, sending questions to the human.
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Table 3.1: Control flow and action nodes in the standard behavior tree framework

Execution nodes Symbol Success Failure

Action Execution is carried out Exception during execution

Condition Condition is true Condition is false

Control nodes
Sequence → All children must succeeds One child fails
Parallel ⇒ More than M ∈ N

∗ children succeeds More than N ∈ N
∗ children fail

Fallback (or Selector) ? One child succeeds All child fail

Decorator ◇ User defined User defined

?

postconditions →

preconditions →

sub skills ?

primitive action failure handling

postconditions

Figure 3.3: Base skill model

3.2 Hierarchical, modular representations

Given our ontology, we exploit different kind of memories, useful for different aspect of task learning:

• a Semantic Declarative Memory

• a Working Memory

• an Episodic Memory

• a Procedural Memory

We leverage relational graph representations for modularity, better explainability and learning with

respect to our specifications.
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3.2.1 Semantic declarative memory

A semantic declarative memory is a kind of database of semantic expressions. It stores terms in a

way that is grounded to language. This allows to represent the high-level knowledge base on concepts

and facts. By querying the semantic memory, one can then leverage language to get access to the agent

knowledge. Figure 3.4 illustrates an example of semantic memory. Practically, this is implemented as

a semantic graph network, whose nodes point to the conceptual instances provided by the ontology.

This memory can be linked to other databases of facts such as humans specificities for preferences

handling.

root

humans objects skills …

other
grammatical

structure

name

Human instances

type

Object instances

skill name

Skill instances

verb 1 … verb nsnoun 1 … noun noName 1 … Name na

Ontology

Figure 3.4: Example of a semantic memory database derived from the ontology

3.2.2 Working memory

The working memory is a short-term memory that provides an explainable representation tool for

learning and reasoning on the current situation. This is where links between the low-level perception

and the high-level symbolic representations take place. This enables to instantiate objects of the

ontology and to ground symbols with the current perception and belief of the agent. It is represented

and implemented as a semantic, relational graph network. This memory contains:

• entities that are categorized for instance as objects or humans and the robot (Self).

• predicates which are relations and properties over entities, for instances: spatial relations, colors,

affordance, neural networks features.
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3.3 IRL process with preferences

The interactive learning process is based on error handling called failure or impasse during the

program execution flow. It is built in the architecture by leveraging the tree structure and the on-

tological representations in the behavior trees framework. Figure B.7 illustrates more specifically the

decisional process that occurs during a skill execution. Here we mainly focus on the deliberative

interaction process. More details on the architecture implementation and the choice of sensors and

interaction modalities are given in chapter 6. Figure 3.7 describes two paths, one in plain line and

one in dashed line. Plain line path represents what happens when the agent has all the knowledge to

act, the steps ordering are represented by surrounded numbers. Dashed path represents what happens

when a failure occurs, the steps ordering are represented by boxed number. The interleaved execution

of these two paths is at the core of the mixed initiative interaction cycle during which the robotic

agent acts according to human instructions or learns from failure and interaction.

For the plain line path, the typical interactive cycle is the following: we suppose the agent has

some prior knowledge ( -1 ). The agent proprioceptive state, the working space and the instructor

interaction means are perceived by various sensors and deep learning perceptual modules ( 0 ). The

agent build a symbolic representation of its environment by anchoring perceived information to sym-

bolic representations and processes ( 1 ) according to its prior knowledge. It asks request for a task

( 2 ). Once it has a determined human’s intents through semantic analysis ( 3 ), goal formulation

and grounding to memories ( 4 ) and behaviors selection ( 5 ), the agent tries to carry out the task

according to its skills ( 6 ). When executing its skills, the core decision-making IRL process browses

the agent’s knowledge by checking sequentially or in parallel the conditions ci (figure B.7) that are

grounded to the current perception and world belief. The agent determines if it knows how to solve

the task and exploits the corresponding BT before executing it.

When it deals with a lack of information ( 0 ), however, a failure is generated ( 1 ), leading to build

a request from the interaction state ( 2 ). The IRL agent then make a request to the human ( 3 ):

learning the missing parts in the skill knowledge ( 4 ). A failure can be a lack of perceptual (the what)

or procedural (the how) knowledge. BT control flow lets us easily design failures handling as they

necessary happen in conditions nodes during the execution. We can thus easily and automatically

define a new branch in the BT that leverages the known information about the task, the current state

39



3.3. IRL PROCESS WITH PREFERENCES

of the world and the failure type, in order to have an explainable description of the failure properties.

Currently in our architecture, we rely on the mixed initiative teacher/learner setting to overcome

failures and incrementally learn perceptual or procedural features to complete new tasks ( 4 ).

Humans’ identity and preferences knowledge are managed in by the use of a specific preconditions

before executing skills. In the current implementation, the IRL agent interacts only with one human

at a time and a human teacher must be identified by the system in order to link the teacher id to his

preferences. If the system does not know the human, while checking the precondition, the IRL agent

asks for some basic information such as the name of the human. A new branch is built in the BTs skill

representation. Branch selection is then governed by the current human identifier. The first branch

represents a default skill that is used to drive preferences learning. Each branch represents a preference

for a different person. Hence, while learning a skill, learned perceptual and procedural information are

personalized in function of the interacting human. This is done by leveraging specific preconditions in

the procedural skill structure. Therefore, once a skill has been learned, these preconditions allow the

agent to branch to the personalized behaviors.

Working Memory
and current model of
the perceived world

Semantic Memory

Procedural Memory)

Episodic Memory) Ontology

Prior
Knowledge

ITL/IRL Agent )

• steps 3⃝ - 5⃝ → generates behaviours from utterance and knowledge (as BT)

• steps 0 - 3 → generates questions from failure type and knowledge

Cognitive Reasoning Module

Perception of the
environmental
working space

Perception of
humans

Proprioceptive
perception

Perception Memory)

with prior knowledge -1

Perception based on
deep neural networks

Human
(Instructor)

Working
Space

Environment

-1

0

1 Anchoring

4 Grounding

( 3 or 2 )
Dialog

6 Action

4 Concept learning
with contextual preferences

4 Perception learning
with contextual preferences

Figure 3.7: It is the same figure as figure 3.1 and is reproduced here for reading convenience.
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conditions

→ | ⇒

c1 c2 … cm

?

f : wm → test(wm) → Failure Failure type handling

→

Searching

…

Asking and
collecting data

…

Perceptual or
symbolic learning

…

… cn

-ci: conditions that are
true ( ) or false ( )

-wm: Working Memory

-f : can be a symbolic
or perceptual test

Figure 3.8: The failure handling process triggers interactive learning of symbolic or perceptual repre-
sentations.

3.4 Conclusion

In this chapter, we introduced the core design of our cognitive architecture for collaborative in-

dustrial robotics in the context of IRL. We have described its organization in terms of ontology and

hierarchical relational memories. This has led to semantically meaningful, high-level symbolic repre-

sentations for complexity management and better explainability of the systems behavior. The IRL

deliberative process leverages these representations to drive connectionist learning modules, through

a goal-driven and mixed initiative human/robot interactive process. Reciprocally, these connectionist

modules help anchor lower level data to the higher symbolic representations. By this way, the IRL

agent can incrementally learn new task and related skills both at high-level and low level representa-

tions. The next chapter (chapter 4) focuses on complementary machine learning approaches that have

been used during the thesis in order to develop, with co-authors, connectionist modules for the IRL

setting.
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Chapter 4

Complementary ML approaches for IRL on
planar grasping use cases
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As the IRL agent learns interactively a task and related skill structure, we saw that it needs to
ground its representations by learning from real-world data. In this chapter, we further detail for
that purpose, how the IRL agent can exploit complementary Machine Learning (ML) paradigms in
a connectionist approach. Following our ITL specifications, we want to exploit modules that allow
a fast online learning, from datasets built on the fly, during interaction. Because of the importance
of pick and place related tasks in many industrial applications, we focus our use-case on planar
grasping related tasks. We first present in section 4.1 the general ML approaches that we leveraged
for learning planar grasping relevant parameters. Then, we present two learning modules tailored to
grasping related skills. The first one, presented in section B.3.1, leverages a deep reinforcement learning
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approach from [1] for autonomous learning of bin picking. We adapted their work for an industrial
context. The second and most important contribution, developed in section B.3.2, presents a module
for learning task oriented grasping affordance from a few human demonstrations, with respect to our
IRL specifications. Individual modules were developed in collaboration with a co-author, Laurent
Bimont.
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4.1 Learning planar grasping

4.1.1 Theoretical general formulation

We first define some important notions in machine learning to better understand what we means

by learning from data and how this notions are used in the learning modules for planar grasping.

Dataset: Machine Learning (ML) techniques rely on the use of data, and require building datasets.

We usually consider an input domain X and a target domain Y . In the IRL setting, we aim to build

online predictive models based on a finite datasets Dtrain(Xtrain ⊂ X, Ytrain ⊂ Y ), which represent

the associative nature of the problem the robot is facing. These datasets can be a mix of prior data

and data collected, online, during the interaction.

Risk minimization: A ML model f , aims to learn a map from the input domain X to the target

domain Y , given datasets Dtrain. From a very general point of view, this is expressed as a minimization

optimization problem.

We would like to be able to predict from x ∈ X the value y ∈ Y . For that we have to introduce a

loss (or cost) function L, such as the Mean Square Error (MSE), which measures a notion of distance

between predictions f(x) and the real target data y. Then, we can compute a theoretical quantity,

the risk R(f), which is the expectation of the loss function, evaluated for the model, given an infinite

amount of data:

R(f) = ED(L(f(x), y)) (4.1)

A learning problem then consist in finding a model f̂ which minimizes R(f).

f̂ = arg min
f

(R(f)) (4.2)

Of course, in practice and especially in the IRL setting, we are only given a finite amount of data, a

training dataset Dtrain(Xtain, Ytrain) = (x1, y1), (xi, yi), ..., (xn, yn). We can only search f∗ minimizing
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an empirical risk Remp(f) while targeting R(f) minimization.

Remp(f) =
1

n

n∑︂

i=1

(L(f(xi), yi)) (4.3)

f∗ = arg min
f

(Remp(f)) (4.4)

When considering a parametric model such as in deep learning, we use specific family of function

fθ parameterized by weights θ. Minimizing the empirical risk consists then in finding θ∗ such that fθ

minimize Remp(fθ).

θ∗ = arg min
θ

Remp(fθ) (4.5)

In general f̂ is different from f∗. Moreover, as f is trained on finite data, a valid solution for the

empirical risk minimization can be to overfit the dataset by simply learning a one/one correspondence

between Xtrain and Ytrain. Such solutions do not generalize to the real risk minimization. Many

techniques can be used to limit overfitting, and lack of data for real risk minimization improvements.

We discuss in next section some common ML paradigms we used to develop our learning modules.

4.1.2 Some common techniques

There are several learning paradigms in machine learning depending on the problem considered

(classification or regression) and how data is used to train the model (supervised learning, unsupervised

learning and reinforcement learning). Various principles can be used to improve data efficiency and

improve generalization of these learning paradigms, such as transfer learning and data augmentation.

Classification: Given data inputs x and a finite discrete number of classes y, the goal of classification

is to separate those inputs and assign a class to each one of them. In the IRL setting, it is linked to

categorize perceptual inputs x by assigning a meaningful, human understandable concept (y) to these

data.

Regression: Regression allows to learn and predict continuous representations. In the IRL setting,

it can be used to explicit non verbal concepts. For instance when grasping a part, the agent can learn

to categorize the object (classification task) or directly output a grasping location in the continuous

space (regression task).
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Supervised: In a supervised learning context, data is collected as pairs of inputs x and output targets

provided by a human. In an IRL setting, this is one of the most used paradigm. Target collection

is done through Learning from Demonstration (LfD) [2], therefore, these type of learning is costly in

terms of human resources. However, as stated in our specification, it is necessary to build a common

ground between humans and the IRL agent. This requires the ability for knowledge sharing between

humans and the IRL agent.

Unsupervised learning/Self-supervised learning: In an unsupervised learning context, data is col-

lected without explicit targets. This type of learning is cheap as the agent do not need supervision. In

that setting, data can be grouped by various similarity measures, depending on the nature of the data.

Similarity measures can then be used with unsupervised clustering techniques to classify the data

without supervision [3]. Learning can also be done through various specific techniques which apply

known transformations to the dataset before training a model to reconstruct original data, based on

the transformed ones. Ideally, the model learns relevant features leveraging structure in the data. As

no labels are explicitly given by humans, the agent learns in a self-supervised manner. The simplest

technique is to train the model to predict its input, without transformation. Such model is called

an autoencoder [4]. Another common technique is to mask part of the data to predict the remaining

data. For instance, in natural language processing, some models are pre-trained on text corpora [5]

by predicting hidden words in the text, taking into account adjacent words. In our architecture, we

do not exploit directly unsupervised learning but some modules exploit deep learning models which

were pretrained in an unsupervised fashion (see chapter 6).

Reinforcement learning: The last major ML learning paradigm is Reinforcement Learning (RL) [6].

RL allows to deal with a sequential decision-making and control problem and is well adapted for

robotics. Indeed, in the reinforcement framework, a robotic agent can be controlled in a partially

unknown environment without necessarily needing to know its dynamic model (see Figure 4.1). To

do so, an agent learns by trial and error after each action At and in interaction with its environment,

the best way to reach its goal: maximizing the expected cumulative rewards, given reward feedback

Rt from the environment when it arrives at state St.

Of course, at startup, the robotic agent does not know which state will give which reward. Therefore
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the agent needs to explore the world first in order to discover what is good or bad for him. On the

other hand, it also wants to maximize reward, and therefore have to exploit its knowledge of the world.

This is referred as the exploitation/exploration dilemma. A common choice to deal with this trade-off

is the epsilon-greedy method where the agent can choose with a certain time-decreasing probability, a

random action instead of the best action according to the current policy.

Agent

Environment

action At

Rt+1

reward Rt

St+1

state St

Figure 4.1: Reinforcement learning base description

Transfer learning: Transfer learning [7, 8] is related to any techniques that help transfer knowledge

acquired in some domain to another domain. This is useful when a model has to be trained on a

domain with few data or costly access to data. In deep learning models this can be done between

closely related domains, by pretraining a model on a domain with rich available datasets and/or with

unsupervised techniques. By leveraging these prior learned knowledge, another model can learn quickly

on a new adjacent domain with much fewer data. For instance, by leveraging hierarchical nature of

neural networks, one can extract discriminating features from hidden layers of a model and use them

to train another model on a close domain.

Data augmentation: Data augmentation represents a set of techniques which consists in leveraging a

dataset, in our context collected during the IRL interaction, and prior knowledge about a task to create

artificial data. For instance, in visual classification tasks, classes are often invariant given orientation.

In that case, datasets can be augmented with rotation and flipping to account for this invariance. We

can also have some knowledge about sensors noise and augment data accordingly.

These different learning techniques are at the core of the connectionist components we can integrate

in the architecture. We develop in the next section how they were leveraged to develop planar grasping

modules.
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oriented grasping tasks by developing deep learning modules. For a comprehensive and more general

overview on the use of deep learning for grasping, one can refer to [25].

4.2 Learning autonomously bin picking

All tasks in an IRL setting cannot be explained easily in a procedural manner. In that context, we

would just like to fix the goal, constrained available actions and let the agent learns intuitively, how

to carry out this specific task.

4.2.1 Bin picking module

Collaborative industrial robots often use parallel-plates gripper for manipulating objects. However,

in industrial tasks, objects are often cluttered, in highly disorganized heaps such as in bin picking

industrial applications. This is a very challenging task because of occlusion, unknown dynamics of

objects and noise which limits the use of traditional grasping techniques. Traditionally, a CAD model

of a part is used in problems of part gripping. However, it is not always possible to have a model of a

part and it can be expensive to make one.

To overcome these challenges, bin picking techniques based on deep learning and reinforcement

learning approaches have started to emerges [26], to predict the best grasp given an image of the heap.

Yet, because parts are very close, there can still have grasp failures. A solution is to give more action

capabilities to the robot. For instance, the IRL agent can be allowed not only to grasp but also to

push objects. Pushing can help spread parts in the heap in order to ease future grasping. Authors in

[1] proposed to adapt deep Q-Learning [27], a deep reinforcement learning algorithm, to learn grasping

and pushing actions. They validated their approach on examples with toys. We developed a module

based on an extension of their work, presented in section B.3.1 and validated with screw and bolts as

can be found in an industrial setting.

The bin picking use case is a typical example of action where it can be hard to explain procedurally

how to carry it out. Actually, explaining in a procedural manner how to carry out such a task is hard

even for a human. We could hardly explicit why we would spread the heap in one way rather than in

another way. Still, we have some goal which is to pick all the parts.

Reinforcement learning fit well to learn such task in an autonomous way. Therefore, we reproduced
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[1] and have extended it experimentally to our industrial context. We addressed the bin picking

problems as an autonomous reinforcement learning strategy where the robot agent learns synergies

between pushing and grasping as illustrated in Figure 4.4. Moreover, the use of reinforcement and

deep learning allows the robot to learn to pick-up parts without the need of any CAD model. This is

important as collaborative robots can be expected to work with parts that were not modeled by CAD

specialists, especially in small scale industry.

(a) Heap of objects (b) Pushing action to spread parts (c) Grasping of an isolated part

Figure 4.4: Example of synergy between pushing and gripping. A pile of objects is presented none of
which can be retrieved by direct grasping (a). The robot will first push the pile (b) and then separate
the objects (b) and then grab an isolated object (c).

This work was valorized through a demonstration during the closing day of the European project

ColRobot 1 in the presence of members of the European Commission, various academic partners and

industrial partners (Renault and Thalès). A video of this work can be found here 2.

The experimental setup was the following (Figure 4.5): we installed an industrial grade, high

definition depth sensor (a photoneo3D camera3) on top of a UR5 collaborative robot equipped with

a Robotiq two-finger gripper. For industrial validation, we collected screws and bolts as objects of

interest for the bin picking operation and carried out the experiment in a warehouse.

The task is to catch all objects from a cluttered heap of objects present in the workspace. So, the

state is represented as an image of the global workspace using the affordance formalism.

1https://colrobot.eu/
2https://www.youtube.com/watch?v=T592ye7RPxQ
3https://www.photoneo.com/products/phoxi-scan-l/
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4.2.3 Experimental results

The results presented in [1] are as follows: the completion rate (i.e., all objects in the workspace

have been removed) reaches 82.7% and the rate of pushing actions that were followed by successful

grasping is 60.9%. Once trained, we obtained close results in terms of performance. On our system, the

best performance is achieved after 2000 moves, with a success rate of 82%. On our implementation,

this represents a time of about 11h (20 seconds per iteration). We made several training and we

qualitatively observe less training failures with the updated reward function.

4.2.4 Module conclusion

In the end, the agent improves its performance over time and is able to adapt to objects it has

never seen autonomously. However, there are some limitations. During our tests, we noticed that the

robot can learn to catch coins in an unstable way depending on the first successes. For example, in

some cases the robot learned to take the screws by the net, which shows the difficulty of developing a

good reward function given a target goal. Indeed, taking the screws by the net was seen as a success

since the robot was indeed taking ”something”. On the other hand, in an industrial context, objects

may have specifications and should be captured in very specific way according to the object and the

task. This motivates the fact that this type of learning is not enough.

There should be more interaction between the operator and the robot during the learning process,

so that the robot can learn to adapt to the specific needs of the operators, always with our IRL

specifications in mind.

4.3 Learning grasping location affordance from demonstration

With this module, we investigate the problem of an operator wanting to configure a robot to grasp

an industrial object in a specific area. Our motivation is to create a fast learner grasping system which

does not require any databases, CAD models or simulators, so that it can be easily reconfigured by the

operator himself, which is a non programming expert. The transfer of knowledge from the operator

to the robot is done through the most natural interaction: manual demonstrations of authorised and

prohibited grasping locations (Figure 4.7).

This work was valorized in the following conference article [28]. A synthetic video of presentation
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In Table 4.1 , we provide a summary of some task-oriented grasping works and compare them with

our approach in section B.3.1-II.

Table 4.1: Summary of existing task oriented grasping works

Ref Data generation
CAD model
& simulator

Observation

[33] From CAD model ✓
Training took 6 hours on Titan X
GPU

[34] From simulation ✓
1.5 M of data are generated for
training

[35] ShapeNet and ModelNet40 ✓ Bayesian Optimization

[36]
RGB-D Part Affordance
Dataset

× Large dataset

[37] From few views ×
20 minutes to reconstruct 3D map-
ping of object

our [28] From few demonstration ×
< 5 minutes of training on RTX
2080 GPU

Task-oriented grasping uses the concept of affordance introduced by Gibson [38] which describes

parts of objects according to their functional utility. In robotics, this concept is used for gripping and

handling objects considering the work to perform afterwards [39, 40]. A task-oriented grasper can

be created using behavior grounded affordance [34] or spatial maps [39] for instance. The semantic

labels technique on images can also be applied [33, 41, 42] : using specic large datasets such as UMD

[36] or shape database [35], each pixel is labelled independently according to the part of the object to

which it belongs. Our work uses semantic labelization of images without databases, learning from a

few examples demonstrations.

Demonstration learning can be used to transfer knowledge from an operator to a system, in our

case to teach a robot a precise grasping location. Most previous works address this problem with a

trial and error phase via a simulator or directly on the real system (Table 4.1). In [43], the authors

propose a network architecture and data augmentation pipeline to design a controller able to grasp

very simple objects (cube, cylinders. . . ) from a single demonstration. However, the controller can not

integrate important constraints into task-oriented grasping, like prohibited locations while defining

such constraint is relevant to increase safety by putting emphasis on what can be done and what

cannot be done.

In [37] authors learns a dense descriptors map for objects after building a 3D dense reconstruction
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model of the object. As a result, they obtain a semantic representation of the object allowing them

to grasp the desired location. In our work, we decided to work directly on images without any 3D

reconstruction techniques which may take time.

4.3.2 Methodology

We study the problem of performing an antipodal grasp perpendicular to a planar surface, on

a specific object for which an operator has taught authorised/prohibited grasping areas. A RGB-D

camera is mounted on the robot’s wrist and capture a fixed height top view.

We define a pixel-wise semantic segmentation pipeline, based on grasping from a few demonstra-

tions methods, where the input is a depth image of the scene and the output is the grasping parameters

g = (x, y, z, θ) for grasping the object on the demonstrated area. Coordinates (x, y, z) represent the

tool-centre of the gripper, and θ is the angle of the gripper in the plane. Grasping parameters are

directly derived from the image segmentation. We define a structure of our pipeline allowing fast

training from a few demonstrations. This problem creates constraints that motivated the design of

our pipeline:

• learn fast authorised/prohibited grasping areas

• generalize from a few demonstrations.

4.3.2-I Training dataset:

Data Capture: Training is done directly from an operator’s demonstration without using any

external databases. The operator’s thumb and index fingers are covered with coloured pads so that

they can be easily identied by the camera. Grasping gestures on authorised and/or prohibited areas

are stored by recording the fingers coordinates (Figure 4.8 -a).

Then (Figure 4.8 -b), a 2D shape of the object is obtained from the binarization of the depth

image: the table’s pixels are set to 0, and the objects’ pixels (above the table) are set to 1. We note

it as I ∈ ¶0, 1♦n×m where (n, m) are the dimensions of the image. Labels are generated as images

L ∈ ¶−1, 0, 1♦n×m where authorized pixels have value of 1, 0 for pixels without information and −1

for prohibited pixels. The use of 2D shape I reduces the size of the input space and contributes to our

goal of generalization. If necessary, several demonstrations of the same object in different locations
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wi,labeli = ♣predi♣ + λ1 ×
1

Nlabeli

(4.8)

where Nlabeli represents the number of pixels in L containing label value labeli. The first component

♣predi♣ in Equation 4.8 used to focus the network’s attention on interesting parts by focusing the

gradient descent over areas of interest. The second component is used to accentuate learning over

underrepresented areas of the label map by reducing the importance of large areas. The parameter λ1

balances the two components. The benefit of this weighted loss function is studied in section 4.3.3-IV.

To prevent overfitting, we use the L2-regularization loss LL2 reg applied on the weights and bias of the

network. The finale composite loss-function is:

L = Lweighted−L2 + λ2 LL2 reg

We trained the network using stochastic gradient descent, with a learning rate of 10−4, a momentum

of 0.9, λ1 = 20 and λ2 = 5.10−5.

4.3.3 Experiments results

To evaluate the proposed algorithm, we plan a series of experiments. We studied 5 points:

1. grasping referenced objects at the right area in different positions

2. the benefits of our modified L2 − loss function

3. the benefits of using both authorised and prohibited demonstrations

4. the ability of the algorithm to generalize to unreferenced similar objects

5. performing grasp in an environment composed of several unreferenced similar objects

4.3.3-I real-world experiment:

We use a modified Python version of the Matlab Kuka sunrise toolbox [46] to control a Kuka

iiwa LBR 7 DOF robot equipped with a Robotiq 2F-140 gripper. The robot’s workspace is a 30 × 30

cm flat square. An Intel®RealsenseTM Depth Camera D415 is mounted on the wrist of the robot.

Computations were made on a PC with an Nvidia RTX 2080 8Gb graphic cards and Intel®8 CoreTM
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i7 9700K 3.6 GHz CPU. The implementation was done in Python 3.6 using Tensorflow 1.13. We train

a network using online data augmentation generating 1600 tuples randomly. On average the training

lasts 250 seconds per object.

4.3.3-II Grasping in the right area:

We measure the ability of our network to find a specific grasping area learned during the demon-

stration phase. In Figure 4.10, we present our panel of referenced objects with the name of their

grasping areas. We focus on simple industrial objects.

Protocol: For each object, we train a specific network from 1 to 3 demonstrations of the same

authorised grasping area (with eventually a prohibited grasping area) under different object positions.

Then we evaluate the network’s ability to find those areas on 36 unseen positions of the referenced

object. The evaluation is done by placing the object at 9 points of the workspace and by rotating it

in 4 orientations (0°, 90°, 180° and 270°). A grasp is considered valid each time the object is caught

by the authorised area.

Results & Discussion: Our pipeline achieved good results (Table 4.2) with only one demonstration.

For bulb, screw and pliers, the grasp success in the authorised area is over 90%. For socket wrench

(81% and 86%) and cup (70%), the decrease in performance comes respectively from the geometric

similarity of the authorised/prohibited grasping area and a more complex geometry. Adding 1 or 2

demonstrations from other positions seems to solve that issue. For socket wrench and cup grasping,

results raised over 90% of success with 2 demonstrations. In these worst cases, we suppose that data

augmentation does not reproduce efficiently the different possible views of the shape of an object.

Prediction quality evolves depending on the input image. In Figure 4.11, we can see different cases

where the system outputs a good, an average and a bad segmentation of the object. Bad segmentation

occurs when the current shape is very different from the demonstrated one. It shows a limitation in

the generalization abilities of our system.
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Bulbs Socket wrench Screws

19/20 (95%) 17/20 (85%) 19/20 (95%)

Table 4.6: Grasping accuracy results for groups of similar objects

4.3.4 Module conclusion

In this work, we have shown that a fast reconfiguration of a grasping robot is possible with one

(or a few) demonstration. Furthermore, our proposed pipeline is able to generalize grasping strategies

for several unreferenced similar objects. Our method combines a reduced state space, a light CNN

and a weighted loss function. It is able to quickly learn from few data without requiring any datasets,

CAD models or simulations. Our CNN network pipeline fulfills our initial motivation of creating a

task-oriented grasping system that can be fastly and easily reconfigured by an operator. Moreover, the

learning of prohibited areas, makes this process safer. Thus, it shows a good potential for integration

in an industrial context.

This work is a powerful module that the IRL architecture can leverage for better teacher/learner

interaction and for affordance location learning.

However, it presents limits that suggest further work. The selected input space limits our algorithm

to simple 2D shapes. Working directly with the depthmap from the RGB-D camera will allow to

consider more complex 3D objects and cluttered environments. In addition, the semantic segmentation

of objects might be erroneous in some cases. Detecting these failures would allow to ask the operator

for help when needed in a continuous learning scenario.

4.4 Conclusion

We have presented two modules in this chapter that leverage different learning paradigms according

to the IRL situation. Given some reward function and constrained actions, we can teach an IRL agent

how to carry out some tasks in an autonomous way. This is useful when teaching the procedure is

hardly explainable. However, the behavior of the agent depends on how well the reward is defined,

which is a hard task. Moreover, the learning duration can be quite long (several hours) for an online

IRL setting. We have studied and developed a learning from demonstration module [28], which can

learn fast and from a few natural demonstrations, object grasping affordance, with respect to our initial
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specifications. A comprehensive experimental validation of this module has been made highlighting the

interest of this approach. Finally, each module can be used for specific needs, and could be integrated

and even coupled in the wider architecture in order to carry out more complex tasks. Integration

and validation of the specific learning from demonstration module is discussed on chapter 6. But at

first, we can observe that without a notion of known and unknown, these models will predict grasping

location even on objects, or objects views far from the training ones. This could lead to potential

wrong predictions and thus, to risky behaviors. In order to improve robustness, modules should also

be able to account with the uncertainty of their predictions, which is investigated in next chapter

(chapter 5).
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Learning under uncertainty
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Until now, we have described skills learning abilities in terms of symbolic and connectionist compo-
nents. We showed that a lack of symbolic knowledge about a task, in terms of procedural or perceptual
information, leads to a failure and triggers a mixed initiative, interactive learning event. However, this
is not sufficient as perceptual modules, such as modules based on deep neural networks, can be brittle
when facing new situations. As a consequences, failed predictions can lead to erroneous decisions.
The IRL agent needs to know the level of certainty or uncertainty in its perceptual and reasoning
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processes. This is a key indicator to endow the IRL agent with more insight about what it knows,
what it does not know and what it is not certain about before taking a decision.

This chapter first develops in 5.1, through examples, the main principles of uncertainty that can be
used for an IRL agent. We further illustrate in 5.2, several estimations techniques to derive uncertainty
in learning modules. A focus has been made on the main underlying uncertainty principles and the
state of the art for deep learning techinques. Then, we introduce how this uncertainty can be leveraged
for decision-making (section 5.3) as a base for active learning (section 5.4). We specifically introduce
in section 5.4.3, how uncertainty can be integrated in the IRL architecture by extending the behavior
model. Uncertainty integration for active learning in our architecture is an on going work, which is
further investigated in terms of short term perspectives in chapter 7.
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5.1 What does uncertainty means ?

5.1.1 Stochasticity and data shift

Some machine learning models, especially in deep learning, give only prediction values without

relevant tools to assess for the quality of these predictions. However, many physical phenomena are

inherently stochastic and the lack of experiments and therefore of training data can lead to under-

confident or overconfident predictions. As in most machine learning problems, we can distinguish

categorical classification problems and regression ones.

For classification, a model should output a label with its confidence. For instance, asking a deep

neural network to predict a result with 100% of confidence for a ”head or tails” when flipping a coin

is meaningless. We would like the network to be uncertain about its prediction and ideally, to output

a distribution of possible outcomes (1/2 → head, 1/2 → tails). In a general way, for a classification

problem, uncertainty should output a prediction distribution over the classes. By this way, confidence

in a predicted class, as well as particular confusions with other classes, can be highlighted. Even if

softmax outputs of a classification network looks like such a distribution, they are known to be prone

to miscalibration and overconfidence [1]. Consequenlty, they can not be trusted as a confidence and

uncertainty measure.

For regression, a model should output a mean value with its variance which can be interpreted

as a confidence interval around the predicted value. For instance, in our grasping location learning

module, we mitigated risks of grasping in forbidden area, by learning a separating neutral area. Even

in that case, the self-occluded cup example presented in previous chapter (Figure 4.11), shows that

failures are still possible when the agent has not seen enough demonstrations, for some of the objects.

The agent needs a way to estimate the relevance of the predicted authorized grasping location.

An IRL agent is most likely, especially in its infancy, to face things it does not know rather than

things it does know. This is related to the fact that most of the world is unknown and that new

perceived data can be far from the known world. In the machine learning literature, it is referred as

Out-of-Distribution (OOD) robustness.

Currently, most deep learning systems assume an Independent and Identically Distributed (IID)

data setting. Therefore, the network assumes test data domain Dtest and train data domain Dtrain
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are taken from the same distribution: p((x, y) ∈ Dtest) = p((x, y) ∈ Dtrain), with y the target value

and x the input features. In classification problems, y is a class label commonly represented as the

vector of the theoretical softmax output (1 for the class of the input, 0 for other classes). Concerning

regression, y is the vector(scalar) of real output(s). Same distribution assumption, however, is regularly

broken as in most real-world settings, Dtest is a mixture of a train and OOD domain DOOD leading

to p((x, y) ∈ Dtest) = p((x, y) ∈ Dtrain ∪ DOOD) ̸= p((x, y) ∈ Dtrain).

p((x, y) ∈ Dtest) can differ from p((x, y) ∈ Dtrain) in various biased ways that can appear si-

multaneously. This has resulted in an active fields of research in OOD robustness specification and

mitigation. We list below some of the main types of dataset shifts found in the literature:

• Covariate shift occurs when distribution of features p(x) changes but p(y♣x) is fixed. Often

covariate shift occurs when x causes y. For instance, in classification based on vision, this can

be related to a change of view, noisy data such as illumination of a previously learned object:

the raw image or computed features vary while the object label remains the same. In the case of

a regression problem, such as in our module for affordance location prediction, a change of light

or view change features x and therefore might affect prediction. This kind of shift, if detected,

can be mitigated by collecting relevant data such as more examples or data augmentation as

proved our approach in B.3.2.

• Label shift or prior distribution shift [2] occurs when distribution of label p(y) changes and p(x♣y)

is fixed. Often label shift occurs when y causes x, so when we try to learn an inverse model that

is not stationary across time or space. Such setting has been studied a lot in medical setting

for disease diagnostic modelling. For instance in [3], authors argue that one can train a binary

classification model p(x, y) to predict the diagnostic y to have flu based on symptoms x. The

distribution p(y) of flu prevalence (the number of case at a given time) varies throughout the

year, but as symptoms are caused by the flu, p(x♣y) does not change. However, p(y♣x) does

change, as given the same symptoms x, it is more likely to have flu y during an epidemic (i.e.

p(y♣x) increases). Therefore, if the model has been trained on data outside of the epidemic, it

might underestimate flu prevalence during the epidemic. In our case, let’s imagine an ideal IRL

agent observing the behavior of a human to induce, among several tasks, the current procedure

he is working on. For instance, it could learn an intent classification model, predicting the task

74



5.1. WHAT DOES UNCERTAINTY MEANS ?

intent y based on some observed features x such as facial expressions and human movements.

Because a task procedure is well-defined, one can assume that the task specification causes x

and that p(x♣y) is mostly fixed. However, across time, tasks relative frequency, and thus p(y),

can change according to demand or supply chains.

• Open-set-recognition issues occurs when new classes appears at test time. An overview on recent

advances in this field is presented in [4]. For an IRL agent, for instance, it occurs when new

objects are learned.

• Subpopulation shift occurs when a model has to generalize at test time to new sub-classes that

were not seen in training [5]. For instance, if a network has been trained to recognize different

tools, but that the dataset contains some biases such as only blue screwdrivers, the model might

underperform when trying to predict the class of a red screwdriver.

Standard deep learning networks are not efficient and usually overconfident given these shifts [1],

especially for deep neural networks using ReLu activation function [6] (almost all modern architec-

tures). Overall, a good uncertainty estimation and taxonomy could help in quantifying the confidence

that one can have in the IRL architecture predictions. Moreover, it could serve as a quantified basis

to help cope with those biases. From the human perspectives, it could improve safety guarantees

and acceptability which are strong requirement for industry. From the IRL agent side, it is a way to

question and reason about its own behavior in a flexible way. In the rest of the chapter, we will focus

on dealing with covariate shift and open-set-recognition as they are the most studied shifts.

There is an extensive literature on uncertainty taxonomy (see [7] for a comprehensive survey). We

briefly describe the main characteristics of an uncertainty metrics. First, in general, uncertainty τ of

machine learning model can be decomposed in two types of uncertainty, aleatoric (τa) and epistemic

(τe) uncertainty.

An intuitive way and quite general way to obtain this decomposition, in the supervised learning

context, is through the traditional decomposition of mean square error into bias, variance and noise [8,

9] (equation 5.2). Given a finite dataset D(x,y) with x the inputs and y labels, let’s assume that there

is some data generative process h and a zero-mean noise N(x) such that y = h(x) + N(x). Ideally,

we would like to approximate h by learning a function f given a rich family of function from some

hypothesis space. In case of deep learning it is a function fθ parameterized by weights θ. The classical
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training method is to minimize the mean squared error (y − fθ(x♣D))2 for the training dataset and to

expect generalization for test data. Because of the noise, of limitations of the chosen family function

and of non infinite data, learning h is near impossible in real wold use case. In general, the learning

algorithm can produce many fθ that can be compatible with the dataset D. We can then compute the

mean predictor µf between different model solutions given the data and decompose the error in terms

of uncertainty.

µf (x) = Eθ[fθ(x)♣D] (5.1)

The total expected error of the model given the data is then computed as [8, 9]:

E

[︂

(fθ(x) − y)2♣D
]︂

=E

⋃︁

⋁︁
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⏞ ⏟⏟ ⏞
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(5.2)

Let’s illustrate uncertainty estimation with simple examples. We first develop the case of classifi-

cation which has been the most studied. The different method are extensible to regression task which

is briefly illustrated in section 5.2.5.

For classification let’s exploit the traditional two moons distribution datasets with an additional

out-of-distribution data cluster. We based this work on the following libraries: uncertaintybaselines
1,

Edward2 [10], Tensorflow Probability [11], which add high-level probabilistic layers to Keras and

Tensorflow [12]. The dataset was produced with scikit-learn [13] utility tools (Figure 5.1a presents the

dataset). There is an additional OOD cluster that the network cannot see during its training phase.

We train a neural network based on ResNet to classify the dataset in two classes using a distance aware

learning method to reproduce work presented in [14]. This method is explained in section 5.2.3 and is

use here for illustration. The method is called Spectral-normalized Neural Gaussian Process (SNGP).

This network is compared with a traditional ResNet deep network that is not trained with uncertainty

handling in mind. Once training is done, we can plot for all points in the plan, the class probability

1https://github.com/google/uncertainty-baselines
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p and the corresponding predictive uncertainty p(1 − p) (variance for a Bernoulli distributed random

variable). It is then possible to analyse how confident the network is about its prediction.

Figure 5.9a, and Figure 5.9b represents respectively the probability prediction and the predictive

uncertainty for the ResNet network with a traditional training procedure. Figure 5.9a shows that as

the network has not be trained with dataset shift awareness, it simply learns to separate the plan in

two regions. Unfortunately, Figure 5.9b shows that the network, is also highly overconfident in its

prediction, except at the separation boundary. It is no surprise that the third cluster is classified with

high confidence as belonging to the blue moon (upper moon on the Figure 5.9a).

On the other hand, Figure 5.1d, and Figure 5.1e illustrate the probability prediction and the

predictive uncertainty for an uncertainty aware based on a residual network ([14]). We can observe

in this setting that now the model learns to classify data by proximity and not by merely cutting the

plan in half. Therefore, even if the third cluster is still classified as belonging to the blue moon, it is

now associated with an uncertainty which increases as the cluster get farther from the moons.

77







5.1. WHAT DOES UNCERTAINTY MEANS ?

Aleatoric uncertainty can be learned from data. For instance, in [16], author learn heteroscedastic

aleatoric uncertainty in visual segmentation tasks as a loss attenuation by computing the following

loss for the neural network fθ:

LNN(x, y, θ) =
1

N
ΣN

i=1

1

2σ(xi, θ)2
♣♣yi − fθ(xi)♣♣

2 +
1

2
log σ(xi, θ)2, where σ2 = τa (5.3)

By minimizing this loss over weights θ and σ (which is an output of the network), they are able

to learn implicitly heteroscedastic uncertainty in various visual segmentation tasks.

5.1.3 Epistemic uncertainty τe

Epistemic uncertainty on the other hand is the part of uncertainty that is linked to the inner

model ignorance, not to the physical underlying process. Therefore, this uncertainty can be reduced by

collecting more data and by updating the model. In Figure 5.2, we represent the epistemic uncertainty,

τe which is associated with the predictive uncertainty of the model. Far from the moons, aleatoric

uncertainty is low, therefore epistemic uncertainty can be supposed equal to the predictive uncertainty.

5.1.4 Total uncertainty τ

The total uncertainty for an input x is then τ(x) = τa(x) + τe(x). Ideally, as the IRL agent collect

more data, it should be able to reduce its epistemic uncertainty τe(x) to zero. The only remaining

uncertainty is then the irreducible aleatoric uncertainty. If the predicted physical phenomenon is

deterministic, then τa(x) ≈ 0. If it is stochastic, then τa(x) ≫ 0.

In Figure 5.3, we can observe as expected that epistemic uncertainty is reducing, during training

over epochs, around data close to training domain while increasing on unseen points. As expected, at

the end of training the epistemic uncertainty is almost zero close to data, only aleatoric uncertainty

remains.
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5.2.1 Bayesian and variational inference methods

In deep bayesian learning methods (illustrated in Figure 5.4), one model fθ(x) of parameters θ is

explicitly built to learn an output distribution p(y♣x, θ) of mean µ(x) and variance σ(x)2 based on a

given input x ∈ R
m (see equation 5.4. This is done through different variational inference techniques:

µ(x) = Ep(θ♣x,y)(p(y♣x, θ)) and τ(x) = σ(x)2 = Ep(θ♣X,Y )(p(y♣x, θ) − µ(x))2). (5.4)

Standard variational inference techniques for deep learning [17], such as stochastic variational

inference or sampling based on variational inference, learn a Gaussian distribution at each weights of

the neural network, see Figure 5.4a. If the target value y is a vector composed of N components, the

uncertainty metric is given as the mean value of the variances over each components σi: τ = 1
N

√︂N
i=1 σi.

With a mean µ and a standard deviation σ, the amount of required parameters is doubled compared

to standard networks. Therefore training such networks, can be computationally difficult as it requires

much more data and memory. For this reason, some works learn a distribution only at last layer, see

Figure 5.4b. This kind of network is then referred as proper scoring networks [18]. In this approach,

each neuron on the output layer learns a Gaussian distribution N (µi(x), σ2
i (x), with τi(x) = σ2

i (x)

output both, for each component i of target vector y, a prediction µi(x) with its uncertainty σ2
i . As

each neuron learns a mean and a variance, it doubles the number of outputs parameters. Training

of these Gaussian distributions is done using the negative likelihood loss function (equation 5.5).

Learning log(σ2) is sometimes prefer to σ2 for numerical stabilities.

L(y, (µ(x), σ(x)) =
1

N

N∑︂

n=1

log σ2
n

2
+

(y − µn)2

2σ2
n

(5.5)

These methods require a change of architecture, but many other approximation methods, like

Monte Carlo dropout for instance, have been developed allowing to minimize architecture changes.

Monte Carlo Dropout method, proposed by [19] makes this approximation by using Dropout layers

[20]. Dropout layers are already widely used in standard neural architectures to prevent overfitting by

deactivating a neuron with a probability p. Performing several inferences with active dropout layers

on the same input x∗ is equivalent having an ensemble of networks sharing some weights in contrast

to ensemble presented in 5.2.2 and is illustrated in Figure 5.5a. This technique is easy to implement

since it requires minor changes in the original architecture or no changes if dropout is already used.
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Reported performances of this approach in the literature are not even. While working well in some

cases as regression task [19] or image segmentation [21], this approach does not perform well in others

like in some active learning scenario [22] or classification’s failure prediction [23]. An updated version

called Monte Carlo Concrete Dropout [24] consists in learning the dropout parameter p during the

training process. Each dropout layer is replaced by a continuous concrete distribution relaxation

allowing to compute gradient and to tune parameter p. This technique requires to replace common

Dropout layers by custom ones, however the learning scheme remains unchanged. It has been shown

to perform slightly better than standard dropout in uncertainty estimation [24].

In complex tasks, dropout approach might be too simple and underperforms. More recent works,

such as SWAG (Stochastic Weight Averaging-Gaussian) [25], take a different approach by exploiting

the space of solution during the gradient descent optimization process. The key idea of SWAG is

to leverage iterations of Stochastic Gradient Descent (SGD) via a specific learning rate schedule [26]

based on Stochastic Weight Averaging (SWA). Learned weights at the end of each iteration are seen

as samples from a Gaussian distribution. We illustrate this idea in Figure 5.4c. Authors store the

network weight parameters θ and the average weights parameters θSW A and weight covariance θ̄ over

different epochs. The weights covariance matrix is then exploited to provide a measure of uncertainty.

In that setting only θ is learned during training, and θ̄ can easily be computed as a moving weights

average. In practice, that means that computation overhead is low. Memory requirements is tripled

but additional variables, θ and θ̄ can be stored outside of the GPU memory according to authors [25].

Dropout methods are less memory and computationally intensive than standard variational infer-

ence methods. However, as several forward passes are required to estimate uncertainty, the inference

cost can still be prohibiting in high rate demanding tasks such as in vision. Most recent approaches,

like SWAG, reduce the amount of computational power while still being competitive but it requires

learning an architecture from scratch, preventing the used of most of pretrained networks.

5.2.2 Deep ensemble methods

In [27], authors proposed a method based on a pure ensemble approach (see Figure 5.5b). From

different weight’s initialization, they trained an ensemble of networks using the same architecture on

the same data. Trained networks have different weights values θi. The idea is that in the prediction

features space, regions with fewer training points should have greater uncertainty, which is reflected in
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greater variance in the predictions. Prediction and uncertainty estimation are then straightforward to

compute using equation 5.4. Additionally, they also proposed to use proper scoring networks by mixing

ensemble with the bayesian techniques seen in previous section 5.2.1, where the network learns its own

uncertainty during training. Finally, by gathering T proper scoring networks within an ensemble,

prediction and uncertainty can be computed as the mean and the variance of a mixture of Gaussian

distributions [27]:

τ = σ2 =
1

N

N∑︂

n=1

⎠

1

T

T∑︂

t=1

(σ2
t,n + µ2

t,n) − µn̄

⎜

with µn̄ =
1

T

T∑︂

t=1

µt,n . (5.6)

5.2.3 Distance aware uncertainty model

The last type of model estimates uncertainty by computing a relevant distance between the features

space and the input space or between samples in the feature space.

Learning a distance between the feature space and the input space: In this first approach, we want

the measure to be low if the test data is close to training and high in the contrary. In [28], authors train

a deep auto-encoder in visual navigation tasks, to reconstruct data seen during training. Denoting

x → f(x) the input reconstruct from latent learned features, we want the lowest discrepancy between

x and f(x) on the training data i.e. (f(xtrain) ≈ xtrain). The chosen discrepency function τ(f(x) − x)

can be simply the euclidean distance over images as features are the outputs. Test inputs close to

training are likely to have a low reconstruction error while OOD data are badly reconstructed and

have a high reconstruction error. Therefore, authors exploit this error as a proxy of the network

uncertainty.

Learning a distance in the feature space: Another approach is to learn directly a latent features space

where, if predicted features are close, then input are also likely to be close. Conversely, if predicted

features are distant, then input features are distant. This motivates training distance aware uncertainty

models, which can quantify the uncertainty of new data, by preserving a notion of distance between

points in the input space and points in a latent features space. Figure 5.6 illustrates the general

principle:
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Formally and ideally, for a predictive model f , such as a neural network, for every input x1, x2,

we would like to have:

k1♣♣x1 − x2♣♣features ≤ ♣♣f(x1) − f(x2)♣♣input ≤ k2♣♣x1 − x2♣♣features with k1, k2 ∈ R and

♣♣.♣♣input and ♣♣.♣♣features, respectively a distance in input and features space
(5.7)

In that case, features that are close in the input space are more guarantied to be close in the

output space. In other words, we would like to reduce the class of learnable function to bi-Lipschitz

functions. While this setting is interesting in terms of uncertainty estimation and for safer learning, it

reduces the expressive power and consequently might affect the accuracy of the network if the problem

to solve is more complex than what the learned space can represent. Authors in [29] reviews some

related techniques in the area of safe robotics and control. Authors notably show that integrating

Lipschitz deep network with reinforcement learning and more traditional techniques on control theory

help in building safe and more general controllers. One can indeed build a controller with a trade-off

between safety guaranty, provided by stability analysis, and prediction accuracy provided by Lipschitz-

constrained deep networks. Moreover theses methods are especially suitable for out-of-distribution

detection as shown in the simple two moons distribution dataset presented in 5.1. One of the of

the current advanced method on distance awareness at current writing is SNGP (Spectral-normalized

Neural Gaussian Process) in [30]. SNGP combines standard deep neural networks, which do not handle

uncertainty by default, with traditional gaussian processes which are the standard when it comes to

uncertainty estimation in classical machine learning. This last approach can adapt to several existing

residual architecture by applying spectral normalization (SN) to the hidden residual layers and by

replacing the dense output layer with a Gaussian process (GP) based layer. Spectral normalization

detailed in the paper, allows a residual network to be distance preserving and therefore bound ♣♣f(x1)−

f(x2)♣♣input relatively to ♣♣x1 − x2♣♣, as required. Features output can then be fed to a distance aware

GP that model uncertainty.
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robustness for OOD samples and slight covariate shift close to this separation. For dataset shift and

OOD data that are farther to the separation line, they fail as the standard ResNet. Only SNGP based

ResNet provide a good OOD uncertainty performance. This impressive results comes from the use of

Gaussian Processesthat are learned on top of the regularized (distance aware) neural network. The

dataset is very simple and generalizing this analysis to higher dimension seems risky. However, it

is worth noticed that author from [14] still outperforms other methods on OOD data, in traditional

images classification benchmark such as CIFAR-100. Interestingly authors in [34] compared several

approach on image classification and natural language processing tasks. Despite the simplicity of the

approach, they suggested that ensemble models can be robust and outperform other methods when

it comes to dataset shift such as dropout and variational methods. If temperature scaling calibration

methods can be fine to quantify uncertainty for IID data, it significantly underperforms when it comes

to dataset shift and OOD data.

An upside of classic dropout, ensemble methods is that we don’t need to change the architecture

of the network. Moreover one can use pretrained networks weights found in the literature for transfer

learning. One downside of dropout and ensemble, however, is that they need several forward pass

which can dramatically increase the inference time and memory and computing requirement. Thus

these methods can’t be easily used in setting where inference speed is a high requirement. Distance

aware based methods and external metrics in this regards are interesting as they can use a single model

in a single pass. They seems to be the best suited tool for OOD data detection in the toy benchmarks

we carried out as stated in [14]. The method has yet to be validated on harder, real-world problem. As

a downside, their specific regularization techniques imposes to learn new weights even for traditional

architecture, therefore one could not benefit from pretrained available weights.
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Figure 5.10: Regression task with Monte Carlo Dropout

Figure 5.11: Predicted uncertainty inference at the last layer
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data and confidence. In general and intuitively, it is considered that a model has a good predictive

uncertainty estimation when its accuracy is close to its confidence. In other words, calibration means

that the true and predicted frequencies of an event should match. In that case the model is said to

be calibrated [1]. Calibration ∆cal can be simply expressed in both cases as:

∆cal = ♣accuracy − confidence♣ (5.8)

In classification tasks, to be calibrated means that predictive uncertainty should be close to 0

(respectively close to 1) when class prediction is good (respectively wrong). For regression, that

means that confidence interval should be larger with the prediction error value.

It is important to notice that a good calibration, do not imply a good accuracy. For instance, if a

model has to classify two balanced classes, a random classifier with 50% of confidence imply a perfect

calibration. That’s why notion of sharpness is also introduce in calibration literature. A model is said

sharp if its accuracy is high.

We can find several metrics deriving from the base definition (equation 5.8). Several measures and

calibration errors have been used in the literature to quantify a posteriori the uncertainty calibration.

Integrating such information in the IRL decision process would allow to reason at higher level about

learning modules.

Assessing the calibration uncertainty can be done by building a reliability histograms [1]. The idea

is to partition predictions into M bins according to their output confidence. From this partitioning,

the following metric can be computed:

• ECE (Expected Calibration Error) [35]: the accuracy is computed for each of the M bins. Then

ECE is obtained by averaging the error across bins, weighted by the number of points nb in each

bin. (Figure 5.13 illustrates a reliability diagram).

ECE =
M∑︂

i=1

nb

N
.∆cal(b),with ∆cal(b) = ♣accuracy(b) − confidence(b)♣ (5.9)

• MCE [35]: While averaging uncertainty in ECE can be relevant to reduce noise, in some cases we

might want to be much more cautious. In MCE instead of averaging, we consider the maximum

bin uncertainty. This could be required in tasks with a risky consequences in case of failure.
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checked with a calibration dataset that is maintained and enriched across time and interaction. Given

calibration metrics results, a re-calibration of the network might be necessary.

5.3.2 Performance metrics of a system

Once uncertainty is well calibrated, it is possible to use performance metric for selective predictions

or reject options [38–40].

Following [41], we can adapt the classical contingency matrix [42] used in failure predictions meth-

ods, to exploit an uncertainty measure, as shown in Table 5.1. From this matrix, we can derive

performance metrics, as well as an active learning process for our IRL which is discussed in next

section .

Prediction result
Wrong Good

U
n
ce
rt
ai
n
ty High True Positive (TP) False Positive (FP)

(Ask) (correct alarm) (false alarm)
τthresh

Low False Negative (FN) True Negative (TN)
(Act) (missing alarm) (correct non-alarm)

Table 5.1: Contingency table with uncertainty measure τ . Upper a threshold uncertainty, an alarm is
triggered, for instance in an active learning framework.

Given a threshold uncertainty τthresh, predictions can be classified in two categories: confident

(”Low” uncertainty) and uncertain (”High” uncertainty), for which the respective decision is to trigger

(”Positive”) and not (”Negative”) an alarm. Relevance in triggering or not an alarm is denoted by

”True”. Given a prediction, ”True” corresponds to the main diagonal of the contingent matrix that is

to say to have triggered (resp not triggered) an alarm if the prediction was indeed wrong (resp good).

This contingent matrix can be seen as a binary classification to evaluate failed predictive selections,

for instance concerning predictions of a neural network. A good uncertainty metric should maximize

the proportions in the main diagonal (TP and TN), and eradicate missing alarms (FN) corresponding

to failed predictions which are viewed as certain, while at the same time limiting the number of false

alarms (FP). Indeed missing alarms (FN) could lead to safety issues in industrial collaborative robotics
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• FPR-α%-TPR : False Positive Rate for a given percentage α of TPR. It represents the rate of

false alarms for a given security level.

• S-β%-FPR : Compute the success rate (TPR) at β% of FPR. This score is representative of an

economic cost due to the number of false alarms it can yield.

The contingency table can be leveraged to set the threshold τthresh on the amount of acceptable

true positives with respect to false positives, represented in Table 5.1. Above this threshold, the

agent is confident enough and decide to Act. Below this threshold, it must decide to Ask. This is

illustrated in Figure 5.15. Given an histogram of predictions, we represent in green the histogram

of good predictions and in red histogram of wrong predictions for a given uncertainty τ . A good

predictive model associated to a well-calibrated uncertainty model should be able to separate clearly

the two distributions. By setting τthresh, we can put more or less emphasis on how safely the IRL

must act.
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Figure 5.15: Illustration of τthresh usage to limit wrong actions

The same idea is represented in Figure 5.16 directly on the ROC curve. It shows that the IRL

agent can choose a compromise between safety level (TPR) and false-alarm cost (FPR), by setting

this τthresh.

Overall, in function of τthresh, we can also derive and exploit the two following KPI to assess the

performance of the ITL decision process:

• The accuracy ACC = T N+T P
F N+F P +T N+T P

to evaluate the relevance of decisions between acting
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• The query system is the component that is responsible to ask an oracle for more information

when needed. In an IRL system, this component is build around communication modules to

inform an oracle about the lack of knowledge when a failure occurs.

• The oracle is the component that answers to the query system. It can be a fully supervised

human feedback where a human give all label each time the system is not certain. A more

flexible approach is the semi-supervised setting, where the agent uses a proximity metrics to

label unknown data based on already labeled ones.

As real-world data are scarce and domain specific, there is a growing interest in integrating active

learning with deep learning in robotics. It has been experimentally proven, indeed, that modeling

uncertainty can be crucial for better exploration vs exploitation tradeoff. For instance in [50], authors

took inspiration from an early active learning querying techniques called query-by-committee [51]: they

exploit an ensemble of deep neural network to learn an intrinsic reward function, that is then leveraged

in an end to end deep RL application. They validated this framework in navigation simulation and on

learning pushing and grasping objects on a real manipulator. However, they do not try to represent

and explicit inner learned models, making it a black box. In [52], authors proposed an uncertainty

aware deep RL framework that aims at disentangling both aleatoric and epistemic uncertainty. They

exploit auxiliary networks that learn both the epistemic and the aleatoric uncertainty. They validated

their framework by adapting a distributional RL variant of the DQN algorithm on simulation and

Atari games tasks. Though interesting to learn specific skills in predefined tasks, these methods still

lack, however, general high-level representations that are needed for better interpretability and better

cross domain generalization in interaction. Adapting such techniques to the robotics context in an

IRL architecture is a promising area of research for interactive task learning.

5.4.2 General active learning process for ITL

More precisely we can exploit uncertainty notions presented in section 5.3 in order to reason about

uncertainty in the active learning context and for integration within the IRL agent architecture. A

general methodology is illustrated in figure 5.17 and can be summarized with the following procedure:

1. A neural network is trained on a dataset with a loss L. According to estimation techniques,

such as the one presented in 5.2, uncertainty can be learned during this training. For external
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measure, uncertainty is learned on a validation dataset.

2. Calibration can be checked with metrics mentioned in 5.3.1 and assess the quality of uncertainty

estimation at time being. If calibration is not good, that means that the uncertainty estimation

techniques have not learned a representative uncertainty suited for the task, given the provided

datasets. That means that we should train with more data or change inner predictive and

uncertainty models if more data is not sufficient.

3. Then, the model prediction and uncertainty are exploited within the IRL agent process loop.

4. After a prediction is done, uncertainty is propagated in upper level and predictive selection is

carried out following 5.3.2 to decide between act or ask.

(a) If it is uncertain (f(τ) > 0 given τthresh), then a request for label is asked to the human

according to the current task knowledge. Labeled data are collected and can be augmented

to update learning and calibration datasets. Then back to 1. Ideally, the TPR, ACC and

NPV should get closer to 1 after this active learning step.

(b) If it is certain (f(τ) < 0 given τthresh), then the IRL agents acts. If uncertainty estimation

is representative and threshold τthresh is adapted, then missing alarms should be rare but

can still occur. In case of a missing alarm, humans should be able to stop the action. As a

last resort, unmet post-conditions leading to a failure in the architecture could be leveraged

by the IRL agent. Then, the IRL agent should also ask help to correct its behavior. Then

back to 1. FN is likely to decrease, reducing the risk of unexpected actions, while TPR and

ACC should increase.

This is a first approach to active learning that is quite general and might be used for different

learning (such as learning perception) modules in the architecture. To be fully adaptable, we need

more research on how to manage efficiently datasets and τthresh updates as the agent learns new data.

Moreover, tests should be done to validate practical use and evolution of the different rates. This is

discussed as perspectives in chapter 7
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* With methods such as ensembles, dropout, Bayesian and distance aware networks, the network can learn its own uncertainty

during initial training
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τpred
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Skill execution

IRL agent

process
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f(τ) <= 0 → Act
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calibration

(3) Active

learning with

uncertainty

Figure 5.17: General pipeline for active learning

5.4.3 Uncertainty aware behavior model

In order to integrate aforementioned works on the architecture, at the action/decision-making

level, we must extend the behavior model with uncertainty handling and propagation capabilities. A

natural extension of traditional BTs with uncertainty is to consider that tests do not works only in

a fully deterministic way, that is to say are not reduced to binary outputs true or false. Uncertainty

propagation can be carried out through Belief Behavior Trees (BBTs) [53]. In that setting, the agent

can reason over a belief state within its working memory bwm and propagate uncertainty through

nodes of the tree. This belief bwm is a distribution of states si over a set S, associated to a predictive

uncertainty τi: bwm = ∪si∈S(τi, si). The actions of the IRL agent are also allowed to have non

deterministic outcomes.

For illustration in the most general case, we can consider a simple planar grasping use case. An IRL

agent has a hypothetical uncertainty aware model, able to predict 3 grasping rectangles candidates
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along with their predictive uncertainty. The IRL agent is asked to pick-up an object on the working

space. Figure 5.18 represents the kind of decision process that could occur in such a scenario with

BBTs for a specific behavior. In practice, following [53], BBTs extend nodes representations for

conditions and actions.

Conditions node: Conditions node bwm → c(bwm) are functions of the belief states (the three pre-

dicted rectangles). According to some tests si, τ c
i → f(si, τ c

i ), condition node also return a set of belief

states along with their termination status ri (success or failure) and the level of associated uncertainty

τ c
i . More specifically, we can express condition nodes as :

c(bwm) = ∪si
c(si) = ∪si

(τ c
i , si, ri♣f(si, τ c

i ))

According to the return status (two grasping rectangle are certains, one is not certain), the con-

dition node can decide to propagate the belief state and uncertainty in parents and following nodes,

such as action nodes.

Actions nodes: Action nodes a(bwm) in the general case can have probabilistic outcomes. For in-

stance, even for a good grasp prediction, the object might slip after a grasping attempt. In general,

an action a is executed if preconditions are validated and certain for some believed states si. Action

a is then applied to those valid state si and can be associated to non deterministic postconditions.

Indeed, for each specific starting state si, an action can lead to different outcomes a(si) = s′
i,j with

an uncertainty τa
j . The uncertainty τa

j can be a probability over possible states such as
√︂

j τa
j = 1.

Assuming individual postconditions are independant events, a postcondition can then be expressed as:

cpost
a (si) = a(si) = ∪s′

j
(τa

j , s′
j)

By considering an independence between action and the perceptual state, we can assume the overall

uncetainty of being in state s′
j is τa

i,j = τ c
i τa

j . Therefore, the set of possible outcomes when applying

the action to the belief state is:

a(bs) = ∪si,s
′

j
(τ c

i τa
j , s′

j) , k ∈ N

104



5.4. ACTIVE LEARNING SETTING

Such a view can then be leveraged for acting and local planning by propagating uncertainty in the

tree.

¶(τa
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Precondition cpred
a (bwm)

should cause

should cause

Figure 5.18: General extension of belief behavior trees for condition and action nodes for uncertainty
propagation. Dotted arrow represent what is returned by the node after its termination.

In that setting, we can use uncertainty estimation and predictive selection function fROC
τthresh

(section

5.3.2) as the test function for the condition nodes.

We can then integrate the active learning process within this framework and the interactive pipeline

(see Figure 5.19). Given several conditions and uncertainty aware perceptual modules, the IRL agent

selects predictions based on predefined threshold τthresh. Predictions and uncertainties are propagated

back to upper nodes, a failure occurs and can be solved by asking demonstrations in an active learning

setting, if no grasping candidate is valid.
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Figure 5.19: The IRL agent can exploit specific BBTs structure to handle uncertainty provided by
lower level modules and the belief state in working memory.

5.5 Conclusion

In this chapter, we defined how uncertainty can be viewed as a composition of different types of

uncertainties, aleatoric and epistemic uncertainty which are related respectively to stochastic nature of

data and to the nature of the model. Learning such an uncertainty is determinant, if we want an IRL

agent being able to reason and to cope with several types of biases related to dataset shift. The most

studied ones, being out-of-distribution samples and covariate shifts. We explained the main techniques

used to adapt deep learning modules to learn uncertainty and we present a few metrics to qualify the

calibration of model uncertainty: how well predicted uncertainty matches with the observed accuracy

on test data. Furthermore, we showed that a tradeoff uncertainty can be at the core of an active

learning process. Indeed, by applying a threshold to the amount of acceptable uncertainty, we can

derive a notion of curiosity or motivation that can be leveraged by the agent during interaction for

active learning by deciding to ask rather than act. Thus, an IRL agent can have much more insight on

its predictions abilities, leading to safer behaviors and the ability to ask for help in richer scenarios.
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Chapter 6

Implementation and validation on a planar
pick and place learning task
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In this chapter, given design choices made in chapter 3, we implemented an architecture proto-
type for interactive task learning (ITL) with preferences, in a human/robot collaborative industrial
context. We first explain our sensors choice in terms of human/robot interaction modalities in section
6.1. Then, we explain which modules were integrated in the architecture to validate our main spec-
ifications 6.2. Finally section 6.3, validate the integration experimentally on a real UR10e industrial
collaborative robot. The cobot is taught, online and incrementally, a simple task with variations based
on human preferences. During the interaction, it leverages some prior knowledge to learn, online and
incrementally, both low level and high-level task information in the most natural way as possible for
humans.
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6.1. CHOICES OF SENSORS FOR IRL PERCEPTION AND INTERACTION

We recall in Figure 6.1 the organization of the architecture and we now provide a justification

for the choices of sensors and modules we integrated, in terms of interaction modalities, for the

implementation and validation of the architecture.
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Figure 6.1: Details view of the architecture in terms of integrated modules.

6.1 Choices of sensors for IRL perception and interaction

A robot can sense the environment using exteroceptive sensors. Specifically, we want the IRL agent

to adapt to the human and therefore, sensors must be the least cumbersome for workers and allow to

sense and perceive semantically meaningful communications means. This led to a non exhaustive listing

of sensors types, that could be used for different interaction modalities to validate the architecture.

We can distinguish non-verbal and verbal communications means. Both are important when defining

a task, as some information can be more easily shared by words or by non verbal interaction.
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6.1.1 Non-verbal communication

Vision in general: Vision sensors are interesting because they allow to capture rich information on

the environment (images and stream of images) and with a wide spatio-temporal perceptive field.

Technological solutions are very diversified. They are non-contact devices, non-intrusive and very

flexible sensors.

Thanks to their non-invasive upsides and the important quantity of information that can be ex-

tracted from an image or video, vision is one of the key modalities in most of human/robot interactions.

For example, in the same video, we can both detect the pose of the operator and more generally do

scene analysis. Classical cameras are passive sensors that convert the light emitted and reflected by the

environment into a grid of color pixels. There are different spaces of representation of the colors. The

RGB space (red, green, blue) is the most traditional but to limit the effects of change in brightness,

we can prefer other color spaces such as the HSV space (hue, saturation, value).

We can distinguish these sensors according to their sensitivity to the wavelength of light. Thus,

most cameras allow to have information in the visible light range. The use of sensors using other

areas of the spectrum of light may be relevant to improve the knowledge of the environment, but in

that case the IRL agent could perceive more than the human, and therefore should provide insights

on its perception. For instance in the case of thermal cameras, for example, the body temperature of

a human can be used as a means of presence detection while avoiding the problems of reverberation

and illumination of conventional cameras [2].

Compared to 2D sensors, 3D sensors naturally provide more information about the scene. For

example, it is easier to segment a scene with an area of interest by simply filtering on the depth. We

can distinguish between passive 3D sensors such as stereoscopic cameras that rely on depth inference

via parallax, and active 3D sensors that rely on the emission of light rays and the processing of

reflected rays, such as structured light cameras. Cameras that can output both RGB data and depth

are referred to as RGBD cameras.

Finally, we can mention the TOF (time of flight) cameras and the LIDAR. These sensors send a

light beam, generally in the infrared range, and measure the return time of flight of the beam. By

knowing the speed of light one can compute the distance between the laser emitter and surrounding

objects. They allow in general a scan of 360° at the opposite of classical cameras and are thus very
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used in the field of mobile robotics.

Communication requires a common representation of the environment. Therefore, the IRL agent

must be able to create a semantic representation of its environment that can be understood by an

operator. Scene detection and segmentation techniques based on vision are then relevant for a high-

level communication between humans and robot.

Biological signals: Biological signals are also a way for human-robot collaboration. They usually

involve the use of sensors to be worn by the user. Having sensors directly connected to the operator’s

body has advantages. They can give information on elements that are difficult to access with external

sensors, either because they are internal signals of the human body, or because of occlusions in the

case of vision sensors. On the other hand, wearing a sensor can be annoying for some people. Many

sensors exploit various biological signals:

• Myoelectric sensors (EMG sensors), such as the Myo sensors measure the electrical activity of

muscles. This type of sensor can be used for gesture recognition [3].

• We are beginning to see the development of electrical impedance tomography (EIT) based sensors

for body imaging. In [4], authors showed that it is possible to use these impedance images for

gesture recognition.

• EEG (electroencephalogram) headsets measure the electrical activity of the brain with contact

electrodes. A distinction is made between wet and dry electrode systems. Dry electrode systems

are less accurate than wet electrode systems because of the less controlled skin/electrode contact.

However, the installation of dry electrodes is easier and less restrictive. When an EEG headset

is used in a system interacting with a computer or robot, it is called a BCI (brain computer

interface). The location and number of electrodes influence the quality and type of brain signals

that can be measured by the EEG headset, such as some emotions or ideas. In [5] authors

implemented the possibility of controlling a robotic arm using brain signals measured with an

EEG headset. However, this requires significant learning on the part of the human to perform

this task.

• Some types of brain signals can limit the need for people to learn. For example, the use of

SSVEP (Steady state evoked potential) is quite common in BCI applications. These are specific
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signals that appear in the brain at the same frequency as periodic visual stimuli (flashing leds).

In the context of human-machine interfaces in robotics [6], authors use flashing icons on a screen

to generate SSVEP signals in a BCI helmet wearer. The latter can then mentally select the icons

on the screen to send commands to a robot. To gain mobility, some authors evoke the use of

augmented reality glasses as a display medium instead of a screen. In [7] authors show that it is

possible to direct a mobile robot using a BCI interface and augmented reality glasses (hololens

glasses). The SSVEP has the advantage of requiring little or no learning but requires a focus

of the human to limit noise. Overall, BCI interfaces return noisy signals which still makes it

difficult to leverage for robust real-world applications.

Pose estimation: Pose detection is of great interest in human-robot interaction because it is a repre-

sentation that can then be used in scene analysis and gesture detection. Also locating the pose of an

operator, is often used for human demonstrations to robots or for emotions recognition by tracking

facial key points [8].

In the field of co-manipulation, pose detection is also used, so that the robot helps the operator to

reach more ergonomic positions [9]. From the sensor point of view, there are wearable sensors like the

Xsens suit [10], and more generally devices leveraging Inertial Measurement Units (IMU) and visions.

For instance, authors in [11] leverage IMU, magnetic sensors and lasers to track the pose of humans

and adapt off-line generated motion paths.

Actually from the processing of the video stream of a simple RGB camera, it is possible to estimate

the pose in a less invasive way. On the other hand, the sensitivity to occlusions is higher. Among

pose estimation methods, we can distinguish between methods based on joint detection [12] and dense

methods. In the first case a neural network produces a probability map of presence for each joint of

the body, and we obtain the skeleton of the individual. In the case of dense detection, the network

assigns to each pixel the limb to which it belongs. As instance of joint detection method, in [13],

authors estimate a 3D body pose from the 2D pose provided by Openpose [12]. They then exploit this

pose to make a robot learns trajectories such as opening a small chest with a handle.

Movement: Some signals can require the IRL agent to have especially good temporal resolution

representations to fully understand its surrounding and human interactions. Indeed, movement can
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be key in several cases such as high speed gestures interpretation. Depending on the dynamic of

the observed phenomenon and cost, several sensors can be considered for the accurate detection of

environmental and human movements.

Wearable sensors such as Xsens [10] and IMU based devices, can have a good temporal resolution

for human gesture recognition, but vision sensors are less cumbersome. For low dynamic movements,

such as low movement human gestures, standard cheap RGB-D camera can be leveraged by computing

optical flow between successive frames. For higher dynamic movements, however, motion blur can

become too important and make optical flow not exploitable. In that setting, much costlier or bulky

RGB-D sensors, such as high-speed cameras can be used.

Recent specialized vision sensors, neuromorphic cameras, also called event cameras, have spe-

cialized in high dynamic and high temporal resolution vision with more affordable costs. They are

composed of cells that are not able to sense colors, but respond asynchronously to a change in light

intensity. Therefore, at each time step, in contrast to standard RGB-D cameras which outputs a syn-

chronous image of pixels, event cameras output, asynchronously, a sparse point cloud, as only pixels

that undergo a change of intensity are triggered. This allows these cameras to be very efficient for high

dynamic range and high temporal resolution tasks, such as hand gestures recognition [14], tracking,

simultaneously localization and mapping or structure from motion [15].

Eye gaze analysis: Gaze detection can also be used for nonverbal communication. In [16], authors use

an eye-tracking system, combined with an object detection system to infer which part of the object

to pick-up based on where the operator is looking. Thus, the operator can indicate to the robot

an intention to pick-up an object simply by looking at it. It can also select various actions such as

pouring the contents of a cup into another container. The occulometric sensors (e.g. Tobii Pro Glasses

2) generally consist in using glasses equipped with a camera which ensures a precise tracking of eye

gaze.

Tactile and haptic: The use of tactile sensors, such as force sensors, provides information about the

robot’s contacts with the environment. This allows better management of collisions and facilitates

the control of robots under stress. Artificial skin systems capable of detecting pressure variations are

beginning to appear but are still usually at the state of research prototype. These sensors can be
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used alone or with other perception modalities. Thus, in [17] authors combine a tactile sensor uSkin,

a vision system and a neural network model to qualify the texture of some materials with a simple

image.

In [18] authors developed an artificial skin by exploiting the variation of impedance of a conductive

fabric submitted to a certain pressure. This impedance variation is measured by an imaging method:

electrical impedance tomography (EIT). Using a neural map it was possible to infer the pressure

location of a robotic arm and control it by touch.

Giving tactile capabilities to a robot can also help improving its grasping abilities. Thus in [19]

authors use the Biotac sensor on a robotic gripper to determine the normal and tangential force during

the gripping of different objects. From the tangential force information, they were able to create a

controller that adapts the gripping force to prevent the object from slipping when it is carried, while

normal force information prevents the object from being crushed.

Force control: Using force and torque sensors, it is possible to teach trajectories, with kinesthetic

learning, to a robot in a fairly natural way. By adapting its compliance, a robot can be controlled

in effort by an operator. The operator can show the robot a sequence of points. The robot can

then interpolate a trajectory. Combined with reinforcement learning, this type of control can provide

demonstrations that can accelerate learning for a given task. Authors in [20] leverage a force/torque

sensors mounted on a collaborative robot for a precise and smooth hand guiding at the end effector

level. Such methods can be leverage in kinestetic learning. In [21] for instance, authors teach a robot

how to insert a part by demonstration and deep reinforcement learning. They first record human

movements sequences via effort control. The robot then learns by reinforcement the insertion task by

leveraging demonstration data, which accelerates the convergence of the network.

6.1.2 Verbal communication

As with images, deep learning techniques have made great progress in speech processing, both in

speech recognition and speech synthesis. The interest of speech recognition and synthesis in human-

robot communication is the ability to program a robot in a natural way and share information at a

high-level. That’s why most of the IRL decided to exploit speech as their main modality.

Microphones are generally used for speech recognition. One or more microphones may be used de-
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pending on the application. For example, source location requires several microphones. In the context

of human/robot interaction, in addition to the ability to capture the frequencies of the human voice,

the microphone must also be robust to surrounding noise. Among the most noise-robust technologies,

we can cite

1. unidirectional microphones, which focus the recording only in the direction of the speaker, thus

limiting the phenomena of reverberation and external noise.

2. Throat microphones or laryngophones which convert vibrations in the throat into speech sounds.

Some studies show that voice recognition capabilities in noisy environments, such as industrial

one, are far superior to traditional microphones [22]

Voice classification can be relevant in the context of human-robot collaboration because it can

allow a robot to detect who is speaking based on its voice. For instance, in [23] authors propose a

neural network architecture based on LSTM to obtain an encoded representation of the voice, in order

to classify different speakers.

Speech synthesis capabilities are also interesting. Its use in social robots is common and could be

interesting in an industrial context. By integrating a vocal synthesis, the robot could then share its

decisions not only visually through a screen but also naturally and orally.

Choice of sensors for validation

After listing some of the main sensors and associated interaction modalities, we have selected the

ones that seem the most useful for a first integration and validation in the architecture. We want

to ensure the most possible natural communications between man and the IRL agent. This requires

comparing sensors and signal types to determine which ones are the most relevant and how they

can be combined for more robustness and complementarity. The main considered criteria to fulfill or

interaction specifications are the following:

1. Potential perceptions after processing signals must be semantically meaningful and natural for

a human

2. Sensors must be as non-invasive as possible to be accepted by the people interacting with the

robot.
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3. Programming and processing must be simple and fast to allow near real-time communication.

4. Sensors must be robust enough with respect to environmental disturbances.

The choice of signals was centered on humans, therefore we fostered natural and non-invasive

communication means criteria. Of course, the choice of sensors is likely to depend on each individual

specificities. For instance for a disabled person, such as someone that cannot speak or cannot move,

even if a BCI can be seen as invasive, it could be the best sensor for human/robot interaction. For

our validation, we decided to consider a valid worker for our sensors choices. Table 6.1 shows a

qualitative comparison of the proposed signals and modalities according to these criteria. The sign

”+” (respectively ”-”) means that the signal is evaluated positively (respectively negatively) for the

criteria. Some commercial sensors at the time of writing are also provided as illustration. Our sensors

choices are represented in green.

One of the most natural ways of non-verbal communication is through gestures which can be

easily detected by vision sensors, provided there are no occlusions. Vision sensors are among the

least invasive and most easily acceptable sensors, because unlike wearable sensors (BCI, EMG, EIT

or motion capture sensors) it is not likely to interfere with the operator’s movements, or to lead to

cumbersome contacts. For their versatility and ease of use for environment understanding, we have

considered using RGBD camera.

Speech remains our main way of communication. Therefore it is essential to equip robots with

spoken language processing capabilities in order to ensure a natural communication for the high-level

components of the architecture. As for vision, microphones are relatively non-invasive sensors. To

limit the phenomena of ambient noise, we have chosen a unidirectional headset.

115



6.1.
C
H
O
IC

E
S
O
F
S
E
N
S
O
R
S
F
O
R

IR
L
P
E
R
C
E
P
T
IO

N
A
N
D

IN
T
E
R
A
C
T
IO

N

Table 6.1: Summary table of sensors and perception modalities with qualitative comparison. Green sensors were chosen for the
validation and the implemantion of the architecture

Modality Sensors Sensory input
Perception and

semantics
Robustness

Acceptability (non
cumbersome or

invasive)
Ease of integration

Commercial sensors
example

Vision

RGB camera 2D Image

Pose,
Movement,Gestures,
Facial detection,
Emotions, Scene

analysis,

++ (sensible to
occlusion/more or less

to light changes)

+ + + (natural
modality and without
cumbersome wearable

sensors)

++ ( important
pre/post-processing to

extract useful
semantics, but we can

extract a lot of
information and there
is a rich ecosystem of
devices and libraries)

RGBD camera 2.5D Image

Intel Realsense D435,
Photoneo

Event camera
Light intensity

variation
(asynchronous output)

DAVIS346, DVS-Gen4

LIDAR 3D Point cloud RPLIDAR, Velodyne,

Camera + scannable
figures

Predefined patterns
Dictionary of pattern,

meaning

+ (use of tags is
simple but does not
scale well when a lot
of tags are necessary)

Tags, QR code,
ArUCo code

Sound

Omnidirectional
microphone Speech ( air

propagation)

Speech, emotion from
speech

+ (sensitive to noise
in the environment,
voice reverberation)

++ (natural modality,
wearing a headset can

be slightly
cumbersome)

Classical microphone

Unidirectional
microphone

++ (less sensitive to
noise)

Jabra headset

Throat microphone
(throat vibration)

Speech

+ + + (far less
sensitivity to noise,

ideal for noisy
industrial

environment)

−− (wearing a throat
microphone can be
very cumbersome)

Biologi-
cal

EMG
Muscular electrical

activity
Gesture

+ (sensitive to contact
between

skin/electrodes )

+ (forearm wearable
device)

++ (data is usually
accessible and at a

high rate)
MyoWare sensors

EEG
Neurons activity (skin

based BCI)

Emotions, mental
images, SSVEP

detection

−− (sensitive to
individual change,
skin/electrodes

contact, involuntary
muscle activity)

− (head wearable
device, several

electrodes, operator
often needs to learn)

− (data seems not
always easily

accessible in current
commercial headsets
which focus on specific

applications)

Muse/Emotiv/Open-
Bci BCI

EIT Impedance variation Gesture, images
− (mostly sensitive to

skin/electrodes
contact)

+ (forearm wearable
device)

− − − (not easily
accessible technology)

Not to our knowledge

Motion capture
Tracking of wearable
frames attached to the

human body/face

Gesture, pose, face
and emotion detection

+ + + (no risk of self
occlusion)

− − − (wearing a
complete motion
capture device is
cumbersome)

++ (good proprietary
solution, seems easy to

setup)
Xsens

Occulometric glasses Ocular tracking Visual attention ++

− (wearing glasses is
slighty cumbersome,

but could be
integrated to existing

protections )

++ (good proprietary
solution, seems easy to

setup)

Tobii Pro Glasses 2,
HoloLens 2

Tactile

Tactile skin
Variation of diverse
physical quantities

Texture, touch

++ (touch is a natural
interaction means)

− − − (quite new
technology, not very

accessible)
Biotac

Force/torque sensors Force, torque ++

+ + + (accessible as
already integrated in
most collaborative

robots)

IIWA/UR
proprioceptive sensors

116



6.2. PERCEPTUAL AND ACTING MODULES INTEGRATION

6.2 Perceptual and acting modules integration

The chosen sensors are then leveraged by the IRL agent thanks to several perceptual modules we

integrated in the architecture for workspace understanding and human/robot interaction. Specifically

we integrated modules for speech recognition, semantic processing, pose and gesture estimation, and

teaching from demonstrations.

6.2.1 Speech recognition and understanding

Speech recognition: For our validation, we adapted an online speech recognizer, Google Speech plate-

form combined with a voice activity detector (python interface to WebRTCVad)1, in order to carry out

speech to text STT (Speech To Text) part. Spoken words are processed one by one and are ordered by

confidence level according to speech recognizer. Speech recognition is often faulty and there is no way

to update the speech recognizer. Therefore, we exploit a predefined base of written words to check if

the recognized words are compatible with the current working domain. If it is not the case, the human

agent has to repeat.

Semantic analysis: Once the utterance has been converted in textual entry, it is possible to infer

human intents by exploiting a simple natural language understanding module based on FLAIR [24].

FLAIR implements an architecture based on bidirectional LSTM networks for text analysis [25]. The

architecture is based on:

1. A first bidirectional LSTM network (BiLSTM) that has been pretrained on a very large and

unlabeled text corpus. The training consists in predicting the next character from a sequence of

characters. At the end of the training, the network is then able to provide a representation of

each word incorporating the context related to the surrounding words.

2. The representation from this first network can then be used in a second network for semantic

processing tasks

Pretrained neural networks are used to parse semantically the utterances, with Part Of Speech

(POS) tags. For now, we also assume that the parser is perfect and that sentences are simple as

1https://github.com/wiseman/py-webrtcvad
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we only exploit verbs, nouns and prepositions. However, this is sufficient to validate the main

principles of our architecture, perceptual grounding and the interaction between modules.

6.2.2 Prior object segmentation and tracking

We want the IRL agent to be able to learn online new unknown objects and to reason about

them. However, this is possible only if the IRL agent can first detect object locations and create a

proto-object in the working memory. In order to detect the object, we rely on a hand crafted module

that exploit a pretrained agnostic object detector neural network (tensorflow hub)3, and computer

vision algorithm based on depth and color of a RGBD vision system. Moreover a very simple tracking

algorithm is implemented based on centröıd distance of detected proto-objects.

6.2.3 Joints pose estimation for non verbal interaction

To build a human aware IRL agent, one of the most important feature is to be able to detect

the human pose and location. To build real-time, interpretable representations of humans in our

interactive setting we developed a first module to detect human pose by integrating Openpose [26,

27], pretrained deep neural network predicting joint pose estimation. It takes as input an RGB image

and output joints estimation. We also exploit the depth channel of the RGB-D camera in order to

be able to locate the joints in the robot frame. Joints estimations are then at the base of the non

verbal communication. Vision often conveys a lot of information that we do not naturally explain

by speech but rather with body cues such as pointing gesture. Pointing is indeed a very important

non verbal cue that is commonly used to focus on the same spacial location. By exploiting the joint

poses output of the Openpose based module, we track the current pointing location of the dominant

hand. When the human points to a salient object during a learning interaction, it is assumed that the

IRL agent should focus its attention to the pointed object or location. By this way there is a strong

but natural signal that helps the teacher describe the non verbal cues of the tasks for the learning by

demonstration module.

6.2.4 Location affordance learning

One of the upmost task for an industrial robot manipulator is grasping and manipulation. This

motivates a module to teach the IRL agent how to grasp unknown object in a reconfigurable way. We
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6.2.5 Acting

In practice, modularity in robotic architecture software and ITL agent is usually promoted through

the exploitation of message passing and data marshalling based open source middlewares. Such mid-

dlewares are for instance ROS [28], YARP [29] used mainly in iCub robots, LCM [30] or proprietary

ones such as NAOqi from SoftBank Robotics. They are used for data exchange between modules and

actuation of robots. The choice of the middleware can depend on several technical requirements such

as accessibility of source, programming language, available packages for a specific robotic platforms,

integration with simulation tools, requirements in terms of true real time ability, resilience to networks

disturbance for distributed systems. Authors in [31] review such requirements. In our architecture,

we mainly focused in simple integration of reasoning, learning and acting without true real-time re-

quirements and in a single computer system. Those parts we developed in python3. Acting on the

real robotic plateform, however, is provided by bridging on a specific robot middelware, ROS in our

experiment. It is indeed one of the most used open source middleware with a strong community sup-

port and with up to date package for our robotic plateform (UR robots). Moreover ROS comes with

several tools that are helpful in terms of interface and debugging tools to visualize the agent inner

processes and perceptions.

6.3 Validation scenario

The current architecture has been validated on a UR10e 6 DOF collaborative robot. The cobot

leverages prior knowledge to learn variations of the task to give, for different objects and according

to human grasping preferences. This prior knowledge is integrated at different level and is presented

in Table 6.2. As stated in our specifications, learning is done through an online, mixed-initiative,

incremental process taking into account human preferences. Table 6.3 presents the main unknown

and the knowledge that is acquired at the end of the interactive teaching scenario. Table 6.4 details

the scenario and shows the incremental and interactive learning process which leverages both prior

knowledge, learned information and humans demonstrations or instructions.

The interactive teaching scenario used for validation can be decomposed in two main phases :

• An interaction with a human H1 to validate the IRL’s ability to leverage knowledge, to ask only

for the missing knowledge and to learn incrementally variations of the task ”to give” for different
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objects.

• An interaction with a human H2 who is unknown to the IRL and have different characteristics

and preferences than H1. The task ”to give”, which is now a known task, is asked by H2 for

an object learned with H1. This phase, during which the IRL naturally asks and learns H2’s

preferences, validates adaptation to individual.

The teaching scenario is initialised by H1. This is done by presenting the robot an ArUco tag

[32, 33] linked to a unique identifier. The IRL agent has only the prior knowledge given in Table 6.2

During the interaction H1 asks the robot to give him a screwdriver but ”give” is an unknown task

and ”screwdriver” is an unknown object for the IRL agent. By natural interaction with H1, the IRL

agent incrementally learns what is the task ”to give” and a skill to solve it. During this process, the

IRL agent learns visual features of the screwdriver and a grasping location affordance by asking H1

demonstrations and leveraging our developed learning from demonstrations module [34]. Finally, the

IRL agent gives the screwdriver by locating and moving to the right hand of H1 in order to adapt to

its characteristics. Then, H1 asks the agent to give him the wrench. As now the IRL agent know what

”to give” is, it only learns the specific missing information: what a wrench is and a grasping location

affordance, specific to H1 (the head of the wrench). This second part highlights the modularity and

reuse abilities of the learned representations.

In the second phase, H2 is also identified by presenting an ArUco tag. This human is unknown

to the agent and is asked for information about its characteristics. H2 informs the agent about his

name and that he is left handed, leading to an update in the database. H2 then asks to give the

wrench. The IRL agent can leverage all its knowledge about the ”to give” task by just learning H2’s

preferences. It learns that H2 prefers the wrench to be taken by the tail by requesting H2 for a grasping

demonstration. Finally the IRL agent adapts to H2 by taking the wrench by the tail and giving it to

the left hand of H2. Figure 6.4, illustrates preference adaptation according to the grasping location

affordance.

Thanks to the provided human demonstrations, neural network is trained to efficiently predict the

grasping affordances (prohibited, neutral and authorised locations) for the require object according to

grasping preferences. Concretely the respective branch of BT’s for H1 and H2 points towards a specific

set of weights stored in a relational manner. This is done through the incrementally updated database,
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with respect to identifiers, gathering known characteristics and preferences for each individual.

A video of demonstration can be found here2

Table 6.2: Overview of prior knowledge

Representa-
tion

Prior knowledge built in the architecture (Step -1)

Features extraction from pretrained neural networks

Sensory segmentation abilities : background removal, proto-object segmentation

Human pose recognition

Perception ArUco tags detection

Word recognition abilities from Speech to text (STT)

Semantic analysis with a base communication protocol

Actions/-
tasks

to pickup(obj) as a behavior tree (BT)

to putin(location) as a BT

Preferences Humans have preferences and characteristics, H1 is known and is right-handed

Table 6.3: Synthesis of what will be learned during the incremental interactive learning process of the
unknown task to give

Representa-
tion

Unknowns Learned knowledge

Perception wrench and screwdriver
perceptual features and grasping
location affordance of wrench and screwdriver

Actions/-
tasks

to give(obj) to give(obj) as a BT

Preferences
Affordances and acting
preferences

Preferred grasping affordance (wrench caught by the head or
the handle)
Adaptation to give the object in the dominant hand

2https://www.youtube.com/watch?v=EAuLMnQULB0
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Table 6.4: Detail of the learning process during the incremental interactive learning process of the
unknown task to give

Interaction steps
Unknowns → Learned
Knowledge

Leveraged knowledge
Human interactive inter-
vention

Step 0:
H1 inits interaction

• Built-in prior knowl-
edge with vision and
speech (BPK) see table
6.2
Database containing
H1’s characteristics and
known preferences.

ArUco identifier

Step 1:
H1 asks: ”give screw-
driver”

• to give(obj) →
new goal G1: give =
In(screwdriver, hand)

• Built-in prior knowl-
edge with vision and
speech (BPK)

Speech recognition and
semantic analysis

Step 2:
H1 asks: ”The goal is
screwdriver in hand”

• screwdriver → percep-
tual features

• Built-in prior knowl-
edge with vision and
speech (BPK) ,
• G1

Pointing demonstration
with speech validation

Step 3:
H1 explains: ”pickup
screwdriver”

• to give(obj) →
pickup(obj) + . . .

• BPK
• G1

Speech recognition and
semantic analysis

Step 4:
H1 shows its preference

• to give(obj) →
pickup(obj) + . . .
• affordances preferences
of H1 for screwdriver →
screwdriver affordance
as H1’s preference (the
agent stores specific
neural networks weights)

• BPK
• G1
• pickup(obj) needs
grasping affordance

Authorized and prohib-
ited locations demon-
stration with speech val-
idation

Step 5:
H1 explains: ”putin hand
(screwdriver)”

• to give(obj) → to
give(obj) = pickup(obj)
+ putin(hand)

• BPK
• G1
• putin(loc)
• dominant hand of H1

Speech recognition and
semantic analysis

Step 6:
H1 asks ”give wrench”

• wrench → wrench per-
ceptual features

• BPK
• new goal G2 =
give(wrench)

Pointing demonstration
with speech validation

Step 7:
H1 shows its preference

• affordance preference
of H1 for wrench →
grasping location affor-
dance as H1’s preference

• BPK
• goal
• to give(obj) whose sub-
action pickup needs a
grasping affordance
• dominant hand of H1

Authorized and prohib-
ited locations demon-
stration

Step 8:
H2 inits interaction

• name of H2

• dominant hand of H2

→ H2’s characteristics in
database

• BPK Keyboard entries

Step 9:
H2 shows its preference

• affordance preference
of H2 for wrench →
wrench affordance as
H2’s preference

• BPK
• new goal G3 =
give(wrench)
• to give(obj) + need of
grasping affordance for
pickup
• dominant hand of H2

Authorized and prohib-
ited locations demon-
stration with speech val-
idation





6.4. CONCLUSION

in the overall architecture. The next chapter (chapter 7) concludes our work and discusses several

perspectives.
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Chapter 7

Conclusion and perspectives
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The work carried out throughout this thesis has led to the design and development of a first core
architecture for skills learning in a collaborative industrial context. As a conclusion, we review in
section 7.1 our main specifications and the developed methodology to fulfill them. We balance our
results by underlying the current limitations of our system and how it opens many research paths.
Section 7.2 presents how a first uncertainty aware, deep learning module developed by Laurent Bimont,
a former PhD student, can be integrated with our learning from demonstration module. We present
finally in section 7.3, thoughts on longer terms perspectives and cross domain research that could
benefit the architecture.
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7.1 Main points

The main objectives of the thesis were to build a Smart Robotic Assistant for industrial collabo-

rative robotics. Inspired by works in cognitive architecture and interactive robot learning, we defined

several specifications for our cognitive architecture to contribute to Interactive Robot Learning and

Human Robot Interaction (HRI). Throughout this thesis, we discussed the main building blocks of the

core cognitive architecture and the integrated learning modules to fulfill them. The IRL agent must:

• reason and have at least partial explanations abilities

– The IRL agent has been endowed with several symbolic memories for an interpretable

representation of high-level knowledge and reasoning over those representations.

– An ontology is used to share coherently representations across the different memories

– The choice of Behavior Trees as a behavior model eases the representation of a goal directed,

procedural knowledge and allow a certain level of reactivity.

• learn quickly and incrementally a new task from low level to high-level abstractions

• leverage a prior knowledge base for tasks execution and learning online

– Use of symbolic memories allows to leverage symbolic prior knowledge.

– Behavior Trees help to build a modular system and therefore promote quick behavior reuse

within the decision process architecture

– Transfer learning with deep neural networks is leveraged for learning and interpreting the

world and human interactions.

– Transfer learning also allows to learn fast, to reconfigure behaviors as we showed with our

learning from demonstration module

• interpret and react to human interactions in real-time

• interact intuitively with non-programmer experts

– Several perceptual learning modules, developed and adapted from the literature were inte-

grated into the architecture.
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– Failure handling through the behavior model allows to teach the IRL agent in a mixed

initiative human/robot interaction loop, an unknown task at both high and low levels.

– The choice of sensors and perceptual modules for validation, based on speech and vision of

gestures, were chosen to exploit natural communication means for information sharing

– The developed learning from demonstration module eases non verbal interactions.

• adapt to preferences and specificities such as disabilities

– The architecture is human centered and therefore, the IRL agent specifically represents

human preferences and learns them during the interaction.

– Validation has been made on a real-world system to assess the relevance of the approach.

• handle uncertainty in moto-perception and its knowledge

– A state of the art was made on uncertainty definition and its estimation with deep learning

module

– Uncertainty handling and reasoning is a work in progress and will leverage extension of the

behavior model and aforementioned uncertainty estimation techniques.

This work is a first step in the development of a powerful IRL cognitive system for a non-

programmer expert human to teach, more naturally, flexible behaviors to an industrial collaborative

robot. Overall, we have built the architecture with modularity in mind, as using modular components

is key for better understanding, confidence assessment and the potential evolution of the architecture.

Teaching behaviors is a complex task, so we took inspiration from the iterative learning process in

humans. Robots are taught incrementally, how to represent the world with and for human agent.

This type of learning is promising as it gives much more control and likely confidence to the end users,

by teaching the robots behaviors according to their needs. In the long run, it could help build more

interpretable representations of the real-world environment. Of course, the ideal IRL is still far from

being achieved. We develop in the next section some limitations and relevant paths of research, with

a focus on ongoing work in uncertainty integration.
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7.2 Integration of an uncertainty aware grasping module

In section 6.2.4, we developed a module that could learn grasping location affordance with a good

accuracy level. However, the agent can still predict wrong grasping location (for example, if the

training dataset is not diverse enough). In an industrial scenario, for safety concerns, it can be much

more acceptable not to act rather than doing wrong. In that context, we want the IRL agent to

be able to measure its confidence in grasping prediction. If it is not sure, it does not act and this

specific failure can interactively be handled by asking for new demonstrations. Once the IRL agent

is confident enough, it can act. Therefore, to exploit uncertainty in the architecture and later in a

multimodal way, we have started to develop a specific module to evaluate uncertainty at the same

time as learning grasping parameters. It consists in two neural networks: Graspnet presented in

section 4.1.4 which is responsible for learning the rectangle grasping parameters and Trustnet which

is responsible for predicting the uncertainty of Graspnet. It is a reproduction of the work done in our

laboratory by Laurent Bimont, a former PhD student. Constraints due to the Covid situation, limited

the maturity of this work. Therefore it has not yet been valorized in a publication and integrated

into the overall architecture. We first introduce in section 7.2.1 grasping under uncertainty before

presenting a global overview of Trustnet module and its use for grasping under uncertainty in section

7.2.2. Main experimental results are provided in section 7.2.2. Finally, in section 7.2.3, we present how

it can extend the IRL learning from demonstration capabilities. Annex A.2, provides the experimental

details obtained by Laurent Bimont.

7.2.1 Grasping under uncertainty

In the deep learning community, estimating network uncertainty has been addressed in various

works (section 5.2). As to the best of our knowledge, few papers have investigated uncertainty mea-

surement of vision regression problem in grasping, we decided to focus on the direct regression of

the grasping parameters along with uncertainty. Learning to grasp and prevent failed attempts has

already raised interest in the robotic community. Several approaches rely on leveraging geometric

characteristics of the grasping contact area [1–3] to compute a grasp quality metric. To obtain good

performances, those approaches require knowledge about mechanical properties and a 3D model of

the objects and the gripper. Such information are hardly available in an online interactive setting
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such as the one we face with an IRL agent. Predicting a confident grasp directly from a real-world

image can therefore be a very flexible approach. In that context, we have seen in section 4.1.4 that

an important part of current research explores deep learning. However, compared to geometric and

analytical methods, traditional deep learning approaches are much more opaque. This has led to bring

uncertainty estimation techniques with deep learning to the visual grasping context. For instance, in

[4], authors train a network to predict, given CNN features computed on an RGB image, several po-

tential grasps as belief heatmaps, which are then fitted to 2D Gaussian Mixture Models (GMM). This

allows the model to predict several possible grasping poses which are then ranked according to the

fitted GMMs likelihood. The mean of each predicted belief maps represents the center of a gripper

plate, while the variance has been related to a measure of uncertainty. The methods gains in accuracy

before staggering, as the number of predicted heatmap increases.

7.2.2 Trustnet

With Trustnet, we chose another uncertainty estimation approach as we only want to predict

one grasping pose. We have extended a methodology [5] where authors proposed to leverage an

external neural network called ConfidNet, trained to predict the True Class Probability of a prediction.

This technique is related to the external measure approach (section 5.2.4) in uncertainty estimation

techniques. Here, TrustNet has been applied to predict an uncertainty associated with GraspNet

predictions. The overall module architecture is presented in Figure 7.1. We note g = G(X) =

(x, y, θ, ω, h) a prediction of GraspNet and τ = T (X) a prediction of TrustNet for an image input

X. TrustNet outputs an uncertainty metric representing the probability of failure given the trained

GraspNet, τ = P (Y = failure ♣ G, X) for any input X.

The steps of the main method is the following:

1. We train GraspNet on a dataset Dtrain = (Xtrain, Ytrain).

2. Based on a validation set Dval = (Xval, Yval), we build an uncertainty calibration dataset Dcal =

(Xcal, τ) where the target value τ is related to a certain grasp (0) or an uncertain grasp (1)

determined thanks to the Jacquard metrics (equation A.1 in annexe A.1).

3. Then, this dataset Dcal is used to train TrustNet as a classification problem.
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be generated according the uncertainty threshold τtresh. Uncertainty can be propagated back in the

tree and if the agent is not certain, it can be solve in the BBT, leveraging active learning. Figure 7.5,

presents the high-level integration of the module based on the methodology presented in section 5.3.

In the long term, we hope to reach a success rate of 100% for grasping trials while limiting the

number of irrelevant requests. It can indeed generate a cognitive burden for humans and an economic

cost if re-configuring the robot is required too frequently. Hopefully, as it increases its experience, the

IRL agent will be less and less likely to ask for help.
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Figure 7.3: Graspnet and TrustNet integration can be used in a task oriented setting for active learning
by demonstration.
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Figure 7.4: Possible integration of the module with BBTs. Uncertainty can be propagated backward
and t leveraged by the IRL agent for active learning.
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Figure 7.5: Integration and learning pipeline of the TrustNet/GraspNet module with the higher level
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7.3 Long terms perspectives

7.3.1 Continuous active learning setting

This active learning pipeline depends on the level of uncertainty of the system, τthresh (see figure

7.5) and on how datasets can be updated. During the IRL process, in first steps, we aim at drastically

limit the number of missing alarms (FN). Therefore, we should start with a rather high TPR(τthresh)

corresponding to a low τthresh before progressively increasing it as the IRL agent predictive and uncer-

tainty models improve. The idea is represented in Figure B.21 where we illustrate for an hypothetical

model the proportion of good predictions (in green) and of wrong predictions (in red) given the un-

certainty level. The agent will ask the operator for inputs labels of uncertain predictions. Training

on few epochs from the current weights/knowledge will enable the agent to significantly improve its

expertise over time. In order to not forget what was previously learned while avoiding the storage

of unnecessary data, the IRL agent needs a way to select the most relevant data to keep, as new

data are collected. Various techniques based on experience replay, a dataset of past experiences, [6,

7], commonly used in reinforcement learning, could be leveraged to select the most relevant data as

suggested in [8].

Ideally, after a few iteration steps, the distribution of good and wrong predictions should be well

separated among uncertainty τ (ACC tending to 1), with no missing alarms and less uncertain and

wrong predictions. Expertise of the IRL will be seen when asking decisions becomes sparse with an

NPV ratio equal to 1, and TN proportion very close to 1. Remaining asking decisions should happen

with scarce unseen inputs (particular cases). This would allow to adujst τthresh as the agent becomes

expert. However, defining the right way to do this automatically is open, as the level of acceptable

uncertainty is likely to be task specific.

7.3.2 Reasoning about specific uncertainties

In terms of architecture integration, in the long term, thinking about distinction between aleatoric

and epistemic uncertainty in the architecture seems important. Indeed, if the IRL agent has to deal

with a task inherently stochastic, it should explore more, usually by asking a demonstration to a

human, in order to reduce its epistemic uncertainty. Once the epistemic uncertainty is low, collecting

more perceptual data by asking demonstrations to a human becomes meaningless and the agent can
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Figure 7.6: Illustration of τthresh usage to prevent wrong actions, given the uncertainty τ

then effectively compute the aleatoric uncertainty. For instance, if a visual sensor becomes very noisy

in low light conditions, the aleatoric uncertainty of a classification model can become very high, even

if the networks parameters have been adjusted and that epistemic uncertainty is low. Such model can

then lead to specific strategies, such as ignoring vision sensing for decision making.

7.3.3 Multimodal fusion

We have seen that there are many modalities of perception. A complex collaborative applica-

tion will probably need to combine even more sensors and perception modalities than we have done.

Multimodal learning is based on fusing and relating information coming from those different sources.

This could be helpful to provide various information and redundancy from different physical sources.

Variety is likely to help in a better understanding of the environment. Many sources redundancy can

help perform tasks more robustly. An ideal multimodal IRL agent should be able to exploit at least

the same modality as humans such as vision, speech, textual data, force or haptic sensing [9, 10]. For

instance, haptic could be especially useful in some context such as when the gripper is occluding the

robot vision, or for better grasping prediction that could take object texture into account [11].
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One of the challenges in multimodal processing is how to deal with data heterogeneity. To solve

this difficulty in deep learning, several techniques exist. For example, in [12], authors categorize

multimodal learning in deep learning according to three framework:

1. Joint representation: Each modality is encoded by a neural network. The joint representation

consists in concatenating the last layer of the networks in order to force a joint representation

during the learning process.

2. Constrained Coordinated Representation: The networks are trained in parallel for each modality

and then a suitable loss function is used to update the networks. This involves establishing a

similarity measure between the two modalities at the output of the parallel networks (called

constraint).

3. Encoder-decoder system: An encoder encodes a modality in a latent vector then a decoder

generates a sample of the targeted modality. At the end of the learning process, the network has

learned a representation to switch from one modality to the other.

In recent works, cross-modality can also be leveraged in a sequential but related manner. For

instance, in [13], authors proposed Cross-Modal Deep Clustering (XDC), where a firstly pretrained

unsupervised model for a modality (audio) is used to supervise the training of another modality

(video).

Sensors are likely to not have the same reliability in dynamic settings. For instance, when the

sight is clear, vision based system is ideal, but in highly occluded setting such as insertion tasks,

touch, force/torque sensing is likely to be more appropriate. To mitigate these limitations, use of

uncertainty can represent a strong cue. That could help drive major improvements in sensing fusion,

for active learning and for better decision-making. At high-level, we can distinguish two main views

on multimodal sensing and perception in an online adaptive setting: when they complement and when

they contradict each other.

When perceptions are complementary, they can provide redundant or additional information about

the perceived concept. Perceptual uncertainty is a convenient tool that can help in this reasoning

process. For instance [14], authors adapt uncertainty based techniques in specific audiovisual speech

recognition task by exploiting Gaussian mixture model. According to the uncertainty estimation they
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can rely on the different streams of data (vision of the mouth and speech).

When perceptions are contradictory, the problem becomes more complex. Indeed, for instance,

if a human asks a robot ”Give me the screwdriver” while pointing an object, whereas the IRL agent

actually sees a wrench. In that case several interpretations are possible:

• The perception by the IRL agent of the pointing hand location, of the tool and of speech are

true. As a consequence, the human made a mistake, this is not a screwdriver.

• Some perceptions are faulty. For instance, perceptions of the pointing hand location and speech

could be true whereas perception of the tool is faulty. The object is a screwdriver but the IRL

agent sees a wrench.

In the first case, the robot should infer, based on its confidence level and its knowledge of the

current situation where the human was wrong. Assuming all perceptions are confident, it could ask

to repeat the question or suggest to grasp the wrench instead.

The second case is the more complex but is interesting as this type of situation can be leveraged

for a kind of multimodal self-active learning. In [15], authors use a Bayesian method, the Independent

Opinion Pool, to reinforce or mitigate the overall uncertainty about human intent between several

modalities (gesture, gaze, speech and objects recognition). In our example, we have two modules

that predict the same information, the object recognition module and the speech recognition module.

Assuming the object recognition module is uncertain and the speech recognition module is confident,

we can exploit the fact they designate the same object. For example, we could update the object

recognition module on behalf of the speech recognition module, without human intervention, by being

optimistic and assuming that the speech recognition module must be right. Another approach, more

conservative, could be to make the IRL agent asks a question to the human, based on the current

situation understanding. The IRL agent could ask ”Are you sure ? I don’t see a screwdriver ? I see a

wrench with uncertainty, should I learn that it is a screwdriver ?”.

7.3.4 Improve preferences generalization

As the agent accumulates knowledge with several users preferences, some of them are likely to be

redundant. For instance, it is likely that several users will share the same grasping location affordance.
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Currently, a new neural network is learned for each new user which means learning and saving a lot

of models which predict the same affordance. We need more general mechanisms for better scaling.

For instance, when the IRL agent is given a new preference, it should have a mechanism to search in

its perceptual memory for similar preference. If such preference has already been encountered, it can

just point to this preference without relearning. Several strategies could be investigated:

• The IRL agent could propose a grasping affordance based on past demonstrations. This could

simply be done by enumerating previously learned preferences and asking the human to select one

of them. However, it could scale badly with the number of preferences. By computing statistical

information about previously learned preferences, such as their frequencies, the enumeration

could be done after a relevant ranking of preferences.

• On the other hand, the human could be asked to give a demonstration. In order to avoid learn

again a similar demonstration, the IRL agent could leverage its prior perceptual knowledge stored

as neural networks weights. We need a way to compare the demonstrated preference against

previous one. This could be done, by exploiting clustering techniques [16]. The IRL agent would

assign the closest known preference. Determining the best metric to compare preferences is likely

to be task specific and should be discussed.

7.3.5 Improve behavior models in terms of learning and representations

Concurrency of behaviors: While classical BTs allow a parallel execution of perceptual modalities

and actions, they can lead to unexpected behaviors when synchronization is not enforced between

nodes as what is encountered in concurrent programming. For instance, controlling a bi-arm robot

could require the parallel execution of both arms for a collaborative task. The BT model should be

updated to take such setting into account as what was done in [17, 18] to formalize concurrency in

Behavior Trees.

Multiparadigm learning with Hierarchical Reinforcement Learning and Learning From Demonstra-

tion: Hierarchical reinforcement learning (HRL) decomposes a reinforcement learning problem in

several subtasks that can themselves be modeled as reinforcement learning problems. HRL has proved

to be more data efficient than standard RL probably thanks to a better exploration ability. The
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hierarchical nature of the framework, can help decompose tasks into simpler tasks for learning. In-

tegration of reinforcement learning has been leveraged in several cognitive architectures such as Soar

[19]. RL is also exploited in the IRL architecture in [20]. In this systems, the IRL agent can learn and

coordinate new behaviors through model-based algorithm corresponding to goal directed behaviors,

and model-free RL corresponding to habitual behaviors (a kind of reflexes).

Several extensions have demonstrated that it is possible to integrate RL in BTs framework, such

as in video games with QL-BT : [21], BT-RL: [22] or in [23].

Another important point is the fact that, in the current architecture, we have mostly focused

on learning discrete actions. Each action being a point to point continuous motion computed by a

classical inverse kinematic motion planner. Learning lower level continuous action such as in [24] could

be interesting and could be modeled with RL based learning modules.

Finally, while we first focused on the integration of learning from demonstration (LfD) techniques

in the architecture, having a synergy between LfD modules and RL based modules seems a promising

path where LfD would serve as a basis that could be refined by RL based approaches.

Knowledge update and repair: We are currently expecting that the human is an oracle, but in real-

world, we can not always expect a perfect understanding between the human expectations in terms

of task specifications and what the IRL agent understood. Actually, even human often fail when

explaining a procedure to others. We need to integrate what is referred to as interactive misalignment

repair [25] where the agent can be triggered by humans, if they see the robot doing the task wrong while

it think the contrary. This could be done via specific keywords, such as ”stop”, ”you are wrong”, which

would help in correcting a past misunderstanding. The structured nature of the procedural memory

and episodic memory are likely to help for that types of introspection and for learning. During a repair

phase, the agent could simulate what it did thanks to its skills representation and what it remembers

thanks to the episodic memory while asking humans for correction.

Causal Learning: We have seen throughout this thesis that building an interactive robotic learning

agent requires quite a cross disciplinary approach, merging works from several research area and built

in a more general cognitive architecture. An approach, that we had not the time to investigate is causal

learning and discovery literature. Causal research literature is gaining an increasing traction in the
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machine learning and deep learning communities [26]. While machine learning research has usually

mostly focused on learning correlations between data, causal learning research aims at formalizing

causality relations between data. Cognitive robotics and design of architecture, are likely to benefit

from this research area, through relevant connections in terms of world modelling. Yet, it seems there

has been only a limited set of work, in robotics [27], focusing on this cross disciplinary approach. It is

likely that integrating concepts and results from this framework could help learn better representations

for our cognitive system.

One of the most prominent framework, the do causal framework, was introduced by Pearl [28].

Reader can refer to [29], for a comprehensive introduction in the field. This framework entails to model

causality in a hierarchical manner, through the lens of the ”Ladder of Causality” [30]. This framework

highlights the difference between three layers that intervene in causality: seeing, doing, imagining [29]

which corresponds to different level of inferences from data observation to higher reasoning level. Table

7.1 presents Pearl’s Causal Hierarchy, reproduced from [29] (Table 1.1), with an adapted example.

This is done by building and leveraging a specific type of Bayesian Network graphical models called a

Structural Causal Model (SCM) (see figure 7.7). In a classical Bayesian Network, we are given several

random variables (observable or not observable) and their dependencies are represented through the

graph edges. Assuming Markov properties, we can associate each variable with a certain conditional

probability distribution (CPD) given its direct parents. In contrast with a classical Bayesian Network,

SCM however, use causal dependencies in the graph. That means that the graph is built explicitly

to represent real-world causal directions where edge direction implicitly encodes time. This nuance

is important as we saw in chapter 5, that, the way a variable causes others is linked to dataset shift

issues in deep learning.

For instance, let’s imagine we want to teach an IRL agent, that a variation of illumination might

change how well it perceives the world. Such a representation could help the agent better handle

its uncertainty representation by explaining why it is uncertain. If its visual uncertainty increases,

given the causal model, it might assume that its visual uncertainty was caused by a high illumination.

Reciprocally, if the agent detects a change of illumination, but that its uncertainty remains low, it

is possible that the predictive model for uncertainty prediction is ill-calibrated. In that context, the

causal representation through an SCM, could help correct the model, such as the one in figure 7.7:

the Sun causes light that affects objects visibility. There can be some hidden variables, also affecting
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visibility, such as dust in the air or material properties of the object. In the non causal Baysian

Network, while probabilities distribution can be computed, they do not represent the true causal

structure of the physical phenomena: light affect visibility and not the contrary. Only the SCM allows

to represent directly the object visibility probability given the presence of light. Therefore, with the

SCM, the agent is likely to build a better and more flexible understanding of the world. Then, the

question is how to build such a SCM given observation data. In [29, 30] authors proved that a valid

SCM could not be learned given observational data alone (seeing layer), but it requires what is called

intervention data. An intervention (action layer) consists in an external action, which fixes some

(usually one) variables that supersedes the current SCM representation. For instance the agent or the

human can control the light. This is modeled via the do operator which defines a new mutilated model

which can be used to infer more information about concept causal interaction. Finally counterfactual

(imaging layer) aims at giving the agent the ability to make hypothesis (without intervention), to

imagine what can happen in its model given this hypothesis. Here, if the agent sees nothing, it can

make the hypothesis that it could see an object if light is on. By this way, it could decide to turn a

the light or suggest a human to do it.

Humans have a natural intuition of causality that is learned throughout of their lives. In that

context IRL could be exploited from the robotic agent perspective as a causal discovery mechanism

where the human share its knowledge of the world to build the SCM. Conversely notions from causal

learning is likely to help build more principled representations on the way we build and develop the dif-

ferent memories. In particular, it might impact procedural memory as precondition and postcondition

already embed a notion of causality.
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Table 7.1: Pearl’s Causal Hierarchy, adapted from Table 1.1 [29]. Appearing correspondences within
the IRL architecture design.

Layer
Activity

Layer (Sym-
bolic)

Typical Ques-
tion

Example for an
IRL agent

Machine Learn-
ing

IRL architecture
correspondence

L1

(Seeing)
Associational
p(y♣x)

What is ?
How would see-
ing X change my
belief in Y ?

How does a
change in light
influence my
vision ?

Supervised/Un-
supervised
Learning

Low level moto-
perception mod-
ule

L2

(Acting)
Interventional
p(y♣do(x)

What if I do X ?

What if illu-
mination is
low ? (Please
show/tell me.)

Reinforcement
Learning

Mixed initiative
(natural) inter-
action

L3

(Imagin-
ing)

Counterfactual
p(yx♣x′, y′)

Why ? What if I
had acted differ-
ently ?

How should be
the illumination
if I want to rec-
ognize objects ?

Higher level rea-
soning processes
and introspec-
tion

X0Sun

X1Light

X2Object visible

Xh

Valid Bayesian Networks

p(X0, X1, X2, Xh) =
p(X0)p(X1|X0, X2)p(X2|Xh)p(Xh|X0)

X0Sun

X1Light

X2Object visible

Xh

Structural Causal Model

p(X0, X1, X2, Xh) =
p(X0)p(X1|X0)p(X2|X1, Xh)p(Xh|X0)

do(X1 = On)
X0 Sun

X1Light

X2Object visible

Xh

Structural Causal Model

with intervention

X0 Sun

X1Light

X2Object visible

Xh

Structural Causal Model

after intervention

p(X0, X2, Xh|do(X1 = On)) =
p(X0)p(X2, X1|do(X1 = On), Xh)p(Xh|X0)

Observed phenomena Known intervention Hidden phenomena

Figure 7.7: Different Bayesian Networks graphical models can represent the same data. But not all
graphs represent causal relations. Gray variables are observed variables, white one is a hidden variable
that could influence object visiblity.

7.4 General conclusion

While industrial collaborative robots programming becomes more and more accessible, building

adaptable and modular behaviors is still out of reach for most non programmer experts. Allowing any

humans to teach cobots complex and personalized behaviors, with natural communications means,

would likely ease their acceptability and long-term co-integration in industry of all sizes. We have pre-

sented a core architecture prototype focusing on integrating reactive planning, acting and incremental

learning of skills in an interactive learning setting. The current development state of the architecture
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could validate most of our specifications. Experimental validations were made in teaching task oriented

grasping related tasks, with preferences handling to an industrial collaborative manipulator. The ILR

agent is able to learn both high-level and low level representations of the task online, during a mixed

initiative interaction. Use of BTs as behavior model help build modular, explicit task representations

which help in explainability and interpretability of robot behaviors. The cognitive process exploit

perceptual modules based on neural networks to learn complex perceptual features such as grasping

location affordance on plan. Learning is fast thanks to pretrained networks, transfer learning to specific

downstream tasks and augmentation techniques with specialized sub-networks. Moreover, as bigger

neural networks are hardly interpretable, the use of specialized sub-networks is likely to help interpret

and correct system failures. Thanks to modularity, if a sub network prediction fails, it can be possible

to correct only this sub networks without affecting other modules. We have shown that it is possible

through a mixed initiative scenario to teach a task and its variation with respect to most of our IRL

specifications. Adaptation to human preferences, here validated on grasping affordance preferences

and adaptation to dominant hand, is an important requirement in our architecture. Indeed, it offers

personalized interaction which is likely to help in acceptability of robotic systems by the operators.

Our work is a first step towards a smart collaborative industrial robotics assistant. The architecture

is opened and extensible to several improvements as integration of better perceptual abilities, language

understanding and communication protocol in order to allow richer real world interaction. Finally, as

the architecture matures to handle more complex tasks, it will become necessary to test it on more

complex setting and with true non-experts, based on HRI metrics [31] and following standard HRI

evaluation protocols (chapter 7 of [32]).
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Appendix A

Evaluation of grasping quality and
uncertainty

A.1 Jacquard metric

To evaluate whether or not a grasping prediction g = (x, y, θ, w, h) is a success, one can use the

Jacquard metric [1] with several grasping parameters gi ∈ gtrue which are available for the same image

in the dataset. For an image x ∈ I, valid grasping representation gi are converted to their rectangle

representations Ri. Then, one can compute the area of intersection over union of the predicted grasping

rectangle Rpred from g and Ri:

J(Rpred, R) = max
Ri∈R

⎠

Rpred ∩ Ri

Rpred ∪ Ri

⎜

. (A.1)

As a rule of thumb, one can consider successful a grasping prediction if J is above 0.25 and the

difference between θpred and θtrue is below 30°.

A.2 GraspNet/Trustnet experimental details

This section details the experimental work done on GraspNet/TrustNet. This is based on the work

of Laurent Bimont.

A.2.1 Implémentation details

To perform computations, we used a computer with a Nvidia RTX 2080 8Gb graphic card and

Intel®8 CoreTM i7 9700K 3.6 GHz CPU. Implementation was done in Python 3.6 using Tensorflow
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1.13. To train GraspNet, we used the adam optimiser with a learning rate set to 0.001. We reduced the

learning rate by a factor 0.9 each time the validation loss did not decrease for 5 epochs, and stopped

the learning process after 20 epochs without validation loss improvement. Training dataset is based on

the Cornell and Jacquard dataset. We performed data augmentation on the Cornell dataset leading

to a database of approximately ∼ 6000 grasping examples. To implement the different uncertainty

metrics τ , we used the following scheme:

• For MonteCarlo Dropout and Concrete Dropout, we performed T = 100 inferences with Dropout

layers actives. For Monte Carlo Concrete Dropout we used the concrete keras version available

on Yarin Gal’s GitHub.

• For Ensemble Proper Scoring network, we used adam optimizer with a learning rate of 0.001. We

reduced the learning rate by a factor 0.9 after 5 epochs without validation loss improvements.

• For Simple Ensemble and Proper Scoring Ensemble, we used T = 5 networks

• For Trust Net ’s %T training, we used a learning rate of 0.001 with adam optimizer. We used

learning rate decay of 0.9 after 5 epochs without validation loss improvements. During training,

VGG16’s weights were frozen.

Effects of architectural changes on GraspNet performance.

Changes on GraspNet architecture and training scheme lead to different grasping accuracy summed

up in Table A.1. Performances stay at the same level for Concrete Dropout, and Simple Ensemble.

However, the Proper Scoring method leads to a drop in performances (−24% for Cornell and −42%

for Jacquard). Despite our effort to improve accuracy of this technique, we were not able to find

a good set of hyper-parameters to reach an equivalent level of performance. We remark that for

the Jacquard dataset, Proper Scoring networks had some difficulties to converge. We trained several

identical networks leading to heterogeneous accuracy results (ranging from 0.4% to 20.6%). We believe

that Proper Scoring networks need deeper architectural changes (like changing the number of hidden

layers and neurons) to work well. However as we wanted a fair comparison between the different

GraspNet models, we did not make any change for this study.
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Table A.1: Accuracy for various GraspNet architectures and learning scheme

GraspNet Original
Concrete Simple Proper Ensemble
Dropout Ensemble Scoring Proper Scoring

Cornell 86.6% 85.7% 87.3% 62.5% 78.8%
Jacquard 62.5% 63.5% 63.1% 20.6% 0.8%

Quantitative analysis

The quantitative analysis is made through the curves and scores proposed in Section 5.3.2. We

plot the ROC and S − β% − FPR curves for both the Cornell and the Jacquard dataset in Figure

A.1. Dropout methods do not perform better than a random detector, since ROC curves follow the

random performance and grasping accuracy is not improving with FPR (Figure A.1-(c)-(d)). This poor

performance does not seems to be related to fixed Dropout rates p since the results are equivalent

for Concrete Dropout. Such poor performances of Dropout methods have already been highlighted

in some papers as mentioned in section 5.2. Simple Ensemble has results with ROC curves better

than the random detector and an increase in grasping accuracy, however it is outperformed by other

methodologies. Proper Scoring methods and TrustNet show equivalent good ROC curves. However,

for the Proper Scoring on the Jacquard dataset, the ROC curve is obtained with so few number of

good predictions (as shown in Table A.1 and recovered on the S-FPR curve) that it does not allow us

to draw a conclusion.

The S-FPR curve of TrustNet is much better and relevant for an industrial use case. Indeed for an

FPR (∼ economic cost) of 15% we reach a grasping success rate up to 93.7% for the Cornell dataset.

We should note that despite starting from a lower grasping success rate, after 20% FPR, Ensemble

Proper Scoring outperforms other methodologies (except TrustNet) for tempted grasp success rate for

the Cornell dataset, showing the relevance of Proper Scoring as predictive uncertainty.

On Figure A.1-(d), we can notice that TrustNet is the only one for which the grasping success

at 0%FPR (71.1%) is better than the initial GraspNet accuracy (62.5%). This result is particularly

interesting as it shows that TrustNet can improve grasping accuracy without increasing the number

of false alarms.
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• VGG16 with frozen weights remains the most appropriate features extractor for TrustNet with

an AUROC score of 80.0%, against respectively 74.0%, 73.9%, 56.9% and 55.5% for Xception,

MobileNet, Resnet50, and Densenet121.

• We trained an ensemble of T = 10 TrustNet Networks and computed an uncertainty metric

in the same way than for Deep Ensemble methods. The AUROC score slightly increases from

80.0% to 81.2%, however inference computation increases by a factor T .

Weighted loss. We also studied the impact of a weighted loss function to tune our failure predictor

based on our risk appetite :

L(τ, τ̂) = ω0 × τ log τ̂ + ω1 × (1 − τ) log τ̂ . (A.2)

Figure A.3 shows the evolution of FPR-95%TPR score and histogram distributions for different ratios

γ = ω1/ω0, on Cornell dataset. Those histograms distributions are very different according to the ratio,

leading to different behavior of failure predictor. Depending on this ratio, we can set the sensibility

of TrustNet depending on our risk appetite. We would like to highlight that this fine tuning of the

τ metric according to risk appetite of the user is not possible for other tested existing uncertainty

methods.

For a small γ around 1, most of the good predictions are concentrated around low τ values while

bad predictions have a more uniform distribution. For high γ values (around 100), we highlight an

opposite behavior. Therefore, we tried to benefit from this complementary behaviors by considering

an ensemble of two TrustNet networks respectively trained with γ = 1 and 100 (we called it Ensemble

Weighted Trustnet). The resulting uncertainty metric outperforms the original TrustNet (Figure A.4)

with an AUROC score increasing by 4% (84.1% > 80%). Moreover, FPR-100%-TPR and FPR-95%-

TPR scores obtained are 76.5% and 50.4%, which is a major improvement compare to those of the

original TrustNet (94.4% and 66.5% respectively).
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Résumé étendu en français
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Cette annexe propose un résumé étendu en français du manuscrit de thèse. Les travaux présentés
ont été réalisés au sein du LISPEN - Campus de Lille (Laboratoire d’Ingénierie des Systèmes Physiques
et Numériques).

B.1 Introduction: vers un Assistant Robotique Intelligent

B.1.1 Motivations

Ces dernières années, les robots industriels ont quitté leur cage pour devenir plus collaboratifs
grâce à des robots plus sûrs (plus légers avec des cadences plus lentes, et équipés de capteurs d’effort),
à de meilleurs capteurs et à des bibliothèques de programmation de plus haut niveau (voir Figure
B.1). Pourtant, dans les scénarios du monde réel, la flexibilité et les capacités d’interaction des
robots restent éloignés de l’interaction naturelle attendue entre deux collègues humains. Ce nouveau
paradigme nécessite des robots avec de meilleures capacités matérielles et logicielles. Dans ce dernier
cas en particulier, l’intelligence artificielle joue un rôle croissant pour faire face à la variabilité de
l’environnement et à la complexité des interactions avec les humains.

Dans l’Industrie du Futur idéale, les robots collaboratifs travailleront main dans la main avec les
humains et occuperont une place prépondérante centrée sur l’humain. C’est donc au robot de s’adapter
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la mise en œuvre de tels agents robotiques, la conception d’architectures robotiques cognitives est un
point central.

B.1.3 Objectifs

Globalement, la conception d’un SRA nécessite une approche multidisciplinaire. Dans cette thèse,
nous avons visé la conception d’un prototype de base d’architecture cognitive dans le contexte de
l’Industrie 4.0. Nous avons fixé les spécifications à remplir par un SRA dans un contexte industriel :

• Perception et adaptation robuste, flexibilité. Un SRA doit pouvoir percevoir, interpréter, et
réagir en temps réel à la complexité d’un environnement dynamique, de manière flexible et
robuste. Cette complexité inclus bien entendu les interactions humaines. Des modules à base
d’apprentissage automatique seront intégrés pour l’adaptation à la variabilité des situations ne
pouvant être traitée de manière discrète et combinatoire.

• Interaction naturelle, intuitive, et personnalisée. Reconfigurabilité aisée. Un SRA doit interagir
intuitivement avec des non-experts (non-programmeurs et non experts en robotique). Il doit donc
comprendre spécifiquement les moyens de communication naturels des humains tels que la vision,
la parole, le regard, le toucher, mais aussi fournir durant l’interaction des réponses/demandes
compréhensibles par des non-experts et non ambiguës. Un SRA doit également s’adapter aux
préférences et spécificités des utilisateurs tels que la main dominante, un handicap. Pendant
que l’agent SRA apprend de nouvelles tâches, il doit être capable d’adapter avec un certain
niveau d’automatisation ses comportements en fonction des préférences et des caractéristiques
de chaque individu, pour une interaction personnalisée. L’acceptabilité sera d’autant facilitée et
des utilisateurs non experts pourront intuitivement reconfigurer le système à leur guise pour une
autre tâche.

• Apprentissage incrémental modulaire. Un SRA doit avoir la capacité d’apprendre rapidement
et de manière incrémentale une nouvelle tâche, du bas niveau aux abstractions de haut niveau.
L’exécution d’une tâche requiert à la fois des connaissances de haut niveau pour la compréhension
générale et de bas niveau pour la perception et l’exécution dans le monde réel. Cela peut se faire
par transfert de connaissances et nécessite des représentations et des processus qui favorisent
la modularité dans tout le système. Le SRA pourra ainsi exploiter une base de connaissances
antérieures pour l’exécution des tâches et l’apprentissage en ligne. Nous ne voulons pas tout
apprendre à partir de zéro à un robot. Par conséquent, un agent SRA doit être capable de tirer
parti de certaines connaissances antérieures tout en exécutant et en apprenant des compétences
modulaires pour résoudre des tâches.

• Comportements explicables et sûrs. Un SRA doit être capable de raisonner et d’avoir des
capacités d’explication aux moins partielles, pour fournir des explications sur ses prédictions et
ses comportements. Un comportement erroné peut générer des problèmes de sécurité dans un
contexte industriel, pouvant porter intégrité à des objets, à l’agent robotique lui-même, voir plus
grave aux opérateurs. Pour avoir un comportement sûr, le SRA doit savoir gérer l’incertitude
dans la moto-perception, ses représentations internes, ses prédictions. Nous voulons que l’agent
SRA sache ce qu’il ne sait pas. Pour cela, la notion d’incertitude est importante. En tant que
mesure de confiance et de curiosité, elle donne à l’agent SRA la capacité de raisonner sur ses
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propres prédictions afin de décider d’agir ou de ne pas agir (questionner). L’agent devient alors
acteur de son propre apprentissage, et de plus en plus expert.

B.1.4 Contributions et organisation

Cette thèse a pour but de développer et d’intégrer les briques principales afin de créer une ar-
chitecture robotique cognitive pour la robotique collaborative permettant d’intégrer l’ensemble des
spécifications requises décrites en section B.1.3. Dans ce résumé, la section B.2 (correspondant au
chapitre 2 et 3) détaille l’architecture actuelle que nous avons proposée, en termes de blocs princi-
paux, de processus d’apprentissage interactif et d’organisation des modules, dans une vue d’ensemble
de haut niveau et au regard de l’état de l’art. Nous détaillons ensuite dans la section B.3 (chapitre
4), les différents paradigmes d’apprentissage qui ont été étudiés au cours de la thèse. L’apprentissage
d’une préhension orientée avec des robots réels a été utilisé comme application pour une validation de
l’intégration des spécifications. Plus précisément, une contribution à l’apprentissage de la préhension
orientée par démonstration a été apportée par le développement d’un module spécifique. La section
B.4 (chapitre 6) décrit la mise en oeuvre de l’architecture ainsi que des modules intégrés en validant
l’approche globale sur un robot réel. Enfin, la section B.5 (chapitre 5 et 7 ) présente les perspectives
de développement. L’importance de la gestion des incertitudes y est particulièrement abordée.

Les travaux réalisés au cours de cette thèse ont été valorisés par des publications et soumissions
internationales et la réalisation de vidéos de présentations : 11, 22, 33, déposées sur la châıne youtube
du laboratoire LISPEN4.

• Contribution à l’apprentissage par démonstration et à la préhension orientée : [2]

• Contribution sur l’architecture cognitive pour l’apprentissage interactif pour les robots collabo-
ratifs industriels : [3]

• Un article de revue internationale regroupant et mettant à jour les contributions avec les derniers
développements et validations de notre architecture : soumis, processus de révision en cours.

1https://www.youtube.com/watch?v=T592ye7RPxQ
2https://www.youtube.com/watch?v=1UjehV1RCLc
3https://www.youtube.com/watch?v=EAuLMnQULB0
4https://www.youtube.com/channel/UC-PsCOeg4uLbF35vW-Sa7zw
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B.2. CONCEPTION D’UNE ARCHITECTURE COGNITIVE INSPIRÉE DE
L’ÉTAT DE L’ART

B.2 Conception d’une architecture cognitive inspirée de l’état de l’art

Cette section décrit les principaux composants nécessaires à la construction d’une architecture
cognitive [4] vis à vis de l’état de l’art. L’accent a été mis sur les différents compromis entre la vision
connexionniste et la vision symbolique en intelligence artificielle afin de justifier le développement d’une
architecture hybride pour l’apprentissage de tâches. Les architectures existantes n’étant pas totalement
adaptées à nos spécifications, nous avons développé notre propre architecture. En s’inspirant de l’état
de l’art en matière de SRA pour l’apprentissage interactif de tâche, d’architecture cognitive et des
avancées récentes dans les architectures d’apprentissage profond, plusieurs choix de conception ont été
faits pour construire un prototype d’architecture cognitive hybride permettant d’intégrer l’ensemble
de nos spécifications.

La Figure B.2 fournit une vue d’ensemble de haut niveau de l’architecture hybride. Elle présente les
différentes représentations et la manière dont elles interagissent afin de construire des comportements
complexes. Pour plus d’informations sur les différents blocs et leur interaction, le lecteur peut se
référer à 3.

Mémoire de travail et
modèle courant du
monde perçu (3.2.2)

Memoire sémantique (3.2.1)

Memoire procédurale (3.2.4)

Memoire épisodique (3.2.3) Ontologie (3.1)
Connaissance

a priori

Agent ARI (3.3)

• étapes 3⃝ - 5⃝ → génère des comportements à partir des ordres et des connais-
sances (comme BT)

• étapes 0 - 3 → génère des questions à partir du type d’échec et des connaissances

Module cognitif

Perception de
l’espace de travail

Perception de
l’humain

Perception pro-
prioceptive

Mémoire perceptuelle
(3.2.5) avec connais-

sance a priori -1

Perception basée sur
des réseaux de neu-
rones profondsHumain

(Instruc-
teur)

Espace
de travail

Environnement (3.1.2)

-1

0

1 Ancrage

4 Grounding

( 3 or 2 )
Dialogue

6 Action (3.1.4)

4 Apprentissage de concepts
avec préférences

4 Apprentis-
sage perceptuel
avec préférences

Figure B.2: Aperçu de haut niveau de l’architecture. L’architecture se compose de modules perceptifs
basés sur des approches connexionnistes, de représentations relationnelles symboliques et d’un proces-
sus délibératif pour l’apprentissage en interaction avec l’humain.
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B.2.1 Approches connexionnistes et symboliques

Les systèmes d’IA peuvent être abordés de deux points de vue : un point de vue descendant où l’on
part d’une connaissance abstraite, relationnelle et de haut niveau, où la plupart des raisonnements et
des planifications ont lieu (parfois appelé système 2 dans la littérature), jusqu’aux capacités sensori-
motrices de l’agent. C’est généralement le territoire de l’IA symbolique qui exploite des symboles pour
ses représentations internes. À l’opposé, une vision ascendante est liée à l’IA connexionniste et vise
à exploiter l’interaction de plusieurs modèles simples à partir desquels des comportements complexes
émergent (au niveau du système 1). Les deux approches ont leurs avantages et leurs inconvénients pour
la construction d’une architecture cognitive pour la robotique. Nous illustrons, Figure B.3, l’existence
d’un compromis, en termes de facilité d’implémentation et de représentations, entre les architectures
symboliques et connexionnistes en ce qui concerne les représentations abstraites, l’efficacité des données
pour l’apprentissage et l’explicabilité du système. Cela à justifier une approche hybride au sein de
notre architecture.

En particulier, l’approche symbolique sera utilisée pour permettre une représentation modulaire
et explicable de la connaissance, mais combinatoire donc rigide. La flexibilité nécessaire pour l’adap-
tation à la variabilité/complexité d’un environnement dynamique sera apportée grâce à l’approche
connexioniste (en particulier des réseaux de neurones) au détriment d’un manque d’interprétabilité.
C’est pourquoi l’intégration de l’incertitude au regard des prédictions des modules sera d’autant plus
primordiale.

-
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Système 1

++
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-

Système cognitif
pour
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prétabilité et des
questions ouvertes
sur la modularité

Figure B.3: Conception générale de l’architecture hybride

Les principaux éléments constitutifs d’une architecture cognitive reposent sur une ontologie et un
modèle de comportement. Une ontologie joue le rôle d’une structure explicable pour l’interopérabilité
des composants de l’architecture [5]. C’est une représentation conceptuelle orientée objet construite
autour de classes, d’attributs/de propriétés et de relations entre ces concepts. Les systèmes cognitifs
sont souvent accompagnés d’une ontologie qui fournit une structure symbolique de base facilitant la
compatibilité entre les différents modules et sous-systèmes, ou même entre différents systèmes indépen-
dants (tels que d’autres robots) [6]. Les robots étant des agents agissant, nous avons également besoin
d’un modèle de comportement capable d’exploiter l’ontologie. La figure B.4 illustre une ontologie sim-
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ple. Des ontolgies plus complexes existes telles que KnowRob [7] utilisée dans l’architecture CRAM
[8].

racine

Robot

But Croyance Proprioception

Pose Vitesse Effort …

Objets

Propriétés

CaractéristiquePerceptuelles

Affordance Vision Couleur Forme

PropriétésPerceptuelles

…

Humain

Énoncés Parties

MainDominante

…

…

RelationsSpatiales

droite gauche dans …

Figure B.4: Exemple haut niveau d’une ontologie

Compte tenu de notre ontologie, nous exploitons différents types de mémoires, détaillées dans
la section 3.2, et utiles pour différents aspects de l’apprentissage des tâches : une mémoire séman-
tique, une mémoire de travail, une mémoire épisodique, une mémoire procédurale, et une mémoire
perceptuelle.

Ces représentations sont sous formes de graphes relationnels pour leur caractère hiérarchique,
modulaire, leur explicabilité et pour faciliter l’apprentissage par rapport à nos spécifications.

Les composants connexionnistes d’apprentissage peuvent ensuite être exploités pour ancrer ces
représentations symboliques dans le réel via une collection de données d’apprentissage. L’agent
SRA peut alors apprendre les propriétés des objets telles que les caractéristiques visuelles et l’af-
fordance (comment prendre un objet pour une tâche donnée), compte tenu du contexte de la tâche,
des préférences et caractéristiques humaines. Un exemple d’intégration technique de tels modules
connexionnistes est donné dans la section de validation expérimentale (chapitre B.4).

B.2.2 Choix du modèle de comportements

Les robots étant des agents agissant, nous avons spécifiquement besoin d’un modèle de comporte-
ment capable d’exploiter l’ontologie. Pour agir dans le monde réel, un agent SRA doit être capable
de générer des comportements complexes pertinents pour une situation donnée, même nouvelle. Pour
cela, il doit être capable de planifier et de réagir tout en apprenant en ligne auprès de l’humain.

On distingue en générale dans les architectures trois couches principales [9, 10] (voir Figure B.5):
une couche fonctionnelle adaptée à l’action, à la perception et à l’apprentissage ; une couche de décision
adaptée à la planification ou à la supervision ; et une couche d’exécution où le modèle de comportement
intervient, pour interfacer et coordonner les autres couches du système en fonction des exigences de la
tâche en cours.
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Niveau supérieur
Deliberatif

(Planification/Programmation)
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Exécutif

(Séquencement des tâches)
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(Niveau fonctionnel)

• Surveillance de l’environnement

• Processus sensation/action

• Petites constantes de temps

• Composants modulaires

Monde
physique et social

Figure B.5: L’architecture robotique cognitive peut être représentée par trois couches de contrôle.

Au niveau d’un Assistant Robotique Intelligent, le modèle de comportement doit pouvoir répondre
à un certain nombre d’exigences pour obtenir un robot interactif. Le modèle de comportement doit :

• être explicable. Le comportement du robot doit être au moins partiellement compréhensible.
Par conséquent, le comportement doit être suffisamment complexe pour permettre à l’agent
d’exécuter des tâches, mais aussi suffisamment simple et interprétable pour être compris par des
utilisateurs non experts.

• décrire à la fois les parties descriptives et exécutives des comportements. L’agent SRA doit
notamment être capable de décrire le quoi, le pourquoi et le comment de ses actions.

• s’interfacer avec des bases de données de connaissances préalables (telles que les préférences
des utilisateurs). Le modèle de comportement doit permettre l’intégration de connaissances
préalables de différents types, comme les connaissances basées sur des règles, les spécificités
et les préférences des utilisateurs. Par exemple, il peut s’agir de la main dominante, ou d’un
handicap nécéssitant une adaptation de l’agent à l’opérateur.

• être interopérable avec le modèle du monde. Lorsque l’agent construit un modèle du monde, le
modèle de comportement doit être capable de l’utiliser en respectant l’ontologie.

• interfacer les compétences de bas niveau et de haut niveau de manière multimodale. Les com-
pétences d’apprentissage nécessitent à la fois des informations de haut et de bas niveau et le
modèle de comportement sert donc de passerelle entre les deux.

• s’interfacer avec des techniques d’apprentissage telles que les réseaux neuronaux profonds. Les
techniques d’apprentissage profond étant devenues des outils d’apprentissage très puissants, le
modèle comportemental doit s’interfacer facilement avec ces systèmes.
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• permettre un apprentissage rapide et une forte généralisation grâce à la réutilisation de com-
pétences avec des représentations composables et paramétrables. Dans le cadre de l’enseigne-
ment interactif de tâche, l’apprentissage se fait en ligne en interagissant avec un enseignant
humain. Par conséquent, nous voulons que l’apprentissage soit rapide tout en conservant de
bonnes capacités de généralisation. Ceci peut être fait en exploitant des comportements mod-
ulaires paramétrés. Cela permet, en effet, de réutiliser un comportement appris dans plusieurs
tâches connexes avec un minimum de mises à jour.

• permettre de raffiner les actions de manière réactive. Comme l’environnement est dynamique
et peut changer en fonction des actions du SRA ou d’autres agents, le robot doit alterner en
permanence entre la perception provenant des flux sensoriels, l’apprentissage, la planification et
l’action dans une boucle délibérative prenant en compte l’humain.

Afin de choisir le paradigme à mettre en oeuvre, nous avons passé en revue la littérature sur les
architectures pour l’enseignement interactif de tâches et les modèles de comportement qu’ils utili-
saient. Nous avons basé notre comparaison en mettant à jour l’état de l’art dans [11] (partie 2.) par
rapport à nos besoins. Les différents modèles sont détaillés dans le chapitre 2 de la thèse. Dans notre
architecture, nous avons choisi les arbres de comportement (BTs pour Behavior Trees) comme modèle
de comportement. Les BTs sont des modèles basés sur des arbres qui permettent une séparation claire
entre la structure de l’arbre (la partie descriptive en tant que flux de contrôle des comportements) et
l’implémentation des noeuds (la partie exécutive). Ils sont largement utilisés dans l’industrie des jeux
vidéo au lieu d’autres modèles que les machines à états qui sont enclins à l’explosion d’états lorsque les
comportements deviennent complexes. L’utilisation de noeuds parallèles facilite également l’exécution
de processus parallèles, comme cela est nécessaire dans un cadre d’une interaction multimodale. La
gestion des échecs est aisée et est au coeur du processus d’apprentissage dans notre architecture. La
nature hiérarchique des BTs facilite l’implémentation de méthodes de raffinement : étant donné des
actions de haut niveau, il est possible, en fonction des changements de l’environnement, de ramifier
l’arbre vers des sous-actions de plus bas niveau. Ces propriétés attrayantes en termes de modular-
ité du comportement en font une alternative pertinente à d’autres modèles de comportements. De
plus, des sous-arbres peuvent être ajoutés ou supprimés n’importe où dans le BT sans modifier les
autres composants ce qui augmente la flexibilité de ces modèles. Enfin, il est possible d’étendre les
BTs standards avec des noeuds de préconditions et postconditions [12], ce qui aide à construire des
représentations pour la planification.

Plus précisément, les arbres de comportement (BT) sont composés de plusieurs (généralement six)
types de noeuds illustrés dans le tableau B.1 : un ensemble de noeuds de contrôle qui aide à gérer le
flux de décision, un ensemble de noeuds d’ exécution qui exécute les actions, un noeud le décorateur qui
aide à construire des noeuds de contrôle plus complexes, comme réessayer une action ou un sous-arbre
jusqu’au succès. Chaque noeud peut renvoyer un état, généralement succès ou échec. Les noeuds de
contrôle renvoient succès ou échec en fonction du statut de retour de leurs enfants et des règles définies
dans le tableau B.1.
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Table B.1: Flux de contrôle et noeuds d’exécution dans le cadre standard des arbres de comportement

Noeuds d’exécu-
tion

Symbole Succès Échec

Action
L’exécution est ef-
fectuée

Exception pendant
l’exécution

Condition Condition est vraie
Condition est
fausse

Noeuds de contrôle

Séquence →
Tous les enfants
doivent réussir

Un enfant échoue

Parallèle →
Plus de M ∈ N

∗ en-
fants réussissent

Plus de N ∈ N
∗ en-

fants échouent

Repli ?
Un seul enfant
réussit

Tous les enfants
échouent

Décorateur ◇
Défini par l’utilisa-
teur

Défini par l’utilisa-
teur

Défini par l’utilisa-
teur

Afin de définir des comportements modulaires complexes, compatibles avec des objectifs de plan-
ification et de raisonnement, nous représentons les compétences avec des BT en utilisant le modèle
traditionnel préconditions, exécution, postconditions (également appelé effets dans la littérature) (voir
Figure B.6). Dans [13], les auteurs fournissent un aperçu formel détaillé des BT et de leur utilisation
en robotique. Les postconditions permettent de vérifier si l’exécution de la compétence est un succès,
tandis que les préconditions déterminent si l’agent possède les connaissances nécessaires pour exécuter
la compétence, telles que par exemple l’existence de préférences dans l’exécution d’une tâche. Une
autre propriété intéressante de la modularisation des compétences avec des conditions est le fait qu’elle
aide l’agent à faire de la perception active : l’agent ne vérifie que les conditions qui sont pertinentes
pour la tâche, selon les compétences précédemment apprises.

Une action primitive est une feuille dans le modèle de comportement global. Par conséquent, elle est
directement exécutée sans raffinement supplémentaire par le robot. Des exemples d’actions primitives
sont l’ouverture ou la fermeture d’une pince, un mouvement point à point, l’envoi de questions à
l’humain.

Plus de détails sont disponibles dans la section 3.1.4 du manuscrit et dans [13] pour les aspects
théoriques.

?

postconditions →

preconditions →

sous compétences ?

action primitive gestion des échecs

postconditions

Figure B.6: Modèle de base pour une compétence
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B.2.3 Processus décisionnel du SRA prenant en compte les préférences

Dans notre architecture, nous exploitons spécifiquement les mécanismes d’échec des BT comme
un signal de haut niveau à des fins d’apprentissage. Cela permet d’affiner ou d’étendre l’arbre de
manière incrémentale pendant l’interaction du SRA, de manière similaire à [14]. La transparence, la
modularité et l’efficacité des BT apparaissent naturellement puisque la réutilisation, la mise à jour
et la composition des comportements peuvent être effectuées en exploitant les graphes. Le processus
d’apprentissage interactif est basé sur la gestion des erreurs (échecs ou impasses) pendant le flux
d’exécution du programme. La figure B.7 illustre plus spécifiquement le processus décisionnel qui
se produit pendant l’exécution d’une compétence. Ici, nous nous concentrons principalement sur le
processus d’interaction et ses aspects délibératifs. En reprenant la figure B.2, on peut observer qu’il
y a différents chemins. Le chemin en trait plein représente ce qui se passe lorsque l’agent a toutes
les connaissances pour agir, l’ordre des étapes est représenté par des chiffres encerclés. Le chemin en
pointillé représente ce qui se passe lorsqu’un échec se produit, les étapes sont représentées par des
nombres encadrés. L’exécution entrelacée de ces deux chemins est au coeur du cycle d’interaction, au
cours de laquelle l’agent robotique agit selon les instructions de l’humain ou apprend de ses échecs à
la fois au niveau symbolique et connexioniste.

conditions

→ | ⇒

c1 c2 … cm

?

f : wm → test(wm) → echec Gestion du type d’échec

→

Searching

…

Demander et
collecter des données

…

Apprentissage
perceptuel ou symbolique

…

… cn

-ci: les conditions sont
vraies ( ) ou fausses ( )

-wm: Mémoire de travail

-f : peut être un test symbolique
ou perceptuel

Figure B.7: Le processus de résolution des échecs déclenche l’apprentissage de représentations sym-
boliques ou perceptuelles grâce à l’interaction avec l’humain.

B.2.4 Conclusion

L’exploitation des architectures existantes était difficile, car la plupart des SRA étaient soit spéci-
fiques à une plateforme, soit non open source, soit non maintenus. De plus, la plupart des agents ne
pouvaient pas valider toutes nos spécifications dans une même et unique approche. Cela a motivé l’ex-
ploration du développement de notre propre architecture cognitive hybride pour nos cas d’utilisation
industrielle collaborative. Finalement, notre principal objectif et contribution est d’intégrer plusieurs
idées complémentaires de la littérature dans une seule architecture, pour construire un SRA présentant
des capacités d’apprentissage interactif et incrémental, non seulement à haut niveau mais aussi à bas
niveau, avec des modules d’apprentissage profond, tout en étant capable d’être rapidement reconfig-

165



B.3. APPROCHE ML POUR LA PRÉHENSION PLANAIRE

uré selon les préférences humaines. Cela a conduit à des représentations symboliques de haut niveau,
sémantiquement compréhensible, pour la gestion de la complexité et une meilleure explicabilité du
comportement du système. Le processus délibératif du SRA exploite ces représentations pour piloter
des modules d’apprentissage connexionnistes, par le biais d’un processus interactif humain/robot axé
sur des objectifs et le dialogue. Le chapitre suivant (chapitre B.3) se concentre sur les approches com-
plémentaires d’apprentissage automatique qui ont été utilisées au cours de la thèse afin de développer
des modules connexionnistes exploitable dans le contexte de l’enseignement interactif de tâches.

B.3 Approche ML pour la préhension planaire

Étant donnée que le SRA apprend de manière interactive une tâche et la structure des compé-
tences associées, nous avons vu qu’il doit fonder ses représentations en apprenant à partir de données
du monde réel. Nous détaillons à cette fin la manière dont l’agent peut exploiter des paradigmes
complémentaires d’apprentissage machine (ML) dans une approche connexionniste. En suivant nos
spécifications, nous voulons exploiter des modules qui permettent un apprentissage rapide en ligne, à
partir de jeux de données construits à la volée, pendant l’interaction. En raison de l’importance des
tâches liées à la préhension dans de nombreuses applications industrielles, nous nous sommes concen-
trés sur des tâches liées à la préhension orientée dans le plan. Nous présentons les résultats principaux
pour deux modules d’apprentissage adaptés à l’acquisition de compétences liées à la préhension. Le
premier s’appuie sur une approche d’apprentissage profond par renforcement, adaptée de [15], pour
l’apprentissage autonome d’une tâche de devracage. La deuxième et plus importante contribution dans
le cadre de la thèse, présente un module d’apprentissage d’affordance de préhension orientée à la tâche,
à partir de quelques démonstrations humaines, respectant nos spécifications d’SRA. Les modules ont
été développés en collaboration avec un co-auteur, Laurent Bimont.

B.3.1 Apprentissage autonome du devracage

B.3.1-I Module de dévracage: Le cas du devracage est un exemple typique de tâche pour laquelle il
est difficile d’expliquer de manière procédurale comment l’exécuter, même pour un humain. En effet,
nous pourrions difficilement expliquer pourquoi nous répartissons le tas d’une certaine manière plutôt
que d’une autre et l’ordre des actions effectuées.

L’apprentissage par renforcement convient bien pour apprendre une telle tâche de manière au-
tonome. Par conséquent, nous avons reproduit [15] et l’avons étendue expérimentalement à notre con-
texte industriel. Nous avons abordé les problèmes de devracage comme une stratégie d’apprentissage
par renforcement autonome où l’agent robotique apprend les synergies entre poussée et préhension,
comme illustré dans la figure B.8. En outre, l’utilisation de l’apprentissage par renforcement et de l’ap-
prentissage profond permet au robot d’apprendre à prendre des pièces sans avoir besoin d’un modèle
CAO. Cet aspect est important car on peut s’attendre à ce que les robots collaboratifs travaillent avec
des pièces qui n’ont pas été modélisées par des spécialistes de la CAO, notamment dans l’industrie à
petite échelle.
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(a) Tas de pièces (b) Actions de poussée pour séparer
des pièces

(c) Préhension de pièce isolée

Figure B.8: Exemple de synergie entre actions de poussée et de préhension. On présente une pile
d’objets dont aucun ne peut être récupéré par préhension directe (a). Le robot va d’abord pousser la
pile pour séparer des objets (b) afin de saisir un premier objet isolé (c).

Ce travail a été valorisé par une démonstration lors de la journée de clôture du projet européen Col-
Robot 5 en présence de membres de la Commission européenne, de différents partenaires académiques
et de partenaires industriels (Renault et Thalès). Une vidéo de ce travail peut être trouvée ici6.

Le dispositif expérimental était le suivant (Figure B.9) : nous avons installé un capteur de pro-
fondeur haute définition de qualité industrielle (une caméra photoneo3D 7) au sommet d’un robot
collaboratif UR5 équipé d’une pince deux doigts Robotiq. Pour la validation, nous avons collecté
des vis et des boulons pour l’opération de devracage et avons réalisé l’expérience sur une plateforme
industrielle.

5https://colrobot.eu/
6https://www.youtube.com/watch?v=T592ye7RPxQ
7https://www.photoneo.com/products/phoxi-scan-l/
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2 énoncés

(enseignant→agent)

3 4 5

4

-1

4 Apprentissage de la perception
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Figure B.16: Vue détaillée de l’architecture en termes de modules intégrés.

B.4.1 Choix des capteurs pour la perception et l’interaction SRA

Nous avons voulu que l’agent SRA s’adapte à l’humain et, par conséquent, que les capteurs soient
les moins gênants possibles pour les travailleurs tout en permettant de détecter et de percevoir des actes
de communication. Ceci a conduit à une liste non exhaustive de types de capteurs, qui pourraient être
utilisés pour différentes modalités d’interaction. Nous pouvons distinguer les moyens de communication
verbaux et non verbaux. Les deux sont importants lors de la définition d’une tâche, car certaines
informations peuvent être plus facilement partagées par des mots ou par une interaction non verbale.
Après avoir listé les principaux capteurs et les modalités d’interaction associées, nous avons sélectionné
ceux qui semblent les plus utiles pour une première intégration et validation dans l’architecture. Nous
avons voulu assurer une communication la plus naturelle possible entre l’homme et l’agent SRA. Les
principaux critères considérés pour remplir nos spécifications d’interaction ont été les suivants :

1. Les perceptions potentielles après traitement des signaux doivent faire sens et être naturelles
pour un humain.

2. Les capteurs doivent être aussi non-invasifs que possible pour être acceptés par les personnes
interagissant avec le robot.

3. La programmation et le traitement doivent être simples et rapides pour permettre une commu-
nication quasi temps-réel.

174



B.4. MISE EN OEUVRE ET VALIDATION SUR UNE TÂCHE
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4. Les capteurs doivent être suffisamment robustes par rapport aux perturbations de l’environ-
nement.

Le choix des signaux étant centré sur l’homme, nous avons privilégié des critères de moyens de
communication naturels et non invasifs.

L’un des moyens les plus naturels de communication non verbale est le geste, qui peut être facile-
ment détectée par les capteurs de vision, à condition qu’il n’y ait pas d’occlusion. Pour leur polyvalence
et leur facilité d’utilisation pour la compréhension de l’environnement, nous avons envisagé d’utiliser
une caméra RGBD.

La parole reste notre principal moyen de communication. Il est donc essentiel d’équiper les robots
de capacités de traitement du langage parlé afin d’assurer une communication naturelle pour les
composants de haut niveau de l’architecture. Comme pour la vision, les microphones sont des capteurs
relativement peu invasifs. Pour limiter les phénomènes de bruit ambiant, nous avons choisi un casque
unidirectionnel.

La section 6.1 du manuscrit détaille de manière plus significative les capteurs envisagés avec une
comparaison qualitative dans le tableau 6.1.

B.4.2 Intégration des modules de perception et d’action

Les capteurs choisis sont ensuite exploités par l’agent SRA grâce à plusieurs modules perceptifs
que nous avons intégrés dans l’architecture pour la compréhension de l’espace de travail et l’interaction
homme/robot. Plus précisément, nous avons adapté et intégré des modules pour la reconnaissance
vocale (basée sur Google Speech), le traitement sémantique du langage (basé sur FLAIR), l’estimation
de la pose et des gestes (basé sur OpenPose), et l’enseignement à partir de démonstrations (basé
sur notre module d’apprentissage par démonstration). Plus d’informations sur cette intégration sont
disponibles dans la section 6.2 de la thèse.

B.4.3 Scénario de validation

L’architecture actuelle a été validée sur un robot collaboratif UR10e 6 DOF pour l’apprentissage
de la tâche ”donner”. Le cobot exploite des connaissances antérieures pour apprendre les variations
de la tâche à effectuer, pour différents objets et suivant les préférences de préhension de diffférents
opérateurs. Ces connaissances préalables sont intégrées à différents niveaux et sont présentées dans
le tableau B.2. Comme indiqué dans nos spécifications, l’apprentissage se fait par un processus en
ligne, mixte, incrémental et prenant en compte les préférences humaines. Le tableau B.3 présente
les principales inconnues et les connaissances acquises à la fin du scénario d’enseignement interactif.
Le tableau B.4 détaille le scénario et montre le processus d’apprentissage incrémental et interactif
qui exploite à la fois les connaissances antérieures, les informations apprises et les démonstrations ou
instructions humaines.

Le scénario d’enseignement interactif utilisé pour la validation peut être décomposé en deux phases
principales :

• Une interaction avec un humain H1 pour valider la capacité du SRA à exploiter les connaissances,
à demander uniquement les connaissances manquantes et à apprendre de manière incrémentale

175



B.4. MISE EN OEUVRE ET VALIDATION SUR UNE TÂCHE
D’APPRENTISSAGE DE TYPE ”PRENDRE ET PLACER”

des variations de la tâche ”donner” pour différents objets.

• Une interaction avec un humain H2 qui est inconnu du SRA et qui a des caractéristiques et
des préférences différentes de celles de H1. La tâche ”donner”, qui est maintenant une tâche
connue, est demandée par H2 pour un objet appris avec H1. Cette phase, durant laquelle le
SRA demande et apprend naturellement les préférences de H2, valide l’adaptation à l’individu.

La figure B.17, illustre comment le module d’apprentissage par démonstration est exploité au sein
de l’architecture pour que l’agent puisse adapter l’affordance de préhension en fonction de la personne
interagissant avec le robot.

Le détails des phases est disponible dans la section 6.3 du manuscrit. Une vidéo de démonstration
de cette validation est également disponible ici9.

Table B.2: Aperçu des connaissances a priori

Représenta-
tion

Connaissances préalables construites dans l’architecture (étape -1)

Extraction de caractéristiques à partir de réseaux neuronaux pré-entrâınés.

Capacités de segmentation sensorielle : suppression de l’arrière-plan, segmentation des proto-
objets

Reconnaissance de la pose humaine

Perceptions Détection de tag ArUco.

Reconnaissance de mots et de la parole (STT).

Analyse sémantique avec un protocole de communication de base.

Action-
s/tâches

prendre(objet) sous la forme d’un arbre de comportement (BT).

placer(position) comme un BT

Préférences Les humains ont des préférences et des caractéristiques, H1 est connu et est droitier

Table B.3: Synthèse de ce qui sera appris au cours du processus d’apprentissage interactif incrémentale
de la tâche inconnue donner

Representa-
tion

Inconnues Connaissances apprises

Perception clé et tournevis
caractéristiques perceptives et capacité de préhension de la
clé et du tournevis.

Action-
s/tâches

donner(objet) donner(objet) comme un BT

Préférences
Affordances et préférences
d’action

affordance de préhension préférée (clé prise par la tête ou la
poignée)
Adaptation pour donner l’objet dans la main dominante

9https://www.youtube.com/watch?v=EAuLMnQULB0
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Table B.4: Détail du processus d’apprentissage pendant le processus d’apprentissage interactif incré-
mentiel de la tâche inconnue ”donner”

Étapes de l’interaction
Inconnues → Connais-
sances apprises

Connaissances exploitées Intervention humaine

Étape 0 :
H1 initie l’interaction

• Connaissances a Pri-
ori (CP) intégrées avec la
vision et la parole voir
tableau B.2
Base de données con-
tenant caractéristiques et
préférences connues de
H1.

Identifiant ArUco

Étape 1 :
H1 demande : ”donner
tournevis”

• donner(objet) → nou-
veau but G1 : donner =
Dans(tournevis, main)

• CP intégrée avec vision
et parole

Reconnaissance de la pa-
role et analyse séman-
tique

Étape 2 :
H1 demande : ”L’objec-
tif est le tournevis dans
la main”

• tournevis → caractéris-
tiques perceptuelles

• CP intégrée avec vision
et parole,
• G1

Démonstration de
pointage avec validation
vocale

Étape 3 :
H1 explique : ”prendre le
tournevis”

• donner(objet) → pren-
dre(objet) + . . .

• CP
• G1

Reconnaissance vocale et
analyse sémantique

Étape 4 :
H1 montre sa préférence

• donner(obj) → pren-
dre(obj) + . . .
• préférences de H1 pour
l’affordance du tournevis
→ poids de réseaux spé-
cifiques

• CP
• G1
• prendre(obj) a be-
soin d’une affordance de
préhension

Démonstration des zones
autorisées et interdites
avec validation vocale

Étape 5 :
H1 explique : ”placer
dans main (tournevis)”

• donner(objet) → don-
ner(objet) = prendre(ob-
jet) + placer dans(main)

• CP
• G1
• placer dans(loc)
• main dominante H1

Reconnaissance vocale et
analyse sémantique

Step 6:
H1 demande ”donner
clé”

• clé → caractéristiques
perceptuelles de la clé

• CP
• nouveau but G2 = don-
ner(clé)

Démonstration en
pointant avec validation
par la voix

Step 7:
H1 montre sa préférence

• préférence d’affor-
dance pour H1 pour clé
→ préférence de H1

• CP
• but
• donner(obj) dont la
sous action prendre re-
quière une affordance
• main dominante H1

Zones autorisées et inter-
dites

Étape 8 :
H2 initie l’interaction

• nom H2

• main dominante H2

→ caractéristiques de H2

dans la base de données

• CP entrées clavier

Étape 9 :
H2 montre sa préférence

• préférence d’affor-
dance de H2 pour clé
→ affordance de la clé
comme préférence de H2

• CP
• nouveau but G3 = don-
ner(clé)
• donner(objet) + be-
soin de l’affordance de
préhension pour prendre
• main dominante H2

Démonstration des zones
autorisées et interdites
avec validation vocale
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dustriel collaboratif. Dans l’ensemble, nous avons construit l’architecture en gardant à l’esprit la
modularité, car l’utilisation de composants modulaires est essentielle pour une meilleure compréhen-
sion, une évaluation de la confiance et l’évolution potentielle de l’architecture. Bien sûr, le SRA idéal
est encore loin d’être atteint. Plusieurs perspectives et dont celle de l’intégration des incertitudes sont
abordée dans le manuscrit. En particulier cette dernière est primordiale vis a vis de nos spécifications
et fait l’objet d’une description détaillée dans le chapitre 5.

B.5.1 Obtenir un niveau d’incertitude

Jusqu’à présent, nous avons décrit les capacités d’apprentissage des compétences en termes de
composantes symboliques et connexionnistes. Nous avons montré qu’un manque de connaissances
symboliques sur une tâche, en termes d’informations procédurales ou perceptives, conduit à un échec
et déclenche un événement d’apprentissage interactif. Cependant, cela n’est pas suffisant car les
modules perceptifs, tels que les modules basés sur des réseaux neuronaux profonds, peuvent être non
fiables face à de situations nouvelles. Par conséquent, de mauvaise prédictions peuvent conduire à
des décisions potentiellement dommageables. L’agent SRA doit connâıtre le niveau de certitude ou
d’incertitude relatifs aux processus de perception et de raisonnement. Il s’agit d’un indicateur clé pour
doter l’agent SRA d’une meilleure compréhension de ce qu’il sait, de ce qu’il ne sait pas et de ce dont
il n’est pas certain pour prendre de meilleure décisions.

Par exemple, dans notre module d’apprentissage d’affordance de préhension, nous avons réduit
les risques de saisie dans une zone interdite en apprenant une zone neutre de séparation. Cependant
des échecs restent possibles lorsque l’agent n’a pas vu suffisamment de démonstrations pour certains
objets. Ainsi, l’agent a besoin d’un moyen d’estimer si la zone de préhension autorisé prédite est
pertinente ou non. Il doit avoir du recul sur ses prédictions.

Il existe une littérature abondante sur la taxonomie de l’incertitude (voir [18] pour une étude
complète). Brièvement, en général l’incertitude τ d’un modèle d’apprentissage automatique peut être
décomposée à haut niveau en deux types d’incertitude, l’incertitude aléatoire (τa) liée à la nature
physique du phénomène (inhérent au phénomène, quelque soit le nombre de données) et l’incertitude
épistémique (τe) liée au manque d’expérience (et donc de données) de l’agent.

Comme dans la plupart des problèmes d’apprentissage automatique, nous pouvons distinguer les
problèmes de classification et les problèmes de régression.

Pour la classification, un modèle doit fournir une étiquette avec son degré de confiance. Par
exemple, demander à un réseau de neurones profond de prédire un résultat avec 100% de confiance pour
”un pile ou face” n’a aucun sens. Nous aimerions que le réseau soit incertain quant à sa prédiction et,
dans l’idéal, qu’il produise une distribution des résultats possibles (1/2 → pile, 1/2 → face). Le réseau
doit également avoir un comportement similaire avec des données éloignées de celles sur lesquelles il
a été entrâıné ou ”̀a la frontière” entre des classes. D’une manière générale, pour un problème de
classification, l’incertitude devrait produire une distribution de prédiction sur les classes. De cette
façon, la confiance dans une classe prédite, ainsi que les confusions particulières avec d’autres classes,
peuvent être mises en évidence. Même si les sorties softmax d’un réseau de classification ressemblent
à une telle distribution, elles sont connues pour être sujettes à une mauvaise calibration et à une
confiance excessive [19]. Par conséquent, on ne peut pas s’y fier en tant que mesure de confiance et
d’incertitude.

La représentation de l’incertitude liée aux prédictions d’un réseau de neurones est un sujet ouvert
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en apprentissage profond. Dans la littérature, plusieurs approches sont étudiées pour apprendre de
tels modèles afin de dériver une métrique d’incertitude fiable. On peut citer quelques exemples et
illustrées dans la section 5.2 du manuscrit :

• les techniques d’apprentissage basées sur la méthode bayésienne

• les méthodes ensemblistes

• les modèles tenant compte d’une notion de distance dans l’espace des prédictions

• les mesures externes

Prenons l’exemple des méthodes ensemblistes qui permettent de générer et d’agréger un N-échantillon
de prédictions. Pour un problème de classification, la classe retenue est celle la plus prédite, et la mesure
d’incertitude correspond à la proportion des prédictions dans l’ensemble des autres classes. Pour un
problème de régression la valeur moyenne et l’écart-type des prédictions fournissent un intervalle de
confiance autour de la valeur moyenne prédite.

Une bonne estimation et taxonomie de l’incertitude aidera à quantifier la confiance que l’on peut
avoir dans les prédictions de l’agent SRA et pour faire face aux potentiels biais. Du point de vue de
l’opérateur, cela pourrait améliorer les garanties de sécurité et d’acceptabilité qui sont des exigences
fortes pour l’industrie. Du côté de l’agent SRA, c’est un moyen de questionner et de raisonner sur son
propre comportement.

B.5.2 Incertitude dans la prise de décision

Une fois que l’on dispose d’une mesure d’incertitude bien calibrée [19] (lorsque la précision prédic-
tive est proche de la confiance en les prédictions), il est possible d’utiliser cette mesure d’incertitude
dans la prise de décision.

En suivant [20], nous pouvons adapter la matrice de contingence classique [21] comme indiqué dans
le tableau B.5. A partir de cette matrice, nous pouvons dériver des mesures de performance, ainsi
qu’un processus d’apprentissage actif pour notre SRA.

Résultats de prédictions
Mauvaise Bonne

In
ce
rt
it
u
d
e Elevée Vrai Positif (VP) Faux Positif (FP)

(Question) (fausse alarme)
τthresh

Faible Faux Négatifs (FN) Vrai Negatifs (VN)
(Action) (non détection)

Table B.5: Tableau de contingence avec mesure d’incertitude τ . Au-delà d’un seuil d’incertitude
τthresh, une alarme est déclenchée, par exemple dans un cadre d’apprentissage actif.
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Étant donné un seuil d’incertitude τthresh, les prédictions peuvent être classées en deux catégories :
confiantes (incertitude ”faible”) et incertaines (incertitude ”́elevée”), pour lesquelles la décision respec-
tive est de déclencher (”Positive”) ou non (”Négative”) une alarme. La pertinence du déclenchement
ou non d’une alarme est désignée par ”Vrai”. Étant donné une prédiction, ”Vrai” correspond à la di-
agonale principale de la matrice de contingence, c’est à dire d’avoir déclenché (resp ne pas déclenché)
une alarme si la prédiction était effectivement mauvaise (resp bonne). La proportion de ”Vrai” est
ainsi une mesure d’expertise de l’agent à déclencher ou non une alarme à bon escient.

Cette matrice de contingence peut être considérée comme une classification binaire permettant
d’évaluer les potentielles mauvaise prédictions, par exemple concernant les prédictions d’un réseau
de neurones. Une bonne métrique d’incertitude devrait maximiser les proportions dans la diagonale
principale (VP et VN), et éradiquer les non détections (FN) correspondant aux mauvaises prédictions
qui sont considérées comme juste et certaines, tout en limitant le nombre de fausses alarmes (FP). En
effet, les non détections (FN) peuvent entrâıner des problèmes de sécurité dans les applications indus-
trielles de robotique collaborative, et les fausses alarmes (FP) représentent un coût supplémentaire
dans un contexte industriel. Une alarme déclenche un échec du système qui doit être résolue par des
interactions humaines (démonstrations et énoncés) dans le processus d’apprentissage interactif. Par
conséquent, nous voulons limiter le nombre d’interactions inutiles (FP).

La table de contingence peut être exploitée pour fixer le seuil τthresh de la quantité de vrais positifs
acceptables par rapport aux faux positifs, représenté dans le tableau B.5. Au-dessus de ce seuil,
l’agent est suffisamment confiant et décide d’agir. En dessous de ce seuil, il doit décider de demander.
Ceci est illustré dans la figure B.18. Étant donné un histogramme de prédictions, on représente en
vert l’histogramme des bonnes prédictions et en rouge l’histogramme des mauvaises prédictions pour
une incertitude τ donnée. Divers outils statistiques (tels que les courbes ROC) et indicateurs clés
de performance (KPI) dérivée de la table de contingence et reposant sur le calcul de plusieurs ratios
peuvent être utilisés pour affiner l’analyse et pour la prise de décision (voir section 5.3.2 du manuscrit).

Dans un contexte industriel, il nous faut éradiquer les non détections (FN) tout en limitant les
fausses alarmes (FP). Cela motive la mise en place d’un apprentissage actif où τthresh évoluera (aug-
mentera) dans le temps. Un bon modèle de prédiction associé à un modèle d’incertitude bien calibré
et un apprentissage actif devrait permettre de séparer clairement les deux distributions, c’est à dire
de rendre expert notre agent (matrice de contingence diagonale).
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Figure B.18: Illustration de l’utilisation de τthresh pour limiter les mauvaises actions
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B.5.3 Apprentissage actif

Maintenant que nous avons une meilleure idée de ce qu’est l’incertitude et de la façon dont elle
peut être estimée, nous pouvons nous concentrer sur la façon de l’intégrer dans une application robo-
tique réelle. La notion d’incertitude a été utilisée dans plusieurs travaux en robotique à des fins
d’apprentissage. Il n’existe pas de définition claire, mais ces méthodes exploitent une certaine notion
d’inconnu pour susciter des comportements spécifiques d’exploration. Le domaine de l’apprentissage
actif se concentre sur les stratégies qui peuvent réduire l’inconnu et améliorer le modèle sous-jacent.
Nous pouvons donc exploiter les notions d’incertitude dans le contexte de l’apprentissage actif et de
l’intégrer dans l’architecture de l’agent SRA. Une méthodologie générale est illustrée dans la figure
B.19 et peut être résumée à haut niveau par la procédure suivante :

• Un réseau de neurones est entrâıné sur un ensemble de données avec une fonction de perte L et
avec une notion d’incertitude, idéalement calibrée.

• Ensuite, la prédiction et l’incertitude du modèle sont exploitées au cours du processus d’appren-
tissage interactif de l’agent SRA.

• Une fois la prédiction effectuée, l’incertitude est propagée au niveau supérieur afin que l’agent
décide si il doit agir ou demander en fonction du paramètre d’incertitude τ par rapport au seuil
τthresh(t) qui évolue au fil de l’apprentissage actif. Plusieurs cas sont possibles et sont précisés
dans la section 5.4.2 du manuscrit.

* Le réseau peut apprendre sa propre incertitude pendant l’apprentissage initiale en fonction des méthodes

ypred

Apprentissage

τpred*

yval

Learning

τpred

ypred

τpred

Data collection

Exécution
de l’action

Processus de l’agent ARI

τpred*

x ∈ Dtrain, ytrain

Réseau de
Regression/Classification *

L(ypred, ytrain)L*(ypred, ytrain)L(ypred, ytrain)

x ∈ Dval, yval

τ =
Luncertainty(ypred, yval)

x ∈ Dvalidation, yvalidation

τ =
Luncertainty(ypred, yvalidation)x ∈ Dvalidation, yvalidation

τ =
Luncertainty(ypred, yvalidation)

x ∈ Dval, τ

Données de calibration
Métrique d’incertitude

externe
L(τpred, τ)

x ∈ Dtest, y

Données de test en production

Réseau de
Regression/Classification *

Métrique d’incertitude
externe

Phase décisionelle
a t avec

f(τ) = τ − τthresh(t)

f(τ) > 0 → Ask

f(τ) <= 0 → Act

(1) (Pré)entrainement
standard

(2) Apprentisage/calibration
de l’incertitude

(3) Apprentissage
actif avec
incertitude.

Figure B.19: Processus général pour l’apprentissage actif
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Afin d’intégrer les travaux sus-mentionnés sur l’architecture, au niveau de la prise de décision,
nous devons étendre le modèle de comportement de l’architecture avec des capacités de traitement et
de propagation de l’incertitude. Cette dernière peut être effectuée par des arbres de comportements
spécifiques (BBT) [22]. Dans ce cadre, l’agent peut raisonner sur un état de croyance dans sa mémoire
de travail et propager l’incertitude à travers les noeuds de l’arbre. L’agent ne raisonne plus dès lors
sur des valeurs uniques mais sur des distributions d’états et d’actions.

Nous pouvons ensuite intégrer le processus d’apprentissage actif dans ce cadre par exemple dans
l’exemple de préhension (voir la figure B.20). Étant donné plusieurs conditions et modules perceptifs
intégrant la notion d’incertitude, l’agent SRA sélectionne les prédictions en fonction du seuil τthresh(t).
Les prédictions et les incertitudes sont propagées vers les noeuds supérieurs, une impasse se produit
et peut être résolue en demandant des démonstrations dans un cadre d’apprentissage actif, si aucun
état candidat s pour la préhension n’est valide.

parent

→

?

module(monde)→ ¶(spred,1, τpred,1), (spred,2, τpred,2)♦

Gestion d’échec lié à l’incertitude

→

Recherche

. . .

Demander
et collecter des données (strue)

. . .

Apprentissage
perceptuel actif

pour le module de préhension

. . .

Prendre(gpred) ?

is object grasped Gestion d’échec

τ c
1 , s1, r1 = ♣fROC

τthresh,1
(τpred,1))

τ c
2 , s2, r2 = ♣fROC

τthresh,2
(τpred,2))

c1

¶(τ c
1 , gpred,1, ), (τ c

2 , gpred,2, )♦

Figure B.20: L’agent SRA peut exploiter la structure spécifique des BBTs pour gérer l’incertitude
fournie par les modules de niveau inférieur

En reconsidérant l’histogramme de prédiction (Figure B.21a), idéalement, après quelques itérations,
la distribution des bonnes et mauvaises prédictions devrait être bien séparée (B.21b). Le SRA devient
expert lorsque les demandes deviennent rares et que les actions sont bonnes. Les demandes ne devraient
concerné que certains cas exceptionnels particulièrement éloignés des données d’apprentissage. Cela
pourrait être réalisé en faisant varier le seuil d’incertitude au fur et à mesure que l’agent gagne en
expertise.
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(a) L’histogramme des prédictions n’est pas bien sé-
paré au début de l’apprentissage.
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(b) Histogramme idéal de prédictions. Étant donnée
le seuil d’incertitude, une action certaine est toujours
bonne, tandis qu’une non-action pour cause d’incer-
titude est toujours justifiée car elle aurait conduit à
une erreur. Les non-détections sont éliminées.

Figure B.21: Illustration de l’utilisation de τthresh pour éviter les mauvaises actions, compte tenu de
l’incertitude τ .

B.5.4 Conclusion

Dans ce chapitre, nous avons défini comment l’incertitude peut être vue comme une composition
de différents types d’incertitudes. Son intégration est déterminante, si l’on veut qu’un agent SRA
soit capable de raisonner et de faire face à plusieurs types de biais. De plus, nous avons montré
que l’exploitation de l’incertitude peut être au coeur d’un processus d’apprentissage actif au sein de
l’architecture. En effet, en appliquant un seuil à la quantité d’incertitude acceptable, nous pouvons
dériver une notion de curiosité ou de motivation qui peut être exploitée par l’agent pendant l’interaction
en décidant de demander plutôt que d’agir. Ainsi, un agent SRA peut avoir beaucoup plus de recul
sur ses capacités de prédiction, ce qui conduit à des comportements plus sûrs et à la possibilité de
demander de l’aide dans des scénarios plus riches ou éloignés de ceux sur lesquels il a appris.

D’autre perspectives de plus long terme sont également abordée dans le manuscrit (voir section
7.3) et questionnent certaines limites et potentiels d’amélioration de l’architecture en termes :

• de raisonnement sur une taxonomie plus fine d’incertitudes intégrant une distinction entre les
différents types d’incertitude

• de fusion de données multimodales qui devrait permettre à l’agent de raisonner sur les incerti-
tudes en fonctions de la nature des modalités de perception

• d’amélioration de la généralisation des préférences dans le cadre multi-utilisateur où des préférences
similaires peuvent se retrouver chez plusieurs individus.
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• d’amélioration des modèles de comportement en termes d’apprentissage et de représentations,
par example en exploitant des modèles causaux.

B.6 Conclusion générale

Nous avons présenté un prototype d’architecture de base axé sur l’intégration de plusieurs fonctions
relatifs à la planification, à l’action et à l’apprentissage incrémentale de compétences dans un cadre
d’apprentissage interactif. L’état actuel de développement de l’architecture a pu valider dans un
scénario simple la plupart de nos spécifications. Des validations expérimentales ont été faites avec
robot collaboratif industriel pour l’enseignement de tâches liées à la préhension, avec des préférences
pour la manipulation. L’agent SRA est capable d’apprendre en ligne des représentations de haut
niveau et de bas niveau de la tâche, pendant une interaction d’initiative mixte. L’utilisation d’
arbres de comportements comme modèle permet de construire des représentations modulaires et
explicites de la tâche qui aident à expliquer et interpréter les comportements du robot. Le processus
décisionnel exploite des modules perceptifs basés sur des réseaux de neurones pour apprendre des
caractéristiques perceptives complexes telles que l’affordance de préhension. L’apprentissage est rapide
grâce à l’exploitation de réseaux pré-entrâınés, à l’apprentissage par transfert vers des tâches spécifiques
et aux techniques d’augmentation avec des sous-réseaux spécialisés. De plus, comme les réseaux
neuronaux les plus grands sont difficilement interprétables, l’utilisation de sous-réseaux spécialisés est
susceptible d’aider à interpréter et corriger les défaillances du système. Grâce à la modularité, si la
prédiction d’un sous-réseau échoue, il peut être possible de corriger uniquement ce sous-réseau sans
affecter les autres modules. Nous avons montré qu’il est possible, à travers un scénario d’initiative
mixte, d’enseigner une tâche avec des variations. L’adaptation aux préférences humaines, validée ici
sur les préférences d’affordance de préhension et l’adaptation à la main dominante, est une exigence
importante de notre architecture. En effet, elle offre une interaction personnalisée qui est susceptible
d’aider à l’acceptabilité des systèmes robotiques par les opérateurs.

Notre travail est un premier pas vers un assistant robotique industriel collaboratif intelligent.
L’architecture est ouverte et extensible à plusieurs améliorations. Enfin, au fur et à mesure que
l’architecture mûrira, il deviendra nécessaire de la tester dans des contextes plus complexes et avec de
vrais non-experts.
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Rachid Alami.“Ontologenius : A Long-Term
Semantic Memory for Robotic Agents”. In:
(Oct. 2019).

[25] R. Alami et al. “An Architecture for Au-
tonomy”. In: The International Journal of
Robotics Research 17.4 (Apr. 1998), pp. 315–
337. issn: 0278-3649. doi: 10/b2ts55.

[26] Mehdi Khamassi et al. “Integration of Ac-
tion, Joint Action and Learning in Robot
Cognitive Architectures”. In: Intellectica -
La revue de l’Association pour la Recherche
sur les sciences de la Cognition (ARCo)
2016/1.65 (June 2016), pp. 169–203. doi:
10/gnhc4q.

[27] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning and Acting.
Cambridge: Cambridge University Press,
2016. isbn: 978-1-107-03727-4. doi: 10 .

1017/CBO9781139583923.

[28] Sebastian Schneider and Franz Kummert.
“Comparing Robot and Human Guided Per-
sonalization: Adaptive Exercise Robots Are
Perceived as More Competent and Trust-
worthy”. In: International Journal of So-
cial Robotics 13.2 (Apr. 2021), pp. 169–185.
issn: 1875-4805. doi: 10 . 1007 / s12369 -

020-00629-w.

[29] Thibaut Munzer, Marc Toussaint, and
Manuel Lopes. “Preference Learning on the
Execution of Collaborative Human-Robot
Tasks”. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA).
May 2017, pp. 879–885. doi: 10 . 1109 /

ICRA.2017.7989108.

[30] Nils Wilde, Dana Kulić, and Stephen L.
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André Vellino. “Prolog Programming in
Depth”. In: Knowledge Creation Diffusion
Utilization (1995).

[70] Francois Felix Ingrand et al. “PRS: A High
Level Supervision and Control Language for
Autonomous Mobile Robots”. In: Proceed-
ings - IEEE International Conference on
Robotics and Automation. 1996. doi: 10 .

1109/robot.1996.503571.

[71] R. Alami et al. “An Architecture for Au-
tonomy”. In: The International Journal of
Robotics Research 17.4 (Apr. 1998), pp. 315–
337. issn: 0278-3649. doi: 10/b2ts55.

[72] Sunandita Patra et al. “Integrating Acting,
Planning, and Learning in Hierarchical Op-
erational Models”. In: International Confer-

193

https://doi.org/10.24963/ijcai.2018/752
https://doi.org/10.24963/ijcai.2018/752
https://doi.org/10.3390/app10176067
https://doi.org/10.1007/3-540-44929-9_24
https://doi.org/10.1007/978-3-319-97550-4_11
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1109/robot.1996.503571
https://doi.org/10.1109/robot.1996.503571
https://doi.org/10/b2ts55


REFERENCES: STATE OF THE ART ON COGNITIVE SYSTEMS

ence on Automated Planning and Scheduling
(ICAPS). Oct. 2020.

[73] Kutluhan Erol, James Hendler, and Dana
Nau. “HTN Planning: Complexity and Ex-
pressivity”. In: Proceedings of the National
Conference on Artificial Intelligence 2 (May
1994).

[74] Pascal Bercher, Ron Alford, and Daniel
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[1] Pooja Makula et al. “Multimodal Smart
Robotic Assistant”. In: Proceedings of 2015
International Conference on Signal Process-
ing, Computing and Control, ISPCC 2015.
Institute of Electrical and Electronics Engi-
neers Inc., Jan. 2016, pp. 18–23. isbn: 978-
1-4799-8436-7. doi: 10.1109/ISPCC.2015.
7374991.
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