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Abstract

This thesis work deals with extracting features and low-level primitives from percep-

tual image information to understand scenes. Motivated by the needs and problems in

Unmanned Aerial Vehicles (UAVs) vision-based navigation, we propose novel methods

focusing on image understanding problems. This work explores three main pieces of

information in an image: intensity, color, and texture.

In the first chapter of the manuscript, we work with the intensity information through

image contours. We combine this information with human perception concepts, such

as the Helmholtz principle and the Gestalt laws, to propose an unsupervised framework

for object detection and identification. We validate this methodology in the last stage

of the drone navigation, just before the landing.

In the following chapters of the manuscript, we explore the color and texture informa-

tion contained in the images. First, we present an analysis of color and texture as global

distributions of an image. This approach leads us to study the Optimal Transport the-

ory and its properties as a true metric for color and texture distributions comparison.

We review and compare the most popular similarity measures between distributions

to show the importance of a metric with the correct properties such as non-negativity

and symmetry. We validate such concepts in two image retrieval systems based on

the similarity of color distribution and texture energy distribution. Finally, we build

an image representation that exploits the relationship between color and texture in-

formation. The image representation results from the image’s spectral decomposition,

which we obtain by the convolution with a family of Gabor filters. We present in detail

the improvements to the Gabor filter and the properties of the complex color spaces.

We validate our methodology with a series of segmentation and boundary detection

algorithms based on the computed perceptual feature space.

Keywords: Image Processing, Low-level Primitives, Human Perception, Detec-

tion, Segmentation, Unsupervised Methods, Scene Understanding, Machine Learning,

UAV.
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Résumé

Ce travail de thèse porte sur l’extraction de caractéristiques et de primitives de bas

niveau à partir des informations perceptuelles de l’image pour comprendre des scènes.

Motivés par les besoins et les problèmes de la navigation basée sur la vision des véhicules

aériens sans pilote (UAV), nous proposons de nouvelles méthodes en nous concentrant

sur les problèmes de compréhension de l’image. Ce travail explore trois informations

principales dans une image : l’intensité, la couleur et la texture.

Dans le premier chapitre du manuscrit, nous travaillons sur les informations d’intensité

à travers les contours de l’image. Nous combinons ces informations avec des concepts

issus de la perception humaine, tels que le principe de Helmholtz et les lois de la Gestalt,

pour proposer un cadre non supervisé pour la détection et l’identification des objets.

Nous validons cette méthodologie dans la dernière étape de la navigation par drone,

juste avant l’atterrissage.

Dans les chapitres suivants du manuscrit, nous explorons les informations de couleur

et de texture contenues dans les images. Tout d’abord, nous présentons une analyse

de la couleur et de la texture en tant que distributions globales d’une image. Cette

approche nous amène à étudier la théorie du transport optimal et ses propriétés comme

véritable métrique de comparaison des distributions de couleur et de texture. Nous

passons en revue et comparons les mesures de similarité les plus populaires entre les

distributions pour montrer l’importance d’une métrique avec les propriétés correctes,

telles que la non-négativité et la symétrie. Nous validons ces concepts dans deux

systèmes de récupération d’images basés sur la similitude de la distribution des couleurs

et de la distribution de l’énergie des textures.

Enfin, nous construisons une représentation d’image qui exploite la relation entre

les informations de couleur et de texture. La représentation de l’image résulte de la

décomposition spectrale de l’image, que l’on obtient par convolution avec une famille

de filtres de Gabor. Nous présentons en détail les améliorations apportées au filtre

Gabor et les propriétés des espaces colorimétriques complexes. Nous validons notre

méthodologie avec une série d’algorithmes de détection des limites et de segmentation

basés sur l’espace des caractéristiques perceptuelles calculé.

Mots clés: traitement d’image, primitives de bas niveau, perception humaine,

détection, segmentation, méthodes non supervisées, compréhension de scène, appren-

tissage automatique, drone.
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Introduction

In this thesis, we present the study of image information such as intensity, color, tex-

ture, and the relationship between them to extract low-level image primitives. Such

primitives can characterize objects in images under various conditions, so we use them

to build a representation of an image for high-level computer vision tasks such as scene

understanding. We propose a novel methodology that combines this image information

(intensity, color, and texture) with some human visual perception concepts. We focus

on the image segmentation functionality of challenging applications performed under

complex, uncontrolled conditions, with a lack of a priori knowledge. For this purpose,

we favor traditional Computer Vision methods, which makes us independent of the

disadvantages of today’s methods: fine-tuning of parameters, a priori model, and ex-

plicability of the results. We obtain image features with a physical sense that can be

used later in completely unsupervised algorithms. We validate such features and the

proposed methodology in applications that are related and representing the problems

of Unmanned Aerial Vehicles (UAVs) vision-based task.

Vision-based Techniques and Scene Understanding

for UAVs Tasks

The methodology we propose in this thesis is an alternative to the difficulties in vision-

based applications present in UAV tasks using the understanding of scenes. The ad-

vancement of computer vision techniques has favored their use in a wide range of

applications. The development has been outstanding in already traditional applica-

tion areas such as multimedia or medicine. However, new application areas such as

augmented reality [Abu Alhaija et al., 2018], automated driving [Janai et al., 2020],

robotics [Sankowski and Nowakowski, 2014], the Internet of Things (IoT) [Othman and
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Aydin, 2017], Industry 4.0 [Zhong et al., 2017], human-computer interaction [Ke et al.,

2018], and vision for the blind [Ahmed et al., 2020] continue to emerge.

Regardless of the application, computer vision systems must perform several tasks

to achieve their goal. Generally, these tasks include techniques for acquiring, process-

ing, analyzing, and understanding digital images; extracting real-world data to produce

symbolic information, for example, in the form of decisions [Wiley and Lucas, 2018].

Scene understanding is the process that connects all these tasks to perceive, analyze

and elaborate an interpretation of a dynamic 3D scene. Fig. 1 shows the pipeline of a

conventional system for scene understanding. A system like this can use a wide variety

of sensors (e.g., cameras, microphones, motion radars, among others) to characterize a

scene [Bremond, 2007]. Therefore, this process consists mainly of relating information

from monitoring sensors to models based on human observations and interpretations

of the scene. We can then define scene understanding as to the crumbling of the

symbolic image information using geometric, physical, statistical, or theory of learning

models into descriptions of the world that can interact with other processes and provoke

appropriate actions.

Data 
Acquisition

Scene
Segmentation

Object
Recognition

Object
Tracking

Scene
Reconstruction

A priori knowledge
● Human-based models

Data 
Pre-procesing

Figure 1: Typical pipeline of a scene understanding system.

Following the pipeline of Fig. 1, we can place the tasks of a scene understanding

system into five general well-defined computer vision problems.

i Data pre-processing, whose objective is to remove the imperfections of an

image generated by disturbances such as sensor noise or motion blur. Generally,

we perform this task before passing it to a more complex algorithm. Image

restoration and inpainting are some examples of this computer vision problem.

ii Scene segmentation is the process of partitioning an image into multiple (co-

herent) segments according to its features and properties. Depending on the

application, we can formulate the image segmentation as the problem of clas-

sifying pixels with semantic labels (semantic segmentation), or partitioning of

individual objects (instance segmentation), or both (panoptic segmentation).

iii Object Recognition is a classic computer vision problem responsible for deter-

mining whether an image contains an object, characteristic, or exercise. Some

2
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variants of this problem are the classification, identification, and detection of

objects from which many specialized tasks emerge. For example, content-based

image search, pose estimation, optical character recognition, reading of 2-d codes,

facial recognition, shape recognition, among others.

iv Object Tracking is the problem that searches to estimate the speed of one or

more points of interest within an image or 3-d scene by processing a sequence

of images. Some examples of similar task are egomotion, pose estimation, and

optical flow.

v Scene reconstruction is the problem related to the computation of a 3-d model

from one or more images of a scene. This model is intended to be a description

of the scene as close to reality as possible.

These functionalities of computer vision and scene understanding systems are sought

in the field of drones. UAVs (or drones) are flying engines that are increasingly present

in our lives. We can find them in various sectors, such as the military, commercial or

civil, where they can perform very specific tasks. However, in most cases, the develop-

ment of such applications requires an expert pilot to control the aircraft.

Commonly, the UAV control is achieved using conventional sensors, such as inertial

sensors (IMUs) for orientation and GPS for position. The combination of information

coming from these sensors in a flight computer allows the drones to remain stable in the

air. However, IMUs present some drawbacks; for example, they suffer from bias error

propagation due to the integral drift. On the other hand, the GPS signal is not always

guaranteed; for example, the satellite signal may be low or unexisting in urban or

indoor environments. A recurrent technique to enhance the drone’s position accuracy

implies the data fusion of pressure, ultrasonic, radars, and laser range-finders sensors

[Tomic et al., 2012]. The fusion of data can provide the advantages of each sensor.

However, a significant limitation of these complex systems is flight time, a parameter

mainly linked to the vehicle’s total weight and the battery’s capacity. Therefore, the

use of multiple sensors onboard becomes expensive and impractical.

It is possible to extend the capabilities of a drone by integrating some visual sensor.

Contrariwise to other sensors such as Lidars, visual sensors are passive, lightweight,

and can acquire valuable information about the surrounding structures, including color

and textures, and UAV’s self-motion. The addition of visual sensors to perceive the

environment has been a recurring strategy that has made these aerial robots more

manipulable, safer, and even in some cases, autonomous [He et al., 2018], [Kyrkou

et al., 2019], [Zhu et al., 2020]. That means that the drone can perform a task without

the need for human intervention. For this, the drone must be able to move without

getting lost; moreover, it must interpret and understand the present scene so that it

can be able to detect and avoid potential obstacles on its way.

3
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Today, one can use different visual sensors, such as monocular cameras [Padhy et al.,

2018], stereo cameras [Seitz et al., 2006], RGB-D cameras [Huang et al., 2017], fish-eye

cameras [Hrabar and Sukhatme, 2004], thermal cameras [Gaszczak et al., 2011], among

others. This wide range of sensors offers more options and flexibility to deal with the

problems mentioned above. The integration of such sensors in UAVs has allowed us to

see the world from another perspective (literally), and the development of perceptual

computer vision algorithms drives the technological improvement of these machines.

Today, there are applications in which vision algorithms have outstripped the ca-

pacity of human vision, so they have entirely replaced human personnel, for example, in

industrial vision systems tasks, say, the inspection of production lines [Malamas et al.,

2003]. However, in other imaging areas, computer vision systems are only responsible

for supplementing specific routines that require a considerable amount of time and

experience from human experts. This discrepancy in the vision systems’ performance

is mainly related to the complexity of the task and the environment’s conditions where

the task is performed. In industrial vision systems, we can control the working condi-

tions in most cases, while in areas such as robotics and unmanned aircraft (or UAV),

with uncontrolled conditions and without large databases, computer vision algorithms

bring a real challenge, even though the acquisition system is the same.

Image Characteristics and Technical Locks in UAV Vision-

based Applications

We can interpret the application and tasks made with drones as missions. Gener-

ally, such missions involve three central moments: take-off, navigation, and landing.

The drone can perform such stages with conventional sensors; however, visual sensors

provide valuable perceptual information about the environment.

Among the three moments that occur in drone missions, navigation and landing

are the stages in which visual information (from onboard sensors) and computer vision

algorithms most frequently intervene. In the landing stage, the needs and problems

can be well-defined since it occurs at the end of the mission. Besides, we can control

some conditions by adding pre-designed elements, such as landing targets or landing

platforms, to facilitate the task. However, in the navigation stage, computer vision

problems are mainly determined by the nature of drone applications.

Drone missions are generally carried out in complex scenes that change as the

vehicle moves through space. For example, imagine all the scenarios that a delivery

drone goes through during its mission: It can start its route in a commercial area,

where the scenes mostly contain warehouses and big open spaces such as parking lots.

Then, it could pass through rural areas, where the scenes can contain farmlands or

wooded areas. Finally, when the drone reaches the delivery point within an urban

zone, the environment may contain houses, trees, electricity, and telecommunications
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poles, among others.

The mission through different environments generates considerable lighting changes

and shadows, which results in overexposed and (or) dark images. Besides having no

control over lighting conditions, we must also consider that the camera’s position and

orientation vary concerning the scene depending on the vehicle’s height and orientation.

Moreover, we must also consider the rolling shutter effect present in cameras using

CMOS sensors. Therefore, the objects present in the images may have deformations

because of the optic and the movement. Fig. 2 shows some images taken with a

commercial drone in a natural setting. We can observe how the environment’s lighting

conditions and the nature of aerial applications introduce deformations to the images

and objects present in the scene.

Finally, we must not forget that we acquire the input images from an onboard

camera, which is generally not stabilized; therefore, the images may be noisy or blurry.

Such problems limit a computer vision algorithm to be globally efficient in all or most

situations.

(a) Presence of shadows (b) Saturations

(c) Change of scale

Figure 2: Some examples of image degradations present in aerial
imaging and UAV applications.

In addition to the problems related to the complex scene conditions, we must con-

sider that a drone is subject to sudden changes in the environment, such as wind gusts,

which can affect its stability and modify the visual information given by the onboard

sensors. In such cases, the vision algorithms for drone navigation must process the

input information fast enough to provide answers and transform them into real-time
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decision actions.

Considering the conditions and problems of vision-based drone applications, we ar-

gue that a system for scene understanding is necessary for this kind of application.

Moreover, scene understanding must use low-level information such as intensity, color,

and texture in combination with perceptual tools to generate a robust image inter-

pretation to the characteristic visual conditions of the aerial platforms. Among these

classic computer vision problems, image segmentation is a crucial stage in the scene

understanding pipeline. Considering the pipeline of an scene undertanding system Fig.

1, image segmentation is a mid-level task; however, it is critical for high-level appli-

cations such as object recognition, object tracking, scene reconstruction, and scene

understanding. A robust segmentation to the changes and variants of complex envi-

ronments allows the generalization of high-level tasks to new contexts and applications

[Maninis et al., 2018].

Image Segmentation State of the Art

Image segmentation has a long history in computer vision and is present in many

applications in medicine, biology, robotics, and physics. Here, we present a brief review

of the state-of-the-art segmentation methods taking into account the thier relationship

with vision perception (a more detailed version of the state-of-the-art of segmentation

methods appears in chapter 6, section 6.2). For this purpose, we divide the image

segmentation techniques into classical methods and Artificial Intelligence (AI) methods.

Classical Image Segmentation Techniques

Classical image segmentation methods can be organized into two groups: those that

identify similarities or those that identify discontinuities [Zaitoun and Aqel, 2015]. The

first kind of approach detects similar pixels in the image based on some specific thresh-

old or criteria for split-merge and growing regions. The second category of methods tries

to find the boundaries between dissimilar pixels in the image. A more specific classifi-

cation according to the technique used divides segmentation methods into Threshold-

based, edge-based, region-based, watershed-based, clustering-based, PDE-based, and

Graph-based [Zaitoun and Aqel, 2015].

Threshold-based algorithms are one of the simplest image segmentation tech-

niques. The threshold operation divides the image by comparing the intensity of the

pixels to a specific threshold value [Sezgin and Sankur, 2010]. This kind of method

can only segment images into background and foreground based mainly on the inten-

sity pixel information. This property is convenient when there is a significant contrast

difference between the objects and the background. The major challenge of such ap-

proaches is the choice of the threshold value. The simplest option is to use a global
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threshold for the whole image; however, this option fails when the illumination in the

image is uneven. Local thresholding methods solve this problem by proposing multiple

thresholds [Niblack, 1986], [Sauvola and Pietikäinen, 2000]; however, the computation

time can increase considerably. One of the most popular approaches in this category

that automatically determine the threshold value is Otsu’s method [Otsu, 1979].

The Edge-based segmentation methods attempt to solve the image segmentation

problem by detecting edges in an image according to the differences in texture, contrast,

grey level, color, saturation, and other properties [Saini and Arora, 2014]. Some of

the more well-known methods in this category employ operators that use the first

and second derivatives of the image to identify abrupt changes in the intensity of the

image, for example, the Sobel [Sobel and Feldman, 1990], Roberts [Roberts, 1963],

Gradient [Maître, 2003], Prewitt [Prewitt, 1970], and Laplacian [Marr and Hildreth,

1980] operators. On the other hand, one of the state-of-the-art reference work is the

Probability-boundary (Pb) [Malik et al., 2001], which uses the intensity and color, and

texture information to obtain the edges of the image.

The Region-based segmentation methods partition the image into similar regions

according to predefined criteria. Depending on the strategy used to arrive at the final

segmentation, they can be organized into region growing and splitting and merging

techniques [Sezgin and Sankur, 2010]. Region growing techniques define a group of

seed pixels from which regions start to grow [Adams and Bischof, 1994; Zucker, 1976].

Regions grow by appending to each seed pixel those neighboring pixels that have pre-

defined properties similar to those of the seed pixels (e.g., intensity or color). Regions

stop growing when they reach a particular predefined stop criterion (e.g., size or shape

of the region). Conversely, splitting and merging techniques do not require seed pixels.

This technique successively divides the image into quadrants based on a homogene-

ity criterion, then similar regions are merged to form the final segmentation. This

strategy includes the quad-tree data structure [Horowitz and Pavlidis, 1976], which

means a parent-child node relationship. In practical applications, the region growing

and splitting and merging algorithms are usually used in combination [Ikonomatakis

et al., 1997]. This combination is more effective for the segmentation of complex scenes

defined by some complex objects or the segmentation of certain natural scenes, such

as image segmentation with insufficient prior knowledge.

The Watershed-based segmentation is a technique that utilizes image morphology

and combines the characteristics of edge- and region-based methods described above.

First, this method computes the gradient of an image. We can see this gradient as

a map that reflects the topography of the image through the intensity values of the

pixels. Then, segmenting an image is equivalent to flooding the topography from a

group of seed pixels, where the edges of the image appear as the highest ridges where

the flood water meets [Beucher and Meyer, 1993; Meyer and Beucher, 1990]. The wa-

tershed method is strictly linked to hierarchical segmentation methods [Najman and
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Schmitt, 1996]. This feature of hierarchical dependence complexifies the efficient imple-

mentation in embedded processors. Many strategies introduce other definitions of the

watershed transform to solve the complexity problem, which simplifies and accelerates

its computation [Roerdink and Meijster, 2000] , [Dejnozkova and Dokladal, 2003a],

[Chabardès et al., 2016].

Another alternative to obtain the segmentation of an image is by using clustering

methods. The clustering-based segmentation methods are unsupervised techniques

that classify the image pixels into clusters (disjoint groups) with similar features. The

objective of pixel clustering is to maximize inter-class differences and minimize intra-

class differences; that is, the pixels in each class should be as similar as possible, and

those in the different groups should be as different as possible [Steinley, 2006]. The

k-means technique is known as a hard-clustering technique since each pixel can belong

only to one class. Fuzzy algorithms (soft-clustering) relax that condition, and each

data point can belong to more than one cluster. This behavior is suitable in applica-

tions where there are no crisp boundaries between objects, such as tissue classification

[Caldairou et al., 2011] and tumor detection [Preetha and Suresh, 2014]. Among the

soft-clustering methods, fuzzy C-means clustering [Dunn, 1973] is one of the most used.

PDE-based segmentation methods use Partial Differential Equations to model the

image contours and obtain an image segmentation. Active Contour Model (or Snakes)

transform the segmentation problem into PDE. Some famous methods of PDE used

for image segmentation are Snakes [Kass et al., 1988], Level-Set [Osher and Sethian,

1988], Fast Marching [Forcadel et al., 2008], and Mumford Shah method [Mumford and

Shah, 1989]. One of the main problems of these methods is the high computational

time for the resolution of the PDE, which limits its use on embedded platforms. This

limitation has been addressed in the implementation level through architectures that

allow multi-core parallel calculation [Dejnozkova and Dokladal, 2003b, 2004].

The last group of classical methods for image segmentation is Graph-based. These

methods utilize graph theory and represent images or their parts as graphs. Typically,

a pixel or a group of pixels are associated with nodes, and the edge weights define the

affinity between neighboring pixels. Then, we can partition the graph according to a

criterion designed to model good clusters. Each resulting partition of nodes is consid-

ered a segmented object in the image. Some popular algorithms in this category are

normalized cuts [Jianbo Shi and Malik, 2000], random walker [Grady, 2006], minimum

cut [Wu and Leahy, 1993], isoperimetric partitioning [Grady and Schwartz, 2006], and

minimum spanning tree [Zahn, 1971]. Some of the segmentation methods can combine

strategies. For example, spectral clustering [Ng et al., 2001] uses the graph theory and

the similarity of the graph edges to cluster the image pixels into coherent regions. On

the other hand, [Cousty et al., 2009] define the watershed cuts cut on edge-weighted

graphs using the Minimum Spanning Forest.

This group of approaches and techniques (known as classical, conventional, or tra-
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ditional) can use structural, stochastic, or hybrid techniques to segment an image.

Structural techniques require structural data from the image, such as distributions,

histograms, pixel density, or color distribution. Stochastic techniques require informa-

tion about the discrete values of the pixels. Machine learning methods, such as the

clustering techniques, fall into this category. Finally, hybrid techniques may use struc-

tural information of image regions and the discrete values of the pixels of the whole

image for the segmentation. The choice of the method to segment an image depends

on the type of image and the type of segmentation that we seek to obtain (for example,

over-segmentation or segmentation to pixel precision). Regardless of this, we consider

it essential to consider the perceptual elements of the data to achieve a meaningful

interpretation of the scene.

AI Image Segmentation Techniques

The Artificial Neural Networks- (ANN) based techniques (a.k.a. Deep Learning

(DL) techniques) are probably the most widely used methods today because of their

efficiency and accuracy. Based on the learning rules and training process, learning

in ANNs can be sorted into supervised, reinforcement, and unsupervised learning.

Reinforcement and unsupervised learning are different from each other in many aspects.

Reinforcement learning includes learning policy by maximizing a few rewards. The

objective of unsupervised learning is to exploit the similarities and differences in the

input data. Unsupervised learning plays out the tasks of pattern recognition and data

dimensionality reduction. Some models of unsupervised ANN are Boltzmann Machines

[Salakhutdinov and Hinton, 2009] (and its variations, such as Restricted Boltzmann

Machines [Fischer and Igel, 2012]), Auto-Encoder architectures [Makhzani et al., 2016],

and Variational Auto-Encoders (VAE) architectures [Doersch, 2021].

The techniques mentioned above are unsupervised learning methods, although tech-

nically, they are trained using supervised learning methods, referred then to as self-

supervised. Supervised techniques require an annotated database for training, valida-

tion, and testing. In this case, the input neurons can correspond to the pixel value of

an image or to complex data like graphs and multi-dimensional points (Geometric Neu-

ral Networks [Bronstein et al., 2017]), which means the image information is mapped

to the neural network. Then, the image in the form of the neural network is trained

using labeled data to find the connection between neurons. Lastly, the new images are

segmented from the trained model.

In recent years, neural network techniques have led to new models for image seg-

mentation. We can classify these methods roughly according to the architecture they

use1. Convolutional Neural Networks (CNNs) are among the most widely used and suc-

1The architectures often differ based on the solved task, e.g., image classification, object detection,
semantic segmentation, instance segmentation. For a detail classification please see [Sultana et al.,
2020] and [Minaee et al., 2021]
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cessful architectures in computer vision. This model, initially proposed by Fukushima

[1980], is inspired by the model of the human visual cortex.S Some of the best-known

CNNs in the literature include LeNet [Lecun et al., 1998], AlexNet [Krizhevsky et al.,

2012], VGGNet [Simonyan and Zisserman, 2015] and ResNet [He et al., 2016].

Due to their characteristics, CNNs may require dense layers for pixel-level predic-

tion, which means a huge number of parameters to learn, making it highly computa-

tionally expensive. Fully Convolutional Networks (FCN) [Long et al., 2015] solve this

drawback by stacking several convolution Layers with similar padding to preserve the

dimension and output a final segmentation map of the same size as the input image.

Some of the best-known models are VGG16 and GoogleNet [Szegedy et al., 2014].

Other deep learning backbones are the Encoder-Decoder and Auto-Encoder archi-

tectures. This type of model is known as two-stage networks. The first stage, en-

coding, compresses the input information into a space-latent representation, while the

second stage, decoding, predicts an output from the representation. Some examples

of networks that follow this architecture are DeConvNet [Noh et al., 2015], SegNet

[Badrinarayanan et al., 2017], U-Net [Ronneberger et al., 2015], W-net [Xia and Kulis,

2017], Linknet [Chaurasia and Culurciello, 2017], among others.

Object detection and image segmentation are complementary tasks in computer

vision. Consequently, some architectures for object detection, such as Regional CNN

(R-CNN), have been successfully adapted for image segmentation. Some examples are

the Faster R-CNN [Ren et al., 2017], Mask R-CNN [He et al., 2020] and Masklab [Chen

et al., 2018] architectures. The operation principle of these architectures is to extract

the features of certain regions of interest to infer the class and the coordinates of the

bounding box of the object.

A very recent family of architectures are those based on Generative Adversarial

Networks (GANs) [Goodfellow et al., 2014]. This architecture consists of two net-

works, a generator, and a discriminator. The generator has the task of reproducing

distributions similar to the real samples. On the other hand, the task of the discrim-

inator is to distinguish the fakes samples from the real ones. GANs models include

Convolutional-GANs [Radford et al., 2016], Conditional-GANs [Mirza and Osindero,

2014], and Wasserstein-GANs [Arjovsky et al., 2017].

Other popular DL architectures for image segmentation include Feature Pyramidal

Networks (FPN) [Lin et al., 2017], which takes a multi-scale approach, or hybrid ones

that combine classical methods such as the Active Contour Model [Kass et al., 1988]

and CNNs, or the watershed transform in the deep watershed architecture [Bai and

Urtasun, 2017].

The literature on methods based on DL architectures for image segmentation is

vast. For a more detailed survey of the state of the art of ANN-based methods for

image segmentation, please check [Sultana et al., 2020] and [Minaee et al., 2021].

AI-based image segmentation methods are experiencing popularity and growth that
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has benefited from advancements in computing power and the recent creation of pub-

licly accessible annotated databases. However, its use in particular applications where

there are not (yet) large enough annotated databases is complicated. Furthermore,

despite the performance in challenging benchmarks, arguably, the best-known disad-

vantage of neural networks is their black box nature, i.e., we are unaware of how or

why a ANN obtained a certain output. This yield to a lack of result interpretability,

especially in classification tasks.

Vision-based UAV Navigation Related Works

In the literature, we can find many works that deal with computer vision for drone

navigation. The different approaches are strongly related and motivated by the appli-

cation’s aim and the conditions in which the task is developed. We can differentiate

two main techniques for UAV navigation; 1) localization and mapping and 2) obstacle

avoidance.

Simultaneous Localization and Mapping (SLAM) falls within the first group of

techniques, where drone navigation is a necessary (but not sufficient) condition for

drones to acquire the ability to navigate. This technique estimates the drone’s local

pose and builds a 3-d model of its surroundings employing visual sensors. Visual

Odometry (VO) [Scaramuzza and Fraundorfer, 2011] is responsible for the robot motion

estimation while the maps are built with occupancy grid algorithms [Thrun and Bü,

1996]. According to the image information used to perform a SLAM, we can classify

these approaches into feature-based methods, which extract a set of image features

(e.g., lines, points) in a sequence of images, and direct-based methods, which make

use of the image intensity information to estimate the structure and the motion of the

robot [Taketomi et al., 2017]. The importance of a correct segmentation of the image

is that we can also create a depth chart of the scene from it and consequently achieve

the visual odometry [Drouyer, 2017; Drouyer et al., 2017].

The use of SLAM techniques for UAV navigation presents remarkable advantages.

Feature-based methods can use various feature detectors, which typically count with

an optimization stage to produce fast algorithms. Direct-based methods have the

advantage of being robust to image degradations; they can deal better with images with

texture and blurred zones; besides, the map produced is of an acceptable resolution.

Interestingly, the strengths of the first group of methods are the weak points of the

second and vice versa. A method that tries to gather the benefits of both approaches

is the Semi-direct Visual Odometry [Forster et al., 2014]; however, in general, the

state-of-the-art SLAM methods is more mature in the autonomous vehicle environment

[Singandhupe and La, 2019].

There are approaches for drone navigation that, in parallel to SLAM, favor the

avoidance of obstacles. This capability is essential for achieving free collision missions
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in both indoor and outdoor environments. A recurrent solution, as we early mentioned,

is the multi-sensor data fusion. Gageik et al. [2015] present a platform using low-cost

ultrasound and IR sensors; however, despite the obtained results, it utilizes several

sensors to retrieve environment information, and yet, it does not get a perceptual

representation of the scene due to the low resolution and perceptive capacity of the

sensors. On the other hand, vision-based techniques for obstacle avoidance could detect

obstacles and, in some cases, recognize and classify the object representing the obstacle

[Li et al., 2016].

We can classify the visual methods for avoidance of obstacles into two groups.

The first, SLAM-based techniques, make use of the principles stated above. The 3-d

reconstruction provides accurate and sophisticated maps and allows the air vehicle to

travel with more information about the environment. Moreno-Armendáriz and Calvo

[2014] take this advantage to develop an obstacle avoidance approach for static and

dynamic obstacles. The second group is the flow-based methods which historically,

were inspired by the navigation of insects such as bees [Srinivasan and Gregory, 1992]

or flies [Franceschini et al., 2009]. Many insects in the wild identify obstacles through

the intensity of light. During the flight, their eyes produce an optical flow that provides

accurate spatial information. Currently, there are also works inspired by the behavior

of the human eye [Al-Kaff et al., 2016]. The technique measures the object size from

the idea that objects in the robot’s vision field are more significant as the obstacle is

close.

In general cases, obstacle avoidance techniques are strongly linked to the camera

parameters and acquisition conditions. The algorithms are often fine-tuned. Given

the condition, a drone operates in an environment without prior knowledge and under

uncontrolled conditions. Hence some more general, unsupervised methods are needed.

Today, the most efficient algorithms are those based on Neural Network (NN) ar-

chitectures and supervised learning techniques. Nevertheless, these techniques have

remarkable disadvantages, for example, their dependence on large annotated databases

and the related uncertainty of whether an available database is sufficient or not. That

question their usability and applicability in real-life drone missions [Treboux et al.,

2018]. From a practical and even economic point of view, there is a limit to the num-

ber of applications in which we can use supervised methods given the fact that we need

a lot of annotated data [Xu et al., 2020]. The collection and the correct labeling of

data representing a problem are valid only for a small number of applications.

The need for abundant information comes with high computational times required

for model learning, ranging from a couple of hours to weeks. Of course, we can mini-

mize this variable by increasing our machines’ computing power; however, today, only

those with large computing infrastructures can afford to train models with hundreds

of billions of parameters.

The above statement introduces the next disadvantage of deep neural network-
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based learning models: hyperparameters. We can roughly divide hyperparameters into

two categories: 1) optimizer hyperparameters, which include the learning rate, the

batch size, and the number of epochs, and 2) model-specific hyperparameters, which

include the number of hidden layers, the first hidden layer, and the number of layers.

Choosing the appropriate hyperparameters plays a crucial role in the success of neural

network architectures because they control the learning algorithm’s behavior, define the

network structure, and define how the network is trained. Although there are methods

to optimize their choice, generally, this task is a heuristic process, and their fine-tuning

is a function of the specific application. It is possible to follow some rules based on

experience, copy the same values from some other problem or make the setting by trial

and error, though we cannot know the best value for a hyperparameter.

We can thus conclude that it is crucial to have the means to understand the scene,

depending less on the parameters fixed in advance or the data sets prepared for a

particular mission. In the following paragraphs, we present the contribution of this

thesis to this issue.

Scope of the Thesis

The interaction between computer vision and applications made with unmanned aerial

vehicles is extensive. This collaboration has generated new methodologies and ap-

proaches, both theoretical and practical, but has also given way to new research ques-

tions.

Knowing the fundamental limitations of aerial robots and the complexity of drone

applications, we explore computer vision theory to propose algorithms that improve

and provide assistance in drone navigation tasks. In this sense, we are interested in

studying the scene’s perceptual information for their treatment and interpretation.

We focus primarily on the perceptual image decomposition to develop computer

vision taks such as the perceptual segmentation and the recognition/classification of

objects (see Fig. 3). We argue that these computer vision tasks are crucial for image

understanding and have to be carefully treated to be robust with images under complex

and uncontrolled environments (see Fig. 2. From this perspective, we focus on using

low-level image features to extract perceptual information.

Based on Fig. 1 and considering the scope of the work in this thesis, we propose a

new pipeline for scene understanding systems. In this new pipeline, the pre-processing

of the image involves its perceptual decomposition, while the segmentation stage con-

siders the perceptual elements of the image. The proposed pipeline for scene under-

standing is showed in Fig. 3. The peculiarity of this pipeline is that it eliminates the

dependency on the a priori models, at least for the tasks of segmentation and image

recognition (tasks that we study in this thesis).

Throughout this work, we develop algorithms that are capable of handling a variety
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Figure 3: Proposed pipeline of a scene understanding system.

of real-world conditions. All these algorithms aim to segment the physical objects that

we, as humans, define as perceptually interesting. For this purpose, we use intensity,

color, and texture image information to extract low-level primitives, such as contours.

In Fig. 3, we show the stages of scene understanding that we study in this thesis and

the low-level primitives involved in the task: in green, the recognition and classification

of objects use intensity, color, and texture, and in blue, the perceptual segmentation

uses color, texture and the relationship between them. We use these primitives in

conjunction with statistical and geometric tools from computer vision and signal theory,

such as anomaly detector, optimal transport, and Gabor functions. Instead of using

supervised methods, we focus on decomposing the image information from the point

of view of signal theory and physics to use it later on non-supervised or mathematical

morphology methods.

Regarding the nature of the input data, we use only gray-level or color images

as input information, favoring monocular cameras among the wide range of visual

sensors reviewed previously. This choice allows replicating the algorithms with low-

cost cameras that can be easily embedded in a drone.

Contributions of the Thesis

The primary objective of this Ph.D. thesis is to propose a new methodological frame-

work for the perceptual decomposition of natural images. Such a framework should use

only the low-level perceptual information of the image: intensity, color, and texture.

Moreover, this framework must contemplate and intelligently handle the dimensions

and order of each image cue’s dimensions, e.g., the frequency and orientation of tex-

tures or the distance between two colors. This property will allow combining the cues

without defining parameters of importance for each of them. With this strategy, we

intend to remove the need for a learning base necessary for model training.

The perceptual decomposition of the image is inserted in the scene understanding

pipeline, so we propose to validate this framework in tasks such as perceptual image

segmentation and object detection and classification. Therefore, some secondary ob-
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jectives include quantitative and qualitative measurement of segmentation and object

detection/classification algorithms.

Finally, we consider vision-based UAV applications as the advanced application

of a scene understanding system. Therefore, our idea is to apply the methodological

framework to assist control and decision-making in drone navigation tasks. To this

end, the framework must be robust to image degradations existing in environments

with uncontrolled conditions, in addition to being independent of the choice of specific

parameters for its operation.

We extend the study of primary image information such as intensity, color, texture,

and texture color and low-level image primitives such as contours. Therefore, some

secondary objectives involve building a representation of the image in feature space

using concepts from signal theory, geometry, and statistics, in addition to concepts

from human perception. We seek to validate the proposed image representation using

unsupervised approaches in real applications following traditional machine learning and

segmentation algorithms.

Fig. 4 shows a general flowchart of the contributions of this thesis. The first stage of

the flowchart shows low-level information and the methods we use to extract it; here, we

work with intensity, color, texture, and the relationship between color and texture. The

second stage of the diagram shows the different representations of the image obtained

from the perceptual information contained in the primitives. Finally, the diagram’s

third section collects the different applications used to validate the image’s feature

spaces constructed in this thesis. Although the idea of a single framework itself is an

ambitious goal, in this thesis, we present several algorithms that apply the proposed

methodology with one or more features to solve different computer vision problems

such as object detection and recognition, image retrieval systems, perceptual object

boundaries detection, and image segmentation.

The interest of obtaining a representative space of the image information from low-

level hand-made features lies in the possibility of using it in a semi-supervised pipeline.

By injecting annotated information into the frame, it might make generalizations and

obtain medium- or high-level features such as the importance of color and texture

information to a human when segmenting an image.

Specifically, the contributions of this thesis include:

• A novel non-parametric framework for fully unsupervised object detection ro-

bust to the image degradations present in complex, uncontrolled environments

(chapter 1).

• A qualitative and quantitative study between the most popular measures in the

comparison of distributions (chapter 3).

• An unsupervised image retrieval system based on global color/texture informa-

tion (chapter 3).
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Figure 4: Flowchart of thesis contributions.

• Extensive analysis of Gabor filters and their properties in the space-frequency

domains (chapter 4).

• Generation of a feature space that includes the color and texture information of

an image (chapter 5).

• Unsupervised framework for natural image segmentation (chapter 6).

Finally, this thesis aims to show that traditional computer vision methods are (still)

a reliable option to develop object detection and recognition for relatively complex

tasks. We place this argument in the current context of computer vision, where there

are hundreds of algorithms based on Neural Networks and Artificial Intelligence. Be-

sides the NN and AI algorithms for image segmentation and object detection are highly

performant, they lack a physical (and in many cases logical and argued) explanation

and interpretation 2 of its results.

2Interpretability is also important for image segmentation (not only for classification task), because
we have to understand how it works before we can say under what conditions it works and where the
limitations are.
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Organization of the Document

To communicate our proposal and the objectives mentioned above in a clear and struc-

tured way, we present a thematic and chapter organization of the document. The

thematic organization follows, to some extent, the complexity of the three low-level

image information we used during this thesis: intensity, color, and texture. Then, we

can identify three main parts in this thesis.

1. The first part is dedicated to studying the intensity information of the image,

in which we review in detail some of the classic methods for obtaining image

contours. We use this information in conjunction with the a contrario method

and the Gestalt organizing laws to detect and identify landing targets. This part

includes chapter 1.

2. The second part main topic is studying the properties of color and texture of

an image. We are interested in the global distribution of this information and

the existing metrics to measure the similarity between the distributions; we apply

and validate these concepts in two image retrieval systems. This part covers from

chapter 2 to chapter 4.

3. The third part extends the study of color and texture in images, exploding the

local distribution of these primitives and studying the influence of color infor-

mation on the generation of textures in an image. We propose a multi-spectral

image decomposition helpful on the object segmentation tasks using classic clus-

tering algorithms and for the generation of high-level texture features. Moreover,

we propose a completely unsupervised framework for the detection of perceptual

boundaries. We also explore different strategies to obtain the segmentation of

natural images using the obtained perceptual boundaries. This part includes

chapter 5 to chapter 6.

The organization by chapters is structured as follows:

• Chapter 1 addresses the bases of the Gestalt theory, including the grouping

laws and the Helmholtz principle. We formalize these concepts of human per-

ception mathematically and formulate a non-parametric algorithm that follows

an unsupervised framework based on an image’s contours. We use the developed

framework in the autonomous drone landing problem, specifically detecting and

identifying landing targets. The chapter also presents a review and a quantitative

comparison of different traditional methods for extracting image contours.

• Chapter 2 presents a detailed review of the different ways to represent the color

and texture information in an image. The chapter contains a review of vari-

ous color spaces and their main properties and an introduction to the different
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techniques for characterizing textures in the literature. Such information is of rel-

evant importance in constructing the framework and the approaches to measure

similarity between distributions.

• Chapter 3 presents the analysis between different similarity measures between

distributions, showing the advantages and disadvantages of each of them. In par-

ticular, we focus on the theory of optimal transport through the Earth Mover’s

Distance. We show the advantages of this metric over traditional similarity mea-

sures using an image retrieval system based on an image’s global color and texture

information.

• Chapter 4 explores the physical and human perception aspects of Gabor’s fil-

ters. We show the steps involved in designing an optimized and efficient Gabor

family of filters. The proposed filter family models and captures the texture in-

formation through an energy-efficient decomposition of the image. Such spectral

decomposition of the image deals with Heisenberg’s uncertainty principle. The

chapter presents the description of parameters that allow complete customization

of the filter family according to the application.

• Chapter 5 brings an analysis of the texture information present in color images,

showing the strong relationship between those two features. Using the spectral

analysis of an image with the previously defined Gabor filters, we generate a

feature space that simultaneously captures the color and texture information.

We show the richness of such feature space by performing unsupervised image

segmentation only using simple clustering techniques. Moreover, we show some

novel high-level texture features resulting from the spectral image decomposition.

• Chapter 6 introduces a framework for detecting perceptual boundaries of objects

present in natural images. This framework brings together concepts addressed in

this document, such as the spectral decomposition of images, the optimal trans-

port as a true metric, and the relationship between color and texture information.

Besides, using the hierarchical segmentation technique, we segment natural im-

ages in an unsupervised manner. We perform a quantitative and qualitative

validation of our method using a known database.
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Chapter 1

Intensity Image Contours and

Information’s Perceptual

Organization

Résumé

Dans ce chapitre, nous nous intéressons à l’intensité d’une image en tant que primitive

de bas niveau. Nous explorons cette primitive à travers les contours d’intensité de

l’image à plusieurs échelles. L’idée est de proposer un modèle sans paramètre pour

détecter des objets suffisamment robustes aux conditions présentes dans des environ-

nements complexes et incontrôlés. Le défi est de savoir comment gérer les pertur-

bations d’image telles que les ombres générées par les changements d’intensité, les

changements d’échelle et de perspective, les vibrations, le bruit, le flou, entre autres.

Nous introduisons un modèle robuste non supervisé qui nous permet de détecter un

objet d’une manière inspirée par la perception, en utilisant les principes de Gestalt

de non-accidentalité et de regroupement. Notre modèle extrait les contours les plus

importants de l’image en tant que valeurs aberrantes à l’aide du détecteur d’anomalies

RX, puis calcule une mesure de proximité et de similitude. Nous validons notre mod-

èle dans une application présente dans la dernière étape de navigation d’un drone: la

détection de cible d’atterrissage. De plus, nous montrons le code Hamming de correc-

tion d’erreur pour générer des cibles d’atterrissage numérotées et réduire les erreurs de

reconnaissance.
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Organization

Abstract

In this chapter, we are interested in the intensity of an image as a low-level primitive.

We explore this primitive through the image intensity contours at multiple scales. The

idea is to propose a parameter-free model for detecting objects sufficiently robust to

conditions present in complex, uncontrolled environments. The challenge is how to

deal with image disturbances such as shadows generated by intensity changes, scale

and perspective changes, vibrations, noise, blur, among others. We introduce a robust

unsupervised model that allows us to detect an object in a perception-inspired manner,

using the Gestalt principles of non-accidentalness and grouping. Our model extracts

the most important contours from the image as outliers using the RX anomaly detec-

tor and then computing a measure of proximity and similarity. We validate our model

in an application present in the last stage of navigation of a drone: the landing tar-

get detection. Furthermore, we show the error correction Hamming code to generate

numbered landing targets and reduce the recognition errors.

1.1 Introduction

We consider that scene understanding is an essential aspect in image analysis for the

robot navigation problem. Then, the proposal is to build a framework that obtains

perceptual information using low-level primitives of the image. The idea is to focus on

the first problems of scene understanding and object recognition tasks: detecting and

identifying objects.

This chapter of the thesis focuses on studying the intensity information in an image

and its properties. We review some concepts of human perception, such as Helmholtz’s

principle, and we interpret and apply them to the contours extracted from the intensity

information. Specifically, we use the non-accidentalness (a contrario approach) of the

image contours to avoid modeling the possible objects to detect. Instead, we detect

objects as a deviation of the normality represented by a random configuration model.

This approach is inspired by postulates of works from the beginning of the 20th century

that we strive to formalize mathematically. We use this algorithm for the autonomous

drone landing task. Therefore, the objects to be identified are a series of numbered

landing targets specifically designed for this problem.

The main contributions of this chapter are:

1. Study and comparison of different classical approaches to image contours detec-

tion.

2. A new methodology that uses the a contrario method and Gestalt theory for

searching and interpreting image perceptual information using the geometrical

properties of intensity contours.
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3. A novel non-parametric framework for fully unsupervised object detection robust

to the image degradations present in complex, uncontrolled environments.

1.1.1 Landing Target Detection Problems and State-of-the-

art

Nowadays, the target detection for UAVs’ autonomous landing is a recurring subject in

the industrial sector. This task is crucial so that applications such as air parcel delivery

can be developed. Some strategies to address this problem are creating landing stations;

infrastructures that could harbor extra elements, such as GPS, infrared markers, or

telecommunication sensors, which serve to locate and differentiate the landing zone

from other areas. This option may be feasible for small-scale applications; however, in

applications that require multiple landing points, this becomes impractical.

Instead, we propose a monocular vision-based system for the detection and identi-

fication of custom landing targets. For this, we imagine the situation when a drone is

ready to land as follows: first, the drone reaches a certain horizontal/vertical distance

from a possible landing target, then it activates the visual system and analyzes the

scene where there may be a target; if the drone recognizes a pattern as a landing target

and the ID is correct, the drone lands. The Fig. 1.1 represents the actions that a drone

must perform to land at the correct point.

Figure 1.1: Graphic representation of the two stages involved in
vision-based autonomous landing: 1. Approach to the landing zone;
2. Detection and recognition of the landing target.

Notwithstanding, using visual systems in outdoor environments presents challenges

as many uncontrolled variables affect and impair the object detection task. The main

problems to face in the aerial landing target detection task are the non-controlled

light changes that generate shadowing, reflectance, and saturation on the surfaces;

the perspective and distance of the camera that deforms the objects; the motion and
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vibrations that blur the images and; the noise generated by a low-quality sensor.

Regarding the strategies and algorithms to detect a landing target, we can model

this task as an object detection problem, where the two primary purposes are: Identify

the object within the image and locate the object within the image. Object detec-

tion techniques draw bounding boxes around the detected objects. These bounding

boxes give information about the location of the detected object and what object it

is; however, we cannot accurately estimate some measurements such as the area or

perimeter of an object in the image. On the other hand, image segmentation as a

further extension of object detection helps us gain a more particular understanding of

the shapes/curves of objects and also to know to which class each pixel of the image

belongs. These two tasks of computer vision (object detection and object segmenta-

tion) are related, therefore, we can consider landing target detection as a segmentation

problem, where there is a wide range of developed methods.

The variational framework [Mumford and Shah, 1989] offers a general method for

image segmentation; however, its mathematical complexity and the endless selection

of fidelity and regularization parameters make its use complex. Also, the number of

iterations needed to find the solution makes it impossible to have real-time results.

Conversely, threshold-based methods have been used to detect landing targets [Lacroix

and Caballero, 2006], [Lange et al., 2008] for their ease of use. However, to achieve

good detection, their use is limited to indoor spaces, where the light conditions are

controlled [Araar et al., 2017].

Recently, convolutional neural networks (CNN) techniques offer the possibility to

recognize (detect and segment) objects from a large set of classes with high reliability

[Carrio et al., 2017]. Nevertheless, we need to train CNN methods with a database

containing the object classes in a wide range of situations, and, in case of changes in the

object or the scene, the database must be rebuilt [Yao et al., 2017], [Furukawa, 2018].

Besides, in some cases, the computation is carried out off-board the drone, implying

the need for network infrastructure and limitation of autonomy [Lee et al., 2017].

From a practical point of view, we can interpret landing targets as fiducial markers.

However, fiducial markers are designed to serve as measurement or reference points into

a scene. We can find in the literature different proposals for the automatic generation of

fiducial markers and their respective detection algorithms [Fiala, 2010], [Naimark and

Foxlin, 2002]. However, detection algorithms can fail for several reasons, such as poor

lighting conditions, rapid camera movements, and occlusions. A common approach to

improve the robustness of a marker detection system is the use of marker boards, i.e.,

a pattern composed of multiple markers [Garrido-Jurado et al., 2014].

We chose to design and detect our own landing targets using the image contours

as input information and build a feature space. We then mathematically interpret

the human perception concepts (Gestalt theory and Helmholtz principle) to find the

landing targets as deviations of a random model. With these elements, we detect the
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targets in an unsupervised way. We describe below such concepts and the different

proven approaches to contour extraction and target identification.

1.1.2 Visual Perception Concepts

Humans can carry out the process of perception in a natural way [Petitot, 2008]. We,

as humans, identify meaningful features and exciting events in a scene (such as points,

lines, edges, textures, colors, movement), and with the help of our memory and the

learning capacity, we can recognize and classify objects. The identification of primi-

tives is a consequence of their non-accidental apparition, i.e., they are not generated

randomly [Attneave, 1954]. This behavior is roughly the Helmholtz principle, which

states that we do not perceive any structure in a uniform random image. However,

whenever some deviation from randomness occurs, it is possible to find a structure. In

other words, events that could not happen by chance are immediately perceived. This

principle is represented in the Fig. 1.2.

(a) (b) (c)

Figure 1.2: Representation of Helmholtz’s principle: (a) Uniform
random image where no structure can be found. A group of ten
aligned dots exists in both images (b)and (c), but this structure can
hardly be seen in the central image. Otherwise, in the right-most
image, the alignment stands out as a significant deviation from the
randomness that cannot happen by chance and is therefore perceived.

The Gestalt theory [Wertheimer, 1923] states that we can build a whole (a gestalt)

through the grouping of non-accidental detected primitives. That means that the

human mind recognizes objects as a whole before examining their individual parts, and

the observer perceives the information that is not related in size, shape, or orientation

as chaotic and disorganized. The grouping of individual elements in a whole follows a

set of laws defined by the Gestalt theory; some of them are (see Fig. 1.3):

• Similarity law

• Proximity law

• Continuity law

• Closure law

23



1. Intensity Image Contours and Information’s Perceptual

Organization

• Connectedness law

• Figure-ground law

(a) Proximity (b) Similarity (c) Figure-ground

(d) Continuity (e) Closure (f) Connectedness

Figure 1.3: Graphic representation of the grouping Gestalt laws.

In this work, we explore the above ideas and propose a novel approach to detect a

landing target in the same way humans do, imitating the human perception process. To

achieve the detection, we use the intensity image contours retrieved at different scales.

We obtain the most perceptual contours from this set of contours: those not generated

by chance using an a contrario approach. After this procedure, we take advantage of the

predefined form of the targets to propose some measures representing the grouping laws

of similarity and proximity of the Gestalt. Finally, we do the decoding and correction

of target identification errors using Hamming’s code. The diagram shown in Fig. 1.4

groups the stages of our method for the perceptual detection of landing targets.

The following sections are devoted to detailing the framework for the detection

of landing targets. In section 1.2, we evaluate different threshold-based methods for

obtaining contours in an algorithm that uses the hierarchy of contours to detect landing

targets. After that, we develop our perception model in section 1.3. Specifically,

subsection 1.3.1 describes how to retrieve image contours as meaningful primitives,

and subsection 1.3.2 describes how to group the contours to detect a landing target

perceptually. The section 1.4 contains the description of the landing target and the

strategy used for the generation and coding of information into the landing targets.

Later, in section 1.5, we present the implementation of our methodology and some

tests with both synthetic and real-life images. We also present some conclusions and

perspectives in section 1.6. Finally,
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1.2. Hierarchical Countours for Target Detection

Figure 1.4: Diagram of the phases involved in the landing target
detection and recognition task.

1.2 Hierarchical Countours for Target Detection

Initially, the idea of landing targets detection is inspired by the needs of the Internest

company. The objective is to design a landing marker and an algorithm for its detection;

all of this in the context of the UAV’s autonomous precision landing task. A first

approach, developed during the traineeship period of a master student [Baquedano,

A., 2017], seeks to solve the task straightforwardly using highly studied techniques.

The algorithm is based on finding the contours of a binary image generated by the

threshold method proposed by Otsu [1979]. Since the landing target they suggest is

composed of nested concentric circles, they heuristically use the hierarchy of the found

contours to detect a landing target. Their methodology consists of discriminating

the contours that are not nested through conditional evaluations at each hierarchy

level. The conditions are hierarchically dependent, which means that the landing target

detection is ineffective if the conditions are not strictly fulfilled.

They tested this approach; however, similarly to some other works mentioned in

section 1.1, the algorithm works well only under certain circumstances. The tests show

that the algorithm fails in most cases because it is not able to find all the target con-

tours, which compromises the hierarchical condition for detection. This effect generally

occurs when the landing target is exposed to conditions that degrade the quality of

the image. Given the nature of the aerial object detection task, factors such as the

change in height and orientation of the UAV modify an object’s perception, introducing
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disturbances such as noise, changes in lighting and contrast, deformation of objects,

etc. Such image degradations complicate the operation of threshold-based methods

and consequently the detection of contours. We classify the disturbances suffered by

landing targets into four types:

1. Change in size w.r.t. the scene.

2. Presence of noise.

3. Presence of shadows.

4. Deformation due to perspective.

Fig. 1.5 shows a landing target affected by the disturbances mentioned above.

(a) (b)

(c) (d)

Figure 1.5: Landing target degradations: (a) Noise, (b) Shadow,
(c) Change of size and (d) Perspectice deformation.

One of the main disadvantages of the hierarchy method for the landing targets

detection is that its effectiveness lies with the contours detected on the binary im-

age generated by Otsu threshold method, which does not work well in images with

high contrast or severe lighting changes. However, other threshold-based methods for

contour detection could better face the image degradations shown in the Fig. 1.5. Fol-

lowing the taxonomy for threshold-based methods proposed in [Sezgin and Sankur,

2010], there are clustering-based methods such as Otsu [1979] and Ridler and Calvard

[1978] edge detectors; entropy-based methods such as Yen et al. [1995] and Li and Lee

[1993] detectors; local methods such as Niblack [1986] and Sauvola and Pietikäinen

[2000] operators; the adaptive method proposed by Bradley and Roth [2007] and fi-

nally, the mean and Gaussian pixel distribution as spacial methods. We use these nine
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representative threshold-based methods to obtain a binary image, localize the image

contours, and evaluate the best approach facing the image degradations shown in Fig.

1.5.

The contours obtained applying each threshold-based method are depicted in Fig.

1.6. In this figure, we can see that the result is better or worse depending on the

situation. For example, we can see that the Otsu, Riddler, Yen and Li methods react

appropriately to the target scale change, but none of these four methods except the

Yen operator work correctly in the presence of shadows. This results from comparing

four methods under two disturbances; however, out of the nine methods, none works

correctly for all perturbations.

1.2.1 Threshold-based Method’s Evaluation

We run the hierarchical algorithm proposed in [Baquedano, A., 2017] on a database

of synthetic images. The database contains sixteen different landing targets perturbed

by the image degradations of Fig. 1.5. The noise degradation is simulated by adding

Gaussian noise with a mean of zero and a standard deviation variable from 0.02 to

0.2, where 0.02 is the minimum noise addition. The shadow perturbation is simulated

shading the left-half of the image; the variation of the shadow is done between 0 and 1,

where 0 indicates a darker left-half image. The last two degradations are related to the

perspective and distance of the viewer (the camera). First, we change the size of the

landing target by scaling forming circles on a 640×480p image. The range of the scale

is from 0 to 1, where 1 indicates the real scale. Lastly, we consider that the circular

target behaves like an ellipse when it is not seen from the center’s perpendicular axis to

achieve the perspective degradation. Therefore, we deform the target synthetically by

augmenting the proportion of one axis (major and minor) of the ellipse in an interval

between 1 and 2, where 2 indicates the maximum deformation.

For the test of the different contour detectors, we apply the maximum value of

each degradation. We use the F1-score as a metric to evaluate each threshold-based

method’s accuracy under the various degradations.

F1-score =
2× precision× recall

precision + recall
(1.1)

This metric can be interpreted as a weighted harmonic mean of precision and recall.

The precision is the ratio tp/(tp + fp) and the recall is the ratio tp/(tp + fn), where tp

is the number of true positives, fp the number of false positives, and fn is the number

of false negatives. The F1-score reaches its best value at 1 and its worst score at 0.

Fig. 1.7 shows the performance of all nine detectors on each disturbance separately

in the form of bar plots. The graphs show the F1-score of the hierarchical detection

algorithm without the Hamming error correction (gray bars) and with the use of the
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Figure 1.6: Contours obtained with the threshold-based methods
applied on synthetic undergoing various degradations likely to occur in
real-life conditions: (a) Presence of noise, (b) Presence of shadows,
(c) Change of scale, and (d) Deformation degradations.28
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Hamming error correction (black bars) described in section 1.4.

(a) (b)

(c) (d)

Figure 1.7: F1-score bar graphs: (a) Noise, (b) Shadow, (c) Change
of size and (d) Perspectice deformation

Although the experiments use the highest target deformation values, they do not

consider combining two or more degradations, which is closer to reality. Fig. 1.8a

shows one of our targets (target ID 4) under real lighting conditions, i.e., in an outdoor

environment where the four degradations of the experiment are present. We also show

its intensity histogram to highlight the saturation levels of the scene and the contours

obtained with a representative method of each class of the taxonomy in [Sezgin and

Sankur, 2010]: clustering-based (Fig. 1.8d), entropy-based (Fig. 1.8e), spacial (Fig.

1.8f) and local (Fig. 1.8g) threshold-based methods.

The F1-score bar plots (Fig. 1.7) and Fig. 1.8 show that given the conditions in

which we can find a landing target, no threshold-based method was robust to the set of

perturbations. It is necessary to adjust parameters according to the condition to have

acceptable results. Besides, we aim to recognize the landing targets in natural images

where none, one, or more landing targets can be present, and the degradations are not

isolated.
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(a) Input image (b) Histogram of input image

(c) Zoom (d) Otsu (e) Li (f) Gauss (g) Sauvola

Figure 1.8: Landing target under non-controlled illumination condi-
tions and the contours obtained with some threshold-based methods.

1.3 Unsupervised Perception Model for UAV Au-

tonomous Landing Task

1.3.1 Non-accidentalness Estimation

Contour Detection

After developing the first algorithm by [Baquedano, A., 2017], we take some elements

from their work to develop a more general approach that explores human perception

principles. Precisely, we keep the concept of concentric circle patterns for the generation

of landing targets (see section 1.4 or the description of the landing targets generation)

and the use of image contours as input data.

Instead of using a threshold-based method, we obtain the image contours without

fixing any parameter using the Marr and Hildreth [1980] operator. The Marr-Hildreth

operator guarantees to obtain continuous and closed contours eliminating the possible

noise in the image, while the contours of objects remain unchanged in the presence

of shadows. This technique convolves the intensity image f with the 2-d Laplacian of

Gaussian (LoG) operator ∇2G(x, y, σ) and generates an image lσ,

lσ = ∇2(G(σ) ∗ f) (1.2)

in which we localize the zero-crossings. Such zero-crossings define the contours of the

image.

The parameter σ in Eq. (1.2) permits to control the amount of image smoothing and

acts as a scale parameter, which generates different scale-space images when varied.
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Since it does not exist optimal single filter simultaneously at all scales [Marr and

Hildreth, 1980], we use a multi-scale analysis [Witkin, 1984] to detect the zero-crossings

in lσ at different scales to minimize the risk that some contour of interest is not detected.

The image lσ from Eq. (1.2) contains a set of contours Lσ = {Lσ
i , i = 0, 1, . . . , N} for

a given scale σ. Then,

L =
⋃

σ

Lσ (1.3)

represents all the contours of an image obtained at different scales. Fig. 1.9d shows

the set of contours L found with σ = [1, 2, 3]. We can also notice that the objects’

characteristics are more visible at a fine scale (see Fig. 1.9a), i.e., there are more

contours. Conversely, there is a spatial distortion at coarse scales due to the smoothing,

and therefore fewer contours appear (see Fig. 1.9c). However, those contours that had

already appeared at a coarse-scale will not disappear. Then, there is the probability

that those contours that spatially coincide on two or more scales belong to a change of

intensity generated by the border of an object.

(a) Lσ for σ = 1 (b) Lσ for σ = 2

(c) Lσ for σ = 3 (d) Set L for σ = [1, 2, 3]

Figure 1.9: Image contours found at three different scales: (a)
σ = 1, (b) σ = 2, (c) σ = 3 and, (d) joined in the set L.
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Multi-feature Space

The Helmholtz principle states that meaningful characteristics appear as large devi-

ations from randomness, and that is how the human perception automatically works

to identify an object [Attneave, 1954]. The a contrario model proposed in [Desolneux

et al., 2008], formulates this principle statistically by setting the number of false alarms

(NFA) below some acceptable level; however, this method cannot be easily extended to

more complex shapes. Instead of setting the NFA, we use the RX detector [Reed and

Yu, 1990] to detect outliers. The RX anomaly detector, initially called the Constant

False Alarms Rate (CFAR) detection algorithm, can detect the presence of a known

signal pattern in several signal-plus-noise channels. For that, it uses a N × Q multi-

variable space Z = [Z1, . . . , ZQ] with Q observation vectors of dimension N . In our

approach, the primitive is a closed contour. We build the multi-variable space with

observations based on internal (geometrical features, e.g., circularity, roundness, area,

perimeter) and external (e.g., mean gradient intensity, intensity inner area) properties

of the contours.

Let Li ∈ L be a closed contour, Ai the area of the region enclosed by the closed

contour, and Pi its perimeter; we compute the circularity Eq. (1.4) and the mean

gradient intensity Eq. (1.5) to build the multi-variable space Z = [Z1, Z2], where

Z1 =

[
4πAi

P 2
i

, i = 0, . . . , N

]T

, N = card(L), (1.4)

Z2 =


 1

Pi

∑

x∈Li

| ∇f(x) |, Li ∈ L



T

. (1.5)

RX Detector

The RX anomaly detector [Reed and Yu, 1990] is commonly used to detect outliers

on such data. The space Z models the set of contours L with Q = 2 feature vectors

describing the circularity Eq. (1.4) and the mean gradient intensity Eq. (1.5). The RX

detector gives an anomaly score to each contour taking into account the mean of the

distribution and covariance between the Q-features through the Mahalanobis distance:

yi = (zi − µZ)T Σ−1
Z (zi − µZ), (1.6)

where µZ = [E[z1], . . . , E[zN ]]T is a vector of observation means and Σ−1
Z the N × Q

covariance matrix of the data. If the data have normal random distribution, then the

score vector Y = [yi, . . . , yN ] follows a chi-square distribution χ2
Q(ϕ) with Q degrees

of freedom, where ϕ is a confidence level [Lu et al., 2004]. The value of χ2
Q(ϕ) with a

confidence value ϕ = 99.9% operates as a threshold to identify all contours that behave

as outliers in the multi-variable distribution. In our case, the contours belonging to a
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landing target appear as outliers in the vast majority of random contours belonging to

the background.

With the previous strategy, we preserve the anomalous contours with a mean gra-

dient and circularity value deviating from the distribution’s principal mode in the

contours set L̃ = {Li | yi > χ2
Q(ϕ)}. χ2

Q(ϕ) is the value of the cumulative distribution

at the confidence level ϕ and L̃ ⊂ L. At this point, it is essential to mention the

importance of multi-scale contour detection of section 1.3.1; because it increases the

number of samples in Z, allowing to build a richer multi-variable space.

Not all the contours of the set L̃ are part of the contours of the landing target. For

example, in the Fig. 1.10, we can see that the paper sheet contours remain because

they have a high circularity value. The same occurs with contours of objects with an

important value of mean gradient (brightness step), as the number 4 (which indicates

the ID of our target) at the top-left of the sheet, or the pebbles, sand, gravel textures

of the background.

Figure 1.10: The contours from Fig. 1.9d that behave as outliers in
the multi-feature space Z with a confidence value of ϕ = 99.9%.

1.3.2 Gestalt Laws of Grouping

We use the Gestalt theory [Wertheimer, 1923] to group the meaningful contours Li ∈ L̃
and detect landing targets. We primarily use two grouping laws: similarity (represented

by the goodness of shape) and proximity (represented by the affinity clustering), which

we will detail below.

Goodness of Shape

Since the landing targets have only circular contours, we evaluate the resemblance

with an ellipse of all contours. This strategy allows us to deal with the perspective

deformation of landing targets. Considering an ellipse ei that fits one gray contour Li
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in Fig. 1.11a, we recover the centroid Ci, the rotational angle ρi, the semi-major axis

ai, the semi-minor axis bi and the coordinates Fi and F ′
i of the ellipse’s foci. Then, the

sum of the distances from any point of ellipse xj ∈ ei to the foci is xjFi + xjF ′
i = 2ai.

If the contour Li is an ellipse, the value di =
∣∣∣(xjFi + xjF ′

i )− 2αi

∣∣∣ must be zero or

negligible ∀xj ∈ Li.

(a) Affinity of a fit ωi (b) Difference of area ∆Ai

Figure 1.11: Visual description of affinity of ellipse and difference of
area.

Considering the geometrical form of the landing target, we estimate the similarity

to an ellipse using two measures:

ωi = e−
d2

i
2σ2 , (1.7)

∆Ai
= 1−

∣∣∣Aei
− Ai

∣∣∣
max(Aei

, Ai)
. (1.8)

The variable ωi → 1 defines how well an eclipse fits into the contour. The affinity

of the fit ωi → 1 for contours with an ellipsoidal shape; however, if the contour Li

has a croissant shape (as in Fig. 1.11b) then, the Eq. (1.7) also has a high value (near

to 1), but the contour is far from being an ellipse. The difference of areas Eq. (1.8)

complements the affinity ωi taking into account the area of the ellipse Aei
and the

area of the region enclosed by the closed contour Ai. To calculate the similarity to an

ellipse, we use the harmonic mean of both variables:

κi = H(ωi, ∆Ai
), κi ∈ (0, 1), (1.9)

where κi → 1 for contours resembling to an ellipse and κi → 0 otherwise. H denotes

the harmonic mean H = N

(
N∑

i=1
ξ−1

i

)−1

, where ξi∀i = 1, · · · , N are the variables on

which we compute the harmonic mean.

Proximity Measure

The Gestalt law of proximity states that we group those meaningful elements if they

are spatially close to each other. In the case of contours, we take the coordinates of
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their centers Ci to measure their spatial proximity.

Affinity Clustering

The normalized coordinates of the centroid Ci and the ellipse similarity κi map the

contour Li ∈ L̃ into the 3-d space (x, y, κ) ∈ R3. We use the affinity propagation clus-

tering method [Frey and Dueck, 2017] to group the contours using the feature matrix

X = [Ci, κi] of size N×P , where P = 2 describes the two features we use for grouping:

contour centroids (Ci) and the affinity with an ellipse (κi). This technique yields a set

of K ∈ C(X) clusters, where the operator C(X) defines the affinity propagation tech-

nique over the feature matrix X. Because the landing target has ten different contours

(see section 1.4), the clusters with |K| ≥ 10 elements and an important similarity value

H(κi) ≥ 0.8, represent the candidate contours of a landing target.

(a) Clusters projected on the image domain (b) Clusters projected on a 3-d space

(c) Target candidate cluster

Figure 1.12: Clusters obtained by affinity propagation of contour
from Fig. 1.10.

To illustrate the use of affinity clustering, let us take as an example the contours

resulting from the RX anomaly detector of Fig. 1.10. The affinity propagation technique

groups the contours into K = 12 clusters. Projecting the clusters in a 2-d plane (Fig.

1.12a), we note that there are clusters relatively close to each other in the image domain,

for example, clusters 3 and 10; however, the respective contours of these clusters are
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differentiated and separated by the algorithm. This separation is due mainly to the

influence of κi in the clustering process. We can better notice the influence of ellipse

similarity on a 3-d plot, where the z-axis represents this measure (see Fig. 1.12b).

We notice that even if the contours are nearby, it can form a new cluster if there is

a considerable distance κ. A clear example is the clusters 0 and 4 (blue and purple,

respectively) that correspond to the contour centers of the landing target and the center

of the paper sheet; they are spatially close to each other, but their similarity is not.

Applying the threshold values card(CK) ≥ 10 andH(κi) ≥ 0.8, we obtain the candidate

clusters to form a landing target (see Fig. 1.12c).

Heretofore, we have built a model based on perceptual characteristics for the landing

target detection. However, there could be false detections if there are round objects

with concentric borders in the image. We implement a relevant functionality that, on

the one hand, is a stage that suppresses false detections and, on the other, identifies

unique targets based on a unique ID. We code an ID number in the target design to

differentiate a landing target from an object with concentric circular edges. In the

following section, we review in detail the coding of landing targets and the generated

landing target database

1.4 Landing Target Description

This section describes the landing target design process used in chapter 1 for detection

and identification in the autonomous landing task. The landing target is formed by

a set of black and white circles (see figure 1.13) that generate contours when stacked.

Two of the circles (�9 and �10) have a constant diameter and form the ring that defines

the target. The black circle (�11) is an orientation reference and has the same diameter

as the smallest circle, �11 = �1. The other circles �1, . . . ,�8 are coding circles.

1.4.1 Landing Target ID Encoding

Let ∅ = (�1,�2, . . . ,�n) denote the nominal diameters of the coding circles. We can

set the nominal diameters, e.g., �i = i
n
�n for a target without the encoding capability.

To encode a number in the target form, we modify the nominal diameters ∅ to obtain

∅′ = (�′
1,�

′
2, . . . ,�′

n) by adding/subtracting a positive constant ∆h

�
′
i =





�i + ∆h, if wi = 1

�i −∆h, otherwise
(1.10)

and obtain a binary message W = [w1, . . . , wn]. The message W is protected from

errors by error-correction Hamming code [Hamming, 1950]. It provides a set of different

codewords W = D ×M of size n = k + m, where D is useful data, M = [Ik | 1 − Ik]
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1.4. Landing Target Description

Figure 1.13: Landing target design and description

the generator matrix, and Ik is the k × k the identity matrix. The data vector D

comes from the decimal to binary conversion of the landing target ID number. For the

experiments showed in chapter 1, we create landing targets with n = 8 coding circles

allowing to have four rings and 8 contours �1, . . . ,�8. This design allows us to use the

extended [n, k] Hamming code with k = 4 data bits and m = 4 parity bits to generate

24 = 16 landing targets. We can see the set of landing targets generated using this

configuration in figure 1.14.

1.4.2 Landing Target ID Decoding

After the clustering stage of section 1.3.2, we rank by size the ellipses’ major axes αi

by size and normalize them w.r.t. the largest value α10 to obtain ~α = �10

α10
(α1, . . . , α10)

We compare the received and normalized axis ~α with the nominal diameters of the

coding circles ∅ and transform them into a binary vector Ŵ

Ŵ =





1, if αi −�i > 0

0, otherwise
∀i = 1, . . . , n (1.11)

The Hamming syndrome vector S = Ŵ×HT (with H = [1−Ik | Ik] as the parity-check

matrix) indicates whether an error has occurred. The syndrome is a null vector S = 0

when no error has occurred, otherwise, S 6= 0 and Ŵ = W + E. The element ei = 0 of

the error vector E = HT − S indicates an error at the position i. The [8, 4] Hamming

code can find up to two erroneous bits and correct one. Once the algorithm corrects

the error (if there is), the vector Ŵ is decoded by using the modulo 2 of the product

D̂ = Ŵ ×MT .
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(a) Target ID 0 (b) Target ID 1 (c) Target ID 2 (d) Target ID 3

(e) Target ID 4 (f) Target ID 5 (g) Target ID 6 (h) Target ID 7

(i) Target ID 8 (j) Target ID 9 (k) Target ID 10 (l) Target ID 11

(m) Target ID 12 (n) Target ID 13 (o) Target ID 14 (p) Target ID 15

Figure 1.14: Landing target database generated with error-
correction Hamming code.

The coding of information allows discriminating between several landing targets

and circular objects. The following section shows some tests we carry out to validate

our model and target landing detection and identification results.
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1.5 Model Validation and Test

We validate the methodology presented in this chapter on landing target images under

simulated and real situations. First, we tested the algorithm in a synthetic image

database which simulates the four image degradations reviewed in this chapter: noise,

shadows, target deformation, and change of size. Second, for real situations, we perform

a series of tests in indoor and outdoor scenarios. Fig. 1.15 collects some of the target

detection and identification results, together with the output images of each of our

target detection algorithm stages.

Se
t
L

Se
t
L̃

C
lu

st
er

s
C K

R
es

ul
t

(a) (b) (c)

Figure 1.15: Algorithm validation: (a) Synthetic image target under
simulated degradations, (b) The 16 targets in an indoor environment,
(c) Five of our targets in an outdoor scenario under non-controlled
image degradations

The first experiment (Fig. 1.15a) consists of combining the four synthetic degrada-

tions simultaneously on landing target ID 14. For the experiment, we subjected the
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target to the maximum degradation value that the algorithm can handle. The second

experiment (Fig. 1.15b) was done in an indoor space to show the sixteen possible land-

ing targets. There are no other objects in the scene; however, the lighting level is low

and constant concerning the outside environment. Finally, the last experiment (Fig.

1.15c) shows five landing targets in a more complex outdoor environment. Notice the

presence of other objects, different background textures, irregular shadows, and the

landing targets’ perspective deformation and scale change.

Fig. 1.15 shows the results of each stage or our algorithm for the three experiments

described above:

1. Multi-scale analysis generates a rich family of contours (first row of Fig. 1.15).

2. The non-accidentalness estimation stage eliminates the contours generated by

noise with low circularity and mean gradient values (second row of Fig. 1.15).

3. The grouping stage filters random contours generated by intensity changes like

shadows to keep contours with an important similarity and proximity value (third

row of Fig. 1.15).

We invite the reader to see the compilation of the experiments performed under real

conditions in https://youtu.be/igsQc7VEF2c.

1.6 Conclusion

In this chapter, we have shown the usefulness of a low-level primitive such as intensity.

First, we have shown a methodology that straightforwardly uses the contour’s hierar-

chy to represent and detect objects. Then, in section 1.3, we have applied concepts

of human perception, such as Gestalt laws and Helmholtz’s principle, to develop a

perceptual framework for object detection. This model uses the geometric properties

of the contours obtained at multiple scales to generate a representation of the image.

This approach allows us to obtain a scene representation, avoiding the loss of infor-

mation due to the objects’ size change or the presence of shadows and noise; common

degradations in robot navigation. We validate our model in a specific drone applica-

tion; the detection and recognition of a landing target. We have used the geometry

properties of the target to build a perceptual object and the Hamming error codes

to perform the landing target recognition. The experiments show that the proposed

methodology is robust to uncontrolled light conditions and other image degradations

existing in complex environments.

With this approach, we have provided a solution to the problem of object detection.

This methodology is entirely unsupervised, free of fine-tuning of parameters or a priori

knowledge of the environment.
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1.6. Conclusion

It is important to note that, so far, we have only considered the image intensity

as a low-level primitive for model generation. Considering the results obtained in

this chapter, the natural question that arises is what other information we can use

to enhance the image representation. In the following chapters, we explore the low-

level color and texture primitives to obtain a better (and complete) representation of

the image objects. We study this information in a more theoretical way, looking for

possible relationships with elements of human perception.

On the other hand, we would like to mention that, in the following chapters, the

validation of our approaches in specific drone applications is less present. One of the

reasons is the lack of accessible databases rich enough for this kind of application. Con-

sequently, we decided to validate our methods on well-known, open-access databases in

the image processing field, which allows us to compare our results with state-of-the-art

works.
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Chapter 2

Global Representations of Color

and Texture

Résumé

Ce chapitre présente une compilation des différentes manières de représenter les infor-

mations de couleur et de texture présentes dans une image. En ce qui concerne les

informations de couleur, nous présentons certains des espaces colorimétriques les plus

utilisés, leurs origines et leur relation avec la perception humaine. Par ailleurs, nous

présentons quelques techniques pour synthétiser ces informations. Dans le cas de la

texture, nous présentons les différentes méthodologies pour son étude, en mettant en

évidence les avantages et les inconvénients de chaque méthode.

Abstract

This chapter presents a compilation of the different ways of representing the color

and texture information present in an image. When it comes to color information, we

present some of the most popular color spaces used and their origins and relationship to

human perception. Besides, we present some techniques to synthesize this information.

In the case of texture, we present different methodologies for its study, highlighting each

method’s advantages and disadvantages.

2.1 Introduction

In part 1, we show that low-level features, such as intensity image contours, provide

useful perceptual information that can be used to solve complex problems. We pre-
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sented a framework that uses human perception concepts and contours information

for the unsupervised detection of landing targets. This framework can identify the

marker under degraded operating conditions using only exogenous features from the

contours identified on gray-level images. We can improve the framework by adding

other features that provide perceptual information of a scene.

In this part of the thesis, we review two more low-level image features: color and

texture. Both features are widely involved in the perceptual process of humans, and

their study can be pervasive. This part explores the image color and texture features

for their future integration into a general framework for object detection. For this

purpose, the chapter that opens this part seeks to recall the definition of color and

texture in the field of computer vision. Moreover, it reviews different approaches to

color representation as well as different strategies for characterizing texture features.

Then, we study the color features in two different frameworks.

First, we are interested in the global distribution of color and texture information of

an image. Therefore, in chapter 3, we take an interest in comparing distributions, par-

ticularly in the Optimal Transport (OT) study as a metric for measuring the similarity

between distributions and their application in the field of computer vision.

In the second stage of the study of color and texture, we use the color and texture

information united in a single feature space. We deepen in the study of Gabor filters,

and we explore the spectral decomposition of an image in a complex color space. We

recover the objects’ local texture information in an image with this strategy, taking into

account the scene’s luminance and chrominance information. With the use of classic

vision methods and the feature space developed, we recover the perceptual contours of

the objects in an image and, consequently, their segmentation. We show the versatility

of this space using different techniques for object segmentation. While this framework

is fully unsupervised, we show that it is also helpful in identifying the importance of

color and texture in human-made segmentations. Finally, we show that it is possible

to obtain high-level features from this spectral decomposition.

Throughout the following chapters, we address an extensive study of color and tex-

ture properties of an image using different kinds of images containing the information

of interest to test our methods’ robustness. In the first stage, we carry out the analysis

of the color and the texture separately using images, in the case of color, containing

low color variation and, for texture, using grayscale images with homogeneous textures.

For the second stage of the analysis, we mainly use natural color images.

The main contributions of this part are:

1. Review of the state of the art of global color representations and texture charac-

terizations.

2. Review of the state of the art of similarity measures, particularly the interpreta-

tion of the OT in computer vision: the Earth Mover’s Distance (EMD).
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3. A qualitative and quantitative study between the most popular measures in the

comparison of distributions and the EMD.

4. An unsupervised image retrieval system based on global color/texture informa-

tion.

5. Extensive analysis of Gabor filters and their properties in the space-frequency

domains.

6. Generation of a feature space that includes the color and texture information of

an image.

7. Unsupervised framework for natural image segmentation.

The overall distribution of color in an image is a helpful clue that contributes to

describing a natural image’s content. If we look around us, we can see that many of the

environment’s materials and objects only exist with specific colors. For example, the

clouds are primarily white; the grass is green; the ocean is blue, and so on. Performing

the same experience, but this time with textures, we realize that we are surrounded by

them everywhere. We find textures, for example, at textiles, buildings, tilings, and on

skins or objects surfaces. The color and texture of an image is valuable information;

it helps to characterize images that contain landscapes with mountains, jungles, urban

environments, deserts, or other scenes with different elements by their color and texture

distributions. Therefore, the perception of such information is a powerful tool for

classifying and recognizing particular objects and materials.

For decades several vision algorithms have sought to exploit this information. Color

and texture are of relevant importance for their use as a feature to characterize objects.

Therefore, this chapter addresses the definition and the various representations of the

color and the texture information. As far as color information is concerned, we give a

brief introduction to what color is and how we can represent it. In the case of texture,

we present a brief introduction to textures, including their types and an overview

of various methodologies for its analysis, highlighting each method’s advantages and

disadvantages.

2.2 Color

The study of color is one of the most perplexing and exciting subjects in vision. Al-

though understanding the basic concept of the color spectrum is easy to explain, the

theory of color is an infinitely more complex subject with scientific and artistic origins.

For example, Newton was interested in the physical properties of color and discovered,

with his famous experiment of the light beam projected on a prism, that white light
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combines all colors across the color spectrum [Newton, 1704]. On the other hand, au-

thors like Goethe dedicated their work about color to a more human-centered analysis.

He analyses the perception of color information through a series of experiments that

measure the eyes’ response to specific colors [von Goethe, 2015].

Today we know that the electromagnetic spectrum visible to humans is between 380

and 750 nm (see figure 2.2a). We call visible light (or simply light) the electromagnetic

radiation between this range of wavelengths. Therefore, we can define color as the main

property of visible light by which a human observer can distinguish different kinds of

light [Kerr, 2003].

From a biological point of view, we can perceive different colors thanks to the

human visual system (HVS) composed, roughly, by the eye’s elements such as the

retina and its photoreceptors (cones and rods), the nervous system, and the part of

the brain that interprets information [Fairchild, 2005]. The cones are the primary

photoreceptors for color vision because they act when more light is available, whereas

rods are active mainly in low illumination conditions. The three types of cones we

have are appropriately referred to as L, M, and S since they are sensitive to different

wavelengths of light; long, medium, and short wavelengths, respectively

The figure 2.1 shows different examples of color images. Specifically, the leftmost

image is a synthetic (human-made) image where the colors encode the image’s per-

ceptual information. The remaining three images are natural images that show the

importance of color information and how many elements of nature have a specific color

representation distribution.

(a) (b) (c) (d)

Figure 2.1: Some examples of color images: (a) Synthetic image,
and [(b) (c) (d)] three natural images.

2.2.1 Color Theory

Historically, there have been several attempts to explain the HVS and interpret its func-

tion in color vision. Two of the most popular theories of the mechanism of color vision

are the trichromatic theory and the opponent-colors theory [Fairchild, 2005]. The first

of these, proposed by Maxwell, Young, and Helmholtz [Von Helmholtz, 1867; Young,

1802], is based on the fact that we have three types of receptors (L-M-S cones). They

assume that the receptors are roughly sensitive to the red, green, and blue wavelengths.

Consequently, this theory suggests that each receptor generates an image weighted by
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the brain to sort out the color appearances.

The second theory is based on Hering’s subjective observations [Hering, 1878]. In

his experiments, he noted that certain hues were never perceived to occur together.

For example, the color perception was never described as reddish-green or yellowish-

blue. This response suggested that the red–green and yellow–blue color pairs had

something fundamental that caused them to behave like opponent colors. This theory

gained strength in the mid-20th century, where, supported by quantitative data, the

stage theory emerged. This modern theory suggests that color perception is done in

two stages. The first stage coincides with the trichromatic theory, so the LMS cones

generate three color-separation images; however, in the second stage, the retina neurons

encoded the colors into opposing signals [Fairchild, 2005].

2.2.2 Color Representations

Human color perception depends on the amount and wavelength of light captured

by the eyes. Therefore, perceived colors can vary due to several factors, such as the

type of surfaces (or objects) where the light is reflected, the environment, and even

the observer’s eyes. However, it is definite that the perception of color is an entirely

arbitrary creation of our nervous system, and it is not contained in wavelengths or light-

reflecting objects and materials [Goldstein, 2009]. In other words, the interpretation of

this information is entirely subjective. A clear example of this is the naming of colors.

When an incident spectrum contains all frequencies in the range of visible wavelengths,

humans perceive objects that reflect all frequencies as clear, luminous, or white. In the

opposite case, when the material absorbs and does not reflect the visible frequencies, it

is perceived as dark, opaque, or black. Some works in this regard state that the naming

of colors varies according to culture and language [Berlin and Kay, 1991]. However,

it is possible to find a correlation between languages and identify eleven basic color

terms in the English language that seem to be anchored across the different languages

as points in a particular color representation [Kay and Regier, 2003].

At first glance, the tasks and experiments mentioned above appear to be simple and

straightforward for a human being; however, replicating this in a machine is quite chal-

lenging. Therefore, the definition of a coherent method of describing color is essential

to represent it and for its use in digital image processing.

A color model is a mathematical way of describing colors. Such abstract mathemat-

ical models are the result of the theories of color described above. We see this in the

fact that most models represent a color using three values. This consensus has allowed

the development of color models representing colors as a 3-d property using vectors or

tuples of numbers [Douglas and Kerr, 2005]. Like any property in 3-d, real colors can

be represented as a point in space using a specific coordinate system. A color space

is thus the method of mapping the visible colors a the color model, and consequently,
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they define the range of colors that can be displayed or reproduced on a medium.

In principle, there are differences between color models and color spaces. For ex-

ample, models are independent of physical devices (e.g., screens, printers) while color

spaces are not. However, in abuse of language, in this document, we will use the term

color space to mean a particular fully specified color model. In the following subsec-

tion, we describe some color spaces that are important both in the theoretical field and

in the technical field for the representation of color and its use in the computer vision

applications developed in this thesis.

Color models and color spaces

Color spaces are the quantitative links between the wavelength distributions of visible

light and the colors psychologically perceived by the HVS. Since this perception is

entirely subjective, it is necessary to take the observers into account when modeling a

color space. The Commission Internationale de l’Éclairage (CIE) is one of the main

contributors to creating color models. In 1931, they defined a color-mapping function

based on a standard observer, representing an average human’s chromatic response

within a 2◦ arc, to primaries at R0 = 435.8 nm, G0 = 546.1 nm, and B0 = 700 nm

[Bull, 2014]. The positive color-matching functions specify the three standard primaries

of color X, Y and Z [CIE, 1932], which allow defining any visible color of the spectrum

(see figure 2.2a) as a weighted sum of three primary colors [Wright, 2007].

With the standard primaries, it is possible to quantify an object’s colors using

a standardized method that considers the human eye’s (observer) response to these

colors through the XYZ color model (also known as the CIEXYZ color model). In

the model X, Y and Z are the amounts of each primary needed to produce the desired

color.

c(λ) = (X, Y, Z) (2.1)

The primary Y is chosen such that its color-matching function exactly matches the

luminous-efficiency function for the human eye, i.e., Y measuring the luminance of a

color [Wright, 2007]. Therefore, to define a color in the XYZ color space, we need to

provide the weights for the X, Y , and Z primaries, for example, c = xX + yY + zZ,

where

x =
X

X + Y + Z

y =
Y

X + Y + Z
(2.2)

z =
Z

X + Y + Z

Under this representation, we can ignore the luminance’s dimension by normalizing
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(a)

(b)

Figure 2.2: CIE 1931 2 2◦ Standard Observer: (a) Visible light
spectrum, and (b) Chromaticity diagram.

the primaries with the total light intensity; x+y +z = 1. This strategy allows showing

all visible colors of the spectrum in a diagram. Figure 2.2b shows such a diagram

known as the CIE 1931 2◦ standard observer chromaticity chart. The x and y axis of

the diagram give the normalized amounts of the X and Y primaries for a particular

color, and hence z = 1 − x − y gives the amount of the Z primary required. The

diagram reveals that large x values correspond to red or orange hues, large values of y

correspond to green, and large z values correspond to blue, violet, or purple hues. The

chromaticity depends on the dominant wavelength and saturation and is independent

of luminous energy. Colors with the same chromaticity but different luminance all

map to the same point within this region. Moreover, the chart boundary represents

maximum saturation for the visible colors, and the diagram forms the boundary of all

perceivable hues [Bull, 2014].

The CIEXYZ model is a reference that has been used as a basis for defining other

color spaces, and therefore as a standard basis in image processing for moving from one

color space to another. The color gamut that can be created through combinations of
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any three primary colors (e.g., RGB) can be represented on the chromaticity diagram

by a triangle joining the three colors’ coordinates.

The RGB color model is one of the most popular models in computer vision and

image analysis. This is an additive model coming directly from the three-component

theory; this means that three color light beams (their wavelength light spectra) are

added together to make a final color [Gonzalez and Woods, 2008]. The model consists

of three independent planes, represented as a three-dimensional vector, one in each of

the primary colors: red, green, and blue. Therefore, to define a color in this model, we

need to specify the proportion of red, green, and blue colors.

Contrary to the XYZ model, the RGB color space is a device-dependent space; that

is, different devices may reproduce or detect the same RGB value differently since the

color elements and their response to the individual R, G, and B levels vary according

to the manufacturer.

The RGB color space is the most popular color space based on the RGB color

model. We can geometrically represent the set of colors of this color space as a cube

(see Subfig. 2.3a) that maps the red, blue, and green dimensions onto the x, y, z axes

of the 3-d Cartesian coordinate system in a Euclidean space. The non-negative values

of the RGB triplet (r, g, b) are in the range [0, 1], where the origin at the vertex (0, 0, 0)

encodes the color black, and the vertex (1, 1, 1) encodes the color white.

The HSV color model and the HSL color model are cylindrical color models

that remap the RGB primary colors into dimensions that are easier for humans to

understand. The HSV and HSL color models share two of their three dimensions, the

hue and the saturation. The third dimension of the HSV model is the value, while the

HSL model has a lightness dimension. Below is a more detailed description of these

dimensions.

• Hue specifies the angle of the color on the RGB color circle. A 0◦ hue results in

red, 120◦ results in green, and 240◦ results in blue.

• Saturation or colorfulness controls the amount of color used. One particular

thing about the saturation between the two cylindrical color spaces is that even

though the saturation dimension theoretically is similar between them (control-

ling how much pure color is used), the resulting saturation scales differ between

the models caused by the brightness to lightness remapping (see differences be-

tween saturation image channels in figure 2.10). Therefore, for the HSV model, a

color with 100% saturation will be the purest color possible, while 0% saturation

yields grayscale. On the other hand, to obtain the purest color in the HSL model,

we need 50% lightness.

• Value controls the brightness of the color. A color with 0% value is pure black,

while a color with 100% value has no black mixed into the color. Because this
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dimension is often referred to as brightness, the HSV color model is sometimes

called HSB.

• Lightness controls the luminosity of the color. This dimension is different from

the HSV value dimension in that the purest color is positioned midway between

the black and white ends of the scale. A color with 0% lightness is black, 50% is

the purest color possible, and 100% is white.

(a) RGB cube (b) HSV cone (c) HSL bicone

Figure 2.3: Geometrical representation of colors in the RGB, HSV
and HSL color models.

It is important to note that the three dimensions of the HSV/HSL color models

are interdependent. If the value/lightness dimension of color is set to 0%, the amount

of hue and saturation does not matter as the color will be black. Likewise, if the

saturation of a color is set to 0%, the hue does not matter as there is no color used.

Unlike the RGB color space, we can not represent the HSV/HSL triplet values

(h, s, v)/(h, s, l) in a 3-d Euclidean space. The hue’s circular nature forces the first

dimension to be in an angular space between 0◦ and 360◦, while the remaining two

dimensions inhabit a linear space with values between 0 and 1. Consequently, the HSV

color space is best visualized as a 3-d cone and the HSL color space as a 3-d bicone

(see Subfigs. 2.3b and 2.3c respectively).

The LAB color model (also referred to as CIEL*a*b* or CIELAB) results from

the opponent-process theory of human perception. In it, we also express the color

with three values. Channel L represents the perceptual luminance, whereas channel

A represents the scale from red to green and channel B from yellow to blue. The

arrangement above is consistent with the two opponent color pairs that humans cannot

perceive simultaneously.

The color space from the LAB model was born to be a perceptually uniform space,

i.e., a space where a given numerical change corresponds to the same perception of

color change. As a non-linear transformation of the XYZ color space, the LAB color

space is a device-independent space. This property implies that its gamut is related to

the CIE standard observer model, and therefore, it is impossible to generate a visual

representation that displays all the colors of its gamut. The triplet (l, a, b) gives the
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2. Global Representations of Color and Texture

LAB space coordinates. The first value represents the luminance L, and it may take

values from 0 to 100, where 0 points to black and 100 indicates (diffuse) white. The

remaining two coordinates are technically unbounded, though it is commonly mapped

to the range [−128, 127]. Negative values indicate green and positive values red for

channel A, while negative values indicate yellow and positive values blue for channel

B.

This color space offers some advantages over the spaces described above, especially

in the image processing field. This space was constructed to approximate human

color vision, making it helpful in calculating differences between two neighboring colors

with high precision. However, this color model contains colors that are not physically

representable by the devices, and a poor color quantization (bits per channel) can

generate significant errors.

Figure 2.4 shows the three channels of the different color spaces reviewed so far.

The input image is a natural color image where the three primary colors, red, green,

and blue, naturally stand out. We transform channel values in the range between 0

and 255 and displayed them on a grayscale for the visualization of each color channel.

Luminance-chrominance color spaces

Color spaces mostly map the perception of color as a three-dimensional property [Dou-

glas and Kerr, 2005]. However, these dimensions can be encompassed in only two

aspects; therefore, we can classify them into luminance-chromaticity and luminance-

chrominance color spaces [Kerr, 2003]. In both cases, luminance is the property that

describes the brightness of the light; however, both categories have different ways of

defining color. Chromaticity-based spaces define color independently of luminance (or

the luminance equivalent in a particular color space). In a chrominance-based space,

the chrominance values of the image change as the light intensity varies.

We can obtain a color space based on chromaticity from the classic trichromatic

models described in the previous section. The chromaticity of these models consists

mainly of two independent parameters. For example, the xyY color space, from which

we obtain the CIE chromaticity chart (see figure 2.2b), uses the X and Y dimensions

to calculate chromaticity. In RGB space, it is possible to obtain a space based on

chromaticity following the same principle, using only the R and G channels for its

calculation. For cylindrical color spaces (HSV, HSL), the independent parameters that

describe the chromaticity are hue and colorfulness (saturation) dimensions.

The chromaticity-based models are reputed for their use in image editing and color

correction. However, the chrominance-based spaces are helpful if we are looking for

a uniform distribution of the color information in an image. Some examples of color

spaces in this category are CIELAB and CIELUV. In them, the colorfulness information

of an image is found in channels A and B (resp. U and V), and the final color is defined
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Figure 2.4: Color channels of an image in different color spaces in
a grayscale.

by the brightness of the light defined by the luminance L.

The use of spaces based on luminance-chrominance reduces the dimensionality of

the color to two channels L and C. To make this two-channel color representation

possible, we combine the values of channels A and B with the chrominance function.

C = A + iB (2.3)

In the same way, it is possible to obtain a luminance-chrominance color space using

the dimensions of the cylindrical HSV/HSL color spaces. In that case, the hue H and
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2. Global Representations of Color and Texture

(a) (b)

(c)

Figure 2.5: Graphic display of tree alternatives to obtain the complex
color representation of an image: (a) from LAB color space, (b) from
form HSL color space, and (c) from HSV color space.

saturation S channels describe the chrominance such that the function

C = SeiH (2.4)

defines the complex chrominance channel.

These representations have the advantage of reducing the dimensionality of the

color information. In image processing, we can obtain these color spaces from the

transformation of the image from the RGB space to the LAB, HSV, and HSL spaces,

from which we get the chrominance variables and, consequently, the complex chromi-

nance channel. Regarding the luminance, it may differ depending on the input color

space. For example, for the LAB and HSL spaces, this variable is naturally defined;

however, in the HSV space, the luminance channel is obtained from transforming the

RGB input image to a grayscale image. Figure 2.5 shows the diagrams for obtaining

an image represented in two channels.

Figure 2.6 shows the transformation of a natural image (first row of the figure array)

from RGB space to complex two-channel color space. Each row in the figure shows

the luminance channel and the two parts (real and imaginary) of the chrominance

channel. Note that as it happened in the representation of the classic color spaces

(figure 2.4) since the method to compute saturation differs in HSV and HSL spaces,

the chrominance channel is different. The same effect occurs with the L luminance
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Figure 2.6: Color channels of an image in different color spaces in
grayscale.

channel from LAB space and the luminance from the RGB to gray transformation; in

theory, both are the same, but we can see differences in practice.

2.2.3 Compact Color Representations for Image Processing

Color spaces serve as links between color theories and representation for better vi-

sualization and mathematical interpretation of colors. However, it is often necessary

for color information processing to represent the color pixel values more compactly.

This property benefits the development of faster and more performant algorithms; the

challenge is to maintain the input information’s consistency and not lose the primary

characteristics of the color distribution. In the following subsections, we will show some

of the representations commonly used to represent color information compactly.
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2. Global Representations of Color and Texture

Single-channel Color Histogram

We can represent the global color distribution of an image employing a color image

histogram. A histogram h = {hi} is a standard statistical tool that approximates

the distribution of numerical data. Such representation is done by a discrete function

hi that maps an integer vector to the set of non-negative reals [Scott, 2008]. These

vectors represent bins (or their centers) in a fixed partition of the underlying feature

space. The associated reals are a measure of the mass of the distribution that falls into

the corresponding bin. For instance, the single-channel color histogram of a 2-d image

given by the following expression

hi =
n∑

j=1

✶Bi
(xj) with (2.5)

✶Bi
(x) =





1 if x ∈ Bi

0 elsewhere

as indicator function. The n pixels of the single-channel image are arranged in a

one-dimensional vector {x1, x2, · · · , xn}; the set of possible color values is split into

k intervals, so hi is the number of pixels in an image that have a color value in the

interval [ti, ti+1) denoted by Bi with 0 < i ≤ k.

(a) Input image

(b) Single-channel color pixel distribution (c) Single-channel color pixel histogram

Figure 2.7: 1-d image color representation. 1-d pixel distribution
and 10 bins 1-d pixel histogram.

Fig. 2.7 shows the one-dimensional representations of the color information of a

natural image. In it, we first plot the distribution of each channel of the image (RGB

in this case), and then we show the color distribution of the pixels compressed using
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2.2. Color

a 1-d histogram. We obtain the distributions by setting the number of bins equal to

the maximum number of color values of an 8-bit image, that is, b = 256. The single-

channel histograms split the color space into k = 10 bins. In both plots, the x-axis

represents the channel color value, whereas the y-axis represents the number of pixels

(density) normalized between 0 and 1. Lastly, the color of the plots corresponds to the

color channel of the RGB space.

This representation’s advantages are that it is invariant to the rotation or translation

of the image and, to a lesser extent, it is also invariant to changes of point of view

and scale changes. Besides, we can compact as much as we need the image color

information by reducing the count intervals, that is, by selecting a small number of

bins k. Despite the advantages offered by the color representation in simple channel

histograms, analyzing the color channels individually does not provide a global idea of

the color distribution. This effect occurs because only the blend of the three-channel

values gives the final color of a pixel in RGB space. A better way to analyze color

information is to consider all channels at the same time.

3-d Color Histogram

The 3-d color histogram copes with the drawback of the color representation in single-

channel color histograms. Mainly, this representation is an extension of the single-

channel histogram to three dimensions. The discrete function hi,j,k maps the 3-d integer

vector of pixel color values xi,j,k into a Euclidean cube where each axis corresponds to

a color dimension divided into k intervals. We count the number of pixels whose values

fall into the bin Bi,j,k with the indicator function as in Eq. (2.5).

(a) Input image

(b) 3-d image color pixel distribution (c) 3-d color pixel histogram

Figure 2.8: 3-d image color representation. 3-d pixel distribution
and ten bins 3-d pixel histogram.
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We can see the 3-d distribution of the color of the pixels in a color image and its

histogram of k = 10 bins in Fig. 2.8. In the figure, we can notice how the colors most

present in the image stand out in the histogram, generating larger spheres in the 3-d

cube. Also, the shape of the pixel distribution is maintained. A reflection we can

make about the number of bits required to encode the image color as a 3-d distribution

is that, when representing the colors in a histogram with a low number of bins, the

information to manipulate is significantly less.

On the other hand, 3-d color histograms suffer from some drawbacks. Because

histograms are fixed-size structures, they cannot achieve a good balance between ex-

pressiveness and efficiency. For example, applying a coarsely quantized histogram on

images containing a large amount of color information would lead to losing this informa-

tion. In the opposite case, for images that contain a small amount of color information,

a finely quantized histogram is highly inefficient. In the example of the parrots’ image

(Fig. 2.8), we see that the 10-bin histogram is severe with the blue color of the feathers,

causing it to almost disappear from the 3-d representation.

Color Signature

The color signature is another representation for the compression of color information.

The signatures are a type of boosted histogram since they make adjustable the number

of bins of each color dimension in the 3-d histogram. Two of the main strategies to

obtain color image signatures are k-d tree or k-means algorithms.

A signature {sj = (mj, wmj
) denotes a set of feature clusters. Each cluster is

represented by its mean (or mode) mj and the fraction of the pixels wmj
that belong

to that cluster [Rubner and Tomasi, 2001]. The exciting thing about signatures is

that they can adapt the number of clusters j according to the image’s complexity.

Therefore, images with a low or straightforward quantity of color have short signatures,

while images with complex variations of color have long signatures.

In Fig. 2.9, we depict the color signature of the parrot image and a rendering of the

input image using the signature colors. Likewise, we plot the centroids of the k = 10

clusters obtained with the k-means algorithm in a 3-d space. The spheres’ size in the

3-d plot represents the fraction of pixels wmj
that belong to each cluster. Compared

to the 3-d color histogram, the color signature better represents the original color

information of the image, maintaining the high information compression rate without

losing some colors of the original distribution, as is the case of the 3-d histogram with

blue feathers mentioned above.

Finally, we show more examples of the different techniques to compact the color

information reviewed in this section in Fig. 2.10. These examples include the images

of Fig. 2.1, where we show three natural and one synthetic image. To calculate the

histograms (single-channel and 3-d) and the color signature, we set the number of bins
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2.2. Color

(a) Input image

(b) Color signature (c) 3-d representation of color ignature

Figure 2.9: Image color signature and the 3-d visualization of sig-
nature clusters.

(and clusters in the case of the signatures) at ten for visual comparison purposes.

We obtain some interesting observations from the analysis of the different compact

representations of color. For example, with the synthetic image plots (first column of

the figure), we find that a medium-fine 3-d histogram with ten bins is inefficient since

many half-empty bins could be removed. On the other hand, the color signatures do

a good job of compression, mainly respecting the shape and density of the original

color distribution, for example, in the clownfish image (central column of the figure).

However, there is a problem related to the global analysis and compression of color

information. When there are objects in the image with a low number of pixels, and yet

they are perceptually visible, there is no rendering technique that can preserve them.

We can see this effect in the snow mountains’ image; although the yellow and red color

of the cable cars are perceptive, neither the 3-d histogram nor the color signature makes

the colors appear.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2.10: Compact representations of color information: (a)
Input color image, (b) Single-channel color distribution, (c) Single-
channel color histogram, (d) 3-d color distribution, (e) 3-d color
histogram, (f) 3-d color signature, (g) Color signature clusters.
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2.3 Texture

There is a disagreement in the definition of texture in the field of computer vision. It is

possible to give a mathematical definition based on its statistical properties; however,

these properties are very imprecise and restrictive to adapt to the diversity of existing

textures.

The definition that we prefer in this work is based on an experimental finding: a

texture is a field of the image that appears as a coherent and homogeneous domain;

that is, it forms a whole for an observer. In fact, the texture coherence property placed

in the context of being perceived as a homogeneous whole for the human eye is most

often sought for image processing, either to isolate textures, segment and recognize

regions.

We show some examples of natural textures in the Fig. 2.11. These images come

from the reference work Brodatz and show the possible variety of textures commonly

used to test different algorithms and methods of vision. Generally, we can classify such

textures according to their origin as natural or artificial, the latter being those created

by man. We can also classify them by the regularity of the pattern they display as real

or stochastic. Finally, we can classify them according to the image proportion they

cover into homogeneous, weakly-homogeneous, or inhomogeneous.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.11: Examples of texture images and its classification: [(a)
(b) (e) (h)] Natural textures, [(c) (d) (f) (g) (i) (j)] Human-made
textures, [(c) (d)] Regular textures, [(g) (h)] Stochastic textures,
[(c) (d)] homogeneous, [(a) (b) (f) (g) (h)] weakly-homogeneous,
[(i) (j)] inhomogeneous.
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2.4 Texture Characterization

The perception of textures is a key property of human vision. Although there is still

no generalized definition, we can define texture using measures of coarseness, contrast,

directionality, line similarity, regularity, and roughness. Therefore, the features that

characterize texture attempt to capture the granularity and repetition of perceptually

similar patterns of surfaces within a region of the image, such that a human observer

perceives the region as homogeneous. Unlike color, texture information is not a purely

pixel-level property. Texture implies the notion of spatial extent, that is, that the

spatial variation of intensities of a group of pixels generates textures in the images.

There are numerous studies that review, compare and organize the work of tex-

ture analysis in different ways [Materka and Strzelecki, 1998], [Zhang and Tan, 2002],

[Bharati et al., 2004],[Lukashevich and Sadykhov, 2012], [Humeau-Heurtier, 2019]. One

possible organization is based on its operating principle, which classifies the texture

characterization techniques into

1. Statistical methods

2. Structural methods

3. Model-based methods

4. Transform-based methods

5. Graph-based methods

6. Learning-based methods

7. Entropy-based methods

This section reviews five of the most widely used literature methods and their tech-

niques for extracting texture features.

2.4.1 Statistical Methods

Statistical methods contemplate that textures are determined by how the gray levels are

spatially distributed over the image pixels. In these methods, the gray level distribution

of the image is represented by a histogram.

The first approach in this category is the histogram properties analysis [Aggarwal

and K. Agrawal, 2012]. 1-d image histogram, brightness, and contrast are among the

first-order statistics from which we can compute the central moments: mean, variance,

skewness, and kurtosis. These properties provide information on the distribution of the

gray levels of the image from a global point of view, taking into account individually

the gray level of the pixels. However, they do not provide any information on how

the gray level of a pixel at a given location statistically affects the gray level value of

another pixel at a relative location from the reference pixel. The second-order statistical

properties explore this option and describe the texture based on comparing two pixels’
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intensity values. In this case, the Co-Occurrence matrix [Haralick et al., 1973] is the

second-level histogram that maps the pixels’ intensity distribution. Some of the texture

features extracted from the second-order statistics are Angular Second Moment (ASM),

contrast, dissimilarity, homogeneity (Inverse Difference Moment), entropy, maximum

probability, mean, standard deviation, correlation, and energy.

Local Binary Patterns (LBP) [Ojala et al., 1996] are another technique for obtaining

second-level histograms. This approach summarizes the spatial structure and local

contrast of an image within a binary pattern, comparing the gray level of each pixel

with its neighborhood. If the central pixel’s intensity value is more significant than its

neighbor, it is denoted by 1, otherwise 0. Subsequently, we construct a binary array

following a consistent ordering of the neighboring values, which are transformed into a

decimal number and stored in a new array. The process of thresholding, construction

of binary strings, binary to decimal transformation, and storing of decimal output is

performed for all pixels in the image, resulting in an LPB image. Finally, the second-

level histogram for texture characterization is obtained from this resulting LBP image.

2.4.2 Structural Methods

The structural methods are based on the decomposition of the image in basic units, i.e.,

in elements, low-level primitives, or texels. Such units can be points, lines, regions,

or shapes. The basic units and their spatial arrangement in the image are used to

characterize the textures. These approaches consider that textures are patterns formed

by replication, more or less regular, of a basic unit. The arrangement of the primitives

allows obtaining geometric relationships and subsequently statistical properties that

serve to characterize textures. Structural techniques aim to determine the texture

primitives and define the location rules [Humeau-Heurtier, 2019].

Depending on the application, structural techniques differ according to the choice of

primitives. Some of the commonly considered primitives are pixels [Lu and Fu, 1978],

regions of uniform intensity [Tuceryan and Jain, 1993], line segments [Carlucci, 1972],

or peaks in the gray level distribution [Ehrich and Foith, 1978]. For the recovery of

these primitives, highly known approaches are generally used, such as the SIFT (Scale

Invariant Feature Transform) operator for points characterization and the contour de-

tectors, such as Sobel or Canny, for line and edge recovery. On the other hand, the

primitive’s measurements and statistics most commonly used are intensity, orientation,

elongation, curvature, and compactness.

2.4.3 Model-based Methods

This group of methods stipulates that some mathematical models can describe the

textures. We can subdivide this category mainly into two approaches: stochastics and

fractals.
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Stochastic methods for texture modeling are popular, in particular random field

models. In this context, a texture model is a parametric family of spatially homoge-

neous random fields depending on a hyperparameters series [Winkler, 2003]. Inside

such a family, a specific texture can be characterized by a unique set of hyperparame-

ters that captures its characteristic features. According to the properties of the random

fields, some of the models used for the characterization of texture are Markov Random

Field (MRF) [Cross and Jain, 1983; Hassner and Sklansky, 1980], Gibbs Random Field

(GRF) [Derin and Cole, 1986], Conditional Random Field (CRF), Gaussian Markov

Random Field (GMRF) [Cohen et al., 1991].

Within the category of stochastic approaches, we found a group of techniques that

use probabilistic approaches and mathematical morphology operators to model random

textures [Serra, 1980], [Cord et al., 2010].

Fractal models consider textures as complex, chaotic systems, so they exhibit fractal

behavior [Petrolekas and Mitra, 1993]. Textures, as fractal objects, have identical

shapes and statistical characteristics at different scales. Fractal geometry relies on

self-similarity across multiple scales and is measured with the fractal dimension [Keller

et al., 1989]. Fractal model-based approaches aim to determine fractal dimension, find

fractal geometry and calculate fractal measurements to describe textures in images.

2.4.4 Transform-based Methods

Transform methods map an image to a space within which the textures are characteri-

zable. The peculiarity is that the new space coordinates allow the interpretation of the

textures because they reflect the texture properties; for example, the log-polar coordi-

nates in the Gabor transform reflect the periodicity and orientation of the textures in

an image.

Within this category, one of the most notable methods for the extraction of texture

features is Law’s filter banks [Laws, 1979, 1980a,b]. There are also the approaches based

on the Fourier transform [Ursani et al., 2007], where we use it to decompose the image

into its frequency components. Following the same principle, there are the approaches

based on Gabor decomposition [Gabor, 1946] and those based on wavelets [Arivazhagan

and Ganesan, 2003], which analyzes the content of a texture in the frequency domain

and the spatial domain. On the one hand, the Gabor filter is defined as a sinusoidal

wave plane modulated by a Gaussian kernel, adapted in frequency, orientation, and

bandwidth. For its part, the wavelet transform allows the analysis of the texture in

the frequency and spatial domain employing the dilation and translation, respectively,

of a mother wavelet.
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2.4.5 Learning-based Methods

The extraction of texture features based on learning is relatively new concerning the

other methods mentioned in this work. We can divide this category of approaches into

two subclasses: visual dictionary methods and deep learning methods.

Visual dictionary methods are motivated by natural language processing algorithms.

In this case, the aim is to generate a codebook or dictionary that contains essential

geometric elements of the images, also called textons. In the document processing

analogy, textons correspond to words; therefore, we can describe an image as the

repetition (organized or not) of a set of textons.

There are different strategies for calculating textons [Zhu et al., 2005], for exam-

ple, the approaches based on generative models, where an image is considered a linear

combination of some base images. Such base images are represented by Gabor or

Laplacian-of-Gaussian (LoG) functions and other wavelet transforms. Following gen-

erative models’ principle, textons are the base functions learned from a large number

of image patches. Other approaches to obtaining textons are based on discriminative

modeling. In this case, the base functions are defined by rotated and scaled filters

that form a family with which we convolve the image. The responses of the filters

form a feature space in which it is possible to form clusters. Each cluster center then

corresponds to a texton; therefore, to obtain a texton dictionary, we need to obtain

from a group of training images the feature space and the cluster centers.

Models based on deep learning use Convolutional Neural Networks (CNN) to extract

and represent image features. CNN methods consist of multiple locally connected layers

which convolve kernels over the entire image. These approaches analyze the information

of a group of images to generate a model [Lin and Maji, 2016]. The characteristics of

the learned model are a function of the input images, which in the case of texture

information, is expected to generalize the properties, such as granularity, frequency,

and orientation of patterns in the training dataset.

2.5 Conclusion

This chapter has reviewed some key concepts for managing color and texture informa-

tion in an image. Regarding color, we have seen the origin and function of models and

color spaces. This information allows us to enter the complex color space that we will

use throughout the following chapters to explore the relationship between color and

texture. Besides, we show some of the possible representations to organize and work

with color information: histograms (one-dimensional or 3-d) and color signatures.

We have briefed the different strategies to characterize the texture in an image

regarding texture. This compilation tries to show the advantages and disadvantages of

each of the approaches.
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Considering this review of color and texture techniques used in image processing,

we will focus on the study of Gabor filters as a tool for texture analysis. Firstly, because

of its relationship with human perception, and secondly, it is not limited to analyzing

homogeneous textures as other approaches.
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Chapter 3

Similarity Measures of

Distributions

Résumé

Il existe de nombreuses mesures de similarité qui, selon l’application, n’ont pas toujours

un comportement optimal. Ce chapitre présente une analyse qualitative des mesures de

similarité les plus utilisées dans la littérature et de la Earth Mover’s Distance (EMD).

L’EMD est une métrique basée sur la théorie du transport optimal avec des propriétés

géométriques intéressantes pour comparer les distributions. Cependant, l’utilisation de

cette mesure est limitée par rapport à d’autres mesures de similitude. La raison prin-

cipale était, jusqu’à récemment, la complexité du calcul. Nous montrons la supériorité

de l’EMD à travers trois expériences différentes. Premièrement, analyser la réponse

des mesures dans le plus simple des cas; distributions synthétiques à une dimension.

Deuxièmement, avec deux systèmes de récupération d’images, utilisant des fonctionnal-

ités de couleur et de texture. Enfin, utiliser une technique de réduction dimensionnelle

pour une représentation visuelle des textures. Nous montrons qu’aujourd’hui l’EMD

est la mesure la plus adaptée de similarité de deux distributions.

Abstract

There are many similarity measures that, depending on the application, do not always

have optimal behavior. This chapter presents a qualitative analysis of the similarity

measures most used in the literature and the Earth Mover’s Distance (EMD). The EMD

is a metric based on optimal transport theory with interesting geometrical properties

for comparing distributions. However, the use of this measure is limited in comparison
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with other similarity measures. The main reason was, until recently, the computational

complexity. We show the superiority of the EMD through three different experiments.

First, analyzing the response of the measures in the simplest of cases; one-dimension

synthetic distributions. Second, with two image retrieval systems, using color and

texture features. Finally, using a dimensional reduction technique for a visual rep-

resentation of the textures. We show that today the EMD is a measure that better

reflects the similarity between two distributions.

3.1 Introduction

In image processing and computer vision, the comparison of distributions is a frequently

used technique. Some applications where we use these measures are image retrieval,

classification, and matching systems [Smeulders et al., 2000]. The distributions could

represent low-level features like pixel’s intensity level, color, texture, or higher-level

features like objects. The comparison could be made using a unique feature, for exam-

ple, the texture [Banerjee et al., 2018; Kwitt and Uhl, 2008], or combining features in

a multidimensional distribution as the fusion of color and texture features [Liu et al.,

2017]. In the field of medical imaging, comparing distributions are helpful to achieve

image registration [So and Chung, 2017]. More general applications such as object

tracking [Klein and Frintrop, 2011; Nejhum et al., 2008] and saliency modeling [Bylin-

skii et al., 2018] also recur to the distribution comparison. Regarding the number of

computer vision applications that employ distributions, it is crucial to choose the right

metric to measure the similarity between distributions.

The Earth Mover’s Distance (EMD) [Rubner et al., 2000] is a dissimilarity measure

inspired by the optimal transport theory. This measure is considered as true distance

because it complies with the constraints of non-negativity, symmetry, the identity of

indiscernibles, and triangle inequality [Peyré and Cuturi, 2018]. The superiority of

the EMD over other measures has been demonstrated in several comparative analyses

(see for example [Puzicha et al., 1999; Rubner et al., 2000]). Despite this superiority,

in theory, this distance continues to be underused for the benefit of other measures

in practice. The main reason is the high computational cost due to its iterative op-

timization process. However, nowadays, this should not be a problem thanks to the

algorithmic advances to computing efficiently the EMD (see “Notes about EMD com-

putation complexity” in section 3.4) and computer processors’ progress. Although

there are comparative studies (image retrieval scores, for example), in this chapter, we

illustrate how other similarity measures dramatically fail even on straightforward tasks.

We use a set of 1-d synthetic distributions and two simple image databases (color and

texture-based) to compare a set of similarity measures through two image retrieval

systems and a visual representation in low-dimensional spaces. Surprisingly, we show

that no metric but the EMD yields to classify and give a coherent visual representation

68



3.2. Similarity Measures Review

of the images of the databases (see Figs. 3.7 and 3.8 in section 3.3.4). In this chapter,

we want to emphasize the importance of having a true metric to measure the similarity

between distributions.

In this chapter, we present a new qualitative study of some popular similarity

measures. Our primary objective is to show that not all measures express the difference

between distributions adequately. Also, we show that today the EMD is a competitive

measure concerning computing time. Among the similarity measures that we compare

are some of the most used bin-to-bin class methods; the histogram intersection and

correlation [Nejhum et al., 2008], the Bhattacharya distance [So and Chung, 2017], the

χ2 statistic and, the Kullback-Leibler divergence [Klein and Frintrop, 2011].

This chapter is organized as follows: in section 3.2, we describe and discuss some

properties of the bin-to-bin measures, and we expose the geometrical properties of the

EMD. Then, in section 3.3, we show the performance of the different similarity measures

with a one-dimensional test, with two image classifiers; one based on color (3-d case)

and the other based on texture (2-d case) information and, with a dimensionality

reduction using the multidimensional scaling (MDS) technique. Finally, in section 3.4,

we close this chapter with some thoughts about EMD and optimal transport in image

processing and computer vision.

3.2 Similarity Measures Review

Similarity Measures Notation. In many different science fields, there is a sub-

stantial number of ways to define the proximity between distributions. In language

abuse, the use of synonyms such as similarity, dissimilarity, divergence, and distance

complicates the interpretation of such a measure. Here we recall a coherent notation

used throughout this chapter.

From the physical point of view, a distance is defined as a quantitative mea-

surement of how far apart two entities are. Mathematically, a distance is a function

d : M ×M → R+. We say that d is a true distance if ∀(x, y) ∈M ×M it fulfills the

following properties.

1. Non-negativity: d(x, y) ≥ 0

2. Identity of indiscernibles: d(x, y) = 0 if and only if x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

From this definition, we can define other distances depending on which properties

are (or not) fulfilled. For example, pseudo-distances do not fulfill the identity of
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indiscernibles criterion, quasi-distances do not satisfy the symmetry property, semi-

distances do not fulfill the triangle inequality condition, and divergences do not

comply with the last two criteria [Khamsi, 2015].

According to the measure, the numerical result could represent the similarity or

the dissimilarity between two distributions. The similarity and the dissimilarity

represent, respectively, how alike or how different two distributions are. Namely, a

similarity value is higher when the distributions are more alike, while a dissimilarity

value is lower when the distributions are more alike. In this thesis, we use the term

similarity to refer to how similar or dissimilar two distributions are. If distributions

are close, they will have high similarity, and if distributions are far, they have low

similarity.

3.2.1 Bin-to-Bin Similarity Measures

In computer vision, distributions describe and summarize different features of an image.

These distributions are discretized by dividing their underlying support into consecu-

tive and non-overlapping bins pi to generate histograms. Let p be a histogram that

represents some data distribution. In the histogram, each bin represents the mass of

the distribution that falls into a specific range; the bins’ values are non-negative reals

numbers.

The bin-to-bin measures compare only the corresponding bins of two histograms.

Namely, to compare the histograms p = {pi} and q = {qi}, these techniques only

measure the difference between the bins that are in the same interval of the feature

space; that is, they only compare bins pi and qi ∀i = {1, . . . , N}, where i is the

histogram bin number and N is the total number of bins. Next, we summarize the

bin-to-bin measures we compare.

The histogram intersection [Swain and Ballard, 1991] is expressed by a min

function that returns the smallest mass of two input bins (see Eq. (3.1)). As a result,

the measure gives the number of samples of q that have corresponding samples in the

p distribution. According to the notation defined at the beginning of section 3.2, the

histogram intersection is a dissimilarity measure.

d∩(p, q) = 1−
∑

i min(pi, qi)∑
i qi

(3.1)

The histogram correlation gives a single coefficient which indicates the degree of

relationship between two variables. Derived from Pearson’s correlation coefficient, this

measure is the covariance of the two variables divided by the product of their standard

deviations. In Eq. (3.2), p and q are the histogram means. Since this measure

is a pseudo-distance (the resulting coefficient is between −1 and 1), it expresses the
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distributions’ similarity.

dC(p, q) =
∑

i(pi − p)(qi − q)√∑
i(pi − p)2

∑
i(qi − q)2

(3.2)

The χ2 statistic comes from Pearson’s statistical test for comparing discrete prob-

ability distributions. The calculation of this measure is relatively straightforward and

intuitive. As depicted in Eq. (3.3), the measure is based on the difference between

what is actually observed and what would be expected if there was truly no relation-

ship between the distributions. From a practical point of view, it gives the dissimilarity

between the two distributions.

dχ2(p, q) =
∑

i

(pi − qi)2

qi

(3.3)

The Bhattacharyya distance [Bhattacharyya, 1946] is a pseudo-distance that

is closely related to the Bhattacharyya coefficient. This coefficient, represented by
∑

i
√

piqi in Eq. (3.4), gives a geometric interpretation as the cosine of the angle

between the distributions. We normalize the values of this measure between 0 and 1

to express the dissimilarity between the two distributions.

dB(p, q) =

√
1− 1√

pqn2

∑
i

√
piqi (3.4)

The Kullback-Leibler divergence [Kullback and Leibler, 1951] measures the

difference between two histograms from the information theory perspective. It gives

the relative entropy of p with respect to q (see Eq. (3.5)). Although this measure is

one of the most used to compare two distributions, it is not a true metric since it does

not fulfill the symmetry and the triangle inequality properties described in section 3.2.

dKL(p, q) =
∑

i
pi log

pi

qi

(3.5)

We can find other measures in the literature that represent the similarity between

distributions, for example, the Lévy–Prokhorov metric [Prokhorov, 1956] and the

total variation distance [Bogachev and Kolesnikov, 2012], which is defined as

dT V (p, q) =
1
2

∑
i
|pi − qi|. (3.6)

The Lévy–Prokhorov metric defines the distance between two probability measures

on a metric space with its Borel sigma-algebra. However, the use of this metric is not

very frequent in the area of computer vision because of the implementation complexity

[Bogachev and Kolesnikov, 2012]. On the other hand, the total variation distance

equals the optimal transport distance [Cuturi and Avis, 2011] in the simplified setup
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when the cost function between bin i and bin j is cij = 1, ∀i 6= j (see section 3.2.2 for

definition of cost matrix). For countable sets, it is equal to the L1 norm. Given these

reasons, for the comparative purposes of this chapter, we only take into account the

first five bin-to-bin measures defined before.

3.2.2 The Earth Mover’s Distance

Earth Mover’s Distance is the term used in the image processing community for op-

timal transport; in other areas, we also find this measure referred to as the Wasser-

stein distance [Gibbs and Su, 2002] or the Monge-Kantorovich problem [Bogachev and

Kolesnikov, 2012; Kantorovich, 2006]. This concept lies in the study of the transporta-

tion theory, which aims to optimize transportation and allocation of resources. The

main idea behind optimal transport is simple and very natural for the comparison of

distributions. Let α =
∑N

i=1 αiδxi
and β =

∑M
j=1 βjδyj

be two discrete measures sup-

ported in {x1, . . . , xN} ∈ X and {y1, . . . , yM} ∈ Y , where αi and βj are the weights

of the histograms bins α and β; δxi
and δyj

are the Dirac functions at position xi

and yi, respectively. Intuitively, the Dirac function represents a unit of mass that is

concentrated at location xi. This notation is equivalent to the one proposed in [Rubner

et al., 2000] where δxi
is the central value in bin i while αi represents the number of

samples of the distribution that fall in the interval indexed by i.

The key elements to compute the optimal transport are the cost matrix C ∈ R
N×M
+ ,

which defines all pairwise costs cij between points i and j in the discrete measures α

and β, and the flow matrix (optimal transport matrix) F ∈ R
N×M
+ , where fij describes

the amount of mass flowing from bin i (or point xi) towards bin j (or point xj). Then

the optimal transport problem consists in finding a total flow F that minimizes the

overall cost defined as

WC(α, β) = min〈C, F〉 =
∑

ij
cijfij (3.7)

Placing the optimal transport problem in terms of suppliers and consumers; for

a supplier i, the objective is to supply αi quantity of goods at some location δxi
.

On the other hand, a consumer j, at some location δyj
, expects to receive at most βj

quantity of goods. Then, the optimal transport problem is subject to three constraints,

∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M}.

1. Mass transportation (positivity constraint): fij ≥ 0 : i→ j.

2. Mass conservation (equality constraint):
∑

j fij = αi and
∑

i fij = βj.

3. Optimization constraint:
∑

ij fij = min
(∑

i αi,
∑

j βj

)
.

Then, we define the Earth Mover’s Distance as the work WC normalized by the
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total flow.

dEMD(α, β) =
∑

ij cijfij∑
ij fij

(3.8)

The importance of the EMD is that it represents the distance between two discrete

measures (distributions) in a natural way. Moreover, when we use a ground distance

as the cost matrix C, the EMD is a true distance. Peyré and Cuturi [2018] show

the metric properties of the EMD. In the following section, we developed a series of

experiments to show the advantages of EMD.

Ground distance matrix

The EMD finds the best match that minimizes the maximum transport cost; however,

the ground distance design can significantly impact the total transportation cost.

Modifying the ground distance to represent the feature space’s properties limits

the effect that some signatures have on the EMD. The most traditional way to define

the ground distance of the EMD is to take it as the Euclidean distance between two

points. This configuration is suitable for points that live in a Euclidean feature space,

for example, the color pixels of an image in the LAB color space. In such a case, the

ground distance of two points (a, b) is defined as

d(a, b) =
√

(∆L)2 + (∆A)2 + (∆B)2 + λ((∆x)2 + (∆y)2) (3.9)

where the Deltas (∆) define the difference between the values of each color channel

(L, A, B) and the color value location (x, y) in the image space. The parameter λ

weights the importance between the spatial information and the color information of

the points. A representation of ground distance resulting from Eq. (3.9) is the squared

Euclidean distance, which penalizes the further away points in the color space.

On the other hand, the Euclidean distance is not convenient to design the EMD’s

ground distance between texture signatures. Considering that texture information can

be decomposed in M frequencies f and N orientations θ (see Chapter 4), a texture

image can be seen as a vector within a hypercylinder in a M × N dimensional space.

We can define then the ground distance as the L1 distance in a linear-polar (lin-polar)

space or in a logarithmic-polar (log-polar) space; thus, the ground distance follows

the properties of the texture space. In both cases, we map texture orientations on a

polar axis, while for the frequencies, we can map them either on a linear axis or on a

logarithmic axis. The ground distance between two texture signatures (f1, θ1), (f2, θ2)

is then:

d((f1, θ1), (f2, θ2)) = |∆f |+ α|∆θ| (3.10)
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where ∆f = arg (f1)−arg (f2) for the linear space and ∆f = f1−f2 for the logarithmic

space. Since the polar axis is cylindrical, there are two possible distances between a

pair of points; we take the smaller of the two distances such that

∆θ = min(|θ1 − θ2|, n− |θ1 − θ2|)

Finally, the α parameter controls the relative importance between the frequency and

the orientation of textures; we use α = 1 in all of our experiments.

To better understand the effect of ground distance on EMD for measuring the

similarity between textures, let us consider the following example. We have a filter

bank formed by M = 3 frequencies separated at a frequency bandwidth Bf = 1 (1

octave) and N = 3 orientations separated at an angular bandwidth Bθ = 60◦. With this

configuration, the filter bank contains m·n = 9 different Gabor filters; consequently, we

have the same number of Gabor responses per image channel. Then, the EMD’s ground

distance for this filter bank is a symmetric matrix of size m · n ×m · n with zeros on

the diagonal. Each cell (i, j) of the matrix represents the distance (L1 or L2) between

two frequency and orientation settings (f, θ). For example, the row i = 0 represents

the comparison between the combination (f1, θ1) of the first signature against all the

configurations of the second signature.

We illustrate in Fig. 3.1 the ground distance matrix between two texture signatures

subjects of m = 3 frequencies and n = 3 orientations using the four distances described

in this section: L2-Euclidean distance, L2-Squared Euclidean distance, L1 lin-polar

distance, and L1 log-polar distance. This figure shows how distances in linear-polar or

logarithmic-polar space are more convenient with textures and Gabor filters since they

consider the cylindrical axis of the angles.
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(a) Euclidean (b) Squared euclidean

(c) Linear-polar (d) Log-polar

Figure 3.1: Visualizations of cost matrix of EMD.

3.3 Comparative Analysis of Similarity Measures

3.3.1 One-Dimensional Case Study

To compare the measures described in section 3.2 in the simplest scenario, we use a

set of one-dimensional synthetic distributions. We create a source distribution and a

series of target distributions (see Fig. 3.2). Both source and target distributions have

1000 samples and are random normal distributions. The unique difference between

them is that the mean of each target distribution (µ) is increasing five units concerning

the previous distribution. The first target distribution is indiscernible from the source

distribution.

Since the distributions’ mean value increases linearly, we expect that the similarity

measure has an equivalent response, i.e., that the similarity decreases when the differ-

ence of the source and target means increases. In Fig. 3.3, we can see the response

of the bin-to-bin measures and the EMD. Among the bin-to-bin measures, those that

give a coefficient of dissimilarity (χ2 statistic, Bhattacharyya pseudo-distance, and K-L
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Figure 3.2: Source and target synthetic distributions.

(a) Histogram intersection (b) Histogram correlation (c) χ2 Statistic

(d) Bhattacharyya (e) Kullback-Leibler (f) EMD

Figure 3.3: Distances between the source and target distributions.

divergence) rapidly saturate and stick to a maximum value; while for those that give a

coefficient of similarity (histogram correlation and intersection), their value falls rapidly

to zero. We can interpret these behaviors as follows. When the bins pi, qi do not have

any mass in common, the bin-to-bin measures fail to consider the mutual distance of

the bins. They could consider that the distributions are precisely at the same distance

(there is no difference between them), or that the distributions are entirely dissimilar.

The only measure that presents a convenient behavior with the increasing difference of

the means is the EMD. This is due to taking into account the ground distance C of the

matching bins (see above, Eq. (3.8)). One can argue that for applications like image

retrieval finding the most similar distribution is sufficient to find the alike image or

texture, whereas the ordering on the other is irrelevant. In the following experiment,

we show that this intuition is incorrect and that even in an overly simple case, the

bin-to-bin measures are not the best choice.
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3.3.2 Image Retrieval Systems

We develop two image retrieval systems as a second comparison test, the first based on

color information and the second based on texture information. For the classifiers, we

use different databases. The first one contains 24 different color images of superhero

toys1. It has 12 classes with two samples per class. The first two rows in Fig. 3.4

show some examples of the superhero toys and their variations (change of the angle of

the toy or the addition of accessories). The second database [Kylberg, 2011] comprises

images belonging to different surfaces and materials (see the last two rows in Fig. 3.4).

The database contains 28 different classes; it contains different patches per class.

Figure 3.4: Some samples from the color and texture databases.

We compare the performance of six out of the eight measures described in section

3.2 in the following way. First, we divide the database samples into model images and

query images; each class only has one model and one query image. We select an image

from the query set and compare its color/texture distribution (source distribution) with

all model images’ color/texture distribution (target distributions). Then, we order the

images from the most similar to the most dissimilar image. We repeat this process for

all the images in the query set2.

Image color distribution. We use 3-d histograms to represent the distribution of

color pixels. Since the superhero images are very simple and do not present significant

challenges, i.e., the images possess a very distinctive color palette and do not present

textures or important changes in lighting, any similarity measure should be sufficient

1CC super hero’s images courtesy of Christopher Chong on Flickr.
2The image classification systems (color-based and texture-based) and the datasets used for this

chapter are available at https://github.com/CVMethods/image_clasifier.git
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to perform the image retrieval. However, image retrieval systems are sensitive to the

representation and quantification of the color image pixels. We show this effect by

varying the color space and the color quantization level in the image classifier. We

represent the images in the RGB, HSL, and LAB color spaces for the color space. We

represent the color space in histograms of 8, 16, and 32 bins per channel for the color

quantization level.

Image texture distribution. We use a family of Gabor filters as texture de-

scriptors to obtain a distribution (2-d histograms) that models the images’ texture.

This type of filter models the human visual cortex’s behavior [Daugman, 1988], so they

are very useful in computer vision applications to represent textures [Lee, 1996]. The

mother wavelet

g(x, y, ω, θ) =
ω2

4πκ2
e− ω2

8κ2 (4x̂2+ŷ2) · [eiκx̂ − e
κ2

2 ] (3.11)

represents the family of Gabor descriptors, where x̂ = x cos θ+y sin θ and ŷ = −x sin θ+

y cos θ . The 2-d texture histograms are a function of the Gabor responses’ energies

according to the frequency ω, the orientation θ and the constant κ in the Gabor wavelet.

The 2-d texture histograms are a function of the Gabor responses’ energies according

to the frequency κ ≈ π and six bins means that there are six different frequencies to a

bandwidth of one octave and six different orientations. The energy of a Gabor response

is given by

Eω,θ =
∑

x,y
|Wx,y,ω,θ|2, (3.12)

where Wx,y,ω,θ is the response of the convolution of a 2-d wavelet with frequency ω and

orientation θ with an image.

Image Retrieval Systems Evaluation

We create a comparison benchmark for the six similarity measures. First, we normalize

the distances given by the different methods between 0 and 1, where a value close to 0

means the most similar distribution to the source distribution and 1 the most dissimilar.

Then we transform the normalized distances into probabilities using a softmax function

SM(d) = ed∑
i

edi
. The vector d = {di}, ∀i = {1, . . . , M}, represents the distances

between the query image to the M images in the database. Considering the softmax

function of the distances vector as a classification probability SM(d) = ŷ, we compute

the cross-entropy [Bishop, 2006] considering the classification ground truth y such as,

H(y, ŷ) = −
∑

i
yi log ŷi (3.13)
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where yi is the ground truth probability vector, and ŷi the probability vector of the

prediction.

We can interpret the cross-entropy value as the image classifier’s confidence level

for some given metric, feature space (color or texture), and histogram size. When this

value is very close to zero, it indicates a perfect classification of the query image. In

Fig. 3.5, we note the superiority of the EMD over the other measures in both color and

texture-based classifiers.

(a) RGB color space (b) HLS color space

(c) LAB color space (d) Texture Gabor energy space (Eq. (3.12))

Figure 3.5: Cross entropy value of image retrieval systems (color
and texture) using different similarity measures (lower is better).

With the image retrieval systems, we can highlight interesting aspects of the EMD

and the use of bin-to-bin measures in the comparison of distributions. First, we see the

importance of selecting the color space and the compression level of the feature space

(histogram size). The effect of discretization in the bin-to-bin measures is counter-

intuitive because the error increases slightly when the number of bins increases. The

explanation could be a poorer intersection of mass distributions. In the case of EMD,

increasing the number of bins improves the classification result. Besides, as we ex-

pected, in the color-based classifier, the calculation of the EMD using the LAB color

space performs better than with the HLS or the RGB. This effect is because the LAB

color space models the color human perception in the Euclidean space; therefore, the

ground distance between two colors is easily calculated with the L2 norm. On the

other hand, in the texture-based classifier, increasing the number of bins beyond eight

bins does not improve the classification considerably. This behavior occurs because the

histograms with eight frequencies and eight orientations represent sufficiently well the

image textures.
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3.3.3 Texture Projection Quality Evaluation

We use the multidimensional scaling (MDS) technique [Kruskal, 1964] as the last eval-

uation test for the similarity measures on the texture dataset. The MDS allows to

geometrically represent n textures using a set of n points {x1, . . . , xn} in a reduced Eu-

clidean space Rd so that the distances between the points d̂ij = ||xi − xj||2 correspond

as much as possible to the values of dissimilarity dij between the texture distributions.

To evaluate the quality of the projection, we use the stress value proposed in [Kruskal,

1964].

S =

√√√√√
∑

ij(d̂ij − dij)2

∑
ij d̂2

ij

(3.14)

The stress coefficient is a positive value that indicates how well the distances given

by the measures are preserved in the new low-dimensional space, i.e., the lower the

level of S, the better the representation of texture in a low-dimensional space (2-d

in our case). Fig. 3.6 shows how the lowest stress is obtained using the EMD. This

result is because the MDS technique interprets the distances of the entrance towards

distances in a low dimension space. Given that the EMD is the only measure that is a

true metric, not only is the stress level low, but the visual projection is following the

frequency ω and orientation θ used in the Gabor filters (Eq. (3.11)) that model the

distribution of the textures (see Fig. 3.14).

Figure 3.6: Stress value of the MDS projections using the six prin-
cipal similarity measures.

3.3.4 Color and Texture Retrieved Images: Some Cases of

Study

Color-based Image Retrieval

The Figs. 3.7 and 3.8 present the result of the classification of the images of two

superhero toys. The query image is displayed in the upper left. The rows of the

image arrangement represent the different measurements used in the retrieval, while

the columns show the most similar image from left to right in descending order. The

numerical values of the distances are below each image; these values are not normalized,
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nor are they on the same scale. Notice that some values are sorted in decreasing whereas

some others in increasing order. The various distances are increasing, the similarity

measures (correlation, intersection) are decreasing.

The two examples here show how, under certain disturbances in color distribution,

bin-to-bin measurements cannot identify the correct result. For the Wonderwoman toy,

the fact that the query image has an extra accessory modifies the color signature of

the image, while in the case of the superman toy, the color signature is very close to

those toys that contain red and blue colors. These two images were obtained using the

LAB color space and 32 bins for the pixels’ color distribution.

Figure 3.7: Wonderwoman toy image retrieval example
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Figure 3.8: Superman toy image retrieval example

Texture Projection Visual Evaluation

The following images serve as a visual tool for the comparative evaluation of the dif-

ferent measures analyzed in this chapter. As we described in section 3.3.3, the MDS

technique allows to projecting the textures in a low dimensional space using the dis-

tances given by the similarity measures. This representation is carried out in a two-

dimensional Euclidean space in our case. In the figures, we can notice that the MDS

technique has problems representing the textures coherently when the input measures

are not a metric, i.e., for the bin-to-bin measures. The axis in Figs. 3.9 to 3.13 do not

correspond with the input space of the textures. According to the coarseness, we can

speculate that there is a tendency to rank the textures in some arbitrary direction.

However, in the case of EMD, we can observe that since this measure uses a ground

distance to calculate the similarity, we can define the cost matrix Cij = c(xi, yj) of Eq.

3.7 to be the L1-distance as

c(xi, yi) = d((ωi, θi), (ωj, θj)) = α|∆ω|+ |∆θ| (3.15)

where |∆ω| = ωi − ωj, ∆θ = min(|θi − θj|, θmax − |θi − θj|), and α is a constant

that regulates the importance between the orientation and the coarseness of textures.

In such a way that it represents the 2-d texture distributions into a log-polar space.

We can distinguish this effect in Fig. 3.14 where we can see how the orientation and
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the frequency organize the textures into a log-polar coordinate space forming a circle.

The texture orientation is represented along the circular axis; on the other hand, the

texture frequency follows the axis going from the outside to the circle center. The lower

frequency images remain at the edge of the circle, and those with high frequency (and

low directionality) are grouped in the center. This behavior is not observed with any

of the other measures and is reflected in the stress value of Fig. 3.6.

Figure 3.9: MDS texture projection using the histogram intersection
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Figure 3.10: MDS texture projection using the histogram correlation

Figure 3.11: MDS texture projection using the χ2 statistic
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Figure 3.12: MDS texture projection using the Bhattacharyya dis-
tance

Figure 3.13: MDS texture projection using the Kullback-Leibler di-
vergence
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Figure 3.14: MDS texture projection using the Earth Mover’s Dis-
tance

86



3.4. Conclusion

3.4 Conclusion

In this chapter, we compare some of the few popular, bin-to-bin similarity measures

with the EMD. We measure their performance in three tests: a one-dimensional analysis

with synthetic distributions, two image classifiers (color and texture-based), and a

visual projection using the MDS technique and the stress as the comparison value.

The objective is to show that such measures highly used in the literature to develop

complex tasks are not the best choice since they fail even in the most straightforward

conditions. We illustrate that the EMD is a true metric [Peyré and Cuturi, 2018] that

naturally expresses dissimilarity between distributions.

Results. The experiments of the previous sections show the superiority of the EMD

to represent the similarity between distributions. First, the one-dimensional case shows

how the bin-to-bin measures saturate (or fall to zero) as soon as the probabilities have

an empty intersection (see Fig. 3.2). As for the image retrieval systems, we can see

that by correctly choosing the feature image space and a good compression resolution

of the distributions (LAB color space with 32 bins in the color-based system and the

Gabor energy with eight bins in the texture-based system), the EMD performs the best

classification result. However, this is not the case with the other measures because they

are not a true distance. Representing the textures in the Euclidean space using the

MDS technique shows another advantage of the EMD. The use of the ground distance C

in the optimal transport calculation makes it possible to transfer 2-d texture histograms

to a logarithmic-polar space, making the stress value relatively low.

Notes about EMD computation complexity. We believe that EMD is a depre-

ciated metric only because of its excessive calculation time. In the examples developed

before, we calculate the EMD using the iterative process of linear programming. De-

spite this, the calculation is fast enough to develop the image classifier. In comparison

with the first EMD algorithm [Rubner et al., 2000], the computer processors’ progress

allows to use the same algorithm and be competitive with the bin-to-bin measures.

Moreover, a solution to the excessive complexity time and memory consumption is

the regularized distances, also called Sinkhorn distances [Cuturi, 2013]. This entropy-

based regularization accelerates the computing time, giving a close approximation of

the EMD. The regularization of distances allows for creating parallelizable algorithms.
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Chapter 4

Spectral Image Decomposition

Résumé

Ce chapitre utilise la théorie du signal et la transformée de Fourier pour générer une

famille optimisée de filtres de Gabor. Le but est de récupérer autant d’informations

que possible sur des textures d’une image dans le domaine fréquentiel sans affecter la

localisation des informations. Nous présentons une analyse de la fonction de Gabor

conforme au principe d’incertitude de Heisenberg. La méthodologie présentée dans ce

chapitre générera des banques de filtres Gabor entièrement personnalisées.

Abstract

This chapter uses signal theory and Fourier transform to generate an optimized family

of Gabor filters. The goal is to retrieve as much information as possible about textures

from an image in the frequency domain without affecting the information location. We

present an analysis of the Gabor function that complies with the Heisenberg uncertainty

principle. The methodology presented in this chapter will generate fully customized

Gabor filter banks.

4.1 Introduction

The study and understanding of human vision have contributed to computer vision.

Through neuropsychology, mathematical interpretations of the visual system have been

developed, particularly the first area of the primary visual cortex, the so-called V1.

Novel experimental techniques [DeAngelis et al., 1995] have made it possible to

observe the activity of V1 and the modules involved in visual processes. It is known
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4. Spectral Image Decomposition

that the Receptive Field (RF) is in charge of formatting the optical signals for their

interpretation. Physically, RF is the area of a visual neuron that responds to specific

light stimuli. The RF response is known as the Receptive Profile (RP), and it can be

positive and exciting or negative and exciting. Fig. 4.1a shows the level curves of a

neuron’s receptor profile, showing positive responses in green and negative responses

in red. Mathematically, the RP is a function ϕ : D → R defined in the RF domain D

that measures the neuron’s response ϕ(x, y) (as positive or negative) to the stimulations

at the point (x, y) [Petitot, 2008]. The transfer function of a neuron ϕ(x, y) can be

considered as a filter, e.g., the Gabor filter, that correctly replicates the behavior of

the V1 receptive field (see Fig. 4.1b).

(a) Experimental level curves of RP (b) Gabor model of a RP

Figure 4.1: Receptive field of a simple visual neuron. Images from
[Petitot, 2008].

In chapter 3 we use the Gabor filter to extract global energy from homogeneous, i.e.,

stationary textures. This energy serves as the characteristic signature of the texture

present in the image. In this chapter, motivated by its relationship with the human

perception process, we delve into the study of Gabor filters. In particular, we are

interested in its space-frequency properties to extract local texture features in natural

images.

We carry out an analysis of the Gabor filters first from the point of view of signal

theory to expose their properties and limits. Then, starting from the representation of

the filters in 1-d, we propose a formulation of the filters that allow us to fully customize

a family of 2-d filters depending on the application. The reformulation of Gabor filters

allows dealing and take advantage of the aliasing and of the DC1 component.

Using a Gabor filter family, we generate a feature bank that contains local infor-

mation about the texture. As natural images contain color information, the proposed

framework allows obtaining local texture features taking into account the luminance

1The term originates in electronics, where DC refers to a direct current voltage
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and the chrominance of an image. This strategy’s novelty is that we consider color

as a complex signal where we can measure the space-frequency distribution of a color

texture.

4.2 The Gabor Filter as a Measurement Tool

This section presents a reminder of the signal theory applied to image processing for

feature extraction. First, we show the reasons for restricting signal analysis in two

predefined domains: time and frequency (for the 1-d case) and space and frequency

(for the 2-d case). We especially recall Gabor filter theory and properties by showing

how these filters are related to Heisenberg’s uncertainty principle.

As we mentioned before, we use Gabor filters as a tool to measure the information

that characterizes a signal. Since the signal carries relevant information at different

points and scales (either in the spatial or space-frequency domain), a well-known strat-

egy used in the literature is to create a filter bank that covers most of the spectrum to

be able to reconstruct the original signal.

4.2.1 Signals in Two Domains

Bound by the Fourier transform, there are two equivalent representations of a signal

(one-dimensional (1-d) or two-dimensional (2-d)). The first represents the signal as

a function of time, while the second represents it as a function of frequency. These

two representations carry the same information but in different ways; besides, we can

go from one to another via the Fourier transform (or the inverse Fourier transform),

making these special interest descriptions. We define the pair of 1-d Fourier transforms

(FT) as follows

H(f) = F{h(t)} =
∫ ∞

−∞
h(t)e−j2πftdt,

h(t) = F−1{H(f)} =
∫ ∞

−∞
H(f)ej2πftdf,

(4.1)

while for the 2-d case, we define the FT as

H(u, v) = F{h(x, y)} =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)e−j2π(ux+vy)dxdy,

h(x, y) = F−1{H(u, v)} =
∫ ∞

−∞

∫ ∞

−∞
H(u, v)ej2π(ux+vy)dudv.

(4.2)

It is evident that the function h(t) (resp. h(x, y)) is located in both domains;

however, it is also well known that no signal with compact support can have a finite

Fourier transform and vice versa [Bracewell, 1999], there is a particular uncertainty

in the time and frequency locations of h(t) (resp. space and frequency locations of

h(x, y)). We developed and demonstrated the principle that defines this uncertainty

(for signal processing and image processing) in the following section.
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4.2.2 The Uncertainty Principle in Image Processing

The uncertainty principle is one of the most famous ideas in quantum mechanics.

An early incarnation of the uncertainty principle appeared in a 1927 paper by the

German physicist Heisenberg. The uncertainty principle says that we cannot measure

the position (x) and momentum (p) of a particle with absolute precision. The more

accurately we know one of these values, the less accurately we know the other.

However, quantum mechanics’ uncertainty principle is just a particular case of a

more general compromise in simple everyday life phenomena involving waves. The

central idea is connected with the interrelation between frequency and duration. For

example, in the case of sound waves, if we want to identify the frequency of a musical

note, the shorter the sound lasts in time, the less specific we can be about the exact

frequency of the sound to find, it would be necessary to listen to the sound for a

longer time, in which case the locality measure loses its sense. In the language of

signal processing, we can say that a short signal correlates highly with a wide range of

frequencies, and only wide signals correlate with a short range of frequencies. Formally

this is expressed as

∆t∆ω ≥ 1
2

, (4.3)

where ∆t is the duration of the signal in the time domain and ∆ω is the bandwidth of

the signal in the frequency domain [Petrou and Sevilla, 2006]. The uncertainty principle

then states: the spectral bandwidth product multiplied with the signal’s time duration

cannot be less than a particular minimum value. Considering the signal bandwidth in

terms of frequency as ∆υ where ω = 2πυ, the uncertainty principle is stated as

∆t∆υ ≥ 1
4π

. (4.4)

The Heisenberg uncertainty principle can be mathematically proved in signal pro-

cessing and image processing by the Parseval’s identity, where Parseval’s theorem

states that ∫ ∞

−∞
h(t)2dt =

∫ ∞

−∞
|H(υ)|2dυ, (4.5)

where h(t) is a function and H(υ) its the Fourier transform.

The energy content of the signal described by h(t) is defined as:

E∞ ≡
∫ ∞

−∞
h(t)2dt. (4.6)

From the Parseval’s identity this may be written as:

E∞ =
∫ ∞

−∞
|H(υ)|2dυ. (4.7)
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By setting ∆t = t− t0, the time dispersion of the signal is given by

(∆t)2 ≡ 1
E∞

∫ ∞

−∞
(t− t0)2h(t)2dt, (4.8)

where t0 is the center of gravity of the signal defined by

t0 ≡
1

E∞

∫ ∞

−∞
th(t)2dt, (4.9)

and where if we shift the origin of t so that t0 = 0, then

(∆t)2 =
1

E∞

∫ ∞

−∞
t2h(t)2dt. (4.10)

In an analogous way for ∆υ = υ − f , the spectral bandwidth of the signal is

given by

(∆υ)2 ≡ 1
E∞

∫ ∞

−∞
(υ − f)2|H(υ)|2dυ, (4.11)

where f is the spectral center of gravity of the signal defined by

f ≡ 2π

E∞

∫ ∞

−∞
f |H(υ)|2dυ, (4.12)

and if we consider f = 0, then Eq. (4.11) becomes

(∆υ)2 =
1

E∞

∫ ∞

−∞
f 2|H(υ)|2dυ. (4.13)

If h′(t) is the derivative of the function, its Fourier transform is j2πfH(υ). By

applying the Parseval’s identity (using the left and right terms in Eq. (4.5)) to the

Fourier pair h′(t)←→ j2πfH(υ) we obtain

4π2
∫ ∞

−∞
f 2|H(υ)|2dυ =

∫ ∞

−∞
h′(t)2dt. (4.14)

By substituting it in Eq. (4.13), we have:

(∆υ)2 =
1

4π2E∞

∫ ∞

−∞
h′(t)2dt. (4.15)

We use Eqs. (4.10) and (4.15) to calculate:

(∆t)2(∆υ)2 =
1

4π2E2
∞

∫ ∞

−∞
t2h(t)2dt

∫ ∞

−∞
h′(t)2dt (4.16)

Applying the Schwartz’s inequality for the integrals on the right-hand side of

Eq. (4.16) we obtain

∫ ∞

−∞
th(t)2dt

∫ ∞

−∞
h′(t)2dt ≥

∣∣∣∣∣

∫ ∞

−∞
th(t)h′(t)2dt

∣∣∣∣∣

2

. (4.17)
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We may integrate by parts the integral on the right-hand side of Eq. (4.17) such as

∫ ∞

−∞
th(t)h′(t)2dt =

1
2

th(t)2

∣∣∣∣∣

∞

−∞

− 1
2

∫ ∞

−∞
h(t)2dt. (4.18)

If limt→∞ th(t)2 = 0, the first term on the right-hand side of (4.18) vanishes and

from Eq. (4.6) we have ∫ ∞

−∞
th(t)h′(t)dt = −1

2
E∞. (4.19)

If we use this into Eq. (4.17) and then into Eq. (4.16) we obtain

(∆t)2(∆υ)2 ≥ 1
16π2

. (4.20)

This is the mathematical statement of the uncertainty principle in signal processing

[Petrou and Sevilla, 2006].

4.2.3 1-d Gabor Filters

The uncertainty principle shows that time and frequency are two fundamental domains

and physically measurable quantities, but still idealizations if we consider one from the

other’s perspective. Frequency is a simple waveform in the time domain, but to be

sharply defined in the frequency domain, it must be infinite in the time domain, i.e.,

a waveform that has always existed and will remain forever. In everyday life, it is

complicated to find phenomena with these characteristics; it is more common to find

signals that have properties from both domains; certainly, they have some frequency

characteristics, but they also have a starting point, and after some time, these signals

begin to fade away. This phenomenon motivated Dennis Gabor to represent signals

simultaneously in time and frequency through the Gabor Elementary Function (GEF)

[Gabor, 1946]. The function represents the minimal quantum of information, i.e., the

minimal amount of simultaneous information in time and frequency. In other words,

it occupies the minimal area, given by a rectangle, in the time-frequency plane.

The Gabor function is derived form the uncertainty principle, therefore, it has a

shape for which the product ∆t∆υ assumes the smallest possible value. In other words,

the Gabor function is the one that transforms inequality of Eq. (4.4) into the equality

∆t∆υ = 1
4π

. Then, the Gabor function is defined as the modulation product of a

harmonic oscillation (a sinusoidal wave) of any frequency with a pulse of the form of a

probability function (a Gaussian function) [Gabor, 1946] and is represented as

g(t) = e−α2(t−t0)2

ej2πft+φ (4.21)

where α express the spread and t0 denotes the centroid of the Gaussian function, f is

the frequency of the sinusoidal wave, and φ defines the phase shift of the oscillation.
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The Fourier transform of Eq. (4.21) defines the representation of the Gabor function

in the frequency domain G(υ) = F{g(t)} with the following analytical form

G(υ) =
√

π

α2
e−( π

α)2
(υ−f)2

e−j2πt0(υ−f)+φ (4.22)

The Eqs. (4.21) and (4.22) show straightforwardly that the center of gravity t0 is

equal to Eq. (4.9) and the spectral center of gravity f is equal to Eq. (4.12), i.e., the

Gabor functions follow Heisenberg’s uncertainty principle.

(a)

(b)

(c)

(d)

Figure 4.2: Visualization of the uncertainty principle in 1-d Gabor
filters. First column: filters on the time domain, Second column:
filters on the frequency domain. (a) f = 1/4, γ = 1; (b) f = 1/20,
γ = 1; (c) f = 1/4, γ = 2; (d) f = 1/20, γ = 2.
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Filter normalization

We can define the Gabor filter more appropriately by taking the following justifications.

First, we must remember that we use the Gabor function as a linear filter to analyze a

signal. Under this condition, the temporal analysis of the signal is carried out using the

convolution operator. Considering that the Gabor function is concentrated near the

time instant t0 and that a convolution centered at the origin is preferable, we consider

t0 = 0. Since there is no evidence that any specific phase would be more beneficial than

any other [Liu et al., 2005], another parameter that we can omit is the phase shift φ.

Moreover, for the functions to be similar at all locations, the phase shift should depend

on the location t0, and thus, the phase shift can be removed from the origin-centered

filter (φ = 0). Then, the Gabor filter function in its compact form is defined as

g(t) = e−α2t2

ej2πft

G(υ) =
√

π

α2
e−( π

α)2
(υ−f)2

(4.23)

We can normalize the Gabor filter depending on the application we will use it.

However, in this thesis, we use the general normalization based on the multi-domain

representation property of the function following the subsequent conditions [Boukerroui

et al., 2004]:

1. Maximum condition:

max |G(υ)| = 1 (4.24)

2. Constant spectra condition:

∫ ∞

−∞
|g(t)|dt = 1 (4.25)

From Eq. (4.22), it is evident that the maximal response of the Gabor filter in the

frequency domain is a function of
√

π/α2, therefore, its inverse

√
α2

π
(4.26)

can be used as the normalization factor in the time domain to fulfill the two conditions

mentioned above. Then using the normalization factor (4.26), the normalized Gabor

filter is defined as

g(t) =

√
α2

π
e−α2t2

ej2πft

G(υ) = e−( π
α)2

(υ−f)2

(4.27)

Fig. 4.3 shows a Gabor filter in the time and frequency domain before and after
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Figure 4.3: 1-d Gabor filter in the time domain (first column) and
in the frequency domain (second column). From top to bottom:
non-normalized and normalized Gabor filter with [f = 1/4, α = 0.5,
t0 = 0].

normalization following the two conditions described above. At this point, it is impor-

tant to note that normalization is an essential step in the multi-spectral analysis and

the feature extraction of a signal.

Frequency filter spacing

Our main interest in Gabor filters is the multi-spectral analysis of a function. We

accomplish this by using multiple Gabor functions as filters that are tuned on several

frequencies fm. This group of filters is known as a Gabor filter bank. The separation

between the filter bank is defined through the half-response spatial frequency band-

width Bf measured between two central frequencies f1 < f2 [Granlund, 1978]. This

bandwidth is measured in octaves and we can express it as

Bf = log2

(
f2

f1

)
. (4.28)

The frequency bandwidth Eq. (4.28) shows that the central frequencies fm must

have a logarithmic relationship to maintain a homogeneous spacing between the filters.

The scaling factor k = 2Bf gives the logarithmic relationship, so the frequency of each

filter (f) in this case corresponds to the scale information. Then we can write the

central frequencies as

fm = k−mfmax, m = {1, · · · , M} (4.29)

where fm is the mth frequency, fmax is the maximal desired frequency, k > 1 is the
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frequency scaling factor, and M is the total number of frequencies of the filter bank.

The octave spacing between two adjacent filters is an interesting property of the

Gabor filters; however, the filters denoted by the Eqs. (4.27) have a spread that only

depends on the parameter α, regardless of its central frequency f . This trait means

that when implementing the Gabor function in a filter bank at different frequencies to

obtain a multi-spectral decomposition of a signal, all of the filters will have the same

spread in the frequency domain. We can see this effect in Fig. 4.4a, where we show a

filter bank with five central frequencies and an adjacent filter’s spacing of one octave,

that is, M = 5 and Bf = 1.

Frequency crossing point

The fact we choose the filter bank’s central frequencies fm to have a constant separation

causes two adjacent Gabor functions to intersect at a particular point on the frequency

axis. For example, in a filter bank formed with two Gabor functions with central

frequencies f1 and f2, the low cut-off frequency of the function at f1 coincides with the

high cut-off frequency of the function at f2. Generally, in the literature, the crossing

point c1, corresponds to the points where the Gabor function has decreased half of

its maximum value, i.e., c1 = 0.5 [Granlund, 1978]. However, by setting the crossing

point to half of the maximum value, the filter bank does not cover the input signal’s

entire spectrum. Consequently, the filter bank will not respond (or the response will

be minimal) to artifacts oscillating between central frequencies.

We obtain the mathematical expression of this crossing point c1 by defining a fre-

quency interval ∆f , representing the distance between points where the function G(υ)

intersects adjacent functions at frequencies υ = f ± ∆f
2

(see Subfig. 4.4b). The Gabor

function has a peculiarity; its analytical form in the frequency domain is completely

defined by the Fourier transform of the normalized Gaussian function Eq. (4.27).

G(υ) = w(υ) = e−( π
α)2

(υ−f)2

(4.30)

therefore, evaluating Eq. (4.30) at υ = f + ∆f
2

G

(
f +

∆f

2

)
= e

−( π
α)2
(

∆f

2

)2

= c1G(f) (4.31)

we obtain the expression of the half-frequency interval

∆f

2
=

α

π

√√√√ln

(
1
c1

)
(4.32)
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from which we obtain that the crossing point is defined as

c1 = e
−(α

π )2
(

∆f

2

)2

(4.33)

This expression allows us to control the intersection point of two adjacent filters

of the filter bank. Modifying the crossing point allows the generation of filter banks

that cover (almost) the entire frequency spectrum, translating into a more faithful

decomposition of the input signal.

Effective and Adaptable Gaussian Envelope

The full bandwidth Bf (expressed in octaves) of a Gabor filter with center frequency

f and cut-off frequency interval ∆f is defined as [Daugman, 1985].

Bf = log2


f + ∆f

2

f − ∆f
2


 (4.34)

It is clear that using the half-frequency interval Eq. (4.32) into the frequency band-

width Eq. (4.34), we find an expression that introduces a relationship between the

frequency bandwidth Bf , the central frequency f , and the spread of the Gabor filter

α.

Bf = log2




f
α
π +

√
ln
(

1
c1

)

f
α
π −

√
ln
(

1
c1

)


 (4.35)

The relationship is noticeable through the ratio

γ =
f

α
(4.36)

The ratio given in Eq. (4.36) allows generating Gabor filters of variable size as a

function of the center frequency. For this, we must remember that the window size of

a Gabor function is denoted by the effective width of a Gaussian function, which in

the time domain has a form of

w(t) = e−
(t−t0)2

2σ2 (4.37)

The Gaussian window Eq. (4.37) is infinite in its extent, so it is characterized by

its locality t0 and standard deviation σ, implicit in the Gabor function parameter α as

α2 = 1/2σ2. By setting the standard deviation dependent on the frequency ratio and

the central frequency, we find that

σ =
γ√
2f

(4.38)

makes the Gabor’s window adaptive as a function of the frequency.
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Figure 4.4: Filter spacing and crossing point effect represented on
a bank of filters in the frequency domain: (a) Separation of filters in
octaves without crossing point between adjacent filters [Bf = 1, α =
0.1, c1 = n/a], (b) High and low cut-off frequency points given by
∆f [Bf = 1, α = f/γ, c1 = 0.5], (c) Filter bank behavior after
changing the crossing point [Bf = 1, α = f/γ, c1 = 0.9].
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In addition to adapting the filter size, with Eq. (4.38), we make the Gabor filter

effective; that is, we make the filter envelope correspond to the time (resp. spatial)

support where the function’s values are significant. We use the empirical three-sigma

rule [Pukelsheim, 1994], a conventional heuristic that expresses that nearly 99.7% of

the Gaussian distribution’s energy lies within three standard deviations of the mean.

Therefore, we define the shortest interval of the function that includes most of the

energy as

κ = {x|x ∈ [−3σ, 3σ]} (4.39)

The fact that the bank filters have the same width at all frequencies is not a problem,

nor is it a requirement to analyze a signal with the Gabor function. However, making

the filter width dependent on its frequency implies a multi-resolution analysis since

the filters behave like a scaled version of each other. The advantages of an effective

adaptative envelope are related to the computation time and the loss of information

when we filter a signal with a Gabor filterbank. Figure 4.5 illustrates the advantages of

using a filter bank with adaptive and effective support (Fig. 4.5b) versus a conventional

filter bank (Fig. 4.5a). More precisely, in the case of constant envelope width, for the

example κ = {x|x ∈ [−50, 50]} (see Fig. 4.5a), the computation time of the responses

is the same for all filter frequencies. In contrast, with the adaptive envelope, the

calculation time is reduced for high frequencies since the envelope width is smaller

(compare images on the first column of Fig. 4.5). Moreover, there is a risk of losing

information from the original signal if the chosen envelope is not large enough for

low frequencies to fit in (compare images on the last column of Fig. 4.5). Using the

adaptative and effective envelope width, we recover as much energy as possible from

the signal by optimizing the response’s computation time for each frequency f of the

filter.

Optimized 1-d Gabor function

Gathering the different modifications of Gabor functions developed in the previous

sections, we can define an optimized 1-d Gabor function as follows

g(t) =
f

γ
√

π
e

−

(
f

γ

)2

t2

ej2πft

G(υ) = e
−

(
γπ

f

)2

(υ−f)2

(4.40)

This Gabor function representation allows generating filter banks normalized by the

maximum spectrum condition and homogeneously distributed in the frequency domain.

Besides, a filter bank generated with the Gabor function Eq. (4.40) integrates the fre-

quency crossing point allowing a quasi-total and almost flat coverage of the frequency

spectrum, occupying the most relevant part of the filter using an adaptive window. A
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4. Spectral Image Decomposition

(a) κ = {x|x ∈ [±50]} (b) κ = {x|x ∈ [±3σ]}

Figure 4.5: Visual representation of the effective Gaussian envelope
adaptation with filter bank with M = 5 frequencies in the space
domain. (a) Filter bank with no control over the envelope, (b) Filter
bank with control over the envelope’s effective width.

possible disadvantageous effect of this approach is the ripple between the filter bank’s

filters; however, we must remember that the filters proposed here are normalized con-

cerning the size of the support (Gaussian window) and the central frequency of each

filter. Therefore, even though a filter responds to different frequencies, textures close

to the filter’s center frequency are weighted. Additionally, the ripple effect occurs more

frequently when decreasing the bandwidth of the filter bank. Moreover, this effect can

be reduced by applying a halfwave rectification or, more generally called a thresholding
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4.2. The Gabor Filter as a Measurement Tool

[Petkov, 1995], [Grigorescu et al., 2003] [Kruizinga and Petkov, 1999].

Fig. 4.4 shows three examples of filter banks in the frequency domain. Particulary,

Fig. 4.4a shows a bank without the relationship between the effective width and the

central frequency of the filter, whereas the Figs. 4.4b and 4.4c show the interdependence

between α, Bf , f and c1 and the behavior of the bank with a different crossing point.

4.2.4 2-d Gabor Filters

The generalization of the Gabor function’s theory from 1-d to 2-d is straightforward.

First, we replace the time variable t with the pair of spatial coordinates (x, y) and the

frequency variable f with the pair of frequency variables (u, v). Then, as for the 1-d

case, the 2-d Gabor functions follows the Heisenberg principle where the uncertainty

measures for the spatial and spatial-frequency domains are expressed in terms of ∆x,

∆y, ∆u, and ∆v, for which it holds that

∆x∆u ≥ 1
4π

, ∆y∆v ≥ 1
4π

and ∆x∆y∆u∆v ≥ 1
16π2

(4.41)

The 2-d Gabor function is represented by the modulated product of a harmonic

oscillation with a pulse in the form of a probability function. The harmonic oscillation is

represented by a complex exponential on any spatial frequency and any orientation; the

pulse is represented by an elliptical Gaussian ellipse on any orientation. For simplicity,

we assume that the orientation of the Gaussian and the harmonic modulation are the

same and, therefore, define a compact form of the 2-d Gabor Elementary Function

(GEF) in the space domain applying the given simplifications as follows

g(x, y) = e−(α2x2
r+β2y2

r)ej2πfxr

xr = x cos θ + y sin θ

yr = −x sin θ + y cos θ

(4.42)

We obtain the analytical expression for the 2-d GEF in the spatial-frequency domain

from the Fourier transform of Eq. (4.42), G(u, v) = F{g(x, y)}, given by

G(u, v) =
π

αβ
e

−π2

(
(ur−f)2

α2 +
v2

r
β2

)

ur = u cos θ + v sin θ

vr = −u sin θ + v cos θ

(4.43)

We can normalize the two above expressions following the same reasoning as in

the 1-d case. We apply the maximum value condition Eq. (4.24) and the constant

spectrum condition Eq. (4.25) described in section 4.2.3 to get max |G(u, v)| = 1 and
∫∞

−∞

∫∞
−∞ |g(x, y)|dxdy = 1 for a filter on any frequency f and orientation θ. Under
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4. Spectral Image Decomposition

these circumstances, the normalization constant is defined by

αβ

π
(4.44)

which applied to Eqs. (4.42) and (4.43), gives us the normalized Gabor function in

both 2-d domains.

g(x, y) =
αβ

π
e−(α2x2

r+β2y2
r)ej2πfxr

G(u, v) = e
−π2

(
(ur−f)2

α2 +
v2

r
β2

) (4.45)

Orientation filter spacing

The Gabor function defined by Eqs. (4.45) do not cover most of the spectrum when

we use them to build a filter bank at different frequencies and orientations (see Fig.

4.6a); therefore, it does not help reconstruct a signal and the extraction of features.

To obtain a more encompassing filter bank, it is evident that we need to include a

relationship between the sharpness of the Gaussian window and the central frequency.

The sharpness of the Gaussian function, unlike the 1-d case, now includes two

variables (α, β) that affect the effective width of the Gabor filter envelope. Such an

envelope can have an elliptical shape, where α controls the length of the major axis

and β controls the length of the minor axis.

The analysis of the frequency separation between adjacent filters of a bank viewed

in the section 4.2.3 is also valid in the 2-d case. Thus, the full bandwidth of half

the frequency response, Bf , represents the separation between the center frequencies;

the interval ∆f represents the distance between the points where G(u, v) intersects

adjacent functions (see Subfig. 4.4b). Finally, the full frequency bandwidth through

the ratio γ and the frequency crossing point c1 allows adapting the size of the major

axis of the envelope α depending on the center frequency f .

We can do a similar analysis for the minor axis of Gabor’s envelope. First, notice

that insertion of the orientation variable θ in the 2-d case implies the existence of an

angular separation Bθ between the centers of the filters in a bank (see Fig. 4.6a). This

angular bandwidth can be defined by the total number of orientations N in a filter

bank such that

Bθ =
π

N
(4.46)

and therefore, we can obtain the the filter bank’s orientation angles as

θn = n
π

N
, n = {0, · · · , N − 1} (4.47)

We propose to vary the length of β as a function of the central frequency and the

angular bandwidth through an angular interval ∆θ, which is the distance along β where
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4.2. The Gabor Filter as a Measurement Tool

G(u, v) intersects adjacent functions (see Subfig. 4.6b).

∆θ

2
=

β

π

√√√√ln

(
1
c2

)
(4.48)
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Figure 4.6: Filter spacing and crossing point effect represented on a
2-d filter bank in the frequentcy domain: (a) Filters separation with-
out crossing points between adjacent filters [Bf = 1, Bθ = 45◦, α =
β = 0.1, c1 = c2 = n/a], (b) Filters separation with crossing points
between adjacent filters [Bf = 1, Bθ = 45◦, α = f/γ, β = f/η, c1 =
c2 = 0.9]. High and low cut-off frequency points given by ∆f and
∆θ.

We know that for a filter whose center frequency is f and whose cut-off angular

interval is ∆θ, the full orientation bandwidth Bθ expressed in radians is defined as

[Daugman, 1985].

Bθ = 2 tan−1

(
∆θ

2f

)
(4.49)

It is clear that using Eq. (4.48) in Eq. (4.49), we find the expression that relates the

frequency bandwidth to the central frequency and the length of the Gaussian minor

axis.

Bθ = 2 tan−1




β

πf

√√√√ln

(
1
c2

)
 (4.50)

Taking the above relationships permits to write the 2-d GEF to use it into a bank

as follows.

g(x, y) =
f 2

γηπ
e

−

(
f2

γ2 x2
r+ f2

η2 y2
r

)
ej2πfxr

G(u, v) = e
−

(
π
f

)2

(γ2(ur−f)2+η2v2
r)

(4.51)

where now the length α of each filter in the bank will be determined based on the ratio

γ = f
α

and the frequency crossing point between adjacent filters c1; and the length β
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4. Spectral Image Decomposition

will be determined based on the ratio η = f
β

and the angular crossing point between

adjacent filters c2.

Fig. 4.6 shows the octave spacing and the orientation bandwidth for a bank of filters

in the frequency domain. Particulary, Fig. 4.6a shows a bank without the relationship

between the effective width and the central frequency of the filter, whereas Fig. 4.6b

show the interdependence between α, β, Bf , Bθ, f and the crossing points c1, c2.

Finally, Fig. 4.7 shows a family of optimized Gabor filters in 2-d (real and imaginary

part) using M = 5 frequencies and N = 5 orientations. In the array of filters, the

frequency of analisys increases from bottom to top and the orientation from left to

right.
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4.2. The Gabor Filter as a Measurement Tool

(a) Real part

(b) Imaginary part

Figure 4.7: Custom designed Gabor filter bank. The design parame-
ters are: max/min period [1/fmin = 70, 1/fmax = 4], crossing points
(frequency and angular) [c1 = c2 = 0.9], bandwidths (frequency and
angular) [Bf = 1, Bθ = 35◦], standard devaitions [σ = 3].
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4. Spectral Image Decomposition

4.3 Conclusion

In this chapter, we have presented a space-frequency analysis for creating a filter. This

study aims to create a family of filters capable of measuring the texture information

in an image under a perceptual approach. The human eye (perception and stimulus)

is sensitive to the local contrast of textures, that is, to their amplitude. Therefore, we

are interested in measuring this amplitude and its location correctly through a filter

bank.

We use the Gabor function, which follows the Heisenberg uncertainty principle, to

design an optimal filter bank. Given its ability to measure the texture’s energy, both

in the spatial and frequency domains, the filter configuration that we propose in this

chapter allows us to build an adaptive filter bank. The filter bank is adaptable because

we can customize it to privilege the precision of measuring the amplitude or the locality

of a texture. Also, the proposed filter family is efficient since the Gaussian support is

variable as a function of the central frequency of analysis, accelerating the convolution

with the image.

On the other hand, each Gabor function of the filter bank is normalized concerning

the central frequency of analysis, taking into account the size of the analysis window

(Gaussian function). This characteristic makes it possible to attenuate the ripple and

aliasing effects characteristic of the classic Gabor function.

The bank of filters proposed in this chapter achieves an almost total and uniform

coverage of the frequency spectrum due to the modification of the frequency and angular

crossover points. We must then uniformly cover the entire spectrum. Modifying the

Gabor function to create a filter bank is an effort to conceive filters capable of measuring

the amplitude and locality of a texture’s different spectral components.

In the following chapters, we show this filter bank’s use for the spectral decom-

position of an image. This decomposition allows measuring the texture’s information

favoring the locality of the textures (without losing the amplitude), which makes this

bank of filters a texture measurement tool.
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Chapter 5

Color Texture Analysis Based on

Spectral Decomposition

Résumé

Dans ce chapitre, nous présentons la décomposition spectrale d’une image couleur

utilisant le filtre de Gabor. Nous utilisons la théorie des fonctions de Gabor développée

au chapitre 4 pour extraire les caractéristiques de texture locale d’une image en couleur.

La stratégie principale consiste à transformer l’image d’entrée d’un espace couleur réel

à trois canaux en une représentation couleur complexe à deux canaux. Ensuite, nous

utilisons une banque de filtres Gabor sur chaque canal de l’image pour extraire les

informations de texture générées par les variations de couleur et d’illumination de

l’image.

Abstract

In this chapter, we present the spectral decomposition of a color image employing the

Gabor filter. We use the Gabor functions theory developed in chapter 4 to extract local

features of a texture color. The primary strategy involves transforming the input image

from a three-channel real color space into a two-channel complex color representation.

Then, we use a bank of Gabor filters on each channel of the image to extract the texture

information generated by the variations of color and illumination in the image.
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5. Color Texture Analysis Based on Spectral Decomposition

5.1 Introduction

Gabor filters have long been used for analyzing textures and extracting corresponding

image features. Their adaptability and customization, depending on the application

and the relationship with the human visual system [Daugman, 1985], have made this

technique one of the most relevant for analyzing textures in an image.

The use of Gabor filters for image texture analysis is highly dependent on the final

application. Some of the most recognized works in the literature date back to the

late 90s, where this technique was a hot research topic for image texture analysis.

However, regarding the works present in the literature, we can separate the methods

taking into account the nature of the extracted features. The first group uses Gabor

filters to extract a global texture descriptor (Gabor signature). Generally, this strategy

is suitable for applications where the images contain homogeneous textures, and it is

sought to make the classification of images or an image retrieval system based on the

content, as we can see in chapter 3. The second group is characterized by using Gabor

filters to obtain local texture features present in an image. Such a strategy is suitable

for image segmentation tasks. This chapter addresses the second case straightforwardly

and comprehensively, delving into the spectral decomposition of color images to obtain

texture features generated by the changes in illumination and (or) color.

We take advantage of the Gabor function’s dual-domain (spatial and frequency)

representation capability to create a bank of filters G = {gf,θ(x, y)} and obtain the

spectral decomposition of an input image I(x, y) through the convolution operation of

each of the filters such that

rf,θ(x, y) = I(x, y) ∗ gf,θ(x, y) (5.1)

represents the filter response at different central frequencies f (scales) and orientations

θ. Given the complex form of Gabor filters Eq. (4.51) defined in chapter 4, the filter

response rf,θ(x, y) has a real and an imaginary part, here denoted as Re(·) and Im(·),
respectively.

The linear transformation of an image using Eq. (5.1), produces considerable in-

formation about the image’s textures. The efficient manipulation of this information

is the basis for extracting appropriate (local or global) texture features. Although the

image’s convolution by a filter bank is a common denominator in techniques based on

signal processing, in the literature, we find various options to create more separable

texture features (see Fig. 5.1). In general, these methods differ in the type of output

they use to measure the image’s textural information and the post-processing tech-

niques to refine the Gabor responses. Among the possible Gabor filter responses to

measure the texture information, some of the most used in the literature are
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1. The amplitude of the response (magnitude or Gabor energy) [Bovik et al., 1990].

|rf,θ(x, y)| =
√

Re(rf,θ(x, y))2 + Im(rf,θ(x, y))2 (5.2)

2. The phase of the response [Palm and Lehmann, 2002].

arg(rf,θ(x, y)) = arctan 2

(
Im(rf,θ(x, y))
Re(rf,θ(x, y))

)
(5.3)

3. The real component of the response [Jain and Farrokhnia, 1991].

Re(rf,θ(x, y)) (5.4)

4. The square amplitude of the response (Gabor local power spectrum) [Grigorescu

et al., 2002].

|rf,θ(x, y)|2 = Re(rf,θ(x, y))2 + Im(rf,θ(x, y))2 (5.5)

while the most common post-processing techniques for the filter outputs consist of

a non-linear transformation followed by smoothing using a rectangular or Gaussian

window [Randen and Husoy, 1999], [Clausi and Ed Jernigan, 2000]. The application

of non-linearity favors the activation of the textured areas in the images, while the

smoothing favors the location of the energy obtained with the filter, avoiding the loss

of information from the natural contours of the image. Figure 5.1 illustrates the stages

(boxes with continuous black lining) and the input/outputs (boxes with black dotted

lining) of the scheme mentioned above, referring to the extraction of Gabor-based

texture features.

Input Image
● Gray-scale 
● RGB channel

Gabor image 

decomposition

Non-linear 

transformation
● Sigmoid function
● Wave rectification

Spatial 

smoothing
● Rectangular 

window
● Gaussian 

window

Filter responses
●

●

●

●

Non-linear 

response
●

Feature 

vectors

...

Figure 5.1: Pipeline of classic techniques for extraction of texture
features using the Gabor filters.
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5.1.1 Texture Features for Color Images

Most of the research work on texture has been done using gray-scale images and ho-

mogeneous textures; see for example [Jain and Farrokhnia, 1991], [Liu and Wechsler,

2003], [Liu et al., 2005], [Al-Kadi, 2017]. Consequently, the simplest way to obtain

texture features from color images is to transform them into a gray-scale image. This

strategy favors the acceleration of feature calculation because we work with scalar val-

ues instead of vectors. However, despite the good results in images with homogeneous

gray-scale textures, reducing channels for a natural-color image with non-homogeneous

textures does not ensure the generation of representative texture features. This out-

come is primarily because luminance variations and variations in chromaticity generate

the non-homogeneous textures in a color image. Moreover, the real-world scenes are

in color and contain non-homogeneous textures. For example, in the case of a texture

image in the RGB color space, which its gray-scale transformation represents the levels

of red, green, and blue [Artusi et al., 2016] such as

L = 0.299R + 0.587G + 0.114B; (5.6)

if the image contains isoluminant colors (colors with the same luminance value), the

transformation L leads to minimization or loss, in the worst case, of textures generated

by the color changes.

Notwithstanding, we find a large number of methods that propose the characteri-

zation of textures in color images. Such methods generally use two strategies for the

analysis of color textures [Mäenpää and Pietikäinen, 2004], [Qazi et al., 2011]:

• process color and texture information separately

• process color and texture as a joint phenomenon

The first category methods assume that the spatial variations that form textures

and color distributions of the image are independent cues (see for example [Permuter

et al., 2006]). We differ from this point of view, and we consider that color and

texture information in an image is a joint phenomenon based on the idea that textural

segmentation occurs based on the distribution of simple properties of texture elements,

for example, the brightness, color, size, and the slopes of contours and other elemental

descriptors of a texture [Werner and Chalupa, 2004].

There are various techniques to joint color and texture information to characterize

natural color textures in this regard. A popular option is to get unichromatic texture

features from each color channel of the image using, for example, Gabor filters. Taking

the RGB color space as reference, the filter responses represent the texture features of

each primary color red, green, and blue independently, i.e., in principle, this strategy

does not involve the correlation between RGB band colors. This strategy might be
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corrected using the opponent color model based on the human color vision theory [Jain

and Healey, 1998]. In such a case, each unichromatic feature vector (RGB-feature) is

multiplied and normalized by the feature vector of its opponent color to include the

correlation between color channels [Palm et al., 2000]. This method manages to gather

the information of color and texture under a frame of human color perception. However,

the normalization and multiplication of the unichromatic texture feature vectors imply

extra post-processing steps in the features extraction pipeline.

One way to avoid the post-processing stage after the image Gabor decomposition is

to first transform the color image in a color space that handles the coupling between the

color channels rather than separating them as individual components of the color space.

The quaternion framework [Sangwine and Ell, 2000] provides this possibility of coupled

color representation. It encodes the color value of each pixel in a pure quaternion,

where the real component is set to zero, and the three imaginary components represent

the color band, such as I(x, y) = R(x, y)i + G(x, y)j + B(x, y)k. This 3-component

vector representation yields a system with well-defined mathematical operations, such

as Quaternion Fourier Transform, that makes the Gabor image decomposition possible

through the Quaternion Gabor Filters (QBF) [Subakan and Vemuri, 2009]. However,

when using quaternion values, the non-existing commutativity must be considered; the

QGF does not support any physic interpretation of what is measured.

Another alternative to this problem is representing the image in one of the two-

channel color spaces, previously defined in chapter 2, where one channel contains the

luminance information and the other the chrominance information of the image. We

can obtain such a representation from the non-linear color spaces like LAB or LUV and

HSV or HSL perceptual color spaces. The representation in the form of luminance-

chrominance concentrates the color information in a complex channel, which is com-

patible with the multispectral Gabor decomposition. In both cases, the choice of a

pertinent color space for the texture’s characterization is necessary [Qazi et al., 2011].

The methodology we present in this chapter mainly follows the stages shown in the

diagram of figure 5.1. We introduce some modifications to exploit the color and texture

information in the same framework. The modifications proposed to this scheme are

transforming the input image from the RGB color space to one of the luminance-

chrominance spaces (or complex two-channel color spaces) described in chapter 2.

Then, the non-linear transformation was replaced by a morphological opening followed

by an adaptive Gaussian smoothing to highlight the amplitude of the filter responses.

Under this configuration, we obtain a spectral decomposition of the image that consid-

ers the textures generated by changes in lighting and those generated by color changes.

Figure 5.2 shows the stages we perform for the extraction of local features.

Later in the chapter, we apply the Gabor feature space for the segmentation of

natural color images.
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COLOR 
TRANSFORMATION

FEATURE SPACE 
CONSTRUCTION

CHANNEL SPECTRAL 
DECOMPOSITION

Gabor filterbank 

Chrominance

Image feature space

Input
image

Figure 5.2: The proposed methodology for the computation of Ga-
bor features in color images.

5.2 Gabor-filter-based Texture Feature Space

5.2.1 Color Image Transformation

The first stage in creating the feature space is transforming the input image from the

RGB color space to the two-channel luminance-chrominance space. The representation

in two channels, one real and the other complex, of a color image allows us to separate

the intervention of luminance and colors in the generation of textures in an image. To

help visualize such a joint phenomenon, we create a synthetic image that reflects the

complexity of natural color images (see Fig. 5.3).

Synthetic Image Description

The synthetic image we create (see Fig. 5.3) contains seven different regions with

spatial variations (textures) generated by alternating various colors at different fre-

quencies. Each tile of the image is perceived as a whole; this is perceptually a constant

region. The colors alternate along different directions in the chrominance phase (Fig.

5.4). The last image region has two frequency components.

We generate the input image with the sign function of a 2-d sinusoidal signal mul-
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tiplied by the color values of each region in the RGB color space such that

I(x, y) = sgn(sin 2π(fxxr + fyyr)) · [R, G, B] (5.7)

xr = x cos θ + y sin θ

yr = −x sin θ + y cos θ

We control the image texture by varying the frequencies fx, fy and the orientation

angle θ of the coordinate plane (x, y), where θ = 0◦ means vertical variations and

θ = 90◦ horizontal variations. The proposed image has a size of 320 × 1400 pixels.

The seven characteristic regions of the image are spread over 1400 pixels wide, so each

region is about 320 × 200 pixels; that is, the color/texture distribution in the image

changes every 200 pixels (on the x-axis). The following expressions define the spatial

image variations.

fx =





0 0 ≤ x ≤ 200

1/64 201 ≤ x ≤ 400

1/32 401 ≤ x ≤ 600

1/16 601 ≤ x ≤ 800

1/8 801 ≤ x ≤ 1000

1/4 1001 ≤ x ≤ 1200

1/8 1201 ≤ x ≤ 1400

; fy =





0 0 ≤ x ≤ 200

0 201 ≤ x ≤ 400

0 401 ≤ x ≤ 600

0 601 ≤ x ≤ 800

0 801 ≤ x ≤ 1000

0 1001 ≤ x ≤ 1200

1/32 1201 ≤ x ≤ 1400

For comprehension purposes, we use colors easily identified in the RGB space (pri-

mary colors) or in the HSV space (perceptual colors) to generate the image textures.

Figure 5.3 depicts the resulting synthetic image.

Figure 5.3: Synthetic color textured image.

The 2-d sinusoidal modulations generate textures in the image at different and well-

known frequencies. These modulations change the colors of the regions generating a

texture of oriented lines. The regions of the synthetic image have the following color

and texture characteristics.
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Region 1. Textureless zone: This region does not contain spatial variations, i.e.,

it has only a solid color. The color of the region is yellow (arbitrarily chosen).

Region 2. Lowest frequency textured zone with colors on the imaginary

plane: This region is described by the vertical texture generated by variations be-

tween purple and green lime. Such colors are found in the imaginary axis of the

chrominance plane. The colors in this region change every 64 pixels (along the x-axis).

Region 3. Textured zone with colors on the real plane: This region contains

a vertical texture generated by the variations between red and cyan. Such colors are

found in the real axis of the chrominance plane. The colors in this region change every

32 pixels (along the x-axis).

Region 4. Textured zone with two primary colors: The variations between

red and blue generate the horizontal texture of this region. The colors in this region

change every 16 pixels (along the x-axis).

Region 5. Textured zone with two primary colors: The variations between

blue and green generate the horizontal texture of this region. The colors in this region

change every 8 pixels (along the x-axis).

Region 6. Textured zone with two primary colors: The variations between

green and red generate the horizontal texture of this region. The colors change every

4 pixels (along the x-axis).

Region 7. Colorless mixed textures zone: This region contains two textures,

both of them formed by the variations between black and white, i.e., there is no color

information. Moreover, the textures change in frequency and orientation; the pixels

of the horizontal texture change of color every 4 pixels along the x-axis (highest fre-

quency), while the pixel values of the vertical texture changes every 16 pixels along the

y-axis (same frequency as region 4).

We summarize the colors and frequency of each zone in Table 5.1. In the table, we

expose the RGB and HSV values of the texture-forming colors as well as the frequency

and orientation of each section.

Graphical Display of the Synthetic Image Color Distribution

The choice of texture-forming colors comes from the interest in visualizing the color

spectrum of the image more graphically. The two-channel color spaces, described in

chapter 2, encode color information in a complex chrominance channel. Therefore, we

can interpret the chrominance values as points within a complex plane (see Fig. 5.4).
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Region
1 2 3 4 5 6 7

Color 1
Name Yellow Purple Red Red Blue Green Black

RGB values [255, 255, 0] [128, 0, 255] [255, 0, 0] [255, 0, 0] [0, 0, 255] [0, 255, 0] [0, 0, 0]
HSV values [60, 100, 100] [270, 100, 100] [0, 100, 100] [0, 100, 100] [240, 100, 100] [120, 100, 100] [0, 0, 0]

Color 2
Name - Green lime Cyan Blue Green Red White

RGB values - [128, 255, 0] [0, 255, 255] [0, 0, 255] [0, 255, 0] [255, 0, 0] [255, 255, 255]
HSV values - [90, 100, 100] [180, 100, 100] [240, 100, 100] [120, 100, 100] [0, 100, 100] [0, 0, 100]

Texture

Freq. - 1/64 1/32 1/16 1/8 1/4
1/8
1/32

Angle - 90◦ 90◦ 90◦ 90◦ 90◦ 0◦

90◦

Table 5.1: Specifications of the color and texture settings for each
of the regions within the synthetic image.

In the case of LAB/LUV spaces, the values of chrominance are defined in Cartesian

coordinates as

C = A + iB, (5.8)

where channel A values represent the real axis coordinates, and channel B values rep-

resent the imaginary axis coordinates.

HSV/HSL color spaces encode chrominance values as points in polar coordinates

C = SeiH , (5.9)

where channel H values are the angle expressed in radians and channel S values are

the distance from the origin to the color points.

Considering these two chrominance configurations, the one defined by hue and

saturation provides a more straightforward geometric interpretation of chrominance.

Originally hue is a cylindrical dimension representing the color tints in the chromatic

circle as angles, while saturation, which represents the purity of color, places achromatic

tints in the center of the circle and pure colors on the circular edge of the disk. In figure

5.4, we show the synthetic image color distribution plot using the HS dimensions in the

2-d chrominance complex plane. The hue H is expressed in degrees, and saturation S

is normalized between 0 and 255. This representation complements the description of

our synthetic test image Fig. 5.3, showing the variation between colors that generate

textures. We can notice in the chroma circle of figure 5.4 the transition between the

red-green-blue primary colors at 0◦, 120◦ and 240◦ respectively; the transition between

purple and lime green on the imaginary axis with a hue of 90◦ and 270◦ respectively;

the transition between red at 0◦ and cyan at 180◦ passing through the real axis of the

plane and finally; the yellow color with a hue value of 60◦.

Under this color space configuration, the colors of an image are represented in the

complex chrominance plane. However, in this plane, the variations due to luminance

information do not appear. The brightness of the colors is captured in the luminance
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Figure 5.4: Synthetic image chrominance distribution represented in
the color complex plane.

channel. Depending on the color space that we use to build the two-channel color

representation, we can obtain the luminance channel differently. In the LAB/LUV and

HSL color spaces, the luminance channel is directly represented by the L dimension

values. In the HSV color space, we use the image transformation from RGB to gray-

scale following the Eq. (5.6) to obtain the luminance channel.

Fig. 5.5 shows the three dimensions of the two-channel representation of the syn-

thetic image (L(x, y), Re(C(x, y)), Im(C(x, y))) in grayscale. In this representation,

we use the HSV color space as a basis to obtain the luminance and chrominance val-

ues, so the L channel is obtained with Eq. (5.6) and the C channel with Eq. (5.9).

In Fig. 5.5, we can see how the different regions show more or less important values

depending on the channel in which they are. For example, the horizontal and vertical

spatial variations of region 7 (between 1200 and 1400 column pixels) are only visible

in the luminance channel L(x, y) (see left image in 5.5). We observe this same effect

in the chrominance channels, for example, with the vertical textures of region 3. The

spatial variations of this region are made up by the alternation of colors that live only

in the real plane of chrominance (red and cyan), so the texture is only visible in channel

Re(C(x, y)) (see column pixels between 400 and 600 of the central image and the image

to the right of Subfig. 5.5).
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We can also visualize the color variations and their influence on the generation of

textures by plotting a horizontal line using a row of pixels’ intensity values for each

dimension of the two-channel space. In Fig. 5.5b, we show the variations generated

by changes in color and (or) lightness in a 1-d plot. Taking the area without texture

(region 1), the horizontal line between pixels 0 and 200 remains constant in all three

channels due to the absence of texture. However, in region 2, which corresponds to the

low-frequency texture formed by the colors at 90◦ and 270◦ in the chroma circle, we see

that variations are only present in the imaginary channel of chrominance Im(C(x, y)).

In regions 4, 5, and 6, since the texture-forming colors are two of the three primary

colors (red, green, blue), the variations are visible in all three luminance-chrominance

representation channels. Finally, in the last region (colorless mixed textures zone), we

can see that the variations are only present in the channel that describes the luminance

L(x, y).

(a)

(b)

Figure 5.5: Illustration of the proposed synthetic image: (a) Lumi-
nance and chrominance decomposition; (b) Numerical values on a
horizontal line cut through the three channels.

5.2.2 Spectral Image Decomposition

The first stage of our methodology for color-textured images’ characterization consists

of representing the input image in a two-channel luminance and chrominance space.

Once we represent the image in this space, we obtain the spectral decomposition of

each image dimension using a family of optimized Gabor filters (shown in Fig. 5.6).

Following this strategy, we measure the spatial variations generated by luminance and

chrominance individually.
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Figure 5.6: Gabor filter bank with filters at five frequencies f and
four orientations θ used to model the synthetic image textures.

Among the different strategies to model the texture information with the Gabor

filters listed above, we used the amplitude filter response Eq. (5.2) such that

ec,f,θ(x, y) = |rc,f,θ(x, y)|, (5.10)

where |rf,θ(x, y)| =
√

Re(rf,θ(x, y))2 + Im(rf,θ(x, y))2 represents the image energy cap-

tured by a Gabor filter set at frequency f and orientation θ for every color channel

c = {L, Re(C), Im(C)}.
The responses generated by Eq. (5.10) represent the raw Gabor responses, that is,

without any post-processing. Although the Gabor filters we use are optimized (see

chapter 4 for more details on filter optimization) to capture the most information by

reducing the trade-off between the spatial-frequency domains, the raw responses lack

homogeneity, especially at high frequencies, where the filter support is smaller. Fig. 5.7

shows the raw Gabor responses at different frequencies and orientations of the channels

of the luminance-chrominance space.

The raw response images are organized as a matrix arrangement that follows the

same structure as the Gabor family of filters. The rows in the array represent the

responses to the bank’s different frequencies (the frequency increases from bottom to

top). The array columns represent the responses to the bank’s different orientations;

from left to right, θ varies between 0◦ and 180◦ at equidistant intervals.

In the raw Gabor response array images, the zones are brightened more or less

depending on the information of the regions. A high level of brightness indicates more

energy recovered by the Gabor filter at that frequency and orientation. For example,

analyzing the responses of the first column of the luminance channel arrangement, they
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show how the areas light up as the filter frequency changes. The textures’ frequency

in the synthetic image increases from left to right, while the filter bank’s frequency

increases from the bottom up, which generates this staircase effect of illuminated areas

in the first column of images in Subfig. 5.7a.

This same effect is seen when analyzing region 7 of the synthetic image (the region

with mixed textures at different frequencies and orientations between column pixels

1200 and 1400). The textures of such a region are formed by alternating black and

white pixels, so all their information is in the luminance channel L(x, y). The vertical

texture of the region has frequency f = 1/8 and orientation θ = 0◦ while the horizontal

texture has frequency f = 1/32 and orientation θ = 90◦. Under this configuration, the

response images that reflect the texture information are the image in row 1, column

3 (from bottom to top and left to right) for the horizontal texture and; the response

image in row 4, column 1 for the vertical texture. Note that in row 4 of the responses

array (corresponding to the frequency f = 1/8), we see that region 5 is illuminated

with the same intensity as region 7, which indicates that both zones contain textures

at that frequency. This information is consistent with the description of the regions of

our synthetic image.

Another interesting thing visible in the Gabor responses is that region 1 of the

synthetic image (region without texture between pixels 0 and 200) does not illuminate

any channel or any frequency or orientation of the filters. This effect occurs because

Gabor filters only retrieve the texture information of the image. Color information is

implicit in the chrominance channel. We see this reflected in the responses of the real

and imaginary channels of the chrominance Subfigs. 5.7b, 5.7c.

Refinement of Gabor responses

Although the raw Gabor responses are a good starting point for describing textures,

these responses exhibit a lack of spatial homogeneity generated by the trade-off between

the spatial-frequency domains of the Gabor filters (see chapter 4.2, section 4.2.2 for

more details about the uncertainty principle in Gabor filters and the optimization

of Gabor filters proposed in this thesis). Clearly, this behavior is more visible at high

frequencies, where the support of Gabor filters is smaller. For example, in the responses

of the imaginary channel of the chrominance corresponding to the frequency f = 1/8

and orientation θ = 0◦ (response image at row 2 column 1 in Subfig. 5.7c), we see

how the energy found by the filter for the region 4 (between pixels 600 and 800) is not

homogeneous, and the lines texture effect keeps appearing.

In the literature, there are various strategies to homogenize the filter responses;

one of them very recurrent is the application of a non-linear transformation [Jain

and Farrokhnia, 1991]. This non-linear transformation acts as the bounded sigmoid

activation function used in artificial neural networks. The non-linear transformation
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modulates the sinusoidal signals of the image to square signals, so it behaves like a

blob detector. The downside to this approach is that we need to define an empirical

parameter that functions as a threshold for the transformation.

We propose to use a morphological opening to achieve homogenization of the Gabor

responses. The opening of each Gabor response is defined as

êc,f,θ = γB(ec,f,θ), (5.11)

where B is a structuring element and γB = ec,f,θ ◦ B is the morphological opening.

Our approach’s advantage is that the structural element’s size is defined individually

for each Gabor energy by the central period T = 1/f of each filter. For example, the

radius of a disk-shaped structuring element for the Gabor energies obtained with a

filter with a center frequency f = 1/8 is 8 pixels. Gabor responses after morphological

opening appear in the Fig. 5.8.

Finally, after the morphological opening, we apply an adaptive Gaussian smoothing

to localize the Gabor energy response. This smoothing is defined as

ẽc,f,θ(x, y) = W (x, y)σ ∗ êc,f,θ(x, y), (5.12)

where the scale parameter σ of the Gaussian window W (x, y)σ is the maximum value

between the standard deviations of the Gabor filter support in the x and y axis.

σ = max(σx, σy) (5.13)

From the analysis of Gabor filters presented in chapter 4.2, we know that the stan-

dard deviations σx, σy (Eq. (4.38)) of a Gabor filter are defined by its center frequency

f and the frequency and angular point crossing points (Eqs. (4.33), (4.48)) defined at

the moment of filter bank design. Fig. 5.9 shows the Gabor responses after opening

and adaptive Gaussian smoothing.

Recapitulating, Figs. 5.7, 5.8 , and 5.9 show the Power Spectral Density (PSD)

decomposition of the synthetic image Fig. 5.3. In particular, Fig. 5.7 shows the raw

filter responses; Fig. 5.8 shows the filter bank responses after Gaussian smoothing, and

finally, Fig. 5.9 shows the array of responses after performing morphological opening.

The bright areas indicate the place in the image space containing perceptual infor-

mation (color or texture) in these three figures. The intensity level of the zones in

the response images indicates the energy recovered by the Gabor filter at a specific

orientation and frequency.
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(a) eL,f,θ(x, y)

(b) eRe(C),f,θ(x, y)

(c) eIm(C),f,θ(x, y)

Figure 5.7: Gabor responses of the synthetic image obtained with
a filter bank of 5 frequencies and 4 orientations. (a) Luminance
channel responses, (b) Real part of chrominance channel responses,
(c) Imaginary part of chrominance channel responses.
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(a) êL,f,θ(x, y)

(b) êRe(C),f,θ(x, y)

(c) êIm(C),f,θ(x, y)

Figure 5.8: Gabor responses after the morphological opening of the
synthetic image. (a) Luminance channel responses, (b) Real part of
chrominance channel responses, (c) Imaginary part of chrominance
channel responses.
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(a) ẽL,f,θ(x, y)

(b) ẽRe(C),f,θ(x, y)

(c) ẽIm(C),f,θ(x, y)

Figure 5.9: Gabor responses after morphological openning and Gaus-
sian smoothing of the synthetic image. (a) luminance channel re-
sponses, (b) real part of chrominance channel responses, (c) imagi-
nary part of chrominance channel responses.
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5.3 Gabor Filter-based Feature Space Validation

In this section, we integrate the feature space obtained with Gabor filters within a

clustering framework. We hypothesize that if the color/texture features represent the

variety of information in the images (synthetic and natural), we can obtain a consistent

segmentation with this perceptual information. We then use the segmentation results

to qualitatively and quantitatively evaluate our Gabor feature space.

Before clustering, we adapt the feature space to prepare it for the clustering meth-

ods.

Data organization The feature space

X(x, y) = ẽc,f,θ(x, y) (5.14)

is a log-polar space given the logarithmic scale of the M frequencies and the N orien-

tations of the Gabor filter bank. Then, the feature space is composed of 3 ×M × N

Gabor responses, where the constant 3 corresponds to the number of channels of the

luminance-chrominance color space. We arrange the data to obtain a two-dimensional

array of size P × D, where P = H × W is the number of samples or pixels and

D = 3×M ×N is the number of features or dimensions of the data.

Spatial information integration Gabor’s color and texture features do not include

spatial information. We enter such information by adding two more dimensions to the

feature space X. These two features are the positional coordinates (x, y) of each pixel

in the image.

Data standardization We standardize each feature in the X matrix to have a mean

of zero and a constant variance. We perform this operation to avoid the dominance of

some features over others due to numerical differences of units of magnitude.

Dimensionality reduction We reduce the feature space’s dimensions from D =

3 × M × N to 5 using the linear transformation technique of principal component

analysis (PCA). With the PCA we identify patterns in the feature space based on the

correlation between features. We choose 5 as the new subspace dimension based on

the idea that three of these dimensions contain Gabor’s color and texture information,

and the remaining two dimensions contain the spatial information. In addition, a low

number of dimensions speeds up the calculation of clustering algorithms.
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5.3.1 Qualitative Evaluation

We qualitatively validate the spectral decomposition of images based on Gabor filters

for the generation of color texture features first, in fully controlled conditions using

the synthetic image and later, with a semi-controlled set up using handmade texture

mosaics.

In both cases, we use the k-means algorithm as a clustering method on the feature

space X (after spatial information integration, data standardization, and dimension-

ality reduction) setting the number of clusters manually. The grouping technique acts

as a segmentation method, with which we validate our methodology.

Synthetic Image Segmentation

Looking at the synthetic image (Fig. 5.3), there are several coherent ways for a human

observer to segment it. The two most apparent possibilities are to segment the image

into 7 clusters, where each cluster represents a region of the image and; segment the

image only into 2 clusters, where one cluster groups the regions with texture and the

other the flat region.

We apply these conditions to set the cluster’s number of the k-means algorithm

(k = 7 and k = 2) and obtain a segmentation of the synthetic image coherent with

the human perception. The segmentation results are depicted in Fig. 5.10. These

segmentation results show that the Gabor multi-spectral analysis captures well the

color and texture information. Also, the segmentation shows that both features (color

and texture) are perceptually relevant in the image segmentation task.

(a) 7 clusters segmentation

(b) 2 clusters segmentation

Figure 5.10: Synthetic image k-means segmentation results.
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DTD Mosaic Image Segmentation

We go a step further and test our feature space under slightly more complex conditions;

we created a series of color texture mosaics using images from the Describable Textures

Dataset (DTD) [Cimpoi et al., 2014] as a base. The DTD is a collection of homogeneous

nature textures with 47 annotated classes. To create the mosaics, we take 5 images

of the same (or similar) class and put them together in a collage. The five classes we

take the images are lined-banded-zigzagged, cracked, braided, dotted, and striped-veined-

scaly. The texture collage we propose is relatively standard, with a circular patch in

the center of the image that is superimposed on four square patches.

We apply the clustering algorithm on each mosaic created, setting k = 5 clusters.

The segmentation results are shown in Fig. 5.11. In this case, the clustering algo-

rithm results are coherent with the input image; however, the segmentation’s precision

and quality are lower than in the synthetic image. This result is mainly due to the

complexity of the natural textures in the mosaics.

(a) (b) (c) (d) (e)

Figure 5.11: DTD mosaics k-means segmentation results.

5.3.2 Quantitative Evaluation

We also quantitatively evaluate the quality of the feature space developed in this chap-

ter. For this, we use a database of natural images that have a ground truth generated

by humans. The database and its characteristics are described below.

Berkeley Segmentation Image Data Set

The Berkeley Database for Segmentation (BSDS) is one of the gold standards for

segmentation results [Martin et al., 2001]. The BSDS comprises images from the Corel

database selected under a simple criterion: choose images of complex and natural

scenes containing at least one distinguishable object. Under this criterion, selected
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images contain multiple cues for human segmentation, for example, low-level cues such

as coherence of brightness, texture, color, and contour continuity; mid-level cues such

as symmetry, convexity, and area of the regions; as well as high-level cues based on the

semantics of the image objects.

There are two versions of this database. The first one (BSDS300) contains 300

images, while the second (BSDS500) contains 500 images. Each image in the database

contains between 5 and 11 human-made segmentations. The instruction given to the

observers to naturally break the scene is simple:

Divide each image into pieces, where each piece represents a distinguished

thing in the image. It is important that all of the pieces have approximately

equal importance. The number of things in each image is up to you. Some-

thing between 2 and 30 should be reasonable for any of our images [Martin

et al., 2001].

Following these instructions, most segmentations meet the criterion of the number of

segments; however, we can also find exceptions with more than 50 segmented things.

Finally, both databases (BSDS300 and BSDS500) contain segmentations of gray

level and color images. Since in this chapter we analyze the color textures, we mainly

use the BSDS500 color images with their respective segmentations to evaluate our

segmentation results.

Scores

We use the human-generated segmentations of the BSDS500 as ground truth (GT),

applying the precision-recall framework of Martin et al. [2004]. The precision is the

fraction of detections that are true positives rather than false positives, while the recall

is the fraction of true positives that are detected rather than missed. This evaluation

framework is generally applied to evaluate contour detection algorithms. Therefore, ap-

plied in the image segmentation task, the framework involves evaluating the boundaries

of the segmentation resulting regions 1, considering the detected boundaries pixels as a

two-classes classification problem (contour and non-contour pixels). Under this config-

uration, precision is translated as the number of pixels correctly labeled as belonging

to the contour class (true positives) divided by the total number of pixels labeled as

contours (the sum of true positives and false positives). The recall in this context is

defined as the number of true positives divided by the sum of true positives and the

pixels which were not labeled as contours but should have been (false negatives). The

following mathematical expressions define precision and recall.

precision =
tp

tp + fp
(5.15)

1Note that for evaluating the resulting regions of our algorithm, we do not carry out any post-
processing of the resulting boundaries to correct, for example, the slightly moved contours.

129



5. Color Texture Analysis Based on Spectral Decomposition

recall =
tp

tp + fn
(5.16)

A simple metric that captures the trade-off between precision and recall is the

F-measure, which is defined as the harmonic mean between the two scores.

F-measure =
2× precision× recall

precision + recall
(5.17)

Experiments Set up

For the numerical evaluation, we perform the segmentation of the BSDS500 images

using different clustering algorithms. In addition, we perform the segmentation in the

feature space obtained with different luminance-chrominance color spaces, particularly

those derived from the LAB, HSL, and HSV spaces. This series of experiments al-

lows us to evaluate other aspects of our Gabor-based feature space, for example, the

behavior of the feature space on different clustering algorithms (and vice-versa) and

the performance of each clustering method in the image segmentation task. Other

secondary items that we also analyze are the effect of the initial color space in the

transformation to the two-channel color space, the effect of choosing the number of

clusters to detect, and the computation time of the clustering algorithms.

Clustering method vs. former luminance-chrominance color space. Within

the wide range of clustering algorithms that exist in the literature [Omran et al., 2007]

[Sathya and Manavalan, 2011], we performed the segmentation of the BSDS images

using four different clustering techniques: k-means, fast k-means, Birch, and Gaussian

mixture. The choice of these techniques depends on the characteristics of the input

data: a high dimensional space with a large number of observations. Such input data

comes from the multi-spectral decomposition of the images using Gabor filters on the

luminance-chrominance channels of the images. We then compare the performance of

the different clustering algorithms on the luminance-chrominance feature spaces from

the HSV, HSL, and LAB color spaces reviewed in chapter 2.

Figs. 5.12 and 5.13 show the segmentation results of two BSDS500 images. In both

cases, the images contain wild animals in their natural environment, which implies that

the color and texture of the fur/feathers create a mimicry that helps the animals to

blend in with the scene. Animal mimicry makes segmentation a challenging problem.

Despite this, we see how some configurations of color space and clustering algorithms

manage to classify the pixels based on the perceptual information of color and texture

encoded on the Gabor features. Particularly in these two segmentation examples, we

could say that the color space that best represents the color and texture information

of the image is the HSL, while the clustering method that best uses the multi-spectral

features is the Gaussian mixture.
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For the segmentation results shown in Figs. 5.12 and 5.13, we use k = 4 as the

target number of clusters to find in the image. In addition, for visualization purposes,

we display the resulting clusters with the mean color of the pixels of the original image

within the segmentation regions.
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(a) k-means (b) Fast k-means (c) Birch (d) Gaussian mixture

Figure 5.12: Importance of the color space and the clustering algo-
rithm in the image segmentation task using the feature space based
on Gabor filters. BSDS lynx image segmentation results.

Number of clusters in the data. Determining the number of segments to detect

when using clustering algorithms as an image segmentation technique is a frequent

problem. The four algorithms we present here for image segmentation need the k

parameter to specify the number of clusters to find. Although there are techniques to

estimate the number of regions in the image, these strategies involve one more stage

of processing, which is reflected in the final segmentation calculation time. To show

the influence of the number of segments k in clustering algorithms, we use the GT

of the BSDS500. In the database, each image contains between n = 5 and n = 11

human-made segmentations Si, i.e., S = {Si | i = 1, 2, · · · , n}. Moreover, each human

segmentation si could contain between k = 5 and k = 100 segments. We manually set

k at fixed values of 3 and 4 segments (since most of images contains 3 or 4 objects),

but also we set the number of segments as the number of maximum and minimum

segments of the GT, i.e., kmax = max
(
card(S)

)
and kmin = min

(
card(S)

)
.
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(a) k-means (b) Fast k-means (c) Birch (d) Gaussian mixture

Figure 5.13: Importance of the color space and the clustering algo-
rithm in the image segmentation task using the feature space based
on Gabor filters. BSDS pheasant image segmentation results.

Fig. 5.14 shows the segmentation result of a BSDS image by manually setting k. In

this particular case of the starfish image, the maximum number of annotated segments

by a human observer is 92, while the minimum number of annotated segments is 6.

The clustering algorithm used for this experiment is the Gaussian mixture in using the

feature space from the LAB color space2.

The image segmentation results show various phenomena. The first one is the big

difference between human-made segmentations; the annotation with 92 regions implies

a very detailed segmentation, while the annotation with 6 regions does not reflect the

most basic segmentation of the image: two objects, the starfish and the background.

Both of these extrema, despite their substantial difference, are considered as ground

truth.

This behavior is of vital importance in evaluating a segmentation algorithm since the

scores are a function of the GT. In the case of the BSDS500, increasing k means finding

more regions that coincide with the GT regions, so the recall score increases; however,

the precision of the regions found is very low. On the other hand, by decreasing k

2We chose to show the clustering segmentation results using the LAB color space because it best
illustrates the influence of the number of segments in clustering algorithms. The HSV/HLS color
space suffers less from this influence.
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(a) Input image

(b) k = 3 (c) k = 4 (d) kmin (e) kmax

Figure 5.14: Effect of the choice of the number of clusters k in
clustering algorithms as segmentation methods.

we detect fewer regions, which favors the precision score but affects the recall. Fig.

5.15 shows this phenomenon with the boxplots of the precision and recall scores of the

different clustering methods using kmax = max
(
card(S)

)
and kmin = min

(
card(S)

)
.

Therefore, the optimal number of clusters k should keep a balance between maximum

data compression using a single cluster and maximum precision when assigning each

pixel to its own cluster.

(a) kmin (b) kmax

Figure 5.15: Precision-recall boxplot segmentation results.

Results

The two previous experiments show that the segmentation of real images is a complex

task in which the result depends on various parameters such as the configuration of the

input space, the number of segments, etc. Here we show some segmentation results (see
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5. Color Texture Analysis Based on Spectral Decomposition

Fig. 5.17) using the feature space derived from the HSV-based luminance-chrominance

color space and the four segmentation algorithms presented in this section.

The segmentation results are obtained by setting k = 4 for all images is the

BSDS500 test set, where the choice of k = 4 comes from the idea thar most of the

BSDS500 images contain at least 4 perceptually identifiable objects. Fig. 5.16 shows

the precision and recall boxplots of each segmentation algorithm using the three dif-

ferent color spaces (HSV, HSL, and LAB).

(a) HSL (b) HSV

(c) LAB

Figure 5.16: Boxplots of precision and recall scores of the different
clustering methods and the different color spaces. For the three plots,
the number of clusters was set constant at k = 4.

5.3.3 High-level Texture Features

This section addresses the methodology for the extraction of high-level local texture

features. To this end, we base the study of image textures on the Gabor filters. We

obtain a spectral decomposition of the image through the convolution of the image with
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Figure 5.17: Segmentation results using different segmentation al-
gorithms and HSV color space. The number of segments to find is
fixed at k = 4 for all images.

the filter bank. The spectral image decomposition allows us to obtain the following

high-level features, which we define and discuss below:

• Fundamental Frequency,

• Dominant Orientation,

• Maximal Response,

• Orientation Entropy,

• Orientability,

• Texturability and,

• Perceptual Window,
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5. Color Texture Analysis Based on Spectral Decomposition

• Mean Color, and

• Principal Colors3.

Fundamental Frequency

As we mentioned earlier, a texture is generated by contrast variations at a particular

frequency or with a specific, repeating pattern. Although a texture may contain varia-

tions at multiple frequencies, there is only one that stands out and is more perceptive

to the human eye. We call this fundamental frequency.

The fundamental frequency is a concept commonly used in music, acoustics, signal

theory, and speech analysis [Benward, 2014], [Sigmund, 2013]. This is defined as the

lowest frequency of a harmonic series representing periodic parts of a speech signal. To

our knowledge, this concept has not been applied under the exact definition for image

processing and texture analysis. The closest approach is that of Kamarainen et al.

[2002b], who defines it as the frequency within the Gabor filter bank frequencies that

gives the maximum response for each filter bank orientation. They use the fundamental

frequency as a feature to characterize and recognize objects [Kamarainen et al., 2002a];

however, it is prone to failure when there are multiple objects of the same size in the

image or when the objects’ shapes are not precise.

We propose to obtain the fundamental frequency of textures from the image spectral

decomposition ẽc,f,θ Eq. (5.12), following the definition by signal theory. The first step

is to obtain the filter responses for each frequency, taking into account all the filter bank

orientations. We do this procedure for each channel of the image c = {L, Re(C), Im(C)}
as

ẽc,f (x, y) =
∑

θ

ẽc,f,θ(x, y). (5.18)

From the reduced Gabor space Eq. (5.18), we can calculate the fundamental fre-

quency f̂c(x, y) of each channel of the image as

f̃c(x, y) = arg max
f

(
ẽc,f (x, y)

)
| ẽc,f (x, y) >

max
f

(
ẽc,f (x, y)

)

2
(5.19)

where max
f

(
ẽc,f (x, y)

)
/2 is a threshold value that filters out the small responses gen-

erated low-level frequencies or zones without texture. The corresponding frequency to

such zones is set to the zero frequency (f0), given by the image’s DC component.

Finally, the fundamental frequency for the complete image (for all three channels)

is obtained as

f̃(x, y) = max
c

(
f̃c(x, y)

)
(5.20)

3Note that the three last high-level texture features are highly related; therefore, their descriptions
are joint below.
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5.3. Gabor Filter-based Feature Space Validation

We show the fundamental frequency of the different areas of the synthetic image in

Fig. 5.18. We can see how our approach recovers each zone’s lowest frequency within

the filter center frequencies in the figure. This effect is most visible in image zone 7

(between pixels 1200 and 1400), which contains a texture that varies at two different

frequencies, f = 1/8 and f = 1/32 (see table 5.1 and Fig. 5.3). The lowest frequency in

this zone is f = 1/32, which corresponds to the found fundamental frequency. On the

other hand, the fundamental frequency for zone 1 (the yellow textureless zone between

pixels 0 and 200) corresponds to the frequency zero f0, which we obtain by filtering the

image with a low-level filter such as a Gaussian filter larger than the lowest frequency

filter in Gabor’s filter bank.

Figure 5.18: Fundamental frequency in the synthetic test image.

Dominant Orientation

Similarly, as in the frequency dimension, a texture can be generated at different orien-

tations; however, there is an orientation in which spatial variations stand out more to

the human eye. We call this orientation the dominant orientation.

To obtain the dominant orientation of a texture, we need first to obtain the Gabor

responses along the three image channels.

ẽf,θ(x, y) =
∑

c

ẽc,f,θ(x, y) (5.21)

Then, we define the dominant orientation as

θ̃(x, y) = arg max
θ

(
ẽf,θ(x, y)

)
| f = f̃ (5.22)

The dominant orientation denotes the angle within the Gabor filter bank’s orienta-

tions at the fundamental frequency that allows recovering the highest Gabor response

from the image after convolution.

We show the dominant orientations of our synthetic test image in Fig. 5.19. We

see the relationship between the dominant orientation and the fundamental frequency

in the values retrieved for the first zone of the synthetic image (between pixels 0 and

200). Since it does not contain any texture, its fundamental frequency is the frequency
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zero; therefore, the dominant orientation is random. The rest of the zones (from pixel

200 to 1400) contains textures created by vertical lines, i.e., at an angle of 0◦; however,

in the last zone, which contains two textures, we recover 90◦ as dominant orientation

since the fundamental frequency is that of the texture created with horizontal lines.

Figure 5.19: Dominant orientation in the synthetic test image.

Maximal Response

The maximal response is a feature that reflects the contribution of the various compo-

nents of the color information (luminance and chrominance) and the texture (frequency

and orientation). To correctly capture such information, we first retrieve the maximum

Gabor response along with the frequency and orientation axis for each color channel,

and later we add the maximum contributions of each channel of the complex color

space. The expression that denotes the maximum response of the filter is

ẽmax(x, y) =
∑

c

max
f,θ

(
ẽc,f,θ(x, y)

)
(5.23)

We can see the maximal response of the synthetic image in Fig. 5.20. This feature

highlights sudden dynamic changes (significant Gabor responses) and shadows texture-

less zones in the image. Note that the maximal response of the last zone of the synthetic

image (zone with two textures) is less than the other textured areas; this is because

this texture’s energy is distributed between Gabor’s responses with f = 1/8, θ = 0◦

and f = 1/32, θ = 90◦.

Figure 5.20: Maximum filter response of the synthetic test image.
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Orientation Entropy

Initially, the concept of entropy is a measure from physics adapted to the information

theory to calculate the amount of information stored in a particular signal. We adapt

this measure to compute the randomness of the texture’s orientation in the Gabor

responses distribution. We call this feature orientation entropy.

We obtain the orientation entropy h by multiplying a probability vector by its

logarithm. Since we use the image in a complex color space, we first obtain the entropy

for each image channel as follows:

h̃c(x, y) = −
∑

θ

ec,θ(x, y) log
(
ec,θ(x, y)

)
. (5.24)

We obtain the probability ec,θ by adding the Gabor responses along the frequency

axis and dividing it by the total Gabor response along the three image channels as

ec,θ(x, y) =
∑

f ẽc,f,θ(x, y)
∑

c,f,θ ẽc,f,θ(x, y)
. (5.25)

Each value of the vector indicates the probability that the Gabor filter response

corresponds to a given orientation. If the vector values are of similar magnitude, the

vector has no defined orientation; that is, the value response is likely to come from any

filter. On the other hand, if the probability vector values are unequal, the response is

very likely to belong to a well-defined orientation zone.

The orientation entropy can be normalized since we know the number of orientation

angles N in the filter bank, meaning that the maximum entropy is given by

hmax = − log

(
1
N

)
. (5.26)

The min value between the three image channels’ normalized entropies gives the

image’s total orientation entropy:

h̃(x, y) = min
c

(
h̃c(x, y)

)
. (5.27)

This feature is helpful to identify the isotropic zones on the image. A high entropy

value indicates a zone with random orientation, whereas a low entropy value indicates

a zone with a well-defined orientation (anisotropic texture). We depict the orientation

entropy of the synthetic image in Fig. 5.21.

Orientability

This feature is a visual property for understanding and interpreting the texture infor-

mation of an image. The orientability is a composite feature that allows us to enhance
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Figure 5.21: Orientation entropy of the synthetic test image.

those texture zones with a well-defined orientation angle and hide the isotropic ones.

We obtain the orientability by weighing the dominant orientation Eq. (5.22) by the

orientation entropy Eq. (5.27). We depict this feature in a three-channel image. The

first channel is the luminance dimension of the input image L(x, y). This channel serves

as a canvas to put the color given the dominant orientation θ̃, which can be represented

into a cyclic colormap such as the HSV. The last channel is an alpha channel given by

the opposite of the orientation entropy h̃. This last channel is a transparency channel

that acts as a weight for the dominant orientation. That is,

channel 1 = L(x, y) (5.28)

channel 2 = θ̃(x, y) (5.29)

alpha channel = 1− h̃(x, y) (5.30)

We can see the orientability of the synthetic image in Fig. 5.22. This figure shows

how the dominant orientation of the textureless zones (zone 1) and the zone with two

textures (zone 7) are less saturated than the rest of the zones.

Figure 5.22: Orientability of the synthetic test image.

Texturability

The texturality is a visual feature that joins the fundamental frequency Eq. (5.20) and

the maximal Gabor response Eq. (5.23). We represent this feature in a three-channel

image. We map the fundamental frequency values f̃ to a diverging color map and use

it as channel 2 of the composed image. Then, the alpha channel of the fundamental

frequency is given by the Gabor filter’s maximal response ẽmax(x, y). Finally, we use
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the input image’s luminance channel L(x, y) as a canvas to show the composite feature.

That is

channel 1 = L(x, y), (5.31)

channel 2 = f̃(x, y), (5.32)

alpha channel = ẽmax(x, y). (5.33)

Fig. 5.23 shows the texturality feature computed for the synthetic texture image.

We can see how the fundamental frequency colors are shadowed by the maximal re-

sponse, specifically at the textureless zone (zone 1) and the zone with two textures

(zone 7).

Figure 5.23: Texturality of the synthetic test image.

Perceptual Window, Mean Color, and Principal Colors

The Gabor function analysis in chapter 4.2 for designing an optimized Gabor filter

bank includes the computation of an adaptative Gaussian envelope (cf. Eq. (4.39)).

The adaptative support is a function of the Gabor function’s central frequency. We

state that the filter support κ of the fundamental frequency f̃(x, y) contains the most

representative information about the period of the texture of each pixel in the image.

Since we know each pixel’s fundamental frequency, we can recover their perceptual

window, which is the minimum window that describes a texture.

The perceptual window is given by the inverse of the fundamental frequency, such

that

T̃ (x, y) =
1

f̃(x, y)
(5.34)

The perceptual window allows us to compute some other features, including the

mean color and the two principal texture color-former of each window. The compu-

tation is straightforward. We take the mean value of the color pixel values inside the

perceptual window to obtain the mean color. For the texture-forming colors, we apply

a PCA to compute the two principal components in the window.

Fig. 5.24 shows the set of features resulting from the perceptual window. Subfig.

5.24b shows the window of some pixels (chosen randomly); in this subfigure, we see
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how the perceptual window covers at least one period of the texture. In the two-

textures zone, the perceptual window size corresponds to the period of the texture

generated with horizontal contrast changes, while the yellow zone (without texture)

has the largest window.

We can see the mean colors of each textured region of the synthetic image in Subfig.

5.24b. We remember that we created the synthetic image using primary colors of the

chromatic circle color representation. Therefore, we can find the mean colors of each

region in the complex chromatic circle. For example, for zones 2 and 3, where we

combine the colors of the imaginary and real axis of the complex chromatic circle (red

and cyan for zone 2, and green and violet for zone 3), the mean color is the color at

the center of the complex chromatic circle, that is, gray. For better comprehension, we

invite the reader to analyze Subfig. 5.24b together with table 5.1 and Fig. 5.4.

Finally, looking at Subfigs. 5.24c and 5.24d, we can corroborate that we can recover

the synthetic image’s texture-forming colors from the multi-spectral image decomposi-

tion proposed in this document (see table 5.1 for the reference of the texture-forming

colors).

In the Figs. 5.25 and 5.26, we show the different high-level texture features presented

in this section calculated for a natural image of the BSDS. In that particular example,

for the black-and-white striped zebras, the expected mean color is grey, and the two

texture-forming colors are black and white. Note in Fig. 5.26 how the two colors are

not purely black and white when the stripes’ period does not correspond exactly to the

window.
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(a) Examples of perceptual windows

(b) Perceptual window’s mean color

(c) Perceptual window’s first texture-forming color

(d) Perceptual window’s second texture-forming color

Figure 5.24: Synthetic image’s high-level texture features derived
from the fundamental frequency.
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(a) Input image

(b) Fundamental frequency (c) Dominant orientation

(d) Maximum filter response (e) Entropy

(f) Orientability

(g) Texturality

Figure 5.25: High-level texture feautures computed form a natural
image.144
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(a) Perceptual window’s mean color

(b) Perceptual window’s first texture color-former

(c) Perceptual window’s second texture color-former

Figure 5.26: Natural image’s high-level texture features derived from
the fundamental frequency.
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5.4 Conclusion

This chapter has shown a methodology for constructing a feature space that considers

color and texture information. Our model’s basis is the optimized Gabor filters and

the multi-spectral decoding of the image in a color space that reflects the luminance

and chrominance. We validate, qualitatively and quantitatively, the proposed model

through a series of experiments where we use some clustering algorithms as a strategy

for the segmentation of synthetic and natural images.

Although they do not yield the best scores in the precision and recall framework of

boundary detection, the segmentation results obtained in this chapter show that the

feature space captures the perceptual information of the image.

Using clustering algorithms as a technique for color image segmentation tasks has

several disadvantages. One of them is the need to define the number of clusters in

which the image is segmented. Also, the features space’s high dimensionality means

that not all clustering methods are compatible for implementation.

Finally, in section 5.3.3, we propose a set of high-level features based on the Gabor

energies recovered from the image’s real and complex channels that also show the

richness of our features space. Despite the results obtained, the calculation of high-

level texture features presents some limitations; in particular, the mean and the two

texture-forming colors are not yet very precise; when the frequency does not correspond

to perceptual window size, the mean color fluctuates. Also, using the PCA locally is

costly, and for the moment, is a prohibitive factor for time-critical applications. We

do not use the high-level features in the following parts of the manuscript for further

image analysis nor segmentation; however, the interesting results obtained merit further

investigation, probably for their use in a specific application. This topic appears as

one of the perspectives of this work.

146



Chapter 6

Perceptual Object Segmentation

Model

Résumé

Ce chapitre utilise des concepts développés tout au long de la thèse pour générer un

modèle de segmentation d’image non supervisée. Le modèle est basé sur la décompo-

sition multispectrale de l’image transformée en un espace colorimétrique luminance-

chrominance. Nous représentons l’image sous forme de graphes, et avec la métrique

EMD, nous générons un gradient perceptuel à partir duquel nous obtenons les limites

perceptives de l’image. Les contours et segmentations résultant de la méthodologie

proposée sont comparés aux différents travaux présents dans l’état de l’art.

Abstract

This chapter uses concepts developed throughout the thesis to generate a model for

unsupervised image segmentation. The model is based on the multi-spectral decomposi-

tion of the image transformed into a luminance-chrominance color space. We represent

the image as a graph, and with the EMD metric, we generate a perceptual gradient

from which we obtain the perceptual boundaries of the image. The contours and seg-

mentations resulting from the proposed methodology are compared with the different

works present in the state-of-the-art.
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6.1 Introduction

In chapters 4 and 5 we have introduced Gabor filters’ theoretical aspects and their use

in a complex color space. Using the filter family as a measurement tool, we create a

feature space that exploits the color and texture information of the images and their

relationship. This feature space can be seen as the complex spectral decomposition of

an image.

In this chapter, we propose a workflow to use in an image segmentation task. We

have seen that it is possible to obtain unsupervised segmentation using some clustering

methods on the proposed feature space (see chapter 5). However, clustering methods

have the limitation of needing some a priori information, for example, the number of

clusters (objects) in the image. We propose, then, to obtain a coherent segmentation

of the image using the fewest possible parameters using the spectral decomposition on

the image.

We present a framework that obtains a segmentation of an image from the per-

ceptual gradient of the objects. The overall idea of this framework can be seen in the

diagram of Fig. 6.1. First, we represent the image as a graph (which can be pixel-based

or region-based). Next, we calculate the graph edges weights using the concept of op-

timal transport through the EMD (see section 3.2.2), which is a measure that reflects

the true distance between two distributions. Finally, the representation of the image

as an edge-weighted graph allows us to apply straightforwardly various graph-based

segmentation techniques or recover the perceptual boundaries of the image in the form

of a gradient image, on which we can apply some edge-based segmentation techniques.
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COMPUTATIONAL SUPPORT SEGMENTATION 
ALGORITHMS

SIMILARITY 
BETWEEN 
STRUCTURES

Image as a graph

Image 
feature 
space

Input
image

Pixel-level

Region-level

Graph 
gradient

Image 
boundaries

Graph-based 
segmentation

Boundary-based 
segmentation

Figure 6.1: General pipeline for extraction of perceptual image
boundaries and unsupervised image segmentation.

6.2 Related Work

Edge detection is a fundamental problem of computer vision that has been intensively

studied since the early 1970s [Fram and Deutsch, 1975; Hueckel, 1971]. The main idea

behind traditional approaches to contour detection is to model edges as discontinuities

in the brightness channel of an image. This idea gave way to the creation of mask-

based operators such as Sobel [Sobel and Feldman, 1990], Roberts [Roberts, 1963],

Gradient [Maître, 2003] and Prewitt [Prewitt, 1970], which quantify the presence of an

edge through the convolution of a gray level image with local derivative filters. Other

techniques, such as the edege detector of Marr and Hildreth [1980], define edges as

the zero crossings of the Laplacian of a Gaussian (LoG). The Canny operator [Canny,

1986] is one of the most popular approaches within traditional methods. This operator

follows the same operation principle of the previous methods, adding a non-maximum

suppression stage and hysteresis thresholding.

Despite their efficiency in controlled environments or synthetic images, traditional

methods suffer from identifying contours in natural images. The edges of natural im-

ages can be present at different scales, and the colors and textures of the scene can

generate edges that are perceptually significant to the human eye. Ideally, a contour

detection method is intended to simultaneously exploit the brightness, color, and tex-

ture properties of an image so that it can handle the boundary perimeters defined by

the brightness steps and the regions with consistent color and (or) texture.
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One of the relatively recent strategies for identifying perceptual contours is to use

the local energy response of an image. The operation principle is simple: generate

features from the responses of an image produced by a family of filters at different

scales and orientations. The idea has been exploited from different points of view.

For example, the use of the Difference of Gaussians (DoG) and its Hilbert transform

[Morrone and Owens, 1987; Morrone et al., 1988] to generate a family of filters. Inspired

by Gabor’s work, this group of filters comply with the Parseval principle and generate

an exact quadrature pair (even and odd symmetry cells).

The Probability-of-boundary (Pb) detector [Malik et al., 2001] is one of the principal

exponents of using a filter bank formed by the DoG and its Hilbert transform. The

contour detector only uses the brightness and texture information to obtain the Pb.

The brightness information is processed following the intervening contour framework

[Leung and Malik, 1998], which consists of obtaining the image’s quadrature energy,

also called oriented energy (OE). The texture information is analyzed using so-called

textons [Malik et al., 1999]. Since each cue (brightness and texture) has a domain

of applicability, hence different units of magnitude, they introduce a gating operator

based on a neighborhood’s texturedness at a pixel. The operator gives, as a result, a

local measure that indicates how much two nearby pixels are to belong to the same

region. Later in that work, they use spectral graph theory (normalized cut algorithm

[Jianbo Shi and Malik, 2000]) to segment the image into coherent texture and brightness

regions.

This contemporary method, developed by the UC Berkeley research group, was

the basis for many other techniques for contour detection and segmentation of natural

images widely used today. Most of these works bring substantial improvements to

the Pb detector. For example, the seminal papers [Martin et al., 2002] and [Martin

et al., 2004] bring together previous works related to Pb and obtain a feature space

of four image characteristics: localized OE, Brightness Gradient (BG), Color Gradient

(CG), and localized Texture Gradient (TG). To cope with the difference in units of

the magnitude of the cues, they use a logistic regression classifier to combine oriented

energy, brightness, color, and texture. The proposed supervised method optimizes each

feature’s weights, formulating it as a two-class classification problem, where they learn

the rules for combining cues from the ground truth data of the Berkeley Segmentation

Dataset (BSDS) [Martin et al., 2001].

On the other hand, Ren [2008] showed that the Pb detector improves when using

features of the image calculated at different scales. However, a better version of the

Pb detector, which has dominated the state of the art scores for several years, is

obtained by combining local and global contours [Maire et al., 2008]. The local contours

are represented by the multiscale oriented signal mPb, while the global contours are

represented by the oriented signal from the spectral partition sPb. The final detector

that combines both signals is the globalized Probability-of-boundary gPb, which learns
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the local and global part’s weights through an ascending gradient, taking as reference

the BSDS evaluation score.

The Berkeley research group laid the foundation for contour detection and natural

image segmentation, providing the database and tools for the comparison and quan-

titative evaluation of the different approaches. Furthermore, Pb has motivated the

development of state-of-the-art methods that use different strategies to obtain image

features and contour detection. Such methods can use supervised approaches, avoiding

careful filter design, computation of texture and brightness gradients, and hand-crafted

features. We can also find semi-supervised methods, which generally replace the Pb

detector with a supervised detector to apply later a pre-processing chain similar to that

applied in the Berkeley group methods to refine the detection.

The set of the most popular supervised methods for contour detection, led by

researchers from the University of Pasadena California and colleagues, is based on the

calculation of features on channels of integrals of the image [Dollar et al., 2009]. Some

examples of these integral channels are image color and gray channels, image responses

to linear filters (e.g., Gabor filters, DoG), non-linear image transformations (e.g., Canny

edges, gradient magnitude, hysteresis threshold), among others. The calculation of

features on the integral channels follows the object detection framework of Viola and

Jones [2004], obtaining first-order and higher-order features such as Haar-like features.

Following this principle, a pool of features is obtained by randomly choosing both

the integral channel and a rectangle where the features are calculated, allowing the

acceleration of the computation of features and boosting learning techniques.

Some of the supervised edge detectors that use the integral channel features as in-

put are the Boosted Energy Learning (BEL) [Dollar et al., 2006], which attempts to

learn an edge classifier in the form of a probabilistic boosting tree from the thousands

of simple features calculated in image patches. On the other hand, Sketch tokens [Lim

et al., 2013] uses the same features as input to a random forest classifier. The pecu-

liarity of this second method is that the classes of the classifier are the so-called sketch

tokens; mid-level information patches that represent complex shapes such as joints, cor-

ners, vertical and horizontal edges, calculated from the contours of the ground truth.

The Structural Edge (SE) detector [Dollár and Zitnick, 2013] and its different ver-

sions [Dollár and Zitnick, 2015] take these strategies to another level, learning not only

the integral input features but also the output space, using structured-output decision

forests. The Oriented Edge Forest (OEF) detector [Hallman and Fowlkes, 2015] outper-

forms existing supervised methods using a decision forest that analyzes local patches

and outputs probability distributions over the space of oriented edges passing through

the patch. On the other hand, Kivinen et al. [2014] propose a fully supervised method

(DeepNet) that does not use the framework of the integral features; instead, it cal-

culates complex-cell like covariance features from multiple scales and semantic levels,

which depend on the squared response of a filter to the input image. The Object-
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Contextual Representations (OCR) [Yuan et al., 2021] learns object regions and the

relation between each pixel and each object region, augmenting the representation pix-

els with the object-contextual representation. The Convolutional Oriented Boundaries

(COB) [Maninis et al., 2018] produces image contours and region hierarchies starting

from generic image classification. Finally, Kelm et al. [2019] propose the RefineCon-

tourNet, a model based on the ResNet architecture that surpases the state-of-the-art

BSDS500 benchmark.

Another group of approaches to contour detection are those based on sparse lo-

cal coding. Such techniques are said semi-supervised because they contain two main

stages, one unsupervised and the other supervised. The first stage consists of obtain-

ing a generic representation (without information of the contours) from the image’s

information in an unsupervised way. The second stage consists of transforming the

sparse representation of the image into a classification task, wherein the case of con-

tours detection is a two-classes supervised problem to label the pixels as a contour or

no contour. Some renowned works under this approach are the detector proposed by

Mairal et al. [2008] and the Sparse Code Gradients (SCG) detector [Ren and Bo, 2012].

Both works use K-SVD as a dictionary learning algorithm and Orthogonal Matching

Pursuit for efficient optimization and sparse coding of each pixel. At the end of the

process, they use SVM as a linear classifier on the feature vectors resulting from the

reconstruction error with each dictionary for pixel classification. The main difference

between these detectors is that the SCG adopts the same scheme as the Pb detector,

replacing the brightness, color, and texture gradients with sparse code gradients. Fi-

nally, the Sparse Code Transfer (SCT) detector [Maire et al., 2014] improves on the

detector of Mairal et al. [2008] using a larger number of dictionaries at different scales

and layers in addition to the multipath sparse coding technique, which rectifies the

initial sparse codes to reconstruct the contours with an extra transfer dictionary. The

main disadvantage of these semi-supervised methods is the computational time of both

processes, dictionary calculation, and learning.

There is a fine line between contour detection and image segmentation. In this

sense, the Pb contour detector has also influenced image segmentation. The Ultra-

metric Contour Maps (UCM) [Arbeláez et al., 2009] uses the gPb to define a measure

of dissimilarity (ultrametric distance) between pairs of adjacent regions defined by a

hierarchical segmentation operator (HSO). This technique is refined by adding a sup-

plementary pre-processing stage using the oriented watershed transform (OWT), giving

rise to the gPb-owt-ucm hierarchical segmentation method [Arbeláez et al., 2009]. The

extensive qualitative and quantitative comparison of these techniques can be consulted

in [Arbeláez et al., 2011].

The Pb contour detector has driven (directly or indirectly) 50 years of research work

around perceptual contours detection in natural images and their segmentation. Like

the Canny operator, the Pb operator has become a reference work. The importance
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of this method is that it provides a reasonable basis that considers human perception

principles, using operators that have a physical sense.

6.3 Image as a Graph

Graphs are mathematical structures that have been applied to almost all fields of

engineering. Historically, Euler used these structures to solve a problem related to the

optimal crossing of people across bridges. The success of these structures in fields such

as electricity and chemistry contributed to creating a standard nomenclature, giving

way to the Graph theory.

Fundamentally, a graph is a helpful structure for modeling pairwise relations be-

tween objects. In this section, we present the notation and the commonly encountered

graphs in image processing applications.

6.3.1 Graph Notations and Definitions

This section introduces some critical definitions that will be used throughout the chap-

ter related to graphs and related structures.

Definition 6.1 (Graph). A graph G is defined by the (assumed finite) sets (V, E) in

which E ⊂ V × V. The elements of v ∈ V are called vertices and the elements of e ∈ E

are called edges. Since the edges are subsets of two nodes, we can write them as ei,j,

{i, j} or {vi, vj} ∀i, j ∈ V.

Definition 6.2 (Subgraph). A subgraph G ′ = (V′, E′) is a (partial) graph of G = (V, E)

if V′ ⊆ V, E′ ⊆ E and ei,j ∈ E ′ ⇒ vi, vj ∈ V′.

Definition 6.3 (Edge-weighted graph). Given a graph G = (V, E), egde weighting is

a function ω : E → R. The weight of an edge incident to two vertices is denoted by

ω(vi, vj), ω(ei,j) or simply as ωi,j. We denote an edge-weighted graph as (G, ω).

Definition 6.4 (Node-weighted graph). Given a graph G = (V, E), vertex weighting

is a function ω̂ : V → R. The weight of a vertex is denoted by ω̂(vi) or simply as ω̂i.

We denote a node-weighted graph as (G, ω̂).

Definition 6.5 (Adjacency). Given an edge ei,j that connects {vi, vj}, the two vertices

{vi, vj} contained in the edge are said to be adjacent or neighbors. In the same way

two edges that share a vertex are adjacent.

Definition 6.6 (Neighborhood). Given a graph G = (V, E), a neighbourhood Ni is the

subgraph of G containing all adjacent vertices of vi.
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Definition 6.7 (Adjacency matrix). The adjacency matrix of a graph G = (V, E) is a

|V| × |V| matrix AG that indicates whether pairs of vertices are adjacent or not. For

undirected graphs, it is a symmetric (0, 1)-matrix with zeros on its diagonal such that

AG = (Aij)(i,j)∈{1,··· ,n}2 where n = |V| is the number of nodes in G and

Aij =





1 if i, j are adjacent in G,

0 elsewhere.

The adjacency matrix may be transformed into a weighted adjacency matrix WG

such that:

WG = (Wij)(i,j)∈{1,··· ,n}2 where n = |V| is the number of nodes in G and

Wij =





ωij if Aij = 1, and

0 if Aij = 0.

Definition 6.8 (Affinity matrix). The affinity matrix A (also called similarity matrix)

of a graph G = (V, E) is a |V| × |V| matrix that indicates how affine or similar a pair of

vertices are. For undirected graphs, it is a symmetric matrix with zeros on its diagonal

such that

A = (Aij)(i,j)∈{1,··· ,n}2 with

Aij =





s(i, j) if i, j are adjacent in G,

0 elsewhere.

where n = |V| is the number of nodes in G and s(i, j) is some strictly positive similarity

function between the points i, j.

Definition 6.9 (Degree matrix). The Degree matrix D = (Dij) is a diagonal matrix

that measures the degree at each node v ∈ V of a graph G such that

Dii =
∑

{j|(i,j)∈E}

s(i, j)

Definition 6.10 (Laplacian matrix). Given a graph G with n = |V| vertices, its Lapla-

cian matrix L = (Lij)(i,j)∈{1,··· ,n}2 is defined as

L = D − A,

where D is the degree matrix and A is the affinity matrix of the graph.
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Definition 6.11 (Connected graph). A graph G is connected when there is a path

from vi to vj in G, for every vi, vj ∈ V; otherwise, we say G is disconnected.

Definition 6.12 (Spanning Tree (ST)). A graph is said acyclic when it does not

contain any cycle on three or more vertices. Acyclic graphs are also called forests. A

connected acyclic graph T is called a tree. When G is a connected graph, a subgraph

ST is called a spanning tree if ST is both a spanning subgraph of G and a tree.

In a graph G there can be many spanning trees; ŜT denotes the set of all possible

spanning trees ST of G.

Definition 6.13 (Minimum Spanning Tree (MST)). Given an edge-weighted graph

G = (V, E), the cost of the spanning tree ST = (V′, E′) is the sum of the weights of all

the edges in the tree. The minimum spanning tree of G, denoted as MST(G) or simply

MST G, is the spanning tree where the cost is minimum among all the spanning trees,

that is,

MST(G) = argmin
ST ∈ŜT



∑

ei,j∈E′

ωij


 .

Definition 6.14 (Graph cut). A cut CG = (S, T) is a partition of the vertices V of a

graph G = (V, E) into two disjoint subsets S, T. The cut-set of a cut CG = (S, T) is

denoted as the set {(s, t) ∈ E | s ∈ S, t ∈ T} of edges that have one endpoint in S and

the other endpoint in T.

Pixel-based graph representation

Considering a digital image as a 2-d grid of pixels, where the intensity (or color) values

are mapped to the spatial coordinates (x, y), we can use the graph theory to represent

all the pixels as a dense graph. In the graph notation G = (V, E), each node vi ∈ V

corresponds to a pixel in the image, and the edges e ∈ E correspond to the junctions

between adjacent pixels.

There are several strategies to join the nodes of a graph. The types of graphs that

we can form are a function of such linking strategies. For example, the complete graph

connects each pair of different nodes with a single edge. The epsilon-graph connects

a pair of nodes if they are within an epsilon distance. The k-nearest neighbors’ graph

(knn-graph) connects a central node to another node only if the distance between them

is among the k smallest distances from the central node to other nodes. Lastly, the

adjacency graph connects only a pair of nodes if they are neighbors or adjacent. At a

pixel level, this last graph is referred to as a Pixel Adjacency Graph (PAG).

We can define the adjacency level of the pixels to generate a specific pixel-based

graph. In our applications, we mainly use the 4-neighbor adjacency system. This

configuration and other adjacency systems based are illustrated in Fig. 6.2.
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(a) 4-neighborhood (b) 8-neighborhood (c) 6-neighborhood

(d) Example of a 4-n graph on a real image

Figure 6.2: Most common k-nearest neighbors adjacency systems.

The representation of an image as a graph opens the possibility of new methods for

data processing; however, a recurring problem is the need to satisfy the compromise

between algorithmic complexity and precision. In most algorithms, complexity is a

function of the number of nodes and edges in the graph, so the adjacency system plays

an essential role in the speed of the methods applied to an image graph. One way to

reduce the number of nodes (and consequently the number of edges) is to use graphs

on the image’s elements of greater size.

Region-based graph representation

To build this type of graph, we must first separate the image into regions, preferably

into regions that are coherent with the image’s perceptual information. Subsequently,

the graph nodes represent the image regions while the graph edges follow the same

strategies described above to connect the regions. The primary type of graph that we

consider in this work is the Region Adjacency Graph (RAG).

Pixels are the smallest elements in the image. The grouping of these elements

into coherent regions generates the so-called superpixels. In the following section, we

introduce some of the most used methods for generating these regions, exposing their

main characteristics.
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6.3. Image as a Graph

Figure 6.3: Example of a Region Adjacency Graph on a real image.

6.3.2 Superpixels

Pixels are a consequence of the discrete representation of the intensity or color of an

image; therefore, pixels are not entities that naturally reflect the perceptual information

in an image. Moreover, the number of pixels on an image is too high (even in moderate

resolutions), making the optimization at pixel level difficult. The superpixels are locally

coherent and preserve most of the structure necessary for image processing algorithms.

The term superpixels, introduced first by Ren and Malik [2003], describe the re-

sulting regions of an over-segmentation image process. However, Stutz et al. [2018]

gathers a series of requirements from different state-of-the-art works to differentiate

superpixels from other regions generated by over-segmentation algorithms.

• Partition. Superpixels should define a partition of the image. They should be

disjoint and assign a label to every pixel.

• Connectivity. Superpixels represent a connected set of pixels.

• Boundary Adherence. Superpixels must preserve image boundaries.

• Compactness, Regularity, and Smoothness. Superpixels should be compact

(closed and bounded), placed regularly, and exhibit smooth boundaries.

• Efficiency. Superpixels should be generated efficiently.

• Controllable number of superpixels. The number of superpixels should be

controllable.

Besides, according to the followed strategy to obtain the regions, Stutz et al. [2018]

propose a classification for superpixels techniques. We present four superpixel tech-

niques; each one of them represents a category of the classification.
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Felzenszwalb’s Superpixels

This technique belongs to the category of graph-based superpixels, representing the

region generation problem in terms of an edge-weighted undirected graph.

This method treats the image as an undirected graph and produces the image parti-

tion based on edge-weights (computed as color differences or similarities) [Felzenszwalb

and Huttenlocher, 2004]. We can obtain the weight of an edge ωij in two ways:

1. ω(vi, vj) = |I(pi) − I(pj)|, the absolute intensity difference between the pixels

connected by an edge;

2. ω(vi, vj) = |X(pi)−X(pj)|, the L2 (Euclidean) distance between two correspond-

ing pixels in the feature space.

For color images, it is possible to use option 1, considering each color channel as

an individual intensity channel, and then combine the tree weights. Otherwise, the

feature space of option 2 is defined by X = (x, y, r, g, b), where (x, y) is the location

of the pixels in the image and (r, g, b) is the color value of the pixels. This method

uses a Gaussian filter to smooth the image before the edge weights computation to

compensate for digitization artifacts.

With this method, we cannot directly control the number of resulting superpixels.

We must use the Gaussian scale parameter to modify the size and shape of the super-

pixels. However, the actual size and number of segments can vary greatly, depending

on local contrast.
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Figure 6.4: Examples of superpixels using Felzenszwalb’s technique.
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Fig. 6.4 shows the superpixels generated by adjusting the scale parameter to obtain

approximately 150, 300, and 600 superpixels (sp). The examples show that Felzen-

szwalb’s superpixel technique acts more like an over-segmentation algorithm since nei-

ther the size nor the regions’ shape is close to being homogeneous.

Quick shift superpixels

The Quick Shift (QS) [Vedaldi and Soatto, 2008] is a density-based method for su-

perpixel computation. This technique performs a so-called mode-seeking algorithm

[Yizong Cheng, Aug./1995] for locating the maxima of a density function. It locates

the maxima or the modes of a density function given discrete data sampled from that

function through a mean shift procedure.

This superpixel technique is an iterative method that does not offer control over

the number of superpixels or their compactness; therefore, it is also categorized as an

over-segmentation algorithm.

The QS algorithm computes a hierarchical segmentation of the image at multiple

scales simultaneously. The parameters to define the size and shape of the regions

depend on the scale of the local density approximation and the level in the produced

hierarchical segmentation. Additionally, we can also control the trade-off between

color-space proximity and image-space proximity.
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Figure 6.5: Examples of Quick Shift superpixels.

We illustrate in Fig. 6.5 four images and the superpixels obtained with the QS

algorithm setting the parameters to obtain 150, 300, and 600 superpixels.
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Watershed superpixels

The watershed-based superpixel techniques take the watershed segmentation algorithm

proposed by [Meyer, 1992] as a calculation basis. Initially, the watershed method is

an over-segmentation technique, i.e., one can control the number of regions employing

the number of markers, but we can not control its compactness. In this context, high

compactness means that the superpixels are of approximately equal size and more

or less regularly shaped in the absence of strong image gradients. Some watershed-

based superpixel algorithms, such as the Compact watershed algorithm [Neubert and

Protzel, 2014] or the waterpixels algorithm [Machairas et al., 2015], upgrade the original

algorithm adding the compactness.

Initially, these algorithms implement a seeded watershed segmentation (also called

marker-controlled watershed). Markers can be determined manually or automatically

using, for example, the local minima of the image gradient or the local maxima of

the distance function to the background. Therefore, instead of taking a color image

as input, watershed requires a grayscale gradient image, where bright pixels denote a

boundary between regions.

Once the markers and the gradient are given, the algorithm views the image as a

landscape, where bright pixels of the gradient forms high peaks. This landscape is then

flooded from the given markers until separate flood basins meet at the peaks. Each

distinct basin forms a different image segment.

Fig. 6.6 shows the superpixels obtained with the compact watershed algorithm

[Neubert and Protzel, 2014] defining the number of superpixels to find at 150, 300, and

600.

SLIC superpixels

The Simple Linear Iterative Clustering (SLIC) algorithm is part of the superpixel

clustering-based methods. The methods in this category group pixels into clusters

(superpixels) and iteratively refine such clusters until some convergence criterion is

met. In the case of the SLIC, the centers of the clusters are randomly initialized

and then associate each pixel to the closest central pixel. The central clusters are

subsequently adjusted iteratively until the error converges.

The SLIC algorithm allows controlling the number of superpixels in the image, the

compactness of the superpixels, and the adherence to the object boundaries. However,

this method cannot capture the global properties of the image [Stutz et al., 2018]. Fig.

6.7 shows, in the same way as the previous algorithms, the method’s results demanding

150, 300, and 600 superpixels.

In this work, we choose the SLIC algorithm to generate the superpixels of the

images. This method is one of the most competent in terms of customization and

calculation time. Furthermore, it is possible to use the image in the LAB color space
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Figure 6.6: Examples of superpixels obtained with the Compact
Watershed algorithm.
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Figure 6.7: Examples of superpixels generated with SLIC algorithm.

to form superpixels according to the image’s perceptual colors. For more details on the

implementation and performance of the different superpixel algorithms, we invite the

reader to review the work of Wang et al. [2017].
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6.4 Graph-based Image Gradient and Segmenta-

tion

In this section, we develop the methodology to obtain a perceptual gradient on an image

graph. Such an image gradient is said perceptual as it is based on the multispectral

decomposition of an image using Gabor filters. We use EMD as a measure of similarity

between the graph’s nodes to define the edges’ weight. Specifications and adaptations

of the EMD are also developed in this section. Subsequently, we use the resulting

gradients to segment the image using well-known state-of-the-art techniques.

6.4.1 Earth Mover’s Distance for Non-normalized Distribu-

tions

In chapter 3, we have seen the utility of the EMD as a true metric for measuring

similarity between distributions. In image retrieval systems based on color information,

the EMD can measure tiny changes in the normalized color distributions of superhero

images. On the other hand, with the texture patches, the EMD can capture, reflect

and measure the importance of the logarithmic (frequency) and polar (orientation)

axis of the texture signature (see Fig. 3.14 in section 3.3.4). This chapter uses EMD

to measure the similarity between two elements of an image: pixels or superpixels. By

measuring the similarity of elements in the Gabor-filter-based feature space, we locally

measure changes in color and texture in the image.

The EMD [Rubner et al., 2000], as we used it to measure color and texture distri-

butions in chapter 3 (cf. Eq. (3.8)), is a true metric only when used with normalized

distributions (histograms or signatures), i.e., distributions with total mass equal to

one. This fact has no impact when the distributions represent global information of an

image (color or texture). However, the distributions of the image elements (pixels or

superpixels) contain only a portion of the information; for example, in the case of our

feature space, Gabor’s energy.

Normalizing the individual pixels or superpixels’ texture signatures leads to Gabor

energy information loss, so the classic EMD cannot be applied. We use instead the

EMD proposed by [Pele and Werman, 2008], which is defined as

d
ÊMD

(P, Q) =


min

{fij}

∑

i,j

fijcij


+

∣∣∣∣∣∣
∑

i

Pi −
∑

j

Qj

∣∣∣∣∣∣
× α max

i,j
{cij} (6.1)

such that, ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, the ÊMD is subject to the following

constraints:

1. fij ≥ 0,
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2.
∑

j fij ≤ Pi,

3.
∑

i fij ≤ Qj, and

4.
∑

i,j fij = min
(∑

i Pi,
∑

j Qj

)
.

In Eq. (6.1), fij denotes the amount of mass transported from the ith supplier to

the jth consumer, whereas cij denotes the transport cost from the ith supplier in P to

the jth consumer in Q. The variable α denotes a penalty for extra mass transportation.

If we want the resulting distance to be a metric, it should be at least half the diameter

of the space (maximum possible distance between any two points). If we want partial

matching we can set it to zero (but then the resulting distance is not guaranteed to be

a metric). In our experiments we set this value to 1, which means the maximum value

in the distance matrix (ground distance matrix) is used.

6.4.2 Graph Image Gradients

As we described earlier, we can use pixels or superpixels as support to represent an

image as a graph. Fig. 6.8 shows a natural-color image, its superpixels obtained with the

SLIC technique (approximately 2500 regions), and the region adjacency graph obtained

on the superpixels. In this sense, each node of the graph is positioned at the centroid of

each superpixel in the image. This strategy allows reducing the EMD calculation time

between nodes of the graph; but also, this action generates a tradeoff between the final

gradient and the regions generated by the SLIC algorithm. The pixel adjacency graph

of the image is not displayed (see Fig. 6.2d instead as a PAG reference); however, we

used a 4 neighboring node adjacency system (4nn) for its creation.

The weight of the edges between nodes of both computational supports is given by

the EMD for non-normalized distributions such as

eij ← ω(vi, vj) = d
ÊMD

(ẽc,f,θ(i), ẽc,f,θ(j)), (6.2)

where ẽc,f,θ(i) and ẽc,f,θ(j) are the Power Spectral Density of the image at the pixel (or

superpixel centroid) i, j in the image space coordinates (x, y).

In color images, we obtain a weighted edge graph for each channel c of the complex

luminance-chrominance color space. Fig. 6.9 shows the weighted graphs of each channel

of a natural image based on pixels and superpixels.

The gradients obtained with this methodology follow the color and texture varia-

tions of the authentic images. Furthermore, an essential aspect of our methodology

is that the image’s decomposition using the optimized Gabor filters and the complex

color space respects Parseval’s identity. In other words, the sum of all Gabor responses

(in frequency axis, angular axis, and per color channel) is equal to 1. This property is
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(a) Input image (b) SLIC superpixels

(c) Unweighted superpixel RAG

Figure 6.8: Computational support for graph-based image gradient.

reflected in the weights of the edges of the luminance and chrominance graphs. Gen-

erally, the luminance channel is the one that recovers most of the energy, while the

color energy is divided into the real and imaginary parts of the chrominance. In the

gradients of the second row of images of Fig. 6.9, the maximum distance between two

nodes in the luminance channel is approximately 30, while in the real and imaginary

part of the chrominance, the distance varies between 10 and 14. This property allows

us to add the weights of the edges of each channel’s graphs to obtain a single graph

gradient. We can see the total gradients in the pixel and superpixel support in Fig.

6.10.

6.4.3 Image Segmentation Based on Image Gradients

The perceptual gradients obtained with EMD contain the necessary structure to seg-

ment images using graph-based segmentation methods. We use the adjacency matrix

of the graph for this purpose. Here we present the methodology and results of three

different segmentation methods on the weighted graphs on the superpixel support;

pixel-level graphs are not considered due to the high computation time.
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(a) Pixel-based graph gradient (b) Region-based graph gradient

Figure 6.9: Graph gradient images. First row: Luminance channel,
second row: Chrominance (real part), and third row: Chrominance
(imaginary part). The column names indicate the respective graph
structure used to compute the gradient.

Figure 6.10: Total graph gradient images.

MST threshold graph-cut

This image segmentation method consists of obtaining the minimum spanning tree

(MTS) of the total edge-weighted graph (with normalized values between 0 and 1) and
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then perform a cut over the graph. Since in the MST, there is only a single path that

joins all the nodes of the graph, we can make one or more graph cuts to separate the

image into regions. We define the edges that are removed by the cut setting a threshold

value over the weights of the MST edges. This threshold value choice is not always

obvious, and this value may differ for each image.

We propose obtaining a threshold value by fitting a probability density function to

the distribution of the MST edges values. We choose the log-normal distribution as

the density function to fit.

We hypothesize that the areas with the same color and (or) texture information

behave as flat areas in the generated feature space; therefore, the edges connecting these

areas have a considerable EMD value and behave as outliers within the probability

function. The threshold value is defined then by the log-normal distribution point

where the edge weights reach the quantile of order q = 0.9. Under this setting, we

cut all the MST edges above the quantile and keep 90% of the graph’s edges. The

segmentation of the image is given by the connected components of the resulting graph.

Taking the example of the polar bear image, Fig. 6.11 shows the MST graph of the

image and the weight distribution of the MST edges (black bars), and the logarithmic

distribution (red line) that matches the weighted histogram. The red arrow on the plot

shows the threshold value for cutting the graph. The resulting segmentation is shown

in Subfig. 6.11c.

An advantage of this method is the computational speed to obtain an image seg-

mentation. Furthermore, selecting the threshold value for the graph cut is independent

of the user and self-adapting for each image. However, the choice of the quantile q is

important; a very low value leads to cutting edges within flat areas of color and (or)

texture, generating an over-segmentation of the image; on the other hand, a high

threshold value leads to preserving most of the edges so that most of the image regions

remain connected.

Spectral clustering

Spectral clustering is a technique used to cluster elements of a graph [Ng et al., 2001].

Considering the RAG weighted with the EMD over the Gabor feature space, we used

this technique to group the superpixels into perceptual regions consistent with the color

and texture information.

This technique transfers the data from a given domain to the spectral domain using

the eigen-decomposition method. The general process of spectral clustering is mainly

divided into the following three stages:

• Preprocessing: Construct a similarity matrix.

• Decomposition: Compute the Laplacian graph’s eigenvectors to embed the data

points in a low-dimensional space (spectral embedding).
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(a) edge-weighted MTS (b) MTS weights distribution

(c) Threshold graph-cut segmentation result

Figure 6.11: Stages of threshold graph-cut segmentation technique.

• Grouping: Assign the points in k clusters based on the new representation using

the k-means algorithm.

Detailing the stages of spectral clustering, we obtain the affinity matrix A = (Aij)

from the graph based on superpixels. The elements of the matrix are given by the

function

Aij =





exp
(
−α ωij

σ(W )

)
if i, j are adjacent in G

0 elsewhere
(6.3)

where ωij is the measure of distance between nodes of the graph (given by the EMD

between non-normalized distributions); σ(W ) is the total standard deviation of the

weight matrix W that serves a global optimization parameter for the affinity matrix

computation and; α is a human-defined constant which controls how rapidly the affinity

Aij falls off with the distance between i and j.

The spectral decomposition is done using the Laplacian matrix, which depends on

the affinity matrix A and the matrix of degree D. We follow the algorithm of Ng et al.

[2001], which proposes to use the normalized Laplacian matrix L = D−1/2AD−1/2.

This Laplacian matrix form is known as the non-normalized one. Once the k largest

eigenvectors of L have been found and normalized, we apply the k-means algorithm on

the data points of this reduced space of the graph and assign each node to a cluster.
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Fig. 6.12 shows the similarity graph constructed from the EMD distances between

texture signatures. Since the similarity function s(i, j) is inverse to the distance ω(i, j)

between nodes, we see that the edges’ value tends to 0 (black edges) when the regions

are dissimilar, and when the regions are similar, the edges’ value tends to 1 (white

edges). Subfig. 6.12b shows the polar bear segmentation result using k = min(S)

(which for this image k = 5) and α = 6.

(a) Affinity graph (b) Spectral clustering segmentation result

Figure 6.12: Gradient-based spectral clustering segmentation.

Normalized graph-cut

The Normalized cuts technique is a variation of the spectral clustering technique to

cluster graphs. Initially proposed by Jianbo Shi and Malik [2000], this method performs

the same spectral clustering steps described above with some minor differences. As for

the affinity matrix, it remains the same. However, the Laplacian matrix here is given

as LNcut = D−1L so the eigen-decomposition problem is different as well.

Furthermore, the normalized cut is a recursive method that finds a bipartition of

the graph to maximize Ncut. This process is repeated considering the stability of the

cut and if Ncut is below the preset value. This condition implies that, unlike spectral

clustering, we do not need to introduce a specific number of regions k to find in the

image. We find more details about this method in Jianbo Shi and Malik [2000]. We

show the segmentation result of the polar bear image using the normalized cut method

in Fig. 6.13.

Comparison of the Different Graph-based Segmentation Methods

We evaluate the quality of the segmentation given by the three segmentation methods

based on graphs: MST threshold graph-cut, Spectral clustering, and Normalized graph-

cut. For this, we use the Berkeley image database test set, and the F-measure obtained

from the precision and recall scores described in chapter 5.
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6.4. Graph-based Image Gradient and Segmentation

Figure 6.13: Normalized cut segmentation result.

In Fig. 6.14, we show the resulting scores applying the segmentation methods to

graphs built in different feature spaces. In particular, we vary the input color space to

construct the luminance-chrominance representation of the image.

(a) Threshold graph-cut (b) Spectral clustering

(c) Normalized graph-cut

Figure 6.14: Segmentation scores of the different graph-based seg-
mentation methods.
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6.5 Image Contour Detection and Segmentation

The graph-based segmentation methods presented above showed exciting results in the

segmentation task of natural color images. However, these methods require a series of

parameters that are often not so easy to define, for example, the number of k regions to

segment, the α parameter for constructing the affinity matrix, and the stop point of the

normalized cut algorithm. Although there are various literature methods to optimize

and automate the choice of such parameters, this implies a longer calculation time to

obtain a segmentation. The peculiarity of these methods is that they depend on an

over-segmentation in superpixels before calculating the graph’s gradient. Although this

step reduces the number of nodes and, consequently, the number of edges and EMD to

be calculated, the contours in the image’s final segmentation are part of the superpixel

method’s contours. In other words, if the boundaries of the regions thrown by the

SLIC algorithm do not correspond to the contours of the objects in the images, these

borders will not appear in the final segmentation.

This section presents the methodology to obtain the objects’ perceptual contours

in an image directly using the information from the edge-weighted graph instead of

using graph-based segmentation methods. The main advantage of this approach is

that the image’s contours can be obtained at the pixel and superpixel levels. We call

our contour detector Gabor-filter-based Complex Color (GCC) detector.

The procedure for obtaining the contours is straightforward. The similarity between

the image elements (pixels or superpixels) is calculated by the EMD and stored in the

graph’s edges. So, we obtain the perceptual contours for pixel-level graphs with the

transformation of the edge-weighted graph into a node-weighted graph. In such a case,

each node’s value (pixel) is the maximum value between the weights of all the edges

connected to the node. In the case of superpixels, we transform the edge-weighted

graph into a perceptual contour image by assigning the weight of the edge between

two regions to the pixels that form the common border between these superpixels. Fig.

6.15 shows some examples of the contours found with this methodology in images of

the BSDS500 using the graphs at the pixel and superpixel levels.

6.5.1 Contour-based Image Segmentation: Hierarchical Wa-

tershed

Image segmentation is a complementary problem to contour detection. Some methods,

such as the UCM [Arbeláez et al., 2009], generate a hierarchical partition of the image

from image contours. In a partition hierarchy, the image is represented as a sequence

of coarse to fine partitions that satisfy the principle of causality of Koenderink [1984],

that is, any partition is a refinement of the previous one in the sequence [Perret et al.,

2018].
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Figure 6.15: Some examples of image contours obtained with the
Gabor-filted-based Complex Color (GCC) feature space on the sup-
port of pixels (4nn) and superpixels (2500) graph.

We only use the gradient information resulting from the edge-weighted graph’s

transformation to a boundary image (described in the previous section) in a classic

morphological approach for image segmentation, the so-called watershed. This ap-

proach complies with the principle of causality, so defining a hierarchy of watersheds

as a sequence of watershed segmentation of an image is possible.

One of the first authors to study the properties and relationship between the par-

tition hierarchy and the watershed operator for image segmentation are [Najman and

Schmitt, 1996]. In general terms, this method constructs a watershed by a flooding

process; that is, the gradient image, seen as a topographic surface, is pierced at its

minima and progressively submerged in water. The water fills the catchment basins

of the minima and forms lakes. When the water of two lakes meets, the saddle point

height determines the saliency of the corresponding watershed arch. The sequence

of watershed segmentation is obtained by sequentially removing the minima from the

gradient image according to regional attributes related to size and the contrast of the

components, such as dynamics, area, or volume. In Fig. 6.16, we show the results of

hierarchical watershed segmentation using the volume attribute on the GCC4nn and

GCC2500 image gradients.
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Figure 6.16: Some examples of image segmentations obtained with
the hirarchical watershed method on the Gabor-filter-based Complex
Color (GCC) boundaries in the pixels level support (4nn) and super-
pixels (2500) support.

6.6 Comparison with the State of the Art

In section 6.2, we review the different methods for detecting contours and the segmen-

tation of natural images. This section classifies state-of-the-art methods based on the

input features and the techniques used for contour detection and image segmentation.

Table 6.1 organizes the various characteristics of these methods, which allows us to

position our contour detector (GCC) w.r.t. the existing works.

We recall that one of the thesis’s objectives is to generate algorithms for the de-

tection of objects in complex environments to implement them in the context of UAV

tasks. In this sense, the characteristics that we look for in a contour detector are:

• The independence of databases to train learning models,

• The simplicity and a low number of parameters, and

• The possibility for real-time implementation.

Taking this into account, table 6.1 separates state-of-the-art methods into three

groups: non-supervised (N-S), semi-supervised (S-S), and fully supervised (F-S) ap-

proaches. Our contour detector is positioned into the group of non-supervised methods

(the first column of the table together with the Pb and the PMI methods).
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Edge detector Input features Main approach
Segmentation

technique
GCC (Ours) Gabor lum-chr gradients Gradients dissimilarity Hierarchical watershed

Pb BG, TG Gradients dissimilarity Normalized cuts
PMI LUV color channels Pixel mutual information Spectral clustering

SCG
Gray, color, and
depth channels

Sparse coding
+

SVM
-

SCT RGB color channels
Sparse coding

+
SVM

-

P̂b BG, TG Logistic regression Normalized cuts
gPb ÔE, BG, CG, T̂G Logistic regression UCM + OWT
BEL Integral channel features Gradient boosting -

Sketch tokens Integral channel features Random forest -
SE Integral channel features Random forest -

OEF Integral channel features Random forest -
DeepNet Covariance-like features Deep NN -

ISCRA
BG, CG, TG, SIFT,

Shape features,
Boundary features

Cascading classifier Region merging

COB ÔE, BG, CG, T̂G Convolutional NN -

Table 6.1: Principal characteristics of the state-of-the-art works
for boundary detection and image segmentation. First block: Non-
supervised methods, Second block: Semi-supervised methods, and
Third block: Supervised methods.

6.6.1 Scores

We use the benchmark for contour detection and image segmentation of the BSDS. This

benchmark uses the precision and recall scores described in chapter 5 (cf. subsection

5.3.2). In addition to these scores, the BSDS benchmark uses the following measures

and tools to compare results in contour detection and image segmentation.

Optimal Dataset Scale (ODS), Optimal Image Scale (OIS)

A hierarchical segmentation method applied on an image provides a hierarchy (H, λ),

where the successive ultrametric levels (λ1, · · · , λN) correspond to a series of nested

segmentations (S1, · · · , SN). To properly evaluate it, one has to compute the score

(Si, GT ) for any level λi of each image’s hierarchy. We can then either retain the best

λ-level on the overall dataset, and the corresponding score is the Optimal Dataset Scale

(ODS), or retain the best level λi for each image and average the best individual scores

for all images, which correspond to the Optimal Image Scale (OIS). By definition, the

ODS is inferior or equal to the OIS. For a gradient image, the levels λi correspond to

the threshold values at which the image contours are evaluated.
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Precision-Recall curve and Average Precision (AP)

A precision-recall curve (PRC) is a graph that shows the relationship between precision

(positive predictive value) in the x-axis, and recall (sensitivity), in the y-axis, for every

possible cut-off. The cut-offs for a gradient image are the threshold values at which

the image contours are evaluated. Every point on the PRC represents a chosen cut-off;

therefore, what we can see in the graph is the precision and the recall we get when

choosing a cut-off. The average precision (AP) on the full recall range is equivalent to

the area under the precision-recall curve.

Segmentation Covering (SC)

The Segmentation Covering is a measure introduced by Arbeláez et al. [2009] that we

can see as the generalization of the classic overlap measure between two regions R and

R′ defined as

O(R, R′) =
R ∩R′

R ∪R′
(6.4)

The Segmentation Covering (SC) extends the overlap measure so that the covering

of a segmentation S by a segmentation S ′ is defined as

SC(S ′ → S) =
1
N

∑

R∈S

|R| · max
R′∈S′

O(R, R′) (6.5)

where N denotes the total number of pixels in the image and O denotes the overlap

between two regions R and R′.

In the case of a family of multiple image ground-truth segmentations {GTi}, the

covering of a machine segmentation S is defined by first covering S individually for

each human segmentation GTi, and then averaging over the different humans. If the

machine segmentation explains all of the human data, it achieves a perfect covering

score.

Probabilistic Rand Index (PRI)

The Rand Index has initially been introduced for clusterings evaluation. It operates by

comparing the compatibility of assignments between pairs of points in the compared

clusters. The Rand Index between a machine segmentation S and a ground-truth GT

is the sum of the number of pixels pairs with the same labels in S and GT , and of those

with different labels in the two segmentations, divided by the total number of pixels

pairs. The Probabilistic Rand Index (PRI) [Unnikrishnan et al., 2005] is a variant

introduced for the case when multiple ground truths are available. If we consider a set

of ground-truth segmentations {GTk}, the PRI is given by:

PRI(S, {GTk}) =
1
T

∑

i<j

[cijpij + (1− cij)(1− pij)] (6.6)
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where cij is the event the pixels i and j have the same label and pij its probability. T

is the total number of pixel pairs.

Variation of Information (VI)

The Variation of Information (VI) is also a measure that has been introduced to com-

pare clusterings [Meilă, 2003]. It measures the distance between two segmentations

relatively to their average conditional entropies given by:

V I(S, S ′) = H(S) + H(S ′)− 2I(S, S ′) (6.7)

where H and I represent the entropies and mutual information between two data

clusterings S and S ′ respectively. In our case, these clusterings are the test and ground-

truth segmentations.

BSDS300 BSDS500
ODS OIS AP ODS OIS AP

Human 0.79 0.79 - 0.80 0.80 -
Ours 0.65 0.67 0.62 0.66 0.68 0.62

Mean Shift [Comaniciu and Meer, 2002] 0.63 0.66 0.54 0.64 0.68 0.56
EGB [Felzenszwalb and Huttenlocher, 2004] 0.58 0.62 0.53 0.61 0.64 0.56

NCuts [Cour et al., 2005] 0.62 0.66 0.43 0.64 0.68 0.45
Canny [Canny, 1986] 0.58 0.62 0.58 0.60 0.63 0.58

Pb [Malik et al., 2001] 0.65 - - - - -
mPb [Maire et al., 2008] 0.67 - - - - -
sPb [Maire et al., 2008] 0.68 - - - - -
gPb [Maire et al., 2008] 0.70 0.72 0.66 0.71 0.74 0.65

gPb-owt-ucm [Arbeláez et al., 2009] 0.73 0.76 0.73 0.73 0.76 0.73

Table 6.2: BSDS image boundary detection scores.

BSDS500
SC (↑) PRI (↑) VI (↓)

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 - 0.88 0.88 1.17 1.17
Ours 0.56 0.60 0.67 0.81 0.83 1.79 1.57

gPb-owt-ucm [Arbeláez et al., 2009] 0.59 0.65 0.74 0.83 0.86 1.69 1.48
Mean Shift [Comaniciu and Meer, 2002] 0.54 0.58 0.66 0.79 0.81 1.85 1.64

EGB [Felzenszwalb and Huttenlocher, 2004] 0.52 0.57 0.69 0.80 0.82 2.21 1.87
Ncuts [Jianbo Shi and Malik, 2000] 0.45 0.53 0.67 0.78 0.80 2.23 1.89

Table 6.3: BSDS image segmentation scores.

6.6.2 Results

To provide a basis for comparing the GCC boundaries, we use the region merging

(EGB), Mean Shift, and Multiscale NCuts segmentation methods and the Canny and
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(Probability-boundary) Pb edge detectors reviewed in section 6.2. We evaluate each

method using the boundary-based precision-recall framework. On the other hand,

we use the Variation of Information, Probabilistic Rand Index, and segment covering

criteria discussed above to compare the GCC hierarchical segmentations. The BSDS

serves as ground truth for both the boundary and region quality measures since the

human-drawn boundaries are closed and work as segmentations.

We report in Table 6.2 the boundary detection scores on the BSDS300 and the

BSDS500. Besides, Fig. 6.17 displays the precision-recall curves of different methods

only for the BSDS500. Table 6.3 presents region benchmarks on the BSDS500.

For a family of machine segmentations {Si}, associated with different scales of a

hierarchical algorithm or different sets of parameters, we report three scores about the

ground-truth covering by segments in {Si}. These correspond to selecting covering

regions from the segmentation at a universal fixed scale (ODS), a fixed scale per image

(OIS), or from any level of the hierarchy or collection {Si} (Best). We also report

the Probabilistic Rand Index and Variation of Information benchmarks. While the

relative ranking of segmentation algorithms remains fairly consistent across different

benchmark criteria, the boundary benchmark (table 6.2 and Fig. 6.17) appears most

capable of discriminating performance.

According to the results obtained with our method and the state-of-the-art methods

(see Table 6.1), we can underline some reflections. First, given the characteristics of

our method (calculation of intensity, color, and texture gradients), the comparison

method is the Pb [Malik et al., 2001], which we matched in BSDS300 and surpassed

in BSDS500. We can also see that our method’s performance is better than other

unsupervised methods such as Felz-Hutt [Felzenszwalb and Huttenlocher, 2004], Mean

Shift [Comaniciu and Meer, 2002], or Ncuts [Jianbo Shi and Malik, 2000]. This fact is

due to the use of the intensity, color, and texture feature combined.

Accordingly, compared to the Pb boosted methods (mPb, sPb, gPb, gPb-owt-ucm

[Arbeláez et al., 2009]), it is clear that we do not outperform their scorings; however,

our method does not require supervised intermediate stages to optimize the weights

of the brightness, color, and texture cues. Furthermore, our method also does not

use contour refinement techniques to correct for slightly shifted contours. Therefore,

we can assume that our method can increase the contour detection score in the same

proportion as the Pb-enhanced methods.

Finally, in relation with the benchmark scores obtained with ANN methods, such

methods obviously outperform all these results, achieving or even overpassing the hu-

man scores (see for example the blue PR curve in Fig. 6.17 corresponding to the COB

method of Kelm et al. [2019]); however, they require huge datasets and annotations

to train. We can then consider that our method can serve as an input to ANN archi-

tectures to aid model generalization and probably reduce the need for annotated data.

We discuss this in more detail in the Perspectives section.
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Figure 6.17: Precision-recall plot of different contour detectors.

6.7 Conclusions

This chapter presented the methodology for the segmentation of natural images based

on the Gabor Complex Color feature space. We show the diversity of segmentation

techniques using such feature space. First, with the segmentation methods based on

graphs and second, with the boundary detector and the hierarchical segmentation by

watershed.

The scores obtained from the BSDS benchmark show that our algorithms for the

detection of contours and the segmentation of images are competitive, taking into

account the characteristics of the input features and the methods used for the processing

of the images: dissimilarity gradients in the complex color Gabor space and completely

unsupervised algorithms for image segmentation.
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Conclusion and Perspectives

Summary of Our Main Contributions

This thesis deals with the study of low-level image information concerning human per-

ception for scene understanding. In particular, we study intensity, color, and texture

primitives. We validate our methodology on applications that present similar charac-

teristics to the conditions encountered in drone vision-based tasks.

The algorithms proposed in this thesis managed to overcome some of the difficulties

present in today’s most widely used methods for image segmentation and object de-

tection. Our algorithms do not need to rely on an a priori model, which is reflected in

the independence of parameter definition and annotated databases. This methodology

benefits the stages of a scene understanding system, which can be integrated into UAVs

to develop vision-based tasks.

Throughout this thesis, we encounter different challenges linked to the nature of

the application problems we seek to address. Specifically, one of the problems of

vision-based application areas is real-time implementation. We did not explore this

functionality in more detail; however, the proposed algorithms have elements that we

can optimize; for example, the image convolution with filter bank using parallel compu-

tation or the calculation of optimal transport metric using a regularization technique.

We further develop the conclusions of this work in the following list.

• We present a framework for landing target detection, one of the main character-

istics of visual tasks with drones. This detector uses the intensity information

to obtain contours at different scales. The algorithm for detection operates in

an unsupervised manner, reducing the number of correct operation parameters

in different complex scenarios. In particular, our framework exploits the multi-

scale image contours in a perceptual approach, taking into account the Helmholtz
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principle and the laws of organization of the Gestalt.

• We present a complete study of the color and texture properties present in images,

and we evaluated the different options for representation and characterization of

color and texture during the analysis of this information.

• We present two image retrieval systems, one based on color information and the

other based on texture information. These systems served to test some concepts

such as the optimal transport as a metric of similarity between distributions, the

spectral analysis properties to represent an image’s textures, and the importance

of the color spaces.

• Motivated by the lack of a general analysis of the Gabor function optimized for

the study of textures in images, we delved into the concepts of signal theory to

propose a framework for the generation of a smooth Gabor filter bank: using

Parseval’s identity, we obtained a transfer function that is closest to one almost

everywhere (in 1-d - frequency, and in 2-d - frequency and angle). That allows

us to measure the energetic density spectrum accurately and use a true metric

to measure the distance between two textures. Previous works on wavelet tex-

ture analysis are only approximative, either greyscale or color, and do not use

a true distance. The most frequent measure is the Kullback–Leibler, which is a

divergence.

• We present the complex multispectral decomposition of a natural image to an-

alyze color, texture, and the relationship between this information in natural

images. This decomposition results from a space-frequency study of Gabor filters

and the study of color spaces of an image through its luminance and chromi-

nance. Such research results in the Gabor-filter-based Complex Color (GCC)

feature space that captures the interaction of perceptual color and texture infor-

mation of an image.

• We present Gabor-filter-based Complex Color (GCC) feature space’s utility, char-

acteristics, and potential by implementing various unsupervised algorithms for

natural image segmentation such as clustering algorithms (k-means, Gaussian

Mixture, and Birch) and graph-based algorithms (Spectral clustering, MST thresh-

old, and Normalized cuts). In addition to the application of these segmentation

methods, we use the feature space to construct a series of high-level texture

features, including fundamental frequency, dominant orientation, main texture-

forming colors, among others.

Furthermore, we showed that our methodology allows us to obtain the boundaries

of the image in a perceptual way. We show that our methodology outperforms
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the BSDS benchmark score of state-of-the-art unsupervised methods for contour

detection (Pb, Canny, Mean-shift, Felz-Hutt).

• All the frameworks presented in this document were implemented using open-

access libraries in order to make them public. The algorithms presented were

coded in python to use the different libraries and frameworks (OpenCV, NumPy,

pandas, scikit-learn, scipy, etc.) existing in this language to work with images

and public facts. This part of the thesis represents a significant programming

effort hidden behind the results shown throughout this document.

• Finally, this thesis belongs to a group of works that maintain traditional com-

puter vision methods as the basis. Although nowadays it is possible to segment

images with an accuracy close to that of a human using supervised algorithms

and convolutional neural networks, we believe that it is possible to increase the

performance, reliability, and explanation of such methods by combining them

with systems based on physical phenomena of the vision. Even though AI so-

lutions offer solutions with unprecedented accuracy scores their most criticised

drawback today is their lack of explainability. We will comment on that in the

Perspectives section below.

Perspectives

We can think of several promising perspectives both in terms of methodology and

applications.

• In chapter 1, for the target detection system, there are different ways to improve

the system. On the part of the methodology, it is possible to add more features of

the image, such as the information of the color and the texture developed in part

two of the thesis. This strategy would make the system more robust, providing

the possibility of creating markers with specific color and texture patterns. On

the implementation side, this system can achieve the analysis and detection of

targets in real-time by migrating the python code to some programming language,

such as C++, which allows the efficient parallelization of functions.

• As for the image search systems presented in chapter 3 it is possible to integrate

both features (color and texture) in a single system that allows the search for

natural color images. Moreover, in terms of implementation, it is possible to

speed up the calculation time of the EMD by implementing a regularization of

the measure.

• The Gabor filter we propose achieves a sense of optimality regarding the trade-off

between space and frequency. However, this filter bank is non-orthogonal, i.e., the
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filter family may introduce redundant information. This feature does not affect

our contour detection application as the EMD manages to handle the redundant

information introduced mainly by the DC component of the signal. If the objec-

tive is the perfect reconstruction of a signal keeping the space-frequency trade-off,

a clue to follow is the study of the logarithmic Gabor function (log-Gabor) [Field,

1987], which naturally eliminates the DC component by the logarithmic trans-

formation of the Gabor domain [Boukerroui et al., 2004].

• In chapter 6, we present a brief review of the state-of-the-art methods for super-

pixel computation. These methods obtain superpixels using intensity and (or)

color information. We have a feature space (Gabor-filter-based) that represents

the texture and color information of an image in which we can use a metric

(EMD). It is natural then to think of an extension of the SLIC algorithm based

on this space for the generation of texture superpixels.

• In chapter 6 we obtain the graph gradients for the luminance and chrominance

channels of the complex color space. We can use these gradients in conjunction

with the ground truth of the BSDS to learn (in a supervised manner) the weight

of each color channel and see its perceptual importance in the segmentation task.

• Regarding the AI techniques for segmentation, we obtained results below the

scores obtained with DL techniques; nevertheless, we do not use any model. A

possibility is to use the proposed Gabor filter bank at the input of a DL network

and obtain a model that will use perceptually relevant features. This network

could be smaller, better regularized, and less greedy (trainable with less data).

• Using the feature space generated from the smooth filter bank over the complex

color space and the optimal transport, we can use most of the morphological

algorithms transparently on images containing color and texture; for example, a

controlled watershed or MST on natural images. This clue has been explored on a

superpixel basis; however, because of the computational time, the implementation

on a pixel basis was not achieved. After optimization of the code, it might be

possible to perform it on a pixel basis.

• Finally, we consider that it is possible to generate a computational tool for the

interactive segmentation of natural images. We can do it using the hierarchical

watershed segmentation given by the perceptual boundaries obtained with the

Gabor-filter Complex Color (GCC) detector presented in this thesis.
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MOTS CLÉS

traitement d’image, primitives de bas niveau, perception humaine, détection, segmentation, méthodes non

supervisées, compréhension de scène, apprentissage automatique, drone.

RÉSUMÉ

Ce travail de thèse porte sur l’extraction de caractéristiques et de primitives de bas niveau à partir des informations

perceptuelles de l’image pour comprendre des scènes. Motivés par les besoins et les problèmes de la navigation basée

sur la vision des véhicules aériens sans pilote (UAV), nous proposons de nouvelles méthodes en nous concentrant sur

les problèmes de compréhension de l’image. Ce travail explore trois informations principales dans une image : l’intensité,

la couleur et la texture.

Dans le premier chapitre du manuscrit, nous travaillons sur les informations d’intensité à travers les contours de l’image.

Nous combinons ces informations avec des concepts issus de la perception humaine, tels que le principe de Helmholtz et

les lois de la Gestalt, pour proposer un cadre non supervisé pour la détection et l’identification des objets. Nous validons

cette méthodologie dans la dernière étape de la navigation par drone, juste avant l’atterrissage.

Dans les chapitres suivants du manuscrit, nous explorons les informations de couleur et de texture contenues dans les

images. Tout d’abord, nous présentons une analyse de la couleur et de la texture en tant que distributions globales d’une

image. Cette approche nous amène à étudier la théorie du transport optimal et ses propriétés comme véritable métrique

de comparaison des distributions de couleur et de texture. Nous passons en revue et comparons les mesures de similarité

les plus populaires entre les distributions pour montrer l’importance d’une métrique avec les propriétés correctes, telles

que la non-négativité et la symétrie. Nous validons ces concepts dans deux systèmes de récupération d’images basés

sur la similitude de la distribution des couleurs et de la distribution de l’énergie des textures. Enfin, nous construisons une

représentation d’image qui exploite la relation entre les informations de couleur et de texture. La représentation de l’image

résulte de la décomposition spectrale de l’image, que l’on obtient par convolution avec une famille de filtres de Gabor.

Nous présentons en détail les améliorations apportées au filtre Gabor et les propriétés des espaces colorimétriques

complexes. Nous validons notre méthodologie avec une série d’algorithmes de détection des limites et de segmentation

basés sur l’espace des caractéristiques perceptuelles calculé.

ABSTRACT

This thesis work deals with extracting features and low-level primitives from perceptual image information to understand

scenes. Motivated by the needs and problems in Unmanned Aerial Vehicles (UAVs) vision-based navigation, we propose

novel methods focusing on image understanding problems. This work explores three main pieces of information in an

image : intensity, color, and texture.

In the first chapter of the manuscript, we work with the intensity information through image contours. We combine

this information with human perception concepts, such as the Helmholtz principle and the Gestalt laws, to propose an

unsupervised framework for object detection and identification. We validate this methodology in the last stage of the

drone navigation, just before the landing.

In the following chapters of the manuscript, we explore the color and texture information contained in the images. First, we

present an analysis of color and texture as global distributions of an image. This approach leads us to study the Optimal

Transport theory and its properties as a true metric for color and texture distributions comparison. We review and compare

the most popular similarity measures between distributions to show the importance of a metric with the correct properties

such as non-negativity and symmetry. We validate such concepts in two image retrieval systems based on the similarity

of color distribution and texture energy distribution. Finally, we build an image representation that exploits the relationship

between color and texture information. The image representation results from the image’s spectral decomposition, which

we obtain by the convolution with a family of Gabor filters. We present in detail the improvements to the Gabor filter and

the properties of the complex color spaces. We validate our methodology with a series of segmentation and boundary

detection algorithms based on the computed perceptual feature space.

KEYWORDS

Image Processing, Low-level Primitives, Human Perception, Detection, Segmentation, Unsupervised Meth-

ods, Scene Understanding, Machine Learning, UAV.
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