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Résumé

Les plaques composites anisotropes constituées de matériaux composites viscoélastiques sont de
plus en plus utilisées dans 'industrie aéronautique et les stratégies de surveillance de la santé des
structures (SHM) basées sur des ondes guidées apparaissent comme un outil trés prometteur pour
surveiller leur état de santé. Dans ce contexte, cette these est dédiée a I’étude de la propagation et de

I’atténuation des ondes guidées dans de telles plaques composites.

Les équations fondamentales de la théorie de I'élasticité tridimensionnelle (3D) sont d’abord passées
en revue. Divers matériaux composites sont introduits en mettant ’accent sur les caractéristiques de
leurs matrices de rigidité. L’approche par superposition d’ondes partielles (PWSA) basée sur I’élasticité
3D est utilisée pour dériver les équations de dispersion des ondes guidées se propageant dans une plaque

composite monocouche.

Dans une plaque composite multi-couches, la PWSA est étendue & la méthode de la matrice de
transfert (TMM) qui relie les variables de champ des couches voisines (déplacement et contrainte) &
travers les matrices des couches locales. Pour un stratifié composite arbitrairement orienté, un probleme
d’incompatibilité de matrice est rencontré en raison de ’anisotropie des matériaux composites, et une
stratégie originale de matrice hybride (HMS) est proposée pour résoudre ce probléme en refondant les
matrices locales des couches incompatibles en une formulation hybride garantissant le bon déroulement
de la TMM. Cette méthodologie est validée dans une plaque quasi-isotrope et une plaque métallique-

composite.

Pour améliorer Defficacité de calcul de la méthode de la matrice globale (GMM), une approche
GMM optimisée est développée qui introduit une condition de symétrie dans la matrice globale pour
réduire son ordre et tire parti des techniques de calcul matriciel et parallele pour promouvoir les per-

formances de calcul. La GMM optimisée est appliquée a une plaque composite aérospatiale comportant
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400 couches, ce qui est le plus grand nombre de couches signalé a ce jour, pour calculer ses courbes
de dispersion. En raison de la complexité de cette structure, le diagramme de dispersion subit un fort
effet de “veering” qui correspond a des courbes de dispersions de méme symétrie s’approchant 1'une
de I'autre mais ne se croisant jamais. L’analyse de la forme des modes et la tomographie des valeurs
MAC sont utilisées pour analyser cet effet. Les résultats révelent que les courbes modales s’approchant

I’une de I'autre échangent leurs formes modales rapidement dans ces régions.

Il est en outre démontré que les équations de dispersion construites avec PWSA pour une plaque
monocouche et avec les approches TMM et GMM pour un systeme de plaques multicouches possedent
une propriété de dichotomie dans le cas de matériaux élastiques purs. Cette propriété indique que ces
équations a valeurs complexes a priori deviennent des équations a valeurs réelles ou imaginaires pures,
en fonction du comportement de certains parametres intermédiaires. Ceci est extrémement utile pour
surmonter les instabilités numériques rencontrées lors du processus de résolution d’équations. Avec la
propriété de dichotomie, le probleme des grand fd de ’approche TMM qui résulte de la disparition de
la partie utile entre les parties réelle et imaginaire des équations de dispersion en raison du mauvais

conditionnement de la matrice de transfert de monodromie est résolu.

Les matériaux composites possedent une viscoélasticité inhérente qui produit des amplitudes
d’ondes guidées qui s’atténuent avec la distance de propagation. Pour prédire les coefficients d’at-
ténuation des stratifiés composites anisotropes, trois modeles d’amortissement (modeles hystérétique,
Kelvin-Voigt et Biot) sont intégrés dans I'approche GMM pour former ’approche GMM amortie
(dAGMM). Le coefficient d’atténuation est calculé a partir des solutions d’équations de dispersion com-
plexes construites avec la dAGMM. Deux composants aéronautiques de I'avion A380, tous deux montés
ou non montés sur I’avion, sont utilisés pour valider la dGMM développée. La premiere est une struc-
ture de capot de soufflante ayant des propriétés quasi-isotropes et la seconde une structure interne
fixe étant une plaque sandwich. Les analyses théoriques et expérimentales révelent que les coefficients
d’atténuation des deux structures ont des propriétés anisotropes en termes de distribution spatiale
malgré leur empilement quasi-isotrope. L’existence de contraintes dans les structures montées peut
grandement modifier les propriétés d’atténuation par rapport aux structures non-montées. Dans les
deux structures, le mode A0 subit beaucoup plus d’atténuation que le mode SO, ce qui indique que la
sélection du mode SO pour le SHM de structures aéronautiques similaires est plus souhaitable dans la

gamme de fréquences sélectionnée.
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Les travaux menés dans la these fournissent ainsi des inspirations pour déployer de maniere opti-
male des réseaux de capteurs en considérant I'influence de 'atténuation des ondes et pour améliorer

les méthodes de localisation des dommages qui tirent parti de 'analyse fréquence-nombre d’onde.

Mots-clés : Surveillance de la santé structurelle, Ondes guidées, Equations et courbes de dispersion,
Stratifiés composites anisotropes, Approche par superposition d’ondes partielles, Méthodes de transfert
et de matrice globale, Propriété de dichotomie, Modeles d’amortissement viscoélastique, Composant

de nacelle A380.
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Abstract

Anisotropic composite plates made up of viscoelastic composite materials are increasingly used in
aeronautic industry and structural health monitoring (SHM) strategies based on guided waves appear
as a very promising tool to monitor their health state. In that context, this thesis is dedicated to the

study of guided waves propagation and attenuation in such composite plates.

The fundamental equations of three-dimensional (3D) elasticity theory are first reviewed. Various
composite materials are introduced with an emphasis on their characteristics of stiffness matrix rota-
tion. The partial wave superposition approach (PWSA) based on 3D elasticity is used to derive the

dispersion equations of guided waves propagating in a single layer composite lamina.

In a multi-layered composite plate system, the PWSA is extended to the transfer matrix method
(TMM) which connects the neighboring layers’ field variables (displacement and stress) through the
local lamina matrices. For an arbitrarily oriented composite laminate, the matrix incompatibility issue
of TMM is encountered due to the anisotropy of composite materials, and an original hybrid matrix
strategy (HMS) is proposed to address this issue that recasts the incompatible layers’ local lamina
matrices into a hybrid form to guarantee the successful proceeding of the transferring process of TMM.

The HMS is validated in a quasi-isotropic plate and a metallic-composite plate.

To improve the computational efficiency of the global matrix method (GMM), an optimized GMM
is developed that introduces the symmetry condition into the global matrix to reduce matrix order
and takes advantage of sparse matrix and parallel computing techniques to promote computing per-
formance. The optimized GMM is applied to an aerospace composite plate having 400 layers, which is
the largest number of layers reported so far, for computing its phase velocity dispersion curves. Due to
the complexity of this structure, the dispersion diagram experiences heavy veering effect which is the

phenomenon of dispersion curves belong to the same symmetry mutually closing but never crossing in

13
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a small region. Mode shape analysis and MAC value tomography are used to analyze veering effect.

Results reveal that the closing modal curves exchange their mode shapes rapidly in these regions.

It is furthermore demonstrated that dispersion equations built with PWSA for a single layer
plate and with TMM and GMM for a multi-layered plate system possess a dichotomy property in
the case of pure elastic materials. This property states that these a priori complex-valued equations
collapse to pure real or imaginary valued equations, depending on the behavior of some intermediate
parameters. This is extremely helpful for overcoming numerical instabilities encountered during the
equation solving process. With the dichotomy property, the large fd problem of TMM results from
the vanishing of effective part between the real and imaginary parts of dispersion equations due to the

poor conditioning of the monodromy transfer matrix.

Composite materials possess inherent viscoelasticity which produces guided wave amplitudes at-
tenuating with propagation distance. To predict attenuation coefficients of anisotropic composite la-
minates, three damping models (Hysteretic, Kelvin-Voigt and Biot models) are integrated into GMM
to form the damped GMM framework (dAGMM). Attenuation coefficient is computed from the solu-
tions of complex dispersion equations built with dGMM. Two aeronautic components of A380 plane
both which are either mounted or unmounted on the plane are employed to validate the developed
dGMM. The first one is a fan cowl structure having quasi-isotropic property and the second one an
inner fixed structure being a sandwich plate. Theoretical and experimental analysis reveal that the
attenuation coefficients of both structures hold anisotropic property in terms of spatial distribution
despite the quasi-isotropic stacking layups of them. The existence of stress in the mounted case can
greatly change the property of attenuation as compared to the unmounted case. In both structures,
A0 mode undergoes much attenuation than SO mode, which gives the guidance that selecting SO mode

for SHM of similar aeronautic structures is more desired in the selected frequency range.

The works conducted in the thesis provides inspirations for optimally deploying sensor networks
by considering the influence of wave attenuation and for improving damage localization methods that

takes advantage of frequency-wavenumber analysis.

Keywords : Structural health monitoring, Guided waves, Dispersion equations and curves, Aniso-
tropic composite laminates, Partial wave superposition approach, Transfer and global matrix methods,

Dichotomy property, Viscoelastic damping models, Component of A380 nacelle.
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Chapter 1

Introduction

1.1 Background of structural health monitoring

One of the most important issues in engineering concerns the monitoring and the early detection
and localization of structural damages in order to prevent catastrophic failures. This process is referred
to as structural health monitoring (SHM) and is expected to provide considerable improvements with
respect to safety and maintenance costs. A SHM procedure is generally made up of five steps: damage
detection, localization, classification, quantification and prognosis [1, 13]. Over half a century, modern
SHM techniques have reached maturity in engineering practice, playing a significant role in evaluating
the integrity and durability of engineered structures and assets [5]. These techniques are typified
by radioscopy, ultrasonic scanning, shearography, dye penetrant testing, magnetic resonance imagery,
laser interferometry, acoustic holography, infrared thermography and eddy-current [14, 15], leading to
vast achievements in scientific and industrial areas. With efficient, continuous and automated SHM
techniques it is possible to identify structural damage at an early stage so as to prevent further failure

occurrence, producing huge economic and human benefit [16].

In aeronautic and aerospace industries, composite materials are increasingly used from the past
decades to the future due to their high performances to other engineering materials, such as the high
strength-to-weight ratio [2]. However, the complexity of damage mechanism of composite materials
increases the difficulty to develop effective SHM techniques for aeronautic composite structures. Com-
posite materials generally experience various damage types during the manufacturing and in-service
process, for example delamination between layers, porosity in the matrix, impact induced matrix crack,

fiber breakage, fiber-matrix debonding and fatigue caused defects [1]. All these occurred damages can
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Figure 1.1 — SHM procedures of aeronautic structures to prevent accidents [1].

cause a significant loss in mechanical properties of the composite structures. Besides, different from
metallic materials, the strong anisotropic nature of composite materials has introduced new challenges
for developing effective inspection techniques suitable for composite materials.

Composite Content by Weight

7] " -
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‘ m— > -
. & 23%

A340 500600
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A320 8777 A340
50,
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B g757 w767 ~O
wmom w 9-6%
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Figure 1.2 — Increasing usage of composite materials in aircraft structures over the past 40 years [2].

The nacelle of an airplane is a complex structure, which is composed of several components with
different materials. Two main components are Fan Cowl and Inlet Cowl as indicated in Figure 1.3(b).
The Fan Cowl structure is made of multi-layered composite materials (carbon fiber reinforced poly-
mers) and the Inlet Cowl structure is made of sandwich materials (composite skins and aluminum alloy
honeycomb core). These materials present heavy anisotropy which poses a challenge for monitoring
the healthy state of nacelles. In the thesis, the anisotropic property of the Fan Cowl structure and the
Inlet Cowl structure will be examined with an emphasis on the attenuation coeflicient of composite

materials.
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Figure 1.3 — Picture of a nacelle [3]

In the family of elastic waves, the theoretical basis of a number of wave types such as bulk waves,
surface waves, interface waves, guided waves, etc., have been well-established and they have received
a variety of applications in engineering problems [17]. Among all kinds of existing SHM techniques,
ultrasonic guided wave strategy is particularly effective in accomplishing the task of monitoring the
health and integrity state of aeronautic composite structures [18]. Guided waves possess the charac-
teristic that they are able to propagate over broad distances and thus can cover a large area with few
sensors and few testing durations. This benefit results in reduced labor and equipment to perform a
test, and makes long-range inspection possible [19]. Moreover, some guided wave modes are rather
sensitive to damage occurring within the inspected structure. Thus, by appropriately configuring the
excitation frequency and transducer polarization, geometry, and shape, effective modes can be excited
to match the application at hand, making ultrasonic wave strategies very versatile [4, 20].

Sensor-actuator-CPU
netzwork

Time of flight based
damage detection

Excitation signal

Actuator > ,
(piezoelectric transducer) Sensor ‘-
(piezoelectric transducer) Signal processing

Figure 1.4 — Guided waves based SHM system [4].

When adopting guided waves as an inspection tool for aeronautic composite structures, dispersion
properties of these waves are an essential aspect that should be considered carefully. More precisely,
dispersion behavior describes the evolution of wave velocity with modes and frequency [21]. Due to the

dispersion property, multiple wave modes can propagate simultaneously in the same frequency range
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MEDIA

and thus superpose to each other, a combination of several propagating modes is probably unavoid-
able [22]. In addition, aeronautic composite materials possess inherent anisotropy that causes direc-
tional dependence of guided waves properties, e.g. varying wave speed along different directions [4].
Both properties of guided waves complexified the analysis of the received wave signal, because wave
packets change their shape with frequency and propagation direction. As a consequence, the aim of
this manuscript is to increase the knowledge of guided waves propagation in composite aeronautic
structures for SHM purposes.

o(k.g)

EJ/E,=5 00

Sa

0 180

Phase velocity [km/s]

0 2 4 6 8 10
Frequency x thickness [Mhzmm]

(a) Phase velocity dispersion curves (b) Phase velocity contour curves

Figure 1.5 — Dispersion and directivity properties of guided waves velocity [4].

1.2 The history of elastic waves in homogeneous isotropic media

The earlier works of investigating elastic waves propagation in layered isotropic media were per-
formed for geophysical applications in that era. There are mainly the following five wave types having

the name of the corresponding discoverer.

As early as in 1885, Lord Rayleigh studied the wave propagation on the free surface of a semi-
infinite solid, which is a surface wave and now named Rayleigh wave. His investigation determined
the velocity of the propagating surface wave [23, 24]. In 1911, Love solved the simplest problem
of wave propagation in a finite thickness layer, which was attached to a semi-space solid having a
different material to the thick layer, and now this wave has been defined as the horizontal polarized
SH wave due to the nature of particles’ horizontally shear motion in the plane of the layer in addition

to the alternative name Love wave [25]. In 1917, Horace Lamb deeply studied the classical free plate
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wave problem, formed the well-known Lamb wave, and his solutions led to two types of wave modes
including symmetric (longitudinal) and anti-symmetric (transverse) ones but they are coupled to each
other during propagation. One important characteristic of Lamb waves is the dispersion, i.e. phase
velocity of a specific mode varies with frequency [26]. Lamb’s pioneering research, at present, laid
the foundation of non-destructive evaluation (NDE) based on Lamb waves techniques [19]. In 1924,
Stoneley wave was discovered by Robert Stoneley who explored the wave behavior propagation along
the interface of two solid semi-space [27]. In 1947, when Scholte studied the Stoneley’s problem,
he replaced one solid medium with water and afterwards discovered a new wave type, now named
Scholte wave, which possesses the property of a lower speed than the bulk wave speeds of both the
solid and the water. Scholte’s work mainly focused on the wave propagation without energy leaking
into neighboring solids but later works by Pilant in 1979 completed the works of wave leaking energy

during its propagation [28].

The above introduced works mainly dedicated to the class of isotropic media. In these works,
the Helmholtz decomposition method is widely used to study the corresponding wave propagation
problem that decouples the equations of motion into two separate wave equations governing two
potential [29]. However, in anisotropic media especially for composite materials, the partial wave
superposition approach based on the linear 3D elasticity theory becomes the prevalent way since it
demonstrates closer physical relations between guided and bulk waves, which are further extended to a
class of matrix-based methods. In the thesis, partial wave superposition approach will be particularly

adopted to study guided waves propagation in a single-layered composite lamina.

1.3 Modeling methods of guided waves in composite structures

Accurately and efficiently computing dispersion curves of guided waves is mandatory to design
a guided wave-based SHM system of aeronautic composite structures. It is the basis of selecting
appropriate excitation frequency and designing the optimal piezoelectric transducer (PZT) network
(position and size of the PZT elements) [30, 31]. However, strong anisotropy and multiple layers
stacking of composite laminates complicate the theory of guided wave propagation in these structures,
thus the conventional single-layered isotropic model, i.e. Rayleigh-Lamb equation [26], is no longer
applicable to composite laminates. In the past two decades, multifarious methods have been developed

to realize this purpose. For anisotropic material its dispersion equations are efficiently built, and the
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Wave type Definition and characteristics Graphic description

Wave length 4
Travelling in a medium as a series of
alternate compressions and
Longitudinal wave | rarefactions, a longitudinal wave
vibrates particles back and forth in the
direction of wave propagation.

Wave propagation / particle oscillation direction

Wave length L

Also termed a transverse wave, a shear
wave is generated under vibration of
particles perpendicular to the direction
of wave propagation.

Shear wave

Wave ion direction

Wave propagation direction

Also defined as a surface wave. a
Rayleigh wave exists along the fiee
Rayleigh wave surface of a semi-infinite (or very
thick) solid, decaying exponentially in
displacement magnitude with distance
from the surface.

Wave type Definition and characteristics Graphic description

Also known as a plate wave. a Lamb Wave propagation direction
wave exists in a thin plate-like
medium. guided by the free upper and ‘
lower surfaces. Infinite wave modes

are available in a finite body. and their
propagation characteristics vary with 5 ~ ) N . ~. s RN 1
entry angle. frequency and structural y. Wi . : . <7
geometry.

Lamb wave

medium |

A Stonely wave is a kind of wave
existing at the interface between two
media or in the neighbourhood of a free
surface.

Stonely wave interface

medium Il

’ Main longitudinal wave Reflected longitudinal wave
Also called a fread wave, a creep wave L
is generated by refraction of a ! @ / / ]
longitudinal wave from a boundary
with the same propagation velocity. It
has similar behaviour to a longitudinal i \
. \
wave ! ™~ Creep wave (along surface)

Creep wave

Figure 1.6 — Elastic waves in solid media [5].

Figure 1.7 — Symmetric and anti-symmetric mode shapes of Lamb waves [4].
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dispersion curves are stably computed. These methods include matrix-based methods, finite element

methods and other methods.

1.3.1 The origin of matrix-based methods for modeling guided waves propagation in layered
structure

Matrix-based methods are mainly applied to multi-layered problems, and they have received a
great development since 1950s from theoretical advancements to engineering applications. There are
three specific methods including transfer matrix method, global matrix method and stiffness matrix

method.

Semi-infinite half-space

SN 4

X,

interface ¢ 1

interface ¢ 2

interface ¢ 4
3 N

Semi-infinite half-space

Example, using three-layer plate with semi-infinite half-spaces.

Figure 1.8 — Labeling system for multilayered plate [6].

Thomson proposed the first version of the transfer matrix method (TMM) in 1950 to relate the
field variables, i.e. the stress and displacement components, at the top and bottom surfaces of the
plate through a series of transfer matrices, which simultaneously takes account of the continuity
of field variables at the interfaces of adjacent layers and the traction-free boundary conditions at
the two outer surfaces of the plate. Haskell subsequently polished Thomson’s version by correcting
several small errors [32]. The Thomson-Haskell formulation conceptualized the simplicity of TMM and

thereafter received a significant number of applications in both seismological and ultrasonic fields [33].
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But one fatal flaw of TMM is the notorious large fd problem which means that at the large product
value of frequency f and plate’s thickness d, the dispersion curves obtained from the solutions of the
dispersion equation built with TMM become unstable. The reason of this problem is attributed to the

poor conditioning of the transfer matrices thanks to the coexisted growing and decaying wave types.

In contrast to TMM, an alternative global matrix method (GMM) was proposed originally by
Knopoff in 1964 [34]. The principal idea of GMM is to assemble all the sub-matrices representing the
continuity conditions of field variables in each layer into a global matrix, along with all layers’ wave
amplitudes to be determined by the traction-free boundary conditions. The main merit of GMM rests
on its numerical stability even at large fd range but at the cost of increasing computational burden.
Limited by the poor computational capabilities in the twentieth century, when the application was
focused on the media having massive number of layers, the global matrix possesses a large size, thus

the issue of computational inefficiency is unavoidable.

In order to fix the large fd problem of TMM, Rokhlin and Wang (2001) developed a new stiffness
matrix method (SMM) by recasting the layer’s transfer matrix to form the stiffness matrix that relates
displacement to stress at the top and bottom side of a layer [35, 36]. Then, the continuity conditions
used in TMM and GMM are now transformed to the recursive procedure from the first to the last layer
in SMM to produce a global stiffness matrix of the whole plate. Finally, the traction-free boundary
condition is applied to the generated global stiffness matrix to obtain the dispersion equation. It has
been proved that SMM is unconditionally stable. One shortcoming of SMM is the degeneration of the
conceptual simplicity in comparison to TMM and GMM. Due to this reason, we do not consider SMM

in the thesis.

1.3.2 The modern matrix-based methods

The modern matrix-based methods are the successors of the classical TMM, GMM and SMM as
introduced above. There are a significant number of references in pursuit of theoretical improvements
and practical applications to these methods. We cannot refer each reference but only concern the

representatives.

Wang and Yuan (2007) exerted symmetry condition in TMM to study the anisotropic property
of composite laminates in terms of the wave characteristic curves in polar coordinate system, i.e.

phase velocity, slowness and group velocity [37]. The improved TMM was successfully validated by
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the experimental data. However, their works cast a veil over the large fd problem inherent in TMM
as stated previously. Maghsoodi et al. (2014) applied TMM to predict the dispersion curves of
metallic-composite plates [38]. They decomposed the coupled numerical problem into two cases, wave
propagation along principal and off-principal axes of material respectively. Whereas, their method, like
any other attempts, is invalid when dealing with the special case that the wave propagation direction
corresponds to the off-principal direction of the composite layers but always to the principal direction
of the metallic layers due to the isotropic property of metal. This causes the underlying different elastic
matrix types issue between the two materials. Nandyala et al. (2019) proposed an effective stiffness
matrix method (ESM) to compute dispersion curves by regarding a multi-layered laminate as a single
monoclinic layer, viz. from lamination to homogenization, such that it improves the computational
efficiency of the traditional TMM [10]. ESM is an approximation method. It fails to predict dispersion

curves at larger frequencies and higher orders [10].

Lowe et al. (2003) developed the software Disperse via GMM which became the pioneering com-
puting program in the past two decades [39]. However, some problems still exist in Disperse such as
missing roots or producing outliers in a mode [40], as well as the limited computational capability
that it can only cope with laminates containing no more than 64 layers [11] (this incapability does
not work for a 400-layered laminate considered in [11]). Pant et al. (2014) recast the conventional
GMM based on 3D elasticity and partial wave superposition approach [8] to compute the dispersion
curves of fiber-metal laminate. Although their method was well examined by experiments, only lower
modes’ data were compared (SO, A0, SHO modes) and the comparison was made in the lower frequency
range (0-600 kHz). Besides, one deficiency of their method is that they did not technically solve the
numerically unstable issue, when waves propagate in the metallic-composite plates, that mismatched
stiffness matrix types are used for the two materials also encountered in [38] (see the comments to
this reference in the prior paragraph). In Pant’s paper, a pseudo-correction measure was employed to
circumvent the issue of mismatched stiffness matrix type by subtracting 1° from the wave propagation
angle when the direction of wave propagation is at the material’s principal axis. But this measure is
still invalid for metallic-composite plates because composite layers remain orthotropic and monoclinic
type of elastic matrix in the principal and off-principal axes, respectively; conversely, the metal layers
always keep the isotropic type in all directions. To solve the same problem of incompatible elastic

matrix type, Barazanchy and Giurgiutiu (2016) proposed a unified formulation [9] by taking all elastic
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matrix types into consideration. However, their method failed to pass the benchmark test for an
unidirectional 50-layered plate due to another numerical instability issue. Ramasawmy et al. (2020)
developed a toolbox to compute dispersion curves of composite materials implemented in MATLAB
called ElasticMatriz based on GMM [41]. This toolbox has limited functionality that it can only
deal with isotropic and transversely isotropic materials, as well as restricting the wave propagation
direction along the principal axes of material, which is evidently not suitable for aeronautic composite

materials having strong anisotropic property.

In order to get stable dispersion solutions, Kamal and Giurgiutiu (2014) combined SMM and TMM
to form the stiffness transfer matrix method (STMM) [42]. In this method, SMM can produce stable
solutions at higher wavenumber region and TMM can give correct solutions at lower wavenumber
region. Combining two independent methods is a bit superfluous in the author’s opinion. Huber
et al. (2018) adopted SMM to compute the dispersion curves of anisotropic composites with large
to 400 layers being a component of the rocket Ariane 6 [11]. Computing such complex structure is
time consuming but that paper did not report the computational time, which is the sole inadequacy.
That work contributed to a stand-alone freeware Dispersion Calculator, which has received substantial

updates by Huber after its creation since 2018.

1.3.3 Finite element methods

Another effective route of modeling dispersion relation is to use finite element methods (FEM),
among which the mainstream is the semi-analytical finite element method (SAFE). Just as its name
implied, SAFE assumes the displacement field of a laminate in two separated forms: in the cross-
section of waveguide 1D or 2D finite element discretization is utilized and in the propagation direction
an analytical harmonic function of propagation distance and time is applied [7]. Benefiting from the
flexible discretization in the cross-section, SAFE has natural advantages for modeling wave propagation
in waveguides of arbitrary cross-section. Bocchini et al. (2011) developed the freeware GUIGUW [43]
based on SAFE to compute dispersion curves of various waveguides containing multi-layered plate,
cylinder, circular tube, square tube and railroad tracks, etc. Recently, a spectral method similar to
SAFE has received increasing attention called spectral collocation method (SCM) based on Chebyshev
polynomials [44] that allocates spectral points in the thickness direction of the plate to discretize each

layer of a laminate, instead of elements in SAFE. This method is promising but may still encounter
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numerical issues such as unstable solutions caused by the non-uniform Chebyshev grid points [45]. In
order to take full advantage of the commercial FEM software such as ANSYS, a wave finite element
method (WFEM) was developed by some researchers, e.g. Mace and Manconi (2008) [46] and Sorohan
et al. (2011) [47]. In the thickness direction, WFEM discretizes the waveguide with finite elements
as the SAFE strategy, but in the propagation direction, only a nominal length, usually a wavelength,
is discretized by an element. In WFEM, the boundary condition is replaced by the Floquet periodic
condition. Given that the wavelength changes with frequency, the elements in the propagation direction
should be re-meshed for different frequencies to retain the consistent accuracy [47], thus WFEM is not

as flexible as SAFE and SCM.
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Figure 1.9 — SAFE model of wave propagation, (a) discretization along thickness direction, (b) three-
node element and degrees of freedom of each node [7].

It should be stated here that the focus of the thesis is the matrix based methods (specifically,
TMM and GMM) since these methods are based on the linear 3D elasticity theory and thus become

the standard manner to derive the analytical dispersion equations of multi-layered plate system [40].

SAFE method will be adopted for validation.
1.3.4 Other methods

The remaining available methods to build dispersion equation for a plate waveguide are partly based
on the higher order plate theory (HOPT) [48, 49], Ritz-Rayleigh method [50, 51], Green’s function [52],
and Green’s matrix [53]. Although the HOPT can take the higher order shear deformation of plates into
consideration, it is still an approximation method. The number of modes accessible from HOPT cannot
be larger than six (three symmetric and three anti-symmetric modes) due to the limited characteristic

matrix orders [49]. Besides, in the higher order modes, e.g. S2 and A2, or at larger frequencies, HOPT
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may produce a poor accuracy of dispersion solutions. The Ritz-Rayleigh and Green’s function based
methods have superiority on characterizing material parameters through ultrasonic acoustic waves,
and have led to some applications for metallic austenite [50, 52], but not for composite materials,

which has been done by the Green’s matrix-based method [53].

1.4 Organization of the thesis

The objective of the thesis is to study guided waves propagation and attenuation in an arbitrarily

oriented composite plate for its potential application to SHM. The thesis is organized as follows:

In Chapter 2, classical equations of three-dimensional (3D) elasticity are reviewed with an emphasis

on the characteristics of stiffness matrix rotation of composite materials.

In Chapter 3, the partial wave superposition approach is used to derive the classical dispersion

equations of guided waves propagating in a single layer composite lamina.

In Chapter 4, the transfer matrix method is introduced to model guided waves propagation in a
multi-layered composite plate. An original hybrid matrix strategy is proposed to cope with the matrix

incompatibility issue encountered in quasi-isotropic plates and metallic-composite plates.

In Chapter 5, the standard global matrix method is introduced. Based on it, an optimized global
matrix method is developed that can greatly improve the computational efficiency of the standard
global matrix method. The optimized version is applied to an aerospace composite structure having

400 layers which is the largest number of layers reported so far.

In Chapter 6, an important property of dispersion equations, named dichotomy property, is orig-
inally explored, which states that the a priori complex-valued dispersion equations in the case of
pure elastic materials collapse to pure real or imaginary valued equations, depending on the behav-
ior of some intermediate parameters. This property is extremely helpful for overcoming numerical

instabilities encountered during the equation solving process.

In Chapter 7, the methodology of predicting the frequency and spatially dependent attenuation
is proposed by using the damped global matrix method. Two engineering case studies are conducted
to validate the effectiveness of the methodology. The two involved structures are the components of
ATRBUS A380. Using the actual and in-service data of the practical aeronautic structures makes a

great contribution to the state-of-the-art and thus this chapter escorts the initiative of closing the gap
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between research and industrial deployment for SHM [54].

The general conclusions and major contributions of the thesis are presented in Chapter 8, along
with several perspectives for future works. To finish the thesis, a short list of publications is provided

in the end of this chapter.
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Chapter 2

Fundamentals of wave propagation in solids

In this chapter, some fundamentals of elastic wave propagation in solids will be reviewed [2, 4, 33],
including the basic equations of 3D elasticity, stiffness matrix types of various materials, stiffness matrix
rotation, the expanded field equations of triclinic material and bulk wave propagation in solids. These

contents are the basis of the subsequent chapters.

2.1 Basic equations of 3D elasticity

The mechanism of wave propagation in solid media is governed by the 3D elasticity theory. Thus,
the basic equations of 3D elasticity will be introduced firstly, including stress-strain relation, strain-

displacement relation and elastodynamic equations of motion.

2.1.1 Stress-strain relation

For a cubic element representing a tiny volume of a certain solid material, its 3D stress state can
be illustrated in Figure 2.1 in Cartesian coordinate system O — xijzoxs. In this figure, the labelled
quantities (011, 092, 033) are the normal stresses, and (012, 021, 013, 031, 023, 032) are the shear
stresses. Due to the reciprocal condition, i.e. 019 = 091, 013 = 031, 093 = 032, the nine variables of
stresses reduce to six, that form the stress vector . Correspondingly, there are six variables of strain
(€11, €22, €33, €23, €13, £12) that form the strain vector e. For a typical 3D elastic problem, there are

three displacement variables (u1, ug, uz) that form the displacement vector u. The relation between
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stress and strain is characterized by the general Hookes’ law as formalized in Eq. (2.4).

T
g = [0’11, 022, 033, 023, 013, 012} (2-1)
T
€= {511, €92, €33, €23, €13, 612} (2.2)
T
u= {ul, U9, ug} (2.3)
where, T is the matrix transpose operator.
X3
033
1
1
1 —=032
: 031
1
! J11
1 é
: O1g < = = =7 023
1
0214 : |
o |~ 'i/ : 013 *013 =022
1 1 021
0; 1
23’ 1 012
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, e
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X1
Figure 2.1 — The stress state of a cubic element of a solid material.
[o11] [C11 Ci2 Ciz3 Cuu Cis5 Cig] [en]
092 Co (a3 Oy Co5 Cop| | €22
o33| C33 C34 C35 Csp| | €33 (2.4)
023 Cus Cus Cugl| |26e23
013 sym Cs5 Cse| |2¢e13
[o12] L Coe6] 12212

where, the coefficients matrix in Eq. (2.4) is denoted by C € C%%6 which is the stiffness matrix of the

material having symmetric property. Since it characterizes the elastic or viscoelastic behavior of stress

and strain, it is also called elastic matrix in pure elastic materials or viscoelastic matrix in viscoelastic

materials.
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2.1.2 Strain-displacement relation

The relation between strain and displacement is characterized by the geometric equations as for-

malized in Eq. (2.5).

— Ou — 10w | Oug
€11 = o0z’ €12 = 2(8x2 + 8:!21)’
__ Ou __1/0u ou,
€22 = ax§7 €23 = 5((%; + 81’2)’ (25)
o) 1,0 0
€33 = guyr €13 = 3(Gm T auy)-

2.1.3 Elastodynamic equations of motion

Inherently, the dynamic behavior of particles in material is governed by its elastodynamic equations
of motion, representing the equilibrium condition in the dynamic sense, as presented in Eq. (2.6), where

p is the mass density.

doi1 + doi2 + do1z 0%y

0x1 Ox2 oxs =pr 82t2
do2 dooo dooz __ ,0%us
0x1 + Oxa + oxs =0r %t2 (26)
dos1 dosa Ooss __ 0“usg
oz1 T 0zs T ows — P o2

2.2 Stiffness matrix types of various materials

In Eq. (2.4), there are 21 elements in the stiffness matrix C. However, for different materials, the
number of elements in C and its types are different. In material science, materials are physically clas-
sified into five types according to the number of symmetry axes inherent in it, i.e. triclinic, monoclinic,
orthotropic, transversely isotropic and isotropic materials [55]. Mathematically, this classification is
equivalent to count the different number of independent elements in the stiffness matrix C, in other
words, depending on the stiffness matrix type. During deriving the wave propagation equations in
the next chapter, the stiffness matrix types play a significant role for the wave propagation property.

Thus, the five materials along with their specific stiffness matrix types should be introduced firstly.
2.2.1 Triclinic material

For triclinic material, there are 21 independent constants in the stiffness matrix Cr, which directly

succeeds from the general type of the stiffness matrix C in Eq. (2.4). The set of all stiffness matrices
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of triclinic materials is denoted as Cy.

2.2.2 Monoclinic material

[C11 Ci2 Ci3
Coy  Cag
Cs3

sym

Cuu Cis
Coy Cos
C3s Css
Cu Cys

Css

Ci6]|

U
Cs6
Cae
Cse
Cées

For monoclinic material, the number of independent constants in its stiffness matrix Cy; reduces

to 13, as presented in Eq. (2.8). All stiffness matrices of monoclinic materials constitute the set Cp4.

2.2.3 Orthotropic material

[C11 Ci2 Ci3
Coy  Cag
Cs3

sym

0 0

0 0

0 0
Cas Ciys
Css

Cie
Ca
C36
0
0
Coee

For orthotropic material, there are nine independent constants in its stiffness matrix Cgo, which

belongs to the set of stiffness matrices of orthotropic materials denoted as Cp.

[C11 Ci2 Ci3
Coy  Cag
C33

sym

o O O
o O O O

Cua
Css

O O O O O

Cee ]

(2.9)

In engineering, Cg is generally obtained from the elastic constants (Fy, Ea, E3, Gas, Gs1, G2,

V93, V13, V12) measured through the standard mechanical test for the normal shaped specimens [55].

/B,

Co

—vi2/E1 —v13/E;
1/E2 —V23/E2
1/ B
sym
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2.2.4 Transversely isotropic material

For transversely isotropic material, there are five independent constants in its stiffness matrix Crpy.
The widely used unidirectional composite materials in aeronautic and aerospace engineering just belong
to this type. This material possesses the transversely isotropic property, i.e. in the plane transverse
to the fiber direction, material properties are isotropic [2]. In the thesis, we classify Ct; € Co based
on the fact that Cry has the same shape as Co in terms of number and positions of zero elements but

with less number of independent coefficients.

[C11 Ci2 Chia 0 0 0
Coy  Cag 0 0 0
Cog 0 0 0
Crr = C225023 0 0 (2.11)
Sym 055 0
L Css ]

In engineering, Cry can be obtained from the experimentally measured elastic constants (E7, Fo,

G2, V12, 123).

_1/E1 —1/12/E1 —1/12/E1 0 0 0
1/E2 —1/23/E2 0 0 0
B 1/E; 0 0 0
Crr = 1/Gys 0 0 (2.12)
sym 1/Gia 0
L 1/Ga]
where, Gog = %

2.2.5 Isotropic material

Isotropic materials only have two independent constants in its stiffness matrix C;. Most metallic
materials belong to isotropic type, which is denoted by the set notation Cz. In Section 2.3.3, we further

classify Cy € Cz C Co.

[C11 Ci2 Ch2 0 0 0
Ci1 Crz 0 0 0
C11 0 0 0
Ci = C11EC12 0 0 (2.13)
sym C’115C'12 0
0115012
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The Lamé constants A and p are widely used to represent the elastic properties of isotropic mate-

rials.
(A +2u A A 0 0 O]
A+ 2u A 0 0 0
A+2u 0 0 0
Cr = L0 0 (2.14)
sym w0
L i

where, the Lamé constants can be computed from Young’s modulus £ and Poisson’s ratio v according

to A =

. F and v are generally measured from experiments.

FEv E
Tra—2v) = 2010y

2.3 Stiffness matrix rotation

Egs. (2.9)(2.11)(2.13) show the stiffness matrix types of orthotropic, transversely isotropic and
isotropic materials, which are measured along their respective material’s symmetry axes, i.e. the
principal axis x; illustrated in Figure 2.2. However, in plate, guided waves can propagate at a general
off-principal direction. Thus, it is necessary to study the stiffness matrix types of these materials along
the off-principal axis direction (2] as illustrated in Figure 2.2). In elasticity theory, this task can be

completed based on the tensor rotation rule, which is introduced in this section.

X3, X3
0
9 /
o o o o o

o o

The fiber direction

Figure 2.2 — The schematic diagram of a composite lamina.

2.3.1 Voigt notation and tensor rotation rule

The first step is to transform the general stiffness matrix €, into the fourth order tensor c;;x; via

the Voigt notation, which is examplified in Figure 2.3 and detailed in Eq. (2.15).
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DTN T Take 13, as the example

11 1
(14 9‘)_|_LC 2
22 5 1231= 112 311
33 3 6 5
23 or 32 4 —
13 or 31 5 l c
12 or 21 6 €1231 = Ces

Figure 2.3 — The example of Voigt notation.

[C11 Ci2 Ci13 Cu Ci5 Chg] [c1111 c1122 €1133 C€1123  C1131 C1112]
Crz O Coz3 (o (a5 Cop C2211 C2222 2233 2223 2231 C2212
Cc_ Ci3 Coz3 (33 (O34 C35 Csg o O _ |C3311 Css22 Cass3 Caszs Cassl Casi2 (2.15)
Cuu Ca Czp Cy Cys Cye €311 C2322 2333 2323 (2331 C2312
Cis Cos C35 Cy5 Cs5 Cse C3111 €3122 3133 C3123 C3131 C3112
[C16 C2 C36 Cus Cse Ceel [C1211 C1222 C1233 C1223 C1231 C1212.

The second step is to compute the rotation matrix shown in Eq. (2.16) that is based on the rotation

of coordinate system around the axis x3 as illustrated in Figure 2.2.

cos(f) sin(d) O
R(#) = |—sin(f) cos(f) 0 (2.16)
0 0 1

where, 6 is the rotation angle being positive for counterclockwise direction and negative for clockwise
direction.

/

mnop Pased on the tensor multiplication rule

The third step is to compute the rotated tensor ¢
formalized in Eq. (2.17a), where the Einstein summation convention is implied for the repeated indices.
To ease computation, the tensor multiplication form in Eq. (2.17a) is expanded to the linear summation

form in Eq. (2.17b).

c;nnop = RmianRokRplcijkl (217&)

3 3 3 3
Crunop = Z Z Z Z RpniRnj Rok Ry cijra (2.17b)
i=1 j=1k=11=1

/

Finally, by inversely applying the Voigt notation shown in Eq. (2.15), the rotated tensor ¢ can

mnop

be transformed back to the matrix form C/_, and the rotated stiffness matrix C’ is just obtained. Note

pq°

55



2.3. STIFFNESS MATRIX ROTATION

that although the original stiffness tensor c;;1; in Eq. (2.17a) represents the type of triclinic material,

it can be written for any other types.

2.3.2 Example of stiffness matrix rotation

The orthotropic, transversely isotropic and pure isotropic materials are widely used in aeronautic

engineering. Their stiffness matrices are employed here to demonstrate the process of stiffness matrix

rotation. To this end, the four rotation steps are firstly applied to the stiffness matrix of the orthotropic

material Co defined in Eq. (2.9) with an arbitrary angle §. The rotated matrix Cp, is obtained in

Eq. (2.18), with the detailed elements listed in Eq. (2.19).

Among all possible rotation angles, there is a special one § = 90° which makes the elements C1g,

Chs, Chg, Cis = 0 in the rotated Cfy, see Eq. (2.20). This angle corresponds to the transverse direction

in relation to the fibers in the plate plane, in other words, the axis z is rotated to coincide with the

axis g in Figure 2.2.

C2 Ci3 0 0 O [Cli Cl, Ciz 0
C22 023 O 0 0 Cé2 053 O
C33 0 0 0 Rot{Co,0} r Cég, 0
Cy 0 0 r~o = Cly
sym Cs5 0 sym
Co6 | L

0
0
0

Cls

Css

Cie |
Cag
Cso
0
0
s
(2.18)

where, Rot{Cp, 0} is the rotation operator that rotates the stiffness matrix Co with angle 6.

C1y = C11 cost  + Coasint 6 + (2C12 + 4Cgg) sin? 0 cos? 6,
Ciy = (C11 + Oz — 4C¢g) sin? 0 cos? § + Cya(sin* 6 + cos* ),

Ci3 = O13c082 § + Coz8in? 0,

Ci = (Cr2 + 2Cs6 — C11) sin @ cos® § + (Cag — Ch2 — 2Cgg) cos Osin® 0,
Clhy = Cy18in* 0 + Cag cos* @ + (2013 + 4Cgg) sin? 6 cos? 0,

Chs = Caz cos? § + Ch3sin 6,

Chs = (Chr2 + 2Cg6 — C11) cos O sin3 § + (Cag — Ch2 — 2Cgg) sin 0 cos® 0,
C33 = Cis,

Chs = (Caz — C13) sinf cos 0,

Cly = Cagcos? 0 + Cs5sin? 6,

Cl5 = (Cua — Cs5) sinf cos b,

Cls = Cs5 cos® 0 + Cygsin? 0,

Cls = Cog(sin® 0 + cos* 0) + (C11 + Cag — 2C19 — 2C46) sin? § cos? 6.
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[Ci1 Ci2 Ciz 0 0 0] [Caa Ci12 Ca3 0 0 0]
Cay  Cas 0 0 0 Ci1 Ci3 0 0 0
Cs3 0 0 0 Rot{C(,90°} ’ Cs3 0 0 0
Co = Cu 0 0 »Co = Css 0 0
sym Css O Sym Cy O
L Cée6 | L Cée |
2.20)

For the rotated stiffness matrix of the transversely isotropic material Cl, it can be directly ob-
tained based on Eq. (2.19) in which the four constants Ci3, Cs3, Cy4, Cgs are now replaced by
Ci3 = Cha, C33 = Cyo, Cyy = %, Ces = Cs5 because there are only five independent constants
in Cry as indicated in Eq. (2.11). After substitution, one can know that the resulting C;; keeps the

same form as C{, in Eq. (2.18). This is the reason that we classify Ct1 € Co in Section 2.2.4.

The elements of Cp in Eq. (2.13) are further substituted into Eq. (2.19) to derive the rotated
stiffness matrix of the isotropic material C; as concluded in Eq. (2.21), which shows that C;=C;.
This outcome conforms with the property of isotropic materials that has the highest symmetry such

that its mechanical properties do not change with wave propagation direction.

[C11 Ci2 Cr2 0 0 0 7
Cn Ci2 0 0 0
011 0 0 0 Rot{Cy,0}
Ci= C11—Ci2 0 0 —5
sym 2 0115012 0
C11—=Ci2
- 2 (2.21)
[C11 Ci2 Cr2 0 0 0
Cin Ci2 0 0 0
C11 0 0 0
I __
CI_ 0115012 0 0
sym 0115012 0
0115012

2.3.3 Characteristics of stiffness matrix rotation

From the presented results of examples, the following characteristics can be observed. These

characteristics is the basis of Chapter 3 and 4.

1. After rotation from the principal axis x; to the off-principal axis 2{ when 6 # 0° and 90°, the

rotated C{,, C/iy € Cuq, see Eq. (2.18).
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2.4. EXPANDED ELASTODYNAMIC EQUATIONS OF MOTION OF TRICLINIC
MATERIAL

2. When 6 = 0° or 90°,* the rotated C{,, C%; € Co, see Eq. (2.20).

3. Regardless of the rotation angle 0, the rotated C; € Cz, see Eq. (2.21). Mathematically, we can
classify C| € Co by defining Cz C Cp. In Section 4.8, we will see the benefit of this classification

during the study of the coupling issue between Lamb and SH waves in a composite laminate.

4. For completeness purpose, the characteristics of the rotated Cj; € Cpq and Cl. € Cr are given
here even if they are not presented in section 2.3.2 thanks to the complexity of the two cases.
This characteristic manifests that for monoclinic and triclinic materials, the rotation process

does not change their respective stiffness matrix types.

The above characteristics of stiffness matrix rotation are summarized in Table 2.1.

Table 2.1 — The characteristics of stiffness matrix rotation

Matrix form in the Number of Matrix form in the
(minor-)principal axis direction independent coefficients off-principal axis direction
CrelCr 21 ClLeCr

Cu € Cum 13 Ci € Cum

Co €Co 9 /O € Cm

Crr € Co 5) C/TI eC M

CielCz CCo 2 Ci=CieCzCCo

2.4 Expanded elastodynamic equations of motion of triclinic material

The elastodynamic equations of motion, Eq. (2.6), are the basis of deriving wave propagation
equations in the next chapters. To facilitate the derivation, the contracted Eq. (2.6) are expanded
in this section being representative of triclinic material. To this end, we substitute Eq. (2.5) into
Eq. (2.4) to get the stresses described by displacements as presented in Eq. (2.22). Then, substitut-
ing Eq. (2.22) into Eq. (2.6), the deduced elastodynamic equations of motion are now expanded in
Egs. (2.23)(2.24)(2.25). For other kind of materials and different wave types (bulk waves, SH and

Lamb waves as well as their coupling) involved in the next chapters, all the counterparts can be

1. Although 6 = 0° does not mean an effective rotation, it is still applied here for notation homogeneity purpose.
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2.4. EXPANDED ELASTODYNAMIC EQUATIONS OF MOTION OF TRICLINIC
MATERIAL

simplified from the equations corresponding to triclinic material [33].

o] Oug 0 0 0 o] o] 0 0
01120118214-028 +038u3+014 %ﬁ-}-afgg + Ci5 TZ;-I-TZ? + Cig 67;;_’_87;?

_ duy U2 Qug | Oug Qui | Oug Our | Oug
022 = Crag, + C22a + Co 38:03 +Cou (gt + 502 ) +Cos (Gor + o) T C2 (G T 5

— Quy OQug OQug Ougy | Oug Ou; | Oug Oup | Oug
013 ox1 + 023 8:1:2 + C 36303 + 034 oxs + Oxo + 035 Oxs3 + ox1 + 036 Oxo + ox1

o duz | Ou: oy Ous duy 9
0148u1+0451;§+034533+044 ot s ) + Cus (G2 + 552 ) + Cas ( ar + 52

U1 Oug Oug Ousg Ouy Oug Ouy Oug

0156 + Co 58x2 +Cs 58953 + Cus (Guz + s ) T 055 ( 0y + 000 ) T C56 ( Gy T 52

duy OQua. Qug Qua | Oug Ouy | Oug Ouy | Ouaz

012 = 016 Ox1 + C% Oxo + 036 oxs + 046 ox3 + Oxo + 056 Ox3 + oz + 066 Oxo + ox1

(2.22)

82u1 8 U1 82 82U1 82U1 82u1
2 2 _ _
Cuger TCn g T0nga -+ 2C5 oy 2 00 D303

82uQ 82u 82u 0%us D%us
C C C C _—
o7 + Cos 923 +Cys e + (C12 + Cep) D210y

0? 0? 0? 0 0%u
+ (Ca6 + C23) 8:1:2;23;3 + Ci1s 8;%3 + Cyg 8u23 + Css o 33 + (C1a + Cs6 e 2

aQU3 0? us a2“1
a$18$3 + (036 + 045) 81’28%3 =f 8752

+Ci6—5—

+ (013 + C55)

9%uy 0%y 9%uy 9%uy 0%y
C C C + (C C
1661-1- 268 L 4583 + (Ci2 + 66)618x2

aZul 52 Uy 82u2 62u2 82162
+ (Ca6 + Cs) Dadz, T 8 823 913 D2 dx10xs

82U2 821@ 82U3 8QU3 a2U3
2 2 —— ——
200 g s T 2 M o, 02
aQU3 82U3 a2U3 821@
31‘18332 + (036 + 045) 8$18$3 + (023 + C44) -

(2.24)

+ (C46 + 025)

82u1 82'LL1 82u1 82u1 82'LL1
— C C
0z? + Cas z3 +Css ox % + (Cua+ Cso) 0x10x9
82u1 82 8 Uz
C Cos C3p——
6x283+ 56324—28%-1- 34

0%us 0%us 0%us 0%us 0%us
+ (036 + C45) 92105 + (023 + 044) m + CE%W + Cyy 922 + C33 922

82U3 8QU3 8%3 82U3
2 — +2 — 2 49 =
+2Cus 0x10x2 +2C55 0x10x3 + 205 O0x90x3 p ot?

Cis

+ (036 + 045)
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2.5. BULK WAVE

2.5 Bulk wave

Bulk wave is the basis of the partial wave superposition approach (PWSA) used to derive the
dispersion equations of guided waves in a single-layered plate studied in the next chapter. Thus, the
concept of bulk wave in solids will be introduced briefly in this section for monoclinic material. For

other kind of materials, all the counterparts can be simplified from the corresponding equations.

2.5.1 Derivation of bulk wave

In the stiffness matrix of monoclinic material, the following elements are zero: C14 = 0, C15 = 0,
Coy =0,Co5 =0,C34 =0,C35 =0, Cyg =0, C56 = 0. Applying this condition to Eqgs. (2.23)(2.24)(2.25),

the simplified equations are obtained as follows.

0%uy 9%uy 9?2 H? 9%us D%usy 0?2
Ci1—=— + Cg6—=— + Cs5—=—- ul +2C16 L Cro——s + Cog—=— + Cus 2
8 8 3 O0x10x9 8 6 8x3 (2.26)
+ (Cha + Cg) 82 + (Chs + Css) Ous + (Cs6 + Cs) Pus _ 0w |
12 66 8 13%2 13 % 6w16m3 36 5 61’28263 =P 8t2
(92 82 a2u 9%u (92 9%u
Cio—= + Cas + Cis—— + (Cr2 + Ce) ! + Co6 = + Cog = 2
0%us 32uz 0%us 82 u3 0%us '
C 2C C C C C =
TG 4+ 20005+ (Co + Cas) gy =+ (Ca + Caa) Dmaors P oR2
82U1 6221,1 82’&2
(C13 + Css) 021015 + (C36 + Cus5) 02901 + (C36 + Cas) 92101 22
9%us 0%us 9%us 0%us 9%us 0%us '
v "2 ) _
+ (Caz + Cua) D903 + Css o2 +Cu 913 + C33—— 922 +2Cy5 0100, "o

For bulk wave propagation in a solid in the direction provided by the wave vector E as illustrated

in Figure 2.4,2 the displacement fields can be expressed as the sinusoidal form shown in Eq. (2.29).

u] — Ujeiﬁ(n1w1+n2$2+n3x3—vt) (] — 1’ 2, 3) (229)

2. The media admissible for bulk wave propagation should be an unbounded solid space, however the unidirectional
composite plate shown in Figure 2.4 is only for illustration purpose.
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2.5. BULK WAVE

A3

I
oooooo/o

The fiber direction

2

Figure 2.4 — The schematic diagram of bulk wave propagation.

where, i is the imaginary number unit, £ and v are wavenumber and velocity, respectively, ¢ is the
time variable, U; is the amplitude of u; along axis x;, and n1, no, ng are the directional cosines of the

wave vector &.

With Eq. (2.29), the first order partial derivative of u; can be easily computed as follows [2, 33].

Ouj __ . ié(niz1+nozatngzs—vt) _ ; )
= i&n1Uje ( ) = iEniu;

Ouj _ i£n2Ujeig(n1x1+n2x2+ngzgfvt) — ifnguj

812 =
gTu; — i£n3Ujei§(n1x1+n2:02+n3137vt) — 1§n3u] (] 1) 2’ 3) (230)
% _ 7i§vUjeif(n1x1+n2x2+n3I3—’Ut) = —ifvu;

Furthermore, Eq. (2.31) shows the second order partial derivative of u;.

Puj _ 22 Puj 42

5 = =N, Gaae, = & Ny,

82u3 . 2 9 82u]~ . 2

ox3 —£ U5 Brydrs — —£ nansugj, (2 31)
0%u; 2.9 &u; 9 ' )
022 _5 n3uj, 911073 _5 ninguy,

0%u; 2 92 .

atQJ = _é. V7Uy, (] = 1a273)

Substituting Eq. (2.31) into Eqgs. (2.26)(2.27)(2.28) finally leads to the following eigen equation,

KU = \U, which is termed as the Christoffel equation in wave propagation problems.

A D FE||U Uy
D B F||Uy| = po? |Uy (2.32)
E F C U3 U3

where, the elements of the matrix K are listed below, A = pv? and U = [Uy, Us, Ug]T are the eigenvalue
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2.5. BULK WAVE

and eigenvector, respectively.

A = Ciini 4 Cgen3 + Cssn3 + 2Ci6n1na,
B = Cggn? + Coan3 + Cyyn3 + 2C26n1n2,
C = C55n% + C44n% + ng'ﬂ% + 2C45n1ns9,
D = Cy¢nf + Cagn3 + Cusni + (Chz + Ceg)ning,
E = (C13 + Cs5)ning + (C36 + Cas)nans,
F = (C36 + Cys5)ning + (Caz + Cyq)nong.

(2.33)

For pure elastic media, ® K is a real symmetric matrix since all the parameters in Eq. (2.33) are real
numbers, which immediately leads to the two properties based on the fundamentals of linear algebra
that all the three eigenvalues (A1, A2, A3) are real numbers, and the three eigenvectors (U;, Uy, Us)

are mutually orthogonal [56].

Each pair of eigenvalue and eigenvector of the Christoffel equation corresponds to a certain wave
type amongst the shear horizontal wave (SH), shear vertical wave (SV) and longitudinal wave (L) that
are characterized by the dominated component of polarization Us, Us and Uj, respectively. In some
situations, if there is not a dominated component for the solved eigenvector [Uy, Us, Ug]T (that can
always happen in anisotropic materials), a prefix quasi or ¢ could be attached to the abbreviations
SH, SV and L to represent the coupled waves, namely, qSH, qSV and ql. waves. This usage is accepted
by some references [37, 57, 8], but we do not emphasize it in the thesis, thus the prefix quasi or ¢ is

omitted unless stated otherwise.

2.5.2 Numerical example

A transversely isotropic material is adopted to illustrate the three elementary bulk waves. Its
material properties are cited from [58] and listed in Eq. (2.34) for convenience. The (minor-)principal
axes of this material are consistent with the coordinate system of Figure 2.4. We study the bulk
waves propagating in the xz; — x9 plane, thus ng =0, E = 0 and F = 0 in Eq. (2.33), which leads to
the decoupled polarization Us from U; and Us. n; and ne can be easily computed from the specific
directional angle of the wave vector E in Figure 2.4. Thus, for each direction angle, the three bulk
wave velocities can be obtained by solving the eigenvalue problem in Eq. (2.32). By rotating the wave

vector E from 0° to 360°, the polar plot of the three bulk wave velocities, characterizing the anisotropic

3. Elastic material makes the real-valued stiffness matrix and is considered in Chapters 3, 4, 5, 6 of the thesis. In
contrast, viscoelastic material leads to the complex-valued stiffness matrix and is studied in Chapter 7.
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2.6. CONCLUSION

effect of the three waves, is illustrated in Figure 2.5(a). In literature, the slowness curves being the

inverse of wave velocity are also widely used [37], and they are presented in Figure 2.5(b). One can

see that SH and L waves hold an anisotropic effect, and SV wave is quasi-isotropic. This is due to the

reason that SV wave polarizes along Us direction which is decoupled from U; and Us directions.

[155.6 3.7 3.7
15.95 4.33
C— 15.95
sym
90
120 10000 60
8000
150 6000
4009
180
210
SH
SV
—
240 300
270

(a) Velocity (m/s)

5

0
0
0
.8

30

330

0
0
8 CGPa, p=1600kg/m?>. (2.34)
0
7.46 |
90
120 06 60
4
150 30
0.2
180 | 0 :C 0
L
210 330
240 300
270

(b) Slowness (s/km)

Figure 2.5 — Elementary bulk waves.

2.6 Conclusion

This chapter reviews the fundamental equations of 3D elasticity including stress-strain relation,

strain-displacement relation and elastodynamic equations of motion. Five widely used composite ma-

terials are introduced in terms of their respective stiffness matrix, specifically, triclinic, monoclinic,

orthotropic, transversely isotropic and isotropic materials. Stiffness matrix rotation is achieved by

using Voigt notation and tensor rotation rule, along with the characteristics of the rotated matrix
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2.6. CONCLUSION

shown in Table 2.1. The expanded field equations of triclinic materials lead to bulk wave equations in
solids. This chapter defines many concepts and presents some fundamental equations and character-
istics, and thus establishes the basis of subsequent chapters for studying guided waves propagation in

plate structure.
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Chapter 3

Guided waves propagation in a
single-layered plate

This chapter mainly introduces the partial wave superposition approach (PWSA) which is based
on 3D elasticity of Chapter 2 to model guided waves propagation in a single-layered composite plate.
Traction-free boundary condition and symmetry condition will be employed to derive dispersion equa-
tions. For different composite materials, Lamb and SH waves will be coupled or separated according
to the specific material characteristics. This chapter is a prerequisite for the following chapters that

focus on guided waves propagation in a multi-layered composite laminate.

3.1 Wave propagation model of a single layer plate

The guided waves propagating in a single-layered plate schematically shown in Figure 3.1(a) is
considered in this chapter. The plate extends infinitely in both directions of 1 and x5 axes, and the
wave is guided for propagation along the direction of x; axis. In this condition, the plane-strain state
in xo direction is satisfied which leads to the displacement field being invariant to xs. Thus, the time
harmonic displacement expression in Eq. (2.29), which characterizes bulk waves, is now changed to

the following one.

uy Ur U
u= |us| = U*2 ei{(lerangvt): Vv eié(mlJrangvt) (31)
u3 Us w

where, a is the ratio of wavenumbers between x3 and x; direction as illustrated in Figure 3.1(a), v is

the phase velocity,! U = Uy, V = Uy, W = Us are the amplitudes of displacements along x1, =2, =3

1. In somewhere of the thesis, phase velocity is signified by c,.
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3.1. WAVE PROPAGATION MODEL OF A SINGLE LAYER PLATE

direction, respectively.

Top surface: /Gj3|x3=h =0 (j=123)

X3 _
@ | |4=2h ngj:af—’fl
2T gy =¢

Bottom surface: \Uj3|x3=—h =0 (=123)

(b)

Figure 3.1 — Wave propagation model of a single-layered plate showing (a) boundary condition, (b)

symmetric condition and (¢) anti-symmetric condition.

Considering the traction-free boundary condition (BC) at the two surfaces of plate as illustrated in

Figure 3.1(a), the three stresses (033, 023, 013) should be zero when x3 = +h as formulated in Eq. (3.2).

Furthermore, the displacement and stress fields have symmetry condition (SC) at the midplane of the

plate [37] that is presented in Egs. (3.3) and (3.4).

(033, 023, 013]53::|:h =10,0,0]" for boundary condition

[us, 013, 023]53:0 = [0, 0, O}T for symmetric condition
[u1, ua, 033}53:0 =10, 0, ()]T for anti-symmetric condition

where, h is the plate’s half thickness and x3 = 0 indicates the midplane of the plate.

To facilitate the following derivation of dispersion equations, the first and second order partial
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TRICLINIC MATERIAL

derivative of displacement has been presented in Egs. (3.5) and (3.6), respectively, based on Eq. (3.1).

Ou; _ . Nlé(x1+ars—vt) _ X
Tm—lije (z1+ows )—1£u]

8 .
7 = (=123 (35)
: . . _ . s 4y :
% = 1§ane15(x1+ax3 vt) — ifau;
Ou; . i —ut .
S = —iboUjelsErtass—ut) — _jcyy,
0%u; 2 0%u,;
(‘):E%J = =&y, 39[»’18]%’2 =0,
0%u; u;
89:% - O’ Ox20x3 ~ 0’ (3 6)
0%u; —§2C¥2'LL‘ 0%u; —fQOéU' ’
axg - 70 Ox10x3 vl
0%u; 2 92 .
o = —§ v U, (1 =1,2,3).

3.2 Dispersion equations of coupled Lamb and SH waves in triclinic material

With the specific form of wave field in Eq. (3.1), the boundary condition in Eq. (3.2) and the
symmetry condition in Eqgs. (3.3)(3.4), dispersion equations of guided waves propagating in a single-
layered plate with triclinic material will be derived in this chapter. The same derivation procedure

will be applied to other materials.
3.2.1 Christoffel equation

Substituting Eq. (3.6) into Eqgs. (2.23)(2.24)(2.25), the following Christoffel equation K(a)U = 0

can be derived.
Ku(a) Klg(a) K13(Oé) U 0
Klg(()é) Kgg(a) KQg(Oé) Vi=10 (37)
Kiz(a) Kos(a) Kss(a)| |[W 0

where,
Kll(a) =C11 — pU2 + 2C15a + 055012, Klg(a) =Cig + (014 + 056)04 + 045a2,
Klg(a) =Ch5 + (013 -+ C55)Oé + C35a2, KQQ(O{) = Cge — p'U2 + 2Cyga0 + C44a2, (3.8)
Kaz(a) = Cs6 + (C36 + Cus)a + Cz40®,  Kszz(a) = Cs5 — pv* 4 2C350 + O30,
To make sure that Eq. (3.7) has nontrivial amplitudes of displacement U, the matrix K(«) should
be singular, namely det{K(«)} = 0, where det{-} means the operator computing the determinant for
a square matrix. Expanding this determinant results in a sixth order polynomial equation in terms of

a as expressed in Eq. (3.9).

Aﬁaﬁ + A5a5 + A4Oz4 + A3a3 + A2a2 + Ao+ Ay =0 (39)
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where, the seven polynomial coefficients are presented in Figure 3.2 and obtained via the software

Mathematica due to its powerful capability of symbolic computing.

oufio- —C35° C44 + 2 C34 €35 €45 - ¢33 C45” - ¢34? ©55 = ca3caacss AD

ouTil= 2 (—C15 €347 + €14 C34 C35 + C15C33 C44 - C13 C35 C44 - C14 C33C45 + €13 C34 €45 + C35 C36 €45 - €352 C46 - €34 C36 C55 + C33 C46 C55 + C34 C35 C56 - €33 C45 CSG) A5

Out[72}= —c14%c33-c11034%  2C16C34C35 - 4C15C34C36 - C13° C44 : C11 C33C44 + 2C15C35C44 - 2C16C33C45 - 2C15C34 C45 + 2C13C36C45 + 2C13C45° +
4C15C33C46 - 4C13C35C46 - C36° C55 - 2 C13C44 C55 + 2C13C34 C56 + 2 C35 CI6CH6 - C33C56° + 2C14 (CL3C34 + C35C36 - C35C45 + C34C55-c33c56) - A4
C35° C66 + C33C55C66+C342 v p+C35° vip-C33C44v2 p+Ca5® v p-C33C55 v p-C44C55vip

Qut[Té= 2 {—C142 €35 - €11 C34 €36 + C16 C35C36 - C15 C36° + €11 €35 C44 - €11 C34 C45 - C16 C35 C45 - €15 C36 C45 - €132 €46 + C11C33C46+ 2 C15C35C46 + C16C34C55 - A3
C16C33C56 - C15C34C56 + C14 (-C16C33 + C15C34 + C13C36 + C13C45 + C36C55 - C35C56) + C15C33CH6 + C13 (C16C34 - C15C44 - 2C46C55 + C36C56 + 2C45C56 - C35 CEE)) +
2 (C13C35+C34C36-C35C44-C15 (C33+C44) +C14C45 + C34C45-C33C46 - CA6C55 + C45CH6) Vzp

oulie= ~C16% €33 - C11C36% - C15% C44 - 2C11C36C45-C11C45" - 4C13C15C46+ 4 CL1C35C46 - €147 C55+ C11C44 C55 - 2C11 C34 C56 - 2 C15C36C56 + 2 C13C567 +
214 (C15 (C36 + CA5) + C13C56) + 2 C16 (C15C34 - 2 CLAC35 + C13 €36 + C13 C45 + €36 C55 - €35 C56) — €13 €66 + C11 C33 C66 + 2 C15 C35 C66 - 2C13C55C66+ A2
(€17 + €14° - C11€33-2C15C35+C36° ~C11C44 + 2C16C45 + 2C36C45 + C45" - 4C15C46 - 4C35CA6+2CLIC55 - C44C55 + 2C14CH6 + 2 C34C56 + C56° - C33 C66 - C55C66) v2p+
c3zviptscaavip? s vip?

5= 2 (-C167 €35 - C15° C46 + C16 (C15 (C36 + C45) - C14 C55 + C13C56) + C15 (C14C56 - C13C66) + C11 (C46C55 - C36 C56 - CA5CH6+ C35C66)) + Al
2 (C13C15+C14CL6 - C11 C35 - C11C46 - C46C55 + CLE6C56 + C36 C56 + C45C56 - CL5CH6 - CI5CH6) v7 p + 2 (CL5 + €35+ Cd6) v o°

outigo- ~C16° €55 + 2C15C16C56 - C11C56° - €157 €66 + C11C55C66 + (€157 + €167 - C11C55 + €567 - C11C66 - C55C66) v p+ Cliv' p +e55 v pP v ce6 v " - v°p" AD

Figure 3.2 — The polynomial coefficients about « in Eq. (3.9).

Once the elastic coefficients Cp, and mass density p are known, meanwhile phase velocity v is
provided as a specific value v = vg, the seven polynomial coefficients can be computed based on
Figure 3.2. Then, the six a’s roots can be solved via polynomial root-finding algorithms [59, 60], or

by directly calling the MATLAB built-in function roots.

3.2.2 Displacement and stress fields

For each o, (r = 1,- - ,6), there will be a corresponding solution vector of displacement amplitude
u, = [U,, V,, WT]T according to Eq. (3.7), which is one degree on indeterminacy according to the
theory of linear algebra [56]. The three displacement amplitudes can be determined by assigning a
specific value for a certain term, for example U, = 1, and V, and W, are found from the resulted

equation set via Cramer’s Rule as presented in Eq. (3.10).

_ Ku(ap)Kas(ay) — Ki2(o) Ki3(ou)
- Kis(a) Koz (on) — Kia(ar) Kas(ay)’

~ Ki(ar)Kas(ar) — Kia(ar) Ki3(ar)
- Kia(ar)Ks3(awr) — Kiz(awr) Koz ()

v, W, (3.10)

With the predefined form of displacements in Eq. (3.1) and the obtained amplitudes in Eq. (3.10),
the displacement field u = [uy, ug, u3]" now can be written as the superposition of the six solutions as

shown in Eq. (3.11), in which each term within the summation represents a partial wave. Therefore,
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the denomination partial wave superposition approach (PWSA) is chosen.

uy = Zgzl nreiﬁarﬂ%) i€ (z1—0t)
Uy = ’?:1 nrweiéar$3) ei&(xlfvt) (311)
uz = 22:1 nTWTei€a7'x3) olé(@1—vt)

where, 7, is the participation factor of partial wave to be determined, which can be organized into a

vector ) = [771, 12, M3, 14, 15, 7]6]T-

Substituting Eq. (3.11) into Eq. (2.22), the PWSA is also applied to the stress tensor as presented
in Eq. (3.12).

o11 = {58, [(C11 + Cisar) + (Cis + Crac,)Vy + (Chs + Crzon )W, ] eléorsan, b igel(@—vt)
022 = 1325, [(Cha + Cosar) + (Cag + Cogary) Vi + (Cos + Cogay )W, eléeran, b igeié(@—vt)
o33 = 1551 [(C13 + Cs504) + (Ca6 + C3a0) Vi + (Cas + Caga ) W, ] elé@r@an, b igeié(@—i)
023 = {30_ [(C1a + Cazar) + (Cuag + Caacr) Vi + (Cuas + Caaa) W] el60r@3p, b igeilé(@ =)
o135 = 18, [(C15 + Cssar) + (Cse + Cusar) Vi 4 (Css + Cssan)W,] eiéertan, tigel@i—vt)
o12 = {20, [(C16 + Csson) + (Cos + Cagar) Vi + (Csg + Cagay ) W] eléarzan, ¢ igeié(@1—vt)

(3.12)

Considering that in the stress tensor, only the three terms (o33, 023, 013) are useful because they

correspond to the boundary conditions (see Eq. (3.2)), the three terms are extracted into Eq. (3.13).

o33 = (320, BrreiSorTan, ) igelt(@r—vt)
023 = (Lpoy BareiSeran, ) igei(1—vt) (3.13)

g13 = Zgzl ﬁgreiﬁamgnr igeié(:cl—ut)
where, ;- is the amplitude of partial wave in terms of stress and is defined in Eq. (3.14).

Brr = (C13 + C350) + (C36 + C340) Vi + (C35 + Czza, ) W,
Bar = (C1a + Cusy) + (Cag + Caacr) Vi + (Cys + Cagar )W, (r=1,---,6) (3.14)
B3r = (C15 + Cssr) + (Cs6 + Cusa) Vi + (Css + Casa ) W,

3.2.3 Dispersion equations

Substituting Eq. (3.13) into Eq. (3.2) to apply the BC, the following linear homogeneous equation
set D(v,&)n = 0 is obtained, where D(v,§) is the coefficient matrix in Eq. (3.15) depending on phase
velocity v and wavenumber £. In order to produce non-trivial solution of i, D(v, ) should vanish as

presented in Eq. (3.16), which is the dispersion equation for coupled symmetric and anti-symmetric
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modes in implicit 2 form.

|
cocoocooo

[Brie il goe=icazh g e=ibash g eibash g e=iCash g, ce=ifashy iy ]
BojeTiath  Boyeitazh - goje=ibash gy eTitath  gyemitash  poseTitash | p,
BgreTi6arh  Bggemibazh - gyeibash gy eibauh  poemibash  pise=itash |y,

Brielcarh  Bigeitazh - gigeibash g eibaah g gelfash g ceitach |y,
Bopeleorh  Bogeitozh  ggeitash g, eitash  gojeitash — poseltash | |p;
| Bgrelerh - Bggeitoah - gageibash gy eibaah  pageifash - gogeitach |y |

(3.15)

D(v,€) = DR(v,&) +iD! (v, €) 2 det{D(v,£)} =0 for sym. and anti. modes (3.16)

Note that D(v,§) is a complex-valued matrix due to the existence of complex exponential terms
in it. Thus, its determinant D(v, &) is a complex number in general and can be separated as real part

D (v,€) and imaginary part D (v,£) as indicated in Eq. (3.16).

If the SC is added along with the BC to derive dispersion equation, the option 23 = —h in Eq. (3.2)
is redundant. Thus, the BC at x3 = h in Eq. (3.2) and the SC in Eq. (3.3) are employed to derive the
dispersion equation of symmetric modes. Substituting Egs. (3.11) and (3.13) into the two equations,
meanwhile reorganizing the resulted equation set to matrix form with the participation factors n being

the unknown vector, one obtains Egs. (3.17) and (3.18).

oo oo oo

Wy Wy W3 Wy Ws We 1 [m]
Ba1 Ba2 Ba3 B24 Bas B2 72
Ba1 B32 B33 B34 B35 B3e 13

Breferh  graeiéeh  gaeilash g piaah g eiash g ceibash |y, | T (3.17)
Bopeltaih  Boseltazh  goseitash gy eibaah gy eitash — g,ceitash | |y

| Ba1e16@1h - Bggeibazh  Bygeitash g elbash  goeibash — gogeitash | |pe| |0

Dy(v,€) = DE(v, &) +iDL(v,€) £ det{D(v,£)} =0 for symmetric modes (3.18)

where, the subscript ‘s’ denotes the symmetric modes.

Substituting Eqgs. (3.11) and (3.13) into Egs. (3.2) and (3.4), the dispersion equation of anti-

symmetric modes can be derived as presented in Egs. (3.19) and (3.20).

1 1 1 1 1 1 1] T
Vi Vo V3 Vi Vs Ve 72
Bi1 P12 B13 B4 B1s P16 3
5116‘%@“11 5126@42’1 5136@‘3}1 5146?50‘4}1 ﬁlsefgaf’h 516550‘6’1 14
Bo1 6@1 h ﬁmef&”h 523ef£a3h 5246@4]1 Bos efgaf’h ﬁQGefgaﬁh 5
| Brei€aih  Bggeifazh  gigeitash gy eibash  go eitash — gogeitach | | g |

2. In the thesis, the term implicit means that the dispersion equation is defined in matrix-determinant form.

(3.19)

|
coococoo
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Do(v,€) = DE(v, &) +iDL(v,€) 2 det{D,(v,£)} =0 for anti-symmetric modes (3.20)

where, the subscript ‘a’ denotes the anti-symmetric modes.

Once the dispersion equation is built regardless of which SC being considered, for example,
D(v,&) = 0in Eq. (3.16), it can be solved through some root-finding methods such as Newton-Raphson
method or bisection method. From numerical realization perspective, Newton-Raphson method is not
suitable for this problem because it requires the derivative information of the characteristic func-
tion D(v,&) which is not available since D(v,§) is transcendental. Thus, bisection method is the
desired one. With such method, the solutions can be found by fixing v = vy to sweep the roots of £
(D(vg, &) = 0) or by fixing & = &y to sweep the roots of v (D(v,&p) = 0). The two sweeping schemes

will be comprehensively investigated in Chapter 6.

The continuous loci of solutions (v,§) form the dispersion curves in v — { domain in which each
individual branch represents a single modal curve. The dispersion curves in w — £ and w — v domains
can be obtained from the relation w = &v, where w is the angular frequency. For (quasi-)isotropic
materials, the group velocity ¢, is computed from each individual branch of dispersion curves based on
Eq. (3.21a) in w—¢& domain or Eq. (3.21b) in w—v domain. For anisotropic materials, the steering effect
should be taken into account when computing group velocity in these materials. The related work was
reported in [37]. In the subsequent chapters of the thesis, we directly present the computed dispersion
curves of group velocity in anisotropic materials by taking advantage of the approach reported in [37]

without a statement.

0
cg = a—z’ (3.21a)
2
Cg= —— (3.21D)
v — waiw

3.2.4 Mode shape

When a solution point (v, ) of the symmetry-omitted dispersion equation D(v, ) = 0 in Eq. (3.16)
is obtained, it can be substituted back in Eq. (3.15) to compute the vector  which corresponds to
the zero-eigenvalue correlated eigenvector of the matrix D(v,€) in Eq. (3.15). Once all the required

quantities are obtained, the displacement and stress fields described in Egs. (3.11) and (3.13) can be
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reconstructed. At a fixed section of the waveguide, i.e. omitting the phase term e(®1=%Y) in Egs. (3.11)
and (3.13), the displacement and stress mode shapes of the plate can be portrayed along the plate
thickness direction z3 through Egs. (3.11) and (3.13), respectively, which are further classified into
symmetric and anti-symmetric modes by checking the symmetry condition at the midplane of the
plate stated in Egs. (3.3) and (3.4). Undoubtedly, if the solution point (v,§) is substituted into
Eq. (3.17) or (3.19), the computed displacement and stress mode shapes will meet the symmetry

condition automatically.

3.3 Dispersion equations of coupled Lamb and SH waves in monoclinic ma-
terial

The dispersion equations of monoclinic material is a simpler case of triclinic material, which will

be obtained by making a series of simplifications for the equations of triclinic material.

3.3.1 Christoffel equation

For monoclinic material, the following stiffness coefficients are zero in addition to the triclinic
material, Cy4, C15, Cog, Ca5, Cs4, C35, Cag, Cs6 = 0. Thus, the Christoffel equation of triclinic material
in Eq. (3.7) changes to Eq. (3.22), though it remains the same form as Eq. (3.7) yet with different

elements in the matrix K(«) as shown in Eq. (3.23).

Kii(a) Kipo(a) Kiz(a)| |U 0
Klg(a) KQQ(OC) KQg(Oé) Vi9i=10 (3.22)
Klg(a) Kgg(a) Kgg(a) w 0

{Kll(a) = C1 — pv? + Cs502,  Kiz(a) = Ci6 + Cu5a?,  Kiz(a) = (Ci3 + Css)a, (3.23)

Ko(a) = Ces — pv2 + Crua®,  Kosz(a) = (Cs6 + Cus)a,  Ksz(a) = Cs5 — pv? + Cyza’.

The singular condition of matrix K(a) leads to det{K(«)} = 0. Expanding this determinant

produces a third order polynomial equation in terms of a? as expressed in Eq. (3.24).
Aga® + Aga* + Asa® + Ag =0 (3.24)

where, the coefficients Ag, A4, Az, Ay are presented in Eq. (3.25), and can be computed from the
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constant elastic coefficients Cp, and mass density p at a specified phase velocity v = vg.

Ag = C33C44C55 — C33C5;
Ay =(C1uCs5 — C35)(Cs5 — pv?) + C33C55(Ces — pv*) + C33Cu4(Chy — pv?)
—2C16C45C33 + 2(C36 + Cy5)(C13 + Cs5)Cys
— (C13 + C55)*Caq — (Cus + C36)*Css
Ay =C33(C11 — pv*)(Ces — pv°) + Caa(Cr1 — pv®)(Cs5 — pv?) (3.25)
+ C55(Ce6 — pv*)(Cs5 — pv*) — (Cr1 — pv®)(Cas + Cs6)°
— (Ce6 — pv*)(Ci3 + Cs5)* — 2(Cs5 — pv*)C16Cas
+2C16(Cas + C36)(Ch3 + Cs5) — CsChs
Ay = [(C11 = pv?)(Cos — pv?) = Cg] (Cs5 — pv?)

The three o roots can be solved from Eq. (3.24) via Cardano’s Formula or polynomial root-finding

algorithms. The six a’s roots are further obtained by satisfying the conditions in Eq. (3.26).
g = —v1, (g = —Qi3, Qg = —Q5 (3.26)

3.3.2 Displacement and stress fields

For each «, (r = 1,---,6), the three displacement amplitudes (U,, V., W,) can be solved from
Eq. (3.22) by assigning U, = 1, then V, and W, are found from the resulted equation set via Cramer’s
Rule as presented in Eq. (3.27).

_ Ku(ap)Kas(ay) — Kiz(o) Ki3(ou)
- Kig(ar)Ka(ar) — Kia(ar)Kas(ar)’

~ Ki(ar)Kas(ar) — Kia(ar) Ki3(ar)

Vi a Klg(ar)Kg?)(ar) - KIS(QT)K23(QT)

W,

(3.27)

With the negative reciprocity in Eq. (3.26), it is easy to get the relation of Eq. (3.28) if one
substitutes Eq. (3.26) and the detailed expression of K;;(«) of Eq. (3.23) into Eq. (3.27).

Vo=WV1, Va=Vs, Vo =V5; Wo=-Wi, Wy =—-Ws5, Wg=—-W;s (3.28)

By applying PWSA, the displacement field of monoclinic material is now presented in Eq. (3.29),
which remains the same form as Eq. (3.11) but has different forms of V,. and W, thanks to Eq. (3.23).

Uy = Z?:l nreifaTx;g) eiﬁ(l“lfvt)
Ug = Z§:1 nrweiﬁarms) ei€(z1—0t) (3'29)
= (0 W) o0
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The stress field (o33, 0923, 013) of monoclinic material is expressed in Eq. (3.30) based on PWSA,

which keeps the same form as Eq. (3.13) but has different forms of (51, Bor, B3-) as shown in Eq. (3.31).

033 = 276:1 BlreiﬁamsnT igeif(xlﬂ;t)
093 = (X0, Bareiéartan, ) igeltl@r—rt) (3.30)

013 = Zgzl B3rei£arl‘3nr ié‘eig(l’l—yt)

Bir = C13 + C36V; + Cs30, W,
Bor = Cysay + Cya0. Vi + Cys W (r=1,---,6) (3.31)
Bar = Cssa + Cys00. Vi + Css W,

Like in Eq. (3.28), §; exhibits some relationships described in Eq. (3.32).

B2 = P11, Bia = P13, Bie = Pis
Pz = —fo1, Posa = —Pa3, Pas = —Pas (3.32)
P32 = =331, B3 = —f33, P36 = — P35

3.3.3 Dispersion equations

Under the condition of Egs. (3.26)(3.28)(3.32), the linear homogeneous equation set of the sym-
metric modes of triclinic material in Eq. (3.17) is now changed to Eq. (3.33). Thus, the dispersion

equation of symmetric modes of monoclinic material is generated in Eq. (3.34) in implicit form.

Wi - W3 -W3 Wi W5 ] [m] [O
Bo1 — 21 Bo3 — a3 Bos —B25 2 0
Ba1 — P31 P33 — P33 B35 — B35 n3| _ |0 (3.33)
Brielbal  BeTibah  gigeibash  gigemitash g, eitash g, je=ibash |y, 0 '
Bareitonh  —pyeTicorh  pogeibash _g,qemibash  g,oeitash  _gyseTiCash |y, 0
| Bzt —pgjeiéanh  gageiash _gaie=ibash gy eitash  _page=icash | |y | L0
Dy(v, &) = DE(v,€) +iDI(v,€) £ det{D4(v,£)} =0 for symmetric modes (3.34)

where, the subscript ‘s’ denotes the symmetric modes.

For the dispersion equation of anti-symmetric modes of monoclinic material, it can be derived from

Eq. (3.19) which belongs to the triclinic material by applying Eqgs. (3.26)(3.28)(3.32). Thus, Eq. (3.35)
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is generated and the desired dispersion equation is expressed as implicit form in Eq. (3.36).

1 1 1 1 1 1 1 ] [0
Vi Vi V3 V3 Vs Vs 72 0
Au Au P13 EE P15 P15 n3| _ |0 (3.35)
Brielboih - BiyeTibath  gigeibash  gigemitash g, jeitash g, je=ibash |y, 0 '
Borelcorh gy emitarh  ggeitash _poge=itash  gyjeitash  _poge=itash| 1y 0
| Bzt —pgremiéonh  pageitash  _ gagemitash  gaieitash  _page=itash| ps|  {0]
Da(v,€) = Df(v,{) + iDi(v,é’) 2 det{Dg,(v,£)} =0 for anti-symmetric modes (3.36)

where, the subscript ‘a’ denotes the anti-symmetric modes.

To facilitate computation, the explicit® formula of the determinant of Dg(v,¢) in Eq. (3.34) and
D, (v,€) in Eq. (3.36) are derived into Egs. (3.37a) and (3.37b) by right of the software Mathematica
due to its powerful capability of symbolic computing. Note that during manipulation using Mathe-
matica, the Euler’s equation should be used, for example, e¢®" = cos(€éayh) + isin(Eaqh).

Ds(v,&) =[By cos(§arh) sin(§ash) sin(ash) + Basin(§aih) cos(§ash) sin(Eash)
+ Bysin(€ayh) sin(Eash) cos(€ash)| By (3370)
Dy(v,€) =By sin(§aih) cos(agh) cos(§ash) + Ba cos(§aih) sin(ash) cos(Eash)

(3.37b)
+ Bs cos(€aqh) cos(§ash) sin(€ash)] Bs

where,

By = B11(B25833 — B23f35), Bo = B13(B21835 — P255331), B3 = [15(B23831 — P21/333)
By = 8 [W1(B25033 — B23B35) + W3(B21835 — BasB31) + Ws(B23831 — B21533)] (3.38)
Bs = 8i[Vi(B15 — B13) + V3(B11 — B15) + V(B3 — P11)]

With Egs. (3.37a) and (3.37b), the implicit dispersion equations, Eqgs. (3.34) and (3.36), of the
monoclinic material have been exposed in Egs. (3.39a) and (3.39b), which are classically presented in
many textbooks [33, 4]. Considering that the tangent functions are discontinuous, it is preferred to

adopt Egs. (3.37a) and (3.37b) for computation.

Bj cot(€aqh) + Ba cot(§ash) + Bs cot(§ash) =0 for symmetric modes (3.39a)

B tan(§arh) + Batan(§ash) + Bz tan(ash) = 0 for anti-symmetric modes (3.39Db)

3. In this thesis, the term ezplicit means that the dispersion equation is simplified from the original one defined in
matrix-determinant form.
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Once a solution point (v, &) of a certain dispersion equation, specifically Ds(v,£) = 0 in Eq. (3.34)
or Dy(v,&) = 01in Eq. (3.36), is found, the displacement and stress mode shapes of monoclinic material

can be obtained easily by following the same strategy as triclinic material stated in section 3.2.4.

Note that due to the complexity of triclinic materials, there is not a simple explicit form of the

dispersion equations in Section 3.2.3 like for monoclinic materials presented in this section.

3.4 Dispersion equations of decoupled Lamb and SH waves in orthotropic
material

In orthotropic plate, guided waves will be decoupled into Lamb and SH waves, which will be

demonstrated in this section.

3.4.1 Christoffel equation

For orthotropic material, the following stiffness coefficients are zero in addition to the mono-
clinic material, Cig, Cag, C36, Cy5 = 0, which makes the Christoffel equation of monoclinic material in

Eq. (3.22) change to Eq. (3.40).

011 - p1}2 + 055042 0 (C13 + 055)04 U 0
0 Ces — pv? + Cyy0® 0 Vi=10 (3.40)
(013 + C55)Oz 0 Cs5 — va + C’33a2 w 0

Naturally, Eq. (3.40) can be separated as Egs. (3.42) and (3.41). Since Eq. (3.41) only involves
in the displacement uy (shear horizontal direction), the wave derived from Eq. (3.41) is termed as
SH wave. Correspondingly, the wave derived from Eq. (3.42) is termed as Lamb wave because this

equation involves in the displacements u; (longitudinal direction) and ug (shear vertical direction).

(Ce6 — pv? + C’44oz2)V =0 (3.41)
C11 — pv* + Cs5a? (C13 + Cs5)a ul_10 (3.42)
(C13 + C55)C¥ Cs5 — ,0’02 + C33042 w 0 )

In the next subsections, the dispersion equations of Lamb and SH waves will be derived separately.
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3.4.2 Displacement and stress fields of Lamb wave

The nontrivial solution of [U;, Us]™ in Eq. (3.42) requires the singular condition of the coefficient
matrix as presented in Eq. (3.43). It is the possibility to expand the determinant results in a quadratic

equation in terms of a? in Eq. (3.44) and the polynomial coefficients are listed in Eq. (3.45).

Ch1 — pv? + Cs502 (C13 + Cs5)

= A4
(Ci3 + Css)a Cs5 — pv? + C30? 0 (343)
A4Oé4 =+ A20é2 + AO =0 (344)
Ay = C33C55
Ay = (C11 — pv*)Cs3 + (Cs5 — pv?)Cs5 — (Ci3 + Css5)? (3.45)

Ay = (C11 — pv?)(Cs5 — pv?)

From Eq. (3.44), the four a’s roots can be easily obtained that have the negative reciprocity
ay = —aq, ag = —ag. For each o, (r = 1,2, 3,4), the displacement amplitude vector [U,, WT]T can be
solved from Eq. (3.42) by letting U, = 1, and W, is calculated using the first row of Eq. (3.42).

Wr _ pU2 — 011 — 055042
(C13 + Cs5)

(T = 1’2’374) (346)

It is easy to get the relation Wo = —W; and Wy = —W3 under the fact as = —a1, ay = —as.
For the displacement field equations of Lamb wave, the four a’s solutions manifest that there are four

partial waves to compose Lamb wave with two longitudinal waves and two shear vertical waves.

{Ul — Ezﬁzl Thei&am:g) eig(ml—vt)

' i 3.47
Zﬁ:l nrwreléaTxg) elg(xl—vt) ( )

us =

where, 7, (r = 1,2,3,4) is the participation factors of partial waves and they can be organized into a

vector ) = [7717 72, 13, 774]T~

Unlike Egs. (3.13)(3.30), the stress field of Lamb wave only involves in o33 and 013 terms which
are stated in Eq. (3.48) based on PWSA.

033 =
031 =

(3.48)

Zﬁ:l 517‘nrei§ar$3 igei§($1—vt)
Sh ) Bapmpeiéares) jgeié(@i—vt)
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where, the stress amplitude of partial wave [3;, is derived into Eq. (3.49), from which the relationship
among f3;- can be easily obtained: 12 = 11, f14 = S13, f32 = —B31, B3a = —[33.

{ﬁlr = C13 + C33a, W,

By — Cssauy + CoslV, (r=1,2,3,4) (3.49)

3.4.3 Dispersion equations of Lamb wave

For the displacement and stress field equations shown in Eqgs. (3.47)(3.48), substituting them into
the boundary condition of Eq. (3.2) (only o33 and 013 are evaluated) and the symmetric condition of
Eq. (3.3) (only ug and o013 are evaluated) allows to derive the dispersion equation of symmetric modes

of Lamb wave, which is presented in Egs. (3.50)(3.51).

Wi - Ws —Ws m 0
1 —fF31 f33 —f33 nz| _ |0 (3.50)
Brieltah  peTibah g aeitash g geibash |y, 0 )
Bgreléorh  — Bgemibarh  gageibash  _poge=itash| |y, 0
Dy(v, &) = DE(v,€) +iDI(v,€) £ det{D4(v,£)} =0 for symmetric modes (3.51)

By using the software Mathematica, the determinant of the coefficient matrix Dg(v, §) in Eq. (3.50)
is simplified into Eq. (3.52).

det{Ds(v, {)} = —4i(W3631 —Wlﬁgg) [COS(&O(gh) Sin(falh)ﬁlgﬁgl — COS({O&lh) Sin(gagh)ﬁnﬁgg] (3.52)

Upon simplification, the Lamb wave dispersion equation of symmetric modes for a single-layered

orthotropic plate is explicitly stated in Eq. (3.53), which is also presented in [33].

tan(§anh) _ Buifss
tan(§ash)  Bi3fa1

for symmetric modes (3.53)

To obtain the dispersion equation of anti-symmetric modes, the displacement and stress field
equations in Egs. (3.47)(3.48) are substituted into the boundary condition of Eq. (3.2) (only o33 and
o013 are evaluated) and the anti-symmetric condition of Eq. (3.4) (only u; and o33 are evaluated). The

resulted equations are presented in Eqs. (3.54)(3.55).

1 1 1 1 m

P11 P11 P13 P13 72
Brieltah  BreTitoah - ggeitash g eibash |y
Bgreleorh  —Bqe7iCarh - gageibash  _page=iCash| |y,

(3.54)

|
oo oo
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Do(v,€) = DE(v,€) +iDI(v,€) 2 det{Dy(v,£)} =0 for anti-symmetric modes (3.55)

With the software Mathematica, the determinant of the coefficient matrix D, (v, &) in Eq. (3.54) is
simplified into Eq. (3.56).

det{Da(v, f)} = 41(,311 — 513) [— cos({alh) Sin(fagh)ﬁlgﬁm + COS(kagh) Sin(§a1h>511,333] (3.56)

Upon simplification, the Lamb wave dispersion equation of anti-symmetric modes for a single-

layered orthotropic plate is explicitly stated in Eq. (3.57), still presented in [33].

tan(§ah) _ B13631
tan({azh)  B11533

for anti-symmetric modes (3.57)

3.4.4 Displacement and stress fields of SH wave

Eq. (3.41) characterizes the displacement and stress fields of SH wave, from which the two a’s roots
can be easily solved as shown in Eq. (3.58) with the indices 5 and 6 given that the indices from 1 to 4
have been occupied by Lamb wave in Eq. (3.44). Accordingly, there are two partial waves to compose

SH wave. The displacement uy and stress o3 are expressed in Egs. (3.59) and (3.60) respectively

based on PWSA.
2 2 2
9 pv°— Cep pv? — Cogg pv? — Cgg
0f = P06 gy =[O T00 g [P TS 3.58
Cua ° Cua 0 Cua (3:58)

6
e () "
r=>5
6 . .
02 = <Z /32ane‘§”“> ige!t(m1 v (3.60)
r=>5
where, ag = —ai, B25 = Cygais, Bog = Cago.

3.4.5 Dispersion relation of SH wave

For deriving dispersion equation of SH wave, only the traction-free boundary condition of Eq. (3.2)
(only 93 is evaluated) can be applied.

—iash —i€agh

ase N5 + age neg =0

aseti€ashp, 4 qgetisashp. — (3.61)

093] gg=+h = 0 = {
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3.4. DISPERSION EQUATIONS OF DECOUPLED LAMB AND SH WAVES IN
ORTHOTROPIC MATERIAL

Rewrite Eq. (3.61) as the matrix form as follows,

a5e—i£a5h a6e—i§a6h

a5ei§a5h a6€i£a6h

0556_.i£a5h 0566_.16(16}1 N5 _ 0 N
a561§a5h a6€1§a6h N6 0

Expand the determinant in Eq. (3.62) to get Eq. (3.63),

=0 (3.62)

oléleos—an)h — giE(as—aa)h 202705 9T, (e ) 4 isin(€asd) = cos(éasd) — isin(éasd)  (3.63)

2 _
sin(éasd) = 0 = Casd = nr = €d vaicﬁﬁ =nr (n=0,1,2,...) (3.64)
44

The dispersion relation of SH wave linking phase velocity v and wavenumber ¢ can be obtained in

Eq. (3.65).

Ces  Cua (n7r>2
v=1]— 4+ — | = n=0,1,2,... 3.65
p > \@d ( ) (3.65)
Or substitute £ = 7 into Eq. (3.65) to get another form of Eq. (3.66) linking v and w.
d2w2066
= =0,1,2,... 3.66
v \/pd2w2 — C44TL27T2 (TL s Ly 4y ) ( )

Obviously, letting n = 0 in Eq. (3.66) produces the fundamental SHO mode which possesses a
constant phase velocity as written in Eq. (3.67), indicating the non-dispersive characteristic with

respect to frequency w or wavenumber &.

_ G
v = ; ( 0) (3.67)

For each (v, §) solution point of a SH mode, the corresponding displacement and stress mode shapes
computed via Egs. (3.59)(3.60) can be also classified into symmetric and anti-symmetric modes via
the symmetry condition stated in Eqs. (3.3)(3.4) in which only us and 093 are evaluated. Specifically,
the symmetric mode corresponds to the condition 093|.5—0 = 0 and the anti-symmetric mode makes

the requirement ua|z,—0 = 0, where x3 = 0 indicates the midplane.

It should be noted that although Eqgs. (3.53)(3.57)(3.65) are derived through the stiffness matrix of
orthotropic material, they are still compatible with transversely isotropic and isotropic materials given
that the stiffness matrix of the two materials belong to the stiffness matrix set of orthotropic materials,
i.e. Crr, Cr € Co (see Section 2.2.4 and 2.3.3). Thus, one just needs to substitute the corresponding el-
ements in the stiffness matrix of transversely isotropic or isotropic material into Egs. (3.53)(3.57)(3.65)

to get the corresponding dispersion equations of the two materials, respectively.
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3.5. DERIVATION OF THE CLASSICAL RAYLEIGH-LAMB EQUATION VIA
PWSA

3.5 Derivation of the classical Rayleigh-Lamb equation via PWSA

The classical Rayleigh-Lamb equation is originally derived through the Helmholtz decomposition
method [26]. In this section, we dedicate to retrieve it by following Egs. (3.53)(3.57) which are based
on PWSA to complete the wave propagation theory. When it comes to Rayleigh-Lamb equation, it
belongs to the isotropic material case. Thus, all the derivations in section 3.4.2 should be replaced
by the parameters of isotropic material. The derivation starts from Eq. (3.44). Thus, the polynomial
coefficients Ay, A2, A in Eq. (3.45) are now computed by using the stiffness coefficients of the isotropic

material (see Eq. (2.14)) as follows.

Ay = (N +2u)p
Az = [(A+2p) — pv®] (A +2p) + (1 — po*)pu — (XA + p)? (3.68)
Ao = [(A+2p) — pv?] (b — pv?)

The discriminant of the quadratic equation on «? in Eq. (3.44) can be derived easily via the

software Mathematica.

A= A% — 44,40 = (N + p)*p*o? (3.69)
The two solutions about a? can be further obtained for which the smaller one is assigned as a2

and the larger one a2

02 = a2 = —A2—VA _ pr?—Od2) _ 02
= = = = 2
L 1 2A4 >\+2:U‘ CL (3 70)
a2 — a2 — —AxtvVA _ pv2—p — v _q :
T 3 2A4 12 C%

where, ¢, = \/H% and cp = \/% represent the velocity of longitudinal and transverse modes,

respectively.

Substitute Eq. (3.70) into Eq. (3.46) to get Wi and Wrp.

w2 —(A+2
W, =, ~Pv = Cu = Cssap pot — (A +2p) — pP i
(013 + 055)041, (/\ + /.L)OJL (3 71)
2 2 2 2 2 )
pv° — (A +2p)  vT—cy v 1 o
(AN +2u)ar aay 3 an o
v2—
Wy — Wy = P~ Cn = Cssoq Pt A2 e Q) 1 (3.72)
(Ci3 + Css)ar (A + pwar (A + pwar ar
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3.6. CONCLUSION

Substitute Egs. (3.71) and (3.72) into Eq. (3.49) to compute (11, B31, 513, P33-

ﬁll:A+(A+2M)QLWL:)\+()\+2u)a%:)\+()\+2u)’w2%);;2“):pv2—2u

B31 = par + puWp = pap + poag = 2pay

-1 (3.73)
Bz = A+ (A +2u)arWr = A+ (A + 2p)arst = =24
— 2-1
B33 = par + pWr = par + pst = p=i
The right hand side of Eq. (3.53) can be computed by substituting Eq. (3.73) into it.
21

P13 :(PU2 —2p)p~k _ (p? —2p)(0g — 1) _ (v —28)(af — 1)
Pr3p —2p)(2pa —4duoro 40

13031 (—2p)(2par) poor Eagar -

(v? —2c4)(a% — 1) (% —2)(ag — 1) (@2 =i —1) (o —1)

—4c2TaLaT —4ogar —4orar —4orar
Let p = oy, g = {ap. Substitute Eq. (3.74) into Egs. (3.53) and (3.57) to retrieve the classical
Rayleigh-Lamb equation.

For symmetric modes,

tan(ph) (0}~ 1) _ (0} ~D%'_ [(€ar)? ~ €7 _ (&~ € 55)
tan(gh)  —dapar  —dapapét  —4€2(¢ap)(far)  —4€%pq '

For anti-symmetric modes,

tan(ph)  —dapar  —4€%pq
tan(gh) (a2 —1)2  (¢2 — £2)2 (3.76)

2 Ww? 2 2 W 2
where, p —g—f,q —%—5.

Eventually, the classical Rayleigh-Lamb equation is retrieved.

3.6 Conclusion

PWSA is a unified framework to derive dispersion equations of guided waves propagating in a
single-layered composite lamina which integrates simultaneously the traction-free boundary condition
and symmetry condition. In orthotropic, transversely isotropic and isotropic materials, guided waves
will be decoupled into Lamb and SH waves, whereas in triclinic and monoclinic materials, both wave
types are coupled to each other. The classical Rayleigh-Lamb equation is retrieved by using PWSA|

which serves as an alternative to the Helmholtz decomposition method.
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Chapter 4

Guided wave propagation in a multi-layered
plate: transfer matrix method

This chapter comprehensively studies the various properties of guided waves propagation in a
multi-layered composite plate through the classical transfer matrix method (TMM) [2, 10, 33, 38]. The
core contribution of this chapter to the state-of-the-art is that a hybrid matrix strategy is originally
proposed to address the matrix incompatibility issue that is usually encountered for arbitrarily oriented
composite laminates. The hybrid matrix strategy is theoretically derived by following the PWSA of

Chapter 3 and is numerically assessed for three commonly used composite laminates.

4.1 The multi-layered composite plate model

o,

0' o o o (-] o o o \ 0_ 4
SNMNANANAN$’g!

o

(b) Laminate

(a) Laminae (plies)

Figure 4.1 — A three-layered composite plate model [0/6/90]. The wave propagation direction is along
the fiber direction of the middle layer.

In this chapter, we consider the multi-layered composite plate model schematically shown in Fig-
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4.1. THE MULTI-LAYERED COMPOSITE PLATE MODEL

ure 4.1(a), which consists of laminae with various stacking angles of layups being a typical composite
laminate widely used in aeronautical engineering. In the laminate, each lamina is reinforced by the
carbon fibers within the composing matrix, thus producing orthotropic material property from macro-
scopical view. In the lamina plane, the fiber direction and transverse fiber direction are defined as
the principal and minor-principal direction of the lamina, respectively. Naturally, all other directions
are defined as its off-principal direction. The perfect interface condition between adjacent layers is
assumed and thus leads to the continuity of field variables (displacement and stress) across all the

interfaces, otherwise delamination problem [61] occurs which is not the concern of the thesis.

Guided waves propagation in a plate waveguide emanating from a point source is at arbitrary
angles. The wave front behaves like a circular shape, see Figure 4.1(b). For an interested wave
propagation direction, it may coincide with the principal direction of a certain lamina (see the middle
layer in Figure 4.1(b)), but it may correspond to the off-principal direction of another lamina (see the
top layer in Figure 4.1(b)) due to the varying stacking angles of layups. For each lamina, its stiffness
matrix keeps the orthotropic type, i.e. Cq, in the principal and minor-principal directions according to
the Characteristic 2 of Section 2.3.3. However, for a lamina whose principal direction does not coincide
with the wave propagation direction, its Co should be rotated to the wave propagation direction with
angle 6, denoted as Cpy. According to the Characteristic 1 of Section 2.3.3, it can be easily inferred

that C{, € Cp.

In Sections 3.3 and 3.4, we have studied that Co and Cf, (or Cyr) will lead to different coupling
properties of Lamb and SH waves in a single lamina. Thus, in a laminate system, the mismatch
issue between wave propagation direction and the fiber (principal) direction of a lamina will lead
to different wave types among laminae. As a consequence, to model guided waves propagation in a
unified multi-layered plate system, how to unite the various wave types in different laminae becomes
an essential issue, which can be tacked through TMM (in this chapter) and GMM (in the next chapter)
frameworks. In the following section, the displacement and stress equations of a specific wave type
will be reorganized into a series of local lamina matrices which lay the foundation of TMM and GMM.
Then, these local matrices are transferred into a monodromy one based on the TMM framework.
Finally, the dispersion equation of the laminate system is generated and solving this equation just

offers various wave solutions.
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4.2. LOCAL LAMINA MATRICES ALONG THE WAVE PROPAGATION
DIRECTION

4.2 Local lamina matrices along the wave propagation direction

We consider a general n-layered laminate with various stacking angles of layups [¢1/¢d2/ -+ /dn]
and the interested wave propagation direction at angle 6, as illustrated in Figure 4.2(a). The profile
section of the laminate along the wave propagation direction is shown in Figure 4.2(b). For a general
layer lj, its rotation angle becomes (6 — ¢y), thus the rotated stiffness matrix of this layer becomes

. = Rot{C}, 0 — ¢}, where Cy, is the stiffness matrix of layer [ in its principal direction, and the

operator Rot{-,-} is defined in Eq. (2.18).

&,x;] X X4
2
0 / X, Layers: - 5 X,
I, A dq, p1,Cy "i(l:p =0 Interfaces:
g . I a «— Iy
1 r l I «— i
!
Ly 4 | dipr, Ck S X3 l
M > —> x,* < i
l
| 41 di+1, P15 Chorr St’é;f xé"”
X X; ) { _)xikﬂ «—
y= AL S s
®n / ln dn, pn, C o-b"oti
The plane of the wave propagation direction -
(a) The n-layered laminate model with (b) The profile section of the laminate
stacking angles of layups [¢,/¢2/ /bl in the wave propagation direction

Figure 4.2 — Guided wave propagation model in a n-layered composite laminate.

According to the study in Sections 3.3 and 3.4, the different matrix type of Cj, will lead to different
wave types in layer . If C}, is monoclinic type, the resulted waves are the coupled Lamb and SH
waves in layer I, (see Section 3.3); if C), is orthotropic type, the guided waves are decoupled into pure
Lamb and SH waves in layer [ (see Section 3.4). Thus, in a multi-layered plate system, the wave type

present in each layer should be determined separately.

4.2.1 Local lamina matrices of coupled Lamb and SH waves

When the interested wave propagation direction is along the off-principle direction of a general
layer lj, the rotated stiffness matrix of this layer C) € Caq produces the coupled Lamb and SH waves
in this layer. In this case, the three displacement quantities (u1, ua, uz) should be simultaneously
solved, whose expressions are presented in Eq. (3.29). Rewrite it as the matrix form in Eq. (4.1) and

the compact form in Eq. (4.2) is obtained.
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4.2. LOCAL LAMINA MATRICES ALONG THE WAVE PROPAGATION
DIRECTION

rei€onzs -
ifanes (1]
u 1 1 1 1 1 1 si€ase Z; |
ug| = Vi Vo V3 Vi V5 Vg i€ elé(@1—vt) (4.1)
u3 Wy Wy Wi Wi Ws W © "
eléases 5
pifaezs L 776
Usx1 = UsyoApxo(23) Mgy ¢S (4.2)

where, uzx1, Usxe, Aexe(23) and mgy, are defined as follows. The subscript “m x n” designates the

matrix dimension.

Usx1 = [u1, ug, ug)® (4.3)
1 1 1 1 1 1
Uswg=|V1 Vo V3 Vi V5 VW (4.4)
Wl Wz W3 W4 W5 W6
-eifoqxg B
eifagxg
ei£a3x3
A6><6(~T3) = ei§a4$3 (45)
eifoc5a:3
ei{agxg
Mox1 = M1, T2, 73, Nas 055 N6] (4.6)

Correspondingly, the three stress quantities (033, 023, 013) presented in Eq. (3.30) are rewritten as
the matrix form in Eq. (4.7) and the compact form in Eq. (4.8) by suppressing the common factor i§
since this factor has no effect on the traction-free boundary condition to be evaluated in Section 4.3

for the TMM framework.
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4.2. LOCAL LAMINA MATRICES ALONG THE WAVE PROPAGATION

DIRECTION
'ei§a1x3 ] -
eifagl‘g m
033 Pii P2 Bz Pia Pis Pie oi€ases Z; _
023 P21 Baa P2z Baa B2z Pas ozs m o) (47)
013 P31 P32 B33 B4 B35 Pse © .
eiéases 15
cifaes L6
T3x1 = BarxoAoxe(T3)Mg €7 ) (4.8)
where, 03x1 and 83,4 are defined as follows.
O3x1 = (033, 023, 013) " (4.9)
B P2 Pz Pa Pis Pis
Bsxe = |B21 P22 P2s Paa Pas P (4.10)
B31 B2 B33 B34 P35 Pse

Egs. (4.1) and (4.7) can be concatenated into a single equation. Then, we have the matrix form

in Eq. (4.11) and the compact form in Eq. (4.12).

LO13

il
U2
u3
033
023

1
Vi
|44}
Bi1
Ba1
31

1
Va
Wy
P12
P22
B32

Sex1 = Fex6A6x6(3)Ngx €

1
V3
W3
P13
P23
B33

1
Vi
Wy
P14
P24
B34

1
Vs
Ws
P15
Bas
B35

Ve
We
P16
Bos

B36_

[eléaizs

ei§a2z3

&(x1—vt) _

ei§a3z3
ei£a4x3

ei{asxg

m
2
n3
M4
5

615&613_

L716

Zxo(3)Ngy 105717

elélm=vt) (417

(4.12)

where, Sgx1 = [u1, ua, u3, 033, 023, 013]" represents the field variables of the coupled Lamb and SH

waves in the layer [g; ZGXG(JJ:J,) = F6><6A6><6(x3) and I'g«g is stated in Eq. (4.13).

It should be noted that those matrices, I'gxs, Asxe(x3), Zexe(rs), only depend on the lamina

properties of layer l;. Thus, they are uniformly defined as the local lamina matrices. This terminology

is applicable to the subsequent subsections.
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4.2. LOCAL LAMINA MATRICES ALONG THE WAVE PROPAGATION
DIRECTION

M1 1 1 1 1 1

i Voo V3 Vi Vi Vg

W1 W2 W3 W4 W5 WG

T = 4.13
66 B Bz Bz Pia Bis Bie (4.13)

B21 Bz B2z Poa Pas B2e

1831 B32 B33 P3a B35 Bael

4.2.2 Local lamina matrices of pure Lamb waves

When the interested wave propagation direction is just along the (minor-)principal direction of layer
I, the rotated stiffness matrix of this layer C) € Co according to the Characteristic 2 of Section 2.3.3
leads to the decoupled Lamb and SH waves in this layer. The current subsection aims to derive the
local lamina matrices of pure Lamb waves and the next subsection pure SH waves. For pure Lamb
waves, only the two displacement quantities (u1, us) are involved, whose expressions are presented in

Eq. (3.47). Rewrite it as the matrix form in Eq. (4.14) and the compact form in Eq. (4.15) is obtained.

ilazs
¢ i m
102
(75} _ 1 1 1 1 e 243 2 eig(;pl—vt) (414)
u3 Wy Wy Wz Wy eléss 3
IRIPEE T4
Uox1 = UsxaAgss(23)151 @00 (4.15)

The stress terms regarding to pure Lamb waves are (o33, 013) which are presented in Eq. (3.48)

and are rewritten as the matrix form in Eq. (4.16) and the compact form in Eq. (4.17) by suppressing

the common factor i€.

eifalxg
i m
12T
o33| _ [P Pz Pz Pua enrEn 2| i(z1—vt) (4.16)
o13 B31 B3z B3z B3 eléass 73 '

el§a4m3 T4

Oax1 = ﬂ2x4A4x4($3)"74x1ei§(x1_vt) (4.17)

Egs. (4.14) and (4.16) can be concatenated into a single equation, see the matrix form in Eq. (4.18)

and the compact form in Eq. (4.19).
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4.2. LOCAL LAMINA MATRICES ALONG THE WAVE PROPAGATION
DIRECTION

eifogzg
u 1 1 1 1 , m
uz | _ Wi Wy Wi Wy elé2Ts 2| Jig(@1—vt) (4.18)
033 Bi1 Pz Pz Pia eléass 73 ’
013 B31 Bz2 B3z Bz ifoaxs | |74
e
Six1 = F4X4A4x4($3)n4xlei§($1_vt) = Z4><4($3)774><1€i£(z1_vt) (4'19)

The local lamina matrices, T'sxa, Aaxa(z3), Zgxa(zs), of the pure Lamb waves in layer [ have

been obtained according to Eq. (4.19).
4.2.3 Local lamina matrices of pure SH waves

The current subsection continues to derive the local lamina matrices of pure SH waves in layer li.
The involved displacement is only ug, whose expression is presented in Eq. (3.59). It can be rewritten

as the matrix form in Eq. (4.20) and the compact form in Eq. (4.21).

ei§a5:1:3 N5 | ig(zq—ut
Y2 = [1 1} l eléaszs N6 e{( 1) (4.20)
g1 = UpuoAguo(23)mg, €717 (4.21)

The stress term regarding pure SH waves is 093 which is presented in Eq. (3.60) and is rewritten as

the matrix form in Eq. (4.22) and the compact form in Eq. (4.23) by suppressing the common factor
i€.

eléass . B
093 — |:525 /826i| [ ej€a6x3‘| [ZZ‘| elg(ml ’Ut) (422)
O1x1 = BrxaAax2(w3)ng,q e (4.23)

Egs. (4.20) and (4.22) can be concatenated into a single equation to form the field variables.
U2 1 1 eléass N5 | _i&(x1—vt)
= : e 4.24
ld 23] [525 /326] [ el | | ng (4.24)

Sox1 = DawaAaxa(3)My €5 7 = Zy o (23) 19y @170 (4.25)

The local lamina matrices, T'ax2, Aaxa(x3), Zoxa(x3), of the pure SH waves in layer I have been

obtained based on Eq. (4.25).
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4.3. TRANSFER MATRIX METHOD

4.3 Transfer matrix method

In this section, the local lamina matrices corresponding to each wave type will be transferred into

a monodromy one under the TMM framework by applying the continuity condition.

4.3.1 Local transfer matrix in a lamina

The field variables S (including displacement and stress) of a general layer [, have been obtained in
Egs. (4.12), (4.19) and (4.25) for different wave types. Tentatively ignoring the matrix dimension of S
denoted in the subscript, the field variables S of layer I at its top side (x3 = 0 in the local coordinate
system) and bottom side (r3 = di) can be computed based on Eqs. (4.26) and (4.27), respectively,

refer to Figure 4.2(b) for easy understanding.

Sl

. — Slk ’13:0 — I\lkAlk (O)T[lkeif(xl_vt) — I\lknlkeig(:el—vt) (426)

St = 8" log=d, = TH A" (dy)m'tei1—20 (4.27)

where, the superscript ‘I’ denotes that the associated terms belong to a general layer I; the subscript
‘bot’ and ‘top’ represents bottom and top side, respectively; dj is the thickness of layer [;. Note that
in Eq. (4.26), A'*(0) = I, where I is the identity matrix.

The common term n'*e€@1=vY) in Eqs. (4.26) and (4.27) can be eliminated and thus the field

variables of layer [j at its top and bottom sides can be linked as shown in Eq. (4.28).

Slk — le Slk

bot top (428)

where, T'* is stated in Eq. (4.29) and is naturally defined as the local transfer matrix of layer [.
I I AL A X
T = DAl (dy) (T) e CPr (4.29)

where, CP*P represents the set of complex matrix with dimension p x p and p is the number of partial
waves, specifically, for the coupled Lamb and SH waves in Section (4.2.1) (p = 6), for the pure Lamb
waves in Section (4.2.2) (p = 4) and for the pure SH waves in Section (4.2.3) (p = 2).
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4.3. TRANSFER MATRIX METHOD

4.3.2 The monodromy transfer matrix of the laminate system

The local transfer matrix T' in Eq. (4.29) can be synthesized to yield the monodromy transfer
matrix of the laminate. Primarily, each layer’s local transfer matrix should have the same dimension,
ie. T € CP*P for k = 1,...,n, otherwise the incompatibility issue of matrix dimension just occurs
and it will be discussed in Section 4.4. By virtue of Eq. (4.28), the field variables at the top and

bottom sides of each layer can be linked based on the following transferring rule.

i _ mphiqh
Sbot =T StOP
Il _ milagqle
Sbot =T Stop

The transferring rule: (4.30)

ln _ mingln
Sbot =T Stop
On the other hand, the continuity condition (CC) at each interface as illustrated in Figure 4.2

should be satisfied. Thus, we have Eq. (4.31).

! !
Stop = Spot
The continuity condition: rop ) bot (4.31)
ln _ Qln—
Stop - Sbot1
Sé”ot in the last equation of Eq. (4.30) can be consecutively transferred to Slt})p by recurrently

substituting Eq. (4.31) into Eq. (4.30). This process is illustrated in Eq. (4.32).
ln _ mingln
Spot = T Siep

— Tln Tln_1 Sé’r(z);l
(4.32)

— lapla—1pla—2 . plah Siép

Thus, the field variables at the bottom- and top-most surfaces of the laminate are linked with
a monodromy matrix T™°"° as stated in Eq. (4.33) which characterizes the transfer matrix of the

laminate system.

In !
Sln, = Tmorogl (4.33)
mmono — plapla-ipla-z | pleph (4.34)
It is clear that T™°"° € CP*P has the same dimension as T (k = 1,...,n).
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4.3. TRANSFER MATRIX METHOD

4.3.3 Dispersion equation

The monodromy transfer matrix of the laminate is then used to derive the dispersion equation.
1. The coupled Lamb and SH waves for T™om° ¢ C6x6

When T™n° ¢ C6%6 Eq. (4.33) can be expanded in Eq. (4.35), which characterizes the field

variables regarding to the coupled Lamb and SH waves.

fup 1" Ty T Tis Tu Tis Til [w]"
Uz To1 Tap Toz Tog Tos Tog| | u2
u3 _ (T T T3z T34 T35 Ts6| | us (4.35)
033 Ty Tao Tz Tag Tas Tas| |033 '
o923 T51 T2 Ts3 Ts54 Ts5 Ts6| 023

lo13) . Ter Te2 Te3 Tea Tos Teel Lois

- top
The traction-free boundary condition at the bottom- and top-most surfaces of the multi-layered

plate system is presented in Eq. (4.36), see Figure 4.2(b) for the illustration.

ln ll

033 033 0
The boundary condition: |93 = |o93 = (0 (4.36)
o13 bot 713 top 0
Substituting Eq. (4.36) into Eq. (4.35) leads to Eq. (4.37).
. - : 4 1
u1 T T Tizi Ty Tis T ] [u]”
() Toy Toy ToziTos Tos Tog | |u2
us| | Ts Tsp Ts3 ;T34 Ty Tse | |us (4.37)
0 Ty Tao Tuz i Tyy Tas Tue 0 '
0 Ts1 Tsy Ts3 Tsa Tss Tse 0
L0dpoe L Tor To2 Tes:Tea Tos Tee 1 LOL,

For the purpose of deriving dispersion equation through TMM, only the bottom left corner of T™°"°
is useful because this submatrix relates to the boundary condition. Extracting out this submatrix from

Eq. (4.37) leads to Eq. (4.38).

51

In
0 Ty Tap Taz| |ug
0 == T51 T52 T53 u9 (438)
0] Lot Te1 Te2 Tez| |us top

Note that the displacement in the top-most surface, ui})p, should be non-trivial, thus the bottom
left corner of T™°"° in Eq. (4.38) should have a vanishing determinant. This finally produces the

dispersion equation of the coupled Lamb and SH waves linking v and £ as presented in Eq. (4.39).
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4.3. TRANSFER MATRIX METHOD

Ty Tao T
Dr(v,€) = Di(v,&) +iD(v,6) 2 | Tsy Tsa Try | =0 (4.39)
Ts1 To2 Te3

where, the subscript ‘I’ denotes that the dispersion equation is built with TMM.
2. The pure Lamb waves for T™om° ¢ C*+*4

When T™om° ¢ C**4 it characterizes the pure Lamb waves. The corresponding dispersion equation

of the pure Lamb waves can be derived by expanding Eq. (4.33) into Eq. (4.40).

ln ; I
uy Tn T T T up |
u3 To1 Top 1 T3 Tog | |ug
Y 20 e M- O 4.40
033 Ts1 T32 133 Tsa | |033 (4.40)
013 ] ot Ty Taz i Taz Taa | [013] 4,

By applying the traction-free boundary condition at the bottom- and top-most surfaces of the

ln 51
plate, lag?’] = [033] = O], Eq. (4.40) becomes Eq. (4.41).

I13 bot 713 top -O
_ In . l
uy Ty TieiTy T | [w]”
u3 Ty Ty i o3 Tog | |ug
_ | Dn T  Tos T 441
0 Ts1 Tso 1 Ts3 T 0 (440
L0 ]y Ty Tag i Taz Taa 01op

Iy

. . : . 0
The requirement of the non-trivial displacement in the top-most surface, [le #* [O]’ finally
3
top

produces the dispersion equation of the pure Lamb waves linking v and £ as presented in Eq. (4.42).

T31 139

Dr(v,€) = D (v, &) +iD7(v, &) £ Ty Ty

=0 (4.42)

3. The pure SH waves for T™om° ¢ C2*2

When T™om° ¢ C2%2 it characterizes the pure SH waves. Expand Eq. (4.33) to derive the dispersion
equation of the pure SH waves, as presented in Eq. (4.43).
In . I
Ty T
][]
23|} s 21+ 422 023 top
By applying the traction-free boundary condition at the bottom- and top-most surfaces of the

l1

ln
plate, [agg}bot = [O’Qgh = [0}, the dispersion equation of the pure SH waves linking v and & just

op
come into being, as presented in Eq. (4.44).

Dr(v,€) = Df(v,€) + D7 (v,€) £ Toy = 0 (4.44)
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To this stage, the derivation process of TMM for various guided wave types has been completed.

The pseudo-code for processing the three wave types is presented in Algorithm 2, 3 and 4, respectively.

But before running the three algorithms, Algorithm 1 should be run to determine the correct wave

type existing in the laminate system. Note that though this chapter concentrates on the multi-layered

plate, the TMM framework is compatible with the single layer case given that for a single layer plate
Tmone — Th in Eq. (4.34).

Algorithm 1 Judge wave type according to the rotated laminae’s stiffness matrix type.

Input: Each layer’s material properties (Cg, pk, d, ¢x) for (k=1,...,n);

The wave propagation angle of interest 6.

Compute the rotated stiffness matrix C,=Rot{Cy,0 — ¢i} for (k=1,...,n).
if All C}, € Cuq then
Call Algorithm 2 to process the coupled Lamb and SH waves.
else if All C}, € Co then
Call Algorithm 3 and 4 to process the pure Lamb and SH waves.
else if Some Cj, € Cypq and other C), € Cp then
Call Algorithm 5 to process the hybrid Lamb and SH waves.
end if

Algorithm 2 Process the coupled Lamb and SH waves via TMM

Input: Each layer’s material properties (Cg, pg, di, ¢x) for (k=1,...,n);

9:
10:
11:
12:
13:

The wave propagation angle of interest 6;
The minimum and maximum wavenumber of interest (§min, Emax);
The minimum, maximum and incremental velocity of interest (Umin, Umax, Av).
Compute Cj,=Rot{Cy,0 — ¢y} for (k=1,...,n).
if Any C}, ¢ Carq then
Call Algorithm 1 to determine the correct wave type.
end if
for vg = Vmin : AV : Umax do
fork=1:1:ndo
Compute (., V., Wy, Bir, Bor, Par) for (r =1,...,6) via Egs. (3.24)(3.27)(3.31) using the
data (Cy, pk, v0)-
Compute the local lamina matrices (I‘é‘“%, Aé’“xﬁ(dk)) via Eq. (4.11).

Compute the local transfer matrix Té’“xG via Eq. (4.29).
end for
Compute the monodromy transfer matrix To§° via Eq. (4.34).
Solve Dr(vp,§) = 0 in Eq. (4.39) to get multiple roots (£1, &2,-..) € [{min, Emax)-
end for

Output: All solution points (v;, &;) in the range [Vmin, Vmax| X [Emin, Emax)-

Plot dispersion curves of the coupled Lamb and SH waves in (v,§), (w,§), (w,v) and (w, ¢g)
domains where w = {v and ¢4 = g—Ug is the group velocity.
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Algorithm 3 Process the pure Lamb waves via TMM

Input: Each layer’s material properties (Cy, pk, d, ¢x) for (k=1,...,n);
The wave propagation angle of interest 6;
The minimum and maximum wavenumber of interest (&min, max);
The minimum, maximum and incremental velocity of interest (Umin, Umax, Av).

1: Compute C),=Rot{Cy,0 — ¢i} for (k=1,...,n).

2: if Any C}, ¢ Co then

3: Call Algorithm 1 to determine the correct wave type.

4: end if

5: for vg = Umin : AV : Umax do

6: fork=1:1:ndo

7 Compute (o, Wy, Bir, P3r) for (r = 1,...,4) via Egs. (3.44)(3.46)(3.49) using the data
(027 Pk, UO)‘

8: Compute the local lamina matrices (I‘l4kx4, Ai&4(dk)) via Eq. (4.18).

9: Compute the local transfer matrix T, , via Eq. (4.29).

10: end for

11: Compute the monodromy transfer matrix T}4° via Eq. (4.34).

12: Solve Dr(vp,§) = 0 in Eq. (4.42) to get multiple roots (£1, &2,...) € [{min, Emax]-
13: end for
Output: All solution points (v;, &;) in the range [Umin, Vmax] X [Emin, Emax)-
Plot dispersion curves of the pure Lamb waves in (v,§), (w,§), (w,v) and (w,¢y) domains.

Algorithm 4 Process the pure SH waves via TMM

Input: Each layer’s material properties (Cy, pg, di, ¢r) for (k=1,...,n);
The wave propagation angle of interest 6;
The minimum and maximum wavenumber of interest (§min, Emax);
The minimum, maximum and incremental velocity of interest (Umin, Umax, Av).

1: Compute C),=Rot{Cy,0 — ¢i} for (k=1,...,n).

2: if Any C}, ¢ Co then

3: Call Algorithm 1 to determine the correct wave type.

4: end if

5: for vg = Umin : AV : Vmax do

6: for k=1:1:ndo

7 Compute (o, f2r) for (r =5,6) via Egs. (3.58)(3.60) using the data (C}, pg, vo)-
8: Compute the local lamina matrices (I‘lg’“xg, AlQ’“XQ(dk)) via Eq. (4.24).
9: Compute the local transfer matrix T4, , via Eq. (4.29).

10: end for

11: Compute the monodromy transfer matrix T505° via Eq. (4.34).

12: Solve Dp(vp,§) = 0 in Eq. (4.44) to get multiple roots (&1, &2,--.) € [{min, Emax)-
13: end for
Output: All solution points (v;, &;) in the range [Vmin, Vmax| X [Emin, Emax)-
Plot dispersion curves of the pure SH waves in (v,€), (w,£), (w,v) and (w, ¢y) domains.
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4.3.4 Wave mode shapes

Wave mode shapes are the displacement and stress fields across the thickness of the laminate at a
fixed point in the wave propagation path. The key step to compute wave mode shapes is to compute
the participation factors 't of each layer, which can be regarded as, to some extent, the inverse process
of the transfer matrix derivation in Section 4.3.1 and 4.3.2. In this section, we take the example of
computing mode shapes of the coupled Lamb and SH waves. For other wave types, it can be achieved

by a similar way.

For a known dispersion solution point (v;, &;) solved through Algorithm 2, each layer’s various kinds
of matrices are known as well, (US s, Blfq, Albi(dr), Tifq T, TEA° ). Then, ufl, in Bq. (4.38)
can be solved from the three-order linear homogeneous equation set, which is the zero-eigenvalue

correlated eigenvector of the submatrix TgYg°(4 : 6,1 : 3). Thanks to the traction-free boundary

l

condition at the top side of layer 1 (see Eq. (4.36)), o, = 0, the field variables of layer /; at its

1
op
l1

top side are then obtained Sig,

l1
= [US)P]. For other layer’s field variables at its top side, it can be

computed recurrently from S! as follows based on Eq. (4.28).

top
Sth, = St = Th18l (k=2,...,n) (4.45)

Each layer’s participation factors n'* are then computed as follows based on Eq. (4.26) by omitting
the phase term ei€(@1—vt),

I ( ) L ale

' = (T%) S, (k=1,...,n) (4.46)

top

Finally, substitute n' into Egs. (4.2) and (4.8) to compute the layer I;’s mode shapes of dis-
placement and stress, respectively. The whole laminate’s mode shapes are then concatenated from all

layers’ ones.

4.4 Hybrid matrix strategy
4.4.1 The incompatibility issue of matrix dimension of the local transfer matrices

In Eq. (4.34), there is a requirement that all layers’ local transfer matrices T (k = 1,...,n)
should have the same dimension in order to produce the monodromy transfer matrix T™e"° ¢ CP*P,

otherwise an incompatibility issue of the local transfer matrices in terms of their matrix dimension

96



4.4. HYBRID MATRIX STRATEGY

is encountered. Physically, this issue corresponds to the case that the interested wave propagation
direction is along the principal direction of one layer (producing the decoupled Lamb and SH waves in
this layer) but along the off-principal direction of another layer (producing the coupled Lamb and SH
waves in this layer). This issue is very common and it is usually present in multi-layered anisotropic
composite plates owing to the various stacking angles of layups. However, this issue has not been

given sufficient attention in the literature and only a few works attempted to tackle this issue.

The first work was presented by S. Pant in [8]. In this reference, a pseudo correction measure was
adopted to avoid this issue. Specifically, along the interested wave propagation direction, when the
rotated stiffness matrix in the layer I; behaves like the orthotropic type but in another layer [; like the
monoclinic type, namely, C, € Co and C;- € Cpm, C) is further rotated with an additional minor angle
Af = —1° such that it transitions to C; € Cxq. The screenshot of Pant’s pseudo correction measure
is presented in Figure 4.3. As the additional rotation angle is relatively small, the pseudo correction
has very little effect on the overall stiffness of the laminate. Thus, it is doable but not orthodox from
a mathematical perspective. Besides, there is a vital problem that, in metallic-composite structures,
the stiffness matrix of the metallic layer always keeps the isotropic type regardless of the rotation
angle, and the composite layers can be orthotropic or monoclinic type along an arbitrary propagation

direction. Thus, in metallic-composite structures Pant’s pseudo correction measure is invalid.

Fig. 8. Flow chart to numerically solve Lamb wave equations. *1: For orthotropic and higher symmetry materials during individual layer calculation; whenever the material
orientation angle (fiber orientation angle within a layer) equals the sensor orientation angle (considered angle for wave propagation or the orientation angle between the
wave source and sensor), the quasi-shear horizontal wave decoupled into pure shear horizontal wave. This reduced the total quasi waves from six to four and Eqs. (2.27) and
(2.28 ) goes to zero. As such, the Global Matrix approach became numerically unstable when six waves were combined with four waves due to the decoupling effect and no
solution was found. Therefore, a simple solution was purposed by subtracting the material orientation by 1°, which ensures the six waves travelling along the plane at any
given material and sensor angles. Subtracting 1° from the material orientation angle has very minimal effect on the overall stiffness of the laminate. This is because fiber
misalignments occur frequently in composite manufacturing process and it has been reported that misalignments of + 10° produces only a 3% change in the laminate Young's
Modulus [48]. *2: The numerical solution was found t be stable when the entire Global Matrix was divided by the largest term within the matrix before calculating its
determinant. The division also reduced the overall computational time.

Figure 4.3 — Pant’s pseudo correction measure to deal with the incompatibility issue [8].

Another work was done by D. Barazanchy in [9] for isotropic materials, who considered the Christof-
fel equation of isotropic mateirals in Eq. (4.47) and the three solutions of o? in Eq. (4.48). The
displacement amplitudes of the six partial waves [U,., V;., W,]* (r = 1,...,6) were obtained from the
eigenvectors of the Christoffel matrix that corresponds to the zero eigenvalues. Due to the repeated
solutions o = a2, the corresponding eigenvectors are linearly dependent. Thus, the vector orthogo-
nality analysis was used to sort these eigenvectors to generate the six linearly independent eigenvectors

being the admissible displacement amplitudes of the six partial waves. The screenshot of Barazanchy’s
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vector orthogonality analysis is presented in Figure 4.4. This method is only applicable to isotropic

materials and it encountered numerical instability issue when applied to a 50-layered plate [9)].

Ci1 — pv? + G522 0 Gutln g U 0
0 CuCiz _ 2 4 CuzCiag? 0 V| =0 (147)
C’1142rC12a 0 C11§C12 - p’l}2 + 011042 1774 0
2 2 2
2 _ PV 2 2pv 2 2pv
o2 = 2 P . L Y . G 4.48
1 3 011 — 012 5 Cll - 012 ( )

- 4
Cn

three o values produced six « values, where, in the case
of an isotropic material four of the six values were the
same in magnitude. Substituting one of those four «
values into equation (4) produced an eigenvalue prob-
lem which had two eigenvectors satisfying the equation
corresponding to two zero eigenvalues. A total of ten,
instead of an expected six, eigenvectors were obtained
for the six a values. Therefore, the eigenvectors were
sorted first based on their type (shear-horizontal or
shear-vertical) and pressure, using the vector orthogon-
ality principle. The sorted eigenvectors were matched
with their corresponding « values resulting in six distin-
guished sets of eigenvectors and e values. Applying an
uniqueness algorithm to the eigenvectors yielded no
more duplicate eigenvectors for each a value.

Figure 4.4 — Barazanchy’s vector orthogonality analysis to deal with the incompatibility issue [9].

In the current thesis, we propose a new hybrid matrix strategy (HMS) to solve the incompatibility
issue, which is effective for various material types including isotropic and orthotropic materials. The
most important aspect of HMS is that it is directly derived from the layer-wise PWSA similar to the
coupled Lamb and SH waves in Section 4.2.1. Thus, HMS is mathematically rigorous and numerically

stable.
4.4.2 Hybrid local lamina matrices of pure Lamb and SH waves

The incompatibility issue mathematically corresponds to the case that in some layers their local
transfer matrices are six-order Tng (producing the coupled Lamb and SH waves) and in other layers
they have two decoupled four-order and two-order of local transfer matrices TffX 4 (producing the pure
Lamb waves) and lesz (producing the pure SH waves). The process of deriving the HMS is to ‘re-

i i . . . mlj . . . .
couple’ TifX 4 and TIQJXQ to yield a new six-order local transfer matrix T, g, which is compatible with

Téixﬁ in terms of the matrix order.
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The single-layer system studied in Chapter 3 is the basis to derive the equations regarding to

the multi-layer system. Specifically, the displacement expressions of (u1, us) in Eq. (3.47) and wug in

Eq. (3.59) can be merged in Eq. (4.49).
Uy = Zﬁ:l nreiga,«:pg eif(xlfvt)

Uy = Z§:5nrei§am:3 eif(xlfvt)

uz = Zﬁ:l mWTeifarxg) clé(@1—vt)

It is equivalent to Eq. (4.50) under the concept of layer-wise PWSA.

u = ﬁ:l 1 % nreifarIB + 29:5 0 x nreifarxg ei{(xl—vt)
Uy = ﬁ:l 0 x nreiﬁarxg, + 2225 1 % nreiﬁarwg eiﬁ(xl—vt)

uz = E?ﬂ:l W, x nreiéarm + 2?25 0 x nreigarx?’) ei{(:}clfvt)

Rewrite Eq. (4.50) as the matrix form in Eq. (4.51) and the compact form in Eq. (4.52).

'ei§a1r3 7
eifagxg T
(75} 1 1 1 1 0 0 ifazxs 2
€ N3l ig(z1—vt
wl=10 0 0 0 1 1 . eié(z1—vt)
u W, W, Wi Wi 0 0 Ch =
3 1
eifasx:s 5
eifagxg L776
&(x1—vt)

usx1 = Usx6A6x6(23)Mgx1€"

(4.49)

(4.50)

(4.51)

(4.52)

where, Uz, is used to distinguish Usyg defined in Eq. (4.4), and it is regarded as the hybrid matrix

of Ujxy in Eq. (4.14) and Uj o in Eq. (4.20). The tilde ‘7 represents the hybrid sense. Physically,

the zero elements in Usyg denote that the amplitudes of the corresponding partial waves are zero.

The stress equations of (033,013) in Eq. (3.48) and 023 in Eq. (3.60) can be merged in Eq. (4.53)

and are further equivalently written as the superposition form in Eq. (4.54).

_ 4 1 I3 H —ut
033 = (S0 npPreiter®s) eié(@i—vt)
093 = (S0_5 1y Boeitar®s) elé(@i—vt)

4 i€ar i€ (w1 —vt
013 = (2r=1 77r53reléa 23 ) glé(@1—vt)

o33 = 2;4“:1 Bir X nreiéarcr:g + ZE:E) 0 % nreigarxg ei{(:r:lfvt)
093 = Zﬁ:l 0 x ,r’reigoerxg + 22:5 B2T‘ % nreifarwg ei{(xl—vt)

013 = (Choy ar X 1,807 4 T30 0 x gpeléarss ) eiéer—)

99

(4.53)

(4.54)



4.4. HYBRID MATRIX STRATEGY

Rewrite Eq. (4.54) as the matrix form in Eq. (4.55) and the compact form in Eq. (4.56).

'ei§a1m3 b i
ei§a21‘3 m
033 Pu P2 P13 Pu 0 0 ciéases Z; |
o3| =10 0 0 0 P55 [Bos o 0 elﬁ(wl—vt) (4'55)
013 B31 B2 B3z Psa 0 0O e
ci€ases s
615&613 L776 ]
T3x1 = By Aoxe(w3)Mgx € ) (4.56)

where, B3, is used to distinguish B3, defined in Eq. (4.10), and it is regarded as the hybrid matrix
of Byyy in Eq. (4.16) and B4, in Eq. (4.22).

Egs. (4.51) and (4.55) can be concatenated into a single equation, see the matrix form in Eq. (4.57)

and the compact form in Eq. (4.58).

‘ei§a1$3 T

] 101 1 1 0 0] s ]

us o 0 0 0 1 1 © . 2
us | _ Wiy Wy Ws Wy 0 0 e’ ang 3| ié(@r—vt) (4.57)

033 B11 Bz Bz B 0 0 eléas 74

0923 0 0 0 0 P25 Pos oi€ases 75

lo13]  LBs1 B2 B33 Paa 0 0 sitaas | L6
S6x1 = LoxoAex6(23)N6x 1€ "1 7 = Zgyg(23)mg,1 5" 7 (4.58)

At this moment, Usyg, B3Xﬁ, Loy are uniformly defined as the hybrid local lamina matrices,
and they are further used to compute the hybrid local transfer matrix Ty in Eq. (4.59), which is
based on Eq. (4.29). It can be easily proved that any two rows of L6 are linearly independent that
makes it non-singular. Thus, the inverse of T'gxg in Eq. (4.59) is defined and this property secures the

numerical stability of the HMS.

N 5 L\l
Tex6 = I'oxeAsxe(dk) (F6><6) € COx0 (4.59)

With the compatible transfer matrices between ’i‘gxﬁ and T%"w, the hybrid monodromy transfer
matrix Tgnf g ? is computed based on Eq. (4.34). The above derivations for the HMS is programmatically

interpreted in Algorithm 5, which is logically accompanied by Algorithm 1 to make sure that the
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current guided wave type correctly corresponds to the hybrid case. Specifically, the Branch 3 of
Algorithm 1 should be targeted. In response to the HMS, the wave solutions that are obtained via
Algorithm 5 are classified into the hybrid Lamb and SH waves to distinguish the terminology of the

coupled waves in Algorithm 2 and the pure waves in Algorithm 3 and 4.

Algorithm 5 HMS to process the matrix incompatibility issue of the hybrid Lamb and SH waves

Input: Each layer’s material properties (Cg, pg, di, ¢x) for (k=1,...,n);
The wave propagation angle of interest 6;
The minimum and maximum wavenumber of interest (§min, Emax);
The minimum, maximum and incremental velocity of interest (Umin, Umax, Av).

1: Compute Cj,=Rot{Cy,0 — ¢y} for (k=1,...,n).

2: if All C), € Cpq or all C), € Co then

3: Call Algorithm 1 to determine the correct wave type.

4: end if

5: for vg = Umin : AV : Umax do

6: fork=1:1:ndo

7: if C}, € Caq then

8: Compute (o, V., Wy, Bir, Bor, Par) for (r =1,...,6) via Egs. (3.24)(3.27)(3.31) using
the data (Cj,, pk, vo).

9: Compute the local lamina matrices <I‘é’“x6, Alﬁkxﬁ(dk)) via Eq. (4.11).

10: Compute the local transfer matrix Tékx(a via Eq. (4.29).

11: else if C). € Cp then

12: Compute (o, Wy, Biy, B3r) for (r=1,...,4) via Egs. (3.44)(3.46)(3.49) using the data
(C?c: Pk ’UO)'

13: Compute the local lamina matrices (I‘i’“M, Ai’“x4(dk)) via Eq. (4.18).

14: Compute (., fa) for (r =5,6) via Egs. (3.58)(3.60) using the data (C},, pk, vo).

15: Compute the local lamina matrices (I‘é’“xz, Alz’“w(dk)) via Eq. (4.24).

16: Compute the hybrid local lamina matrices f‘ékxﬁ using the obtained (1"l4kX 4 Fl2k><2) based
on Eq. (4.57).

17: Compute the hybrid local transfer matrix ’i‘ékm using the obtained (f‘lﬁkxﬁ, Aé’;G) based
on Eq. (4.59).

18: end if

19: end for .

20: Compute the monodromy transfer matrix Tgyq  via Eq. (4.34).

21: Solve Dr(vp,§) = 0 in Eq. (4.39) to get multiple roots (&1, &2,-..) € [{min, Emax)-
22: end for
Output: All solution points (v;, &;) in the range [Vmin, Vmax| X [Emin, Emax)-
Plot dispersion curves of the hybrid Lamb and SH waves in (v,£), (w,§), (w,v) and (w,cg)
domains.
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4.5 Four classes of composite laminates

In aeronautic and aerospace industry, an arbitrarily oriented composite laminate can be classified
into four classes according to the stacking angles and material compositions as listed in Table 4.1, in
which the unidirectional, cross-ply and quasi-isotropic laminates are composed solely by orthotropic
materials (the transversely isotropic materials are included in the type of orthotropic materials accord-
ing to the Section 2.2.4.) and the metallic-composite laminate consists of orthotropic (for composite
layers) and isotropic (for metallic layers) materials. The second column of Table 4.1 lists the represen-
tative for each laminate class. According to the remark below Table 4.1, the unidirectional laminate
can be mathematically modeled as the single layer plate which is the focus of Chapter 3. Thus, in
the next sections for numerical examples, only the latter three laminates are adopted to validate the

developed TMM adapted to the coupled, pure and hybrid wave types as indicated in Table 4.1.

In an arbitrarily oriented composite laminate, if a certain wave propagation angle 6 will lead to the
incompatibility issue (causing the hybrid Lamb and SH waves), this angle is defined as the singular

angle of this laminate. For example, § = 45° in the quasi-isotropic laminate of Table 4.1.

Table 4.1 — Four classes of composite laminates and the wave type dependence on the propagation
angle.

Coupled Pure Hybrid

Laminate class Stacking angles Propagation angle 6
waves waves waves
o 0 € {0°,90°} Vv
1 )

Unidirectional [0]s g ¢ {0°,90°} J
6 € {0°,90°} Vv

CrOSS—ply [(0/90)5]2 0 ¢ {OO7 900} \/

.. . 0 € {0°,45°,90°, —45°} V

Quasi-isotropic [0/90/ + 45/ — 45]4 g ¢ {0°,45°,90°, —45°} v/

5 0 €40°,90°} v/

Metallic-composite [Al/0/90/A1/90/0/Al]

0 ¢ {0°,90°} Vv

! Remark on the unidirectional laminate class: since the field variables (displacement and stress) are considered to
be continuous across the interface of adjacent layers (the perfect interface condition is assumed), the unidirectional
laminate [0]s is mathematically equivalent to the single layer plate [0]; that has the same thickness as the [0]s plate.

2 Al: the aluminum layer that is an isotropic material.
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4.6 Numerical example on a cross-ply laminate

The first example is the cross-ply laminate consisting of eight transversely isotropic laminae with
stacking angles of layups [(0/90)s]2. The material properties of each ply are listed in Table 4.2 cited
from [12]. The total thickness of the plate is 1.6 mm since the thickness of each ply is 0.2 mm. The
stiffness matrix of each ply along its fiber direction is presented in Eq. (4.60) which is computed based

on Eq. (2.12).

Table 4.2 — Material properties of a transversely isotropic lamina

Density [kg/m?®] FEj [GPa] FE3[GPa] Gi12[GPa] v12 193 Ply thickness Stacking angles
1608 172 9.8 6.1 0.37 0.55 0.2mm [(0/90)s]2

[178.2 8.347 8347 0 0 O
14.44 8119 0 0 O
14.44 0 0 O

C= 3161 0 0 GPa (4.60)
sym 6.1 0
L 6.1]

4.6.1 The pure Lamb and SH waves when 6 = 0°

To clearly illustrate the process of stiffness matrix rotation and the existing wave types in the
cross-ply laminate that is adapted to the rotated stiffness matrix of each layer, the profile section of
this laminate is illustrated in Figure 4.5 for the current wave propagation angle § = 0°. From this
conceptual diagram, it can be seen that, after rotation of Eq. (4.60), the rotated stiffness matrix of
each layer still keeps the orthotropic type, i.e. C, € Co (i = 1,...,8). According to the Algorithm 1,
Branch 2 is targeted that corresponds to the case of the pure Lamb and SH waves. After running
Algorithm 3 and 4, the resulted dispersion curves of the pure Lamb and SH waves are depicted in

Figure 4.6.

For another wave propagation angle § = 90°, a similar diagram than Figure 4.5 can be generated
to determine the accessible wave type existing in the cross-ply laminate at the specified angle 6 = 90°.
Due to the reciprocal condition between § = 0° and 8 = 90° for the cross-ply stacking sequence

[(0/90)g)2, it is easy to infer that the rotated C; € Cp (i = 1,...,8) for # = 90°. Thus, the accessible

103



4.6. NUMERICAL EXAMPLE ON A CROSS-PLY LAMINATE

Wave propagatilon angle @ = 0°
Citypealongits  Stacking angles Rotation angle  Rotated stiff. matrix Local transfer matrix Tziixza
principal direction b; 0;=6—¢; C; = Rot{C;, 6;} f : !
C,ECy ¢, =0 6, =0 C1ECy T,bs Tk,
C, €Cy ¢, = 90° 6, = —90° C; ECy Tz, T.%,
C; ECp 3 =90 63 = —90° CGECo qu Tzliz
C4 ECy ¢y = 0° 04 = 0° C"L € Co Tk«t TZI;Z
Cs €Cy ¢s=0° 65 =0° Cs € Cp T‘Eq Tzliz
Cs € Cy $e = 90° 0 = —90° Cs €Co TS %,
¢ €€ ¢ = 90° 6, = —90° C; €Co Tk Tyler
Cg € Co ¢g = 0° Og = 0 Cé € Co T‘ii‘; Tzliz
Monodromy transfer matrix T35 °: T T3S
Accessible wave type: Pure Lamb and SH waves

Figure 4.5 — Conceptual diagram of determining the wave type existing in the cross-ply laminate
[(0/90)s]2 at wave propagation angle 6 = 0°.
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Figure 4.6 — Dispersion curves of pure Lamb and SH waves of the cross-ply laminate when 6 = 0°.

wave type is still the pure Lamb and SH waves when # = 90°. To avoid redundancy, the computed

dispersion curves are not presented here.

4.6.2 The coupled Lamb and SH waves when 6 = 45°

When we consider § = 45°, the conceptual diagram of determining the plate’s wave type is il-

lustrated in Figure 4.7. It shows that each layer’s stiffness matrix after rotation changes to C; €
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Cm (i =1,...,8). This outcome immediately leads to the coupled Lamb and SH waves according to
the Branch 1 of Algorithm 1, and Algorithm 2 should be adopted to compute the dispersion curves.
After running Algorithm 2, the resulted dispersion curves of the coupled Lamb and SH waves are

depicted in Figure 4.8.

Wave propagatiPn angle 6 = 45°
C;typealongits  Stacking angles Rotation angle  Rotated stiff, matrix  Local transfer
principal direction b; 0;=6—¢; C/ = Rot{C;, 6;} matrix Tzl,"xp
C,ECy =0 9, = 45° C, € Gy Ti
C, €Co ¢, = 90° 6, = —45° C, € Cyr T2,
C;€C $3 =90° 0; = —45° W EE, T
C,EC By =0’ 6, = 45° C, € Cp¢ T
Cs €Cy $s =0’ 05 = 45° CL€Cy TS
Cs €Co $s = 90° 0 = —45° C. € Cy¢ TS
C,€Cy ;=90 6, = —45° C, € Cyr T
Cg €Co Pg =0 B = 45° C} € Cpe TS
Monodromy transfer matrix Tp53'°: Texa'®
Accessible wave type: Coupled Lamb and SH waves

Figure 4.7 — Conceptual diagram of determining the wave type existing in the cross-ply laminate
[(0/90)s]2 at wave propagation angle § = 45°.
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Figure 4.8 — Dispersion curves of the coupled Lamb and SH waves of the cross-ply laminate at 6 = 45°.
4.6.3 Displacement and stress mode shapes

Each point of the dispersion curves is a solution of the dispersion equation. It can be used to

compute the wave mode shapes introduced in Section 4.3.4. Here, we take the points A, B, C in
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Figure 4.9 — Displacement mode shapes of the cross-ply laminate for § = 0° and 45° at f = 400 kHz.
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Figure 4.10 — Stress mode shapes of the cross-ply laminate for 6§ = 0° and 45° at f = 400 kHz.
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Figures 4.6 and 4.8 to compute their displacement mode shapes (see Figure 4.9) and stress mode

shapes (see Figure 4.10).

In Figure 4.9(a)(b), the us component is zero, but in Figure 4.9(c), the u; and uz component is zero.
This is consistent with their respective wave types implied in Figure 4.6. Specifically, Figure 4.9(a)
corresponds to the point A of Figure 4.6 that belongs to the pure Lamb modes. Thus, us component
vanished in a pure Lamb mode. Likewise, Figure 4.9(c) corresponds to the point C of Figure 4.6

belonging to the pure SH modes and thus the u; and us components vanished in a pure SH mode.

Figure 4.9(d), (e), (f) corresponds to the point A, B, C of Figure 4.8, respectively, which belong
to the coupled Lamb and SH waves. The three displacement components are coexisting in Fig-
ure 4.9(d)(e)(f). For the coupled modes, the mode order is named by following the terminology of
the pure modes with a prefix quasi to distinguish the pure counterparts in some references [37, 57, §],
namely, quasi-S0, quasi-A0 and quasi-SHO modes. In the thesis, we do not emphasize this point. The

prefix quasi is omitted in the next sections unless stated otherwise.

From Figure 4.10, the zero-valued stress mode shapes at the top- and bottom-most surfaces can be
observed thus demonstrating the traction-free boundary condition considered in Eq. (4.36). Besides,
the continuous curves of the displacement and stress mode shapes reveal that the continuity condition
postulated during deriving the TMM framework (see Eq. (4.31)) is legitimate. In Figures 4.9 and 4.10,
the dotted horizontal line represents the midplane of the plate, which is mentioned here to validate
the symmetry condition (see Figure 3.1(b)(c) and Egs. (3.3)(3.4) for the single-layered system, where
the midplane is represented by z3 = 0). As a consequence, the dispersion curves in Figures 4.6 and

4.8 are further classified into symmetric and anti-symmetric modes.

4.7 Numerical example on a quasi-isotropic laminate

In this section, a carbon-fiber epoxy laminate is used to demonstrate the developed HMS. The
laminate consists of eight unidirectional composite laminae with stacking angles of layups [0/90/ +
45/ —45]g, indicating the quasi-isotropic property of this plate. Each lamina is made up of carbon-fiber
epoxy prepreg having transversely isotropic material properties as listed in Table 4.3, which is cited
from [8]. This material is commonly used in the aeronautic and aerospace industry. The material

properties are further used to compute the stiffness matrix in Eq. (4.61) along its principal direction
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based on Eq. (2.12).

Table 4.3 — Material properties of a carbon-fiber epoxy lamina

Density [kg/m?®] Ej [GPa] FEs[GPa] Gi2[GPa] vi2 193 Ply thickness Stacking angles
1650 143 9.1 4.8 0.3 0.3 0.17mm 0/90/ + 45/ — 45]

[145.38 396 396 0 0 O
10.11 311 0 0 O
1011 0 0 O

C= 35 0 0 GPa (4.61)
Sym 48 0
i 4.8]

The quasi-isotropic stacking sequence of layups results in that there is not a common principal axis
among the laminae and thus no pure Lamb or SH waves present in the plate for any propagation angle.
For the specific stacking angles of layups [0/90/ 4+ 45/ — 45|, when the interested wave propagation
angle just coincides with one layer’s private principal direction, i.e. 6 € {0°,45° 90°, —45°}, the
incompatibility issue is just encountered, which can be solved by virtue of the HMS. The related

procedures are illustrated in this section.

4.7.1 The hybrid Lamb and SH waves when 6 = 0°, 45° or 90°

Figure 4.11(a) illustrates the process of determining the wave type existing in the laminate at the
current propagation angle # = 0°. It is clear that the stiffness matrices of some layers after rotation
(specifically, the 1, 274, 7th 8th Jayer) belong to the set Co but another layers (from the 3" to the 6
layer) belong to the set Caq. For the rotated C; € Co, there exists two kinds of local transfer matrix
Tifx4 and Tng according to the Section 4.2.2 and 4.2.3, which correspond to the pure Lamb and SH
waves in this layer. But for another rotated C] € Cu4, it has only the local transfer matrix T%Xﬁ
according to the Section 4.2.1, which corresponds to the coupled Lamb and SH waves in this layer.
Immediately, we are encountering the incompatibility issue between Tgxﬁ and (Tffx 4,Tl2sz). The
HMS developed in Section 4.4 just dedicates to solve this issue, which is achieved by reconstructing
<TffX 1 TZZjXQ) to the hybrid local transfer matrix ’i‘ng. By doing so, all layers’ local transfer matrices
are now compatible and they are assembled together to yield the hybrid monodromy transfer matrix

2 mMon

Tﬁxﬁo based on the TMM framework. After running Algorithm 1 and 5, the dispersion solutions of
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the hybrid Lamb and SH waves are obtained and the dispersion curves are depicted in Figure 4.12(a)

which corresponds to the current propagation angle 6 = 0°.

(Tijxéb Tl2jx2) HMS based on Egs. (4.57)(4.59) Téjx(s

The incompatibility issue is still occurring at § = +45° and 90° due to the stacking angles of
layups [0/90/ + 45/ — 45]s, and it can be qualitatively analyzed by making the same kind of conceptual
diagram as the angle # = 0° in Figure 4.11(a). To avoid redundancy, we only illustrate the angle
0 = 45° in Figure 4.11(c). It shows that, after rotation, the stiffness matrices of the 3" to the 6
layer keep the orthotropic type, i.e. C;- € Co (j = 3,4,5,6), which is conjugated with Figure 4.11(a)
in the graphical sense. Thus, the HMS should be applied to these layers. After running Algorithm 1
and 5, the dispersion curves of the hybrid Lamb and SH waves are depicted in Figure 4.12(c) and (d)

for 8 = 45° and 0 = 90°, respectively.
4.7.2 The coupled Lamb and SH waves when 6 = 30°

When the wave direction of interest does not coincide with any principal axis of all layers, i.e.
6 ¢ {0°,45°,90°, —45°}, the rotated C; of all layers shall belong to the set Cxq, which gives rise to the
unified local transfer matrix Téixﬁ between all layers according to the Section 4.2.1. Here, we take a
typical angle 8 = 30° to present the process of determining the coupled type of Lamb and SH waves
as illustrated in Figure 4.11(b). For the coupled case, Algorithm 2 should be adopted to compute
the dispersion solutions according to the result provided by Algorithm 1. After computation, the
dispersion curves of the coupled Lamb and SH waves are depicted in Figure 4.12(b) for the current

angle 8 = 30°.

Note that the experimental data points in Figure 4.12 are extracted from [8], and they are used
in Figure 4.12 for the comparison purpose from the experimental perspective. The good agreement
between the theoretically computed curves and the experimental data points shown in Figure 4.12, as a

consequence, validates the feasibility and effectiveness of the combined TMM and HMS methodology.

To intuitively observe all the singular angles of the quasi-isotropic laminate, the polar plot of
wave velocities are created in Figure 4.13 for fd = 0.1 MHz - mm and fd = 0.4 MHz - mm, where fd
represents the product of frequency f and plate’s total thickness d. In this figure, the eight singular
angles are indicated, they are 6 € {0°,45°,90°,135°,180°, 225°,270°,315°}.
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Wave propagation angle 8 = 0°
I—%\

Citypealongits  Stacking angles Rotationangle  Rotated stiff. matrix Local'tranﬁfer
principal direction 0N 0;=0—¢; C; = Rot{C;, 6;} matrix T,

C.€C $1=0 6,=0 Ci €Co e
C, EC ¢, =90° 6, = —90° CyEC T
C;€C ¢ = +45° 03 = —45° C} € Cye TS
C,ECy by = —45° 0, = +45° T, @ Esyp Té,
Cs€Cy s = —45° 65 = +45° T E Gy TS,
Cs €Cy e = +45° 05 = —45° CL € Cyr TS
C; €Co ¢7; =90° 6, = —90° CrECy T
Ca€C Pg=0 05 =0 C; €Co =%

(a) Monodromy transfer matrix T3 TEen°

Accessible wave type: Hybrid Lamb and SH waves

Wave propagation angle 8 = 30°

C;typealongits  Stackingangles  Rotationangle  Rotated stiff. matrix Localitranﬁfer
principal direction i 6;=6—¢; C} = Rot{C;, 6;} matrix Ty,
C,eCy ¢ =0 8, = 30° Al T,
C,E€Cy ¢, = 90° 0, = —60 T @ €y T2,

C3 €Cy ¢y = +45° 6; = —15° C} € Cye T2,
C,ECy Gy = —45° 6, = 75° Cl € Cy To,

C EEy s = —45° 05 =75 GAElE TS,

Cs €Cy e = +45° 0 = —15° CL € Cye TS
C,€C ¢, =90 8, = —60° T @ Ehyp TS,
Cg€Cy g =0 g = 30° ) E Gy TS,

(b) Monodromy transfer matrix T30 Tge'®

Accessible wave type: Coupled Lamb and SH waves

Wave propagation angle 8 = 45°

Citypealongits  Stackingangles  Rotationangle  Rotated stiff. matrix Local'tranﬁfer
principal direction b; 0;=6—¢; C/ = Rot{C;,6;} matrix Ty,
GAEICH ¢ =0 0, = 45° C, € Cy T,
C,EC ¢, =90° 6, = —45° C) € Ce T2,

Cs €Co b5 = +45° 65 =0 Ci€Co e
C,€Co by =—45" 6, = 90° CLeC Tete
€= E Bs = —45° 05 = 90° CLECo TS,

Cs €Cy 6 = +45° 05=0" Cs €Co e
C, €Cy ¢; =90 6, = —45° C) € Cye T,
GE) g =0 0g = 45° GElCY, T,

©) Monodromy transfer matrix T3 : Teen°

Accessible wave type: Hybrid Lamb and SH waves

Figure 4.11 — Conceptual diagram of determining the wave type existing in the quasi-isotropic laminate
[0/90/ + 45/ — 45]s at the wave propagation angle (a) 6 = 0°, (b) 6 = 30°, (c) 6 = 45°.

110



4.7. NUMERICAL EXAMPLE ON A QUASI-ISOTROPIC LAMINATE

7 T T T T T T T 7 T T T T T T T

S0 mode S0 mode

5 e 5 —
7 =
€ 5
= =
St 1 Sar .
= SHO mode = SHO mode
S S
(<} [<}
2 2
e3f ] e3f |
o lﬂ
= =
1 oL 4
..................................................................................... A0 mode

Phase velocity |1

--------
v O Exp. data points i Group velocity
0 . . . . . n N 0 . . . . . I !
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 06 0.7 08
Frequency x Thickness [MHz.mm] Frequency x Thickness [MHz.mm]
o 3 o
(a) 0 = 0°, the hybrid case (b) 6 = 30°, the coupled case
7 T T 7 T T T
S0 mode S0 mode
6l i~ T o o o o al 6 B 5
5 1 5 B
) =z
€ €
= =
S4r 1 =47 7
= SHO mode = SHO mode
S ]
S S
2 g
037 ] 037 i
> >
o @
2 =
oL |
A0 mode
1 Phase velocity Phase velo
roup velocity +++2+2++ Group velo
O  Exp. data points O  Exp. data points
0 . . . . . n 0 0 . . . . . n N
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 06 0.7 08
Frequency x Thickness [MHz.mm] Frequency x Thickness [MHz.mm]
o : o :
(c) @ = 45°, the hybrid case (d) 6 =90°, the hybrid case

Figure 4.12 — Dispersion curves of the hybrid or coupled Lamb and SH waves of the quasi-isotropic
laminate. The experimental data points are extracted from [8].
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Figure 4.13 — Polar plot of wave velocities. The experimental data points are extracted from [8].
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4.7.3 Illustration of Pant’s pseudo correction measure

Pant’s pseudo correction measure to alleviate the incompatibility issue is presented in Figure 4.3.
This measure is conceptually illustrated in Figure 4.14 for the angle # = 0° which has been discussed in
Figure 4.11(a). The core idea of this measure is detailed in the right-most two columns of Figure 4.14.
By additionally rotating the C;» € Co(j =1,2,7,8) with a minor angle A@ = —1°, all the rotated

stiffness matrices now belong to the set Cxq that finally produces the coupled Lamb and SH waves.

As the additional angle is relatively small, this pseudo correction has very little effect on the overall
stiffness of the laminate. Thus, it is doable for the quasi-isotropic laminate but not orthodox from the
mathematical view. In the metallic-composite laminate, Pant’s pseudo correction is invalid because the
stiffness matrix of the metallic layer always remains the orthotropic type irrespective of the rotation

angle. We will demonstrate this case in Section 4.8.3.

Wave propagation angle 6 = 0° Pant’s pseudo correction
f : ) Correct C; € Cp —» C;' € Local "
C; type along its  Stacking angles Rotation angle  Rotated stiff. matrix | ¢, . via C/' = Rot{C}, A8} oca_tranﬁ er
principal direction b; 6; =6 —¢; C! = Rot{C;, 6;} with AG = —1° matrix Ty,
C,E€Cy ¢ =0 6, =0’ CLeCy ——> C/ECy T
C,ECy ¢, = 90° 6, = —90° CLeECy ——> CJECy i
C;€Cy $3 = +45° 6; = —45° Ci € Cyr C, € Cyr TS
C,ECy by = —45° 0, = +45° C, € Car €} € Cye T
Cs €Co $s = —45° 05 = +45° CL € Cur CL € Gy TS,
Cs €Co $s = +45° B = —45° C, € Car Cj € Gy T
C, €ECy ¢7 = 90° 6, = —90° CeCy ——> CleCy 07,
Cg €Co g =0’ 0g =0 CLEC) ——> CLEC) i
Monodromy transfer matrix Tp53'°: Tey'™®
Accessible wave type: Coupled Lamb and SH waves

Figure 4.14 — Conceptual diagram of Pant’s pseudo correction to deal with the incompatibility issue
of the quasi-isotropic laminate [0/90/ + 45/ — 45]s when 6 = 0°.

4.8 Numerical example on a metallic-composite laminate

In this section, the HMS is applied to a metallic-composite laminate composed by three aluminum

layers and four glass fiber layers with stacking angles of layups [Al/0/90/A1/90/0/Al]. The material
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properties of the two materials are cited from [8] and listed in Table 4.4 and 4.5 for convenience. The
stiffness matrices of the two materials along their respective principal-axis direction can be computed
based on Egs. (2.14) and (2.12). Thanks to the isotropic property of aluminum material, there exists
a common principle-axis direction between the aluminum and the glass fiber layers, 0° and 90°. Thus,
for the metallic-composite plate, the incompatibility issue occurs at any angle other than § = 0° or

90°.

Table 4.4 — Material properties of aluminum

Density [kg/m3] E [GPa] v Ply thickness [mm]
2780 73.1 0.33 0.33

Table 4.5 — Material properties of glass fiber

Density ([kg/m?®]) E;[GPa] FE2[GPa] G12[GPa] 112 w93  Ply thickness [mm)]
1980 50.6 9.9 3.7 0.32 0.32 0.127

4.8.1 The pure Lamb and SH waves when 6 = 0° or 90°

Figure 4.15(a) illustrates the process of determining wave type when one principle-axis direction
6 = 0° is concerned. At this direction, the rotated stiffness matrices of aluminum layers remain the
isotropic property C; € Cz (i = 1,4,7), and the rotated stiffness matrices of glass fiber layers keep the
orthotropic property C;- €Co(j =2,3,5,6). According to the classification Cz C Co defined in the
Characteristic 3 of Section 2.3.3, we can also classify the C, € Co (i = 1,4,7). As such, all the rotated
stiffness matrices now belong to the orthotropic type that finally produces the pure Lamb and SH
waves. For another principle-axis direction § = 90°, the same outcome of the pure case is anticipated.
The dispersion curves of the pure Lamb and SH waves at the two principle-axes directions are then
retrieved by running Algorithm 3 and 4 and are depicted in Figure 4.16(a)(e). The good agreement
between the computed curves and the experimental data points demonstrates the high accuracy of the

TMM framework in processing the metallic-composite laminate.
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Wave propagation angle 8 = 0°
I—l—\

Ctypealongits  Stackingangles  Rotationangle  Rotated stiff, mawrix  L0cal transfer matrix Ty,
principal direction bi 0, =6—¢; C; = Rot{C;, 6;} f * !

C,eC $, = 0°(AD) 6,=0 T EE T, T,
C; €Cy $,=0 6, =0 C} €Cy T, T2,
C; €€ $3 = 90° 63 =90 C; €Cy T, 5
C,EC ¢4 = 0°(AD) 6, =0 CLEC Ty, o
Cs €Cy $s = 90° 05 =90° L EE, TS, TS,
Cs€ECy $6 =0’ 6 =0 Cs €Co TS 50
C,EC ¢, = 0°(Al) 6, =0 Cec T, T,

Monodromy transfer matrix T3 TR TS

@

Accessible wave type: Pure Lamb and SH waves

Wave propagation angle 8 = 45

Local transfer

C;typealongits  Stacking angles Rotation angle  Rotated stiff. matrix L
principal direction i 0;=6—¢; C; = Rot{C;,6;} matrix Ty,

CeG ¢1 = 0°(AD) 6, =45 Ceg Texs
C,€Cy G, =0 8, = 45° C, € Cyr T2,
C;€Cy ¢ =90° 05 = —45° Al T,
Cec ¢4 = 0°(Al) 0y = 45° Cec Texe
GHEfEy s = 90° 05 = —45° CL € Cyy TS,
GNEfEy $s =0 05 = 45° CL € Cyy TS,
Cec b, = 0°(Al) 9, = 45° Crec Tess

(b) Monodromy transfer matrix T3 Teen°

Accessible wave type: Hybrid Lamb and SH waves

Wave propagation angle 6 = 45° Pant’s pseudo correction
[—1—\

C;typealongits  Stackingangles  Rotationangle ~Rotated stiff. matrix 1For C; € C; € Gy, compute Local transfer

principal direction b; 0;=6—¢; C! = Rot{C;, 6;} C' = Rot{C/,—1"} matrix Tzl,ixp
(e 1= 0°(Al) 0, = 45° Cec, ———> cleg T, To,
C,ECy Gy =0 0, = 45° € E g @) E Gy T2,
CEC ¢ =90° 0; = —45° AL T EEy T,
C,EC b4 = 0°(Al) 6, = 45° c,ec; —, —> Ciec T
Cs €Cy ¢s = 90° 05 = —45° CLECy CL € Cyr TS,
Cs € Cp $e =0’ 0 = 45° CL € Cyr CL € Cyr TS,
C, €C ¢, = 0°(AD) 6, = 45° e, ——> Cleg T o,

No effective monodromy transfer matrix Tp39;"® €—————— Incompatible local transfer matrices T:,ixp

(©

Wave solutions cannot be computed via Pant’s pseudo correction for metallic-composite laminate
Y p

Figure 4.15 — Conceptual diagram of determining the wave type existing in the metallic-composite
laminate [A1/0/90/A1/90/0/Al] at the wave propagation angle (a) 6 = 0°, (b) § = 45° and (c) § = 45°
for Pant’s pseudo correction.
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Figure 4.16 — Dispersion curves of the hybrid or pure Lamb and SH waves of the metallic-composite
laminate. The experimental data points are extracted from [8].
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Figure 4.17 — Polar plot of wave velocities. The experimental data points are extracted from [8].

4.8.2 The hybrid Lamb and SH waves when 6 = 20°, 45° or 70°

There are many singular angles that will invoke the incompatibility issue in the metallic-composite
laminate. Figure 4.15(b) illustrates the process of determining wave type when 6 = 45°. At this
direction, the stiffness matrices of aluminum layers are rotated to C; € Cz C Co (i = 1,4,7) due to the
rotation invariance property of isotropic material, and the stiffness matrices of the glass fiber layers
are rotated to C;- €Cm(J =2,3,5,6). The inconformity of stiffness matrix classes between aluminum
and glass fiber layers at the current angle # = 45° makes the requirement that only the hybrid local
transfer matrices of the aluminum layers Téjxﬁ (i = 1,4,7) are compatible with the local transfer
matrices of the glass fiber layers Téjxﬁ (j = 2,3,5,6) as illustrated in Figure 4.15(b). Correspondingly,
the hybrid type of Lamb and SH waves is determined. For another two angles § = 20° and 70°, the
same hybrid wave type can be analyzed. After running Algorithm 5, the dispersion curves at the three
angles 6 = 20°, 45°, 70° are retrieved in Figure 4.16(b), (c), (d), respectively. The reason of exhibiting
the dispersion curves of # = 20° and 70° in Figure 4.16 is that the experimental data of the two angles
are available from [8]. The good agreement between the computed curves and the experimental data

points validates the feasibility of the HMS in processing the metallic-composite laminate.

In the quasi-isotropic laminate [0/90/ + 45/ — 45]s, there are only eight singular angles 6 €
{0°,45°,90°,135°,180°,225°,270°,315°} as indicated in Figure 4.13. However, in the metallic-composite
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laminate, any propagation angle is singular except 6 € {0°,90°,180°,270°}. This is the major differ-
ence between the polar plot of the quasi-isotropic laminate in Figure 4.13 and the polar plot of the

metallic-composite laminate in Figure 4.17.
4.8.3 Superiority of HMS over Pant’s pseudo correction measure

Figure 4.15(c) illustrates the ineffectiveness of Pant’s pseudo correction measure during process-
ing the incompatibility issue of metallic-composite laminate. It shows that the additionally rotated
stiffness matrices of aluminum layers still remains isotropic property, C/ € Cz (i = 1,4,7), due to the
rotation invariance of isotropic material. In consequence, the two kinds of local transfer matrices of
aluminum layers (TifX 4 Tlgw) (1 = 1,4,7) are still incompatible with the local transfer matrices of
glass fiber layers Téjm (7 = 2,3,5,6) if without using the hybrid ones Tl6i><6 (1 = 1,4,7) employed in
Figure 4.15(b). This illustration proves that Pant’s pseudo correction measure fails to deal with the
incompatibility issue of metallic-composite laminate but the HMS is the unique solution to address this
issue if the matrix-based methodologies (TMM and GMM !) are adopted to analyze wave propagation

characteristics.

4.9 Conclusion

This chapter reviewed in detail the classical TMM framework for modelling guided waves propa-
gation in anisotropic composite laminates. For an arbitrarily oriented plate, the Lamb modes and SH
modes will couple to each other, or completely separate depending on the stacking angles of layups and
the observed wave propagation direction. For the quasi-isotropic laminate, if the observation angle
of interest is just along one layer’s principle axis, the matrix incompatibility issue will appear. This
issue is more severe in metallic-composite laminate because it occurs at any direction in the plate
plane except along the common principal axes of composite laminae. To address this issue, the HMS
is theoretically derived by following the PWSA. It is thus possible to deal with wave propagation

problem in an arbitrarily oriented composite laminate.

Algorithm 1 is the quintessence of this chapter. It judges which wave type exists in the currently
studied composite laminate at the interested propagation angle. The related variables, matrices and

equations corresponding to each wave type have been programmatically interpreted in Algorithm 2,

1. GMM framework is studied in Chapter 5.
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3, 4 and 5. These algorithms are controlled by Algorithm 1. With the smooth cooperation between
Algorithm 1 and Algorithms 2-5, the correct wave characteristics can be computed including the

dispersion relation (phase and group velocities), wave mode shapes and polar plots of these quantities.

Numerical examples on three commonly used composite laminates validates the effectiveness of the
standard TMM and the HMS. TMM framework is accurate enough when comparing to experimental
data. The HMS is also superior than Pant’s pseudo correction measure for dealing with the wave

propagation problem in metallic-composite plate.
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Chapter 5

Guided wave propagation in a multi-layered
plate: global matrix method

Although the effectiveness of TMM has been sufficiently validated in Chapter 4, one fatal flaw of
TMM is the notorious large fd problem which states that at the large product value of frequency f and
layer thickness d, the dispersion curves obtained from the solutions of the dispersion equation built
with TMM become unstable. The usual way to address this issue is to adopt the global matrix method
(GMM). But one side effect of GMM is its low efficiency when using it to cope with a multi-layered

plate that has many layers.

In this chapter, three advanced techniques are jointly applied to the traditional GMM to improve
the computational inefficiency issue. They are sparse matrix technique, parallel computing technique
and the matrix order reduction technique inspired by the symmetry condition. The thoroughly opti-
mized GMM is applied to compute the dispersion curves of a 400-layered composite structure that is
the prototype of the rocket booster pressure vessels of the future launcher Ariane 6. The success of
this application proves the possibility that by introducing advanced computing techniques, GMM can

be applied to the aerospace composites that usually have a large number of layers.

5.1 The standard global matrix method

Before starting to derive the equations of GMM, we make the assumption that all layers have the
l
compatible field variables in terms of matrix order, i.e. (u§x1,agxl, prl) § (k=1,...,n), where

n is the total number of layers and p is the number of partial waves in each layer (p = 6 for the
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5.1. THE STANDARD GLOBAL MATRIX METHOD

coupled or hybrid Lamb and SH waves, p = 4 for the pure Lamb waves and p = 2 for the pure SH
waves). This assumption leads to that all layers have the compatible local lamina matrices as well,
(Tpxp; Apxp(3), prp(l‘:’)))lk (k=1,....,n).

If not so, the HMS is employed to pre-process the incompatible layers such that the hybrid matrix
(I~‘6X§, Agxe(z3), Z6x6(x3))li and the coupled matrix (Tgxg, Agxe(23), ZGXg(azg))lj are coexisting and
compatible in terms of matrix order. In the sequel, the subscript indicating the matrix order p X p is

suppressed for the sake of conciseness.

For a general layer [, in Figure 4.2(b), its field variables (displacement and stress) can be uniformly

rewritten as the following matrix multiplication form.

ulk = Utk Al ($3)nlkeif($1_vt) (5.1a)
olt = Bl Al (g5)nlk @100 (5.1b)
Sl;C — I\lkAlk (l,s),r,lkeiﬁ(xl—vt) — Zlk (xs)nlkeiﬁ(xl—vt) (51C)
Uy
where, T = [Iﬂjlk] € CP*P and Z' (z3) = T Alk (x3) € CP*P,

In a laminate, we have the continuity condition (CC) at all interfaces of two adjacent layers and
traction-free BC at the top and bottom surfaces of the laminate. Specifically, at a typical interface
i) as illustrated in Figure 4.2(b), the field variables of layer [ at its bottom side should equal to the

field variables of layer l; 1 at its top side as a result of rigid connection.

S{fot = S‘lclggl (k = 17 N — 1) (52)

where, the subscript ‘bot’ and ‘top’ represents bottom and top side, respectively.

Substituting Eq. (5.1¢) into Eq. (5.2) can lead to the following equation.

Z]l[’kotnlk _ Zi’g;r)lnlkﬂ =0 (k; =1,---,n— 1) (5_3)

where, Zit = ZH (d),) € CP*P, ZiE: = Zlk+1 (0) € CP<P.

For the traction-free BC at the top- and bottom-most surfaces as shown in Figure 4.2(b), it

corresponds to the following equation.

=0 and o, =0 (5.4)

I
o-top bot
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Substituting Eq. (5.1b) into Eq. (5.4) can lead to Eq. (5.5).

Z7in'" =0 and Z7hn'n = (5.5)

where, Z! = A (0) € C2*P, Z07 = B Al (d,) € CE*P.

top bot

Sequentially applying Eq. (5.3) from interface i1 to i,—1 as illustrated in Figure 4.2(b) and com-
bining Eq. (5.5), all the resulted equations can be regularly organized to a global linear homoge-
neous equation set, Eq. (5.6), which requires the vanished determinant of the coefficients matrix,
D¢(v,§) € C"*"P_ finally generating the implicit dispersion equation of guided waves propagating in

a laminate as presented in Eq. (5.7).

__ZO',ll
BC at the top surface — ,"”[}012 ,,,,,,, oo -
Zbot _Ztop nll
CC at the interfaces Z]ZD’“Ot —Zi’;lﬁl n| =0 (5.6)
ln.—l l ln
Z =7 | L]
BC at the bot. surface —  {-----------------------Pok . Zatlip
L bot
D (v,€) = DG (v, €) +iDg(v,€) £ det{D (v, )} =0 (5.7)

where, the subscript ‘G’ denotes that the dispersion equation is built with GMM.

If the studied structure is a single layer plate, the CC in Eq. (5.6) is diminished and only the
two BC remain. In this case, Eq. (5.6) collapses to the following form, which has been systematically

studied in Chapter 3.

Zo,ll .

t —

[Z;fg] 0 =0 (5.8)
bot

Until this stage, the derivation of the standard GMM has been completed. The whole process of
solving the dispersion equation built with GMM is similar to the TMM and summarized in Algorithm 6
for the coupled Lamb and SH waves. For other wave type, the corresponding algorithm can be easily

designed.

It should be noted that the computational burden of GMM is more salient than TMM for a
laminate having many layers because the order of global matrix Dg(v,§) € C"*™ increases with the

increasing number of layers n. However, the order of the monodromy transfer matrix T™e?° ¢ CP*P
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in Eq. (4.34) remains unchanged regardless of the number of layers. But GMM is more robust than
TMM at higher frequency range from the numerical analysis view. We will validate this point in the

subsequent benchmark testing.

Algorithm 6 Process the coupled Lamb and SH waves via GMM

Input: Each layer’s material properties (Cg, pk, di, ¢x) for (k=1,...,n);
The wave propagation angle of interest ;
The minimum and maximum wavenumber of interest (§min, Emax);
The minimum, maximum and incremental velocity of interest (vmin, Umax, Av).

1: Compute C),=Rot{Cy, 0 — ¢} for (k=1,...,n).

2: if Any C}, ¢ Caq then

3: Call Algorithm 1 to determine the correct wave type.

4: end if

5: for vg = Umin : AV : Umax do

6: fork=1:1:ndo

T: Compute (a, Vi, Wy, Bir, Bor, Par) for (r=1,...,6) via Egs. (3.24)(3.27)(3.31) using the
data (C;ca Pk, UO)'

8: Compute the local lamina matrices (Fé’“xG, Aé"’xﬁ(dk)) via Eq. (4.11).

9: Compute (Z{)’“Ot,Zi’;y) via Eq. (5.3).

10: end for

11: Compute (z;’ég,zgﬁg) via Eq. (5.5).

12: Assemble the global matrix D¢ based on Eq. (5.6).
13: Solve D¢ (vg, &) = 0 in Eq. (5.7) to get multiple roots (&1, &2,...) € [Emin, Emax)-
14: end for
Output: All solution points (v;, &) in the range [Vmin, Vmax| X [Emin, Emax)-
Plot dispersion curves of the coupled Lamb and SH waves in (v, &), (w,€), (w,v) and (w, cg)
domains where w = {v and ¢, = ‘Z—? is the group velocity.

5.2 Benchmark test of GMM through the dataset Open Guided Waves

In this section, the dataset of Open Guided Waves (OGW) [62] is used to validate the standard
GMM. We choose this composite structure because it is a benchmark platform for studying guided
waves-based subjects including wave propagation simulation models, damage detection methods and
structural health monitoring techniques. OGW is a 16-layered carbon fiber reinforced polymer (CFRP)
plate with the dimensions of 500 mm x 500 mm and a total thickness of 2mm. The stacking angles
of layups is [45/0/ — 45/90/ — 45/0/45/90]s, indicating the quasi-isotropic property. The material
properties of OGW laminae are listed in Table 5.1. The orthotropic type stiffness matrix of this

material is presented in Eq. (5.9).
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Table 5.1 — Material properties of composite laminate of Open Guided Waves

Density [kg/m?] Ply thickness [mm] Stacking angles
1571 0.125 [45/0/ — 45/90/ — 45/0,/45/90]

130 6.1 61 0 0 O
112 52 0 0 O
112 0 0 0
Co = 30 0 0 GPa (5.9)
sym 42 0
| 4.2]

5.2.1 Dispersion curves comparison between GMM and TMM

Both TMM and GMM are adopted to compute the dispersion curves of OGW at the propagation
angle # = 0°. The coarse dispersion curves computed via the two methods are generated in Figure 5.1
for comparison. It shows that in a whole both methods produce consistent results but TMM has
unstable solutions in the higher frequency range. The unstable issue of TMM corresponds to the large

fd problem [6]. We will investigate this issue in detail in Section 6.6.
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Figure 5.1 — Dispersion curves of Open Guided Waves at the propagation angle 6 = 0° computed via
TMM and GMM.
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5.2.2 Dispersion curves comparison between GMM and experimental data

The OGW project has reported the experimental wave field signals. We analyzed these signals to
identify the wave velocities that can be used as a reference to compare with the numerically computed
dispersion curves. The experimentally obtained wave velocity data at several excitation frequencies is
presented in Figure 5.2(b) with the legend ‘EXP’. Besides, the polar plot of experimentally identified
wave velocities are depicted in Figure 5.3 to explore the quasi-isotropic property of the OGW plate.
The numerically computed dispersion curves via GMM are also presented in the two figures. Obviously,
the GMM computation shows a good agreement with the experimental data, which proves the validity

of GMM.

—— ESM, Lamb
— — ESM, SH

cp [km/s]
(4]
Velocity [km/s]

L L . L L . . L L " L I L I L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 60O 700 800 900 1000

Frequency [kHz] Frequency [kHz]
(a) GMM vs ESM (b) GMM vs EXP

Figure 5.2 — Dispersion curves of Open Guided Waves at the propagation angle § = 0° computed via
GMM and ESM.

5.2.3 Dispersion curves comparison between GMM and ESM

As stated previously, when dealing with a laminate having many layers, TMM has superiority of
computational efficiency in comparison with GMM, but it usually suffers from the large fd problem.
An alternative of TMM named the effective stiffness matrix method (ESM) is briefly introduced here

to compute the dispersion curves of a multi-layered plate system.

ESM was originally studied in [10]. The core idea of ESM is the equivalence. It regards a multi-

layered plate system as a single-layered homogeneous plate with the same thickness. But the material
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WAVES
0
Phase velocity, GMM
Group velocity, GMM
O  Exp. data points
Figure 5.3 — Polar plot of Open Guided Waves plate at frequency=260 kHz.
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Figure 5.4 — Equations of ESM to compute the effective stiffness matrix [10].
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property of the equivalent plate is changed to the monoclinic class. The mass density of the equivalent
plate is the weighted average of each layer’s density on their respective layer thickness. The equivalent
(effective) stiffness matrix is computed from each layer’s stiffness matrix in the weighted average sense.
The computation equations are concisely provided in Figure 5.4. These equations were obtained from

the mechanical analysis for composite materials [63].

Figure 5.4 shows that the averaged effective stiffness matrix possesses the monoclinic property.
Wave propagation equations on the single-layered monoclinic plate has been studied in detail in Sec-
tion 3.3. Thus, we directly present the computed dispersion curves of OGW plate in Figure 5.2(a),
accompanied by the GMM computation for comparison. One can see that ESM can produce con-
sistent dispersion curves comparable with GMM for the three fundamental modes (S0, A0 and SHO
modes) especially at lower frequency range. The difference at higher frequency range may be caused
by the inaccurate stiffness matrix that is computed by using the equations in Figure 5.4. Based on
this demonstration, one can recognize that the validity of ESM is limited to the fundamental modes

and lower frequency range.

5.3 The optimized global matrix method

It has long been recognized that GMM has lower computational efficiency than TMM when dealing
with a laminate having large number of layers [6]. In this section, we demonstrate that by making
three optimizations for the standard GMM, the optimized GMM can receive a great promotion on
the computational efficiency even for a 400-layered laminate which has the largest number of layers
reported so far in reference [11]. The three optimizations are outlined: (1) addition of symmetry
condition to the global matrix, (2) applying the sparse matrix technique, (3) endowing the parallel

computing attribute.

5.3.1 The symmetry condition in the global matrix

For the dispersion equation expressed in Egs. (5.6) and (5.7), the symmetric and anti-symmetric
modes are mutually coupled. On the other hand, the dimension of the global matrix Dg (v, &) € COn*6n
is huge for a large number of layers n, which causes heavy computational burden. For most aerospace

composite structures, symmetrically stacked plies are commonly applied in composite laminates, this
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fact leads to that the guided waves can be always separated into symmetric and anti-symmetric modes,
regardless of propagation direction. If the symmetry condition (SC) can be embedded into the global
matrix ahead, the size of the global matrix D¢g(v,£) can be halved to reduce computational burden.
Specifically, the SC in Egs. (3.3) and (3.4) now has to be evaluated at the midplane of a symmetric

laminate, as follows.

ImT T
gf;llpm = {Ug, 093, 013} . = {O, 0, O} for sym. modes (5.10)
rz=midplane
ol A ImT _ T )
Smp" = (U1, U2, 033 . =40,0,0 for anti. modes (5.11)
z3=midplane

where, the superscript ‘l,,,” represents the middle layer that embraces the midplane and the subscript
‘mp’ implies the location of the midplane, both which can be identified according to the odevity of a

laminate [64] as illustrated in Figure 5.5.

Layers: — Layers: —
l l
I dy Gop =0 Interfaces: I A dy Giop =0 Interfaces:
I DR X )
r — <« or — <«
lm-1- dm-1 Sll)’:t_l lm-1- dm-1 Sf;ggl
L ~ - L Ny Zim_g 1
Sim / bm-1 glm / Smid < lm-1
lm 7 dm e (,‘i,{")lt'" =0 lp 9= == [2o i 51] — — - midplane
it ettt S — — — = midplane - m
(a) n-layered laminate with n even number. (b) n-layered laminate with n odd number.
The middle layer 1, is identified by m = n/2. The middle layer 1,,, is identified by m = (n + 1)/2.
Figure 5.5 — A symmetric laminate showing only the upper half layers. In the SC ci(o’é’" and gﬁii{", the

superscript X = s and a represent the symmetric and anti-symmetric condition, respectively.

In view of the odevity of a n-layered symmetric laminate, the midplane places at different locations
for n being an even or odd number. Thus, the SC should be evaluated separately for the two types of

laminate.
e The laminate has an even number of layers.

For this laminate type, its midplane locates at the bottom side of the middle layer [, as illustrated
in Figure 5.5(a). Substituting the specific terms from Egs. (3.29) and (3.30) into Eqgs. (5.10) and
(5.11), meanwhile setting x3 = d,, and rearranging the resulted expressions to matrix form, the

following compact form of SC can be obtained.

7l’m m — 7l’m m —
Zomm'm =0 and Zymnpim = (5.12)
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where, ZPm = xlm Alm(d,,) e €36 Zolm — ylm Alm(d,) € C3*6. ylm and xlm are defined in
Eq. (5.14). Alm(.) is defined in Eq. (4.5). The superscripts ‘s’ and ‘a’ denote the symmetric and
anti-symmetric condition, respectively. The subscript ‘bot’ implies the location of the midplane at the

bottom side of layer [,,.
e The laminate has an odd number of layers.

For this laminate type, the midplane locates at the mid-height of the layer [,, as illustrated in
Figure 5.5(b). In this case, Al™(d,,) in Eq. (5.12) should be replaced by A" (d,,/2), leading to the

following compact form of SC.
Zi’lli’a”nlm =0 and Z%glnlm =0 (5.13)

where, Zfﬁliﬁ% = xm A (d,,/2) € C3*6, Zfrﬁ:i” = xlm A" (d,,/2) € C3*6. The subscript ‘mid’ implies

the location of the midplane at the mid-height of layer [,,.

WL W W Wi Wi Wel™ 1 1 1 1 1 1"
X = |Bo1 Poz Boz Pos Pos Pas| s xXm=|Vi Vo VB Vi Vs Vg (5.14)
Ba1 P32 B33 Baa P35 Bse Bi1 P2 Bz Bia Pis Bie

Regardless of symmetry and odevity, Eqs. (5.12) and (5.13) can be abstractly written as follows
by designating the symmetry script ‘X’ and the midplane location script ‘mp’.

Zximm'm =0 (5.15)

Following the indication in Figure 5.5, the CC (see Eq. (5.3)) can be sequentially applied from
interface 7; to and only to i,,—1. Combining the BC (see Eq. (5.5)) and the SC (see Eq. (5.15)), the SC-
induced global matrix D (v, &) € C6™*6™ can be generated into Eq. (5.16), which yields the implicit
dispersion equation Eq. (5.17) in accordance with the superscript X = s and a for the symmetric and
anti-symmetric modes, respectively, and the subscript mp=bot and mid for the laminate having an

even and odd number of layers, respectively.

__ZO'7l1 I
BC at the top surface — L e i nl
Zblot _Zt%p n?
CC at the interfaces{ : =0 (5.16)
lm71 l lmfl
Z —Z | (M
SC at the midplane —  {--------------------- bpt"""x%gp” Im
i Zmi)"b_ 77
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D5 (v,6) = DG (v,6) +iDG " (v,€) £ det{DF (v,€)} = 0 (5.17)

There are two merits of the SC-induced GMM. The first one is the halved size of the SC-induced
global matrix comparing to the original one, turning out to reduce the computational burden. The
second one is that the symmetric and anti-symmetric modes’ solutions are separated beforehand. As
a consequence, the post separation can be exempted and the mode jumping problem studied in [64]

can be avoided.

5.3.2 Sparsity of global matrix

The global matrix has sparsity property. Observing Eqs. (5.6) and (5.16), the non-zero entries of
the global matrices are regularly distributed along the diagonal band. This fact indicates that the
sparse matrix technique can be applied to the GMM. Using sparse matrix can play an important
role when dealing with a laminate having a large number of layers which causes a large sized global
matrix. By transforming this matrix into its sparse counterpart, the storage space can be saved and
the computational speed can be greatly accelerated during processing the large sized matrix. We use

MATLAB built-in function sparse to achieve the sparse matrix technique.

5.3.3 Parallelization of GMM

Even if not so apparent, GMM can be perfectly parallelized. Mathematically, the dispersion
equation D(v,&) = 0 defined in Eq. (5.7) can be solved by fixing v = vy to sweep the roots of £
(D(vo, &) = 0) or by fixing & = &y to sweep the roots of v (D(v,&p) = 0). The two sweeping schemes

are mutually independent.

Moreover, in both sweeping schemes, the sweeping process between the different fixed variables
are mutually independent as well. For the example of sweeping £, the two equations D(v(()l),g) =0
and D(vé2),£) = 0 can be solved concurrently as there is no any communication between the two
equations. It is also true when sweeping v, the two equations D(v,ﬁél)) = 0 and D(v, (()2)) = 0 can
be solved concurrently. This fact indicates that the two sweeping processes belongs to the classical
Perfectly Parallel Problem [65]. Thus, execution of GMM can be parallelized during programming

the algorithm to intentionally cope with the computational efficiency issue. Applying the parallel
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computing techniques for GMM can be easily achieved since there are many numerical computing

toolboxes or packages available from widely used programming languages such as Matlab and Python.

By introducing the three advanced computing techniques to the standard GMM, the optimized
GMM is now high efficiency and it is able to deal with aerospace composite laminate that usually has

a large number of layers.

5.4 Application of the optimized GMM to an aerospace composite laminate
with 400 layers

5.4.1 Dispersion curves

In this section, we apply the optimized GMM to a 400-layered aerospace composite laminate with
layups [0/90/45/ — 45]50s which is the prototype of the booster pressure vessels of the rocket Ariane
6 under development [11]. The composing material of the laminate is CFRP. The stiffness matrix of
this material along the fiber direction is provided in Eq. (5.18). The mass density is p = 1550 kg/m?>.
The plate total thickness is d = 50 mm.

(154 3.7 3.7 O 0 07
95 52 0 0 0
95 0 0 0
C= 915 0 0 GPa (5.18)
sym 42 0
L 4.2]

Eq. (5.17) is adopted to compute the dispersion curves of this laminate in the frequency-phase
velocity domain through the relation w = &v. It can be thought that if the original global matrix was
used, the size of the matrix will be large to 2400 orders because there is 400 layers and each layer has
six partial waves (p = 6). By using the SC-induced global matrix, the matrix size has been halved
to 1200 orders. Given that the studied laminate has even number of layers, Figure 5.5(a) should be

focused. Thus, Eq. (5.12) should be adopted to apply SC for the full sized global matrix.

The computed dispersion curves through the optimized GMM are depicted in Figure 5.6. It shows
that in the ellipses, the curves belonging to the same symmetry kind can mutually close but never
cross. This phenomenon is termed the veering effect [66], which will cause mode jumping problem in
some computing software of dispersion curves [64]. In our computing program, we solve this problem

by refining the solution points of the loci of one branch in the veering effect regions.
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Figure 5.6 — Dispersion curves of the 400-layered aerospace laminate at § = 0° direction.

5.4.2 Study the veering effect to avoid mode jumping problem

The veering effect is also termed as the repulsion behavior of dispersion curves in some refer-
ences [67, 68, 64] or the osculation of spectral lines in other reference [69]. It refers to the phenomenon
that under certain coupling conditions two or more dispersion curves of different modes but belonging
to the same symmetry kind close firstly and then veer away to finally diverge instead of crossing in
the repulsion region. The extent of closing depends on the degree of coupling and anisotropy. This
phenomenon happens constantly in Figure 5.6. The qualitative analysis has been made in some ref-
erences [67, 68]. In the repulsion regions, the dispersion curves are usually accompanied by rapid

exchanging of their mode shapes [66].

The frequent occurrence of veering effect complicates the generation of continuous dispersion curves
especially for the extrapolation-based modal curve tracing technique [6, 70] and the correlation-based
mode shape analysis [10] for which the mode jumping problem is a big trouble. For example, the
crossed A; and SH; curves in Fig. 3(c) of [37], the crossed Sy and Sf, curves in Fig. 5 of [11], the
crossed Sp and SHy curves in Fig. 3(b) of [10], etc.

With the basic understanding to the veering effect, we get back to analyze Figure 5.6. Clearly,
the dispersion curves of symmetric and anti-symmetric modes have seven and five repulsion regions,
respectively. In order to clearly show the diverged points, the repulsion regions are zoomed in several

times in the annotated ellipses. Specifically, repulsion regions R5 and R2 in the symmetric modes are
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zoomed in 21 and 2000 times, respectively; and repulsion regions R4 and R2 in the anti-symmetric
modes are zoomed in 31 and 208 times, respectively. The mentioned numbers here are the minimum
and maximum zoom factor among these annotated ellipses. Furthermore, the zoom factors reflect
the degree of coupling and anisotropy for which a larger zoom corresponds to a heavier coupling or
anisotropy. Two interesting points observed from Figure 5.6 are that (1) SO mode is repulsed twice in
regions R1 and R2; (2) S1 and SHg; modes are mutually repulsed twice in regions R3 and R4. These

unusual phenomena are rarely observed from simple composite structures.

SH mode

SH o, mode) B s
(SO+SHSO mode
(SO mode)
SO mode)
(SO+SHSO mode)
o

TN
0.0 0.1 0.2 0.3 0.8 0.9 1.0
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Figure 5.7 — MAC value tomography of displacement mode shapes in the region R1 of symmetric
modes.

5.4.2.1 Displacement mode shape analysis

In the subsequent paragraphs, we quantitatively analyze the behavior of wave modes in the re-
pulsion regions by taking region R1 in symmetric modes as the example. The two curves alongside
their six master points are plotted in Figure 5.7, for which points A, B, C are the starting, turning,
end points of the lower-left curve, respectively, and points D, E, F have the same meaning in the
upper-right curve. The center of region R1 locates at (24.60kHz, 3.731km/s) in Figure 5.6(a), and

the distance between points A and F is about 0.3kHz, and the distance between C and D is about
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Figure 5.8 — Displacement mode shapes.

0.015km/s, which manifest that R1 is a pretty small region and the veering effect in this region is
considerably heavier. The displacement mode shapes corresponding to the six points are presented in
Figure 5.8. Figures 5.8 and 5.7 contain fruitful information. We first analyze Figure 5.8 to determine

the mode type of each master point. As for the color code in Figure 5.7, it will be discussed latter.

In Figure 5.8A, the shear horizontal displacement us is predominates over u; and ug, indicating
that point A should belong to the SHgy mode, though not so pure. In Figure 5.8B, no displacement
component is dominating among u1, us, ug, thus SO and SHgy modes coexist in the turning point. In
Figure 5.8C, u; and u3 become larger components than wusg, thus point C should belong to the SO mode,
though not so pure. The mode shape analysis based on the three subfigures reveals that although
points A, B, C locate at the same curve they have different behaviors. For points D, E, F, a similar
behaviors can be observed and mode shapes at those points belong to S0, SO+SHgg and SHgg mode,
respectively. In summary, after analyzing the veering effect in the small region R1, the two modal
curves belong to the same symmetric modes and are very close but never cross. This is accompanied

by a dramatically exchange of their displacement mode shapes.
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Special attention should be paid to Figure 5.8CD, though the two points belong to the same SO
mode, their minor components uy have opposite phases, namely, positive and negative amplitudes of
uo in Figure 5.8C and D, respectively. The same phenomenon also occurs in Figure 5.8 AF and BE,
for which the latter is more prominent. This phenomenon reveals that, during the exchange of the

major component of mode shapes, the minor components have a rollover in its phase.

The mode shape analysis was also used to produce continuous dispersion curves in some refer-
ences [9]. However, if the turning points are not identified in the repulsion regions, point A will
mistakenly jump to F, so does for point C to D, thus causing the illusion that the two modal curves
cross over in the repulsion region. This illusion occurred in the Fig. 3(b) of [10], causing the mode

jumping problem in this reference.

5.4.2.2 MAC value tomography of displacement mode shapes

A thorough solution to this problem is to compute the modal assurance criteria (MAC) values [71]
between the mode shapes of the consecutive dispersion solutions and the master points in the two
modal curves. This has been achieved in Figure 5.7 in which the color code represents the MAC

values of the loci points in one curve to the master point of the ellipse.

From these diagrams, it can be seen that the line segments near to the respective master points have
larger MAC values. This is because the loci of the dispersion solutions is continuous, thus the closer
to the master point, the more similar the mode shape will be, and causing a more larger MAC value.
However, in Figure 5.7A, the line segment nearby point F possesses comparable MAC values with
the counterpart, the line segment nearby point A. Likewise, in Figure 5.7D, the line segment nearby
point C also possesses comparable MAC values with the line segment nearby point D. This is an
intuitive illustration for the mode shapes exchanging phenomenon occurring in the repulsion regions.
Besides, we observe the orthogonality of displacement mode shapes in Figure 5.7BE. Specifically, in
Figure 5.7B, the MAC values of the upper-right curve to the turning point B are almost zero. Likewise,
in Figure 5.7E, the MAC values of the lower-left curve to the turning point E are nearly zero as well.
This phenomenon manifests that the turning point is a good indicator to distinguish mode branches

in the repulsion regions to avoid mode jumping problem.
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5.4.2.3 Stress mode shape analysis

For the six master points in the repulsion region R1 of symmetric modes, we also plot their
stress mode shapes in Figure 5.10 and perform the MAC value tomography in Figure 5.9. It can
be seen that the stress mode shapes of the six master points are mutually similar except points A
and F. Moreover, Figure 5.9 demonstrates that the MAC value of stress mode shapes is not an ideal
indicator to distinguish mode branches because the minimum MAC value is 0.96, indicating the non-
orthogonality of stress mode shapes. In fact, among the three components of stresses (o33, 023, 013),
the o33 component is always the major one and the six points have the same o33 mode shapes. In
short, it is not recommended to use stress mode shapes for distinguishing mode branches of dispersion

solutions, and the displacement mode shapes are the best choice.
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Figure 5.9 — MAC value tomography of stress mode shapes in the region R1 of symmetric modes.

5.4.3 Computational efficiency

The computational efficiency of the optimized GMM is reported in this subsection for the 400-
layered laminate. The adopted solving methods to perform the test is bisection method and phase

change method that will be introduced in Chapter 6. Computations were performed in MATLAB
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Figure 5.10 — Stress mode shapes.

R2016a hosted on a Dell Precision T3500 workstation with the processor Intel Xeon W3530@2.8GHz,
4 CPU cores, 18G RAM. Bi-directional sweeping scheme is used, namely, fixing v = vg to sweep the
roots of f and fixing f = fy to sweep the roots of v. In each direction, the sweeping line is equally
offsetted 100 times from the minimum to the maximum, and the precision of solutions is set to be
the fifth decimal place. The sweeping step length of phase velocity and frequency is 10 m/s and
1 kHz, respectively. Each solving method runs 10 times and the averaged computational time of the

symmetric and anti-symmetric modes is listed in Table 5.2.

Table 5.2 shows that sweeping v costs more time than sweeping f. The explanations to this
phenomenon are given in Chapter 6. By using the optimized GMM, the computations for symmetric
and anti-symmetric modes can be completed within half an hour, which is an encouraging result
given that the studied laminate has the largest number of layers reported so far (400 layers). We
also adopted the standard GMM to perform the computation with the same running parameters listed
above. Within a reasonable duration (24 hours), computations did not complete even for once running

of program. We had to cut the program down and thus no any computational time can be supplied in
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Table 5.2 for the standard GMM. This fact proves that the thoroughly optimized GMM can greatly
improve the computational efficiency when applying it to cope with a laminate having a large number

of layers.

Table 5.2 — The computational time of the 400-layered laminate using the optimized GMM (unit:
seconds)

Bisection method Phase change method
sweep v sweep f sum sweep v sweep f sum
899° 462° 1361° 871° 469° 1340°
780 4542 1234> 7522 4532 12052

® The computational time corresponds to the symmetric modes.
# The computational time corresponds to the anti-symmetric.
modes.

5.5 Conclusion

This chapter reviews the standard GMM and derives the optimized GMM, and applying it to
compute the dispersion curves of the Open Guided Waves plate and Ariane 6. The comparison
between GMM computation and the experimental data validates the effectiveness of GMM framework.
In the higher frequency range, GMM is more stable than TMM because the latter will suffer from
the large fd problem. On the contrary, ESM is only valid at lower frequency range. To improve
the computational efficiency of GMM, three optimizations are introduced including (1) addition of
symmetry condition to the global matrix, (2) applying the sparse matrix technique, (3) endowing the
parallel computing attribute. The numerical study on a 400-layered aerospace composite laminate

validates the effectiveness of the optimized GMM.
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Chapter 6

Dichotomy property of dispersion equation
of guided waves propagating in anisotropic
composite plates

The previous chapters mainly focus on the way to build complex-valued dispersion equations for
guided waves propagating in a single-layered plate via PWSA [72] of Chapter 3 or a multi-layered
plate via TMM [33, 38] of Chapter 4 and GMM |2, 4] of Chapter 5. Little attention is paid to develop
efficient and stable numerical solving methods associated with the derived complex-valued dispersion
equations. In this chapter, the conditions under which complex-valued dispersion equations are either
real- or purely imaginary-valued equations (termed as dichotomy property) are derived for both single-
and multi-layered composite plates. With such a property, the complex-valued dispersion equations
can be efficiently numerically solved within the real number field via the standard bisection method or
the corrected phase change method. It is thus now possible to overcome numerical issues frequently
reported in literature. The proposed methodology of this chapter provides a new standard framework

to solve the dispersion equations which is stable, multipurpose, and numerically efficient.

The works conducted in this chapter have been published in the journal Mechanical Systems and

Signal Processing, see [73].

6.1 Problem statement

In Chapter 3, 4 and 5, dispersion equations are built with PWSA for the single layer plate and

TMM and GMM for the multi-layered system, respectively. It can be recognized that even if significant
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efforts are carried out to find ways of building the dispersion equation via different methods, little work
was conducted to study the property of the derived dispersion equation and to find efficient and stable
associated numerical solving methods. In most references, once the derivation of dispersion equation
is completed, one just says that the solution to this equation usually requires the use of numerical

methods (see [37, 8, 38, 10, 12]), but little details are provided.

Mathematically, the derived dispersion equation belongs to the family of complex-valued equations,
which is more difficult to solve than a real-valued equation, due to the existence of complex exponential
terms e€2r?3 presented in the related matrices. In general, the determinant in a certain dispersion
equation, D(v, ), has real, D (v, £), and imaginary, D (v, £), parts. Thus, the intuitive way of solving
the dispersion equation is to find the zero points of both parts and then take their intersections as
the true solutions as presented in Eq. (6.1a), which is easy to implement because both D®(v, ) and
DI (v, &) are real-valued functions such that many real variables-based root-finding algorithms can be

used like the bisection method.

A . DE(v,£) =0
D(v,€) 2 DE(v,£) +iD (v,6) =0 & {DI((UE)): 0 (6.1a)
D(v,€) £ DE(v, &) +iD!(v,€) = 0 < abs{D(v,£)} =0 (6.1b)

However, the majority of methods mathematically transform the solving process to search the
global minimal moduli of the dispersion function that should be zero in theory, see Eq. (6.1b). A
representative example is the pioneering software Disperse which employed a path-dependent minimal
moduli search strategy combined with the convergence criteria of checking the included phase angle of
the complex-valued characteristic function that should be greater than 90° [74, 70]. The toolbox Elas-
ticMatriz makes use of MATLAB built-in function fminbnd to achieve the minimal moduli searching
purpose [41]. Another complex strategy adopted by the software Dispersion Calculator is to check,
in a small interval, both the occurrence of minimum moduli and sign change of the dispersion func-
tion [11], see Figure 6.1. Recently, Zhu and Qian et al. developed an iterative method to solve the
dispersion equation by also coping with the modulus of the dispersion function, which provides a strict

convergence condition to distinguish the local and global minima [75].

In comparison with the multi-layered anisotropic system, the standard bisection method is widely
used for the single-layered isotropic Rayleigh—Lamb equation. The solving process of the Rayleigh-

Lamb equation is achieved by dividing the whole solution domain into three regions, i.e., region 1
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TABLE 1. Boundary conditions used for the tracing of the six mode
families.

Family Situation Boundary conditions

s detK =0, abs(detK) = min, «/**
A detK =0, abs(detK) = min, u,"h
B det K =0, abs(det K) = min
s Single layer By =0
Single super layer abs(dy, ) = min
Periodic ¢ | < i
- ahs(dcl[”“,. [”'- ]) = min
A iy |
Al Single layer By =0
Else det K =0
B’ Single super layer ay =0
Per., p/n=1.2....Periodic a5 =0
Per..pm#12,... i 1 e
ot det| 11 I I
dy dyy 1
S'0.By Decoupled case Non-dispersive, v = /Ces/ p

iy at the plate’s top and bottom have the same sign.
[ s LT
"1ty at the plate’s top and bottom have the opposite sign.

Figure 6.1 — A summary of the solving strategy adopted by Dispersion Calculator [11].

of v < ¢p, region 2 of ¢cp < v < ¢r, and region 3 of v > ¢y, where v is the phase velocity, and cp
and cy, are the velocities of transverse and longitudinal modes, respectively. Then in each region, the
complex-valued Rayleigh-Lamb equation is derived to be a real one such that the standard bisection

method can be adopted to solve it in an easy way [76, 12]. Figure 6.2 just explains this process.

In addition to the two strategies introduced above, another interesting method is by consecutively
monitoring the phase change of the dispersion function, which is actually evolved from the convergence
criteria of Disperse. However, this method suffers from numerical instability issues when applied to

multiple layered plates having 50 layers, see Fig. 7(c) of [9].

Inspired by the strategy of solving the Rayleigh-Lamb equation introduced above, the same idea
of converting the complex-valued equation to a real one, which can be easily solved via standard
root-finding algorithms, has been applied here to the single-layered and multi-layered anisotropic
dispersion equation built with PWSA, GMM and TMM. Finally an important property of dispersion
equations, termed as dichotomy property in this chapter, is demonstrated: they are either real- or
purely imaginary-valued equations. On the basis of this property, it is shown that some numerical

issues can be overcome and as a consequence the obtained dispersion curves become very stable.
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6.3 Numerical Solution of the Rayleigh-Lamb Frequency Equations

Recall that the Rayleigh-Lamb frequency equations| can be written as

. — 2
tan(qh) =— Akpq for symmetric modes. (6.31)
tan(ph) (q? =k?)?

2 _2)2
tan(qh) = _(q k) forantisymmetric modes. (6.32)
tan(ph) 4k2pyg

Here p and g are given by

2 2
p? :(ﬁ) -k? and ¢? :(EJ —k2.
c cr

It is often useful to consider various regions of the Rayleigh-Lamb equations
for k compared with w/c, or w/c, (see Graff 1991). Let region 1 be k > w/c; region 2,
/¢y >k > w/c;:and region 3, k < w/c;. In region 1. where ¢, < ¢;, we therefore have

tanh(q’h) | 4p’q’k? ﬂ‘
tanh(p’h) | (k2 —-q"?)?*| °

from (6.32).p =ip’, q =iq’, p”* = —p* and q"> = —¢? (the exponent +1 is for symmetric
and —1 for antisymmetric modes). In region 2, where ¢ < ¢, < ¢;, we have

an(g’h) _, { 4p’gk? }*‘_

tanh(p’h) | (k? —¢?)?

in region 3, where ¢, > ¢;, equations (6.31) and (6.32) are unaltered.

Figure 6.2 — The complex-to-real strategy for solving Rayleigh-Lamb equation [12].

6.2 Properties of Christoffel equation of monoclinic materials

The investigation starts with the Christoffel equation of monoclinic material K(a)U = 0 that is
presented in Eq. (3.22) with the detailed coefficients Kj;;(«) in Eq. (3.23). For other material classes,
specifically, orthotropic, transversely isotropic and isotropic materials, the investigation made in this
section is naturally compatible with these materials. But for triclinic materials, we directly take
advantage of numerical validation due to the complexity of the derived equations from the triclinic

materials.

6.2.1 Property of the polynomial discriminant A

The third order polynomial equation in terms of a? corresponding to the Christoffel equation
of monoclinic material is presented in Eq. (3.24) and we duplicate this equation into Eq. (6.2) for

convenience.

.A(a2) = A@OéG + A4Oé4 + AQO{Z + Ay =0 (62)
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where, the coefficients Ag, Ay, Aa, Ag are presented in Eq. (3.25) which depends on the constant

elastic coefficients C), and mass density p as well as phase velocity v.

PP BAgAy— AT 2TARAp — 9AgAsAy + 243

A=t 1
TR saz 1 27 A3

(6.3)

Once the polynomial coefficients (Ag, A4, Ag, Ag) are known, the three a? roots can be solved from
Eq. (6.2) via Cardano’s Formula or polynomial root-finding algorithm, for which their behavior is
determined by the discriminant A defined in Eq. (6.3) according to the following three cases [9, 77].

(1) A <0, all &® roots are real and unique;

(2) A =0, all o roots are real and at least two are equal;

(3) A >0, one o root is real and the other two are complex conjugates.

It is of great importance to state that the case A > 0 will be automatically excluded for isotropic
materials (see Ch. 5.6 of [33] for more information). Actually, the absence of A > 0 is not limited to
isotropic materials, after a number of numerical investigations on various composite materials including
transversely isotropic, orthotropic and monoclinic materials studied in the next subsection, only a few
materials will lead to A > 0 in a small phase velocity range. That is to say, for most composite
materials, the case A > 0 will be also automatically excluded. One convincing evidence catering this
perspective comes from the Fig. 2 of [9]. In the following numerical examples, the existence of A > 0
will be checked firstly for the sake of strictness. For A < 0, the three o2 roots are all real numbers
and can be sorted in Eq. (6.4a). The six « roots regardless of which case are obtained by satisfying

the condition in Eq. (6.4Db).

o <ai<ai, ifA<O0 (6.4a)

Qg = —(1, g = —Q3, g = —Q5 (6.4]3)
6.2.2 Illustration of the property of polynomial discriminant A

The typical A — v relation, in two cases respectively representing the absence of A > 0 and the

presence of A > 0, is plotted in Figure 6.3 based on Egs. (3.25) and (6.3).

From Figure 6.3(b), it can be seen that the case A > 0 only happens in a narrow phase ve-
locity range for this particular composite material. Actually, most of composite materials reported

in references will automatically exclude the case A > 0 (similarly to Figure 6.3(a)). Only a few of
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Figure 6.3 — The typical A — v relation showing (a) the absence of A > 0 and (b) the presence of
A > 0 in a narrow phase velocity range.

composite materials can invoke the presence of A > 0 in a limited phase velocity range (similarly
to Figure 6.3(b)). After we performed a number of numerical investigations on various composite
materials from references, a list denoting for various materials the absence or presence of A > 0 is
generated in Table 6.1 and 6.2, respectively. In the two tables, the listed materials have been rotated

to the 45° direction to keep the monoclinic type of stiffness matrix, otherwise it is indicated in the

table.

Based on the results of the numerical investigations in Table 6.1 and 6.2 achieved on various
composite materials, the occurrence of A > 0 is application-dependent (and occurs only for some
special materials). For most composite materials, the case A > 0 will be automatically excluded. For

sake of strictness, in each numerical example of this chapter, we firstly check whether or not the case

A > 0 existed.

6.2.3 Properties of intermediate parameters

In this subsection, we only focus on the case A < 0 to theoretically explore the property of some
intermediate parameters that are used to generate dispersion equation. There are three reasons to
exclude the case A > 0 in this subsection: (1) the theoretical study on the case A < 0 is enough to
show the essence of dichotomy property; (2) the theoretical derivation on the case A > 0 is untractable,

thus numerical validation is necessary and will be conducted in Section 6.5.2; (3) the case A > 0 is an
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Table 6.1 — The composite materials that automatically exclude the case A > 0.

Reference number Structure name (material type), data source in the cited reference

monoclinic), Eq. (34), tested on 0° direction
transversely isotropic), Eq. (23)

Unknown structure
Unknown structure

80 Unknown structure (orthotropic), Egs. (A.7)(A.8)
44 Unknown structure (orthotropic), Egs. (A1)(A2)
4 transversely isotropic), Egs. (A.9)(A.10)

P

]
]
]
4] Unknown structure
]
]

[77] SC (orthotropic), Table I
[37] AS4/3502 (transversely isotropic), Table 11
[45] GRE plate (transversely isotropic), Egs. (A11)(A12)
[72] Unidirectional carbon-epoxy panel (orthotropic), Table 2.3
[62] Hexply M21/34/UD134/T700/300 (transversely isotropic), Table 4
8] G40-800/5276-1 (transversely isotropic), Table 2
8] S2-FM94 (transversely isotropic), Table 2
[38] A single-layered plate (orthotropic), section 3.1
[78] Prepreg Carbon (transversely isotropic), Table 1
[11] T800/913 (transversely isotropic), Eq. (81)
[9] Unknown structure (isotropic), Eq. (19)
[9] Unknown structure (transversely isotropic), Eq. (29)
[9] Unknown structure (orthotropic), Eq. (32)
[9]
[79
[
[
[
[44 Unknown structure (transversely isotropic), Egs. (A.12)(A.13)

[44 Unknown structure (isotropic), Egs. (A.16)(A.17)

[7] T800/924 lamina (transversely isotropic), Table 3

! This item is used to generate Figure 6.3(a).

Table 6.2 — The composite materials that invoke the case A > 0 in a limited phase velocity range.

Reference number  Structure name (material type), data source in the cited reference

[77] AL (cubic), Table I, tested on 30° direction

[77] WA (orthotropic), Table I

[77] SA (orthotropic), Table I

[77] SB (orthotropic), Table I

[45] Unknown structure (orthotropic), Eqs. (A1)(A2)*

[45] Unknown structure (orthotropic), Eqgs. (A3)(A4)

[12] IM7/977-3 composite lamina (transversely isotropic), Table 15.1
[42] Unidirectional fiber composite (transversely isotropic), Eq. (26)

! This item is used to generate Figure 6.3(b).
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extremely rare phenomenon for composite materials according to the explanation in Section 6.2.2.

For the case A < 0, all three o roots are real numbers. Based on this, if a2 > 0 then a,.(= ++/a2)
is a real number regardless of being positive or negative, while if a? < 0 then a, is a purely imaginary
number. In order to investigate the dichotomy property of dispersion equations, three properties of the
intermediate parameters V,., W,., 81, Bor, 83, Bs, which are the intermediate parameters to generate

dispersion equation, depending on «, are listed below and the proof is provided in Appendix A.

Property 1: Qy € R = (‘/7‘7W7‘751T7/82T7ﬁ37"> € R5-
Property 2: o, € iR = (V,,31,) € R? and (W, Boy, B3,) € iR3,
Property 3: Vo, B; € iR.

When the six roots of Eq. (6.2) are obtained for a specific monoclinic material and vg, one can sort

them to satisfy the condition in Eq. (6.4a) (o} < a3 < a2). This leads to the following four cases:

(1) all a1, ag, a5 are real numbers (0 < a? < a% < ag) ;

(2) only a is a purely imaginary number (of <0< a3 < a?);

(3) only a1, aj are purely imaginary numbers (o < a3 <0 < a?);
(4) all a1, a3, aj are purely imaginary numbers (o < a3 < a2 < 0).

It is obvious that the boundary of the four cases is a; = 0, ag = 0, as = 0, respectively, which
can be reached by letting Ag = 0 in Eq. (6.2). Keeping in mind the expression of Ay in Eq. (3.25),
this further leads to the definition of three critical velocities, which characterize the three bulk wave
velocities (longitudinal, shear horizontal and shear vertical modes) propagating along the lamina plane.
Note that dispersion equation has a singularity at the bulk wave velocity, thus, some outliers in the
dispersion solutions will occur. For example, the constant phase velocities appearing in Fig. 3 of [40]

and produced by the software Disperse can be interpreted as one of these outliers.

UA—'_ UH—UA \F UHI—HC% (6.5)

where, A = C11 + Cg6 and B = (Cy1 — 066) + 4016

6.3 Dichotomy property of dispersion equation of a single layer plate

In this section, the single-layered paradigm will be concerned. The dispersion equation of anti-

symmetric modes derived in Section 3.3.3 will be adopted to study the dichotomy property. The
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tools used for anti-symmetric modes are readily applicable to symmetric modes. For convenience, the

related equations are duplicated here.

1 1 1 1 1 1 T
W1 Vi V3 V3 Vs Vs
_ B11 B11 B13 B13 B1s B1s
D, (v,§) = Bpeifarh g eibarh  gueiash g e—itash g ifash g e—iash (6.6)
Bopelbih  —ByjeiCarh - goseifash  _gyse=icash g, pibash gy e—itash
| Bz1ei¢@1h —Bgiemibarh  gygeitash  _ gagemitash - gaieibash  _ pape—itash |
Do(v,€) = DE(v,€) +iDI(v,£) 2 det{Dy(v,£)} =0  implicit form (6.7)
where, the subscript ‘a’ denotes the anti-symmetric modes.
Do(v,§) =[By sin(Eah) cos(§ash) cos(Eash) + Bg cos(Eah) sin(§ash) cos(Eash)
(6.8)
+ B3 cos(§aqh) cos(ash) sin(§ash)|Bs = 0 explicit form
where,
B = B11(Bas5P33 — Ba3fss), B2 = P13(B21835 — BasBs1), Bz = Bi5(B23831 — P21533) 69)
6.9

Bs = 8i[Vi(B15 — f13) + V3(B11 — Bi5) + V(P13 — B11)]

6.3.1 Dichotomy property of dispersion equation when sweeping &

6.3.1.1 Case 1: all a1, as, a5 are real numbers.

For case 1, according to Property 1, all By, B2, B3 (r = 1,3,5) are real numbers. The three
coefficients By, Bo, Bs defined in Eq. (6.9) are real numbers as well. Besides, set B; = iP5 where Ps is
a real number according to the Property 3. Thus, the dispersion function D, (v, ) defined in Eq. (6.8)

can be written as follows.

Dy(v,€) = i[By sin(€aq h) cos(§ash) cos(ash) + Ba cos(éah) sin(Eash) cos(ash)
(6.10)
+ Bscos(§aqh) cos(ash) sin(§ash)| Ps = iDi (v,€) = a purely imag. quantity
It is evident from Eq. (6.10) that D, (v, &) should be a purely imaginary-valued function in case 1
given that all the terms in this function are real numbers other than the imaginary number unit.

This is equivalent to say that its real part is identically vanishing, Df(v,g) = 0. Thus, the original

complex-valued equation D, (v, &) = 0 now has been transformed to DL (v, £) = 0, which is a real-valued

147



6.3. DICHOTOMY PROPERTY OF DISPERSION EQUATION OF A SINGLE
LAYER PLATE

equation easy to be solved via bisection method. This phenomenon casts the essence of dichotomy

property.
6.3.1.2 Case 2: only ¢ is a purely imaginary number.

In this case, set a; = ia;. According to the Property 2 and 3, 21, 831, Bs become purely imaginary
numbers, so one can set them as 891 = ipo1, P31 = ip31, Bs = iP5, here a1, po21, p31, Ps are real numbers.

In that way, B, Ba, B3 in Eq. (6.9) can be deduced as follows.

By = p11(B25033 — P23335) = a real number
Ba = p13(ip21835 — Basips1) = iB13(pa1ss — Basps1) = iP2 = an imag. number (6.11)

Bz = p15(B23ip31 — ip21833) = if15(f23p31 — p21P33) = iP3 = an imag. number

where, P,, P are definitely real numbers.

With the new definitions, keeping in mind that sin(i€a;h) = isinh(€a1h), cos(ifaih) = cosh(€aih),
where sinh(-) and cosh(-) is the hyperbolic sine and cosine function, respectively, D, (v, &) defined in

Eq. (6.8) can be deduced as follows.
Dq(v,§) = — [By sinh(§aih) cos(ash) cos(ash) + Py cosh(Earh) sin(€ash) cos(§ash)

(6.12)
+ P3cosh(§aih) cos(ash) sin(ash)|Ps = a real quantity

This result reveals that in case 2, the imaginary part is identically vanishing, DI (v,£) = 0. Thus,
the original complex-valued equation D, (v,£) = 0 now has been converted to DE(v,£) = 0, which is

a real-valued equation easy to be solved via bisection method.

6.3.1.3 Case 3: only «, a3 are purely imaginary numbers.

In this case, set a1 = iay, az = iag, meanwhile according to the Property 2 and 3, set $21 = ipo1,
B31 = ip31, B23 = ip23, B33 = ip33, Bs = iP5, where a1, a3, p21, p31, p23, P33, P5 are real numbers. With
the new substitutions, By, Ba, B3 in Eq. (6.9) can be deduced as follows.

By = B11(Basipss — ip23Bss) = 1811(Baspss — pesfss) = iP1 = an imag. number
By = B13(ip21 835 — B2sip31) = 1813(p21835 — Basps1) = P2 = an imag. number (6.13)
Bs = Bi5(ip2sips1 — ip21ipss) = Bis(—p2spst + paipss) = a real number

where, Py, P, are definitely real numbers.
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Substitute Eq. (6.13) into Eq. (6.8) to lead to the following form. Obviously, as with case 1, the

solving process should be focused on the imaginary part in case 3, DI (v, &) = 0.

Da(v,&) =i[—P; sinh(§aih) cosh(Eash) cos(Eash) — Py cosh(£aih) sinh(£ash) cos(Eash)
6.14
+ Bscosh(§ajh) cosh(ash) sin(ash)| Ps = a purely imag. quantity ( )

6.3.1.4 Case 4: all a1, as, as are purely imaginary numbers.

In this case, set a1 = ia1, ag = iag, as = ias, according to the Property 2 and 3, continuously set
P21 = ip21, B31 = ips1, P23 = ipa3, P33 = ips3, Bas = ipes, B35 = ipss, Bs = iP5, where, a1, as, as, pa1,
P31, P23, P33, D25, D35, P5 are real numbers. Substitute these new settings into Eq. (6.9) to deduce as

follows.
By = pr1(ip2sipss — ip2sipss) = Bi1(—paspss + p23p3s) = a real number

By = p13(ip21ip3s — ipasips1) = Bi3(—p21pss + p2sp3i) = a real number (6.15)
B3 = Bi15(ipasips1 — ip21ips3) = B15(—p23ps1 + p21p33) = a real number

Under the new settings, Eq. (6.8) can be further deduced to Eq. (6.16). Hence, case 4 has the
same dichotomy property as with case 2, i.e., the solving process should be focused on the real part,

D (v,€) = 0.

Da(v,&) = — [Brsinh(€aih) cosh(ash) cosh(€ash) + Ba cosh(€aih) sinh(€ash) cosh(€ash)
6.16
+ Bscosh(£aih) cosh(£ash) sinh(£ash)]| Ps = a real quantity (619

6.3.1.5 Numerical validation of the dichotomy property when sweeping &

The chosen structure is a single layer plate with monoclinic type stiffness matrix shown in Eq. (6.17).
The mass density is p = 1500 kg/m? and the plate thickness is d = 1 mm. These material properties

are cited from [9].
[102.6 24.1 6.3 O 0 40 T
187 64 0 O 10

133 0 0 -0.1

C= 38 09 0 GPa (6.17)
sym 5.3 0
23.6 |

The absence of A > 0 has been checked in the Fig. 2(d) of [9] that shows the three real-valued

o? roots. With the provided material properties, the three critical velocities can be computed based
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on Eq. (6.5), which, therefore, divide the whole domain of phase velocity v into four ranges that

correspond to the four cases presented in Table 6.3.

Table 6.3 — The ranges of phase velocity v [m/s] that correspond to the four cases.

Case 1 Case 2 Case 3 Case 4
0<a}<ai<al a?<0<ad<a}l af<a3<0<al af<ai<ai<0
[8918.75, 4+00) [2142.25, 8918.75) [1879.72, 2142.25) (0, 1879.72)

Analysis of Case 1:

Firstly, we assign a typical phase velocity vg = 9000m/s according to Table 6.3, and substitute
the specified material parameters into Eq. (3.25) to calculate the polynomial coefficients of Eq. (6.2).
Then, the three a? roots of the bi-cubic equation, A(a?) = 0, can be solved via Cardano’s Formula,
from which the six « roots are finally obtained with the three predominant ones being a; = 0.5667,
as = 3.2007, as = 5.8644. All the three terms are real numbers, which is in agreement with the

precondition of case 1.

Once a1, ag, as are obtained, all the intermediate parameters can be calculated. Then, the
implicit dispersion equation for anti-symmetric modes defined in Eq. (6.7) can be generated, which
is a complex-valued equation with respect to £ at vg = 9000m/s due to the existence of the complex
exponential terms in matrix D, (v, ). Thus, the standard solving procedures should handle both real
and imaginary parts, represented in Eq. (6.1a). We plot its function curves of real and imaginary parts
in Figure 6.4 to intuitively study the distribution of solutions of the equation D,(vy = 9000,&) = 0

before solving it via bisection method.

Let us focus on the implicit curve firstly in both subfigures of Figure 6.4. For the real part, its
curve is oscillating and chaotic, superficially indicating ‘many spurious roots’ in the presented z-axis
range. For the imaginary part, its curve is continuous and smooth and the seven zero-points can be
clearly recognized as marked by red circles. Comparing the order of magnitude for both curves, the

one of real part (1078) is largely smaller than the one of imaginary part (107).

Then, we superimpose the explicit curves to make deep comparison with the implicit curves, where
the explicit curves are plotted based on the explicit expression, Eq. (6.10). In the subfigure of imaginary
part both curves are totally overlapped because the explicit expression just succeeds from the implicit

one. In the subfigure of real part the zero-valued explicit curve reflects the inference of Eq. (6.10) in a
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Figure 6.4 — Using bisection method to solve the equation D, (vg = 9000, &) = 0.

numerical way. As for the chaotic implicit curve, which should have been totally zero-valued in theory
like the explicit curve, the reason lies in the numerical errors, e.g. round-off error or machine epsilon,

that is inevitable when performing numerical analysis.

Anyway, the solving process should be focused on the effective part (imaginary part in this case).
By sweeping ¢ with a small enough step within an interested range, the accurate solutions of & can
be solved via bisection method as shown in Figure 6.4(b). These solutions correspond to the points
of dispersion curves, v versus &, of the anti-symmetric modes at vyp = 9000m/s. The conventional

dispersion curves v versus w can be transformed from v versus £ through w = &v.

One positive effect of dichotomy property is the ability to overcome the numerical instability issue
encountered in [9], which adopts a phase change method ! to solve the dispersion equation. In the
thesis, we exemplify the solution of & = 538.95 to illustrate our improvement to the phase change

method adapted to dichotomy property.

In the implicit curve of Figure 6.4(b), there are two points 1 and 2 around the solution & = 538.95.
We map the two points on the complex plane as schematically shown in Figure 6.5(a). It can be seen
that each point may appear at any one of two positions in the complex plane due to the existence
of tiny real part, see Figure 6.4(a), caused by numerical error which can be regarded as a random

disturbance to the theoretic positions locating on the y-axis in Figure 6.5(a). In practice, no matter

1. In the author’s opinion, the phase change method is evolved from the convergence criteria of Disperse that checks
the included phase angle of the complex-valued dispersion function being greater than 90° for real solutions of dispersion
equation [74].
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which 1" or 1” is identified, the phase angle of point 1 is approximately equal to —90°, and the phase
angle of point 2 is approximately equal to 90°. In Figure 6.4(b), if moving point 1 to 2 along the curve,
there should have a sudden 180° phase change in Figure 6.5(a) when crossing the accurate solution
&1 = 538.95. Thus, like the bisection method, one can consecutively monitor the occurrence of 180°

phase change to search £ solutions.

Figure 6.5(b) intuitively shows the continuous curves of phase angle changing with {. Employing
the phase change method, all the £ solutions can be obtained as shown in this figure, which are the

same as the solutions via bisection method marked in Figure 6.4(b).

A
D (v, €)
90 F —
o y / 2 0y =490 implicit Eq. (6.7)
o 60
The theoretical - g
position of 2 © E
2 2 gl
) Q %
By, 0y ~ +90° £ —?
. g o %
» s £
D (vo, ) g 5
E, 2
g a0t =
S
E
Thetheoretical | ~
position of 1 60
L bi=—90°
-90 b — [E— . ! ! ! ! 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
¢ [1/m]
(a) schematic diagram of case 1 (b) phase curve of D, (vy = 9000, &)

Figure 6.5 — Using phase change method to solve the equation D,(vy = 9000,¢) = 0.
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Analysis of Case 2:

Adopting the previously introduced material properties and assigning a typical phase velocity
vo = 5000m/s according to Table 6.3, the three predominant « solutions can be easily obtained as
a1 = 3.6014i, ag = 1.5933, a5 = 3.0868. Apparently, only o is a purely imaginary number, which is
in agreement with the precondition of case 2. With the solved aq, as, as, the implicit Eq. (6.7) and
explicit Eq. (6.12) can be illustrated in Figure 6.6, with the real and imaginary part respectively, to
intuitively study the distribution of its solutions. As predicted in Eq. (6.12), for case 2, the real part
becomes effective whereas due to the existence of numerical error the imaginary part becomes chaotic.
Finally, the three solutions of £ at vy = 5000 m/s can be solved using bisection method as marked in

Figure 6.6(a).
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&[1/m] £[1/m]
(a) real part DE(vy = 5000, &) (b) imaginary part D} (vy = 5000, &)

Figure 6.6 — Using bisection method to solve the equation D, (vg = 5000, &) = 0.

In case 2, particular attention should be paid to the phase change method due to the existence
of tiny imaginary part which will give rise to disorder in the phase angle. We take the solution of
& = 3025.76 as the example to illustrate this issue. Map the two points 1 and 2 in Figure 6.6(a) on the
complex plane as schematically shown in Figure 6.7. Like in case 1, each point may appear at any one
of two points in the complex plane due to the disturbance of tiny imaginary part. Thus, point 1 and
1" will be identified as two different phase angles respectively approaching to 180° and —180°, which
will further give rise to oscillating in the phase angle curve as illustrated in Figure 6.8(a). If directly
applying phase change method to such an disordered curve, instability issue like spurious or loss roots

will be faced [9]. Thus, when sweeping £ to monitor phase change, the spurious phase angle of —180°
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should be corrected as 180° firstly, as displayed in Figure 6.8(b). Eventually, with the corrected phase
angle curve, the ¢ solutions can be obtained via phase change method as indicated in Figure 6.8(b),

which are the same as by using bisection method in Figure 6.6(a).
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Figure 6.7 — The schematic diagram of phase change method for case 2.
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Figure 6.8 — Using phase change method to solve the equation D,(vy = 5000,¢) = 0.

6.3.2 Dichotomy property of dispersion equation when sweeping v

The efforts made above are related with the dichotomy property when sweeping wavenumber £.
Alternatively, this property is also owned when sweeping phase velocity v at a fixed & but with more
complexity, since at a fixed &y, the process of sweeping v will cross all the four cases of a1, asz, as.
However, when sweeping &, a single vg only leads to an unitary case among the four possible ones.

Thanks to the theoretical derivations previously carried out, it is possible to automatically adapt when
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sweeping phase velocity. We only take here a numerical example to illustrate the solving process of
the dispersion equation D, (v,&p) = 0 via both bisection and phase change methods which considers

the dichotomy property when sweeping phase velocity.

It should be noted that the intermediate parameters, a,, V., Wy, Bir (r = 1,3,5;i = 1,2,3) only
depend on phase velocity v for the given material parameters. Thus, when sweeping £ at a fixed
vo, all evaluations of D, (v, &) at all stagnation steps of £ share the same intermediate parameters.
However, when sweeping v at a fixed &y, these intermediate parameters should be computed repeatedly
at different stagnation steps of v, thus decelerating the sweeping speed. This point will be assessed in

Section 6.7.1 by comparing the computational time of the two sweeping schemes.

Figure 6.9 shows the typical function curves of implicit D, (v, &p) at & = 1750 [1/m] in the format
of real and imaginary parts as well as phase angle curves. It can be seen that the whole range of v
interested is large enough to span all the four cases related with ay, a3, as. Within each case, only the
effective part is plotted, and at the boundary of two different cases, there exists a switch between real
and imaginary parts, this occurrence is accompanied by a 90° phase change in the phase angle curve.
It should be noted that the phase angle curve in case 2 and 4 has been corrected in Figure 6.9, and in
case 3 there is no roots. In any case, the curves of real and imaginary parts should be fed to bisection
method, or the corrected phase curve should be fed to phase change method, to get the solutions of v

as indicated in Figure 6.9.

After comprehensively studying the dichotomy property of dispersion equation for the anti-symmetric
modes, we computed its complete dispersion curves as shown in Figure 6.10(a), in which the horizontal
and vertical dotted lines highlight the sweeping lines used in the previous paragraphs to exemplify
the dichotomy property of different cases. The dichotomy property of symmetric modes, though not
presented in this thesis, can be also investigated by following the methodology used for anti-symmetric

modes, thus its dispersion curves have been depicted in Figure 6.10(b).

Comparing the two schemes of sweeping ¢ and v from Figure 6.10, sweeping & will lose many
data points in a mode’s non-dispersive ranges, like AQ mode in higher wavenumber, SO mode in lower
wavenumber and SHO mode in the whole range of wavenumber. However, sweeping v will lose data
points near to a mode’s cutoff wavenumber, like A1 mode near to 500 [1/m]. Therefore, in order
to generate the complete dispersion curves, sweeping £ and v simultaneously then combining both

solution sets are necessary. In reference [9], an interpolation method is adopted to reconstruct the
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Figure 6.9 — Using bisection and phase change methods to solve the equation D, (v,&y = 1750) = 0.
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Figure 6.10 — Dispersion curves of the monoclinic lamina.
missing points in the discrete dispersion solutions. This is only valid for lower modes.

6.3.3 Dichotomy property of dispersion equation in f — ¢ and f — v domains

The dispersion curves v versus £ retrieved from the symmetry-ignored dispersion equation D(v, §) =
0 belong to actually the wavenumber-phase velocity domain. The conventional dispersion curves f

versus ¢ and v versus f can be retrieved from Eq. (6.18a) and Eq. (6.18b), respectively, through the
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relation f = &v/(2m).

D(f, &) 2 D2rf/€,€) =0 frequency-wavenumber domain (6.18a)

(v, f) £ D(v,2nf/v) =0 frequency-phase velocity domain (6.18b)

The newly generated two dispersion equations D(f,&) = 0 and ?(v, f) = 0 still hold the dichotomy
property because they naturally succeed from the equation D(v,§) = 0. Thus, bisection and phase
change methods can be used to be the solver for the two equations, but the effective part should be
identified firstly, and if the real part is the effective one, phase correction measure should be taken to

avoid numerical instability issue.

6.3.4 Dichotomy property of evanescent waves

When it comes to evanescent waves, the wavenumber becomes purely imaginary £ = i¢ wherein ( is
a real number. In contrast to propagating waves, the energy of evanescent waves is quickly dissipated,
as a result, its range of propagation is limited to the near field of source. The evanescent waves
have received increasing attention in the recent years due to its high sensitivity to minor defects of

composite structures [81, 82].

In this subsection, we prove the dichotomy property of evanescent waves propagating in a single
layer plate with monoclinic property, under the condition A < 0. The derivation directly starts from
Egs. (6.10)(6.12)(6.14)(6.16) which are the explicit expressions showing the dichotomy properties of

the propagating waves for the four cases.

Substitution of £ = i¢ into Egs. (6.10)(6.12)(6.14)(6.16) and upon simplification via the identical
relations sinh(iz) = isin(x) and cosh(ix) = cos(z), the dichotomy property of evanescent waves for
the four cases are concluded as follows.

For case 1, all o, as, as are real numbers.

Dy (v,i¢) = — [By sinh(Cay h) cosh(Cash) cosh(Cash) + By cosh(Caih) sinh({ash) cosh(Cash)

(6.19)
+ Bs cosh(Cayh) cosh(Cash) sinh(Cash)|Ps = DE(v,¢) = Di(v,() =0
For case 2, only «; is a purely imaginary number.
Da(v,i() = — i[By sin(Cayh) cosh(Cazh) cosh(Cash) + Pa cos(Cayh) sinh(Cash) cosh(Cash)
(6.20)

+ P3 cos(Cayh) cosh(Cash) sinh(Cash)|Ps = iDL(v,¢) = DE(v,¢) =0
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For case 3, only oy, a3 are purely imaginary numbers.

Dy (v,i¢) =[P sin(Caih) cos(Cagh) cosh(Cash) + Py cos(Cayh) sin(Cash) cosh(Cash)

(6.21)
— Bscos(Cayh) cos(Cash) sinh(Cash)| Ps = DE(v,¢) = Di(v, ) =0
For case 4, all ay, a3, as are purely imaginary numbers.
Dy(v,i¢) = — i[By sin(Ca1h) cos(Cash) cos(Cash) + Bz cos(Caih) sin(Cagh) cos(Cash)
(6.22)

+ Bscos(Cayh) cos(Cazh) sin(Cash)|Ps = iDL(v,¢) = DE(v,¢) =0
6.4 Dichotomy property of dispersion equation of a multi-layered plate

Chapter 4 and 5 have presented the dispersion equation Dx (v,£) = 0 in the context of a multi-
layered plate system, where the subscript ‘X’ represents T and G for TMM and GMM, respectively. In
the context of a single monoclinic lamina, we have also observed the dichotomy property of Dx (v, §),
that is to say, in some ranges of v the real part is identically vanishing, D§ (vo, &) = 0, while in other
ranges of v, D&(vo, €) = 0. Strictly proving this property for an arbitrary n-layered laminate is not
reachable since the explicit expression of Dx(v,&) is no longer available. Furthermore, in extreme
conditions, the total number of cases in a general n-layered laminate will be as large as 3n 4+ 1 given
that each layer has three critical velocities according to Eq. (6.5) such that the case by case deduction

is no more realizable.

In order not to stuck in intractable mathematical pitfall, we propose a sampling strategy to inves-
tigate the dichotomy property of dispersion equation in a numerical way through making qualitative
analysis. Inspired by the investigation on the single monoclinic lamina, the dichotomy property of
dispersion equation in the context of laminate stems from the property of the intermediate parameters
of each layer, which is actually controlled by the common phase velocity v once each layer’s material
properties are given. Thus, no matter what value the fixed vy is, the implicit function Dy (v, &)
defined in Eq. (4.39) for TMM and Eq. (5.7) for GMM with £ being the argument can be divided
into real part DE(vg, &) and imaginary part D4 (vg, £), no matter which part being the vanished one,
it will not be totally zero in practice due to numerical error. However, we can uniformly sample m
points for the two functions within the interested range [€min, Emax), and find the maximum absolute

function value from these sampling points for each part.

MFE = max |D§(vo,§i)|, M! = max |D§((v0,§i)] for & € [&min, Emax) (6.23)

1<i<m 1<i<m
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Finally, the dichotomy property is determined by comparing the true maximum values between

the two parts, meanwhile, the effective part can be obtained by using the following rule.
- If MB > M| the effective part is D% (v, €) and DL (vo, &) = 0;
- If ME <« M| the effective part is D% (vg, £) and DE (v, &) = 0.

The sampling strategy is achievable due to the fact that the vanished part, though polluted by
numerical error, is lower than the effective part by several orders of magnitude. Furthermore, this
sampling strategy is very easy to implement and it is also an universal strategy to determine the
dichotomy property of dispersion equation not only applicable for TMM and GMM but also for
SMM 2, and the single lamina (for both cases A < 0 and A > 0) as concluded in Figure 6.11(a). In
this figure, using the enumeration strategy to determine the dichotomy property of a single-layered
plate reflects the know-why of this property, and adopting the sampling strategy embodies the know-

how to characterize this property for a complex structure in practice.

Asingle-layered Cases Da(v.$) = 0 D5, =0

monoclinic lamina for

Effective part  Bisection method  Phase change method

De(v,€) =0or  Caseland3 {Dg(”' =0 {Df(v, =0
a ’ - 1 _ ’ _ -
D Pa =0 D=0 gueeps  Dx(vo,§) =0 e Tk ®
(enumeration strategy) cace 2 and 4 {gg(u, H=0 ID'I;(U' =0 AV=vo DE £ =0 m e
know-wih DiwH=0  |DiwH =0 ala
e Sweep v Dy(v,&) =0 * @ *@
Asingl " For any case, make sampling and comparison até = &
single- or multi- DR, &) =0 e %23

layered laminate for . R R DR =0
Dx(v,§) =0 M= = 1132)151|DX o, 80|, 1 MF << M, Di(v,&) =0  Comments on the numerical labels:

(sampling strategy)  p! = Jmax |D)'((vo, g‘,-)| (1) The intermediate parameters keep constants for a fixed vy, which maximizes

' DE(v,€) =0  the computational efficiency of both methods.
know-how for & € [gmintfmax] If MR > MI' DI( )=0 p i ’ i i
x(v,§) = (2) The intermediate parameters are computed repeatedly for different v, which
X represents a or s for a single-layered monoclinic lamina, or G, T, S for amulti-layered ~ Slows down the computational efficiency of both methods.
laminate respectively representative of GMM, TMM, SMM. (3) Phase correction measure should be taken to avoid numerical instability.
(a) (b)

Figure 6.11 — Concluding figures: (a) the strategy to determine the dichotomy property of dispersion
equation, (b) the computational efficiency of solving methods adapted to dichotomy property.

With the deterministic dichotomy property for any case, the dispersion equation can be solved
by sweeping £ at a fixed vy or sweeping v at a fixed & via bisection or phase change methods, as
summarized in Figure 6.11(b), in which two stars represent a higher computational efficiency than one

star. This subfigure is also validated in Section 6.7.1.

2. SMM is not considered in the thesis according to the statement in Section 1.3.1, but SMM still holds dichotomy
property after validation.
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6.5 Overcoming common numerical issues using dichotomy property

After studying the dichotomy property, some numerical issues frequently reported in literature can
be overcome with the help of dichotomy property. Two typical issues are the instability of the phase
change method and the instability of TMM.

6.5.1 Overcoming numerical instability of the phase change method

In [9] numerical instabilities were encountered when generating the dispersion curves of a 50-layered
orthotropic laminate via GMM, see Figure 6.12(b). This laminate has a special layup [0]59, i.e. each
layer orients at the same fiber direction. The authors of [9] alleged that the numerical instabilities
were caused by the large number of layers under study, and the maximum ability of their method to

compute a laminate must be no more than 13 layers in order to obtain satisfying results for GMM.

In this section, we recompute the dispersion curves of this laminate by using the same GMM but
corrected phase change method (CPCM), as shown in Figure 6.12(a). The adopted material properties
can be referred from [9, 73]. Figure 6.12(a) shows that our results do not suffer from instability issue
anymore. The reason is that when solving dispersion equation built with GMM via phase change
method, at the region of missing roots in Figure 6.12(b), phase correction measure should be taken.
The comparison between the original phase change method and the corrected phase change method is
conducted in Figure 6.13. It shows that the chaos uncorrected phase curve leads to the missing roots
in Figure 6.12(b). In contrast, the corrected phase curve clearly shows the locations of solutions at
each step of the corrected phase curve. Thus, by applying phase correction measure, the instability

issue is just addressed.

6.5.2 Overcoming numerical instability of TMM

TMM usually suffers from instability issue known as the so-called large fd problem which refers
to the unstable solutions at a large product value of frequency f and plate thickness d. One typical
example citing from [42] is plotted on Figure 6.14(b) for illustration, in the frequency-wavenumber
domain. In this graph, the red curve divides the graph into two parts, with the left part of solutions
via TMM and right part via SMM, because either method suffered from instability in its opposite part

as explained in [42].
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Figure 6.12 — Dispersion curves propagating at 0° for the [0]59 unidirectional laminate.
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Figure 6.13 — Phase angle curve of Dg(v, & = 3000) = 0 for the [0]50 unidirectional laminate.

The presence of A > 0 is checked for this material by making the curve of A with respect to v

as shown in Figure 6.15(a), as long as substituting the corresponding material parameters in [42, 73]

into Eq. (3.25) and Eq. (6.3). Figure 6.15(a) shows the presence of A > 0 when v € (0,va) where

va = 1648.05 such that A(va) = 0. For this special case, there is a need to explore whether or not

the dichotomy property still holds. Nonetheless, the complexity of this case hinders the theoretical

manner on dichotomy property that is used in the enumeration strategy. Thus, making numerical

validation is the sensible way. For this purpose, we arbitrarily assign vy = 1000 that consequently

leads to A = 24.05 and o?

11.89, o3

= —0.69 — 0.20i, a2

= —0.69 + 0.20i. Clearly, a? is a real

number and o3 and a2 are mutually complex-conjugated. Then, the function curve of D, (vg = 1000, &)
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Figure 6.14 — Dispersion curves in frequency-wavenumber domain propagating at 45° of the single-
layered unidirectional composite plate.
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Figure 6.15 — Dichotomy property of dispersion equation at vp = 1000 m/s that invokes A > 0.

can be generated in Figure 6.15(b) as real and imaginary part, respectively. This subfigure clearly
shows the preservation of dichotomy property in the special case A > 0, with the real part effective

that is identified automatically through the sampling strategy formalized in Eq. (6.23).

The frequency-wavenumber domain dispersion equation, Eq. (6.18a), is employed to recompute
the dispersion curves of this plate as delineated in Figure 6.14(a) lying in the right part being the
propagating waves. It can be seen that the instability issue does not occur in our computation, thus

proving the stability and robustness of our method that accounts for the dichotomy property.
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The curves of evanescent waves shown in Figure 6.14(a) lying in the left part are retrieved by
considering the dichotomy property of evanescent waves which has been proved in Section 6.3.4. It
can be seen that the evanescent waves connect with the propagating waves at zero wavenumber.
Furthermore, some evanescent modes connect two different propagating modes possessing the same
symmetry. For example, the first anti-symmetric evanescent mode connects the propagating A0 and
SH Ao modes, and the first symmetric evanescent mode connect the propagating SHg; and SHgo modes.
This phenomenon has also been observed in [82] but via semi-analytical finite element (SAFE) method
for most of non-isotropic materials. Our theoretical analysis on the unidirectional composite plate

contribute a plus to the theory of guided waves propagation in composite materials.

Finally, the emphasis should be placed on the multi-layered composite laminate in terms of the
dispersion equation of evanescent waves built by GMM, which possesses the dichotomy property as
well. Thus, as the analysis for propagating waves in a laminate, the sampling strategy should be a

simple and efficient tool to retrieve the dispersion curves of the evanescent waves.

6.6 Exploring the large fd problem of TMM using dichotomy property

In Figure 5.1(a), TMM suffers from the large fd problem. In this section, we adopt the methodology
of studying dichotomy property to investigate this problem. The function curve of Dx(vp,§) = 0 at
vo = 1000 m/s are presented in Figure 6.16 for both TMM and GMM. From Figure 6.16(a)(b), both
the real and imaginary parts of TMM become disordered and heavily oscillating in the high frequency
range, which produces many spurious roots in the high frequency range of Figure 5.1(a). In other
words, there is no effective part for TMM at vy = 1000m/s. However, for GMM, the effective part
(imaginary part in this case) is still observable. The unique root can be obtained from the effective

part of GMM via bisection method.

The true reason of causing the large fd problem of TMM lies in the fact that the monodromy
transfer matrix, T™°"° defined in Eq. (4.34), has a poor condition number. To illustrate this, the
condition number of the monodromy transfer matrix and global matrix are presented in Figure 6.17.
It can be seen that for GMM, poor condition occurs only at the unique root location, but for TMM,
poor condition occurs in high frequency range. Thus, TMM usually suffers from the large fd problem

at higher frequency range.
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After we recomputed the dispersion curves of composite structures in some classical references,
which pertained to studying various computational models of dispersion curves of composite materials,
a list that summarizes the presence or absence of large fd problem of TMM has been made in Table 6.4.
This table demonstrates that TMM does not always encounter the large fd problem. It is application

dependent.

Table 6.4 — The presence or absence of large fd problem of TMM in classical references.

Structure name, stacking angles, data source in the cited reference,

Reference number with (+) or without (-) large fd problem

12 Cross ply laminate, [(0/90)s]2, Table 15.1, (+)
12 Quasi-isotropic laminate, [(0/45/90/ — 45)s]2, Table 15.1, (+)
6

]
]
2] SHM plate, [45/0/ — 45/90/ — 45/0/45/90],, Table 4, (+)*
]
]

[

[

[

[37 Specimen I, [+45¢/ — 45¢]s, Table 1, (+)

[37 Specimen II, [+45/ — 45/0/90],, Table 1, (-)

8] Carbon-fiber epoxy composite, [0/90/ + 45/ — 45],, Table 2, (+)
8] GLARE 3-3/4, [A1/0/90/A1/90/0/Al], Table 2, (-)

(38] Composite-metal plate, [0/Al], Section 3.1, (+)

[78] Sandwich plate with HD PVC foam core, [90/PVC/90], Table 1, (-)
9] Quasi-isotropic laminate, [+45/ — 45/0/90]s, Eq. (32), (-)

9] Fiber metal laminate, [0/0]s, Egs. (19)(29), (-)

! This item is used to generate Figures 6.16 and 6.17.

Note: the tested frequency range is up to 2000 kHz that is the highest frequency commonly used

for guided waves-based structural health monitoring techniques.

6.7 Discussion
6.7.1 Comparison of computational efficiencies of two sweeping schemes

In this section, we compare the computational efficiencies of the two sweeping schemes for solving
dispersion equation, i.e. fixing v = vg to sweep £ roots and fixing £ = & to sweep v roots by using two
solving methods (bisection and phase change methods). The tested structure is the 50-layered plate
in Section 6.5.1. Both serial and parallel®> computing techniques are applied to the standard GMM.
Computations were performed in MATLAB R2016a hosted on a Dell Precision T3500 workstation
with the processor Intel Xeon W3530@2.8GHz, 4 CPU cores, 18G RAM. Computing range is shown

3. Parallel computing technique is introduced in Section 5.3.3.
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in Figure 6.12. Bi-directional sweeping scheme is used. In each direction, the sweeping line is equally
offsetted 100 times from the minimum to the maximum, and the precision of solutions is set to be
the fifth decimal place. The sweeping step length of phase velocity and wavenumber is 10 m/s and
10 [1/m], respectively. Each solving method runs 10 times and the averaged computational time is

listed in Table 6.5.

Table 6.5 — The computational time of the 50-layered plate (unit: seconds).

Bisection method Phase change method

sweep v sweep & sum sweep v sweep £ sum

6437° 30528 9489° 6729° 3071° 9800°
2284P 1058P 3342P  2338P 1052P 3390P

® Serial computing technique is applied.
P Parallel computing technique is applied.

Table 6.5 shows that sweeping v costs more time than sweeping & irrespective of the serial or
parallel computing technique. The explanations to them are given in Section 6.3.2. Additionally, the
speed-up ratio of the computational time between parallel and serial computing technique is as large as
2.8 for a computer with four CPU cores, which is desired. Finally, the computational time of CPCM
is slightly greater than the counterpart of bisection method, which is due to the phase correction

operation. The comparison result of Table 6.5 validates Figure 6.11(b).

6.7.2 Generalization of dichotomy property in other material classes

The methodology developed in this chapter can be also applied to other material classes like
triclinic material, which is full anisotropy having 21 independent stiffness coefficients, and piezoelectric
material, whose dispersion equations are more complex than composite materials. After investigation
for a certain material, if dichotomy property does not present in it, both the real and imaginary parts
of dispersion function are effective in this case such that the true roots of the dispersion equation are
the intersected roots of real and imaginary parts, i.e. Eq. (6.1a) should be applied. An example of this
case for a triclinic material* is illustrated in Figure 6.18(a).® However, for this case, phase change
method is still applicable without need to take phase correction measure because phase angle changes

smoothly with searching variable as illustrated in Figure 6.18(Db).

4. The dispersion equation of a single layer plate with triclinic material is presented in Section 3.2.
5. The used material properties can be referred from [73, 45].
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Figure 6.18 — Function curve of the symmetric modes of dispersion equation D(vp, &) for a triclinic
material at vg = 4000 m/s.

6.8 Conclusion

The dispersion equation of guided waves propagating in elastic composite plates are not a com-
pletely complex-valued equation, and it presents the dichotomy property of being either a real- or
purely imaginary-valued equation. This property is strictly investigated firstly for a single-layered
monoclinic lamina in the case A < 0 by using the enumeration strategy, showing that there exists
four cases for a1, as, as depending on their properties of being real or purely imaginary number. The
three parameters will lead to two mutually-exclusive effective parts, real and imaginary parts of the
dispersion equation. Bisection and phase change methods are two efficient ways to solve the dispersion
equations, but if the real part becomes to be effective one, phase correction measure should be taken

toward to the phase change method in order to overcome some numerical instability issues.

The dichotomy property is further extended to a general multi-layered composite laminate through
the proposed sampling strategy under the framework of GMM and TMM, but it is still applicable to
SMM. The enumeration strategy and sampling strategy reflect the know-why and know-how aspects
of the dichotomy property, respectively. Although this chapter comprehensively studies the dichotomy
property of dispersion equation in wavenumber-phase velocity domain, the counterparts in frequency-
wavenumber and frequency-phase velocity domain still hold this property, as well as in the case of
evanescent wave modes. Thus, this property has formed a closure characteristic on itself in mathe-

matical sense as long as the damping effect is not involved.
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Chapter 7

Prediction of frequency and spatially
dependent attenuation of guided waves
propagating in anisotropic viscoelastic
composite laminates

The industrial application of guided waves-based structural health monitoring techniques is highly
tributary of the number and placement of the active sensor elements. Yet, the optimal sensorization
of a structure relies on the decrease in amplitude of guided waves over propagation distance. A reli-
able prediction of amplitude attenuation of guided waves is still a challenge especially for anisotropic
viscoelastic composite materials which exhibits complex changes of attenuation with propagation di-
rection, and thus a spatial dependency of attenuation. In Chapter 5, GMM is applied to the pure
elastic case. In this chapter, the damped global matrix method (dGMM), having stable and efficient
merits, is developed to predict the frequency and spatially dependent attenuation of waves propagating
in anisotropic viscoelastic composite materials. dGMM integrates three damping models (Hysteretic,
Kelvin-Voigt and Biot models) into the conventional undamped GMM of Chapter 5 to consider vis-
coelasticity of composite laminates. The proposed dGMM is presented and then validated by numerical
comparison with the semi-analytical finite element method. Besides, two industrial case studies, parts
of an A380 nacelle at scale one, are employed to experimentally validate the proposed attenuation
prediction method. The first one is a fan cowl structure and the second one an inner fixed structure,
both either unmounted or mounted on an actual instrumented A380 plane. This makes the validation

works extremely valuable for both the scientific and industrial communities. The proposed attenua-
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tion prediction method thus paves the way to optimally deploy sensor network for SHM of anisotropic

viscoelastic composite structures.

A manuscript related to this chapter has been submitted to the journal Structural Health Moni-

toring for peer review.

7.1 Background of guided waves attenuation

When adopting guided waves as an inspection tool for composite structures, the attenuation prop-
erty of these waves is an essential aspect that should be considered carefully in addition to dispersion
property [21]. This is especially true for carbon fiber reinforced composites as such materials possess
inherent viscoelasticity that causes attenuation and thus impacts significantly the sensor network de-
ployment in terms of sensor geometry, installation, number, and position [83, 84]. In comparison with
the network used for lightly damped structures, a larger sensor network (i.e. having a larger num-
ber of sensors) is required to cover highly damped structures with enough wave amplitudes [85, 86].
Furthermore, attenuation property plays an important role in amplitude-based damage identification

methods [87] and machine learning tools for modeling guided waves [88].

Over the past decades, studies related to attenuation are mainly focused on numerical computations
and experimental measurements. In composite structures, materials viscoelastic damping, usually
characterized by Hysteretic (HR) or Kelvin-Voigt (KV) damping models, is the primary factor that
causes attenuation [89, 90]. The Rayleigh damping model is also adopted to investigate the damping
effect on wave attenuation [91, 92]. Theoretically, attenuation coefficients of guided waves can be
computed from the corresponding dispersion equations (DEs). Thus, considerable efforts have been
made to derive accurate or approximated DEs, being complex-valued in the viscoelastic media, and
to develop efficient numerical algorithms to solve them. The simplest one is the classical Rayleigh-
Lamb equation which represents waves propagation in a homogeneous isotropic viscoelastic plate [75,
93]. The partial wave superposition approach (PWSA) is generally employed to derive the DEs
of the single layer anisotropic viscoelastic plate [72, 94]. For the multi-layered system, PWSA is
extended to a class of matrix-based methods, e.g. transfer matrix method (TMM) [95] and global
matrix method (GMM) [96], which are based on the linear 3D elasticity theory and thus become the

standard manner to derive the analytical DEs of this system. However, solving these equations is not
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an easy task and it usually requires Lowe’s dual-variable root-finding method [6] or Zhu-Qian’s 2D
Module Ratio Convergence Method (2D MRCM) [75]. Some alternative approaches turn to establish
the approximated DEs but are solved by efficient root-searching algorithms such as the Newton-
Raphson method and eigenvalue decomposition method. The representatives are the approaches based
on Legendre polynomials [97, 98, 99] and higher-order plate theory [100, 101, 102]. Furthermore,
discrete numerical methods are widely applied as well to solve the problem of complex wave in multi-
layered viscoelastic plates due to their easy implementation. For instance, one can cite the wave finite
element method (WFEM) using the Floquet periodicity condition [103, 66], the spectral collocation
method (SCM) based on Chebyshev polynomials [44, 80], and the semi-analytical finite element method
(SAFE) suitable for arbitrary cross-section waveguides [7, 104, 79]. The common characteristic of
these methods lies in that discretization only takes place in the thickness direction of the plate, thus

increasing computational efficiency compared to the traditional 3D finite element modeling.

In addition to the numerical approach, attenuation coefficients can be also measured experimen-
tally, but the related works are scarce compared to the abundant theoretical advancements. The
simplest approach consists in computing the attenuation rate of wave amplitudes between two sensors
in an A-scan experiment [85, 91]. A comprehensive method is to use a curve fitting technique which es-
timates attenuation by fitting the experimental data of wave amplitudes versus propagation distances,
having the merit of considering both geometric spreading and structural damping [89, 105]. Besides,
two advanced identification methods are also used, including the matrix pencil method [93] and the
estimation of signal parameters via rotational invariance techniques (ESPRIT) [78]. The common
characteristic of both methods lies in that they can identify not only the attenuation coefficient but

also the propagating wavenumber.

In the aforementioned works, much effort was put to obtain the 3D dispersion curves depending
on frequency at a fixed propagation direction [94, 99, 80]. Scarce work was devoted to study the
directional property of attenuation especially for practical engineering structures, which has a great
significance for sensors network operational deployment in anisotropic composite plates. To this end,
this chapter proposes a new method to predict the frequency and spatially dependent attenuation
of guided waves propagating in anisotropic viscoelastic composite laminates. Here frequency and
spatially means that wave attenuation depends not only on frequency but also on the propagation

direction. The proposed method extends the conventional damping free GMM, see Chapter 5, to
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the damping case by incorporating viscoelastic damping models. This method is termed “dGMM”
for damped global matrix method. It is supported by a two-step numerical root-solving algorithm,
having stable and efficient merits. The proposed dGMM is first validated theoretically by numerical
comparison with the SAFE method. Then, through experimentation on two aeronautic composite
parts (at scale one) of an Airbus A380 nacelle as shown in Figure 7.1. For each structure, two cases
were considered, unmounted and mounted parts on the plane. The two structures are rather different
as one is made up of a multi-layered carbon epoxy composite plate with many stiffeners, fan cowl
structure (FCS) as shown in Figure 7.1(a), which is 2.20m high and 5.80m in half-circumference;
and the other one is a sandwich type structure, inner fixed structure (IFS) shown in Figure 7.1(b),
with an aluminum alloy honeycomb core and two multi-plies carbon epoxy outer skins, which has a
dimension of 2.75m in height and 3.80 m in half-circumference [3]. It should be emphasized here, that
unlike the experiments on small-scale plates [83, 84, 85, 91, 79], the results reported in this chapter
are the unique work so far concerning attenuation prediction for practical aeronautic structures, and
the most important contribution to the state-of-the-art is that in-service data of the mounted cases of

both structures are used to validate the proposed method.

~ Hinged beam 12H Actuators

High bifurcation

Fan cowl -

Front fiame .
Beam 6H

(2)

Figure 7.1 — The studied aircraft nacelles of an A380 plane for (a) fan cowl structure and (b) inner
fixed structure.

7.2 Wave propagation theory in the viscoelastic composite laminate

The composite laminate model introduced in Chapter 4 are directly duplicated in Figure 7.2 for
problem statement. The intrinsic viscoelastic damping properties of composite materials are taken

into account in this chapter that cause attenuation of guided waves during propagation. The damping
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models adopted in this chapter are first introduced in order to integrate them into the standard GMM

for predicting attenuation coefficients.

Figure 7.2 — Schematical diagram of a n-layered aeronautic composite laminate.

7.2.1 Viscoelastic damping models of composite materials

The HR and KV models are two common damping models able to describe the viscoelasticity of
composite materials [12] as presented in Egs. (7.1) and (7.2), respectively. For both models, the elastic
modulus is considered as a complex number E*, in which the real part E is the storage modulus and
the imaginary part is associated with two factors vgr and gy that are defined as the respective
loss factors of the two models. Besides, a less common damping model named Biot (BT) model is
presented in Eq. (7.3), which is mainly applied to highly damped aerospace structures [106]. Amongst
the three models, HR model generates a complex modulus F* independent of frequency w, whereas
KV and BT models produce a frequency dependent complex modulus. Thus, the dependency property

on w is attached to E* for the two models, i.e. E*(w).

E*=E(1 —iygr) HR model (7.1)

=F (1 - 1’YKV> KV model (7.2)

/ w
1+ 'yBT In — ] = 1—'yBT arctan ( )
€
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where, i is the unit of the imaginary number, and the superscript ‘«’ denotes that the associated
term belongs to the complex number family; w,. is the characteristic frequency of the KV model
characterizing that vy is measured at w.; ypr and € are the loss factor and scaling factor of the BT

model, respectively.

For a general layer composing the laminate, e.g. layer [; in Figure 7.2, the stiffness matrix of
this layer has been introduced in Eq. (2.10) for the pure elastic case, which is characterized by nine
independent elastic constants, i.e. three longitudinal moduli E;, Fs, E3, and three shear moduli Gas,
G31, G129, as well as three Poisson’s ratios v19, 113, 193. Since the viscoelastic property of composite
materials is considered in this chapter, a given damping model selected among Eqgs. (7.1), (7.2) or (7.3)
can be applied to the six elastic moduli, thus producing frequency dependent complex moduli [103]
Ej(w), B} (w), Ef(w), Gis(w), G5, (w), Gio(w). ! In view of this, the usual stiffness matrix C becomes
correspondingly a frequency dependent complex matrix C*(w) as presented in Eq. (7.4), which shows

the orthotropic anisotropy of composite materials.

1/Bi) —na/Biw) —vis/Biw) 0 0 0
1/E§(w) —V23/E5(w) 0 0 0
* . 1/E3(w) 0 0 0
€ = T e o 0 T
sym 1/G5 (w) 0
I 1/GTa(w)]

where, the six Poisson’s ratios are real numbers and o1, 131, V32 are not independent due to the

symmetry of the stiffness matrix.

The stiffness matrix C*(w) corresponds to each layer’s fiber direction, for instance, the 7 axis
direction in the layer [ of Figure 7.2. It should be rotated to the currently focused wave propagation
direction that is along the 2¢ axis as shown in Figure 7.2, which has been introduced in Section 2.3.

The rotated stiffness matrix is presented in Eq. (7.5) showing the monoclinic anisotropy of composite

1. For notation homogeneity and for readability purposes, the frequency dependency is also shown for the HR model
even if it is by definition frequency-independent.
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materials. ) )
iy Cy Ci3 0 0 Cfs
Cy C33 0 0 Oy
cx 0 0o Cs
C*(w,0) = 33 . B 36 7.5
(w,0) ci, Cho 0 (7.5)
sym Css O
I Cés

7.2.2 Damped global matrix method

With the viscoelastic stiffness matrix C*(w, ) in a general layer [;, the damped global matrix
method (dGMM) will be briefly derived by following the steps of the standard GMM to keep the
completeness of dGMM. The displacement and stress vectors in a general layer [; are expressed in

compact form in Egs. (7.6) and (7.7) that represent the superposition of six partial waves derived

from 3D elasticity theory in Chapter 3.

ubi = [u1, ug, u3]T = UliAb (m)nlieik(xr”t) (7.6)

ol = (o33, 023, 093] T = BHAT (25)nlR ) (7.7)

where, the superscript “/;” implies that the associated term belongs to the layer [;. k is the (com-
plex) wavenumber instead of ¢ used in the previous chapters. U’ and BY are the amplitude matrix
of displacement and stress, respectively. Abi (z3) is a diagonal matrix depending on the thickness

direction coordinate x3. m" is the partial wave participation vector. They are uniformly defined in

Eqs. (7.8)(7.9)(7.10)(7.11).

1 1 1 1 1 1]
U=\ ¥» W3 Vi ;3 Vs (7.8)
W1 W2 W3 W4 W5 W6

Bii P2 Pz Bu Pis P
Bli=|Ba1 Bo2 Pas B Pas B (7.9)
Pa1 B2 P33 Bsa P35 Pse

elkal T3

Ali(zs) = (7.10)

e1ka6x3

) T
"7[1 = [7717 n2, N3, N4, 15, 776] (711)
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In Egs. (7.8)(7.9)(7.10)(7.11), a;, V; and W; with (j =1,...,6) are computed from the (complex)
Christoffel equation, Eq. (7.12), i.e. the non-trivial vector [U, V,W]T requires the singularity of the

coefficient matrix in Eq. (7.12), which further leads to a cubic equation in terms of a? as presented in

Eq. (7.13).

Cikl — pv2 + 055042 CTG + CZ5O£2 (Cfg + C§5)C¥ U 0
Cik6 + 025052 CgG — pUQ + CZ4O(2 (C§6 + 025)04 V9]=10 (712)

(Cls + C35)a (C36 + Cis)x C35 — pv* + Ciza’ | |W 0
Aga® + Aga* + Az + Ag =0 (7.13)

where, the four polynomial coefficients are presented in Eq. (3.25).

For each solution of a; in Eq. (7.13), corresponds a pair of solution of V;, Wj, Bij, B2, B3; as

presented in Egs. (7.14) and (7.15):

(Ct1 = pv? + C3502) (Cgs + Cis) — (Cts + Cisa?) (Cis + Cis)

(CY5+ C35) (Cgﬁ — pv? + 014%2') - (Ci% + 025%2) (C36 + Cis)

(Ct1 = pv? + Cgs02) (Cis + Cis) @y — (Cl + Clsa?) (Cs + Cis) oy
(Cts+ C302) (C = o2 + Ciga2) = (Cfy + Cis) (s + Cisa?)

j =

=

Bij = Cis + C36Vj + C330; W
B2j = Cisaj + Ciya Vi + Cis W (G=1,...,6) (7.15)
B3j = Cssaj + Cisa Vi + Cys W

To this step, the displacement and stress vectors in Eqs. (7.6) and (7.7) can be combined to ease
the application of the continuity condition at the interface of interlamination. We then have,

Li Li . .
gli — |\ul.‘| _ [2@1 Ali(xg)nlielk(xlfvt) _ Zli(l_S)nlielk(xlfvt) (716)

3l Ali(z3). At the interface between layers l; and l;,1, the continuity condition

requires that the displacement and stress fields should be continuous, as stated in Eq. (7.17). Besides,

where Z'i(z3) =

the traction-free boundary condition at the two outer surfaces should be satisfied due to the free

surface of the plate, as expressed in Eq. (7.18).

Sli|psed, = St oo (1=1,...,n—1) (7.17)
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00 =0 and o'"|,,_q, =0 (7.18)

For the n-layered laminate system shown in Figure 7.2, the continuity condition of each interface
can be consistently assembled to form a global matrix system, as presented in Eq. (7.19), in which
the subscript “4:6” in Z" (0) and Z!*(d,,) means that only the fourth to sixth rows of the two matrices
are evaluated because these rows correspond to stress terms o33, os3, 013 and thus, represent the

traction-free boundary conditions in Eq. (7.18).

S AM() [
Z' () —Z"(0) K 0
: :
| | i 0
Zh(d;) 2"+ (0) n’;’m =1, (7.19)
Zin1(d,_q) —Z(0 ‘

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (n-1) 20O | | o

L Z4:6(dn>

The huge global matrix in Eq. (7.19) can be concisely rewritten as G(w, k*,6) € C6"*6" given that
this matrix depends on frequency w, wavenumber k£ and propagation angle 8 on the one hand, and on
the other hand k should be a complex number, i.e. k*,2 owing to the effect of viscoelastic damping
introduced from the stiffness matrix in Eq. (7.4). The non-trivial solution of n' in Eq. (7.19) requires
that the determinant of the global matrix G(w, k*,#) should vanish, which finally generates the DE

of the n-layered laminate system, as presented in Eq. (7.20).
D(w,k*,0) = det{G(w,k*,0)} =0 (7.20)

where, k* = k. + ik;. Both k, and k; are real positive numbers, and k, is the wave’s propagat-
ing wavenumber and k; the attenuation coefficient given in Nepers per meter, Np/m (1 Np/m=8.69
dB/m) [12].

Eq. (7.20) is a nonlinear transcendental equation with complex, multivariate and multi-roots char-
acteristics. Solving this equation is mathematically intractable. We will present and implement in
detail an original solving algorithm in the subsequent section. Thus, once the solutions of Eq. (7.20)

are obtained, the corresponding solutions of n% in Eq. (7.19) can be extracted from the zero-eigenvalue

2. It is possible to consider the complex frequency with real wavenumber. But this case does not relate to the wave
propagation problem at hand [6].
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correlated eigenvectors of the global matrix G(w, k*,0). Finally, the displacement and stress mode
shapes of the laminate can be portrayed along the plate thickness direction through Eqgs. (7.6) and
(7.7).

With the solved dispersion relation between w and k* at a specified 0y, phase velocity ¢, is computed
from Eq. (7.21). If the damping effect is slight, i.e. |k;| < |k;|, group velocity ¢, can be computed
through Eq. (7.22). But for heavily damped structures, the energy velocity c. defined in Eq. (7.23)
should be adopted because in this case, the imaginary part k; is large enough such that the group

velocity computed through Eq. (7.22) is physically meaningless [72, 107].

cp = ki (7.21)
Ow

Cg = ok, (7.22)

Jo' (P1) das (7.23)

" T (B + (By)) da

where, H is the plate’s total thickness, (P;) is the time-averaged Poynting vector along the wave
propagation direction, i.e. x{ in Figure 7.2, (E}) and (E,) are the time-averaged kinetic and potential
energy density stored in the wave guide. The three terms are defined in Eq. (7.24), in which, the

Einstein summation convention is implied for repeated index.

(P) = —gRefoyiy} (1= 1,2,3), (By) = jRefpisii}), {F,) = Re{oyy) (7.24)

where, Re{.} is the real part operator, 1; is the particle velocity of the waveguide along direction xf;

the overbar “~” denotes the complex conjugate.

7.2.3 Numerical algorithm of solving the complex DE

The task of solving the complex DE, Eq. (7.20) is extremely complex from mathematical view.
Indeed, it is a multivariate transcendental equation given that, at a specified propagation angle 6y,
for a solution pair (w, k™) there are actually three real variables (w, k;, k;) to be identified because of
k* = k, + ik;. Thus, a certain dimensionality reduction is necessary in order to solve the ternary-
variable equation. Note that the complex stiffness matrix C*(w) is frequency dependent as implied

by Eq. (7.4), thus, w should be considered as another independent variable in addition to 6 during
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the solving process. Specifically, at a specified propagation angle 6y, w is independently fixed as a
constant wy, by doing so, the original quaternary-variable equation D(w, ky, ki, #) = 0 is now transited
to a dual-variable equation D(k,, k;;wp,0p) = 0. This equation can be solved by applying a dual
variable searching method [6]. In the thesis, a recently developed method named 2D MRCM ([75] is
employed which mathematically transforms the dual-variable root-finding process to search the global
minimal modulus of the characteristic function |D(k,, k;)| by checking the module ratio convergence.
The interested readers can refer to Zhu’s works [75, 94| for more information. To get the full-frequency
spectrum of k, and k;, the above solving process is repeated by changing wg, which reveals the disper-
sion property of both quantities. Alternatively, by changing 6y, the resulted diagrams are the polar
plot of &k, and k;, which just shows the anisotropic property of guided waves propagating in anisotropic

composite laminates, viz. the spatial effect.

It is well known that there are multiple solutions (k,, k;) at a stationary pair (wq, 6p), which repre-
sents multiple guided wave modes propagation at the specified frequency wg. 2D MRCM can search all
the solutions by scanning the structured grids as long as the step length of scanning element is small
enough. Scanning the whole space of interest is required to generate the multi-modal 3D dispersion
curves (ky, k;,w), known as the forward procedure, but is time-consuming. If only a single mode’s
dispersion curve is desired, e.g. SO or A0 mode, a single curve tracing technique can accelerate the
searching efficiency since tracing the trajectory of a single mode’s solution is just a fractional workload
of searching the full 3D spectral lines. Besides, in the following inverse procedure of model updating
process, the traced single mode’s dispersion curve can be immediately contrasted to the counter-
part that is experimentally measured, thereof avoiding the branch identification and mode matching
problem [52]. To this end, a quadratic extrapolation-based single mode curve tracing technique is

developed, as schematically illustrated in Figure 7.3. It is detailed in the following paragraph.

Specifically, for the nth (n > 4) solution £ of a certain mode to be solved at the specified wy,,
once the previous three solution points (wp—1,k%5_;), (wWn—2,k)_5) and (wp—3,k’_5) in the curve are
known, the initial guess k¥ is calculated by extrapolating the three points to wy,. Then, the accurate
solution k} is searched via 2D MRCM in the vicinity of the guess k.. For the first three solution
points (w1, k}), (w2, k3) and (ws, k3), they are searched via 2D MRCM in the vicinity of the guesses
k1 +10, ko +10 and k3 + 10, where k1, ko, k3 are the solutions of the real case DE, i.e. undamped case

studied in Chapter 6, at frequencies w1, we, ws, which is an easy task. This strategy is particularly
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effective for tracing fundamental modes’ curves, i.e. SO, A0 and SHO modes, since the proximity of the
complex case curve to the real case one in w — k, plane guarantees the success of the tracing process,
as illustrated in Figure 7.3. It is worth noting that the extrapolation equation k;n in Figure 7.3, which

is the real part of k/*, can be applied to non-constant frequency increment given that the frequency

no

increment obtained from the real case solution may not be equal to the one of complex case.

The above elaboration is now implemented to be a two-step dGMM algorithm of solving the
complex DE as presented in Figure 7.4. Step 1 is trivial because it works out the real case DEs
through the undamped GMM of Chapter 5. Step 2 is just the realization of the combined dGMM,

curve tracing technique and 2D MRCM.
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Figure 7.3 — The schematic diagram of the curve tracing technique.

7.3 Data-driven structural parameters estimation

The key to success of predicting attenuation using the developed algorithm in Figure 7.4 relies on
the accuracy of the viscoelastic loss factors that are involved in the damping models in Eqgs. (7.1),
(7.2) and (7.3). These parameters can be obtained from the material manufacturer or from standard
mechanical test data [108, 109]. However, in most cases, both ways are not available, especially for

in-situ structures which are under service. On the other hand, the acquired guided wave signals from
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[ Input layer-wise parameters: 6, E;, G;j, Vij, d, p; Yur: Ykvs @c, Vpr: € ]
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Figure 7.4 — The flowchart of the two-step dGMM algorithm for solving the complex DE.

the installed sensor network contain fruitful information of the monitored structures, including the
materials properties of interest. In this chapter, an original model updating procedure is proposed to
estimate the material loss factors of damping models, which is an inverse process in contrast with the

forward dispersion curves computations based on known material parameters [94, 97].

7.3.1 Identification of attenuation coefficient

For circular-like crested guided waves propagating in composite plates, geometric spreading and
material damping are two main factors of wave amplitude attenuation [89]. The former is responsible
for the near-field propagation (usually less than three wavelengths) and the latter mainly for far field
propagation [89, 110]. In Eq. (7.6), the effect of geometric spreading is not accounted since it is a
solution of the plate’s free vibration [73], in other words, far field condition is fulfilled. As such, the

displacement field of Eq. (7.6) for a general layer [; can be extended to the whole laminate system, as
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expressed in Eq. (7.25).

wi(zy, 23, t) = Gy(x3)el® T (1 =1 2, 3) (7.25)

where, u;(z3) is the through thickness wave amplitude at the excitation source. Substituting £* =

k, + ik; into Eq. (7.25) leads to Eq. (7.26).

wizy, w3, t) = G(xz)e Fimrelbrar—wt) ;=1 9 3) (7.26)

Comparing the two equations, the wave amplitude decays exponentially over propagation distance
x1 with decaying ratio k;, which allows to interpret the physical essence of the imaginary part of the
complex wavenumber, i.e. being the attenuation coefficient. Besides, Eq. (7.26) also demonstrates
that all layers share the same attenuation coefficient ® since the decaying term e %1 is independent of
the thickness direction coordinate x3, and it can be measured by the piezoelectric transducers (PZTs)
surface mounted on the laminate. Explicitly, making x5 = 0 and taking logarithm for both sides of

Eq. (7.26) but omitting the phase term e!(*7#1=%%) "3 linear formulation is yielded in Eq. (7.27).
Log [ui(x1,0)] = —k;z1 + Log [4;(0)] (i =1,2,3) (7.27)

where, u;(z1,0) represents the wave packet amplitude recorded by PZT that is surface mounted at
distance 1 from the excitation source located at 0. Based on Eq. (7.27), the attenuation coefficient
k; can be identified from recorded wave signals by linearly regressing logarithmic amplitude of wave
packets versus propagation distance x;, from which the negative of the slope of the regressed line is

just the attenuation coefficient.

The linear regression (LR) method is also used to identify energy velocity from the recorded
wave signals since, at a specified frequency and along a fixed direction, a certain mode’s wave packet
propagates with constant velocity value. The detailed manipulation will be presented in the case study

sections.
7.3.2 Estimation of viscoelastic loss factors

The experimentally identified attenuation coefficients can be used to estimate the viscoelastic loss

factors which are not available in most cases. To this end, the attenuation coefficient k; is expressed

3. This property conforms with the Snell’s law [2] which requires that all the partial waves keep the same (complex)
wavenumber in the interface between adjacent laminae along the wave propagation direction.
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as the function of frequency w with undetermined loss factors ~.
ki = K(v,w) (7.28)

where, v = [v1,72,73, 723, 731, V12| in which the six elements are the loss factors of Ef, E3, Ej,
G5s, G5, Gy, respectively, as defined in Eq. (7.4). When computing, v is specialized to a certain
damping model, as defined in Eqgs. (7.1), (7.2) and (7.3), Ygr, Yrv and vpp. The loss factors ~
is then determined in the least square sense by inverting the experimentally identified attenuation

coefficients, also known as model updating process (we use here the lsqcurvefit.m MATLAB function):

4 = arg min Z {IC('y, wy) — l%i’lr (7.29)

~

where, the series pair (wl, ki’l)l ) is the experimentally identified attenuation coefficients at various
= m

=1,...,

frequencies, and 4 is the estimated loss factors for a certain damping model.

It is worth noting that the function k; = K(v,w) in Eq. (7.28) should represent the same branch
of dispersion curves as the experimentally identified one, which is achieved through the single mode
curve tracing technique illustrated in Figure 7.3. In some cases, due to the inaccurate elastic moduli
or the existence of uncertainties, the computed energy velocities do not match well with the identified
ones. To solve this issue, the same updating process is applied to the experimentally identified energy
velocities to calibrate the inaccurate elastic moduli. For brevity, detailed formulation is not presented

here but an example is provided in the IFS case study.

7.3.3 Overview of the attenuation prediction method

Once all the required material parameters are available, the numerical dGMM algorithm in Fig-
ure 7.4 is driven to predict various spectra of attenuation including dispersion curves and spatial
attenuation distribution. Figure 7.5 just outlines the overview of the proposed attenuation prediction
method in which the three purple boxes summarize the theoretical works established in the previous

sections.
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Pitch-catch sensors deployment on a composite
plate

A 4

Guided waves signal acquisition at various
excitation frequencies

y

Attenuation identification from the acquired signal
using linear regression method, Eq. (7.27)

Y

Viscoelastic material properties estimation in the
least square form, Eq. (7.29)

Y

Frequency-spatial attenuation prediction using the
two-step dGMM algorithm, Figure 7.4

Figure 7.5 — Overview of the proposed method to predict guided waves attenuation.

7.4 Case study on an unmounted and mounted FCS of A380 plane
7.4.1 Experimental setup

In this section, two cases of fan cowl structure (FCS), either unmounted or mounted on an in-
strumented A380 plane, are employed to validate the proposed guided wave attenuation prediction
method. The actual FCS is shown in Figure 7.1(a). This structure is made up of a four-layered
carbon epoxy composite plate with stacking sequence [0/-45/445/0]. Its elastic material properties of
each layer can be obtained from Fendzi’s PhD thesis [3] and listed in Table 7.1 for convenience, but
the viscoelastic properties are not available. Thus, the model updating process introduced previously
will be adopted to estimate them. Obtained results are listed in Table 7.1 for HR and KV models
beforehand.

Table 7.1 — Elastic and viscoelastic material properties of composite lamina of the unmounted FCS.

(Ev, Eq, E3)  (Gas,G31,G12) p Ply thickness )
[GPa] [GPa) (v12, V13, V23) ke /m3] (mm] Stacking sequence
(60,40,8.1) (4.84848)  (0.03,0303) 1554  0.28 [0/-45,/+45 /0]

HR model v1=1.74%, v2=0.01%, v3=0.01%, 723,731,712=0.01%
KV model v1=3.47%, 72=0.01%, v3=0.012%, ~v23,731,712=0.01%, f. = 250kHz

The PZT deployments for both cases are shown in Figure 7.6. There are in total 13 and 43
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sensors surface installed on the unmounted and mounted FCS, respectively. Due to the presence
of stiffeners, the 43 sensors in the mounted FCS are partitioned to six regions, marked from R1
to R6, according to their geometrical characteristics, as shown in Figure 7.6(b). By doing so, each
region can be considered at once and signals are processed with great convenience. The 13 sensors
in the unmounted FCS constitute only one region and are thus not marked for brevity. Furthermore,
sensors of each region in both cases are intentionally divided into three groups during signal processing
according to their alignment pattern, i.e. according to their direction with respect to the ply sequence.
The group information of the unmounted FCS is illustrated in Figure 7.6(a). For the mounted FCS, in
each region, Group 1 includes all sensors and Group 2 and 3 contain sensors roughly aligned along the
upper and lower horizontal line, respectively. For example, in R1, Group 1 includes sensors from 1 to 9,
and Group 2 and 3 includes sensors 1,2,4,6,8 and 3,5,7,9, respectively. The accurate fiber orientation
of each layer in the plate is not available but the horizontal direction of the plate is assumed to be
the fiber orientation of the 0° layer because this direction leads to the best match between theoretical
predictions and experimental measurements for both energy velocity and attenuation coefficient as

will be shown later.

e e ==
©E|qu ® ®@ m%]m

Figure 7.6 — The PZT deployments of FCS for (a) the unmounted case and (b) the mounted case on
an instrumented A380 plane.

The experimental setup of the unmounted FCS is shown in Figure 7.7. During testing, the signal
generator produced a five-cycle sinusoid tone burst signal modulated by Hanning window given that
this kind of exciting signal becomes a standard in SHM of composite structures [2]. The central
frequency of the excitation signal was swept from 50kHz to 150 kHz with 5kHz increment for the
unmounted FCS experiment whereas for the mounted FCS experiment only measurements performed
at 100 kHz are available. The sampling frequency was set as 1 MHz which meets the requirement of

Nyquist sampling theorem. Among these PZT sensors, each one was used as an actuator in a round

185



7.4. CASE STUDY ON AN UNMOUNTED AND MOUNTED FCS OF A380 PLANE

robin fashion and the remaining others were receivers, i.e. a sequential pitch-catch testing scheme was
conducted. The acquired wave signals were processed with time averaging and wavelet denoising to
enhance signal to noise ratio [111]. Note that the frequency sweep testing is required for understanding
the mechanism of wave attenuation within an interested frequency range and it is different from a single

sweet spot frequency testing which is desired for damage detection [112].

DAS”

| -
‘ o Signal generato

igital/analog iribuahan;lels .2
5

Figure 7.7 — The experimental setup of the unmounted FCS.

Figure 7.8 shows several typical guided wave signals in Group 2 of the unmounted FCS in which
PZT 1 serves as the actuator and its signal is normalized to the same order of magnitude with
the receivers. Evidently, the signal amplitude decreases with the increasing of propagation distance.
Besides, only the SO mode wave packet is discernible that makes the subsequent identification of energy

velocity and attenuation coefficient only focus on SO mode.

PZT6

PZT5
W

PZT 4

[\

PZT3

Amplitude [V]

PZT2

PZT 1 (actuator)

E—
=

0 0.2 0.4 0.6 0.8 1.0

Figure 7.8 — Typical guided wave signals of the unmounted FCS at 100 kHz.
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7.4.2 Dispersion curve identification for energy velocity and attenuation coefficient

7.4.2.1 Energy velocity and attenuation coefficient identification at 100 kHz

The LR method introduced previously is used to identify energy velocity at a given frequency
100kHz in the unmounted FCS experiments, as illustrated in Figure 7.9(a). The regressed lines for
the three groups are plotted based on the scatter points representing the time of arrival (ToA) of
S0 mode’s wave packet versus sensing distance, from which energy velocity is identified from the
inverse of the slope of the regressed line. The regression results are listed in Table 7.2, which shows
the consistent energy velocities identified amongst the three sensor groups and meanwhile the higher

correlation coefficients R? (0.99).

1.0 0
«=0.05
0.9
~ Lt
0.8 _a';
"a B
50'7 |2
S o6 é
= 55|
0.5 ¢{ Exp.datapoints | ,3
04 Group 1
AT S Group 2 4+
03 (@) . ‘ Group 3 ) %
0 1 2 3 4 0 1 2 3 4
Distance [m] Distance [m]

Figure 7.9 — Example of identifying (a) energy velocity and (b) attenuation coefficient via LR method
at 100kHz for the unmounted FCS. Both figures share the same legend and « is used to give the
confidence level with 100(1 — «)%.

Attenuation coefficient can also be identified by using LR method based on Eq. (7.27), as illustrated
in Figure 7.9(b), in which some points of Group 1 are overlapped by the points of Group 2 and 3 because
the sensors in Group 2 and 3 are contained in Group 1. The results extracted from Figure 7.9(b) are
listed in Table 7.3, from which the R? in Group 1 (0.39) is greatly lower than the one of Group 2
(0.92) and Group 3 (0.79). This result is consistent with the dispersed scatter points of Group 1
in Figure 7.9(b). More fundamentally, the lower R? in Group 1 is caused by the anisotropic effect
of composite materials since the sensors in Group 1 yield multiple directions of propagation paths
whereas Group 2 and 3 only orient at the horizontal direction, thus a larger R? value is guaranteed

respectively for the two groups.
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Table 7.2 — Identified energy velocities from Figure 7.9(a). R? is the correlation coefficient.

Group 1 Group 2 Group 3
Ce Ce bound R? Ce ce bound R Ce ce bound R?
[m/s]  [m/s] [m/s]  [m/s] [m/s]  [m/s]

5308 [5258,5359]  0.99 5340

[5279,5402]  0.99 5291

[5257,5325]  0.99

Table 7.3 — Identified attenuation coefficient from Figure 7.9(b). R? is the correlation coefficient.

Group 1 Group 2 Group 3
kji kl bound R2 k‘l ]{Jl bound R2 k‘l k‘z bound R2
[Np/m]  [Np/m] [Np/m]  [Np/m] [Np/m]  [Np/m]
0.85 [0.66, 1.04] 0.39 0.92 [0.81, 1.03] 0.92 0.97 [0.807 1.13] 0.79
90 90
120 6000 60 120 1 60
0.8
150 30 150 0.6 30
180 0 0 180
HR model
KV model
Group 1
O  Group2
210 O Group3 330 210 330
@ 300 ®) 300

270

Figure 7.10 — Polar plot of SO mode of (a) energy velocity [m/s] and (b) attenuation coefficient [Np/m]

270

at 100 kHz for the unmounted FCS. Both subfigures share the same legend.
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To further illustrate the anisotropic effect of energy velocity and attenuation coefficient, their polar
plots of SO mode are generated in Figure 7.10(a) and (b) based on the viscoelastic material properties
of HR and KV models listed in Table 7.1. In both figures, the experimentally identified values of the
three groups are depicted as well for comparison, but the data point of Group 1 along 0° direction only
plays the reference role given that the propagation paths in Group 1 are actually multi-directional.
Observing Figure 7.10(a), at 0° direction, the model predicted energy velocity is comparable to the
experimentally identified ones. For Figure 7.10(b), HR model predicts a more accurate value of
attenuation coefficient than KV model. One interesting point from both figures is that unlike the
quasi-isotropic property of energy velocity, wave attenuation is heavily influenced by the anisotropic
effect of composite materials, which shows that the 0° and 90° directions present the largest and
smallest value of attenuation coefficient, respectively. The anisotropic phenomenon of wave attenuation
physically explains the dispersed experimental data points in Group 1 of Figure 7.9(b). In view of
the inapplicable LR method to Group 1, only Group 2 and 3 of the unmounted FCS are employed to

identify the attenuation coefficient dispersion curves in the next subsection (see Figure 7.12(b)).

7
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= vVVY VvV vvy YVVY VYVVY VvV V _20f [ ]Group3
Es5t E vyvy v v YV VYVY
= S
Z L
24t =15
5 =
= ke
[5) L ~
>3 S 10
5 :
B2 g
5 0.5t
l L
(®)
0 t 0
R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 RS R6

Figure 7.11 — Bar chart to display regression results of (a) energy velocity and (b) attenuation coefficient
via LR method for the mounted FCS at 100 kHz. The horizontal line represents the reference value of
the unmounted FCS, and the triangles denote that the marked bars correspond to a R? larger than
0.7.

For the mounted FCS, there is only one frequency testing data, 100 kHz, available from measure-
ments performed by C. Fendzi (cf. Fendzi’s PhD thesis [3]). The identified values of the six regions are
displayed in Figure 7.11 in the form of bar chart, in which the horizontal lines represent the reference
values that are obtained from the unmounted FCS counterpart, i.e. for energy velocity 5340 m/s and

for attenuation coefficient 0.92 Np/m as listed in Group 2 of Table 7.2 and 7.3, respectively. The tri-
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angles in Figure 7.11 denote that the marked bars correspond to a R? larger than 0.7 which suggests
a strong linear correlation. From Figure 7.11, these findings can be obtained: 1) all the R? values of
energy velocity in the six regions are larger than 0.7 whereas only nine out of fifteen for attenuation
coefficient; 2) energy velocities tend to be consistent but the distribution of attenuation coefficients
are more variable; 3) the identified energy velocities in different groups of the six regions agree well
with the reference value. However there exists more discrepancy between the identified attenuation
coefficients and the reference one but the same order of magnitude remained. In a word, the quality
of energy velocity identification is much better than the quality of the attenuation coefficient which
may be interpreted that the attenuation coefficient is much smaller than the propagating wavenumber
(|ki] < |kr|) and thus much more sensitive to experimental noise. Note that in Figure 7.11 several
bars are not shown because of their unphysical meanings such as too large or too small energy velocity
or negative attenuation coefficient, which may be attributed to the superposed SO mode’s wave packet

by other modes, e.g. A0 or the reflected modes.

7.4.2.2 Identified dispersion curves of energy velocity and attenuation coefficient

By applying the LR method to each frequency tested for the unmounted FCS, the dispersion curves
of energy velocity and attenuation coefficient are formed in Figure 7.12(a) and (b), respectively. Note
that in Figure 7.12(a) only the identified curve of Group 1 is presented due to the closing curves
amongst the three groups, whereas in Figure 7.12(b) only the identified curves of Group 2 and 3 are
shown thanks to the anisotropic effect in Group 1 which has been declared in the previous subsection.
Additionally, the curves of correlation coefficients R? corresponding to Figure 7.12(a) and (b) are
presented in Figure 7.12(c) to assess the quality of the identified dispersion curves. Obviously, the
identified SO mode’s energy velocity curve is accurate because of its greater correlation coefficients
(all larger than 0.95). Although the identified attenuation curves (Figure 7.12(b)) are not as good
as the energy velocity curve (Figure 7.12(a)), we can still get some meaningful findings: 1) in the
frequency range 75-150 kHz, the identified attenuation coefficients are reliable enough given that the
corresponding R? values are larger than 0.7 except the initial points (50-70 kHz); 2) both curves present
the same trend, i.e. attenuation increases with frequency firstly and then decreases; 3) the identified
attenuation coefficients for both groups are equal at approximately 95kHz, and the lower and upper

bounds of the two groups are intersected in the vicinity of 95 kHz.
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Figure 7.12 — The identified dispersion curves of (a) energy velocity, (b) attenuation coefficient and

(c) correlation coefficient. These subfigures relate to the SO mode propagating at 0° direction of the
unmounted FCS.

7.4.3 Estimation of viscoelastic material properties of the unmounted FCS

The experimentally identified SO mode attenuation coefficients in Figure 7.12(b) are further em-
ployed to estimate viscoelastic material properties via the least square method formulized in Eq. (7.29).
When specifying damping models, only HR and KV models are used considering that BT model is
mainly used for highly damped structures whereas FCS is slightly damped because attenuation co-
efficient is no more than 2Np/m in the interested frequency range according to Figure 7.12(b). The

estimated viscoelastic properties of the two models are listed in posterior in Table 7.1. From this table,
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for both models ; is greatly larger than the remaining five parameters, meaning that the damping
effect is predominated in the principal fiber direction of composite lamina. Besides, the loss factors
of KV model are the relative values to the ones at the characterization frequency f. = 250kHz. If f.
changes to a different value, the loss factors of KV model will change correspondingly (but the ratio

vrv/ fe keeps unchanged) [12].

Once all the required material parameters in Table 7.1 have been obtained, they are used as inputs
to the developed algorithm exhibited in Figure 7.4. After computing, the dispersion curves of energy
velocity and attenuation coefficient for the two damping models are depicted in Figure 7.13(a) and
(b), respectively, in which the experimentally identified data points in Figure 7.12(a) and (b) are also
presented for comparison. Figure 7.13(a) shows that the computed SO mode energy velocity curve
agrees well with the experimental points, among which the diamond point is the mean value of the
bars in Figure 7.11(a), representing the mounted FCS. Besides, the two damping models produce the
mutually overlapped energy velocity curves for the three basic modes in the shown frequency range,
denoting that viscoelastic damping effect does not change the property of energy velocity for the

slightly damped FCS.

6 3 §  Mean value, mounted FCS
7 §  Group 2, unmounted FCS
5t SO mode 4 9  Group 3, unmounted FCS
— 4 S0 mode k; curve, HR model
' RS S0 mode k; curve, KV model
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o -~
Lu +
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1r O  Exp. data points, Group 1
(a) Computed ¢, curve, HR model
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Figure 7.13 — Comparison between the computed and experimentally identified dispersion curves of
(a) energy velocity and (b) attenuation coefficient for the unmounted FCS at 6 = 0°.

Figure 7.13(b) shows that the curve of HR model presents the linear trend whereas the curve of KV
model expresses the parabola trend, which results in overestimated attenuation prediction in higher
frequency range. Furthermore, the upward concavity of the curve of KV model is contrary to the

upward convexity of the experimental data points, thus, HR model fits better with the experimental
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data than KV model, and thanks to this reason, HR model will be adopted to predict attenuation
coefficient in the next subsection. Note that the diamond point in Figure 7.13(b) is the mean value
of the marked bars in Figure 7.11(b), representing the mounted FCS, and its lower and upper bounds

are the minimum and maximum values of the marked bars in Figure 7.11(b).

7.4.4 Attenuation coefficient prediction for the unmounted FCS

By using the elastic and viscoelastic parameters of HR model in Table 7.1, the attenuation coeffi-
cient can be predicted in two ways. One is the traditional dispersion curve in a wide frequency range
at a fixed propagation direction as depicted in Figure 7.14(b), and another one is the polar plot rep-
resenting the distribution of attenuation coefficient for all propagation direction at a fixed frequency
as illustrated in Figure 7.14(d). Besides, the two displaying ways are also applied to phase velocity in
Figure 7.14(a)(c), in which the color code on the curves are the attenuation coefficient superimposed
from Figure 7.14(b)(d). With the colored diagrams, the dispersion property of phase velocity and
attenuation can be explored in the same Figure 7.14(a), and the anisotropic degree of both quantities

can be simultaneously compared in Figure 7.14(c).

Comparing Figure 7.14(a)(b), phase velocity presents slight dispersion property in most of the
frequency range, whereas attenuation coefficient increases in the same frequency range except for the SO
mode after 820 kHz, which shows a sudden drop (see Figure 7.14(a)(b)). Besides, A0 mode attenuation
is larger than the one of the SO mode in the tested frequency range of 50-150 kHz. This explains why
only the SO mode wave packet is discernible in the recorded wave signals (see Figure 7.8) since A0
mode wave packet has been rapidly attenuated. Comparing Figure 7.14(c)(d), phase velocities of the
three basic modes present a consistent quasi-isotropic behavior, whereas attenuation coefficients are
anisotropic for the three considered modes. Figure 7.14(d) clearly shows that SO and A0 modes possess
larger and smaller attenuation in the principal (0° and 180°) and minor (90° and 270°) directions,
respectively. Attenuation of the SHO mode is less variable, the smallest value appearing at 30° in the
first quadrant. Note that the open circles in Figure 7.14 are the solutions of SAFE method [7, 79] that is
used here for comparison and validation with the proposed dGMM approach. For SAFE computation
in this instance, five 1D quadratic elements per layer are used to mesh the through thickness section
of the four-layered [0/-45/+45/0] composite laminate, which guarantees its convergence as proved in

Figure 7.14.
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Figure 7.14 — For the unmounted FCS, HR model’s prediction of (a) dispersion curve of phase velocity
at @ = 180°, (b) dispersion curve of attenuation coefficient at § = 180°, (c¢) polar plot of phase velocity
[m/s] at f = 500kHz, (d) polar plot of attenuation coefficient [Np/m] at f = 500kHz. The open
circles in the four subfigures are the solutions computed by SAFE method.

The 3D surface diagrams for the three basic modes are shown in Figure 7.15 to unveil the relation
between frequency, propagation angle, and phase velocity or attenuation coefficient. In another sense,
the frequency-spatial spectrum of the two quantities is plotted here. The surface plots can be generated
in two ways that are derived from Figure 7.14. Consider the example in Figure 7.15(a): one way is to
‘spin’ the phase velocity curve of the SO mode in Figure 7.14(a) with propagation angle, and another
one is to ‘extrude’ the phase velocity contour of the SO mode in Figure 7.14(c) along the frequency
axis. Due to the quasi-isotropic property of phase velocity, its surface plot presents a cylindrical shape
for each considered mode, whereas the shape of the attenuation coeflicient is multifarious for different

modes. This phenomenon reveals again that in the frequency-spatial spectrum, attenuation coefficient
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behaves in an anisotropic manner even if the current composite laminate of FCS is quasi-isotropic from
the phase velocity point of view. As a consequence, obtaining a precise characterization of attenuation
is in practice more complex than for phase velocity. Note that in Figure 7.15(a)(c)(e), only HR model’s
predictions are presented since KV model produces very similar diagrams. In Figure 7.15(b)(d)(f),
both HR and KV models’ diagrams are depicted with the inner and outer surfaces belonging to HR

and KV models, respectively.

7.5 Case study on an unmounted and mounted IFS of A380 plane
7.5.1 Experimental setup

To further demonstrate the effectiveness of the proposed wave attenuation prediction method, two
cases of IFS either unmounted or mounted on an instrumented A380 plane are investigated in this
section. The sketch picture of this structure is shown in Figure 7.1(b), along with its geometrical
dimensions given in Section 7.1, and its actual profile is presented in Figure 7.16(a). The IFS is a
sandwich type structure consisting of an aluminum alloy honeycomb core and two four-plies carbon
epoxy outer skins with stacking sequence [0/-45/+45/0/A1/0/445/-45/0]. The total thickness of the
sandwich plate is 3.44 mm. The elastic material properties of the composing laminae can be obtained
from Fendzi’s PhD thesis [3] and are listed in Table 7.4 and 7.5 for convenience. Table 7.6 lists the
viscoelastic properties of the two materials corresponding to the specific damping models, which are
obtained through model updating process (see Section 7.5.3) since the viscoelastic information is not
available from this reference.

Table 7.4 — Elastic material properties of the carbon epoxy ply in the unmounted IFS.

El, E2, Eg) [GPa] (Ggg, G31, G12) [GPa] (V12, vis, U23) 1% kg/Hl3 Ply thickness [mm}

(
(51.0,65.7,8.1)1
(40.0,55.0,8.1)2 (5.2,5.2,5.2) (0.02,0.3,0.3) 1554 0.28

! The original values from [3] that lead to a great agreement to the experimental data of the unmounted IFS.
2 The updated values that result in the best match with the experimental data of the mounted IFS.

Table 7.5 — Elastic material properties of the aluminum core layer in the unmounted IFS.

E [MPa| G [MPa] v p [kg/m?] Layer thickness [mm]
866 354 0.2232 67 1.2

There are in total 10 PZTs surface installed on the unmounted and mounted IFS, which are
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Figure 7.15 — For the unmounted FCS, surface plot of phase velocity (left) and attenuation coefficient
(right): (a) and (b) SO mode, (c¢) and (d) A0 mode, (e) and (f) SHO mode. The inner and outer
surfaces in subfigures (b)(d)(f) correspond to HR and KV models, respectively.

arranged into three groups for each case as illustrated in Figure 7.16. The orientation of the 0° layer
of carbon epoxy lamina in the plate is unknown but assumed to be along the alignment direction

of the sensors in Group 2 or 3 of Figure 7.16(a) considering that this direction can result in best
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Table 7.6 — Viscoelastic material properties of the carbon epoxy ply and aluminum core in the un-
mounted IFS.

Combination Carbon epoxy ply (HR or KV) Aluminum (BT)

of models N 72 V3 Y23 Y31 Y12 felkHz] g ale €
HR+BT model’ 13.9% 0.04% 0.02% 5.60% 5.60% 5.60% — 19.9% 19.9% 10
KV+BT model? 27.4% 0.01% 0.01% 0.01% 0.01% 0.01% 250 30.0% 30.0% 10

! HR model is used for carbon epoxy plies and BT model is applied for aluminum core.
2 KV model is used for carbon epoxy plies and BT model is applied for aluminum core.

match between the theoretical predictions and experimental measurements for both energy velocity
and attenuation coefficient. The signal acquisition process was similar to the experiments on FCS and
thus the detailed experimental setup is not shown for brevity. The frequency series in the unmounted
IFS experiment were swept from 50kHz to 150kHz at 5kHz increment but there was only 100 kHz
available for the mounted IFS experiment. Time averaging and wavelet denoising strategies were also

adopted for signal processing.

Figure 7.16 — The transducers layout of IF'S for (a) the unmounted case and (b) the mounted case on
an instrumented A380 plane.

7.5.2 Dispersion curve identification for energy velocity and attenuation coefficient

7.5.2.1 Comparison of energy velocity and attenuation coefficient at 100 kHz between the mounted
and unmounted IFS

Figure 7.17(a) presents the comparison of the identified energy velocity via LR method between
the mounted and unmounted IFS at 100 kHz as this frequency is unique for the mounted case. This

subfigure shows that both cases produce close energy velocities and simultaneously the higher R?
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values larger than 0.8 are obtained except the Group 1 of the unmounted IFS. Thus, Group 2 and 3
of the unmounted IFS will be adopted to identify the dispersion curves of energy velocity in the next

subsection.

A similar comparison of the identified attenuation coefficient is illustrated in Figure 7.17(b). It
shows that overall, the mounted IFS returns about half the attenuation of its unmounted counterpart.
This could be attributed to different environmental conditions in both cases, and especially to the
fact that when IFS is mounted on an A380 plane the structure is stressed which can influence guided
waves propagation properties [113]. Moreover, the attenuation coefficient of Group 2 is not equal to
the one of Group 3 for both cases and the discrepancy in the mounted IF'S is more salient, even though
Group 2 and 3 have the same propagation direction. This phenomenon can be explained by the fact
that the imaginary part of the wavenumber, i.e. the attenuation coefficient, is much smaller than the
real part and thus much more prone to noise error. Since the correlation coefficients of Group 2 and 3
of the unmounted IFS are larger than 0.8, the two groups will be selected to identify dispersion curves

of attenuation coefficient in the next subsection.
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Figure 7.17 — Comparison between the mounted and unmounted IFS for (a) energy velocity and (b)
attenuation coefficient at 100 kHz. In the two subfigures, the bars relate to the left y-axis and the lines
correlate to the right y-axis.

To further explore directional dependence of the SO mode energy velocity, the guided wave sig-
nals in Group 1 of the mounted IFS were processed to generate a polar plot of energy velocity, as
depicted in Figure 7.18, since this group possess multiple wave propagation directions. Besides, the
theoretical curves predicted via the developed dGMM method are also presented in Figure 7.18 for
comparison purpose. The curves of dGMM prediction 1 and dGMM prediction 2 are created by using
the (E1, Eq, E3) values 1 and 2 listed in Table 7.4, respectively. The other material properties listed
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in Table 7.4 and 7.5 are the same. Figure 7.18 shows that the original (E7, Eq, F3) values 1 yield
to an overestimated prediction (the curve of dGMM prediction 1). When these values are updated
to values 2, the predicted curve of dGMM prediction 2 matches well with the experimental data
points of the mounted IFS, which is the same structure as the unmounted counterpart but undergoing
different environmental conditions, i.e. existing stress in the mounted case thus modifying wave prop-
agation properties [113]. Figure 7.18 shows that the IFS structure holds quasi-isotropic property in
terms of SO mode energy velocity that is consistent with the symmetric stacking sequence of laminae

[0/-45/+45/0/A1/0/+45/-45/0].

120 .6 60

150 30
180 0
210 330
240 1 300
O  Exp.datapoints 270
dGMM prediction 1 dGMM prediction 2

Figure 7.18 — Polar plot of SO mode energy velocity [km/s| in the mounted IF'S at 100 kHz. The contour
of dGMM prediction 1 and dGMM prediction 2 are computed by using the (E7,E2,E3) values 1 and 2
in Table 7.4, respectively.

7.5.2.2 Identified dispersion curves of energy velocity and attenuation coefficient

The identified dispersion curves of energy velocity and attenuation coefficient of the unmounted
IFS are generated in Figure 7.19(a) and (b), respectively. Note that the corresponding correlation
coeflicient curves are not presented here because all values are larger than 0.8 which demonstrates re-
liable results of dispersion curves identification. Observing Figure 7.19(a), the energy velocity curves
of both groups basically overlap to each other, whereas in Figure 7.19(b), Group 3 brings a lower

attenuation than Group 2, but both curves keep the same tendency as the unmounted FCS, as seen
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in Figure 7.12(b). Figure 7.19(b) reveals that for practical aeronautic composite structures, the at-
tenuation mechanism induced by material damping is more complex than for a unidirectional CFRP
composite plate [79]. The lower and upper bounds in Figure 7.19(b) represent the confidence intervals

which are extracted from LR method under 95% confidence level.
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Figure 7.19 — The identified SO mode dispersion curves of (a) energy velocity and (b) attenuation
coefficient for the unmounted IF'S.

7.5.3 Estimation of viscoelastic material properties of the unmounted IFS

With the experimentally identified attenuation coefficients in Figure 7.19(b), the viscoelastic ma-
terial properties of the unmounted IFS can be estimated according to the model updating process
formulized in Eq. (7.29). Before performing this process, one has to note that the attenuation of the
unmounted IFS is larger than the one of FCS according to Figure 7.19(b), thus BT model should be
applied to IFS in a certain form considering that BT model is mainly used for highly damped struc-
tures [106], and the unmounted IFS exactly belongs to this case. Furthermore, the IFS is a sandwich
type structure composed by two inhomogeneous materials with the aluminum alloy honeycomb core
and the carbon epoxy skin layers. Therefore, the core layer and the skin layers can be modeled by
different damping models. By following the convention in FCS, the carbon epoxy layers in IFS are
modeled by HR or KV models, thus BT model is naturally applied to the aluminum alloy core layer,
which finally results in two combinations of damping models, HR4+BT and KV+BT models.

By taking the identified attenuation coefficients in Figure 7.19(b) as the training data to the model
updating process, the estimated viscoelastic material properties of the two combinations of damping

models are obtained in Table 7.6. It shows that the parameters of BT model in the aluminum alloy core
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layer are larger than the parameters of HR or KV model in the carbon epoxy layers, thus manifesting
that the large attenuation of IFS is controlled by the highly damped aluminum alloy honeycomb core
layer.

With the obtained viscoelastic material properties of the two combinations of damping models in
Table 7.6, the energy velocity and attenuation curves are theoretically computed via the developed
dGMM as depicted in Figure 7.20(a) and (b), respectively, in which the experimentally identified
data points in Figure 7.19(a) and (b) are also presented for comparison, along with the diamond
points in Figure 7.20(a) and (b) being the mean values of the mounted IFS in Figure 7.17(a) and (b),

respectively.

We firstly analyze Figure 7.20(b). It shows that the linear trend curve of HR+BT model in the
frequency range 0-150kHz fits better with the experimental data than the parabola trend curve of
KV+BT model in 0-200 kHz. Since the concavity of KV+BT model’s curve is reversed to the trend of
the experimental data points, KV+BT model predicts underestimated and overestimated attenuation
in the lower and higher frequency range, respectively. For HR+BT model, its linear kind prediction

represents the average effect to the experimental data in the least square sense.

6 I ‘ ‘ ‘ 30 §  Mean value, mounted IFS
§  Group 2, unmounted IFS
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Figure 7.20 — Comparison between the computed and experimentally identified dispersion curves of
(a) energy velocity and (b) attenuation coefficient for the unmounted IFS at 6 = 0°.

Then, we analyze Figure 7.20(a). It shows that, for the two combinations of damping models, the
computed SO mode energy velocity curves do not agree well with the experimental data, and KV+BT
model produces more deviations than HR+BT model in the frequency range 100-150 kHz. However,

when we compute the group velocity via Eq. (7.22) by using the pure elastic material properties listed
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in Table 7.4 and 7.5, i.e. performing the undamped GMM of Chapter 5, one interesting phenomenon
that the computed SO mode group velocity curve matches very well with the experimental data is
observed in Figure 7.21. This phenomenon reveals the fact that, for the sandwich type structure
made of inhomogeneous materials, the damping mechanism adopted has a great influence on wave
propagation speed. And the model parameters (both the elastic constants and the loss factors) should
be updated in order to get a better fit to both experimental energy velocity and attenuation data

which could be one of the future works.

Back to Figure 7.20(a), from the point of computation, HR+BT and KV+BT models produce
a mutually overlapped energy velocity curves for SHO and A0 modes in the shown frequency range,

which is different from the discrepant SO curves computed with the two models.
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Figure 7.21 — The computed group velocity via the pure elastic GMM for the unmounted IFS at 8 = 0°.

7.5.4 Prediction of dispersion curves in various forms for the unmounted IFS

The two combinations of damping models are further employed to predict the dispersion curves
in the 3D space (f, kr, ki) at the fixed propagation angle § = 90° as depicted in Figure 7.22(a) and
(b) for HR+BT and KV+BT models, respectively. These modal curves are classified into symmetric
and anti-symmetric modes by checking the symmetry conditions of the displacement mode shapes,
which are not presented in this chapter for the sake of brevity. For a certain combination of damping
model, the 3D curves in Figure 7.22(a) or (b) are projected onto the (f, k) plane and the (f, k;) plane
to make a comparison of the two combinations of damping models. According to Figure 7.22(c) and

(d), HR4+BT and KV+BT models predict identical propagating wavenumbers for the six modes in the
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shown frequency range, whereas the two combinations of damping models predict different attenuation
coefficients, especially for SHO and A0 modes, according to Figure 7.22(e) and (f). Thus, choosing
the proper damping model (or their combinations) is the key to accurately predict wave attenuation
here. Figure 7.22(c) and (d) also indicate that there is no cutoff frequency for S1, A1 and SH1 modes,
which is accompanied by a large attenuation in the lower frequency range as shown in Figure 7.22(e)

and (f). This behavior is a unique property of the damped wave guide [72].

To study the influence of attenuation on phase velocity, the attenuation curves of SO, A0 and
SHO modes in Figure 7.22(e) are separately drawn in Figure 7.23(b), then superimposed on the phase
velocity curves in color code as illustrated in Figure 7.23(a). This subfigure shows that there is
a step in the SO mode phase velocity curve around 200kHz, which is caused by the fluctuation of
the SO mode attenuation curve around 200kHz in Figure 7.23(b). Besides, SO mode holds a slight
attenuation in comparison with SHO and A0 modes. This could be the reason that only SO mode
information has been identified experimentally (see Figure 7.19) as SHO and A0 modes have been
rapidly attenuated. In short, Figure 7.23(a)(b) manifest that the phase velocity of guided waves in
damped sandwich structure is characterized simultaneously by frequency (dispersion property) and

attenuation (viscoelastic damping).

To study the anisotropic effect of phase velocity and attenuation, the polar plots of both quantities
are depicted in Figure 7.23(c) and (d) at the same frequency f = 200kHz. Figure 7.23(c) displays
the quasi-isotropic property of phase velocity of the three basic modes. Nevertheless, pure anisotropic
behavior of attenuation is observed in Figure 7.23(d) for SO and A0 modes, both of which hold the
largest and smallest attenuation in the principal (0° and 180°) and minor (90° and 270°) directions,
respectively. As for SHO mode’s attenuation, its anisotropic degree is slight along the omnidirectional
propagation angles. In a word, Figure 7.23(c)(d) give the evidence that despite the quasi-isotropic

property, attenuation of guided waves in damped sandwich structure still possesses anisotropic effect.

Finally, the 3D surface diagrams of the three basic modes are predicted in Figure 7.24 to represent
the frequency-spatial spectra of phase velocity and attenuation. In Figure 7.24(a)(c)(e), the cylindrical
surfaces of SO and A0 modes and the paraboloid of revolution of A0 mode signify the quasi-isotropic
property of phase velocity. However, the manifold shapes of attenuation in Figure 7.24(b)(d)(f) again
indicate the anisotropic property of attenuation in the frequency-spatial spectrum. Note that in

Figure 7.24(a)(c)(e), KV4+BT model’s predictions are not presented since it yields almost the same
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Figure 7.22 — For the unmounted IFS, the predicted dispersion curves at = 90° for HR+BT model

(left) and KV+BT model (right): (a) and (b) 3D space of (f, kr, k;), (c) and (d) projection onto (f, k)
plane, (e) and (f) projection onto (f, k;) plane.

diagrams as HR+BT model. According to Figure 7.24(b)(f), HR+BT model predicts the attenuation

of SO and SHO modes less than the one of KV+BT model, which is different from AQ mode in
Figure 7.24(d).

The traditional curve in Figure 7.23 can be reconstructed from Figure 7.24. For instance, the SO
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Figure 7.23 — For the unmounted IFS, HR+BT model’s prediction of (a) dispersion curve of phase
velocity at § = 90°, (b) dispersion curve of attenuation coefficient at # = 90°, (c) polar plot of phase
velocity [m/s] at f = 200kHz, (d) polar plot of attenuation coefficient [Np/m] at f = 200 kHz.

curve in Figure 7.23(b) is just the intersecting line of the plane § = 90° (in the cylindrical coordinate
system) to the surface of HR+BT model in Figure 7.24(b), and the SHO contour in Figure 7.23(d) is
the intersecting line of the plane f = 200kHz to the surface of HR+BT model in Figure 7.24(f). For
brevity, these intersecting lines are not depicted in Figure 7.24. Thus, the frequency-spatial spectra
of guided waves will convey more information than the traditional dispersion curves, and it will play

a more important role in guided waves based SHM, especially for anisotropic viscoelastic materials.
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Figure 7.24 — For the unmounted IFS, surface plot of phase velocity (left) and attenuation coefficient
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7.6 Discussion

Although this chapter only presents the comparison results of SO mode between the experimental
and predicted data, the developed dGMM method can be generalized to other guided wave modes
such as A0 and SHO modes if these modes’ information is experimentally identifiable such that the
identified data can be integrated to update the viscoelastic material properties. However, simultane-
ously identifying SO and A0 modes usually requires special setup of transducers from the hardware
viewpoint that have flexible polarity directions, dual PZT for example [105], to sufficiently excite both
fundamental modes. Besides, from the software viewpoint, any efficient decomposition algorithms are
required that can separate coupled SO and AO wave packets in the signal processing level [93]. To

acquire the SHO wave signal, special SH wave transducers need to be utilized [20].

This chapter takes the damping effect of the elastic moduli into consideration. In some refer-
ences [79, 114], the complex stiffness tensor is employed, i.e. C};(w) = C};(w) —iC}(w), to represent
the viscoelasticity of composite materials by specifying a certain damping model for the imaginary part
C{;(w) However, this utilization increases the number of variables for the model updating process,

thus demanding advanced optimization algorithms [115].

In literature, KV model is increasingly adopted to compute the 3D dispersion curves in (f, k., k;)
domain no matter which numerical method is used [98, 79]. In contrast with this tendency, the
two case studies in this chapter demonstrate that the HR involved models predict more accurate
attenuation than the KV involved models in comparison with the experimental data. This fact reveals
that choosing a damping model to represent the viscoelasticity of composite materials is application

dependent.

7.7 Conclusion

This chapter puts forward a dGMM method to predict the frequency-spatial attenuation of guided
waves in anisotropic viscoelastic composite laminates by integrating the damping models (HR, KV
and BT) into the conventional pure elastic GMM. To efficiently solve the nonlinear transcendental
DE, a two-step numerical algorithm is developed that combines dGMM method, 2D MRCM and the
curve tracing technique. The proposed attenuation prediction approach is theoretically validated by

comparing it with the SAFE method.
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The energy velocities and attenuation coefficients at various frequencies are identified from recorded
wave signals via LR method which can not only process multiple sensing pairs necessarily for moni-
toring a practical aeronautic structure but also output statistical information such as the confidence
interval and correlation coefficient R? to assess the quality of the identified parameters. With the
experimental attenuation data, the unknown viscoelastic material properties are nondestructively es-

timated in the least square sense to achieve the best agreement of prediction to experimental data.

Experiments on two physically different structures, the homogeneous FCS and the inhomogeneous
IFS with each one unmounted or mounted on an instrumented A380 plane, were carried out to ex-
perimentally validate the proposed dGMM approach. FCS is a slightly damped structure and IFS
is highly damped. The existence of stress in the mounted case can greatly change the property of
attenuation as compared to the unmounted case. To consider the inhomogeneous characteristic of
IFS, its core layer and skin layers are modeled by different damping models, thus two combinations
of damping models (HR+BT and KV+BT) come into being. Both case studies demonstrate that the
HR involved models predict more accurate attenuation than the KV involved models, and the spatial
distribution of attenuation holds anisotropic property despite the quasi-isotropic stacking layups. In
both structures, A0 mode undergoes much attenuation than SO mode, thus selecting SO mode for SHM

of similar aeronautic structures is desired if the dispersion aspect is not the determining factor.

In summary, using the actual and in-service data of the practical aeronautic structures to validate
the proposed attenuation prediction method is not an easy task but makes it extremely valuable for
the scientific and industrial communities. In this sense, this chapter escorts the initiative of closing

the gap between research and industrial deployment for SHM [54].
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Chapter 8

General conclusions and perspectives

8.1 General conclusions

The thesis has presented the properties of guided waves propagating in elastic and viscoelastic
composite laminates through theoretical derivation, numerical illustration and experimental validation.
The focus of the thesis is placed on how to establish dispersion equations via matrix-based methods,
and efficiently and stably solve dispersion equations in pure elastic and viscoelastic cases. The following

conclusions and original findings are outlined.

The PWSA introduced in Chapter 3 is extended to the TMM to study the property of guided
waves propagating in a multi-layered composite laminate. It combines the traction free boundary
condition and perfect continuity condition. The later is formed using the transferring rule to link the
field variables between adjacent layers and yields the monodromy transfer matrix of the whole plate
system for applying the boundary condition. In accordance with different material types in each layer
of the composite laminate, there exists three cases of guided waves, namely, the coupled Lamb and
SH waves, the separated Lamb and SH waves, and the hybrid case which means that in some layers
of the laminate the two wave types are coupled to each other but in another layers decoupled. The
hybrid case is generally existing in a quasi-isotropic composite plate and metallic-composite plate for
which metallic layers are isotropic but composite laminae are anisotropic. The standard TMM can
deal with the coupled and decoupled cases, but for the hybrid case, an original HMS is proposed
to address the local transfer matrix incompatibility issue. Three numerical examples are used to
illustrate the three cases of guided waves coupling issues. Each example corresponds to a class of

composite plates, i.e. cross-ply laminate, quasi-isotropic laminate and metallic-composite laminate.
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For the examples of quasi-isotropic and metallic-composite laminates, the computed dispersion curves
via HMS are compared to experimental data points extracted from a classical reference, thus validating

the effectiveness of HMS.

To solve the lower computational efficiency issue of the standard GMM, the optimized GMM is
proposed, which simultaneously takes advantage of the symmetry condition induced global matrix,
parallel computing and sparse matrix techniques. The GMM framework has proved its stability
in a benchmark test based on the dataset of Open Guided Waves. This test shows the large fd
problem of TMM. Thus, when the dispersion curves of a composite laminate at larger frequency
values are interested, adopting GMM for computation is necessary. The good agreement between
GMM computation and the experimental data of Open Guided Waves validates the effectiveness and

feasibility of GMM.

The optimized GMM is successfully applied to an aerospace composite plate having 400 layers,
which has the largest number of layers reported so far, to compute its phase velocity dispersion curves.
This structure is a component of the booster pressure vessels of the rocket Ariane 6 under development.
Due to the complexity of this structure, the dispersion curves experience heavy veering effect in a small
region that will cause trouble when tracing the correct loci of dispersion solutions. To study this effect,
the mode shape and MAC value tomography of displacement and stress are analyzed in the regions of
veering effect. Analysis results show that within these regions, the dispersion solutions loci belonging
to the same symmetry kind can be arbitrarily close but never cross, and this process is accompanied
by a rapid exchange of their mode shapes. In comparison with stress mode shapes, displacement
mode shapes are a desired indicator to distinguish the branches of dispersion diagram in the veering
effect regions. An encouraging result is reported that the optimized GMM can complete computations
of the 400-layered plate within half an hour in a standard workstation. This fact breaks down the
common sense that GMM framework cannot be applied to laminates having a large number of layers
and proves the ability of the optimized GMM in application of aerospace composite materials which

usually possess many laminae.

It is furthermore demonstrated that dispersion equations built with PWSA for a single layer plate
and with TMM and GMM for a multi-layered plate system hold the dichotomy property in the case
of pure elastic materials. This property states that these a priori complex-valued equations collapse

to pure real or imaginary valued equations, depending on the behavior of some intermediate param-
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eters. This property is present in composite materials (excluding triclinic ones of few specific case)
of propagating and evanescent waves, in wavenumber-phase velocity domain, frequency-wavenumber
domain and frequency-phase velocity domain. For the single layer plate, dichotomy property can be
analyzed through enumeration strategy that strictly follows the evolution of intermediate parameters’
properties. For the multi-layered plate system, a simple sampling strategy is proposed to numerically
evaluate dichotomy property. This property is extremely helpful for overcoming numerical instabili-
ties encountered during the equation solving process. The large fd problem of TMM is quantitatively
explored by using the methodology of studying dichotomy property. Analysis shows that the large
fd problem of TMM is caused by the vanishing of effective part between real and imaginary parts of

dispersion equation built with TMM due to the poor conditioning of the monodromy transfer matrix.

Considering the inherent viscoelasticity of composite materials, the damping effect of dispersion
curves are investigated. Three damping models (Hysteretic, Kelvin-Voigt and Biot models) are in-
tegrated into the standard GMM to form an extended version, the damped GMM (dGMM). In vis-
coelastic case, the complex-valued dispersion equations built with dGMM have the solution pair of
real frequency and complex wavenumber, and the attenuation coefficients of guided waves can be ex-
tracted from the imaginary part of the complex wavenumber. Due to the complexity of the viscoelastic
case, solving the multivariate transcendental dispersion equation is mathematically intractable. To ad-
dress this issue, a two-step root-finding approach is originally proposed that integrates the undamped
GMM, 2D Module Ratio Convergence Method (2D MRCM) and curve tracing technique. With this
approach, the 3D dispersion curves in real frequency-complex wavenumber domain can be computed.

The classical SAFE method is adopted to validate the effectiveness of the proposed methodology.

In addition to the numerical computation approach, an identification method of attenuation coef-
ficients is originally proposed that utilizes linear regression technique and is based on the propagation
nature of wave displacement fields. With this method, attenuation coefficients can be experimentally
identified from wave signals acquired in a pitch-catch sensor network. Considering that viscoelastic
parameters of damping models are generally not available in practice, the model updating process is
adopted to estimate these parameters in the least square sense that fits the experimentally identi-
fied attenuation coefficients with the dGMM such that there is a good agreement between theoretical

computation and experimental identification.

The entire framework developed in the thesis is applied to two engineering structures, both are
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components of A380 plane but physically different. For each structure, the dataset of mounted and
unmouted cases are analyzed. The first one is a fan cowl structure (FCS) having quasi-isotropic
property and the second one an inner fixed structure (IFS) being sandwich type. Analysis shows
that FCS is a slightly damped structure and IFS is highly damped. The existence of stress in the
mounted case can greatly change the property of attenuation as compared to the unmounted case.
Two combinations of damping models (HR+BT and KV+BT) are used to consider the inhomogeneous
characteristic of IF'S in the first time, for which the aluminum core layer and carbon epoxy skin layers
are modeled by different damping models. Both case studies demonstrate that attenuation coefficients
holds anisotropic property despite the quasi-isotropic stacking layups, and A0 mode undergoes much
attenuation than SO mode. Thus, in the later deployment of SHM for similar structures, selecting SO

mode is desired in order to secure enough coverage of wave amplitudes.

In summary, using the actual and in-service data of the practical aeronautic structures to validate
the proposed attenuation prediction method is not an easy task but makes it extremely valuable for
the scientific and industrial communities. In this sense, this paper escorts the initiative of closing the

gap between research and industrial deployment for SHM [54].

8.2 Perspectives

There are considerable works to be done in the future to achieve the application value of the thesis

in engineering practice.

As an evolved version of TMM and GMM, the stiffness matrix method (SMM) [36, 11] will be
implemented to complete the family of matrix-based methods for modelling guided waves propagation
in composite laminates. The incompatibility issue in SMM will be checked and how to address this
issue will be studied. Benchmark tests can be performed to validate the stability of SMM. Extending
it to the viscoelastic case is worthwhile to do and comparing its performance with dGMM shall provide

further recommendations for improvement.

More profound viscoelastic damping models should be integrated into dGMM to exactly predict
attenuation of complex structures, e.g. the rational model [116] described in Eq. (8.1). Implementation

of this model has the following two fatal issues:

e There is not a unique principle to determine the number of parameters n in Eq. (8.1).
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e Even if n is given, it is still difficult to estimate the coefficients «; and (; from experimental
attenuation data through the model updating process, unless these coefficients are directly

provided.

E*(w)=E (8.1)

1+ >0 Biiw)’
L+ 300 ai(iw)?

To implement the rational model for attenuation prediction, the mechanism of it should be studied

firstly. As an alternative, implementing the standard linear solid (SLS) model [117, 118] expressed in
Eq. (8.2) is achievable.

B (w) = FA— 9T (8.2)

1 —iwT,
where, 7. and 7, are the creep time and the stress relaxation time, respectively.

Extending the matrix-based methods to release an open source dispersion tool is a promising work.
This tool should include the pre-processing module for easily defining model information (material and
structure properties), high efficiency computation module, and user-friendly post-processing module
for visualization of results (modal curve tracing and classification, animation of wave mode shapes,
etc.). Some basic functionalities have been achieved in the thesis such as displaying dispersion diagram
in§—v, f-¢& f—v, f—cyg, f—ce, [ —kr —k; domains, as well as in polar plot format 6 — v and
0 — k; domains. Other extension of functionalities can be anticipated, for instance, computing the
steering angle between phase velocity and group velocity directions which is a special concept existing
in anisotropic composite plates [37]. A comprehensive comparison between the released dispersion

tool with discrete methods, e.g. SAFE, should be conducted for validation purpose.

Some advanced signal processing methods will be adopted to replace the linear regression based
attenuation identification method. The advanced methods are good candidates for experimentally
identifying attenuation coefficients, for example, the matrix pencil method [93] and the estimation
of signal parameters via rotational invariance techniques (ESPRIT) [119, 78]. These methods can
simultaneously identify attenuation coefficient and propagating wavenumber. With more information
identified, the model parameters can be estimated more precisely through model updating process,

and thus producing more accurate predictions.

Due to the existence of uncertainties, the predicted energy velocity and attenuation coefficient do
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not always match well simultaneously with the respective experimental data (see Figure 7.20). In
this situation, the model updating process should yet involve in the identified energy velocity and the
elastic constants. That finally leads to the multiple objective optimization problem as presented in

Eq. (8.3). To conduct this work, some advanced optimization algorithms will be utilized [115, 120].

4 = argmin

N 2
Z?il |:IC(77wl) - ki,l:| (83)
T EiGigvis | 212y [Ce(y,wi) — e

Nk

Figures 7.14(d) and 7.23(d) shows that even if many aeronautic composite plates are designed
and manufactured as quasi-isotropic property, attenuation of guided waves presents anisotropy in
terms of spatial distribution. This property can affect the layout of sensors on distance, orientation,
number and so on. Indeed, when designing a sensor network, one faces two practical issues: the
first one is to get sure that all the structure under study will be covered by guided waves and thus
that any potential damage position can be inspected [18]; the second one is to get sure that guided
waves with enough amplitude will be reflected from the damage toward piezoelectric elements [19].
When designing sensor networks, the distance between sensors can be appropriately larger along the
orientations of lower attenuation; but along the orientations of larger attenuation, sensors should be
placed densely as much as possible to guarantee enough coverage of wave fields, thus increasing the
number of sensors. The future work on optimal sensor network deployment procedures will take these
factors into account. The attenuation prediction method developed in the thesis paves the way to
perform this work. A preliminary idea is stated here. The maximum coverage of wave fields in a
composite plate can be designed as the objective function [121], with the optimization variables of
sensor locations and number [122]. The predicted spatially dependent attenuation will be designed as
restriction conditions of the optimization problem which restricts that at each sensing path of interest,
the attenuated wave amplitude should be higher than a preset threshold value in order to keep a

sufficient signal to noise ratio (SNR).

Last but not least, improving the traditional damage localization methods such as delay-and-
sum [123], RAPID [87] and Excitelet [124] by taking the viscoelasticity of composite materials into
consideration is always of prime importance. Among these methods, temporal or frequency information
is necessary, for instance, time of flight (ToF) for delay-and-sum [125] and wavenumber analysis for
Excitelet [126]. The temporal information can be obtained from the prediction of phase velocity

and group velocity dispersion diagrams [127], and the frequency information required for wavenumber

214



8.3. PUBLICATIONS RELATED TO THE THESIS

analysis is the output of the dispersion solutions in frequency-wavenumber domain [128]. In anisotropic
viscoelastic plates, the existence of wave attenuation can change properties of temporal and frequency-
related quantities. Thus, improvement can be made by bridging the gap between the temporal- or
frequency-based damage localization methods and the viscoelastic wave propagation models studied

in the thesis. This leaves the ongoing works.

8.3 Publications related to the thesis

This section groups together the various publications that are related to the thesis presented here.
Journal papers

e S. Guo, M. Rébillat, N. Mechbal, “Dichotomy property of dispersion equation of guided waves
propagating in anisotropic composite plates”, Mechanical Systems and Signal Processing, 2022,
164: 108212.

e S. Guo, M. Rébillat and N. Mechbal, “Prediction of frequency and spatially dependent attenua-
tion of guided waves propagating in mounted and unmounted A380 parts made up of anisotropic

viscoelastic composite laminates”, Submitted to Structural Health Monitoring, under review.
Conference paper

e S. Guo, M. Rébillat, N. Mechbal, “Spatial attenuation prediction of Lamb waves in composite
materials”, The 9th ECCOMAS Thematic Conference on Smart Structures and Materials, Paris,
France, July 8-12, 2019.
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Appendix A

Proof of the properties of the intermediate
parameters in Section 6.2.3

Property 1 is trivial. One just needs to check Eq. (3.27) for calculating V., W, and Eq. (3.31) for
calculating (1., Sar, f3r, meanwhile keep in mind that all the algebraic manipulations in Egs. (3.27)

and (3.31) only involving in real numbers if a, is a real number.

For the Property 2, set o, = ia,, here a, is a real number, and substitute it into Eq. (3.27) to

make the following derivations.

_ Ku(iar)Kas(ia,) — Kia(ia,) K13(ia,)

‘/T - Klg(ia,«)KQQ(iar) — Klz(iar)Kgg(ia,«)
_ (C11 — pv? — Cs5a2)(C36 + Cusia, — (Ci6 — Casa2)(Crs + Css)iay
~ (Ci3 + Css)iar (Cge — pv? — Caaa?) — (Cr — Cuza2)(Css + Cus)iar
_ (Ch1 = pv? — C55a2)(C36 + Cus) — (Crs — Casa?)(Chs + Css)
~ (Ci3 4 Cs5)(Ces — pv? — Caa?) — (Ci6 — Casa?)(Cs6 + Cas)
= a real number

W — K1 (ia,)Kaos(ia,) — Kiz(iar) K13(ia,)

B KlZ(iar)K33(iar) - K13(iar)K23(iar)

(C11 — pv? — C55a2)(Cs6 + Cas)iar — (Cig — Cusa?)(Ciz + Css)iar

(Ci6 — Cy502)(Cs5 — pv? — Cs3a2) — (C13 + Css)iar (Css + Cas)iay

(C11 — pv* — C5502)(Cs6 + Cas)ar — (C16 — Caza?)(Cis + Css)ay
(C16 — Cu5a2)(Cs5 — pv? — Cz3a) + (C13 + C35)(C36 + Cus)a?

= a purely imaginary number

In this case, set W,. = iw,, here w, is a real number, but keep V, unchanged because it is already

a real number. Substitute ia,, V;, iw, into Eq. (3.31) to make further derivations.
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APPENDIX A

B1r = C13 + Cs6Vy + Cs3(iay ) (iw,) = Cy3 + Cs6V, — Cs3a,w, = a real number
Bor = C45(iar) + C44(ia7«)V,~ + C’45(iwr) = 1(045% + Cyqa, Vi + C45wr) = an imag. number

Bar = C55(iar) + Cys (ia,.)VT + C55(iw7«) = i(C55CL7~ + Cysa, Vi + C55w7«) = an imag. number

For the Property 3, according to the Property 1 and 2, no matter what «, being a real or purely
imaginary number, V,., 81, are always real numbers for » = 1,3,5. Thus, Bs defined in Eq. (3.38) is

always a purely imaginary number because of

Bs = 8i[Vi(B15 — B13) + V3(Bi1 — Pi5) + V5(B13 — B11)] = iP5 = an imag. number

where, P; is definitely a real number. Q.E.D.
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Appendix B

Introduction (Frangais/French)

B.1 Contexte général de la these

L’un des enjeux majeurs en ingénierie concerne actuellement la surveillance des dommages struc-
turels en temps réel afin de prévenir les défaillances catastrophiques pouvant survenir a cause de ces
dommages. Ce processus est appelé controle de la santé des structures (SHM pour “Structural Health
Monitoring”) et sa mise en oeuvre réussie est susceptible d’apporter non seulement des améliorations
considérables en termes de sécurité mais également en termes de cotits de maintenance. Une procédure

de SHM classique est généralement composée de cing étapes [1, 13]:
1. Détection: Existe t’il un dommage?
2. Localisation: Ou est le dommage?

3. Classification: De quel type de dommage s’agit-il?

e

. Quantification: Quelle est la taille du dommage?
5. Pronostic: Comment le dommage va t’il évoluer?

Cette thématique de recherche est a ’étude depuis le début des année 1970 et en un demi-siecle,
les techniques de SHM ont progessé vers leur maturité en jouant un réle important dans I’évaluation
de lintégrité et de la durabilité des structures [5]. Grace a des techniques de SHM efficaces, continues
et automatisées, il est en théorie possible d’identifier les dommages structurels & un stade précoce
afin d’éviter de nouvelles défaillances, générant ainsi d’énormes avantages économiques et ainsi que la

sauvegarde de vies humaines [16].

Parmi tous les types de techniques de SHM existantes, les stratégies basées sur les ondes ultra-
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sonores guidées dans les structures minces sont particulierement efficaces pour surveiller I’état de santé
et U'intégrité des structures composites aéronautiques [18]. Ces ondes ultrasonores guidées dans des
structures minces ont la particularité de pouvoir se propager sur de relativement grandes distances et
peuvent donc couvrir une surface de contréle importante avec peu d’élements actifs et en un temps
plutot court. Cet avantage se traduit en pratique par une réduction de la main d’oeuvre et des

équipements nécessaires pour effectuer la surveillance de ces structures [19].

Lors du choix des ondes guidées comme outil d’inspection des structures composites aéronautiques,
il est en préambule nécessaire de souligner leur aspect multi-modal: a une fréquence d’excitation donnée
plusieurs types d’ondes (aussi appelés “modes”) peuvent se propager simultanément avec des longueurs
d’ondes et des vitesses différentes. Trois caractéristiques de ces ondes doivent en particulier étre
considérées avec attention pour bien comprendre la facon dont elles de propagent dans les matériaux
d’intérét. La premiere caractéristique est leur comportement dispersif qui décrit 1’évolution de la
longueur d’onde et de la vitesse des ondes avec les modes de propagation et la fréquence [21]. La
seconde caractéristique est due a ’anisotropie inhérente des matériaux composites aéronautiques qui
entraine une dépendance des propriétés des ondes guidées avec leur direction de propagation [4].
La troisieme caractéristique est l'atténuation des ondes guidées qui est généralement causée par la

viscoélasticité des matériaux composites [83, 84].

r

Inverseur de poussée
y

Fan Cowl / _ ”
—8§5°C // ‘ ) 3

v

((«( b \__\"_\‘“ Inverseur de poussée

Inlet Cowl

‘ Fn Cowl
-ﬂ-l Source: Aircelle
(a) A real nacelle (b) A nacelle showing components

Figure B.1 — Image d’une nacelle d’Airbus A380 [3].

La nacelle d’'un Airbus A380 est une structure complexe composée de plusieurs composants réalisés
avec des matériaux différents. Les deux composants d’intérét de la nacelle sont ici la capote de

soufflante (FC pour “Fan Cowl”) et la structure fixe interne (IF'S pour “Inner Fized Structure”), comme
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indiqué sur la figure B.1(b). Le FC est fabriqué en matériaux composites multicouches (polymeres
renforcés de fibres de carbone) et est une piece en contact direct avec 'environnement extérieur et qui
est 'objet de nombreuses opérations de manutention. L’TFS est réalisé en matériaux sandwich (peaux
composites et coeur en nid d’abeille fait d’alliage d’aluminium) et ses particularités opérationnelles
font qu’il est tres difficile d’acces et soumis a un fort gradient thermique entre ses faces internes et
externes. Ces deux structures constituent donc un exemple applicatif concret pour ’étude des ondes
de Lamb. Les matériaux qui composent ces structure présentent de plus un certain degré d’anisotropie
et de viscoélasticité ce qui complique le suivi de I’état de santé des nacelles par le biais d’ondes guidées.
En conséquence, 'objectif de cette these est de mieux comprendre la propagation des ondes guidées
dans ces structures aéronautiques composites en étudiant en détail leurs trois caractéristiques majeures

mentionnées précédemment: dispersion, attenuation et directivité.

B.2 Etat de ’art

Le calcul précis et efficace des courbes de dispersion associées aux ondes ultrasonores guidées dans
des structures minces est un prérequis obligatoire pour concevoir un systeme SHM de structures com-
posites aéronautiques basé sur ces ondes. C’est en effet I’analyse de ces courbes qui est a la base
de la sélection de la fréquence d’excitation appropriée pour l'interrogation et de la conception du
réseau optimal de transducteurs piézoélectriques (PZT) (position et taille des éléments PZT) [30, 31].
Cependant, ’anisotropie et ’empilement de plusieurs couches de stratifiés composites compliquent la
théorie de la propagation des ondes guidées dans ces structures. Ainsi le modele isotrope monocouche
conventionnel, c’est-a-dire I’équation de Rayleigh-Lamb [26], n’est plus applicable aux stratifiés com-
posites. Au cours des deux dernieres décennies, de multiples méthodes ont été développées pour étre
capable de prédire ces courbes de dispersion. Ces méthodes comprennent des méthodes matricielles,

des méthodes d’éléments finis et d’autres méthodes et sont brievement discutés dans la suite.

B.2.1 Les méthodes matricielles

Les méthodes matricielles sont principalement appliquées aux problemes multicouches, et elles
ont connu un grand développement depuis les années 1950, en allant des avancées théoriques aux
applications d’ingénierie. Il existe trois méthodes spécifiques, notamment la méthode de la matrice

de transfert (TMM pour “Transfert Matriz Method”), la méthode de la matrice globale (GMM pour
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“Global Matriz Method”) et la méthode de la matrice de rigidité (SMM pour “Stiffness Matriz Method”).

Semi-infinite half-space

S N3

(lop)
_ interface ¢ 1

interface ¢ 2

4 MY g

Semi-infinite half-space

Example, using three-layer plate with semi-infinite half-spaces.

Figure B.2 — Systeme d’étiquetage pour plaque multicouche [6].

B.2.1.1 Méthode de la matrice de transfert

Thomson a proposé la premiere version de la TMM en 1950 pour relier les variables de champ,
c’est-a-dire les composantes de contrainte et de déplacement, aux surfaces supérieure et inférieure de la
plaque a travers une série de matrices de transfert, qui tient compte simultanément de la la continuité
des variables de champ aux interfaces des couches adjacentes et les conditions aux limites sans traction
aux deux faces extérieures de la plaque. Haskell a par la suite peaufiné la version de Thomson en cor-
rigeant plusieurs petites erreurs [32]. La formulation de Thomson-Haskell a conceptualisé la simplicité
de la TMM et a ensuite recu un nombre important d’applications dans les domaines sismologique et
ultrasonore [33]. Mais un défaut majeur de la TMM est le fameux “probléme pour les grands fd” qui
signifie que pour des grandes valeurs du produit de la fréquence f et de I’épaisseur de la plaque d,
les courbes de dispersion obtenues a partir des solutions de I’équation de dispersion construite via
la TMM deviennent instables. Ce probleme est du a un mauvais conditionnement des matrices de

transfert 1ié a la coexistence de types d’ondes croissantes et décroissantes.

Wang et Yuan ont ajouté une condition de symétrie dans la TMM pour étudier les propriétés
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anisotropes des stratifiés composites [37]. Magsoodi et al. ont appliqué la TMM pour prédire les
courbes de dispersion de plaques en composite métallique [38]. Une lacune de cette tentative est qu’elle
ne peut pas traiter le probleme d’incompatibilité entre matrices lorsque la direction de propagation
des ondes ne correspond pas a la direction principale des couches composites, mais correspond a la
direction principale des couches métalliques en raison de l'isotropie du métal. Nandyala et al. ont
proposé une méthode basée sur une matrice de rigidité équivalente (ESM pour “Equivalent Stiffness
Matriz”) pour calculer les courbes de dispersion en considérant un stratifié multicouche comme une
seule couche équivalente de facon a améliorer l'efficacité de calcul de la TMM traditionnelle [10]. La
méthode ESM est une méthode approximative et ne parvient pas a prédire les courbes de dispersion

a des fréquences élevées et pour des modes d’ordre élevés [10].

B.2.1.2 Méthode matricielle globale

La méthode GMM a été proposée a 'origine par Knopoff en 1964 [34]. L’idée principale de la
GMM est d’assembler toutes les sous-matrices représentant les conditions de continuité des variables
de champ dans chaque couche dans une matrice globale, ainsi que les amplitudes d’onde de toutes
les couches a déterminer par les conditions aux limites sans traction. Le principal mérite de la GMM
repose sur sa stabilité numérique méme pour les grands f X d mais au prix d’une charge de calcul
croissante. Limitée par les faibles capacités de calcul au XXeme siecle lorsque I'application était axée
sur les composites ayant un nombre massif de couches, la matrice globale implique de travailler sur

des matrices de tres grandes tailles et donc le probleme de la complexité de calcul est inévitable.

Lowe et al. (2003) ont développé le logiciel Disperse basé sur la GMM et qui est devenu le pionnier
de ces deux dernieres décennies [39]. Cependant, certains problémes existent toujours dans Disperse
tels que des racines manquantes ou bien la production de valeurs aberrantes pour un mode donné [40].
Pant et al. (2014) ont refondu la GMM conventionnelle basée sur I’élasticité 3D et I’approche de super-
position d’ondes partielles [8] pour calculer les courbes de dispersion d’un matériau stratifié fibre-métal.
Une lacune de leur méthode est qu’ils n’ont pas résolu techniquement le probleme d’incompatibilité
des matrices dans les plaques composites métalliques comme mentionné précédemment. Ramasawmy
et al. (2020) ont développé une boite a outils basée sur MATLAB appelées ElasticMatriz et basée
sur la GMM pour calculer des courbes de dispersion [41]. Cette boite a outils ne prend cependant

en considération que les matériaux isotropes ou transversalement isotropes, et restreint également la
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direction de propagation des ondes selon les axes principaux du matériau, ce qui n’est évidemment

pas adapté aux matériaux composites aéronautiques anisotropes.

B.2.1.3 Méthode de la matrice de rigidité

Afin de résoudre le probléeme des grands f x d de la TMM, Rokhlin et Wang (2001) ont développé
la SMM en refondant la matrice de transfert de chaque couche pour former la matrice de rigidité
qui relie le déplacement a la contrainte au haut et bas d’un pli [35, 36]. Ensuite, les conditions
de continuité utilisées dans la TMM et la GMM sont transformées en procédure récursive allant de
la premiere a la derniere couche pour produire une matrice de rigidité globale correspondant a la
plaque entiere. Enfin, la condition aux limites sans traction est appliquée a la matrice de rigidité
globale générée précédemment pour obtenir I’équation de dispersion. Il a été prouvé que la SMM
est inconditionnellement stable. Un inconvénient de la SMM est cependant sa dégénérescence de la

simplicité conceptuelle en comparaison avec les méthodes TMM et GMM.

Kamal et Giurgiutiu (2014) ont combiné la SMM et la TMM pour former la méthode STMM [42].
Dans cette méthode, la SMM peut produire des solutions stables dans une région a nombre d’onde plus
élevé et la TMM peut donner des solutions correctes dans une région & nombre d’onde inférieur. Huber
et al. (2018) ont adopté la SMM pour calculer les courbes de dispersion de composites anisotropes avec
400 couches et étant un composant de la fusée Ariane 6 [11]. Ce travail a permis le développement d’un
logiciel gratuit autonome nommé Dispersion Calculator et qui a regu des mises a jour substantielles

par Huber depuis sa création en 2018.

B.2.2 Meéthodes basées sur les éléments finis

Une autre voie efficace permettant d’otenir les équations de dispersion consiste a utiliser des
méthodes basées sur les éléments finis (FEM), dont la principale est la méthode éléments finis semi-
analytique (SAFE pour “Semi-analytic Finite Elements”), qui suppose que le champ de déplacement
d’un stratifié peut s’écrire sous deux formes séparées : une section de guide d’onde 1D ou 2D est
discrétisée par éléments finis et dans la direction de propagation une fonction harmonique analytique
dépendant de la distance et du temps est appliquée [7]. Bénéficiant de la discrétisation flexible de la
section, la méthode SAFE présente des avantages évidents pour modéliser la propagation des ondes

dans des guides d’ondes de section arbitraire. La méthode de collocation spectrale (SCM) est basée
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sur les polynémes de Chebyshev [44] qui allouent des points spectraux dans le sens de ’épaisseur de
la plaque pour discrétiser chaque couche d’un stratifié, au lieu d’éléments fnis comme proposé par la
méthode SAFE. Afin de tirer pleinement parti des logiciels FEM commerciaux tels qu’ANSYS, une
méthode d’éléments finis ondulatoires (WFEM pour “Wave Finite Elements”) a été développée par
Mace et Manconi (2008) [46] et Sorohan et al. (2011) [47]. Dans le sens de I’épaisseur, la WFEM
discrétise le guide d’onde avec des éléments finis comme SAFE, mais dans le sens de la propagation,
seule une longueur nominale, généralement une longueur d’onde, est discrétisée par un élément. Etant
donné que la longueur d’onde change avec la fréquence, les éléments dans la direction de propagation
doivent étre remaillés pour différentes fréquences afin de conserver une précision constante [47], ainsi

la WFEM n’est pas aussi flexible que SAFE et SCM.

Uza"' e Uys
(a) )

Figure B.3 — Modele SAFE de propagation des ondes, (a) discrétisation dans le sens de I’épaisseur,
(b) élément a trois nceuds et degrés de liberté de chaque nceud [7].

Il convient de préciser ici que 'objet de la these est les méthodes basées sur les matrices (en
particulier les méthodes TMM et GMM) puisque ces méthodes sont basées sur la théorie de 1'élasticité
3D linéaire et deviennent proposent ainsi un cadre standard permettant de dériver les équations de
dispersion analytiques d’un systéme de plaques multicouches [40]. La méthode SAFE sera néanmoins

adoptée pour la validation.
B.2.3 Autres méthodes

Les méthodes restantes disponibles pour obtenir les équations de dispersion d’un guide d’ondes con-
stitué d’une plaque mince sont en partie basées sur la théorie des plaques d’ordre supérieur (HOPT
pour “High Order Plate Theory”) [48, 49], la méthode de Ritz-Rayleigh [50, 51], les fonctions de

Green [52] et la matrice de Green [53]. Bien que la méthode basée sur la HOPT puisse prendre en

237



B.2. ETAT DE L’ART

considération la déformation de cisaillement d’ordre supérieur des plaques, il s’agit toujours d’une
méthode approximative. Le nombre de modes accessibles depuis les méthodes basées sur la HOPT
ne peut pas étre supérieur a six (trois modes symétriques et trois modes antisymétriques) en raison
d’ordres matriciels limités [49]. En outre, concernant les modes d’ordre supérieur, par ex. S2 et A2,
ou les fréquences plus élevées, la méthode HOPT peut s’avérer imprécise. Les méthodes basées sur
les fonctions de Ritz-Rayleigh et de Green s’averent intéressantes concernant la caractérisation des
parametres des matériaux par des ondes acoustiques ultrasonores, et ont conduit & certaines applica-
tions pour les métaux austénitiques par exemple [50, 52], mais pas pour les matériaux composites, qui

ont été abordés par les méthodes basées sur les fonctions de Green [53].

B.2.4 Atténuation des ondes guidées

Les études liées a ’atténuation sont principalement axées sur les calculs numériques et ’analyse de
mesures expérimentales. Dans les structures composites, I’amortissement viscoélastique des matériaux,
généralement caractérisé par des modeles d’amortissement hystérétique (HR) ou de Kelvin-Voigt (KV),
est le principal facteur d’atténuation [89, 90]. Le modele d’amortissement de Rayleigh est également
adopté pour étudier l'atténuation des ondes [91, 92]. Théoriquement, les coefficients d’atténuation
des ondes guidées peuvent étre calculés a partir des équations de dispersion (ED) correspondantes.
Ainsi, des efforts considérables ont été faits pour dériver des ED étant & valeurs complexes dans les
milieux viscoélastiques et pour développer des algorithmes numériques efficaces pour les résoudre.
La plus simple est I'équation classique de Rayleigh-Lamb qui représente la propagation des ondes
dans une plaque viscoélastique isotrope homogene [75, 93]. L’approche de superposition d’ondes
partielles (PWSA) est généralement utilisée pour dériver les ED d’une plaque viscoélastique anisotrope
monocouche [72, 94]. Pour un systéme multicouche, la méthode PWSA est étendue a la TMM [95]
et & la GMM [96], qui sont basées sur la théorie de 1'élasticité 3D linéaire et deviennent ainsi la
maniere standard pour dériver les ED analytiques de ce systeme. Cependant, la résolution de ces
équations n’est pas une tache facile et nécessite d’utiliser la méthode de recherche de racine d’une
fonction de deux variables de Lowe [6] ou la méthode de convergence du rapport de module 2D
proposée par Zhu-Qian (2D MRCM) [75]. Certaines approches alternatives se basent sur des ED
approximées et sont résolues par des algorithmes de recherche de racines efficaces tels que la méthode

de Newton-Raphson et la méthode de décomposition des valeurs propres. Les représentants de ces
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méthodes sont les approches basées sur les polynomes de Legendre [97, 98, 99] et la théorie des
plaques d’ordre supérieur [100, 101, 102]. De plus, les méthodes numériques discretes sont également
largement appliquées pour résoudre le probleme des ondes complexes dans les plaques viscoélastiques
multicouches en raison de leur mise en ceuvre facile. Par exemple, on peut citer la méthode des
éléments finis d’'ondes (WFEM) utilisant la condition de périodicité de Floquet [103, 66], la méthode
de collocation spectrale (SCM) basée sur les polynémes de Chebyshev [44, 80], et la méthode semi-
analytique des éléments finis (SAFE) adaptée aux guides d’ondes a section arbitraire [7, 104, 79]. La
caractéristique commune de ces méthodes réside dans le fait que la discrétisation n’a lieu que dans le
sens de I'épaisseur de la plaque, augmentant ainsi I'efficacité de calcul par rapport a la modélisation

par éléments finis 3D traditionnelle.

En plus de I’'approche numérique, les coefficients d’atténuation peuvent également étre mesurés ex-
périmentalement, mais les travaux expérimentaux sont assez rares par rapport aux avancées théoriques
abondantes. L’approche la plus simple consiste & calculer le taux d’atténuation des amplitudes d’ondes
entre deux capteurs dans une expérience A-scan [85, 91]. Une méthode plus compléte consiste a es-
timer 'atténuation en ajustant les données expérimentales d’amplitudes d’ondes en fonction des dis-
tances de propagation. Cette méthode a le mérite de considérer a la fois I’étalement géométrique et
Pamortissement structurel [89, 105]. En outre, deux méthodes d’identification avancées sont égale-
ment utilisées dans ce contexte, notamment la méthode du crayon matriciel [93] et I'estimation des
parametres du signal via des techniques d’invariance par rotation (ESPRIT) [78]. La caractéristique
commune des deux méthodes réside dans le fait qu’elles permettent d’identifier non seulement le coeffi-

cient d’atténuation mais également le nombre d’onde se propageant a partir de mesures expérimentales.

B.3 Apport de la these

Cette these a pour objectif de mieux comprendre les propriétés des ondes guidées se propageant
dans les stratifiés composites élastiques et viscoélastiques a travers une dérivation théorique, des
illustrations numériques, et une validation expérimentale. L’accent est mis en particulier sur une
méthodologie permettant d’établir des équations de dispersion via des méthodes matricielles et sur la
résolution efficace et de maniere stable de ces équations dans des cas élastiques et viscoélastiques purs.

Les contributions de chaque chapitre sont décrites plus précisément dans la suite.
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B.3.1 Chapitre 2 - Aspects fondamentaux de la propagation des ondes dans les solides

Dans ce chapitre les équations fondamentales de 1’élasticité 3D sont passées en revue, y com-
pris la relation contrainte-déformation, la relation contrainte-déplacement et les équations élastody-
namiques du mouvement. Cing classes de matériaux composites largement utilisés sont présentées
via les propriétés de leur matrice de rigidité respective: les matériaux tricliniques Cy, monocliniques
Cum, orthotropes Cp, transversalement isotropes C7z, et isotropes Cz. La rotation de la matrice de
rigidité permettant de se placer dans la direction de propagation désirée est obtenue en utilisant la
notation Voigt et la regle de rotation du tenseur. Cette rotation engendre un changement de classe
de la matrice de rigidité et les caractéristiques de la matrice de rigidité apres rotation sont indiquées
dans le tableau B.1. Les équations de champs pour les matériaux tricliniques conduisent ensuite a des
équations d’ondes de volume dans les solides. Dans ce chapitre, de nombreux concepts sont définis
et certaines équations et caractéristiques fondamentales sont présentées. Il établit ainsi la base des

chapitres suivants pour I’étude de la propagation des ondes guidées dans les plaques minces composites.

Table B.1 — Caractérisation des matrices de rigidité avant et apres rotation

Forme matricielle dans la Nombre de Forme matricielle
direction de I'axe principal coefficients indépendants hors axe principal
CrelCr 21 CreCr

Cu € Cum 13 Ci\/l €Cpm

Co eCo 9 C/O € Cm

Crr € Co b CiFI eC M

CieCzr CCo 2 Ci:CIECZQCo

B.3.2 Chapitre 3 - Propagation des ondes guidées dans une plaque monocouche

Dans ce chapitre, approche par superposition d’ondes partielles (PWSA) est introduite pour
modéliser la propagation d’ondes guidées dans une plaque composite monocouche. La condition aux
limites sans traction et la condition de symétrie sont utilisées pour dériver les équations de dispersion
correspondantes. Dans les matériaux orthotropes, transversalement isotropes et isotropes, les ondes
guidées sont découplées en ondes de Lamb et SH (qui désignent les ondes de cisaillement ou “shear
waves” en anglais), alors que dans les matériaux tricliniques et monocliniques, les deux types d’ondes
sont couplés I'un a l'autre. L’équation classique de Rayleigh-Lamb est également redémontrée en

utilisant la PWSA qui sert d’alternative a la méthode de décomposition de Helmholtz.
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B.3.3 Chapitre 4 - Propagation des ondes guidées dans une plaque multicouche : méthode
de la matrice de transfert

La PWSA est ensuite étendue a la TMM pour étudier les propriétés des ondes guidées se propageant
dans un stratifié composite multicouche. Cette approche combine la condition aux limites sans trac-
tion et la condition de continuité parfaite. La regle de transfert est utilisée pour relier les variables de
champ entre les couches adjacentes du matériau stratifié et la matrice de transfert de monodromie de
I’ensemble de la plaque est obtenue. en s’appuyant sur les résultats obtenus dans le cas monocouche,
trois cas possibles pour les ondes guidées sont a envisager: soit les ondes Lamb et SH sont couplées
dans toutes les couches, soit les ondes de Lamb et SH sont découplées dans chaque couche, ou alors
il faut considérer le cas hybride ou dans certaines couches du stratifié les deux types d’ondes sont
couplés I'un a 'autre mais dans d’autres couches ils sont découplés. Le cas hybride existe générale-
ment dans les plaques composites quasi-isotropes et les plaques composites métalliques pour lequel les
couches métalliques sont isotropes mais les lames composites sont anisotropes comme indiqué dans le
tableau B.2. La TMM standard peut traiter les cas couplés et découplés, mais pour le cas hybride, une
méthode hybride originale (nommée HMS pour “Hybrid Matriz Strategy”) est proposée pour résoudre
le probleme d’incompatibilité de la matrice de transfert locale entre deux couches ne présentant pas
les méme propriétés de couplage entre les différents types d’ondes. Trois exemples numériques sont
utilisés pour illustrer les trois types de couplage d’ondes guidées. Chaque exemple correspond a une
classe de plaques composites usuelle, c’est-a-dire un stratifié croisé, un stratifié quasi-isotrope et un
stratifié métallo-composite. Pour les exemples de stratifiés quasi-isotropes et composites métalliques,
les courbes de dispersion calculées via la HMS sont comparées a des points de données expérimentaux

extraits d’une référence classique, validant ainsi 'efficacité de la HMS.

B.3.4 Chapitre 5 - Propagation des ondes guidées dans une plaque multicouche : méthode
matricielle globale

Pour résoudre le probleme d’efficacité de calcul de la GMM standard, une méthode GMM optimisée
est proposée dans ce chapitre. Elle tire simultanément parti de la matrice globale induite par les
conditions de symétrie, du calcul parallele, et des techniques basées sur les matrices creuses. Cette
GMM a prouvé sa stabilité dans un test de référence basé sur le jeu de données Open Guided Waves

(voir Figure B.4(a)). Ce test illustre les problemes rencontrés par la TMM pour les grandes valeurs du
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Table B.2 — Classes de stratifiés composites et la dépendance du type d’onde & ’angle de propagation.

Classe de stratifié Angles d’empilage Angle de propagation ¢ So?lsplé ngcsouplé E;Sride
Unidirectionnel! [0]s z ; }8:: 38:{ Y Y
Plis croisés [(0/90)s]2 g ; }8:: 383 v Y
Quasi-isotrope [0/90/ + 45/ — 45]; z ; }8 ig 38:: :igi{ 7 v
, 0¢€{0°,90°} v

Composite métallique [Al/0/90/A1/90/0/Al] 7 ¢ {0°.90°) 7

! Remarque relative & la classe des stratifiés unidirectionnels : étant donné que les variables de champ (déplacement et
contrainte) sont considérées comme continues a travers 'interface des couches adjacentes (la condition d’interface parfaite
est supposée), le stratifié unidirectionnel [0]s est mathématiquement équivalent a la plaque monocouche [0]; ayant la méme
épaisseur que la plaque [0]s.

2 Al désigne la couche d’aluminium qui est un matériau isotrope.

produit f x d (voir Figure B.4(b)). Ainsi, lorsque les courbes de dispersion d’un stratifié composite &
des valeurs de fréquence plus élevées sont recherchées, 'utilisation de la GMM pour réaliser le calcul
est nécessaire. Le bon accord entre les résultats produits par la GMM et les données expérimentales
de la base de donnée Open Guided Waves valide 'efficacité et la faisabilité de la GMM optimisée

proposée ici (voir Figure B.5).
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Figure B.4 — Courbes de dispersion pour le cas d’étude Open Guided Waves pour un angle de propa-
gation 6 = 0° calculées via la TMM et la GMM.

La méthode GMM optimisée est ensuite appliquée avec succes a une plaque composite aérospatiale

ayant 400 couches, ce qui est le plus grand nombre de couches rapportées jusqu’a présent, pour calculer
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Figure B.5 — Courbes de dispersion des ondes guidées ouvertes a I’angle de propagation 8 = 0° calculées
via GMM et ESM.

ses courbes de dispersion. Cette structure est un composant des enceintes de surpression de la fusée
Ariane 6 en cours de développement. En raison de la complexité de cette structure, les courbes de
dispersion subissent un fort effet de déviation dans une petite région ce qui génere des problémes lors
du tracé des courbes de dispersion (voir Figure B.6). Pour étudier cet effet, la forme modale et la
valeur MAC (pour “Modal Assurance Criterion”) du déplacement et de la contrainte sont analysées
dans les régions ou se manifeste l'effet de déviation (voir la Figure B.7 pour la forme modale de
déplacement et la Figure B.8 pour les valeurs MAC). Les résultats de ces analyses montrent qu’au
sein de ces régions, les solutions de dispersion appartenant au méme type de symétrie peuvent étre
arbitrairement proches mais ne jamais se croiser. Ce processus s’accompagne d’un échange rapide de
leurs formes modales. En comparaison avec les formes de mode de contraintes, les formes de mode
de déplacements constituent un indicateur plus fiable pour distinguer les branches du diagramme de
dispersion dans les régions ou cet effet de déviation est observé. La méthode GMM optimisée permet
de terminer les calculs de la plaque a 400 couches en une demi-heure sur un poste de travail standard
(voir Table B.3). Cela change une idée regue selon laquelle la GMM ne peut pas étre appliquée a des
stratifiés ayant un grand nombre de couches et prouve la capacité de la GMM optimisée a étre utilisée

pour des matériaux composites aérospatiaux qui possedent généralement de nombreuses couches.
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Figure B.6 — Courbes de dispersion du stratifié aérospatial & 400 couches dans la direction 8 = 0°.
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Figure B.7 — Formes de mode de déplacement.

B.3.5 Chapitre 6 - Propriété de dichotomie de I’équation de dispersion des ondes guidées
se propageant dans des plaques composites anisotropes

Il est mathématiquement démontré dans ce chapitre que les équations de dispersion construites

avec la PWSA pour une plaque monocouche et avec la TMM et la GMM pour un systeme de plaque
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Figure B.8 — Tomographie a valeur MAC des formes de mode de déplacement dans la région R1 des
modes symétriques.

Table B.3 — Le temps de calcul du stratifié & 400 couches en utilisant le GMM optimisé (unité :
secondes)

Méthode de bissection Méthode de changement de phase
sweep v sweep f sum sweep v sweep f sum

899° 4628 1361° 871° 469° 1340°

7802 4542 1234> 7522 4532 1205

°® Le temps de calcul correspond aux modes symétriques.
# Le temps de calcul correspond aux modes antisymétriques.

multicouches possedent une propriété de dichotomie dans le cas de matériaux élastiques purs. Cette
propriété induit que ces équations a priori a valeurs complexes se réduisent a des équations a valeurs
réelles ou imaginaires pures, en fonction du comportement de certains parametres intermédiaires.
Cette propriété est vraie pour les matériaux composites (& 1’exception de quelques cas particuliers) et
pour les ondes propagatives et évanescentes. Pour une plaque monocouche, la propriété de dichotomie
peut étre analysée via une stratégie d’énumération qui suit I’évolution de certains parametres intermé-
diaires. Pour le systeme de plaques multicouches, une stratégie d’échantillonnage simple est proposée

pour évaluer numériquement la propriété de dichotomie. Les deux stratégies sont résumées dans la
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Figure B.9.

Cette propriété est extrémement utile pour surmonter les instabilités numériques rencontrées lors

du processus d’obtention des équations de dispersion. Le cas des grands produits f X d rencontré par

la TMM est exploré quantitativement en utilisant la propriété de dichotomie. L’analyse montre que le

probleme des grands produits f x d rencontré par la TMM est causé par un mauvais conditionnement

de la matrice de transfert de monodromie (voir la Figure B.10).
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laminate respectively representative of GMM, TMM, SMM.

(a)

Comments on the numerical labels:

(1) The intermediate parameters keep constants for a fixed v, which maximizes
the computational efficiency of both methods.

(2) The intermediate parameters are computed repeatedly for different v, which
slows down the computational efficiency of both methods.

(3) Phase correction measure should be taken to avoid numerical instability.

(b)

Figure B.9 — (a) Stratégie a adopter pour déterminer la propriété de dichotomie de I’équation de
dispersion. (b) Efficacité de calcul des méthodes de résolution basées sur la propriété de dichotomie.
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B.3.6 Chapitre 7 - Prédiction de l’atténuation des ondes guidées se propageant dans les
stratifiés composites viscoélastiques anisotropes en fonction de la fréquence et de la
direction de propagation

Compte tenu de la viscoélasticité inhérente des matériaux composites, 'effet d’amortissement des
ondes guidées est étudié dans ce chapitre en se basant sur les équations de dispersion. Trois modeles
d’amortissement présentés dans les Egs. B.1, B.2, et B.3 (modeles Hystérétique, de Kelvin-Voigt, et de
Biot) sont intégrés au sein de la méthode GMM standard pour en former une version étendue: la GMM
amortie (AGMM pour “damped GMM?”). Dans le cas viscoélastique, les équations de dispersion & valeurs
complexes construites avec la dGMM produisent des paires de solutions combinant une fréquence réelle
et un nombre d’onde complexe. Les coefficients d’atténuation des ondes guidées peuvent étre extraits
de la partie imaginaire du nombre d’onde complexe. En raison de la complexité du cas viscoélastique,
la résolution de I’équation de dispersion transcendantale multivariée est mathématiquement impossible
a traiter. Pour résoudre ce probleme, une approche de recherche de racine en deux étapes est proposée
sur la base des solutions produites par la GMM non amortie, de la méthode de convergence du
rapport de module 2D (MRCM 2D) et d’une technique de tracé de courbes (voir Figure B.11). Avec
cette approche, les courbes de dispersion 3D dans le domaine des nombres d’onde complexes et en
considérant des fréquence réelles peuvent étre calculées. La méthode SAFE classique est adoptée pour

valider 'efficacité de la méthodologie proposée.

E*=FE(1 —iygr) HR model (B.1)

E*(w)=E (1 - mKV:’O> KV model (B.2)

N 2 w\2 .2 w
E*(w)=FE |1+ ;’yBT In{/1+ " —1;’yBT arctan " BT model (B.3)

En plus de l'approche numérique, une méthode d’identification expérimentale des coefficients
d’atténuation est proposée en se basant sur une technique de régression linéaire. Avec cette méthode,
les coefficients d’atténuation sont identifiés expérimentalement & partir de signaux mesurés sur I'IFS
et le Fan Cowl. Considérant que les parametres viscoélastiques des modeles d’amortissement ne sont

généralement pas disponibles dans la pratique, un processus de recalage du modele est adopté pour
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Figure B.11 — L’organigramme de I’algorithme dGMM en deux étapes pour résoudre le DE complexe.

estimer ces parametres au sens des moindres carrés. Les coefficients d’atténuation identifiés expérimen-
talement avec la dGMM permettent d’obtenir un bon accord entre le calcul théorique et 'identification

expérimentale (voir I'Eq. (B.4)).

m A 72
4 = arg min Z [IC(’y, wy) — ki,l} (B.4)
v =1
o, la paire de solutions (wl, ]%i’l)l . correspond aux coeflicients d’atténuation identifiés expéri-
= 7"'7m

mentalement a différentes fréquences, et 4 aux facteurs de perte estimés pour un certain modele

d’amortissement.

L’ensemble du cadre développé dans la these est enfin appliqué a deux structures issues de I'ingénierie
aéronautique. Ces deux structures sont des composants de ’avion A380 qui sont physiquement assez
différentes I'une de 'autre. Pour chaque structure, des données expérimentales correspondant a un
cas ou la structure est montée sur un A380 d’essai et & un cas ou la structure n’est pas montée sont

analysés. La premiere structure est le capot de soufflante (FCS pour “Fan Cowl Structure”) ayant des
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propriétés quasi-isotropes (voir Figure B.12) et la seconde structure est une structure interne fixe (IFS

pour “Inner Fized Structure”) de type sandwich (voir Figure B.13).

Group 2

-

Figure B.12 — Le réseau de PZT pour le FCS: (a) le cas ou la structure n’est pas montée sur 1’A380
et (b) le cas ou la structure est montée sur un A380 instrumenté.

Figure B.13 — Le réseau de PZTs pour I'IFS: (a) le cas ou la structure n’est pas montée sur I’A380 et
(b) le cas ou la structure est montée sur un A380 instrumenté.

L’analyse montre que le FCS est une structure légerement amortie et que I'IF'S est une structure
beaucoup plus fortement amortie. Les cas ou les structures sont montées présentent des propriétés
d’atténuation assez différentes des cas ou les structures ne sont pas montées. Deux combinaisons de
modeles d’amortissement (HR + BT et KV + BT) sont utilisées pour considérer la caractéristique
inhomogene de I'TFS. Avec cette approche, la couche centrale en aluminium et les couches de peau en
carbone époxy sont modélisées par deux modeles d’amortissement différents. Ces deux études de cas
démontrent également que les coefficients d’atténuation présentent un important degré d’anisotropie
malgré les couches d’empilement quasi-isotropes et que le mode A0 subit beaucoup plus d’atténuation

que le mode SO (voir Figure B.14). Ainsi, dans l'optique du déploiement ultérieur de stratégies de
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SHM pour des structures similaires, la sélection du mode S0 est souhaitée afin d’assurer une couverture

spatiale suffisante de la structure a surveiller.
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Figure B.14 — Prédiction du modele HR + BT pour I'IFS non monté: (a) courbe de dispersion de
la vitesse de phase a § = 90°, (b) courbe de dispersion du coefficient d’atténuation & § = 90°, (c)
tracé polaire de la vitesse de phase [m/s] & f = 200kHz, (d) tracé polaire du coefficient d’atténuation

[Np/m] a f = 200 kHz.

B.4 Conclusion

En résumé, I'utilisation des données réelles et en service des structures aéronautiques réelles pour

valider la méthode de prédiction d’atténuation proposée n’est pas une tache facile mais la rend extréme-

ment précieuse pour les communautés académiques et industrielles. En ce sens, cette these contribue

a combler le fossé entre la recherche et le déploiement industriel des technologies de SHM [54].

250






Shuanglin GUO
Contribution to the study of guided waves propagation and
\ Arts attenuation in anisotropic composite laminates made up of HESAM ,
st Métiers viscoelastic composite materials : Application to A380 mounted UNIVERSITE
nacelle parts

Résumé : Les plaques composites anisotropes constituées de matériaux composites viscoélastiques sont de plus en plus utilisées dans
I'industrie aéronautique et les stratégies basées sur les ondes guidées apparaissent comme un outil trés prometteur pour surveiller
leur état de santé. Dans ce contexte, ce travail est dédié & I’étude de la propagation et de 'atténuation des ondes guidées dans de
telles plaques composites. Les équations classiques des ondes guidées se propageant dans une plaque élastique monocouche sont
d’abord passées en revue sur la base de la théorie de 1’élasticité tridimensionnelle (3D) et constituent le fondement de ’approche par
superposition d’ondes partielles (PWSA). Dans la littérature, cette approche a été étendue a la méthode des matrices de transfert
(TMM) et & la méthode des matrices globales (GMM) permettant d’exprimer les caractéristiques de propagation des ondes dans les
plaques composites élastiques. En raison de ’anisotropie, des problemes d’incompatibilité matricielle sont rencontrés lors du traitement
de plaques composites arbitrairement orientées pour la TMM et la GMM. Une stratégie originale basée sur des matrices hybrides
(HMS) est proposée pour pallier ce probleme. Il est en outre démontré que les équations de dispersion construites avec PWSA pour
une plaque monocouche et avec TMM et GMM pour un systéme de plaques multicouches possédent une propriété de dichotomie dans
le cas de matériaux élastiques purs. Cette propriété indique que ces équations a priori a valeurs complexes se réduisent en fait & des
équations a valeurs réelles ou imaginaires pures, en fonction du comportement de certains parametres intermédiaires. Cette propriété
est extrémement utile pour surmonter les instabilités numériques rencontrées au cours du processus de résolution des équations. Le cas
élastique est ensuite étendu au cas viscoélastique en introduisant des modeles d’amortissement viscoélastiques (modeéles d’hystérésis,
de Kelvin-Voigt et de Biot) dans le comportement dynamique des matériaux composites. Ceci forme une méthode appélée « damped
GMM » (dGMM) proposé ici pour traiter les plaques composites constituées de matériaux composites viscoélastiques anisotropes
orientés arbitrairement. Deux études de cas industrielles, une structure de capot de soufflante (FCS) et une structure fixe intérieure
(IFS), toutes deux composants d’une nacelle d’A380, sont utilisées pour valider expérimentalement la méthode dGMM en comparant
la précision des prédictions par dAGMM en termes de vitesses et d’atténuation aux mesures expérimentales.

Mots clés : Surveillance de la santé structurelle, Ondes guidées, Matériaux composites aéronautiques et aérospatiaux, Anisotropie,
Elasticité et viscoélasticité, Stratifié composite, Approche de superposition d’ondes partielles, Méthode de matrice de transfert,
Méthode de matrice globale, Stratégie de matrice hybride, Propriété de dichotomie, Modeles d’amortissement, Equations de dispersion
et courbes, Composant de nacelle A380.

Abstract : Anisotropic composite plates made up of viscoelastic composite materials are increasingly used in aeronautic industry and
structural health monitoring strategies based on guided waves appear as a very promising tool to monitor their health state. In that
context, this work is dedicated to the study of guided waves propagation and attenuation in such composite plates. Classical equations
of guided waves propagating in a single layer elastic plate are first reviewed based on the three-dimensional (3D) elasticity theory
and form the foundation of the partial wave superposition approach (PWSA). In the literature, this approach has been extended to
the transfer matrix method (TMM) and global matrix method (GMM) allowing to express the wave propagation characteristics in
elastic composite plates. Due to anisotropy, matrix incompatibility issues are encountered when dealing with arbitrarily orientated
composite plates for TMM and GMM. An original hybrid matrix strategy (HMS) is proposed to alleviate this issue. It is furthermore
demonstrated that dispersion equations built with PWSA for a single layer plate and with TMM and GMM for a multi-layered plate
system possess a dichotomy property in the case of pure elastic materials. This property states that these a priori complex-valued
equations collapse to pure real or imaginary valued equations, depending on the behavior of some intermediate parameters. This
is extremely helpful for overcoming numerical instabilities encountered during the equation solving process. The elastic case is
then extended to the viscoelastic case by introducing viscoelastic damping models (Hysteretic, Kelvin-Voigt and Biot models) in
composite materials dynamical behavior. This forms the damped GMM (dGMM) proposed here to deal with composite plates
made up of arbitrarily orientated anisotropic viscoelastic composite materials. Two industrial case studies, a fan cowl structure
(FCS) and an inner fixed structure (IFS) both which are components of an A380 nacelle, are employed to experimentally vali-
date the dGMM by comparing the accuracy of dGMM predictions in terms of velocities and attenuation to experimental measurements.

Keywords : Structural health monitoring, Guided waves, Aeronautic and aerospace composite materials, Anisotropy, Elasticity
and viscoelasticity, Composite laminate, Partial wave superposition approach, Transfer matrix method, Global matrix method, Hybrid
matrix strategy, Dichotomy property, Damping models, Dispersion equations and curves, Component of A380 nacelle.
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