Skip to Main content Skip to Navigation
New interface

Understanding of the mechanisms at the origin of functional and flavor properties in protein-rich fava bean ingredients

Abstract : The growing population is demanding new healthy, sustainable solutions for foods and beverages. Fava bean (Vicia faba L.) is a promising plant source that can provide nutritional and functional ingredients for different food applications. Fava bean is processed to form ingredients and they can be further modified to render them fit for food applications. This PhD work aimed to understand the role of processing conditions on functional and flavor properties, and apply this understanding to produce and use fava bean protein-rich ingredients. It investigated the effects of certain industrially relevant process conditions using a cross-dimensional approach to find the right kind of compromise between different ingredients properties. To be precise, a very gently processed fava bean protein rich concentrate was industrially procured, which was then modified by process conditions such as pH (2, 4, 6.4 and 11), temperature (55, 75 and 95 °C) and treatment duration (30 and 360 min) to produce 36 different ingredients. These were further utilized at two pH (4 and 7) in systems close to beverage applications. During ingredient utilization, beverage functionalities (foam and emulsion) along with odor perception and non-volatile compounds were investigated for all ingredients as a function of process conditions.Results showed that process conditions were able to drive functional and flavor properties of the fava bean concentrate, strengthened by different statistical models. Foam and emulsion properties were predominantly governed by the pH during ingredient utilization. In general, utilization pH around the isoelectric point of fava proteins (pH 4) was not suitable for foam stability, emulsion capacity nor emulsion stability. Strong correlations between functional and physico-chemical properties were identified and explained by protein properties. In addition, flavor was heavily driven by the modification and utilization conditions, especially the pH.From gentler to vigorous process conditions, perception can be modified from more green to more cooked flavors, whereas different conditions of application (e.g. pH) can modulate between “sweet” and rancid perceptions. Considering volatiles composition, aldehyde signals were primarily detected in ingredient suspensions head-space. But furanoids, terpenoids, alcohols and ketones signals had the next higher contribution for modifications at pH2, 4, 6.4 and 11 respectively. Lipid oxidation was deemed important in generating volatiles, along with other reactions including proteins, sugars and carotenoids degradation. Going deeper into understanding of physico-chemical and sensory properties, determinants of antioxidant potential, taste (bitterness and astringency), color and even anti-nutritional effects were also investigated. Phenolic compounds (flavan-3-ols, flavones, flavonols, hydroxycinnamic acids) and saponins were significantly impacted by process conditions during ingredient modification, especially by pH. For phenolic compounds, acidic and alkaline conditions (pH 2, 4 and 11) were highly distinct compared to the non-pH adjusted process (pH 6.4) in changing the phenolic and saponin profiles of the ingredients. When looked closely at non-pH adjusted processes, their variability due to increasing degree of processing seemed to be either a function of their variable extractability and/ or their reactions involving their structural rearrangement.Thus, process conditions played an important role in fava bean ingredient properties, and this work opens up new arena for inter-disciplinary study based on nutritional (anti-oxidant and anti-nutritional aspects), sustainability (life cycle assessment), functionality (gelation) and sensory (texture, sweetness, bitterness) considerations of fava bean as potential ingredients for industrial food applications.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Monday, October 3, 2022 - 1:03:34 AM
Last modification on : Tuesday, October 4, 2022 - 3:27:19 AM


Version validated by the jury (STAR)


  • HAL Id : tel-03794050, version 1


Siddharth Sharan. Understanding of the mechanisms at the origin of functional and flavor properties in protein-rich fava bean ingredients. Food engineering. Université Paris-Saclay, 2021. English. ⟨NNT : 2021UPASB061⟩. ⟨tel-03794050⟩



Record views


Files downloads