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UMR 7563, Université de Lor-
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À mes parents Rachida et Jamal
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Résumé

Cette thèse est dédiée à l’étude du comportement dynamique de microparticules à membrane

hyperélastique chargées d’une substance liquide et soumises à des contraintes hémodynamiques et

vasculaires. L’étude qui est basée sur une modélisation numérique suffisamment fidèle aux conditions

physiologiques a pour but de combler le manque d’études sur la réponse mécanique de micropartic-

ules en écoulement dans des vaisseaux sanguins distensibles (hyperélastiques), en particulier dans une

artériole et une artère coronaire. Les travaux menés dans le cadre de cette thèse ont contribué à l’étude

de l’influence de la distensibilité vasculaire sur le mécanisme de migration latérale dans une artériole

ainsi que sur le partitionnement de microparticules soumises à un écoulement pulsatile au niveau d’une

bifurcation coronarienne. Par ailleurs, les résultats obtenus sont fort susceptibles d’aider à améliorer

les performances des microparticules à usage thérapeutique, notamment en apportant des éléments de

réponses quant aux conditions favorisant les complications liées à un tel usage. Le problème instation-

naire d’interaction fluide-structure est résolu suivant le formalisme arbitrairement lagrangien eulérien.

Mots-clés : Microparticule, interaction fluide-structure, paroi vasculaire, écoulement sanguin, hy-

perélasticité, modélisation numérique, microfluidique.
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Abstract

In this thesis the dynamical behaviour of microparticles made of a thin hyperelastic membrane

enclosing a liquid medium and subjected to haemodynamical solicitations is studied by means of a

physiologically (and reasonably) realistic numerical modelling. The aim is to fill the gap in studies

addressing the mechanical response of microparticles flowing in distensible human blood vessels par-

ticularly in arterioles and coronary arteries. In the arteriole we have investigated the influence of an

isolated and a muscle-embodied arteriolar wall on a single centred microparticle and more interest-

ingly, on the lateral migration mechanism of a couple of microparticles. The influence of arteriolar

distensibility on particle-particle interaction during the lateral migration is further studied in addition

to particle-wall interaction while varying the relevant nondimensional parameters namely, the ratio

of the suspending fluid viscous forces to the membrane shear resistance, the viscosity ratio between

internal and external fluids and the confinement. Another contribution of the present work is the ap-

praisement of the dynamical behaviour of microparticles partitioning in the left coronary bifurcation

under the action of pulsatile blood flow. The emphasis is on the prediction of the preferred branch

of microparticles interacting with blood pulsatility, with contiguous microparticles and with the wob-

bling coronary wall depending on the initial vertical offset and on membrane shear resistance. For

both considered blood vessels, the contribution of vascular wall distensibility is highlighted through

comparison with rigid vascular walls. The physical quantities of interest are microparticle velocity,

deformation, trajectory and elastic stored energy, to name just a few. Considering the therapeutic

context, the risk of clustering, adhesion to wall and premature burst are assessed. The unsteady

fluid structure-interaction problem is solved within the Arbitrary Lagrangian Eulerian framework and

calculations are performed using Comsol Multiphysics® based on a monolithic approach.

Keywords : Microparticle, fluid-structure interaction, vascular wall, blood flow, numerical mod-

elling, microfluidics, lateral migration, hyperelasticity, targeted drug delivery, ALE method.
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Résumé détaillé 147
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Introduction

Context

The application of mechanical engineering and physics concepts to medicine and biology has gained

a growing interest given the issues at stake. Examples include targeted drug delivery and biological cell

manipulation and characterisation. These examples are deliberately given since both involve artificial

or biological microparticles flowing in a constrained environment and subjected to hydrodynamical

forces. The definition of microparticles is herein provided via defining microencapsulation.

The latter consists in coating an active substance using a thin membrane by means of procedures

that could be mechanical (e.g. co-extrusion[1]), physio-chemical (e.g. ionotropic gelation [2]) or chem-

ical (e.g. interfacial cross-linking polymerization [3]). Depending on their size, the resulting spherical

structures are called nanoparticles or microparticles. The membrane is made of a network of cross-

linked 1 polymer chains (e.g. polydimethylsiloxane, poly-L-lysine, alginate, polyacrylates, polylactic-

coglycolic acid), protein chains (e.g. human serum albumin HSA, ovalbumin) or lipid molecules. Mi-

croparticles made of lipid membrane are called vesicles and the ones made of polymer and/or proteins

are referred to as capsules.

Nano/microparticles are widely used in many industrial fields like in food industry as antibac-

terial compounds, in pharmaceutical as therapeutic vectors and in cosmetics as cleansing micelles.

Advantages include active substance preventing from inactivation during manufacturing or storage

and the controlled substance release in a targeted environment. The enclosed substance is bound to

be released either by membrane rupture (triggered by a predetermined condition like temperature or

pressure threshold) or by diffusing through pores when the membrane is of porous nature. A promis-

1Cross-linking refers to the insertion of bonds to link polymer or protein chains.
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INTRODUCTION

ing application of nano/microparticles in the pharmaceutical field is the targeted drug delivery. It is

a non-invasive treatment based on direct injection of drug-loaded nano/microparticles called thera-

peutic vectors in blood circulation. Once injected intra-arterialy/venously, therapeutic vectors move

under the action of blood flow to reach a specific target. Then, the coated drug is released either by

membrane bursting or via the pores of the membrane. Examples of prominent targeted treatments are

tumours, diabetes [4] and heart attack [5]. The chemoembolization is a local treatment of malignant

tumours employed by physicians to counter chemotherapy or other invasive treatments. During the

procedure, therapeutic vectors containing anticancerous substance like irinotecan or doxorubicin are

intra-arterially injected via a micro-catheter. The procedure is ray-guided to monitor the path of

injected therapeutic vectors [6]. The main therapeutic advantages of chemoembolization are a max-

imized concentration of tumour-absorbed drug and a reduced toxicity to healthy tissues as well as a

reduced incidence of systemic side effects [7]. Targeted drug delivery is biologically-inspired, viz. by

the mechanism of endocytosis-exocytosis and the red blood cell RBC. The endocytosis is the immuno-

logical process by which a cell uses its membrane to engulf and surround particles of interest in the

extracellular fluid environment. The formed vesicle (of radius 0.5−5 µm) migrates toward the core

of the cell to be destructed. The vesicular transport in the opposite direction is known as exocytosis

during which the secretory vesicle releases proteins or debris in the extracellular fluid environment.

Concerning the RBC, it is a natural encapsulated system (a thin deformable membrane enclosing an

aqueous haemoglobin solution) whose main role is oxygen delivery.

Figure 1: Microparticles image 2produced by scanning electron microscopy, left, and solid membrane
rupture and liberation of an aqueous inner core 3

3Image from www.chemeurope.com
3Image provided by University of Illinois at Urbana-Champaign.
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INTRODUCTION

Objective

The targeted drug delivery techniques are employed with good therapeutic outcomes but still re-

quire a continuous monitoring for rapid care in the case of complications like clustering and premature

or tardive membrane burst that pose a serious health issues 4. Further studies are required to optimize

the procedure, to extend it to other affected zones, to remedy the contraindications and to shed light

on the mechanisms behind the commonly encountered complications or at least on the conditions that

favour their occurrence. To achieve this, it is necessary to include haemorheological and haemodynam-

ical characteristics. The best choice would certainly be an in vivo approach, but it is discarded by the

scientific community due to evident ethical problems. An alternative is to mimic physiological condi-

tions by applying an in vitro approach. However, arterial wall biophysical properties and geometrical

characteristics of the vascular network like tapering, tortuosity and bifurcations are very difficult or

even impossible to reproduce experimentally. It addition to this, such approach is costly and requires

important material and human resources. The in silico approach based on numerical modelling and

simulation permits to overcome the aforementioned limitations, it is employed as an alternative or

an auxiliary approach in biophysics and biomechanical engineering. The in silico studies rest on two

pillars for an accurate representation of the complex physical phenomena in human circulatory sys-

tem: the robustness and the “well-posedness”. It might be a predictive tool of dynamical behaviour

of therapeutic vectors, pharmacokinetics (i.e. drug profile and concentration) and to understand the

ambiguous mechanisms behind complications of targeted drug treatments. Furthermore, a parametric

numerical modelling allows scientists and engineers to time-efficiently assess the role of a group of

parameters on the evolution of a wide range of physical quantities.

The aim of the present work is to investigate the dynamical behaviour of microparticles made of

a deformable protein membrane and enclosing a liquid core in their interaction with blood flow and

vascular walls. Physical quantities of interest include deformation, velocity and trajectories. Blood

vessels we are interested in are an arteriole and a coronary artery, physiological conditions therein

are respected to the extent that information are available is literature. The dynamical behaviour

of microparticles in flow was extensively studied while excluding the contribution on the confining

vascular walls on the overall mechanical response of microparticles. To the best of our knowledge, the

4A comprehensive review of encountered complications in chemoembolization is found in [8].
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INTRODUCTION

few studies investigating microparticles flowing in blood vessels considered capillaries (microvessels

characterized by a thin rigid wall) motivated by a convenient confrontation with experimental analysis

that is made by mimicking the capillary by a rigid microchannel. We have consequently made a point

of including the contribution of thicker and distensible vascular walls. We have examined among

others, the mechanism of lateral migration and the partitioning at a bifurcation in the presence of

distensible vascular walls. Furthermore, the particle-particle interaction is studied in a cell-train while

assessing the risk occurrence of clustering, adhesion to walls and premature membrane rupture. As

the particle-particle interaction is studied in literature while considering “flocks” of microparticles, we

have accordingly limited the interaction to three microparticles to fill in the missing studies. The fluid-

structure interaction problem is solved using the Arbitrary Lagrangian-Eulerian method in Comsol

Multiphysics ® based on a finite element analysis.

The manuscript is organised as following :

• Chapter 1: The first chapter is dedicated to soft membrane mechanical properties and the hyper-

elastic constitutive laws describing their mechanical response to applied stresses. Measurement

techniques of membrane elastic properties are briefly reviewed as well as the extracted moduli.

We are interested in red blood cells and artificial microparticles because of their common physical

properties and dynamical similarities. Some aspects of dynamical behaviour of microparticles

subjected to hydrodynamical forces are given. Centred and off-centred microparticles are pre-

sented distinctly due to the relevance of the initial position on the dynamical behaviour during

microparticles course in wall-bounded flows;

• Chapter 2: The second chapter deals with dynamical and rheological properties of blood (haemo-

dynamic and hemorheology) and mechanical properties of vascular walls focusing on arteriolar

walls and coronary walls;

• Chapter 3: In this last chapter, the conducted works within the thesis are exposed. The chapter

opens by presenting the numerical method employed to solve the strongly-coupled fluid-structure

interaction problem. It follows by clarifying the applied assumptions. The chapter closes by

thesis findings presented as two published research papers and a third paper ready for submission.
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1.1. GENERALITIES ON SOFT MEMBRANE MECHANICS

1.1 Generalities on soft membrane mechanics

Membrane physical and mechanical properties are a primary determinants of microparticles re-

sponse to external stresses. Biological tissues like proteins and natural and synthetic polymers are

able to sustain large deformation rates without internal energy dissipation. This behaviour is described

by hyperelastic constitutive laws, including non-linear stress-strain response of materials subjected to

high deformation and geometrical non-linearities. The elasticity of protein and polymer cross-linked

membranes is purely entropic [9, 10] which means that their elasticity arises from conformational en-

tropy induced by external stress (i.e. change in molecules shape and dynamics). In order to store the

mechanical energy induced by deformation, the chains end-to-end distance increases and the entropy

is diminished. We present hereafter some relevant properties of polymer and protein membranes (solid

membranes), both consist of a chain-like macromolecules connected via entanglements or cross-links.

Polymer materials are known to exhibit strain-softening behaviour under cyclic loading (Mullins

effect) and strain-hardening under large strains. The first behaviour is believed to result from the

viscoelastic component of polymer materials and to the alteration in the macromolecular structure

[11]. Depending on the tacticity, the second behaviour arises from crystallinity or from finite chain

extensibility and is found to be influenced by temperature and molecular concentration [12].

Strain-softening of proteins is shown to results from irreversible structural damage [13, 14]. Con-

cerning strain-hardening of proteins and other biological tissues, it is found to be related to biotenseg-

rity 1 preserve [15] and allows cells to sustain large deformation without damage. Examples comprise

human collagen (type I [16] and type II [17]), fibrin [18], actin filament [19] and spectrin [20]. The

strain-hardening is due to bending rigidity [21] that limits sliding. With that being said, the strain-

hardening is found to strongly depend on the applied stress and on the concentration of protein and

cross linker i) it has been shown that actin filament network of plasma (biological cell membrane) is

strain-hardening under moderate strain amplitudes and strain-softening under high strain amplitudes

[21] ii) in [10] strain-hardening of bundled and cross-linked actin filaments is found to depend on

concentrations of protein and cross linker and to vanish below a concentration threshold.

1The ability of some biostructures to auto-stabilize by balancing compression and tension forces.
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1.1. GENERALITIES ON SOFT MEMBRANE MECHANICS

1.1.1 Overview on hyperelatsic laws

Constitutive laws describing the response of hyperelastic solid are based on phenomenological

background (e.g Mooney-Rivlin, Ogden, Gent), on experimental background (e.g. Hart-Smith) or

on physical background (e.g. neo-Hookean, Aruda-Boyce). Phenomenological laws are based on

mathematical development of the elastic-strain energy density while physically-motivated laws are

based on a micro-mechanistically approach. Let Ėi denotes the internal energy time-derivative, Q the

heat flux and W the mechanical work per unit volume. The first law of thermodynamics gives :

Ėi = Q+ Ẇ (1.1)

In terms of specific internal energy ėi we write:

ρ(ėi −Q) = σ : D (1.2)

where ρ is density. The term on the right yielding the Cauchy stress tensor σ and the velocity

gradient D corresponds to the stress power. Bearing in mind the second principle of thermodynam-

ics relating entropy time-derivative Ṡ and temperature T to heat flux (Ṡ ≥ Q/T ), we obtain the

Clausius–Duhem inequality:

ρ(ė− T ṡ) ≤ σ : D (1.3)

where ṡ is the specific entropy time-derivative. An isothermal reversible elastic transformation

gives the equality:

ρ(ė− T ṡ) = σ : D (1.4)

The elastic entropy is the special case where stress power decreases the quantity |T ṡ|. The specific

Helmholtz free energy ψ is defined as:

ψ = e− Ts (1.5)
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1.1. GENERALITIES ON SOFT MEMBRANE MECHANICS

ρψ̇ = σ : D (1.6)

LetW=ρψ denotes the strain energy density function. A hyperelastic solid is defined as a material

whose specific free energy depends only on strain:

W = W (F) (1.7)

in which F is the deformation gradient tensor. Different expressions of stress tensor are obtained

by partial differentiation of W , thus defining the first Piola-Kirchoff stress tensor P, the second Piola-

Kirchoff stress tensor S and σ

P = ∂W

∂F , S = ∂W

∂E , σ = J−1∂W

∂F FT (1.8)

where E is the Lagrangian strain tensor and J=detF. For an isotropic hyperelastic material, W is

function of Ī1 and Ī2 corresponding to the first and the second invariant of the right Cauchy-Green

tensor C=FFT

W = W (C) = W (Ī1, Ī2, Ī3) = W (Ī1, Ī2, J) (1.9)

The generalized polynomial form of energy density function is given by:

W =
n∑︂

i,j=0
Cij(Ī1 − 3)i(Ī2 − 3)j +

n∑︂
i=1

1
Di

(J − 1)2i (1.10)

in which Cij and Di are material parameters. From a physical point of view W is a measure of the

energy stored in the solid during the deformation and released as the initial non-deformed shape is

recovered. From (1.10), n-order constitutive laws with a phenomenological or a physical background

are established for appropriate constants. We concisely present the most commonly used hyperelastic

law to model soft membrane mechanical response to applied external stresses including strain-softening

laws (e.g. Mooney-Rivlin and neo-hookean) and strain-hardening laws (e.g. Arruda-Boyce and Gent).

Mooney-Rivlin MR [22, 23] . The first order MR law is obtained by setting parameters Cij with

i = j to 0, the obtained form corresponds to the 2-parameters MR law:
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WMR = C10(Ī1 − 3) + C01(Ī2 − 3) + 1
D1

(J − 1)2 (1.11)

Material constants are determined by curve-fitting of uni/multiaxial extension or shear loading

results. The choice of the test depends on the number of parameters to fit. The 3, 5 and 9-parameter

MR law are obtained with higher n-order (n=3). It is admitted that the MR law accurately describes

behaviour of hyperelastic solids for strains about 100–200% [24].

Neo-Hookean NH[25]. The NH law is the special case of MR law where C01 = 0:

WNH = C10(Ī1 − 3) + 1
D1

(J − 1)2 (1.12)

The NH law was originally obtained by applying the “molecular chain theory” to the derivation

of W . It is based on a Gaussian end-to-end distance distribution assumption (i.e. the freely joined

chain model where the units are randomly directed and randomly rotate) and is seen as a Gaussian

distribution that gives an estimation of the number of conformation. The freely-rotating chain model

is more realistic since the units rotate with determined angles limiting the chain extensibility and

the possible conformations. The end-to-end length distribution is non-Gaussian and the number of

possible conformations is limited. The Gaussian model accurately describes the stress-stretch up to

low stretches but for moderate to high stretches the non-Gaussian character get more pronounced (see

[26, 27]) and is captured by strain-hardening laws.

Ogden [28]. Higher strains (700%) could be handled by the Ogden law expressed in terms of the

principal stretch ratio λi=1,2,3 as:

WOG =
n∑︂

i=1

Gi

2 (λαi
1 + λαi

2 + λαi
3 − 3) + 1

D1
(J − 1)2 (1.13)

where αi are material constants empirically determined. The stability requires the fulfilment of

the condition Giαi > 0. For small strains G =
∑︁n

i=1Giαi/2. Ogden law is equivalent the the NH

law when n=1 and α1=2 and to the 2-parameters MR law for n=2, α1=2 and α2=-2. Depending on

parameters n and αi, Ogden law could be either strain-softening or strain-hardening [29].
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Arruda-Boyce [30]. The Arruda-Boyce law (8-chain model) is based on stretching an eight-chain

polymeric network system in a cube. This model accounts of chain extensibility limit by introducing

the chain locking stretch λm:

WAB = C1

5∑︂
i=1

αi

λm
2i−2 (Ī1

i − 3i) + 1
D1

(J
2 − 1
2 − lnJ) (1.14)

Gent [27]. Gent law could be seen as an extension of the NH law in such a way it takes into account

the maximum chain extensibility and thus, the non-Gaussian character of end-to-end distribution. For

this purpose, the stretchering limiting value Jm of the quantity Ī1 − 3 (Jm is of the order of 102) is

introduced:

WGT = −G

2 Jmln(1 − Ī1 − 3
Jm

) + 1
D1

(J
2 − 1
2 − lnJ) (1.15)

With assuming an infinite chain extensibility (i.e. Jm → ∞) the Gent model is equivalent to the

NH law.

STZC2 law [31]. The bidimensional STZC law was first postulated to describe the sphering 3 of

the RBC. In contrast to the aforementioned laws of tridimensional origin where the compressibility

is implicitly embodied in law formulation, the STZC law adds independently the area compressibility

through the areal stiffness (or area compressibility modulus) C as:

W STZC = Gs

4 (1
2I

2
1,SK + 2I1,SK − 2I2,SK + CI2

2,SK) ; C > −1.2 (1.16)

in which the surface shear modulus Gs satisfies Gs=(1 + 2C). This law deals with very thin

membranes for which the continuum assumption is no more satisfied in the transverse direction. The

strain-hardening character of the STZC law becomes increasingly marked as C incrases (C >> 1 for

the RBC). The STZC law is consistent with the “fluid mosaic model” for cellular membranes and is in

excellent agreement with experimental results of uniaxial tensile test performed on RBC membrane

(see [32]). In this same paper, authors demonstrate that the 2-parameters MR law is not suitable to

properly capture the mechanical response of such membranes.

2The STZC law was developed conjointly by Skalak, Tozeren, Zarda and Chien but is often referenced in literature
as Skalak law.

3RBCs swell when immersed in fluid whose osmolarity is less than that of the inner liquid.
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1.1.2 Mechanical properties of soft membranes

1.1.2.1 Elastic properties of capsules

Membrane of capsules are made of a network of cross-linked molecules of polymers (e.g. poly-

dimethylsiloxane, poly-L-lysine, alginate, polyacrylates, polylactic-co-glycolic acid) or protein (e.g.

HSA, ovalbumin). Physical properties of membrane are inherently determined by the manufactur-

ing process which could be mechanical (e.g. co-extrusion), physio-chemical (e.g. ionotropic gelation)

or chemical (e.g. interfacial cross-linking polymerization). The elastic proprieties of the membrane

and the rheology of the internal core determine the global properties of microparticles (capsules and

vesicles) and consequently their mechanical response to external applied stresses (e.g. compression,

shear and tension). A direct comparison between the mechanical behaviour of microparticles made of

protein or polymer is meaningless since the molecular nature is not the sole determinant of membrane

elastic properties. In fact, elastic proprieties are found to depend on protein concentration [33], on

polymer concentration [34], on cross-linking degree [35, 36] (the cross-linking degree and molecules

concentration unequivocally increase membrane stiffness) and on microparticle size [33]. Moreover,

membrane shear resistance is found to rise non-linearly with geometric properties of the microparticle

(thickness h and radius R) [37]. Membrane fragility, thinness and instability make it very sensitive

to forces applied by the measurement techniques thus, the intrinsic mechanical properties interfere

with applied forces and gives rise to different elastic properties depending on the employed measure-

ment technique [38, 35]. There is a general consensus that protein membranes designed for capsules

are strain-softening [39, 40] and their mechanical response is accurately described by the NH law.

Polymeric membrane exhibits strain-hardening under extensional or compression forces [38, 41].

Membrane elastic properties are determined by means of several techniques based on measur-

ing microparticle deformation under a determined local or global stress and chosen on the basis of

membrane size and fragility. The most popular measurements techniques of millimeter-sized particles

include squeezing technique 4 [41], micropipette aspiration 5 [42], atomic force microscopy AFM 6[33],

spinning-drop tensiometer 7 [35, 36] (see ref [34] for micron-sized particles) and extensional experiment

4Squeezing technique consists of compressing a microparticle between to parallel plates and measuring the separating
distance to deduce membrane expansion modulus.

5Micropipette aspiration consists of applying a suction force using a small tube (micropipette) to a small portion of
the membrane and to retrieve its elastic properties by measuring the aspired (pinched) length in the micropipette.

6AFM technique consists of assessing membrane elastic properties by measuring its resistance to indentations of a tip.
7Spinning drop technique was first developed for studying elastic properties of droplets and was later extended to
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in a four-roll apparatus [43]. Mechanical properties of micron-sized particles are mainly extracted by

microfluidic methods that were first introduced in [40]. Technically, this involves flowing microparti-

cles in microfluidic channel of transversal dimension is comparable to microparticle diameter and in

monitoring deformation, volume and velocity changes. Membrane properties are retrieved by means

of inverse analysis (via numerical model) and further with choosing ad hoc constitutive law to fit

extracted experimental profiles and to relate the stretching to tensions experienced by the membrane.

The relevant elastic moduli are the Young modulus E, the shear modulus G and the bulk modulus

K. Due to the thinness of the membrane, surface moduli (Gs = Gh, Es= Eh and Ks= Kh) are often

preferred. Assuming membrane incompressibility (νs → 0.5) we have Es = 3Gs and Ks → ∞. The

bidimensional incompressible form of (1.12) is given as:

WNH
s = Gs

2 (Ī1 − 3) (1.17)

Capsules with polymer membrane

In the squeezing experiment of millimetre-sized alginate capsule, Es is found to jump from 6.5

N/m to 32.9 N/m as the cross-linking degree increases [35]. In this same paper and for identical

capsules, the Young moduli extracted from the spinning experiment are 4 to 5 times less that those

obtained by the squeezing experiment since the centrifugal forces in the spinning apparatus tend to

modify the cross-linking degree. In [42], micropipette aspiration technique gives E = 15.5 kPa. In

[38] squeezing millimetre-sized silicone membranes found the surface Young modulus to vary from 20

to 28.6 kPa (corresponding to the range of 0.14 − 0.2 N/m), the extensional flow measurement gives

larger values (37.5% larger at most). For a hydrogel polymer membrane flowing in a rectangular cross-

section microchannel with two different cross-linking degrees, retrieved elastic moduli are estimated

to G = 13 Pa, K = 66 Pa for the lowest cross-liking degree and to G = 33 Pa, K = 79 Pa for the

highest one [44].

Capusles with protein membrane

For protein membrane (ovalbumin) flowing in a circular cross-section channel, the experimental

curves fitted with NH law and STZC law (C = 1) gives Gs = 0.07 N/m but for higher flow strength,

microparticles. The technique consists of placing the microparticle of interest in a rotating tube and to measure membrane
elasticity from microparticle deformation induced by the generated centrifugal forces. This technique requires the use of
a microscope.
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STZC law could not fit the experimental curve using a constant Gs [40]. Authors concluded that STZC

law is inappropriate to describe the mechanical response of protein membrane at large deformation

states. This finding together with strain-softening of protein membranes was ulteriorly confirmed in

[39]. The surface shear modulus found with the same microfluidic measurement technique in [45, 46] is

of the same order (Gs ≈ 0.026−0.242 N/m). In [33], authors extend the extensional flow technique used

in [38] to micron-sized capsule. They found for albumin membrane (not to confuse with ovalbumin)

Gs = 0.002 − 5 N/m and with the AFM technique E = 0.02 − 1 MPa. The surface shear modulus is

found to rise with a factor 2000 for a factor 3.5 in capsule radius.

Hybrid protein-polymer membrane

The compression of HSA-alginate membrane [37] with varying thicknesses gives E = 108 − 176

kPa. Authors surprisingly found Young modulus to rise non-linearly with increasing h, thus the thick

hybrid membrane to obey an elastomeric behaviour (i.e. strain hardening). The STZC law (C = 0)

has proved suitable to fit the experimental curves and to model the strain-hardening exhibited by

HSA-alginate capsule before bursting 8 [41]. Depending on h, the extracted moduli are in the range

of K = G = 45.3 − 64.7 kPa (Ks = Gs = 1.6 − 4.4 N/m). However, for SK (C = 2) and the NH law

the membrane exhibits strain-softening. The microfluidic technique estimates the Young modulus in

the range of 8 − 60 kPa (Es = 0.26 − 1.8 N/m) [48]. The bending stiffness κb characterizing flexural

resistance is directly related membrane thickness:

κb = Eh3

12(1 − ν2) (1.18)

The nondimensionnal form of κb is known as the inverse Föppl-von Kármán-number:

κ̃b = h2

12(1 − ν2)R2 (1.19)

For artificial membrane with homogeneous wall κ̃b is comprised between 0.00005 and 0.001 [49].

8The bursting would deserve a dedicated thesis. Since it is not per se addressed in the present work, we simply note
that it is believed to results from ‘the non-existence of a steady equilibrium state between elastic and viscous forces’[47]
and is often preceded by membrane thinning and/or tip development.
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1.1.2.2 Red blood cells and vesicles

Erythrocyte or RBC is the principal formed element of blood (about 45%). It is an anucleolus cell

containing haemoglobin solution (cytoplasm) and suspended in the liquid portion of blood (plasma).

The principal function of RBC is oxygen delivery. Its membrane consists of a phospholipid bilayer

9 embedded of proteins and anchored to a skeleton of spectrin filament network (see [50, 51]). The

enclosed haemoglobin solution is Newtonian and incompressible. The normal shape of RBC is a bicon-

cave disc, a special solution of the “shape equation of lipid vesicle”. This peculiar shape corresponds

to the minimizing of the Helfrich bending energy [52]. From a physiological point of view, the human

RBC might have developed the biconcave shape to maximize its area, thus to optimize oxygen deliv-

ery in small blood vessels. It was suggested in [53] that the biconcave shape limits the rotation in

large blood vessels and then the apparition of eddy currents 10. The metastable configuration of the

biconcave disc shape is the stomatocyte shape (cup-like shape) [52] (Figure 1.1). The RBC is easily

deformable (10 − 100 pN [54]) ant its global mechanical properties are primarily determined by the

phospholipid bilayer and the skeleton.

(a) (b)

(c) (d)

Figure 1.1: Image of a RBC showing the stomatocyte shape (a),(c) and the biconcave disc shape
(b),(d). From www.cen.acs.org, credits to Bryan Kaehr.

The phospholipid bilayer behaves as a bidimensional fluid described by the biological “fluid mosaic

9A phospholipid bilayer is made of sequences of phospholipid molecules (two lipid tails attached to one phosphorus
head) forming a mirror-reflection sheets. The head is hydrophile and the tails are hydrophobe, then the assembly is
called amphiphile.

10The biconcave profile implies that much of the mass is distributed in the periphery. This increases the moment of
inertia of the RBC and subsequently renders the RBC less prone to rotate during flow in the large blood vessels.
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model” (phospholipids are free to move as a fluid molecules while the proteins are anchored). It is

in the liquid crystal phase where molecules are preferentially oriented. The conferred fluidity implies

that the phospholipid bilayer is devoid of shear resistance but at the same time, the resistance to area

expansion is important [31] (membrane resistance to area change is significantly larger that its shear

resistance (see Table 1.1). This causality was further confirmed in [55, 56]. The phospholipid bilayer

is semi-permeable and has the property of selective permeability.

The skeleton is topologically organized as a hexagonal and pentagonal network of spectrin filaments.

This structure is devoid of bending rigidity but shear resistant. The measured moduli areKsk
s =9.7± 3.4

µN/m and Gsk
s =5.7± 2.3 µN/m [57]. The skeleton shear resistance is found to arise from the intrinsic

shear resistance of individual spectrin filaments [57] and from the particular network topology [56].

Authors attribute the whole RBC shear resistance to the skelton [56, 58]. Thus, RBC shear resistance

is skeleton-originate. The properties combined of phospholipid bilayer and spectrin skeleton make the

RBC membrane shear resistant, highly deformable, resistant to area expansion and incompressible.

These properties allow the RBC to sustain large strains in the microvascular system composed by

capillaries without collapsing [59].

Table 1.1: Mechanical properties of red blood cells

Mechanical properties values Techniques

Membrane viscosity (mN.s/m) 0.036∗ Micropipette [60]
Cytoplasm viscosity (Pa.s) 0.0032 ± 0.003 Rotational viscometer [61]
Bending stiffness (N.m) 2.10−19 Micropipette [62]
Shear modulus (µN/m) 6.6 Micropipette [63]
Area expansion modulus (N/m) 0.353 ± 0.121 Micropipette [64]
Young modulus (kPa) 26 AFM[65]

∗ At 37◦C. The bulk membrane viscosity is estimated to 0.022 Pa.s [66]

Vesicle membrane consists of one or more phospholipid layers that spontaneously curve is contact

with aqueous medium as a consequence of the amphiphilic character of the layer: the membrane self-

assembles into a spherical shape in such a way that the hydrophobic tails are not in contact with the

aqueous medium. The final shape (e.g. bilayered liposome and monolayered micelle) is also determined

by a geometrical packing parameter. Vesicular membrane is comparable to a RBC membrane devoid

of skeleton and thus acts as a bidimensional fluid. The resting shapes of initially spherical vesicles are

characterized by the reduced volume τ= V/Vsphere ≤ 1 (or reduced area) quantifying the degree of
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deflating in comparison to a sphere. Examples are given in Figure 1.2 showing a stomatocyte (τ ≈ 0.4)

an oblate shape (τ ≈ 0.6) and a prolate-like shape (τ ≈ 0.8) [67].

imageici(a) (b) (c)

Figure 1.2: Few resting shapes of vesicles (a) stomatocyte (b) oblate-biconcave (c) prolate.

1.2 Microparticles immersed in fluid

1.2.1 In resting fluid

We are here interested in bifurcation which corresponds to the sudden topological change of a

dynamic system under a very small change in a parameter called the bifurcation parameter. Bifurcation

parameters of microparticle freely suspended in a fluid medium at rest are the mechanical pressure

and the osmotic pressure. The mechanical pressure control consists in varying the pressure acting on

the immersed microparticle whose resulting deformation corresponds to enthalpy H minimization:

H = Ei + pV (1.20)

where Ei is internal energy and p pressure. As applied pressure increases, the membrane shall

decreases its volume to minimize the enthalpy. At a critical pressure, initially spherical microparticles

become buckled and develop a dimple (snap-through buckling). The curvature of the dimple increases

by increasing pressure. For gas-filled membranes and at a second critical pressure, the opposite sides

of the buckled shape are self-contacting (could not be observed for liquid-filled shells due to the liquid

incompressibility).

The osmotic pressure control is limited to permeable and semi-permeable membranes. The osmo-

larity is defined as the total solute concentration in a solution (solvent+solute) and tonicity as the

osmotic pressure gradient between two solutions separated by a semi-permeable membrane, it gives

the ability of a solution to induce solvent movement from a side to another. The solvent (water),
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moves from the low to the high solute concentration zone passing through the semi-permeable mem-

brane. This water movement gives rise to an osmotic pressure. The osmotic pressure control consists

in varying the solute concentration of the suspending fluid medium. The shape of the semi-permeable

membrane evolves from the sphere to the rear-dimpled shape (or double-dimpled shape) but without

the fully collapsed self-contacted sides observed in mechanical pressure control [68]. A well-known

example of osmolarity controlled bifurcation is the RBC submerged in a non-isotonic solution: in

hypnotic solution where solute concentration is higher inside the haemoglobin solution, water enters

the RBC that swells and possibly bursts, in a hypertonic solution water flows out of the RBC that

develops spicules on its surface. Comprehensive study on mechanical pressure control and osmotic

pressure control of initially spherical microparticles is found in [68] and on osmotic pressure control in

[69].

1.2.2 In flowing fluid

The global dynamical response of microparticles subjected to hydrodynamical constraints depends

on several elements including suspending fluid inertia, membrane elasticity, confinement and on the

rheology of the enclosed fluid. In this section, we report the most commonly observed behaviours of

confined centred and off-centred microparticles subjected to a simple shear flow (1.21) and to Poiseuille

flow (1.22). More detailed information related to this topic are found in research papers presented in

Chapter 3.

vs = γ̇y (1.21)

where y is ordinate and γ̇ the shear rate

vp = 4vmax
y

H
(1 − y

H
), 0 ≤ y ≤ H (1.22)

in which H is the height of the microchannel/bood vessel and vmax the peak velocity (at y = H/2)
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1.2.2.1 Centred microparticles

Figure 1.3: Examples of deformed shapes exhibited by an initially disc-shaped centred microparticle
flowing in a wall-bounded Poiseuille flow.

The dynamical behaviour of initially spherical-shaped microparticles immersed in parabolic (Poiseuille)

flow was extensively studied in literature profiting from the development of microfluidic devices and

the growth of interest. Microparticle deformation remains symmetrical about the channel centreline.

Under low stresses, the initial convex rear-end progressively decreases and becomes flattened. For

moderate stresses, a concave dimpled rear-end is progressively developed simultaneously to a tight

front. The microparticle is then bullet-like shaped. As applied stress increases the rear-end convexity

further increases giving rise to a deeper dimple and a tighter front resembling a parachute shape. This

shape transition schematised in Figure 1.3 was reported analytically, numerically and experimentally

by several authors for artificial microparticles [70, 71, 48, 72] and for RBCs [73, 74].

At low stresses, microparticle suspended in shear flow elongates, tilts and adopts an ellipsoidal

shape (Figure 1.4). The angle of inclination with respect of the channel centreline initially of 90◦

continuously decreases. The microparticle is likely to exhibit a tank-treading motion defined as a

rotation mode where the membrane continually rotates about the interior fluid in a tank-tread manner,

whence the appellation. Consequently, the interior fluid elements rotates in a purely rotational manner.

At moderate to high stresses, the microparticle is more stretched and develops an upper and a lower

tip aligned with streamlines [75]. As observed experimentally and numerically, wrinkles are often

formed on membranes subjected to shear flow. Wrinkles relaxes with increasing membrane bending

stiffness [76].
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Figure 1.4: Deformation of an initially disc-shaped microparticle in shear flow at t=0.05 s (left) and
t=0.27 s (right). Darker shades are higher velocity zones and lighter ones lower velocity zones.

Another mode of rotation that could be observed when a centred microparticle is subjected to a

simple shear flow is the tumbling motion during which the microparticle flips about its centre of mass

as illustrated in Figure 1.5. Unlike the tank-treading during which the microparticle acts as fluid,

the microparticle has a rigid-body behaviour during the tumbling motion. Both rotation modes are

observed either for centred and off-centred microparticles. Other peculiar motions are further reported

like swinging [77] and vacillating [78].

1.2.2.2 Off-centred microparticles

Off-centred microparticles are known to drift away from the nearest wall by undergoing a lateral

migration which is an intricate mechanism employed in a multitude of bio-cellular manipulation tech-

niques like fractionation[79], filtration [80] and focusing [81]. Microparticle migration path, velocity

and equilibrium positions are found to depend on several intrinsic elements and flow conditions: elastic

properties of the microparticle [82, 83], inertia [84, 85], viscosity contrast between internal and external

fluids [86, 87], confinement [83, 87] and on the initial microparticle position [88]. Lateral migration

is a crucial mechanism in blood circulation where RBCs migrate towards the blood vessel centerline

while white blood cells whose membrane is significantly stiffer undergo a sidewalls migration called

margination (necessary for the immunological process of diapedesis11). In microcirculation, lateral

11Diapedesis refers to white blood cells wall margination followed by a vascular wall-crossing (extravasation) into
inflammatory surrounding tissues. This process might occur for RBC in some abnormal conditions.
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Figure 1.5: Microparticles exhibiting tumbling motion. Each colour is for a material point localized
in the membrane and defined by its spatial coordinates x and y.

migration owes the creation of a lubrication cell-free layer, enabling an easier motion of the RBC is

such confined zone where the blood vessel size is comparable to that of the confined RBC and even

smaller. As for microparticles, RBCs might exhibit tank-treading during the lateral migration. In

the absence of inertia or for a finite inertia, the lateral migration of neutrally-buoyant microparticles

suspended in a wall-bounded Poiseuille flow results from an interplay of three lateral forces i) the wall-

induced lift force (or confinement-induced force) resulting from the disturbance of flow field induced

by the presence of the microparticle and its reflection at the wall ii) the deformability induced-lift and

iii) the shear gradient lift force due to the curvature of undisturbed fluid velocity profile. Unlike the

deformation induced lift and the wall-induced lifts forces, this force pushes the microparticle towards

the nearest wall. For non-neutrally buoyant microparticle and/or for inertial flow, Rubinow-Keller lift

(due to slip-rotation lift force) and Saffman lift force (due to the interaction of slip velocity and shear)

are additionally involved in forces interplay.

Deformable microparticles exhibit fore-aft asymmetrical shapes which are auspicious to migration

due to the pressure gradient between the fore and the aft. Unlike the bullet or the parachute shape,

fore-aft asymmetrical shapes are also asymmetrical about the channel centreline. The bullet and the

parachute shapes (or intermediary symmetrical shapes) are recovered after the migration stops and the

microparticle reaches the centreline of the channel. A well-known fore-aft asymmetrical deformation
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slipper shape

Figure 1.6: Microparticle undergoing lateral migration near a rigid wall.

is the slipper shape displayed in Figure 1.6. It results from a stability losing [89] and is reported for

artificial microparticles as well as for RBCs. This shape is particularly propitious for migration and

could even be accompanied with a tank-treading motion is some specific conditions, for instance below

a critical ratio of external fluid viscosity to internal fluid viscosity [90]. During the process of lateral

migration and beyond a shear resistance threshold, the microparticle is likely to develop the cusp-like

instability (a localized highly deformed zone morphologically resembling a cusp). This instability is

also observed in droplet formation. During migration the cusp (or at least the pointy end/tip) acts as

an appendix tail and offers a hydrodynamical shape so that the microparticle drifts with less resistance

to the flow. For drug-loaded microparticle, such instability could however be a risk of premature burst

since this zone concentrates an important stress. However, at early times in the existence of the cusp,

the latter tends to expand toward the wall therefore temporary decelerating the microparticle.
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2.1. ARTERIAL WALLS BIOMECHANICS

2.1 Arterial walls biomechanics

Blood vessels are soft tissues, like ligaments and skin. The arterial blood system is made up of

muscular and elastic large arteries and arterioles while the venous system carrying deoxygenated blood

is composed of large veins and venules. These two systems are connected via capillaries, a single layered

microvessels with a height comparable (or less) to that of the RBC. Within the framework of the thesis,

focus is on arterial blood vessels. The vascular walls are structurally and chemically different depending

on the function of the vessel. Generally speaking, the arterial wall is divided into three layers: the

tunica intima, tunica media and tunica adventitia (tunica externa). The first is the innermost layer

lining the lumen (the domain of the blood vessel through which blood flows), it is mainly composed of

endothelial cells. The second is composed of smooth muscle. The third is the outermost layer made

of collagen and elastin both providing the ability to experience large deformations to regulate blood

flow. The layers are separated by two internal elastic lamina. The vascular wall constituents are

heterogeneously dispatched on the different layers according to the function of the artery. Large and

medium arteries are able to dilate their lumen by arterial wall thinning (vasodilation) or oppositely,

to narrow it by arterial wall thickening (vasoconstriction). Both mechanisms are controlled by the

contraction of the smooth muscle and aim to control blood pressure (i.e. to adapt blood flow whatever

the situation). Furthermore, arteries and arterioles experience expansion whereas muscular arteries

whose main role is resistance to blood flow are relatively less prone to expand than elastic arteries.

Few experimental studies were conducted to extract the mechanical properties of vascular walls

due to legal-related restrictions on human tissues experimentation, ethical limitations and delicate

manipulation. Such experiments are compounded by anatomical and biochemical variations from a

specimen to another as well as the extrinsic sensibility of biological soft tissues. Thus, explaining

the paucity of data related to mechanical properties of human arterial walls in literature. On a

microscopic scale, arterial walls are a fibrous-like structure whose fibres have dispersed orientations

and distribution [91]. Anisotropic formalism is convenient to capture this nature. However, depending

on fibrousness degree, on fibres orientation and above all on the application of interest, arterial wall

could be considered as homogeneous and isotropic. As an illustration, the isotropic formulation has

been proven sufficiently accurate under a restricted range of loading (see [92] and [93]). Arterial walls

has demonstrated a strong non-linear behaviour [94, 91] due to their physiological structure and their
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ability to sustain large deformation ranges. It has been revealed that similarly to the RBCs and

proteins, arterial walls exhibit stain-hardening to prevent rupture in some particular conditions like

high blood pressure [92]. Furthermore, arterial walls are incompressible since they are water-rich.

The wall shear stress WSS is defined as the pressure exerted tangentially by blood on the arterial

wall, it forms with blood pressure the most important haemodynamical forces. Regarding the effect

of vascular layer number in numerical modelling, it has been shown that the WSS acting on a lipid

plaque in the left main coronary artery is quite similar if considering a mono-layered or a multi-

layered coronary wall [95]. As for soft membranes, arterial elasticity is described within hyperelasticity

framework. The NH law is found to accurately model mechanical response of elastinous constituents

of arterial walls [96] (a modification of the NH law is proposed in [97] to take into account the failure

energy). However, the MR law is preferred when larger expansion is predicted. A valuable work on

experimental extraction of arterial wall mechanical proprieties is found in [91], where layer-specific

mechanical properties are determined by means of uniaxial tensile tests. The corresponding material

constants Cij adequate for a modelling using the 5-parameters MR law were obtained by curve fitting

[95] (see Table 2.1), it gives the expression of W as:

W = C01(Ī2 − 3) + C10(Ī1 − 3) + C11(Ī1 − 3)(Ī2 − 3) + C20(Ī1 − 3)2 + C02(Ī2 − 3)2 + 1
D

(J − 1)2
(2.1)

Table 2.1: Coronary wall proprieties (from [95, 91])

Coronary layers H(µm) ρ(kg/m3) C10(Pa) C01(Pa) C11(Pa) C20(Pa) C02(Pa)

Intima 230 1150 2.04E5 2.23E5 3.71E6 1.37E6 2.37E6
Media 310 ′′ 1.17E5 1.28E5 6.72E5 2.24E5 5.69E5

Adventitia 340 ′′ 1.89E5 2.02E5 1.38E6 4.59E5 1.34E6

To the best of our knowledge, experimental data on mechanical properties of human arterioles is

lacking in literature. From a physiological point of view, the arteriolar wall could be regarded as a

single layered wall. More precisely, arteriolar constituents are found to be functionally interdependent

and dynamically interconnected thus making the frontiers separating arteriolar layers muddled [98].

This observation is condoned by other physiologists in [99] who consider the wall in smallest arterioles

to be limited to a single incomplete intimal layer made of smooth cells, dismissed of tunica adventitia

and the tunica media. Regarding their mechanical response to flow, arterioles reveal distensibility
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Figure 2.1: Simplified representation of layers composing arterial and arteriolar walls 1

capabilities [100, 101] that are less important in comparison with large arteries.

2.2 Arterial haemorheology and haemodynamic

Human blood is a suspension of cells called formed elements in a yellowish aqueous liquid (plasma).

Formed elements are the RBCs, the leucocytes (white blood cells) and the thrombocytes (platelets).

The RBCs are the most numerous cells of formed elements (volume concentration of 45% to 1%

for others elements). The rheological properties of blood are determined by the inherent mechanical

proprieties of formed elements and cell-cell interaction. They include shear-thining [102], thixotropicity

[103] and viscoelasticity [104]. Shear-thinning is a consequence of the shear rate-mediated process of

aggregation and desegregation of RBCs: at low shear rates RBCs cluster and form long structures

called rouleaux that disaggregate at sufficiently higher shear rates. As a consequence, the whole blood

viscosity increases during the aggregation and decreases during the desegregation. Above a shear rate

of 100 s−1, the shear-thinning character vanishes and the blood viscosity approaches the asymptomatic

values of 3.45 mPa.s [105]. Blood viscoelasticity is also attributed to the RBCs [106] as well as blood

incompressibility. It is admitted that blood is laminar at Re<2000 and turbulent at Re>3000 [107].

However, turbulence might appear locally (and occasionally) for instance in stenotic arteries [108].

The study of the cellular interaction of blood components as well as haemodynamical and haemorhe-

ological proprieties at micro-scale requires a multiphase flow model [109]. Nevertheless, considering

blood as a homogeneous single phased fluid is largely sufficient and allows scientists to free from

haematocrit (percentage of RBCs to whole blood volume) variation [110].

1Image from anatomy and physiology (p:1241), access provided by the open educational resources unit of Oregon
State University.
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A heartbeat consists of the phase called systole during which the heart contracts to fill with

blood, subsequently followed by the diastole phase during which blood is ejected out of the heart. We

focus here on the arterial system whose relevant mechanical properties are the distensibility and the

compliance. The first is related to arterial wall elasticity while the second reflects the pulse-damping

function, that is, compliant blood vessels are inevitably distensible. Due to their vicinity with the

heart, large blood vessels alternate expansion (at systole) and recoil (at diastole) to propagate blood

in the arterial circulation. Blood pulsatile behaviour decays farther away from the heart until it is

transformed into a steady continuous flow, as a result of arterial compliance. This phenomenon is

known as “Windkessel effect”(wind chamber) and ensures a steady irrigation of small and medium

blood vessels throughout a heartbeat which implies that the unsteady effects could be neglected in

small blood vessels but not in larger ones [111].

Figure 2.2: Pulsatile character of blood in human blood vessels 2

.

The cyclic behaviour in the arterial vascular network is quantified by the nondimensional Womers-

ley number α representing the ratio of unsteady inertial forces to viscous forces (α ≈ 2.72 in coronary

arteries and α ≈ 0.016 in arterioles). The Womersley number further indicates the axial velocity

profiles: for α ≤ 2 unsteadiness is neglected and the flow is parabolic while for α ≥ 10 velocity profile

is blunted. Velocity profile is also impacted by the viscosity of blood, for example, in large arteries

2Image from anatomy and physiology (p:1226), access provided by the open educational resources unit of Oregon
State University.
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where the shear-thinning character of blood is pronounced the velocity profile is somewhat flattened.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.14

0.18

0.22

0.26

Figure 2.3: Signal of instantaneous velocity V (t) in the LCA showing the systole (t <0.29 s) and the
diastole (0.29< t(s)<0.78). The peak velocity is attained at t=0.42 s and the minimum at t=0.63 s.

The Windkessel model introduced by Frank in [112] is the simplest model of blood pulsatility. A

limit of Windkessel model is its failure to properly model blood flow during the systole phase [113].

Later, Womersley has developed a more sophisticated mathematical model reasonably complete in

a series of paper both for rigid and elastic arteries [114, 115, 116]. However, the developed flow

suffers from being too complex to be employed in numerical modelling. An alternative solution was

proposed in [117] where pulsatile blood instantaneous velocity in the human left coronary artery LCA

was clinically measured by the Doppler technique. The resituated signal V (t) is given in Figure 2.3.

To obtain quantitative data permitting the numerical reinstitution of the desired signal, a Fourier

transformation is applied to V (t) [118]:

V (t) = V0 +
8∑︂

n=1
Vncos(nωt) +Wnsin(nωt) , (2.2)

where V0 = 0.16 m/s is the average blood velocity throughout a heartbeat and ω ≈ 7.85 rad/s the

angular frequency.
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The coefficients Vn and Wn are expressed as:

Vn = 2
N

N−1∑︂
k=1

cos(nωkδt) , 0 ≤ k ≤ N − 1 (2.3)

Wn = 2
N

N−1∑︂
k=1

sin(nωkδt) , 0 ≤ k ≤ N − 1 (2.4)

in which Vk (of N=100) are samples of V (t) and δt time-interval. Numerical values of Vn and Wn

are provided in Table 2.2. The pulsatile Poiseuille flow is readily expressed as:

V = 6V (t) y
H

(1 − y

H
) , (2.5)

The finally obtained flow is a very good compromise between simple numerical implementation

and realistic physiological conditions in the LCA.

Table 2.2: Numerical values of coefficients Vn and Wn [118].

n Vn (m/s) Wn (m/s)

0 0.15634 0
1 -0.02995 0.00808
2 0.02458 0.03887
3 -0.01182 -0.00838
4 0.00985 0.00280
5 -0.01009 0.00313
6 0.00618 -0.00113
7 0.00133 0.000874
8 -0.00360 -0.000235
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Chapter 3

Hyperelastic microparticles in human blood
vessels

Content

3.1 Arbitrary Lagrangian Eulerian ALE method for fluid-structure interaction . . . . . . 52

3.1.1 An overview on the ALE method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1.3 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Smoothing and rezoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.3 Time-integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.4 Newton’s damped method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Produced research papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2.1 A01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2.2 A02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.2.3 A03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

51



3.1. ARBITRARY LAGRANGIAN EULERIAN ALE METHOD FOR
FLUID-STRUCTURE INTERACTION

3.1 Arbitrary Lagrangian Eulerian ALE method for fluid-structure interac-
tion

3.1.1 An overview on the ALE method

To solve the interaction between the deformable membrane, the surrounding fluid and the inner

fluid, several numerical methods are employed. The most popular one is the immersed boundary

method IBM, a non-conforming method originally introduced by Peskin [119] to describe the interac-

tion between cardiac valves and blood flow. The IBM method treats the membrane as an elastic fiber

formed by a series of Lagrangian massless markers immersed in a Eulerian mesh gird through which

the fluid domain flows. The membrane is able to move through the fixed mesh gird. The IBM method

has the flaw of being consistent only with very thin membranes and with viscous flows, that is, with

inertialess conditions. Moreover, the membrane is not treated as a physical entity but is approximated

using Dirac functions. The fluid domain is usually solved by the finite difference method [120] or by the

lattice Boltzmann method [121] while membrane elastic force is usually obtained by the finite element

method. A modification of the IBM method to accurately describe deformation of thick immersed

boundaries is proposed in [122] and to account of inertia in [88] (both methods are based on a hybrid

formulation). Alternatively to IBM, the arbitrary Lagrangian Eulerian ALE method could be used.

It is a conforming method developed by [123, 124, 125] among others. The ALE method involves a

continuous rezoning and is non-straightforward to implement. It is hence employed by fewer authors

[126, 127, 128, 129, 130, 131]. The is no restriction neither on membrane inertia nor on flow inertia.

Since the fluid mesh and the membrane mesh are coincident, an important deformation induces an

important mesh distortion. This method is used in this work to solve the interaction between the

arterial wall, the blood domain, the membrane and the enclosed fluid. The mesh is allowed to move to

track deformation and displacement of the moving deformable boundary. In the following section, we

concisely present generalities on mathematical formalism of the ALE method as well as details on the

numerical modelling of microparticles immersed in blood and confined in blood vessels. Calculations

are performed on Comsol Multiphysics® commercial package. For the mathematical background and

further calculus details on the hereafter presented ALE formalism, the interested reader is referred to

research papers [132, 133, 124, 134, 135] and to dedicated PhD theses [136, 137].
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The ALE method combines the advantages of the purely Eulerian description and the purely

Lagrangian description. It is indeed a generalisation of both descriptions. The distinguishing feature

of the ALE method is that the computational gird is neither purely Lagrangian (independent on

material domain RX) nor purely Eulerian (independent on spatial domain Rx), thus, a third referential

domain is introduced to be taken as a reference namely, the referential domain R̂χ. The subscripts χ,

x and X identify referential gird coordinates (or ALE coordinates), spatial coordinates and material

coordinates, respectively.

R̂χ.χ

.x
Rx

.X
RX

ΦΨ

φ

Figure 3.1: Mesh description in the ALE method and the related mappings.

The referential domain R̂χ is mapped into the spatial domain by Φ as following:ttf

Φ : Rχ × x[0, tf [−→ Rx × x[0, tf [

(χ, t) −→ Φ(χ, t) = (x, t)

The main feature of the ALE method is that the mesh is allowed to move with an arbitrary velocity

v̂m (independently on the material velocity) which follows from the gradient of x variation:

∂Φx

∂(χ, t) =
[︄

∂x
∂χ
∂x
∂t

]︄
=

[︄
∂x
∂χ

v̂m

]︄
(3.1)
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The relative velocity of the moving gird to the material velocity is known as the convective velocity

c:

c = v − v̂m (3.2)

The referential domain is mapped to the material domain by Ψ:

Ψ : RX × x[0, tf [−→ Rχ × x[0, tf [

(X, t) −→ Ψ(X, t) = (χ, t)

We further introduce the particle velocity in R̂χ, that is, the referential velocity ω. It is readily

obtained from the gradient of χ variation:

∂Ψ−1
χ

∂(χ, t) =
[︄

∂χ
∂X
∂χ
∂t

]︄
=

[︄
∂χ
∂X
ω

]︄
(3.3)

The velocities 1 involved in the ALE description are related by:

c = v − v̂m = ∂x

∂χ
· ω (3.4)

At this point we present the fundamental equation of ALE formulation that gives the variation of

a physical quantity f in terms of its material derivative and its spatial derivative as:

∂f

∂t
|X = ∂f

∂t
|χ + ∂f

∂x
· c (3.5)

3.1.1.1 Conservation laws

The differential form of conservation laws expressed in the ALE framework is straightforwardly

obtained by replacing material velocity by convective velocity in the convective terms of the classical

conservation laws for mass, momentum and total energy:

1c = 0 in Lagrangian description, c = v in Eulerian description and ω = v̂m when mesh motion is purely translational.
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∂ρ

∂t
|χ+c · ∇ρ = −ρ∇ · v

ρ
(︂∂v
∂t

|χ+(c · ∇)v
)︂

= ∇ · σ + ρb

ρ
(︂∂E
∂t

|χ+c · ∇E
)︂

= ∇ ·
(︂
σ · v

)︂
+ ρb

(3.6)

where b is the specific body force vector. The variational form of conservation laws within the

ALE framework is obtained by exploiting the Reynolds transport theorem expressed as:

∂

∂t
|χ

∫︂
Vt

fdV =
∫︂

Vt

∂f

∂t
dV +

∫︂
∂Vt

f v̂m · n dS (3.7)

where Vt is an arbitrary control volume whose boundary ∂Vt moves with velocity v̂m. Then, the

equations of interest are obtained by substituting f in (3.7) by ρ, ρv or ρE for mass conservation,

momentum conservation and total energy conservation, respectively (details are found in [133, 138]).

Finally, the conservation laws of interest are written in the ALE formulation as:

∂

∂t
|χ

∫︂
Vt

ρ dV +
∫︂

∂Vt

ρ c · n dS = 0

∂

∂t
|χ

∫︂
Vt

ρv dV +
∫︂

∂Vt

ρv c · n dS =
∫︂

Vt

(∇ · σ + ρb) dV

∂

∂t
|χ

∫︂
Vt

ρE dV +
∫︂

∂Vt

ρE c · n dS =
∫︂

Vt

(v · ρb + ∇ · (σ · v)) dV

(3.8)

in which n is the outer normal vector.

3.1.1.2 Governing equations

Before addressing the variational formulation of the coupled fluid-structure interaction problem,

we first present the governing equations and the variational formulation of the fluid and the structure

distinctly in sub-problems. We also recall that in ALE formulation the referential time derivative

substitutes to all material time derivatives to take account of the convective velocity based on (3.5).

For the reader’s convenience, neither the structure sub-problem is further subdivided to represent the

membrane and the vascular wall nor the fluid sub-problem is subdivided to represent the suspending

blood and the fluid core. For both sub-problems, body forces are neglected.
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The fluid domain assumed to be incompressible is specified by Navier-Stokes equations and the

Cauchy stress tensor of fluid σf :

ρf

(︃
∂vf

∂t
|χ + (vf − v̂m) · ∇vf

)︃
= ∇σf

∇·vf = 0

σf = −pI + η[∇vf + (∇v)T
f )]

(3.9)

where vf is fluid velocity, ρf fluid density, I the identity tensor and η dynamic viscosity. The

structure which is treated as a hyperelastic solid is specified by giving the momentum conservation

and the second Piola-Kirchoff stress tensor S:

ρs
∂2us

∂t2
|χ = ∇ · (FS)

S = 2∂W
∂C = JF−1σsF−T

(3.10)

where ρs is structure density, us structure displacement and σs the Cauchy stress tensor of the

structure.

The kinematic interface boundary condition describing continuity of velocities and the dynamic

interface boundary condition describing continuity of tractions are imposed at the fluid-structure

interface. In ALE formulation an extra interface boundary condition is required to specify that the

normal referential velocity must vanish at the fluid-structure interface (ω · n = 0).

3.1.1.3 Variational formulation

Let V f denotes the space of trial solution of vf and p and Qf the trial weighting space of test

time-dependant test functions v̂f and q̂. Considering a fluid occupying a domain Ω̂f in its ALE

configuration and Γ̂f the fluid part of the fluid-structure interface, the variational formulation of the

fluid sub-problem in ALE formulation is given by:

Find {vf , p} ∈ V f that verifies ∀
{︂

v̂f , q̂
}︂

∈ Qf
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∫︂ tf

0

∫︂
Ω̂f

ρf
∂vf

∂t
|χ · v̂f dV dt+

∫︂ tf

0

∫︂
Ω̂f

ρf (vf − v̂m) · ∇vf · v̂f dV dt−
∫︂ tf

0

∫︂
Ω̂f

p∇v̂f dV dt

+
∫︂ tf

0

∫︂
Ω̂f

∇v̂fη∇vf dV dt+
∫︂ tf

0

∫︂
Ω̂f

q̂∇ · v dV dt =
∫︂ tf

0

∫︂
Γ̂f

v̂f σf · n dSdt

(3.11)

Let V s stands for the space of trial solution of us and u for a time-independent test function. The

variational formulation of the structure sub-problem is formulated in Lagrangian configuration as:

Find us ∈ V s that verifies ∀ u ∈ Qs

∫︂ tf

0

∫︂
Ωs

ρs
∂2us

∂t2
u dV dt+

∫︂ tf

0

∫︂
Ωs

∇u(FS) dV dt =
∫︂ tf

0

∫︂
Γs

u σs · n dSdt (3.12)

The formulation of the fluid-structure problem is obtained by summing (3.11) and (3.12)

Find {vf , p} and us such that:

∫︂ tf

0

∫︂
Ω̂f

ρf
∂vf

∂t
|χ · v̂f dV dt+

∫︂ tf

0

∫︂
Ω̂f

ρf (vf − v̂m) · ∇vf · v̂f dV dt−
∫︂ tf

0

∫︂
Ω̂f

p∇v̂f dV dt

+
∫︂ tf

0

∫︂
Ω̂f

∇v̂fµ∇vf dV dt+
∫︂ tf

0

∫︂
Ω̂f

q̂∇ · v dV dt−
∫︂ tf

0

∫︂
Γ̂f

v̂f σf · n dSdt

+
∫︂ tf

0

∫︂
Ωs

ρs
∂2us

∂t2
|χu dV dt

+
∫︂ tf

0

∫︂
Ωs

∇u(FS) dV dt−
∫︂ tf

0

∫︂
Γs

u σs · n dSdt

+
∫︂ tf

0

∫︂
Γ̂

σf · n v̂f dSdt−
∫︂ tf

0

∫︂
Γ

σs · n u dSdt = 0

(3.13)

The equation system (3.13) could be solved as a fully coupled monolithic system [139] or as a

staggered system [140]. In this work the first approach is adopted in sight of its stability and accuracy

properties [141] and foremost for its ability to maintain conservation at interface [142]. Furthermore,

for robustness concerns the second approach is not the best choice when the problem involves an

incompressible fluid interacting with a thin solid and when the enclosed fluid undergoes complex

deformation [143] which is typically the studied system (a thin hyperelastic membrane enclosing an

incompressible droplet and immersed in a incompressible fluid).

57



3.1. ARBITRARY LAGRANGIAN EULERIAN ALE METHOD FOR
FLUID-STRUCTURE INTERACTION

3.1.2 Smoothing and rezoning

Mesh elements are of Taylor-hood type (triangular elements approximating the velocity on a

quadratic basis and pressure on a linear basis P2/P1) known for satisfying the Ladyzhenskaya-Babuš

ka-Breezi (LBB) condition [144]. Instead of presenting mesh convergence tests and mesh statistics,

we thought it is more insightful to present features relative to mesh motion: smoothing and rezoning.

Smoothing techniques are algorithms that aim to minimize mesh distortion by resolving ad hoc equa-

tions while maintaining nodal connectivity. Hereafter are presented smoothing methods employed in

this work.

The simplest smoothing method is the Laplace smoothing which consists in solving a Laplace

operator for spatial coordinates x and y:

∇2x = 0 (3.14)

∇2y = 0

The unsteady form of Laplace smoothing solves the pair:

∂2

∂X2
∂x

∂t
+ ∂2

∂Y 2
∂x

∂t
= 0 (3.15)

∂2

∂X2
∂y

∂t
+ ∂2

∂Y 2
∂y

∂t
= 0

The Laplace smoothing could result in a mesh spillover during vertex relocation. To deal with

this, Winslow proposed an inverted form of above-equations [145] (i.e. the dependant variable and the

independent ones are interchanged) thus, the system to solve is given by the pair:

∂2

∂x2
∂X

∂t
+ ∂2

∂y2
∂X

∂t
= 0 (3.16)

∂2

∂x2
∂Y

∂t
+ ∂2

∂y2
∂Y

∂t
= 0

The Winslow smoothing was later extended to unstructured mesh in [146]. A Higher mesh de-

formation is managed by the hyperelastic smoothing inspired by the NH law (3.17) or the Yeoh

smoothing (3.18) inspired from the eponym hyperelastic law. Unlike Laplace and Winslow smoothing

methods, hyperelastic methods are not based on vertex relocation but on limiting (from the outset)
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mesh deformation to maintain an acceptable element aspect ratio.

WNH
sm =

∫︂
Ω

G

2 C10(Ī1 − 3) + 1
D1

(J − 1)2dV (3.17)

WYH
sm = 1

2

∫︂
Ω
C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)2 +K(J − 1)2dV (3.18)

All material parameters in (3.17) and (3.18) are artificial. At very larger deformations, the Yeoh

smoothing is patently the most powerful tool to minimise element distortion since we can turn it to a

strain-hardening smoothing by controlling the stiffening factor C20. However, we are not far of con-

vergence problems with the Yeoh smoothing, in view of its important non-linearity. We wisely ‘juggle’

with the above-mentioned smoothing methods to conciliate computational cost and convergence issues.

Rezoning or remeshing is the generation of a new mesh with improved quality from the deformed

gird. During the procedure, the velocity, the pressure, the internal energy and the stress are updated

on the new generated mesh by means of remapping algorithm. Remeshing becomes necessary when

mesh quality falls below a predetermined threshold of distortion, quality or squeezeness. It helps to

avoid an extremely small mesh elements but might be a source of struggling, specifically when it gen-

erates interpolation errors. Comsol Multiphysics® offers the capability to automatize the remeshing

procedure, that is triggered by a user-defined geometrical threshold xt of element quality (3.19) or

distortion (3.20).

min

(︃
1 −max

[︃
θ − θe

180 ; θe − θ

θe

]︃)︃
≤ xt (3.19)

where θ is the angle over a vertex in the element and θe is the angle of the corresponding vertex in an

ideal element (i.e. zero skewness). √︄
trFT F

2J − 1 > xt (3.20)

It is important to note that the presence in the ALE conservation equations of transport terms

accounting for mesh velocity for arbitrary grid velocities of the fluid nodes guarantees conservation

of mass, momentum and energy during the continuous rezoning process. A method of mesh velocity

update during remeshing procedure is found in [124].
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Figure 3.2: Conforming mesh in the ALE method, the green surface corresponds to the immersed solid
and the white one to the fluid domain. Left: initial shape, right: deformed shape.

3.1.3 Time-integration

Equations are time-updated using the implicit multistep Backward differentiation formula BDF

[147] following the scheme:

Σk
i=0αiun−i = β0δtf(tn, un) (3.21)

where un is a gird function approximating the solution of the boundary value problem, α and

β coefficients determined is such a way they meet stability requirement (conditioned by k > 6) 2

and δt time-interval. In this work, k ≤ 2 (3.22), this was chosen as a compromise between damping

and stability concerns (higher k-order leads to stability issues and lower k-order are known to cause

damping issues). One can notice that BDF−1 is equivalent to the Backward Euler method and Adam-

Moulton scheme. However for k = 2 Adam-Moulton and BDF methods has different order of accuracy

and stability zones.

BDF−1 (k = 1, α0 = 1, α1 = −1, β0 = 1) → un = un−1 + δtf(tn, un) (3.22)

BDF−2 (k = 2, α0 = 1, α1 = −4
3 , α2 = 1

3 , β0 = 1) → un = 4
3un−1 − 1

3un−2 + 2
3δf(tn, un)

We should specify that for all performed calculations, the geometry is of first shape order. A prior,

geometry shape order was set to 2, but tenacious and repetitive mesh-inversion errors occur. The

Comsol Multiphysics® user guide warns about this predictable error and recommends to lower the

geometry shape order to one.

2k≤ 5 in Comsol Multiphysics®
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3.1.4 Newton’s damped method

The variables are updated at each time-step using Newton’s damped non-linear method [148]. It is

a modification of the Newton method to include a damping factor λ (the Newton method is retrieved

for λ = 1). A major propriety of this damped version is that it has a global convergence properties.

We opt for this method to enforce convergence at reasonably small time-steps (δt = 0.01 − 1 ms) and

to avoid the spurious force that was reported by some authors [149, 137]. We first vary λ in the range

1 − 10−5 then in 10−9 − 10−5 to enforce convergence when higher-non linearities are involved. This

method is based on a damping reduction algorithm, where the key parameter is the error EN .

Let u0
3 stands for the initial guess and δu for the Newton step. For a new iteration u1 = u0 +λδu

the iterative solver computes EN from the following:

Df(x)EN = −f(u1) (3.23)

where Df(x) is the Jacobian matrix and f(u1) the residual vector of the solution vector u1. If

EN is smaller than the relative error Er, u1 is recomputed till the condition EN > Er is satisfied.

The non-linear failures are dealt with the non-linear controller [150] that enables an efficient time-step

control in the BDF method and ensures that the accuracy time-step hacc remains smaller than the

stability time-step hstab.

3.2 Research results

3.2.1 Assumptions

In this work blood is considered as homogeneous (single phase flow), which is a commonly accepted

simplification on a coarse enough scale in large and medium vessels (e.g. coronary arteries). However,

in the arteriole where the characteristic size of the microparticle and that of the RBC are comparable,

the assumption of homogeneous blood is hardly justifiable but nevertheless excused for the following

reasons i) we are interested in blood as an external hydrodynamical load acting on microparticles dis-

regarding the cellular interaction of formed elements ii) densities of plasma, RBCs and microparticles

are of the same order (1110 ± 87 kg/m3) iii) considering the plasma as the suspending fluid requires

3In the original Newton’s damped method [148] u is specified as a function while in Comsol it is specified as a vector
within the damping algorithm. Comsol actually uses a modified version of the the original method.
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the modelling of the RBCs but also of white blood cells, which requires an enormous computational

cost not borne by the computer installation provided (calculations abruptly crash when considering a

couple of RBCs in view of mesh refinement at membranes);

To circumvent the issue of unavailable data on mechanical proprieties of arteriolar wall, the latter

is modelled as a nearly-incompressible neo-Hookean solid as in [151]. However, the paper concerned

do not specify the origin of the employed material parameters, we then validate the model through

comparison with experimental data related on dilation of human arterioles [100]. Unlike the coronary

wall, the arteriolar wall is restricted to a single layer (the intima) a simplification condoned by i) no

related data are forthcoming in literature ii) the smallest arterioles herewith considered do not have

a tunica external and the tunica media is limited to a single incomplete layer of smooth cells [99] iii)

arteriolar wall constituents are functionally interdependent and dynamically interconnected making

the frontiers blurred between the three layers [98];

Since we are not interested in vascular wall from a purely physiological/biological point of view but

only as a confinement environment and an external solid load exerted on microparticles, we estimate

the assumption of isotropy to be reasonably acceptable;

The assigned density of 1150 kg/m3 is taken as an intermediate value between 1000 kg/m3 and

1300 kg/m3 employed in [95] and [152], respectively;

The bidimensional modelling is supported by the following items i) a confrontation between exper-

imental and numerical investigation conducted in [45] revealed that a bidimensional model is enough

accurate to describe dynamical behaviour of a microparticle flowing in a circular channel ii) three

dimensional effects are shown to be negligible for microparticles whose thickness to radius ratio do not

exceed 5% (here we have a ratio of 4%) [37] iii) available numerical facilities do not permit the 3D

modelling and in-house cluster and CCIPL 4 could not profit from the lab-available licence (a locked

single user Comsol Multiphysics® licence), we also requested access to the cluster of CCUB 5 that

was accepted but the anterior available version of Comsol Multiphysics® do not handle the system

modelling;

Microparticle membrane is considered as a protein-reticulated membrane and described as a neo-

Hookean solid (strain-softening) that was demonstrated to be appropriate for such membranes [40]. It

4Le centre de calcul intensif des Pays de la Loire.
5Le centre de calcul de l’université de Bourgogne.
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is indeed a capsule since the membrane is solid although we prefer the generic term of microparticle;

The radius to thickness ratio is also established in [76] as a threshold (5%) below which the

bending stiffness do not show a substantial effect on the overall dynamical behaviour of the considered

microparticle, it is the reason why bending stiffness effect in not explicitly addressed in the present

work.
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3.2.2 Produced research papers

3.2.2.1 A01
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ABSTRACT
The study of artificial microparticles (capsules and vesicles) has gained a growing interest with the emergence

of bioengineering. One of their promoting applications is their use as therapeutic vectors for drug delivery, when
capsules and vesicles release their capacity in a targeted environment. The dynamic behavior of capsules and
vesicles in confined or unbounded flows was widely studied in the literature and their mechanical response was
truthfully described using constitutive laws with good agreement with experiences. However, in a context of biolog-
ical application, to our knowledge, none of published studies investigating the mechanical response of deformable
microparticle took into account the real physiological conditions: the rheological properties of blood such as car-
rying fluid and the mechanical properties of blood vessels. In this paper, we consider a hyperelastic microparticle
suspended in human arteriole. We investigate the deformation of the microparticle resulting from its interaction
with blood flow and the arteriolar wall using various capillary numbers and respecting physiological properties of
blood and arterial wall. The influence of the blood viscosity model (Newtonian vs shear-thinning) is investigated
and a comparison with a rigid microchannel and a muscle-embedded arteriole are carried out. The fluid structure
interaction (FSI) problem is solved using Arbitrary Lagrangian Eulerian (ALE) method. Our simulations have
revealed that the arteriolar wall distensibility deeply influences both the deformation and velocity of the micropar-
ticle: the deformation strongly increases while the velocity decreases in comparison to an infinitely rigid wall. In
the context of therapeutic procedure of targeted drug-delivery, a particular attention should be addressed to these
observations, in particular for their implication in the burst mechanism.

1 Introduction
Microencapsulation is the industrial process by which a droplet or a solid is enclosed by a thin elastic membrane, result-

ing in structures called microparticles. The membrane of a microparticle bursts under predetermined conditions allowing a
controlled and targeted release of the inner contain. The application field of microparticles as delivery system includes cos-
metics, pharmaceutics and food. Microparticles are used as pharmaceutical vehicle in targeted drug delivery process for non-
invasive cancer treatments [1–3], diabetes [4] and heart attack [5]. In the procedure of targeted drug delivery, microparticles
are injected into arterial bloodstream (e.g the hepatic artery for transarterial chemoembolization (TACE) [6] and the coronary
arteries for thrombus dissolution [5]). Once the microparticle is injected, it flows in varied size and nature blood vessels till it
reaches its target (e.g. tumor), a robust and reliable prediction of the mechanical behavior of microparticle (velocity, surface



tensions acting on membrane, deformation, burst. . . ) and fluid kinetics (diffusion, convection, concentration of the released
inner drug) in interaction with vascular wall and blood stream are essential to ensure a proper, efficient and safe functioning
of the targeted drug-delivery procedure. Attention also should be addressed on local perturbation due to the presence of the
microparticle (i.e. wall shear stress, pattern of blood flow...). Prediction and evaluation of drug-eluting microparticle behav-
ior are conducted by means of in-vitro [7–9] and in-vivo [10] studies. Above-mentioned studies are conducted by physicians
and focused on the pharmacokinetic behavior of the released drug without any consideration of mechanics. Interestingly,
the present study proposes an alternative in-silico approach that could be complementary of in-vivo and in-vitro studies,
by providing an upstream prediction of the mechanical behavior of the microparticle in its interaction with blood flow and
vascular wall without tricky experimental protocols and limitations imposed by regulation related to animal experimentation.
Furthermore, microparticles constitute an efficient biomimetic system to understand the mechanical properties of biological
microparticles such as the red blood cell (RBC). The study of mechanical properties of RBCs and their dynamical response
to applied external flow has profited from the enhancement of microfluidic devices where microchannels mime the vascu-
lar system [11, 12]. RBC is a biological cell formed by an elastic membrane (phospholipid bilayer attached to a spectrine
skeleton) enclosing hemoglobin solution. Due to its finite thickness, only the deformation of median surface is considered.
RBC membrane is characterized by three elastic moduli: surface shear modulus Gs = 2.5 µN/m [13], surface extension
modulus K = 300−500 mN/m [14–16] and bending rigidity (also called bending energy) B = 5−150 KbT [17, 18]. In the
microcirculation, RBCs are highly deformed from their initial biconcave shape. Depending on the blood flow strength and
inner diameter of microvessel, RBCs take the shape of a bullet, a parachute or a slipper [19–21].These characteristic shapes
are also observed for artificial microparticles like vesicles and capsules [22–25]. Vesicle membrane is lipidic and acts like a
bidimensional incompressible fluid (i.e. zero shear elasticity). In contrast, polymeric membrane of capsule is solid and shear
resistant. Capsule’s membrane obeys to Lagrangian elastic laws. Instead of a reference configuration, vesicle membrane is
characterized by an initial curvature which means a bending resistance. Mechanical properties of microparticles are obtained
by different methods among them squeezing microparticle between two parallel plates [25, 26], spinning capsule experi-
ment [27] flowing in a capillary tube [24, 28], micropipette aspiration [29], and compression [30]. In literature, membrane
is assumed to obey different hyperelastic constitutive laws that describe hyperelasticity in terms of a strain energy potential
which defines the strain energy stored in the material per unit of reference volume: Skalak (SK) [31–33], Evans-Skalak
(ES) [32], Mooney-Rivlin (MR) [34], Neo-Hookean (NH) [35–37] and Yeoh [26]. For small strains, all of aforementioned
hyperelastic laws reduce to the elastic Hook’s law [38]. Skalak law was first introduced to model the large deformation and
area incompressibility of biological membrane [39], this law adds non-linearly the area dilatation to the shear deformation.
Evans law (or Evans-Skalak law) [40] was introduced later to simplify SK law by adding linearly the area dilatation to the
shear deformation. Due to its 3D origin, MR is strain-softening. NH law is derived from MR and Yeoh law is a higher-
order extension of the NH law [41]. SK law is strain-hardening, hence, for similar hydrodynamic constraints a membrane
obeying SK law is less deformed than the one obeying MR law [33] or NH law [24]. Besides constitutive law, micropar-
ticle deformation depends on viscosities ratio [42], the section of the microfluidic channel [36], membrane thickness [43],
confinement [22, 25] and bending rigidity [44, 45].

In his Phd thesis [46], Tahiri introduced a local elastic law to take into account the contribution of the wall, nonetheless,
without any consideration of the mechanical properties of the arterial wall. In this paper, we chose not to distinguish between
a capsule and a vesicle (even if capsules are sometimes used to designate both artificial particles). Henceforth, the generic
term microparticle is used to describe a Newtonian and incompressible fluid enclosed by a thin hyperplastic membrane.

In this study and in a context of medical application, we respect mechanical properties of arteriolar wall and the rheolog-
ical/dynamical properties of blood flow in a human arteriole. The study is carried out using Arbitrary Lagrangian Eulerian
Method implemented on Comsol Multiphysics [47].

2 Physical model description and modeling
The studied problem is schematically represented by a thin membrane enclosing an internal fluid, freely suspended in a

confined external flow (blood). The arteriole is represented using a rectangular channel on which we distinguish the lumen
and the arteriolar wall (see Fig. 1). The flow is defined using an inlet velocity (at Γi) and a zero outlet normal stress (at
Γo). The top-bottom right and left edges of the arterial wall are fixed. Three fluid-structure interfaces are identified: external
fluid-membrane/internal fluid-membrane (Γ f m) and external fluid-arterial wall (Γ f a).

2.1 Blood model
Blood is known to behave like a shear-thinning fluid in regions when shear rate γ̇ is below 100s−1 [48–50], above

this value, blood viscosity tend to a constant Newtonian viscosity η = 0.0035Pa · s. In an arteriole, the shear rate exceeds
significantly 100s−1 [51, 52] and blood is Newtonian. Even if non-Newtonian blood in the arteriole is physiologically
implausible, we studied besides the Newtonian blood a specific case where blood is shear-thinning, the aim being to evaluate
the effect of blood viscosity model on microparticle deformation. A Carreau model is used to describe the shear thinning of



Fig. 1. Schematic description of the FSI problem.

blood:

η = η∞ +(η0−η∞)
[
1+(λγ̇)2

] n−1
2

(1)

where the coefficients η∞ = 0.0035Pa · s, η0 = 0.056Pa · s, λ = 3.313s and n = 0.3568 were provided from [53]. Due to
cardiac contractions, blood flow is pulsed, mainly in the arterial circulation. The disentisibility of arterial wall damps the
pulsation of blood and transform the pulsatile flow into a continued flow (Windkessel effect). In biofluid mechanics, the
importance of cyclic behavior in a pulsatile flow is quantified by Womersley number (α) [54]. This nondimensional number
can be interpreted as the ratio of the unsteady forces to the viscous forces. Blood velocity profile depends on the Womersley
number: for small and medium-sized arteries (1 < α < 10) [55], flow is dominated by viscous effects and the profile is
parabolic. For α > 10, the unsteadiness dominates the flow, hence, velocity profile becomes blunted [56]. In the arteriole the
Womersley number is approximately α = 0.016, then we considered a steady Poiseuille flow described as:

vi = 6v0
y

Hl

(
1− y

Hl

)
at (Γi) (2)

where v0 = 10cm/s is the average velocity in the arteriole and Hl = 30µm the height of the rigid channel/arteriole. The
value of Hl corresponds to the inner diameter (lumen) of a human arteriole and the corresponding arterial wall thickness is
Ha = 20µm [57]. In the absence of body forces, the incompressible flow is governed by the continuity and Navier-Stokes
equations as given below

∇ ·v = 0 , ρ
[

∂v
∂t

+(v ·∇)v
]
= ∇ ·σσσ

where ρ = 1050kg/m3 is the fluid density, v is the velocity field, σσσ is the total stress tensor in the incompressible fluid which
could be expressed as :

σσσ =−pI+η
[
∇v+(∇v)T

]

where p is the fluid pressure, I is the identity tensor and η is the fluid dynamic viscosity.

2.2 Arterial wall model
The arterial wall consists of collagen, elastin and smooth muscle cells distributed and oriented differently on three dis-

tinct layers: the intima, the media and the adventice [58]. Layer-specific mechanical properties of human coronary artery
include nonlinearity, inelasticity and anisotropy [59]. In their work on in vitro determination of layer-specific mechanical
properties of human coronary arteries [59], Holzapfel and co-workers observed that the intima showed a significant thicken-
ing, a load-bearing capacity and a mechanical strength compared to the media and the adventitia. Moreover, the inclusion
of the three layers in blood vessel modeling has a insignificant contribution on the shear stress [60]. Furthermore, frontiers
between the three layers are blurred in the arteriole [61]. For aforementioned reasons, we chose to restrict arterial wall model



to the intima. In this work, the thickness of the arteriolar wall is assigned to 20µm [57]. For reasons related to computational
cost, we consider a section of a human arteriole (L = 300µm). The arterial wall is assumed to be hyperelastic, homogenous
and incompressible, the equation describing the motion is governed by

ρa
∂2u(a)

∂t2 = ∇ ·σσσ(a) (3)

where ρa is the arterial wall density, u(a) the displacement vector and σσσ(a) the Cauchy stress tensor. In addition, the consti-
tutive relation can be written readily in terms of Cauchy stress tensor and strain-energy density function

σσσ(a) = J−1F
∂W (a)

∂E(a)
FT

where J is the dilatation ratio, F the deformation gradient tensor, E(a) the Green-Lagrange strain tensor and W (a) the strain-
energy density function which is related to the strain invariants by the following relation :

W (a) =C10 (Ī1−3)+C01 (Ī2−3)+C20 (Ī1−3)2
+C02 (Ī2−3)2

+C11 (Ī1−3)(Ī2−3)+
κ
2
(Jel−1)2 (4)

where C10,C01,C20,C02 and C11 denotes material parameters extracted by curve fitting from in vitro study [59] and adapted
from [60] (see Table 1), Ī1 and Ī2 respectively denotes the first and the second invariant of the isochoric right Cauchy-Green
deformation tensor, κ is the initial bulk modulus and Jel the elastic volume ratio. The Money-Rivlin constitutive law is based
on the assumption of isotropic behavior throughout the deformation history. Note that the numerical values of Ci j parameters
are provided from a study on human coronary arterial wall, in the lack of such study on human arteriole, we used the same
values of Ci j. This extrapolation nevertheless remains acceptable since both vessels are of the same nature.

Table 1. Material parameters.

ρ
(
kg/m3

)
κ (Pa) C10 (Pa) C01 (Pa) C20 (Pa) C02 (Pa) C11 (Pa)

1150 2.04 ·105 2.23 ·105 1.37 ·106 2.67 ·106 3.71 ·106 3.78 ·106

Regarding the external arteriolar wall, we consider a free unconstrained external wall (FEW) where the wall is free to
deform and a constrained state where it is surrounded by a muscle which is more realistic. The muscle follows the Neo-
Hookean law (5) [62]. Muscle thicknesses considered are Hm = 5,10,15,20,27.5,35 and 60 µm. The FEW assumption
corresponds to Hm = 0 µm (no surrounding muscle). As for the arteriolar wall, the zero displacement boundary condition is
imposed to the ends of the muscle. Results relative to the FEW assumption and to the muscle-embedded arteriole are given
on 4.2 and 4.4, respectively.

2.3 Microparticle model
The studied microparticle consists of a disk-shaped thin membrane (a thickness of 0.27µm) enclosing an incompressible

Newtonian fluid (ηi = 0.00345Pa · s and ρi = 1000kg/m3). The membrane is treated as hyperelastic, isotropic and nearly
incompressible surface in which the strain-energy density function for a Neo-Hookean material is given by :

W (m) =
G
2
(Ī1−3)+

κ
2
(Jel−1)2 (5)

where the parameter G(N/m2) corresponds to the initial shear modulus. The initial bulk modulus κ and initial shear modulus
G are calculated from the surface shear modulus Gs (N/m). In this framework the surface shear modulus is varied from the
range of 10−2 to 10−3 N/m which is in the same range as experimental extracted modulus [28, 63]. A comprehensive and
detailed review of constitutive relations can be found in [64].



In the membrane model, the stresses are integrated across the wall thickness and replaced by tensions, i.e., forces per
unit length of the median deformed surface. The deformation of the microparticle is quantified by the Taylor parameter
defined as:

D =
|L1−L2|
L1 +L2

(6)

where L1 and L2 respectively designate the axial and the radial length of the capsule (i.e. D = 0 for a disk-shaped microparti-
cle). For the initial shape L1 = L2 = 18µm. The Taylor parameter strongly depends on the nondimensional capillary number
Ca. The latter measures the ratio between the viscous forces applied by the flow and elastic resistance of the membrane:

Ca =
ηγ̇L1

2Gs
(7)

2.4 Fluid-structure interaction
In this paragraph, the dynamic behavior of the suspended microparticle shall be obtained of the judicious interface

conditions. Dynamic and kinematic continuity must be satisfied. Hence, the fluid-structure interaction pertaining the fluids
is of non-homogeneous Dirichlet condition

v(i) =
∂u(m)

∂t
at (Γ f m) (inside microparticle)

v(o) =
∂u(m)

∂t
at (Γ f m) (outside microparticle)

v(e) =
∂u(a)

∂t
at (Γ f a)

representing mass conservation throughout the interface, and the fluid-structure interaction for the solids is of non-homogeneous
Neumann

σσσ(i) ·n = σσσ(m) ·n at (Γ f m) (inside microparticle)

σσσ(o) ·n = σσσ(m) ·n at (Γ f m) (outside microparticle)

σσσ(o) ·n = σσσ(a) ·n at (Γ f a)

describing the equivalence of fluids stresses and solids stresses.

3 Numerical method
In the ALE description, the mesh is arbitrary connected to the coordinate system or to the material allowing large

deformation state without a mesh distortion. In addition to material configuration RX and spatial configuration Rx, a third
referential configuration Rχ where reference coordinates χ identify the grid points is introduced. The computational gird is
allowed to move independently on material motion with a given mesh velocity vm = ∂x/∂t where x is the physical coordinates
of χ. The difference between both velocities refers to convective velocity c = v− vm (Note that Eulerian description and
Lagrangian description corresponds to c = v and c = 0, respectively). At fluid-structure interface, in addition to ”classical”
conditions given in 2.4, mesh velocity satisfies: vm ·n = v ·n where n is the unit outward normal. In the moving referential
mesh frame Rχ, the material time derivative of a scalar physical quantity f for a given particle X with respect to the moving
mesh gird is described by the fundamental equation of ALE :

∂ f
∂t
|X =

∂ f
∂t
|χ +

∂ f
∂x
· c (8)

Regarding time-integration scheme, we used the implicit Backward Differentiation Formula (BDF) scheme (9) derived from
the multistep Adams-Moulton scheme

k

∑
i=0

αiun−i = β0h f (tn,un) (9)



where h is the time-step, the order of accuracy k is varied from (10) :

k = 1 : α0 = 1 , α1 =−1 , β0 = 1 → un = un−1 +h f (tn,un)

k = 2 : α0 = 1 , α1 =−
4
3
, β0 = 1 , α2 =

1
3
→ un =

4
3

un−1−
1
3

un−2 +
2
3

h f (tn,un)
(10)

The variables are updated at each time-step using a damped Newton nonlinear method [65]. This method is based on a
damping reduction algorithm where the key parameter is the error E : For a new iteration u1 = u0+λδu (where u0 is the initial
guess, 10−5 ≤ λ≤ 1 the damping factor and δu the Newton time-step), the solver computes D f (x)E =− f (u1) where D f (x)
is the Jacobian matrix and f (u1) the residual vector of the solution vector u1. If E is smaller than the relative error Er, u1 is
recomputed till the condition E > Er is satisfied. The nonlinear failures are dealt with the nonlinear controller (STAB) [66]
that enables an efficient time-step control in the BDF method and ensures that the accuracy time-step hacc remains smaller
than the stability time-step hstab. Mesh deformation is computed using Winslow smoothing nonlinear technique [67], the
equations to solve are:

∂2X
∂x2 +

∂2X
∂y2 = 0 ,

∂2Y
∂x2 +

∂2Y
∂y2 = 0 (11)

x and y are deformed mesh positions and, X and Y the reference coordinates of the material frame. An automatic remeshing
procedure enables more extreme deformation states and prevents mesh reversing and tangling that lead to the deterioration
of the results. The remeshing is automatically activated beyond a pre-determined cell quality threshold based on the criterion
of equiangular skew: min

[
1−
[
max

(
θ−θe

180−θe
, θe−θ

θe

)]]
< 0.01 where θ is the angle over a vertex in the element and θe the

angle of the corresponding vertex in an ideal element (zero skewness). The discretization of fluid domain is done with
P2/P1 element that gives a quadratic basis for velocity and linear pressure. This element satifyes the LBB (Ladyzhenskaya-
Babuska-Brezzi) stability condition. Solving Navier-Stokes equations using finite element method is known to cause (as well
as other convection driven problem) numerical instabilities. Therefore, a stabilization is required to circumvent numerical
instabilities and solution oscillations. We use two methods of consistant stabilization: streamline diffusion and crosswind
diffusion. The first adds artificial diffusion in the streamline direction whereas the second adds diffusion in the cross direction.
The added diffusion is a not physical but helps to avoid the mesh refinement and then a huge computational cost.

4 Results and discussion
4.1 Validation of the numerical model

In this section, we report the validation of the present numerical model against the work of Barthes and co-workers
on the dynamical behavior of a freely suspended spherical capsule in an unbounded shear flow [68]. In this work, the
membrane of the microparticle is neo-Hookean. The external and internal fluids are similar, thus excluding buoyancy effect.
The velocity and the pressure of both fluids are governed by Stokes equations (Re� 1). The FSI problem is solved by the
ALE method. We performed a parametric calculation (Ca = 0.075− 0.6) using the commercially available FEM package
COMSOL Multiphysics. The evolution of Taylor parameter D is monitored till reaching an asymptotic deformation D∞ (see
Figure 2). Moreover, this evolution is similar to those reported in [37, 68], where the FSI problem is respectively solved
using the boundary element method and the immersed boundary method. Note that the steady deformed shapes shown in
Fig. 2 are identical to those illustrated in [68].

4.2 Microparticle confined in human arteriole
The dynamical response of the microparticle is investigated for Ca = 0.01,0.02,0.03,0.04 and 0.05. As shown in Figure

3(a), when the microparticle is flowing along the arteriole, the Taylor parameter becomes higher as the capillary number is
increasing. In response to the sudden start of blood flow, microparticle becomes pebble-shaped: the initial rear end positive
curvature (convexity) is decreased till a flattened state and the maximum radial length is significantly more important than
the axial one (t = 0.364ms in Figure 8(b)). As the microparticle moves from its initial position and starts flowing along the
arteriole, it undergoes an axial extension while its radial dimension progressively decreases to compensate axial elongation.
The obtained morphology referred to as bullet shape. In the immediate vicinity of the arteriole extremity (t = 1.540ms), a
concavity is observed at the rear of the microparticle (see Figure 8(b)).

The rear shape transition from the convexity to the flatness and then to the concavity and the increasing of front tapering
(see Figure 8(b)) is a consequence of the wall displacement that changes the confinement and then the capillary number.
As shown on Figure 4, at t = 1ms, the rear end is convex for Ca = 0.01 while it is flattened for Ca = 0.05. Regarding the
front, it is more pointed for Ca = 0.05. The decreasing of the initial rear convexity till the concavity and the increasing front



Fig. 2. Taylor parameter versus dimensionless time for a capsule suspended in a shear flow (left). Superposition of obtained steady deformed
shapes illustrated by different colors: Ca = 0.075 (green) Ca = 0.15 (pink), Ca = 0.3 (yellow), Ca = 0.45 (red) and Ca = 0.6 (blue).
Black color corresponds to the initial shape (right).

tapering with increasing capillary number is observed in this work by varying ”directly” the capillary number (via changing
the membrane shear modulus) and ”indirectly” (change induced by wall displacement). This behavior is reported in [22, 23]
where the shape transition dependence on the capillary number is well described.
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Fig. 3. Time-evolution of Taylor parameter (a) and of axial and radial lengths (b) for Ca = 0.01−0.05.

For all Ca, the variations of Taylor parameter versus time are parabolic with decreasing amplitudes. Indeed, the am-
plitude of the first lobe of the curve is nearly two time greater than the second one. For all curves, the ascending slope of
the straight path is similar till roughly 0.15ms. Above this point, curves deviate from their initial ascending straight path
and different amplitudes are observed. Since the curves reached the maximum and starts to decrease, the minimum Taylor
parameter is reached firstly for the less important amplitude. Shortly thereafter, curves start to rise with the same slope from
the lowest to the highest Ca, reason why in a certain zone, the trend is reversed and the deformation heightens from the lowest
to the highest capillary number. Regarding the axial length L1 and the radial length L2 time-evolution (see Figure 3(b)), a
symmetry with respect to the microparticle centerline is observed due to the surface-area conservation (a radial elongation is
systematically compensated by an axial shrinking). The localized axial length tangle is the consequence of the edge effect.

For the purpose of assessing the influence of shear-thinning of blood, we performed a comparison between the Newto-
nian blood model (so far used) and the Carreau model describing the shear-thinning. Obtained results for Ca = 0.05 have
shown that deformation overtime is notably similar when the blood is considered as Newtonian or shear-thinning (see Figure
5). The slight discrepancies are due to the differences in the velocity profile and the wall shear stress. When the fluid is
shear-thinning, the velocity profile is ”flattened” and its slope near the wall is more important comparing to the Newtonian
model, thus, the shear stress near the wall is more important.

In order to display the parachute shape (a strongly concave rear end and a highly pointed front), the capillary number
is increased until Ca = 0.1. Real time-snapshots: t = 0.206,1 and 1.393ms show respectively: pebble-shape (Figure 6(a)),



(a) Ca = 0.01

(b) Ca = 0.05

Fig. 4. Real time snapshot at t = 1 (ms). Rainbow color spectrum corresponds to velocity magnitude (m/s) and grey scale color to
displacement (m).
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Fig. 5. Influence of the blood viscosity model for Ca = 0.05.

bullet shape (Figure 6(b)) and parachute shape (Figure 6(c)). The observation reported above (the increasing concavity with
respect to capillary number) is confirmed by the last calculation. Indeed, at t = 1ms, we note the transition from the convex
rear end (Ca = 0.01 in Figure 6(a)), to the flattened rear end (Ca = 0.05 in Figure 6(b)) and then to the concave rear end
(Ca = 0.10 in Figure 6(c)). The increasing front sharpness is also confirmed. Local zoomed mesh illustrated in (Figure 6(d))
affirms the absence of mesh tangling /distortion. All of reported shapes for all capillary numbers are observed for artificial
microparticles flowing in rectangular microchannel [22–25], RBCs [19–21] and a cancerous cell (except for the parachute
shape) [69].

The effect of increasing arteriole length is evaluated for L = 900 and 1800µm. As for the initial length L = 300µm, the
time-evolution of Taylor parameter is concavity sign changing (Figure 7). One can remarks that for L= 1800µm, the shape of
the curve is identical to that of L = 900µm but ”stretched”. Even if the vascular resistance increases with length, we believe
that the unsteadyness of Taylor parameter time-evolution will persists due to the mechanism of expansion-constriction that
varies the viscous stresses acting on the microparticle (i.e. the capillary number).



(a)

(b)

(c)

(d)

Fig. 6. Pebble-shaped microparticle at t = 0.2602ms (a). Bullet-shaped microparticle at t = 1ms (b). Parachute-shaped microparticle
with a strongly concave rear end at t = 1.393ms (c). Corresponding local mesh zoom (d).

4.3 Comparison with rigid microchannel
A comparison with a rigid microchannel is performed for Ca = 0.05. It is concluded that for a similar capillary number,

the microparticle exhibits a different dynamical behavior. Indeed, when the microparticle is confined in the rigid channel,
the Taylor parameter evolution with respect to time is ascending till the microparticle is stopped by the channel extremity
(see Figure 8(a)). This evolution is akin when the microparticle is subjected to a shear flow [27, 68] or to an elongational
flow [63]. Nevertheless, the horizontal plateau is not observed because of the edge effect. Moreover, various deformed
shapes are observed for the hyperelastic arterial wall while the particle confined in the rigid channel is deformed into a
quasi-steady shape (see Figures 8(b) and 8(c)). Time-snapshots show that at similar times (t = 0.364,0.698 and 0.910ms),
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Fig. 7. Arteriole length effect on Taylor parameter. Solid lines are for L = 900µm and dashed lines for L = 1800µm.

deformed shapes are widely different. The deformation soars in the case of arterial wall whilst it progressively increases
with respect to time (see Figure 8(a)). On the other hand, when the particle flows along the rigid microchannel, it attains the
channel extremity at t = 0.910ms, while at the same time, the microparticle suspended in the arteriole is in the midway (see
Figure 8(b)) which reveals that the microparticle moves with different velocities.

According to the microparticle rear end velocity time-evolution, the flowing particle in the rigid microchannel attains
a maximum velocity before it decelerates quasi-instantly and tends to an asymptotic velocity (see Figure 9). Furthermore,
the microparticle confined in arteriole accelerates along its course. Curves show that for the highest and the lowest capillary
number (Ca = 0.01, Ca = 0.05), a slight gap exists till a certain time (t ≈ 0.3ms) and the curves finally coincide. This result
suggests that for any capillary number, velocity tends to a common magnitude.

All of observed discrepancies are due to the arterial wall distensibility and its hyperelastic response to the flow. The
expansion-constriction changes the confinement and therefore the shear rate (i.e. viscous forces applied on the flowing
particle). In these conditions, viscous forces applied on the microparticle are related to the wall displacement, leading to
different deformed shapes for a same capillary number. In contrast, in the case of rigid microchannel, the microparticle is
deformed into a quasi-steady shape. For a deformable wall, it is more appropriate to talk about an initial capillary number
that correspond to the undeformed wall state.

4.4 Arteriole embedded in muscle
In this paragraph, we report the effect of the presence of a surrounding muscle on arteriolar wall displacement and on

deformation of the microparticle. This configuration is more realistic than the FEW assumption. As expected, it is found
that the presence of the muscle that serves as a uniform mechanical load, restricts both arteriolar wall vertical displacement
(Figure 10(a)) [70] and microparticle deformation (Figure 10(b)). The higher the muscle thickness the less the arteriolar
wall dilation upon blood flow. In the absence of the surrounding muscle, the maximum dilation of the arteriole (34.02%)
is within the range of experimental dilation values reported for human coronary arteriole in [71]. The maximum of Taylor
parameter is constant starting from Hm = 35µm. A comparison performed for Hm = 60µm and the rigid wall reveals that
both configurations are quasi-identical (discrepancies are comprised between 0.89% and 4.31%.)

5 Implications of results in a medical context
Whether in the presence of the surrounding muscle (Hm < 35µm) or in its absence, it is found that microparticle defor-

mation is increased comparing to the rigid wall assumption. In a context of medical application, an important deformation
is potentially a risk of premature burst in the vicinity of a non-targeted environment which implies toxic effects on healthy
tissues. Regarding the velocity, the arteriolar wall distensibility is found to decelerates the microparticle. Firstly, that means
that the particle is in longer contact with RBCs and white blood cells and knowing that these biological cells (whose sizes
are comparable to that of the studied microparticle) imposes stresses on microparticle membrane and consequently, a longer
contact could result in an additional burst risk. Secondly, the microparticle could impedes bloodstream flow. These findings
must imperatively be taken into account while designing microparticles in order to ensure a safe and efficient functioning of
the drug-eluting microparticles.
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Fig. 8. Taylor parameter and microparticle deformed shapes for Ca = 0.05. (a) Red markers at specific times point out snapshot time
used to capture deformed shapes. Real time snapshots of the microparticle flowing along the hyperelastic arteriole (b) and along the rigid
microchannel (rigid wall) (c).
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6 Conclusions
In this research paper, we investigate the dynamical behavior of a soft microparticle confined by hyperelastic arterial wall

and suspended in blood flow, while fully respecting biomechanical constraints. Finding reveals that the wall distensibility
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Fig. 10. (a) Maximum arteriolar wall dilation with respect to arteriole length; Solid lines are for upper wall displacements and dashed lines
for lower wall displacements. (b) Effect of varying muscle thickness on maximum Taylor parameter Dmax.

has a great influence on microparticle deformation (qualitatively and quantitatively) and on its flowing velocity along the
arteriole. We unambiguously outline the relevance of the inclusion of biomechanical constrains for an accurate prediction of
microparticle dynamics, a prerequisite of a safe and proficient trageted drug-delivery procedure. This study is the first of its
kind and further investigation remains necessary, in particular a realistic vessel geometry instead of the idealized geometry
used for the sake of simplicity. The following concluding remarks could be drawn :

• The deformation and the velocity of the microparticle depend on mechanical properties of the wall.
• The displacement of the wall changes the shear rate an then the viscous forces applied on the microparticle membrane.
• The microparticle rear end and front shape transition ant their dependence on the capillary number are in good agreement

with the numerical and experimental observations reported in numerous published studies.
• Deformed shapes are morphologically in excellent agreement with literature.
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A promising advance of bioengineering consists in the development of micro-nanoparticles as

drug delivery vehicles injected intravenously or intraarterialy for targeted treatment. Pro¯cient

functioning of drug carries is conditioned by a reliable prediction of pharmacokinetics in human
as well as their dynamical behavior once injected in blood stream. In this study, we aim to

provide a reliable numerical prediction of dynamical behavior of microparticles in human ar-

teriole focusing on the crucial mechanism of lateral migration. The dynamical response of the

microparticle upon blood °ow and arteriolar distensibility is investigated by varying main
controlling parameters: viscosity ratio, con¯nement and capillary number. The in°uence of the

hyperelastic arteriolar wall is highlighted through comparison with an in¯nitely rigid arteriolar

wall. The hydrodynamic interaction in a microparticle train is examined. Fluid–structure
interaction is solved by the Arbitrary Lagrangian–Eulerian method using the COMSOL

Multiphysics software.

Keywords: Human arteriole; arteriolar distensibility; lateral migration; microparticles; drug

delivery.

1. Introduction

Microparticles are arti¯cial microstructures used as drug delivery vectors1,2 to

remedy the limitations of chemotherapy and invasive treatments. Therapeutic

applications include targeted treatment of cancerous tumor3 and thrombus.4 These

microparticles consist of a thin-walled membrane made of lipid, protein or polymer

enclosing a small amount of liquid drug and having common physical properties with

Red Blood Cell (RBC) and very similar dynamic in °ow,5,6 enabling their use as a

simpli¯ed model of RBC. The dynamical behavior of the drug carries and
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pharmacokinetic behavior of the coated drug is investigated in vivo7 and in vitro.8

The validation and optimization of microparticles functioning to successfully meet

higher therapeutic demands require a robust prediction of their dynamical behavior

under blood °ow and constraints imposed by vascular walls. The inertial lateral

migration of microparticle in micro°uidic devices in the absence of external force ¯eld

is a physical phenomenon related to intrinsic hydrodynamical forces and channel

geometry. The prominent micro°uidic applications are bio-particle manipulation,

particularly bioparticle fractionation (e.g., pinched °ow fractionation and Dean °ow

fractionation9), ¯ltration10 and focusing.11 Lateral migration is a relevant blood

viscosity determinant in microvessels (diameter less than 500�m), where RBCs

migrates toward vessel centreline owing the creation of a cell-free layer, thereby

decreasing the blood apparent viscosity (Fahræus e®ect). The lateral migration of

microparticles in the absence of inertia or in ¯nite inertia is an intriguing phenom-

enon that comes with broken microparticle symmetry (fore-aft asymmetric rigid

microparticle or deformable microparticle). Numerous studies dealt with non-inertial

lateral migration for arti¯cial deformable microparticle12,13 and for RBC.14 The

lateral migration of RBCs and art¯cial microparticles in a wall-bounded Poiseuille

°ow results from an interplay of four lateral forces: wall-induced lift force resulting

from the disturbance of °ow ¯eld induced by the presence of the microparticle and its

re°ection at the wall (the con¯nement induced repulsive wall force), shear-gradient

lift force due to the curvature of undisturbed °uid velocity pro¯le, Rubinow–Keller

lift due to slip-rotation lift force and Sa®man lift force due to the interaction of slip

velocity and shear. Besides the aforementioned lateral forces, a viscous drag acts in

streamlines. Drag results from the relative velocity of the microparticle to the °uid.

First revealed in Ref. 15, the deformability induced lift force is responsible of mi-

gration of elastic microparticles in the absence of inertia.16 Deformability-induced lift

is the key biomarker factor in malaria diagnosis since malaria-infected RBCs get

sti®er and undergo a sidewalls margination while healthy RBCs migrates toward the

centerline17 (arti¯cially hardened RBCs mimic the same behavior18). A controlling

parameter in migration is the particle Reynolds number Rep which determine if

migration is of inertial or viscous origin. For particle Reynolds number much less

than unity, viscous forces dominates and the microparticles drift from streamlines

due to their asymmetry while for greater Rep, the microparticle migrates due to

inertial forces. The migration path, velocity and the equilibrium positions are found

to depend on elastic properties of the microparticle,19,20 inertia,21,22 viscosity con-

trast between internal and external °uids,23,24 con¯nement20,24 and on the initial

microparticle position.25

In Ref. 26, Beaucourt and co-workers studied the migration of an arti¯cial mi-

croparticle as an RBC simpli¯ed model con¯ned in a capillary, for the sake of sim-

plicity, authors limited the contribution of the deformable capillary wall to a local

elastic response. Authors show that the elastic capillary wall exerts a normal force

compensating the lift force acting on the studied RBC model, guaranteeing equi-

librium of the mechanical system. More recently in Ref. 27, authors studied the e®ect
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of the arterial wall distensibility on deformation and velocity of a single micropar-

ticle, without any consideration of lateral migration. To our knowledge, apart from

the two aforementioned studies none of published papers involve the contribution of

vascular wall, let alone the in°uence of its complex mechanical behavior on lateral

migration of microparticles. This paper aims to ¯ll the lack of numerical studies on

dynamical behavior of microparticle con¯ned in blood vessels in literature, in par-

ticular on the migration process. To achieve this aim, the migration and the overall

dynamical behavior are numerically investigated for a single isolated microparticle

and for a train of three microparticles con¯ned in a hyperplastic arteriolar wall and in

an in¯nitely rigid arteriolar wall, while varying the con¯nement, the viscosity ratio

and the capillary number. The numerical investigation is performed in COMSOL

Multiphysics software package, the 2D °uid–structure interaction FSI nonlinear

problem is solved using the Arbitrary Lagrangian–Eulerian method, with a mono-

lithic approach.

2. Mathematical Model

The computational domain (Fig. 1) consists of a thin hyperelastic circular membrane

enclosing an internal °uid, freely suspended in a con¯ned external Poiseuille °ow

(blood). External and internal °uids are similar and the microparticle is neutrally

buoyant since there is no contrast between both °uid densities. The idealized straight

arteriole L ¼ 900�m is represented by a rectangular channel on which we distinguish

the lumen (the interior space of the arteriole through which blood °ows) Hl ¼ 30�m

and surrounding arteriolar wall Ha ¼ 20�m. The coordinates of the centre of mass

(xc; yc) are monitored over simulation. At the initial time, the microparticle is placed

at xc=L ¼ 0:5 and yc=Hl ¼ 0:27. The inlet velocity vi and the outlet normal stress are

applied at (�i) and at (�o), respectively. Two FSI interfaces are identi¯ed: °uid

domain-membrane (�fm) and °uid-arteriolar wall (�fa).

Fig. 1. Schematic drawing of the numerical model. Abbreviations Lg, Md and Ld denote the lagging, the

middle and the leading microparticle, respectively. The single isolated microparticle con¯guration corre-
sponds to an isolated middle microparticle.
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2.1. Arteriolar wall

Arterioles are muscular blood vessels that are able to dilate for purposes of regulate

the vascular tone and maintain vascular permeability. Arteriolar wall comprises

three layers (intima, media and adventitia) composed of smooth muscle cells, en-

dothelial cells and collagen ¯bres. These components are dynamically interconnected

making the frontiers blurred between the three layers. We limit the arteriolar wall to

the inner layer (the intima) which is modeled as a nearly-incompressible hyperelastic

material28 following the neo-Hookean solid model (Eq. (3)). The equation describing

the motion of the arteriolar wall is given by

�a
@2uðaÞ

@t2
¼ r � ¾ðaÞ; ð1Þ

where �a ¼ 960 (kg/m3) is the arteriolar wall density, uðaÞ the displacement vector

and ¾ðaÞ the Cauchy stress tensor

¾ðaÞ ¼ J�1F
@W ðaÞ

@EðaÞ F
T : ð2Þ

Here, J is the dilatation ratio, F the deformation gradient tensor, EðaÞ the

Green–Lagrange strain tensor and W ðaÞ the strain energy density function whose

nearly-incompressible form is written as

W ðaÞ ¼ GðaÞ

2
ð�I 1;a � 3Þ þ �

2
ðJ � 1Þ2; ð3Þ

where GðaÞ ¼ 6:2 (MPa) is the shear modulus, �I 1;a the ¯rst invariant of the isochoric

right Cauchy–Green deformation tensor and � ¼ 124 (MPa) the initial bulk modu-

lus. The deformable arteriolar wall that follows the neo-Hookean law (Eq. (3)) is

denoted as DAW, while the in¯nitely rigid arteriolar wall is denoted as RAW.

2.2. Blood °ow

In arteriolar blood circulation, the shear rate exceeds 100 (s�1) and blood is New-

tonian.29 In a physiological context, the Womersley number � measures the ratio of

unsteady inertial forces to viscous forces, for � � 2 unsteadiness is neglected and the

°ow is parabolic (� � 0:04 in the arteriole), the pro¯le is blunted (plug °ow) for

� � 10 (see Ref. 30). A fully-developed Poiseuille °ow is imposed at the inlet of the

arteriole

vi ¼ 4vmax

y

Hl

1� y

Hl

� �
at �ið0 � y � HlÞ; ð4Þ

where y is the ordinate. The maximum velocity vmax ¼ 17 (mm/s) located at y ¼
Hl=2 is the peak velocity in human arteriol.31

The °uids inside and outside microparticle are treated as incompressible, and

therefore the mass conservation equation is written in the following form:

r � v ¼ 0: ð5Þ
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Note that the presence of microparticle has no e®ect on the density and viscosity of

the °uid phases inside and outside microparticle. In addition, the total stress in the

°uid is expressed as

¾ ¼ �pIþ �½rvþ ðrvÞT �; ð6Þ
where p denotes the °uid pressure, I the identity tensor, v the velocity ¯eld and

� ¼ 0:00345 (Pa � s) the dynamic viscosity of the external °uid. The product ��

denotes the internal °uid dynamic viscosity where � ¼ 0:5� 2 is viscosity ratio.

Here, the °uid domain is governed by the following Navier–Stokes equation in the

absence of body forces

�
@v

@t
þ ðv � rÞv

� �
¼ �rpþ �r2v; ð7Þ

where � ¼ 1060 (kg/m3) is the °uid density.

2.3. Microparticle

The membrane is assumed to be homogeneous, isotropic, impermeable and incom-

pressible. As in Refs. 32 and 33, the membrane is treated as a very thin hyperelastic

surface of thickness h devoid of bending sti®ness. With neglecting the bending

sti®ness, we consider that membrane deformation occurs only in-plane and thus the

normal vector to the surface remains normal during the deformation. In the absence

of bending moment, transverse shear forces vanishes. The bending of a membrane is

primarily governed by two elastic parameters: its spontaneous (or preferred) cur-

vature and its bending sti®ness �b. For arti¯cial microparticles with a thin homo-

geneous wall, the bending sti®ness �b is directly related to the membrane thickness h

�b ¼
EðmÞh3

12ð1� �2Þ : ð8Þ

The dimensionless form proposed in Ref. 34 is

~�b ¼
h2

12ð1� �2ÞR2
; ð9Þ

where ~�b is the inverse of the Foppl-von Karman-number. The product EðmÞh refers

to surface Young's modulus, R denotes the initial microparticle radius and � the

Poisson ratio. In this paper ~�b ¼ 0:0001, this value is in concordance with experi-

mental values of arti¯cial microparticle membrane (~�b ’ 0:00005� 0:01)34,35 and

with RBC (~�b � 0:0001).34 As in Refs. 20 and 36, the membrane hyperelasticity

follows the strain-softening neo-Hookean law, which is found to appropriately model

the mechanical behavior of protein-reticulated membranes.37 Since the membrane is

incompressible, Eq. (3) becomes

W ðmÞ ¼ GðmÞ

2
ð�I 1;m � 3Þ ð10Þ
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and Cauchy stress

¾ðmÞ ¼ FðmÞ @W
ðmÞ

@EðmÞ F
ðmÞT : ð11Þ

Microparticle dynamics is controlled by dimensionless numbers: con¯nement

c ¼ 2R=Hl, particle Reynolds number Rep ¼ �vmaxR
2=ð�HlÞ which gives the relative

importance of intertial and viscous forces, viscosity ratio � between the internal and

the external °uids and the capillary number Ca ¼ �vmax=G
ðmÞ=h which measures

ratio of viscous forces to the elastic resistance of membrane, the time in non-

dimensionlized by the shear rate t� ¼ 	
:
t.

2.4. Boundary conditions

A zero-displacement constraint is applied at outer ends of arteriolar wall. The FSI

pertaining the °uids satis¯es the kinetic continuity

v ¼ @uðmÞ

@t
at �fm;

v ¼ @uðaÞ

@t
at �fa;

ð12Þ

representing mass conservation throughout the interface, and the FSI for the solids

satis¯es the dynamic continuity

¾ � n ¼ ¾ðmÞ � n at �fm;

¾ � n ¼ ¾ðaÞ � n at �fa;
ð13Þ

describing the equivalence of °uids stresses and solids stresses. Furthermore, let vm

denote the dynamic mesh velocity and n the outer unit normal vector. At FSI

interfaces, mesh velocity satis¯es

vm � n ¼ v � n: ð14Þ

2.5. Numerical method

The ALE was developed to combine the advantages of the purely Eulerian de-

scription and the purely Lagrangian description (see Ref. 38). The fundamental

equation for ALE gives the variation of a physical quantity f for a given particleX as

@f

@t

����
X

¼ @f

@t

����



þ @f

@x
� ðvm � vÞ; ð15Þ

where 
 identi¯es referential gird coordinates and X denotes the spatial coordinates.

The equations of the system are integrated over time using a ¯rst or second order

accurate multistep implicit Backward Di®erentiation Formula scheme. The variables

are updated at each time-step using a damped Newton nonlinear method.39 The

discretization of the °uid domain is done with P2/P1 element that gives a quadratic
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basis for velocity and linear for pressure. In order to prevent numerical instabilities,

two consistent stabilization methods were introduced: streamline di®usion and

crosswind di®usion. The ¯rst adds arti¯cial di®usion in the streamline direction

whereas the second adds di®usion in the cross direction. The mesh deformation is

calculated using di®erent nonlinear smoothing approaches: Winslow, Hyperelastic

and Yeoh. The smoothing method is selected depending on divergence problem that

occurs and element distorsion. Hyperelastic and Yeoh smoothing are both inspired

by hyperelastic mechanical laws (neo-Hookean and Yeoh, respectively). A remeshing

is automatically generated when mesh quality falls below a speci¯ed mesh quality

threshold based on equiangular skewness or distortion.

3. Results and Discussion

3.1. Validation

In this section, we report the validation of the present numerical model by comparing

our results to Ref. 20, where microparticle deformation is calculated using a mixed

¯nite-di®erence/Fourier transform method for the °ow solver and a front-tracking

method for the deformable interface. The neo-Hookean membrane is incompressible

and internal and external °uid are similar (Newtonian and incompressible). The

microparticle is con¯ned in a rigid microchannel and migrates upon a pressure-driven

Poiseuille °ow vi

vi ¼ � 1

2�

dp

dx
ðHly� y2Þ; ð16Þ

where dp=dx ¼ cte is the pressure gradient and x the abscissa. The migration history

is plotted over a range of capillary numbers Ca ¼ 0:1� 0:8 in Fig. 2. The dis-

crepancies in temporal evolution of migration between this work and the work of20

jPresent� Ref: ½20�j
Ref: ½20� � 100

are presented in Table 1. Qualitatively, results are in excellent agreement with

Ref. 20. Quantitatively, discrepancies are found to increase with increasing micro-

particle sti®ness (decreasing Ca) but remain acceptable (11:16% at most).

3.2. Lateral migration in human arteriole

3.2.1. Lift and drag

The lateral migration results from an intricate interplay of wall-induced lift fW ,

shear-gradient induced lift fSG, deformability induced lift force fDef , deformable wall

force fDW and drag fdrag.

The wall exerts a repulsive translational force perpendicular to °ow stream on the

microparticle that is pushed away from the wall toward the centerline, this force is

known as wall-induced lift fW . The wall repulsive force originates from the stresslet
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¯eld induced by the microparticle in presence of the wall40 (the symmetric compo-

nent of the ¯rst moment of the force per unit area at the microparticle surface). The

stresslet contribution is decomposed into viscosity ratio contribution and particle

shape contribution. In Ref. 41, authors showed the existence of a viscoelatsic con-

tribution in stresslet. The migration velocity near a rigid wall is inherently depen-

dant on the stresslet since the migration velocity is the wall re°ection of the

disturbance velocity (stresslet) of the spherical microparticle.

The migration away from the wall leads to a pressure gradient across the mi-

croparticle membrane and hence, in a relative velocity magnitude that is higher near

the wall where the shear is maximal. This results in an extra lift force directed toward

the nearest wall, known as shear-gradient lift force fSG. The contribution of shear

gradient is a function of the channel width and distance to the wall, with no de-

pendence on the magnitude of the shear rate or the shear gradient.24

Microparticle deformability takes indirectly part in migration via fore-aft

symmetry breaking. The presence of the soft microparticle near the wall broke the

Table 1. Validation: comparisona of microparticle

lateral position at speci¯c dimensionless times.

t�

Ca 2 4 6 8 10

0:1 0:38% 2:88% 5:63% 8:44% 11:16%

0:2 0:71% 0:82% 1:94% 3:37% 4:97%
0:4 1:13% 0:57% 0:18% 0:78% 1:40%

0:8 0:03% 0:71% 0:04% 0:35% 0:19%

Note: aComparison with Ref. 20.

Fig. 2. Microparticle lateral migration history in a pressure-driven °ow.
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fore-aft symmetry, thus permitting the micorparticle to undergo migration in Stokes

°ow.16 The fore-aft asymmetry is a generic feature of living organisms and active

matters systems that in°uence the collective and individual properties.42,43 Due to

the reversibility principle of Stokes equations, a single neutrally buoyant rigid mi-

croparticle fore-aft symmetric cannot undergo a lateral migration and remains at a

unchanged distance from the wall. In contrast, a single rigid fore-aft asymmetric

shaped rigid microparticle is able to undergo a lateral migration (Purcell's scallop

theorem for micro-swimmers). This theorem states that in a Newtonian °uid a time-

reversible motion cannot produce any net force (lift) or net °ow. However, in the

presence of nonlinear rheological °uid properties, a reciprocal swimming pattern can

lead to a net displacement in a shear thinning/thickening) °uid44 and in a visco-

elastic °uid.45 The deformability lift force is given by the analytical expression46

fDef / �vavgR
R

Hl

� �2 d

Hl

� �
; ð17Þ

where vavg is the average velocity. Here, d denotes the distance between microparticle

and vessel centerline. For the other lift forces, numerical values of Rep and Ca used in

this work are not within the range of validity of analytical expressions available in

literature. The contribution of Sa®man and Rubinow–Keller forces is neglected since

the microparticle is neutrally buoyant47,48 and the particle Reynolds numbers

Rep are much less than unity11 (Rep � 10�3 and � 10�2 for c ¼ 0:5 and c ¼ 0:15,

respectively).

The drag arises from the di®erence in fore and aft velocities of the microparticle.49

The wall induces a °ow disturbance around the microparticle and tends to accelerate

°uid around the microparticle increasing fdrag by a factor given by Faxen's correction

(see Ref. 50). The drag decays as the microparticle moves away from the wall (rel-

ative velocity decreases). Theoretical analysis of drag acting on deformable particle

(bubble) is provided in Ref. 51.

3.3. Single isolated microparticle

3.3.1. Deformation

In response to the parabolic blood °ow start the microparticle elongates in the

streamlines direction and tilts. As Ca increases, the microparticle sti®ness decreases

and the microparticle is easily deformed. For c ¼ 0:5 and for both arteriolar walls,

this deformation enables the development of a pointy tail (cusp-like instability) at its

rear-end and the tear-drop shape is observed for the DAW (Fig. 3) and the RAW

(Fig. 4(a)). Since this cusp tend to extend closer to the wall, the microparticle is

decelerated. As the microparticle moves away from the wall, the cusp relaxes and a

roughly ellipsoidal shape is observed. At the vicinity of the centerline, the micro-

particle exhibits the famous slipper-shape (see Fig. 3). The slipper shape observed for

RBCs52,53 and arti¯cial microparticles54 is found to result from a loss in stability of

the symmetric shape55 and allows the RBC to move faster in highly con¯ned zones.
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The fore-aft asymmetry is much less pronounced for c ¼ 0:15 and the microparticle

remains roughly ellipsoidal. In fact, due to its size, the smallest microparticle moves

at a greater distance from the RAW (even if at t ¼ 0 both centers of mass are placed

at the same distance to the wall), the in°uence of the RAW (i.e., asymmetry) on

microparticle dynamic is consequently diminished.

(a) RAW

(b) DAW

Fig. 4. Microparticle velocity magnitude ð� ¼ 2; c ¼ 0:5;Ca ¼ 0:5Þ at t� ¼ 1:7; 7:94 and 15:86.

Fig. 3. (Color online) Image sequence of deformed shapes at speci¯c times for c ¼ 0:5, DAW. Green color

is for � ¼ 0:5, red for � ¼ 1 and blue for � ¼ 2.
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3.3.2. Migration

In the presence of the DAW, the initially straight arteriole dilates and develops

symmetrically an upper and a lower fusiform-liked bulges (Fig. 5). The maximum

arteriolar dilation is of 66% which is in the range of experimental values reported in

Ref. 56 for human coronary arteriole. As a consequence of arteriolar dilation, the

microparticle is temporarily downward aspired due to its vicinity with the lower wall,

thereby, the migration is delayed (Fig. 6).

During the aspiration, fDW and fSG are prominent forces. The aspiration ends at

t� ¼ 2:5 and t� ¼ 15 for c ¼ 0:5 and c ¼ 0:15, respectively, re°ecting that the

smallest micorparticle is more sensitive to wall distensibility (i.e., to fDW). This e®ect

becomes noticeable in Fig. 6(d). For c ¼ 0:5, the zone marking the transition from

the aspiration to the e®ective migration get sharped as Ca increases (Fig. 6(a)).

Magni¯cation of this zone reveals that the highest the Ca, the shortest the aspiration

(Fig. 6(b)). As shown in Fig. 6(c), this trend is not observed for c ¼ 0:15 and the

e®ective migration is observed to start at a common threshold (t� ¼ 15). The in-

°uence of � on migration altitude is accentauted for c ¼ 0:5 and is shown to increases

with Ca (see Fig. 6(a)). In the presence of the RAW, the migration starts quasi-

instantaneously. The smallest microparticle migrates quasi-linearly whilst the mi-

gration history shape of the largest one is similar to that of a logarithmic function

(refer to Figs. 6(a) and 6(c)). The plateau observed for di®erent Ca corresponds to

the equilibrium position morphologically indicated by stable deformation states (i.e.,

symmetrical parachute shape). The largest microparticle migrates beyond the ar-

teriole centerline (0:510 � yc=Hl � 0:596). Note that the centerline (yc=Hl ¼ 0:5) is

not a stable equilibrium position since a little de°ection will never return the

microparticles back.57 For both walls, the largest microparticle moves closer to the

arteriole centerline. Regarding the in°uence of �, obtained results con¯rm that �

Fig. 5. Maximum arteriolar dilation.
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restricts microparticles deformation and has an e®ect on the time required to reach

the equilibrium shape (not on the equilibrium shape itself). The in°uence of � on

migration altitude increases with increasing Ca and c.

3.3.3. Lateral velocity

Lateral velocity or migration velocity Vy refers to y-component of membrane veloc-

ity. For c ¼ 0:5, the \hook" in Vy time evolution in the presence of the RAW is due to

fSG that predominates other lift forces at early-times. Interestingly, in the presence of

the DAW, Vy history is characterized by a \bump" as the microparticle migrates

rapidly (2:5 < t� < 5) before it decelerates (see Fig. 7(a)). For c ¼ 0:15 and as pre-

viously noticed, the smallest microparticle is more sensitive to fDW and Vy evolves

smoothly for both walls (RAW and DAW), expect for t� < 2:5, where numerical

instabilities are relatively important for DAW (Fig. 7(b)). For both con¯nements, Vy

tends to vanish as the microparticle moves closer to the equilibrium position.

(a) (b)

(c) (d)

Fig. 6. (Color online) Microparticle migration time evolution: (a) c ¼ 0:5; (b) enlarged version of

(a), (c)c ¼ 0:15; and (d) DAW. Red color is for Ca ¼ 0:5, black for Ca ¼ 0:1 and blue for Ca ¼ 0:02.
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3.4. Microparticles train

In this section, we consider a train of three microparticles. The main purpose is to

study the in°uence of the deformable wall on the hydrodynamic inter-particle in-

teraction aiming to assess the risk of inter-particular clustering and/or microparticles

adhesion/accumulation near the wall and to clarify the interplay of main parameters

in particle-to-particle dynamics for drug-delivery vectors design. Such situations

could severely impede the blood stream and eventually, results in a non-targeted

release of the drug, thus, toxifying healthy tissues. Let s1 stand for the centroid–
centroid distance between the middle and the lagging microparticle and s2 the

centroid–centroid distance between the middle and the leading microparticle (see

Fig. 1). At initial time, both spacing are set to s1 ¼ s2 ¼ 20 (�m) and s1 ¼ s2 ¼ 6

(�m) for c ¼ 0:5 and c ¼ 0:15, respectively, keeping the ratio a=s1;2 ¼ 0:75 similar for

both con¯nements. For ease of reading, the main results are presented and discussed

separately for each con¯nement in dedicated subdivision (c ¼ 0:15 and c ¼ 0:5), each

one is divided into two paragraphs, the ¯rst belongs to the migration/deformation

and the second deals with the inter-particle spacing evolution. The section will be

concluded by comments related to strain energy density.

3.4.1. c ¼ 0:15

An intriguing mechanism is observed for all Ca and �, the lagging microparticle

overtook the middle one. This kinetic consists of an approach phase t� ¼ 15� 20, a

binary collision t� 	 19:5� 22:66 and a separating phase t� 
 24 (Fig. 8). During the

approach, phase isolines of pressure distribution showed a high-pressure area be-

tween both microparticles resulting in a repulsive force,58 this force combined with

the microparticle position (the lagging microparticle experiences a high-°ow strength

and hence moves faster) and microparticle size (due to its relative small size, the

space is large enough to permit the overtaking process) is a propitious combination to

this kinetic. During the binary collision, microparticles lose symmetry and their

(a) (b)

Fig. 7. Microparticle lateral velocity history (a) c ¼ 0:5 and (b) c ¼ 0:15.
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curvature vanishes at opposite faces (Figs. 8(b)–8(d)). The consecutive deformations

observed during the binary collision are in excellent agreement with deformation of

colliding cells in linear shear °ow.36 The overtaking behavior is indicated on curves

by bumps mirrored to each other. For the lagging microparticle, the bumps widens

with Ca while for the middle one, the bumps width seems to be independent on Ca

(see Fig. 9(a)). For both positions, the apparition of the bumps appears later as Ca

decreases and the gap between the studied � is diminished for Ca ¼ 0:1. Upon closer

examination of � e®ect, for Ca ¼ 0:02 and 0:1 the in°ection point appears sooner for

(a) t� ¼ 15

(b) t� ¼ 19:83 (c) t� ¼ 21:6

(d) t� ¼ 22:66

(e) t� ¼ 23:8

Fig. 8. (Color online) Overtaking behavior (c ¼ 0:15, Ca ¼ 0:5, DAW): (a) Isolines of pressure contour at

the approach phase, color legend is for microparticle velocity. (b)–(e) Sequential snapshots of overtaking,
green color is for � ¼ 0:5, red for � ¼ 1 and blue for � ¼ 2.
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the less important � and later for � ¼ 2. Conversely, the in°ection in the bumps for

Ca ¼ 0:1 ¯rst occurs for � ¼ 2 followed by � ¼ 0:5; 1 (refer to Fig. 9(b)).

Unlike the single isolated con¯guration, microparticles migrate nonlinearly in the

presence of the RAW and unexpectedly, the lagging microparticle hardly migrates.

Its migration is even more di±cult as Ca decreases and we observe a net aspiration

(as in the presence of the DAW), suggesting that in this particular case fW like fDW,

acts as a suction force (Fig. 9(c)). Curiously for Ca ¼ 0:5, the lagging microparticle

combines upward and downward migration.

The lateral velocity of the leading microparticle evolves quiet similarly to that of

the single isolated one, whichever the arteriolar rigidity (RAW or DAW). The same

does not apply to the two other microparticles. For the RAW, the lateral velocity

changes its monotony and this, more frequently for the lagging microparticle reaf-

¯rming its arduous upward migration (Fig. 10(a)). As for the migration (i.e., mirror

bumps) Vy, time-evolution of the middle and the lagging microparticle is a rough

re°ection to each other (Fig. 10(b)). The in°ections in each curve (Vy ¼ fðt�Þ) depict
the balancing between the kinetic and the potential energies.

In the presence of the DAW, s1 and s2 diverge at t� ¼ 10. As for c ¼ 0:5, s2
manifest an exponential growth. For s1, the curves slightly decrease with decreasing

(a) (b)

(c) (d)

Fig. 9. Microparticles migration histories (a) (� ¼ 1, c ¼ 0:15, DAW), (b) c ¼ 0:15, DAW, (c) (� ¼ 1,

c ¼ 0:15, RAW), and (d) Solid lines are for c ¼ 0:5 and dashed lines for c ¼ 0:15 (� ¼ 1, RAW).
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Ca till the overlapping at t� 	 21:6 (see Fig. 8(c)) and starting from this point, they

rise similarly to s2. Plots shown in (Fig. 11(a)) reveals less membrane shear resis-

tance, less spacing growth. This in°uence is maintained but minimized for s1
(t� 
 21:6). For the RAW, both spacing are growing with time (exponential or

logarithmic-like growth) and are observed to expand the most with the highest Ca

and the less for the intermediate Ca. In stark contrast to other studied combinations,

s1 widens more rapidly than s2 (Fig. 11(c)).

3.4.2. c ¼ 0:5

Unsurprisingly, we found that the migration altitude is important for the leading

microparticle (the middle microparticle is hampered by the presence of too micro-

particle on its both sides, the lagging one is restrained by too in-front microparticles)

(see Fig. 12). The discrepancies in middle and lagging migrations are barely dis-

cernible. For the sake of conciseness, we con¯ne ourselves to present the combination

Ca ¼ 0:1, � ¼ 1 in order to evaluate the risk of accumulation near the rigid wall.

Plots in Fig. 9(d) con¯rm the upward migration. Because of the important asym-

metry, we chose to quantify the deformation of the microparticles through the de-

formation gradient FðmÞ (instead of the geometric Taylor parameter) that gives

information about the local deformation with respect to the non-deformed (refer-

ential) state. The main result is microparticle's position in°uence on arteriolar wall

rigidity e®ect. In fact, the divergence between the deformation gradients for each

arteriolar rigidity model widens as the microparticle is placed far from the arteriole

entrance (Fig. 13). Qualitatively, quite a few uncommonly observed are character-

izing morphological evolution of the largest microparticle. The middle microparticle

develops a sharp cusp-like instability as a results to a combination of important

softness, quasi-null bending rigidity, in¯nite wall rigidity and a favorable position.

This important local deformation leads to the appearance of a singularity and hence,

to convergence issues. We believe that the singularity is a consequence of in¯nite

stress at the cusp that could be ¯xed by increasing the bending rigidity and/or

(a) (b)

Fig. 10. Microparticles lateral velocity histories (� ¼ 1, c ¼ 0:15, Ca ¼ 0:1): (a) RAW and (b) DAW.
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modeling the membrane mechanical behavior using a strain-sti®ening law (e.g.,

Skalak et al. law), as both restrict microparticle deformation. We opt for a simpler

alternative consisting in decreasing the capillary number to Ca ¼ 0:4 (by increasing

GðmÞ). As for the single isolated con¯guration, the cusps relax with time (except for

the singularity-related case). For Ca 
 0:4, the lagging and middle microparticles

°atten in a signi¯cant way in the immediate vicinity to the RAW, in addition to

cusps formation (Fig. 14). The °atness disappears progressively as microparticles

move away from the wall. As illustrated in Fig. 15, wall deformability also brings

about a localized °atness and cusp formation, the novel observed behavior is the

trend to \raise" for Ca ¼ 0:5 (t� ¼ 4:53) which relatively restricts the °attened zone

in close contact to the wall. This deformation mode is propitious to lateral migration

as it helps to circumvent the fDW and the constraints imposed by narrow spacing

from neighboring microparticles (i.e., hydrodynamic pressure). Besides giving in-

formation about morphological changes in microparticle shape, Fig. 14 also serves to

(a) (b)

(c) (d)

Fig. 11. (Color online) Inter-particle spacing time evolution for � ¼ 1, dashed lines are for s1 and solid
ones for s2 (a) c ¼ 0:15, DAW, (b) c ¼ 0:5, DAW, (c) c ¼ 0:15, RAW and (d) c ¼ 0:5, RAW, green color is

for Ca ¼ 0:4.
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concretely describe the evolution of spacing s1 and s2 and to show the clustering

while Fig. 15 highlights the in°uence of Ca on microparticles lateral velocities.

In the presence of the DAW, s1 and s2 fall below 20 (�m) and diverge at t� ¼ 5,

above this point, s2 increase in an exponential fashion while s1 evolve quasi-steadily

and oscillate between 15.22 (�m) and 17.64 (�m). Apropos of the in°uence of Ca, it

is observed that the higher Ca the less s2, this in°uence is not obvious on s1
(Fig. 11(b)). As regards to the RAW, s2 evolves in a concave fashion and in contrary

to previously noticed for the migration of the lagging and the middle microparticles,

the in°ection points in s2 evolution are found to occur sooner as Ca decreases.

Surprisingly, the temporal evolution of s1 and s2 for Ca ¼ 0:4 and Ca ¼ 0:5 depict an

outright concavity change (Fig. 11(d)). The corresponding descending curves are a

sign of microparticle clustering. Microparticle deformability plays a major role in

clustering and in inter-particle spacing decrease. In fact, a hydrodynamic °ow forces

amount is absorbed by microparticle deformation, reducing the repulsive force that

acts to keep microparticles apart. While the clustering of RBCs is protein-induced

(a) (b)

(c)

Fig. 12. (Color online) Microparticles migration time evolution c ¼ 0:5, DAW: (a) Lg, (b) Ld and (c) Md.

Red color is for Ca ¼ 0:5, black for Ca ¼ 0:1 and blue for Ca ¼ 0:02.
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(a) (b)

(c)

Fig. 13. Deformation gradient (c ¼ 0:5, Ca ¼ 0:1), x denotes the new location of the material particle and
Y denotes the original one (and so on). Solid lines are for RAW and dashed lines for DAW: (a) Lg, (b) Md

and (c) Ld.

Fig. 14. Sequential snapshots of deformed shapes (� ¼ 1, RAW).
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(a) t� ¼ 8:5

(b) t� ¼ 31:17

Fig. 16. Arteriolar dilation and microparticle lateral migration in the Poiseuille blood °ow (� ¼ 1,

c ¼ 0:5, Ca ¼ 0:5, DAW). The rainbow color table shows °uid velocity magnitude while the second one
represents the vertical displacement of the solid domain.

Fig. 15. Sequential snapshots of deformed shapes (� ¼ 1, DAW). Red color is for Ca ¼ 0:02 and black for

Ca ¼ 0:5.
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and results from an intricate balancing of \cross-bridging" and depletion forces,59 the

clustering of arti¯cial microparticles is due to the presence of ahead converging

vortexes and rear diverging ones.60

The elastic strain energyW ðmÞ increases with microparticle deformability, thereby

with elastic resistance61 and microparticle position. The wall rigidity is observed to

signi¯cantly increase W ðmÞ since the °ow strength is exclusively directed toward the

microparticle which stores the elastic energy through deformation (Fig. 17(a)). The

temporal evolution ofW ðmÞ during the three phases composing the overtaking kinetic

(15 � t� � 24) has a trend similar to microparticle shear stress evolution62

(Fig. 17(b)).

4. Conclusion

In this work, we studied the in°uence of arteriolar hyperelasticity on arti¯cial

microparticle deformation, trajectory and velocity during the process of lateral

migration. Furthermore, we examined the same in°uence on inter-particle hydro-

dynamic interactions. Results have revealed the presence of a lift-compensating

suction force fDW that modi¯es the overall microparticle dynamic in °ow and brings

about a risk of accumulation near the wall. Deformation modes observed for the

DAW are in good agreement with those reported in the literature for rigid micro-

channels (i.e., tear-drop, ellipsoidal and slipper shapes). The suction force magnitude

is con¯nement-dependent and sti®ness-dependent, for larger microparticle the force

is also viscosity ratio-dependent. Larger microparticle (c ¼ 0:5), relatively sti®

(Ca ¼ 0:02) and whose viscosity is less than the carrying blood °ow viscosity seems

to be less sensitive to the aspiration and migrates easily.

Regarding the in°uence of the arteriolar distensibility on inter-particle interac-

tions, the main ¯ndings include the process of overtaking (c ¼ 0:15) and an extra

deformation mode (c ¼ 0:5) (Fig. 16). Interesting observations are also made for the

(a) (b)

Fig. 17. Elastic energy density � ¼ 1 : (a) Ca ¼ 0:1, solid lines are for RAW and dashed lines are for

DAW, (b) Ca ¼ 0:5, solid lines are for c ¼ 0:5 and dashed lines for c ¼ 0:15.
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RAW like clustering (c ¼ 0:5), the highly pointed rear-end that tends to subdivide

into two cusp-like instabilities and the presence of a suction force even in the absence

of arteriolar distensibility (c ¼ 0:15). Prescribing combinations of microparticle

mechanical and rheological properties is necessary in microparticle design to antic-

ipate risky situations in a medical context, in particular clustering and accumulation

near the wall. Drawing on the obtained results, the risk of aggregation could solely be

discarded for c ¼ 0:15 in the presence of the RAW. For this same combination, the

risk of microparticles adhesion to wall is unexpectedly present and increases with

increasing microparticle sti®ness. Blood heterogeneity, larger amount of micro-

particles and various out°ow conditions would provide a deeper knowledge of mi-

croparticle dynamics in human blood vessels.
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Abstract

A promising advance of bioengineering consists in the development of micro-nanoparticles as drug de-
livery vehicles injected intravenously or intraarterialy for targeted treatment. Proficient functioning of drug
carries is conditioned by a reliable prediction of pharmacokinetics in human as well as their dynamical be-
havior once injected in blood stream. In this study we aim to provide a reliable numerical prediction of
dynamical behavior of microparticles in human left coronary artery focusing on their behavior in the vicinity
of the coronary bifurcation. We investigate the velocity, the deformation and the trajectory of three micropar-
ticles upon pulsatile blood flow and arterial compliance with varying the capillary number and the initial
vertical position. The study is carried out within physiological conditions to provide accurate results. Fluid-
structure interaction is solved by the Arbitrary Lagrangian Eulerian method using the COMSOL Multiphysics
software.

Keywords: microparticle, coronary bifurcation, pulsatile blood flow

1 Introduction
Microparticles are artificial microstructures used as drug delivery vectors to remedy the limitations of chemother-
apy and invasive treatments. It consists of a thin-walled membrane made of lipid, protein or polymer enclosing
a small amount of liquid drug. The coated drug is released via membrane rupture or diffuses through per-
meable membrane. Therapeutic applications include targeted treatment of cancerous tumors [1] and coronary
thrombus [2]. For the latter treatment, drug-loaded microparticles are injected in the coronary circulation to
dissolve the thrombosis and to reestablish blood flow. The dynamical behavior of the drug carries and phar-
macokinetic behavior of the coated drug is investigated in vivo and in vitro in literature. The validation and
optimization of microparticles functioning to successfully (and safely) meet higher therapeutic demands require
a robust prediction of the individual and the collective dynamical behavior of microparticles under blood flow
and constraints imposed by vascular walls. A challenging task is the prediction of the preferred trajectory of
microparticles entering the coronary branches under the action of pulsatile blood flow and arterial compliance.
Topics of interest in arterial bifurcation studies include the wall shear stress which is a factor closely associated
to pathological lipid cell deposition in artery wall (atherosclerosis), mass transfer and red blood cells separation.
Herein, we are interested in the left coronary artery (LCA) whose arterial wall rich in elastic fibers alternates an
expansion-recoil as blood is pulsed through it. We aim to predict within physiological conditions, the dynamic
behavior of drug-loaded hyperelastic microparticles flowing in the LCA and partitioning at its branches. As
far as authors know, this is the first study of this kind. Obtained results related to deformation, velocity and
trajectory are briefly summarized and presented in the present paper. The numerical investigation is performed
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in COMSOL Multiphysics software package, the 2D fluid-structure interaction non-linear problem is solved
using the Arbitrary Lagrangian Eulerian method, with a monolithic approach. This in silico approach exempts
from the ethical limitations related to in vivo studies and complicated experimental setup of in vitro studies.

2 Model description
As schematized in Figure 1, the LCA model includes the left main coronary artery (LM) that branches into the
left anterior descending branch (LAD) and the left circumflex branch (LCx). The total length of the idealized
LCA model is 7 cm. The angle formed by the LM and both daughter branches is set to 142.5◦ and the angle
between the LAD and the LCx to 75◦ (values provided by Doutel et al. in [3]). Both branches are tapering
toward the outlets, which is a characteristic of the arterial system structure. Three microparticles uniformly
spaced are placed at the entrance of the LM at three different vertical positions p1 or p2 or p3 corresponding to
y = H/6, H/2 and 5H/6, respectively, where H = 3.5 mm is lumen height (lumen is the interior domain of
the vessel through which blood flows) and y the ordinate.

Figure 1: Schematic description showing the idealized LCA geometry and initial positioning of microparticles.
Abbreviations Lg, Md and Ld refer to the lagging, the middle and the leading microparticle, respectively.

2.1 Arterial wall
The three layers composing the arterial wall (namely the intima, the media and the adventitia) are hyperelastic.
For the sake of simplicity, the three layers are treated as isotropic with a density of 1150 kg/m3. Arterial hy-
perelasticity is modeled using the 5-parameters Mooney-Rivlin law where the energy density function W (cor)

is expressed in terms of material constants related to the distortional response of the wall Cij , material constant
related to the volumetric response D, the first and the second right Cauchy-Green deformation tensor invariants
Ī1 and Ī2 and J the determinant of the deformation gradient tensor F. The nearly incompressible form of W (m)

could be written as:

W (cor) = C01(Ī2−3)+C10(Ī1−3)+C11(Ī1−3)(Ī2−3)+C20(Ī1−3)2+C02(Ī2−3)2+
1

D
(J − 1)

2
, (1)

Material and geometrical properties of the arterial wall are presented in the table below.
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Table 1: Arterial wall proprieties (extracted from [4]).

Height (m) C10 (Pa) C01 (Pa) C11 (Pa) C20 (Pa) C02 (Pa) D (Pa)
Intima 2.3E-4 2.04E5 2.23E5 3.71E6 1.37E6 2.37E6 0.52E6
Media 3.1E-4 1.17E5 1.28E5 6.72E5 2.24E5 5.69E5 0.92E6

Adventitia 3.4E-4 1.89E5 2.02E5 1.38E6 4.59E5 1.34E6 0.57E6

2.2 Pulsatile blood flow
Human heart contracts to pump blood during systole and relaxes to fill during diastole. This cyclic behavior
make blood pulsatile in arterial vascular network. In biofluidics, pulsatility degree is quantified by the non-
dimensional Womersley number α representing the ratio of transient inertial forces to viscous forces ( α ≈
2.72 in the LCA). Throughout a heartbeat, the systolic pressure is stored in the wraparound coronary artery
and released at diastole. Consequently, the arterial wall alternates expansion and recoil. The velocity profile
imposed at the inlet is written as:

Ve = 6V (t)
y

H

(
1− y

H

)
, (2)

where V (t) is the instantaneous pulsatile velocity in the human LCA measured in vivo by Bénard in [5], it is
expressed as following:

V (t) = V0 +
8∑

n=1

Vn cos(nωt) +Wn sin(nωt) , (3)

where V0 = 0.16 m/s is the average blood velocity throughout a heartbeat and ω ≈ 7.85 rad/s the angular
frequency. The coefficients Vn and Wn are given in Table 2. The signal corresponding to V (t) is plotted in
Figure 2, we distinguish the systole (0 < t (s) <0.29) and the diastole (0.29 < t (s) <0.78).
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Figure 2: Signal of instantaneous velocity V (t) in the
LCA.

n Vn (m/s) Wn (m/s)
0 0.15634 0
1 -0.02995 0.00808
2 0.02458 0.03887
3 -0.01182 -0.00838
4 0.00985 0.00280
5 -0.01009 0.00313
6 0.00618 -0.00113
7 0.00133 0.000874
8 -0.00360 -0.000235

Table 2: Numerical values of
coefficients Vn and Wn.

In the absence of precise data on physiological outflow conditions in the LCA in literature, a zero normal stress
boundary condition is imposed at LCx and LAD ends. This widely used boundary condition means that the
outer circulatory domain resistance is neglected and branches ends are exposed to the atmospheric pressure. A
Carreau model is employed to model the shear thinning behavior of blood in coronary blood circulation:

η = η∞ + (η0 − η∞)[1 + (λγ̇)2]
k−1
2 , (4)

where η0 = 0.056Pa · s is the zero shear viscosity, η∞ = 0.00345Pa · s is the infinite shear viscosity, λ =
3.313 s and k = 0.3568 model parameters and γ̇ (s−1) is shear rate. Blood density is set to ρ = 1060 kg/m3.
The shear-thinning implies a flattened velocity profile.
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2.3 Microparticles
Microparticles are formed by a thin membrane enclosing a small amount of liquid drug. The homogeneous,
isotropic and impermeable membrane is treated as a very thin hyperelastic surface of thickness h devoid of
bending stiffness. The membrane hyperelasticity follows the strain-softening neo-Hookean (NH) law whose
incompressible form is expressed as:

W (m) =
G(m)

2

(
Ī1,m − 3

)
, (5)

and Cauchy stress:

σ(m) = F(m) ∂W
(m)

∂E(m)
F(m)T , (6)

in which G(m) is the shear modulus, F(m) the deformation gradient tensor of the membrane and E(m) the
Green-Lagrange strain tensor. The NH law is found to accurately describe mechanical behavior of protein-
reticulated membrane [6]. The coated drug is treated as a Newtonian fluid (η = 0.00345Pa · s, ρ = 1060 kg/m3).
The deformation of microparticles is governed by the non-dimensional capillary number Ca which mea-
sures the ratio of viscous forces to the elastic resistance of membrane. The capillary number is expressed
as Ca = η∞V0/(G

(m)h). The fluid domain constituted by the coated drug and blood is governed by Navier-
Stokes and continuity equations.
At fluid-structure interfaces, stress continuity and velocity continuity are imposed as boundary conditions. A
zero-displacement constraint is applied at arterial wall ends.

2.4 Numerical method
The Arbitrary Lagrangian Eulerian (ALE) method combine the advantages of the purely Eulerian description
and the purely Lagrangian description. The fundamental equation for ALE gives the variation of a physical
quantity f for a given particle X as:

∂f

∂t
|X =

∂f

∂t
|χ +

∂f

∂x
· (vm − v) (7)

where χ identifies referential gird coordinates, x denotes the spatial coordinates, vm is the dynamic mesh
velocity and v the material velocity. At fluid-structure interfaces mesh velocity satisfies the condition:

vm · n = v · n , (8)

where n is the outer normal unit vector. Time-integration is done using a first or second order accurate multi-
step implicit Backward Differentiation Formula (BDF) scheme and variables are updated at each time-step
using a damped Newton nonlinear method (first introduced in [7]). The discretization of the fluid domain is
done with P2/P1 element that gives a quadratic basis for velocity and a linear basis for pressure. In order to
prevent numerical instabilities, two consistent stabilization methods were introduced: streamline diffusion and
crosswind diffusion. The mesh distortion is limited using Laplace [8], Winslow [9] and hyperelastic non-linear
smoothing methods. A remeshing is automatically generated when mesh quality falls below a specified mesh
quality threshold based on equiangular skewness or distortion.
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3 Results and discussion

3.1 Coronary wall deformation

Figure 3: Localization of coronary walls.

The displacements of walls localized in the LM (W1,6) and in the branches (W2−5) are plotted in Figure 4.
The walls W1,6 alternate deflection and inflection due to blood pulsatile wave propagation. A close look on
plots reveals a symmetrical displacement during the systole (t ≤ 0.29 s) and an asymmetrical evolution during
diastole (t > 0.29 s). Furthermore successive displacements of wall W1 during diastole reach a common
value indicated by the intersection point I1 and vary negligibly afterward, while displacement of the wall W6

displacement vary significantly after intersecting at I2 and even goes so far as the maximal displacement of
1.25 mm at t = 0.65 s, equalizing the maximal value reached during the systole at t = 0.29 s.
One can see that walls W3,4 expand symmetrically during diastole in a parabolic-like fashion without exceeding
22% of dilation. The symmetry is also observed at early times in systole, which asserts a fully symmetrical
behavior.
In the case of walls W2,5, the plots provide evidence that displacements during systole are asymmetrical (a gap
of 38-48%). The asymmetry is also noted during diastole including early times and excluding t = 0.29 s, thus
showing the co-existence of asymmetrical and symmetrical deformation in opposite coronary walls even in the
LM (excepted walls W3,4 bounded by the corner). The height-evolution of W1,2 and W5,6 plotted in Figure 5
confirms this co-existence.
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Figure 4: Vertical displacement of coronary walls.
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Figure 5: Expansion-recoil at t = 0.22 s (red) and t = 0.60 s (blue).

Now regarding the flow properties, Figure 6 shows that blood velocity at outlets is higher in the LAD, which
thus combines higher flow velocity and higher deformation. The influence of the hyperelastic coronary wall
is highlighted through comparison with an infinitely rigid wall. From now on, the abbreviation DCW refers
to the hyperelastic coronary wall modeled using the 5-parameters Mooney-Rivlin law (Eq. (1)) while the
abbreviation RCW is for the rigid coronary wall. For the LCA, the comparison between the two walls is even
more relevant due to the pulsatile character of blood. Furthermore, the wall shear stress (WSS) (the force per
unit area exerted tangentially by blood on vascular walls) is found maximal at W3,4 and is even more higher
in the RCW. Example of WSS distribution is shown in Figure 7. The higher WSS at bifurcating inner walls
is a consequence of the velocity skewing toward these same walls as seen in Figure 8. In the RCW skewing
vanishes with times and is found to significantly reduces in the DCW. These preliminary results related to
coronary wall deformation either in the LM or in daughter branches promise a peculiar dynamical behaviour
of microparticles flowing in the LCA.
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Figure 6: Blood velocity at outlets in daughter branches, DCW.
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Figure 7: Wall shear stress distribution at t = 0.4 s.
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Figure 8: Blood velocity skewing in the DCW.

3.2 Off-centered microparticles

A-Trajectory

The influence of coronary wall rigidity on off-centred microparticles (initially placed at p1 or p3) is plotted
in Figure 9. It reveals that in the presence of the RCW, trajectories followed by the centers of mass (xc,yc)
are coincident (Figure 9(a) and 9(b)). Besides, blood being less disrupt in the RCW, trajectories are much
more smoother than those obtained in the DCW. In this conditions, microparticles move in a straight pattern
in the RCW. Adding to this, overtaking do not occur in the absence of hydrodynamic suction (see [10] for
further details). Overtaking in the DCW is preceded by a binary collision characterized by a flattening of sides
in tight contact. In the daughter branches where the shear stress is relatively low due to flow splitting at the
bifurcation, large oscillatory recirculation zones are observed (two vortexes in each branch). Flow recirculation
is accentuated by coronary expansion and viscosity decrease caused by shear-thinning of blood. Vortexes in the
LAD are largest due to the higher flow rate and the higher expansion. Interestingly, microparticles are trapped
in the formed vortexes as indicated by the hook-like pattern and the loops in the centers of mass trajectories.
In contrast to observation in [11] where vortex-trapped microparticles conserve a circular shape and undergo
a tank-treading motion during residence in vortex, in the present configuration vortex-trapped microparticles
experience a deformation, this deformation might be transitory and vanishes as microparticles orbit repeatedly
(which is not reported here as microparticles tank-tread a single time).
On the lateral migration mechanism depicted in Figure 9(c), microparticles flowing in the DCW are aspired
due the hydrodynamic suction force near the upper or the lower wall before effectively migrate toward blood
vessel centerline. While this behavior is produced on both opposite sides, the resulting curves are mirroring
only in the RCW. Now regarding the influence of membrane shear resistance combined to that of the wall, it is
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shown in Figure 9(d) that Ca impacts the vortex trapping (especially for p3) as well as trajectories. Conversely,
trajectories in the RCW are insensitive to Ca and the gap between the curves is scarcely discernible. Visual
demonstration of off-centered microparticle vortex-trapped in the DCW is given in Figure 10, the figure also
shows that once freed from the vortex in the LAD, the Md microparticle exclusively backward flows toward
the LM.
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Figure 9: Effect of coronary distensibility for Ca = 0.01 (a-c). Effect of the capillary number combined with
that of the coronary distensibility on the Md microparticle (d).

p1p3

Figure 10: Microparticles vortex-trapped at t = 0.6 s for Ca = 0.01.

The risk of microparticles clustering is appraised by monitoring particle-particle spacing s1 (the distance sep-
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arating the centers of mass of the Lg and the Md microparticle) and s2 (the distance separating the centers of
mass of the Md and the Ld microparticle) through time (Figure 11). In the RCW, the spacings are found to
evolve in a quite similar fashion independently on the initial vertical position. This can also apply for the DCW
with the exception that the spacings growth after a first inflection for p1. Clustering risk is more probable for
s1 independently on the nature of the coronary wall and the initial vertical position. This is attributed to the
relatively higher velocity of the Ld microparticle.
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Figure 11: Time-evolution of particle-particle spacing for Ca = 0.01.

B-Deformation

Deformation of microparticles is quantified by deformation gradient tensors F(m)
xX and F

(m)
xY (Eq. (6)) instead of

Taylor parameter because of asymmetrical deformation exhibited in some regions. These quantities are plotted
against xc for meaningful comparison between the rigid and the hyperelastic walls (see Figures 12 and 13).
It is clear that microparticles are much more deformed in the presence of the DCW and the corresponding
curves present larger inflection points due coronary wall distensibility. In the rigid walled LM (xc ≤ 0.035 m),
deformation gradients are uniformly dephased (vertical dephasage corresponds to the initial particle-particle
spacing). The Lg microparticle is found to reach an asymptotic deformation when flowing in the DCW (but only
for p1). A general observation is plots is the smooth evolution in comparison to the DCW case. Deformation
gradients plotted for Ca = 0.01, 0.08 in Figure 14 reveals that the influence of membrane shear resistance
on the whole microparticle deformation is noteworthier in the presence of the RCW. The same applies for the
position p3. The variations of deformation depending on the initial vertical position stated above ensues from
the asymmetrical deformation of walls W1,2,5,6. The deformation of microparticles is qualitatively illustrated
in Figures 16-18, pointing out a mirroring deformation and particle-particle spacing in the RCW in a stark
contrast with the DCW.
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Figure 12: Deformation gradient for Ca = 0.01.
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Figure 14: Time-evolution of the deformation gradient of off-centred microparticles.

DCW

RCW

Figure 15: Deformed shapes at t = 0.007 s (red), 0.009 s (black), 0.012 s (blue), 0.015 s (green) and 0.019 s
(cyan) for Ca = 0.08.
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Figure 16: Deformed shapes at t = 0.25 s (red), 0.27 s (black), 0.28 s (blue), 0.29 s (green), 0.32 s (cyan) and
0.34 s (gray) for Ca = 0.08, DCW
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RCW

Figure 17: Deformed shapes at t = 0.12 s (red), 0.165 s (black), 0.178 s (blue), 0.193 s (green), 0.231 s (cyan)
for Ca = 0.08, RCW

As seen in Table 3, the microparticles initially placed at p1 flow faster due to the higher velocity in branch
(i.e. the LAD) in the vicinity. Moreover, microparticles with less shear resistance (Ca = 0.08) oppose less
resistance to deformation and adopt shapes propitious for an easy motion.

Table 3: The average velocities of microparticles.

Average velocity (m/s)
Position Md Ld Lg

Ca = 0.01 p1 0.095 0.119 0.120
p3 0.068 0.080 0.092

Ca = 0.08 p1 0.099 0.110 0.118
p3 0.070 0.087 0.096
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3.3 Centered microparticles
3.3.1 Overall behavior

Coronary wall distensibility foreshadows significant flow disturbance. Blood velocity plotted over specific
times in systole at S1 in Figure 19 reveals blunted velocity profile in the DCW due to the local expansion.
Additionally, magnitude of instantaneous velocities is significantly higher in the RCW and its evolution contrast
with that of the DCW. Farther down the LCA, velocity integrated along the segment S2 is found to vary
differently in branch entrance depending on the nature of the coronary wall. More precisely, blood moves
faster in the rigid-walled LCx as a direct consequence of shear-thinning. The blood velocity along S2 will be
reevaluated later at crucial times (times at which the preferred branch is selected). Before moving further we
signal convergence issues at t ≤0.278 s for 0.04 < Ca ≤ 0.08, hence calculations are run for Ca = 0.04.
Results of Ca = 0.08 are even exposed before the convergence.

S1 S2

Figure 18: Localization of generating segments S1 delimiting the end of the LM (x = 0.035) and the segment
S2 defined in the bifurcation zone (x = 0.04).
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Figure 19: The blood velocity along generating segments S1 and S2.

A-Trajectory

In contrast to off-centered microparticles, the centered microparticles enter different branches. In the DCW,
two microparticles (Ld and Md) enter the LAD due to the higher flow velocity. Wall rigidity is found to
modify the preferred branch of the Ld microparticle, the latter enter the rigid-walled LCx together with the Md
microparticle (again due to the higher local velocity). This higher velocity and the induced lower viscosity (due
to shear-thinning) are a guarantee of a minimum energy cost. Other local phenomenon is the immediate vicinity
of the corner (discussed in 3.3.2) will be found to play a major role in the selection of the preferred branch.
It is notable from the zoomed inset in Figure 20(a) and 20(b) that microparticles are kinetically vacillating in
the LM while microparticles in the RCW follow a strictly straight path. On another note, microparticles in the
hyperelastic-walled LAD experience vortex trapping and overtaking all Ca included (as revealed by plots in
Figure 20(b) and illustrated in Figure 21). Both are not reproduced in the RCW, nevertheless trajectories in
daughter branches are impacted by local recirculation, giving rise to curvilinear trajectories in some sections of
the rigid-walled branches as depicted in Figure 20(c).
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Figure 20: Microparticle trajectories for (a) Ca = 0.01 (b) Ca = 0.04 (c) Md

p2

Lg
Md

Figure 21: Streamlines at t = 0.6 s showing microparticles vortex-trapped in the LAD for Ca = 0.04.

B-Deformation

When it comes to the effect of the capillary number combined to that of the wall, it can be seen in Figure 22 that
the influence of membrane shear resistance on microparticle deformation is amplified by the RCW which is in
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line with the remark previously made for off-centered microparticles. More interestingly, softer microparticles
flowing in the RCW are drastically deformed, the corresponding evolution of deformation gradient is unusual
in comparison to previously plotted quantities. Morphological changes presented later will aptly illustrate this
deformation. Microparticles adopt various symmetrical shapes in the hyperelastic-walled LM: circular, oblate
and prolate-like shapes depending on coronary wall deformation (see Figure 23). More precisely, microparticles
are oblate-like shaped when the walls expand (t = 0.11 s) and prolate-like shaped when the walls recoil (t =
0.21 s). Shape transition took place in a breathing-like dynamic due to coronary expansion-recoil, as revealed
by the zoomed insets in Figure 22 and confirmed by the time-evolution of Taylor parameter plotted in Figure
24. This behavior is well known in electro-hydrodynamics [12]. In the RCW, stiffer microparticles remain
quasi-circle shaped in the LM and deviate progressively from their initial shape to develop the parachute-like
shape for Ca = 0.04.
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Figure 22: Time-evolution of the deformation gradient of the centered microparticles.
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Figure 23: Deformation of the coronary walls W1,6 in the LM and the corresponding microparticles deforma-
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Figure 24: Time-evolution of Taylor parameter for the Lg microparticle. The snapshot shows the parachute
shape at t = 0.11 s (Ca = 0.04).

The elastic strain energy noted W (m) (Eq. (5)) is another indicator of deformation, this quantity is plotted over
time in Figure 25. In the RCW, the elastic strain energy stored in softer membranes is markedly higher, all po-
sitions included. Such sharp jump was expected in view of previously noticed elements related to deformation
gradients. For the DCW, W (m) is (naturally) higher for Ca = 0.04 but the relative difference to Ca = 0.01 is
quantitatively much more less in comparison to the RCW. Regarding the effect of the initial horizontal position,
we found as predicted that the Ld microparticle stores the highest energy, followed by the Md and then the Lg
microparticle. We further note that energy storage has a cyclic tendency in the DCW, once again outlining the
influence of coronary walls’ successive deflection and inflection on microparticle mechanical response.
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Figure 25: Time-evolution of the density of strain energy of the centered microparticles.
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3.3.2 Behavior at the bifurcation zone

The impaction designates the collision of particles against the bifurcation corner or the corner-adjacent walls
caused by particle inertia. The interception refers to the contact between partitioning particles and the corner-
adjacent walls, initiating the effective entrance in branches. It is related to particle size in that large particles
are more likely to experience interception. Impaction and interception are both mechanisms of particle cap-
turing (e.g. particle deposition in the lung [13]) and have been observed in vitro for red blood cells (RBCs)
bifurcating in microcirculation[14]. Being aware of the relevance of the pre-cited mechanisms and the major
role they play in branch selection as well as microparticle behavior through it, we have studied the behavior in
the bifurcation zone distinctly from the overall behavior of centered microparticles. Obtained results proved to
be very insightful, in particular for softer membranes. We outline that impaction and interception only concern
microparticle whose membrane collides with the corner or with the corner-adjacent walls.

A-DCW

a-Trajectory

Before addressing the qualitative deformation of microparticles impacting the corner of the DCW, we observe
that microparticles deviate from the centreline and start partitioning in branches simultaneously (Figure 26).
After that, they impact the corner one at a time and initiate their entrance in branches in the same order of
location (the Ld first followed by the Md and then the Lg). For the two in-front microparticles, the preferred
branch in the LAD where the velocity is higher at crucial times (Figure 27), the Lg microparticle enters the
LCx as its entrance in the LAD is significantly impeded by the slow sliding in-front microparticles. The slow
sliding along the corner is commonly observed for RBCs bifurcating in the microvascular network [15] and
for synthetic spherical cells [16], it results from the important shear stress localized at the rear-end. During
interception, the Ld and the Md microparticles slide against the immediately adjacent intimal wall of the LAD
and start a localized lateral migration to drift away from it, which is in line with the observations reported in
[17]. The Lg microparticle reproduces the same behavior in the LCx.
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Figure 26: Zoom on microparticle trajectories at the bifurcation zone in the DCW.
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Figure 27: The blood velocity along S2, DCW.

b-Deformation

Softer microparticles (Ca = 0.04 and Ca = 0.08) develop an arm-like end at the rear to accommodate the
corner shape during sliding (at t = 0.265 s and t = 0.268 s for Ca = 0.04 and at t = 0.268 − 0.275 s for
Ca = 0.08) and to ‘claw a way’ through the tightening inter-particle space in a crawling like-motion during
which the arm-like end is dragged as a tail. The arm-like end slenderize as membrane softness increases.
For Ca = 0.08, a tip resembling the cusp-like instability reported for migrating microparticles is formed at
microparticles back at the very end of arm-like end relaxation. Apart from the functional aspect and from a
morphological point of view, the arm-like end make the squeezed microparticles able to exhibit remarkable
deformation modes like the center-domed slug shape at t = 0.275 s and the sigmoid-shape (tortuous shape) at
t = 0.280 s both favouring a delicate displacement. A common observation is the tendency of microparticles to
cluster as the softness of the membrane increases (see for example deformations at t = 0.265 s and t = 0.275
s). Back to the convergence problem for Ca = 0.08 occurring at t ≈ 0.288 s, snapshots in Figure 29 at times
prior to divergence shows an exaggerated elongation and a central tethering accompanied by thinning of the
membrane (even if the latter is modeled as an incompressible solid) leading us to believe that the microparticle
is about to break-up. This also due to strain-softening characterizing the here-considered protein membrane
induced by structural damage as presented in [18, 19]. In addition to being zones of localized stress, we
recall that tether and the cusp are both mathematical instabilities then their co-existence is pronounced to cause
significant calculation problems. A similar numerical failure was reported in [20] after the apparition of the
tips.
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Figure 28: Snapshots in time of microparticles in the bifurcation zone for p2.
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Figure 29: Microparticle deformation showing tethering and excessive elongation for Ca = 0.08, DCW (top
image). Time-evolution of membrane’s thickness (bottom image).

B-RCW

a-Ca=0.01

Unlike the DCW, only two microparticles impact the corner. Actually, the Ld microparticle stuck to the corner
thus preventing the in-back Md microparticle to experience impaction. The Ld microparticle eventually unstuck
from the corner leaving the Lg microparticle to impact the corner at its turn. Microparticles adopt asymmetrical
ovaloid-like shapes in the bifurcation zone (Figure 30). The bean shape exhibited by the Ld microparticles when
impacting the corner is previously seen in [16]. Another marked difference from the DCW case is that two
microparticles enter the LCx Figure 31(a). The Lg microparticles is first to enter the LCx as the instantaneous
blood velocity is higher (as seen in Table 4). The immediately contiguous Md microparticle enters the opposite
branch as it took advantage from the unoccupied blood space leaved the neighboring microparticle. The Ld
microparticle is the last to enter a branch, similarly to the Md microparticle, its preferred branch is more
conditioned by the contiguous microparticle deformation than by the instantaneous blood velocity. While the
primary purpose was to assess the global effect of the RCW in comparison to the baseline DCW wall, we dwelt
on the combination Ca = 0.04, RCW in view of unprecedentedly reported deformation modes.
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Bean shape

Figure 30: Deformed shapes at t = 0.145 s (black), t = 0.164 s (blue) and t = 0.180 s (red) for Ca = 0.01,
RCW.

Table 4: The average velocity of shear-thinning blood along S2 for RCW.

t (s) V (m/s)
LCx LAD

0.145 7.18E-2 5.70E-2
0.158 3.84E-2 3.51E-2
0.164 3.39E-3 3.47E-2
0.175 3.87E-2 3.57E-2
0.180 3.11E-2 2.70E-2
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Figure 31: Microparticle trajectories in the bifurcation zone for RCW.
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b-Ca=0.04

Trajectory

Similarly to stiffer membranes, two microparticles enter the LCx for the same reasons presented above. How-
ever, a single microparticle impacts the corner (the Ld microparticle) and remains longer stuck due to its
important deformability and strain energy storage capacity. As depicted in Figure 31(aa), the Ld microparticle
come unstuck from the corner by performing a ‘turning back’ enabled by membrane relaxation. The combina-
tion between the important membrane deformability and blood velocity, microparticle inertia and size results
in microparticle jamming. The later owes the creation of a stagnation zone characterized by blood recirculation
(Figure 33). An implication of the local blood recirculation in stagnation zone is the ‘bumps’ (B1, B2 and B3)
in the center of mass trajectories as microparticles have to overcome the recirculation zone to enter a branch.
Accordingly, the interception do not occur. We notice that blood recirculation denser in the bottom also favors
microparticle entrance to the LCx. To sum up, blood instantaneous velocity in branch entrance determines the
preferred branch of the Lg and this latter controls the branch selection of the contiguous microparticles as they
benefit from the microparticle-free space created by the in-back bifurcating microparticle, this proves that the
instantaneous blood velocity at branch entrance and the deformation mode of neighboring microparticles are
both determinants of the preferred branch of microparticles whose membrane is highly deformable.
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Figure 32: Trajectories of membrane material points Pt1 and Pt2 in the RCW for Ca = 0.04, p2.
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Figure 33: Microparticle trajectories near in the bifurcation zone showing ‘bumps’. Images in bottom shows
vortexes near the corner at the origin of bumps.

Deformation

The cluster near the corner gives rise to impressive deformation modes displayed in Figures 34 and 35. Mi-
croparticles approaching the corner slenderize as they are exposed to elongational stresses imposed by the split-
ting flow, microparticles progressively evolve from the pebble-shape to an asymmetrical oblate shape (a). When
the Ld microparticle impacts the corner, it adopts the stomatocyte-like shape (also known as the cup-shape) (b),
the approaching Ld and Md microparticles resemble the tube-like shape (c) while the Ld stomatocyte-shaped
microparticle develops a neck (a stretched and thin central area). The in-back microparticle exerts an extra
compressive stress on the Ld microparticle making the neck connecting its two symmetrical lobes narrower
(d). In soft membrane mechanics this very narrow neck referred to as a tether and accompanies the budding
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phenomenon of fluid membranes [21] (corresponding to the creation of a daughter vesicle that pull out from the
parent vesicle). The Ld microparticle is jammed by the in-front corner and the microparticles lagging behind.
The narrowing of the neck is accompanied by a flattening of the membrane side facing the LM (d). This shape
is observed for vesicles interacting with a planar surface [22] and in vesicle phase diagram [23]. By adopting
this shape, the Ld microparticle attempts to rid from the corner, then follows a relaxation during which the lobes
unstuck symmetrically (then asymmetrically) from the branches and the tether widens (d’). Meanwhile, the Md
and the Lg microparticles develop the biconcave shape (e) and the uniconcave shape (e’) after transiting by the
tubular-like shape (c). The upper part of the tubular-shaped Md microparticle widens to resemble a pending
drop (f). The stomatocyte-like shape evolves toward a rotary phone handset shape (d”). The stomatocyte-like
shaped microparticle and the uniconcave microparticle simultaneously tilt in opposite directions (the first tilts
to the back and the second tilts forward) and rise. This particular elevation owes the creation of a circumflex-
like interspace propitious to the deformation of the Md microparticle onto the pear shape (g) while the Lg
microparticle becomes P-shaped (golf wedge-like shaped) (h). The Lg microparticle has a very similar shape
but it is relatively less bended. The pear shape is reported for lipid vesicles before budding (as a transient shape
[23, 22, 24]) and under buoyancy forces (as a stationary shape [25]) and for polymer vesicles (as a stationary
shape [26]). Shortly after, the small strangled (pinched) upper area characterizing the pear shape relaxes. Under
the present flow conditions, the microparticle developes the pear shape to accelerate (as revealed by the contour
plot of microparticle velocity distribution at t = 0.185 s). Besides the pear shape, the Lg microparticle shape
resemble an alien’s head (ovaloid with a narrow side) (i). A part of shape transition above-reported namely
the biconcave shape, the uniconcave shape , the prolate-ovoid shape and the stomatocyte shape are reported by
several studies among which [27, 28, 29] for lipid vesicle and by [26] for polymer vesicle.
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Figure 34: The impaction against the corner for Ca = 0.04, RCW.
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(g’)

t = 0.187 s t = 0.188 s
(i)

t = 0.192 s t = 0.200 s

Figure 35: Same as Figure 34 for extended times.

3.3.3 Effect of Blood viscosity on softer membranes

Motivated by the previous observation in the literature [30] outlining the relevant role of suspending blood
viscosity (besides membrane deformability) on cell partitioning, the shear-thinning blood model is replaced
by a Newtonian model whose constant viscosity is of 0.00345 Pa· s. The aim is to assess the role played by
the suspending fluid viscosity on microparticle preferred branch, deformation modes and vortex trapping. The
abbreviation STH is for shear-thinning blood and NTH for Newtonian blood.
The blood viscosity is found to influence microparticles partitioning in branches and deformation near the
corner when flowing in the RCW. More precisely, the Lg and the Md microparticles enter opposite branches
when suspending blood is Newtonian blood. The Lg microparticle is first to enter the LAD due to the higher
instantaneous velocity (see Table 5), it is followed by the Md microparticle which enter the LCx. That is to
say, the two first microparticles to bifurcate enter opposite branches as previously seen in the STH case. The
Ld microparticle is meanwhile stuck to the corner. After a partial relaxation, it is interestingly dynamically-
metastable near the corner as illustrated by its center of mass pattern depicted in Figure 36 (aa) that reveals a
reluctance to enter the LCx or the LAD (at last enter the LCx). The bumps are re-observed (Figure 36 (ab)).
Morphological evolution of microparticles in the bifurcation zone is also affected by blood viscosity as revealed
qualitatively in Figure 37 and quantitatively in Figure 38.

Table 5: The average velocity of Newtonian blood at S2 for RCW.

t (s) V (m/s)
LCx LAD

0.145 1.29E-2 6.25E-2
0.158 4.10E-2 3.51E-2
0.164 3.16E-2 3.24E-2
0.175 3.87E-2 4.11E-2
0.180 3.93E-2 5.28E-2
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Figure 36: The effect of blood viscosity on microparticle trajectories (a). The magnifications show the ‘bumps’
(aa) and the metastable equilibrium for the Ld microparticle in the immediate vicinity of the corner (ab). Images
in bottom show vortexes in Newtonian blood flow near the corner.
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Figure 37: Deformed shapes in Newtonian blood near the bifurcation for Ca = 0.04.
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Figure 38: The effect of blood viscosity on microparticles deformation for Ca = 0.04, RCW.

The main contribution of the constant viscosity in the DCW is to extend time-residence in the vortexes (Figure
39). Furthermore, the velocity at outlets is investigated at the end of the systole (Figure 40). It reveals that
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velocity is higher for NTH which is in agreement with the reported observations in [31]. On velocities of
microparticles plotted in Figure 41, it is found that the initial horizontal position (i.e. Lg, Md or Ld) has a
negligible effect on velocities in the early stages of microparticles course (t = 0.008, 0.02 s). At t≥ 0.02 s, the
microparticles decelerate till the end of systole t = 0.29 s and then accelerate. In the DCW, the microparticles
move with different velocities even at early times. At t ≥ 0.02 s, velocities are descendant. Similarly to RCW,
the Newtonian viscosity is found to increase the particle-particle relative velocity and conversely, to accelerate
microparticles. Shear-thinning has a different influence depending on the wall. More exactly, microparticles
move slower in the DCW and faster in the RCW. The velocity decrease in the DCW is attributed to i) the shear-
thinning which makes hydrodynamic forces applied upstream by blood liberated from bulges (formed during
the systole) lower than the Newtonian case ii) the flow disruption induced by viscosities and flow interaction
with hyperelastic walls iii) the higher time residence in vortexes. These deformable wall-induced elements
being absent in the RCW, microparticles naturally move faster as a result of a local lower viscosity and a
viscosity ratio of internal viscosity (liquid core) and external viscosity (blood) less or equal to unity.
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Figure 39: Vortex trapping in the hyperelastic walled LAD. Color legend is for coronary wall displacement and
applies for the four presented images.
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Figure 40: Outlets velocity for Newtonian and shear-thinning blood at t = 0.29 s.
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Figure 41: The effect of blood viscosity on velocity of microparticles for Ca = 0.04, RCW.

Table 6: A summary table giving an overview on results pertaining centered microparticles. The asterisk
designates the microparticles flowing in the Newtonian blood NTH.

Preferred branch Impaction Ip Vortex trapping Vo
Lg Md Ld Lg Md Ld Lg Md Ld

Ca = 0.01 Vo

D
C

W

Ca = 0.04 LCx LAD LAD All Vo Vo

Ca = 0.04∗ Vo Vo
Ca = 0.01 LCx LAD LCx Ip Ip

R
C

W

Ca = 0.04 LCx LAD LCx Ip

Ca = 0.04∗ LAD LCx LCx Ip Ip Ip Vo

4 Concluding remarks
The dynamical behavior of microparticles flowing in the left coronary artery and partitioning at its Y-bifurcation
have been studied in this paper. In a context of intraarterialy targeted drug-delivery, obtained results arouse a
particular attention on the risk of microparticles entering a non-targeted branch, clustering at the bifurcation
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and prematurely burst due to the important sustained stress. On the basis of the conducted study, the following
findings are made:

• The slight surface area difference is found to have a significant impact on coronary wall deformation and
to amplify flow asymmetry. As a result off-centered microparticles exhibit an asymmetrical deformation.
Oppositely, the juxtaposition of successive deformations of microparticles upper/down placed in the
RCW are reflection to each other (in respect to the center-line of the blood vessel);

• For centered microparticles, wall rigidity has a major role on the selection of branch since haemodynamic
is found changed;

• In the DCW, the preferred branch of microparticles is directly determined by the instantaneous blood
properties and indirectly by the deformation extent of walls in branches and by the kinetics of the con-
tiguous microparticles. For example, a microparticle will enter a branch with a lower instantaneous
velocity if it is outpaced by other microparticles, if not the higher velocity branch is selected. The
microparticles experience overtaking (and systematically intercept the bifurcating inner walls that are
adjacent to the corner) and binary vortex trapping in the branch (all Ca included). When shear thinning
blood in considered, the vortex trapping is found to occur exclusively in the DCW;

• The risk of clustering could not be discounted even for off-centered microparticles, especially in the
DCW;

• In the RCW, the branch selection is not only impacted by the physical presence of other microparticles
but also by their deformation mode, especially for softer membranes. A deformability-induced cluster is
observed near the corner whose consequences include stagnation-induced vortex formation and a peculiar
deformation modes unprecedentedly seen. The impaction occurrence diminishes as membrane shear
resistance decreases, for instance a single microparticle experiences impaction and interception for Ca =
0.04 to two microparticles for Ca = 0.01;

• A breathing-like deformation is reported for softer membranes (Ca = 0.04, 0.08) during flow in the
hyperelastic-walled LM;

• Blood viscosity plays a central role especially in the RCW (e.g. different preferred branch and deforma-
tion modes), a metastable equilibrium state and a vortex trapping are uniquely reported in the presence
of Newtonian blood. In the DCW, the main influence of blood viscosity model is on the time residence
in vortexes;

• Dynamical instabilities are omnipresent (e.g. wavering trajectories, cups-like and tether instabilities,
wobbling near the corner).
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[23] H. G. Döbereiner. Properties of giant vesicles. Current Opinion in Colloid and Interface Science, 5
(February):256–263, 2000. doi: 10.1016/S1359-0294(00)00064-9.

[24] E. Sackmann. The Seventh Datta Lecture Membrane bending energy concept of vesicle-and cell-shapes
and shape-transitions. 346:3–16, 1994. doi: 10.1016/0014-5793(94)00484-6.

[25] G. Boedec, M. Leonetti, and M. Jaeger. 3D vesicle dynamics simulations with a linearly triangulated
surface. Journal of Computational Physics, 2011. doi: 10.1016/j.jcp.2010.10.021.

[26] X. Li. Shape transformations of bilayer vesicles from amphiphilic block copolymers: A dissipative parti-
cle dynamics simulation study. Soft Matter, 9(48):11663–11670, 2013. doi: 10.1039/c3sm52234b.

[27] A. Sakashita, N. Urakami, P. Ziherl, and M. Imai. Three-dimensional analysis of lipid vesicle transfor-
mations. Soft Matter, 8(33):8569–8581, 2012. doi: 10.1039/c2sm25759a.

[28] H. Yuan, C. Huang, and S. Zhang. Dynamic shape transformations of fluid vesicles. Soft Matter, 6(18):
4571–4579, 2010. doi: 10.1039/c0sm00244e.

[29] L. Mesarec, W. Góźdź, A. Iglič, V. Kralj-Iglič, E. G. Virga, and S. Kralj. Normal red blood cells’ shape
stabilized by membrane’s in-plane ordering. Scientific Reports, 9(1):1–11, 2019. doi: 10.1038/s41598-
019-56128-0.

[30] W. Xiong and J. Zhang. Two-dimensional lattice Boltzmann study of red blood cell motion through mi-
crovascular bifurcation: Cell deformability and suspending viscosity effects. Biomechanics and Modeling
in Mechanobiology, 11(3-4):575–583, 2012. doi: 10.1007/s10237-011-0334-y.

[31] F. Kabinejadian and D. N. Ghista. Compliant model of a coupled sequential coronary arterial bypass graft:
Effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic
parameters distribution. Medical Engineering and Physics, 2012. doi: 10.1016/j.medengphy.2011.10.001.

38



Conclusion

This study is dedicated to asses the dynamical behaviour of hyperelastic microparticles flowing in

human arteriole and in the left coronary artery. For all performed calculations, the obtained results

are in concordance with literature (when comparison is possible) and reflects very similar dynamical

properties with red blood cells. A relevant finding is the major role played by arteriolar hyperelasticity

that could not be dismissed, a fortiori when microparticles undergo lateral migration. Actually we

found that the deformable wall acts as a suction force that compensates lift. Consequently, the

lateral migration away from the wall is impeded. This force is found to be sensitive to viscosities

ratio, to membrane shear resistance and to confinement, thus, rendering the lateral migration even

more intricate. This vascular hyperelasticity further affects the particle-particle interaction, hence

whether or not the clustering is possible. While in the rigid-walled arteriole microparticles are found to

develop the cusp-like instability (and an unprecedentedly seen double-cusp like instability), the latter

is not observed in the presence of arteriolar distensibility. A novel deformation mode is presented

for microparticles migrating in rigid channel as well as a novel mechanism of binary collision and

overtaking in Poiseuille flow induced by arteriolar wall hyperelasticity.

Moreover, the dynamical behaviour of microparticles flowing in a coronary bifurcation characterized

by an important arterial distensibility is investigated. Therein, the partitioning of microparticles under

pulsatile blood flow is examined depending on the initial offset with respect to the coronary wall,

membrane shear resistance, haemorheology and coronary wall rigidity. An outcome of interest is that

the prediction of the preferred branch is possible at some extent. In point of fact, metastable and

unstable equilibrium are found is some prescribed combinations of variable, accordingly rendering the

prediction unfeasible. Numerous peculiar deformation modes exhibited near the bifurcation zone are

first ever reported while other well-known deformed shapes are first observed in similar flow conditions.

Unexpectedly but interestingly, a vortex trapping and an overtaking are observed in the branches. As
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CONCLUSION

for the arteriole, the possibility of occurrence of microparticles clustering, bursting and adhesion to

the vascular wall is investigated and favouring conditions are established.

Furthermore, a contribution of the present work might concerns the application of the Arbitrary

Lagrangian Eulerian method that is still unpopular due to its conforming nature, particularly when

the fluid-structure interaction involves large deformation. The herein presented method is likely to be

useful to enforce convergence at a reasonable computational cost.
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Résumé détaillé

[Le résumé ci-dessous est rédigé à des fins administratives, sa lecture ne peut en aucun cas rem-

placer celle du manuscrit]

L’application des concepts d’ingénierie mécanique et de physique à la médecine et à la biologie sus-

cite un intérêt croissant compte tenu des enjeux futurs. Parmi ces applications figure l’administration

ciblée de médicaments et la manipulation et la caractérisation de cellules biologiques. Ces exemples

sont donnés à dessein puisque tous deux impliquent des microparticules artificielles ou biologiques

circulant dans un environnement confiné et soumises à des forces hydrodynamiques. La microencap-

sulation consiste à enrober une substance active à l’aide d’une fine membrane au moyen de procé-

dures qui peuvent être mécaniques, physico-chimiques ou chimiques. Selon leur taille, les structures

sphériques obtenues sont appelées nanoparticules ou microparticules. La membrane est constituée

d’un réseau de châınes de polymères réticulés (polydiméthylsiloxane, poly-L-lysine, alginate, poly-

acrylates, acide polylactique-coglycolique), de châınes de protéines (albumine sérique humaine HSA,

ovalbumine) ou de molécules lipidiques. Les microparticules constituées de membranes lipidiques sont

appelées vésicules et celles constituées de polymères et/ou de protéines sont appelées capsules. Les

nano/microparticules sont largement utilisées dans de nombreux domaines industriels, notamment

dans l’industrie agro-alimentaire comme composés antibactériens, en pharmaceutique comme vecteurs

thérapeutiques et en cosmétique comme micelles nettoyantes. Les avantages comprennent la préven-

tion de l’inactivation de la substance active pendant la fabrication ou le stockage et la libération

contrôlée de la substance dans un environnement ciblé. La substance encapsulée est destinée à être

libérée soit par rupture de la membrane (déclenchée par une condition prédéterminée comme un seuil

de température ou de pression), soit par diffusion lorsque la membrane est de nature poreuse. Parmi

les applications les plus prometteuses des nano/microparticules dans le domaine de la pharmaceu-

tique, on trouve l’administration ciblée de médicaments. Il s’agit d’un traitement non invasif basé sur
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l’injection directe de nano/microparticules -chargées de substance médicamenteuse- appelées vecteurs

thérapeutiques dans la circulation sanguine. Une fois injectés par voie intra-artérielle/veineuse, les

vecteurs thérapeutiques se déplacent passivement sous l’action du flux sanguin pour atteindre une

cible spécifique (tumeur, thrombose...). Le médicament enrobé est ensuite libéré soit par rupture de

la membrane, soit par les pores de cette dernière. La chimioembolisation est un traitement local

des tumeurs malignes palliant à la chimiothérapie ou à d’autres traitements invasifs. Au cours de la

procédure, des vecteurs thérapeutiques contenant une substance anticancéreuse comme l’irinotécan

ou la doxorubicine sont injectés par voie intra-artérielle via un micro-cathéter. La procédure est

guidée par rayons afin de surveiller la trajectoire des vecteurs thérapeutiques injectés. Les principaux

avantages thérapeutiques de la chimioembolisation sont une concentration maximisée du médicament

absorbé par la tumeur, une toxicité réduite pour les tissus sains ainsi qu’une incidence moins élevée

des effets secondaires systémiques. La technique d’administration ciblée de médicaments fut inspirée

par le mécanisme d’endocytose-exocytose et le globule rouge GR. L’endocytose est le processus im-

munologique par lequel une cellule utilise sa membrane pour engloutir et entourer des particules cibles

dans l’environnement fluide extracellulaire. La vésicule formée (de rayon 0,5−5 µm) migre vers le

cœur de la cellule pour y être détruite. Le transport vésiculaire dans le sens inverse est connu sous le

nom d’exocytose au cours duquel la vésicule sécrétoire libère des protéines ou des débris dans le milieu

liquide extracellulaire. Quant au GR, il s’agit d’un système naturel encapsulé (une fine membrane

déformable renfermant une solution aqueuse d’hémoglobine) dont le rôle principal est de délivrer de

l’oxygène. Les techniques d’administration ciblée de médicaments ont fait preuve d’une grande ef-

ficacité thérapeutique, néanmoins, elles requièrent une surveillance continue in situ pour une prise

en charge rapide en cas de complications telles que la formation d’embole susceptible d’entraver la

circulation sanguine et l’éclatement prématuré ou tardif de la membrane. Des études supplémentaires

sont nécessaires pour optimiser la procédure, l’étendre à d’autres zones affectées, remédier aux contre-

indications et faire la lumière sur les mécanismes à l’origine des complications couramment rencontrées

ou du moins, sur les conditions qui favorisent leur survenue. Pour ce faire, il est nécessaire d’inclure

les caractéristiques hémorhéologiques et hémodynamiques. Le choix idéal serait certainement une ap-

proche in vivo, mais ce choix est vite écarté par la communauté scientifique en raison de problèmes

éthiques évidents. Une alternative consiste à reproduire les conditions physiologiques au moyen d’une

approche in vitro. Cependant, les propriétés biophysiques de la paroi artérielle et les caractéristiques
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géométriques du réseau vasculaire comme la tortuosité et les bifurcations, sont très difficiles, voire

impossibles, à reproduire expérimentalement. De plus, une telle approche est coûteuse et nécessite

d’importantes ressources matérielles et humaines. L’approche in silico basée sur la modélisation et la

simulation numérique permet de remédier aux limitations susmentionnées, elle est employée comme

une approche alternative ou auxiliaire en biophysique et en ingénierie biomécanique. Les études in

silico reposent sur deux piliers pour une représentation précise des phénomènes physiques complexes

dans le système circulatoire humain à savoir, la robustesse et la satisfaction du concept de problème

bien posé. Elles pourraient constituer un outil de prédiction du comportement dynamique des vecteurs

thérapeutiques, de la pharmacocinétique et permettre de comprendre les mécanismes encore ambigus à

l’origine des complications liées à l’administration ciblée de médicaments. En outre, une modélisation

numérique paramétrique permet aux scientifiques et aux ingénieurs d’évaluer assez rapidement le rôle

d’un groupe de paramètres sur l’évolution d’un large éventail de quantités physiques.

Le comportement dynamique de microparticules constituées d’une fine membrane hyperélastique

enrobant une gouttelette et soumises à des sollicitations hémodynamiques est étudié dans le cadre de

cette thèse au moyen d’une modélisation numérique physiologiquement (et raisonnablement) réaliste.

L’objectif est de combler le manque d’études portant sur la réponse mécanique de microparticules

circulant dans des vaisseaux sanguins humains distensibles, en particulier dans les artérioles et les

artères coronaires. Les conditions physiologiques dans les deux types de vaisseaux sanguins sont

prises en compte dans la mesure où les données sont disponibles dans la littérature. Le comporte-

ment dynamique des microparticules dans différents types d’écoulement a été largement étudié dans la

littérature, sans toutefois prendre en compte la contribution des parois vasculaires sur la réponse mé-

canique globale des microparticules. A notre connaissance, les rares études portant sur la dynamique

de microparticules dans les vaisseaux sanguins se sont limitées aux capillaires sanguins (microvais-

seaux caractérisés par une fine paroi rigide), motivées par une confrontation numérique/analytique-

expérimentale relativement commode (le capillaire étant assimilable à un microcanal rigide). Ainsi,

nous avons mis un point d’honneur quant à l’inclusion de la contribution des parois vasculaires épaisses

et distensibles. Nous avons examiné, entre autres, le mécanisme de migration latérale et le partition-

nement particulaire dans une bifurcation coronarienne en la présence de parois vasculaires distensibles.

De plus, l’interaction particule-particule est étudiée dans des trains réduits de microparticules tout

en évaluant le risque d’agrégation interparticulaire, d’adhérence aux parois et de rupture prématurée

149
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de la membrane. Dans l’artériole, nous avons étudié l’influence de la paroi artériolaire isolée ou en-

robée par un muscle sur une microparticule centrée et, plus intéressant encore, sur le mécanisme de

migration latérale d’un train réduit de microparticules. L’influence de la distensibilité artériolaire

sur l’interaction particule-particule pendant la migration latérale est étudiée en plus de l’interaction

particule-paroi en fonction des paramètres non dimensionnels clefs, à savoir le rapport entre les forces

visqueuses du fluide dans lequel la microparticule est immergée et la résistance au cisaillement de la

membrane, le rapport entre les viscosités externe et interne et le confinement. Une autre contribution

de ce travail concerne l’évaluation du comportement dynamique de microparticules circulant au niveau

d’une bifurcation coronarienne sous l’action d’un écoulement sanguin pulsatile. L’accent est mis sur

la prédiction de la branche préférée des microparticules interagissant avec la pulsatilité du sang, avec

les microparticules voisines et avec la paroi coronarienne vacillante en fonction de l’excentrement ver-

tical initial et de la résistance au cisaillement de la membrane. Pour les deux vaisseaux sanguins

considérés, la contribution de la distensibilité de la paroi vasculaire est mise en évidence par le biais

d’une comparaison avec des parois vasculaires rigides. Les quantités physiques d’intérêt sont -entre

autres- la vitesse des microparticules, leur déformation (quantitative et qualitative), leur trajectoire

et l’énergie élastique emmagasinée le long de leur course dans le vaisseau sanguin. Au vu du contexte

thérapeutique, le risque de formation d’agrégats, d’adhésion à la paroi et de rupture membranaire

prématurée sont évalués. Le problème transitoire de l’interaction fluide-structure est résolu dans le

cadre du formalisme arbitrairement lagrangien eulérien ALE. L’ensemble des calculs est effectué à

l’aide du code éléments finis Comsol Multiphysics® suivant une approche monolithique.

Les propriétés physiques et mécaniques des membranes sont des facteurs clefs dans la réponse des

microparticules aux contraintes externes. Les tissus biologiques tels que les protéines et les polymères

naturels et synthétiques sont capables de supporter des taux de déformation importants sans subir de

dissipation d’énergie interne. Ce comportement est décrit par des lois de comportement hyperélas-

tiques, incluant les non-linéarités géométriques et matérielles. L’élasticité des membranes constituées

de protéines réticulées et de polymères est purement entropique, ce qui signifie que leur élasticité dé-

coule de l’entropie conformationnelle (un changement de forme et de dynamique des molécules) induite

par une contrainte externe. Afin d’emmagasiner l’énergie mécanique induite par la déformation, la

distance entre les châınes augmente et l’entropie est diminuée. Les polymères sont connus pour man-

ifester un adoucissement sous charge cyclique (effet Mullins) et un écrouissage sous des contraintes
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importantes. Le premier comportement résulte de la composante viscoélastique des polymères et de

l’altération de la structure macromoléculaire. En fonction de la tacticité, le second comportement est

attribué soit à la cristallinité, soit à l’extensibilité finie de la châıne et est sensible à la température

et à la concentration moléculaire. Les lois de comportement décrivant la réponse d’un solide hyper-

élastique sont basées sur une approche phénoménologique (Mooney-Rivlin, Ogden, Gent...), expéri-

mentale (Hart-Smith...) ou physique (Aruda-Boyce...). Les lois phénoménologiques sont basées sur le

développement mathématique de la fonction de densité d’énergie élastique tandis que les lois découlant

d’une approche physique sont quant à elles, basées sur une approche micromécanique statistique. Les

propriétés physiques de la membrane sont intrinsèquement déterminées par le procédé de fabrication

qui peut être mécanique, physico-chimique ou chimique. Les propriétés élastiques de la membrane et

la rhéologie du noyau déterminent les propriétés globales des microparticules (capsules et vésicules)

et par conséquent leur réponse mécanique aux contraintes externes appliquées (compression, cisaille-

ment, traction...). Une comparaison directe entre le comportement mécanique des microparticules à

membrane polymérique ou protéinique est dépourvue de sens étant donné que la nature moléculaire

est loin d’être le seul déterminant des propriétés élastiques des membranes. En effet, ces dernières

dépendent de la concentration moléculaire, du degré de réticulation et de la taille des microparticules.

D’autant plus, la fragilité, la finesse et l’instabilité de la membrane la rendent très sensible aux forces

appliquées par les instruments de mesure; ainsi, les propriétés mécaniques intrinsèques interfèrent avec

les forces appliquées et donnent lieu à des propriétés élastiques différentes selon la technique de mesure

employée. Les propriétés élastiques des membranes sont déterminées au moyen de plusieurs techniques

basées sur la mesure de la déformation des microparticules sous une contrainte locale ou globale, dont

la sélection est tributaire de la taille de la microparticule et de la fragilité de sa membrane. Les

propriétés mécaniques des particules de taille micrométrique sont principalement extraites par des

méthodes microfluidiques. Ces méthodes consistent à faire circuler des microparticules dans un canal

microfluidique dont la dimension transversale est comparable au diamètre des microparticules et de

suivre les variations de déformation, de volume et de vitesse. Les propriétés de la membrane sont

récupérées au moyen d’une analyse inverse (via un modèle numérique), puis en choisissant une loi de

comportement adéquate pour s’adapter aux profils expérimentaux extraits et pour relier l’extension

aux tensions subies par la membrane. Le GR est le principal élément figuré du sang (≈ 45%). Il

s’agit d’une cellule anucléée contenant une solution d’hémoglobine (cytoplasme) en suspension dans la
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partie liquide du sang (plasma). La principale fonction du GR est l’apport d’oxygène. Sa membrane

est constituée d’une bicouche phospholipidique ancrée à un squelette de réseau de filaments de spec-

trine. La solution d’hémoglobine encapsulée est newtonienne et incompressible. La forme normale du

GR est discöıde biconcave, une solution spéciale de l’équation de forme des vésicules lipidiques. Cette

forme particulière correspond à la minimisation de l’énergie de flexion de Helfrich. D’un point de vue

physiologique, le GR humain pourrait avoir développé la forme biconcave pour maximiser sa surface,

et ainsi optimiser l’apport d’oxygène dans les petits vaisseaux sanguins. La configuration métastable

de la forme discöıde biconcave est la forme dite de stomatocyte. Le GR est facilement déformable

(10 − 100 pN) et ses propriétés mécaniques globales sont principalement déterminées par la bicouche

phospholipidique et le squelette de spectrine qui composent sa membrane. La bicouche phospholi-

pidique se comporte comme un fluide bidimensionnel décrit par le modèle de la mosäıque fluide (les

phospholipides sont libres de se déplacer comme des molécules fluides tandis que les protéines sont

ancrées). La bicouche phospholipidique est semi-perméable et possède la propriété de perméabilité

sélective. Le squelette est topologiquement organisé comme un réseau hexagonal et pentagonal de

filaments de spectrine. La résistance au cisaillement du squelette proviendrait de la résistance au

cisaillement intrinsèque des filaments de spectrine et de la topologie particulière du réseau. Les pro-

priétés combinées de la bicouche phospholipidique et du squelette de spectrine permettent au GR de

subir de grandes déformations dans le système microvasculaire composé de capillaires sans subir de

rupture. La membrane des vésicules est constituée d’une ou de plusieurs couches de phospholipides

qui se courbent spontanément au contact du milieu aqueux en raison du caractère amphiphile de la

couche: la membrane s’auto-assemble en une forme sphérique de telle sorte que les extrémités hy-

drophobes ne soient pas en contact avec le milieu aqueux. La membrane vésiculaire est comparable

à une membrane de GR dépourvue de squelette et agit de ce fait, comme un fluide bidimensionnel.

Les formes au repos des vésicules initialement sphériques sont caractérisées par le volume réduit (ou

surface réduite) quantifiant le degré de dégonflement par rapport à une sphère.

La réponse dynamique globale des microparticules soumises à des contraintes hydrodynamiques

dépend de plusieurs éléments dont l’inertie du fluide dans lequel elles sont immergées, l’élasticité de

la membrane, le confinement et la rhéologie du fluide encapsulé. Le comportement dynamique des

microparticules initialement sphériques immergées dans un écoulement de Poiseuille a été largement

étudié dans la littérature profitant -entre autres- du développement des dispositifs microfluidiques. La
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déformation des microparticules centrées reste symétrique par rapport l’axe du canal. Sous l’action

de l’écoulement, la partie arrière initialement convexe commence à d’aplatir et change de signe de

courbure pour donner lieu à une fossette au fur et à mesure que les contraintes augmentent. Pour des

seuils de contraintes encore plus importants, la fossette s’approfondie davantage et la partie avant de la

microparticule diminue sa taille transversale afin de se déplacer plus facilement. Lorsque la micropar-

ticule est soumise à un cisaillement simple, elle adopte une forme ellipsöıdale. L’angle d’inclinaison par

rapport à la ligne centrale du canal initialement de 90◦ diminue continuellement. La microparticule

est susceptible d’exhiber un mouvement dit de chenille de char défini comme un mode de rotation

où la membrane tourne incessamment autour du fluide intérieur. Par conséquent, les éléments du

fluide intérieur tournent d’une manière purement rotative. À des contraintes modérées à élevées, la

microparticule est plus étirée et développe une pointe supérieure et une pointe inférieure alignées avec

les lignes de courant. Un autre mode de rotation qui pourrait être observé lorsqu’une microparticule

centrée est soumise à un écoulement de cisaillement simple est le mouvement de tumbling au cours

duquel la microparticule bascule autour de son centre de masse. Contrairement au mode de rota-

tion en chenille de char au cours duquel la microparticule agit comme un fluide, la microparticule a

un comportement de corps rigide au cours du tumbling. Les deux modes de rotation sont observés

pour les microparticules centrées et excentrées. Les microparticules excentrées subissent une migra-

tion latérale, un mécanisme complexe employé dans une multitude de techniques de manipulation

bio-cellulaire comme le fractionnement, la filtration et la focalisation. La trajectoire de migration des

microparticules, leur vitesse et leurs positions d’équilibre dépendent de plusieurs éléments intrinsèques

et des conditions d’écoulement: propriétés élastiques de la microparticule, inertie, contraste de vis-

cosité entre les fluides interne et externe, confinement et position initiale de la microparticule. La

migration latérale est un mécanisme crucial dans la microcirculation sanguine où les GRs migrent vers

la ligne centrale du vaisseau sanguin tandis que les globules blancs dont la membrane est significa-

tivement plus rigide subissent une migration vers les parois appelée margination. Cette dernière est

nécessaire au processus immunologique de diapédèse durant lequel des globules blancs franchissent la

paroi vasculaire (extravasation) pour aller dans les tissus inflammatoires environnants. En l’absence

d’inertie ou pour une inertie finie, la migration latérale de microparticules à flottabilité neutre sus-

pendues dans un écoulement confiné de Poiseuille résulte de l’interaction de trois forces latérales : i)

la force de portance induite par la paroi; ii) la force de portance induite par la déformabilité ; et
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iii) la force de portance induite par le gradient de cisaillement. Contrairement aux deux premières

forces de portance, la portance induite par le gradient de cisaillement pousse la microparticule vers

la paroi la plus proche. Pour les microparticules à flottabilité non neutre et/ou pour un écoulement

inertiel, la force de portance de Rubinow-Keller et la force de portance de Saffman sont également

impliquées dans la migration latérale. Les microparticules déformables initialement excentrées présen-

tent des formes asymétriques avant-arrière propices à la migration et ce, en raison du gradient de

pression entre l’avant et l’arrière. Contrairement aux formes de balle ou de parachute exhibées par les

microparticules centrées dans un écoulement de Poiseuille, les formes asymétriques avant-arrière sont

également asymétriques par rapport à la ligne centrale du canal. La microparticule adopte les formes

de balle et de parachute (et les formes symétriques intermédiaires) lorsque (et uniquement lorsque)

sa position d’équilibre cöıncide avec l’axe du canal. La déformation asymétrique rappelant la forme

d’une pantoufle largement observée aussi bien pour les microparticules artificielles que pour les GRs

résulte d’une perte de stabilité. Cette forme est particulièrement propice à la migration et pourrait

même s’accompagner d’un mouvement de chenille de char sous certaines conditions, par exemple en

dessous d’un rapport critique de viscosités.

Les vaisseaux sanguins sont des tissus mous, comme les ligaments et la peau. Le système san-

guin artériel est constitué de grosses artères et d’artérioles musculaires et élastiques, tandis que le

système veineux transportant le sang désoxygéné est composé de grosses veines et de veinules. Ces

deux systèmes sont reliés par des capillaires, des microvaisseaux à une seule couche dont la largeur

est comparable (voire inférieure) à celle du GR. Dans le cadre de la thèse, l’accent est mis sur les

vaisseaux sanguins artériels. Les parois vasculaires sont structurellement et biologiquement différentes

selon la fonction du vaisseau. De manière générale, la paroi artérielle est divisée en trois couches: la

tunique intima, la tunique media et la tunique adventice (tunique externe). La première est la couche

la plus interne qui tapisse la lumière (le domaine du vaisseau sanguin dans lequel le sang circule), elle

est principalement composée de cellules endothéliales. La deuxième est composée de muscles lisses. La

troisième est la couche la plus externe, composée de collagène et d’élastine, tous deux permettent aux

vaisseaux de subir de grandes déformations pour réguler le flux sanguin. Les couches sont séparées

par deux couches élastiques internes très fines. Les éléments composant les parois vasculaires sont

répartis de manière hétérogène sur les différentes couches selon la fonction de l’artère. Les artères de

gros et moyen calibre sont capables de dilater leur lumière par un amincissement de la paroi artérielle
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(vasodilatation) ou, à l’inverse, de la rétrécir par un épaississement de la paroi artérielle (vasoconstric-

tion). Ces deux mécanismes sont contrôlés par la contraction du muscle lisse et visent à contrôler la

pression artérielle et donc, d’adapter le flux sanguin en toutes circonstances. Par ailleurs, les artères

et artérioles sont sujettes à l’expansion alors que les artères musculaires dont le rôle principal est la ré-

sistance au flux sanguin sont relativement moins enclines à l’expansion que les artères élastiques. Très

peu d’études expérimentales ont été menées pour extraire les propriétés mécaniques des parois vascu-

laires en raison des restrictions légales liées à l’expérimentation sur les tissus humains, des limitations

éthiques et des manipulations extrêmement délicates requises. De telles expérimentations sont d’autant

plus complexifiées par les variations anatomiques et biochimiques d’un spécimen à l’autre ainsi que

par la sensibilité accrue des tissus mous biologiques. Ceci explique la rareté des données relatives aux

propriétés mécaniques des parois artérielles humaines dans la littérature. À l’échelle microscopique,

les parois artérielles sont une structure fibreuse dont les fibres sont orientées et distribuées différem-

ment, un caractère judicieusement décrit par le formalisme anisotrope. Cependant, selon l’orientation

et la distribution des fibres et surtout selon l’application en question, la paroi artérielle pourrait

être considérée comme homogène et isotrope. Les parois artérielles sont non-linéaires en raison de

leur structure physiologique et de leur capacité à subir de grandes déformations. Similairement aux

GRs et aux protéines, les parois artérielles ont la capacité de s’écrouir, empêchant ainsi leur rupture

dans certaines conditions comme l’hypertension artérielle. Comme pour les membranes déformables,

l’élasticité artérielle est décrite dans le cadre théorique de l’hyperélasticité. À notre connaissance,

les données expérimentales sur les propriétés mécaniques des artérioles humaines font défaut dans la

littérature. D’un point de vue physiologique, la paroi artériolaire pourrait être considérée comme une

paroi monocouche. Plus précisément, les constituants artériolaires s’avèrent être fonctionnellement

interdépendants et dynamiquement interconnectés, rendant ainsi les frontières séparant les couches

artériolaires confuses. Cette particularité est confirmée par les physiologistes qui considèrent que la

paroi des plus petites artérioles se limite à une seule couche intimale incomplète composée de cellules

lisses. En ce qui concerne leur réponse mécanique au flux sanguin, les artérioles révèlent des capacités

de distensibilité qui sont moins importantes par rapport aux grandes artères. Le sang humain est une

suspension de cellules appelées éléments figurés dans un liquide aqueux jaunâtre (le plasma sanguin).

Les éléments figurés sont les GRs (majoritaires), les leucocytes (globules blancs) et les thrombo-

cytes (plaquettes). Les propriétés rhéologiques du sang dont la rhéofluidification, la thixotropie et
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la viscoélasticité sont déterminées par les propriétés mécaniques inhérentes des éléments figurés mais

également par les interactions inter-intracellulaires. La rhéofluidification est une conséquence du pro-

cessus d’agrégation et de désagrégation des GRs contrôlé par le taux de cisaillement. En effet, pour de

faibles taux de cisaillement, les GRs s’agglomèrent et forment de longues structures appelées rouleaux

qui se désagrègent lorsque le taux de cisaillement augmente. En conséquence, la viscosité sanguine

augmente pendant l’agrégation et diminue pendant la désagrégation. Il est admis que l’écoulement

sang est laminaire à Re< 2000 et turbulent à Re>3000. Cependant, la turbulence peut apparâıtre

localement (et occasionnellement) comme dans les artères sténosées. L’étude de l’interaction cellulaire

des composants du sang ainsi que des propriétés hémodynamiques et hémorhéologiques à une échelle

micrométrique nécessite un modèle d’écoulement multiphasique. Néanmoins, l’hypothèse d’un fluide

homogène monophasique est acceptable dans certains cas et permet de s’affranchir de la variation de

l’hématocrite (pourcentage de GRs par rapport au volume sanguin total).

Pour résoudre le problème d’interaction fluide-structure, plusieurs méthodes numériques peuvent

être utilisées. La plus populaire est sans doute la méthode des frontières immergées IBM, une méthode

à maillage non conforme introduite à l’origine pour décrire l’interaction entre les valves cardiaques et

le flux sanguin. La méthode IBM traite la membrane comme une fibre élastique formée par une série

de marqueurs lagrangiens à masse nulle immergés dans un maillage eulérien à travers lequel s’écoule

le domaine fluide. La membrane peut se déplacer à travers le maillage fixe. La méthode IBM n’est

compatible qu’avec des membranes très fines et avec des écoulements visqueux. De plus, la membrane

n’est pas traitée comme une entité physique mais est approximée à l’aide de fonctions de Dirac. Le

domaine fluide est généralement résolu par la méthode des différences finies ou par la méthode de lattice

Boltzmann tandis que la force élastique de la membrane est généralement obtenue par la méthode des

éléments finis. Alternativement, la méthode ALE pourrait être utilisée pour remédier aux limites de la

méthode IBM. Il s’agit d’une méthode à maillage conforme qui implique un remaillage continu. Il n’y

a aucune restriction ni sur l’inertie de la membrane ni sur celle du fluide. Le maillage peut se déplacer

pour suivre la déformation et le déplacement de la frontière immergée. La méthode ALE combine

les avantages de la description purement eulérienne et de la description purement lagrangienne. Dans

ce travail, la discrétisation temporelle suit le schéma d’Euler retardé d’ordre 2. Les variables sont

approximées par la méthode de Newton amortie ayant la propriété de convergence globale.

Pour l’ensemble des calculs effectués, les résultats obtenus sont en concordance avec la littérature
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(lorsque la comparaison est possible) et reflètent des propriétés dynamiques très similaires à celles des

GRs. Parmi les résultats les plus importants figure le rôle majeur de l’hyperélasticité artériolaire dans

le processus de migration latérale. En effet, nous avons montré que la paroi déformable induit une force

d’aspiration qui s’oppose à la portance, entravant ainsi la migration latérale des microparticules. Cette

force d’aspiration est sensible au rapport des viscosités, à la résistance au cisaillement de la membrane

et au confinement, ce qui rend la migration latérale encore plus complexe. En outre, l’hyperélasticité

vasculaire s’avère avoir une influence significative sur la dynamique individuelle des microparticules

ainsi que sur les interactions hydrodynamiques interparticulaires. Par ailleurs, nous avons montré que

la prédiction de la branche préférée des microparticules circulant dans une bifurcation coronarienne

est possible dans une certaine mesure. Toujours au niveau de la bifurcation, de nombreux modes de

déformation inédits ont été observés, en plus de la capture des microparticules dans les tourbillons

formés aux branches ascendante et descendante. Enfin, une contribution et pas des moindres, concerne

la proposition d’une méthode de résolution qui permet de renforcer la convergence à un coût de calcul

raisonnable.
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Imane EL JIRARI

Computational study of dynamical behaviour
of liquid-filled hyperelastic microparticles

flowing under haemodynamical and vascular
constraints

Résumé : Cette thèse est dédiée à l’étude du comportement dynamique de microparticules
à membrane hyperélastique chargées d’une substance liquide et soumises à des contraintes
hémodynamiques et vasculaires. L’étude qui est basée sur une modélisation numérique suff-
isamment fidèle aux conditions physiologiques a pour but de combler le manque d’études sur la
réponse mécanique de microparticules en écoulement dans des vaisseaux sanguins distensibles
(hyperélastiques), en particulier dans une artériole et une artère coronaire. Les travaux menés
dans le cadre de cette thèse ont contribué à l’étude de l’influence de la distensibilité vasculaire
sur le mécanisme de migration latérale dans une artériole ainsi que sur le partitionnement de
microparticules soumises à un écoulement pulsatile au niveau d’une bifurcation coronarienne.
Le problème instationnaire d’interaction fluide-structure est résolu suivant le formalisme
arbitrairement lagrangien eulérien.

Mots clés : Microparticule, interaction fluide-structure, paroi vasculaire, écoulement sanguin,
hyperélasticité, modélisation numérique, microfluidique.

Abstract : In this thesis the dynamical behaviour of microparticles made of a thin hyperelastic
membrane enclosing a liquid medium and subjected to haemodynamical solicitations is studied
by means of physiologically and reasonably realistic numerical modelling. The aim is to fill
the gap in studies addressing the mechanical response of microparticles flowing in distensible
human blood vessels, particularly in arterioles and coronary arteries. Contributions of the
present work include the appraisement of the influence of arteriolar distensibility on the
mechanism of lateral migration in arteriole and on microparticles partitioning in a coronary
bifurcation under the action of a pulsatile blood flow. Numerous physical quantities of interest
are evaluated quantitatively and qualitatively over time. Considering the therapeutic context,
the risk of clustering, adhesion to wall and premature burst are assessed. The unsteady fluid
structure-interaction problem is solved within the Arbitrary Lagrangian Eulerian framework.

Keywords : Microparticle, fluid-structure interaction, vascular wall, blood flow, hypere-
lasticity, numerical modelling, microfluidics.
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