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Résumé L’objectif de ce travail est de proposer un critère d’arrêt pratique et
général utilisant une approche a posteriori, qui s’appuie sur les estimations d’erreur
disponibles à partir de la procédure d’adaptation du maillage. Ce critère d’arrêt
doit être robuste et applicable aux différents types d’équations utilisées pour décrire
la physique complexe impliquée dans un problème de transfert de chaleur conjugué.
Le but final est de prouver qu’avec un tel critère d’arrêt il est possible de réduire
drastiquement le temps CPU nécessaire à la résolution du système linéaire issu de
la discrétisation Eléments Finis.

1.1 General introduction

In the last decades Computational Fluid Dynamics (CFD) has become a widespread
practice in several industrial fields, e.g., aerodynamics, aeroacoustic, turbomachin-
ery. The pace of innovation seems to be speeding up and the process of innovation
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itself is changing to follow this acceleration. A few decades ago any industrial
product had a time to market of 2-3 years, while nowadays the design and pro-
duction cycle would often take less than 18 months. This has a big impact on the
technologies used to complete this process. Numerical simulations answered to the
need of technologies that could give directions to follow in an early stage of the
design process, saving the critical amount of time that is needed for prototyping
and classic experimental tests. These technologies are not obsolete at all, but can
be reserved to a more specific use, in an advanced stage of the project, and as a
reference and calibration for the numerical methods. In the fluid dynamics field, a
vast range of numerical application became available during the years. Available
simulations techniques started from small stationary submodel simulations to more
complex thermal coupling applications, possibly taking into account phase changes
or fluid-structure interactions. The physics involved in all these kinds of problems
are extremely challenging, and this led to a great academic interest in developing
mathematical models and numerical methods to simulate these phenomena. The
increasing computing power that is becoming available in the last decades is also
increasing the attraction of this field of research. These technologies are becoming
more and more accessible, and what was before at exclusive use of those companies
that had access to a big computing resources, is nowadays accessible to everyone on
his laptop. This leads to a constant need to improvement in the efficiency of the
simulation process, with a specific focus on the accuracy required by the needs of
the company.

One physical phenomenon that has great interest for industrial applications is
the heat transfer that takes place when a solid is immersed in a fluid flow at a differ-
ent temperature. Typical examples of the possible applications can be the cooling
of specific parts of racing cars (e.g. wheels internals, engine) or aircraft, turbo-
machineries (e.g. turbine blades) [1], quenching of metal parts[2], heat treatments
in industrial furnaces [3].

These types of phenomena typically involve very complex flow features with
steep gradients. To allow a better representation of these features, one generally
needs to have a finer discretisation of the computational domain, to have a better
approximation of the solution. This achieved using a finer mesh, and leads to an
increase in the computational demands. To deal with this inconvenience a new
field of research arose, focusing on having a finer spatial discretization adapted to
the region of the domain where it is required. The concept of mesh adaptation
was introduced by Allgower in [4], and later developed in [5]. Mesh adaptation
plays an important role in reducing the CPU time required by the simulation while
ensuring high accuracy of the solution. The idea is to refine the mesh only in the
regions where either the solution or its gradients have rapid variations, to have the
best possible accuracy for a given number of mesh nodes. A vector or a scalar

2
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function is used to monitor and control size, shape, and orientation of the elements
of the new mesh. This function is usually designed to give an estimate of a suitable
norm of the solution error, which is required to be equidistributed over the domain.
Mesh adaptation can be described as the mathematical equivalent of a coordinate
transformation. The idea of using an error estimator to drive the mesh adaptation
procedure first appeared in [6, 7]. Where steep gradiends and directional feature are
strongly characterizing the flow, however, isotropic mesh adaptation may lead to a
big increase of the number of elements. In these situations, anisotropic meshes are a
very interesting candidate to handle the directional aspect of a solution’s variations.
These types of meshes were first introduced in [8–10] in the framework of advancing
front methods.

Given a certain level of accuracy obtained with the anisotropic mesh adaptation,
the second index to evaluate an efficient simulation process is the CPU time needed.
Simulating full scale models of industrial processing usually leads to huge computa-
tional requirements in terms of memory and time. This processes involve complex
nonlinear physics, complex geometries and long characteristic periods. Even with a
powerful workstation with 32 cores, it will take 5 days to simulate 5sec of a process
that lasts 30min. This gives a glimpse of how it is important to have an efficient
solver, to reduce as much as possible the time required for the solution. To impact
this side of the problem, we should focus on the core of a numerical simulation code,
and this is the iterative linear solver. For each numerical simulation, up to 60-80%
of the CPU time is spent to solve iteratively the linear system that stems from the
discretization of the governing equations. Therefore an optimal control of the itera-
tive procedure and its convergence is critical to increase efficiency and performance
of the simulation process.

When dealing with approximation errors introduced with numerical modeling, a
typical approach is to consider the solution of the linear system at each level to be
exact. However, for large problems, especially in three dimensions, the exact solution
of the linear systems may be impossible to obtain efficiently, by using sparse direct
solvers. In these cases one should adopt iterative linear solvers, which compute
approximations to the exact finite element solution at each iteration of the linear
solver. This leads to the need to estimate the error introduced, and control them
to optimize the efficiency of the convergence procedure. The question of accuracy
of iterative methods to solve a finite element system has been considered in [11, 12]
where heuristic a priori stopping criteria for iterative methods are proposed. More
recent contributions rely on a posterior approaches, with suitable estimates of the
algebraic error contribution [13–17].
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1.2 Objective of this work

The aim of this work is to propose a practical and general stopping criterion using
an a posteriori approach, that relies on the error estimates available from the mesh
adaptation procedure. This stopping criterion has to be robust and applicable to
the different types of equations used to describe the complex physics involved in a
conjugate heat transfer problem. The final goal is to prove that with such stopping
criterion is possible to drastically reduce the CPU time required for the solution of
the linear system that stems from the Finite Element discretization.

1.3 Working environment

This thesis work was developed at the Center for Material Forming, “CEntre de
Mise En Forme des matériaux” (CEMEF, www.cemef.mines- paristech.fr) in the
Sophia Antipolis technology park. The numerical implementation of the methods
presented in this thesis work was made in the CIMLIB-CFD finite element library
developed by the CFL team [18, 19]. This finite element library is developed as
a fully parallel code in C++, an object oriented programming language, with the
continuous contribution of the Ph.D. students, research assistants and professors of
the team.

1.4 Layout of the thesis

The thesis is divided into five chapters. After a general introduction to the topic
developed in this thesis, in Chapter 2. I introduce the general framework used to
model the conjugate heat transfer in fluid flows. Chapter 3 is devoted to the pre-
sentation of the mesh adaptation procedure, with error estimators. In Chapter 4 we
investigate stopping criteria for iterative solvers, and propose the adaptive stopping
criterion for CDR and Navier-Stokes equations.

1.5 Author’s contribution during the PhD

The contribution of the author in terms of publications, oral communications and
prizes is presented below.

1.5.1 Journal articles

1. Manzinali G., Mesri Y., Hachem H. Adaptive stopping criterion for itera-
tive linear solvers in an AFEM framework, with applications to convection-
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dominated problems. Computer Methods in Applied Mechanics and Engineer-
ing, vol. 340, pp. 864-880, 2018.

1.5.2 Communications

1. Manzinali G., Mesri Y., Hachem H. Anisotropic mesh adaptation and effects
on the conditioning of unstructured finite element solvers. 26th International
Meshing Roundtable, IMR26, September 2017, Barcelona, Spain.

2. Manzinali G., Hachem H. Adaptive Stopping Criterion for Iterative Linear
Solvers in an Anisotropic Stabilized AFEM Framework. 13th World Congress
on Computational Mechanics, July 2018, New York, USA.

3. Manzinali G., Hachem H. Adaptive Stopping Criterion for Iterative Linear
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ber 2018, Nice, France.

4. Manzinali G., Hachem H. Adaptive stopping criterion for iterative solvers
and efficient CPU time reduction, application to Navier-Stokes and thermal
probems. 20th International Conference on Fluid Flow Problems, April 2019,
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[3] E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, T. Coupez, Stabilized finite
element method for incompressible flows with high reynolds number, Journal
of Computational Physics 229 (23) (2010) 8643–8665. 2

[4] E. Allgower, S. McCormick, Newton’s method with mesh refinements for nu-
merical solution of nonlinear two-point boundary value problems, Numerische
Mathematik 29 (3) (1978) 237–260. 2

5



Chapter 1. Introduction Gabriel Manzinali
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Résumé Dans ce chapitre, nous présentons le cadre principal pour la résolution
numérique des écoulements de fluides et des problèmes de transfert de chaleur con-
jugués. Une discrétisation par éléments finis du domaine de calcul est adoptée pour
sa précision et son efficacité avec les géométries complexes typiques des simulations
industrielles. Cependant, la formulation Galerkin standard est affectée par les os-
cillations numériques dans les problèmes dominés par la convection ou la diffusion,
en particulier en présence de gradients prononcés. Pour surmonter cette limitation,
nous avons choisi la méthode Streamline Upwind Petrov–Galerkin (SUPG) appliquée
aux problèmes de convection–diffusion–réaction dominés par la convection. Cette ap-
proche est efficace pour éliminer les instabilités en ajoutant une diffusion numérique
dans la direction convective. Pour résoudre le problème d’écoulement de fluide, nous
utilisons une approche multi-échelle variationnelle pour résoudre les équations in-
compressibles de Navier-Stokes. Cette méthode de stabilisation s’est avérée efficace
pour gérer les problèmes dominés par la convection et traiter la condition de stabilité
inf-sup. Lorsqu’il s’agit d’écoulements turbulents, nous avons introduit les équations
RANS avec des modèles de turbulence, qui fournissent la solution d’écoulement de
fluide moyen sans résoudre les petites échelles de turbulence. Tous ces ingrédients
seront utilisés dans la suite dans le but de résoudre des problèmes industriels com-
plexes de transfert de chaleur. Cependant, pour résoudre toutes ces équations pour
des applications industrielles, il faut s’appuyer sur des procédures itératives. Le but
de ce travail est de fournir un contrôle adaptatif pour les solveurs itératifs, afin de
rendre la procédure de résolution plus rapide et plus efficace.

2.1 Introduction

The study of conjugate heat transfer in fluid flows has been one of the most powerful
tool in numerical applications to investigate natural and industrial phenomena in
different areas ranging from meteorology to environment monitoring, from food pro-
cessing to medical applications, from automotive and aerospace engines to design of
heating and cooling process in material forming. Extensive work has been done, on
both numerical and experimental sides, to develop more comprehensive numerical
models for real life applications. This, backed by the latest improvements in com-
putational performance and accessibility to the resources, is paving the path for a
transition from an extensive use of experimental investigation on simplified problems
to more fast and economical numerical analyses. Therefore comes the need to meet
the expectation providing improved numerical modeling to achieve better accuracy
and increased performances.

This chapter is centered on the modeling and solution methods for the heat
transfer and fluid flows problems. The Navier–Stokes equations for fluid flows are
solved coupled with the heat equation. Further treatment may be needed for high
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Reynolds number flows, with the application of the so called Reynolds-Averaged
Navier–Stokes equation, to provide an averaged version of the flow solution. In this
case supplementary variables are introduced to model the turbulence phenomena,
thus needing additional closure equations to be solved. The CIMLIB-CFD library,
developed by the CFL group of Mines ParisTech, is used to solve the numerical
problem. The methods implemented in the library have been developed and val-
idated in previous works, and are built on a stabilized, anisotropic finite element
discretization framework. For further detail we refer to [1–4].

In the following we present the general set of equations and stabilization methods
that will be used in this work to solve heat transfer in industrial fluid flows problems.

2.2 Convection Diffusion Reaction equation

The Convection Diffusion Reaction equation (CDR) has always been of central im-
portance for the numerical modeling of industrial applications. The continuous
development of new numerical method for the solution of CDR equations, allowed
to tackle more and more challenging configurations. Historically the first method
applied to these type of equation was the Galerkin Finite Element method. Us-
ing this method however, global spurious oscillations arise in the areas of strong
gradients in the solution, and in convection-dominated regimes. This oscillations
affect first the accuracy of the solution and also the stability of the simulation. A
variety of stabilization approaches have been proposed in the literature, with the
most popular being the Streamline Upwind Petrov–Galerkin method proposed by
Brooks and Hughes [5, 6] and revised by Scovazzi in [7]. This method substantially
removes the oscillation in the standard Galerkin formulation maintaining the con-
sistency of the problem. In this work we rely on this method for the stabilization
of the CDR problems, combined with an anisotropic mesh adaptation procedure to
capture sharp gradients in the solution.

In this section we start with a description of the equations used for the modeling
of the problem, then we introduce the standard Galerkin formulation, followed by
the SUPG technique needed for stabilization.

2.2.1 Governing equation

We consider the following problem that models the transport of a quantity u through
convection diffusion and reaction, posed on Ω ⇢ R

d, d = 2, 3, a bounded polyhedral
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domain with boundary Γ:

8
><
>:

@tu+ v ·ru� ∆u+ �u = f in Ω⇥ (0, T ) ,

u( . , 0) = u0 in Ω ,

u = g on Γ ,

(2.1)

with v 2 (W1,1(Ω))
d
a divergence-free advective field,  a diffusion coefficient,

� 2 L2(Ω) a reaction coefficient, and f 2 L2(Ω) a given source term; additionally
are provided u0 the initial data, and g a given function prescribed at the boundary.
This type of problem can exhibit four types of boundary layers, depending on the
relative velocity direction [8]:

• Regular boundary layers: appear at the outflow boundary where the velocity
field v is not parallel to Γ, with v · n < 0.

• Parabolic boundary layers: appear at the characteristic boundary where the
velocity field v is parallel to Γ, they are thicker then the regular boundary
layer.

• Corner boundary layers: appear at the corners of the domain Ω where two
boundary layers intersect each other.

• Interior layers: appear due to discontinuities in the boundary conditions at
the inflow boundary, with these discontinuities propagated across the domain
following the direction of v.

2.2.2 Standard Galerkin formulation

We define a weak problem involving the usual function spaces L2 and H1, with L2

the Hilbert space defined by

L2(Ω) =

⇢
v :

Z

Ω

|v(x)|2 dx < 1
�

, (2.2)

and H1 2 L2 the Sobolev space of functions with square integrable first order deriva-
tives

H1(Ω) = {v 2 L2(Ω) : krvk 2 L2(Ω)} . (2.3)

The weak formulation is obtained by multiplying Equation (2.1) by an appropriate
test function w 2 H1

0(Ω) and by integrating over the computational domain. The
weak formulation of the convection–diffusion–reaction problem reads

(@tu, w) + B(u, w) = F(w) 8w 2 H1
0(Ω) , (2.4)
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where (u, w) ⌘
R
Ω
u(x) v(x) dx denotes the L2 inner product, and

(
B(u, w) = (v ·ru, w)� (ru,rw) + (�u, w) ,

F(w) = (f, w) ,
(2.5)

accordingly, the solution will be sought in H1(Ω) such that u = g on Γ.
For the discretization in space we consider a finite element admissible mesh Th

on the computational domain Ω. In this framework the function space H1
0(Ω) is

approximated by the finite dimensional space Vh ⇢ H1
0(Ω). In the following Vh is

chosen as the space of piecewise linear functions on the elements K 2 Th. The
Galerkin finite element formulation (2.6) reads

(@tuh, wh) + B(uh, wh) = F(wh) 8wh 2 Vh , (2.6)

When convection dominates diffusion, the solution of the problem becomes chal-
lenging. In these conditions when the Peclet number local to an element

Pe|K =
kvkKhK

2a

with the element size hK = diam(K), becomes greater than one, the solution be-
havior varies across the domain: in some regions the solution is smooth, in others
the solution exhibits high gradients, developing boundary layers. Since the standard
Galerkin finite element discretization is a centered approximation, it is well-known
that node-to-node oscillations would possibly appear, spoiling the global accuracy
of the solution. Upwind techniques, such as stabilized finite elements, can be used
to solve this issue.

2.2.3 Streamline Upwind Petrov–Galerkin stabilization

The SUPG stabilization applied to (2.6) introduces an additional contribution to
the standard Galerkin test functions wh in the upwind direction and for all terms
in the equation. Using this method more weight is added to the nodes in the
upstream direction reducing the weight of the nodes in the downstream direction.
The modified test function is defined by

w̃h = wh + ⌧Kv ·rwh . (2.7)

with ⌧K a piecewise-defined coefficient to be defined. The weak formulation (2.6)
taking into account SUPG terms reads

(@tuh, wh) + Bτ (uh, wh) = Fτ (wh) 8wh 2 Vh , (2.8)
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where

8
>><
>>:

Bτ (uh, wh) = B(uh, wh) +
X

K2Th

⌧K(v ·ruh � ∆uh + �uh,v ·rwh)K

Fτ (wh) = F(wh) +
X

K2Th

⌧K(f,v ·rwh)K ,
(2.9)

with (u, v)K =
R
K
u(x) v(x) dx the L2 inner-product on each element K 2 Th. This

formulation is equivalent to introducing a local diffusion in the streamline direction
of convection. The additional stabilizing terms vanish for the exact solution of the
problem, to the limit of the continuous problem.

The SUPG method used in this work is globally stable, and is a good compromise
between stability and accuracy of the solution. If the solution exhibits steep layers
however, it is impossible to achieve optimal orders of convergence i.e. second order
for the L2 norm and first order for the H1 norm. In our framework the anisotropic
mesh adaptation technique is used to help recover this loss in convergence optimality.
For the details on the choice of the stabilization parameter ⌧K we refer to [2] and
references therein.

2.2.4 Time discretization scheme

The problem defined by Equation (2.8) yields the system of first order differential
equations:

Cu̇+Kτu = fτ , (2.10)

where u is the vector of nodal values of the solution, C the mass matrix, Kτ the ma-
trix of discrete operator Bτ , and fτ the source term. The system of Ordinary Differ-
ential Equations (2.10) has to be integrated in time. Using the ✓ time discretization
schemes, the derivative of the solution with respect to time can be approximated at
time tn by:

C
un � un�1

∆t
+Kτ

�
✓un + (1� ✓)un�1

�
= fτ , (2.11)

where ∆t is the time-step, n = 1, . . . , N , and 0 6 ✓ 6 1. We recall that this
family includes the backward Euler scheme (✓ = 1), the Crank–Nicolson scheme
(✓ = 0.5) and the forward Euler scheme (✓ = 0), and that the source term may also
be evaluated in the same manner.

2.3 The incompressible Navier–Stokes equations

The incompressible homogeneous Navier–Stokes equations in isothermal equilibrium
are a system of Partial Differential Equations describing the evolution of fluid flows
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through one vector variable, the velocity v, and one scalar variable, the pressure
p. Named after Claude-Louis Navier and George Gabriel Stokes, they remain one
of the most important open problems in mathematics. Despite the lack of proof
of the existence and smoothness of solutions, these equations are of great impor-
tance for a wide range of scientific and engineering applications. They can be used
to model problems ranging from aerospace and automotive aerodynamics to hemo-
dynamics in biomedical applications, from meteorology to complex fluids such as
foam, suspensions and liquid crystals. Due to this large field of applications a big
effort has been put to devise accurate and robust numerical methods to solve these
equations. However the heterogeneity of the behavior at different scales still poses
a great challenge to achieve accurate solutions.

In this section we present the mathematical formulation of the equations gov-
erning incompressible flows. The incompressibility hypothesis is introduced when
the effects of pressure on the fluid density are negligible. We consider a stabilized
finite element framework to deal with the instabilities that corrupts the standard
Galerkin scheme. The causes of these instabilities are found in the non-linear term
in convective dominated regimes, and at the discrete level in space incompatibility
between the velocity and the pressure approximation spaces. The inf-sup condi-
tion [9, 10], known as the Babuška–Brezzi condition, is not satisfied by a stan-
dard Galerkin formulation with equal-order approximation spaces. In the literature
several solution were proposed to deal with this instabilities. The Mini elements
method [11] is a popular mixed formulation using the same order of approximation
for pressure and velocity spaces, but enriching the latter with bubble functions that
vanish at the element boundaries. This formulation, however, preforms poorly in
convection-dominated problems. To overcome this limitation, Franca in [12] pro-
posed a residual-free bubble method to provide the stabilization terms. Residual-
based stabilization methods were introduced in several works by Brezzi et al. [13]
and Codina [14–16]. In this work we consider the multiscale approach, first intro-
duced by Hughes in [17–19], with the formulation implemented and validated in the
CIMLIB-CFD library by Hachem [3].

2.3.1 Governing equations

Let Ω ⇢ R
d be the bounded fluid domain of dimension d 2 {2, 3}, @Ω its boundary,

and (0, T ) be the time interval, the transient incompressible Navier–Stokes equations
in strong form read

(
⇢ [@tv + (v ·r)v]�r·σ = f in Ω⇥ (0, T ) ,

r·v = 0 in Ω⇥ (0, T ) ,
(2.12)

with v the velocity, p the pressure, ⇢ the density assumed to be a positive constant
real number, and f a given source term of finite energy representing external forces
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acting on the fluid. The Cauchy stress tensor for a Newtonian fluid is given by

σ = 2µε(v)� pI , (2.13)

where µ is a positive real number called dynamic viscosity, and I the d-dimensional
identity tensor. The strain rate tensor ε(v) defines the symmetric part of the velocity
gradient:

ε(v) =
1

2

⇥
rv + (rv)T

⇤
(2.14)

In order to close the problem, Equations (2.12) are subject to appropriate initial
and boundary conditions:

8
><
>:

v(x, 0) = v0(x) in Ω ,

v(·, t) = vD in ΓD ⇥ (0, T ) ,

rv · n = �N in ΓN ⇥ (0, T ) ,

(2.15)

where @Ω = Γ = ΓD [ ΓN and ΓD \ ΓN = ∅. When prescribing Dirichlet boundary
conditions, pressure is defined as a gauge pressure, so we can impose a conditionR
Ω
p(x) dx = 0 as reference.

2.3.2 Galerkin finite elements formulation

To derive the weak formulation of Problem (2.12) we use the following subspaces of
the usual Lebesgue function space of square integrable functions, and Hilbert space
defined on Ω:

V = {v 2
�
H1(Ω)

�d
: v = vD on ΓD} ,

V0 = {v 2
�
H1(Ω)

�d
: v = 0 on ΓD} , (2.16)

Q = {q 2 L2(Ω)} .

We multiply the Equations in (2.12) by test functions (w, q) 2 (V0,Q). In-
tegrating by parts the viscous and pressure terms, an additional integral over the
boundary ΓN emerges. The weak form of Equations (2.12) reads:

������������

Find (v, p) 2 V ⇥Q such that:

(⇢ [@tv + (v ·r)v] ,w)+

(2µε(v), ε(w))� (p,r·w) = (f ,w) + (�N ,w)
ΓN

, 8 w 2 V0

(r·v, q) = 0 , 8 q 2 Q

(2.17)

with (u, v)
ΓN

=
R
ΓN

u(s)v(s) ds, ds denoting the d � 1 dimensional Lebesgue mea-
sure.
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For the spatial discretization we consider the finite element admissible partition
Th of the domain Ω into a family simplex elements {K}. The previously defined
function spaces V and V0 are approximated by the following discrete spaces with
piecewise linear functions

Vh = {vh 2
�
C0(Ω)

�d
: vh|K 2 P1(K)d, 8K 2 Th} ,

V0
h = {wh 2 Vh : wh|Γ = 0} , (2.18)

Qh = {qh 2 C0(Ω) : qh|K 2 P1(K), 8K 2 Th} .

Therefore the Galerkin formulation of Problem (2.17) reads
������������

Find (vh, ph) 2 Vh ⇥Qh such that:

(⇢ [@tvh + (vh ·r)vh] ,wh)+

(2µε(vh), ε(wh))� (ph,r·wh) = (f ,wh) + (�N ,wh)ΓN
, 8 wh 2 V0

h

(r·vh, qh) = 0 , 8 qh 2 Qh

(2.19)

As we mentioned above the standard Galerkin method with P1/P1 elements
(i.e. the same piecewise linear space for Vh and Qh) is not stable, because the
inf-sup condition is not satisfied. Moreover, convection-dominated problems (i.e.
problems where the convection term (v ·r)v is much larger than the diffusion term
r· (2µ ε(v))) also lead to a loss of coercivity in formulation (2.17). In this work,
we use a Variational MultiScale method which circumvents both problems through
a Petrov–Galerkin approach. The basic idea is to consider that the unknowns can
be split into two components, a coarse one and a fine one, corresponding to different
scales or levels of resolution. First, we solve the fine scales in an approximate manner
and then we replace their effect into the large-scale equation.

2.3.3 Variational Multiscale approach (VMS)

The VMS approach provides a natural stabilization by an orthogonal decomposition
of the solution function spaces. We apply this decomposition to the velocity and
pressure spaces

Ṽ = Vh � V 0

Q̃ = Qh �Q0 . (2.20)

Velocity and pressure can be split now into resolvable coarse-scale and unresolved
fine-scale components

ṽ = vh + v0

p̃ = ph + p0 , (2.21)
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with the fine scales that will provide stabilization where the solution will present
steep gradients. The same decomposition is used for the test functions

w̃ = wh +w0

q̃ = qh + q0 , (2.22)

Using this decomposition the Problem (2.17) becomes
�������������������

Find (ṽ, p̃) 2 Ṽ ⇥ Q̃ such that:

(⇢ [@t(vh + v0) + ((vh + v0) ·r)(vh + v0)] , (wh +w0))

+ (2µε(vh + v0), ε(wh +w0))

� ((ph + p0),r· (wh +w0)) = (f , (wh +w0)) + (�N , (wh +w0))
ΓN

,

(r· (vh + v0), (qh + q0)) = 0 ,

for any pair (wh, qh) 2 Ṽ ⇥ Q̃.

(2.23)
The function spaces of large and small scales have to be linearly independent for
consistency, and the formulation of Problem (2.23) is linear with respect to the test
function. Therefore we can dissociate the large and the small scales into two sub-
problems:

Coarse-scale problem

�����������

(⇢ [@t(vh + v0) + ((vh + v0) ·r)(vh + v0)] ,wh)

+ (2µε(vh + v0), ε(wh))

� ((ph + p0),r·wh) = (f ,wh) + (�N ,wh)ΓN
,

(r· (vh + v0), qh) = 0 .

(2.24)

Fine-scale problem

�����������

(⇢ [@t(vh + v0) + ((vh + v0) ·r)(vh + v0)] ,w0)

+ (2µε(vh + v0), ε(w0))+

� ((ph + p0),r·w0) = (f ,w0) + (�N ,w
0)
ΓN

,

(r· (vh + v0), q0) = 0 .

(2.25)

A static condensation can be applied, where an approximate solution of the fine
scales is plugged back into the coarse-scale problem. The effect of the fine-scales
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approximation on the coarse-scale problem acts as a local stabilization, without
being explicitly computed. To do so, we rearrange Equation (2.25) in the form

��������

(⇢@tv
0,w0) + (⇢((vh + v0) ·r)v0,w0))

+ (2µε(v0), ε(w0)) + (rp0,w0) = (RM ,w0)

(r·v0, q0) = (RC , q
0) ,

(2.26)

where (RM ,w0) and (RC , q
0) are respectively residuals of the momentum and con-

tinuity large-scales projected onto the fine-scale spaces

RM = f � ⇢@tvh � ⇢(vh ·r)vh �rph (2.27)

RC = �r·vh . (2.28)

The next step into approximating the fine-scale problem is the introduction of several
assumption to simplify the equations in terms of time-dependency and non-linearity:

• To reduce the computational cost of tracking the subscales in time, we drop the
time dependency term in Equation (2.25). Note than some time dependency
is retained in the large-scale residual term RM , see [20].

• As the large-scale gradients are dominant compared to the small scales, the
convective velocity of the non-linear term may be approximated using only
large-scale part

((vh + v0) ·r)(vh + v0) ⇡ (vh ·r)(vh + v0)

• As the fine-scale space is assumed to be orthogonal to the finite element space,
the crossed viscous terms vanish in 2.24 and 2.25, [21];

The fine-scale problem will then reduce to the following

�����
(⇢(vh ·r)v0,w0) + (2µε(v0) : ε(w0)) + (rp0,w0) = (RM ,w0)

(r·v0, q0) = (RC , q
0) ,

(2.29)

The fine-scale equation, however, is not trivial to be solved, so one possible way
could be to approximate these subscales locally using the residual-based terms and
stabilization parameters ⌧v and ⌧p as follows

v0 = ⌧vRM

p0 = ⌧pRC

(2.30)
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Several definitions can be found in the literature for the stabilization parameters;
Codina in [14] proposed the following stabilizing coefficients defined piecewise con-
stant on each K 2 Th:

⌧v|K =

"✓
c1µ

⇢h2
m

◆2

+

✓
c2⇢kvhkK

hK

◆2
#� 1

2

⌧p|K =

"✓
µ

⇢

◆2

+

✓
c2⇢kvhkK
c1hK

◆2
# 1

2

,

(2.31)

where hK is the characteristic length of the element K, kvhkK a characteristic norm
of vh in K and c1, c2 two constants independent on hK . We assign these constants to
c1 = 4 and c2 = 2 for linear elements, see [16]. Another possible way is to include the
time step size of the temporal discretization in the expression of ⌧v. This improves
the convergence behavior of the algorithm to deal with the non-linearity of the
problem.

Taking into account the assumptions on the fine-scales and substituting the ex-
pressions of both the fine-scale pressure and the fine-scale velocity of Relations
(2.30), the coarse-scale system becomes

���������������

(⇢@tvh,wh) + (⇢(vh ·r)vh,wh)

+ (2µε(vh), ε(wh))�
X

K2Th

(⌧vRM , ⇢(vh ·r)wh)K

� (ph,r·wh) +
X

K2Th

(⌧pRC ,r·wh)K = (f,wh)

(r·vh, qh)�
X

K2Th

(⌧vRM ,rqh) = 0 .

(2.32)

Finally, for the sake of completeness, we plug in the residuals explicit formulas in
the coarse-scale problem to obtain
���������������

(⇢(@tvh + (vh ·r)vh),wh) + (2µε(vh), ε(wh))� (ph,r·wh)� (f,wh)

+
X

K2Th

⌧v (⇢ (@tvh + (vh ·r)vh) +rph � f, ⇢(vh ·r)wh)K

+
X

K2Th

⌧v (⇢ (@tvh + (vh ·r)vh) +rph � f,rqh)K

+(r·vh, qh) +
X

K2Th

⌧p (r·vh,r·wh)K = 0 .

(2.33)

The new formulation of Problem (2.33) can now be decomposed into four main
terms:
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• the standard Galerkin formulation

• fine-scale velocity upwind stabilization term

• fine-scale pressure stabilization term

• fine-scale velocity grad-div stabilization term.

All the added terms provide additional stabilization in convection-dominated
regimes and allow to avoid instabilities caused by incompatible approximation spaces.
Equations (2.33) are discretized in time by a semi-implicit scheme. The convective
term, the viscous term and the pressure term in the momentum equation, as well
the divergence term in the continuity equation, are integrated implicitly through
a backward Euler scheme. All other contributions (i.e. the source term and the
stabilization terms) are integrated explicitly by a forward Euler scheme.

One important parameter to address is the element characteristic length hK ,
that significantly influences the behavior of the stabilization parameter. A common
choice would be to define it as the minimum element size. When dealing with
strongly anisotropic meshes, however, the definition of hK is still an open problem
and plays a critical role in the design of the stabilizing coefficients [14]. In this work
we adopt the definition proposed in [22] to compute hK . It consists in computing
hK as the diameter of the element in the direction of the velocity field vh

hK =
2kvhkKX

ϕi

|(vh ·r'i)(xK)|
(2.34)

with P1(K) = span{'i} and xK the cell centroid.

2.4 Turbulence modeling for Reynolds-Averaged Navier–
Stokes equations

Turbulent flow dynamics are nowadays one of the most difficult challenges in fluid
dynamics. Turbulence phenomena have been observed since the 16th century by
Leonardo da Vinci, but it is only in the late 19th century that Osborne Reynolds
demonstrated the transition from laminar to turbulent flow. In a classic exper-
iment he examined the behavior of water flow under different flow rates using a
small jet of dyed water introduced into the center of flow in a larger pipe. From
the observations he made in these experiments he introduced the nondimensional
number, named after himself, that characterizes this behavior through the ratio of
inertial forces to viscous forces. In later years several studies aimed at describing
the turbulence phenomena, showing the energy cascade from bigger eddies to the
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smaller ones. A pioneering work done by Andrey Kolmogorov in the 1940s theorized
the wide span of scales involved, from a macroscale at which the kinetic energy is
supplied, to a microscale at which energy is dissipated by viscosity. Kolmogorov
hypothesized that when these scales are well separated, the intermediate range of
length scales would be statistically isotropic, and that its characteristics in equilib-
rium would depend only on the rate at which kinetic energy is dissipated at the small
scale. The wide scale range and the chaotic fluctuations in the flow features led to
numerous studies on the most suitable numerical method to tackle these type of
problems. A straightforward approach would be to solve directly the Navier–Stokes
equations to the Kolmogorov dissipative scales. However, his approach, known as
Direct Numerical Simulation, is highly computationally expensive and can be used
only with small problems and/or moderate Reynolds numbers. Other approaches
consist in modeling the dynamics in part or all of the turbulent subscales. The
[Very] Large Eddy Simulation approach solves only the large scale structures while
modeling the effects due to the small scales, being still considerably computationally
expensive. A more industrially relevant approach the Reynolds-Averaged Navier–
Stokes approach, that relies on time averaged equations to solve only the mean flow
variables, with significant reduction in the computational cost. Figure 2.1 shows the
positioning of the different methods on the Kolmogorov cascade and the differences
between the signals solved by each method.

(a) (b)

Figure 2.1: Kolmogorov cascade and indication on the modeled scales for different turbu-
lence models (left), with time signals for each model (right) [1]

2.4.1 Direct Numerical Simulation (DNS)

This class of methods relies only on the classical numerical solution of the Navier–
Stokes equations down to the level of dissipative scales. This means providing a
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fine mesh that is capable to capture these scales, that have to be solved along with
all the time scales. In the Kolmogorov theory [23] a measure of the computational
power needed is provided using the Reynolds number on a characteristic domain
length size L. The total number of grid points for a 3D simulation scales as

(L/∆x)3 ⇠ (Re
3/4
L )3 , (2.35)

likewise, the number of time steps needed is

tL/∆t ⇠ Re
1/2
L . (2.36)

Therefore the total number of degrees of freedom scales as

(Re
3/4
L )3 ·Re

1/2
L = Re

11/4
L . (2.37)

As a quick example the simulation of the flow around a car at 100Km/h would
need 1020 space-time degrees of freedom. The largest DNS performed today uses
⇠ 1010 grid points on a massively parallel machine, while more generally the common
practice on today’s machines is around 106 � 108 grid points. These limitations are
at the base of the continuous developments regarding turbulence models.

2.4.2 Reynolds-Averaged Navier–Stokes (RANS)

In a turbulent flow, pressure and velocity present fluctuations in time. For each
generic variable of interest � we can identify the time average � and the fluctuations
�0. Using this notation we can decompose this generic variable as in [24]

�(x, t) = �(x) + �0(x, t) , (2.38)

where the time average is computed as

�(x) = lim
T!1

1

T

Z T

0

�(x, t) dt and �
0
= 0 . (2.39)

Under the assumption of ergodicity if we use this decomposition on both velocity
and pressure in the Navier–Stokes equations, we obtain

(
⇢(@tv + (v ·r)v)�r· (2µε(v)) +rp+r· (⇢v0 ⌦ v0) = f in Ω⇥ (0, T ) ,

r·v = 0 in Ω⇥ (0, T ) ,

(2.40)
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We can see that in this averaged formulation a new tensor appears, representing the
influence of the small scale fluctuation on the mean flow This tensor R = �⇢v0 ⌦ v0

is called Reynolds or turbulent stress tensor, and has to be modeled to close the
RANS equations. Under the Boussinesq hypothesis Reynolds stresses are taken
into account in the form of an additional diffusion characterized by a turbulent or
eddy viscosity µt, which models the dissipation of energy due to the correlations of
velocity fluctuations with stresses modeled by

R ⇠ 2µtε(v)�
2

3
⇢kI , (2.41)

where k = 1
2
Tr(v0 ⌦ v0) = 1

2
|v0|2 is the turbulent kinetic energy and I the identity

tensor. Using this hypothesis we obtain the averaged Navier–Stokes momentum
equation in the following form

⇢(@tv + (v ·r)v)�r· ((µ+ µt)ε(v)) +r(p+
2

3
⇢k) = f . (2.42)

where we can notice that the first term of the Reynolds stress appears as an ad-
ditional viscosity while the second term is absorbed in the pressure as a turbulent
kinetic pressure. To provide a closure to the RANS equations a model is needed to
evaluate the turbulent viscosity so that the effective viscosity µe = µ + µt is com-
putable. The different models available in the literature can be classified according
to the number of closure equations to be solved:

• Zero-equation models, use algebraic formulations for µt

• One-equation models, use one transport equation for the eddy viscosity or
related variables (e.g., Spalart–Allmaras)

• Two-equation models, use two transport equations mostly related to kinetic
energy and dissipation (e.g., k � ✏ or k � !)

In this work we provide a formulation of the k�! SST model, one of the most used
two-equation models, that has been implemented and tested in the CIMLIB-CFD
library.

2.4.3 k � ! turbulence model

The k � ! turbulence model is one of the most used models for RANS equations.
It solves two transport equations, for turbulent kinetic energy k, which determines
the energy in turbulence, and for the specific turbulent dissipation rate !, which
determines the rate of dissipation per unit turbulent kinetic energy: it is related to
k and its dissipation rate ✏ by ! = ✏/k.
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The standard k � ! model [25] is more accurate than the popular k � ✏ in the
near wall regions, and can handle flows with moderate adverse pressure gradients,
but has problems capturing pressure induced separation. The ! equation also shows
a strong sensitivity to the free-stream conditions outside the boundary layer.

Menter’s k � ! SST turbulence model [26], where SST stands for shear stress
transport, became popular in the CFD community due to its good performance
predicting strong adverse pressure gradient flows, where most of the other turbulence
models are not able to provide good results. The SST formulation switches to a
k � ✏ -like behavior in the free-stream, which avoids the problems with free-stream
turbulence properties.

The improved near-wall predictions allowed by this turbulent model are crucial
to achieve better performance in those simulations involving heat transfer.

2.4.3.1 k � ! SST model formulation

We give here the complete formulation of the Menter’s k�! SST turbulence model
[26, 27]. The model is built on two transport equations for k and !. The !-equation
is controlled by blending functions F1 and F2 to switch from a k � ! behavior near
the walls, to a k � ✏ behavior in the free-stream.
8
>>>><
>>>>:

⇢ (@tk + v ·rk)�r· [(µ+ µt�k)rk] = Pk �
�⇤⇢

⌫t
k2 ,

⇢ (@t! + v ·r!)�r· [(µ+ µt�ω)r!] =
�Pk

⌫t
� �⇢!2

+ 2 (1� F1)
⇣⇢�ω2

!

⌘
rk ·r! ,

(2.43)

where the turbulent kinematic viscosity ⌫t is evaluated by relation

⌫t =
k

!

and Pk is the production rate of k

Pk = 2µtkε(v)k2 , (2.44)

which consists of the contribution of the double-contraction of Reynolds shear stresses
against the strain-rate tensor.

The turbulent dynamic viscosity µt is defined as

µt =
⇢a1k

max (a1!,WF2)
, (2.45)

where W is the absolute value of the vorticity. Each constant � in the model is
computed from the constants �1 and �2, using the blending functions F1, F2 as
follows

� = F1�1 + (1� F1)�2 , (2.46)
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with the blending functions defined as

F1 = tanh
�
arg41

�
,

arg1 = min

"
max

 p
k

�⇤!d
,
500⌫

d2!

!
,
4⇢�ω2k

CDkωd2

#
,

CDkw = max

✓
2⇢�ω2

1

!
rk ·r!, 10�20

◆
,

F2 = tanh
�
arg22

�
,

arg2 = max

 
2

p
k

�⇤!d
,
500⌫

d2!

!
.

(2.47)

where d is the distance to the nearest wall.
The closure constants of the model are

�k1 = 0.85, �w1 = 0.65, �1 = 0.075 ,

�1 = �1/�
⇤ � �ω1

2/
p
�⇤ ,

�k2 = 1.00, �w2 = 0.856, �2 = 0.0828 ,

�2 = �2/�
⇤ � �ω2

2/
p
�⇤ ,

�⇤ = 0.09, a1 = 0.31,  = 0.41 .

(2.48)

2.4.4 Stabilized FEM for solving k � ! SST

To apply the k � ! SST to our FE framework we apply the SUPG stabilization,
introduced in Subsection 2.2.3, to the transport equations of the model. The idea
is to recast the system of equations 2.43 into a convection–diffusion–reaction form
applying a backward Euler time discretization.

The system of Equations (2.43) then becomes

8
>>>>><
>>>>>:

kn+1 � kn

∆t
+ v ·rkn+1 �r· [(µ+ µn

t �k)rkn+1] +
�⇤⇢

⌫n
t

(kn+1)2 = P n
k ,

!n+1 � !n

∆t
+ v ·r!n+1 �r· [(µ+ µn

t �ω)r!n+1] + �⇢(!n+1)2 =
�P n

k

⌫n
t

� 2 (1� F n
1 )
⇣⇢�ω2

!n

⌘
rkn ·r!n .

(2.49)

Provided that the square term is linearized we can identify the terms of convection,
diffusion, reaction, and source. The system is then discretized in space using the
SUPG method. The Galerkin formulation is obtained by multiplying the two equa-
tions by appropriate test functions, 'k+⌧kv·r'k, and 'ω+⌧ωv·r'ω. We then apply
the divergence theorem to the diffusion terms and integrate by parts, following the
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lines in [28] on the use of stabilization methods for transient convection–diffusion–
reaction equations. The k equation becomes

✓
kn+1 � kn

∆t
,'k

◆
+
�
vn+1 ·rkn+1,'k

�

+
�
[µ+ µn

t �k]rkn+1,r'k

�
+

✓
�⇤⇢kn

⌫n
t

kn+1,'k

◆

� (P n
k ,'k) +

X

K

�
R(kn+1), ⌧n+1

k

�
vn+1 ·r'k

��
K
= 0 , (2.50)

and the ! equation becomes

✓
!n+1 � !n

∆t
,'ω

◆
+
�
vn+1 ·r!n+1,'ω

�

�
�
[µ+ µn

t �ω]r!n+1,r'ω

�
+
�
�⇢!n!n+1,'ω

�

�
✓
�P n

k

⌫n
t

� 2 (1� F n
1 )
⇣⇢�ω2

!n

⌘
rkn

r!n,'ω

◆

+
X

K

�
R(!n+1), ⌧n+1

ω

�
vn+1 ·r'ω

��
K
= 0 , (2.51)

where R(.) is the finite element residual of each equation in System (2.49). The
stabilization parameters, ⌧(.), is computed within each element as

⌧(.)|K =

✓
c2
h
k↵ckK +

c1
h2
K

↵d + ↵r

◆�1

(2.52)

where ↵c,↵d, and ↵r are, respectively, the convection, diffusion, and reaction coef-
ficients for the k- and !-equations, hK is the element size, k↵ckK a characteristic
norm of the convection term, and c1 = 4, c2 = 2 for linear elements.

2.5 Conjugate heat transfer

The coupling between heat transfer and turbulent fluid flow problems is a strong
subject of research in the past and nowadays still. This interest is driven by the nu-
merous industrial application that involve this type of physics, specially in the field
of material processing. Engineers are strongly interested, e.g., in the temperature
distribution inside a treated piece during all the process, to determine the metallur-
gical properties at the end of the treatment. Having all the thermal information at
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hand allows an optimization of the design of the tools and of the process itself, with
possibly a reduction in the energy consumption and pollutant emission.

To perform this task, the CFD tool needs to couple efficiently the two types of
governing equations presented above, considering a framework that allows a multi-
domain simulation. In this work we intend to employ the Immersed Volume method
as presented in [29]. The method consists in using a single global mesh to dis-
cretize the solid and fluid sub-domains and solve one set of equations with different
thermo-mechanical properties. Using this approach, we avoid the challenging task
of determining heat transfer coefficients at the level of the fluid-solid interface. Sim-
ulating the conjugate heat transfer and flow dynamics inside the domain requires
the simultaneous resolution of the Navier–Stokes and the heat transfer equations.
In convection-dominated regimes, the equations are stabilized using the aforemen-
tioned SUPG and VMS approaches (Sections 2.2.3 and 2.3.3 respectively). The
fluid dynamics and heat transfers are modeled by the CDR equations and RANS
equations with the k � ! closure model. The Boussinesq approximation is used to
take into account the buoyancy forces on the fluid motion. The coupled system to
solve follows8

><
>:

r·v = 0 in Ω ,

⇢ (@tv + (v ·r)v)�r· (2µeε(v)� pI) = ⇢0� (T � T0)g in Ω ,

⇢Cp (@tT + v ·rT )�r· (�erT ) = f �r·qr in Ω ,

(2.53)

where v denotes the velocity field, p the effective pressure, T the temperature, ε(v)
the strain-rate tensor, ⇢ the density and µe the effective dynamic viscosity; ⇢0 and
T0 are reference density and temperature, � the thermal expansion coefficient and g
the gravitational acceleration. In the energy conservation equation we consider the
constant pressure specific heat capacity Cp, the effective thermal conductivity �e, a
volume source term f and the heat radiative flux qr. The effective viscosity µe and
effective thermal conductivity �e terms which are computed by

µe = µ+ µt and �e = �+
Cpµt

Prt
, (2.54)

with Prt = 0.85 being the turbulent Prandtl number. The turbulent viscosity µt

is obtained from the closure equations of the turbulent model. It is important to
mention that we omitted the over-lined notation used previously for the averaged
variables (v, p and T ) for sake of simplicity. When using the RANS method, all the
variables stand for their averaged counterpart.

2.6 Numerical validation

In order to validate the proposed numerical framework we present in this section
several benchmark test cases. First we show the performances of the VMS coupled
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with CDR to model the heat transfer in a natural convection test. Then we validate
the k � ! method proposed for RANS equations, on a turbulent flow.

2.6.1 Natural convection in a square cavity

We present here the common benchmark with the laminar flow in a two-dimensional
square cavity, analyzed in [30, 31]. The velocity and the temperature equations are
coupled due to the buoyancy force and solved. Consequently, the flow inside the
enclosure is driven by the temperature differences. Figure 2.2(a) shows the setup of
the problem with the right wall kept at a constant cold temperature, whereas the left
wall is at a constant high temperature. Other two walls are maintained at adiabatic
condition. The gravitational acceleration is taken parallel to the isothermal walls.
In this test we describe the physical properties using the Grashof number

Gr =
⇢2g� (Th � Tc)L

3

µ2
, (2.55)

where ⇢ is the density of the fluid, g is the gravity constant, � is the coefficient
of thermal expansion of the fluid, ∆T = Th � Tc is the temperature difference
between the hot and cold walls in the figure separated by width L, and µ the
dynamic viscosity. This nondimensional number describes the ratio of the buoyancy
to viscous forces acting on a fluid. We assume that the fluid properties are to be
constant, except for the density in the buoyancy term. Under this assumption the
Boussinesq approximation states that density differences are sufficiently small to be
neglected, except where they appear in terms multiplied by g, the acceleration due
to gravity. The force term in the momentum equation then becomes

(⇢� ⇢0)g ⇡ �⇢0� (T � T0)g . (2.56)

where ⇢0 is the constant density of the flow, � is again the thermal expansion
coefficient, and T0 is the operating temperature.

The contours of the temperature field for Gr = 107 are shown in Figure 2.2(b). In
Figure 2.3(b) we plot the nondimensionalized velocity profile in the boundary layer
at y = 0.5, for three different Gr values. The analysis performed in [32] predicts
that the velocity profile in the boundary layer should scale with the power 1/4 of
the Gr number. We show in Figure 2.3(b) that the curves plotted for three different
Gr numbers follow this scaling low exactly as predicted.

2.6.2 Jet impingement

Owing to the highly localized mass, momentum, and heat transfer, jet impingement
is widely used in various fields such as cooling or heating of surfaces. However,
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(a) Problem setup (b) Temperature distribution

Figure 2.2: Natural convection in a square cavity
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Figure 2.3: Natural convection, velocity profiles

despite the apparent geometric simplicity, the flow structure of jet impingement is
complex, as it involves strong adverse pressure gradient, separation, vortex formation
and breakdown. Given the high Reynold number of the flow a RANS turbulence
model is used in the form of the k � ! SST variant.

The computational domain of the studied case [33] is depicted in Figure 2.4.
Because of the symmetry of the configuration only half of the domain is simulated,
allowing to reduce the computational cost,. The inlet width is B = 0.04m, the
impinging plate width is 4m, and consequently the confined plate width is 3.96m.
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Boundary u p k ! T

Inlet u = (0,�µRe/B)T rp · n = 0 k = |Iu|2 ! =
4
p
k

27lc �⇤
T = 300

Outlet ru · n = 0 p = 0 k = 0 ! = 0 T = 300

Impinging u = 0 rp · n = 0 k = 0 wall law T = 310

Confined u = 0 rp · n = 0 k = 0 wall law T = 300

Table 2.1: Boundary conditions for the jet impingement case

For this case, the ratio is chosen as H/B = 4 so that the impinging distance is
0.16m.

Figure 2.4: Setup of the jet impingement case

Particular attention is given to the mesh generation procedure given the sen-
sitivity to the boundary layer. The resolution in the vicinity of the plates should
satisfy a condition on the y+ value to ensure that it does not impact the behavior
of the flow in the near-wall region; given the references for this case we work with a
finite element mesh consisting of 368⇥ 126 elements.

The Reynolds number is Re = 20000, the Prandtl number is Pr = 0.72, and
for the inlet the turbulent intensity is set to I = 0.01. The characteristic turbulent
length scale is lc = 0.015B = 0.0006m, the fluid density is ⇢ = 1.1716kg/m3 ,
the dynamic viscosity is µ = 1.835 · 10�5kg/m · s, the thermal conductivity is
 = 0.0263W/m ·K, and the specific heat is Cp = 1005.5W/kg ·K. The density is
considered constant and since the maximum temperature difference is only ∆T =
10K, the Boussinesq approximation was applied. Finally the boundary conditions
listed in Table 2.1 were enforced.
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The obtained final velocity magnitude and turbulent kinetic energy fields are
presented on Figures 2.5 and 2.6 while a comparison of the pressure and velocity
profiles is provided in Figures 2.7(a) and 2.7(b).

Figure 2.5: Velocity magnitude for the jet impingement case

Figure 2.6: Turbulent kinetic energy for the jet impingement case

2.7 Conclusions

In this chapter we presented the main framework for the numerical resolution of
fluid flows and conjugate heat transfer problems. A finite element discretization
of the computational domain is adopted for its accuracy and efficiency with the
complex geometries that are typical of industrial simulations. However the standard
Galerkin formulation is affected by numerical oscillations in convection or diffusion
dominated problems especially in the presence of sharp gradients. To overcome
this limitation we chose the Streamline Upwind Petrov–Galerkin (SUPG) method
applied with convection-dominated convection–diffusion–reaction problems. This
approach is efficient to eliminate the instabilities adding a numerical diffusion in the
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Figure 2.7: Simulation of turbulent slot jet impingement heat transfer, comparison with
reference results from [33]

convective direction. To solve the fluid flow problem we use a variational multiscale
approach to solve the incompressible Navier–Stokes equations. This stabilization
method is proven to be efficient in handling convection-dominated problems and
deal with the inf-sup stability condition. When dealing with turbulent flows, we
introduced the RANS equations with turbulence models, that provide the averaged
fluid flow solution without solving the turbulence small scales. All these ingredients
will be used in the following with the aim of solving complex industrial heat transfer
problems. However to solve all these equations for industrial applications, one needs
to rely on iterative procedures. The aim of this work is to provide an adaptive control
for the iterative solvers, to make the solution procedure faster and more efficient.
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Résumé Dans ce chapitre, nous présentons brièvement la méthode d’adaptation
de maillage anisotrope basée sur la métrique utilisée pour fournir un maillage op-
timal, capable de capturer des gradients abrupts dans les domaines d’intérêt. Nous
décrivons les principes de l’approche basée sur la métrique, pour construire un
tenseur métrique dans l’espace de Riemann. Le résultat de la procédure est un en-
semble de facteurs d’étirement qui sont utilisés pour adapter le maillage, résultant en
un maillage anisotrope bien adapté au domaine d’intérêt. La procédure d’adaptation
est pilotée par un estimateur d’erreur. Nous proposons deux estimateurs d’erreur
a posteriori, l’un basé sur le hessien récupéré de la solution, le second s’appuyant
sur les gradients récupérés sur le bord des éléments. Les deux estimateurs sont
généraux et indépendants de l’EDP, et peuvent être appliqués à n’importe quel do-
maine d’intérêt. Dans le chapitre suivant, nous proposons d’utiliser le même esti-
mateur, déjà calculé pour l’adaptation du maillage, pour piloter la convergence de la
solution itérative.

3.1 Introduction

Computational Fluid Dynamics simulations and thermal analysis are nowadays be-
coming more and more accessible and are being integrated in most of the engineering
design and optimization processes. Nevertheless the modeled phenomena remain
extremely complex and those simulations require considerable computational re-
sources. A traditional uniform-mesh approach often fails to provide good solutions
with a reasonable number of elements, especially in the presence of multi-scale fea-
tures or steep gradients. Mesh adaptation techniques answer to this limitation with
a local refinement in the regions where higher resolution is needed. However, to
capture directional features that characterize the solution fields, the elements of
the mesh need to be highly stretched and well oriented, following these features.
Anisotropic adapted meshes provide more accurate solutions, reducing the required
computational resources. In this work we use a metric-based mesh adaptation tech-
nique to obtain anisotropic adapted meshes based on an error estimator. We propose
two different error estimators, one based on the recovered Hessian of the solution
and one computed on the edges of the element.

In Section 3.2 we outline different mesh adaptation techniques, with a focus
on the metric-based anisotropic mesh adaptation. We continue in Section 3.3 we
present the a-posteriori error estimators proposed and the related gradient recovery
technique. We conclude in Section 3.4 with some numerical examples to show the
efficiency of the mesh adaptation procedure.
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3.2 Mesh adaptation and error estimates

Introduced in the late 70s, the concept of mesh adaptation has been the focus of
intensive studies to have more accurate and faster numerical simulations. Error esti-
mators were used as indicators for the adaptation procedure, to determine the mesh
sizes accordingly in the different regions [1–4]. These methods, however, require
still a considerable number of elements in presence of steep gradients in the solution
fields. When the solution is characterized by the presence of directional features such
as boundary layers, the mesh should be able do adapt to this anisotropy. Anisotropic
mesh adaptation provides control on the size shape and orientation of the elements,
to better represent the solution features with a reduced computational cost. The
first studies on anisotropic mesh adaptation were based on a moving front technique
[5, 6]. In the 90s a new approach was introduced, generating highly stretched ele-
ments in a locally mapped space with metric tensors [7–9]. This method however,
can often lead to the creation of poor quality elements that would spoil the accu-
racy of the solution, and several methods have been proposed to provide quality
improvements for the mesh [10, 11]. Local-remeshing is proposed as a possible so-
lution to overcome this problem [12–14]. In the following we present the outlines
of the metric-based approach following the studies developed by the CFL research
group at CEMEF.

3.2.1 Metric-based mesh adaptation

Non Euclidean metrics are often used to generate unstructured anisotropic meshes
[15]. The main idea of metric-based mesh adaptation, is to generate a unit mesh in
a prescribed Riemannian metric space, such that this mesh can be created by any
unstructured uniform mesh generator. Then, this mesh is converted in an unstruc-
tured anisotropic mesh by the inverse application in the physical space. A discrete
metric M consists of a family of symmetric positive definite linear forms, each of
them represented by a real matrix M in R

d⇥d which can therefore be diagonalized,
so that

M = RT
ΛR , (3.1)

where R is an orthogonal matrix the lines of which are composed of eigenvectors
(ri)i=1..d while Λ is the diagonal matrix composed of eigenvalues (�i)i=1..d , which are
strictly positive. Then we can define the inner-product of two vectors in R

d with
respect to the metric M :

(u,v)M = (u,Mv) = uT Mv 2 R . (3.2)

Hence the distance between two points xi and xj is defined by the M-conjugate
inner-product

dM (xi,xj) = (xij Mxij)
1
2 (3.3)
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with xij = xj �xi, and the volume of an element K is |K|M =
p
det(M)|K|I, with I

the identity matrix defining the canonical metric. We can then define the unit ball
BM by

BM =
�
x 2 R

d | xTMx  1
 

. (3.4)

The unit ball is thus delimited by an ellipsoid with axis the eigenvectors ri and sizes
hi = (�i)

�1/2 along these directions, as shown in Figure 3.1. Consequently, we can
deduce a linear mapping between the unit ball in the canonical Euclidean space and
the metric space, represented in Figure 3.1.

Figure 3.1: Unit ball and linear mapping between the metric space and the canonical Eu-
clidean space

3.2.2 Error estimates

The goal of any anisotropic mesh adaptation technique is to provide a discretization
that minimizes the discrepancy between the approximated and the exact solution.
With a reliable approximation error, this can be done increasing the mesh density
in the regions where this error is estimated to be higher. This error estimator is
then used to drive the creation of the metric tensor that modifies the mesh sizes and
directions.

There are two main classes of error estimator: a-priori and a-posteriori. A-priori
estimators rely only on information available at the definition of the problem, such
as the nature of the problem itself or quantities related to the desired mesh, and
on the exact solution. However, for CFD applications a-priori error estimates are
frequently unreliable, especially in presence of singularities, and are not able to pro-
vide directional information. A-posteriori estimators, on the other side, rely on the
approximated solution of the problem. Different approaches can be followed to pro-
vide this type of estimators. Residual-based estimators [16, 17] are derived from the
residual of the discretized problem, and are therefore problem dependent. Hierar-
chical estimators [18, 19] use a higher order approximation of the exact solution to
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evaluate the error of the actual (lower order) computed solution. Goal-oriented esti-
mators [20–22] take advantage from the solution of the adjoint problem to optimize a
given functional of interest, that is imposed as a source term of the adjoint. The pro-
vided mesh would thus be only adapted to capture the features of given functional.
The last family of estimators is based on gradient recovery techniques [23–25]. A
limitation of this type of estimator is frequently related to the computational cost
of the recovery technique used. In the following we present two estimators of this
family. The first provides an edge-based estimate [26] using a simple gradient recov-
ery technique. The second relies on the recovered Hessian of the solution to drive
an explicit optimization problem [27–29]. Both approaches use the equi-distribution
principle to provide a set of stretching factors associated to the edges of the actual
mesh, for a given number of vertices.

It is worth mentioning that a combination of the above technique is possible.
Residual-based estimators, e.g., can be used in combination with other type of esti-
mators, often as a scaling contribution. In [30] Bazile proposes a combination with
a novel approach using an estimator based on the modeling of the VMS subscales
(from eq. 2.25). Another possible combination found in [31, 32] uses a coupling
with a directional contribution from an Hessian based estimator.

3.2.3 Global optimization

The techniques that we outline in this section is based on the error equi-distribution
principle. A global optimization problem is formulated under the constraint of a
fixed number of vertices in the mesh, to provide a set of stretching factors associated
with the edges of the domain. The length distribution tensor is modified accordingly
to take into account these stretching factors resulting in the new anisotropic adapted
mesh.

Let Th be a finite element admissible mesh of the domain Ω \ R
d such that

Ω =
S

K2Th
K, being K a simplex (i.e., a triangle in 2D, a tetrahedron in 3D), such

that Ki \ Kj = ; for any pair of cells (Ki, Kj) of Th. We define the set of vertex
coordinates in the mesh by

x = {xi 2 R
d, i = 1, ..., N} , (3.5)

where each vertex is identified by the unique index i in the mesh topology. Addi-
tionally we consider the star-topology of Th defined by the family of set of vertices
Γ(i) connected to a vertex of index i so that

Γ(i) = {j : 9K 2 Th, i, j are vertices of K} , (3.6)

in other words the pair (i, j) defines an edge of Th.
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In the following we consider Vh ⇢ V = H1(Ω) the linear Lagrange finite element
approximation space

Vh = {wh 2 C0(Ω) : wh|K 2 P1(K), K 2 Th} , (3.7)

and with the Lagrange interpolation operator from V to Vh defined as

Πh : V ! Vh

u 7!
NX

i=1

ui�i
(3.8)

where {�i}i=1,··· ,N is a nodal basis of Vh, and real coefficients {ui = u(xi)}i=1,··· ,N

are the degrees of freedom; therefore we identify ui as the nodal value of u at the
vertex of coordinates xi.

We recall that the goal of the adaptation procedure is to find a discretization
that minimizes the approximation error in a given norm ku� uhk for a target cost.
Estimates of the approximation error are said a priori as they hold for any solution
u of the continuous problem and are useful to determine the convergence properties
of the numerical method. However they are not computable and therefore cannot
be used to estimate the quality of a given approximate solution. Owing to Cea’s
Lemma the approximation error is uniformly bounded by the interpolation error
[33, 34]:

ku� uhkH1  Cku� ΠhukH1 , (3.9)

where the constant C depends on the problem (e.g, it involves the continuity and
the coercivity constants).

Therefore the mesh adaptation procedure can be formulated as a global opti-
mization problem to minimize the interpolation error in the given norm, with a
constraint on the number of degrees of freedom. In the frame of metric-based mesh
adaptation, a discrete metric field M, consisting of a family of symmetric positive
definite linear forms defined at the vertices of Th is computed so that

M = argmin
u

ku� Πhuk (3.10)

The adaptation algorithm relies therefore on a quality measure of the computed
solution which estimates the approximation error in order to build a computable
minimization Problem (3.10), it is called an a posteriori error estimator.

3.3 A posteriori error estimation

Among the possible choices outlined in Section 3.2.2, the two approaches that we
propose in the following both rely on the gradients of the solution to drive the
adaptation.
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3.3.1 Hessian recovery techniques

In a P1 finite element framework the gradients of the solution are constant on the
element. To be able use them to control the approximation error, we need to find a
suitable recovery technique to overcome this problem. The most common methods
found in the literature aim to recover the Hessian of the solution at the mesh nodes,
to use it in the mesh adaptation procedure.

One well-known class are projection methods, like the Zienkiewicz–Zhu approach
[24], used on P1 finite elements. In order to recover the gradient at the nodes, that
is discontinuous from element to element, a patch of elements sharing a node xi is
built. On this patch a least square linear fitting function is defined, considering the
gradient values in the element’s center of mass. The Hessian is obtained applying
this reconstruction strategy twice recursively.

HR(uh)(xi) = ΠZZ (r (ΠZZ (ruh))) i , (3.11)

with ΠZZ the Zienkiewicz–Zhu projector on the P1 finite element space. The two
main limits of this class are the numerical diffusion introduced by the recursive
averaging process, and the incapability of removing high frequency errors due to
mesh non-uniformity.

Another possible approach is to use variational methods that rely on the gradient
to be constant elementwise, for a P1 scalar field. The Hessian is recovered using a
weak formulation combined with the Green formula, considering a higher order
approximation of the scalar field, see e.g. [35].

The last class proposed is based on a least square approach to recover the Hessian
at the nodes. Considering a node xj on a patch of elements sharing the node xi, the
Hessian can be written with a Taylor expansion truncated at the second order

1

2
xijHR(uh)(xi)xij = uh(xj)� uh(xi)� xijruh(xi) . (3.12)

This equation can be reformulated as a system that can be solved using a least
square approximation

AH = B , (3.13)

where the components of the Hessian are in the vector H. The fact that system has
to be solved at each remeshing iteration on each node, makes the complexity of this
approach to be problem dependent.

3.3.2 Hessian based estimator and mesh adaptation

Using one of the gradient recovery methods outlined above, one can provide a recov-
ered Hessian to be used to compute an error estimator for the interpolation error.
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In this framework, we present here a mesh adaptation procedure that follows the
work of Almeida et al. in [28], extended in [36] for n-dimensional problems.

We consider a triangulation Th of the physical domain Ω 2 R
d. If uh is a finite

element approximation of an exact solution u in Ω, then the approximation error
can be bound as

ku� uhkLp(Ω) 6 Cku� ΠukLp(Ω) , (3.14)

with a generalization of Equation (3.9), where Π has similar properties as the
Clément interpolation operator [37]. It is then possible to use the Hessian of the
solution as a bound for this error

ku� ΠukLp(Ω) 6 CkH(u)kLp(Ω) , (3.15)

with

kH(u)kLp(Ω) =

 
X

K2Th

kH(u)kpLp(AK)

!1/p

, (3.16)

where AK is a patch formed by K and its neighboring elements.
A recovered Hessian HR is provided following the Zienkiewicz–Zhu double gra-

dient recovering technique presented above. Then we have

kH(u)kLp(AK) 6 C
�
kH(u)�HR(uh)kLp(AK) + kHR(uh)kLp(AK)

�
. (3.17)

We assume that there exists a constant C such that

kH(u)�HR(uh)kLp(AK) 6 CN�β
Th

kHR(uh)kLp(AK) , (3.18)

with � > 0 and NTh the number of elements of the triangulation Th. Combining
(3.15) and (3.19) we have

ku� ΠukLp(Ω) 6 C
⇣
1 +N�β

Th

⌘
kHR(uh)kLp(Ω) , (3.19)

with HR(uh) = HR(uh)(x)(x � xK) · (x � xK), where HR is a recovered Hessian
operator and xK the center of mass of the element K. This shows that the recovered
Hessian can be used to control the interpolation error.

If uh is a good approximation of u we can use the Lp norm of the recovered
Hessian as a posteriori error estimator

ku� uhkLp(Ω) ⇡ C 0kHR(uh)(x)(x� xK) · (x� xK)kLp(Ω) . (3.20)

where C 0 includes the contribution of C and (1 +Nβ
Th
).

To ensure that this approximation will not affect the overall error, and its esti-
mate, we need a reliable stopping criterion to control the convergence of the iterative
algorithm. This will be the topic of Section 4.3.
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This formulation highlights how the error is not isotropically distributed, and
depends on the behavior of the second order derivative of the solution. At this
point, it can be of practical interest to introduce a spectral decomposition of HR,
providing a symmetric positive definite matrix

H = RΛRT , (3.21)

whereR is the orthogonal matrix of the eigenvectors ofHR and Λ = diag{|�1|, · · · , |�d|}
is the diagonal matrix of the absolute values of the eigenvalues of HR. Then we can
write the resulting tensor as

H = RΛRT = |�1|e1 ⌦ e1 + · · ·+ |�d|ed ⌦ ed , (3.22)

where ei are the eigenvectors of HR. If we consider an element K 2 Th, using
Relation (3.21) we can derive from Approximation (3.20) the following local error
estimator

⌘
p
K =

Z

K

�
H(uh(xK))(x� xK) · (x� xK)

�p
dx . (3.23)

Substituting H defined by Relation (3.22) in Equation 3.23 we have

⌘
p
K =

Z

K

⇣ dX

i=1

|�i(xK)|[ei(xK) · (x� xK)]
2
⌘p

dx . (3.24)

The goal of this adaptation algorithm detailed here, is to use the error estimator
as a cost function of an explicit minimization problem, so in the following we will
introduce two main properties that are used to provide a simple bound for the
estimator:

• The projection of x� xK on the ei direction is bounded by

[ei · (x� xK)]
2 = x2

i  h2
i , (3.25)

then injecting this bound in Equation 3.23

⌘
p
K 

Z

K

⇣ dX

i=1

|�i(xK)|h
2
i

⌘p

dx . (3.26)

• If the optimal mesh is the one aligned with the solution u, the error has to be
locally equidistributed in the principal directions, i.e.

|�1|h
2
1 = · · · = |�i|h

2
i = constant . (3.27)

Using this property we can rewrite the bound as

⌘
p
K  |K|

�
d|�d(xK)|h

2
d

�p
, (3.28)

where |K| is the volume of the element K.
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Finally we can define a local indicator using the proposed upper bound

e⌘K = d|K|
1
p |�d(xK)|h

2
d . (3.29)

This indicator is used as a functional of the following minimization problem

8
>>>>>>><
>>>>>>>:

Find hK = {h1K , · · · , hdK}, K 2 Th that minimizes the cost function ,

F (hK) =
X

K2Th

e⌘pK ,

under the constraint NT 0
h
= C�1

0

X

K2Th

Z

K

dY

i=1

1

hiK

dx ,

(3.30)

where C0 is the volume of the reference regular simplex, T 0
h is the new triangulation,

and the constraint is on the number of nodes NT 0
h
.

This optimization problem has a unique solution for any d > 2 and the general-
ized form can be written as

8
>>>>>>><
>>>>>>>:

hdK =

"
d�

(2p+ d) C1K

Z

K

C2K dx

# 1
2(p+d)

,

hiK =

 
d�1Y

k=i

skK

!
hdK , 1 6 i 6 d� 1 ,

(3.31)

where �, C1K , C2K can be computed explicitly, and siK = hi/hi+1 = (|�i+1|/|�i|)
1/2

are the stretching factors for the element K.
Using these results we can now build the metric field that is used by the remeshing

procedure

M =
1

h2
1

e1 ⌦ e1 + · · ·+
1

h2
d

ed ⌦ ed . (3.32)

3.3.3 Edge based estimator and mesh adaptation

We present here a mesh adaptation technique that relies on an error estimator built
using the gradient projections on the edges of the elements. The major advantage of
this technique is that it does not require any Hessian reconstruction, while it makes
use of the projected Hessian on the edges.

We consider an interpolated solution uh, and we introduce the following notation
for a generic node xi

xij = xj � xi and uij = uj � ui 8j 2 Γ(i) . (3.33)
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The gradient of uh is a piecewise constant vector field discontinuous on the elements.
The projection on the edges of the element, however, is continuous and depends
only on the values of u at the extreme nodes of the edges. If we consider a Taylor
expansion of the variable of interest on the node xi

uj = ui +rijuh · xij . (3.34)

then using Relation (3.33)
uij = rijuh · xij . (3.35)

and this is true for any element sharing the edge xij. Considering P1 elements, we
can deduce from the continuity property that the interpolation error on the edges in
of second order, as demonstrated in [15, 38]. Then we can formulate the following
bound for the error in the projected gradients of the exact and interpolated solutions,
using the projected Hessian of the solution

|ruh · xij �ru(xi) · xij| 6 max
s2[xi,xj ]

|H(u)(s)xij · xij| , (3.36)

where H(u)(s) is the Hessian of u evaluated at a point s on the edge xi,xj. Using
this inequality we can express the projected Hessian in terms of projected gradient,
which is reconstructed on the edges using the nodal values. Since u|xij

2 C2(xij),
then ru|xij

2 C1(xij). If we write the Taylor expansion

ru(xj) = ru(xi) +H(u)(xi)xij , (3.37)

from the projection on xij, we get

(ru(xj)�ru(xi)) · xij = H(u)(xi)xij · xij . (3.38)

Then we can simplify the notation defining gi = ru(xi) the gradient of u on a node
i, and gij = gj�gi the delta gradient on the edge xij. Equation (3.38) then becomes

gij · xij = H(u)(xi)xij · xij . (3.39)

and we can use this projection to evaluate the interpolation error along the edge

eij = |u� uh|xij
= |gij · xij| . (3.40)

This is not a proper computable estimator yet, because it implies the use of the
gradient of u, that is unknown, and its continuity at the nodes. On P1 finite elements
the gradient is only accessible element-wise, so a gradient recovery procedure is
needed. One could use one of the projection methods mentioned in Section 3.3.1,
with their limitations mentioned above. The gradient reconstruction proposed here,
is based on least square approximation of the gradients on the edges, using the
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length distribution tensor. The goal is to find the reconstructed gradient Gi 2 R
d

on each node xi such that

Gi = argmin
G2Rd

X

j2Γ(i)

| (G�ruh) · xij|
2 = argmin

G2Rd

X

j2Γ(i)

|G · xij � uij|2 . (3.41)

The minimization problem can be solved imposing the derivative of the argument
equal to zero, then

Gi
X

j2Γ(i)

(xij ⌦ xij) =
X

j2Γ(i)

uijxij . (3.42)

where ⌦ identifies the tensor product, and X
i =

P
j2Γ(i) (xij ⌦ xij) is the length

distribution tensor. To simplify the notation we define

Ui =
1

|Γ(i)|

X

j2Γ(i)

uijxij , (3.43)

then we get the recovered gradient on the node xi

Gi = (Xi)�1Ui . (3.44)

The estimated error in Relation (3.40) now becomes

⌘ij = |Gij · xij| . (3.45)

For a detailed error analysis of the proposed error estimator we refer to [12].

3.4 Numerical examples

Anisotropic mesh adaptation is the perfect tool to capture the anisotropic features
of a function of interest. However, when the considered function presents sharp
discontinuities the procedure becomes more challenging as the algorithm tends to
create elements with extremely high aspect ratios. To obtain the optimal mesh one
needs to proceed in an iterative way in order to drive the mesh/solution couple
toward optimality, i.e. until the measured interpolation error shows no additional
improvement. In this section we present some validation test for the developed edge-
based error estimators and anisotropic mesh adaptation technique on two and three
dimensional test cases. We present two analytic function to asses the performances
of the mesh adaptation on steep gradients and multiscale functions, as well as the
flexibility and robustness of the technique applied to the interface capturing of a
3D complex geometry. Finally we perform a comparison of the two error estimators
presented above on a simple benchmark.
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3.4.1 Modified Holder Table function

As a first numerical example we propose a new benchmark, to show the capability of
the adaptation technique to capture a function with steep layers and discontinuities.

We consider the Holder Table analytical function on the domain [�5, 5]⇥ [�5, 5]

f(x, y) = �
�����sin(x) cos(y) exp

 �����1�
p
x2 + y2

⇡

�����

!����� , (3.46)

modified imposing upper and lower limiters

u(x, y) =

8
><
>:

� 0.2 for f < �0.2 ,

f for � 0.2 6 f 6 �0.1 ,

� 0.1 for f > �0.1 .

(3.47)

We compare in Figure 3.2 the same analytical function obtained using a 20k nodes
on an uniform mesh in Figure 3.2(a) and an anisotropically adapted one in Fig-
ure 3.2(b). We can detect how the elements on the adapted mesh are well oriented
and stretched along the tangential direction to allow a steep capture of the function,
where the uniform mesh fails. The discontinuity are well defined on the adapted
mesh and nodes are being automatically redistributed with a higher density in the
vicinity of sharp gradients.

3.4.2 Multiscale function

The following test shows the capability of the presented mesh adaptation technique
to capture the different scales of the considered function of interest. We consider a
multiscale function found in [39] that exhibits variations at small and large scales
with respective amplitudes of 0.01 and 1. The analytical function is defined on the
domain [�1, 1]⇥ [�1, 1] as

u(x, y) =

8
><
>:

0.01 sin(50xy) if xy 6 �⇡/50 ,

sin(50xy) if � ⇡/50 < xy 6 2⇡/50 ,

0.01 sin(50xy) if 2⇡/50 > xy .

(3.48)

We can see in Figure 3.3(a) the function evaluated on a 50k nodes anisotropically
adapted mesh in Figure 3.3(b). Even if most of the elements are placed on the
regions with bigger amplitude, the algorithm can capture the small wiggles as well
as the large-scale sinusoidal wave.
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(a) Isotropic uniform mesh (b) Adapted mesh

(c) Function on isotropic uniform mesh (d) Function on adapted mesh

Figure 3.2: Modified Holder Table function, both meshes with 20k nodes

3.4.3 3D solid body

The mesh adaptation algorithm presented above is very flexible and robust to be
used for several purposes involving mesh adaptation. When using immersed volume
methods [40–43] with a level-set approach [39], it is vital to capture the interface that
is implicitly defined as a field function. In Figure 3.4 we can see that the algorithm
is capable to capture complex geometries using a number of nodes that is drastically
lower compared to a more classic isotropic mesh adaptation. Figure 3.4(c) shows in
detail the highly stretched elements on the body interface.

3.4.4 Hessian-Based vs Edge-Based recovery

In this section we evaluate on two manufactured solutions the implementation of
the Hessian-based and Edge-based error estimators used for the construction of the
discrete metric for topological remeshing: one for the convection–diffusion equation
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(a) 3D meshed body (b) Mesh YZ-section

Figure 3.3: 3D mesh adaptation of an immersed solid body

and one for the incompressible Navier–Stokes equations.

3.4.4.1 Convection–Diffusion

We consider the following problem posed in the unit square Ω = [0, 1]2:

(
v ·ru� ∆u = f in Ω ,

u = g on Γ ,
(3.49)

The boundary conditions and the source term are determined so that the exact
solution u given by

u(x, y) = xy
⇣
1� e�

1�x
κ

⌘⇣
1� e�

1�y
κ

⌘
, (3.50)

is solution to the equation, with diffusion coefficient  = 10�3 and velocity field
v = (1, 1)T . The approximate problem is solved on different adapted meshes ob-
tained from the discrete metric based either on a Hessian-based or Edge-based error
estimator. The target number of vertices is set successively to 102, 103, 104, then
105 vertices. For each mesh the L2-norm of approximation error is reported in Fig-
ure 3.5 and the computational time required for the mesh adaptation procedure is
measured and plotted in Figure 3.6.
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(a) 3D meshed body

(b) Mesh YZ-section (c) Mesh XZ-section detail

Figure 3.4: 3D mesh adaptation of an immersed solid body

3.4.4.2 Navier–Stokes

We consider an analytic solution of the incompressible Navier–Stokes posed on the
unit square:

(
⇢ [@tu+ (u ·r)u] +rp� ⌫∆u = f in Ω⇥ (0, T ) ,

r·u = 0 in Ω⇥ (0, T ) ,
(3.51)
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Figure 3.5: L2-norm of the error with Hessian-based metric vs Edge-based metric
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Figure 3.6: Computational time with Hessian-based metric vs Edge-based metric

with the solution pair (u, p) given by

u(x, t) = sin(t)
⇣
sin(⇡x) sin(⇡y),� cos(⇡x) sin(⇡y)

⌘T

and
p(x, t) = sin(⇡x) sin(⇡y) cos(t)

provided that the corresponding source term is constructed and the Dirichlet bound-
ary conditions are enforced, with parameters ⇢ = 1 and ⌫ = 10�3. For both the
Hessian-based or Edge-based error estimator the target number of vertices is set
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successively to 102, 103, 104, then 5 · 104 vertices and the time step was set to 104

so that the time discretization error is negligible. For each mesh the L2-norm of
approximation error is reported in Figure 3.7 and the computational time required
for the mesh adaptation procedure is measured and plotted in Figure 3.8.
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Figure 3.7: Convergence history for the Hessian-based (red) and the Edge-based (blue)
estimators for adapted meshes with a target of 102, 103, 104 and 5·104 vertices.
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Figure 3.8: Computational time with Hessian-based metric vs Edge-based metric
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3.5 Conclusions

In this chapter we briefly introduced the metric-based anisotropic mesh adaptation
method used to provide an optimal mesh, that is able to capture steep gradients
in the fields of interest. We outline the principles of the metric-based approach, to
build a metric tensor in the Riemann space. The result of the procedure is a set of
stretching factors that are used to adapt the mesh, resulting in an anisotropic mesh
that is well adapted on the field of interest. The adaptation procedure is driven by
an error estimator. We propose two a-posterior error estimators, one based on the
recovered Hessian of the solution, the second relying on the recovered gradients on
the edge of the elements. Both estimators are general and PDE-independent, and
can be applied to any field of interest. In the next chapter we propose to use the
same estimator, already computed for the mesh adaptation, to drive the convergence
of the iterative solution.
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locale, Revue européenne des éléments finis 9 (4) (2000) 403–423. 41

[27] P. Frey, F. Alauzet, Anisotropic mesh adaptation for CFD computations, Com-
puter Methods in Applied Mechanics and Engineering 194 (48) (2005) 5068 –
5082, Unstructured Mesh Generation. 41
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Résumé Dans ce chapitre nous proposons un critère d’arrêt adaptatif automa-
tique pour les solveurs itératifs dans le cadre des éléments finis adaptés anisotropes,
appliqué aux problèmes dominés par la convection. La formulation proposée tire parti
des informations calculées dans la procédure d’adaptation du maillage, qui fournit
une estimation de l’erreur d’approximation sans coût de calcul supplémentaire. Nous
proposons d’arrêter le solveur itératif lorsque l’erreur algébrique est inférieure au
niveau de l’erreur d’approximation estimée. Des tests numériques ont été effectués
pour un problème de Laplace symétrique de référence, plusieurs problèmes de con-
vection–diffusion stationnaires et instationnaires, et des problèmes de Navier–Stokes
résolus avec des éléments finis stabilisés sur des maillages fortement étirés. Ces cas
de test ont été choisis pour leur simplicité de mise en œuvre, pour servir de futures
références sur le sujet. Les résultats ont prouvé que, suivant l’approche fournie, le
nombre total d’itérations nécessaires peut être réduit jusqu’à cinq fois, sans effet
significatif sur la précision de la solution calculée. Il en résulte une réduction con-
sidérable du temps de calcul dédié à la résolution itérative du problème. Enfin, un
problème modèle de traitement thermique dans un four a été étudié pour démontrer
l’applicabilité de l’approche développée à des simulations réalistes à grande échelle.
Le solveur numérique couplant Navier–Stokes et l’équation de transfert de chaleur a
été exécuté avec des critères d’arrêt adaptatifs basés sur deux estimateurs d’erreur
a posteriori. Le temps de calcul s’est avéré favorablement réduit tout en conser-
vant une bonne qualité de la solution discrète par rapport aux quantités d’intérêt :
ceci est prometteur pour améliorer les performances des simulations d’applications
industrielles en ingénierie.

4.1 Introduction

When we consider the solution of a system that stems from the finite element dis-
cretization of a continuous problem, usually one assumes this solution to be affected
only by approximations due to the discretized model. In real-world applications
however, this kind of system can be solved efficiently only with an iterative proce-
dure, which introduces another approximation. The accuracy of this approximation
is controlled by the stopping criteria used to drive the convergence of the iterative
procedure.

Only a small percentage of the research devoted to AFEM aimed to an objective
stopping criterion, leaving the user to the dilemma pointed out by Becker et al. in
their seminal work [1]:

”[...] With no objective stopping criterion available, one has either to
continue the iterations until the discrete solution error is practically
zero, [...] or take the risk of stopping the iterations prematurely [...]”
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In most cases ad hoc stopping criteria are used, e.g. requiring an initial residual norm
to be reduced by a certain factor. These criteria are straightforward to implement,
but have no direct link to the actual error in the approximate solution. This could
possibly affect the efficiency of the iterative procedure and the accuracy of the
resulting solution. On one side an highly accurate approximation is inefficient and
most likely unnecessary, on the other side a poor approximation affects the accuracy
of the solution and the convergence of the adaptation procedure. This point of view
has been developed in several works regarding inexact iterative solvers and stopping
criteria. In the framework of symmetric problems, Arioli in [2] proposes an a-priori
stopping criterion and Picasso in [3] suggests an a-posteriori approach. Other more
general methods, based on a-posteriori flux reconstruction techniques are presented
in [4, 5]. In [6], we can find a convergence analysis of different inexact adaptive
methods. An interesting overview of the existing approaches is proposed by Arioli
and co-workers in [7].

In this work we propose an adaptive stopping criterion, first presented in [8], that
follows the strategy developed for symmetric problems in [3], extending the applica-
tion to non-symmetric problems. We use the general anisotropic mesh adaptation
framework presented in Chapter 3, that is shown to be robust and problem inde-
pendent. Using information from the adaptation procedure we provide a cost-free
automatic adaptive control for the linear solver, that proves to be effective to dras-
tically reduce the number of iteration needed, without spoiling at all the accuracy
of the solution.

In Section 4.2 we give a brief introduction on iterative solvers and preconditioning
techniques, in Section 4.3 we provide the adaptive stopping criterion to control the
iterative solver, and finally in Section 4.4 and Section 4.5 we validate this framework
with several test cases.

4.2 Iterative solvers for sparse linear systems

4.2.1 Preconditioning

When solving a discrete system in the form

Ax = b , (4.1)

with an iterative solver, one parameter to keep under control is the condition number
of the matrix of the problem, which is the ratio between the extreme eigenvalues
(�min,�max) of A and denoted by

C(A) =
�max

�min

. (4.2)
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A suitable method to reduce the condition number of the matrix is needed to have
an efficient convergence of the iterative solver. This procedure is called precondi-
tioning and consists in applying a transformation to the initial System (4.1), using
a preconditioning matrix.

The preconditioner P is a nonsingular matrix that approximates A, so that the
linear system

P�1Ax = P�1b (4.3)

has the same solution as System (4.1) but the coefficient matrix has better spectral
properties. In this case the system is preconditioned from the left, but one can also
precondition from the right

AP�1y = b, x = P�1y (4.4)

When Krylov subspace methods are used, computing the preconditioned matrices
explicitly would be too expensive and cause a loss of sparsity. To avoid this overhead,
matrix–vector products with A and solutions of linear systems of the form Pz = r
are performed. Another possible choice is split preconditioning

P�1
1 AP�1

2 y = P�1
1 b, x = P�1

2 y (4.5)

where the preconditioner is now P = P1P2.

Which type of preconditioning to use depends on the choice of the iterative
method, problem characteristics, and so forth. If we use GMRES, for example,
right preconditioning is often used. In exact arithmetic, the residuals for the right-
preconditioned system are identical to the true residuals rk = b� Axk at iteration
k of the solver, with xk the computed solution vector.

Notice that the matrices P�1A,AP�1, and P�1
1 AP�1

2 are similar and therefore
have the same eigenvalues. However, while for SPD problems the convergence of
the Conjugate Gradient (CG) method will be the same in all cases, for nonnormal
problems, Krylov solvers like the General Minimal Residual (GMRES) method can
behave very differently depending on whether a given preconditioner is applied on
the left or on the right. We discuss some of these effects with a numerical example
in 4.7.

If we consider anisotropic meshes, we need to take into account also effects of
anisotropy on the condition number, that increases on very stretched meshes. Ka-
menski et al. [9, 10], and Bank and Scott [11] before, show how a simple Jacobi
diagonal scaling can be used effectively as a preconditioner for elliptic problems.
It is shown that the use of this preconditioner eliminates the effects of mesh non-
uniformity in the Euclidean metric, and reduces those caused by the anisotropic
adaptation. This indicates that, especially if the mesh concentration is near the
boundary, the impact of anisotropy on the performances of the solver is better than
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what is commonly feared. Moreover, the impact of mesh anisotropy decreases if
the mesh is aligned with the anisotropy of the problem solved. The following tests
aim to compare the behavior of anisotropic adapted meshes in terms of condition-
ing, compared to uniform isotropic meshes, with and without the use of a Jacobi
preconditioner.

4.2.1.1 Laplace

First we show this behavior on a Laplace problem on a square domain, with con-
tinuous solution and regular boundary layers, using the mesh adaptation algorithm
introduced above, with several levels of refinement. We compare the condition num-
ber C(A) of a solution obtained without preconditioning, with the condition number
C(S�1AS�1) for the solution obtained using a Jacobi diagonal scaling as a precon-
ditioner. An example of the adapted anisotropic mesh obtained with 2000 elements

(a) Anisotropic adapted mesh (2000 elements)

103 104 105
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103

104

105

106

107

Number of elements

C
(A

)

ISO

ISO JDIAG

ANISO

ANISO JDIAG

(b) Condition number vs Number of ele-
ments

Figure 4.1: Mesh and conditioning for the Laplace problem: dashed lines using diagonal
scaling.

is shown in Figure 4.1(a).

In Figure 4.1(b) we show the condition number C(A) with respect to the number
of elements used. While without any preconditioner it is clear that the anisotropic
mesh (blue) is ill-conditioned compared to the isotropic one (red), on the other
hand, when the Jacobi preconditioner is applied, the conditioning of the two meshes
becomes comparable (dashed lines). We can highlight that the diagonalization has
no effect of the uniform meshes.
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4.2.1.2 Convection–Diffusion

The second test case is a convection–diffusion problem with continuous solution and
regular boundary layers. An example of the adapted anisotropic mesh obtained with
5000 elements is shown in Figure 4.2(a). The convergence curves in Figure 4.2(b)
show that, using the anisotropic mesh adaptation technique proposed, we can reach
higher accuracy with less elements.

(a) Anisotropic adapted mesh (5000 elements)
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(b) L2 norm of the error vs Number of ele-
ments

Figure 4.2: Mesh and convergence curves for the Convection–Diffusion problem.

In Figure 4.3(a) we show the condition number C(A) with respect to the number
of elements used. Without any preconditioner the anisotropic mesh (blue) is very
ill-conditioned compared to the isotropic one (red). However, when the Jacobi pre-
conditioner is applied, the conditioning of the anisotropic mesh is highly improved
(dashed lines). Figure 4.3(b) shows the impact of conditioning on the number of
iterations needed by the linear solver. In this case we consider a GMRES solver
with a precision of 10�10. As we can see, the number of iterations needed is reduced
by the use of the diagonalization. Moreover, for the anisotropic mesh, this number
approaches the value relative to the uniform mesh when we increase the number of
elements.

In most of the large scale industrial problems, however, we need to apply a more
effective preconditioner to further reduce the conditioning to improve the perfor-
mance of the iterative solution. ILU (Incomplete LU factorization) preconditioners
used with Krylov subspace solvers are the most commonly used methods for solv-
ing large-scale spare linear systems [12, 13]. In Figure 4.4 we report the effects of
ILU(1) (fill-in factor equal to 1) preconditioning on an isotropic and an anisotropic
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Figure 4.3: Results for the Convection–Diffusion problem: diagonal scaling in dashed lines

mesh of the convection–diffusion problem. We can see that the conditioning of the
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Figure 4.4: Condition number vs Number of elements for the Convection–Diffusion prob-
lem

anisotropic mesh matrix preconditioned with ILU (blue dashed) is reduced to the
same level of the isotropic mesh (red). In this case if we apply the same precondi-
tioner to the isotropic case (red dashed) we can see that we have some decreasing
effect as well.
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4.2.2 Matrix reordering techniques

Ordering techniques are frequently used when a matrix is generated with rows and
columns numbered according to the natural numbering of the nodes in a mesh. By
an appropriate renumbering of the nodes, it is often possible to produce a matrix
with a much smaller bandwidth. This can positively affect the rate of convergence of
Krylov subspaces iterative solvers, specially with ILU preconditioning. Classical or-
dering strategies include bandwidth and profile reducing orderings, e.g. the reverse
Cuthill-–McKee (RCM) [14], minimum degree orderings [15], and nested dissection
[16]. These techniques are based only on the structure of the matrix and not on
the numerical values of the matrix entries. The effect of matrix reordering increases
significantly on nonsymmetric problems, as pointed out by Dutto in his work on
GMRES with ILU(0) preconditioning in the context of solving the compressible
Navier–Stokes equations on unstructured grids [17]. In several studies [18, 19] it
was found experimentally that RCM gave the best results overall, in terms of per-
formance and robustness, specially on convection-dominated problems. In Figure 4.5
we compare the matrix pattern associated to a simple structured grid, ordering the
entries with the natural numbering of the nodes as shown in Figure 4.5(a), and us-
ing the RCM reordering technique in Figure 4.5(b). We can see that the reordered

(a) Natural ordering (b) RCM ordering

Figure 4.5: Matrix patterns of a model stiffness matrix

matrix has a much smaller bandwidth, that would lead to a more efficient iterative
solution of the system.

Other possible numbering techniques are related to the nature of the problem,
such as the downwind numbering for convection-dominated problems proposed in
[20].
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4.3 Stopping criteria, introduction and existing approaches

When we propose a stopping criterion, the goal is to find a solution un
h, obtained

at the nth step of the iterative algorithm, that will be a good approximation of the
exact solution.

ku� uhk ⇡ ku� un
hk , (4.6)

where uh is the approximated solution ideally obtained with a direct solver, and
with k · k we identify a certain norm (or seminorm).

The main ingredients needed to build a stopping criterion are: (i) the estimate
of the algebraic error kuh � un

hk, (ii) the formulation of the quantity used to bound
it, e.g., an estimation of the approximation or interpolation error, (iii) a suitable
scale factor for the aforementioned bound.

In the following we outline several possible approaches found in the literature.
One main difference is the choice made to estimate the error used as a bound for
the algebraic error: a-priori estimators are based only on the information available
before the solution of the system, while a-posteriori estimators take advantage of
the computed solution.

4.3.1 A-priori stopping criterion for elliptic problems

Symmetric and positive definite systems, resulting from the finite element formu-
lation of elliptic PDE, are commonly solved using the Conjugate Gradient (CG)
algorithm. Using CG, it is quite natural to have a stopping criterion which takes
advantage of the minimization property of on the energy norm of the error, that
comes with this method. Arioli, in [2], proposed a stopping criterion based on this
evaluation of the energy norm of the error, following an a priori approach. We
define the energy norm k ·kA as the A-conjugate scalar product, where A is the SPD
matrix of the linear system corresponding to the symmetric coercive bilinear form
a(·, ·) of the problem considered,

kykA = (yTAy)1/2 , (4.7)

with k · kA�1 we identify the dual norm

kfkA�1 = (fTA�1f)1/2 , (4.8)

If we define rn = b� Aun the residual at step n, we can write

k�unkA = krnkA�1 . (4.9)

Therefore a stopping criterion can be defined as

kAun � bkA�1  "kbkA�1 . (4.10)
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If the criterion is satisfied, the solution vector un is the exact solution of the per-
turbed linear system Aun = b� rn, so that

ku� unkA = krnkA�1 , (4.11)

then
krnkA�1  "kbkA�1 = "kukA . (4.12)

The scaling factor " < 1 is user defined: a practical choice could be " ⇡ h2 or " ⇡ h.

To provide a computable implementation of this criterion, an estimation of the
residual norm at the LHS is needed. This can be provided using several methods,
e.g. the Gauss quadrature rules proposed in [21] or using the formulation suggested
by Hestenes and Stiefel (HS) in [22]. The latter is straightforward to compute
using quantities already computed in the CG iteration. The assumption is that the
algebraic error decreases along the CG steps, so en+d

alg ⌧ enalg, with d a suitable delay.
The estimate of the error at the step n will be:

⌘nalg =
n+dX

j=n+1

↵jkrjk2 , (4.13)

the value of d needed for a reliable estimation depends on the regularity of the
solution u, and {↵j} denote the quadrature weights.

The energy norm of the solution can be bounded taking advantage of the mini-
mization properties of the CG method. The energy norm of the error �un is mini-
mized at each step n on a Krylov space. Due to this property we can write that

kuk2A � uT
nr0 + bTu0 . (4.14)

Replacing this bound in Relation (4.10) we obtain the final formulation of the stop-
ping criterion

⇠  "2
�
uT
nr0 + bTu0

�
. (4.15)

The main drawback of the method is the need to compute additional unneeded
iterations, and above all the choice of the d parameter that is not trivial for complex
problems. Figure 4.6 shows that on a L-shaped domain problem, only for d � 90
the oscillations of the estimates are small enough to provide an accurate solution.

4.3.2 A-posteriori stopping criterion for elliptic problems

In [3] Picasso suggests a practical implementation of an adaptive stopping crite-
rion for the CG algorithm, used to solve elliptic problems. The method proposed,
compares the energy norm of the algebraic error with the error estimator used for
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Figure 4.6: Comparison of several estimates of the energy error for an L-shaped domain
problem [2].

the adaptation. The iterative procedure is stopped when the first is small enough,
compared to the second.

First the author provides a new version of the anisotropic estimator, introduced
in [23], for the energy norm of the error ku� un

hk

⌘2 =
X

K2Th

⌘2K with ⌘2K = ⇢K!K(e) , (4.16)

where !K(e) is an Hessian based anisotropic factor and ⇢K is a residual based
isotropic scaling. The anisotropic contribution relies on the approximation for the
error derivatives suggested by Zhu–Zienkiewicz in [24]. The two following inequal-
ities provide a bound for the error u � un

h, using the estimator ⌘, including the
algebraic error contribution, that is used to control the convergence of the iterative
solution. Z

Ω

|re|2 dx C1

X

K2Th

⌘2K +

Z

Ω

��r (uh � un
h) |

2 dx+ h.o.t. ,

X

K2Th

⌘2K  C2

Z

Ω

|re|2 dx+ h.o.t. .

(4.17)

The two following inequalities allow to relate the error estimator ⌘ to the true
error u � un

h and to the error allowing to stop the CG algorithm after n iterations,

73



Chapter 4. An adaptive stopping criterion for iterative solvers Gabriel Manzinali

uh � un
h (error related to the algebraic resolution.) where h.o.t is a high-order term

bounded by the aspect ratio of meshes and data. The error estimator ⌘ can be,
then, considered to be equivalent to the true error u� un

h.

Using these ingredients, the CG algorithm is stopped when the energy norm of
the algebraic error is lower than a fraction of the estimated error

ku� unkA  0.01

 
X

K2Th

⌘2K

!1/2

, (4.18)

where the choice of the scaling factor at 1% is purely heuristic.
Using the definition of the energy norm, we can write ku�unkA = kr (uh � un

h)kL2

as
kr (uh � un

h)kL2 = (u� un)
T A (u� un) = rTnA

�1rn . (4.19)

If A is a symmetric positive definite matrix, then it defines the A-conjugate inner-
product. If we consider anisotropic meshes the author suggests that this quantity
can be approximated with the Euclidean norm of the residual (further investigation
in Section 4.4).

krnkA�1 ⇡ krnk . (4.20)

Then the stopping criterion for the CG iteration can be defined as

krnk  0.01

 
X

K2Th

⌘2K

!1/2

. (4.21)

The stopping criterion proposed is well integrated in the framework of the adaptive
finite element method, and shows good performances in the reduction of iterations
and computational time. However, it would be interesting to extend this approach
to parabolic and non-symmetric problems

4.3.3 Stopping criteria based on comparing different error
components

A general approach to the subject is provided by Ern and Vohralik [4]. The basic
idea is always the same, extended to all the main sources of error in the finite element
model. All the error should be lower than the one that dominates.

The study analyses the case of non-linear PDEs, providing an algorithm to con-
trol the non-linear and linear iterations. The criteria are based on a-posteriori error
estimates that separate the different error sources. For each source – namely the
discretization error, the linearization error, and the algebraic error – an estimator is
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provided. The method developed is based on the balanced flux reconstruction tech-
nique, see Prager and Synge [25]. With all the error sources available, it is possible
to control the linear and non-linear iterations to maintain a similar level of accu-
racy. The algebraic iterations are stopped when the discretization or linearization
error dominates. In the same spirit, the non-linear iterations are stopped when the
discretization error component starts to dominate. A similar approach is followed
by Jiranek et al. in [5].

The error estimator is given as the sum of the different contributions

⌘tot = ⌘disc + ⌘lin + ⌘alg + ⌘rem (4.22)

Where ⌘disc stands for the discretization error, ⌘lin represents the linearization error
and ⌘alg the algebraic error. ⌘rem is an error component from the algebraic remainder,
a function that stems from the formulation of the quasi-balanced flux reconstruction.
Using this formulation, the approximation of the flux is more practical to compute.
The presence of the algebraic reminder requires an extra constraint to ensure that
this function is small enough.

The proposed algorithm reads as follows:

1: Choose an initial solution u0 2 R
N , set k = 1 (non-linear iterations counter)

2: loop non-linear
3: Set up the linear algebraic system Ak�1uk�1 = fk�1

4: Define u0
k = uk�1 and set n = 0 (linear iterations counter)

5: loop linear
6: Perform ⌫ > 0 steps of the linear solver for un

k (increase ⌫ progressively)

7: if ⌘k,nrem  �rem max
h
⌘
k,n
disc, ⌘

k,n
lin , ⌘

k,n
alg

i
and ⌘

k,n
alg  �alg max

h
⌘
k,n
disc, ⌘

k,n
lin

i
then

8: set uk = un
k

9: end loop linear
10: else
11: set n = n+ ⌫

12: go to 5

13: if ⌘
k,n
lin  �lin⌘

k,n
disc then

14: end loop non-linear
15: else
16: set k = k + 1
17: go to 2

where �i are scaling parameters usually ⇠ 0.1.
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The additional steps ⌫ performed in the linear solver are needed to build the
algebraic reminder and the flux reconstruction of the algebraic residual.

The method proposed is very general and takes into account all the principal
sources of error in the model. The tests performed by the authors suggest good
performances in the reduction of the computational time needed by the solver. The
construction of all the estimator, however, can be computationally demanding, and
there are a lot of scaling factors to be tuned. The authors themselves suggest the
possibility to compute the estimate only periodically or consider simplifications.

4.4 Adaptive stopping criterion for CDR equations

In the next section we detail the new stopping criterion at the base of this work.
The idea is that all the sources of error should be lower then the one that domi-
nates, generally the discretization error. If we provide a suitable estimator of the
discretization error ku � uhk, we can use it as a stopping criterion compared to an
estimator of the algebraic error kun

h � uhk.
In the light of the adaptive framework presented in Chapter 3, we can see that

in the presented mesh adaptation procedure we compute a suitable candidate for
the estimator of the discretization error. This implies that we already have the first
ingredient for the stopping criterion, without additional computational effort.

The method proposed here is general and independent from the estimator used,
that has to be considered as an indicator of the order of magnitude of the biggest
source of error in our solution process. This method can be considered as an exten-
sion of the one introduced in [3] for elliptic problems. To cope with the nature of
convection-dominated CDR equations, we decide here to use Lp-norms for the error.
This choice is line with both the estimators proposed in Chapter 4, and is due to
the fact that Lp-norms are more general for this kind of problems, unlike the energy
norms, that are specific to elliptic problems.

If we consider the local error estimator ⌘K that approximates the error in the
L2-norm ku � uhkL2(K), we can define the global stopping criterion as a bound for
the algebraic error on the discretized domain Ω

kuh � un
hkL2(Ω) 6 c

 
X

K2Th

⌘2K

!1/2

, (4.23)

where c is a user defined scaling factor that defines the error reduction we want to
impose.

However, to have a computable stopping criterion we need some estimate of the
algebraic error norm. In general a reliable estimate of this quantity can be non
trivial to provide. Arioli in [26] presents a review of several techniques that can
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be used for this purpose, in the framework of symmetric problems. In the same
framework, as mentioned in Section 4.3.2, Picasso proposes the euclidean norm of
the residual krnk as a good approximation for the norm of algebraic error. Where
the residual vector rn, following from the linear system, is defined as

rn = f � Aun . (4.24)

Supporting this thesis we performed some tests on the comparison between the
algebraic error norm and the residual norm for the Laplace problem. As shown
in Figure 4.7, we found the same results presented in ?? for the energy norm of
the algebraic error. We can see that, as expected, the use of the energy norm
is the natural choice for this kind of problems. In our framework, however, we
choose to use the L2-norm for the aforementioned reasons. This choice translates
in an underprediction of the residual norm of roughly one order of magnitude. To
compare with the results in the literature on this test case, we adjust consequently
the choice of the c constant in the stopping criterion.
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Figure 4.7: Comparison between algebraic error and residual norm for test case 4.4.1.1;
solution on the final adapted mesh.

For the Convection–Diffusion problem we performed similar tests to asses the
reliability of this approximation. In Figure 4.8 we show the euclidean norm of the
residual computed at each GMRES iteration compared to the algebraic error in L2

norm, that is naturally minimized by the GMRES algorithm. The results suggest
that after a few initial iterations the euclidean norm of the residual can be considered
as a good approximation for the L2 norm of the algebraic error.

After these considerations the stopping criterion defined at Inequality (4.23)
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Figure 4.8: Comparison between algebraic error and residual norm for test case 4.4.1.2;
solution on the final adapted mesh.

becomes

kuh � un
hkL2 ⇡ krnk 6 c

 
X

K2Th

⌘2K

!1/2

. (4.25)

In the following we will use this stopping criterion for the solution of several test
cases, comparing the result obtained using a classical approach with a fixed stopping
criterion.

4.4.1 Application to model problems

In this section we apply the proposed adaptive stopping criterion to the solution of
several test cases. The aim is to validate the method with known problems, and
propose new benchmarks for the CDR equation. We compare the new adaptive

krnk 6 c

 
X

K

⌘2K

!1/2

, (4.26)

with a classical fixed stopping criterion, where we impose a given precision, e.g.,
✏ = 10�10kfk,

krnk  10�10kfk . (4.27)

We first consider several steady test cases. The first benchmark is a simple
Laplace problem, then we consider one convection–diffusion problem with analytic
solution and one with a domain that generates a singularity. For each adaptive
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computation, 30 adaptation steps are performed using the anisotropic adaptive pro-
cedure presented in Section 3.2, providing final adapted meshes with extremely high
aspect ratios. For each step of adaptation, the interpolated solution computed on
the previous mesh is used as an initial guess for the linear solver. The error estima-
tor used for the stopping criterion is also computed using the solution obtained on
the previous adapted mesh.

The last test case of this section is a time dependent convection–diffusion prob-
lem, with challenging anisotropic features, exhibiting evolving internal and boundary
layers. The adaptive simulation is performed with one step of mesh adaptation at
each time step, and the error estimator used for the stopping criterion is computed
using the solution obtained at the previous step.

4.4.1.1 Laplace Problem

We consider as a first reference the Laplace problem in the unit square Ω = [0, 1]2,
proposed in [3, 27] (

�∆u = f, in Ω ,

u = 0, in Γ .
(4.28)

We choose f so that the exact solution u is described by the following analytical
formulation

u(x, y) = 4(1� e�ax � (1� e�a)x)y(1� y) , (4.29)

with a = 102.
The linear system that stems from the finite element discretization of this elliptic

problem is characterized by an SPD stiffness matrix. Exploiting this property, a CG
algorithm is used to compute the solution, with an Incomplete LU factorization
(ILU) as a preconditioner.

In Figure 4.9 we show several adaptation steps from the initial mesh Figure 4.9(a)
to the final mesh Figure 4.9(c), and the contours of the computed solution on the
final mesh Figure 4.9(d).

In Table 4.1 we reported the results of the convergence analysis for four different
adaptations with increasing refinement, where NTh is the number of vertices in the
final mesh, and Nalg is the total number of linear solver iterations.

As we can see in Figure 4.10(a), when using the proposed adaptive stopping
criterion (4.25), the total number of CG iterations considerably decreases. We can
also see that the results obtained using our error estimator to build the adaptive
stopping criterion are in qualitative agreement with those obtained by Picasso [3] on
the same test case but with a different error estimator. In Figure 4.10(b) we show
that the use of the proposed stopping criterion does not affect the convergence of the
method with respect to the number of nodes used, resulting in the same accuracy
between the compared results.
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(a) Initial mesh (b) 15th adaptation step (c) 30th adaptation step

(d) Final mesh and computed solution contours, 16 values
between 0.0 and 0.9

Figure 4.9: Adaptation steps with final computed solution

4.4.1.2 Convection–Diffusion, analytic solution

After assessing the method with an elliptic problem we move to the more challenging
convection–diffusion problem (4.30), that we consider in the unit square Ω = [0, 1]2:

(
v ·ru� ∆u = f in Ω ,

u = g on Γ ,
(4.30)

The boundary conditions and the source term are determined so that the exact
solution u is described by the following analytical formulation

u(x, y) = xy
⇣
1� e�

1�x
κ

⌘⇣
1� e�

1�y
κ

⌘
, (4.31)

with diffusion coefficient  = 10�3 and velocity field v = (1, 1)T , [28, 29]. The linear
system that stems from the finite element discretization of this problem is solved
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Table 4.1: Results for four different adaptations

(a) Classical stopping criterion

NTh Nalg kr(u� unh)kL2 ku� unhkL2

1063 1235 8.84 · 10�2 4.89 · 10�2

3155 2040 4.42 · 10�2 1.93 · 10�2

13166 4254 1.84 · 10�2 4.98 · 10�3

51865 6322 9.08 · 10�3 1.34 · 10�3

(b) Adaptive stopping criterion

NTh Nalg kr(u� unh)kL2 ku� unhkL2

1059 226 8.56 · 10�2 5.08 · 10�2

3184 322 4.23 · 10�2 1.88 · 10�2

13188 555 1.83 · 10�2 5.16 · 10�3

51947 816 8.77 · 10�3 1.35 · 10�3
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(b) Error in H1 seminorm and L2 norm

Figure 4.10: Results for the Laplace problem: each point represents one complete adaptive
computation

using the GMRES algorithm, with ILU as a preconditioner.
In Figure 4.11 we show several adaptation steps from the initial mesh depicted in

Figure 4.11(a) to the final mesh in Figure 4.11(c), and the contours of the computed
solution on the final mesh in Figure 4.11(d).
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(a) Initial mesh (b) 15th adptation step (c) Final mesh

(d) Final mesh and computed solution contours, 16 values between
0.0 and 0.9

Figure 4.11: Adaptation steps with final computed solution

In Table 4.2 we reported the results of the convergence analysis for four different
adaptations with increasing refinement, where NTh is the number of vertices in the
final mesh, and Nalg is the total number of linear solver iterations.

The drop in the number of linear iteration encountered for the Laplace problem
is confirmed again in Figure 4.12(a) for the convection–diffusion problem.

In Figure 4.12(b) we assess that also for this test case we have the same level of
accuracy between the compared results.

4.4.1.3 Convection-diffusion, double ramp

The last steady test case is a convection–diffusion problem solved on the L-shaped
domain Ω = [(0, 4) ⇥ (0, 4)] \ [(0, 2) ⇥ (0, 2)] as proposed in [30, 31]. We assume
diffusion coefficient  = 10�3, velocity field v = (1, 0)T , homogeneous boundary
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Table 4.2: Results for four different adaptations

(a) Classical stopping criterion

NTh Nalg ku� unhkL2

572 449 3.86 · 10�4

1117 526 1.91 · 10�4

3209 778 6.63 · 10�5

13037 1535 1.98 · 10�5

(b) Adaptive stopping criterion

NTh Nalg ku� unhkL2

571 145 4.53 · 10�4

1121 182 1.86 · 10�4

3210 240 6.73 · 10�5

13040 414 2.16 · 10�5
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Figure 4.12: Results for convection–diffusion. Each point represents one complete adaptive
computation

conditions g = 0 and source term f = 1.

As in the previous test we use a GMRES solver with right ILU preconditioner.

In Figure 4.13 we show the initial mesh in Figure 4.13(a) and final mesh in
Figure 4.13(c), and the contours of the computed solution in Figure 4.13(e) on the
final adapted mesh.

We perform the same comparison using a classical stopping criterion and the
new adaptive one. The results in Figure 4.14(a) indicate a significant drop in the
number of iteration used by the GMRES solver.
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(a) Initial mesh (b) 15th adptation step (c) Final mesh

(d) Iso-contours, 16 values (e) Final mesh and computed solution contours

Figure 4.13: Adaptation steps with final computed solution, values between 0 and 4

4.4.1.4 Unsteady convection–diffusion, with internal layer

We present here an unsteady test case exhibiting evolving internal and boundary
layers. The test case is taken from [32, 33],

8
><
>:

@tu+ v ·ru� ∆u = f in Ω⇥ (0, T ) ,

u( . , 0) = u0 in Ω ,

u = g on Γ ,

(4.32)

where we consider a constant velocity field v = (2, 1)T in the whole computational
domain Ω = [0, 1]2, a diffusion coefficient  = 10�3 and a zero source term. The
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Figure 4.14: Results for the double ramp. Each point represents one complete adaptive
computation

initial condition is u(x, y, 0) = 0 except on @Ω where

u(x, y) =

8
>>>>>><
>>>>>>:

1 if {x = 0, 0 6 y 6 1} [ {0 6 x 6 1, y = 1} ,

� � x

�
if {x 6 �, y = 0} ,

y � 1 + �

�
if {x = 1, y > 1� �} ,

0 if {x > �, y = 0} [ {x = 1, y 6 1� �} .
(4.33)

As time advances, the boundary layer at the left boundary propagates into the
domain creating an internal layer that reaches the right wall resulting in a new
boundary layer. The boundary layer at the top reduces progressively as the internal
layer advances. The linear system that stems from the finite element discretization
of this problem is solved using the GMRES algorithm, with ILU as a preconditioner.

For this test case we adopt a fixed time step ∆t = 0.001 and a final time T = 0.6.
The error estimator used for the stopping criterion can be either computed every
mesh adaptation step and used in the following time steps without adaptation, or
recomputed at each time step using the solution at previous step. If the solution is
sufficiently regular the first choice allows reducing furthermore the required compu-
tational time, while the second choice is clearly more accurate. In this case we decide
to compute the error estimator every time step, to better monitor its evolution.

In the first test, we adopt this strategy to apply the stopping criterion without
mesh adaptation. We compute the solution on three fixed isotropic meshes of 5K,
10K and 50K elements, represented in Figure 4.15. Then we analyze the same
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Figure 4.15: Mesh and solution contours at t = 0.3, 16 values between 0.0 and 1.0

test case using mesh adaptation with the same number of elements as a target.
We perform a mesh adaptation step every 10 time steps. Due to the extremely
anisotropic features, we obtain the highly stretched meshes shown in Figure 4.16,
along with the solution contours, for the case with 5K elements at different time
steps.

We compare the results obtained with a wide range of values for the constant c
in the stopping criterion. We go from the more conservative value of c = 0.01, that
imposes a reduction of the algebraic error to 1% of the estimated discretization error,
to the value of c = 1, imposing the same level of error. This choice clearly affects the
final gain in terms of number of iterations, but as we can see from the comparison
in Figure 4.17 it does not affect the robustness of the method. Even if in some time
steps we register some slightly differences in the isolines profile, mainly due to small
discrepancies in the generated meshes, the accuracy of the solution is not spoiled
at all. This remark is even more clear for the case without adaptation showed in
Figure 4.18. We can also observe how the the use of highly stretched adapted meshes
results in an increased solution accuracy, where with the same number of elements
an isotropic mesh is unable to capture the boundary layers without oscillations.

In Figure 4.19(b) we compare the evolution of the discretization error estimator
with the old and the new stopping criterion, and using different values of c. Fig-
ure 4.19(a) shows the final algebraic residual values for every time step, indicating
the value at which the solver is stopped. We plot the results for the test with fixed
mesh and with mesh adaptation. The result show that, except few oscillations, the
estimated error is not affected by the use of the new stopping criterion, that does
not spoil at all the accuracy of the solution.

Finally, we show in Figure 4.20(a) the total number of linear solver iterations
needed for each complete simulation with the different settings, with and without
mesh adaptation. We can see the considerable reduction achieved using the proposed
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(d) t = 0.02 (e) t = 0.2 (f) t = 0.6

(g) Mesh and solution contours at t = 0.3

Figure 4.16: Adaptation steps and solution contours, 16 values between 0.0 and 1.0

adaptive stopping criterion. The evolution of the number of iterations for each time
step is reported in Figure 4.20(b) for the test performed with mesh adaptation using
a target elements number of 50K. We can point out how the use of the adaptive
stopping criterion has the effect of leveling the number of iteration along the time
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(a) t = 0.02 (b) t = 0.2 (c) t = 0.6

Figure 4.17: Isolines of the solution, values {0.1, 0.5, 0.9}. 5K elements adapted mesh. In
blue the solution with classical stopping criterion, red c = 0.01, green c = 1.

(a) t = 0.02 (b) t = 0.2 (c) t = 0.6

Figure 4.18: Isolines of the solution, values {0.1, 0.5, 0.9}. 5K elements fixed isotropic
mesh. In blue the solution with classical stopping criterion, c = 0.01, green
c = 1.

steps, avoiding useless extra accuracy, especially in the more demanding steps.

4.5 Adaptive stopping criterion for the Navier–Stokes equa-
tions

If we want to extend the proposed method to the iterative solution of the Navier–
Stokes equations, we need to adjust some of the ingredients of the algorithm.

First of all we need a scalar function to be used as a function of interest for
the interpolation error estimator. Velocity and pressure are the two variables in the
equations, but the first is a vector field, that can not be feed as it is to either of
the algorithms proposed above. Several possible choices are available; if we consider
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Figure 4.19: Evolution of final residual and estimated error. 50K elements mesh.
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Figure 4.20

the framework presented in Section 3.3.3, we could use a multi criteria technique to
build a field function with several scalar fields of interest as proposed by Coupez in
[34]. In this work we decided, for the sake of simplicity, to use the euclidean norm of
the velocity that can be used indistinctly with both error estimators. We consider,
then, uh = kvhk the finite element approximation of scalar field u = kvk, where
vh is the finite element approximation of the exact velocity solution vh from the
Navier–Stokes equation. We denote un

h the approximation of uh from the iterative
solution, at the nth iteration.
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Secondly we need to consider that the finite element system coming from the
discretization of the Navier–Stokes equations is non-linear. Several iterative algo-
rithms are available to solve this type of system, e.g. fixed point methods and
Newton methods [35]. In terms of stopping criteria, this means that there will be
one stopping criterion to control the outer non-linear iterations and one stopping
criterion to control the inner linear iterations. Comparably with the linear solvers,
in the literature several approached are proposed to control the non-linear conver-
gence. Generally one can fix a given number of iterations at which to stop (as for
Inexact Newton methods) or continue iterating until the non-linear residual is very
small. If we had to follow the adaptive procedure presented for the linear case,
we could apply recursively the same idea. Then the non-linear iteration would be
stopped when the linearization error ⌘lin is smaller than the interpolation error, and
the linear iterations when the algebraic error is smaller then the linearization one

⌘alg ⌧ ⌘lin ⌧ ⌘ . (4.34)

This would result in a recursive application of the same adaptive stopping procedure.
When we consider industrial cases, however, using non linear solvers in a proper sense
is often too computationally expensive. A typical approach is to use a fixed point
algorithm with only one outer iteration. This results in the actual solution of the
inner linear system only. Due to the aim of this work to be applied at the solution
of complex industrial simulations, we decide to apply this more simple approach
to evaluate the effect of our proposed stopping criterion to reduce the required
computational time.

The adaptive stopping criterion used here is then equivalent to the one in Equa-
tion (4.25) for the CDR equation, extended to be used for the solution Navier–Stokes
equation

kr(v)nk 6 c

 
X

K2Th

⌘(v)2K

!1/2

. (4.35)

where kr(v)nk is the algebraic residual related to the velocity, and ⌘(v) is the esti-
mator computed with the field function mentioned above.

In the following section we validate the proposed stopping criterion with the
popular benchmark of the 2D flow past a square cylinder.

4.5.1 2D laminar flow past a square cylinder

To validate the proposed method, we choose the well known square cylinder test case,
treated among others by [36–39]. A two-dimensional square cylinder is placed in a
computational domain, with his center in the origin of the coordinate system. The
cylinder is exposed to a constant free-stream velocity U . As shown in Figure 4.21, the
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Figure 4.21: Problem definition

square has size D and the distances from the upstream and downstream boundaries
are respectively Lu and Ld, H is the distance between the sidewalls. Sohankar et al.
[40] studied the effects of the placing of the boundaries on the flow. Following their
conclusions we consider D as the nondimensionalizing length scale and we choose
H = 20 for a blockage b  5%, and we increased the horizontal lengths to Lu = 10D,
Ld = 30D as a safety measure.

4.5.1.1 The finite elements mesh

For the simulations performed on a fix mesh, we discretize the computational domain
with an isotropic mesh of triangles. We refined the mesh around the cylinder, as
shown in Figure 4.22. To validate the choice of the mesh, we perform the simulation
on five meshes M1, M2, M3, M4, M5. Each mesh is obtained from the previous
one applying a global uniform refinement, reducing the element size by 25%. The
simulations performed with the mesh adaptation technique presented in Section 3.2,
are carried out using an initial coarse mesh and performing one adaptation step
every three time steps. An example of one resulting adapted meshes is shown in
Figure 4.23, where the two snapshots (b) and (c) are taken with an interval of
roughly one-half of the shedding period.

The details of the meshes and the obtained results are listed in Table 4.3, in
Figure 4.24 we show the convergence on the values of drag and lift coefficients (Cd,
Cl).

We can observe that the step of refinement from M4 to M5 has a negligible effect
of the results, so we will use M4 for all the following tests. The comparison of the
integral flow parameters obtained on the M4 mesh with earlier results available in
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Figure 4.22: Isotropic triangular mesh M1.

Table 4.3: Details of the different meshes used for the convergence study and flow param-
eters at Re=100.

Mesh Elements Cdavg Clrms

M1 35892 1.5034 0.2034
M2 50968 1.4989 0.2011
M3 79270 1.4966 0.2006
M4 142202 1.4954 0.2004
M5 315336 1.4952 0.2002
Adapted1 30000 1.4947 0.1999

(a) (b) (c)

Figure 4.23: Adapted meshes, zoom on the object proximity.

the literature is presented in table 4.4. The time averaged drag coefficient (Cdavg) is
in good agreement with the references and the Strouhal number (St = fD/U , where
f is the frequency of shedding) is within 3%. The r.m.s. value of the lift coefficient
(Clrms) is slightly higher than the other references, nonetheless it is within 4% from
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Figure 4.24: Mesh convergence results, Re=100. Solid lines for the simulations using a fix
mesh, empty markers for the simulation with mesh adaptation.

the one reported by Sen et al. [36]. Figure 4.25 shows the contours of velocity with

Table 4.4: Comparison of integral flow parameters with references at Re=100.

Reference B Cdavg Clrms St

Sharma and Eswaran [38] 0.0500 1.4936 0.1922 0.1488
Darekar and Sherwin [39] (3D) 0.0230 1.4860 0.1860 0.1460
Sahu et al. [37] 0.0500 1.4878 0.1880 0.1486
Sen et al. [36] 0.0500 1.5287 0.1928 0.1452
Present (Fix) 0.0500 1.4966 0.2006 0.1416
Present (Adapted) 0.0500 1.4947 0.1999 0.1416

isovalues of vorticity, at different time steps, obtained on the M4 fix mesh. In (a) the
solution has yet to develop the instability that is highlighted in (b) and (c), where
we can see the typical Karman vortex street; the two snapshots are taken with an
interval of roughly one-half of the shedding period.

4.5.1.2 Stopping criteria comparison. Unsteady flow at Re=100.

We present here the validation of the method proposed in Section 4.3 on the unsteady
flow at Re=100 past a stationary square cylinder test case, presented above. We
carried out the simulations on a fix mesh and using mesh adaptation, comparing the

93



Chapter 4. An adaptive stopping criterion for iterative solvers Gabriel Manzinali

(a)

(b)

(c)

Figure 4.25: Velocity contours {0,1.4}, with isovalues of vorticity

proposed adaptive stopping criterion:

krnk 6 c

 
X

K

⌘2K

!1/2

, (4.36)
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with a classical stopping criterion, where we impose a given precision (e.g., ✏ = 10�6)

krnk  10�6. (4.37)

We point out here the given precision we choose here is not extremely strict (far from
machine precision) but is typically used by the final users of commercial software,
although no theory is behind this choice, but only the specific experience of the
specific user.

In Table 4.5 we provide the results of the comparison in terms of precision and
computational time needed depending on the stopping criterion used – C (classical)
A (adaptive) – and the scaling factor for the stopping criterion, from Equation (4.25).
The results show that the application of the proposed stopping criterion for the

Table 4.5: Comparison of integral flow parameters with references at Re=100.

Mesh Criterion Scaling Cdavg Clrms Walltime (min)

M4 C / 1.4966 0.2006 84.9
M4 A c=0.1 1.4955 0.2004 39.5 -65%
M4 A c=1.0 1.4955 0.2004 15.2 -82%
Adapted C / 1.4948 0.1999 10.3
Adapted A c=0.1 1.4946 0.1997 4.8 -53%
Adapted A c=1.0 1.4937 0.1996 2.1 -79%

iterative solver does not affect the precision of the measured integral values, being
the shift always below 0.1%. On the other side we highlight a great impact on the
computational time needed for the iterative solution, where we find a reduction up
to 82% compared to a classical stopping criterion. The estimated error in L2-norm
is in the order of magnitude of 10�4 for both fix and adapted mesh simulations.

4.6 Towards industrial applications: 3D fluid flow with ther-
mal coupling

Heat transfer is involved in several physical processes, and it can be the limiting
factor for many of them. The modeling of heat transfer effects inside industrial
furnaces as depicted in Figure 4.26 is nowadays a developing field of investigation
as a result of the demand for energy conservation through efficiency improvement
and for reduction of pollutant emissions. It also more and more important in the
design of the products itself in many areas such as the electronics, automotive, ma-
chinery and equipment manufacturing industries. A heat treatment in a furnace is a
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(a) (b)

Figure 4.26: Examples of industrial furnaces

manufacturing process to control the mechanical and physical properties of metallic
components. In the design of this process furnace control, turbulent flows, conduc-
tion within the load, convection and thermal radiation are involved simultaneously.
The thermal history of each part and the temperature distribution in the whole load
are critical for the final microstructure and the mechanical properties of workpieces
and can directly determined the final quality of parts in terms of hardness, tough-
ness and resistance. To achieve higher treatment efficiency, the major influencing
factors such as the design of the furnace, the location of the workpieces, thermal
schedule and position of the burners should be understood thoroughly. The major
factor to be considered in the working of a furnace is the heat transfer by all the
modes, which occur simultaneously. To either study a new furnace or to optimize
the heating process in existing ones, the heat transfer in the furnace has to be mod-
eled in the same way of a real situation as closely as possible. Given the geometry
of the furnace, different boundary conditions along the furnace length, gas compo-
sition and properties and other complexities, an analytical solution in not feasible
and computational modeling has to be resorted to. A CFD model of the heating
process should be capable of doing so in an accurate way and within a reasonable
time. Modeling of heat transfer for heat treatment furnaces should describe con-
vection, radiation, turbulent flow and furnace control. Conduction mainly occurs in
all solids materials. Turbulent convection exists between the atmosphere and solid
materials exposed to it, and furnace walls to the ambient air; in our case the effects
of turbulence are taken into account by means of the k � ! model for the sake of
efficiency. Radiation exists between solid materials exposed to each other and to all
walls.

We present here a 3D test case devised to model the fluid flow with heat transfer
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inside an industrial furnace.

Figure 4.27: Problem definition

The Navier–Stokes Equations (2.24) are coupled with the thermal convection–
diffusion–reaction Equation (2.1). As shown in Figure 4.27, we have a cubic domain
with one inlet on the lower wall and two outlets on the top wall. Inside the cube we
placed five cylinders to be subjected to the thermal treatment. The air is introduced
into the furnace at a constant velocity U = 0.5m/s with a temperature of 400K. On
all the walls we impose and adiabatic condition for the temperature. We advance
the simulation to t = 150s, with a time step dt = 0.01s.

As a preliminary study we perform a few timings on the simulation runs for
meshes containing a moderate number of vertices: 20K, 50K, and 200K. This prob-
lem dimension is not enough for an accurate simulation of such thermo-mechanical
system but it is enough to demonstrate a sensible performance increase as depicted
in Figures 4.28(a) and 4.28(b), which corresponds to a reduction by 20 percent of
the simulation walltime.

The main study consists of comparing the resolution times for a full-scale resolved
simulation and evaluating the influence of the stopping criterion on the quality of
the discrete solution. We perform first a comparison on a fixed mesh made of 3.5M
tetrahedral elements. In Figure 4.29 we show the contours of temperature for several
time steps. We compare the time averaged values of temperature on a diagonal line
that lays on the horizontal plane over the cylinders, using a classical or an adaptive
stopping criterion. The plot in Figure 4.30 shows that the difference between the
two results are negligible, and the proposed method does not reduce the accuracy
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Figure 4.28: Resolution time for the solvers of the 3D fluid flow with thermal coupling

of the solution.
In Table 4.6 we provide the results of the comparison of the stopping criteria

in terms of computational time needed: The results show a great impact on the

Table 4.6: Comparison of integral flow parameters with references at Re=100.

Mesh SC Scaling CPUsol(h)

Fix 3.5M C / 80.6
Fix 3.5M A c=0.01 47.4 -41%

computational time needed for the iterative solution, with a reduction up to 41%
compared to a classical stopping criterion on a realistic simulation with a large
number of degrees of freedom.

4.7 A note on the preconditioner side

In all the test analysed above we assumed the use of a preconditioning technique
applied to the iterative solver. In the case of GMRES we have to make a distinction
between the two possible choices for the preconditioner side.

On one side, if we apply a left preconditioner Pl to the linear system Ax = b we
have the following system to solve

P�1
l Ax = P�1

l r , (4.38)
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(a) (b) (c)

(d) (e) (f)

Figure 4.29: Temperature contours with one quarter section removed, values from 300K
to 400K

and the convergence is controlled monitoring the residual of this linear system r⇤ =
P�1
l r, that is the preconditioned residual of the original linear system. On the other

side, if we choose a right preconditioner Pr we have

(AP�1
r )(Prx) = r . (4.39)

In this case the residual is not affected by the application of the preconditioner, and
we can directly use it to control the convergence.

In the following we present a comparison between these two preconditioning tech-
niques applied to the ILU(k) preconditioner. Due to the strong anisotropy of our
adapted meshes we decide to use a fill-in k=1 to have a better rate of convergence.
In Figure 4.31 we show the values of the residual norm for a complete iterative so-
lution of the convection–diffusion test case, analysed in 4.4.1.2, on the final mesh of
the first refinement level (558 nodes). The plots show that the use of a right precon-
ditioner reveals a difficulty damping the higher frequencies of the error, resulting in
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Figure 4.30: Time averaged temperature on the diagonal above the cylinders.

an initial plateau. This will lead to poor convergence especially if we use an inade-
quate preconditioner, or if the GMRES algorithm is restarted after few iterations as
depicted in Figure 4.31(b) before the asymptotic convergence behaviour is realized.
The use of a left preconditioner hides this behaviour using r⇤, that is amplified by
Pr, and increases the convergence rate in this first part. However this will result in
a poor control of the value of the residual norm, and possibly to a higher number of
iterations used, Figure 4.31(a).

To relate this analysis with the subject of this paper, we refer again to the test
in 4.4.1.2. On the first refinement level with the adaptive stopping criterion, the use
of a left preconditioner leads to doubling the number of iteration needed (from 58
to 126).

In conclusion the use of a right preconditioner is mandatory to ensure the reliable
control of the convergence needed by an adaptive stopping criterion.

4.8 Conclusions

In this chapter we proposed an automatic adaptive stopping criterion for itera-
tive solvers in the framework of anisotropic adapted finite elements, applied to
convection-dominated problems. The proposed formulation takes advantage from
the information computed in the mesh adaptation procedure, that provides an esti-
mate of the approximation error with no additional computational cost. We propose
to stop the iterative solver when the algebraic error is below the level of the estimated
approximation error.

Numerical tests have been performed for a benchmark symmetric Laplace prob-
lem, several steady and unsteady convection–diffusion, and Navier–Stokes problems
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Figure 4.31: GMRES convergence

solved with stabilized finite elements on highly stretched meshes. These test cases
have been chosen for their straightforward implementation, to be used as future
benchmarks on the subject. The results proved that, following the provided ap-
proach, the total number of iterations needed can be reduced up to five times, with
no significant effect on the accuracy of the computed solution. This results in a
considerable reduction of the computational time dedicated to the iterative solution
of the problem.

Finally a model problem of heat treatment in a furnace was investigated to
demonstrate the applicability of the developed approach to realistic full-scale simu-
lations. The numerical solver coupling Navier–Stokes and the heat transfer equation
was run with adaptive stopping criteria based on two a posteriori error estimators.
The computational time was shown to be reduced favorably while a good quality of
the discrete solution with respect to the quantities of interest was maintained: this
is promising for improving the performance of simulations of industrial applications
in engineering.
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Chapter 5

Conclusions and Perspectives

Résumé La formulation proposée tire parti des informations calculées dans la
procédure d’adaptation du maillage, qui fournit une estimation de l’erreur de discrétisation
sans coût de calcul supplémentaire. Nous montrons que le solveur itératif peut être
arrêté lorsque l’erreur algébrique est inférieure au niveau de l’erreur de discrétisation
estimée.

5.1 Conclusions

The objective of this thesis is the development of a first, practical and general
stopping criterion using an a posteriori approach, that relies on the error estimates
available from the mesh adaptation procedure. This stopping criterion must be
robust and applicable to the different types of equations used to describe the complex
physics involved in a conjugate heat transfer problem. The final goal is to prove
that with such stopping criterion it is possible to drastically reduce the CPU time
required for the solution of coupled systems.

Such system involves incompressible flows with conjugate heat transfer all in a
multi-component formulations. The tools used in this thesis are the Finite Element
Method (FEM) and Computational Fluid Dynamics (CFD). This method is shown
as an attractive way to solve the turbulent flow and heat transfer and it can be
applied for a variety of geometry and boundary conditions.

Therefore, the first part of the thesis is centered on the modeling and solu-
tion methods for the heat transfer and fluid flows problems. Standard finite element
method normally exhibits global spurious oscillations in convection-dominated prob-
lems, especially in the vicinity of sharp gradients. To overcome this limitation,
we chose the Streamline Upwind Petrov–Galerkin (SUPG) method applied with
convection-dominated convection–diffusion–reaction problems. This approach is ef-
ficient to eliminate the instabilities adding a numerical diffusion in the convective
direction.
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To solve the fluid flow problem, we use a variational multiscale approach to solve
the incompressible Navier-–Stokes equations. This stabilization method is proven
to be efficient in handling convection-dominated problems and deal with the inf-sup
stability condition. When dealing with turbulent flows, we introduced the RANS
equations with turbulence models, that provide the averaged fluid flow solution
without solving the turbulence small scales. The numerical experiments show that
the coupled system is stable. The performance and the efficiency of the overall
scheme have been demonstrated by two benchmarks.

Following the solver part, we introduce the metric-based anisotropic mesh adap-
tation used to provide an optimal mesh and very useful to capture steep gradients
in the fields of interest. We outline the principles of the metric-based approach, to
build a metric tensor in the Riemann space. The result of the procedure is a set of
stretching factors that are used to adapt the mesh, resulting in an anisotropic mesh
that is well adapted on the field of interest. The adaptation procedure is driven by
an error estimator. We propose two a-posterior error estimators, one based on the
recovered Hessian of the solution, the second relying on the recovered gradients on
the edge of the elements. Both estimators are general and PDE-independent, and
can be applied to any field of interest.

While combining both previous part, we complete the manuscript by proposing
an automatic adaptive stopping criterion for iterative linear solvers in the framework
of anisotropic adapted finite elements, applied to symmetric and non-symmetric
problems. The proposed formulation takes advantage from the information com-
puted in the mesh adaptation procedure, that provides an estimate of the discretiza-
tion error with no additional computational cost. We show that the iterative solver
can be stopped when the algebraic error is below the level of the estimated dis-
cretization error.

5.2 Perspectives

Several numerical tests have been performed for a benchmark symmetric Laplace
problem, several steady and unsteady convection–diffusion, and Navier–Stokes prob-
lems solved with stabilized finite elements on highly stretched meshes. These test
cases have been chosen for their straightforward implementation, to be used as fu-
ture benchmarks on the subject. The results proved that, following the provided
approach, the total number of iterations needed can be reduced up to five times,
with no significant effect on the accuracy of the computed solution. This results in a
considerable reduction of the computational time dedicated to the iterative solution
of the problem.

Finally, a model problem of heat treatment in a 3D cavity was investigated
to demonstrate the applicability of the developed approach to realistic full-scale

108



Chapter 5. Conclusions and Perspectives

simulations. The numerical solver coupling Navier–Stokes and the heat transfer
equation was run with adaptive stopping criterion based on two a posteriori error
estimators. The computational was shown to be reduced favorably while retaining
a good quality of the discrete solution with respect to the quantities of interest: this
is promising for improving the performance of simulations of industrial applications
in engineering.

The focus in this work is on a practical and general stopping criterion to reduce
the CPU time required for the solution of coupled systems. However, the practically
relevant industrial test cases to achieve higher treatment efficiency are not in the
scope of this work. Therefore, in future works it is important to prove the usefulness
of the proposed concept with a number of further real industrial cases.

Possible applications, where the features of the coupled solver are desirable, are
for example simulations of quenching and cooling processes, or more challenging the
simulation of multiphase f flows with phase changes. Indeed, such simulations are of
great importance for the prediction and control of the ultimate microstructure of the
workpieces but specially the reduction of both energy consumption and pollutant
emissions.

Clearly, a number of other considerations have to be taken into account to com-
plete this work and to achieve higher performance and robustness useful for an
HPC-CFD framework. Here is the list of several important steps towards enhanced
simulation tools for more realistic problems:

• The development of a more sophisticated error estimator taking into account
boundary layers, wall function and high temperature interface gradients.

• A better determination of a stopping criterion for coupled problems. This
particularly needed for turbulent flow coupled with two phase flow modeling
and heat transfer.

• A deeper analysis and establishments of a clear relation between iterative
algebraic solvers, resolution methods, error estimator and adaptive meshing,
in particular for complex nonlinear settings.
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ABSTRACT 

 
The aim of this work is to propose a practical and general stopping criterion using an a 
posteriori approach, that relies on the error estimates available from the mesh adaptation 
procedure. This stopping criterion has to be robust and applicable to the different types of 
equations used to describe the complex physics involved in a conjugate heat transfer 
problem. The final goal is to prove that with such stopping criterion is possible to 
drastically reduce the CPU time required for the solution of the linear system that stems 
from the Finite Element discretization. 
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RÉSUMÉ 

 
L'objectif de ce travail est de proposer un critère d'arrêt pratique et général utilisant une 
approche a posteriori, qui s'appuie sur les estimations d'erreur disponibles à partir de la 
procédure d'adaptation du maillage. Ce critère d'arrêt doit être robuste et applicable aux 
différents types d'équations utilisées pour décrire la physique complexe impliquée dans 
un problème de transfert de chaleur conjugué. Le but final est de prouver qu'avec un tel 
critère d'arrêt il est possible de réduire drastiquement le temps CPU nécessaire à la 
résolution du système linéaire issu de la discrétisation Eléments Finis. 
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