An Adaptive Immersed Mesh Method (AIMM) for Fluid-Structure Interaction (FSI) - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2021

An Adaptive Immersed Mesh Method (AIMM) for Fluid-Structure Interaction (FSI)

Une méthode adaptative de maillage immergé (AIMM) pour l'interaction fluide-structure (FSI)

Ramy Nemer

Résumé

The need to simulate flexible, relatively thin structure is of growing interest with applications ranging from thin cylindrical sensors to membrane-like structures. These structures usually interact with their surroundings to accumulate data, or for a specific purpose. The inevitable interaction between the surrounding fluid and the solid is solved using a novel Fluid-Structure Interaction (FSI) coupling scheme. This thesis proposes a novel way to model the interaction between the fluid and solid. It consists of a hybrid method that combines both the traditional monolithic and partitioned approaches for Fluid-Structure Interaction (FSI). The solid mesh is immersed in a fluid-solid mesh at each time step, whilst having its own independent Lagrangian hyperelastic solver. The hyperelastic solver consists of a mixed formulation in both displacement and pressure, where the momentum equation of the continuum is complemented with a pressure equation that handles incompressibility inherently. It is obtained through the deviatoric and volumetric split of the stress that enables us to solve the problem in the incompressible limit. A linearization of the deviatoric part of the stress is implemented as well. The Eulerian mesh contains both the fluid and solid, and accommodates additional physical phenomena. Anisotropic mesh adaptation and the Level-Set methods are used for the interface coupling between the solid and fluid to better capture the interaction between them. All of the above components form the Adaptive Immersed Mesh Method (AIMM). The Variational Multi-Scale (VMS) method is used for both solvers to damp out any spurious oscillations that may arise for piece wise linear tetrahedral elements. The framework is constructed in 3D with parallel computing in mind. Extensive 2D and 3D test cases are presented that validate the hyperelastic Lagrangian solver, and the FSI AIMM framework. An application of the industrial partners was lastly tackled.
Pour répondre aux besoins d’applications émergeantes impliquant des capteurs cylindriques et des structures membranaires, la simulation de structures de plus en plus fines et flexibles apparait nécessaire. Ces innovations interagissent avec leur environnement pour acquérir des données ou dans une fonction précise. Dans ce contexte, l’interaction fluide-structure (IFS) s’impose pour modéliser les phénomènes mis en jeu. Dans le cadre de cette thèse, une nouvelle méthode de couplage est proposée, combinant les deux méthodes traditionnelles monolithiques et partitionnée en une modélisation hybride. Le maillage solide est immergé dans le maillage fluide-solide à chaque pas de temps, tout en bénéficiant de son propre solveur solide. The solveur hyper-élastique met en place une formulation en déplacement et pression, dans laquelle l’équation de la quantité de mouvement est complétée par une équation de pression qui traduit le caractère incompressible du fluide. Cette formulation est obtenue par séparation du tenseur des contraintes en ses parties volumétriques et déviatoriques, ce qui permet la résolution du problème dans la limite d’incompressibilité. Une linéarisation de la partie déviatorique est également implémentée. Le maillage eulérien contient à la fois les domaines solides et fluides et permet la modélisation de phénomènes physiques complémentaires. Les méthodes d’adaptation de maillage anisotrope et de Level-set sont utilisées pour le couplage à l’interface entre le solide et le fluide afin de capturer plus finement leurs interactions. Tous les éléments précédemment introduits forment la « Adaptive Immersed Mesh Method » (AIMM). La méthode variationnelle multi-échelle est exploitée pour les deux solveurs afin d’amortir les oscillations parasites susceptibles de résulter de la modélisation en éléments tétrahédraux linéaires. La méthode a été construite en 3D en gardant en tête les aspects de calcul parallèle. De multiples tests de validations en 2D et 3D sont présentés pour prouver le bon fonctionnement des solveurs mis en place. Pour finir, la méthode a été testée pour une application industrielle.
Fichier principal
Vignette du fichier
2021UPSLM073_archivage.pdf (43.39 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03859469 , version 1 (18-11-2022)

Identifiants

  • HAL Id : tel-03859469 , version 1

Citer

Ramy Nemer. An Adaptive Immersed Mesh Method (AIMM) for Fluid-Structure Interaction (FSI). Computation [stat.CO]. Université Paris sciences et lettres, 2021. English. ⟨NNT : 2021UPSLM073⟩. ⟨tel-03859469⟩
89 Consultations
15 Téléchargements

Partager

Gmail Facebook X LinkedIn More