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1 Introduction

L’interaction fluide-structure (FSI) est l’interaction multi-physique inévitable entre
une structure solide déformable/mobile (lois de la mécanique des structures) im-
mergée et/ou contenant un fluide de travail (lois de la dynamique des fluides).
L’interaction peut être oscillatoire ou atteindre un état stationnaire stable. Le
FSI est pris en compte dans un grand nombre d’applications dans le glossaire de
l’ingénierie, qui incluent, mais sans s’y limiter, l’aérodynamique, l’hydrodynamique,
l’acoustique et la biomécanique. Ne pas tenir compte de l’interaction des deux
médiums peut conduire à des résultats catastrophiques. Le tristement célèbre cas
du pont de Tacoma (1940) sert d’exemple d’une telle catastrophe à grande échelle.
Le fluide, caractérisé par des champs de vitesse et de pression, exerce des forces
aérodynamiques sur l’interface FSI du solide. Le solide est déplacé/déformé sous
ces actions. Ce champ de déplacement affecte à son tour le champ d’écoulement
du fluide, modifiant ainsi les forces aérodynamiques. Le couplage faible considère
uniquement l’action du fluide sur le solide (ou l’inverse). Couplage fort, considère
un couplage bidirectionnel entre les deux entités. Compte tenu de la nature in-
trinsèque complexe de tels phénomènes, peu ou pas de solution analytique peut
décrire avec précision le comportement des milieux. On peut recourir à des études
expérimentales, qui se sont avérées coûteuses en temps et en ressources. Comme
alternative aux méthodes mentionnées ci-dessus, les simulations numériques qui
modélisent avec précision de tels phénomènes présentent un intérêt croissant. Pour
résoudre numériquement les équations aux dérivées partielles (EDP), nous utilisons
des méthodes de discrétisation (élément fini, volume fini, différence finie. . . ), qui
à leur tour approximent les équations différentielles par un ensemble d’équations
algébriques, qui sont résolues. Or, cette discrétisation s’applique à la fois à l’espace
et au temps selon le problème (stationnaire ou transitoire). De plus, malgré les
avancées dans les domaines de la dynamique des fluides computationnelle (CFD)
et de la mécanique des solides computationnelle (CSM), le domaine informatique
FSI est toujours à la trâıne. Les méthodes FSI de différentes essences font l’objet
d’investigations intensives. Certains des problèmes courants rencontrés sur le ter-
rain sont la nécessité d’adapter le maillage, l’algorithme de couplage, les grandes
déformations, le nombre de Reynolds élevé et les géométries complexes. Le chapitre
présente les différentes formulations et approches de l’ISF. Il est important de noter
qu’il ne s’agit pas d’une revue de littérature complète, mais plutôt d’une introduc-
tion aux différentes méthodes déjà existantes. Cette revue de la littérature sera
complétée à chaque chapitre, où les spécificités de chaque sujet seront abordées
dans l’introduction du chapitre. Comme déjà expliqué, différentes approches et
formulations existent pour résoudre les problèmes FSI. Chacun avec son ensemble
d’avantages et d’inconvénients. Cette thèse vise à tirer les avantages des différentes
approches tout en ignorant autant que possible les inconvénients. L’utilisation de
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l’expertise déjà développée dans les différents domaines de CimLib CFD a permis
d’atteindre l’objectif final. Une telle expertise réside dans la méthode du volume
immergé (IVM) par exemple, qui est un outil efficace pour surmonter les problèmes
de chevauchement de maillage. La méthode level set est utilisée pour immerger le
maillage solide dans un maillage fluide-solide. Cela permet de suivre l’interface FSI
pour deux domaines distincts. Pour mieux représenter l’interface FSI dans le mail-
lage fluide-solide et obtenir une plus grande précision dans une région cruciale du
calcul FSI, nous utilisons l’adaptation de maillage anisotrope. Cette technique va
générer des éléments très étirés près de l’interface FSI. Un solveur CFD FE stabilisé
pour la dynamique des fluides est également utilisé pour le calcul de l’écoulement de
fluide. Toute cette expertise déjà existante sera couplée à un solveur lagrangien hy-
perélastique et à un schéma de couplage fort bidirectionnel (AIMM) pour réaliser
notre simulateur FSI final. Pour pouvoir couvrir une large gamme d’applications
FSI, un solveur Lagrangien séparé qui peut avoir des lois de comportement com-
plexes est nécessaire. Dans ce travail, un solveur solide lagrangien est présenté. Le
déplacement et la pression sont les principales variables du solveur. La méthode vari-
ationnelles multi-échelle (VMS) est utilisée pour stabiliser le solveur pour le même
ordre d’interpolation de la variable, contournant ainsi la condition ≪ inf-sup ≫ et
supprimant toute oscillation de pression parasite. Un solveur élastique linéaire a
d’abord été développé, suivi d’un solveur hyperélastique. Cela nous permet de con-
server les avantages de l’approche partitionnée, qui est principalement la flexibilité
d’avoir un solveur lagrangien solide séparé. Ce solveur devant ensuite être couplé
à un solveur fluide. Ainsi, les équations classiques de Navier–Stokes sont résolues.
Un solveur interne déjà développé est utilisé avec la vitesse et la pression comme
variables principales. La méthode VMS est également utilisée pour la stabilisation
du solveur, ce qui aide à résoudre deux problèmes principaux : la condition ≪ inf-
sup ≫ et les régimes dominés par la convection. Les équations de Navier–Stokes
sont résolues sur un maillage fluide-solide. Le solide coexiste avec le fluide dans
le maillage précité. Cela se fait en immergeant le maillage solide sur le maillage
fluide-solide à chaque itération. Ainsi, suivi du mouvement solide dans le maillage
fluide-solide. Un mécanisme de couplage bidirectionnel est utilisé, où la contrainte
et la vitesse complètes sont interpolées entre les solveurs. Cette thèse a été soutenue
par AquaLung. Leur but est de créer un simulateur pour leurs applications pour
l’optimisation éventuelle de leur produit. Tous les développements et simulations
numériques sont réalisés dans la librairie FR C++ CimLib CFD. Le manuscrit
suivant est organisé comme suit : Le deuxième chapitre présente l’expertise déjà
développée du groupe de recherche qui va être utilisée pour créer le cadre FSI.
Cela inclut la méthode des ensembles de niveau pour l’immersion, le mélange des
propriétés pour l’écoulement multi phase, l’adaptation du maillage anisotrope et le
solveur de fluide. Le troisième chapitre explique le solveur lagrangien de dynamique
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solide. Commençant par le cas élastique linéaire et atteignant le cas hyperélastique.
La méthode VMS pour la stabilisation du solveur est présentée. Enfin, plusieurs ex-
emples 2D et 3D sont présentés pour prouver les capacités du solveur. Le quatrième
chapitre constitue le cœur de la thèse. Il introduit le framework FSI hybride AIMM.
Expliquer les différents composants utilisés pour réussir le couplage FSI. De nom-
breuses simulations numériques 2D et 3D sont réalisées pour mettre en valeur les
capacités du framework. Le chapitre cinq présente l’application industrielle de notre
partenaire industriel (AquaLung). Nous terminons le manuscrit par la conclusion
et les perspectives au chapitre six.
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1.1 An introduction to Fluid–Structure Interaction

Fluid–Structure Interaction (FSI) is the multi-physical inevitable interaction be-
tween a deformable/movable solid structure (laws of structural mechanics) immersed
and/or containing a working fluid (laws of fluid dynamics) [1]. The interaction can
be oscillatory or reach a stable steady state. FSI is considered in a vast number
of applications in the engineering glossary, which include but are not restricted to,
aerodynamics, hydrodynamics, acoustics, and biomechanics. Failure to account for
the interaction of the two mediums may lead to catastrophic results. The infamous
case of the Tacoma narrows bridge (1940) serves as an example of such a large-scale
catastrophe [2]. Figure 1.1 showcases the failure of the bridge due to resonance
vibration. Another example of such failures is the fluttering phenomena exhibited
by aircraft, and wind turbine blades. Another small-scale, biological example is the
accurate modeling of blood flows. Blood vessel’s may alter in size significantly due
to modifications in blood pressure, and blood velocity [3]. If vessels are considered as
rigid bodies, an overestimation of the Wall Shear Stress (WSS) is computed. There-
fore, an accurate depiction of the vessels properties leads to a better estimation of
the behavior of such a biological system and inevitably leads to better treatments.
One application of such a phenomenon is cerebral aneurysms. The neck of such
an aneurysm risks failure when becoming thin enough, and undergoing high WSS
values. Thus, an accurate and precise FSI simulation of a patient’s case can help
the practitioner decide on the possible remedies for a specific case[4–7].

Figure 1.1: The catastrophic Tacoma narrows bridge incident in Detroit (1940).
Retrieved from: https://commons.wikimedia.org/w/index.php?curid=1839248
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The interaction happening between the entities is depicted in figure 1.2. The
fluid, which is characterized by velocity, and pressure fields exercises aerodynamic
forces on the FSI interface of the solid. The solid is moved/deformed under these
actions. This displacement field in turn affects the flow field of the fluid, thus altering
the aerodynamic forces. Weak coupling considers the action of the fluid on the solid
(or the inverse) only. Strong coupling, considers a two-way coupling between the
two entities.

Aerodynamic forces

Structural displacement and deformation

Fluid-Structure interface position

Fluid pressure and velocity

Figure 1.2: Schematic of the FSI interaction cycle.

Given the complex intrinsic nature of such phenomena, little to no analytical
solution can accurately depict the behavior of the mediums. One can resort to
experimental studies, which have proven to costly in terms of time and resources.
As an alternative to the above-mentioned methods, numerical simulations that ac-
curately model such phenomena are of increasing interest. According to Moore’s
law, this field is ever growing with the advances of integrated circuits and the evo-
lution of computing power. Moore’s law states that the number of transistors on
an Integrated circuit (IC) is multiplied by two every two years [8]. His work was
published in 1965 and was a projection of the following years. This law fulfilled its
expectations in terms of the number of transistors on an integrated circuit and is
a guideline for technological advancement in the semiconductor industry. This law
full filled its expectations till around the 2000s, in terms of computational power,
and still holds partially, due to the emergence of parallel computations. To solve
Partial Differential Equations (PDEs) numerically, we use discretization methods
(Finite Element, Finite Volume, Finite Difference . . . ), which in turn approximate
the differential equations by a set of algebraic equations, that are solved. A mesh
can be generated using commercial software, like Gmsh [9]. Now, this discretiza-
tion is applied to both space and time depending on the problem (steady-state or
transient). Higher quality of discretization (second-order or higher) and finer mesh
lead to better results and convergence of the solution. Furthermore, despite the ad-
vances in the fields of Computational Fluid Dynamics (CFD), and Computational
Solid Mechanics (CSM), the computational FSI domain is still lagging. FSI meth-
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ods of different essences are under intensive investigation. Some of the common
problems encountered in the field are the need for mesh adaptation, the coupling
algorithm, large deformation, high Reynolds number, and complex geometries.

1.2 Literature Review

This part of the chapter introduces the different formulations and approaches for
FSI. It is important to note that this is not a full literature review, but more of an
introduction to the different already existent methods. This literature review will
be completed with each chapter, where specifics on each subject will be tackled in
the introduction of the chapter.

1.2.1 Formulations

Different formulations are first presented while highlighting their advantages and
disadvantages.

1.2.1.1 Lagrangian Formulation

The Lagrangian formulation treats the particle motion as a quantity moving in space
on a reference frame attached to the particle. The initial reference frame is known.
This technique is highly used in Computational Solid Mechanics (CSM) [10]. Using
the finite element method, this formulation necessitates that each computational
node is in touch with the initial particle throughout the motion of the solid. This
property is of particular interest numerically speaking, as advective terms drop from
the equation in this case. This is also of interest when considering the particles
located at the wetted interface between the solid, and the fluid, as it renders interface
tracking a lot easier. The main drawback of this formulation is that it cannot handle
large deformations. Large deformation causes the mesh to distort This formulation
is regarded as an interface-tracking formulation.

1.2.1.2 Eulerian Formulation

The Eulerian formulation tracks the change in a material quantity through a region.
The reference system in this case is fixed. The Eulerian formulation necessitates a
fixed mesh. It defines a constant volume, and the quantities can migrate from one
element to another. Material particles can thus leave the defined volume, and sub-
sequently, we lose any information on these particles. Tracking moving boundaries
in an Eulerian framework is not straightforward, and requires additional methods
[11]. In addition, if no type of mesh adaptation is applied, the material boundaries
will not be overlapping on element edges, especially when the boundary is evolving

7



1 Introduction

in time. Thus, rendering the boundary conditions on the interface tedious to ap-
ply. The Eulerian formulation can take into account large displacement and is very
popular in the field of CFD. The interface between the fluid and the solid can move
freely on the fixed Eulerian mesh. Elastic materials can also be modeled using an
Eulerian framework. In [12] the interaction between an elastic membrane, and an
incompressible fluid is presented. Authors in [13, 14] implemented a full Eulerian
formulation for an incompressible fluid and a hyper-elastic solid. This formulation
is seen as an interface-capturing formulation. The capturing of the interface was
done using the Initial Point Set (IPS) method. A vector field ΦIPS is used to trans-
port the coordinate system. This interface-capturing tool was able to handle sharp
corners.

1.2.1.3 Arbitrary Lagrangian-Eulerian (ALE) Formulation

The ALE formulation acquired a lot of attention among the different formulations
[15–17]. It is based on the idea of having a grid moving at a different rate of
the solid structure. Thus, having the structure move relative to the mesh, which
is somewhat like the Eulerian formulation. Whilst having the elements controlled
using the physical boundary conditions of the problem, which is also like the La-
grangian formulation. This supposedly combines a well-defined interface with the
ability to easily impose physical boundary conditions, and the ability to handle large
distortions. Note that in that case, the domain is deformable/movable, engender-
ing modifications to the advective term of the equations. The method proved to
work very well, under certain limitations for the solid rotations, and translations
[11, 18, 19]. When these limits are exceeded, the mesh becomes distorted and the
ALE formulation fails. Mesh adaptation techniques are usually resorted to, to help
circumvent the problem [20]. However, this is easier said than done. Another solu-
tion, was developed in [21–23]. They make use of a fixed Eulerian mesh, by using
the extended finite element method (XFEM), and Lagrange multipliers to couple it
with the deformable ALE mesh. The mesh deformation is directly related to the
interface position. This helps keep most of the mesh intact. In [24], the Finite Vol-
ume (FV) method is used for the fluid, and the Finite Element (FE) method is used
for the solid. The ALE formulation is coupled with a multi-grid technique. When
considering large enough deformations, the ALE formulation necessitates coupling
with other techniques.

1.2.1.4 Eulerian-Lagrangian Formulation

As the name suggests, the Eulerian-Lagrangian formulation treats each component
in its preferred setting. Thus, formulating the fluid in an Eulerian manner, and the
solid in a Lagrangian manner [25]. The main difference between this formulation,
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and the ALE formulation, lies within the fluid mesh. The mesh in the Eulerian-
Lagrangian formulation does not move based on the interface position. Thus there
are no limitations on the amplitude of deformation on the solid that may result
in a distorted mesh. The interface may be represented using a signed distance
function (level set). The coupling between the fluid and the solid can be achieved
through Lagrange multipliers or the penalty method [26]. Authors in [27], utilized
the Eulerian-Lagrangian formulation to handle multiple thin solid structures im-
mersed in a fluid medium. The extended finite element method (XFEM) is used to
enrich the space-time approximations of the variables to handle discontinuities that
may arise due to phase change.

1.2.1.5 The Fictitious Domain Formulation

The Fictitious Domain Formulation [28] consists of extending the current problem
domain, to a possibly bigger more simple domain called the fictitious domain. This
method is known for having two main advantages:

1. The extended more simple domain is simpler than the initial one, thus a more
regular mesh is chosen. This allows more direct ways of solving elliptical
problems, for example, leading to lower resolution times.

2. The extended more trivial domain can be chosen to be time-independent,
despite the possibility of the time dependency of the initial domain. This
allows for the same fixed mesh to be used on the extended domain during the
whole time, omitting any need for projection and remeshing.

The same boundary conditions on the initial domain should be respected by the
extended domain. Authors in [28, 29], use the fictitious domain method to tackle
FSI problems of rigid bodies with relatively important rotations/translations. The
alluviation of solid rigid particles is modeled. The particles are immersed in the
working fluid and are considered using Lagrange multipliers. Similar work can be
found in [30], where thin structural bodies are considered and Lagrange multipliers
are applied at the interface. If we consider the Lagrange multiplier on the whole
solid, the method is not limited to thin bodies. Authors in [31], were able to model
the pressure drop through a solid body, which is of interest in the biomechanics
field. Authors in [32], coupled the fictitious domain method with a mesh adaptation
method to model the shear stress, and the pressure drop of the solid interface.

1.2.2 The monolithic and partitioned approaches for FSI

There are two famous approaches for solving FSI, which are:

1. The partitioned approach
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2. The monolithic approach

Authors in [33], classified different ways to tackle the problem from an engineer-
ing point of view in Table 1.1. We see the distinction between conforming and
non-conforming mesh. In this work, the conforming mesh method treats the in-
terface as part of the solution and the interface conditions as physical boundary
conditions. Thus, when a solid move or deforms, re-meshing is required. However,
non-conforming meshes treat the interface location and conditions as constraints
embedded in the equations to be solved, thus leading to non-conforming meshes at
the interface. Thus the equations can be solved separately with no re-meshing.

Methods

Monolithic

Partitioned
”Conforming mesh”

”Non-conforming mesh”
Immersed Boundary Method
Immersed Domain Method

Table 1.1: Different Methods for FSI

1.2.2.1 The partitioned approach

The partitioned approach, as the name suggests, distinguishes between the two
mediums at hand. Thus, two separate grids are used for each domain, enabling us
to have separate solvers for the fluid and the solid. Multiple subsystems are solved
separately. The interactions between the two subdomains are treated as Boundary
Conditions (BC) at the FSI interface. The main challenge of such an approach is the
communication between the different grids and subsystems. We distinguish between
two main coupling methods for the partitioned approach [34–37]:

• Strongly coupled

• Weakly coupled

For strongly coupled systems, sub-iterations and relaxation are needed to guarantee
convergence of the solution. They do however possess an inherent instability when
dealing with incompressible flows. This is mainly related to the geometrical shape
of the domain, and the fluid/solid density ratio [38]. One must also be careful
when choosing the time step for a simulation. Reducing the time step does not
always render a system more stable. For this case, for example, such a step may
increase instabilities. This inherent instability is what is known as the artificial
added mass effect [39]. Some parts of the fluid act as an additional weight on the
structures Degrees Of Freedom (DOF) at the interface. Simply put, the fluid forces
are dependent on the structural displacement field, and not the actual fluid force.
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If not treated correctly, it may include inaccurate coupling forces. This instability
is more prominent in biomechanical applications. Authors in [? ], use a Laplacian
matrix at the interface that helps in obtaining accurate results. This is done by
separating the velocity from the pressure. The velocity is first calculated, and the
pressure is then calculated from the previous result. This helps circumvent the
artificial added mass effect problem. Different simulations of an incompressible fluid
with an elastic solid are presented. For weakly coupled systems, the boundary
conditions are treated explicitly with no sub-iterations. A single solution is required
for each field at each time increment. This may lead to inaccurate coupling. Weakly
coupled systems usually suffer from instability. The most widely used methods are
the Immersed methods (Immersed Volume, Immersed Boundary ...), of which the
most common is the Immersed Boundary Method (IBM), which was first developed
for biomedical purposes [40, 41].

In most cases, the fluid flow requires a mesh finer mesh than that of the solid.
This is why we have non-matching meshes at the interface. In FSI simulations, the
domains are non-overlapping domains in general. The communication between the
two mediums is done by Interpolation/Projection. Different methods of communica-
tion are found in the literature, such as the nearest neighbor interpolation, methods
based on interpolation by spline, and projection methods. The most important cri-
teria that should be satisfied by coupling strategies are: (i) global conservation of
energy over the interface, (ii) global conservation of loads over the interface, (iii)
accuracy, (iv) conservation of the order of the coupled solver, (v) efficiency. Effi-
ciency is seen as the ratio of accuracy and computational cost. The simplest method
by far is the nearest neighbor method, as it consists of obtaining the information
from the closest point on the opposing mesh. This method is unsatisfactory for the
slightest trace of complexity. The projection method is a lot more accurate. To
obtain information from mesh A onto mesh B, we take a point from mesh A and do
an orthogonal projection onto mesh B; the values of both points are the same. This
method is widely used when Gauss Integration rules are used for the integral. This
method in principle, respects (ii). However, some structural elements may not be
considered in the integration, so they receive no pressure force. One can overcome
this obstacle by using more Gauss points, but given the fact that the fluid has a far
finer mesh than the solid, this is hardly an issue. The projection is done by minimal
distance projection.

1.2.2.2 The monolithic approach

The monolithic approach solves a single system of equations on a single grid that
considers both the solid, and the fluid, and inherently satisfies the interface cou-
pling conditions. It allows for implicit solution schemes, integration of error-based
estimators, and relatively large time steps. Only one of the two mediums, fluid or
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solid, can be solved in its natural coordinate system and the other problem needs to
be re-formulated in a transformed coordinate system. This is due to the fact that
the solid is solved in a Lagrangian manner, while the fluid is solved in an Eulerian
manner. Large deformations are better captured in an Eulerian framework. The
main drawback of such an approach is the inability to use already existing solvers
for independent mediums.

1.3 Objective of the thesis

As already explained, different approaches and formulations exist for solving FSI
problems. Each with its set of advantages and drawbacks. This thesis aims to draw
the advantages of the different approaches while hopefully disregarding as many of
the drawbacks as possible. The use of the already developed expertise in the different
domains of CimLib CFD [42] helped reach the final goal. Such expertise lies in the
Immersed Volume Method (IVM) for example [43, 44], which is an efficient tool to
overcome problems of mesh overlapping. The level set method is used to immerse
the solid mesh onto a fluid-solid mesh. This helps track the FSI interface for two
separate domains. To better represent the FSI interface in the fluid-solid mesh, and
obtain a higher accuracy at a crucial region of the FSI computation, we make use
of the anisotropic mesh adaptation [45, 46]. This technique will generate highly
stretched elements near the FSI interface. A CFD FE stabilized solver for fluid
dynamics is also used for the computation of the fluid flow [47]. All this already
existent expertise will be coupled with a hyperelastic Lagrangian solver and a two-
way strong coupling scheme (AIMM) to achieve our final FSI simulator.

1.3.1 Numerical method and applications

To be able to cover a wide range of FSI applications, a separate Lagrangian solver
that can have complex behavior laws is needed. In this work, a Lagrangian solid
solver is presented. The displacement and pressure are the primary variables of the
solver. The Variational Multi-Scale (VMS) method is used to stabilize the solver
for the same order interpolation of the variable, thus circumventing the inf-sup con-
dition and removing any spurious pressure oscillations. A linear elastic solver was
first developed, and a hyperelastic solver followed. This enables us to retain the
advantages of the partitioned approach, which is mainly the flexibility of having
a separate solid Lagrangian solver. This solver then to be coupled with a fluid
solver. Thus the classical Navier–Stokes equations are solved. An already devel-
oped in-house solver is used with velocity and pressure being the primary variables.
The VMS method is also used for the stabilization of the solver, which helps with
two main problems: the inf-sup condition and convection-dominated regimes. The

12
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Navier–Stokes equations are solved on a fluid-solid mesh. The solid co-exists with
fluid in the aforementioned mesh. This is done by immersing the solid mesh onto
the fluid-solid mesh at each time iteration. Thus, tracking the solid movement in
the fluid-solid mesh. A two-way coupling mechanism is employed, where full stress
and velocity are interpolated between solvers.

1.4 Framework of the thesis

This thesis was supported by AquaLung. Their goal is to create a simulator for
their applications for the eventual optimization of their product. This Ph.D. led to
several new projects in the biomedical field. All the developments and numerical
simulations are carried out in the house FR C++ library CimLib CFD.

1.5 Layout of the thesis

The following manuscript is organized as follows: The second chapter introduces the
already developed expertise of the research group that is going to be used to create
the FSI framework. This includes the level set method for immersion, the mixing
of properties for multi-phase flow, the anisotropic mesh adaptation, and the fluid
solver. The third chapter explains the Lagrangian solid dynamics solver. Starting
with the linear elastic case and reaching the hyperelastic case. The VMS method for
the solver stabilization is presented. Finally, several 2D and 3D examples are shown
to prove the capabilities of the solver. The fourth chapter consists of the heart of
the thesis. It introduces the hybrid FSI framework AIMM. Explaining the different
components used for the successful FSI coupling. Numerous 2D and 3D numerical
simulations are conducted to showcase the capabilities of the framework. Chapter
five introduces the industrial application of our industrial partner (AquaLung). We
end the manuscript with the conclusion and perspectives in chapter six.
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2 The Immersed Volume Method and the resolution of the Navier–Stokes equations

Dans ce chapitre, les différents composants de la méthode du volume immergé (IVM)
sont détaillés. Ainsi que la résolution des équations de Navier–Stokes est présentée.
Ces outils déjà développés vont être utilisés dans le développement du cadre FSI.
Les ≪ Level Set Methods ≫ (LSM) ont été développées pour la première fois en
1979. Le principal avantage d’une telle approche est la possibilité d’effectuer une
analyse numérique avec des formes externes, sans avoir besoin de les paramétrer
au préalable. De plus, la méthode des ensembles de niveaux peut suivre les formes
avec une topologie changeante. Ces caractéristiques rendent le LSM attractif pour
modéliser la dynamique transitoire des objets, comme le gonflage d’un airbag (FSI),
ou une bulle montante (Multi-Phase flow). Compte tenu de la nature multi phase
de certaines applications en FSI, il est intéressant d’étudier les lois de mélange.
Certaines applications peuvent inclure plus d’un fluide avec la présence du solide.
Chaque médium est caractérisé par une fonction level set, qui servira à mélanger
les propriétés entre les différents médiums. La fonction de niveau peut passer par
certains des éléments à l’interface, pour lesquels des mélanges des différentes pro-
priétés du milieu sont appliqués. Le calcul exact et précis des vitesses, des pressions
et des contraintes totales le long de l’interface FSI est de la plus haute importance
pour le couplage correct entre le fluide et le solide. Ceci est principalement dû à
la taille du maillage à l’interface, où les conditions aux limites sont finalement pre-
scrites. On pourrait envisager un raffinement de maillage isotrope dans une certaine
région d’intérêt. Cependant, cela ne peut être utilisé que dans les cas où le niveau
de déplacement du solide est connu à l’avance, ce qui augmente considérablement
le coût de calcul. Ainsi, une technique de remaillage anisotrope adaptatif est con-
sidérée. Différentes façons d’adapter le maillage existent. Dans ce qui suit, nous
allons essayer de passer en revue les différentes techniques utilisées dans cette thèse.
Un écoulement de fluide peut être incompressible ou compressible. Il est considéré
comme incompressible lorsqu’aucun changement de densité n’est présenté. Les flu-
ides tels que l’eau liquide sont considérés comme incompressibles. Alors que les
fluides tels que les gaz sont considérés comme compressibles. De plus, ces fluides
peuvent être considérés comme incompressibles pour un nombre de Mach Ma ≤ 0, 3.
Le nombre de Reynolds aide à distinguer trois régimes d’écoulement importants, qui
sont les régimes laminaires, transitoire et turbulent. La conservation de la quan-
tité de mouvement et la conservation des équations de masse régissent l’écoulement
du fluide. Cette approximation par éléments finis est sujette à l’échec pour deux
raisons principales. L’une d’elles est la condition ≪ inf-sup ≫ (Babuska-Brezzi), qui
nécessite une paire appropriée d’espaces fonctionnels pour la vitesse et la pression.
Le second est la dominance du terme advectif non linéaire, qui peut conduire à des
oscillations parasites qui polluent l’ensemble de la solution. Dans ce qui suit, nous
utilisons les éléments finis P1-P1 pour leur précision et leur coût de calcul. Les
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2 The Immersed Volume Method and the resolution of the Navier–Stokes equations

éléments P1-P1 sont connus pour avoir un comportement instable car ils ne satis-
font pas la condition ≪ inf-sup ≫. Dans ce qui suit, nous présenterons les schémas
numériques utilisés pour contourner les obstacles mentionnés ci-dessus.
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2 The Immersed Volume Method and the resolution of the Navier–Stokes equations

2.1 Introduction

In this chapter, the different components of the Immersed Volume Method (IVM)
are detailed. As well as the resolution of the Navier–Stokes equations is presented.
These already developed tools are going to be used in the development of the FSI
framework.

2.2 The Level Set approach

The Level Set Methods (LSM)were first developed in 1979 [1]. The main advantage
of such an approach is the ability to undergo a numerical analysis with external
shapes, without the need to parameterize them beforehand [2]. Moreover, the level
set method can track shapes with changing topology. These features render the
LSM attractive in modeling the transient dynamics of objects, such as the inflation
of an airbag (FSI) [3], or a rising bubble (Multi-Phase flow) [4].

It consists of a signed distance function α that helps localize the interface Γ of
the immersed body Ωs. Consider a point x in the computational domain Ω, then
the value of the level set function α is the signed distance from the interface Γ to
the point of interest x. This inevitably leads to an iso-value of zero on the interface
of the level set function. The level set function is given by

{
α(x) = ±d(x,Γ),x ∈ Ω,

Γ = {x, α(x) = 0}.
(2.1)

In this work, the sign convention that is adopted consists of having α > 0 inside Ωs,
and α < 0 outside Ωs. An example of the level set function of a disc immersed in a
square domain is given in figure 4.5.

The solid domain can be a simple geometry, such as the disc example. Thus an
analytical function is implemented to account for the level set. However, if this is not
the case, and we have a complex geometry at hand, we immerse the solid mesh onto
the domain. Figure 2.2, show a complex geometry immersed in a cubical domain.
A ”Standard Triangle Language” or ”Standard Tessellation Language” (STL) file
which describes the surface with a mesh using triangular elements, is used to create
a mesh file. This mesh file is then immersed in the fluid domain. This will give us
a field that is the minimum distance to the surface of the immersed mesh.

22



2 The Immersed Volume Method and the resolution of the Navier–Stokes equations

Figure 2.1: The Level Set function of a disc immersed in a square domain.

Figure 2.2: The immersion of a complex three-dimensional geometry in a cubical domain.

2.3 Mixing laws

Given the multi-phase nature of some applications in FSI, it is interesting to in-
vestigate mixing laws. Some applications may include more than one fluid along
with the presence of the solid. Each medium is characterized by a level set function,
which will be used to mix the properties between the different mediums. The level
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function may go through some of the elements at the interface, for which mixtures
of the different properties of the medium are applied. For this purpose, a Heaviside
step function, or unit step function H(α) is defined as follows

H(α) =

{
1 if α(x) > 0,

0 if α(x) < 0.
(2.2)

To avoid any sudden jumps in the properties [5], that may lead to numerical
instabilities, a smoothed Heaviside function is proposed

H(α) =


1 if α(x) > ϵ,
1
2
(1 + α

ϵ
+ 1

π
sin(πα

ϵ
)) if |α(x)| ≤ ϵ,

0 if α(x) < −ϵ.

(2.3)

Where ϵ is related to the mesh size at a certain position, such that ϵ = O(hi),
called interface thickness. hi is equal to the mesh size relative to the interface, in
the normal direction. It can be written as

hi = max
j,l∈K

∇α · xjl. (2.4)

Where xjl = xl − xj, and K is the element. For first-order linear interpolation
of the Heaviside function, it is straightforward since they are calculated by look-
ing at the sign of α(x) at a certain node x. For zero-order, piece wise constant
interpolation, H(α) is given by

H(α)|K =
α+
K

|α|K
. (2.5)

Where α+
K is the summation of all the positive α computed at the nodes of an

element K, and |α|K is the summation of the absolute values of α. The mixing of
properties between two domain is thus formulated in function of H(α). For example,
if we take the density mixture between two mediums we have

ρ = ρ1H(α) + ρ2(1−H(α)). (2.6)

The first-order density variation of two mediums across the interface is shown in
figure 2.3. For a zero-order variation, the mixing is done across an element. While
for first-order variations, the mixing is done across a prescribed thickness ϵ, which
is usually two times the mesh size.
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2 The Immersed Volume Method and the resolution of the Navier–Stokes equations

Figure 2.3: The first-order density variation of two mediums across the interface.

2.4 Anisotropic mesh

Accurate and precise computation of the velocities, pressures and full stress along
the FSI interface is of utmost importance for the correct coupling between the fluid
and the solid. This is mainly due to the mesh size at the interface, where the
boundary conditions are eventually prescribed. One might consider an isotropic
mesh refinement at a certain region of interest. However, this can only be used
in cases where the level of displacement of the solid is known beforehand, and
this increases the computational cost significantly. Thus, an adaptive anisotropic
remeshing technique is considered. Different ways of adapting the mesh exist. In
what follows, we will try to go through the different techniques used in this thesis.

2.4.1 Anisotropic local remeshing method

The idea behind the method is to couple the level set method with an anisotropic
mesh adaptation. This enables us to have a locally refined zone around the interface.
The refinement can act in one direction, which leads to anisotropic highly stretched
elements. This helps us accurately and precisely define our interface while saving a
great number of elements compared to isotropic mesh refinement.

To be able to generate such a mesh, we need to define a metric field and make use
of a topological meshing tool. A metric is defined as a positive defined symmetric
tensor that represents a local base modifying the distance calculations, as
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∥x∥M =
√
xT ·M · x, ⟨x,y⟩M = xT ·M · y. (2.7)

If we assume for instance that the tensor M is equal to the identity tensor,
we obtain the directions and the distances of classical Euclidean space. Given the
fact that M is a positive definite symmetric tensor, then M is diagonalizable in an
orthonormal basis of eigenvectors, where the eigenvalues are strictly positive. The
metric is considered as a tensor where the eigenvectors dictate the direction, and
the eigenvalues dictate the size of the mesh elements. When applying a metric in
mesh construction, the element size in the direction of an eigenvector is equal to
1√
λi
, where λi is the ith eigenvalue of M associated with the eigenvector.
Let us explain the procedure in a concrete example. Assume only one interface

Γ, the iso-value of zero of the level set corresponds to that interface. The normal
vector to the interface, which is the chosen direction of mesh refinement, is given by

n =
∇α

||∇α||
(2.8)

To impose a certain mesh size, we impose a certain thickness e for which we
consider the element either near the interface or far from it as follows{

|α(x)| ≤ e
2

near the interface,

|α(x)| > e
2

farfar from the interface.
(2.9)

A reference value, or default value for the mesh size is imposed far from the
interface. This mesh size is reduced as we get closer to the interface in the orthogonal
direction. If we consider an isotropic mesh of element size hd outside a prescribed
anisotropic boundary layer, the following evolution is a choice

h =

{
hd if |α(x)| > e

2
,

he =
2hd(m−1)

me
|α(x)|+ hd

m
if |α(x)| ≤ e

2
.

(2.10)

At the interface, the mesh size of the element is equal to the default mesh size
reduced by a factor m. This value increases until it reaches the default value hd

at half the thickness of the anisotropic boundary layer. The interface unit normal
vector n, and the mesh size defined above lead to the following metric construction

M = C(n⊗ n) +
1

hd

I. (2.11)

Where

C =

{
0 if |α(x)| ≥ e

2
,

1
h2
e
− 1

h2
d

if |α(x)| < e
2
.

. (2.12)
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Where I is the identity tensor. This allows us to have a mesh resolution specific
to an area. We have an isotropic mesh far from the interface with a value equal
to the prescribed default mesh size, and an anisotropic mesh near the surface that
respects the above-mentioned equations.

Simply put, it relies on a local mesh topology optimization, with varying ap-
plications of meshing and remeshing through the principle of minimum volume. It
considers the quality of the element, to improve the overall topology. The quality
of the element is computed using a shape factor that takes into consideration the
previously mentioned metric[6].

The suggested mesh generation algorithm performs well for applications in 2D
and 3D, including complex shapes. It enables us to generate extremely stretched
anisotropic elements at the interface. Thus, a mesh resolution in the direction
of the normal vector to the interface is obtained, where important gradients are
present. This allows us to accurately and precisely depict the FSI interface while
decreasing the total number of degrees of freedom of the overall problem compared
to an isotropic mesh. Since the mesh generation is focused on a specific region of
the overall mesh, the computational power needed for mesh generation is relatively
low.

2.4.2 Hessian strategy

This is an alternative for the metric computation, and to consider the anisotropic
mesh region near the interface. A directional error estimator, which is based on
the local interpolation error, and the recovery of the second derivative of the signed
distance function is used. This approach is known as the Hessian strategy.

This approach aims to achieve a minimal directional error estimation. This
allows us to have a refined mesh at the FSI interface. The elements are stretched and
oriented in a way that allows for an accurate and precise depiction of the interface
while keeping the number of elements relatively low and user-defined. The Hessian
strategy is utilized to acquire better directional information of the error. The signed
distance function is used to calculate the Hessian. This directional information, as
per the previous method, is used to construct a mesh metric M, which enforces
the orientation and size of the element. This method can be applied with no error
estimator.

2.4.3 Edge-based anisotropic mesh adaptation

This final approach, used in what follows, is mainly based on the a posteriori estima-
tion of the length distribution tensor, and the related edge-based error analysis. It
takes advantage of the level set function and the velocity field. This is done without
a significant increase in the complexity of the calculations, nor the intersection of
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different metrics. This allows us to consider not only the velocity magnitude but
also the directional gradient of the velocity. We make use of a function that monitors
a vector or a scalar to control the orientation, size, and shape of the mesh element.
This gives us an estimate of the solution error, which is equidistributed over each
mesh element. This helps us generate a mesh and a numerical solution for the prob-
lem. A numerical solution is first computed on the mesh, then an estimation of
the interpolation error is computed. A minimization problem is then solved, which
reduces the interpolation error in the L1-norm. The development of the solution is
monitored by an optimal metric which reduces the interpolation error. A new mesh
is obtained, which is compatible with the metric. The edge of this approach is the
fact that the metric and its associated edge-based error are computed easily.

2.4.3.1 Edge-based error estimation

Let u ∈ C2(Ω) be a regular function, and uh a P1 finite element approximation
obtained through the Lagrange interpolation operator of that function. Ui is defined
at each vertex i of the mesh as Ui = u(xi) = uh(x

i), where xi are the coordinates of
the vertex i. Let us define a ”patch” Γ(i) linked to the vertex xi of the mesh as the
group of nodes that share a single edge with xi. The edge connection between xi to
xj is denoted by xij. Figure 4.6 showcases the concept.

Figure 2.4: Patch associated with node xi

Given the continuous nature of the gradient ∇uh · xij on the edge xij we can write

U j = U i +∇uh · xij, (2.13)

Which in turn gives

∇uh · xij = U j − U i . (2.14)

The following error estimator is obtained
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|| ∇uh · xij −∇u(xi) · xij ||≤ max
y∈|xi,xj |

| xij ·Hu(y) · xij |, (2.15)

where Hu is the Hessian of u. The recovered gradient gi of uh at a node xi is
given by

∇gh · xij = gj − gi . (2.16)

The projection of the Hessian at the edge extremities, which is based on the
gradient, is of interest

(∇gh · xij) · xij = (gj − gi) · xij, (2.17)

(Hu · xij) · xij = gij · xij, (2.18)

where gij = gj − gi. An accurate second-order approximation of the second
derivative of u along the edge xij is obtained by the quantity | gij · xij |. Residuals
on edges prevail over a posteriori error for first-order finite elements on anisotropic
meshes[7], it is of interest to define an error indication function related to the edge
xij by

eij =| gij · xij | . (2.19)

The error is the exact interpolation error along the edge and enables us to com-
pute a global L1 error. The gradient however is unknown at the vertices, therefore
a gradient recovery procedure is applied.

2.4.3.2 Gradient recovery procedure

The gradient recovery procedure is based on the succeeding optimization problem

Gi = argmin
G

∑
j∈Γ(i)

| (G−∇uh) · xij |2
 , (2.20)

where Gi is the recovered gradient. ⊗ is the tensor product between two vectors.
The length distribution tensor X i at node i is given by
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X i =
1

| Γ(i) |

∑
j∈Γ(i)

xij ⊗ xij

 , (2.21)

this gives us an average representation of the distribution of edges in the patch.
The recovered gradient Gi is expressed in terms of the length distribution tensor as

Gi = (X i)−1
∑
j∈Γ(i)

U ijxij . (2.22)

Which leads to an estimated error eij given by

eij = Gij.xij . (2.23)

2.4.3.3 Metric construction

To correlate the error indicator defined in (4.14) to the related metric, we introduce
a stretching factor. The stretching factor sij is defined as the ratio between the
length of the edges xij before and after the adaptation procedure. Thus we obtain
the following expression for the metric

M̃ i = (X̃ i)−1, (2.24)

where X̃ i is defined as

X̃ i =
1

| Γ(i) |

∑
j∈Γ(i)

sij ⊗ sij

 . (2.25)

To keep the number of nodes fixed, the stretching factor sij of the edge ij is
chosen as

sij =

(
eij

e(N)

)
, (2.26)

where e(N) the total error. An example of the mesh adaptation is shown in
figure 2.5. This mesh adaptation was performed under multiple criteria. One of
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which is the level set of the immersed solid. We can see the highly concentrated
number of highly stretched elements on the interface, which will eventually help us
better model the interface and have higher accuracy in this region of interest. Also,
the mesh was adapted to the velocity. This will help concentrate the elements in
regions of interest where the gradient of the scalar function is important.

Figure 2.5: An example of the mesh adaptation on multiple criteria.

2.5 The resolution of the Navier–Stokes equations

A fluid flow can be either incompressible or compressible. It is considered incom-
pressible when no density change is exhibited. Fluids such as liquid water are
considered incompressible. While fluids such as gases are considered compressible.
Also, these fluids can be considered incompressible for a Mach number Ma ≤ 0.3 [8].
The Mach number is a non-dimensional number that quantifies the relation between
a characteristic value v and the speed of sound c using

Ma =
v

c
. (2.27)

It was named after renowned physicist and philosopher Ernst Mach (1836-1916).
For example, the speed of sound in the air is about 340 m/s. Thus, air can be
considered incompressible for values up to 100 m/s. In what follows, we consider

31



2 The Immersed Volume Method and the resolution of the Navier–Stokes equations

are fluid to be incompressible. Also, an important non-dimensional number for the
characterization of a fluid flow is the Reynolds number

Re =
LU

ν
, (2.28)

where L is a characteristic length, U is a velocity and ν is the kinematic viscos-
ity of the fluid. It is the ratio of inertial effects to viscous effects. Thus, it gives
us an idea of which effects prevail in a given flow. The Reynolds number helps in
distinguishing between three important flow regimes, which are the laminar, tran-
sitional, and turbulent regimes. Laminar regimes occur for low Reynolds number,
which means that the viscous effects are more important than the inertial effects.
It is characterized by a smooth, relatively constant fluid motion. Turbulent regimes
occur at a relatively high Reynolds number, which means that the inertial effects
are more important than viscous effects. It is characterized by the stochastic pro-
duction of eddies, vortices, and different flow fluctuations. It is named after the
renowned engineer and physicist Osborne Reynolds (1842-1912). The conservation
of momentum and the conservation of mass equations govern the fluid flow. The
transient incompressible Navier–Stokes equations to be solved on a domain Ω ⊂ IRd,
where d is the spatial dimension, on a time period T are given by

ρ(∂tv+ (v · ∇)v)−∇ · σ = f in Ω, (2.29)

∇ · v = 0 in Ω. (2.30)

Where σ is the stress tensor, ρ is the density, and f is a source term. The stress
tensor for a Newtonian fluid is given by

σ = 2µε(v)− pI, (2.31)

where µ is the dynamic viscosity, I is the identity tensor, and p is the pressure.
The strain tensor ε(v) is given by

ε(v) =
1

2
[∇v+∇Tv]. (2.32)

Which ultimately leads to

ρ(∂tv+ (v · ∇)v)− 2µ∇ · ε(v) +∇p = f in Ω, (2.33)

∇ · v = 0 in Ω. (2.34)

These equations define the transient incompressible Newtonian Navier–Stokes
equations. They constitute a nonlinear system of mixed hyperbolic-parabolic PDEs
in both v and p. These equations require initial and boundary conditions to be
solved.
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2.5.1 Initial and boundary conditions

The initial condition at time t = 0 should satisfy ∇ · v0 = 0 for us to have a
well-posed problem

v = v0 in Ω0. (2.35)

No initial condition on the pressure is requested for an incompressible flow. There
are two types of boundary conditions that can be applied to the problem at hand,
which are the Dirichlet and Neumann boundary conditions. The Dirichlet boundary
condition is applied on ΓD, and the Neumann boundary condition is applied on ΓN ,
where ∂Ω = Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. They are given by the following
expressions

v = vD on ΓD, (2.36)

σ · n = hN on ΓN . (2.37)

Where n is the outward unit normal to ΓN . It is important to mention that
in the case where no Neumann boundary condition is applied in the domain, the
resulting pressure is correct up to an arbitrary constant. Given the FSI context
and the importance of the pressure field, pressure should be specified somewhere
convenient in the domain for us to obtain a physically correct field of pressure.

2.5.2 Classic mixed formulation

We start by introducing the respective function spaces of our variables. The function
spaces for the velocity, the weighting function space, and the pressure scalar function
space are defined as respectively

V =
{
v, v ∈ (H1(Ω))d|v = g on ΓD

}
W =

{
v, v ∈ (H1(Ω))d|v = 0 on ΓD

}
Q = {p, p ∈ L2(Ω)}

(2.38)

The weak form of the PDE consist of finding (v, p) ∈ (V,Q) such that

{
(ρ∂tv,w) + (ρ(v · ∇)v,w) + (2µε(v) : ε(w))− (p,∇ ·w) = (f,w)
(∇ · v, q) = 0

(2.39)

The Galerkin finite element approximation consists of decomposing the domain Ω
into Nel number of elements K, in a way that they cover the whole domain. These
elements are either disjoint or may share a complete edge. Using this partition,
the previously mentioned function spaces are treated by finite-dimensional spaces
spanned by continuous piecewise polynomials
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Vh =

{
vh ∈ (C0(Ω))d|vh|K ∈ P 1(K)d, ∀K ∈ τh

}
Vh,0 =

{
vh ∈ Vh,vh|K = 0

}
Qh =

{
qh ∈ C0(Ω)|qh|K ∈ P 1(K), ∀K ∈ τ

} (2.40)

The discrete Galerkin problem is finding (vh, ph) ∈ (Vh, Qh),∀(wh, qh) ∈ (Vh,0, Qh)
in a way

{
(ρ∂tvh,wh) + (ρ(vh · ∇)vh,wh) + (2µε(vh) : ε(wh))− (ph,∇ ·wh) = (f,wh)
(∇ · vh, qh) = 0

(2.41)
This finite element approximation is prone to failure for two main reasons. One

of which is the inf-sup (Babuska-Brezzi) condition, which requires an appropriate
pair of the function spaces for velocity and pressure [9, 10]. The second one is the
dominance of the nonlinear advective term, which may lead to spurious oscillations
that pollute the entire solution. In what follows, we use P1-P1 finite elements for
their accuracy and computational cost. P1-P1 elements are known for having an
unstable behavior because they fail to satisfy the inf-sup condition. In what follows
we will introduce the numerical schemes used to circumvent the above-mentioned
obstacles.

2.5.3 Variational multi-scale method

Following the works in [11], we consider an overlapping sum decomposition of the
variables into resolvable coarse-scale and unresolved fine-scale, such as

v = vh + v′ and p = ph + p′. (2.42)

The fine-scale part of the decomposition is modeled using residual-based terms
that are derived consistently. The fine-scale solution is then substituted in the
coarse-scale equation, which is known as static condensation. Additional terms will
appear, which are tuned by a local time-dependent stabilizing parameter. They will
enhance the overall stability and accuracy of the standard Galerkin formulation.
The same decomposition is considered for the weighting functions as

w = wh +w′ and q = qh + q′. (2.43)

The functional spaces are enriched as well

V = Vh ⊕ V ′, V0 = Vh,0 ⊕ V ′
0 , Q = Qh ⊕Q′ and Q0 = Qh,0 ⊕Q′

0. (2.44)

The mixed finite element approximation consist now of finding (v, p) ∈ (V,Q)
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(ρ∂t(vh + v′),wh +w′) + (ρ((vh + v′) · ∇)(vh + v′),wh +w′)
+(2µε(vh + v′) : ε(wh +w′))− (ph + p′,∇ · (wh +w′)) = (f,wh +w′)
(∇ · (vh + v′), qh + q′) = 0

(2.45)

This system of equations can be split into two different subproblems correspond-
ing either to the coarse or fine-scale problem as

-The coarse-scale problem
(ρ∂t(vh + v′),wh) + (ρ((vh + v′) · ∇)(vh + v′),wh)
+(2µε(vh) : ε(wh))− (ph + p′,∇ · (wh)) = (f,wh)
(∇ · (vh + v′), qh) = 0

(2.46)

-The fine-scale problem
(ρ∂t(vh + v′),w′) + (ρ((vh + v′) · ∇)(vh + v′),w′)
+(2µε(v′) : ε(w′))− (ph + p′,∇ · (w′)) = (f,w′)
(∇ · (vh + v′), q′) = 0

(2.47)

To reach the final stabilized formulation, we first solve the fine-scale problem,
which is defined on the sum of elements interior and written in function of the time-
dependent large-scale variables. The obtained fine-scale solution is then substituted
into the coarse-scale problem, thus modeling the effects of the fine-scales without
explicitly appearing. A couple of remarks should be stated in order to move forward
with some of the assumptions we are taking

• For P1 functions, the second derivatives and all terms involving integrals over
the element interior boundary vanish.

• The fine-scale space is assumed to be orthogonal to the finite element spaces,
thus the crossed viscous terms vanish.

Re-arranging the terms of the fine-scale problem


(ρ∂t(v

′),w′) + (ρ((vh + v′) · ∇)(v′),w′) + (2µε(v′) : ε(w′)) + (∇p′,w′)
= (f− ρ∂t(vh)− (ρ(vh + v′) · ∇)(vh)−∇p,w′)
= (Rm,w

′)
(∇ · (v′), q′) = −(∇ · (vh), q

′) = (Rc, q
′)

(2.48)

From these equations, we can observe that the fine-scale problem is time-dependent
and highly nonlinear. It is to the best of our knowledge, that the first attempt into
incorporating and using time-dependent sub-scales for the Navier–Stokes equations
is credited to the works in [12]. It was also shown in [13, 14], that by tracking
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the subscales in time and including their nonlinear contribution in the advection
velocity, the global conservation of momentum is guaranteed. Following the work
in [15], on the use of the Newton-Raphson linearization method for the treatment
of the nonlinear advection term, and the works in [13], we extend the method to
the multi-scale finite element formulation. The Newton-Raphson method is known
for its rapid convergence when the initial condition is sufficiently good. However,
we need to solve the Newton equation at each iteration. Considering the advective
term in the coarse-scale problem, it can be approximated as follows

(vh · ∇vh,w)i = (vi−1
h + (vi

h − vi−1
h ) · ∇(vi−1

h + (vi
h − vi−1

h )),w) = (vi−1
h · ∇vi

h,w)+

(vi
h · ∇vi−1

h ,w)− (vi−1
h · ∇vi−1

h ,w) + ((vi
h − vi−1

h ) · ∇((vi
h − vi−1

h )),w)

≈ (vi−1
h · ∇vi

h,w) + (vi
h · ∇vi−1

h ,w)− (vi−1
h · ∇vi−1

h ,w),

(2.49)

Where vi−1 is the previous Newton-Raphson’s iteration. In what follows, the
subscales will not be tracked in time, we are considering ’quasi-static subscales’.
Our choice is justified by the work in [16]. We also assume the advective velocity to
be approximated using only the large scale components by (vh + v′) · ∇(vh + v′) ≈
vh · ∇vh + vh · ∇v′. Thus, leading to

{
(ρ((vi−1

h ) · ∇)(v′),w′) + (2µε(v′) : ε(w′)) + (∇p′,w′) = (Rm,w
′)

(∇ · (v′), q′) = (Rc, q
′)

(2.50)

It is important to consider the small-scale pressure term, to complete the con-
tinuity condition for the small-scale problem [17, 18]. It will provide additional
stability for the fluid flow, for high Reynolds number. It is important to note that
solving the small-scale equations for the velocity and pressure is somewhat tedious.
A separation technique for the small-scale variables was proposed in [9]. The small-
scale continuity equation was replaced by the Pressure Poisson Equation (PPE).
Now that the small-scale PPE replaced the continuity equation, it was proposed in
[19] to approximate the solution of the equation by an additional stabilization term.
This approximation is given by

p′ ≈ −τC∇ · vh. (2.51)

This equation can be integrated directly into the large-scale equations. Here τC
is defined by the work in [13, 20]

τC = [ν2 + (
c2
c1

|v|K
h

)2]
1
2 , (2.52)
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where c1andc2 are tuning parameters, h is the characteristic element length and
ν is the kinematic viscosity. Applying the integration by parts to the coarse-scale
problem and substituting the fine-scale variables with their respective models we get

(ρ
∂vh

∂t
,wh) + (ρ(vh · ∇)vh,wh) + (2µε(vh) : ε(wh))

−(pfh ,∇ ·wh) + (∇ · vh, qh)− (f ,wh)

+
∑
K∈Th

(τK((ρ
∂vh

∂t
+ ρ(vi−1

h · ∇)vh) +∇ph − f), ρfvh∇wh)K

+
∑
K∈Th

(τK((ρ
∂vh

∂t
+ ρ(vh · ∇)vh) +∇ph − f),∇qh)K

+
∑
K∈Th

(τC∇ · vh,∇ ·wh)K = 0 ∀wh ∈ Wh,0, ∀ qh ∈ Qh,0.

(2.53)

Here τK is defined by the work in [18]

τK = ((
2ρ

∆t
)2 + (

4µ

h2
k

)2 + (
ρ|vh|K
hK

)2)−
1
2 . (2.54)

In this equation that considers both the momentum and continuity equations,
we have the standard Galerkin terms with three additional stabilizations terms. The
first and second terms represent the influence of the fine-scale velocity on the finite
element components, while the third one is the influence of the fine-scale pressure
on the coarse-scale problem. The additional terms are integrals that are evaluated
element-wise. They represent the effects of the subscales. Thus, stabilization terms
are introduced consistently. They are used to overcome the instability of the classical
Galerkin formulation, circumventing the inf-sup conditions, and highly advective
flow regimes. For more details on the derivation procedure, and more information
on the subject, the interested reader is pointed to the following references [21, 22].
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3 Stabilized finite element method for incompressible solid dynamics using an
updated Lagrangian formulation

Ce chapitre propose une nouvelle façon de résoudre la dynamique solide transi-
toire linéaire et non linéaire pour un matériau compressible, presque incompressible
et incompressible dans le cadre lagrangien mis à jour pour les éléments finis non
structurés tétraédriques. Il consiste en une formulation mixte en déplacement et en
pression, où l’équation de quantité de mouvement du continuum est complétée par
une équation de pression qui gère l’incompressibilité de manière inhérente. Elle est
obtenue par la répartition déviatorique et volumique de la contrainte, ce qui permet
de résoudre le problème dans la limite incompressible. Une linéarisation de la partie
déviatorique de la contrainte est également implémentée. La méthode variation-
nelles multi-échelle (VMS) est développée sur la base de la décomposition orthogo-
nale des variables, qui amortit les champs de pression parasites pour les éléments
tétraédriques linéaires par morceaux. Divers exemples numériques sont présentés
pour évaluer la robustesse, la précision et les capacités de notre schéma dans des
problèmes dominés par la flexion et pour des géométries complexes.
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This chapter proposes a novel way to solve transient linear, and non-linear solid
dynamics for compressible, nearly incompressible, and incompressible material in
the updated Lagrangian framework for tetrahedral unstructured finite elements. It
consists of a mixed formulation in both displacement and pressure, where the mo-
mentum equation of the continuum is complemented with a pressure equation that
handles incompressibility inherently. It is obtained through the deviatoric and volu-
metric split of the stress, which enables us to solve the problem in the incompressible
limit. A linearization of the deviatoric part of the stress is implemented as well.
The Variational Multi-Scale method (VMS) is developed based on the orthogonal de-
composition of the variables, which damps out spurious pressure fields for piece-wise
linear tetrahedral elements. Various numerical examples are presented to assess the
robustness, accuracy, and capabilities of our scheme in bending-dominated problems,
and for complex geometries.

3.1 Introduction

The need for a solid solver that can handle complex geometry is at its highest peaks.
Whether it be in everyday life applications, such as the behavior of electrical wires
[1], or the complex electro-elasticity behavior of components [2], to the understand-
ing the elastic shock in solids [3]. Unconventional shapes, which result from complex
algorithms, such as shape optimization, need to be tested. In addition, bio-medical,
and biomechanical applications usually include complex geometries based on hu-
man organs. This can also be of high interest in the field of AI, which is generating
atypical geometries through coupling with the aforementioned fields. Furthermore,
a high range of materials can be considered incompressible or nearly incompress-
ible. Ranging from certain polymers that do not undergo high volume changes, to
biological tissues.

A finite element formulation in which the displacement field is the unknown,
and all other physical quantities are obtained using post-processing methodology
is typically used in solid dynamics [4] [5]. This method performs poorly near the
incompressibility limit. Locking, spurious pressure fields, and poor performance in
bending-related applications are some of the shortcomings of the preceding formu-
lation [6].
This subject has seen its fair share of developments, aiming to dampen or eliminate
the above-stated limitations. Selective and reduced integration’s methods, such as
the B-bar [6] [7] [8], the F-bar [9] [10] [11] [12], or the mean dilatation finite ele-
ment methods [13] are used for their ease of implementation. By reducing the order
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of incompressibility at quadrature points, these methods circumvent the numeri-
cal instabilities of the inf-sup or Ladyzhenskaya-Babuska-Brezzi(LBB) conditions
[14]. These strategies have proven to be accurate for structured quadrilateral, and
hexahedral meshes. It is important to mention that automated grid generation of
hexahedral elements for complex geometries, is work-intensive. It requires at least
two times the order of magnitude of the actual computing time [15]. This is however
surpassed when using unstructured tetrahedral elements.
When considering the case of static, incompressible elasticity, we obtain an elliptic
equation, like that of the Stokes problem in fluid mechanics, while the transient
case or elastodynamics leads to a hyperbolic equation. Given the similarities in the
equations, it is natural to extend the mixed/coupled velocity/pressure formulation
of the Stokes problem [16], to the mixed displacement/pressure problem of the static
elastic case [17]. This extension acts as a bridge for the different, already imple-
mented methods in fluid mechanics, to solid mechanics.
In [18], an incompressible steady-state linear elastic material was modeled using
the mixed formulation in displacement/pressure using the Orthogonal Sub Scale
method [19]. This work showed the capabilities of the mixed formulation (displace-
ment/pressure) using the Orthogonal Sub Scale (OSS) method in the incompressible
limit. Also in [20] [21], an incompressible non-linear material was also modeled using
the Orthogonal Sub Scale method. These works show the capabilities of a mixed for-
mulation using strain/displacement or stress/displacement formulation. There is a
compromise however between computational cost and accuracy. In [22], a three-field
(displacement/pressure/strain) formulation was tested and showed to be effective
and accurate in the nearly incompressible limit.
Most of the former formulations were developed for the steady-state solution, and
as mentioned before, transient elastodynamics converts the parabolic problem to
an elliptic problem. This is due to the second-order derivative of displacement of
the momentum equation. This problem was addressed in different works, trying to
circumvent this issue.
Some of these works include [23][24] [25][26], where a finite-strain non-linear solid
dynamics model is based on a new first-order (mixed) form of the equations in the
Lagrangian framework. The proposed methodology consists of adding an additional
variable, which is the deformation tensor F, and Lagrange multipliers for the con-
servation of angular momentum if needed. The results obtained are second-order
accurate in stress. Moreover, in the incompressible limit, and bending-dominated
problems, an additional variable was introduced, which is the Jacobian determi-
nant of the deformation gradient J [27][28]. In recent works [29][30][31], a nodal
co-factor tensor H = cof : F is added. This method, like others in the family of
methods based on nodal interpolations of F, is inherently unstable. Thus, a sta-
bilization based on the Streamline Upwind/Petrov-Galerkin (SUPG) method, and
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added penalties on the deformation gradient F is utilized. Tests show the capabili-
ties of this methodology to solve problems in the incompressible limit, it is however
costly in terms of the number of unknowns per node.
In [15][32], a mixed problem in velocity and pressure, where the displacement field
is calculated based on the discretization of the velocity is presented. Authors claim
that the Variational Multi-Scale (VMS) method was insufficient for the stabilization
of the problem in the transient regime. They resorted to a pressure rate equation
to alleviate the problem, which they called the Dynamic Variational Multi-Scale
(D-VMS). The tests also prove to be accurate and robust. In [33], a mixed formula-
tion in displacement and pressure, resolved in the total Lagrangian framework was
presented with different variations of the VMS methods. The method proved to be
accurate and robust as well.
In [34], a mixed problem in displacement and pressure in finite elements for nearly
incompressible material is presented. The Variational Multi-Scale (VMS) is used
for the displacement field, and two types of error estimators are exploited. The
formulation was investigated across different numerical convergence tests.
This chapter proposes a novel method for solving non-linear elasticity in solid dy-
namics. Based on unstructured tetrahedral meshes, the method can depict complex
geometries with ease and acceptable computational cost. A split of the strain energy
into its deviatoric and volumetric part [35], gives rise to the proposed mixed formu-
lation. The momentum equation is complemented with a constitutive equation in
pressure. A fully implicit, mixed coupled in displacement and pressure (piece-wise
linear) formulation in an updated Lagrangian context is proposed. The set of equa-
tions obtained is prone to spurious pressure fields. A stabilization method based
on the Variational Multi-Scale (VMS) method is thus implemented to elevate the
problem. The framework is coupled with the moving mesh method, the mesh thus
follows the body in the updated Lagrangian framework. This method can handle
complex geometries with a reasonable computational time.
The rest of the chapter consists of: Section 2 contains the problem definition; Sec-
tion 3 presents the stabilized linear elastic formulation both in its steady-state and
transient form; Section 4 contains the stabilized hyperelastic formulation and in-
troduces the adopted Moving Mesh Method (MMM)[36] [37]; Section 5 provides
the numerical validation of the framework. Finally, perspective and conclusions are
given in section 6.

3.2 Lagrangian Solid Dynamics

The variation rate of density and displacement for a solid material is governed by
the equations of Lagrangian solid dynamics. Ω0, and Ω represent the initial and
current domain, which are two open sets in IRd with Lipshitz boundaries, where d
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denotes the spatial dimension. The boundary is given by Γ, which is split into two
separate sets given by Γ = ∂Ωu ∪ ∂Ωt and ∂Ωu ∩ ∂Ωt = ∅. Where ∂Ωu denotes the
Dirichlet boundary that specifies the displacement, and ∂Ωt denotes the Neumann
boundary that specifies the traction force. The motion of the deformable body is
given by:

ϕ := Ω0 → Ω = ϕ(Ω0), (3.1)

ϕ := Γ0 → Γ = ϕ(Γ0), (3.2)

X → x = ϕ(X, t) ∀X ∈ Ω0. (3.3)

It serves as a mapping of the material coordinate X, in the total Lagrangian
framework of an infinitesimal material particle of the solid, to x, the coordinate of
the same particle in the updated Lagrangian framework. ϕ is assumed to be smooth,
and invertible. The deformation gradient and the Jacobian determinant are given
by: F = ∇Xϕ and J = detF.

The displacement of the solid is given by: u = x − X. The governing equa-
tions are given by:

ρü−∇ · σ = f in Ω, (3.4)

ρJ = ρ0 on ∂Ωu. (3.5)

Where ρ and ρ0 are the current and initial body density respectively, f is a
forcing term, σ is the symmetric Cauchy stress tensor, and the derivatives are taken
with the respect to the updated reference frame. Moreover, ü represents the material
second derivative of displacement, which is the acceleration. This set of equations,
along with a constitutive model for the solid that defines σ, and the corresponding
initial and boundary condition, describes the development of the system.

One way to model a solid is using a mixed formulation, containing both dis-
placement and pressure fields. This is obtained with a decomposition of the stress
into a volumetric and deviatoric component. This decomposition is essential when
dealing with incompressible or nearly incompressible material. It is significant to
mention that this is done for isotropic material. Thus, the stress is given by:

σ = pI+ dev[σ]. (3.6)

Where I is the identity matrix
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The problem is completed with the addition of the initial and boundary con-
ditions of the problem. Assuming zero displacement initial conditions, given by
u(X, 0) = u0 = 0. This gives: ϕ(X, 0) = X, F|t=0 = I, and J |t=0 = 1. The material
is also assumed to be stress-free. The boundary conditions are given by:

u|Γu = u(x, t), (3.7)

σn|Γt = t(x, t). (3.8)

Where n is the outward-pointing normal on the boundary Γ.

3.3 Linear Elastic Formulation

For very small displacement, the elastic behavior of the solid can be modeled
using Hook’s law. By considering a linear relationship between stress and strain,
the solid is modeled using a spring. A steady-state formulation is first introduced
for comparison purposes, and a transient formulation is then developed.

3.3.1 Steady-state Formulation

To put the different implementations that are going to be presented in this chapter
into perspective, the steady-state linear elastic solver is first developed, followed by
the transient formulation. The latter is a direct extension of the Stokes problem,
where the displacement u is the primary variable instead of the velocity. This
extension will better explain the stabilization techniques that are being exploited.
For linear elasticity, x ≈ X, Ω0 ≈ Ω, ∇X ≈ ∇x, and ρ0 = ρ. A linear elastic problem
can be formulated based on the decomposition of the stress, using the hydro-static
pressure p and the displacement field u. It is worthwhile to note that the pressure
convention in solid mechanics is opposite to that of fluid mechanics.

The stress tensor is thus given by:

σ = pI+ 2µ dev[∇su], (3.9)

p = Kϵv, (3.10)

ϵv = ∇ · u. (3.11)

Where ϵv is the volumetric strain. In equations (3.9)(3.10)(3.11), we distinguish
between the deviatoric and volumetric part of the deformation. ∇s is the symmet-
rical gradient operator:

∇s =
1

2
(∇+∇T ). (3.12)
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µ is the Lamé constant, also known as the shear modulus of the material, and it
is specified by:

µ =
E

2(1 + ν)
. (3.13)

K is the bulk modulus or modulus of volumetric compressibility, and it is defined
by:

K =
1

3

E

(1− 2ν)
. (3.14)

Using the stress tensor formulation, along with a body force f and the neces-
sary Dirichlet and Neumann boundary conditions, the steady-state problem can be
formulated as follows:

−∇p− 2µ∇ · dev[∇su] = f in Ω (3.15)

∇ · u− 1

K
p = 0 in Ω, (3.16)

u = 0 on ∂Ωu, (3.17)

σn = t on ∂Ωt, (3.18)

ρJ = ρ0 in Ω. (3.19)

This formulation considers both incompressible and compressible material, with
the difference being in equation (16) and a constant density ρ0. For an incompressible
material, K → ∞ and equation (16) becomes simply:

∇ · u = 0 in Ω. (3.20)

Whereas if we assume an isochoric phenomenon, implying ϵv = 0, we will get the
same result. The variational formulation of this problem is given by:

a(u,w) + (p,∇ ·w) = L(w) ∀w ∈ W0, (3.21)

(∇ · u, q)− (
1

K
p, q) = 0 ∀q ∈ Q. (3.22)

Where a(u,w) and L(w) are given by:

a(u,w) =

∫
Ω

2µ dev[∇su] : ∇sw dΩ, (3.23)

L(w) =

∫
Ω

f ·wdΩ +

∫
∂Ωt

w · tdΓ. (3.24)

The discrete form of the problem is given by:
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a(uh,wh) + (ph,∇ ·wh) = L(wh) ∀wh ∈ Wh,0, (3.25)

(∇ · uh, qh)− (
1

K
ph, qh) = 0 ∀qh ∈ Qh. (3.26)

Where the subscript h refers to the discrete value of the variable.
The Babuska–Brezzi or inf-sup stability [14] condition constrains the interpola-

tion relation between the fields, thus forcing different interpolations for u and p.
Equal order interpolation has poor numerical performance as it does not respect the
condition. Several types of stabilization are available in this case. We used P1/P1
elements, with a Variational Multi-Scale Method (VMS), which enables us to have
the same order of interpolation. In [16], equal order elements were used for the
Stokes problem. It contained proof of convergence, and stability. This work led to
the extension of the formulation to the Navier–Stokes equations [38]. In [39] [17],
the linear elastic problem was tackled. VMS provides natural stabilization by an or-
thogonal decomposition of the solution (displacement, pressure) spaces. Orthogonal
decomposition of the function spaces is first done by:

W0 = Wh,0 +W ′
0, (3.27)

W = Wh +W ′, (3.28)

Q = Qh +Q′. (3.29)

Following [19], the resolvable coarse and unresolved fine-scale components of the
displacement and pressure are given by:

u = uh + u′, (3.30)

p = ph + p′. (3.31)

We also apply the same decomposition for the weighting functions:

w = wh +w′, (3.32)

q = qh + q′. (3.33)

Equations (25), and (26) are divided into two sets: coarse, and fine-scale. Most
of the time the unresolved fine scales are modeled in function of the residual-based
terms. Using static condensation, the fine-scale equations are solved in an approx-
imate matter (residual-based) and re-injected into the coarse-scale equations. This
will provide us with additional terms, calibrated by a local stabilizing parameter.
These terms are responsible for the enhanced stability, reduced pressure oscillations,
and increased accuracy of the standard Galerkin formulation.
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The fine-scale problem, defined on the sum of elements interiors [40], and for-
mulated in function of the transient coarse-scale variables, is solved. The fine-scale
approximation is given by:

u′ =
∑
Th

(τuP
′
u(Ru)), (3.34)

p′ =
∑
Tc

(τcP
′
c(Rc)). (3.35)

Where Ru, and Rc are the finite elements residuals, P ′
u, and P ′

c are the projection
operators, and τu, and τc are the stabilization parameters. Note that in this current
work, both P ′

u, and P ′
c are taken as the Identity matrix.

The fine-scale approximations are subsequently substituted in the coarse prob-
lem. The new variational formulation for the coarse-scale equations is given by:

a((uh + u′),wh) + (ph + p′,∇ ·wh) = L(wh) ∀wh ∈ Wh,0, (3.36)

(∇ · (uh + u′), qh)− (
1

K
(ph + p′), qh) = 0 ∀ qh ∈ Qh, (3.37)

and that of the fine-scale equations are given by:

a((uh + u′),w′) + (p′,∇ ·w′) = L(w′) ∀w′ ∈ W ′
0, (3.38)

(∇ · (uh + u′), q′)− (
1

K
(ph), q

′) = 0 ∀ q′ ∈ Q′. (3.39)

Assuming quasi-static sub-scales, and calculating the fine-scale equation based
on the initial residual, and re-entering the physics in the coarse-scale equation, we
get the final set of the coarse-scale equations with the pressure stabilization term
for the case of linear elasticity, given by:

a((uh,wh) + (ph,∇ ·wh) = L(wh) ∀wh ∈ Wh,0, (3.40)

(∇.uh, qh)− (
1

K
ph, qh)−

∑
K∈Th

(τKR(uh),∇qh) = 0 ∀ qh ∈ Qh, (3.41)

R(uh) = f +∇ph + 2µ∇ · dev[∇suh]. (3.42)

Where R(uh) is the finite element residual, and τK is a coefficient based on the
study of the response of the stabilization parameters coming from a Fourier analysis
of the problem for the sub-scales [20].

Comparing the standard Galerkin and the stabilized formulation, we distinguish
additional integrals that are evaluated element-wise. These terms represent the
sub-grid scales, which help damp out spurious pressure oscillations, and overcome
instabilities in our case. When using linear elements, which is the case, all second
order derivatives vanishes. These terms were removed from the equations.
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3.3.2 Transient Formulation

This creates the primary difference between the Stokes equations and the transient
linear elastic equations. In the Stokes equations, the primary variable is velocity. A
first-order derivative is required to obtain the inertia term. However, for the tran-
sient linear elastic equations, u is the displacement. Thus, a second-order derivative
in time for the displacement is needed to account for the transient regime. This gives
the set of equations the structure of the d’Alembert operator. While the transient
Stokes problem equations are parabolic in nature, the added transient term renders
the PDE hyperbolic[15][32]. When dealing with materials in the incompressible
limit, the PDE becomes degenerate hyperbolic. The pressure acts as a Lagrangian
multiplier required to force the divergence-free constraint of the displacement. The
transient elastic solid solver governing equations are given by:

ρü−∇p− 2µ∇ · dev[∇su] = f in Ω, (3.43)

∇ · u− 1

K
p = 0 in Ω, (3.44)

u = 0 on ∂Ωu, (3.45)

σn = t on ∂Ωt. (3.46)

The Courant-Friedrichs-Lewy (CFL) condition imposes limits on the time step.
For explicit time integrators, very small time steps are needed to obtain accurate
results. Consider a time interval, where t ∈ [0, T ], and a discretization of this interval
into N time steps of equal intervals(∆t). A Backward differentiation formula (BDF)
is adopted in this work. A first, and second-order accurate BDF’s are considered.
These equations are given by:

an+1 ≈ 1

∆t2
(un+1 − 2un + un−1) +O(∆t), (3.47)

an+1 ≈ 1

∆t2
(2un+1 − 5un + 4un−1 − un−2) +O(∆t2). (3.48)

Where a is the acceleration. The backward differentiation formulas are known
for their high-frequency dissipation that will help damp out spurious high-frequency
oscillations.

The discrete/stabilized variational form of the above equations, following the
same steps as in section 3.1 [16][39], is given by:

(ρü,wh) + a(uh,wh) + (ph,∇.wh) = L(wh) ∀wh ∈ Wh,0, (3.49)

(∇ · uh, qh)− (
1

K
ph, qh)−

∑
K∈Th

(τKR(uh),∇qh) = 0 ∀ qh ∈ Qh, (3.50)
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R(uh) = f − ρü+∇ph + 2µ∇. dev[∇suh]. (3.51)

Where R(uh) is the new finite element residual. The same additional elements
that damp out pressure oscillations are found in these equations as well.

3.4 Transient Non-Linear Elastic Lagrangian Formulation

3.4.1 Hyperelasticity model and pressure equation

Elastic materials in general are better modeled with a non-linear depiction of their
real-life behavior. As mentioned earlier, the material at hand is isotropic. Consider
a nonlinear material with a Helmholtz free energy or strain energy Ψ(C) function,
where C is the right Cauchy-Green strain tensor C = FTF. F is the deforma-
tion gradient given by Fij = xi,j = ∂xi

∂Xj
. The second Piola-Kirchhoff stress tensor

S = JF−1σF−T where J is the Jacobian determinant of F, is derived by taking
derivatives of the Helmholtz free energy functional Ψ(C) with respect to C:

S = 2∂CΨ(C). (3.52)

To be able to model both incompressible and compressible material, we will
apply the same decomposition as before. Decomposing Ψ(C) into its volumetric
and deviatoric part respectively as follows:

Ψ(C) = U(J) +W (C̄). (3.53)

Where C̄ = J− 2
3C is the deviatoric/volume-preserving part of C, and J =√

detC.
The Helmholtz free energy of isotropic hyperelastic models is written as a func-

tion of the strain invariant. Consider a Neo-Hookean elastic material, and a Simo-
Taylor volumetric model [48] with:

U(J) =
1

4
κ(J2 − 1)− 1

2
κlnJ, (3.54)

W (C̄) =
1

2
µ(trC̄− 3) =

1

2
µ(Ī1 − 3). (3.55)

where κ and µ are material properties, and I1 = trC̄. For small displacements,
the model reduces to a linear elastic model where κ and µ are the bulk and shear
modulus of the material. The stress can also be split to its deviatoric and volumetric
part:

p = 2J−1F
∂U(J)

∂C
FT = U ′(J) =

1

2
κ(J + J−1), (3.56)

52



3 Stabilized finite element method for incompressible solid dynamics using an
updated Lagrangian formulation

dev[σ] = 2J−1F
∂W (C̄)

∂C
FT = µJ− 5

3dev[FFT ]. (3.57)

Recall, F = ∇Xu+ I. Thus:

FFT = ∇Xu+∇T
Xu+∇Xu∇T

Xu+ I. (3.58)

We are solving all of the previous equations in the updated Lagrangian frame-
work, while the above equation is given in the total Lagrangian framework. Consid-
ering the following mathematical equation:

∇Xu = (I −∇u)−1 − I. (3.59)

And assuming a very small variation in the displacement noted δu. Recalling
that for very small displacement, (I −∇u)−1 = I +∇u, we get:

FFT =(I −∇u)−1 − I + ((I −∇u)−1 − I)T + ((I −∇u)−1 − I)((I −∇u)−1 − I)T

+ I + 2ϵ(δu) +∇δu(∇δu)T +∇δu(∇u)T + (∇u)(∇δu)T .

(3.60)

Recall that we are using isotropic hyperelastic material models, thus the strain
energy density is written in function of the strain invariants such as I1 = trC̄ for
the Neo-Hookean model. The other invariants are

I2 =
1

2
[(trC̄)2 − tr(C̄)2], (3.61)

I3 = det C̄ = det(J− 2
3C) = 1. (3.62)

Thus, it can be deduced that W (C̄) is written in function of the first and second
invariants. The Neo-Hookean model presented as an example previously involves the
first invariant and is the easiest mathematical model for the nonlinear deformation
behavior of polymers. However, this model fails to reproduce experimental data of
several isotropic elastic materials. Another model worth mentioning is the Mooney-
Rivlin model, which is dependent on the second invariant. This model is given
by

W (C̄) = α1(I1 − 3) + α2(I2 − 3), (3.63)

where α1 and α2 are material parameters that satisfy µ = 2(α1 + α2) > 0. Note
that for α2 = 0, we obtain the previous Neo-Hookean model. The interested reader
is invited to read [? ] for further information on these models. Other volumetric
models of the strain energy function exist, such as the Quadratic model [? ] given
by
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U(J) =
κ

2
(J − 1)2; U ′(J) = κ(J − 1). (3.64)

This model is widely used in practice, even though it does not satisfy the fun-
damental condition of requiring an infinite amount of strain energy to compress
the solid into a single point with a vanishing volume state. Another model that
circumvents this problem is given by [48]

U(J) =
κ

4
(lnJ)2; U ′(J) =

κ

2J
lnJ. (3.65)

The system of equations to be solved now is given by:

ρü−∇xp−∇x · dev[σ] = f in Ω, (3.66)

∇x · u− 1

K
p = g in Ω, (3.67)

u = 0 on ∂Ωu, (3.68)

σn = t on ∂Ωt, (3.69)

ρJ = ρ0. (3.70)

ü represents the material derivative of displacement, which is the acceleration,
given by:

a = v̇ = ü =
∂v

∂t
+∇x(v).(v− vdomain) =

∂2u

∂t2
+∇x(

u− u−

∆t
).(v− vdomain) (3.71)

Substituting in (61), the formulation becomes:

ρ

(
∂2u

∂t2
+ (∇x(

u− u−

∆t
).(v − vdomain)

)
−∇xp−∇x. dev[σ] = f in Ω. (3.72)

3.4.2 Moving Mesh Method (MMM)

For vdomain, we adopt the R-method as an adaptive strategy [41]. The r-method or
moving mesh method (MMM), consists of relocating mesh nodes so that nodes get
condensed in regions with high gradients. This is done, through a mapping from
the non-deformed domain in a parameter space Ωc, to the deformed domain in the
physical space Ω. The connections of points in Ω, representing discrete points in Ωc,
ensure the coverage of the physical domain with a computational mesh. The key
components are threefold:

54



3 Stabilized finite element method for incompressible solid dynamics using an
updated Lagrangian formulation

1. Mesh equations

2. Monitor Function

3. Interpolation

Choosing the appropriate mesh equations for a given application and resolving
them efficiently is essential for the method. This method includes some challenges
for inelastic problems due to internal variable mapping, which is relevant to the
biological applications [42]. In our case, the mesh is guided by the solid dynamics
equation. Guiding the mesh redistribution is done via the monitor function. It is
dependent on the solutions arc-length in 1D, curvature, and a posteriori errors if
needed. It also requires smoothing in practice. Interpolation of dependent variables
from the old, to the new mesh, is only needed if the mesh equations are not time-
dependent and are solved independently from the partial differential equation.

In interpolation-free MMM, such as the moving finite element method of Miller
[36] [37], both the differential equation and the mesh equations are resolved simul-
taneously. The essential components of such methods include:

1. Equidistribution principle

2. Mesh equations

3. The method of lines (MOL) approach

First introduced by de Boor in [43], the equidistribution principle was used to
solve Boundary Value Problems (BVP) for Ordinary Differential Equations (ODE).
It consists of choosing mesh nodes so that a certain measure describing the solution
error is adjusted over every sub-interval. The method of lines approach is usually
considered in most moving mesh codes, which may result in a stiff equation. Thus
requiring a very small time step to converge. A moving mesh finite element approach
is used in our case, where the mesh equations are based on the solid dynamics
equation, and the equidistribution principle is applied on the residual of the partial
differential equation written in finite element form. This method is particularly
interesting for its various advantages:

• Interpolation-free method.

• Detect, track and resolve moving boundaries.

• The method of lines (MOL) approach
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Figure 3.1: Moving mesh illustration with varying volume in 3D

It is however necessary to use an implicit time scheme to overcome the stiffness
of the system. An illustration of an element subjected to a displacement vector is
shown in figure 3.1. The displacement vector can induce a volume change if needed.

Since this method is adopted, thus we move the mesh with the velocity of the
solid. v = vdomain → v − vdomain = 0. The variational formulations thus become:

(ρ
∂2u

∂t2
,wh) + a′((uh,wh) + (ph,∇.wh) = L(wh) ∀wh ∈ Wh,0, (3.73)

(∇.uh, qh)− (
1

K
ph, qh) = (g, qh) ∀ qh ∈ Qh, (3.74)

where a′ is given by:

a′((uh,wh) =

∫
Ω

µ dev[σ] : ∇sw dΩ. (3.75)

3.4.3 Variational Multi-Scale Method

In this section, we derive a consistent Variational Multi-scale Method (VMS) for hy-
perelastic materials. Applying the same orthogonal decomposition of the function
spaces as in (27)(28)(29), and subsequently decomposing the variables into their
coarse resolvable, and fine unresolved scales as in (30)(31). This decomposition is
also applied for the weighting function following (32)(33). Thus, the time-dependent
mixed-finite element approximation of the dynamic hyperelastic response reads:

Coarse-scale

(ρ
∂2(u+ u′)

∂t2
,wh)+a′((uh+u′),wh)+(ph+p′,∇.wh) = L(wh)∀wh ∈ Wh,0, (3.76)

(∇.(uh + u′), qh)− (
1

K
(ph + p′), qh) = (g, qh) ∀ qh ∈ Qh, (3.77)
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Fine-scale

(ρ
∂2(u+ u′)

∂t2
,w′) + a′((uh + u′),w′) + (ph + p′,∇.w′) = L(w′) ∀w′ ∈ W ′, (3.78)

(∇.(uh + u′), q′)− (
1

K
(ph + p′), q′) = (g, q′) ∀ q′ ∈ Q′. (3.79)

The fine-scale problem is first solved, which is written in function of the time-
dependent coarse-scale problem and defined on the sum of elements interior. The
fine scales are then re-injected into the coarse-scale equations, thus modeling them
implicitly. An important remark to mention is that sub-scales are not tracked in
time. An elaboration of this choice is found in [44]. On the other hand, sub-scales
are still quasi time-dependent, since the large scale residual is time-dependent. For
more information on time-tracked sub-scales, please refer to [45]. Afterward, the
coarse-scale equations are given by:

(ρ
∂2(u)

∂t2
,wh) + a′((uh),wh) + (ph,∇.wh) +

∑
K∈Th

(p′,∇.wh) = L(wh) ∀wh ∈ Wh,0,

(3.80)

(∇.(uh), qh)− (
1

K
(ph), qh)−

∑
K∈Th

(
1

K
(p′), qh)−

∑
K∈Th

(u′,∇qh) = (g, qh) ∀ qh ∈ Qh.

(3.81)
The finite element residuals are given by:

R(uh) = f − ρüh +∇xph +∇x · dev[σ], (3.82)

R(ph) = g −∇x · uh +
1

K
ph. (3.83)

Modeling the fine scales as in (34)(35), we finally get:

(ρ
∂2(u)

∂t2
,wh) + a′((uh),wh) + (ph,∇.wh) +

∑
K∈Th

(τc(g −∇x · uh +
1

K
ph),∇.wh

= L(wh) ∀wh ∈ Wh,0,

(3.84)

(∇.(uh), qh)− (
1

K
(ph), qh) +

∑
K∈Th

(
τc
K

(∇x · uh −
1

K
ph − g), qh)

+
∑
K∈Th

(τu(ρüh −∇xph −∇x · dev[σ]− f),∇qh) = (g, qh) ∀ qh ∈ Qh.
(3.85)

Compared to the standard Galerkin formulation, or even to the previous stabilized
formulation for linear elasticity, this formulation contains new additional integrals
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that are evaluated elementwise. These additional terms model the effect of the sub-
scales in both compressible and incompressible regimes. These terms are developed
consistently and help elevate problems of spurious pressure oscillations. The general
definition of the stabilization parameters [46][47], computed within each element
gives:

τu = ((
ρ

(c0∆t)2
)2 + (

2µ

c1h2
k

)2)−
1
2 , (3.86)

τc = ((2c2µ)
2)−

1
2 . (3.87)

Where hk is the characteristic length of the element, and c0,c1, and c2 are constants
to be determined.

3.5 Numerical Validation

The finite element formulation was implemented and solved using the in-house C++
CimLib CFD [49] parallel finite element library. All the numerical simulations were
carried out using the same library. The algebraic problems obtained from the finite
element formulation are assembled, and solved using the generalized minimal resid-
ual method (GMRES) with the incomplete LU preconditioner from the Portable
Extensive Toolkit for Scientific Computation (PETSc) library [50].

3.5.1 Linear Elastic

2D rotating plate The rotating plate test [24], revisited in [15], is used to
assess the order of convergence in displacement and pressure of our framework. The
square plate has a dimension of 2x2 m. All boundaries are constrained to move only
tangentially. The analytical solution of the displacement for the problem is given
by:

u∗(x, t) = U0sin(ωt)

{
−sin(π

2
x)cos(π

2
y)

cos(π
2
x)sin(π

2
y)

(3.88)

Where U0 = 0.01 m, and ω = π
2

√
2µ
ρ0
. This analytical displacement field leads

to ∇ · u = 0; thus the analytical pressure is p∗ = 0. The material properties
are given by E = 17 MPa, and ρ0 = 1100 Kg/m3. The initial conditions of the
problem are u(x, 0) = u∗(x, 0), v(x, 0) = v∗(x, 0), and p(x, 0) = 0. Zero normal
displacement homogeneous Dirichlet boundary conditions are imposed on all four
boundaries of the problem. Typical unstructured and structured meshes of the
square are shown in figures 3.2a, and 3.2b. An example showcasing the displacement
field of the problem is shown in figure 3.2c. Classical P1/P1 Galerkin finite elements
exhibit pressure oscillations in the incompressible limit, which rapidly pollutes the
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numerical solution. Thus, a convergence study in both displacement and pressure of
the proposed method is conducted. Two sequences of unstructured and structured
meshes are considered. Unstructured meshes vary from 40 elements to 100 000
elements. Structured meshes range from 2x8x8 to 2x512x512 elements. The fully
incompressible case of ν = 0.5 is considered. The convergence curves are plotted in
figures 3.3, 3.4, 3.5, and 3.6. We compute the L2-error norm for both displacement
and pressure. They are versus the mesh size on a logarithmic scale. We observe
from the convergence plots, a second-order convergence rate for both u, and p.

(a) Structured Mesh (b) Unstructured mesh

(c) An example of a displacement field example

Figure 3.2: 2D structured 3.2a and unstructured 3.2b meshes for the two-dimensional ro-
tating plate, and an example of the displacement field 3.2c.
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Figure 3.3: L2 displacement error convergence study for the rotating plate test on a struc-
tured mesh.
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Figure 3.4: L2 pressure error convergence study for the rotating plate test on a structured
mesh.

Static Cook’s membrane test A typical problem where the P1/P1 elements
for both displacement and pressure produce a polluted pressure field is the Cook’s
membrane problem [51]. The problem setup and a structured, and unstructured 2D
mesh are shown in figures 3.7a,3.7b and 3.7c. The structured mesh is generated by
splitting each element of the quadrilateral grid.

The material is assumed to have a linear elastic behavior with ρ = 1, E = 250,
and ν = 0.5. Zero displacement Dirichlet boundary conditions are imposed on the

60



3 Stabilized finite element method for incompressible solid dynamics using an
updated Lagrangian formulation

10−1.5 10−1 10−0.5

10−6

10−5

10−4

10−3

10−2

10−1

Mesh size

L
2
er
ro
r
n
o
rm

Displacement

Second-Order Convergence

Figure 3.5: L2 displacement error convergence study for the rotating plate test on an un-
structured mesh.
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Figure 3.6: L2 pressure error convergence study for the rotating plate test on an unstruc-
tured mesh.

left side of the membrane, and a uniform vertical traction force equal to 6.25 is
imposed on the right side of the membrane. The two lateral sides are traction-free.
Standard Galerkin P1/P1 elements for both the displacement and pressure lead to
oscillations in pressure when no stabilization is included. However, when the VMS
stabilization is applied the pressure field has no oscillatory pulses in the pressure.
Also note, that the tip displacement converges rapidly on relatively coarse meshes.
Different pressure contours are found in figure 3.9. It is important to note that we
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(a) Geometrical Setup (b) Structured Mesh

(c) Unstructured Mesh

Figure 3.7: Geometrical setup and 2D structured and unstructured meshes for Cook’s
membrane test.

get similar results when using unstructured tetrahedral meshes. A mesh convergence
study was applied on refined structured meshes, and the results obtained conform
with the literature and can be found in figure 5.8.

Transient Cook’s membrane test An extension of the aforementioned cook’s
membrane test to a transient regime is presented here. This is a bending-dominated
problem. Although this is a linear elastic case, we used the Neo-Hookean model,
which converges to the linear elastic response for very small strains. The simulations
are run until t=7 s. All the previous properties, along with the initial, and boundary
conditions are preserved. The geometry of the membrane was scaled with a factor
of 0.1. The solution obtained oscillates around the steady-state solution computed
earlier. To be able to study the different time integration schemes, we show in fig-
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Figure 3.8: Mesh convergence study for the steady-state Cook’s membrane test and com-
parison with that from Scovazzi et. al [15]

ure3.10, and 3.11 the evolution of tip A with respect to time. A fixed unstructured
mesh of approximately 6000 elements is used, and a time step of ∆t = 0.025s. Pres-
sure contours at different positions in time can also be found in figure 3.12. One can
conclude, from the figures that the BDF1 time scheme is first-order accurate and
highly dissipating, while the BDF2 time scheme is less dissipating and second-order
accurate. This is shown by the higher amplitude achieved by the BDF2 scheme, and
the slower dissipation of energy through time.

Upsetting problem This example shows the capabilities of the formulation
in the nearly incompressible case, even in the case of coarse tetrahedral meshes in
3D. It consists of a 14x14x10 specimen that is deformed up to 7 % of its height.
The specimen is clamped at the bottom and top to a rigid plate, where the top one
gradually moves downwards while compressing it. A linear elastic constitutive model
is used. The young’s modulus and poisson ratio are given as E = 2.0e+5MPa, and
ν = 0.4999. Figures 3.13a, 3.13b,3.13c,3.13d and 3.13e shows the behavior of our
formulation. For a relatively coarse unstructured 3D mesh, we obtained satisfactory
results. The problem is conducted in the linear elastic case, so for relatively small
strain, so that the model holds. The Von Mises stresses are also computed for the
completeness of the study. The results correlate with the literature [18] and no
pressure locking is observed.
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(a) 2x8x8 structured mesh pressure con-
tours

(b) 2x32x32 structured mesh pressure
contours

(c) Unstructured mesh pressure con-
tours

Figure 3.9: Pressure Contours of the steady-state Cook’s membrane problem for different
meshes.

3.5.2 HyperElastic

A Computational Solid Mechanics test This test is a part of a well-
documented benchmark on Fluid–Structure Interaction, which deals with the solid
part alone [52]. The structure is assumed to be elastic and compressible. The con-
stitutive law of the material is given by the St. Venant–Kirchhoff material. The
elastic beam is taken alone and subjected to a gravitational force ≫= (0, g). The
beam has a length l = 0.35, and a thickness t = 0.02. A typical unstructured mesh
is shown in figure 3.14. Three variations of the test are presented, two of which
converge towards a steady-state solution and a non-diffusive transient case. The
different parameters are given in table 3.1. The steady-state results are summarized
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Figure 3.10: Y displacement of tip A versus time for first-order time discretization and
comparison with that from Castanar et. al [33].
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Figure 3.11: Y displacement of tip A versus time for second-order time discretization and
comparison with that from Castanar et. al [33].

in table 3.2. Both components of the displacement are present. The error interval
is within an acceptable range. The pressure contours of the steady-state cases can
be found in figure 3.15 in their final position. The variation of the y component and
the x component of the displacement with respect to time are found in figures 3.16,
and 3.17 respectively. The results obtained for this relatively thin beam, which has
a membrane-like behavior given its aspect ratio, are coherent with the literature.
This shows the ability of the solver to handle high aspect ratio geometries, with
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(a) t=1s (b) t=3s

(c) t=5s (d) t=7s

Figure 3.12: Pressure contours of the transient Cook’s membrane problem at different po-
sitions in time.

relatively coarse meshes.

Bending Beam test (3D) This test consists of a bending problem of a square
cylinder in 3D. The dimensions of the square cylinder are 1x1x6 m. The beam is also
rotated with respect to the z-axis with an angle of 5.2 degrees to avoid symmetry.
At t = 0, the beam is stress-free, and the displacement is equal to 0.

An initial velocity is applied on the beam, given by:

v(x, 0) = v(x, y, z, 0) = (
5z

3
, 0, 0)T m/s y ∈ [0, 6]m. (3.89)
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(a) Mesh (b) Displacement

(c) Pressure contours (d) Von Mises Stress

(e) Initial and final positions of the geometry
showcasing the bulking exhibited by the solid

Figure 3.13: 3.13a the unstructured 3D mesh, 3.13b displacement field, 3.13c pressure
contours, 3.13d Von Mises Stress, and 3.13e the initial and final positions of
the geometry.
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Figure 3.14: Unstructured 2D mesh

CSM Cases
Solid Properties Case 1 Case 2 Case 3
ρ 1000 1000 1000
ν 0.4 0.4 0.4
µ 500000 2000000 500000
E 1400000 5600000 1400000
g 2 2 2

Table 3.1: Solid properties for different variations of the CSM test.

CSM Cases
Field Case 1 Case 2

Dx Dy Dx Dy
Benchmark −7.187x10−3 −66.1x10−3 −0.4690x10−3 −16.97x10−3

Simulation −7.277x10−3 −67.14x10−3 −0.4408x10−3 −17x10−3

Table 3.2: Steady-State simulation results for CSM 1 & 2 and comparison with that from
Turek et. al [52].

The origin of our coordinates system is located at (0.5, 0.5, 0). The material is
Neo-Hookean with the following properties: ρ0 = 1100 kg/m 3, E = 17 MPa, and
ν = 0.5.

Zero displacement Dirichlet boundary condition is imposed on the bottom of
the cylinder, which is assumed to be clamped. Zero traction boundary condition is
applied on all other surfaces.

The simulation was run until T= 2s. The simulation is computed for three
different refined meshes, to perform a mesh convergence study, and to achieve con-
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(a) Case 1 (b) Case 2

Figure 3.15: Steady-state pressure contours for CSM 1 & 2.
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Figure 3.16: Case 3: Y displacement versus time for the transient case and comparison
with that from Turek et. al [52].

vergence for very fine meshes. Such formulations are more prone to divergence for
refined meshes. Three levels of refinement are considered, with the number of ele-
ments equaling 1790, 11660, and 81018 respectively. The meshes are shown in figures
4.41a, 4.41b, and 4.41c respectively. The pressure contours for the three meshes are
shown in figure 3.19. The pressure contours of the beam at different steps in time
are shown in figure 3.20. This figure shows how the MMM method moves the mesh
with the domain at each time step, to be able to be consistent with the formulation.
The x component of the displacement is shown in figure 3.21, for the three levels of
refinement of the meshes, along with the reference solution. As can be seen from
the figure, convergence is rapidly obtained even for the coarse mesh. This shows
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Figure 3.17: Case 3: X displacement versus time for the transient case and comparison
with that from Turek et. al [52].

the capabilities of the formulations of relatively coarse unstructured meshes. Figure
3.22, is added for the completeness of the study. It shows the Z displacement of the
same tip A with respect to time.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 3.18: Three different levels of refinement of unstructured meshes
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(a) Pressure contours for
Mesh 1

(b) Pressure contours for
Mesh 2

(c) Pressure contours for
Mesh 3

Figure 3.19: 3D Bending Beam mesh convergence study

Complex Geometry As a final numerical test, the ability of the framework
to handle complex geometries is evaluated. A helical gear is shown in figure 3.23,
along with its computational mesh, consisting of 9865 tetrahedral 3D elements. The
material is assumed to have a non-linear transient elastic behavior and is considered
fully incompressible with ρ = 1, E = 250, and ν = 0.5. The Neo-Hookean model
is used. A vertical downward forcing term of magnitude 5 is imposed on the top
plane of the geometry. Homogeneous Dirichlet boundary conditions are imposed
on the bottom plane of the geometry. Zero traction Neumann boundary conditions
are applied on the rest of the boundaries. Pressure contours at times equal to
10,20,30,40, and 50 s are shown in figures 3.24a, 3.24b, 3.24c, 3.24d and 3.24e.
High-pressure gradients can be observed around the hole of the geometry. The
solution converged properly, and no spurious pressure oscillation was observed.
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(a) t=0.5s (b) t=1s

(c) t=1.5s (d) t=2s

Figure 3.20: Pressure contours of the beam at different times.
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Figure 3.21: X displacement of tip versus time and comparison with that from Scovazzi
et. al [15].
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Figure 3.22: Z displacement of tip versus time

3.6 Perspectives and conclusion

In this work, we have presented a framework based on unstructured tetrahedral
meshes that can handle complex geometries, which models the nonlinear behavior of
solid elastodynamics. By combining the proposed new mixed formulation in the up-
dated Lagrangian framework, and the R-method for moving meshes, the framework
was able to handle nearly, and fully incompressible material in bending-dominated
problems. This was achieved through the deviatoric/volumetric split of the stress
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3 Stabilized finite element method for incompressible solid dynamics using an
updated Lagrangian formulation

Figure 3.23: Geometrical Setup and computational mesh [53]

tensor. A piece-wise linear mixed formulation in displacement and pressure was
obtained in the updated Lagrangian formulation. We achieved piece-wise linear in-
terpolation for both displacement and pressure through the Variational Multi-Scale
approach, based on the orthogonal decomposition of the function spaces (extended
from fluid mechanics). The stabilization proved effective in both steady-state and
transient regimes. We are in the process of applying this newly developed solver for
Fluid–Structure Interaction (FSI) applications.
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(a) t=10s (b) t=20s

(c) t=30s (d) t=40s

(e) t=50s

Figure 3.24: Pressure Contours at different time steps.
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4 Adaptive Immersed Mesh Method (AIMM) for Fluid–Structure Interaction

La nécessité de simuler des structures flexibles et relativement minces suscite un
intérêt croissant avec des applications allant des capteurs cylindriques minces aux
structures de type membrane. Ces structures interagissent généralement avec leur
environnement pour accumuler des données ou dans un but précis. L’inévitable
interaction entre le fluide environnant et le solide est résolue à l’aide d’un nou-
veau schéma de couplage Interaction Fluide–Structure (IFS). Ce chapitre propose
une nouvelle façon de modéliser l’interaction entre fluide et solide. Il s’agit d’une
méthode hybride qui combine à la fois les approches traditionnelles monolithiques et
partitionnées pour l’Interaction Fluide-Structure (IFS). Le maillage solide est im-
mergé dans un maillage fluide-solide à chaque itération, tout en ayant son propre
solveur hyperélastique lagrangien indépendant. Le maillage eulérien contient à la
fois du fluide et du solide, et s’adapte à des phénomènes physiques supplémentaires.
L’adaptation de maillage anisotrope et les méthodes Level-Set sont utilisées pour le
couplage d’interface entre le solide et le fluide afin de mieux capturer l’interaction
entre eux. Tous les composants ci-dessus forment la méthode de maillage immergé
adaptatif (AIMM). La méthode VMS (Variationnelles Multi-Echelle) est utilisée
pour les deux solveurs afin d’amortir les oscillations parasites pouvant survenir pour
les éléments tétraédriques linéaires par morceaux. Le cadre est construit en 3D avec
le calcul parallèle à l’esprit. Divers problèmes numériques 2D sont étudiés pour
évaluer la précision, la robustesse et les capacités de notre méthode. Différents cas
de test tridimensionnels sont présentés et sont également comparés à des résultats
expérimentaux.
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The need to simulate flexible, relatively thin structures is of growing interest with ap-
plications ranging from thin cylindrical sensors to membrane-like structures. These
structures usually interact with their surroundings to accumulate data, or for a spe-
cific purpose. The inevitable interaction between the surrounding fluid and the solid
is solved using a novel Fluid–Structure Interaction (FSI) coupling scheme. This
chapter proposes a novel way to model the interaction between fluid and solid. It
consists of a hybrid method that combines both the traditional monolithic and parti-
tioned approaches for Fluid–Structure Interaction (FSI). The solid mesh is immersed
in a fluid-solid mesh at each time iteration, whilst having its own independent La-
grangian hyperelastic solver. The Eulerian mesh contains both fluid and solid, and
accommodates additional physical phenomena. Anisotropic mesh adaptation and
the Level-Set methods are used for the interface coupling between the solid and fluid
to better capture the interaction between them. All of the above components form
the Adaptive Immersed Mesh Method (AIMM). The Variational Multi-Scale (VMS)
method is used for both solvers to damp out any spurious oscillations that may arise
for piece-wise linear tetrahedral elements. The framework is constructed in 3D with
parallel computing in mind. Various 2D numerical problems are investigated to
evaluate the accuracy, robustness, and capabilities of our method. Different three-
dimensional test cases are presented and are compared to experimental results as
well.

4.1 Introduction

Fluid–Structure Interaction has been getting a lot of attention lately, due to the
increase in computational power, advancements in the field, and the need to solve
real-life problems using numerical simulations. It consists of an interaction between
entities; the fluid and the solid. FSI applications can be found in various engineering
applications [1], such as: technology [2], automotive [3], aerodynamics [4], and bio-
mechanics [5]. FSI problems are rather complex, and experimental studies of such
phenomena proved to be often time-consuming [6][7]. Whilst surrounded by the
fluid, the structures exhibit distortion crucial to its performance. This is due to the
interaction between both bodies.

Different formulations are used in FSI, such as Eulerian, Lagrangian, Arbitrary
Lagrangian-Eulerian, and Eulerian-Lagrangian[8]. As well as the Fictitious Domain
method [9].

Eulerian formulations, also known as the monolithic approach for FSI, examine
the evolution of a quantity of material through a specified region in space. Both
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the fluid and the solid are considered as one, on a single grid, where the reference
system is fixed. Thus, a single set of constitutive equations describing both fluid
and solid is solved. Interface tracking is generally used with this approach, by
using, for example, the level set method. The embedded boundary method [10], can
handle large structural deformations and meshing of the domain. It does, however,
exhibit shortcomings when coupling fluid-structure stresses. This is circumvented
by treating both the fluid pressure and velocity conditions together [11]. Among
other fixed mesh methods, is the immersed boundary method [12], and the fictitious
domain method [9], which handle the coupling by imposing constraints across the
structure using an augmented Lagrange multiplier. Irregularities may arise in the
transient regime, due to the uncoupled physics in the different sub-domains. This
method’s main limitation consists of having a single physical model for the solid and
not being able to include other behavior laws.

Lagrangian formulations examine the particle’s dynamics as a quantity moving
in space with respect to a known reference frame. The reference frame follows
the particle. Thus, the advective term does not appear in the equations. Also,
the nodes at the interface will always be at the interface, and hence the tracking
process is simplified. However, for large deformations, the mesh quality is reduced
and may lead to polluted solutions. This problem can be circumvented using mesh
adaptation. This formulation is mainly adopted in Computational Solid Mechanics
(CSM) [13].

The Arbitrary Lagrangian-Eulerian (ALE) formulations were first developed to
handle FSI and free surface problems [14][15][16]. For large element distortion, the
ALE formulation often requires remeshing to avoid element stretching. One can also
use the fixed mesh ALE formulation [17][18][19]. At each time step, the results from
the deformed fluid mesh are coupled to a fixed Eulerian mesh. The coupling is done
using the extended finite element method (XFEM), and Lagrange multipliers.

The Eulerian-Lagrangian formulation is as its name implies. The fluid is treated
in an Eulerian fashion, which is the natural choice for fluid flow. The solid is treated
in a Lagrangian fashion, where the structure’s behavior is tracked in time. On the
contrary, in fluid mechanics, the interest lies in the effect of the flow over a certain
region in space. The main difference with ALE is that the fluid mesh is not affected
by the movement of the FSI interface. The FSI interface is tracked by using the level
set method. The coupling is achieved through Lagrangian multipliers, and penalty
methods [20]. This method was used for immersed structures in Fluid [21][22]. The
XFEM was used to consider the discontinuities that arise from the structure present
in the fluid.

Plate vibration, flapping, stability, flutter, and natural frequency are investigated
when subject to axial flow [23–27]. It was deduced that the flapping amplitude is
directly related to the elastic modulus and density ratio. Also, the frequency is
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dependent on the density ratio, and the ratio of length to thickness of the beam. An
increase in the Reynolds number results in a transition from symmetric to asymmet-
ric flapping. Resonance of the plate is strongly influenced by the forcing amplitude,
while rigidity, and flow velocity play a less important role [28].

A laminar boundary layer flow over a vertically mounted flat plate is also an ap-
plication for FSI. The dynamic behavior of the plate is represented by the Reynolds
number, the ratio between structure density and fluid density. In [29], a 2D numer-
ical study showcases the dynamics of a plate for Reynolds number varying between
100 and 800, using the Immersed Boundary Method (IBM) [12]. For Reynolds num-
ber below 800, the plate reaches a steady-state solution, while for Reynolds number
equal to 800, the plate starts vibrating. When it comes to rigidity, the plate first
exhibits periodic vibrations, then transitions to chaotic movements, and back to
periodic vibrations with increasing rigidity. Different responses were observed for
the flapping flag problem [30].

In [31], an immersed boundary flow solver, and a nonlinear finite element solver
have been coupled to tackle FSI in presence of large deformations. Different nu-
merical simulations are studied, some of which are three-dimensional. In particular,
the results of a flexible plate problem, such as the free end deflections and drag
calculations, are presented for different Reynolds numbers in the interval 1000-1600.
Both the effect of gravity, and buoyancy are considered in the aforementioned test
case. They start by comparing their results with that of an experimental study [32],
before introducing new benchmark cases. They extended their model to study the
behavior of aquatic plants. They claim overall stability for all their cases.

The solid dynamics response can induce variations in the fluid flow. Therefore
its effects on multi-phase flow are preferred to be tackled for industrial applications.
In [33], the tip displacement of a rubber beam in a multi-phase flow of oil and air
is tackled. A two-way coupling FSI method is used. They compare their results
with that of [34], and they also explain the differences encountered in the 2D and
3D simulations.

In [35], the deflection line of single or tandem beams configurations is stud-
ied. Both experimental, and Direct Numerical Simulation (DNS) are conducted for
Reynolds varying from 1 to 60. For the numerical simulations part, the bending is
calculated based on the beam bending theory via the calculated fluid forces from
the simulations. Experimental and numerical results are in good agreement. In [36],
a two-way coupled FSI method has been utilized to simulate several rows of flexible
flaps. The behavior of the tip of the flaps, alongside vortex development in between
the flaps are studied. The numerical results are compared with experimental results,
conducted in glycerin and water reaching Reynolds number of 120. Silicon rubber
flaps are used in the experimental setup. Good agreement is found between the
experimental and numerical results.
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The Arbitrary Lagrangian-Eulerian (ALE) method [37], and the Eulerian method
[38, 39] have been used to study the time-dependent, directional strain of flexible
structures. The work done in [37] showcases some interesting problems in 2D, while
the works in [38, 39] present interesting test cases of free surface flows, and elastic
structures. The Immersed Structural Potential Method (ISPM), which is based on
the IBM method was presented in [40]. It was used to tackle problems of hemo-
dynamics. The proposed method consists of calculating the FSI force on a fluid
mesh, and the behavior of cardiovascular tissues, modeled using a fiber-reinforced
viscoelastic constitutive model. A novel time integration method was also used for
the calculation of the deformation gradient tensor. Different numerical examples
were presented. The Fluid-Solid Interface Tracking/Interface Capturing (FSITICT)
method is used on FSI problems along with ALE, and Eulerian interface tracking
to study moving boundaries [41]. The objective of this method was to be able to
study cardiac cycles.

This chapter proposes a novel coupling method for solving Fluid-Structure In-
teraction, referred to as the Adaptive Immersed Mesh Method (AIMM). This is a
hybrid method, that combines the advantages of having two separate solvers for both
the fluid and solid while having the solid co-exist in an Eulerian fluid-solid mesh.
The solid is immersed in the fluid-solid mesh through the level set method; this
helps track the FSI interface in time. Full stress and velocity boundary conditions
are enforced at the FSI interface. The FSI interface on the Lagrangian grid is natu-
rally tracked. A mesh adaptation technique is then applied, that creates anisotropic
stretched elements to better capture the boundary layer, and to have a higher pre-
cision at the fluid-solid interface. Both solvers are stabilized using the Variational
Multi-Scale (VMS) method for P1/P1 finite elements. The fluid is solved naturally
on an Eulerian grid, where the advective term is taken into account, while the solid
is modeled as an elastic structure having its independent Lagrangian grid.

The chapter is structured as follows: Section 2 contains the coupling method
AIMM; Section 3 contains the stabilized solid solver formulation; Section 4 presents
the stabilized fluid solver, along with the mesh adaptation technique; Section 5 pro-
vides numerical examples and new benchmarks. Finally, perspective and conclusions
are given in section 6.

4.2 Coupling

Two famous approaches for handling FSI exist in the literature, which are the
monolithic and partitioned approaches. Figure 4.1 explains the types of coupling
visually. The monolithic approach consists of solving on a single mesh the same sys-
tem of equations that describe both the fluid and the solid. The coupling mechanism
in a monolithic approach is considered strong. While the partitioned approach con-
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sists of solving on separate fluid and solid meshes the respective system of equations
that describe the fluid and solid separately. In the partitioned approach, two types
of coupling exist. Either the coupling is considered as a two-way strong coupling or
a one-way weak coupling.

Figure 4.1: Different approaches for FSI.

The Adaptive Immersed Mesh Method (AIMM) consists of a hybrid method, that
combines the advantages of each approach while disregarding the disadvantages to
the best of our capabilities. Thus, we retain the flexibility of having two separate
solvers for the fluid and the solid, while insuring robust, stable, and strong coupling
as in the monolithic approach. It consists of immersing the solid mesh at each time
step in a fluid-solid mesh where both the fluid and solid co-exist. Then, the signed
distance function (level set), is computed for the given solid mesh. This helps us
track the FSI interface for the fluid-solid mesh. The FSI interface is naturally tracked
in the solid mesh by using the Moving Mesh Method (MMM). Full stress and velocity
are communicated at the interface between the two solvers through interpolations of
the field between the different meshes. A mesh refinement technique is considered,
which refines the mesh in an anisotropic fashion at the FSI interface, by calculating
the gradient of the level set. This enables us to have a higher precision for the
coupling method. Figure 4.2 explains the hybrid AIMM method.

Figure 4.2: Different approaches for FSI.
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The steps that are followed by the algorithm are shown in figure 4.3. They are
as follows:

1. The solid mesh is immersed onto the fluid-solid mesh using the level set method
detailed in sub-section 4.2.1.

2. Anisotropic mesh adaptation is applied at the interface detailed in sub-section
4.2.3.

3. The Navier–Stokes equations are solved with the velocity boundary condition
on the FSI interface on the fluid-solid mesh detailed in section 4.4.

4. The fluid stress is computed and then interpolated onto the solid mesh.

5. The solid dynamics are solved on the solid mesh with Neumann traction
boundary conditions applied at the FSI interface detailed in section 4.3.

6. The velocity of the solid is computed and interpolated on the fluid-solid mesh.

These steps are repeated until we reach the final time t of the simulation. Figure
4.4, explains the whole process visually.

Figure 4.3: Two-way coupling loop.
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4.2.1 Level set approach

We make use of the signed distance function of the FSI interface ΓFSI to delimit the
contact surface between the fluid, and the solid. The level set function αFSI , is the
signed distance from ΓFSI to any point x of the fluid-solid mesh. Consequently, the
interface ΓFSI is defined by the iso-zero of the level set function{

αFSI(x) = ±d(x,ΓFSI), x ∈ Ω
ΓFSI = {x, αFSI(x) = 0} (4.1)

The reader is invited to read [42] for more details on the algorithm used. One
can also use smoother function, other than d(x,ΓFSI) away from ΓFSI [43].

Figure 4.5: The signed distance function α example of an immersed circle.

4.2.2 Physical continuity

On ΓFSI , we have to ensure a two-way coupling scheme between the fluid and the
solid. This is done partly by imposing on the interface velocity and stress continuity

vs = vf on ΓFSI , (4.2)

σsn = σfn on ΓFSI . (4.3)

4.2.3 Edge-based mesh adaptation

Anisotropic mesh adaptation of unstructured mesh, take part in the AIMM for FSI.
It aids in achieving high accuracy, while significantly reducing the computation time
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of the problem[44, 45]. In the works of [46, 47], it was shown that anisotropic mesh
adaptation overmatch adaptive octree. Anisotropic meshes enable us to capture
smaller features than octree. It also allows us to reduce the number of integration
points by an order of magnitude [47]. The main idea lies in the concentration of
elements in a specific region of interest. This region usually exhibits high variations
in either variable or their gradient. In our case, an accurate depiction of the interface
between the fluid and the solid is needed, where we might exhibit sudden variations
in variables. Thus, reducing the error, while maintaining a certain number of degrees
of freedom. A monitor function consisting of either a vector or a scalar is employed
to control the shape, size, and orientation of the mesh elements. This function gives
an estimate of a measure of the solution error. This error is then equidistributed
over each mesh element. This mesh adaptation algorithm is built to generate a
mesh and a numerical solution. At each time step, a numerical solution is computed
on the mesh. We then evaluate an estimation of the interpolation error. Finally,
a minimization problem that reduces the interpolation error in the L1-norm is set
up independently of the current problem [48]. To monitor the development of the
solution, an optimal metric is derived that minimizes the interpolation error. A new
mesh is thus generated that is compatible with the metric field. The advantage of
this approach consists of computing a metric and its associated edge-based error in
a simple manner.

4.2.3.1 Edge-based error estimation

Let uh be a first-order finite element approximation, acquired through the Lagrange
interpolation operator of a regular function u ∈ C2(Ω). At each vertex i of the
mesh, we have Ui = u(xi) = uh(x

i) (where xi are the coordinates of the vertex i).
Let Γ(i) be the ”patch” associated to a vertex xi of the mesh defined as the set of
nodes which share one edge with xi, and let us denote by xij the edge connecting xi

to xj as in Figure 4.6.

Figure 4.6: Patch associated with node xi

The continuity of the gradient ∇uh · xij on the edge xij enables us to write
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U j = U i +∇uh · xij, (4.4)

This leads to

∇uh · xij = U j − U i . (4.5)

Following the works from [48], we can write the following error estimator

|| ∇uh · xij −∇u(xi) · xij ||≤ max
y∈|xi,xj |

| xij ·Hu(y) · xij |, (4.6)

with Hu being the Hessian of u. At the node xi, we seek the recovered gradient
gi of uh

∇gh · xij = gj − gi . (4.7)

We are interested in the projection of the Hessian based on the gradient at the
edge extremities, thus

(∇gh · xij) · xij = (gj − gi) · xij, (4.8)

(Hu · xij) · xij = gij · xij, (4.9)

with gij = gj − gi. It can be shown in [48] that the quantity | gij · xij | gives a
second order accurate approximation of the second derivative of u along the edge
xij. Motivated by the fact that, for first-order finite elements on anisotropic meshes,
edge residuals dominate a posteriori errors[49], it is, therefore, suitable to define an
error indicator function associated to the edge xij as

eij =| gij · xij | . (4.10)

And this error is the exact interpolation error along the edge and allows us to
evaluate the global L1 error. However, the gradient is not known at the vertices,
thus a recovery procedure must be considered.
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4.2.3.2 Gradient recovery procedure

The gradient recovery procedure relies on the following optimization problem

Gi = argmin
G

∑
j∈Γ(i)

| (G−∇uh) · xij |2
 , (4.11)

where Gi is the recovered gradient. Denoting by ⊗ the tensor product between
two vectors, let us introduce X i the length distribution tensor at node i

X i =
1

| Γ(i) |

∑
j∈Γ(i)

xij ⊗ xij

 , (4.12)

this gives us an average representation of the distribution of edges in the patch.
Let us express the recovered gradient Gi in terms of the length distribution tensor

Gi = (X i)−1
∑
j∈Γ(i)

U ijxij . (4.13)

Therefore, the estimated error eij is thus written as

eij = Gij.xij . (4.14)

4.2.3.3 Metric construction

A stretching factor sij defined as the ratio between the length of the edges xij before
and after the adaptation procedure is introduced to correlate the error indicator de-
fined in (4.14) to the associated metric [48]. We end up with the following expression
for the metric

M̃ i = (X̃ i)−1, (4.15)

where X̃ i is defined as

X̃ i =
1

| Γ(i) |

∑
j∈Γ(i)

sij ⊗ sij

 . (4.16)
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The stretching factor sij of the edge ij is chosen so that the total number of
nodes in the mesh is kept fixed and is defined as

sij =

(
eij

e(N)

)
, (4.17)

where e(N) the total error. An example of the mesh adaptation is shown in
figure 4.7.

Figure 4.7: An example of the mesh adaptation on multiple criteria.

4.3 Solid solver

4.3.1 Solid Dynamics

The equations of Lagrangian Solid Dynamics, model the displacement and variation
rate of the density of a structure. Ωs and Ωs0 are the current and initial domains.
They are two open sets in IRd with Lipshitz boundaries. d denotes the spatial
dimension. Γs is the domain boundary, that is defined using the following equations:
Γs = ∂Ωsu ∪ ∂Ωst and ∂Ωsu ∩ ∂Ωst = ∅. Where ∂Ωsu is the Dirichlet boundary that
define the displacement, and ∂Ωst is the Neumann boundary that designates the
traction.

The dynamics of a solid structure are given by the following invertible, and
smooth mapping:

ϕ := Ωs0 → Ωs = ϕ(Ωs0), (4.18)

ϕ := Γs0 → Γs = ϕ(Γs0), (4.19)
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X → x = ϕ(X, t) ∀X ∈ Ωs0 . (4.20)

Here we distinguish between the two coordinates X, and x. The material co-
ordinates in the total Lagrangian framework, and the coordinate in the updated
Lagrangian framework respectively. The relationship to the displacement of the a
solid particle by u = x−X. The Jacobian determinant and the deformation gradient
are defined as: F = ∇Xϕ and J = detF.

The governing equations are given by:

ρsü−∇x · σ = f in Ωs, (4.21)

ρsJ = ρs0 on ∂Ωsu . (4.22)

Where ρs is the density, f is the source term, and σ is the symmetric Cauchy
stress tensor. Moreover, ü represents the material second derivative of displacement.
We consider isotropic, compressible, and incompressible material. Thus, we split the
stress into its deviatoric and volumetric parts.

σ = psI+ dev[σ]. (4.23)

4.3.2 HyperElastic model

Consider a material with a Helmholtz free energy Ψ(C) function, where C is the
right Cauchy-Green strain tensor given by C = FTF. The second Piola–Kirchhoff
stress tensor given by S = JF−1σF−T is also obtained by deriving the Helmholtz
free energy functional Ψ(C) with respect to C:

S = 2∂CΨ(C). (4.24)

Decomposing Ψ(C) into its volumetric and deviatoric part respectively as pre-
viously done for the stress leads to:

Ψ(C) = U(J) +W (C̄). (4.25)

Where J =
√
detC, and C̄ = J− 2

3C is the volumetric/deviatoric part of C.
Consider a Neo-Hookean, and a Simo–Taylor volumetric model:

U(J) =
1

4
κ(J2 − 1)− 1

2
κlnJ, (4.26)

W (C̄) =
1

2
µs(trC̄− 3) =

1

2
µs(Ī1 − 3). (4.27)
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where κ and µs are material properties, and I1 = trC̄. The stress can also be
split to its deviatoric and volumetric part:

ps = 2J−1F
∂U(J)

∂C
FT = U ′(J) =

1

2
κ(J + J−1), (4.28)

dev[σ] = 2J−1F
∂W (C̄)

∂C
FT = µsJ

− 5
3dev[FFT ]. (4.29)

We can also write:

FFT = ∇Xu+∇T
Xu+∇Xu∇T

Xu+ I. (4.30)

A linearization of the above equation is considered, by starting with:

∇Xu = (I−∇xu)
−1 − I. (4.31)

Assuming a small variation in displacement denoted by δu, and recalling that
for very small displacement, (I − ∇u)−1 = I +∇u, we end up with the following,
as explained in [50]

FFT =(I−∇xu)
−1 − I+ ((I−∇xu)

−1 − I)T

+ ((I−∇xu)
−1 − I)((I−∇xu)

−1 − I)T

+ I+ 2ϵ(δu) +∇xδu(∇xδu)
T +∇xδu(∇xu)

T + (∇xu)(∇xδu)
T .

(4.32)

The final system of equations to be solved now is given by:

ρsü−∇xps −∇x · dev[σ] = f in Ωs, (4.33)

∇x · u− 1

κ
ps = g in Ωs, (4.34)

u = l on ∂Ωsu , (4.35)

σn = t on ∂Ωst , (4.36)

ρsJ = ρs0 . (4.37)

The weak discrete form of the above equation in Galerkin finite elements is given
by:

(ρs
∂2uh

∂t2
,wh) + a′(uh,wh) + (psh ,∇x.wh) = L(wh) ∀wh ∈ Wh,0, (4.38)
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(∇x · uh, qh)− (
1

κ
psh , qh) = (g, qh) ∀ qh ∈ Qh, (4.39)

where a′ is given by:

a′(uh,wh) =

∫
Ωs

µs dev[σ] : ∇s
xw. (4.40)

4.3.3 Variational Multi Scale stabilization

The inf-sup stability or Babuska–Brezzi[51] condition coerces the interpolation rela-
tionship between the variables. This leads to different interpolation order for u and
ps. Same order interpolation exhibits weak numerical performance since it does not
respect the in-sup condition. Different types of stabilization exist, that help alleviate
this problem. P1/P1 elements are used in our case for the displacement and pressure
variables, with a Variational Multi-Scale Method (VMS) stabilization. This allows
us to have the same order of interpolation for both variables. In [52], equal order
elements for velocity and pressure were utilized to solve the Stokes equations. The
author also proved the convergence and stability of this method. This work inspired
the extension of the VMS method to solve the Navier–Stokes equations [53]. The
linear elastic equations were also tackled in [54, 55] using VMS. It provides a natural
stabilization using an orthogonal decomposition of the solution spaces. The func-
tion spaces are first decomposed into their coarse and fine-scale components, which
yields:

W0 = Wh,0 +W ′
0, (4.41)

W = Wh +W ′, (4.42)

Q = Qh +Q′. (4.43)

Following [56], the displacement and pressure are decomposed:

u = uh + u′, (4.44)

ps = psh + p′s. (4.45)

The same decomposition is also applied for the test functions:

w = wh +w′, (4.46)

q = qh + q′. (4.47)

The transient mixed finite element approximation of equations (38)(39)(40):
Coarse-scale

(ρs
∂2(u+ u′)

∂t2
,wh)+a′((uh+u′),wh)+(psh+p′s,∇x·wh) = L(wh)∀wh ∈ Wh,0 ⊂ [H1

0 ]
d,

(4.48)
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(∇x · (uh + u′), qh)− (
1

κ
(psh + p′s), qh) = (g, qh) ∀ qh ∈ Qh ⊂ L2∫

=0, (4.49)

Fine-scale

(ρs
∂2(u+ u′)

∂t2
,w′)+a′((uh+u′),w′)+(psh+p′s,∇x.w

′) = L(w′)∀w′ ∈ W ′, (4.50)

(∇x · (uh + u′), q′)− (
1

κ
(psh + p′s), q

′) = (g, q′) ∀ q′ ∈ Q′. (4.51)

The fine-scale problem is first solved, which is written in function of the time-
dependent coarse-scale problem. The fine scales are then re-injected into the coarse-
scale equations, thus modeling them implicitly. Sub-scales are not tracked in time.
An elaboration of this choice is found in [57]. On the other hand, sub-scales are still
quasi time-dependent since the large-scale residual is time-dependent. For more
information on time-tracked sub-scales, please refer to [58].

The fine-scale approximations are given by:

u′ = (τuP
′
u(Ru)), (4.52)

p′s = (τcP
′
c(Rc)). (4.53)

Where Ru and Rc are the finite element residuals, P ′
u and P ′

c are the projection
operators, and τu and τc are tuning parameters. Note that in this current work,
both P ′

u, and P ′
c are taken as the identity matrix I.

Afterward, the coarse-scale equations are given by:

(ρs
∂2u

∂t2
,wh)+a′(uh,wh)+(psh ,∇x ·wh)+(p′s,∇x ·wh) = L(wh)∀wh ∈ Wh,0, (4.54)

(∇x · uh, qh)− (
1

κ
psh , qh)− (

1

κ
p′s, qh)− (u′,∇xqh) = (g, qh) ∀ qh ∈ Qh. (4.55)

The finite element residuals are given by

Ru = f − ρsüh +∇xpsh +∇x · dev[σ], (4.56)

Rc = g −∇x · uh +
1

κ
psh . (4.57)

Modeling the fine scales as in (52)(53), we finally get

(ρs
∂2(u)

∂t2
,wh) + a′(uh),wh) + (psh ,∇ ·wh)+∑

K∈Th

(τc(g −∇x · uh +
1

κ
psh),∇.wh) = L(wh) ∀wh ∈ Wh,0,

(4.58)
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(∇.(uh), qh)− (
1

κ
(psh), qh) +

∑
K∈Th

(
τc
κ
(∇x · uh −

1

κ
psh − g), qh)

+
∑
K∈Th

(τu(ρsüh −∇xpsh −∇x · dev[σ]− f),∇qh) = (g, qh) ∀ qh ∈ Qh.
(4.59)

Compared to the standard Galerkin formulation, this formulation contains new addi-
tional terms. These additional terms model the effect of the sub-scales. These terms
are developed consistently and help circumvent problems of spurious pressure os-
cillations. The general definition of the stabilization parameters [59][60], computed
within each element gives:

τu = ((
ρs

(c0∆t)2
)2 + (

2µs

c1h2
K

)2)−
1
2 , (4.60)

τc = ((2c2µs)
2)−

1
2 . (4.61)

Where hk is the characteristic length of the element, and c0,c1, and c2 are constants
to be determined.

4.4 Fluid solver

4.4.1 Newtonian incompressible equations

Let Ωf ⊂ IRd be the spatial domain at time t ∈ [0, T ], where d is the spatial
dimension. Γf is the boundary of Ωf . The mixed formulation in velocity and
pressure for the transient incompressible Navier–Stokes equations is given by:

(ρf
∂v

∂t
+ (v · ∇)v)−∇ · σ = f in Ωf , (4.62)

∇ · v = 0 in Ωf . (4.63)

where ρf and v are the fluid density and velocity. f is the source term, and σ
is defined as

σ = 2µfϵ(v)− pfI, (4.64)

ϵ(v) =
1

2
(∇v +∇Tv). (4.65)

The boundary conditions of the problem are as follows
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v = m on ∂Ωfu , (4.66)

σn = t on ∂Ωft . (4.67)

Where l is a known imposed value. Ωfu and Ωft , are the domain boundaries
where we apply the Dirichlet and Neumann boundary conditions respectively. The
weak discrete form of the above equations in Galerkin finite elements is as follows

(ρf
∂vh

∂t
,wh) + (ρf (vh · ∇)vh,wh) + (2µϵ(vh) : ϵ(wh))− (pfh ,∇ ·wh) =

(f ,wh) ∀wh ∈ Wh,0 ⊂ [H1
0 ]

d,
(4.68)

(∇ · vh, qh) = 0 ∀ qh ∈ Qh ⊂ L2∫
=0. (4.69)

4.4.2 Variational Multi Scale (VMS) stabilization

Applying the same principles of VMS already applied for the fluid solver we end up
with the following [52, 53]

(ρf
∂vh

∂t
,wh) + (ρf (vh · ∇)vh,wh) + (2µϵ(vh) : ϵ(wh))− (pfh ,∇ ·wh) + (∇ · vh, qh)

− (f ,wh) +
∑
K∈Th

(τu,K((ρf
∂vh

∂t
+ (vh · ∇)vh) +∇pfh − f), ρfvh∇wh)K

+
∑
K∈Th

(τu,K((ρf
∂vh

∂t
+ (vh · ∇)vh) +∇pfh − f),∇qh)K

+
∑
K∈Th

(τc,K∇ · vh,∇ ·wh)K = 0 ∀wh ∈ Wh,0, ∀ qh ∈ Qh.

(4.70)

Compared to the standard Galerkin formulation, this formulation contains new
additional integrals that are evaluated element-wise. These additional terms rep-
resent the effects of the sub-scales. These terms are developed consistently. These
additional terms help circumvent the instabilities that arise due to the advective-
dominated regimes. An additional term that models the small-scale pressure is also
added that helps alleviate stabilization problems for high Reynolds number. An
implicit linearization of the advective term is handled using a Newton-Raphson lin-
earization method. The reader is invited to read [53] for more information on the
final formulation.
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4.5 Numerical Validation

4.5.1 Bending beam 1

This test consists of a 2D semi-stationary beam bending problem tackled in [61][62].
A clamped plate is positioned parallel to the direction of the flow. The flow will
induce bending in the plate. After some time, the plate reaches a stationary position
where it will no longer oscillate. The fluid and solid properties are given in Table
4.1 below.

Fluid Solid
ρf 2.0 ρs 1.0 or 10.0
µf 0.2 µs 5000

λs 2000
Model Newtonian Model Neo-Hookean

Table 4.1: Fluid and solid properties for the bending beam 1 problem.

The problem geometrical setup and meshes is shown in Figure 4.8, where L = 80,
H = 20, l = 10, and h = 1. An inlet velocity of 1 in the x direction is imposed
at the inlet. The outlet is free, and the top and bottom of the domain are free to
move tangentially. The solid velocity is imposed at the FSI interface. As already
implied, a zero displacement boundary condition is imposed at the bottom of the
plate. Fluid stress or traction force is imposed on the FSI interface.

4.5.2 Bending beam 2

Another variation of the problem is tackled in [63][64], where the aspect ratio of the
beam is half that of the first iteration. The geometrical setup of the case is shown
in Figure 4.11. The height of the fluid tunnel is H = 1 cm and the length L = 4 cm.
The beam residing in the tunnel has a thickness a = 0.04cm and a length of b = 0.8
cm. No-slip boundary condition is imposed on the bottom part of the tunnel. At
the top part, the flow is constrained to move only tangentially (symmetry). The
inlet velocity is given by v1(t) = 1.5(−y2 + 2y) cm/s, and v2(t) = 0. Zero gauge
pressure is imposed at the outlet. The bottom part of the beam has a zero Dirichlet
boundary condition. The fluid and solid properties are summarized in Table 4.2 for
two variations of the case.

Initially, both the fluid and the solid are at rest. In both variations of the
case, the system will reach a steady-state solution where the solid will no longer
oscillate. Since the Young’s modulus in the first case is relatively low, we can expect
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(a) Fluid-Solid Mesh (b) Anisotropic mesh at the
interface

(c) Solid Mesh

Figure 4.8: Problem set up and mesh

Fluid Solid
ρf 1.0 g/cm3 ρs 7.8 g/cm3

µf 0.1 g/(cm.s) µs 105 or 2x1012

g/(cm.s2)
νs 0.3

Model Newtonian Model St. Venant–Kirchhoff

Table 4.2: Fluid and solid properties for the bending beam 2 problem.

large deformations to be exhibited in the first variation. Both the displacement
and velocity versus time are shown in figures 4.12 4.13. Figures 4.144.154.16, show
velocity and pressure contours of the fluid on the fluid-solid mesh. Velocity and
pressure are also visualized close to the beam in the neighboring Figure.

One can see pressure oscillations in the vicinity of the beam, and this is due to
the high gradient in the velocity that appears because of the sharp corners. This
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Figure 4.9: X displacement of tip versus time for Bending Beam 1 and a density of 10
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Figure 4.10: X displacement of tip versus time for Bending Beam 1 and a density of 1

pressure is dissipated far from the beam. No oscillation is observed in the velocity
field itself. In the second case, a metal-like material is considered. The Young’s
modulus is much higher than the first case. Thus, the time step is much lower
than that for the first case. We chose a time step that is lower by a factor of
1000. Due to the high stiffness of the beam, very small deformation is exhibited by
the beam. The vibration of the beam is induced by the fluid traction forces. The
vibration dissipates rather fast, due to the viscous effect of the fluid. Even though
no damping is considered in the solid, the velocity decays until reaching 0. The
velocity of the tip of the beam in the x-direction is shown in Figure 4.17 for a time
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Figure 4.11: Problem set up for bending beam 2
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Figure 4.12: Bending beam 2 X displacement of tip versus time and comparison with that
from Zhang et. al.

step ∆t = 0.000001s.

4.5.3 2D flow induced vibration of an elastic plate

A two-dimensional problem is first presented to showcase the capabilities of the
framework in 2D before presenting the three-dimensional problems. In this case,
which was first conducted by [65], a plate is placed at the center of the channel as
shown in figure 4.18. The length and height of the channel are 0.2m, and 0.02m
respectively. The thickness and height of the elastic plate are 0.002m, and 0.016m
respectively. The fluid and solid properties are tabulated in Table 4.3. No-slip
Dirichlet boundary conditions are applied at the top and bottom of the 2D channel.
A zero-gauge pressure outlet is imposed. At the inlet, we impose a sinusoidal velocity
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Figure 4.13: Bending beam 2 X velocity of tip versus time and comparison with that from
Zhang et. al.

Figure 4.14: Velocity and pressure contours at t=0.1 s for bending beam 2

function given by Uin = 0.015sin(2πt), with an equivalent period of 1s. The peak
velocity magnitude is equal to 0.015m/s, which is equivalent to a Reynolds number
of 300.
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Figure 4.15: Velocity and pressure contours at t=0.8 s for bending beam 2

Figure 4.16: Velocity and pressure contours at t=3 s for bending beam 2
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Figure 4.17: Bending beam 2 X velocity of tip versus time for the second variation.

Figure 4.18: Problem set up for the2D flow-induced vibration of an elastic plate.

Fluid properties Solid properties
ρf 1000 Kg/m3 ρs 1000 Kg/m3

µf 0.001 Kg/ms µs 1677.85 Pa
E 5000 Pa
ν 0.49

Model Newtonian Model Neo-Hookean

Table 4.3: Fluid and solid properties for the 2D flow induced vibration of an elastic plate.

As stated earlier, we use an anisotropic mesh adaptation for the fluid-solid mesh.
It can be seen from Figure 4.19a, that the elements are localized at the interface. A
magnified picture at the interface is shown in Figure 4.19b that shows the anisotropic
properties of the elements. The number of elements is capped at 30000. The solid
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mesh is shown in Figure 4.19c, where the number of elements is equivalent to 324
elements. The time step for the simulation is set at 0.005s.

Given the sinusoidal nature of the flow, the elastic plate will swing back and
forth from its original position. We ran the simulation for 15T . We are interested
in the deflection of the plate at T/4 of the beginning of the period where the inlet
velocity is at its maximum. The velocity magnitude field for both the fluid and
the solid on the fluid-solid mesh for different positions in time are shown in Figure
4.20. The mesh adaptation highlighting the interface, and the vortices of the flow is
shown in Figure 4.21. Pressure contours inside the solid are shown in Figure 4.22b,
for two different positions in time, that showcases the tension and compression that
the plate exhibits when undergoing significant bending. The x and y displacements
of the top right node are plotted versus time in Figures 4.23 and 4.24 respectively.

(a) Fluid-Solid Mesh (b) Anisotropic mesh at the
interface

(c) Solid Mesh

Figure 4.19: Fluid-solid and solid meshes for the 2D flow induced vibration of an elastic
plate.
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(a) t=10

(b) t=10.25

(c) t=10.5

(d) t=10.75

(e) t=11

Figure 4.20: Velocity magnitude field of the fluid and solid on the fluid-solid mesh at dif-
ferent positions in time for 2D flow induced vibration of an elastic plate.
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(a) (b)

Figure 4.21: Full 4.21a and magnified 4.21b Fluid-Solid Mesh with mesh adaptation on
different criteria at time t.

(a) t=10.75 (b) t=11.25

Figure 4.22: Solid pressure contours at different times for 2D flow induced vibration of an
elastic plate.

4.5.4 Turek’s FSI benchmark

4.5.4.1 FSI2 & FSI3

The fluid-solid domain is identical to that of the well-known benchmarks in CFD, and
FSI [66][67] and is shown in Figure 4.25. In that figure, we can see the geometrical
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Figure 4.23: x displacement of top right node versus time for 2D flow induced vibration of
an elastic plate.
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Figure 4.24: y displacement of top right node versus time for 2D flow induced vibration of
an elastic plate.

set-up and the type of mesh used for the computations. Figure 4.25a shows the
fluid-solid, and solid mesh, and 4.25b shows a close-up of the anisotropic stretched
elements at the interface. The bottom left of the domain is at (0, 0). The height is
H = 0.41, and the length is L = 2.5. The center point of the cylinder is positioned
at (0.2, 0.2), with a diameter d = 0.1. The bottom right of the solid is positioned
at (0.6, 0.19), and the left part is fully fixated on the cylinder. The control point
for which the values are collected is positioned at (0.6, 0.2). The solid has a length
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of l = 0.35, and a height of h = 0.02. A non-symmetry is intentionally prevalent in
the y-direction, to avoid the dependency of the beginning of the oscillations on the
calculations. A parabolic inlet velocity is imposed on the left side of the fluid-solid
domain with the following function

vf = 1.5U
y(H − y)

(H
2
)2

= 1.5U
4

0.1681
y(0.41− y). (4.71)

This will ensure a mean velocity of U at the inlet, and a maximum velocity of
1.5U .

(a) (b)

Figure 4.25: Problem set up and mesh

A zero-gauge pressure is imposed at the outlet. The no-slip boundary condition
is imposed on the top and bottom of the domain. A smooth increase in velocity is
prescribed by the following function

vf (t) = vf (1− e−(2.5(t))2) (4.72)

Different variations of the problem are tackled in this chapter and compared with
the benchmark.

An example of the mesh and time step convergence study conducted in the
numerical benchmarks in this chapter is shown here. First, a mesh convergence
study and a time convergence study were conducted to assess the optimal fluid-
solid mesh, solid mesh, and time step for the test cases. The different fluid meshes
used are shown in figure 4.26, where we have meshes of 20 000, 30 000, and 40
000 elements respectively. The different solid meshes used are shown in figure 4.27,
where we have meshes of 354 and 747 elements. Three different time steps are also
used, with values equal to 0.004, 0.003, and 0.002 seconds. FSI2 is run until 35
seconds.
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parameter FSI2 FSI3
ρs [Kg/m3] 10000 1000
νs 0.4 0.4
µs [Kg/(m.s2)] 500000 2000000
ρf [Kg/m3] 1000 1000
µf [Kg/(m.s)] 1 1

U [m/s] 1 2

Re =
ρfUd

µf
100 200

Ae = E

ρfU
2 1.4 x 103 1.4 x 103

Table 4.4: Fluid and solid parameters for the Turek’s FSI benchmarks variations.

The solid mesh was found to correlate the most with the X displacement of the
beam, and not so much with the Y displacement of the beam, which converges to
the benchmark values for rather coarse meshes. Figure 4.28 show the dependency
of the X displacement of the beam on the number of elements of the solid mesh.

The time dependency changes the values of the displacement, and the drag and
lift of the problem. This shown in figures 4.29, and 4.30 for the components of the
displacement, and in figures 4.31, and 4.32 for the drag and lift respectively.

The fluid-solid mesh also plays an important role in the accuracy and the preci-
sion of the drag and lift a shown in figures 4.34, and 4.33. It is important to note
however that the elements are distributed in a way that the displacement of the
solid converges rapidly to the final solution for rather coarse meshes, because of the
way the elements are distributed close to the interface.

It can be seen from the graphs that the frequency of the oscillations and the
amplitude correlate with that of the benchmark.

FSI3 is run until 20 seconds with a time step of ∆t = 0.0005. The Y, and X
displacements for FSI3 are plotted versus time in figures 4.36,4.37. It can be seen
from the graph that the frequency of the oscillations and the amplitude correlate
with that of the benchmark.

4.5.4.2 Double Turek benchmark proposal

In this part of the chapter, we propose a new benchmark for FSI validation. The test
consists of two beams instead of one. This will create a dependency on the traction
forces exhibited by the solids. Two main variations of the beam are presented.
Either we consider two beams in series or parallel. For the two beams in series,
we duplicate both the cylinder and the beam while translating the initial beam by
1 in the positive x-direction. The fluid tunnel remains the same. We now have
two control points that we gather information from the initial point and a point
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Figure 4.26: Fluid mesh convergence study consisting of three different meshes of 20 000,
30 000, and 40 000 elements respectively.

Figure 4.27: Solid mesh convergence study consisting of two different meshes of 354, and
747 elements.

translated by 1 in the x-direction as well. The calculation is ran until we reach a
periodic movement of the beams, and then we stop the flow on the left-hand side of
the tunnel while leaving it free. We continue the calculations until the beams reach
zero displacement fields.

Another variation is considering two beams in parallel. We consider two varia-
tions of this problem as well. For both variations, the cylinder and the beam are
duplicated and translated with a distance of 0.2 if the y-direction. For the first
one, the non-symmetrical case, the top plate will now be at 0.61 in the positive
y-direction, while for the second one, the symmetrical case, the top plate will be at
0.6 in the positive y-direction.
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Figure 4.28: FSI 2 X displacement of tip versus time and comparison with that from Turek
et. al for different solid meshes.
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Figure 4.29: FSI 2 Y displacement of tip versus time and comparison with that from Turek
et. al for different time steps.

4.5.5 Pillar in a Laminar cross flow

Sensory structures are more in more shaped as a cantilever beam in different appli-
cations, such as sensors for flux, force, ... measurements. The interaction of such
sensors with the surrounding fluid is shown to be of utmost importance in applica-
tions like aerodynamics sensors [68]. The application of such a validated framework
can be extended to cover natural sensors in animals and biomedical applications.
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Figure 4.30: FSI 2 X displacement of tip versus time and comparison with that from Turek
et. al for different time steps.
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Figure 4.31: FSI 2 drag over the cylinder and membrane versus time for different time
steps and comparison with that from Turek et. al.

The sensor examined in this numerical validation is that of a Wall Shear Stress
(WSS) sensor. It is modeled as a flexible cylinder made of silicone of micro-scale.
Given the small diameter of the cylinder-like structure, typically the Reynolds num-
ber is of the order of 10. An experimental setup that is going to be used afterward
to compare our results is explained in [35]. A transparent basin with dimensions of
(3, 2.5, 0.4) is filled with the working fluid. On top of the fluid container exists a
support that can move with a velocity of up to 1m/s. The cylinder, along with a
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Figure 4.32: FSI 2 lift over the cylinder and membrane versus time for different time steps
and comparison with that from Turek et. al.
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Figure 4.33: FSI 2 drag over the cylinder and membrane versus time for different number
of elements and comparison with that from Turek et. al.

plate, are mounted on the mechanism to be able to depict a flow around a cylin-
der. A high-speed camera was used to extract the necessary information from the
experiment. The bending line of the beam is of interest in this particular setup.
The fluid chosen for the experiment is glycerin. The material chosen for the solid
structure cylinder is silicone, with a diameter d = 20mm, and height of h = 200mm,
which leads to an aspect ratio l/d = 10. Glycerin and silicone have approximately
the same density, thus a simplification of the problem by not considering buoyancy
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Figure 4.34: FSI 2 lift over the cylinder and membrane versus time for different number
of elements and comparison with that from Turek et. al.

forces is justified. The material properties of both fluid and solid are summarized
in Table 4.5.

Fluid (Glycerin) Solid(Silicone)
ρf 1220 Kg/m3 ρs 1030 Kg/m3

µf 1 Kg/ms µs 0.473 MPa
E 1.23 MPa
ν 0.3

Model Newtonian Model Neo-Hookean

Table 4.5: Fluid and solid properties for the pillar in a Laminar cross flow problem.

We conduct a fully coupled two-way FSI simulation in 3D of the experimental
setup shown in figure 4.48, to validate the framework. Yo duplicate the experimental
setup into a numerical simulation, we create our virtual fluid basin, which is our 3D
fluid-solid mesh. A separate solid mesh is created that represents our polymer
structure, which is immersed in the fluid-solid mesh. Instead of moving the solid
at a certain velocity like in the experiment, we impose a velocity at the inlet equal
to that of the velocity of the plate where the polymer cylinder is clamped. We
impose a zero gauge pressure outlet. Perfect slip condition is imposed on the virtual
domain walls. Zero slip condition is imposed on both the cylinder and the plate. We
conducted the simulation for Reynolds number equal to 12. The geometrical setup
is shown if Figure 4.49. The fluid-solid mesh is shown in Figure 4.50a. A close-up
of the mesh is shown in Figure 4.50b, which shows the anisotropic nature of the
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(a)

(b)

(c)

Figure 4.35: Velocity and pressure contour for the fluid-solid and solid domains for FSI2.

elements near the interface. The solid structure mesh is shown in Figure 4.50c. The
solid mesh consists of 35 000 elements, while the fluid-solid mesh is capped at 150
000 elements. The time step of the simulation is 0.001 s, and the simulation is run
for 2 seconds.

The normalized bending line is plotted and compared to the experimental results
in Figure 4.51. A good correlation is found between the FSI simulation and the
experimental results. Figure 4.53 shows the velocity streamlines around the cylinder
where we can see the displacement field for different times t. The x and y components
of the displacement are plotted versus time in Figure 4.52 respectively, to give more
insights on the dynamics of the structure.
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Figure 4.36: FSI 3 Y displacement of tip versus time and comparison with that from Turek
et. al.
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Figure 4.37: FSI 3 X displacement of tip versus time and comparison with that from Turek
et. al.

4.5.6 Bending of elastic flaps in a cross flow

A variation of the above case was conducted in [69], where flap-like structures are
emerged in the fluid instead of the cylinder. The fluid and solid properties of the
problem are the same as the previous problem. The solid flap structure geometry
consists of a rectangular cylinder with a length of l = 100mm, a width of w = 20mm,
and a varying thickness of b = 5, 10mm. Figure 4.54, shows the solid geometry for
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(a)

(b)

(c)

Figure 4.38: Velocity and pressure contour for the fluid-solid and solid domains for FSI3.

a thickness of 5mm, while Figure 4.55, shows that of thickness of 10mm. Different
orientations were considered for the case of the thick beam. Angles varies between
0, 45, and 90 degrees as shown in Figure 4.56. The maximum displacement magni-
tude, as well as the steady-state displacement magnitude, are tabulated in Table 4.6
and compared to the benchmark maximum transient deformation. The streamlines
highlighted by the velocity magnitude, around the structural flap highlighted by the
displacement magnitude are shown for the different beam orientations of the 10mm
thick flap for different time steps in Figures 4.58, 4.59 and 4.60.
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Figure 4.39: FSI two beams in series Y displacement of tips versus time.
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Figure 4.40: FSI two beams in series X displacement of tips versus time.

Figure 4.54: b= 5 mm Figure 4.55: b= 10 mm
Figure 4.56: b= 10 mm, for

angles 0, 45,
and 90 °

Figure 4.57: Different flap geometries and orientations.
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(a)

(b)

(c)

Figure 4.41: Velocity and pressure contour for the fluid-solid and solid domains for the
FSI with two beams in series.

Angle(°) Maximum
Displacement
Magnitude (m)

Steady-state
Displacement
Magnitude (m)

Benchmark
Maximum
Transient Defor-
mation (m)

0 0.06623 0.05082 0.0526
45 0.05581 0.04564 0.0463
90 0.01788 0.01104 0.0196

Table 4.6: Fluid and solid properties for the pillar in a Laminar cross flow problem.
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Figure 4.42: FSI two beams in series Y displacement of tips versus time.
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Figure 4.43: FSI two beams in series X displacement of tips versus time.

4.6 Perspectives and conclusion

This article presents the hybrid Fluid–Structure Interaction (FSI) framework that
combines the advantages of other well-known methods in the literature. The Adap-
tive Immersed Mesh Method (AIMM) combines the advantages of a Monolithic
(Eulerian) approach for FSI, by having the fluid and the solid co-exist on a single
fluid-solid grid, and the Partitioned (Lagrangian) approach for FSI, by having a
separate solid solver resolved on a solid grid. This enables us to enrich the solid
model.
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(a)

(b)

(c)

Figure 4.44: Velocity and pressure contour for the fluid-solid and solid domains for the
FSI with two beams in parallel (non-symmetrical).
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Figure 4.45: FSI two beams in series Y displacement of tips versus time.
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Figure 4.46: FSI two beams in series X displacement of tips versus time.

The solid mesh is immersed upon the fluid-solid mesh at each point in time us-
ing the level set method. This enables us to track the fluid-solid interface on the
fluid-solid mesh. This is done naturally on the solid mesh. Velocity and full stress
are communicated at the fluid-solid interface of each grid. Anisotropic mesh adap-
tation is applied under different criteria, one of which creates stretched elements
at the interface based on the gradient of the level set. The helps us obtain more
accurate, and precise results. The Variational Multi-Scale (VMS) Method is applied
to both solvers to be able to use first-order unstructured finite elements while re-
specting the inf-sup condition. Different two-dimensional benchmarks are presented
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(a)

(b)

(c)

Figure 4.47: Velocity and pressure contour for the fluid-solid and solid domains for the
FSI with two beams in parallel (symmetrical).
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Figure 4.48: Experimental setup and schematic from Axtmann et. al[35]

Figure 4.49: Problem set up for bending beam 2

and the results obtained are in coherence with that of the literature. Also, new FSI
benchmarks for multiple solids are presented to serve as future references for the
community. Different, three-dimensional, FSI simulations are presented to show-
case the ability of the solver in simulating flexible, and relatively thin structures
immersed in a fluid. We are in the process of extending the framework to more
complex applications that involve for example biomechanical applications.
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(a) Fluid-Solid Mesh (b) Anisotropic mesh at the
interface

(c) Solid Mesh

Figure 4.50: Fluid-solid and solid meshes for the pillar in a Laminar cross flow.
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Figure 4.53: Velocity and displacement magnitudes of the fluid and solid respectively at
different positions in time.
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Figure 4.58: Velocity and displacement magnitudes of the fluid and solid respectively at
different positions in time for the 10mm flap.
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Figure 4.59: Velocity and displacement magnitudes of the fluid and solid respectively at
different positions in time for the 45 degrees variation of the 10mm flap.
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Figure 4.60: Velocity and displacement magnitudes of the fluid and solid respectively at
different positions in time for the 90 degrees variation of the 10mm flap.
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5 Industrial Application

La plongée sous-marine est une action humaine dans laquelle ce dernier descend
sous la surface de l’eau pour explorer ou interagir avec l’environnement. Il a un
but récréatif, militaire et scientifique. L’être humain n’étant pas apte biologique-
ment et psychologiquement à cette activité, des équipements sont utilisés pour mieux
s’adapter à cet environnement hostile. Beaucoup de recherches vont dans ce do-
maine pour mieux aider l’être humain dans ses efforts sous-marins. L’objectif de la
recherche dans ce domaine est de parvenir à un équipement de pointe permettant à
l’utilisateur de respirer sous l’eau avec une résistance minimale comme s’il respirait
au-dessus de l’eau à une pression ambiante normale. Les bouteilles de plongée sont
des réservoirs hautement pressurisés, contenant le gaz à inhaler. Un être humain
a un certain seuil de différence de pression qui peut être respiré sans effets sec-
ondaires. Par conséquent, l’un des principaux équipements utilisés en plongée sous-
marine est un régulateur de pression, qui permet de réduire la pression présente
dans le réservoir vers la pression ambiante. Le régulateur de pression est composé
de deux étages ; la diminution de la pression se fait successivement par les étapes
un et deux. Tout d’abord, le premier étage réduit la pression à une pression dite
intermédiaire, qui est ensuite abaissée par le deuxième étage à une pression am-
biante finale. La deuxième étape sera notre objectif principal, et il comprend deux
chambres séparées par une membrane et un mécanisme de craquage pour fournir
à l’utilisateur du gaz respiratoire. Or pour respirer, il faut fournir une pression
d’aspiration suffisamment élevée en valeur absolue, pour déclencher un mécanisme
à levier. Cette pression seuil est appelée pression de craquage. Une pression de
craquage plus faible entrâıne une résistance respiratoire plus faible. La résistance
à l’expiration est bien plus importante que la résistance à l’inspiration. Les tests
du régulateur de pression sont généralement effectués selon l’Agence nationale pour
la science, la technologie et l’innovation (ANSTI). L’objectif fixé par l’US Navy est
de 1,3 J/L ou moins à 62,5 L/min RMV (Respiratory Minute Volume) à 132 et
198 fsw (pieds dans l’eau salée) avec un réservoir à 1 500 psi. AquaLung cherche
à établir un simulateur pour leur régulateur de pression, afin d’améliorer/optimiser
davantage ce dernier. Dans un premier temps, nous sommes partis d’une pure simu-
lation CFD tridimensionnelle d’un des produits de notre partenaire industriel. Cela
permet de comprendre leur configuration expérimentale et de pouvoir la représenter
sous forme de simulation numérique à des fins de comparaison par la suite. Le but
de la simulation est de dupliquer le graphique obtenu à l’aide de tests expérimentaux,
créant ainsi une configuration virtuelle qui peut aider à optimiser les performances
du régulateur. Après une validation suffisante du cadre FSI AIMM, il a été appliqué
à l’application industrielle. Dans cette application particulière, un écoulement mul-
tiphasique est nécessaire pour simuler correctement les performances du produit.
D’un côté, il y a le gaz de travail pour la plongée, et de l’autre, nous avons l’eau
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salée. Ces deux fluides sont délimités par une fine membrane composée de parties
rigides et flexibles qui actionnent le mécanisme à levier à une certaine pression de
claquage. Habituellement, les matériaux, et plus particulièrement les métaux, com-
mencent par avoir une réponse élastique linéaire à une contrainte appliquée jusqu’à
atteindre une certaine limite d’élasticité, après quoi une déformation plastique com-
mence à se produire. La striction se produit au point de résistance ultime, après
quoi le matériau se déformera jusqu’à la rupture. Cependant, ce n’est pas le com-
portement typique des polymères. Là où une réponse hyperélastique est attendue.
L’application d’intérêt n’induit pas de déformation plastique. Ainsi, nous nous con-
centrerons sur la réponse hyperélastique du matériau. Le fournisseur du matériau
n’avait pas suffisamment de détails sur le comportement de la membrane à portée de
main. Par conséquent, une analyse mécanique dynamique (DMA) a été menée sur
des échantillons coupés du matériau. Il s’agit d’une méthode pour caractériser et
inspecter certains matériaux. Il est principalement utilisé pour les polymères à com-
portement viscoélastique. Cela signifie un matériau qui subit à la fois un comporte-
ment élastique et visqueux sous contrainte. Les matériaux viscoélastiques présentent
à la fois un comportement visqueux et élastique, entrâınant ainsi une déformation
dépendante du temps. La DMA consiste à appliquer une contrainte sinusöıdale, et à
mesurer la déformation correspondante du matériau. Cela nous permet de calculer
un module complexe. On peut faire varier généralement soit la température, soit la
fréquence de la contrainte appliquée. Cela conduira à différentes valeurs du module
complexe. Ce qui aide inévitablement à localiser la température de transition vit-
reuse du matériau en question. Cette température est le seuil pour lequel le matériau
passe d’un comportement de type cassant à un comportement de type caoutchouteux.
Si le matériau est un solide parfaitement élastique, les courbes de déformation et
de contrainte seront parfaitement en phase. Si le matériau est un fluide purement
visqueux, on observe un déphasage de 90 degrés de la déformation à la contrainte. Le
comportement viscoélastique est caractérisé comme un comportement intermédiaire
entre les comportements purs susmentionnés. Un certain décalage de phase est lié
à se produire dans un test DMA pour un matériau viscoélastique. Un balayage de
température a été effectué à une fréquence de 1Hz, où une température de transi-
tion vitreuse a été déterminée qui est significativement inférieure à la température
d’application. Le balayage de température a été effectué deux fois pour tenir compte
de la reproductibilité des résultats et de toute hystérésis éventuelle observée dans les
données. Un balayage combiné a ensuite été effectué deux fois, pour voir l’effet du
changement de fréquence sur les différents intervalles de températures. Maintenant
que tous les composants de cette simulation FSI complexe 3D hautefidélité ont été
rassemblés, la simulation est exécutée pendant un cycle complet, et les résultats sont
présentés ci-après. Ce cadre était capable de gérer une simulation FSI 3D com-
plexe. Cela a été fait en utilisant le cadre AIMM FSI développé dans les chapitres
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précédents. La complexité provenait de la nature multi phase de l’écoulement, en
ayant l’eau d’un côté et le gaz de travail de l’autre côté. De plus, la membrane
séparant les deux domaines est en fait très fine, ajoutant ainsi plus de complexité
à la simulation. Sans oublier le nombre de Reynolds très élevé dans le domaine du
gaz de travail, notamment pour la phase d’inspiration.

150



5 Industrial Application

5.1 Introduction

Underwater diving is a human action in which the latter descends below the surface
of the water to explore or interact with the environment. It has a recreational,
military, and scientific purpose. As the human being is not fit both biologically and
psychologically for this activity, equipment is used to better adapt to this harsh
environment. A lot of research goes into this field to better help the human being
with his underwater endeavors. A homo sapiens has a tidal volume of 0.5 L of air,
corresponding to the air breathed in and out, while vital capacity is defined as the
maximum quantity of air that can be breathed in or out. In addition to the tidal
volume and vital capacity, a human being has a respiratory reserve, which cannot be
used unless there is a real-life threatening case, in which the human body response
will make use of the reserve. A normal person breathes around 10 to 20 breaths/min,
45 breaths/min while in exercise, and 25 to 31 breaths/min in a relaxing dive.
The aim of research in this field is to reach state-of-the-art equipment to enable
the user to breathe underwater with minimal resistance as if they are breathing
above water in normal ambient pressure. Scuba tanks are highly pressurized tanks,
containing the gas to be inhaled. A human being has a certain threshold for the
pressure difference which can be breathed with no side effects. Therefore, one of the
main equipment used in underwater diving is a pressure regulator shown in Figure
5.1, which helps reduce the pressure present in the tank towards ambient pressure.
The pressure regulator is composed of two stages; the pressure decrease is done
successively through stages one and two. First, stage one reduces the pressure to a
so-called intermediate pressure, which is then lowered by the second stage to a final
ambient pressure. Stage one has different configurations, one of which is found in
Figure 5.2. The schematic of the second stage, which will be our primary objective is
shown in Figure 5.3 below, and it includes two chambers separated by a membrane
and a cracking mechanism to supply the user with breathing gas.

Figure 5.1: Stages one and two of a pressure regulator.

A purge button is readily available on almost all commercial pressure regulators
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to remove excess water from the second chamber. Now to breathe, one must provide
a suction pressure high enough in absolute value, to trigger a lever mechanism. This
threshold pressure is called the cracking pressure. Lower cracking pressure leads to
lower breathing resistance. The expiration resistance is far more important than
the inspiration resistance. Pressure regulator testing is usually done according to
the National Agency for Science, Technology, and Innovation (ANSTI), in which a
sample graph that needs to be met or improved is found in Figure 5.4 below. The
goal set by the US Navy is 1.3 J/L or less at 62.5 L/min RMV(Respiratory Minute
Volume) at both 132 and 198 fsw (feet in saltwater) with a tank at 1500 psi [1] [2].
AquaLung is seeking to establish a simulator for their pressure regulator, to further
enhance/optimize the latter.

5.2 Fluid flow simulation

At first, we started with a pure three-dimensional CFD simulation of one of the
products of our industrial partner. This helps understand their experimental setup,
and how to be able to represent it as a numerical simulation for comparison after-
ward. First, we must define our computational domain, a description of the problem
at hand is given in figure 5.5. The experimental setup forces the air flux through
the mouth opening of the second stage of the pressure regulator using the following
function

V (t) =
VT

2
(1− cos(

2π

T
t)). (5.1)

Figure 5.2: Schematic of the first stage.

Figure 5.3: Schematic of the second
stage.

Where V is the fluid volume through the opening, VT is the tidal volume, T is
the period, and t is time. Taking the derivative with respect to time of the above
equation, we obtain the equation of the air flux through the opening
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Figure 5.4: ANSTI testing graph example.
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Q(t) =
πVT

T
sin(

2π

T
t). (5.2)

Where Q(t) is the air flux through the opening. To be able to obtain the velocity
at the mouth opening, we divide the flux equation by the area, and we obtain

v(t) =
πVT

AT
sin(

2π

T
t). (5.3)

Where A is the area. A period corresponds to one full breathing cycle (Inspira-
tion/Expiration). For example, let’s assume that the experiment is conducted for a
breathing rate of 20bpm, the period will be equivalent to T = 3s. Also, a ventilation
rate is given for each conducted experiment, which ultimately helps calculate the
tidal volume VT . The first half of the period represents the inspiration phase, while
the second half represents the expiration phase. This velocity equation will be used
to impose a Dirichlet boundary condition on the velocity for the inlet of the simu-
lation fluid domain. No-slip condition is applied at the walls of the domain. Zero
stress condition is applied at the outlets of the truncated domain. Forced membrane
valves open and close depending on the half period that we are currently simulating.
The fluid properties are given by the temperature and pressure of the experimental
setup using thermodynamics principles. For example, assume air is the working
fluid, with a temperature of 28C, and a pressure of 3.5bar, which is equivalent to a
depth of 25m in saltwater. Then, the density and dynamic viscosity of the fluid are
given by ρ = 4.0601Kg/m3, and µ = 18.6478 · 10−6Pa.s respectively.

The goal of the simulation is to duplicate the graph obtained using experimental
testing, thus creating a virtual setup that can help optimize the performance of the
regulator. In the experimental setup, pressure sensors are strategically positioned
at a certain distance from the opening, and data is retrieved and plotted versus
the volume as in figure 5.4. Figure 5.4 also shows the truncated computational
domain chosen for the simulation. A ”Standard Triangle Language” or ”Standard
Tessellation Language” (STL) file was provided by the industrial partner, which
describes the surface with a mesh using triangular elements. It is used to help
us create our three-dimensional mesh of unstructured tetrahedral elements like the
one shown in figure 5.6. Pressure sensors are placed at the same position in the
simulation setup, for us to compare with the experimental results. The fluid domain,
along with an idea of the positions of the pressure sensors is given in figure 5.5.

We are using the simulation library CimLib to solve the incompressible Navier-
Stokes equations as already described in previous sections. A time step convergence
study was first conducted to choose the appropriate time step for the simulator.
We chose three different time steps from 1 to 3, with 1 being the biggest, and 3
being the smallest. We also ran the simulations for two whole periods, to ensure
reproducibility of the results. The results obtained are shown in figure 5.7. A mesh
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Figure 5.5: Pressure sensors.

Figure 5.6: An example of the domain mesh made up of 3D tetrahedral elements.

convergence study was also conducted. Three different levels of mesh refinement
are considered, with 1 being the coarsest, and 3 being the finest. After the third
level of refinement, no significant change in the solution was observed. The results
obtained are shown in figure 5.8. After establishing a satisfying time step, and mesh
refinement level, the simulator was used for three different depths, while varying the
ventilation rate at each depth to have enough data to validate the simulator. An
example of the obtained numerical simulation results compared to the experimental
results are shown in figure 5.9. The streamlines highlighted by the velocity magni-
tude are shown for both phases of the respiratory cycle (Expiration/Inspiration) in
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figure 5.10. Velocity magnitudes fields and pressure contours for both the expira-
tion and inspiration phases are shown for a 2D cut of the domain in figures 5.11 and
5.12. While we still are not considering a real FSI problem for now, and are only
simulating the fluid flow inside the pressure regulator, we wanted to see the effect
of the membrane on the flow. Therefore, for the inspiration phase, we considered a
rigid membrane in an assumed opened position to see the effects on the inspiration
pressure. A finer mesh was considered to take into account the membrane, which
has a very thin cross-section. The finer elements were concentrated in an area of
interest which is around the membrane. The membrane was immersed in the fluid
domain. No-slip condition is imposed on the membrane in the inspiration phase. In
the expiration phase, no boundary conditions are imposed on the flagged elements
of mesh, thus the membrane is not taken into account.

Volume

P
re
ss
u
re

Time Step 1

Time Step 2

Time Step 3

Figure 5.7: Time step convergence study for a CFD simulation of a second stage regulator.

A finer mesh was needed to converge to the same physical solution as before.
Figure 5.13, shows the open membrane configuration immersed in the fluid domain
and the flow streamline for the inspiration phase. The streamlines are deviated from
before, due to the presence of the open membrane in the inspiration phase.

Since the final objective of this fluid flow simulation, was to duplicate the exper-
imental data to create an application for further optimization of the regulator, we
suggested a couple of modifications that might be of interest. Two different guiding
vanes are positioned inside the regulator that might help guide the flow, thus reduc-
ing the overall breathing resistance as shown in figure 5.14. A body-fitted mesh was
considered in this case, since the geometry suggested is not to be removed.

Streamlines highlighted by the velocity for both the inspiration and expiration
phase respectively are shown in figure 5.15 for the first setup. Figure 5.16 show that
of the second setup.
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Figure 5.8: Mesh convergence study for a CFD simulation of a second stage regulator.
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Figure 5.9: A comparison between the simulation and experimental data.

5.3 Multi-phase fluid–Membrane interaction simulation

5.3.1 Problem description and fluid flow results

After sufficient validation of the FSI AIMM framework, it was applied to the indus-
trial application. Another second stage commercial regulator is considered for this
part of the simulation shown in figure 5.17.

In this particular application, a multi-phase flow is needed to simulate correctly
the performance of the product. On one hand, there is the working gas for diving,
and on the other, we have the saltwater. These two fluids are delimited by a thin
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Figure 5.10: Streamlines highlighted by the velocity field for the expiration and inspiration
phase.

Figure 5.11: Velocity magnitude and pressure contours for the expiration phase on a plane
cut.

membrane composed of rigid and flexible parts that actuate the lever mechanism at
a certain cracking pressure. Figure 5.18, show the inside of the pressure regulator,
along with the injection position. Figures 5.19 highlight the areas on which the
boundary conditions of the simulator are going to be applied. The first one dis-
plays the domain containing the working gas, while highlighting the mouth opening
where the sinusoidal velocity function is going to be applied, and the expiration
outlet. The second one presents part of the lever mechanism while highlighting the
injection surface area. The Computational Fluid Dynamics (CFD) part is like that
of the previous application. Figure 5.20 shows a 2D cut schematic of the different
components of the simulation. Highlighting specifically:

• The high-pressure gas injection inlet for the inspiration phase.
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Figure 5.12: Velocity magnitude and pressure contours for the inspiration phase on a plane
cut.

Figure 5.13: Highlighted immersed rigid open membrane configuration, and the streamlines
highlighted by the velocity field for the inspiration phase.

• The breathing opening where the sinusoidal function of the velocity is going
to be applied.

• The exhaust opening on which the outlet boundary condition is applied during
the expiration phase.

• The membrane position, that delimits the water and working gas domain.

The same sinusoidal function is applied at the mouth opening. The domain walls
have the no-slip condition applied to them. The highlighted outlet is treated as one
for the expiration phase and is considered as a wall for the inspiration phase. The
lever mechanism is modeled using a flux function that depends on the maximum
displacement of the membrane. Thus, the velocity at the injection surface is zero
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Figure 5.14: First and second guiding vane suggestions respectively.

Figure 5.15: Streamlines highlighted by the velocity field for the inspiration and expiration
phase of the first configuration.

Figure 5.16: Streamlines highlighted by the velocity field for the inspiration and expiration
phase of the second configuration.
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Figure 5.17: Real life second stage pressure regulator from AquaLung.

during the expiration phase and has an imposed Dirichlet value dependent on the
function during inspiration. The mouth opening is enlarged as in the previous
application to consider the experimental setup and pressure sensors.

Figure 5.18: Schematic of the inside of a second stage pressure regulator and highlighting
the injection position.

A fluid flow simulation was first applied before adding the other components for
a full FSI simulation. The considered domain consists of the fluid domain of the
working gas delimited by a rigid membrane and the regulator casing. Figure 5.21
shows the computational domain and an example of an unstructured 3D tetrahedral
elements mesh for the simulation. Figure 5.22 show the streamlines highlighted by
the velocity inside the pressure regulator for the fluid flow simulation. Figure 5.23
gives insight on the flow type inside the regulator for different 2D cuts, which may be
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Figure 5.19: Gas chamber casing highlighting both the mouth opening, and the outlet when
air is pushed out and part of the lever mechanism highlighting the injection
surface.

Figure 5.20: A 2D cut of the computational domain highlighting the different parts of the
simulation.
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Figure 5.21: 3D depiction of the fluid flow simulation domain and an example of a mesh
used for the fluid flow simulation.

compared to insights we get from a Magnetic Resonance Imaging (MRI) scan of the
brain. To the best of our knowledge, this is the first time such insight is given for such
an application. Now that the fluid flow simulation has been established, the different
components are added. Two different views of the FSI computational domain are
shown in figure 5.24 for the FSI simulation. An enlarged water domain can be
observed to be able to model the multi-phase nature of the flow. A pre-adapted
mesh is considered for this simulation, where a high concentration of elements exists
in the vicinity of the membrane. Therefore, enabling us to account for the membrane
movement, while still being able to immerse it in the fluid-solid mesh.

Figure 5.25 shows the pre-adapted mesh with the immersed solid and a plane cut
of the pre-adapted mesh. An enlarged view of the mesh is shown in figure 5.26, along
with the immersed solid in the domain for the previously shown mesh. The solid
membrane is shown in figure 5.27. The main challenge of such a complex simulation
lies in the thickness of the membrane.

As can be seen from the different views of the solid membrane, its thickness is
really small compared to the rest of the domain. Therefore, a pre-adapted mesh is of
utmost importance. To consider the final component of this simulation, we mix the
properties of the two fluids, using the level set function detailed in previous sections.
A field showcasing the mixing of the properties of the two fluids with respect to the
position of the solid is given in figure 5.28.

5.3.2 Dynamic mechanical analysis (DMA)

Usually, materials, and more specifically metals, have a stress-strain curve like that
shown in figure 5.29. They start by having a linear elastic response to a stress
applied until reaching a certain yield point, after which plastic deformation starts to
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Figure 5.22: Streamlines highlighted with the velocity field for the fluid flow inside the
pressure regulator.

occur. Necking occurs at the ultimate strength point, after which the material will
deform until failure. However, this is not the typical behavior of polymers. Where
more of a hyperelastic response is expected as shown in figure 5.30. The application
of interest does not induce plastic deformation. Thus, we will be focusing on the
hyperelastic response of the material.

The provider of the material did not have sufficient details on the behavior of the
membrane at hand. Therefore, a Dynamic Mechanical Analysis (DMA) has been
conducted on cut samples of the material. This is a method to characterize and
inspect certain materials. It is mostly used for polymers with a viscoelastic behavior.
That means a material that undergoes both elastic and viscous-like behavior under
strain. The viscosity of a material, usually a fluid, is the ability to resist shear
flow (or shear stress in the case of the solid) and deformation in a linear manner
when undergoing stress. Viscosity is the outcome of diffusion of molecules or atoms
in a amorphous material. Elasticity however is the ability to strain under stress,
and return to the original position when that stress is no longer applied. It is due
to bond stretching along crystallographic planes [3]. Viscoelastic materials exhibit
both viscous and elastic behavior, thus leading to time dependent strain. The DMA
consists of applying a sinusoidal stress, and measuring the corresponding strain of the
material. This allows us to calculate a complex modulus. One can vary usually either
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Figure 5.23: Different cuts of the 3D fluid flow simulation giving insights first seen in a
pressure regulator.

the temperature or the frequency of the applied stress. This will lead to different
values of the complex modulus. Which inevitably helps locate the glass transition
temperature of the material at hand [4]. This temperature is the threshold for which
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Figure 5.24: FSI simulation computational domain view with the pressure sensors position
highlighted.

Figure 5.25: 3D pre-adapted mesh example made up of 3D tetrahedral elements, while
highlighting the solid position and a 2D cut of the pre-adapted mesh.

Figure 5.26: An enlarged view of the 2D pre-adapted mesh and the solid membrane im-
mersed in the fluid-solid domain.

the material transforms from a brittle like behavior to a rubbery like behavior. If the
material is a perfectly elastic solid, the strain and stress curves will be perfectly in
phase. If the material is a purely viscous fluid, a ninety-degree phase lag is observed
of the strain to the stress. Viscoelastic behavior is characterized as a behavior in
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Figure 5.27: Two different view of the membrane.

Figure 5.28: Second stage pressure regulator from AquaLung.

between the aforementioned pure behaviors. Some phase lag is bound to occur in a
DMA test for a viscoelastic material. This behavior is characterized by the following
equations

σ = σ0 sin(ωt+ δ), (5.4)

ε = ε0 sin(ωt). (5.5)

Where ω is the frequency, t is the time, and δ is the phase lag. If we revert to
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Figure 5.29: Typical material stress strain
curve.

Figure 5.30: Stress strain curve of polymers.

the assumption of a pure elastic solid, the following holds

σ(t) = Eε(t). (5.6)

Which can be rewritten as

σ0 sin(ωt+ δ) = Eε0 sin(ωt) −→ δ = 0. (5.7)

For the assumption of a purely viscous fluid, we can write

σ(t) = K
dε

dt
. (5.8)

which is reformulated as

σ0 sin(ωt+ δ) = Kε0ω cos(ωt) −→ δ =
π

2
. (5.9)

The complex modulus is composed of two components:

1. The storage modulus, which is responsible for the stored energy of the elastic
part given by E ′ = σ0

ε0
cos δ.

2. The loss modulus, which represents the energy dissipated of the viscous part
written as E ′′ = σ0

ε0
sin δ.

The phase angle δ can be written as δ = arctan E′′

E′ . Finally the complex modulus
is given by

E∗ = E ′ + E ′′ =
σ0

ε0
eiδ (5.10)

Given the polymeric nature of the membrane, and after consulting with the nec-
essary material experts from the lab, it was deduced that the membrane most likely
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has a viscoelastic behavior. We used the apparatus shown in figure 5.31. It consists
of a nitrogen tank shown in figure 5.32, that feeds nitrogen gas to cool the sample
for a temperature sweep. This is done through careful pressure monitoring system
shown in 5.33, that eventually reaches the chamber where the material sample is
located presented in figure 5.34. The chamber contains the clamped material sam-
ple that undergo cooling, and then is heated for a temperature sweep at a constant
frequency of stress. Figures 5.35, and 5.36 show the specimen clamped inside the
chamber, and an enlarged view of the specimen respectively. A temperature sweep
was conducted at a frequency of 1Hz, where a glass transition temperature was
determined that is significantly lower that the application temperature. The tem-
perature sweep was done twice to account for the reproducibility of the results, and
any possible hysteresis observed in the data. The results obtained are shown in fig-
ure 5.37. A combined sweep was later conducted twice, to see the effect of frequency
change on the different intervals of temperatures.

Figure 5.31: Dynamic
Mechanical
Analysis
system.

Figure 5.32: Gas system for cool-
ing.

No significant change of the storage or loss modulus is observed. Therefore we
decided to opt for the equation

E =
√
E ′2 + E ′′2, (5.11)

for the calculations of the Young’s modulus of the material, and use a hyperelastic
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Figure 5.33: Pressure gauge system.

Figure 5.34: Chamber containing the speci-
men of the material undergoing
testing.

Figure 5.35: Specimen chamber
open.

Figure 5.36: An enlarged view of
the specimen inside the
chamber.
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model as explained in previous sections. Since the experimental setup we are trying
to reproduce is at a constant pressure and temperature, the assumption taken is
satisfactory.

Temperature (°C)

E
’(
M
P
a
)

ta
n
δ

E′(1)

E′(2)

tanδ(1)

tanδ(2)

Figure 5.37: Results of the temperature sweep DMA experimental study for two different
trials.

5.3.3 Numerical results

Now that all of the components of this high-fidelity 3D complex FSI simulation
have been gathered, the simulation is ran for a complete cycle, and the results are
presented here after. First, a 2D cut showing the inspiration and expiration phase
of the flow inside the fluid-solid domain at different positions in time are shown in
figure 5.38. 3D figures showcasing both the inspiration and expiration phase inside
domain, and the membrane movement are shown in figures 5.39, 5.40, 5.40, 5.42
and 5.43. Finally, the membrane deformation for the inspiration phase is shown in
figure 5.44, and that of the expiration phase is shown in figure 5.45. A close up of
an important deformation of the membrane during the inspiration and expiration
phase is shown in figure 5.46.

This framework was able to handle a complex 3D FSI simulation. This was
done using the AIMM FSI framework developed in the previous chapters. The
complexity came from the multi-phase nature of the flow, by having water on one
side and the working gas on the other side. Furthermore, the membrane separating
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both domains is actually really thin, thus adding more complexity to the simulation.
Not to mention, the very high Reynolds number inside the working gas domain,
especially for the inspiration phase.
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Figure 5.38: Velocity contours for the inspiration and expiration phase in a 2D cut of the
fluid-solid domain.
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Figure 5.39: Velocity contours for the inspiration phase in a 2D cut of the fluid-solid
domain.
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Figure 5.40: Velocity contours for the inspiration phase in a 2D cut of the fluid-solid
domain.
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Figure 5.41: Velocity contours for the inspiration phase in a 2D cut of the fluid-solid
domain.
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Figure 5.42: Velocity contours for the inspiration phase in a 2D cut of the fluid-solid
domain.

177



Bibliography

Figure 5.43: Velocity contours for the inspiration phase in a 2D cut of the fluid-solid
domain.
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Figure 5.44: Membrane behavior during inspiration cycle.
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Figure 5.45: Membrane behavior during expiration cycle.
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Figure 5.46: Membrane solid domain during inspiration and expiration - an enlarged view.
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Compte tenu du large éventail d’applications d’ingénierie qui incluent le FSI, de
grands efforts sont déployés pour créer des cadres fiables capables de simuler avec
précision de tels phénomènes. Les applications FSI incluent l’hydrodynamique,
l’aérodynamique et la biomécanique. L’objectif de la thèse est la création d’un
cadre FSI, capable de simuler efficacement des phénomènes aussi complexes, et de
l’appliquer à un régulateur de pression pour la plongée. Cela se fait dans un con-
texte hybride, qui inclut à la fois les approches monolithiques et partitionnées. La
première partie de la thèse introduit la notion d’Interaction Fluide–Structure (FSI).
Ensuite, une brève revue de la littérature des différentes approches existantes dans
la littérature est présentée. Il est complété dans les chapitres suivants, en met-
tant davantage l’accent sur le sujet traité. Les différents composants du framework
FSI développé, la méthode hybride de maillage immergé adaptatif (AIMM) util-
isant l’expertise multidisciplinaire de CimLib CFD. Tous les outils numériques déjà
développés qui sont utilisés pour le cadre FSI sont détaillés dans le chapitre deux.
En particulier, la méthode des volumes immergés (IVM), comprend la méthode des
ensembles de niveaux, les lois de mélange pour les écoulements multiphasiques et
l’adaptation du maillage anisotrope. Le chapitre trois propose une nouvelle façon
de résoudre la dynamique solide transitoire. Il a d’abord été développé pour le cas
linéaire et a ensuite été étendu pour inclure le cas hyperélastique. La formulation a
été écrite avec l’incompressibilité à l’esprit. Cela signifie que le solveur peut gérer des
matériaux compressibles, presque incompressibles et incompressibles. Le cœur de la
thèse et le cadre FSI sont présentés dans le chapitre quatre. La méthode de maillage
immergé adaptatif (AIMM) est expliquée. Il s’agit d’une nouvelle méthode hybride
qui combine les avantages des approches partitionnées et monolithiques tradition-
nelles pour le FSI. Après une validation suffisante du cadre FSI, il a été appliqué
à l’application industrielle. Les premières validations d’écoulement de fluide sont
présentées, avant d’appliquer le cadre FSI complet. L’application finale consiste en
un écoulement multiphasique à partir duquel, d’une part, nous avons l’eau environ-
nante, et d’autre part, nous avons le gaz de travail à l’intérieur du régulateur de
pression. L’objectif de la thèse était de créer un cadre FSI fiable capable de simuler
des phénomènes FSI complexes. Les simulations numériques ont été contraintes
aux fluides incompressibles newtoniens et aux structures élastiques. Plusieurs autres
considérations peuvent être prises en compte pour élargir le nombre d’applications
qui peuvent être simulées à l’aide de ce cadre.
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6.1 Conclusion and perspectives

Given the wide range of engineering applications that include FSI, great effort is
being put to create reliable frameworks that can accurately simulate such phenom-
ena. FSI applications include hydrodynamics, aerodynamics, and biomechanics.
The objective of the thesis is the creation of an FSI framework, that can efficiently
simulate such complex phenomena, and apply it to a pressure regulator for diving.
This is done in a hybrid context, that includes both the monolithic and partitioned
approaches.

The first part of the thesis introduces the notion of Fluid–Structure Interaction
(FSI). Then a brief literature review of the different approaches existing in the
literature is presented. It is complemented in the following chapters, with more
emphasis on the subject at hand.

The different components of the developed FSI framework, the hybrid Adap-
tive Immersed Mesh Method (AIMM) using the multidisciplinary expertise of Cim-
Lib CFD. All the already developed numerical tools that are used for the FSI frame-
work are detailed in chapter two. In particular, the Immersed Volume Method
(IVM), includes the level set method, the mixing laws for multi-phase flow, and
the anisotropic mesh adaptation. The level set approach is utilized for the inter-
face tracking of the immersed solid mesh at each time step. The mixing laws are
particularly useful for the multi-phase flow of the industrial application for exam-
ple. Finally, the anisotropic mesh adaptation method helps us better depict the FSI
interface, allowing us to have a better coupling between the different meshes and
higher accuracy at the interface. If we also take into the multiple criteria available,
it helps us adapt the mesh for velocity as well, thus reducing the overall compu-
tational tile, while still being able to capture important flow structures. Several
mesh adaptation techniques are presented: an anisotropic local remeshing method,
and a posteriori error estimation method. The first method refines the mesh at the
interface by creating a metric field through the gradient of the level set function.
The second method is based on a posteriori error estimator. A length distribution
tensor approach and its associated edge-based error analysis are used. We can si-
multaneously adapt the mesh for the level set, and any other physical field like the
velocity magnitude or components.

Chapter three proposes a new way to solve the transient solid dynamics. It was
first developed for the linear case and was then extended to include the hyperelastic
case. The formulation was written with incompressibility in mind. That means the
solver can handle compressible, nearly incompressible, and incompressible material.
It consists of a mixed formulation in displacement and pressure. The momentum
equation is complemented with a pressure equation that handles incompressibility.
A split of the stress into its deviatoric and volumetric components enables us to
do just that. Given the nonlinear nature of the deviatoric part of the stress, a
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linearization technique was employed. All the terms of the equations are written
in the updated Lagrangian framework. The interface tracking is done through the
R-method for moving meshes. Tetrahedral unstructured elements are used, which
enables us to handle complex 3D examples. Finally, the Variational Multi-Scale
stabilization method is used to damp out spurious pressure oscillations for piece-
wise linear finite elements. Several 2D and 3D examples were presented.

The heart of the thesis and the FSI framework are presented in chapter four.
The Adaptive Immersed Mesh Method (AIMM) is explained. It is a novel hybrid
method that combines the advantages of the traditional partitioned and monolithic
approaches for FSI. The solid mesh is first immersed in a fluid–solid mesh. The
Navier–Stokes equations are then solved on the fluid–solid mesh. Full stress is
interpolated from the fluid–solid mesh onto the solid mesh. The solid dynamics
equations are solved on the solid mesh. The mesh is moved using the Moving Mesh
Method (MMM). The velocity of the solid is computed and then interpolated onto
the fluid–solid mesh. The new solid mesh position is immersed onto the fluid-solid
mesh. We iterate until the final time t is reached. This framework enables us to
solve for example the heat equations in the fluid–solid mesh for both fluid and solid.
Anisotropic mesh adaptation is used for higher accuracy of the definition of FSI
interface, as well as on different criteria. The Variational Multi-Scale method is
used for both solvers, to respect the inf-sup condition, and in the case of the fluid
flow, to be able to handle highly convective flow regimes. The framework can handle
both 2D and 3D numerical simulations, with parallel computing in mind. Extensive
2D and 3D cases have been carried out to validate the overall FSI framework both
in 2D and 3D.

After sufficient validation of the FSI framework, it was applied to the industrial
application. First fluid flow validations are presented, before applying the full FSI
framework. The final application consists of a multi-phase flow wherefrom, on one
hand we have the surrounding water, and on the other hand, we have the working gas
inside the pressure regulator. These two mediums are separated by a solid elastic
membrane. The results of the simulator for the pressure regulator are compared
with experimental results from the industrial partner for us to validate the results
obtained. It will be used for the optimization of the pressure regulator. Qualitative
results are shown in this chapter to respect the confidentiality agreement with the
industrial partner.

The focus of the thesis was on the creation of a reliable FSI framework that
can simulate complex FSI phenomena. The numerical simulations were constrained
to Newtonian incompressible fluid, and elastic structures. Several other considera-
tions can be taken into account to enlarge the number of applications that can be
simulated using this framework, including but not limited to

• The development of a compressible flow solver that will enable us to couple it
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with the solid solver, thus including more applications.

• Enriching the Lagrangian solid solver to consider different elastic models, as
well as different regimes, such as viscoelastoplastic, or more sophisticated
biomechanical behavior laws.

• The inclusion of Non-Newtonian models or rheological blood models, thus
expanding the range of applications to biomechanical applications such as
blood flow, ... etc.

• Conducting FSI experimental studies and replicating the experimental setup
numerically for further validation of the framework.

• The ability to include the simulation of composite materials. To that extent,
the benchmark simulation of the beam behind a cylinder is revisited. This
time, while still considering the same dimensions and boundary conditions of
the problem, a sandwich-like composite material was considered. Where the
shear modulus of the upper and lower part are equal to that of the second
variation of the test, and the middle part is that of the first variation. All
boundary conditions correspond to the first iteration of the benchmark. Fig-
ures 6.1, 6.2 and 6.3 showcase the stress in the material, and the mixing of
properties inside the material for different positions of the solid. If compared
to the result of the first iteration of the benchmark, the amplitude of vibra-
tion is much less, and the time it took to reach a periodic state of vibration is
higher. This test is given to show the capabilities of the framework for future
applications.
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Figure 6.1: Stress and the mixing of the shear modulus for different time t.
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Figure 6.2: Stress and the mixing of the shear modulus for different time t.
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Figure 6.3: Stress and the mixing of the shear modulus for different time t.
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MOTS CLÉS

Interaction Fluide–Structure(IFS), Eléments Finis, Méthodes multi-échelles variationnelles, Adaptation de
maillage anisotrope, Méthode hybride, hyperélastique.

RÉSUMÉ

Pour répondre aux besoins d’applications émergeantes impliquant des capteurs cylindriques et des structures mem-
branaires, la simulation de structures de plus en plus fines et flexibles apparait nécessaire. Ces innovations interagis-
sent avec leur environnement pour acquérir des données ou dans une fonction précise. Dans ce contexte, l’interaction
fluide-structure (IFS) s’impose pour modéliser les phénomènes mis en jeu. Dans le cadre de cette thèse, une nouvelle
méthode de couplage est proposée, combinant les deux méthodes traditionnelles monolithiques et partitionnée en une
modélisation hybride. Le maillage solide est immergé dans le maillage fluide-solide à chaque pas de temps, tout en
bénéficiant de son propre solveur solide. The solveur hyper-élastique met en place une formulation en déplacement et
pression, dans laquelle l’équation de la quantité de mouvement est complétée par une équation de pression qui traduit
le caractère incompressible du fluide. Cette formulation est obtenue par séparation du tenseur des contraintes en ses
parties volumétriques et déviatoriques, ce qui permet la résolution du problème dans la limite d’incompressibilité. Une
linéarisation de la partie déviatorique est également implémentée. Le maillage eulérien contient à la fois les domaines
solides et fluides et permet la modélisation de phénomènes physiques complémentaires. Les méthodes d’adaptation
de maillage anisotrope et de Level-set sont utilisées pour le couplage à l’interface entre le solide et le fluide afin de
capturer plus finement leurs interactions. Tous les éléments précédemment introduits forment la ≪ Adaptive Immersed
Mesh Method ≫ (AIMM). La méthode variationnelle multi-échelle est exploitée pour les deux solveurs afin d’amortir les
oscillations parasites susceptibles de résulter de la modélisation en éléments tétraédraux linéaires. La méthode a été
construite en 3D en gardant en tête les aspects de calcul parallèle. De multiples tests de validations en 2D et 3D sont
présentés pour prouver le bon fonctionnement des solveurs mis en place. Pour finir, la méthode a été testée pour une
application industrielle.

ABSTRACT

The need to simulate flexible, relatively thin structure is of growing interest with applications ranging from thin cylindrical
sensors to membrane-like structures. These structures usually interact with their surroundings to accumulate data, or for
a specific purpose. The inevitable interaction between the surrounding fluid and the solid is solved using a novel Fluid–
Structure Interaction (FSI) coupling scheme. This thesis proposes a novel way to model the interaction between the
fluid and solid. It consists of a hybrid method that combines both the traditional monolithic and partitioned approaches for
Fluid–Structure Interaction (FSI). The solid mesh is immersed in a fluid-solid mesh at each time step, whilst having its own
independent Lagrangian hyperelastic solver. The hyperelastic solver consists of a mixed formulation in both displacement
and pressure, where the momentum equation of the continuum is complemented with a pressure equation that handles
incompressibility inherently. It is obtained through the deviatoric and volumetric split of the stress that enables us to solve
the problem in the incompressible limit. A linearization of the deviatoric part of the stress is implemented as well. The
Eulerian mesh contains both the fluid and solid and accommodates additional physical phenomena. Anisotropic mesh
adaptation and the Level-Set methods are used for the interface coupling between the solid and fluid to better capture the
interaction between them. All the above components form the Adaptive Immersed Mesh Method (AIMM). The Variational
Multi-Scale (VMS) method is used for both solvers to damp out any spurious oscillations that may arise for piece wise
linear tetrahedral elements. The framework is constructed in 3D with parallel computing in mind. Extensive 2D and 3D
test cases are presented that validate the hyperelastic Lagrangian solver, and the FSI AIMM framework. An application
of the industrial partners was lastly tackled.

KEYWORDS

Fluid–Structure Interaction(FSI), Finite Elements, Variational Multi-Scale methods, Anisotropic mesh adapta-
tion, Hybrid method, hyperelastic.
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