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Chapter 1

Introduction

1.1 Résumé

Le soudage est un procédé courant permettant d’assembler de façon permanente des pièces
métalliques par fusion locale et resolidification du matériau. Du fait du chargement thermique,
les soudures ont des caractéristiques microstructurales complexes. En particulier, des pores (ou
soufflures) peuvent être créés par piégeage de bulles de gaz lors de la solidification. Ces pores sont
des défauts, pouvant réduire les performances mécaniques des pièces lors de leur utilisation. Nous
nous intéresserons en particulier à leur résistance à la rupture ductile, mode de ruine fréquent
associé à une forte déformation plastique au niveau local. Les pores peuvent être observés par
des moyens de contrôle non destructif comme la tomographie X. Cependant l’utilisation directe
des défauts observés dans une simulation mènerait à des coûts de calcul prohibitifs.

L’objectif de l’étude est d’analyser l’influence des pores sur la rupture ductile de pièces
soudées, et de proposer une méthode permettant de prendre en compte de façon simplifiée les
images de tomographies afin de prévoir efficacement et précisément la résistance en rupture
ductile.

L’influence des pores sur la rupture ductile peut être étudiée grâce à des simulations mi-
cromécaniques sur des cellules élastoplastiques contenant une distribution aléatoire de pores. De
telles simulations permettent de prendre en compte l’interaction entre défauts. La détection de la
rupture à l’échelle de la cellule, l’influence de l’orientation du chargement et l’effet de différentes
populations seront en particulier étudiés.

A partir des simulations sur microstructures aléatoires, la dépendance de la déformation à
localisation aux conditions de chargement peut être représentée par un métamodèle obtenu par
krigeage. Une approche multifidélité est utilisée pour combiner les résultats de nombreuses
simulations sur cellules à un pore, simulations rapides mais peu précises et un nombre plus limité
de simulations plus coûteuses sur cellules aléatoires. Un critère d’endommagement ductile peut
alors être déduit du métamodèle .

Enfin, la rupture ductile est étudiée expérimentatement par des essais in-situ observés par
tomographie synchrotron. L’évolution des pores peut être suivie lors de leur déformation. Les
résultats expérimentaux sont également comparés à ceux de simulations d’éprouvettes avec
défauts. La comparaison est menée à la fois au niveau du comportement macroscopique, et à

9



10 CHAPTER 1. INTRODUCTION

celui de la déformation locale des défauts.

1.2 Welding and its consequences on materials

Welding is a widespread assembly process used in numerous industries to permanently join
metallic parts while ensuring material continuity (Paillard, 2014). Welding generally consists in
locally and suddenly heating the base metal past its melting point so as to join the two parts when
the metal solidifies back. Many variants of welding are available, differing by the origin of the
energy needed to melt the metal.

For instance, in laser welding, the energy is provided by the absorption of a high power
density laser beam (Bruyère et al., 2014). The welding can be carried out with a series laser
pulses of high power but low duration. This causes a sudden heating of the material, which melts
and may even vaporize. A weld pool is created, but also a capillary, that is a zone left empty by
the sublimated material. When the pulse ends, the material solidifies back and creates a bond
between the two parts to be joined. To continue the weld joint, a new pulse must then be emitted
on an area connected to the one already targeted.

The thermal cycling leads to a modification of the material characteristics. The metallographic
section of welded TA6V plates in Figure 1.1 shows the extent of the transformation. Far from the
weld, the metal remains in its initial state. Closer to the joint is the heat-affected zone, which
has been heated during the pulse but has remained in a solid state. Finally at the heart of the
joint is the fusion zone, where the material has been transformed into a liquid or even gaseous
state before solidifying. Each zone exhibits a different microstructure. Thermal cycling may
also induce residual stress in the materials. These metallurgical transformations were studied by
Sarre (2018). Moreover, the fusion zone may contain weld pores, which are created if the weld
capillary collapses and traps gas bubbles. Lacourt (2019) characterized the population of such
pores in a weld joint.

Figure 1.1: Metallographic observation of a TA6V weld joint by pulsed laser welding. The fusion
zone and base metal display different microstructures. Adapted from Sarre (2018).
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1.3 Ductile fracture of welded parts

Pores constitute defects that weaken the weld joint, due to the local lack of matter, and to stress
concentration. In order to efficiently design parts, it is of relevance to engineers to determine to
what extent the defects affect the mechanical resistance of welded parts.

The mechanical resistance depends on the applied loading conditions. For cyclic loading and
therefore for fatigue failure mode, defects are known to reduce lifetime, especially if they are
close to the surface. The influence of the weld pores on the lifetime was studied extensively by
(Lacourt, 2019).

Another loading condition of interest consists in applying a monotonic loading on the part
until it fails. At room temperature, numerous metals (including TA6V alloy, and even in weld
joints (Sarre, 2018)) fail by ductile fracture. This type of fracture is characterized by significant
plasticity, at least at small scales. The typical failure pattern shows several stages (see Figure 1.2).
Voids are first nucleated within the metal, for instance by decohesion near inclusions or between
phases. Increasing the applied displacement then leads to the growth of the voids. The final stage
of failure corresponds to voids coalescing, i.e. merging together either by internal necking, or by
the nucleation of many new small secondary voids between existing voids. Depending on the
loading conditions and the materials, the extent of each of the previous phases may change. Voids
facilitate ductile fracture as stress concentrators favoring plasticity and nucleation in their vicinity,
and by reducing effective cross-section. However, unlike fatigue, nucleation would naturally
produce voids, even if pores were not initially present.

Figure 1.2: Schematic representation of the main phases of ductile fracture: void nucleation,
growth and coalescence. Taken from Tanguy (1999).

1.4 Non destructive controls and justification of exemptions

As gas pores are defects, process parameters should be chosen to limit their number and size.
However, even with an optimized process, pores may still arise in weld joints. Under these condi-
tions, it is important to verify that the produced parts meet the mechanical strength requirements
despite the presence of defects. In the case of critical or high value-added parts manufactured in
small batches, it is neither viable nor sufficient to sacrifice a part of the production for destructive
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mechanical tests so as to deduce the average properties of the product. Instead, each part produced
must be non-destructively tested.

Non destructive controls allow to detect pores. Surface defects can be easily detected by
visual inspection, dye penetrant inspection, magnetoscopy or even analysis of eddy currents
(Cherfaoui, 2006). However defects deeper within the weld joint require volume methods such
as ultrasonic testing or X-ray radioscopy. This study will focus on X-ray methods. In X-ray
radioscopy, an image is produced by illuminating the tested specimen with an X-ray beam,
producing images where voids appear as zones of lower X-ray absorption. By itself, radioscopy
only yields two-dimensional information and not the precise location of voids in space.

By combining several images of the same specimen taken under different angles (for instance
by rotating the specimen), a three-dimensional image can be reconstructed by Radon transform.
This process is known as X-ray Computed Tomography (CT). Pores are then precisely located in
three dimensions within the weld joint. The resolution and thus ability to detect defects naturally
depends on the apparatus used. Whereas laboratory tomographs, which are increasingly available,
allow to detect defects of the order of 50 µm, higher resolution values, better than 1 µm, can be
reached with synchrotron beam lines. Lacourt (2019) identified with synchrotron CT the pore
population in a weld joint (Figure 1.3).

Figure 1.3: Pore population in a weld joint, observed with synchrotron tomography by Lacourt
(2019)

The defect population obtained with tomography does not directly indicate the mechanical
resistance of the specimen. A first approach is to only use very simple geometric information
like the total porosity or the diameter of the largest pore, as in the standard NF EN ISO 13919-1
(2019). If such quantities are larger than some threshold, the weld joint is deemed insufficiently
resistant. This approach is simple to use, but makes limited use of the physical understanding of
failure. Therefore, it is generally too conservative and may lead to discard parts which would
satisfy otherwise all the requirements of the industrial application. Another approach is to use
numerical simulations to predict the part’s mechanical behavior, and include as much information
as possible from the tomography images. For instance, in finite element simulations, all the visible
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defects could be meshed and the specimen could then be simulated until its failure. Provided
that a suitable model is used for the matrix, this approach would lead to a precise estimation of
mechanical resistance to monotonic loading. With this precise estimation, parts not satisfying
the standards on geometric information, but with enough predicted resistance, could be sensibly
accepted. This justification of exemption allows reducing process costs and delays associated
with discarding functional parts.

However the simulations precisely accounting for all information would require a high number
of degrees of freedom and be untractable. At least they would require too long computational
power to be used in a production process and to respect production schedule. How should
therefore tomography information be taken into account for a precise estimation of resistance to
ductile loading without prohibitive computational times?

1.5 Objectives and methodology of the study

The main objective of the present study is therefore to investigate the role of weld pores on the
ductile fracture behavior, and to propose a method to account for the presence of these defects
in a simplified way. The study will focus on a welding process of industrial interest for the
CEA. More precisely, plates of titanium alloy TA6V are joined with pulsed laser welding. This
process was already studied by Sarre (2018) (metallurgy and ductile fracture from a macroscopic
point of view) and Lacourt (2019) (pore population and their behavior in fatigue). However this
study could be of interest for the ductile fracture of any porous material, including additively
manufactured materials.

More generally, the key research problem is to understand how a population of preexisting
pores influences ductile fracture. This issue can be investigated in a simplified and model setting:
a small volume of material containing a population of pores is subjected to monotonic loading.
This micromechanical approach captures elementary ductile failure mechanisms and may be
representative of the local behavior of the material in a structure.

The micromechanical approach used initially purely mathematical methods and allowed
creating analytic ductile failure criteria such as Gurson’s (1977) well-known model. However,
such analytic methods require simplifying hypotheses and may not represent the whole complexity
of the ductile fracture mechanisms. In a computational homogenization approach, the behavior of
the volume element may also be simulated, by finite elements for instance. However most existing
studies only considered cells with a single void. Such unit cells cannot represent correctly the
interaction between different voids. This is especially an issue for high porosity microstructures.
Simulations of random cells, i.e volume elements with randomly dispersed voids, may therefore
help assess the interaction of the defects. Fritzen, Forest, Böhlke, et al. (2012) obtained yield
surfaces from simulations on such cells, but this only corresponded to the early stage of ductility.
In order to understand ductile fracture, simulations should reach the coalescence or final failure
of the random cells.

The present study therefore deals with random microstructures composed of an elastoplastic
matrix surrounding a population of randomly dispersed voids. They are simulated until ductile
failure for various loading conditions. The effect of the loading and simulation conditions are
first assessed to verify the soundness of the micromechanical approach. Proportional loading
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conditions are chosen. Ductile failure is known to depend, for isotropic materials, mainly on stress
invariants, such as the stress triaxiality and the Lode parameter. However the loading orientation
with respect to the (cubic) cell may also play a role, and this model-induced anisotropy is carefully
studied. Moreover, detecting the onset of failure in a cell simulation is not straightforward:
There is no damage in the matrix material, and the ductile fracture is then a purely cell-level
phenomenon. Two failure criteria are used and compared: a geometric coalescence criterion and a
more mathematically-justified localization criterion (the formation of strain localization bands is
a precursor to ductile fracture). The influence of void interaction is studied by comparing several
void populations. For simplicity, populations of identical spherical defects are used. However
the dispersion of failure-related quantities, and the role of the number of simulated voids are
assessed.

Cell simulations allow to understand the influence of voids on ductile fracture. In order
to simulate ductile fracture in real structures and weld joints, a hybrid approach can be used.
Whereas the largest visible voids may be explicitly represented (i.e meshed) in a finite element
simulation, the smaller voids have to be considered implicitly, for instance with a ductile failure
model. This model can be constructed from the simulations on random microstructures.

So as to construct the model, the evolution of strain localization with respect to loading
conditions is required. A metamodelling strategy is used to construct a response surface from a
set of simulations at various loading conditions, so as to allow non parametric models. However,
simulations on random microstructures are computationally expensive, much more than simula-
tions on unit cells. A multifidelity approach is therefore used to combine precise, but expensive
results on random cells, and results on unit cells, which only give the overall trends but require
less computational budget. This metamodelling approach uses kriging (Matheron, 1962), also
known as Gaussian process regression. A key requirement is to compensate the effect of the
loading orientation on random cell simulations, for it is not related to physical mechanisms but
due to biased model simulation conditions.

Finally the weld joint may be studied from a more experimental point of view. The macro-
scopic mechanical behavior was already studied by (Sarre, 2018) who proposed a ductile failure
model. However, how do the defects evolve during deformation and influence ductile failure?
In situ tensile tests are thus carried out and imaged by synchrotron tomography. Unlike Lacourt
(2019), the focus is not on the initial population, but on observing the deformation of individual
defects throughout the tensile experiment. The tensile tests are also simulated, so as to compare
with experimental results. The largest defects are explicitly taken into account. Moreover a ductile
damage criterion is derived from the macroscopic response surface on random microstructures
and implemented in the FE software. With the full simulation of the specimens with defects, sim-
ulations can be compared to experiments both for the macroscopic behavior and the microscopic
deformation of defects.

1.6 Organization of the dissertation

The dissertation is organized as follows:

• Chapter 2 describes the methodology for creating random microstructures made of an
elastoplastic matrix with a population of random dispersed voids, and then simulating its
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behavior until failure. Simple loading conditions are applied and cell failure is detected with
a geometric coalescence criterion. The dispersion of results with regard to the realization
of random microstructure is quantified, and the role of the number of voids is assessed.

• Chapter 3 extends the preceding methodology by considering arbitrary loading orientations.
A more powerful and mathematically-justified localization criterion (Rice criterion) is
introduced and implemented. The anisotropy due to loading orientation is carefully studied.

• Chapter 4 uses the results of cell simulations to construct a (non-parametric) response
surface for strain localization. Results from unit and random cells are combined with a
multifidelity Gaussian Process Regression approach.

• Chapter 5 describes in situ tensile tests experiments on TA6V weld joints, observed by
synchrotron tomography. The tests are also simulated, allowing to compare experimental
and numerical results both for the overall mechanical behavior and the local evolution of
defects.



16 CHAPTER 1. INTRODUCTION



Chapter 2

Ductile Fracture of Materials with
Randomly Distributed Voids

A reliable determination of the onset of void coalescence is critical to the mod-
elling of ductile fracture. Numerical models have been developed but rely mostly
on analyses on single defect cells, thus underestimating the interaction between
voids. This study aims to provide the first extensive analysis of the response of
microstructures with random distributions of voids to various loading conditions
and to characterize the dispersion of the results as a consequence of the random-
ness of the void distribution. Cells embedding a random distribution of identical
spherical voids are generated within an elastoplastic matrix and subjected to a
macroscopic loading with constant stress triaxiality and Lode parameter under
periodic boundary conditions in finite element simulations. The failure of the
cell is determined by a new indicator based on the loss of full rankedness on the
average deformation gradient rate. It is shown that the strain field developing in
random microstructures and the one in unit cells feature different dependencies
on the Lode parameter L owing to different failure modes. Depending on L, the
cell may fail in extension (coalescence) or in shear. Moreover the random void
populations lead to a significant dispersion of failure strain, which is present
even in simulations with high numbers of voids.

This chapter is mainly based on the homonymous article, published in the
International Journal of Fracture (Cadet, Besson, Flouriot, Forest, Kerfriden,
and Rancourt, 2021). A new appendix dedicated to the position of localization
bands was added.

17
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2.1 Résumé détaillé

La validation des modèles d’endommagement ductile, et plus généralement l’étude des
phénomènes mécaniques qui y sont associés, passe fréquemment par la simulation numérique de
la rupture de volumes élémentaires. Le plus souvent, ces volumes élémentaires sont constitués
d’une matrice élastoplastique contenant un seul défaut (vide). Cependant, une telle cellule unitaire
risque de représenter de façon trop simplifiée l’interaction possible entre les défauts. La ruine
de cellules avec plusieurs défauts a cependant été peu étudiée. Ce chapitre se propose donc de
simuler la rupture ductile de microstructures constituées d’une distribution aléatoire de défauts.

Nous présentons d’abord la méthodologie pour construire et mailler de telles microstructures,
constituées d’une matrice élastique/parfaitement plastique incluant une population de défauts ré-
partis aléatoirement. Pour la simulation par éléments finis, des conditions aux limites périodiques
sont imposées. De plus, un chargement proportionnel est appliqué de telle manière que l’état de
contrainte, caractérisé par la triaxialité des contraintes T et le paramètre de Lode L, reste constant
tout au long de la simulation.

Identifier l’instant exact auquel la ruine de la cellule se produit est une tâche complexe. Cet
instant peut être décrit par la survenue des phénomènes de coalescence (liée à la fusion de défauts
proches, mais pouvant s’interpréter comme un état de déformation particulier) ou de localisation
(liée à une perte d’ellipticité des équations mécaniques). Ces deux critères sont susceptibles
de fournir des informations complémentaires. Un critère en coalescence, construit à partir du
déterminant de la vitesse en déformation moyenne, sera utilisé ici (le prochain chapitre traitera de
la localisation).

Les comportements en rupture ductile des cellules unitaires et des microstructures aléatoires
peuvent alors être comparés. Lorsque la coalescence se produit, des bandes de concentration
de la déformation plastique sont visibles dans les deux types de cellules. Ces bandes sont
principalement planes, même si dans le cas des cellules aléatoires, les bandes peuvent serpenter
pour joindre différents défauts. L’orientation de ces bandes est dictée par les conditions aux
limites : orthogonale à l’axe de chargement principal (mode d’extension) ou à 45◦ de celui-ci
(mode de cisaillement). Par ailleurs, l’évolution de la déformation à rupture avec T est similaire
pour les deux types de cellules, mais très différente quant à l’évolution en fonction de L. Pour un
chargement en cisaillement généralisé (L∼ 0), la déformation à rupture est fortement abaissée
pour les microstructures aléatoires. Ceci est dû à un passage du mode de rupture en cisaillement
plutôt qu’en extension. Ce changement est beaucoup plus restraint dans le cas de la cellule
unitaire.

Par ailleurs, la dispersion due aux microstructures aléatoires peut être étudiée. Cette dispersion
est élevée: il peut y avoir un facteur 4 sur la déformation à rupture pour deux réalisations de
microstructures aléatoires soumises à un même chargement. Cette dispersion décroît avec le
nombre de défauts mais reste élevée même pour de grandes microstructures avec une centaine de
défauts.

Enfin, plusieurs aspects de la méthode de simulation des microstructures aléatoires sont
discutés. Les résultats du critère en coalescence sont comparés à ceux d’un autre critère de
la littérature, proposant une interprétation énergétique de la coalescence. Les deux critères
fournissent des résultats similaires pour une rupture en extension, mais notre critère semble mieux
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réprésenter la rupture en mode de cisaillement. Par ailleurs, l’effet du comportement du matériau,
et notamment de l’écrouissage est discuté: avec certains écrouissages, la différence entre cellules
unitaire et aléatoires est réduite.

2.2 Introduction

Predicting the failure of a structural part subjected to monotonic loading requires a good under-
standing of the ductile fracture behavior of the material. However ductile fracture is a complex
phenomenon involving a variety of mechanisms, strongly dependent on the material and involving
large strain at least on a local level (Besson, 2004). Voids are first nucleated within the material,
especially near second phase inclusions. Depending on the loading conditions, the voids may or
may not grow. Finally the material fails when voids coalesce, either by internal necking or by
the nucleation of secondary voids (mostly for shear-dominated loading). Softening due to void
growth may also be sufficient to initiate failure without coalescence per se (Tekoğlu et al., 2015).
Although a large body of literature on ductile fracture has already been published, accurate failure
prediction is still a research problem, as evidenced by the Sandia fracture challenges (Boyce,
Kramer, Fang, et al., 2014; Boyce, Kramer, Bosiljevac, et al., 2016; Kramer et al., 2019): besides
the difficulty of calibrating modelling parameters from experimental data, predicting ductile
failure requires to take into account many strongly nonlinear physical processes.

Experimental studies have shown that the failure behavior strongly depends on the stress state
to which the material is subjected. The effects of the stress triaxiality (ratio of the von Mises
equivalent stress to the mean stress) and the Lode parameters (reflecting the third stress invariant)
have been extensively investigated (for instance by Helbert et al. (1996), Bao and Wierzbicki
(2004), Barsoum and Faleskog (2007), Gao et al. (2009), Dunand and Mohr (2011), Gilioli et al.
(2013), Zhai et al. (2016), Xiao et al. (2018), and Zhang, Badreddine, et al. (2020)). Models
representing ductile failure should therefore account for the effect of these two parameters.

Analytic and computational approaches at a micromechanical level have also been developed
to investigate the mechanisms of ductile fracture, to model ductile fracture and provide microscale-
informed failure prediction. Following Gurson’s (1977) results from limit analysis, increasingly
precise analytic models have been developed by explicitly representing approximate strain fields
near voids in a plastic material. Besson (2010) provides a review of such models but more recent
ones have been developed to represent void growth and coalescence either by necking or in
shear (Benzerga and Leblond, 2014; Morin, Leblond, Benzerga, and Kondo, 2016; Torki, 2019;
Nguyen et al., 2020), and can be used for practical applications (Keralavarma et al., 2020). The
limit analysis approach was also extended by Leblond and Mottet (2008) to random distribution
of voids. Computational studies of ductile fracture may help validate these models or provide
valuable insights in the failure mechanisms on their own, for example by quantifying the effect
of stress triaxiality and Lode parameter (Barsoum and Faleskog, 2011; Zhu, Engelhardt, et al.,
2018) or by distinguishing strain localization from coalescence (Wong and Guo, 2015; Guo and
Wong, 2018; Zhu, Ben Bettaieb, et al., 2020). However these studies are mostly carried out on
unit cells: the global behavior of the material is summarized by that of a meshed cell containing a
single void. Even though this approach was proven useful to analyze fundamental mechanisms at
the void level at a low computational cost, it oversimplifies the interaction between voids, whose
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influence increases with porosity, by assuming that voids are regularly distributed as a cubic
lattice.

Some studies have investigated the interaction of voids in simplified configurations, involving
only a couple of voids. For instance Bandstra and Koss (2008) considered three-voids clusters
with rotational symmetry in a hexagonal volume element; Tvergaard (2016) and Tvergaard (2017)
considered 2D clusters with three aligned pores, whereas Trejo Navas et al. (2018) systematically
studied 3D three pore clusters. Khan and Bhasin (2017) investigated the interaction between
two populations of voids, in the simplified context of a high symmetry periodic arrangement.
However, in a real material, a large number of voids, with complex spatial distribution interact
with each other. Shakoor et al. (2015) considered 2D microstructures with a random population
of voids and showed that increased triaxiality accelerates coalescence. Shakoor et al. (2018)
also provided a very detailed description of the mechanisms of ductile fracture from nucleation
up to coalescence, between randomly distributed voids. All these studies evidence the role of
clusters but do not allow to compute coalescence properties depending on loading conditions, as
a model of ductile fracture would require, because they investigate too few void configurations
and loading cases.

Analytical approaches can take random void distributions into account. For instance, Leblond
and Mottet (2008) developed a limit analysis model coupling coalescence and shear band for-
mation initially for a periodic distribution, but proposed a method to extend it to the random
case by considering all possible orientations of the shear bands. Moreover, works by Danas and
Ponte Castañeda (2009) or Vincent, Monerie, et al. (2009) for instance, considered random void
populations within the context of a nonlinear variational homogenization scheme: the porous
medium was compared to a linear composite, whose stiffness is based on Ponte Castañeda
and Willis’s (1995) bounds, an effective method to represent a population of random elliptical
voids. This variational technique was subsequently used by Danas and Ponte Castañeda (2012)
to investigate the influence of stress triaxiality and Lode parameter. However, such analytical
approaches should be compared to simulations to check the validity of their assumptions. For
instance, Danas and Ponte Castañeda’s (2012) predictions for the behavior at low triaxiality were
found to be unrealistic by Hutchinson and Tvergaard’s (2012) FEM simulations on unit cells with
the same loading conditions.

Explicit simulations of random void distributions have been carried out in a limited number
of works. Bilger, Auslender, Bornert, Michel, et al. (2005) and Bilger, Auslender, Bornert,
Moulinec, et al. (2007) using Fast Fourier Transform then Fritzen, Forest, Böhlke, et al. (2012)
with Finite Elements Analysis proposed a computational homogenization method to determine an
effective yield surface. Several microstructures consisting of a random void distribution embedded
in a plastic matrix are simulated up to overall plastic yield for several loading conditions. The
results are averaged over the several microstructures to determine a homogenized yield surface
(represented for Fritzen, Forest, Böhlke, et al. (2012) by a GTN criterion). This approach was
extended to a Green-type porous matrix (Fritzen, Forest, Kondo, et al., 2013), to multiple void
populations of different size (Khdir et al., 2014) and to non-spherical voids (Khdir et al., 2015).
However these studies were focused on yield surface and did not address coalescence. Recently,
Hure (2021) did perform FFT simulations on cells with multiple voids up to coalescence, and
illustrated the influence of the number of voids on the stress at coalescence. Yet this study was
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limited to the simple case of axisymmetric loading.
To the authors’ knowledge, a description of coalescence for various loading conditions and

at the level of a representative volume element with multiple voids, has not been done yet. We
therefore propose here to extend the methodology of Fritzen, Forest, Böhlke, et al. (2012) and
Hure (2021) to the study of coalescence under various stress states. We aim to assess the effect of
the interaction between randomly distributed voids on the macroscopic failure response of a cell,
depending of the stress state. The results should be compared to those of unit cells to identify how
they differ from cells with multiple voids. Moreover the statistical dispersion in failure results
linked to the random distribution should be quantified.

To this end, cells composed of a random population of identical spherical voids are generated
and subjected to various loading conditions, characterized by constant stress triaxiality and Lode
parameter levels, in finite element simulations with Z-set software (Besson and Foerch, 1998).
We then propose a coalescence indicator based on the loss of full rankedness of the macroscopic
deformation gradient rate. The identification of coalescence during the simulation allows to
extract several quantities of interest at the onset of coalescence. Our main results show that the
evolution of the onset of coalescence with respect to the Lode parameter is qualitatively different
between random microstructures and unit cells. This difference is associated with a change
of coalescence modes for random microstructures. Finally, dispersion of the results due to the
randomness of the void distribution is studied.

Section 2.3 describes the methodology used to generate random microstructures and to
prescribe the loading conditions within the FE simulation. In section 2.4 typical numerical
simulation results are presented and an indicator is defined to identify failure. Section 2.5 applies
the methodology of sections 2.3 and 2.4 to compare the response of random microstructures to
that of a unit cell, both on the evolution of macroscopic (cell-level) quantities, and on plastic
strain field patterns. The dispersion of the results is also investigated. Finally, we discuss in
section 2.6 the simulation hypotheses chosen in this work, and verify to what extent the results
can be generalized.

An intrinsic notation is used for tensors: vectors, as first order tensors, are represented as
v = vie i and second order tensors as A∼ = Ai je i⊗ e j, where (e i) is an orthonormal frame. The
subscript 0 in the notation A0 refers to the value of A in the initial configuration at time t = 0. The
position of a material point initially at x 0 evolves with time t as x = Φ (x 0, t); the deformation

gradient is then defined as F∼ =
∂Φ
∂x 0

. Quantities decorated with an overlying bar, such as Ā, refer
to the macroscopic counterpart (at the level of a cell) of a quantity A defined locally. For instance
F̄∼ is the average deformation gradient (defined more precisely in section 2.3.3), and J̄ = det

(
F̄∼
)
.

2.3 Methodology

2.3.1 Generation of random microstructures and finite element meshing

The methodology to create the elementary volumes follows that of Fritzen, Forest, Böhlke, et al.
(2012). These cells consist of a cubic matrix containing a population of identical non overlapping
spherical defects. As all the Nde f ects spheres have the same radius r, the porosity of the cell (of
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size Lcube and therefore of volume V0 = L3
cube) is defined as:

f =
4π

3
Nde f ects

(
r

Lcube

)3

(2.1)

The radius of the voids is fully determined once the porosity and the number of voids are chosen.
The initial porosity was chosen as f0 = 6%, to be compared to the range of porosity levels
f0 ∈ [0.1%,30%] considered by Fritzen, Forest, Böhlke, et al. (2012). However unit cell analyses
frequently study lower porosities, with f0 ∼ 0.1% (Wong and Guo, 2015; Vishwakarma and
Keralavarma, 2019; Guo and Wong, 2018). For low porosity values, interactions between defects
can indeed be neglected (Koplik and Needleman, 1988), at least for the growth phase. Fritzen,
Forest, Böhlke, et al., 2012 showed for instance that unit cells and random microstructures with
sufficiently low prosity levels have a similar growth behavior, which can be represented by a
GTN criterion.

Nonetheless, high porosity levels of 6% are possible in sintered materials (Becker, 1987),
nodular cast iron (Zhang, Bai, et al., 1999), irradiated stainless steel (Cawthorne and Fulton,
1967). Moreover, overall porosity of 0.5% to 2% can be found in weld joints (Li et al., 2003;
Sarre, 2018; Lacourt, 2019), but porosity values defined at a smaller scale, near void clusters, can
be higher. A high initial porosity level can also provide insight for coalescence at lower initial
porosity levels. Coalescence starts after a sufficient phase of growth so that voids begin interacting
with each other and can no longer be considered isolated, which means that the porosity is no
longer negligible. Notwithstanding the change of void shape which will play a significant role,
starting at high porosity is equivalent, to some extent, to considering the end of a simulation at
lower porosity.

The position of the defects is chosen according to a Poisson sphere process (Matern, 1986).
As the target porosity is significantly lower than the jamming porosity levels that characterize
such processes (around 38 % according to Gamito and Maddock (2009)), a dart-throwing method
is sufficient for the sampling. The position of the center of a sphere is chosen according to a
uniform distribution on the cube. If the distance between the resulting spheres and the already
built defects is larger than 10% of the radius of a sphere, the new sphere is included in the list
of defects. Otherwise it is rejected and a new possible center is chosen randomly. Introducing a
repulsion distance between the defects allows a better mesh quality. During the FEM simulations,
periodic boundary conditions are applied (see section 2.3.3). Therefore a periodic microstructure
and in turn a periodic mesh should be used. In order to ensure the periodicity of the population of
defects, each time a new defect intersects a side of the cube, it is copied on the other side (thus
there are four copies if an edge is intersected, and eight if the defect contains a vertex of the cube).
All of these copies are taken into account to determine intersections between defects. Fritzen,
Forest, Böhlke, et al. (2012) verified several statistical properties of the representativeness of this
process.

The cell with the preceding defect population is meshed with NETGEN software (Schöberl,
1997). This tool first meshes surfaces, then volumes, and generates a non structured tetrahedral
mesh. Periodicity of the mesh is imposed so that opposite sides of the cube have identical surface
meshes. A maximum element size of hcell = r is imposed globally on the cell, but on the surface
meshes of the defects the maximum element size is reduced to hvoid = r/5. The mesh is thus
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refined on the part of the surface mesh corresponding to the surface of voids. Finally, tetrahedral
second-order 10-node elements with reduced integration are used to limit volume locking (due to
large strain plasticity) in the FEA simulations. An example of the meshing of a microstructure
with 27 voids is shown in figure 2.1a.

As cells are cubic, they define a canonical orthonormal frame (O,e 1,e 2,e 3) where O is a
vertex of the cube and the unit vectors e 1, e 2, e 3 are parallel to edges of the cube (in the initial
configuration). All tensor components will be expressed in this frame.

Although a diversity of microstructures were used in this study, several are repeatedly referred
to in this article; they are shown in figure 2.1. The microstructures R1 and R2 are two random
microstructures with 27-voids of radius r = 0.08Lcube,R1. The one-pore cell unit is defined as a
cubic matrix of size Lcube,unit = Lcube,R1/3 containing a unique defect of radius r = 0.08Lcube,R1
(same radius as before, and thus same volume fraction). It is meshed with the same procedure
and same parameters as the larger cells with a random population. Finally the microstructure
lattice consists in 3×3×3 defects arranged on a cubic lattice; it is meshed in the same way as
the random microstructures, so the mesh is not the assemblage of 27 small identical meshes of
the unit cells.

2.3.2 Material behavior law at finite strain

Finite element simulations are carried out using Zset software (Besson and Foerch, 1998; Zset,
2022). As the matrix can undergo large deformation before coalescence, the simulations are
performed in a finite strain framework. A local objective frame approach is adopted to formulate
the constitutive law of the matrix (Besson, Cailletaud, et al., 2009). The strain rate D∼ and Cauchy
stress σ∼ tensors are convected in a corotational frame:

ė∼= Q
∼

T D∼Q
∼

(2.2)

s∼= JQ
∼

T
σ∼Q
∼

(2.3)

where Q
∼

is a rotation matrix verifying −Q
∼

T Q̇
∼
= Q̇

∼

T Q
∼
= W∼ (W∼ = skew(Ḟ∼F∼

−1) is the material
spin tensor). This choice of corotational frame is equivalent to using the Jaumann derivative of
the stress in the hypo-elasticity law.

The constitutive law is then defined by a classical additive decomposition of convected strain
rates in an isotropic elastic part and a plastic part. Isotropy and time-independent perfect plasticity
(absence of hardening) with a von Mises yield criterion are assumed for the matrix material:

ė∼= ė∼e + ė∼p

e∼e =
1+ν

E
s∼−

ν

E
(trs∼)1∼

svm =

√
3
2

s∼
dev : s∼

dev

ψ(s∼) = svm−R0 ≤ 0

ė∼p = ṗ
∂ψ

∂ s∼

(2.4)
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(a) Random microstructure R1 with 27 voids (FE mesh with 255628 nodes).
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(b) Random microstructure R2 with 27 voids (FE mesh with 176982 nodes).
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(c) Unit cell with one void.
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(d) Microstructure lattice with 27 voids on a cubic
lattice.

Figure 2.1: Meshes of some microstructures repeatedly used in the study.
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with s∼
dev the deviatoric part of the rotated Cauchy stress tensor s∼, svm the equivalent von Mises

stress and ṗ =
√

2
3 ė∼p : ė∼p playing the role of the plastic multiplier. The Young modulus, the

Poisson ratio and the yield strength are respectively chosen as E = 200GPa, ν = 0.3 and
R0 = 500MPa, hence R0/E = 0.0025. The cumulative plastic strain is defined as:

p =
∫ t

0
ṗdt (2.5)

where t is actually a fictitious time in rate-independent plasticity, acting as an increasing loading
parameter.

During the finite element analysis, this constitutive law is integrated at each quadrature point
of the finite element mesh by an implicit Euler method, then the global static equilibrium is solved
in total Lagrangian formulation by a Newton-Raphson scheme with a consistent tangent matrix.

2.3.3 Boundary and loading conditions

The boundary and loading conditions follow that of Ling et al. (2016). Periodic boundary
conditions are applied on the sides of the cube (Besson, Cailletaud, et al., 2009). The displacement
field u should therefore have the form:

u = (F̄∼ −1∼) · x 0 + v (x 0) (2.6)

with F̄∼ the average deformation gradient, and v a displacement fluctuation field, periodic and
with zero average over the cell. The periodicity of v and the anti-periodicity of traction vectors
mean that:

v (x +
0 ) = v (x−0 ) (2.7)

σ∼ ·n (x
+
0 ) =−σ∼ ·n (x

−
0 ) (2.8)

if x +
0 and x−0 represent two homologous points on opposite sides of the periodic mesh and n (x 0)

represents the outward-pointing normal to the mesh boundary at x 0. In this formulation, the
degrees of freedom are the three components of the displacement fluctuation field for each node
of the mesh and the nine components of F̄∼ (or rather of E∼ = F̄∼ −1∼).

The macroscopic Boussinesq (or first Piola-Kirchhoff) and Cauchy stress tensors are defined
by:

S̄∼ =
1

V0

∫
V0

S∼ dV0 =
1− f0

V0

∫
V matrix

0

S∼ dV0 (2.9)

σ̄∼ =
1
J̄

S̄∼.F̄∼
T (2.10)

where J̄ = det
(
F̄∼
)

and V0 is the volume of the cell (matrix and defects) in the initial configuration.
The integration on V0 implicitly considers that stress is well-defined and identically zero in the
voids.
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The simulations are carried out at constant (macroscopic) stress triaxiality and Lode parameter.
These quantities are here defined as:

T =
tr σ̄∼

3σ̄vm
(2.11)

L =
2σ̄2− σ̄1− σ̄3

σ̄1− σ̄3
(2.12)

where σ̄eq is the von Mises equivalent stress calculated from σ̄∼ and σ̄1 ≥ σ̄2 ≥ σ̄3 (with σ̄1 > σ̄3)
are the three eigenvalues of σ∼ . L = −1, L = 0 and L = 1 respectively correspond to states of
generalized tension, shear and compression. An alternative definition of a Lode parameter with
L = 1 for tension and L =−1 for compression can also be found in literature (e.g. Barsoum and
Faleskog (2011) and Wong and Guo (2015)).

To ensure that T and L remain constant during the simulation, a special macroscopic spring
element was developed by Ling et al. (2016). It acts on the Ei j degrees of freedom, and its reaction
forces are calculated so that σ̄∼ keeps the following diagonal form throughout the simulation:

σ̄∼ =

σ̄1 0 0
0 σ̄2 0
0 0 σ̄3

= σ̄11

1 0 0
0 η2 0
0 0 η3

 (2.13)

where η2 = σ̄2/σ̄1 and η3 = σ̄3/σ̄1 are prescribed constants which define the stress state. There-
fore the eigenvectors of σ̄∼ are collinear to the three axes of the cube.

Unlike Barsoum and Faleskog (2011), Dunand and Mohr (2014), Wong and Guo (2015), and
Zhu, Engelhardt, et al. (2018) but like Zhu, Ben Bettaieb, et al. (2020) and Guo, Ling, Busso,
et al. (2020), we chose not to consider the effect of a shear stress component (for instance σ̄12)
for computational cost reasons. However the cubic cell exhibits cubic symmetry and has an
anisotropic behavior. The additional stress component could allow different loading orientations
with identical T and L values. The consequences of this choice will be discussed in section 2.6.1.

To prevent degeneracy of solutions due to rigid body motion, a global translation and a global
rotation of the cube should be fixed. The translation is taken care of by fixing a vertex of the
cube. For the rotation, a possible method is to impose three additional constraints on the average
deformation gradient F∼ . For instance F∼ can be supposed symmetric, as done by Ling et al. (2016):

F̄12 = F̄21 F̄23 = F̄32 F̄13 = F̄31 (2.14)

Another method is presented and discussed in appendix 2.B.2.
With the aforementioned conditions, the simulation can be strain-controlled by specifying

only the average strain along the first axis E11 = F̄11−1. Strictly speaking, the tensor E is not a
strain tensor, but it will be used all the same to control the simulation and measure deformation.
We impose E11 = ε̇t, with ε̇ an arbitrary strain rate (the value can be arbitrarily chosen, as the
plasticity is time-independent). At the beginning of the simulation t = 0, the cell is undeformed,
and F̄∼ = 1∼.
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2.4 Description of a coalescence indicator

2.4.1 Typical results of a computation

With the method described in the previous subsection, simulations can be carried out for several
loading conditions. In this study, we are interested in the evolution of several quantities at failure.
However defining ductile failure and detecting it during the simulation is not straightforward. To
illustrate this issue, some enlightening simulation results will be described first.

Three simulations on the microstructure R1 were carried out in generalized tension (L =−1)
at three triaxiality levels T = 0.8, T = 1 and T = 1.4. The figure 2.2a compares the macroscopic
Cauchy and Boussinesq stress components along the main loading axis (the marker on the curves
corresponds to the indicator described later in section 2.4.3). The three loading conditions lead
to a similar evolution of stress. The stress maximum is reached shortly after the beginning of
the computation (for E11 < 0.01) then the stress decreases monotonically and almost linearly.
However, at a critical strain that depends on the loading condition, the decrease in stress suddenly
accelerates and the unit cell quickly loses all its load-bearing capacity (at approximately E11 = 0.5,
0.35, 0.18 for T = 0.8, 1, 1.4 respectively). This event can be thought as the failure of the cell.
Moreover, at the same strain as the onset of stress drop, the transverse strain E22 stabilizes
(fig. 2.2b). This macroscopic failure is also related to the behavior at a more microscopic level.
Figure 2.2 shows the cumulative strain field p shortly after this failure, for T = 1: plastic strain
is concentrated in a band, mostly parallel to a side of the cube (and perpendicular to the main
loading axis) but its exact shape fits closely the distribution of voids.

Although the stress decrease acceleration is clearly visible on the stress-strain plots in
generalized tension, it is difficult to define its exact location so as to determine the precise failure
onset and compute relevant physical quantities at this instant. Moreover the stress decrease does
not generalize to shear-dominated loading conditions. Therefore a more precise failure indicator
remains to be determined.

2.4.2 Available failure indicators in the literature

Several criteria for ductile failure in a unit cell have been developed, and are reviewed for instance
by Zhu, Ben Bettaieb, et al. (2020). The earliest approaches were purely geometrical: Brown and
Embury’s (1973) criterion determines when strain bands are oriented at 45◦ relative to the main
loading axis, whereas McClintock (1968) and Tvergaard and Needleman (1984) (who modified
Gurson’s (1977) model) consider a critical porosity. Following Needleman and Tvergaard’s
(1992) work, a class of criteria determines the instant when strain is no more homogeneous and
concentrates in the ligaments between voids. These criteria compare the norm of the strain rate
in a localization band and its value outside the band (or the average value throughout the unit
cell): if the ratio is higher than an arbitrarily chosen value, failure is said to have been reached.
Such criteria are used for example by Barsoum and Faleskog (2007) or Dunand and Mohr (2014).
Similarly, Luo and Gao (2018) and Vishwakarma and Keralavarma (2019) consider unit cells
composed of several layers and force strain localization to happen in the central one (because
the external layers contain smaller voids or no voids at all): failure can then be monitored by
comparing the behavior of the layers. Another class of criteria determines when a maximum
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stress or force is reached. Such criteria can be derived by limit analyses, for instance Thomason
(1985), Benzerga and Leblond (2014) or Morin, Leblond, Benzerga, and Kondo (2016). Guo and
Wong (2018) interpreted the maximum of an effective force in terms of Rice’s (1976) criterion on
strain localization. Another approach, adopted by Koplik and Needleman (1988) and used for
example by Ling et al. (2016) defines coalescence as the transition to a specific strain state: in
coalescence, ligaments are in a state of uniaxial straining (whereas the rest of the cell is rigid and
hardly deforms). Coalescence could also be interpreted in terms of plastic and elastic energy, as
done by Wong and Guo (2015). A last approach was proposed by Zhu, Ben Bettaieb, et al. (2020)
and involves computing the macroscopic acoustic tensor in order to directly apply Rice’s (1976)
criterion on strain localization.

However, as pointed for instance by Tekoğlu et al. (2015), Guo and Wong (2018) or Zhu,
Ben Bettaieb, et al. (2020), the above criteria actually described two different physical processes:
strain localization and coalescence. During strain localization, strain concentrates in narrow
bands, which can be interpreted as a loss of ellipticity, according to Rice’s (1976) analysis. As
stated previously, Guo and Wong (2018) establish a link between strain localization (through
Rice’s criterion) and maximum force criteria. Nonetheless, the more direct application of Rice’s
criterion by Zhu, Ben Bettaieb, et al. (2020) detects localization significantly later than Guo and
Wong’s (2018) interpretation. On the other hand, coalescence represents the fusion of several
voids into a unique larger void during ductile failure. However the material model described in
this article contains no ingredient to represent explicitly this process of coalescing voids. The
state of coalescence can be deduced nevertheless from the FEM results: at some point in the
loading, the cell stops thinning and the plastic flow inside becomes macroscopically uniaxial
according to Koplik and Needleman (1988).

As the figure 2.2a shows, the cell’s failure, defined by the sudden acceleration of the stress
decrease, is incorrectly predicted by the instant of maximum force applied on the cell (with
our choice of periodic boundary conditions, this force is here represented by S11). Due to the
absence of hardening, the maximum of S11 happens at the beginning in the simulation, much
earlier than the sudden stress drop. On the other hand, this stress drop occurs simultaneously
with the stabilization of deformation in the 2-direction transverse to the main loading 1-axis, and
can thus be associated with coalescence: the stabilization of the average transverse deformation
indicates that the macroscopic strain becomes purely uniaxial. Coalescence thus seems an accurate
failure indicator in this situation. According to Zhu, Ben Bettaieb, et al. (2020), an ellipticity
loss approach based on the computation of the macroscopic acoustic tensor could also give
sensible values of failure strains. This criterion was found to predict slightly earlier failure than a
coalescence indicator. However Morin, Blystad Dæhli, et al. (2019) tried to apply coalescence
and strain localization approaches to match experimental results; both gave acceptable results,
with slightly better results for coalescence. Therefore we will focus first on the coalescence
approach.

2.4.3 Failure indicator based on the loss of full rankedness of ˙̄F∼

The criterion of the stabilization of transverse displacement, as used by Ling et al. (2016), suffers
from two main drawbacks. In a random population of voids, strain localization bands might not be
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parallel to a face of the cube, so monitoring E22 with respect to E11 might not detect coalescence.
Moreover, this criterion is limited to the detection of coalescence by internal necking where
voids coalesce in the plane orthogonal to the main loading axis. However, for shear dominated
loading conditions (when the Lode parameter is close to zero), coalescence is known to occur
in shear bands (Barsoum and Faleskog, 2007; Barsoum and Faleskog, 2011). We generalize
here the stabilization of transverse deformation by noting that for both internal necking and
shear, deformation gradient has a specific form during coalescence. After coalescence, there
exist orthogonal unit vectors e and e ′ such that F̄∼ = 1∼+ ε̇t e ⊗ e for uniaxial straining and

F̄∼ = 1∼+ ε̇t (e ⊗e ′+e ′⊗e ) for pure shear. In both cases, det
(

˙̄F∼
)
= 0. Therefore, as coalescence

takes place, det
(

˙̄F∼
)

should vanish.

This behavior of det
(
Ḟ∼
)

should be compared to the homogeneous plastic deformation case
(which is an approximation, since strain may be concentrated in some ligaments). Let us then
consider the function:

δ (t) = ε̇
−3(1+ ε̇t)3det

(
˙̄F∼
)

(2.15)

which compares the evolution of det
(

˙̄F∼
)

to its theoretical evolution in the case of homogeneous
compressible plastic flow. A derivation of the expression of δ and an example can be found in
appendix 2.A. Therefore, if δ (t)→ 0, det

(
˙̄F∼
)

decreases faster than expected by homogeneous
plastic flow, and localization can be considered to have taken place.

The onset of failure can then be defined as the first instant tc such that:

δ (tc)≤min(Amax
t<tc

δ (t),B) (2.16)

where A = 0.05 is a threshold comparing the maximal and current values of δ and B = 0.005 is
an absolute threshold. As shown by the α2 factor in equation (2.33), δ keeps smaller values for
simulations with L close to zero. In these cases, the relative threshold (depending on A) was found
to be inappropriate due to numerical errors, and an absolute threshold B (consistent with the value
of A) was implemented; it is only needed for loading conditions with |L| < 0.3. A sensitivity
analysis with respect to the empirically chosen values A and B is carried out in appendix 2.A and
shows that the results which will be presented in section 2.5 are not strongly influenced by the
values chosen for A and B. The indicator is therefore robust with respect to the choice of these
parameters.

As this criterion using the δ function relies only on macroscopic quantities (at cell-level), it is
easy to compute and does not make any assumption on the position and orientation of the possible
strain localizations. Moreover it can be used as a landmark in order to stop the simulations
shortly after failure in order to spare computation time. However, the indicator detects a loss
of full rank of the deformation gradient rate, and is therefore not adapted to loading conditions
where the deformation gradient rate is intrinsically of rank 1 or 2. This is especially the case for
L = 0 for which the material is initially in shear, so that the indicator is activated in the elastic
regime and predicts an early failure. This is acceptable for a perfectly plastic von Mises matrix,
but leads to an underestimation of the strain at failure for materials whose hardening behavior
delays coalescence. Moreover it is not able to represent a third and rarer form of coalescence
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known as necklace coalescence. This form was studied by Gologanu et al. (2001) for a cylindrical
unit cell with an axisymmetric loading corresponding to our L = 1 situation. The coalescence
between voids takes place along the cylinder axis, which corresponds in our situation to the
third and least stressed axis. Necklace coalescence is not associated with a loss of full rank, so
the δ indicator cannot be activated. However for the loading conditions involving overall stress
triaxiality considered in this work, the proposed indicator has been found to be relevant in all
cases.

The failure onset tc can be determined with this method for the different loading conditions,
and allows to define several quantities at the onset of coalescence: deformation at coalescence
Ec = E11(tc), stress at coalescence σc = σ̄11(tc) and porosity at coalescence fc = f (tc). In
the following, the evolution of those quantities and their dispersion due to the randomness of
microstructures will be studied with respect to T and L parameters.

2.5 Results

2.5.1 Response of a microstructure subjected to proportional loading with differ-
ent stress triaxiality and Lode parameter values

The random microstructures constructed in section 2.3.1 have two main differences in comparison
to standard unit cells: they contain several voids and these voids are located irregularly within the
cell. In this section, the effect of these differences on the behavior of cells is investigated. Several
microstructures are considered and subjected to various loading conditions (defined by T and L).
Their failure behavior (evolution of Ec, fc and σc with respect to T and L) are then compared.
The four microstructures shown on figure 2.1 are analysed: two random 27-void cells R1 and R2,
a unit cell, and a 27-void cell, lattice, where the voids are distributed following a 3×3×3 cubic
cell. The four microstructures have the same porosity 6%, the same pore size and are meshed
with identical mesh size requirements in order to limit the influence of mesh convergence on the
comparison (the mesh of the unit cell is thus composed of significantly fewer elements than the
other three microstructures). Mesh size will be further discussed in section 2.B.1. The lattice cell
allows to separate effects due to the presence of several voids in the cell from those due to the
irregular void distribution.

Although the failure behavior on the whole T −L space should be explored, it is instructive
to first consider constant triaxiality or constant Lode parameter slices of this space. Let us
concentrate first on axisymmetric loading cases characterised by fixed L =−1, as in Ling et al.
(2016). We focus on the zone of intermediate triaxiality T ∈ [0.7,2.0], as usual in unit cell
studies (Guo and Wong, 2018; Vishwakarma and Keralavarma, 2019). We did not study the very
low triaxiality regime T < 0.4 where the phenomenon of void collapse takes place (Bao and
Wierzbicki, 2004; Liu, Wong, et al., 2016). Triaxiality levels T ∈ [0.4,0.7] were not studied so as
to limit the duration of simulations: coalescence generally happens with the same mechanisms as
for T > 0.7, but at significantly higher strain values.

The evolution of Ec, fc, and σc with respect to T are shown on the left side of figure 2.3.
The four microstructures display globally similar responses: Ec monotonically decreases with
increasing T while σc increases linearly with T . fc behaves similarly to Ec, except for the
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microstructure R2: fc is still a mainly decreasing function of T but a local maximum is found
at T = 1.2. Note that the evolution of Ec with respect to T is smoother and less noisy than that
of σc (for T = 0.8, the stress value for the lattice cell is for instance particularly low, when
compared to the values at T = 0.6 or T = 1.0). A possible explanation is that, unlike E11 which
is linearly increasing with time, σ̄11 and f vary rapidly around the instant of coalescence: σ̄11
decreases sharply around the coalescence (as evidenced by figure 2.15). Note also that for R2,
the porosity at coalescence for T = 1.2 is larger than for T = 1.1, in contradiction to the overall
evolution. Coalescence is detected at approximately the same strain in these two conditions, but
as the porosity grows faster with increasing triaxiality, the porosity at coalescence is larger for
T = 1.2 than for T = 1.1. This slight deviation from the overall evolution with T seems due to
the randomness of the void population.

The evolution of strain at coalescence Ec was plotted in a logarithmic scale, so as to illustrate
the exponential decrease for each microstructure. According to Rice and Tracey’s (1969) results,
a spherical void typical growth rate varies as exp(3T/2). If we assume that coalescence happens
at a given porosity (as for Tvergaard and Needleman (1984)), Ec should vary as exp(−3T/2).
The evolution of strain at coalescence for the random microstructures, the unit and the lattice cell
can be well represented by this simple relation, as shown by the comparison with the straight line
of slope −3/2.

The evolution of failure-related quantities with respect to triaxiality, at fixed L =−1 is thus
very similar for the various studied microstructures, although some differences are visible. The
situation is different if the triaxiality T = 1 is fixed and the coalescence behavior is studied
with respect to the Lode parameter (the whole range L ∈ [−1,1] is explored). The results of
the simulations are shown on the right side of figure 2.3. Values for L = 1 are indicated with
superimposed arrows but should be taken with caution because, for these loading cases, the
simulations diverged or the failure indicator was not reached; the data for the last computed point
is indicated to serve as lower or upper bounds for the real value at coalescence, if it exists. The
case L = 1, which corresponds to an axymmetric loading where the two largest principal stress
components are equal, is associated by Gologanu et al. (2001) with the necklace coalescence.
Our criterion described in section 2.4 is not able to represent this type of coalescence, which does
not correspond to a loss of full rank of the deformation gradient rate. Examining the stress strain
curve of the unit cell in the case L = 1 (not shown here for brevity) shows a stabilization of stress
which could be linked indeed to a coalescence event, undetected by the δ indicator.

If we do not consider anymore the values for L = 1, the unit and lattice cells behave in a
similar way (the difference between these two types of cells, which should represent the same
void configuration, is due to the meshing): Ec increases slowly with L. This type of evolution
was reported by Zhu, Ben Bettaieb, et al. (2020) and Zhu, Engelhardt, et al. (2018) and by Guo
and Wong’s (2018) localization indicator (when σ̄∼ does not have shear components). However,
Barsoum and Faleskog (2011), Wong and Guo (2015), Dunand and Mohr (2014), Guo, Ling,
Busso, et al. (2020), Zhu, Engelhardt, et al. (2018), and Guo and Wong (2018) (for the latter
two, in more general loading cases), report that Ec is a convex function of L, with a minimum
near L = 0. Yet, in our case, a sharp decrease in ductility is observed for L close to zero. This
behavior in generalized shear corresponds to the expected behavior of a perfectly plastic von
Mises material which localizes immediately in shear.
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Figure 2.3: Evolution of strain Ec (top), porosity fc (center) and stress σc (bottom) at coalescence
for various microstructures, with respect to T in generalized tension L =−1 (left column) or with
respect to Lode parameter, at constant triaxiality T = 1 (right column). The points with arrows
at L = 1 (right column) correspond to the last data point from simulations that diverged or for
which the indicator was not reached: these points correspond to lower bounds (for Ec and fc) and
upper bounds (for σc, as σ̄11 is decreasing with E11) for the values at failure, if it does exist.
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However the random microstructures R1 and R2 do not exhibit the same evolution as the
unit cell. Three zones can be observed on the Ec−L plot for the R1 microstructure (schematized
in figure 2.4). The first zone corresponds to L ∈ [−1,−0.7], in which Ec increases up to a
maximum value on a cusp. For L ∈ [−0.7,0.4], Ec is convex in L and minimal for L = 0. The
third zone corresponds to L ∈ [0.4,1[, where Ec decreases from its maximum at L = 0.4 and
stabilizes.The zone boundaries correspond to local maxima (significantly higher than the rest of
the data points) of Ec. They correspond to slope discontinuities, although Ec remains continuous.
In the following, these three zones will be referred to as: Low Lode parameter Extension Mode
Zone (LLEMZ), Shear Mode Zone (SMZ) and High Lode parameter Extension Mode Zone
(HLEMZ); the rationale behind these names will be made clearer after section 2.5.2. A similar
decomposition in three zones can be seen for the microstructure R2 although for different zone
boundaries (L =−0.9 and L = 0.55). To the knowledge of the authors, such an evolution of Ec

with respect to L was not found in literature. Although Guo and Wong’s (2018)’s coalescence
criterion yields a non-smooth evolution of Ec, there is only one local maximum, for L > 0 (with
our definition of L). An explanation for the existence of these three zones will be proposed in
section 2.6.1.

An asymmetry between positive and negative values of L can also be observed: ductility Ec

is higher in generalized compression than in tension. This asymmetry is present in previously
mentioned studies, but the sign of the difference varies among them. Our results are consistent
with Zhu, Ben Bettaieb, et al. (2020) and Dunand and Mohr (2014) but Barsoum and Faleskog
(2011), Wong and Guo (2015), and Guo and Wong (2018) have found cells more ductile in
generalized tension than in compression (taking into account the different definitions of L).
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Figure 2.4: Identification of three ductility zones, with respect to L (R1 microstructure, constant
triaxiality T = 1).

Similar behaviors and differences between the unit and lattice cells on the one hand and
the random microstructures on the other hand can be observed on the results for porosity at
coalescence. For the stress at coalescence, the asymmetry between L < 0 and L > 0 is clear. There
is no significant difference between the microstructures at L > 0, for L < 0; σc is almost constant
for the lattice and unit cells, whereas it increases slightly with L for the random microstructures.
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No zone boundaries can be easily identified. The theoretical values for σc obtained for a von
Mises material failing when σvm = R0 are also represented. The type of evolution agrees with the
results for the unit cells, but due to the porosity and the complex coalescence behavior, stress
levels are significantly lower for the cells, and the slope of σc with respect to T for the simulations
at constant L =−1 also differs.

In contrast to the unit and lattice cells, the random microstructures display several zones on
their Ec−L curve, which could be linked to different coalescence behaviors. The different zones
for the microstructure R1 are also shown in the T −L space in figure 2.5. Multiple simulations
were carried out for T ∈ [0.7,1.1]. A simple interpolation using Gaussian Process Regression
(as implemented in Scikit-learn (Pedregosa et al., 2011)) is proposed and allows for an easier
visualization in the Ec−T −L space, although cusps at zone boundaries are smoothed. The
results of the simulations are also projected in the Ec−L plane. The triaxiality has two effects on
Ec: Ec globally decreases with higher triaxiality levels, in agreement with the previous study at
fixed L =−1, and the position of the zone boundaries is modified (at T = 1.1, the central zone is
wider than at T = 0.7).
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Figure 2.5: Strain at coalescence in the T −L space, for the R1 microstructure. Left: Coalescence
surface interpolated by Gaussian process regression for multiple loading cases (simulations shown
as red points). Right: Projection of the simulation results on the L−Ec plane.

2.5.2 Relation to localization modes

Several ductility zones were identified on the strain at failure curves for the random microstructure
cells, in contrast to unit cells. However the Ec curves only give macroscopic information and
shed no light on the mechanisms inside the cell responsible for the drastic changes in strain at
coalescence. We now investigate the relation between the presence of these zones and the aspect
of strain fields inside the cell.
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The figure 2.6 shows, for each microstructure, the cumulative plastic strain field p shortly
after coalescence (for E11 ' 1.1Ec). Each image corresponds to a different L value (T = 1 is
fixed). The images are inserted on Ec−L curves in order to better correlate macroscopic and field
information.

All the p fields display zones of higher strain or even strain localization (as localization is
known to happen before coalescence (Guo and Wong, 2018)). These zones are organized along
approximately planar bands. For both the unit and lattice cells, these bands are exactly planar and
correspond to a crystallographic plane of the void lattice. In the lattice cells, the three rows of
voids are equivalent, but this symmetry is broken after coalescence. For random microstructures,
the bands are more complex: a base plane can be identified but bands are distorted by void
distribution so as to include more voids.

For a given microstructure, the orientation of the bands is not constant with L. Two different
orientations can be distinguished. In the first one the band is roughly parallel to a face of the
cell (and perpendicular to the main loading axis). For the cases with L ' 1, the localization
pattern is more complex and is composed of several bands. The second type of orientations is
characterized by strain bands of overall direction approximately 45◦ relative to the faces of the
cell (although their precise shape is more complex). These two orientations are partly constrained
by the periodic boundary conditions because strain localization bands should be compatible with
the periodicity of the cell. Notice that bands oriented at 45◦ are only found for Lode parameters
close to zero (and only for L = 0 in the regular unit and lattice cells) whereas parallel orientation
is found for higher values of |L|. Observing more carefully the relation between the orientation
of the bands and the macroscopic Ec−L curves for the random microstructures shows that strain
band orientation is systematically associated with ductility zones: the 45◦ orientation is only
found in the SMZ whereas parallel orientations are found in the LLEMZ and HLEMZ. Therefore
the transition between ductility zones can be linked to a change in strain localization mode:
between extension mode, with strain bands at parallel orientation, and shear mode characterized
by the 45◦ orientation.

To better characterize the transition between ductility zones, as explained by p fields, the
similarity between the p field at coalescence for a given value of L and three reference coalescence
p fields for L ∈ {−1,0,0.9} is here quantified for the R1 microstructure. Each loading case is
considered a paragon of its ductility zone (respectively the LLEMZ, the SMZ, and the HLEMZ).
If two p fields are similar, they should represent a similar coalescence mechanism. A similarity
indicator is defined as follows. The p field after coalescence (at strain E11 = 1.1Ec), as produced
by a FEM computation, is represented by the vector [P] of p values at all Gauss points (for the R1
microscructure, the [P] vectors are around 7×105 components long). The relative spatial position
of Gauss points is irrelevant here. For two vectors [P] and [P′] representing p fields on the same
mesh and with the same ordering of Gauss points, the similarity can then be defined as the angle
(or rather its cosine) between [P] and [P′]:

cos(θPP′) =
[P] · [P′]

||[P]|| · ||[P′]||
(2.17)

with ||[P]|| the standard euclidean 2-norm of [P]. If [P] and [P′] are proportional, cos(θPP′) = 1.
This quantity is extracted from Z-set computations using tools developed by Lacourt et al. (2020).
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Figure 2.6: Link between Ec evolution with respect to L and cumulative plastic strain field shortly
after coalescence (at strain E11 = 1.1Ec, which depends on the simulation). Fixed triaxiality
T = 1
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The evolution of the similarity indicator cos(θ) to the reference strain fields L =−1, L = 0,
L = 0.9 is plotted in figure 2.7. The three reference strain fields are not orthogonal, so significant
overlap between the indicators is possible. As strain fields at L = −1 and L = 0.9 are similar
(cos(θ) = 0.85), their similarity indicator shows comparable behavior. However the evolution
of the indicator for L = 0 is reversed. The three ductility zones defined earlier are apparent on
the figure. For the LLEMZ L ∈ [−1,0.7], the contributions of L =−1 and L = 0.9 are high and
almost constant whereas the contribution of L = 0 is lower but increasing. On the contrary, in
the SMZ [−0.7,0.5], strain fields are predominantly linked with L = 0 and little with L =−1 or
L = 0.9. In the last zone, HLEMZ, above L = 0.5, the similarity to the L = 0 strain field decreases,
whereas L =−1 and L = 0.9 contributions are higher. Notice however that the L =−1 similarity
indicator is high at L = 0.5 and decreases with L, unlike the L = 0.9 indicator. For L' 0.5, the
situation is close to that of L =−1, whereas at very high L, another mechanism could come into
play, especially the competition between two perpendicular strain bands observed earlier at very
high L. Around the ductility zone boundaries, strain fields quickly change from one mode to the
other. This competition between modes could explain the cusps in strain at failure observed at
zone boundaries.
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Figure 2.7: For the R1 microstructure, similarity between the coalescence p field at varying L
(T = 1 is fixed) and three reference p fields obtained at L =−1, L = 0, L = 0.9.
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2.5.3 Dispersion due to microstructure sampling

In the previous two sections, two random microstructures were considered and the evolution of
coalescence-related quantities with respect to loading conditions were studied, showing significant
differences when compared to the unit cell. Rather than choosing fixed microstructures and
varying T and L, another approach is to treat Ec, fc and σc as random variables (depending on
the microstructure), and study their statistics. The present section thus focuses on quantifying
coalescence onset quantities; the localization mode and the position of the strain localization
bands depending on the microstructure are briefly discussed in section 2.C.

N = 20 microstructures with 27 voids and initial porosity f0 = 6% ( f0 is not a random
variable) were randomly and independently generated. Each of them was subjected to the same
loading conditions (T,L) ∈ {(1,−1), (1,−0.5), (1,0.5), (1.5,−0.5)}. The results for Ec, fc and
σc are shown in figure 2.8 as box plots, and are compared to the values for the unit cell. A
strong relative dispersion is present for all loading cases: the ratio of the standard deviation to
the average is 34%, 59%, 55% and 62% respectively. This indicates a strong influence of the
microstructure on the coalescence behavior. The results from unit cells do not represent well
the behavior of the multiple void cells, and lead for instance to an overestimation of the stress
at coalescence. Dispersion also depends on the loading conditions: for T = 1, the case L =−1
shows lower interquartile range than the cases L = ±0.5. This can be linked to the proximity
of zone boundaries for the latter cases, as Ec was shown to vary sharply near those boundaries.
Moreover, and especially for L = 0.5, some microstructures coalesce in tensile mode whereas
others coalesce in shear mode (compare for instance the strain fields of R1 and R2 in figure 2.6);
the possibility of different coalescence modes may increase dispersion. At higher triaxiality
T = 1.5,L =−0.5, the dispersion is reduced for Ec and fc when compared to T = 1,L =−0.5
but the relative dispersion is not. This is due to the overall effect of coalescence appearing earlier
at high triaxiality. Besides, the interquartile range for σc is comparable for both triaxiality levels.

The previous results dealt with a small number of loading conditions. In order to determine an
effective model of coalescence in random multiple-void cells for all loading conditions, the T −L
space should be explored more extensively, while still keeping a large enough set of microstructure
realizations. As in section 2.5.1, multiple simulations were carried out for T ∈ [0.7,1.1] and
L ∈ [−1,1] on five random microstructures among which R1 and R2 (keeping 20 realizations
would have been computationally too expensive). The same loading conditions were tested for
each microstructure. The results for Ec are shown in figure 2.9. The minimal, maximal and
average values are first plotted for T = 1. In agreement with the preceding results, significant
relative dispersion is present, and its extent depends on L: dispersion is particularly strong near
L = 0.5, whereas it is negligible for L = 0 (all the microstructures agree on almost immediate
localization for generalized shear). Despite the dispersion, the overall aspect of the Ec curve, as
described in the previous section, and its decomposition in ductility zones, are still observable. An
interpolation by Gaussian Process Regression of the results in the T −L space is also proposed,
based on the average value of the five microstructures at each loading condition. The aspect is
similar to that of figure 2.5.
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1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
L

0.0

0.2

0.4

0.6

0.8

1.0

E c

T

0.7
0.8

0.9
1.0

1.1 L
1.0 0.5 0.0 0.5 1.0

E c

0.0
0.2
0.4
0.6
0.8

Figure 2.9: Strain at coalescence results for five different microstructures. Left: For T = 1,
evolution of the average, minimum and maximum value of Ec (over the size-5 sample) with
respect to L (earlier results from 20 realizations are also plotted). Right: averaged behavior with
respect to T -L interpolated using Gaussian Process Regression.



42 CHAPTER 2. DUCTILE FRACTURE OF MATERIALS WITH RANDOMLY...

2.6 Discussion

In this section, we discuss the significance of the results presented up to now, and assess how
representative the results are and how far they can be generalized. First we compare the failure
indicator proposed in section 2.4 to Wong and Guo’s (2015) coalescence criterion, in order
to interpret the difference between unit and random cells. The dispersion due to the random
microstructures is then statistically studied with increasingly large void populations. Finally the
influence of a work-hardening material is also addressed.

2.6.1 Interpretation of the proposed failure indicator

In order to better understand the failure mechanism identified by the δ indicator and the observed
difference between the unit cells and the random microstructures, the δ indicator is compared
to another failure criterion reported in the literature. We focus on Wong and Guo’s (2015)
energy-based coalescence indicator, although Zhu, Ben Bettaieb, et al.’s (2020) and Dæhli, Morin,
et al.’s (2020) approach with Rice’s (1976) criterion could also be useful. According to the
former indicator, coalescence is associated with concentration of the plastic deformation in the
ligament whereas elastic unloading takes place elsewhere. Therefore coalescence can be detected
by monitoring the evolution of the plastic Ẇp and elastic Ẇe work rates and the onset corresponds
to the minimum of the ratio Ẇe/Ẇp.

For our cells, the corresponding work rates can be computed by the following equations:

Ẇp =
∫

V
σvm ṗdV (2.18)

Ẇtot =V0 S̄∼ : ˙̄F∼ (2.19)

Ẇe = Ẇtot −Ẇp (2.20)

The plastic power can be computed either on the cell (with voids) or more easily on the matrix,
since stress is zero in the voids. The total power, sum of the plastic and elastic parts, can be
computed by only using macroscopic quantities, according to the results of homogenization
theory (Besson, Cailletaud, et al., 2009).

The figure 2.10 compares the failure onsets, as determined by the δ and the energy-based
criteria, with respect to L, for the unit cell and the microstructure R1. For the unit cells, the
energy criterion identifies a coalescence onset for all the simulations, and the trend is typical
of Ec vs. L curves in the literature (for instance Zhu, Ben Bettaieb, et al. (2020)). Moreover
the two criteria yield similar values of Ec, except for L = 0 where the δ -criterion predicts early
failure as previously. The situation is more complex for the random microstructure. For the
extension mode zones of the curves, the two criteria also yield very similar results, so they can be
thought to represent the same failure mechanism. On the other hand, the energy-based criterion
fails to activate in the SMZ, so no coalescence is detected, according to Wong and Guo’s (2015)
definition. The evolution of the power ratio Ẇe/Ẇp for the unit and the R1 cells, at L =−1 and
L' 0.2 (in the SMZ for R1), is shown on the figure 2.11a: contrary to the unit cell and the L =−1
case for R1, the L = 0.2 does not show any minimum of the power ratio. In all simulations, the
elastic power does not become negative because, unlike Wong and Guo’s (2015) unit cell, our
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microstructures do not possess large void-free regions, in which an elastic unloading can take
place. Moreover the simulations also differ by the evolution of porosity (fig. 2.11b): unlike the
other three cases, the random microstructure with L = 0.25 does not show any acceleration of
void growth during failure, which is typically observed for coalescence. This comparison shows
that the δ criterion acts as a coalescence indicator in the LLEMZ and the HLEMZ, and correctly
predicts failure in the SMZ according to another mechanism: localization along 45◦ bands in
shear. As failure should happen quickly in the SMZ for a von Mises matrix, the results obtained
for the δ indicator appear more accurate than those for a pure coalescence criterion.
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Figure 2.10: Comparison of the coalescence onset, as determined by the δ -indicator and the
energy-based criterion. All computations at triaxiality T = 1. The hatched zones correspond to
simulations for which no minimum of Ẇe/Ẇp was observed, and therefore no coalescence was
identified by the energy-based criterion.

The existence of the three ductility zones and the lower ductility in the SMZ could actually
be due to boundary conditions. As noted previously, two evolutions of Ec with respect to L are
reported in the literature: in Barsoum and Faleskog (2011), Dunand and Mohr (2014), and Wong
and Guo (2015), strain at coalescence is minimal for L = 0 whereas it increases almost linearly
for Zhu, Engelhardt, et al. (2018) and Zhu, Ben Bettaieb, et al. (2020). The difference between
these two groups of studies is that the former consider a shear stress component in equation (2.13).
Several loading conditions therefore correspond to the same triaxiality and Lode parameter, and
the reported strain at coalescence is the minimum value over all tests at a given (T,L) couple.
Coalescence therefore happens earlier than in the absence of shear stress, and this might lead to
different responses, as pointed by Zhu, Ben Bettaieb, et al. (2020). Another point of view is that
the cubic unit cells have an anisotropic localization behavior. Although the cubic cell paves space
when periodic boundary conditions are enforced, the axes parallel to the sides of the cube remain
privileged, and the response of the homogenized material displays anisotropy. As localization
bands should be compatible with the periodic boundary conditions, they are always parallel or
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Figure 2.11: Comparison of the evolution of power ratio Ẇe/Ẇp (left) and of porosity f (right),
for the unit and R1 cells in two loading cases: T = 1,L =−1 and T = 1,L = 0.25

around 45◦ to one face of the cube (Coenen et al., 2012). Adding a shear stress component
amounts to changing the principal loading directions relatively to the cube, and coalescence
occurs when the most favorable band activates.

In the present study, shear stress was not considered but for the random microstructures, it was
shown that coalescence can happen either by a localization band perpendicular (corresponding to
the LLEMZ and HLEMZ) or oriented at 45◦ to the main loading axis (for the SMZ). Therefore
the random microstructures appear softer than the unit cells in that they allow several localization
band orientations. The resulting response of the cell is then due to a competition between a
limited number of coalescence modes (instead of the theoretical infinity of orientations considered
by Barsoum and Faleskog (2011) for instance). The LLEMZ and the HLEMZ correspond then to
the evolution shown by Zhu, Engelhardt, et al.’s (2018) study, whereas the response of random
microstructures in the SMZ near L = 0 is closer to that of unit cells in Barsoum and Faleskog
(2011)’s study.

2.6.2 Influence of the number of voids

The microstructures considered in the above sections were composed of 27 voids. A small
number of voids allows to investigate the effect of a cluster of pores whereas a sufficiently
large number can provide results for an effective homogenized material. As pointed by Morin,
Leblond, Benzerga, and Kondo (2016), the homogenization theory does not stricto sensu apply to
coalescence, which takes place in a small area in the immediate vicinity of voids.

For computational homogenization with a volume element (VE) approach, random microstruc-
tures should contain enough voids to reduce the uncertainty due to sampling and limit the influence
of boundary conditions (as there is no intrinsic length scale, the size of the VE is only determined
by the number of voids it contains). However the computation power required to simulate large
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cells with many voids, which lead to FEM problems with millions of degrees of freedom, is
prohibitive if carried on dozens of loading conditions and microstructures. This problem is
in part mitigated by the use of periodic boundary conditions: Kanit et al. (2003) showed that
homogenized properties converge faster with VE size in this case than with kinematic or static
uniform boundary conditions. Their study dealt however with elasticity and the extrapolation to
coalescence properties is not possible yet. Hure (2021), who carried out simulations of cells with
random voids up to coalescence, compared cells with different number of voids (up to 64) and
reported that the maximum stress reached during the simulation stabilizes with the number of
voids (indicating the existence of a representative volume element), but the stress at coalescence
still shows dispersion between realizations. However only five simulations were performed for
each number of voids, which is limiting for a statistical analysis of dispersion.

In a complementary approach, we compare the strain at coalescence results for cells with
different numbers of voids: 27, 64, 125. All cells are generated with the process described in
section 2.3.1 and their porosity is always 6%; the meshing parameters are however adapted so that
the ratio between void radius and maximum element size remains constant for all cells. There are
typically 2×105, 6×105 and 1×106 nodes for meshes of cells embedding 27, 64 and 125 voids
respectively. As the computational cost of the simulations increases with the number of voids,
we only considered two loading conditions T = 1,L = −1 and T = 1,L = −0.5 and a smaller
number of 125-void cells than the twenty 27-void cells already used in section 2.5.3. Examples
of p fields after coalescence for a microstructure with 125 voids (fig. 2.12) display very complex
localization paths between voids, but still show a principal direction parallel to or at 45◦ from the
faces.

Dispersion results are shown in figure 2.13. For the T = 1, L = −1 case, dispersion is
comparable for the three types of cells: a Brown-Forsythe test (Brown and Forsythe, 1974) was
carried out to verify the equality of variances for the 27, 64 and 125-void groups of cells (this
test and the following one use the Scipy implementation (Virtanen et al., 2020)). The statistical
p-value is 0.19 so the hypothesis of equal variances cannot be rejected. The mean failure strain
is significantly lower for 64 and 125-void cells than for 27-void cells, as proven by a one-way
ANalysis Of VAriance (Heiman, 2001) between the three groups (p-value of 0.002). However
for the T = 1,L =−0.5 loading case, the dispersion is significantly lower for the 64-void cell
(Brown-Forsythe test between the three groups: p-value of 0.026). The average failure strain
seems to decrease with the number of voids (an ANOVA test could not be performed due to the
unequal variances)

Therefore failure seems to begin earlier for cells with more voids. This could be explained
by the higher probability of a favorable path for a localization bands when the number of voids
grows. Variance remains high for all groups of cells, but it is possible that the number of voids
reduces dispersion. The simulations evidence that the size of the volume element can exert an
influence on the failure results. The above simulations therefore extend Hure’s (2021) study
with the results from larger and more numerous cells (allowing a statistical analysis) and are
in agreement with his findings. More simulations at an even higher number of voids could be
carried out to reinforce the statistical significance of the previous conclusions.
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Figure 2.12: Cumulative plastic strain fields after coalescence for a microstructure with 125 voids
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Figure 2.13: Dispersion in the strain at coalescence for cells containing 27, 64, 125 voids, in two
loading cases
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2.6.3 Influence of material behavior

The results previously described hold for a perfectly plastic material. However hardening can
mitigate the effects of softening due to void growth, and delay coalescence. We here consider
two other types of material behavior characterised by their flow stress functions R(p) replacing
the constant R0 used for perfect plasticity in equation (2.4):

R(p) = R′0 +K pn (power law hardening) (2.21)

R(p) = R∞− (R∞−R′0)exp(−bp) (saturating exponential) (2.22)

with R′0 = 350 MPa, R∞ = 500 MPa, K = 343.5 MPa, n = 0.58, b = 10 or b = 200. The different
yield functions are shown in figure 2.14a.

For the R1 microstructure, at fixed T = 1 and varying L, a comparison of the strain at
coalescence Ec between the three hardening behaviors is shown in figure 2.14b. On the one hand,
for the power law hardening and the slow saturating exponential hardening b = 10, no central
SMZ is observed (except a sudden drop near L = 0), and the evolution is quite similar to that
observed for unit cells in section 2.5.1. On the other hand, if hardening saturates more rapidly,
as for b = 200, the same response as in the perfectly plastic matrix case is obtained. Therefore,
hardening seems able to prevent the change of coalescence mode for intermediate values of L,
at least if it does not saturate too quickly so as to provide a stabilization effect throughout the
deformation process.
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Figure 2.14: Comparison of different hardening behaviors. (a): yield function for each hardening
type. (b): Comparison of the Ec−L curves for each hardening type on the microstructure R1. All
computations at fixed triaxiality T = 1.
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2.7 Conclusion

In the present study, random microstructures made of identical spherical voids within an elasto-
plastic matrix were generated, and simulated at constant stress triaxiality and Lode parameter with
periodic boundary conditions. The FEM simulations were carried out in a large strain framework
up to coalescence. The major findings are the following:

1. Failure was identified using an indicator based on the loss of full rank of the average
deformation gradient rate, while taking into account the response in case of homogeneous
deformation. The results of this indicator are consistent with other indicators reported by
the literature but better captures shear dominated localization modes.

2. Random microstructures show two failure modes, that differ by the orientation of the
localization band: perpendicular to the main loading axis for an extension mode, or
oriented around 45◦ for a shear mode. Unlike unit and lattice cells, the shear mode is
not limited to the immediate neighborhood of L = 0. The competition between these two
modes leads to a non-smooth evolution of the strain at coalescence with respect to the Lode
parameter, showing three zones on the Ec−L curve, with reduced ductility near L = 0. The
difference between unit cells and random microstructures is reduced when the matrix is no
more perfectly plastic, due to a stabilizing effect of hardening. However, the response with
respect to T is similar for unit cells and random microstructures.

3. When applying the same loading state to microstructures with similar characteristics, a
significant dispersion is found in the results (up to 60% of relative dispersion for strain at
coalescence). This strong dispersion is also found in simulations with a higher number of
voids.

If a model expressing coalescence quantities with respect to loading conditions is desired,
using unit cells therefore appears to misrepresent the effective behavior of a material with a
complex void distribution, with differences in the general evolution and oversight of the statistical
aspects. Care should therefore be taken when applying results on unit cells to more complex
applications.

The present work could be extended in several ways. Firstly larger population sizes will be
considered based on parallel computing, in order to improve the statistical representativeness
of the presented results. Secondly a broader description of the mechanisms of coalescence in
random microstructures will be reached by adding a macroscopic shear stress component to the
loading state, so as to explore a greater variety of loading paths. Moreover the link between the
proposed coalescence indicator and strain localization criteria such as macroscopic or local loss
of ellipticity will also be investigated. Finally this work can be the basis to develop and calibrate
an effective damage and plasticity model for materials containing randomly distributed pores.
Hure (2021) proposed an example of such a homogenized model, but a new model could integrate
the effects of the Lode parameter and the dispersion. However simulating enough loading cases
and with sufficient statistical representativeness to completely explore the space of parameters
is computationally expensive, especially as the effect of initial porosity should be taken into
account. Therefore a strategy to construct a surrogate model with as reduced a number of required
simulations as possible should be developed.
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2.A About the δ indicator

This appendix provides several complements about the δ indicator. Its expression is first derived
by computing the homogeneous deformation of Green matrix. An example of application is then
presented. Finally a sensitivity analysis regarding the threshold coefficients is carried out.

2.A.1 Derivation of the expression for δ

Consider a perfectly plastic volume element (neglecting here the elasticity) which deforms
homogeneously when subjected to the loading conditions (2.13). In order to simply represent the
porous nature of the cell, the material behavior will obey Green’s (1972) isotropic yield criterion
(also used by Fritzen, Forest, Kondo, et al. (2013)):

f (σ∼ ) = σeq−R0

σeq =

√
3
2

σ∼
dev : σ∼

dev +C(trσ∼ )
2

(2.23)

with C a constant (C = 0 corresponds to a von Mises material, and for C = 1/2, there is no lateral
contraction of the cube in tension). The other equations in equations (2.4) are unchanged, but
they are applied here to macroscopic quantities.

As the material behavior is isotropic, F̄∼ stays diagonal in the diagonalizing basis of σ∼ . Then
F̄∼ can be written as:

F̄∼ =

1+ vt 0 0
0 b2(t) 0
0 0 b3(t)

 (2.24)

where b2 and b3 are functions to be determined. As D̄∼ = sym( ˙̄F∼ F̄∼
−1
), and F̄∼ is diagonal, D̄∼ can

be written as:

D∼ = Ḟ∼F∼
−1 = diag

(
ε̇

1+ ε̇t
,

ḃ2

b2
,

ḃ3

b3

)
(2.25)

For a perfectly plastic Green material, the behavior law in (2.4) reads:

D∼ =
ṗ

σeq

(
3
2

σ∼
dev +C(trσ∼ )1∼

)
=

ṗ
σeq

(
3
2

σ∼ +(C− 1
2
)(trσ∼ )1∼

)
(2.26)

D∼ is diagonal so there are three constants α1, α2 and α3 such that:

D∼ = diag(α1, α2, α3)ṗ (2.27)

α1 +α2 +α3 =
3Ctrσ∼

σeq
. (2.28)

Combining (2.25) and (2.27) yields the system:

ε̇

1+ ε̇t
= ṗα1 (2.29)

ḃ2 = ṗα2b2 (2.30)

ḃ3 = ṗα3b3 (2.31)
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The plastic multiplier is then ṗ = ε̇/α1
1+ε̇t and the differential equations can be solved with the initial

conditions b2(0) = 1, b3(0) = 1:

b2 = (1+ ε̇t)α2/α1 b3 = (1+ ε̇t)α3/α1 (2.32)

Finally,

det
(
Ḟ∼
)
= ε̇ ḃ2ḃ3 = ε̇

3 α2α3

α2
1

(1+ ε̇t)
α2+α3

α1
−2

= ε̇
3 α2α3

α2
1

(1+ ε̇t)−3−3C trσ

σeqα1 (2.33)

The function comparing the behavior of det
(
Ḟ∼
)

and the homogeneous plastic deformation case is
then:

δC(t) = ε̇
−3(1+ ε̇t)3+3C trσ

σeqα1 det
(

˙̄F∼
)

(2.34)

The δ criterion used throughout the article is recovered by setting C = 0, which corresponds to
the simplified case of a von Mises material. In this case, the criterion depends no more on the
applied σ∼ .

The evolution of δ for a simulation with T = 1 and L =−1 (coalescence in uniaxial strain
state) is shown in figure 2.15, for two values of C: 0 and 1/2. For both values of C, the vanishing
of δC is simultaneous with the stabilization of transverse displacement. However the sharp drop
of δC allows a more precise numerical determination of the onset of coalescence than the more
progressive stabilization of the transverse strain. For C = 1/2, δ1/2 is approximately constant at
the beginning of the simulation, so that the hypothesis of homogeneous flow in a Green volume
element (taking into account the porosity) well represents the overall behavior of the cell with a
von Mises matrix. However, with C = 0, δ0 does not depend anymore on the stress state, while
still keeping the sudden drop of δC necessary for the determination of the coalescence onset.
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Figure 2.15: Detection of failure through simple extension criterion (stabilization of the transverse
strain) or vanishing of δ function. Microstructure R1 under the loading condition T = 1, L =−1

2.A.2 Sensibility analysis regarding the threshold coefficients

Finally we verify that the δ indicator is a reliable indicator of failure by assessing its sensitivity
to the choice of the empirically chosen threshold values. As the equation (2.16) shows, the
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determination of the onset of coalescence relies on two thresholds: a relative one A, which
compares the current value of δ to its maximum, and an absolute one B mostly active in shear-like
conditions. The values for those were chosen as A = 0.05 and B = 0.005 but a robust indicator
should not be too sensitive to these values.

Figure 2.16 compares the effect of different A and B values on the Ec−L curve (common
triaxiality T = 1, microstructure R1). At constant B, the effect of A is only visible in the HLEMZ
and the LLEMZ, and generally negligible. At constant A, B only affects the coalescence strain
values in the SMZ. Although a change in B can modify the strain by 0.05, the global aspect of
the curve is preserved. The determination of failure by the indicator therefore appears robust with
respect to changes in the coefficients.
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Figure 2.16: Effect of varying threshold conditions for the failure indicator on the Ec−L curve.
All simulations on the R1 microstructure, at T = 1.

2.B Effect of different meshing parameters and boundary condi-
tions

In this section, we review the simulation hypotheses and assess their influence on the results
presented up to now, showing therefore how representative the results are and how far they can
be generalized. First we verify that finite element discretization effects can be neglected, and
investigate the effect of different boundary conditions.

2.B.1 Effect of the meshing parameters

All the simulations described up to now were carried out on meshes of cells with the same
meshing parameter. To determine the influence of mesh size on coalescence results, the same mi-
crostructure R1 was meshed with different meshing parameters hcell/r0 ∈ {1.25,1,0.875,0.625}
(with the notation of section 2.3.1). The maximum element size near the voids is also adapted to
keep the ratio hcell/hvoid = 5 constant. The same loading condition T = 1, L =−1 is applied to
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the four meshes. Figure 2.17 shows that stress values during the simulations differ between the
meshes, but the relative difference between the finest and coarsest meshes is about 5%, which
remains acceptable. The onset of coalescence Ec which is our main quantity of interest, is almost
identical between the meshes, at Ec = 0.33±1%. Therefore the influence of mesh refinement for
random microstructure cells appears limited (although there was only a ratio of 2 between the
element sizes of the coarsest and the finest mesh), which justifies the value hcell = 0.08 adopted
throughout this study.
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Figure 2.17: Cauchy stress during the simulation for several meshes of the R1 random microstruc-
ture with different meshing parameters. Loading condition: T = 1,L =−1

2.B.2 Effect of the boundary conditions

We here investigate the influence of boundary conditions. The results from section 2.5 are first
compared to those obtained with different boundary conditions. Namely we investigate the
influence of conditions on the average gradient, and of planar faces conditions. The consistency
of results at L =−1 is also checked by a comparison with simulations on axisymmetric cells.

The conditions imposed on the average gradient F̄∼ to prevent rigid body motion are first
investigated. In section 2.3.3 we imposed F̄∼ symmetric, as for Ling et al. (2016). However
another reasonable choice would be to fix some degrees of freedom at the vertices of the cubic
cell, as depicted in figure 2.18, which is the standard method for boundary value problems. A
vertex is already fixed in order to prevent translations, but by fixing two degree of freedom on a
second one, and a last one on a third vertex, all rotations are fixed. This can be reformulated as:

F̄12 = F̄13 = F̄23 = 0 (2.35)

i.e. F̄∼ is an upper triangular matrix. Due to the mixed conditions imposed by the macroscopic
spring element, the results from the symmetric F̄∼ case cannot be easily transposed to the triangular
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F̄∼ case. These two choices lead to distinct proportional loading path classes and should therefore
be compared.
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Figure 2.18: Conditions on average deformation gradient obtained by fixing some degrees of
freedom on vertices of the cubic cell.

On the microstructure R1, at fixed triaxiality T = 1, simulations were performed for several
Lode parameters to compare the two sets of conditions on F̄∼ (figure 2.19a). The evolution of Ec

is close between the two types of conditions, and the same ductility zones can be identified for
the triangular gradient condition. However, in that case, cusps seem to be less pronounced than
for a symmetric gradient; this may be due to the different treatment of shear components by the
two conditions. Therefore the influence of the conditions on F̄∼ remains limited.
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(a) Conditions on the average deformation gradient.
(Computations on the microstructure R1)
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Figure 2.19: Influence of boundary conditions on the response of the cell. All computations at
triaxiality T = 1.

We then compare the effects of periodic and parallel faces boundary conditions. Parallel
faces conditions mean that the cubic cell retains parallel flat faces throughout the computation
(for instance all the points on the x0 = 0 face have the same x-displacement). This condition is
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more constraining than periodic boundary conditions. As the comparison in figure 2.19b shows,
the two types of conditions lead to qualitatively different responses. For the parallel faces, no
separation between three ductility zones can be seen (except near L = 0) and the response of the
random microstructure is closer to that typical of the unit cell. Moreover no decrease of ductility
near L = 0 is observed for the unit cell. Results for the unit cell differ between the parallel faces
and periodic boundary conditions, because in the periodic case, faces are allowed not to remain
strictly parallel and planar. On the contrary, boundary conditions made of parallel sides strongly
hinder the shear mode failure and only the extension mode remains possible. The competition
between these two modes tends to postpone failure (see the cusps on figure 2.4). Therefore, the
reduced competition between modes may explain an earlier coalescence for parallel unit cells.
The preceding results show that boundary conditions exert a strong influence on the response of
the cell.

Finally, the consistency of results obtained at T = 1 is checked. As this type of loading is
axisymmetric, a computation with a 2D axisymmetric unit cell was also performed for comparison.
Such unit cells are frequent in ductile fracture studies (Morin, Leblond, and Benzerga (2015) for
instance). The diameter and the height of the cylinder were chosen equal to Lcube. The porosity
is still 6%, so the radius of the void was modified to 0.22Lcube. The boundary conditions for
this cell differ slightly from those described in section 2.3.3: they are no more periodic and are
replaced by straight edges conditions. Besides the virtual constant triaxiality element is not linked
to the average deformation gradient but to the displacement of the top left node.

Figure 2.20 compares results for the unit cell and the 2D axisymmetric cell at varying stress
triaxiality for L =−1. In this type of loading, the unit cell was shown in section 2.5 to exhibit the
same behavior as random microstructures, compatible with a Rice-Tracey evolution. At initial
porosity f0 = 6%, the axisymmetric cell presents however a significantly higher exponent (in
absolute value) for the evolution of Ec with respect to T . This effect seems due to the relatively
high porosity in the axisymmetric cell: as depicted in figure 2.20, the evolution of Ec with respect
to T for the low porosity f0 = 1% axisymmetric cell is much closer to the one predicted by Rice
and Tracey.

2.C Position of voids and localization bands

The above study focused on computing the failure strain and therefore quantifying the resistance
to ductile fracture of random microstructures for various loading conditions. This section
takes a more qualitative approach and provides a brief discussion of the strain concentration
bands by which failure takes place, and especially the position of these bands. As noted in
subsection 2.4.1, the strain localization bands are mostly orthogonal to the main loading axis, but
are not strictly planar for they are attracted by the voids. Their position is therefore guided by
the void distribution, but is there a direct relationship between the two? More precisely, can the
position of the localization band, and therefore the weakest point of the cell for ductile fracture,
be predicted without simulation from the position of the voids. Planes orthogonal to the main
loading axis, and with a high concentration of voids, appear especially prone to form localization
bands.

This idea is discussed by comparing strain concentration bands in the 20 realizations of
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Figure 2.20: Evolution of the strain at coalescence with respect to T for the cubic and 2D
axisymmetric unit cells for porosity values f0 = 6% and 1% (constant Lode parameter L =−1).

random microstructures 27 voids from Fig. 2.9, to the planes with highest porosity given by
the distribution of their voids. For each realization, the surface porosity of each plane x = x0
is computed from the void distribution: This porosity is equal to the surface of the intersection
of the plane with the population of defects. Furthermore, the strain localization band for the
loading condition (T = 1,L =−1) is considered, and its apparent width is manually extracted.
This width is defined as the difference between the abscissas of the leftmost and rightmost points
of the failure band (accounting for periodicity). This process is illustrated in figure 2.21.

(a) Apparent width of the failure band
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Figure 2.21: Determination of the failure band and the surface porosity for a realization of a 27
void microstructure

The position of the failure band agrees with the idea of planes of maximum porosity, if the
plane with maximum surface porosity belongs to the localization band. This agreement can be
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quantified by a score:

min
xb∈band

∫ 1/2

−1/2
1{ fs(xb)≥ fs(x)}dx (2.36)

where fs corresponds to the surface porosity, and the cell is located between the planes x =−1/2
and x = 1/2. This score corresponds to computing the cumulative distribution function of fs and
taking the minimum over the failure band. If the band contains the plane of maximum porosity,
the score will be zero.
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Figure 2.22: Surface porosity for planes orthogonal to the main loading axis, for three other
realizations
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Figure 2.23: Dispersion of apparent band width and agreement score between failure band and
maximum porosity plane, over the 20 realizations of 27 void microstructures

For several realizations, the comparison between the strain localization band and the surface
porosity level is shown in Fig. 2.22. Fig. 2.23 also shows box plots for the apparent failure band
width (relative to the size of the cube) and the score of the 20 realizations under consideration.
For most of the realizations, failure takes place near the plane of maximum porosity (for instance
in figs. 2.22a and 2.22b). However the failure band is often of significant apparent width,
which shows that is not really planar but zigzags and connect several voids. Moreover in
several microstructures, the plane of maximum porosity is not contained in the localization band,
because a cluster of voids elsewhere provides a more favorable failure path (as in figs. 2.21b
and 2.22c). Although an increased surface porosity appears to promote coalescence, failure does
not systematically take place where surface porosity is maximal. Predicting the failure path of a
given microstructure without simulating the complete response appears therefore challenging.



Chapter 3

Strain localization analysis of materials
with randomly distributed voids

Strain localization is often a precursor to the ductile failure of the material. The
chapter investigates this phenomenon in the case of random microstructures,
namely cubic cells made of an elastic-perfectly plastic matrix embedding dis-
tribution of identical spherical voids. Random microstructures allow a better
representation of the interaction between voids and greater diversity of failure
modes than single-void (or unit) cells. The cells are simulated by means of the
finite element (FE) method for proportional stress loading paths with controlled
stress triaxiality and Lode parameters. Strain localization is detected with Rice’s
criterion computed at the cell level. This criterion is shown to accurately capture
the onset of localization and the type of failure mode, either extension or shear
banding. Moreover, the influence of the loading orientation, i.e. the orientation
of the principal frame of the applied stress with respect to the microstructure, is
systematically studied. Significant anisotropy of failure behavior is observed,
especially in the case of single void unit cells, which can be attributed to the
intrinsic anisotropy of the simulation cells. Finally minimal failure strain values
at localization on all loading orientations are found. A zone of reduced ductility
is observed under generalized shear loading conditions.

This chapter is mainly based on the homonymous article, published in the
Journal of the Mechanics and Physics of Solids (Cadet, Besson, Flouriot, Forest,
Kerfriden, Lacourt, et al., 2022). A new appendix on the localization in porous
balls was added.

57
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3.1 Résumé détaillé

Le chapitre précédent a montré l’utilité de considérer des microstructures aléatoires, car des
comportements différents entre cellules unitaires et aléatoires sont possibles. Cependant, les
chargements étudiés jusqu’à présent étaient diagonaux, ne permettant pas de choisir l’orientation
du chargement par rapport à la cellule cubique. Comment évolue cette différence de comporte-
ment entre les deux types de cellule lorsque des chargments d’orientation quelconque sont
considérés ? Par ailleurs, un critère de coalescence, principalement phénoménologique a été
utilisé jusqu’ici. Un critère de localisation, davantage justifié théoriquement et plus adapté à
des chargements complexes, est donc également considéré. L’objectif de ce chapitre est donc
d’étudier la localisation en rupture ductile dans des microstructures aléatoires, soumises à des
chargements d’orientation quelconques.

La méthodologie reprend globalement celle du chapitre précédent, mais les conditions de
chargement sont généralisées de façon à permettre des orientations quelconques : le tenseur
des contraintes moyennes n’est plus nécessairement diagonal, c’est à dire que les directions
principales du tenseur ne coincident plus nécessairement avec les axes de la cellule cubique. Par
ailleurs, la ruine de la cellule est désormais détectée par le critère de localisation de Rice. Ce
critère nécessite de déterminer l’opérateur tangent macroscopique reliant les déformations et
contraintes moyennes à l’échelle de la cellule.

Le critère de Rice est d’abord testé pour des cellules soumises à un chargement diagonal.
Comme dans le chapitre précédent, la déformation à rupture en fonction de la triaxialité T et du
paramètre de Lode L est étudiée : elle décroît avec T et est minimale pour L∼ 0 lorsque le mode
de rupture est en cisaillement (à la fois pour les cellules unitaires et aléatoires). Contrairement
au critère en coalescence utilisé au chapitre précédent, le critère de Rice permet de déterminer
précisément la nature du mode de rupture : extension, cisaillement ou une combinaison des deux.
Une zone de ductilité réduite est associée au mode de cisaillement.

L’effet de l’orientation du chargement est ensuite étudiée. Pour des chargements de mêmes
T et L, des orientations différentes peuvent induire une grande dispersion de la déformation à
rupture. Ce phénomène se produit dans les cellules unitaires et de façon un peu plus réduite
dans les cellules aléatoires. Cette dispersion des résultats avec l’orientation du chargement est le
signe d’une anisotropie en rupture ductile, due à la cellule cubique et aux conditions aux limites
périodiques. Pour obtenir un modèle de rupture ductile isotrope, il convient de s’intéresser à
l’orientation de chargement minimisant la déformation à rupture. Cette déformation minimale est
toujours associée à une rupture en cisaillement.

Une dernière partie approfondit la discussion du critère de localisation en le comparant plus
précisément aux critères utilisés dans le chapitre précédent. De plus l’anisotropie des cellules est
précisée, en montrant qu’elle ne concerne pas seulement la déformation à localisation, et qu’elle
reste présente, à un niveau plus réduit, pour des cellules de porosité initiale plus faible.

3.2 Introduction

In the preceding chapter, random microstructures were simulated up to coalescence and the scatter
of failure strain due to the random distribution of voids was investigated. A significant scatter was
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found even for large populations. Moreover, by considering the influence of the Lode parameter,
differences between unit and random cells were identified in failure behavior. Random cells can
more freely express shear-dominated failure modes. Therefore random microstructures can better
represent failure mechanisms and they should be favored for determining failure models.

As already pointed, a significant issue of cell studies is to operationally detect the onset of
failure. Many indicators have been proposed, focusing on different physical mechanisms and
characteristic features. These different choices are not equivalent and a given microstructure’s
resistance (strain at failure) can significantly depend on the considered indicator. Tekoğlu et al.,
2015 showed that cell failure could actually be linked to two distinct processes: strain localization
and void coalescence. Void coalescence can be identified by a transition to a specific strain state,
where ligaments are uniaxially strained and the rest of the cell becomes rigid. Operationnally,
the cell ceases thinning in the directions transverse to the main loading axis, and reaches a state
of simple extension. This approach was used by Koplik and Needleman (1988) and Ling et al.
(2016). The previous chapter reformulated this indicator in terms of the macroscopic deformation
gradient rate (and especially its determinant) and proposed an extension of this indicator to handle
shear modes of failure.

On the other hand, strain localization corresponds to the concentration of deformation within
bands, generally containing voids, as an increased local porosity facilitates localization. This
process can be linked to the loss of ellipticity of the governing partial differential equations. This
mathematical characterization of localization can be traced to Hadamard’s (1903)’s works on
the stability of elastic materials. His interpretation of a discontinuity surface as a zero velocity
wave was then generalized to increasingly complex constitutive relations (Thomas, 1961; Hill,
1962; Mandel, 1966) including non normal relations or yield surfaces with vertices (Rudnicki
and Rice, 1975; Stören and Rice, 1975). The generalization of the strain localization criterion
to arbitrary constitutive laws was then performed by Rice (1976). This criterion, henceforward
referred to as Rice’s, is mostly used for structural computations (see for instance Al Kotob et al.
(2020)) but has also been recently used for unit cell studies by Zhu, Ben Bettaieb, et al. (2020).
Guo and Wong (2018) also claimed their maximum applied force criterion is equivalent to Rice’s
analysis. Tekoğlu et al. (2015) and Guo and Wong (2018) showed that coalescence, if it happens,
is always preceded by strain localization. Morin, Blystad Dæhli, et al., 2019 tried to match
experimental ductile failure results with localization and coalescence and found a slightly better
agreement with coalescence, so that structural failure may be better linked to the coalescence
process. However localization criteria may provide a relevant lower bound for ductile failure
resistance. The coalescence of random microstructures was studied in the previous chapter, but
the localization behavior of such microstructures remains to be investigated.

If a full response surface for ductile fracture is desired, sufficiently general loading conditions
should be used. For an isotropic material model subjected to a proportional loading, stress
triaxiality and Lode parameter are mainly used. Yet conflicting results with respect to the
influence of the Lode parameter on the failure strain are reported in literature. Barsoum and
Faleskog (2011), Wong and Guo (2015) and Luo and Gao (2018) found minimal ductility for
generalized shear. On the other hand failure strain grows from generalized tension to generalized
compression, without a minimum in shear, according to Guo and Wong (2018) and Zhu, Ben
Bettaieb, et al. (2020). In chapter 2, the behavior was mostly of the former type for random
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microstructures, and mostly of the latter type for unit cells. The discrepancy, which can be
interpreted as a strong indication of the intrinsic anisotropy of the simulation cell, is due to
different ways of applying the loading conditions, as pointed out by Zhu, Ben Bettaieb, et al.
(2020) and in chapter 2. However, a reliable failure model should not present this anisotropy
and this dependence on the methodology. In order to avoid this effect, Barsoum and Faleskog
(2011), Dunand and Mohr (2014) and Tekoğlu et al., 2015 carried out the simulations by rotating
the principal directions of the applied stress. The failure strain of the cell is then found by
minimizing over all loading conditions with the same stress invariants. A minimal failure strain
for generalized shear is then found. However only one axis of rotation was considered in these
studies. This choice is motivated by Rudnicki and Rice’s (1975) results on localization, which
show that localization bands in homogeneous materials should be orthogonal to the eigendirection
associated with the middle principal stress. However it was never verified numerically for unit
cells. Moreover the situation for random microstructures could be more complex than for unit
cells, which have higher symmetry. Fully general three-dimensional loading orientations, i.e
rotations of the principal axes of the applied stress with respect to the cell’s axes, should therefore
be considered.

The present study therefore aims to investigate ductile fracture and more precisely strain
localization behavior in random microstructures, while fully accounting for the effect of the
loading orientation. To the authors’ best knowledge, this is the first time that localization is
studied in cells with a distribution of voids. Moreover, no previous studies had considered the
effect of loading orientation with such generality. To this end, we generate cells consisting of
a perfectly plastic matrix embedding a random distribution of identical spherical pores. Using
the finite element software Zset (2022), simulations are performed in a large strain formulation.
Various proportional loading conditions are applied up to the failure of the cell. Following the
methodology by Zhu, Ben Bettaieb, et al. (2020), this failure is detected by Rice’s localization
criterion, computed at the global scale of the cell with a macroscopic tangent operator. The failure
behavior for random microstructures and unit cells is then compared depending on the loading
conditions. It is shown that Rice’s criterion successfully describes not only localization onset, as
performed by Zhu, Ben Bettaieb, et al. (2020), but also failure mode. A region of low ductility
is observed in generalized shear. A strong anisotropy of failure behavior is observed for unit
cells but is reduced for random microstructures. Minimal failure strains depending on the loading
conditions can then be determined.

This chapter is organized as follows. We first describe the methodology for generating random
microstructures, applying loading conditions, and detecting localization with Rice’s criterion.
Secondly, the performance of the criterion is assessed on simplified loading conditions, in which
the principal axes of the applied stress coincide with those of the cubic cell. Thirdly, more general
loading orientations are investigated. Finally, with the help of further computations, we discuss
the preceding results, especially the failure indicator used, and the impact of cell anisotropy.
Appendices present the numerical validation of the failure indicator, the effect of the simulation
parameters (mesh size, and temporal discretization), and check the limited role of local loss of
ellipticity in the matrix.
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3.3 Methodology of micromechanical finite element simulations

This section presents the general methodology for micromechanical simulations, carried out with
Zset software (Besson and Foerch, 1998; Zset, 2022). The generation and meshing of the random
microstructures, the material behavior used for the matrix, the boundary and loading conditions
are described. This methodology follows initially that of chapter 2, it is here summarized for
reference and practicality. The subsection 3.3.3 presents however an extension of the previous
methodology allowing a greater variety of loading conditions when compared to the previous
chapter.

3.3.1 Generation of microstructures and meshing

The microstructures are made of a periodic population of Nvoids identical non-overlapping spheri-
cal voids of radius r within a cubic matrix of size acube. The total initial porosity

f0 =
4π

3
Nvoids (r/acube)

3 (3.1)

and the number of voids Nvoids determine together the radius of the spheres. A sphere intersecting
the cube is copied on the other side (two copies for an intersected face, four for an edge and
eight for a vertex). The periodic microstructure with its spherical voids is thus able to pave space.
The positions of the spheres are chosen randomly according to a simple iterative dart-throwing
process: A position of the center is chosen uniformly on the cube, and the new sphere is added to
the collection if it (or its periodic copies) does not intersect any already accepted sphere.

The microstructure is then meshed by the NETGEN software Schöberl, 1997, ensuring finer
elements close to the voids. Most of the simulations on random microstructures will be performed
on the cells R1 and R2 visible in Fig. 3.1a and 3.1b. They were constructed with a porosity of
f0 = 6% and Nvoids = 27 voids and have already been used in chapter 2. This rather high void
volume fraction, which can be found in some materials such as nodular cast iron (Zhang, Bai,
et al., 1999), induces significant interaction between voids even during the growth phase (Fritzen,
Forest, Böhlke, et al., 2012). Considering such a high porosity level is also useful when studying
the coalescence of cells with lower initial porosity after sufficient void growth. A unit cell with
a single void, is also used for comparison (Fig. 3.1c). All meshes use quadratic elements with
reduced integration.

3.3.2 Material behavior law at finite strain

Simulations use a finite strain framework to account for the large deformation that can take place
in the matrix. The strain rate D∼ and Cauchy stress σ∼ tensors are convected in a corotational frame
(Besson, Cailletaud, et al., 2009):

ė∼= R∼
T D∼R∼ s∼= JR∼

T
σ∼R∼ (3.2)

where R∼ is a rotation matrix verifying −R∼
T Ṙ∼ = Ṙ∼

T R∼ = skew(Ḟ∼F∼
−1) (material spin tensor).

The matrix is chosen elastic-plastic with isotropic elasticity and von Mises plasticity without
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(a) Random cell R1 with 27 voids (255628 nodes)

1

2

3

(b) Random cell R2 with 27 voids (176982 nodes)

1

2

3

(c) Unit cell (104521 nodes)

Figure 3.1: Meshes of the cells repeatedly used in the study. All cells have an initial void volume
fraction f0 = 6%
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hardening:

ė∼= ė∼e + ė∼p e∼e =
1+ν

E
s∼−

ν

E
(trs∼)1∼

svm =

√
3
2

s∼
dev : s∼

dev f (s∼) = svm−R0 ≤ 0

ė∼p = ṗ
∂ f
∂ s∼

(3.3)

with s∼
dev the deviatoric part of the rotated Cauchy stress tensor s∼, svm the equivalent von Mises

stress and ṗ =
√

2
3 ė∼p : ė∼p playing the role of the plastic multiplier. The Young modulus, the

Poisson ratio and the yield strength are respectively chosen as E = 200 GPa, ν = 0.3 and
R0 = 500 MPa.

This choice of an elastic-perfectly plastic constitutive law plays a key role in the ductile
failure of the cell. Such a material is prone to early coalescence for loading in generalized shear.
The presence of a slow or non-saturating hardening can reduce this effect.

3.3.3 Boundary and loading conditions

Periodic boundary conditions are applied on the sides of the cube (Besson, Cailletaud, et al.,
2009). The displacement field u has the form:

u = (F̄∼ −1∼) · x 0 + v (x 0) = E∼ · x 0 + v (x 0) (3.4)

with F̄∼ the average deformation gradient, E∼ = F̄∼ −1∼ and v a periodic displacement fluctuation
field with zero average gradient over the cell. The periodicity of v and the anti-periodicity of
traction vectors mean that:

v (x +
0 ) = v (x−0 ) (3.5)

σ∼ ·n (x
+
0 ) =−σ∼ ·n (x

−
0 ) (3.6)

if x +
0 and x−0 are two homologous points on opposite sides of the periodic mesh and n (x 0) is the

outward-pointing normal to the mesh boundary at x 0. These periodic boundary conditions are
numerically imposed by multi-point constraints on homologous nodes. The components of the
macroscopic deformation gradient therefore appear as explicit degrees of freedom. In order to
control rigid body motion, a node of the mesh is fixed, and the tensor F̄∼ (or equivalently E∼ ) is
kept upper triangular:

E21 = E31 = E32 = 0 (3.7)

This condition was investigated in the previous chapter and found to yield equivalent results
to the condition imposing F̄∼ to remain symmetric (Ling et al., 2016). In order to facilitate
the ulterior computation of Rice’s criterion, this condition is applied by penalization. For
(i, j) ∈ {(2,1),(3,1),(3,2)}, a high stiffness spring connects the DOF Ei j to a fixed one Êi j = 0.
The force applied on the DOF Ei j is then:

REi j = k(Êi j−Ei j) (3.8)
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where k is a stiffness (chosen sufficiently high compared to the stiffness of the simulated cube).
The macroscopic Boussinesq (or first Piola-Kirchhoff) S̄∼ and Cauchy stress tensors σ̄∼ are

defined by:

S̄∼ =
1
V0

∫
V0

S∼ dV0 =
1− f0

V0

∫
V matrix

0

S∼ dV0 (3.9)

σ̄∼ =
1
J̄

S̄∼.F̄∼
T (3.10)

where J̄ = det
(
F̄∼
)

and V0 is the volume of the cell (matrix and defects) in the initial configuration.
The integration on V0 considers that stress is well-defined and identically zero in the voids. The
components of S̄∼ also correspond, up to a factor V0, to the reaction forces conjugate to the degrees
of freedom Ei j.

The loading conditions are applied by an extension of Ling et al.’s (2016) method. A special
spring element with ten degrees of freedom is used: Nine are connected to the Ei j degrees and
the last one, Ê11, corresponds to the displacement of a ghost node. This element guarantees the
following form for the macroscopic Boussinesq stress tensor:

S̄11 = k(Ê11−E11)/V0 (3.11)

S̄∼ = Jσ̄11η
∼

F̄∼
−T (3.12)

where k is a stiffness which can be chosen equal to that of Eq. (3.8), and η
∼

is a constant symmetric
tensor with η11 = 1. Eq. (3.12) can be rewritten in terms of Ei j, ηi j and Ê11 and K by using
Eq. (3.11) and explicitly inverting F̄∼ . The derivation is straightforward but tedious so the resulting
expressions were obtained with the SymPy computer algebra software (Meurer et al., 2017) and
are not reproduced here. With this spring element, the average Cauchy stress tensor remains
proportional to the constant tensor η

∼
throughout the simulation:

σ̄∼ = σ̄11η
∼

(3.13)

The loading is then driven by Ê11, which essentially coincides with E11 due to the high stiffness k.
Zhu, Ben Bettaieb, et al., 2020 and chapter 2 studied the case where η

∼
is diagonal (i.e.

η12 = η13 = η23 = 0). Barsoum and Faleskog (2007), Wong and Guo (2015) and Liu, Wong,
et al. (2016) used conditions equivalent to η22 = η33 and η12 = η23 = 0. Following Barsoum and
Faleskog’s (2011) example, several studies have considered rotating the applied stress σ∼ around
e 2. The problem is here considered with more generality, with a potentially full η

∼
tensor. As η

∼
is

a symmetric tensor, it can be diagonalized in an orthonormal frame and its components can be
more usefully expressed as:

[η
∼
] =

 1 η12 η13
η12 η22 η23
η31 η32 η33

= Q

σ̄I/σ̄11 0 0
0 σ̄II/σ̄11 0
0 0 σ̄III/σ̄11

QT (3.14)

where σ̄I ≥ σ̄II ≥ σ̄III are the principal stresses and Q is a rotation matrix defining the loading ori-
entation (that is, the orientation of the eigendirections of η

∼
) with respect to the frame canonically

linked to the cube.
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From the principal stresses, which are linked by the condition η11 = 1, two stress invariants
can be extracted. The stress triaxiality T and the Lode parameter L are here defined as:

T =
tr σ̄∼

3σ̄vm
(3.15)

L =
2σ̄II− σ̄I− σ̄III

σ̄I− σ̄III
(3.16)

where σ̄eq is the von Mises equivalent stress. In our convention, the values L =−1, L = 0 and
L = 1 respectively correspond to states of generalized tension, shear and compression. Therefore
a loading condition can be defined by T , L and a 3D orientation matrix Q. Conversely, given
a triplet (T,L,Q), the correct tensor η

∼
can easily be found by computing the principal stresses

(Zhu, Ben Bettaieb, et al., 2020), applying the rotation Q, and normalizing so that η11 = 1.

3.3.4 Formulation and implementation of the macroscopic Rice criterion

The simulations are primarily aimed at determining the random microstructures’ resistance to
ductile failure. As the material model defined in subsection 3.3.2 does not account for damage,
failure should be investigated at the cell level. An indicator is required to identify failure. In
this work, the localization approach is used by applying Zhu, Ben Bettaieb, et al.’s (2020)
methodology to the random microstructures. Rice’s indicator could also be better suited to
complex loading conditions, as illustrated in section 3.5.

Let L̄ be the macroscopic tangent operator linking the macroscopic Boussinesq stress and
deformation gradient rate tensors:

˙̄S∼ = L̄ : ˙̄F∼ (3.17)

Rice’s criterion predicts strain localization when, for some direction n the acoustic tensor along
n becomes singular:

det
(
nkL̄ik jlnl

)
= 0 (3.18)

In the following, the expression det
(
n L̄ n

)
will refer to the above equation with the correct

choice of indices.
Whereas the local tangent operator L is directly given by the material behavior, the macro-

scopic operator L̄ should be computed at the level of the cell in order to link ˙̄S∼ and ˙̄F∼ . It therefore
combines the local material behavior and structural effects. Zhu, Bettaieb, et al., 2020 compared
several numerical techniques to compute this macroscopic tangent operator. A condensation
method derived from Zhu, Ben Bettaieb, et al. (2020) but tailored to our finite element formulation
is here used. The general idea of the condensation technique is to compute a Schur complement
on the finite element matrix separating macroscopic and local degrees of freedom.

More precisely, from subsection 3.3.3, three types of DOF can be distinguished in the
simulation : (i) Ei j, macroscopic DOF corresponding to the component i j of F̄∼ −1∼; (ii) vn,i, nodal
DOF corresponding to the displacement fluctuation in the direction i of the node n; (iii) four
ghost nodes Ê11, Ê21 Ê31, Ê32 useful to control the applied stress or the rigid body motion. The
vector collecting the Ei j (resp Êi j, vn,i) DOF is noted E (resp. Ê, V ).

The stiffness matrix K computed during the Newton iterations of the FEM simulation, can
thus be decomposed in blocks so as to verify:
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KÊÊ KÊE 0
KEÊ K̃EE KEV

0 KV E KVV

∆Ê
∆E
∆V

=

∆RÊ
∆RE

∆RV

 (3.19)

The right hand side represents the external forces on each DOF. RV corresponds to the nodal
forces, whereas [RE ]i j = V0S̄i j with S̄∼ the macroscopic Boussinesq stress tensor applied to the cell,
and V0 the initial volume of the cell. The blocks KÊV and KV Ê are zero because the ghost nodes
are not linked to the displacement fluctuation DOF. Moreover, K̃EE is obtained by combining a
contribution KEE from the tetrahedral elements of the mesh and contributions from the springs:

K̃EE,i j,kl = KEE,i j,kl + ∑
sspring

K(s)
Ei j,Ekl

(3.20)

where K(s)
Ei j,Ekl

is the elementary stiffness matrix of the spring. Up to a factor equal to the volume
of the cell, KEE represents the average local tangent operator on all tetrahedral elements. For
each spring controlling the rigid body motion, only one coefficient in the block EE is non-zero:
K(s)

E21,E21
= k for the E21 spring, for example. Similarly K(s)

E31,E31
= K(s)

E32,E32
= k. The expressions

for the extension of Ling et al.’s (2016) special spring element are more complicated but always
computable, provided Ê11 and F̄∼ are known. The tilde on K̃EE represents the modification of the
quantity KEE linked to the physical mesh by contributions from the springs.

The effect of Dirichlet boundary conditions and multi-point constraints on K should now be
considered. Dirichlet boundary conditions, which are applied on the ghost nodes, lead to the
elimination of DOF. For multi-point constraints applying the periodic boundary conditions of
Eq. (3.6), rows related to homologous DOF should be summed and combined in a single new
row (and the same for columns). Eliminating the Ê DOF due to Dirichlet boundary conditions
and combining rows and columns for homologous V DOF is equivalent to modifying the matrix:

K′ =
(

K̃EE K′EV
K′EV K′VV

) (
∆E
∆V ′

)
= K′−1

(
∆RE

∆R′V

)
(3.21)

The block K̃EE has not been modified and the DOF Ê have disappeared. Had the conditions
E21 = E31 = E32 = 0 not been imposed with springs, these DOF would have disappeared from the
stiffness matrix. Computing the related coefficients in the macroscopic tangent operator would
have been impossible.

Computing the macroscopic tangent operator means determining the linear relationship
between ∆F̄∼ and ∆S̄∼, and therefore between ∆E and ∆RE , when no other force is applied. In
this context, the nodes of the meshed cell are free to move so that ∆R′V = 0 at equilibrium. In
Eq. (3.19), this implies K′V E∆E +K′VV ∆V ′ = 0, hence:

∆RE = ˜̄K∆E with ˜̄K = K̃EE −KEV K−1
VV KV E = ([K

′−1]EE)
−1 (3.22)

In the last expression, the EE block of K−1 is extracted. The macroscopic tangent operator should
then be computed from ˜̄K by removing the contribution from the springs. Otherwise, even for a
homogeneous cube, it would not coincide with the local tangent operator. L̄ is then obtained as:

L̄i jkl = K̄Ei jEkl/V0 with K̄ = KEE −KEV K−1
VV KV E (3.23)
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K̄/V0 is therefore different from KEE/V0, which is the average value of the tangent operator over
all the elements of the cell. It includes the structural effect −KEV K−1

VV KV E .
In practice, at the end of each increment of the Z-set simulation, a Python script with

references to Z-set’s internal variables is called. This script can access the global stiffness
matrix with boundary conditions K′. The quantity [K′−1]EE can then be computed by solving the
following equation for the nine Ei j DOF:

K′
(

α∆E
α∆V

)
=

(
α∆Ri j

E
0

)
(3.24)

where all the coefficients of ∆Ri j
E are zero, except the coefficient related to Ei j: Ri j

E,i j = 1. The
quantity α is a very large value, allowing to neglect the modifications of the right hand side
made by the Dirichlet boundary conditions. The matrix [K′−1]EE is then constructed from the
nine solutions by taking for each column, only the coefficients from the E block. Solving these
nine equations with Z-set’s solver is computationally efficient. No inversion of the matrix K′ is
necessary, and only one additional factorization of K′ needs to be performed at the end of each
time increment.

The matrix [K′−1]EE is then inverted by means of the Scipy solver. This inversion is inexpen-
sive as [K′−1]EE is only of size 9× 9. The resulting matrix ˜̄K can then be stored in a separate
file. This process is repeated for each increment of the simulation. Finally, as a post-processing
operation, K̄ is computed from ˜̄K by subtracting the contribution of the springs.

The macroscopic tangent operator L̄ has now been computed, and Eq. (3.18) remains to
solve. Rather than solving it directly, the minimum of det

(
n L̄ n

)
is found for n on the unit

sphere. By continuity, if this minimum is nonpositive, Eq. (3.18) has a solution, and the cell
exhibits strain localization. The BFGS minimizer from SciPy (Virtanen et al., 2020) is used with
the multi-start procedure described by Al Kotob et al. (2020).

For a typical simulation of a random cell, the Rice analysis can lead to an increase of CPU
time of approximately 60% when compared to a simulation without Rice analysis. This is
principally due to the additional factorization of K′, whereas the overheads due to the forward
and backward substitutions in Eq. (3.24) and the minimization of det

(
n L̄ n

)
are negligible for

sufficiently large meshes.
Appendix 3.A validates the methodology for computing L̄ by comparison with theoretical

results and other methods. Note than L̄ only computes the consistent macroscopic tangent
operator used in numerical computations, and not directly the instantaneous tangent operator
corresponding to the material formulation (Besson, Cailletaud, et al., 2009). However the
validation from appendix 3.A proves that the difference can be neglected for sufficiently small
steps.

3.4 Investigation of localization with Rice’s criterion for diagonal
loading

Unit cell studies frequently consider the application of diagonal macroscopic stress tensors. To
compare with literature, the analysis is first restricted to diagonal η

∼
loading. The loading is then
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characterized only by T and L. Rice’s criterion’s is shown in the following to efficiently detect
localization onset and failure mode for random microstructures.

3.4.1 Strain at localization depending on T,L loading conditions

The methodology for Rice’s criterion application is first verified on the simple case of the unit
cell loaded with T = 1, L = −1. This loading condition corresponds to generalized uniaxial
tension. For such a loading condition, the failure onset directly corresponds to an inflection point
in the stress-strain curve. It is also well understood by applying Koplik and Needleman’s (1988)
criterion: the cell stops thinning and the macroscopic transverse strain E22 (or equivalently E33)
stabilizes.

Fig. 3.2 compares the evolution of three quantities throughout the computation, parametrized
by the macroscopic strain E11: the transverse strain E22, the macroscopic stress component
σ̄11 along the loading axis, and the Rice quantity mindet

(
n L̄ n

)
throughout the computation.

For E11 ' 0.28, mindet
(
n L̄ n

)
= 0, which corresponds to Rice’s criterion activating. This

localization is simultaneous with the stabilization of the transverse strain and the inflection point
of the strain-stress curve. The three failure indicators therefore yield the same failure onset, which
confirms the soundness of the methodology using Rice’s criterion. This allows defining the strain
at localization Eloc as:

Eloc = argmin
E11
{E11|mindet

(
n L̄ n

)
≤ 0} (3.25)

The dependence of the strain at localization on T and L is depicted in Fig. 3.3 for the unit
cell and the random cells R1 and R2. Each subfigure considers a slice of the (T,L) space: A
parameter is fixed whereas the other one varies. At fixed L = −1 (axisymmetric, generalized
tension) or L = 0.5, failure strain decreases almost exponentially with stress triaxiality, for all
cells. Such a decrease mostly agrees with the evolution Eloc ∝ exp(−3T/2) from Rice and Tracey,
1969, although the agreement, especially regarding R2, is slightly reduced compared to the δ

coalescence indicator of chapter 2.
For fixed T = 1 and varying L (Fig. 3.3c), the situation is more complex and differs between

cells. For the unit cell, three zones can be distinguished. For L <−0.5 or L > 0.3, failure strain
evolves slowly with L and the plot forms a plateau. A slow increase of Eloc with L is frequently
found in unit cell studies with diagonal loading (Zhu, Engelhardt, et al., 2018; Zhu, Ben Bettaieb,
et al., 2020). On the contrary, between L =−0.5 and L =+0.3, Eloc is a convex function of L,
minimal for L = 0 where localization is almost immediate. Early localization in shear is expected
for a homogeneous perfectly plastic material. The role of the matrix’s behavior in the localization
is studied in more detail in 3.C. For the random cells, the central zone of reduced ductility with a
minimum for L = 0 is wider than for unit cells. The plateaus at high |L| are reduced and even
disappear for the cell R2. For the cell R1, the distinction between the plateaus and the reduced
ductility zone are still present. A local maximum associated with a strong slope discontinuity is
present at L∼ 0.5 and marks the transition between the central low ductility zone and the upper
plateau. For random cells, the reduced ductility zone is therefore dominant. Such an evolution is
reminiscent of the results by Barsoum and Faleskog (2007), Barsoum and Faleskog (2011) and
Wong and Guo (2015) or Luo and Gao (2018), who considered non diagonal loading conditions.
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The difference with Zhu, Ben Bettaieb, et al. (2020) who also used a localization criterion and a
diagonal loading can be explained by the present use of a cubic cell (instead of a parallelepipedic
cell by Zhu, Ben Bettaieb, et al.) which is more sensitive to shear localization.

The distinction between plateaus and a central reduced ductility zone was already predicted
by the δ coalescence criterion. However, the localization criterion used in the present study,
predicts a wider reduced ductility zone, especially for the unit cell. In the previous article, that
zone was limited to the immediate vicinity of L = 0. Moreover, the plateaus at high |L| are not
necessarily present with the localization criterion. A more precise comparison between these
failure indicators will be performed in subsection 3.6.1.
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Figure 3.2: Evolution of transverse strain, stress component σ̄11 and Rice criterion for a simulation
of a unit cell at T = 1, L =−1. The stabilization of the transverse strain and the localization onset
are almost simultaneous. This instant also corresponds to an inflection point of the stress-strain
curve.

3.4.2 Localization bands and failure mechanisms

In the previous section, Rice’s criterion was used as an indicator for failure onset. A complex
dependence of Eloc with respect to L was found with several failure zones. chapter 2 correlated
these zones with differences in failure modes, identified by their plastic strain fields. However the
methodology of Rice’s criterion can help quantify and distinguish failure mechanisms.

Let n be a unit vector such that det
(
n L̄ n

)
= 0, and call g the unit eigenvector of n L̄ n

corresponding to eigenvalue 0. Rice’s criterion then predicts a localization band of normal n ,
and the two sides of the band have a relative velocity along g . Two extremal cases can be
distinguished. The case where g and n are collinear represents a perfect extension mode: the
band opens without tangential movement. If g and n are orthogonal, the two half spaces delimited
by the band have a pure tangential displacement: this represents pure shear. Therefore the analysis
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Figure 3.3: Deformation at localization for unit and random cells (diagonal loading) and slices of
the (T,L) space. The triangles indicate a slope of −3/2 in the log-lin plot: Eloc ∝ exp(−3T/2)
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of the acoustic tensor n L̄ n at localization allows finding the localization mode within the cell.
Furthermore the value of g ·n distinguishes extension and shear failure modes. This analysis
can be performed not only at localization onset, but more generally throughout the computation.
To this end, the vector n minimizing det

(
n L̄ n

)
is found, and the eigenvector for the lowest

eigenvalue of the associated acoustic tensor is computed. The solution (n ,g ) only describes
a localization band at the instant of failure. Nonetheless, this provides insight on likely bands
before localization, and the evolution of such bands after localization.

Fig. 3.4, 3.5, 3.7 and 3.8 depict the characteristics of the localization band for the unit cell
and the random cell R1 for two loading conditions (T = 1, L =−1) and (T = 1, L = 0). Each
figure shows first the plastic strain rate field at the instant of localization. Plastic strain rate is
normalized by the strain rate Ė11, which is required to drive the computations but plays no role
for a rate-independent plastic material. The evolution of g ·n and of the principal stress σ11 is
then represented for the whole simulation. Finally the evolution of the det

(
n L̄ n

)
landscape is

shown at several time steps during the simulation. The minimizing value is shown with a blue
triangle (resp. red dot) before (resp. after) localization. White areas correspond to negative values
of det

(
n L̄ n

)
. The unit vector n is parametrized as:

n = (sin(φ)cos(θ),sin(φ)sin(θ),cos(φ)) (3.26)

For the unit cell loaded with (T = 1, L =−1), localization takes place near Eloc ∼ 0.25. The
localization band is a plane orthogonal to the first axis, as shown by the plastic deformation rate
field. This is consistent with the evolution of the det

(
n L̄ n

)
landscape. Initially, while the cell

is still completely elastic, det
(
n L̄ n

)
does not depend on n . As soon as plasticity begins, a

minimum is found near (but not exactly) θ = 0 [π], φ = π/2, i.e. n = e 1. The quantity g · n
increases until localization and stabilizes shortly after at a value close to 1. The failure mode is
thus extension, which is consistent with a localization band orthogonal to the tensile axis. On the
contrary, for (T = 1, L = 0), the localization takes place immediately after yield. Two equivalent
localization bands at 45◦ from the cube’s first axis are present. These bands can also be seen on
the det

(
n L̄ n

)
landscapes. At the localization onset, g ·n ∼ 0.1: this low value is characteristic

of the shear failure mode. However, during the rest of the simulation, g ·n continues to grow, and
the local minima in the det

(
n L̄ n

)
come closer one to another. They even merge for E11 ∼ 0.3,

which also correspond to a stabilization of g ·n at a value close to 1. This can be interpreted as a
transition from an initial strain localization in shear mode to an extension mode (Fig. 3.6).

For the random cell R1 with T = 1,L =−1, results are globally similar to the situation of
the unit cell for the same loading condition. However the localization band has a more complex
pattern, as it tries to connect several voids. The overall orientation of this band remains orthogonal
to the first loading axis. For T = 1,L = 0, localization takes place early, in shear mode. Contrary
to the case of the unit cell, no stabilization of g · n and no transition to extension mode are
witnessed. Moreover, due to the lower symmetry of the random microstructures, the det

(
n L̄ n

)
landscape has lost its symmetry with respect to φ = π/2. The oscillations on Fig. 3.8b correspond
to an alternation between two local minima.

The link between localization mode and failure strain is shown in Fig. 3.9. For all cells,
the zones of reduced ductility identified in Fig. 3.3c are systematically associated with shear
failure mode. On the other hand, the peaks and plateaus correspond to extension modes. These
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(a) ṗ/Ė11 after localization
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Figure 3.4: Characteristics of the localization band for the unit cell, at (T = 1, L =−1)
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(a) ṗ/Ė11 after localization
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(c) Evolution of the det(nLn) landscape

Figure 3.5: Characteristics of the localization band for the unit cell, at (T = 1,L = 0)

(a) E11 = 0.02 (b) E11 = 0.2 (c) E11 = 0.25 (d) E11 = 0.3

Figure 3.6: Transition from shear mode to extension mode for the unit cell (T = 1, L = 0)
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(a) ṗ/Ė11 after localization
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Figure 3.7: Characteristics of the localization band for the random cell R1, at (T = 1, L =−1
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(a) ṗ/Ė11 after localization
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Figure 3.8: Characteristics of the localization band for the random cell R1, at (T = 1,L = 0)
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results are consistent with those obtained previously with a coalescence criterion. However, in the
previous study, modes were only distinguished by the inspection of the plastic deformation field.
On the contrary, the present study’s analysis of the acoustic tensor and its eigenvectors allows to
distinguish quantitatively the two localization modes. Moreover this analysis is straightforward,
as the acoustic tensor has already been computed in order to apply Rice’s criterion.
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Figure 3.9: Link between the deformation at localization and the localization mode (T = 1).
Same as Fig. 3.3c, but with localization modes highlighted. The extension mode (resp. shear
mode) is shown in blue (resp. green) and corresponds to g ·n ≥

√
2/2 (resp. g ·n <

√
2/2 ) at

localization

3.5 Influence of the loading orientation with respect to the cube

In the previous section, Rice’s criterion was found to effectively predict failure by localization
and was able to distinguish between extension and shear modes. Only simple loading conditions
with a diagonal η were considered. The evolution of the strain at localization with respect
to L in Fig. 3.3 showed plateaus and cusps due to the hesitation between failure modes. It is
questionable whether this evolution still holds for different loading orientations with respect to
the cube. General loading conditions with an arbitrary η

∼
are thus now considered. They allow

investigating the influence of the loading orientation. The effects of the intrinsic anisotropy of the
simulation cells can then be explored.

3.5.1 Parametrisation of the general loading orientation

As shown in Eq. (3.14), the tensor η
∼

, defining the average Cauchy stress tensor up to a pro-
portionality constant, is equivalent to the combination of T , L, and a rotation matrix Q. This
rotation represents the orientation of the loading with respect to the cube. In order to define the
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computations and report on the results, a suitable parametrisation for Q must be adopted. As the
rotation group SO3 is three-dimensional, Q can be represented by three parameters, for instance
by the three components of a Rodrigues vector. If Q corresponds to the rotation of angle θ around
the direction given by the unit vector m , with ||m ||= 1, the associated vector is:

d = tan(θ/2)m (3.27)

In order to explore all possible loading orientations, the whole rotation group SO3 is not
necessary due to symmetry conditions. The periodic boundary conditions naturally entail cubic
symmetry. The unit cell exactly displays this symmetry so no generality is lost when reducing
loading orientations by cubic symmetry. In order to limit the computational expense, we sup-
pose that it is also the case for random microstructures. Equivalently, the image of a random
microstructure by a symmetry of the cube can be thought as a distinct microstructure, whose
behavior is not studied in this work. On the other hand, the symmetric tensor η

∼
is characterized by

three orthogonal axes bearing distinct principal stresses. It can thus be associated with orthotropic
symmetry. Accounting for symmetries, the set of all possible loading orientations with respect
to the simulation cell is the cubic-orthotropic disorientation space (using Heinz and Neumann’s
(1991) terminology). Inversion of a principal axis does not change η

∼
, so the disorientation space

is only one half of the one found by Heinz and Neumann (1991). The appropriate disorientation
space can be expressed in Rodrigues formalism:

0≤ di ≤
√

2−1 for i = 1,2,3

d1 +d2 +d3 ≤ 1
(3.28)

A sample of loading orientations in this space is represented in Fig. 3.10. They are repeatedly
used in the following section. Red points correspond to the vertices of the disorientation space,
whereas green points were randomly sampled. The latter were first sampled on the unit quaternion
sphere with a uniform probability distribution, then were converted to Rodrigues vectors. The
representative in the disorientation space is then computed with the method of Grimmer (1974).

From T , L and a Rodrigues vector d , the macroscopic stress tensor η
∼

can be computed with
the methodology described in subsection 3.3.3. However the 1-axis plays a special role in the
spring element applying boundary conditions (Eq. (3.12)). The computations were found to be
more stable when η11 is the maximal component on the diagonal of η

∼
. The principal axes of η

∼
are thus cyclically permuted until this condition is reached. This operation is compatible with
cubic symmetry and does not change the equivalence class of loading orientations.

The component E11 does not take into account rotations of the loading axes, and cannot be
used to compare simulations in different loading orientations. By extension of the diagonal case,
the following definition of the failure strain is proposed. At the onset of localization tloc (where
t is the fictitious time driving the simulation), the macroscopic deformation gradient F̄∼ (tloc) is
extracted. If eI is the normalized eigenvector of η

∼
, associated with its largest eigenvalue, Eloc can

be defined as:
Eloc = (F̄∼ (tloc)−1∼) : (e I⊗ e I) (3.29)

This is equivalent to rotating the deformation gradient in the principal frame of the applied stress,
and extracting the new component E11:

Eloc =
[
Q
∼

T · (F̄∼ (tloc)−1∼) ·Q∼
]

11
(3.30)
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Figure 3.10: Disorientation space representing all loading orientations with respect to the cube,
along with simulation points frequently used in this study

where the notation of Eq. (3.14) is used. In the case of diagonal loading, Q is the identity, and the
previous definition of Eloc is recovered.

3.5.2 Results for general loading orientations

With the preceding formalism, simulations with any loading orientation can be performed. Before
exploring the full orientation space, the simpler case of a rotation with respect to one axis of
the cube is studied (Fig. 3.11). For the condition (T = 1, L =−1), simulations are performed
on the unit cell and two random cells. The applied stress is rotated with various angles around
the second or third axes of the cubes. In the Rodrigues formalism, d is collinear with e 2 or e 3.
As L =−1 is an axisymmetric case, rotation around e 1 has no effect on the applied stress. For
the unit cells, results for the second and third axes are identical, due to symmetry. Failure strain
decreases as the angle of rotation increases, until a minimum is reached at approximately 35◦.
Notwithstanding the angular discretization, this is fully consistent with the results by Barsoum
and Faleskog (2011), who found a minimum for an angle of 37◦. On the other hand, the two
random microstructures show a more complex dependence of the failure strain with respect to the
angle of rotation. The symmetry between the axes 2 and 3 is lost with the random cell. Moreover,
results from R1 and R2 are quite different one from another. Minimum failure strain is not
necessarily found for an angle of 37◦ (10◦ for R1, for instance). A clear peak is found for R1 and
R2 for a rotation of 40◦ around e 2. The analysis of plastic deformation fields (not presented here)
shows a transition of modes between the two sides of the peak. This phenomenon is similar to
the cusps in Fig. 3.3c.

In order to explore the effect of orientation for given values of T and L, 150 different rotations
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Figure 3.11: Dependence of the deformation at localization for different rotations around the axes
(three cells, T = 1, L =−1)

were chosen in the disorientation space. Failure strain values were computed for these rotation
points on the unit cell and the random cells at (T = 1, L = −1). Results are displayed in the
disorientation space (Fig. 3.12). The case (T = 1, L = 0.5) is also shown for the unit cell. In the
rest of this section, a coarser mesh with 7682 nodes (the same as in chapter 2) was chosen for the
unit cell in order to limit the computational expense. For all cases, failure strain strongly depends
on the loading orientation. Note that the minimal failure strain is systematically lower than in
Fig. 3.11. In order to find this minimal failure strain, restricting to rotations around the axes is
therefore not justified. Values of failure strain appear to depend in a rather smooth way on the
loading orientation: Peaks corresponding to hesitation between modes as in Fig. 3.11a are scarce.
Very clear trends can be seen for the unit cell. For instance, at (T = 1, L = 0.5), Eloc appears to
mainly depend on the value of d2. However results from different cells or different values of L do
not display the same trends with respect to the loading orientation.

After having understood the structure of the dependence with respect to Q for a given value of
L, we consider the loading condition as mainly a function of (T,L) and study the scatter which can
be attributed to the effect of the loading orientation. Computations were performed on the three
cells for various values of L, at fixed T = 1. For each value of L, 30 simulations with different
loading orientations (visible on Fig. 3.10) were performed. Results are shown in Fig. 3.13 as box
plots, representing the minimum, first, second (median), third quartiles and maximum for the
30 different orientations. For each cell, loading orientation is responsible for a large scatter. An
order of magnitude can sometimes be found between the minimal and maximum failure strains
for a given L. Results from the unit cell are even more scattered, which is the sign of greater
anisotropy for the localization behavior. For L = 0, this scatter is however minimal, because the
behavior of the material imposes early localization in shear. For random cells, minimal failure
strain is a symmetric function of L, with minimal value for L = 0. The curve of the minimal
failure strain is however flatter for the unit cells, due to the higher anisotropy. Counter-intuitively,
localization is thus found to take place earlier in the unit cell than in the random cells, because
the former is more sensitive to the loading orientation.
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(a) Unit cell, T = 1, L =−1 (b) Unit cell, T = 1, L = 0.5

(c) Cell R1, T = 1, L =−1 (d) Cell R2, T = 1, L =−1

Figure 3.12: Deformation at localization for 150 different loading orientations, represented in the
disorientation space



3.5. INFLUENCE OF THE LOADING ORIENTATION WITH RESPECT TO THE CUBE 81

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
L

10 2

10 1

E l
oc

(a) Random cell R1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
L

10 2

10 1

E l
oc

(b) Random cell R2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
L

10 2

10 1

E l
oc

(c) Unit cell

Figure 3.13: Localization onsets for three cells (T = 1, varying L). Each box plot corresponds to
the results of 30 different loading orientations.
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The localization mode can also be investigated depending on the loading orientation. Fig. 3.14
shows the plastic deformation rate fields just after localization for the random cells R1 (Fig. 3.14a
to 3.14d) and R2 (Fig. 3.14e to 3.14h). Two loading cases are considered: (T = 1, L =−1) (first
and third rows) and (T = 1, L = 0.4) (second and fourth rows). For each loading case, the results
for the most (resp. least) resistant orientations corresponding to the maximal (resp. minimal)
failure strain value are shown on the left (resp right). The failure mode for the least resistant
orientation is always associated with a shear failure mode. This is even true for the cell R2 at
L =−1, for which the localization band is parallel to the sides of the cube. For the most resistant,
shear or extension modes are possible. This shows that L is not sufficient to distinguish between
the two failure modes. For a given L, the failure mode can change depending on the loading
orientation.

The link between early localization and shear failure mode can be quantified with g ·n , as
in subsection 3.4.2. Fig. 3.15 correlates g ·n at localization and Eloc for all the simulations on
random cell R2, seen in Fig. 3.13b. Eloc is almost a linear function of g ·n . A small failure strain
is thus systematically linked to shear failure mode, whereas late localization is only found with
extension mode.

The results of this section show the strong influence of the loading orientation. Yet the
response of an isotropic material should only depend on the stress invariants T and L. The
dependence with the loading orientation is therefore the sign of the anisotropic behavior of the
cubic simulation cells. This anisotropy cannot be avoided but could be reduced with larger
simulation cells. The random microstructures already display a smaller anisotropy than the unit
cell. As proposed by Barsoum and Faleskog, 2011 and in order to obtain conservative results, the
application of simulations to isotropic models should focus on the critical loading orientation
with the minimal failure strain. This critical orientation may vary with T and L, but always
corresponds to a shear failure mode.

3.6 Discussion

The previous results are now discussed with help from complementary simulations. Rice’s
criterion is first compared to other criteria from literature. Then the link between cell anisotropy
and the scatter of results is further analyzed. The anisotropy in yield strength is studied, and the
influence of a reduced porosity on localization is investigated.

3.6.1 Comparison of failure criteria for diagonal loading

In this study, Rice’s localization criterion was used to detect the failure of the cells. Its predictions
in the case of diagonal loading are here compared to those of two coalescence criteria (Fig. 3.16).
The energy criterion from Wong and Guo (2015) compares the macroscopic plastic power Ẇp

and elastic power Ẇe. In the coalescence state, elastic unloading occurs far from the voids, so the
ratio Ẇe/Ẇp is minimal. The δ criterion assumes that for shear or extension coalescence modes,
the macroscopic deformation gradient rate ˙̄F∼ becomes singular (rank one for extension, and rank

two for shear). The evolution of det
(

˙̄F∼
)

can then be compared to that of a homogeneous loading.
Coalescence is thus detected when this ratio reaches zero (within a given precision).
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(a) Cell R1, T = 1, L =−1: Emax
loc = 0.32 (b) Emin

loc = 0.07

(c) Cell R1, T = 1, L = 0.4: Emax
loc = 0.57

(d) Emin
loc = 0.01

(e) Cell R2, T = 1, L =−1: Emax
loc = 0.28 (f) Emin

loc = 0.046
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(g) Cell R2, T = 1, L = 0.4: Emax
loc = 0.63 (h) Emin

loc = 0.007

Figure 3.14: ṗ/Ė11 just after localization, for the orientations maximizing (left) and minimizing
(right) Eloc, for the two random cells and two loading conditions (rows). To better visualize the
failure mode, the deformed mesh is represented, and a factor is applied to the displacements.
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Figure 3.15: Link between localization strain and localization mode (characterized by the value
of g ·n ) for varying L (T = 1, random cell R2)
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Figure 3.16: Comparison of the failure onsets, as indicated by three different criteria: Rice’s
localization, δ criterion on the determinant of the deformation gradient rate, and Wong and Guo’s
(2015) energy criterion. All computations with a diagonal loading, at T = 1.

For both the unit and random cells, localization (from Rice’s criterion) takes place earlier
than or almost at the same time as coalescence (from the two other criteria). This is consistent
with the findings by Guo and Wong (2018) and Zhu, Ben Bettaieb, et al. (2020). For the unit
cell, the three criteria give very similar predictions for L <−0.5 and L > 0.3. However, in the
region L ∈ [−0.5,0.3], localization takes place very early, whereas failure strain from the energy
criterion remains high and grows with L. The behavior of the δ criterion is intermediate, with
results close to that of the energy criterion, except in the immediate vicinity of L = 0, where
failure strain is minimal. This division of the Eloc–L curve in three zones matches the results from
Fig. 3.9. The three criteria give similar results when the unit cell fails in extension, and quite
different results for the shear failure mode. The case L = 0 can be better understood from Fig. 3.6.
There is early strain localization in shear, but the failure mode ends switching to extension mode,
which is recognized by the energy criterion. For the random cell, at low and high L, coalescence
criteria give the same results. Coalescence and localization are almost simultaneous at high
L, whereas localization occurs significantly earlier at low L (for generalized tension). In the
region L ∈ [−0.5,0.4], the energy criterion fails to detect any coalescence (effect already seen in
chapter 2). The failure strain from the Rice and δ criteria both form a U-shaped curve. The curve
is wider for localization, as localization takes place earlier than coalescence. In this region, failure
takes place in shear mode and no switch to extension mode was seen in Fig. 3.8. To summarize,
localization always precedes coalescence. The three criteria yield similar results for extension
modes. For shear modes, the energy criterion fails to detect coalescence whereas the other criteria
can recognize this mode. The zone of low ductility is wider for the localization criterion.
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3.6.2 Anisotropy of the cells

The results of subsection 3.5.2 showed a major dependence of the failure strain on the loading
orientation with respect to the cell axes. This can be interpreted as an evidence of an anisotropic
localization behavior of the simulation cells. In order to precise this anisotropy interpretation, we
show that the dependence on loading orientation does not only concern localization strain, but also
the initial yield stress. The simulations from Fig. 3.13 are analyzed again, and the maximum value
of the principal stress σ̄I is extracted. Values of σ̄I can be directly compared between simulations
at different loading orientations. Fig. 3.17 shows the scattering of stress values with respect to the
orientation for the unit cells and the random cells R1 and R2. This scattering is significant but is
not as marked as for failure strain values. It confirms the anisotropic behavior of the simulation
cells. Compared to unit cells, anisotropy is significantly reduced for the random microstructures,
in agreement with Fig. 3.13. However, the scatter of maximum stress is maximal near L = 0,
whereas the scatter of localization strain was minimal there. The anisotropic behavior, both for
localization and for initial yield stress, is due to the geometric anisotropy of the cells. With the
periodic boundary conditions, the material is a cubic array of voids and therefore displays cubic
anisotropy. The anisotropy is smaller for random microstructures because they correspond to
larger volume elements, or equivalently because the period of the cubic array created by boundary
conditions is larger (relatively to the size of the voids).

Cubic unit cells thus exhibit major anisotropy. In order to determine an isotropic response from
cell simulations, computations should be performed for many loading orientations. For random
microstructures, this anisotropy is smaller but remains significant. With larger microstructures
containing more voids, the anisotropy could probably be further reduced, at the expense of a
higher computational cost.

Another method to reduce anisotropy would be to use different boundary conditions, for
these conditions play a key role in localization. For instance, Dæhli, Tekoğlu, et al. (2022)
compared several unit cells with different boundary conditions and found very distinct onsets of
localization. However, in micromechanical analyses, there are no realistic boundary conditions
especially in the presence of instabilities. More pragmatically, boundary conditions should play
as small (or at least as local) a role as possible on the behavior of the representative volume
element and should not hinder too much global failure modes. Periodic boundary conditions are
satisfactory for strain localization analyses because they allow the development of (compatible)
localization bands, and are found (in elasticity) to allow faster convergence of results with cell
size (Kanit et al., 2003). Parallel faces boundary conditions for random and unit cells were
tried in subsection 2.B.2 but were found to strongly hinder the development of shear failure
modes. Coenen et al. (2012) also proposed a new type of boundary conditions to counteract the
influence of the periodic boundary conditions, which are here responsible for the anisotropy. The
most likely localization band is detected from the strain field. The boundary conditions are then
adjusted to allow the development of this band (and only this one). Yet this approach does not
seem adapted to the complex localization patterns seen in Fig. 3.14 or to possible transitions of
failure modes (Fig. 3.6).
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Figure 3.17: Anisotropy of the maximum principal stress, for the unit cell and two random ones.
Computations at T = 1, varying L, for 30 different loading orientations.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
L

10 2

10 1

E l
oc

Figure 3.18: Strain at localization for T = 1, varying L and 30 different loading orientations, on a
unit cell with porosity 1%
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3.6.3 Effect of porosity

A single fixed porosity of 6% was considered up to now. In order to assess the influence of
porosity, a unit cell of porosity 1% was generated with the same procedure as previously. The
only difference resides in the radius of the embedded spherical void. This cell was subjected
to the same loading conditions as in Fig. 3.13 and the results are presented in Fig. 3.18. When
compared to the 6%-porosity unit cell, a significant influence of the loading orientation is still
present. The minimal failure strain still draws a U-shaped curve, with a minimum near L = 0.
However the values of failure strain are generally higher. This is logical as lower porosity induces
higher resistance to ductile fracture. More interestingly, the relative scatter with orientation is
reduced, and the curve of minimal failure strain is less flat than for the 6%-porosity cell. As
the void is less susceptible to interact with the periodic boundary conditions, the anisotropy is
reduced for low volume fractions.

3.7 Conclusion

Random microstructures consisting in a perfectly plastic matrix containing a random distribution
of voids were simulated up to failure. A wide range of loading conditions, characterized by the
stress triaxiality and the Lode parameter, was studied. The orientation of the principal directions
of the applied stress tensor with respect to the cubic cell’s axes was systematically investigated.
Failure was detected with a strain localization indicator, namely Rice’s criterion computed at the
macroscopic level. The major findings of this study follow:

• Rice’s criterion successfully detects the onset of strain localization and the orientation of
the main localization band for both unit cell computations and random distribution of voids.
Moreover it allows distinguishing two types of failure modes: shear and extension modes.

• For diagonal loading, in which the directions of the applied stress coincide with those of
the cubic cell, a central zone of reduced ductility is found both for the unit cell and the
random cells. Shear failure mode is systematically associated with reduced ductility.

• The loading orientation strongly affects failure strain. For given stress invariants, the values
of failure strain for the least and the most resistant orientation can differ by more than one
order of magnitude. The failure mode may depend on the loading orientation.

• The sensitivity to loading orientation is due to the intrinsic anisotropy of the cell. Although
it affects both random and unit cells, the scatter is reduced for random microstructures, as
they are less anisotropic.

• Minimal failure strain on all loading orientations was obtained both for unit cells and
random populations of voids. It is a U-shaped function of L, minimal for L = 0. In order
to reach this minimum, considering only a rotation along a fixed axis of the cube, as
commonly done in literature, is not sufficient and general 3D rotations are required.

In order to develop reliable models of ductile fracture, minimal failure strain should be sought
among all loading orientations. Moreover, random microstructures should be favored over unit
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cells because of their lower anisotropy in localization and inclusion of void interaction. However
the simulation of random microstructures is significantly more computationally expensive than
unit cells. An extension of this work should be to obtain a surrogate model for the ductile fracture
of random cells. This model should require as small a number of simulations as possible by
leveraging the link between random microstructures and unit cells.

3.A Validation of the computation of macroscopic tangent operator

The method for computing the macroscopic tangent operator is here validated by comparison with
other methods. Homogeneous cubes of 3×3×3 elements without voids are first considered. A
purely elastic material and an elastoplastic material are considered. The formulation of Eq. (3.3)
is used, but R0 is replaced either by Relas = +∞ or Rhardening(p) = R0 +H p (with H = 2000
MPa). Periodic boundary conditions and a large strain formulation are used. A diagonal loading
condition corresponding to (T = 1, L = −1) is applied. As the cubes are homogeneous, the
macroscopic tangent operator is equal to the local tangent operator, which is directly computed by
the software (Zset, 2022) within the element. Fig. 3.19 compares the evolution of the Rice criterion
using macroscopic tangent operators obtained from three methods: (i) the condensation method
of subsection 3.3.4; (ii) the local operator within an element; (iii) taking KEE (in Eq. (3.23)) as
a macroscopic tangent operator. This last method is equivalent to averaging the local tangent
operator over all elements, and neglecting their interactions. The three methods give identical
results for the two types of materials, as should be. However, the averaging method only works
here because of the homogeneous cube. For the elastic material, the Rice criterion is not constant
because of the large strain formulation.
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Figure 3.19: Validation of the computation of macroscopic tangent operator on homogeneous
volume elements

A more complex case is then considered with an elastic porous unit cell. Strain, and therefore
the local tangent operator, is no more homogeneous within the cell. The reference results are now
computed with a perturbation method (Zhu, Bettaieb, et al., 2020). Regularly during the main
simulation, the state of the finite element problem is saved. Secondary computations are then
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launched from the saved states by applying a small perturbation ∆F̄∼ = e i⊗ e j, with i, j ∈ [[1,3]].
The evolution of the Boussinesq stress tensor ∆S̄∼ is then observed. The macroscopic tangent
operator can then be estimated by L̄i jkl = ∆S̄i j/∆F̄kl . This method is less practical than the
condensation method because it requires launching nine secondary computations for each output
time of the main computation. More problematically, it is not adapted to multibranch tangent
operators, which is automatically the case in elastoplasticity. Perturbations ∆F̄∼ =±e i⊗ e j may
correspond to either plastic loading or elastic unloading. Distinguishing which one corresponds
to the correct evolution in the primary computation is not easily possible a priori. This problem
does not affect pure elasticity. For (T = 1, L =−1) on the elastic unit cell, the condensation and
perturbation methods give identical results ( Fig. 3.20). However only taking the average of the
local operators is not enough, for it implies neglecting structural effects.
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Figure 3.20: Validation of the computation of macroscopic tangent operator on an elastic unit cell

A last validation is performed by comparison with a theoretical result. The homogeneous
cube from the first validation is filled with a softening material:

Rsoft(p) = R0 +Q(1− exp(500p)) (3.31)

(with Q = 1 MPa and otherwise the same characteristics as in subsection 3.3.2). For a von Mises
material, according to (Besson, Cailletaud, et al., 2009), the localization should take place when
dR/d p =−E /4. This is effectively the case, as shown by Fig. 3.21.

3.B Sensitivity of Rice’s criterion to simulation parameters

This section studies the influence of the temporal and spatial discretization on the localization
results (Fig. 3.22). Simulations were carried out with diagonal loading conditions, at T = 1
and various values of L. The fine mesh from Fig. 3.1c and the coarse mesh from Fig. 2.1 were
compared. The effect of fine time steps was also studied. As the simulation is driven by the
evolution of E11, time steps correspond to the increase ∆E11 between two iterations of the implicit
Euler method. In the main study, increasing time steps from ∆E11 = 0.0001 to ∆E11 = 0.005
were used. This allowed a sufficient precision even in the case of early localization. Constant
coarse (∆E11 = 0.005) and fine time steps (∆E11 = 0.001) are here tried out. For the coarsely
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Figure 3.21: Verification of the -E /4 theoretical localization result on a homogeneous cube: for a
von Mises material with softening R(p), the localization takes place when dR/dp =−E /4

and finely meshed unit cells, the overall appearance of the curves are similar with a plateau at
low L and a zone of reduced ductility around L = 0. The behavior at high L > 0.3 is however
different with a clearer plateau for the fine mesh. This justifies preferring the finely meshed cell
in this study. Nevertheless, the unit mesh was used for Fig. 3.12 and 3.13 in order to limit the
computational cost. For the fine cell, there is almost no effect of the time step (except at the lower
end of the central reduced zone). The effect is more pronounced for the coarse cell, especially
in the L > 0.3 region. The finer the mesh and the time steps, the narrower the zone of reduced
ductility.

3.C Loss of ellipticity in the matrix

This section elucidates the role of the matrix in the macroscopic loss of ellipticity. For a von
Mises plasticity and especially in a large strain formulation, a loss of ellipticity in the matrix for
L' 0 cannot be a priori excluded.

To investigate this matter, the same computations (diagonal loading with T = 1 and L =−1)
as in Fig. 3.3c were performed on a homogeneous perfectly plastic cube of size 5×5×5 elements
without any void, with the parameters of the matrix material. During the simulations, deformation
remains homogeneous until the onset of localization. The localization analysis was performed
for these homogeneous cubes, in the same way as for the voided cells. The results are shown
on Fig. 3.23 superimposing results previously obtained for unit and random cells. For |L|> 0.2,
the simulation were performed until a strain of E11 = 1 but no localization was observed. The
reported values of Eloc = 1 represent a lower bound of possible later localization (which might
never take place); they are represented by upwards-facing triangles. For |L| ≤ 0.2, localization
was found in a homogeneous cube but significantly later than for voided cells (except for L = 0
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Figure 3.22: Sensitivity of the determination of localization by Rice criterion to the mesh size
and to the time step size

where localization is so early that it is simultaneous for all cell types). In all cases but L = 0, the
role of the matrix’s loss of ellipticity appears negligible compared to the roles of the voids, or at
least cannot be captured by a homogeneous defect-free cell.

Moreover the conservation of ellipticity in the localization bands between the voids was
checked, because localization can lead to mesh size dependency. Using the methodology de-
veloped by (Al Kotob et al., 2020), a local Rice analysis was performed at each Gauss point of
the matrix material for several simulations of the unit cell under diagonal loading conditions
(more precisely, for T = 1, L ∈ {−1,−0.5,0,0.5}). Fig. 3.24 shows the det

(
n L̄ n

)
field at the

global localization onset for the (T = 1, L = 0) case (which is prone to ellipticity loss); other
loading cases provide similar results. Some negative values are found, but in isolated elements.
This appears a numerical artifact rather than a real pattern of ellipticity loss inside a band. The
matrix’s loss of ellipticity can therefore be neglected. Moreover the influence of mesh size was
investigated in subsection 2.B.1, which showed that similar values of strain at coalescence and
localization patterns are found for finer and finer meshes of the same geometry. Mesh sensitivity
therefore appears small and plays no role on the results of the present study.

3.D Localization analysis on porous balls

Cubic unit cells were shown to exhibit major anisotropy for localization. In order to determine an
isotropic response from cell simulations, computations should be performed for many loading
orientations. For random microstructures, this anisotropy is smaller but remains significant. With
larger microstructures containing more voids, the anisotropy could probably be further reduced,
at the expense of a higher computational cost. Requiring many simulations for the same loading
conditions (T,L) is a hindrance to the development of models, especially for computationally
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expensive computations on random microstructures. Cells with lower localization anisotropy
could be therefore sought for. Another method would be to modify the boundary conditions
instead of the cell. Such a modification was proposed by Coenen et al. (2012) to counteract the
influence of the periodic boundary conditions, which are here responsible for the anisotropy.
The most likely localization band is detected from the strain field. The boundary conditions are
adjusted to allow the development of this band (and only this one). This approach does not seem
adapted to the complex localization patterns seen in Fig. 3.14 or to possible transitions of failure
modes (Fig. 3.6).

This section investigates the localization in a hollow ball with periodic boundary conditions.
Glüge et al. (2012) investigated this type of cells and found a reduced lower elasticity anisotropy
when compared to cubic cells. Moreover they were able to study localization in homogeneous
spherical cells, made of a damaging material.

The ball under consideration contains a single central void representing a porosity level of
6%. The structured mesh of a hemisphere is shown in Fig. 3.26. Although the ball is invariant
by rotation, the mesh displays a slight geometrical anisotropy. Following Glüge et al. (2012),
periodic boundary conditions are applied exactly like on cubic cells (Eq. (3.6)). The pairs of
homologous nodes are now formed by diametrically opposed nodes on the exterior surface.
Nevertheless there is a mathematical difference between cubic and spherical cells. Cubic cells
with periodic boundary conditions form a representation of a three-dimensional torus, whereas
the ball associating diametrically opposed points represent a projective space.

With this spherical cell, the same computations as described in subsection 3.3.3 can be
performed. Results from Rice’s indicator for various values of L and 30 different orientations are
shown in Fig. 3.25. The overall aspect of localization strain curves are reminiscent of the results
with cubic cells with a minimum failure strain near L = 0. However localization seems to take
place later than for cubic cells. Moreover there is a significant and spurious dependence on the
loading orientation.

Fig. 3.27 focuses on the simulations from 30 different loading orientations at (T = 1, L=−1).
All the stress-strain curves share a common inflection point near EI = 0.2. This point should
be clearly considered as the onset of failure of the cell in the simple axisymmetric case L =−1.
After this failure point, the stress strain curves may diverge one from another. However the Rice
criterion curves for the different simulations do not agree on the value of the localization strain.
These differences appear due only to the slight geometrical anisotropy of the spherical mesh. For
some loading orientations, Rice’s criterion may even never detect localization. Therefore Rice’s
criterion seems unable to reliably detect localization in the unit spherical unit cells. This can be
explained by the failure mode seen in Fig. 3.26. For this loading orientation, no localization was
detected by the Rice criterion. A complex pattern of strain localization can be seen, but it does
not form a band. Contrarily to a torus, a planar band is impossible in a projective space. As the
Rice criterion is derived from the hypothesis of such a band, it logically fails in the case of a
spherical unit cell. Similar negative results (not shown here) were obtained with the energy and δ

criteria from subsection 3.6.1. Therefore hollow balls with periodic boundary conditions do not
appear reliable for unit cell studies of ductile fracture, as they hinder the formation of consistent
localization bands.
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Figure 3.25: Localization strain for 30 loading orientations on the hollow sphere with periodic
boundary conditions. The results are displayed only if a localization was found by Rice criterion.

Figure 3.26: Hollow ball with periodic boundary conditions. Left: mesh of an hemisphere.
Right:ṗ/Ė11, at E11 = 1 (last computed time step) for (T = 1, L = −1) and diagonal loading
orientation
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Figure 3.27: Evolution of stress (left) and Rice criterion (right) for 30 different loading orientations
at (T = 1, L =−1), on the hollow ball.



Chapter 4

Multifidelity ductile damage model for
random microstructures

A nonparametric surrogate model for ductile failure is developed from simulation results on
cubic representative volume elements with a random distribution of voids. This model fully takes
into account the anisotropy due to the simulation conditions. The metamodelling strategy uses
Gaussian Process Regression coupled with a multifidelity approach involving simulations on
cells with a single void. Through cokriging and metamodel parameter transfer, information
can be transferred from the unit cell simulations, which are relatively inexpensive, to the model
on random cells containing 27 spherical holes. This allows an increased accuracy for a given
computational budget. Strategies for adaptive experimental design are also investigated.

4.1 Résumé détaillé

Les chapitres précédents ont montré l’utilité des simulations sur des microstructures contenant
une distribution aléatoire de défauts, en permettant de prendre en compte l’interaction entre
défauts. La résistance de telles microstructures à la rupture ductile a pu être étudiée en analysant
la localisation à l’échelle globale de la cellule. La déformation à rupture Eloc est alors une
fonction des conditions de chargement et notamment de leur orientation. L’importance de cette
orientation témoigne d’une anisotropie due aux cellules de simulations cubiques et aux conditions
aux limites périodiques.

Cependant, les simulations sur microstructures aléatoires ne permettent pas seulement
d’étudier les phénomènes de rupture ductile mais peuvent également fournir un modèle de
résistance à la rupture ductile en fonction des conditions de chargement. Ce modèle pourrait alors
être utilisé dans des simulations de pièces réelles.

Pour construire ce modèle de rupture ductile, il convient donc de déterminer la déformation à
rupture pour toute condition de chargement (T,L), en utilisant les résultats d’un nombre fini de
simulations. Afin de se rapprocher de l’application visée, les simulations seront réalisées avec une
matrice présentant un comportment matériau plus réaliste. L’exemple académique du matériau
élastique-plastique parfait utilisé dans les chapitres précédents est donc remplacé par une loi de

97
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comportement d’un matériau élastoplastique avec écrouissage se rapprochant de celui de l’alliage
de titane TA6V dans un cordon de soudure. La question de l’anisotropie du comportement en
rupture ductile reste présente avec ce nouveau comportement (section 4.3). La méthodologie
d’obtention d’un modèle de rupture ductile sera cependant illustrée en se concentrant sur une
unique réalisation de cellule aléatoire et donc en ignorant la dispersion résultant de la distribution
aléatoire des défauts.

Afin de reproduire l’ensemble des résultats au sein d’un modèle de rupture ductile, une
approche par surface de réponse non paramétrique (métamodèle) est utilisée, ce qui permet une
plus grande expressivité par rapport aux modèles paramétriques disponibles. La méthodologie
d’obtention de cette surface de réponse se fonde sur la régression de processus gaussien ou
krigeage. Cette approche consiste à identifier de façon bayésienne une réalisation d’un processus
gaussien à partir des résultats de simulations. L’approche permet donc une interprétation four-
nissant des niveaux de confiance, et les paramètres qu’elle fait intervenir ont un sens physique
clair. Cependant, une exploration fine de l’espace des conditions de chargement possibles est
impossible à réaliser pour les microstructures aléatoires, car les cellules aléatoires impliquent
des simulations longues et coûteuses numériquement. Une possibilité est donc d’utiliser les
résultats sur les cellules unitaires, qui peuvent fournir des informations utiles à un coût de si-
mulation réduit. Une méthodologie de transfert d’information entre cellules unitaires et cellules
aléatoires est présentée en section 4.4. Elle s’appuie d’une part sur un transfert de paramètres
entre les processus gaussiens identifiés pour les cellules unitaire et aléatoire, et d’autre part sur
une réprésentation de la corrélation entre les résultats, par la méthode du cokrigeage.

Grâce à cette stratégie de transfert d’information, il est possible d’obtenir une surface de
réponse représentant correctement les résultats de simulations, et prenant en compte l’anisotropie
due aux conditions de simulations (section 4.5). Pour un même nombre de simulations sur
cellules aléatoires, l’utilisation des informations des cellules unitaires permet une augmentation
de la précision, en comparaison à une surface de réponse construite uniquement à partir des
résultats de cellules aléatoires. Cette meilleure performance apparaît davantage due au transfert
des paramètres de processus gaussiens qu’à l’utilisation du cokrigeage.

Enfin, la régression de processus gaussiens peut être utilisée pour décider de façon adaptative
du plan d’expériences ou de simulations. Les résultats de simulations précédentes peuvent
être utilisés pour déterminer les nouvelles conditions de simulations susceptibles d’apporter le
maximum d’information, que ce soit pour les simulations sur cellules unitaires ou aléatoires.
Cette approche de plan d’expériences bayésien est discutée en section 4.6. Si cette méthode
permet d’identifier plus rapidement les tendances générales de Eloc qu’une méthode naïve, elle ne
semble pas permettre d’identifier plus rapidement les niveaux absolus et précis de déformation à
rupture.

4.2 Introduction

By simulating the failure of unit and random cells, the preceding chapters provided useful
information on the ductile fracture phenomenon. They showed the relevance of simulations on
microstructures with randomly distributed voids so as to take into account interactions between
defects. The resistance to ductile failure was studied by analyzing strain localization at the cell
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level for various loading conditions. The simulations on random microstructures can therefore also
be used to identify a homogenized ductile failure model taking into account loading conditions.
Such a ductile failure model could then be used in simulations of industrial parts.

Ductile failure models were built by Fritzen, Forest, Böhlke, et al. (2012) or Hure (2021) who
calibrated yield surfaces on a limited set of loading conditions. Such yield criteria can then be
used in a homogenized model coupling plasticity and damage. This model will provide the initial
damaging behavior and an estimation of the strain at failure. However this failure strain, which is
the true quantity of interest when determining resistance to failure, can also be extracted from the
simulation. It could be used to calibrate a damage criterion representing the failure of the random
cells directly.

Many parametric models for a ductile damage criterion have been proposed (Lou, Huh, et al.,
2012; Mohr and Marcadet, 2015; Defaisse et al., 2018; Zouari et al., 2021), but they are often
phenomenological. Using a parametric model is naturally easier but reduces the complexity of
patterns that the model can express. On the other hand, data driven approaches have been used to
represent in a non parametric way the ductile fracture of voided unit cells. Some methodologies
include kriging (He et al., 2021), model order reduction with clustering (Shakoor, Kafka, et
al., 2019), neural networks (Guo, Ling, Busso, et al., 2020), support vector machines (Beluch
and Hatlas, 2019). Kriging (Wackernagel, 1995), also known as Gaussian Process Regression
(Rasmussen and Williams, 2006), appears especially useful for response surfaces thanks to its
interpretable parameters and its Bayesian formulation. This formulation allows a quantification
and a propagation of uncertainty, and provides a natural model selection method by maximum
marginal likelihood.

However obtaining a response surface from simulations on random microstructures is com-
plex. For random cells, there is a strong dependence of the strain at failure on the loading
orientation (for unit cells, the anisotropy is even stronger). Loading orientation should thus be
explicitly considered. Therefore parametrizing all loading types and loading orientations requires
a five-dimensional input space (see subsection 4.3.1). A fine sampling of loading conditions
is impossible in such a high dimensional space. The anisotropy in ductile failure of the cell is
actually linked to the cubic shape of the cell and its boundary conditions. Yet the ductile failure
model should be isotropic for an isotropic material behavior. As discussed in chapter 3, the
physical strain at failure to consider should be the minimum over all loading orientations. This
minimization operation implies that the results of a computation for a given loading orientation
cannot be directly used for the final isotropic model. Nevertheless, cells should be finely dis-
cretized for finite element analyses. Simulations on random cells therefore involve a high number
of unknowns and are computationally expensive. Only a limited number of simulation runs may
be performed without exceeding R&D computational budgets.

A solution to the data scarcity for the random cell is to use results from a similar problem,
but for which data is much easier to collect. The auxiliary data provides the general trends for the
metamodel, which can then be refined by a more limited number of training examples from the
primary problem. This methodology of transferring information between related tasks is generally
known as multifidelity metamodeling (Kennedy and O’Hagan, 2000; Yang et al., 2019; Mell
et al., 2020) and used within a kriging framework. In our application, the role of the auxiliary
problem can be played by simulations on the unit cell, for which the reduced number of nodes
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per mesh leads to faster simulations. Simulations on random cells are still needed to assess the
influence of void distribution. Moreover, the metamodel obtained through kriging can provide a
basis for a more efficient experimental design (Chaloner and Verdinelli, 1995; Frazier, 2018). By
using the predictions from the metamodel, new input points can be chosen so as to maximize the
information brought by a new simulation.

In this chapter, we therefore aim to apply the methodology of the previous chapters to detect
the ductile failure of a random microstructure. The objective is to obtain a metamodel of the
failure strain depending on the loading conditions. A kriging methodology is used and integrates
information from simulations on the unit cell. Adaptive experimental designs are also explored.
To the author’s best knowledge, this methodology will provide the first nonparametric model for
the fracture of random microstructures, fully accounting for the anisotropy of the cell. Moreover,
the possibility and usefulness of transferring information from unit cells to random cells is
evidenced.

The methodology for localization analysis in random microstructures is essentially the same
as in the preceding chapter, but the differences are described in section 4.3. The main difference
consists in a different material constitutive law, closer to the industrial application. The procedure
to generate data for unit and random cells is then explained, and the metamodeling task is formally
framed. Section 4.4 describes the methodology of Gaussian Process Regression and several
information transfer strategies. These strategies are applied to the task at hand and compared in
section 4.5. Section 4.6 finally investigates the possibility of an adaptive experimental design
method.

The notation of the preceding chapters is extended: a vector is still noted v ; tensors and
matrices are noted A∼ . An overlying bar will represent the macroscopic average of a quantity
defined at the microscopic level: for instance F̄∼ for the average deformation gradient. The
Gaussian Process estimating a physical quantity E will be noted Ê. A star, as in E∗, will indicate
a minimum over all loading orientations.

4.3 Problem formulation

4.3.1 Methodology of micromechanical finite elements simulations

The methodology for simulating the ductile failure in random microstructures closely follows the
methodology of chapter 3. Two main differences should however be noted.

Firstly, the simulations are performed on two cells: a random one and a unit one. The random
cell is the cell R1 from preceding chapters, with 27 voids Fig. 4.1a. The methodology for the
determination of a failure strain metamodel is thus presented for a single realization of a random
cell. The dispersion due to the random distribution of voids (which was studied in chapter 2) is
therefore not taken into account. The unit cell uses the coarse mesh from chapter 2 (Fig. 4.1b),
with the same discretization fineness relative to the void size as for the random cell. Results
can therefore be less precise than with a finer mesh as in chapter 3. However using a coarser
mesh strongly reduces the number of degrees of freedom, and therefore the computational cost
of a simulation on unit cell. This better fits the role of using unit cell simulations as low fidelity
computations, providing approximate information at a negligible computational cost.
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(a) Random cell (255628 nodes) (b) Unit cell (7682 nodes)

Figure 4.1: Meshes of the unit cell and the random microstructures used in the study. The void
volume fraction is 6%

Secondly, it should be possible to use the metamodel identified on random microstructures
in the context of the industrial application to weld joints. Contrary to the preceding chapters,
a material model derived from Sarre (2018) is therefore used. It represents the behavior of
the titanium alloy TA6V in a weld joint (see next chapter for more information). The same
overall formalism as in preceding chapters is used, but an elastoplastic behavior with saturating
exponential isotropic hardening is used (with the same notations as Eq. (3.3), and expressing
strain and stress in the Jaumann frame):

ė∼= ė∼e + ė∼p

e∼e =
1+ν

E
s∼−

ν

E
(trs∼)1∼

ė∼p = ṗ
∂ f
∂ s∼

svm =

√
3
2

s∼
dev : s∼

dev

f (s∼) = svm−R(p)≤ 0

R(p) = R0 +R1(1− e−b1 p)+R2(1− e−b2 p)

(4.1)

with s∼
dev the deviatoric part of the rotated Cauchy stress tensor s∼, svm the equivalent von Mises

stress and ṗ =
√

2
3 ė∼p : ė∼p playing the role of the plastic multiplier. The elastoplastic coefficients

are summarized in Table 4.1.
The model from Sarre (2018) is actually more complex, with viscous and damaging behaviors,

which are here not considered. The viscosity is not used in the present chapter because Rice’s
criterion is not applicable to rate-dependent plasticity. Moreover the damaging behavior would
imply local loss of ellipticity (and not only global loss of ellipticity). The results from simulations
would then be strongly sensitive to discretization level. Regularization approaches are possible
(Besson, Cailletaud, et al., 2009) but were not used here due to their complexity.
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Table 4.1: Coefficients of the material model

Young modulus Poisson Ratio Yield Strength Hardening
E ν R0 R1 b1 R2 b2

115 GPa 0.3 753 MPa 222 MPa 290 285 MPa 10

4.3.2 Application to the unit and random cells

In order to illustrate the challenges associated with model ductile failure in cell, the methodology
above is applied to the unit and random cells. These computations complement those from the
preceding chapters, as they involve a different material law, with hardening.

Strain at localization for 30 different loading orientations, and (T = 1, L =−1) conditions are
presented in Rodrigues space (see Eq. (3.27)) for the unit and random cells in Fig. 4.2. A strong
anisotropy is present for both cells, as strain at localization can vary by a factor of 2 depending
on the loading orientation, although all the computations use the same stress parameters T and
L. Moreover, results for the unit and random cells show different patterns: for instance, local
minimizers and maximizers do not necessarily coincide in the Rodrigues space for the two types
of cells.

(a) Unit cell (b) Random cell

Figure 4.2: Strain at localization for 30 different orientations, at T = 1 and L=−1. Representation
in the cubic-orthotropic misorientation space.

The strain at localization results from different values of L, still considering T = 1 and 30
different loading orientations, are shown in Fig. 4.3. For each value of L the dispersion of results
due to loading anisotropy is still present. As in chapter 3, dispersion and thus anisotropy are
reduced for the random cell compared to the unit cell. However, as noted before (Barsoum
and Faleskog, 2011), a model for the ductile failure of a material with an isotropic material
should depend only on T and L, and not on the loading orientations. The anisotropy is due to the
computation conditions on the unit cell, and only the minimum of Eloc over all directions is a
quantity of interest. Note that this minimum has a similar trend for the unit cell and the random
cell. It is decreasing with L for L < 0, and increasing for L > 0, with thus a minimum for L = 0.
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A similar trend was found for a non hardening material.
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(b) Random cell

Figure 4.3: Dispersion of strain at localization for the unit and the random cells. Fixed triaxiality
T = 1, varying L and 30 different loading orientations.

4.3.3 Training data and objectives

We now describe the strategy for generating the data used to train the ductile failure metamodel.
For practicality, all this training data is generated in advance, before any Gaussian Process
regression. A precise formulation of the objective of the metamodel is also given.

The Scipy implementation of Sobol sequences with Owen scrambling (Virtanen et al., 2020;
Sobol, 1967; Owen, 1998) is used to generate 10000 input points corresponding to different
loading conditions, in a five-dimensional hyperparallelepipedic input space (T,L,d ), where d is
the Rodrigues vector corresponding to a rotation matrix Q

∼
(Eq. (3.27)). L is chosen in [−1,1],

which corresponds to all possible values. T is chosen in [0.7,3.0], which corresponds to rather
high values of stress triaxiality. However a logarithmic scaling for T is used to favor lower
triaxiality values for which there is significant deformation before localization. Each component
of d is chosen in [0,

√
2− 1] (Eq. (3.28)). The points with d1 + d2 + d3 > 1 are eliminated

(Eq. (3.28)), which leaves 9649 input points. For each of these input conditions, a FEA simulation
is launched for the unit cell according to the methodology from subsection 4.3.1, and the strain at
localization Eloc is computed. A typical computation on a unit cell requires a CPU time of about
103 s.

The same procedure is applied to the random cell. 475 loading conditions (from 500 Sobol
points) are used. Due to larger meshes and a higher number of degrees of freedom, a typical
computation usually requires a CPU time of about 105 s. Simulations on random cells are thus
significantly more computationally expensive than those on unit cells (even if we consider there
are twenty times more of the latter).

All the training examples used, with associated Eloc, are shown in Fig. 4.4. A strong dispersion
of strain values, even for close values of T and L, and thus an anisotropy, is visible, especially
for lower values of T . Moreover, the number of examples for the random cell is clearly limited
compared to the data for unit cells. However, the representation in two dimensions underestimates
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the data scarcity in five dimensions. If data was organized on a regular grid, there would actually
be only about three examples per dimension for the random cell, and six for the unit cell. Note
that the data for T = 1 and 30 different loading orientations, presented in Fig. 4.3, are not used
for metamodeling and will only be used to evaluate the resulting model.
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(a) Unit cell

1.0 1.5 2.0 2.5 3.0
T

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

L

10 1 E l
oc

(b) Random cell

Figure 4.4: Training data for the unit and random cells. Each point is projected in the T,L space,
ignoring the three components of the loading orientation.

The metamodeling task is thus defined as follows. As a minimal failure strain over all
directions should be taken, the quantity of interest to model is:

ER∗
loc(T,L) = min

Q
∼
∈SO3

ER
loc(T,L,Q∼ ) (4.2)

The available data consists in strain at failures for the random cell (R) ER
loc(Ti,Li,Q∼ i

), and for the
unit cell (U) EU

loc(Ti′ ,Li′ ,Q∼ i′
), where (Ti,Li,Q∼ i

) or equivalently (Ti,Li,d i) corresponds to some
loading condition. This task is challenging because data (and especially for the random cell) is
scarce in a high-dimensional input space. Moreover, a datum ER

loc(Ti,Li,Q∼ i
) does not directly

lead to a datum ER∗
loc(Ti,Li) since a minimization is required. Data from unit cells can be used

but there is good correlation only for E∗loc values and not directly for Eloc, as Fig. 4.2 showed
different patterns for the two types of cells.

A coarse estimation of ER∗
loc or EU∗

loc is shown in Fig. 4.5. The T,L space is partitioned in a
grid, and each cell displays the minimal failure strain over all input points with T,L in this cell.
The failure strain appears to be decreasing with T , and minimal for L ' 0 at given T for both
types of cells. However the results remain noisy and difficult to interpret. A smooth metamodel
should be preferred.

4.4 Multifidelity metamodeling methodology

In order the solve the ductile failure metamodeling task with the aforementioned training dataset,
a multifidelity kriging approach is proposed. Generalities about Gaussian Process Regression
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Figure 4.5: Estimation of the minimal failure strain for the random and unit cells

are first recalled, then the general multistep kriging strategy is presented. Different strategies are
finally exposed to transfer information from the unit cell to the random cell.

4.4.1 Generalities on Gaussian Process Regression and cokriging

Kriging or Gaussian Process Regression is a metamodeling methodology originally developed to
estimate mineral deposits (Krige, 1951). It was mathematically formalized by Matheron (1962)
and became one of the fundamental tools of geostatistics, before being also used in machine
learning contexts. We here recall the general principles (Wackernagel, 1995; Rasmussen and
Williams, 2006). Kriging is naturally expressed as a Bayesian approach. The core idea is to
use Gaussian processes as the prior. Those are random fields f : X ×Ω→ R, where X and
Ω are the input and sample spaces. For any input points x1,x2, . . .xn ∈X , the random vector
( f (x1), .... f (xn)) should be Gaussian: any finite linear combination of components has a normal
distribution. The distribution of a Gaussian process is summarized by its mean and covariance
functions. In the following, the mean will be chosen identically zero, and the covariance function
verifies, for all x1,x2 ∈X :

Cov( f (x1), f (x2)) = K(x1,x2)+ ς
2
δ (x1− x2)

K(x1,x2) = AKMatern
5/2

(√
∑
d

|x1d− x2d |2
λd

)
(4.3)

where the sum is taken on all components of x1 and x2, δ is the Dirac distribution and KMatern
5/2 is a

Matérn kernel with length scales λd (one for each component) (Rasmussen and Williams, 2006):

KMatern
5/2 (r) =

(
1+
√

5r+
5
3

r2
)

exp
(
−
√

5r
)

(4.4)

This kernel is stationary: only the distance between input points is relevant, not their positions.
The parameters λ and A specify how values of the process at points close one to another are
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correlated: λ describes the typical correlation lengths and A the amplitude of the Gaussian
process. Note that a Matérn kernel produces continuous realizations of the Gaussian process.
Finally ς represents noise or epistemic uncertainty, i.e. any phenomenon that is ignored during
modelling. If f has the above distribution, we will note f ∼ GP(λ ,A,ς2). An equivalent way of
considering f is to decompose it :

f (x) = f̃ (x)+ ςε(x) (4.5)

where f̃ is a Gaussian process of covariance function K with continuous realizations and ε is a
white noise of unit variance.

In the Bayesian approach, observations are obtained for several inputs ( f (x1) = y1, f (x2) =
y2, . . . , f (xN) = yN) and the distribution is updated to reflect the new information. More precisely,
the posterior is computed by conditioning the prior by the observations. The predictions for new
input values x#

i given ( f (xi) = yi) have the Gaussian distribution:

f (x #) | { f (x ) = u } ∼N (µ ; Σ∼)

µ = K∼ x#xK−1
xx y

Σ∼ = K∼ x#x#−K∼ x#x(K∼ xx + ς
2I∼N)

−1K∼ xx# + ς
2I∼N

(4.6)

where IN is the N-dimensional identity matrix, the covariance matrix K∼ x#x is defined by:

Kx#x, i j = K(x#
i ,x j) (4.7)

and similarly for the other matrices K∼ . Practically, in order to use the results from the Gaussian
process Regression, a Cholesky decomposition is performed on the covariance matrix K∼ xx. The
expectation of the posterior can then be computed from the observed data, providing a prediction
for new inputs. The diagonal of the posterior covariance also provides confidence intervals.
Finally, realizations from this posterior can be sampled.

The parameters λ , A, ς can be fitted from data by maximizing the log-likelihood:

lnP(y)

=
1
2

lndet
(
K∼ xx + ς

2I∼N

)
− 1

2
yT (K∼ x,x + ς

2I∼N)
−1y− N

2
ln(2π)

(4.8)

Multiple Output Gaussian Process (MOGP) Regression is a generalization of the Gaussian
Process Regression for predicting several quantities of interest at the same time. A correlation
between the outputs can be obtained by introducing a linear model of coregionalization (Fricker
et al., 2013) or cokriging (Wackernagel, 1995). The random variables g1 and g2 representing the
desired outputs are modeled as: [

g1
g2

]
= L∼

[
f̃1
f̃2

]
+

[
ς1ε1
ς2ε2

]
(4.9)
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where f̃1 and f̃2 are independent identically distributed Gaussian processes of unit amplitude:

f̃1, f̃2 ∼ GP(1,λ ,0) (4.10)

and ε1 and ε2 are independent white noises of unit variance. The 2×2 matrix L∼ correlates the
output from the independent Gaussian processes f̃1 and f̃2. Note also that f̃1 and f̃2 are continuous
and noise-free, since this noise is directly expressed at the level of g1 and g2. For given input
x ∈X , the covariance matrix of g1(x) and g2(x) is given by:

Cov∼ (g(x)) = L∼L∼
T +

[
ς2

1 0
0 ς2

2

]
(4.11)

Therefore, with the Cholesky decomposition, it is enough to choose L∼ lower diagonal to express
any correlation between g1 and g2. Using equations Eq. 4.11 and Eq. 4.3, a joint covariance
matrix for g1 and g2 can be computed for any (xi) ∈X :

Cov(gα(xi),gβ (x j)). (4.12)

With this covariance matrix, expectation, variances and samples for the posteriors of g1, g2 given
observations can be computed as for simple Gaussian processes (Eq. 4.6). Moreover, the cokriging
parameters L∼, λ , ς1 and ς2 can be optimized by maximizing log-likelihood as in Eq. 4.8. The
distribution of g will be noted MOGP(L∼,λ ,ς2

1 ,ς
2
2 ). Linear models of coregionalization actually

offer more modeling choices. For instance, there are not necessarily as many latent processes
( f̃1 and f̃2) as outputs; and latent processes do not necessarily have the same correlation length.
However the above description will be sufficient for the following sections. For both kriging and
cokriging, the implementations in GPflow (Matthews et al., 2017) will be used.

4.4.2 Application of simple kriging to the ductile failure problem

Building a metamodel for E∗loc from the data Eloc(Ti,Li,Q∼ i
) is complex because the inputs are

initially in a 5-dimensional space, but a minimization over the orientations is required in order
to produce a model with a 2-dimensional input space. This section presents the general strategy
for obtaining a metamodel, first without considering information transfer between the unit and
random cells.

The dataset is first preprocessed. The feature T is replaced by its logarithm (in accordance
with the sampling strategy). All features (T , L, d ) are normalized between 0 and 1, according to
the theoretical ranges used for Sobol sampling. The output to model is chosen as the logarithm of
Eloc in order to more easily represent possible change of magnitude order. The output log(Eloc)
is also centered by subtracting its mean. This centering is performed independently for unit cells
and random cells, and only from data used for training (not necessarily from all available data).

The general methodology is then composed of three main steps. Firstly a simple kriging is
performed in 5D. From the simulation data ER(Ti,Li,d i) for the random cell, a Gaussian Process

ÊR ∼ GP(AR,λ R,ς
2
R) (4.13)

is trained (in order to simplify notation, the subscript loc is dropped from failure strain quantities).
During training, the amplitude AR, the correlation lengths λ R, the noise amplitude ςR should be
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fitted. However, in standard kriging approaches, the Gaussian Process can be made interpolatory
between observations by setting ςR to a small but nonzero value. A negligible noise allowing to
keep an acceptable condition number for the covariance matrix can be reached with ςR = 10−4.
The fitting of parameters is performed by maximum likelihood and a direct minimizer from Scipy
(Virtanen et al., 2020) is used.

Secondly, from the 5D posterior for the random cell, a minimization is performed over the
three orientation features. More precisely, NT L = 64 samples (Ti,Li) of stress invariants and
Nd = 128 orientation samples d j are created by Sobol sampling, so as to build a 5D evaluation grid
((Ti,Li,d j))i j. Several (Nreal = 100) realizations of the posterior are sampled. Each realization r
is evaluated on the grid: ÊRr(Ti,Li,d j). The hyperparameters were verified high enough not to
affect significantly the determination of the minimum. An estimation of this minimum over Q

∼ j
is

then computed:
E∗Rr(Ti,Li) = min

j
ÊRr(Ti,Li,d j). (4.14)

Then the average prediction can be extracted:

E∗R(Ti,Li) = 〈ÊRr(Ti,Li)〉r. (4.15)

(with 〈·〉r denoting the average over all realizations r). A local indicator of the dispersion of the
predictions can also be found by using the empirical variance Var ÊR(Ti,Li) over all realizations.
To simplify and obtain a single dispersion indicator, the average variance will be used:

VR = 〈Var ÊR(Ti,Li)〉Ti,Li . (4.16)

The last step is to build a 2D kriging. The input data for this new kriging are the minimum
failure strains E∗T (Ti,Li) over all orientations (or similarly for the unit cell). The prior is chosen
as:

Ê∗R ∼ GP(A,λ ,VR) (4.17)

where VR is the previously defined indicator for the dispersion of minimum. The amplitude of
the Gaussian process and two length scales should then be fitted by maximum likelihood. The
posterior of the Gaussian process finally yields a metamodel for E∗R as a function of the stress
invariants T , L.

Although the metamodel for the random microstructure is our main objective, the same
process can be performed separately for the unit cell (all notations are conserved, replacing the
subscript R by U). However the first kriging operation ÊU ∼ GP(AU ,λ U ,ςU) poses a specific
problem. As there are thousands of training examples for the unit cell, the Cholesky decomposition
of the covariance matrix can become expensive. The unit cell kriging will therefore use a Sparse
Variational Gaussian Process (SVGP), an extension of standard Gaussian processes better suited
to handle large datasets (this extension is presented briefly in appendix 4.A).

4.4.3 Information transfer strategies

The previous subsection described a Gaussian process regression methodology for each dataset.
Kriging operations for random and unit cells were completely separate and independent: The unit
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cell was not used at all for the model on random microstructures. We now consider several ways
of coupling these regressions and therefore to transfer information between the unit and random
cells: first by transferring parameters for the 5D regressions, then by performing cokriging at the
T,L level.

The transfer of parameters at the 5D level is first considered: Parameters like the length scales
of the amplitude of the Gaussian priors play a key role for kriging and can be learned from data
by maximizing the likelihood. On the other hand, they can be thought to be characteristic of the
metamodel to find. For the random cells, the optimal value found on a very limited number of
examples may not correspond to the correct value in the high data limit. However, the unit cell
may be more accurate in determining these parameters thanks to the larger dataset.

A parameter transfer strategy can then be defined as follows. The parameters for the unit
cell are fitted by marginal likelihood on unit cell training examples. The noise ςU = 10−4 is
constrained so as to obtain an interpolatory Gaussian process. Then, for the random cell, some
parameters are set to the values found for the unit cell and are fixed, i.e they are not fitted by
maximum likelihood. The remaining parameters for the random cell are learned as usual by
likelihood maximization. Their values are completely independent from those found on the unit
cell. Three variants of this parameter transfer strategy will be considered.

• The strategy "No Transfer" (NT for short) corresponds to the standard uncoupled method-
ology described in the previous subsection. It will be used as a control.

• The strategy "Length Scale" (LS) reuses only the correlation length scales from the unit
cell, i.e the distance at which there is correlation, and thus influence, between inputs.
We therefore set λ R = λ U , fit AR, and keep the Gaussian process for the random cell
interpolatory (ςR = 10−4).

• Finally, the strategy "Gaussian Process" (GP) consists in reusing the two main character-
istics of the Gaussian process EU : its length scales λ U and its amplitude AU . By setting
λ R = λ U and AR = AU , we try to explain the results for the random cells as much as
possible by the results from the unit cell. The rest should be explained by noise, so ςR is
fitted.

Secondly and independently from parameter transfer, cokriging can be used in order to
represent directly the correlation between results from unit cell and random cell. Cokriging is
made at the 2D level after minimization over the orientations, because results in 2D are well
correlated, but not those in 5D (see subsection 4.3.2). Cokriging is performed with the data
E∗U(Ti,Li), and E∗R(Ti,Li). The prior is chosen as:[

Ê∗U
Ê∗R

]
= MOGP

([
a 0
a b

]
,λ ,VU ,VR

)
(4.18)

In accordance with Fig. 4.3, the correlation between the outputs Ê∗U and Ê∗R is expressed by a
common multiple (coefficient a) of the first latent process. The difference between the two cells
is explained by the second latent process (coefficient b). Different noise amplitudes are chosen,
corresponding to the dispersion indicators for the minimum. If VR�VU , the Gaussian process
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for the random cell is allowed not to fit closely training data, in order to better reproduce the
overall trend given by the unit cell. The noise amplitudes are fixed, so only the parameters a, b
and the two components of λ need training. The use of this cokriging methodology will be noted
CK, whereas the use of simple kriging at the 2D level will be noted SK.

4.5 Application of the multifidelity metamodeling strategy

This section applies the previously defined metamodeling strategy to the data on the unit and
random cell. The strategy is first illustrated by presenting results for the GP-SK variants. The evo-
lution of the metamodels with respect to number of training examples is shown. The performance
of different information transfer strategies is finally compared.

4.5.1 Typical results with the strategy GP

The metamodeling strategy is illustrated with the results from the GP-CK or GP-SK variants,
using increasing numbers of training examples NR, always chosen among the 475 available for
the random cell. However all 9649 examples from the unit cell are systematically used. When
increasing NR, the dataset is growing in an inclusion sense : for instance between NR = 10,
and NR = 20, the first ten points are kept. Data is used in the ordering given by the initial
Sobol sampling (see 4.3.3). The different metamodels for different values of NR are constructed
independently.

The evolution of the metamodels Ê∗U/R(T,L) with respect to NR is shown in Fig. 4.6. The
metamodels are only represented for T = 1, but the metamodels do make predictions in the
2D input space (T,L). The plotted confidence interval corresponds to the variance explained
by the Gaussian process, excluding the noise. The metamodels are convergent with NR, since
the predictions with increasing NR get closer to the predictions from the NR = 475 metamodel.
The difference between cokriging and kriging is mostly found at low data. Cokriging allows to
reproduce the trend given by the unit cell (decreasing then increasing with L, with a minimum
near L = 0), which is missed by simple kriging for low values of NR. This overall trend is quickly
found by cokriging, more quickly than the average level. For NR = 10, results for random cell
are for instance lower than for unit cells, contrary to what happens for high values of NR. This
underestimation at low data appears mostly due to chance: Other samples of NR = 10 points were
investigated, and higher ER values were found.

The expectation of the full metamodel (with NR = 475) is represented in Fig. 4.7. Failure
strain values are generally decreasing with T , and form a valley with L, with a minimum near
L = 0 at given T . This is consistent with typical parametric models, and the coarse estimations
found in Fig. 4.5. However a clearer and smoother evolution is found with the kriging metamodel
than for the coarse minimization.

The metamodel should also be compared to some ground truth. A real ground truth is difficult
to obtain, as FEA simulations can only give values for ER(T,L,d ) for specific loading conditions,
and not the minimized values E∗R(T,L). However Fig. 4.3 depicting results from simulations at
T = 1 for different values of L, and 30 different loading orientations, can give an estimation of
E∗R(T,L) in the T = 1 space. It is emphasized that the data from Fig. 4.3 were not used to train



4.5. APPLICATION OF THE MULTIFIDELITY METAMODELING STRATEGY 111

L

1.4

1.2

1.0

0.8

lo
g 1

0E
lo

c

Nr = 10
GP-SK random
GP-CK unit
GP-CK random

L

lo
g 1

0E
lo

c

Nr = 20

L

lo
g 1

0E
lo

c

Nr = 30

L

1.4

1.2

1.0

0.8

lo
g 1

0E
lo

c

Nr = 40

L

lo
g 1

0E
lo

c

Nr = 50

L

lo
g 1

0E
lo

c

Nr = 75

1.0 0.5 0.0 0.5 1.0
L

1.4

1.2

1.0

0.8

lo
g 1

0E
lo

c

Nr = 100

1.0 0.5 0.0 0.5 1.0
L

lo
g 1

0E
lo

c

Nr = 200

1.0 0.5 0.0 0.5 1.0
L

lo
g 1

0E
lo

c

Nr = 475

Figure 4.6: Application of strategy 1-SK and 1-CK with different numbers of examples on the
random cell. Gaussian process predictions in the T = 1 plane.
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Figure 4.7: Prediction of the metamodel for the whole (T,L) zone of interest. All 475 points for
the random cell were used, with the strategy 2-CK

the metamodels. Fig. 4.8 compares the aforementioned test data with metamodels obtained with
strategies GP-CK, GP-SK and NT-CK on all 475 examples. The latter metamodel received no
information from the unit cell. The GP-CK and GP-SK metamodels closely follow simulation
results. They are actually slightly below "ground truth" which is not necessarily a problem. The
minimum over 30 orientations is by definition a slight upper bound of the minimum over all
orientations. On the other hand, the fully uncoupled strategy NT −SK is significantly lower than
test data, and does not show the same trends, especially for L > 0. Therefore information transfer
from unit cells can help reach satisfying agreement with reference computations.

4.5.2 Comparison of information transfer strategies

The above results with GP−CK showed that the unit cell can provide useful information. The
different information transfer strategies are here more carefully compared. There are six possible
variants: three choices for parameter transfer (NT, LS, GP) at the 5D level and the use of either
cokriging (CK) or simple kriging (SK) at the 2D level.

To compare the strategies, two metrics comparing the metamodel E∗R(T,L) to a reference
E∗R,re f (T,L) are defined. The reference is the metamodel using GP-CK on all 475 examples,
which was shown in Fig. 4.8 to accurately reproduce direct results from simulations for T = 1.
In order to compute the metrics, a regular 50×50 grid (Ti,Li) is introduced. The two Gaussian
processes E∗R and E∗R,re f are evaluated on this grid of size Neval = 2500. The two metrics are
defined as follows:

RMSE =

(
1

Neval
∑

i
(µi−µ

re f
i )2

)1/2

(4.19)
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Figure 4.8: Comparison of the predictions from the metamodel to results from 300 experiments

〈KL〉= 1
Neval

∑
i

KL (N (µi,s2
i );N (µre f

i ,(sre f
i )2) (4.20)

where µi and si are the expectations and standard deviation of the random variable E∗R(Ti,Li). The
first metric only compares the expectation of the two Gaussian processes. The second metric
is the average of the pointwise Kullback Leibler (KL) divergence (Rasmussen and Williams,
2006), and allows to compare not only the expectations but the whole Gaussian distributions. All
points are however considered independent and no correlation is taken into account. For Gaussian
distributions, the KL divergence is given by:

KL (N (µ,s2);N (µ ′,(s′i)
2) =

1
2

(
s2 +(µ−µ ′)2

(s′)2 + ln
s2

(s′)2 −1
)

(4.21)

Moreover, in subsection 4.5.1, the overall trends were seen to be differently recovered than the
average level. It is therefore worthwhile to consider normalizing the predictions of the metamodel.
This normalization is performed by subtracting the mean of the predictions on the grid and
dividing by their range. The pointwise variances can also be scaled in accordance. The pointwise
expectation and standard deviation are thus given by:

µscaled(T,L) = (µ(T,L)−< µ >)/(µmax−µmin)

sscaled(T,L) = s(T,L)/(µmax−µmin)

< µ >=
1

Neval
∑
i j

µ(Ti,L j)

µmax = max
i j

µ(Ti,L j)

µmin = min
i j

µ(Ti,L j)

(4.22)
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With this normalization, the effects of the average level and of the range over the (T,L) space are
neutralized: Two Gaussian process related by an affine transformation (in the output space) are
considered equivalent. Only the overall trends and the shape of E∗R(T,L) up to a homogeneous
dilation are relevant. Errors will be thus presented both for these scaled results and the direct
results (without the normalization).

In the following, as in subsection 4.5.1, the training is performed on a subset of the 475
available examples, considered in a given order. NR = 20 means, that the first 20 examples,
according to this order are used for training. The set of considered inputs is increasing (not only
in size, but according to inclusion). A strategy is efficient if its predictions quickly converge to
those of the reference, that is if the distance measured by the metrics is low, even for a low data
number.

Results for the initial Sobol sampling order are given in figure 4.9, comparing the six strategies
for the two given metrics. Firstly, the results from the RMSE and KL metrics are very similar and
yield the same global evolution. The expectation of the Gaussian process is sufficient to compare
the strategies and the local variance does not provide significant additional information. With
increasing NR, the errors are mostly decreasing, although dispersion can lead to local increases
such as for NR = 40, if new examples change significantly the model.

The different strategies are not equally efficient. The strategy GP, both for simple kriging and
cokriging, leads to smaller errors than the strategy NT without parameter transfer. However, the
strategy LS is worse than the two other types of the parameter transfer. This is true both for direct
results and the scaled results. This difference between the two strategies with parameter transfer
indicates that the minimum E∗R over all orientations is more accurately determined when the
overall correlation patterns in 5D are taken from the unit cell, even if it means not interpolating
between observations and explaining the difference by noise.

Moreover, using cokriging leads to increased efficiency, and especially for scaled results. A
large difference between simple kriging and cokriging is noticeable at low data. The information
from the unit cell allows to recover the overall trend, which can be hard to find at low data.
However for direct results, the difference between simple kriging and cokriging is very small.
Errors are then mostly due to average failure strain level, which is harder to determine, as
illustrated in 4.6.

In order to strengthen these conclusions, the same investigation is performed for ten different
shuffles of the random cell dataset. The order in which examples are used is therefore different,
which affects especially models at low data, but all metamodels should still converge to the same
one. Fig. 4.10 represents, for the GP and NT strategies, the minimal, maximal and the average
errors over all ten shuffles. Results for the LS strategy, which were consistently worse than NT ,
are not represented. As above, the strategy GP is significantly better than NT especially with
higher data. Cokriging leads to a slight reduction of errors compared to simple kriging. However
there is a large dispersion of errors due to the different ordering of the examples.

The above results evidence the usefulness of the multifidelity approach using results on the
unit cells to better approximate those on the random cell.
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Figure 4.9: RMSE and KL errors for varying number of training examples for the different
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Figure 4.10: Dispersion of RMSE errors due to dataset ordering. Ten random orderings were
used; minimum, maximum and average errors are represented for each strategy.
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4.6 Adaptive sampling strategy

Results from 475 simulations may represent a low amount of data in 5D, obtaining this data is still
computationally expensive. It is thus worth investigating whether the number of computations
could be reduced further. Last section showed that the order in which examples are considered
lead to a large dispersion of errors. Therefore a better ordering of data or more generally a more
efficient choice of inputs for the simulations, using the results from the metamodel, could lead to
lower errors with reduced numbers of simulations. This is the principle of Bayesian experimental
design (Chaloner and Verdinelli, 1995; Frazier, 2018). Several adaptive experimental designs are
presented and their performances are evaluated.

4.6.1 Definition of the adaptive sampling strategies

Two main strategies for an adaptive experimental design are here presented. They principally deal
with the 5D kriging level. The posteriors of E∗R(T,L) and ER(T,L,d ) have been computed on
the account of some observations, and a new data point (T opt ,Lopt ,d opt) should be determined
so that a new simulation with this loading condition is likely to provide as much information as
possible.

The approach of "maximal variance" consists in finding the new point where uncertainty is
maximal, that is:

(T opt ,Lopt ,d opt) = argmaxVarER(T,L,d ). (4.23)

This approach does not strictly require the values from ER(T,L,d ), but only the locations of the
observations in the input space. This approach tends to find new points far from the observed
data, and therefore to explore a greater portion of the input space.

The approach of "Maximal Expected Improvement" tries to find locations for which the
failure strain is likely to be lower then the currently predicted minimum, by maximizing the
expected improvement compared to the current minimum:

(T opt ,Lopt ,d opt) = argminE
[
(ER∗(T,L)−ER(T,L,Q

∼
))+
]

(4.24)

where x+ = max(0,x). As ER(T,L,Q
∼
) is a Gaussian variable of, say, mean µ , and standard

deviation s:

E
[
(ER∗(T,L)− y)+

]
= (y−µ)Φ

(
y−µ

s

)
+ sφ

(
y−µ

s

)
(4.25)

where φ and Φ are respectively the probability density and cumulative distribution functions of
the standard unit normal distribution. The maximal expected improvement approach refines the
estimation of the currently found minima, and focuses on (or exploits) zones where a minimum is
likely to be found. Other similar approaches could have used the probability of improvement or
the lower bound of the confidence interval (Frazier, 2018).

Both criteria are applied on a number of evaluation points, which are compared. If a batch
of N new points is desired, the N points, among the evaluated ones, with the highest variance
(or expected improvement) should be chosen. In order to balance exploitation and exploration, a
combination of the two strategies can be used. For a batch of N points, this mixed strategy leads
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to taking N/2 points with the highest variance and then N/2 points with the highest expected
improvement. The computations can then be launched on the N new input points. The next
metamodeling operation then uses the union of the data previously considered. This process can
then be repeated until the desired number of data has been reached.

4.6.2 Comparison of strategies

The different methods for adaptive experimental design are now compared. As the information
transfer method GP−CK was found to be the most efficient, only this method will be used in
the following. For practicality, the possible new evaluation points are chosen among the 475
data already available for the random cell. All the results from the required simulations have
thus already been produced, and no new simulation is needed at each phase. However, to find a
new optimal evaluation point, the experimental design strategies consider only the location of
the candidates in the input space and has no access to the associated failure strain. Therefore
restraining the search to the available data, and only using failure strain results after they have
been chosen by the strategy, can emulate a true experimental design with sequential batches of
simulations.

Strategies are initialized by selected 10 points at random from the 475 points available. They
are compared to a more naive strategy randomizing the ordering of examples (as in subsec-
tion 4.5.2), while keeping the first ten ones. The experimental design and the naive random
strategy thus all start from the same initial data. The most efficient method will lead to metamod-
els converging faster, with lower errors at lower number of examples, to the reference, chosen as
previously as the metamodel obtained by GP−SK on all 475 random cell examples.

In Fig. 4.11, the different methods are compared on three random choices of the ten initial
points. The three adaptive experimental design methods perform similarly: they globally out-
perform the naive method for the scaled results, but are underperforming if direct results are
considered. Cokriging and information transfer therefore appear to find effectively the overall
trends, but they are less efficient at finding the average failure strain level, due to the complex
operation of extracting a minimum. For scaled results, the method of maximum expected im-
provement appears the most efficient at finding the precise trends of the response surface. For
instance, for NR ∼ 100, it has the same error as the random method with two or three times
more examples. However, the difficulty of finding the absolute failure strain level may limit its
usability.

4.7 Conclusion

The ductile failure of cells embedding a random distribution of voids was simulated for very
general loading conditions, and showed a strong sensitivity to loading orientation indicating a
significant anisotropy. A metamodeling strategy was proposed to construct an isotropic model
from these computationnally expensive simulations and random cells. The main findings follow:

• The transfer of information from simulations on unit cells allows to build an accurate model
by Gaussian Process Regression for random cells, despite a limited number of simulations
for the latter, and the complexity of extracting a minimum over all loading orientations.



118 CHAPTER 4. MULTIFIDELITY DUCTILE DAMAGE MODEL...

0.0

0.2

0.4

0.6

0.8

RM
SE

Direct results
max. var.
exp. improv.
mix
random

0.05

0.10

0.15

0.20

0.25

RM
SE

Scaled results
max. var.
exp. improv.
mix
random

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RM
SE

max. var.
exp. improv.
mix
random

0.05

0.10

0.15

0.20

0.25

RM
SE

max. var.
exp. improv.
mix
random

101 102

Number of training points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

max. var.
exp. improv.
mix
random

101 102

Number of training points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RM
SE

max. var.
exp. improv.
mix
random

Figure 4.11: Comparison of the adaptive experimental design strategies. Evolution of the
error with the number of examples, from direct (left column) and scaled results (right column).
The comparison is performed for three choices of first ten points (each choice of initial points
corresponds to a row). The results are compared with the results from ten random orderings (with
fixed 10 first points): the average is shown with a red line, while the minimum and maximum
values delimit a red area.
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• Several information transfer strategies between the two types of cells were considered.
Reusing the same Gaussian Process parameters from the unit cells and explaining the
difference with random cells by epistemic uncertainty was found to be the most effective
strategy.

• Cokriging always improves accuracy but is mostly effective for a very low number of
examples and has a more limited effected at higher number.

• Strategies derived from Gaussian Process Regression were proposed to improve experi-
mental design and obtain faster convergence of the metamodel with respect to number of
examples. They allowed a better determination of the overall trend of the model, but were
not found to improve the determination of the average level, limiting their efficiency.

The obtained response surface aims to be used directly as a non parametric uncoupled ductile
failure model. Moreover, the methodology could be extended in several ways. For instance
several different random cells could be used, so as to represent and quantify the dispersion of the
strain at localization for different random microstructures. Although the metamodeling strategy
was presented for simplicity on a single realization, an efficient metamodel should represent
the average behavior of all possible realizations. Moreover the influence of the initial porosity
could be assessed. Section 4.C presents some elements relative to this question, and especially
shows that the effect of initial porosity can not be decoupled from the effects of other loading
conditions. The effect of porosity could be more exhaustively studied by adding this porosity as
a new dimension to explore by kriging. This requires a straightforward extension of the above
methodology but also significantly more simulations on unit and random cells.

4.A Sparse Variational Gaussian Process

For the unit cell, thousands of examples are available. The standard Gaussian process methodology
defined in subsection 4.4.1 leads to untractable computational times for maximum likelihood
optimization, since an inversion (or at least a Cholesky factorisation) of the covariance matrix K∼ xx
is required (Eq. 4.8). All examples should however be used, so as to represent all the information
available for the unit cell. Several adaptations to Gaussian Process Regression to big data are
available (Liu, Ong, et al., 2020). The Stochastic Variational Gaussian Process (SVGP) method
(Hensman et al., 2013) was preferred, thanks to its formulation as a straightforward extension of
the standard Gaussian Process, that can be used in its GPflow implementation (Matthews et al.,
2017). The principles of this methodology are here briefly presented.

In a sparse Gaussian process (Titsias, 2009), the data from the examples is summarized by the
value of the Gaussian process at a set of inducing points (zi)i≤M ∈X in the input space. Given
the inducing points, the predictions of the Gaussian process for new points or existing examples
(xi) are given by:

f (x ) | f̃ (z )∼N (K∼ xzK∼
−1
zz f̃ (z ); K̃∼ + ς

2I∼M) (4.26)

where K̃∼ = K∼ xx−K∼ xzK∼
−1
zz K∼ zx. The covariance matrix K∼ xz is naturally defined by Kxz,i j = K(xi,z j)

and similarly for the other matrices. The prediction is thus performed in exactly the same way
as in Eq. 4.6. If the inducing points correspond exactly to the locations of the examples, the
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sparse Gaussian process is equivalent to the standard one. However, only the covariance matrix
between the inducing points needs to be inverted (or decomposed) so with a lower number of
inducing points, the computational cost of the prediction is decreased. The choice of the number
of inducing points is determined by a trade-off between accuracy and computational cost (see
section 4.B).

The SVGP is a sparse Gaussian process whose optimization is performed by a stochastic
variational approach. The objective is to use a family of variational distributions to find a lower
bound for the log-likelihood of the Gaussian process. Hensman et al. (2013) showed that for any
Gaussian distribution N (m ,S∼) (in dimension M), the likelihood verifies:

ln P(y)≥
N

∑
i=1

lnφ

(
yi− k T

i K−1
zz m

ς

)
−

N

∑
i=1

(
K̃ii

2ς2 +
1
2

tr(SΛi)

)
−KL(N (m ,S);N (0 ,Kzz))

(4.27)

where K̃ is specialized to the examples (xi), φ is still the probability distribution of the standard
Gaussian distribution, k i is the ith column of K∼ zx and

Λi =
1
ς2 K∼

−1
zz k ik

T
i K∼ zz (4.28)

The optimization of the log likelihood can thus be replaced by the optimization of the right-
hand side of Eq. 4.27 which acts as a lower bound. The parameters that can be optimized are
those from the standard GP formulation (A, λ , ς ) and additional ones like the position of the
inducing points (zi), and the parameters m and S of the variational parameters. For the optimal
solution, the values taken by the GP at the inducing points satisfy f̃ (z )∼N (m ,S∼) so they do
not need to be directly optimized.

Only the two sums in the right hand side of Eq. (4.27) deal with the numerous training
examples, and each term can be considered independently. This allows stochastic optimization
and processing the examples by batches, reducing the computational cost of optimization. This
stochastic optimization is performed with a hybrid approach (Matthews et al., 2017), alternating
steps of natural gradient optimization (Hensman et al., 2013) only for the variational parameters
and Adam (Kingma and Ba, 2017) stochastic optimization for all the remaining parameters (A,
λ , ς , (zi)).

4.B Choice of hyperparameters for the 5D kriging on the unit cell
data

This section discusses the choice of hyperparameters for the Gaussian Process Regression
methodology which are used in the study. The main choices to make dealt with the optimization
parameters for the SVGP on the unit cell, is number of inducing points, and the kernel used for
Gaussian processes.
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For the optimization of the parameters of the SVGP on unit cell data by Adam minimizer,
batches of 200 examples are used and optimization is terminated when the lower bound on the
log likelihood did not decrease by more than 10 % on the last 100 iterations. A learning rate of
1% is used for the Adam optimizer. This choice produces reasonable Gaussian processes; the
resulting metamodels are not strongly dependent on the value of the above hyperparameters.

The influence of the kernel and the number of hyperparameters were more systematically
analyzed. A three-fold cross-validation was performed on the 9649 unit cell examples. The
examples are randomly partitioned in three folds, the model is trained on two folds and its
predictions are evaluated (with a RMSE metric) on the remaining examples. This process is
performed for each choice of held-out fold. The holding out of data is performed only in this
section for hyperparameter selection, not in the rest of the study. The reference hyperparameters
were M = 200 and a Matérn kernel of order 5/2.

Three choices of kernel were tried for the Gaussian Kernel: Matérn kernels of order 3/2 and
5/2 (Eq. 4.3) and a squared exponential (Rasmussen and Williams, 2006):

KMatern
3/2 (r) =

(
1+
√

3r
)

exp
(
−
√

3r
)

(4.29)

Ksq.exp.(r) = exp(r2/2) (4.30)

The squared exponential kernel favors smoothest realizations of Gaussian processes whereas
Matérn-3/2 kernel leads to roughest realizations. Matérn kernels lead to significantly lower
errors than the squared exponential (Fig. 4.12a). However, the difference between the two types
of Matérn kernels is not significant. The Matérn-5/2 was favored in this study owing to the
increased smoothness of its realizations.

Several choices of number of inducing points M are compared in Fig. 4.12b and 4.12c. In
accordance with the discussion in section 4.A, the error decreases with the number of inducing
points but the training time and computational cost increases with M. The value of M = 200
was chosen, because the error does not decrease significantly past this value, and the increased
computational cost is therefore of little use.

4.C Influence of initial porosity

The methodology developed in this study allows to assess systematically the influence of the stress
triaxiality, the Lode parameter and the loading orientation. However this does not exhaust all the
parameters defining a simulation on a cell. For both unit and random cells, the initial porosity can
influence localization. This was already illustrated in chapter 3 for an elastic-perfectly plastic
material: a cell with initial porosity 1% is still liable to strain localization anisotropy, and strain
localization values are higher than for an initial porosity of 6%. This appendix extends the
analysis to a wider range of initial porosity values, in the context of the hardening material
described in subsection 4.3.1. The objective is to discuss the integration of initial porosity within
the surrogate model for strain localization.

The analysis focuses on unit cells. Seven unit cells with varying initial porosity f0 ∈
{0.1%,0.2%,0.5%,1%,2%,5%,6%,10%} are used in simulations. They are meshed with the
same meshing parameters as in Fig. 4.1b. For each cell, a computation is carried out with the
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Figure 4.12: Sensitivity analysis for the kernel and the number of inducing points of the SVGP. A
3-fold cross validation was performed. The RMSE score compares the predictions of the SVGP
trained on two folds when compared with the reference values from the the third fold. For test
score and fit time, the average and the standard deviation over the three folds are reported.
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same methodology as previously, for loading conditions (T = 1, L ∈ {−1,−0.4,0.4}), and the
30 loading orientations from Fig. 4.3 are tried. The results for f0 = 6% therefore correspond to
those already discussed.

Fig. 4.13 then reports the minimum localization strain over all 30 loading orientations,
depending on the initial porosity. For L =−1 and L =−0.4, localization strain mostly decreases
with initial porosity which is consistent with the results from chapter 3. However, in the regime
of low initial void volume fraction, failure strain stabilizes and appears to converge to a value
independent of the initial porosity. For L = 0.4, failure strain is essentially independent on f0.
Therefore the influence of porosity strongly depends on the loading conditions.
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Figure 4.13: Influence of initial porosity on failure strain. Each datum corresponds to the
minimum failure strain over the same 30 loading orientations as in Fig. 4.2.

The effect of initial porosity should be included in the failure strain model. However, the
influence of initial porosity cannot be decoupled from the effect of the loading conditions (T,L).
The model for f0 = 6% can therefore not be simply extended with a tensorial form E∗(T,L, f0) =
g( f0)E∗(T,L, f0 = 6%), where g is some function to be identified. The methodology of section 4.4
could admittedly be generalized by introducing f0 as a new input dimension. This would require a
new study, with a significant computational cost. For simplicity, the failure strain model identified
with f0 = 6% will be kept by remarking that failure strain is a decreasing function of f0 and
therefore the values obtained with f0 = 6% can play the role of a lower bound for the true failure
strain values.

4.D A simpler parametric model

In this chapter, a metamodel for E∗(T,L) was obtained by Gaussian Process Regression. An
advantage of the metamodeling approach is to provide a non-parametric model, which does not
require hypothesizing an analytical form for the dependence on T and L. However the downside
is that the metamodel is harder to use and implement in other contexts or software.

This short section is therefore dedicated to simplify the metamodel by fitting a prexisting
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parametric model. The resulting parametric model can not express the response surface with
as much complexity as the metamodel, but may be easier to reuse. The metamodel should
however be preferred whenever possible. Note that the parametric model could not be directly
obtained from training examples, and the metamodeling approach remains necessary to perform
the minimization over all loading orientations, and to take advantage from multifidelity.

The parametric model by Lou and Huh (2013) was chosen, because it has a physical interpre-
tation and naturally expresses failure strain. The model is given by:

E∗(T,L) =C3

(
2

max(0,1+3T )

)C2
(√

L2 +3
2

)C1

(4.31)

where C1, C2, C3 are three parameters to determine.
The metamodel obtained in subsection 4.5.1 for 475 points (depicted in Fig. 4.7), or rather

the expectation of the Gaussian process, was evaluated on a grid (T , L). The coefficients C1, C2,
C3 were obtained by least square regression of log10(E

∗). Due to Eq. (4.31), this corresponds to
a simple linear regression. The optimal parameters were found to be:

C1 = 3.9 C2 = 1.9 C3 = 0.47 (4.32)

The resulting E∗(T,L) surface is shown in Fig. 4.14. The comparison with the original metamodel
(Fig. 4.7) shows that the parametric model keeps the correct range of values but simplifies the
dependence to T and to L. Notably the parametric metamodel cannot express asymmetry in L.
The original metamodel remains therefore preferrable.
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Figure 4.14: Response surface obtained by fitting Lou and Huh’s (2013) model



Chapter 5

Application to weld defects

This chapter investigates ductile failure in real TA6V weld joints. Contrary to the random
microstructures considered in previous chapters, there is no separation of scales between defects
and weld joint. The ductile behavior of welded specimens is experimentally investigated with
in-situ tensile tests. The population of defects is identified and followed with synchrotron X-ray
computed tomography. The analysis of macroscopic mechanical behaviors, of fracture surfaces
and of the evolution of defects evidence ductile failure of the specimens. The experiments are also
simulated by finite elements, taking into account the presence of defects. A good agreement is
reached between experiment and simulation, both for the overall mechanical behavior and the
local evolution of defects. The localization strain response surface obtained in earlier chapters for
random microstructures is finally converted to a damage criterion, which is used to post-process
and analyze the simulation results.

5.1 Résumé détaillé

Les chapitres précédents concernaient la simulation du comportement en rupture ductile de
microstructures aléatoires statistiquement homogènes. Le présent chapitre s’intéresse désormais
à la rupture de pièces soudées réelles. Ces pièces comportent un cordon de soudure qui, en
plus d’être métallurgiquement (et donc mécaniquement) différent du métal de base, possède des
défauts de soudure (c’est-à-dire des pores). Il n’est pas nécessairement possible d’identifier dans
le cordon de soudure un volume élémentaire représentatif de la population de défauts, si bien
qu’il est légitime d’étudier dans quelle mesure les résultats des chapitres précédents s’appliquent.

L’influence des défauts sur la rupture ductile est testée expérimentalement par des essais
de traction in-situ sur des éprouvettes avec cordons de soudure. Les défauts de soudure sont
identifiés et surtout suivis au cours de l’essai par tomographie aux rayons X (sur la ligne PSICHE
du synchrotron SOLEIL). Les méthodes expérimentales et d’analyse des images sont présentées
en section 5.3.

L’analyse des courbes expérimentales force-déplacement et des surfaces de rupture en section
5.4 met en évidence la rupture ductile. De plus, les images de tomographie permettent de suivre la
déformation des défauts au cours de l’essai: les défauts, initialement quasi sphériques, s’allongent
dans la direction de traction, tandis que leur volume augmente modérément.
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Finalement, la section 5.5 se propose de reproduire les essais de traction avec des simula-
tions par éléments finis. Les informations de tomographie sont prises en compte en maillant
explicitement les défauts de soudure visibles sur les images au sein de l’éprouvette. La loi
de comportement du matériau reprend le modèle identifié par Sarre (2018) pour le TA6V, en
distinguant le comportement de la zone fondue et celui du métal de base. La comparaison
simulation-expérience est effectuée aux niveaux macroscopique et local.

Au niveau macroscopique, un bon accord entre courbes force-déplacement est observé entre
la simulation et l’expérience, même si la faible raideur de la machine de test complexifie l’analyse.
Cependant les défauts semblent avoir un rôle limité sur le comportement mécanique global
puisque des comportements mécaniques très similaires sont obtenus en négligeant les défauts. À
un niveau plus local, l’évolution de la morphologie des pores est bien reproduite par la simulation.
Une bonne représentation numérique de la surface de rupture nécessite la prise en compte explicite
des défauts.

Finalement, la rupture ductile des éprouvettes soudées est reliée à celle des microstructures
aléatoires des chapitres précédents. À partir de la surface de réponse de la déformation à
localisation, un modèle découplé de rupture ductile peut être implémenté. Il peut alors servir à
analyser par post-traitement les résultats de simulation d’éprouvettes. Au delà de l’illustration de
l’utilisation d’un modèle développé à partir de simulations sur cellules, ceci permet de déterminer
plus finement la surface de rupture simulée, qui ne coïncide cependant pas avec la surface de
rupture expérimentale.

5.2 Introduction

In the preceding chapters, ductile failure was investigated in random microstructures. Although
it took into account the interaction between defects, the material was described as a cell with
periodic boundary conditions, i.e. a representative volume element. This implied that the
population of defects was considered statistically homogeneous and that there was a separation
of scales between the defect and cell level, and the macroscopic level of the mechanical parts.
This chapter now deals with the ductile failure of a material with a population of defects, coming
from industry-relevant weld joints. In such a weld joint, the population is no more statistically
homogeneous, and can not be easily summarized by representative volume elements.

The welding process under analysis consists in assembling two parts made of titanium alloy
TA6V by pulsed (Nd:YAG) laser welding with no filler metal added. The application of this
process to TA6V was studied from a metallurgical point of view by Sarre (2018). Welding has
several effects for the metal in the fusion zone, such as modifying the microstructure and therefore
the mechanical behavior, or creating residual stresses. Moreover, defects can be created within the
weld joint. We focus on weld pores, generated by gas bubbles trapped in the fusion zone during
the solidification zone. The population of such defects was studied by Lacourt (2019). These
defects are responsible for a weaker mechanical resistance, for instance in ductile failure, as they
represent voids and strain concentrators. Investigating the change in ductile failure behavior due
to the weld pores would therefore allow to better predict mechanical behavior and resistance to
ductile failure in monotonic loading.

The weld pores can be detected with X-ray computed tomography (CT), allowing to obtain
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3D images of the weld joint. Non destructive control can be routinely done with laboratory
tomographs, whose low resolution allows detecting only the largest voids, which are a priori
the most dangerous. In order to use as precisely as possible the easily available low resolution
images, the precise influence of defects on ductile failure should be investigated. This can be
done by monitoring the evolution of the population of the defects throughout a mechanical test.
However this study requires higher resolution CT-images, such as that produced by synchrotron
tomography.

For ductile fracture, CT is generally used to analyze the local phenomena involved in failure,
for instance by Shen et al. (2013), even obtaining grain-scale information (Naragani et al., 2020).
Simulations of ductile fracture based on CT-images have also been performed. For instance
O’Keeffe et al. (2015) or Doroszko and Seweryn (2017) have simulated the propagation of a
ductile failure crack. Buljac, Shakoor, et al. (2017), Buljac, Trejo Navas, et al. (2018), Buljac,
Helfen, et al. (2018), and Navas et al. (2022) used digital volume correlations from laminography
images (similar to laterally extended tomography images) to obtain local strain fields, which can
be compared with finite element simulations of the observed area. However all these simulations
requiring an explicit meshing of the defects are computationally expensive and focus on small
regions. Marvi-Mashhadi et al. (2021) identified a statistical model for pore population from
CT-images and performed finite elements simulations of ductile failure (in a dynamic loading
context) for synthetic realizations of the population model. CT-images are therefore rarely used
for predictions of the mechanical behavior of a given specimen. For instance, in the Sandia
challenge (Boyce, Kramer, Bosiljevac, et al., 2016), CT-images were available for the specimens
whose resistance was to be predicted. However such rich images were only used to determine
porosity levels to be integrated in the ductile failure models. Similarly Madison et al. (2018)
only correlated image statistics to mechanical behaviors. The CT-images can be used in a
predictive way with reasonable computational cost, by representing explicitly the largest voids,
and representing the rest of the observed voids by a homogenized model, such as that developed
in the preceding chapter.

In this chapter, in-situ tensile tests are performed for the first time on TA6V weld joints,
allowing to follow the evolution of weld pores. Moreover the whole specimen is simulated by
finite elements, and the effect of explicitly representing the largest defects is investigated. This
allows comparing simulated and experimental results. We also illustrate the application of the
ductile failure model from previous chapters to represent the influence of smaller voids.

Section 5.3 describes the material under analysis and the experimental methods for the in-situ
tensile tests. In section 5.4, experimental results are presented and the ductile failure of specimens
is evidenced from macroscopic stress-strain curves, fracture surface analysis, and monitoring of
the defect population. Finally the experiments are simulated in section 5.5, allowing to compare
numerical results and experimental ones. A ductile failure model is explicitly built from the
results from previous chapters, and its application is illustrated.

5.3 Materials and Methods

This section describes the material under analysis and the experimental methods to investigate
its behavior in ductile fracture. The titanium alloy and its known behavior as part of a weld
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Table 5.1: Chemical composition of base metal TA6V (from supplier’s statement, cited by Sarre
(2018))

Element Ti Al V O H N C Fe
% (wt) Base 6.42 4.02 0.19 0.003 0.0055 0.06 0.15

joint are first recalled. The specimens used for tensile testing and the tensile setup installed on a
tomography line are then described. Finally the methodology to analyze the resulting tomography
images is defined.

5.3.1 Material and weld joint

The material used and its known behavior, both in the base metal and as part of the weld joint are
first described. Sarre (2018) already performed a characterization of the alloy in this laser welding
process, so the main information will be here summarized. The specimens described below are
made from the batch investigated by Sarre (2018) and Lacourt (2019), so the characteristics of
the alloy are identical.

The TA6V alloy (or Ti6Al4V or Grade 5) is a widely used titanium alloy. Its composition,
as determined by the supplier, is given in Table 5.1. Thanks to its two main alloying elements,
aluminum and vanadium, TA6V can have microstructures composed of two phases: a compact
hexagonal phase α and a body-centered cubic phase β . The β phase has a higher yield strength
than the α phase. The typical microstructure in the base metal is shown in Fig. 5.1. The equiaxial
α grains of typical size 10 µm represent the major part of the microstructure. They are surrounded
by a finer contour of β phase.

As studied by Helbert et al. (1996) and Helbert et al. (1998), TA6V is prone to ductile failure.
The relative influence of void growth and nucleation depends on the stress triaxiality. For T < 1,
nucleation is known to dominate, whereas void growth prevails for higher stress triaxiality levels.
Therefore, for a homogeneous tensile stress state (T = 1/3), nucleation should dominate, but
void growth can play a larger role for notched specimens. Recall that the model developed in
the previous chapters for random microstructures can represent void growth, but contains no
ingredient for void nucleation.

Two TA6V parts are then assembled by pulsed laser welding. For reasons linked to the
industrial process, a half lap joint is used (Fig. 5.2). The fusion zone does not cross the whole
thickness, and a recess is left on one edge of the lap. This necessary recess acts as a crack in the
assembly, and thus as a weak point.

The welding process is responsible for microstructural changes. Metallography images from
the weld joint (Fig. 5.3) were obtained by Sarre (2018) and show that an acicular microstructure,
very different from the microstructure of the base metal, is created after solidification of the
fusion zone. The grains are typically 100 µm in diameter, which is considerably larger than in
the base metal. Between the fusion zone and the base metal, a heat-affected zone is present with
two distinct microstructures. It stayed solid throughout the welding process, but was brought
to a temperature high enough to modify the microstructure. The microstructural changes are
responsible for a change in mechanical behavior, without even considering welding defects
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Figure 5.1: SEM micrography of base metal, taken from Sarre (2018). The microstructure is
made of equiaxial α grains surrounded by a fine contour made of β phase (in light grey).

such as pores. Huez et al. (2010) showed for instance that the fusion zone has a higher yield
strength than the base metal, although it has a slightly lower ductility. This situation, known as
overmatch, entails that the plastic strain may concentrate in the base metal (depending on the
loading conditions), and the base metal is more likely to fail. In such conditions, the resistance of
the whole structure is more easily predicted since the behavior of the base metal can be easily
investigated. However the defects’ weakening effect remains to be determined.

Symmetry plane

Recess

Molten zone

Heat affected zone

Figure 5.2: Schematic representation of the weld joint, adapted from Sarre (2018)

5.3.2 Description of the specimens and experimental methods

The nominal geometry of the specimens for tensile testing is shown in diagrams 5.4. Except for
the rectangular heads, the specimens are axially symmetric. The imaging by X-ray tomography
requires thin specimens, so the radius in the most reduced section is less than 1 mm. The
specimens used in the test were actually for the most part already imaged by Lacourt (2019). They
were initially cylindrical but a central notch was added to favor failure in the central area, as the
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(a) Transversal view (b) Interpretation of the microstructure by Martin
(2012)

(c) Longitudinal view, evidencing thermally affected zones

Figure 5.3: Optical micrographies of the microstructure in the weld joint. Taken from Sarre
(2018)
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whole specimen was not observed by tomography but only a zone of length 2.6 mm. Moreover
the reduced section was chosen according to the load capacity of the tensile testing setup. Finally
the notch also helps in reaching higher stress triaxiality levels.

(a) Geometry I with a simple notch,
with longitudinal weld joint

(b) Geometry II with a double notch,
with transverse weld joint

Figure 5.4: Nominal geometries of the specimens for tensile testing, and schematic representation
of the weld joint orientation

The specimens are cut from welded TA6V plates. Depending on their orientation in the
plate, specimens can contain a portion of weld joint along their main axis (thereafter referred
to as longitudinal welds), or orthogonal to the main axis, in the central area (transverse welds).
A schematic representation of possible weld joints is shown on the diagrams 5.4. Base metal
specimens do not contain any weld joint portion. For some transversal welds, the geometry II
with a second notch was used (Fig. 5.4b). This second notch was designed to promote fracture
in the central weld zone, although the weld joint has a higher yield strength. For the present
study, weld joints were machined to remove recesses, but the machining was eventually found
insufficient, complicating the analysis especially for transverse welds. The description of all the
specimens tested, with their geometry and the possible position of a weld joint, is presented in
Table 5.2.

The tensile testing machine, nicknamed Bulky, was developed by Pelerin et al. (2019) (see
Fig. 5.5 for diagrams). The specimen is not anchored to the machine but its lower head is held
by a hook connected to the stage driven by the stepper motor. The top head lays on a metallic
part with an opening letting the central axisymmetric part of the specimen through. During the
test, the motor moves the lower side of the specimen, whereas the top side is kept stationary. The
tensile line is completed by the transparent tube of polymer (PMMA) surrounding the specimen,
which is loaded in compression. The motor is controlled in displacement. A load cell is used to
measure the force applied on the specimen.

The setup is installed on the PSICHE beam line of the SOLEIL synchrotron (King et al.,
2016). A high energy X-ray pink (polychromatic) beam is used so that high resolution images can
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Table 5.2: Description of the specimens

Specimen Geometry Welding Number of Images
07_P3 I Base metal 30

A3 I Transverse 11
A6 II Transverse 13
A7 II Transverse 31
A8 I Transverse 14
A9 I Transverse 13

A10 I Transverse 38
EPF1 I Longitudinal 27
EPF2 I Longitudinal 67
EPF3 I Longitudinal 18
EFP4 I Longitudinal 17

(a) Whole tensile setup (b) Specimen holder

Figure 5.5: Diagram of the tensile testing machine. Taken from Pelerin et al., 2019.
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be obtained with a low exposure time. The setup is placed on a rotating stage so that the specimen
remains on the path of the X-ray beam to the detector (Fig. 5.6). The whole stage rotates with
the tensile testing machine and the specimen. A CT-scan is performed by producing 2D X-ray
images for various angles of rotation. A three-dimensional image of the specimen can then be
reconstructed by Radon transform. The optical components of the beam line and the detector
allow reconstructed images of size 2048×2048×2048 voxels. The resolution is 1.3µm/vx, so
that the image represents a physical cube of side 2.6 mm. As the image is centered on the central
notch of the specimen, the whole cross-section is visible, on a height of 2.6 mm.

(a) Tensile testing machine and X-ray detector (b) Zoom on the sample

Figure 5.6: Experimental setup on the PSICHE line

CT-scans are performed during the tensile experiment, without any interruption. As strain
keeps increasing and is not kept at a fixed value, there can be no stress relaxation due to viscosity
effects. The different 2D images for a scan are however performed at slightly different strain
values. If the strain rate is low enough so that the difference in strain values is negligible over the
time needed for a scan, the reconstruction errors are negligible. The number of scans performed
for each specimen is indicated in Table 5.2.

5.3.3 Image analysis

The procedure for analyzing the reconstructed 3D CT-images is now outlined. The reconstruction
from 2D X-ray images produces 8-bit grayscale images, where high values (in white) represent
the zones with high absorption (and therefore the metal), whereas low values (in black) represent
the voids (weld pores within the specimen, and the exterior). The image analysis begins by
applying a Gaussian filter to reduce noise.

Reconstruction artifacts, and especially rings may be present in the reconstructions, due to
deficient pixels in the X-ray detector. To remove these artifacts, a method analogous to that of
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Raven (1998) was used. The axis of rotation is first located in the image, then higher frequency
components are filtered out in the Fourier space. This process is carried out slice by slice, that is
for each 2D section of the 3D images orthogonal to the tensile axis and the stage rotation axis.
An example of filtered image can be found in figure 5.7.

Figure 5.7: Example of image analysis: ring artifacts are removed, and defects are segmented.

In order to isolate voids, generally darker than their background, the 3D image is segmented
with the method by Lacourt (2019). A (black) top hat transform is applied: Closing operations
are carried out to fill voids, then the initial image is subtracted (see Serra (1986) for mathematical
morphology terminology). Finally a closing operation with a small structuring cube of size
3 allows removing very small objects. A binarized image is thus obtained. By analyzing the
connectivity of the binarized images, the different voids can be identified. For each void, physical
quantities, such as the volume or the inertia matrix (see subsection 5.4.3), can then be directly
computed from the image. A voxelized mesh of the defects can also be obtained with a Marching
Cube algorithm (Cline and Lorensen, 1987).

The above analysis considers each CT-image as independent. However the in-situ tests
produce several images for the same specimen, at several strain levels. There is therefore a
correspondence between defects in two different images. Determining which defects in two
different images are homologous, and determining the geometric transformation joining the two
defect populations, is a problem known as image registration (see Fig. 5.8 for an illustration).
This problem can be solved with an Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992). This algorithm was reimplemented and particularized to the ICP images, so its functioning
is here described.

The objective of the ICP is to compare two point clouds A and B, and find the corresponding
point in B of each point in A. As described in the pseudocode 1, the algorithm alternates two
steps: the nearest neighbour of each (transformed) point in A is found in B, then the best affine
function transforming the point A to the clouds of associated nearest neighbors in B is found by
least squares optimization. This process is repeated until the iterations do not change anymore
the association between points in A and points in B. The algorithm has then reached convergence,
and the correspondance between a point in A and a point in B can not change anymore.

In our application to CT-images and to defect population monitoring, the first image is
matched to each of the other successive images by applying the ICP with the cloud of defect
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A B

Figure 5.8: Objective of image registration: finding the correspondance between defects in two
images A and B, and the average deformation gradient between these two images.

Algorithm 1 Iterative Closest Point

Require: Two point clouds A = (a i), B.
n← 0
a (0)

i ← ai for all i
b (0)

i ← the point of B, closest to a0
i (nearest neighbor)

repeat
n← n+1
(F∼

ICP, t ICP)← the affine transformation f : a → F∼
ICP.a + t ICP, minimizing the distance

∑
i
‖ f (a (0)

i )−b (n)
i ‖

2

b(n)i ← the point of B, closest to a(n)i (nearest neighbor)
until a (n)

i = a (n−1)
i for all i

return F∼
ICP, t ICP, (b (n)

i )
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barycenters. For a defect in an image, the barycenter is naturally defined as:

x̄ defect =
1

Vdefect
∑

v∈void
x v with Vdefect = ∑

v∈void
1 (5.1)

where the sums are taken over all voxels constituting a defect. The ICP works with point clouds,
rather than directly with CT-images. Digital volume correlation could be used on 3D images, as
in Navas et al. (2022), but there is not enough contrast in the bulk for accurate correlation (and the
defects are too scarce to act as speckle). Moreover the ICP is computationnally simple, as there is
only a reduced number of points (one barycenter per void) to consider. The point clouds A and B
do not play a symmetric role as each defect in A is required to have a homologous defect in B,
but not reciprocally. As defects can move out from the observed area during the test, the analysis
is focused on the defects sufficiently far from the edges of the tomography images. Fig. 5.9
illustrates the application of the ICP algorithm to two defect clouds. The reference cloud A in blue
does not coincide with the target point cloud B in yellow. However the optimal transformation of
A in red, found by ICP, agrees well with the target point cloud.

Figure 5.9: Illustration of the ICP on the point cloud of defect barycenters for two different
images: the transformed point cloud A’ is optimally close to the target point cloud B

The affine transformation a → F∼
ICP.a + t ICP can be physically interpreted. The difference

between two images comes from two distinct phenomena. Firstly, due to experimental issues,
the specimen is not necessarily in the same position for two different images, i.e. the position
of the defects is expressed in a different frame for each image. For instance, the scan does not
necessarily start when the rotating stage is at the same angular position (so there is a rotation)
and the lower part of the sample moves, while the upper part is stationary. This corresponds
to a translation and a rotation of the cloud of the barycenters. The second phenomenon has a
mechanical interpretation and corresponds to the stretching of the specimen during the tensile
test. Therefore, if it is assumed that the difference in imaging conditions only entails a rotation
around the tensile axis (z) and a translation, a measure of strain along the tensile axis can be
computed from the ICP results :

εICP = F ICP
zz −1 (5.2)
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However strain is not homogeneous in the specimen, and the macroscopic εICP measure does not
represent local strain fluctuations. This also means that, for the ICP algorithm, the transformed
point cloud does not exactly coincide with the target cloud.

5.4 Experimental results

The present section presents a direct analysis of experimental results. Ductile failure is evidenced
from macroscopic strain-stress responses, and the evolution of defect populations is observed.

5.4.1 Stress-strain curves

The macroscopic mechanical behavior of specimens is first analyzed from experimental force
displacement curves. The displacement corresponds to the displacement of the stage of the tensile
testing machine, while the force is measured by the load cell. The force can be converted to a
conventional stress measure by dividing the force by the area of the initial minimal cross section.
This area is measured on the initial CT-image for each specimen and not directly from the nominal
geometry (Fig. 5.4a) because of machining tolerances.

Stress displacement curves are represented on Fig. 5.10, and are grouped by similar behavior.
All experiments begin by an initial linear elastic loading but the overall stiffness is low. A linear
regression on the initial elastic part yields stiffness values of around 1.5 ·106 N/m whereas an
elastic simulation of the specimen (as in section 5.5) shows that the specimens have a stiffness of
around 2.3 ·107 N/m. The difference between these two values is due to the high compliance
of the tensile testing machine. For the transverse welds (except A10), the failure is brutal,
immediately after the end of the elastic part of the curve. For the others, a plateau that can
correspond to significant plastic deformation is found. To understand the evolution of defects,
this ductility plateau is a priori the most relevant. Maximal tensile stress values around 1100 MPa
are compatible with the experiments by Sarre (2018).

Some serrations in the force can be found on the plastic plateau (Fig. 5.11). They are
systematically associated with the beginning and end of tomographic scans. However, they are
not due to viscosity effects, as the machine keeps moving throughout the test, and there can be no
stress relaxation. These serrations appear due to a softening when the X-ray beam is active, which
can damage and heat materials. The effect of a small increase in temperature should be limited
for the metallic sample, but not necessarily for the PMMA tube of the machine surrounding it. In
Fig. 5.6, the PMMA tube has yellowed where it was traversed by the X-ray beam, a sign of aging.
Therefore the heat softens the PMMA tube which transmits load throughout the tensile testing
machine, and can be responsible for the serrations. Those are not desired, and are generally not
seen when the tensile testing machine is used with polymer samples, allowing a lower energy
X-ray beam.

Using the displacement of defects between CT-images, the ICP algorithm provides a measure
of the strain in the observed area. Stress-strain curves for specimens with longitudinal welds are
shown in Fig. 5.12. The analysis focused on the images of these specimens, which mechanical
behavior showed significant ductility. Strains at failure of 15 to 20 % are obtained for the
specimens. Due to different specimen geometries, and the presence of the weld joint, these values
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Figure 5.10: Experimental displacement-stress curves for the tested specimens
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Figure 5.11: Serrations of the force, during the tensile testing of the specimen EPF4. These are
not due to a viscosity effect.
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can not be directly compared to Sarre’s (2018) experiments. As on figure 5.10, a rather good
repeatability between similar samples is found.
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Figure 5.12: Stress strain curves for the specimens EPF1, EPF3 and EPF4. The stress is computed
from the displacement of defects visible in the tomography images.

5.4.2 Fracture surface analysis

To ascertain the physical phenomenon responsible for failure, the fracture surface of each
specimen was observed by scanning electron microscopy (SEM). These fracture surfaces were
used without undergoing any specific preparation.

The failure surface of the specimen 07P3, consisting only of base metal (without a weld joint)
is shown in Fig. 5.13a. A typical ductile failure pattern is found (Benzerga, Besson, et al., 2004),
with a dimpled zone in the center, and smoother zones on the outside. For the sample A10, with a
transverse weld, the exact same type of failure surface is obtained (Fig. 5.13b). Failure therefore
took place in the base metal zone (and unfortunately not in the weld, as intended). This explains
the similarity in mechanical behavior between the specimen A10 with 07P3 (Fig. 5.10a).

The failure surfaces for transversal weld joints are presented in Fig. 5.14. The difference of
lighting between the images is irrelevant and due to the use of two different microscopes. All
failure surfaces show the presence of a recess, that can be identified by a smooth uniform surface,
where parallel lines corresponding to machining can even be found. This recess has probably
caused the failure, as it acts as a weak point. The failure crack then propagated through the fusion
zone, where clusters of weld pores can be found. The end of the failure surface crosses a zone
with no void, i.e the base metal or at least the heat-affected zone. This propagation is consistent
with Sarre’s (2018)’s findings that the ductile failure favors propagating through the base metal
rather than through the fusion zone, which displays higher yield strength. Fig. 5.15 shows more
local aspects of ductile failure (for specimen A6). In the fusion zone, the welding pores are
clearly visible. At their bottom, there is a geometrical crystallographic pattern, which may be
associated with plastic slip lines. The pores are also surrounded by ductile failure dimples. The
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(a) 07P3 (b) A10

Figure 5.13: Fracture surfaces showing ductile failure in the base metal (SEM)

smoother terminal zone of defect-free base metal is also observed, and shows typical dimples of
terminal ductile failure.

Finally, the failure surfaces for longitudinal weld joints (Fig. 5.16) show two distinct zones. In
the center of the surfaces, the fusion zone is visible with weld pores. Compared to the transversal
weld joints (Fig. 5.14), pores are less numerous and larger ones are visible. These larger pores
may have been the cause of the fracture initiation. The role of the pores in fracture will be
analyzed more deeply with finite element simulations in section 5.5. On the edges of the failure
surface, the zone devoid of pores corresponds to the base metal.

5.4.3 Analysis of defect populations

The defect populations and their evolution can be directly studied from the tomography images.
The initial distribution of pores in a TA6V weld joint was studied by Lacourt (2019), who also
determined a statistical model to generate representative distribution of pores. This subsection
will therefore focus on the evolution of the defects throughout the tensile test. The specimens
EPF1, EPF3 and EPF4 with transverse weld joints were prioritized as they had shown significant
ductility.

Populations of the defects from CT-images were extracted with the methodology described
in subsection 5.3.3. As an example, the pore population for the specimen EPF4 is represented
in figures 5.17 and 5.18, for the initial image (with a negligible load) and the last image (just
before failure). As the ductile failure in the TA6V alloy is quite brutal and unstable, it is not
possible to have images during the final failure process, but only just before. Fig. 5.17 is a 3D
representation of the voxelized meshed defects. Fig. 5.18 is constructed by superposing all the
images slices transverse to the tensile axis. More precisely, the intensity level of a pixel (x0,y0)
on the superposition image is given by:

I(x0,y0) = min
z∈[[0,2048]]

I(x0,y0,z) (5.3)

where I(x,y,z) is the intensity level of the voxel (x,y,z) in the CT-image. As voids appear darker
than metal, this operation allows combining all the voids in a single image, and therefore showing
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(a) A3 (b) A6

(c) A7 (d) A8

Figure 5.14: Fracture surfaces for specimens with transverse weld joints. The failure starts from
the recess, continues in the molten zone with welding pores, and finishes in the defect-free base
metal.

(a) Weld pores (b) Ductile fracture dimples

Figure 5.15: Local characteristics of the fracture surface, on the specimen A6



142 CHAPTER 5. APPLICATION TO WELD DEFECTS

(a) EPF1 (b) EPF2

(c) EPF3 (d) EPF4

Figure 5.16: Fracture surfaces for specimens with longitudinal weld joints. The fusion zone with
weld pores is visible in the center.
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the whole population, and not just a cross-section.

x ·

y

z (tensile axis)

(a) First image

(b) Last image

Figure 5.17: Evolution of the population of defects from specimen EPF4, between the first image
(negligible load) and last image (just before failure). Defects are visualized as three-dimensional
objects. The width of the images represents 2.6 mm.

As already pointed out by Lacourt (2019), weld pores mostly have a rather simple ellipsoidal
geometry. During the experiment, they are seen to change shape, mostly by a lengthening in the
tensile direction. The deformation appears more limited in the transverse directions (Fig. 5.18).
The defects are not seen to coalesce and newly nucleated defects are not seen, although the
resolution of CT-images is not sufficient to determine accurately the behavior of small defects
or defects very close one to another. The change in the shape of defects is also exemplified
in Fig. 5.19, which shows the evolution of the four largest defects in the specimen EPF4 for
different macroscopic strain values. The pores lengthen along the tensile axis, and keep their
mainly ellipsoidal shape throughout the test. The last defect of the image possesses however
several lobes.
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z
tensile axis
weld joint

·

x

y

(a) First image (b) Last image

Figure 5.18: Evolution of the population of defects from specimen EPF4. All transversal slices of
the X-ray tomography are superposed, and the minimum of all intensity levels is taken, showing
the whole population of defects.

The CT-images and the defect population they display can be studied from a more quantitative
point of view. The evolution of the porosity can be easily extracted from the images. It is defined
as the volume fraction of voids compared to the volume of the specimen in the observed area
(excluding the exterior of the specimen). For voxelized images, the volume of the voids is directly
given by the number of voxels occupied by this void.

The evolution of the porosity for three specimens is shown for the three specimens in Fig. 5.20.
The initial void volume fraction is around 0.1% (on the whole observed area combining the fusion
zone and the base metal). Sarre (2018) found an initial void volume fraction of 0.45%, computed
on only the fusion zone. Both values are compatible, but the precise distinction between the
fusion zone and the base metal is difficult. During the experiment, porosity increases by 20 to
40 % depending on the specimen. This increase is appreciable, but TA6V remains a material
displaying low void growth. In steels for instance, void growth ratios of 2 to 6 were found by
Benzerga, Besson, et al. (2004).

The evolution of the shape of defects can also be quantified. Lacourt (2019) considered
several morphology indicators; we focus here on inertia-based indicators. The inertia matrix of a
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(a) Defect #1

(b) Defect #2

(c) Defect #3

(d) Defect #4

Figure 5.19: Evolution of the four largest defects in samples EPF4. Each row corresponds to one
defect. The different columns correspond to strain levels of approximately 0% (initial image),
1.5%, 6.5%, 11.5% and 14.4% (shortly before failure).
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Figure 5.20: Evolution of the porosity levels in the observed zone with strain level, for three
specimens with longitudinal weld

defect is defined as:

I∼ defect = ∑
v∈ defect

(y− ȳ)2 +(z− z̄)2 −(x− x̄)(y− ȳ) −(x− x̄)(z− z̄)
−(x− x̄)(y− ȳ) (x− x̄)2 +(z− z̄)2 −(y− ȳ)(z− z̄)
−(x− x̄)(z− z̄) −(y− ȳ)(z− z̄) (x− x̄)2 +(y− ȳ)2

 (5.4)

where the sum is taken over all voxels constituting the void, and (x̄, ȳ, z̄) is the barycenter of
the defect (see Eq. (5.1)). The "mass" of a voxel is not included in the above equation, as
it is not physically relevant and all voxels are similar. The inertia matrix is real-symmetric
so it possesses three real eigenvalues I1 ≥ I2 ≥ I3. From these principal moments of inertia,
morphology indicators independent of the total volume of the inertia matrix can be obtained:

λ1 =
I1

I1 + I2 + I3
λ2 =

I2

I1 + I2 + I3
λ3 =

I3

I1 + I2 + I3
(5.5)

which verify the following properties (see (Lacourt, 2019)):

1
2
≥ λ1 ≥ λ2 ≥ λ3 ≥ 0 (5.6)

λ1 +λ2 +λ3 = 1 (5.7)

λ2 ≥
1
2
(1−λ1) (5.8)

These morphology indicators completely describe the shape of an ellipsoid (which is characterized
by its equivalent ellipsoid). Note that the largest inertia indicator λ1 is associated with the shortest
principal axis of the ellipsoid.

The evolution of the inertia indicators for the three specimens EPF1, EPF3, EPF4 is presented
on Fig. 5.21. For the initial and last CT-images of each experiment, all defects with a sufficient
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size are represented in the (λ1,λ2) space. λ3 is not represented because its value can be deduced
from λ1 and λ2. All experiments show a similar evolution of the morphology of defects. Initially,
the defect morphology is mostly characterized by λ1 ' λ2 ' 1/3. This corresponds to almost
spherical defects. Lacourt (2019) also found that the weld pores could be well approximated
by spheres. However the pores change shape during the deformation, and their morphology
indicators move mostly along the line λ1 = λ2. This line describes prolate spheroids, obtained
by elongating spheres along one axis. This elongation is coherent with the figures 5.17 and 5.19
which showed a lengthening of defects along the tensile axis. However, for both initial and final
images, defects show a significant scattering. Defects show diversity in their geometry, although
most of them can be described as spheres elongating along the tensile axis.

5.5 Simulation of experiments

The experimental results are now compared to finite element simulations. After describing the
methodology of these simulations, the comparison is made both from a macroscopic (overall
mechanical behavior) and a microscopic point of view (at the scale of voids). The role of voids in
the ductile failure and their explicit representation is explored. Finally the ductile failure criterion
associated to the cell simulations of earlier chapters is implemented and its use is illustrated.

5.5.1 Methodology

Firstly the methodology for the finite element simulation of experiments is explained. This
implies precising the meshing strategy for the specimen containing defects, the material behavior
laws, and the boundary conditions.

Mesh generation

In accordance with the previous section, only specimens with longitudinal welds were simulated,
and especially the specimen EPF4. The general geometry was given by the diagrams in Fig. 5.4a.
However due to machining tolerances, the real geometry was different from the nominal geometry.
More precise values for the minimal cross-section of the specimen and the notch radius were thus
found by examining the CT-images, and especially images slices of constant z (cross sections
orthogonal to the tensile axis and the weld joint). The minimal radius of the cross-section was
then extracted and the notch radius was found by studying the evolution of the cross radius with
z and fitting a second order polynomial. The geometry could then be described as the union of
solids of revolution.

As done by Sarre (2018), the specimen is supposed to be made of two materials with different
behaviors: the base metal and the fusion zone. As seen in Fig. 5.3, there is actually also a
heat-affected zone (with possibly two sub-zones) with a possibly different mechanical behavior.
However this last zone is not taken here into account. The distinction between the fusion zone
and the base metal can be inferred from CT-images. To simplify, the fusion zone is supposed to
have a prismatic shape, with the axis corresponding to the tensile axis (for longitudinal welds).
Its section at constant z, is mainly delimited by two planes. Moreover the fusion zone should
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Figure 5.21: Comparison of inertia-based morphology indicators λ1 and λ2 between the first and
last tomography images, for three specimens with longitudinal weld
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enclose all welding defects, and Lacourt (2019) showed that the weld pores are overwhelmingly
located near the edges of the fusion zone. Therefore the position was determined by projecting
the population of defects, in a plane orthogonal to (z) and by finding two lines sufficiently close to
the defects separating the defect-rich molten zone from the defect-free base metal. This process
is shown in Fig. 5.22.
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Figure 5.22: Determination of the separation between the molten zone and the base metal. The
fusion zone is represented by the hatched trapezoid (or rather its intersection with the specimen).

In order to represent explicitly the identified defects in the finite element simulations, the
surface of the pores were meshed. A direct mesh was obtained from CT-images by the marching
cube algorithm, but such a mesh is not adapted to simulations. It is voxelized, so a large number
of elements is used and the surface of the pores is very rough. This complex geometry is not
physical, but due to discretization effects in the CT-images. The mesh was therefore improved,
by simplificating and smoothing it. With Vedo software (Musy et al., 2022), the mesh of the
defect was first smoothed with a Laplacian algorithm, then decimated. The decimation operation
strongly reduces the number of nodes, while attempting to keep the overall geometry. This
process is illustrated on Fig. 5.23.

The representation of the overall geometry of the specimens through solids of revolution, the
separation of the fusion zone and the defect surfaces can be combined with the hierarchical mesher
Netgen (Schöberl, 1997) in a mesh of the specimen with defects. Each of the above components
participate in creating a surface mesh, then the volume of the specimen is constructed.

Even if the mesh of defects is simplified compared to the CT-image, it is still composed of
approximately a hundred nodes. Moreover, defects have different sizes and small defects lead to
small mesh sizes. Therefore, meshing explicitly all visible defects would lead to an intractably
high number of finite elements. Only the largest defects (with highest volume) were therefore
meshed. The volume of the defects acts here as an indicator of sensitivity to ductile fracture,
but a defect criticality indicator could also be developed, as was done by (Lacourt, 2019) in the
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Figure 5.23: Meshing of weld defects: initial voxelized mesh, smoothing and decimation

context of fatigue. We chose therefore to mesh only the 10 and 30 largest defects. These numbers
are admittedly arbitrary, but they allow representing respectively 72 % and 81 % of the porosity
visible on CT-images (Fig. 5.24). Most of the porosity is therefore concentrated in a few large
voids. Three meshes with 0, 10 and 30 defects were therefore created.
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Figure 5.24: Evolution of the cumulative relative porosity (as a fraction of the total porosity) with
the number of defects, for the EPF4 specimen. Defects are ordered by decreasing volume.

As a damaging material behavior is used (see Eq. (5.16) below), the mechanical behavior is
sensitive to mesh size. So as to compare the three meshes, they were built with identical sizes.
However, mesh sizes far from and close to the defects are not the same. To ensure identical mesh
sizes, for all meshes, the 30 defects were explicitly represented. For the mesh with no defects,
the defects were then filled, i.e their interior was meshed too. The mesh with no defects does
not contain any void, but it is locally refined where the defects should be. For the mesh with 10
defects, the same process was carried out for the defects numbered 11 to 30 (in the decreasing
volume order). All three meshes are therefore identical outside the voids.

The central zone of the mesh with 30 defects is shown as an example in Fig. 5.25. The
complete mesh can be seen in Fig. 5.26 below. Note that the separation between the fusion zone
and the base metal is cleanly represented, and does not show any staircase effect, unlike Sarre
(2018).



5.5. SIMULATION OF EXPERIMENTS 151

Figure 5.25: Central zone of the meshed sample, with 30 meshed defects. A wireframe visualiza-
tion is used to show the voids, which are hidden inside the mesh of the sample. The four largest
defects (shown in Fig. 5.19) are labeled.

Material behavior

The base metal and the fusion zone have different mechanical behaviors. Their constitutive laws
for simulation were identified by Sarre (2018), from tensile and notched tension tests. Unlike the
base metal, the intrinsic behavior of the fusion zone cannot be directly accessed by experiment.
The behavior was thus identified on a synthetic equivalent of fusion zone: The base metal is heat
treated in such conditions that the obtained microstructure is similar to that of a weld joint.

For both materials, the identified behavior is an isotropic elastoviscoplastic behavior with
isotropic saturating exponential hardening. Ductile failure is modeled with a Gurson-Tvergaard-
Needleman (GTN) criterion with nucleation. More precisely, the same corotational formulation
and notations as for the random microstructures of earlier chapters (see subsection 2.3.2) are
used (except that the stress should not be corrected by J = det

(
F∼
)

for porous materials) and the
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behavior is given by:

ė∼= ė∼e + ė∼vp (5.9)

e∼e =
1+ν

E
s∼−

ν

E
(trs∼)1∼ (5.10)

ė∼vp = ṗvp
∂ψ

∂ s∼
(5.11)

ṗvp =

(
max

(
0,

ψ(s∼)
K

))n

(5.12)

(5.13)

The decomposition in an elastic and a (visco)-plastic part is similar to the formulation of previous
chapters. However, the viscoplastic strain rate is no more a plastic multiplier but given by Norton’s
(1929) law (Eq. (5.13)). This law allows representing the viscous behavior of TA6V, even at room
temperature.

Contrary to the material behavior used for random microstructures, the von Mises yield
criterion is not used but a GTN, adapted to ductile failure, is favored (Gurson, 1977; Tvergaard
and Needleman, 1984). The yield criterion ψ is thus given by:

ψ(s∼) = σ
∗(s∼)−R(pvp) (5.14)

0 =

(
svm

σ∗(s∼)

)2

+2q1 f cosh
(

q2 tr(s∼)
2σ∗(s∼)

)
−1− (q1 f )2 (5.15)

svm =

√
3
2

s∼
dev : s∼

dev (5.16)

(5.17)

where f is the porosity, σ∗ is an implicitly defined effective stress measure and q1, q2 are two
parameters characterizing the yield surface shape. The isotropic hardening R(p) is given by

R(pvp) = R0 +R1(1− e−b1 pvp)+R2(1− e−b2 pvp) (5.18)

This double saturating exponential was already used for random cells in chapter 4. Ductile
damage is modeled by the porosity f increasing. Two damaging mechanisms are considered: void
growth and nucleation. Coalescence could also be added by accelerating damage for high porosity
values with an effective porosity (Tvergaard and Needleman, 1984), but this mechanism was not
used by Sarre (2018). To represent void growth and nucleation, the porosity f is decomposed
into a growth part and a nucleation part with prescribed evolution laws:

f = fg + fn (5.19)

ḟg = (1− f ) tr(ė∼vp) (5.20)

ḟn =
Fn

ςn
√

2π
exp
(
−
(pvp− εn)

2

2ς2
n

)
ṗvp (5.21)
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The nucleation rate is given by Chu and Needleman (1980) who suppose a Gaussian rate char-
acterized by parameters Fn (final nucleation porosity), εn (strain of maximal nucleation) and ςn

(width of the Gaussian).
The values of the parameters for the fusion zone and the base metal are given in Table 5.3.

In the nucleation behavior component, the parameter f0, not already introduced, corresponds to
the initial porosity. For the fusion zone, Sarre (2018) identified f0 = 4.5 ·10−4 on heat-treated
base metal, but used a value ten times higher in simulations, on the account of CT-images. As
we intend to explicitly mesh weld pores, their porosity should not be included in f0: the value
f0 = 4.5 ·10−4 is therefore used. The porosity of the unmeshed defects (especially in the meshes
with 0 and 10 defects) could be accounted for in f0, but for simplicity, the value f0 = 4.5 ·10−4 is
kept.

Table 5.3: Parameters defining the constitutive laws of the base metal and the fusion zone. Taken
from Sarre (2018)

Behavior Parameter Unit Base metal Fusion zone
Elasticity E GPa 115 115

ν 0.3 0.3
Viscosity K MPa /s1/n 310 310

n 15 12
R0 MPa 700 753
R1 MPa 285 222

Plasticity b1 10 290
R2 MPa 0 285
b2 / 10
f0 10−5 4.5 ·10−4

Nucleation Fn 0.35 0.20
ςn 0.10 0.038
εn 0.275 0.107

Void growth q1 1.1 1
q2 1.08 1.13

The two constitutive laws are assigned to the elements of the relevant zones of the mesh in
Fig. 5.26. As in the earlier chapters, quadratic elements with reduced integration are used. An
implicit Euler method is used for the local integration of the constitutive laws.

Boundary conditions

Finally, boundary conditions are applied on both ends of the samples. A schematic representation
of the specimen and its boundary conditions is shown in Fig. 5.26. A displacement is applied
on the right side. Due to viscous effects, the displacement can not be chosen arbitrarily, and the
same value as in the experiment is therefore imposed. In order to model the low stiffness of the
tensile testing machine, the left side of the specimen is linked to a linear spring with a fixed end.
The stiffness of this spring can be determined as follows.
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As mentioned in the subsection 5.4.1, simulating the specimen with a defect-free mesh and
a fully linearly elastic behavior showed that the specimen has a stiffness Ksp = 2.3 · 107 N/m
whereas an apparent stiffness of Kapp = 1.5 ·107 N/m was found from force-displacement curves.
As the apparent stiffness can be modeled as the combination in series of the specimen stiffness
and machine stiffness, the latter can be computed as:

KBulky =
KappKsp

Ksp−Kapp
= 1.6 ·106 N/m (5.22)

As the low machine stiffness can lead to instabilities, some simulations were also performed
by fixing the left side, instead of using a spring. In this case, the displacement rate was reduced
so that the specimen undergoes the same strain rate as previously, at least during the elastic phase.
The definition of the apparent stiffness allows determining elongation rate of the specimen from
the total displacement rate (machine and specimen):

L̇totKapp = L̇spKsp =⇒ L̇sp =
Kapp

Ksp
L̇tot (5.23)

k
u

Figure 5.26: Mesh of the specimen with its boundary conditions. The fusion zone (in red) and
the base metal (in white) are shown in different colors.

5.5.2 Macroscopic comparison between simulation and experiment

The finite element simulations are first analyzed from the purely macroscopic point of view, by
focusing on the overall stress-strain response.

The force through the specimen (or equivalently a measure of conventional stress) can be
directly extracted from the simulations, by computing the nodal forces on the nodes on one side of
the specimen. In the simulation, the machine displacement can be represented by the displacement
of the nodes on one side of the specimen, the other side being fixed or held by the spring. However
the strain value corresponding to the strain measure given by ICP is less straightforward, as
it is not simply the average strain in the visible area. From the initial tomography image of
a specimen, the position of the defects were extracted and were located in the corresponding
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mesh of the specimen. Only the barycenters of the defects were used; they did not necessarily
correspond to nodes, but their displacement was computed by interpolation within elements.
From the evolution of the point cloud of defect barycenters, an ICP process was performed. As
the association between defects over different increments is already known, only the optimization
of the affine transformation was actually necessary. This gave a strain value directly comparable
to the experimental results.

Fig. 5.27 shows the comparison between the experimental results and the simulation of the
EPF4 test. The simulation was done with the defect-free mesh and the spring modeling the
machine stiffness. A good agreement is found for the strain stress curve, although the final stress
is slightly lower in the simulation. The final failure of the specimen could not be simulated, as
the force drops suddenly (visible in the force-displacement curve). The simulation was therefore
stopped when the Newton algorithm required too small timesteps for convergence. However
the last simulated point and the last experimental images are found for similar strain values, so
the simulation appears to predict reasonably well the onset of failure. However, simulated and
experimental force- machine displacement curves do not agree as well. This might be due to the
difficulty to simulate machine play in the initial phase and X-ray-induced force serrations (see
subsection 5.4.1).
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Figure 5.27: Comparison of experimental and simulation results for the EPF4 specimen. The
void-free mesh with a spring is used for the simulation.

This sudden force drop for a given machine displacement is due to the low machine stiffness.
When necking and damage start appearing in the specimen, the force in the tensile line decreases,
so the spring modeling the machine starts shrinking even if the total displacement is constant.
The specimen therefore continues to elongate, worsening its damage. This is the source of an
instability leading to a sudden catastrophic failure of the specimen.

This instability is demonstrated by Fig. 5.28 which compares total displacement and strain
within the specimen. The latter is seen to brutally accelerate. Only the viscous effects temper this
acceleration, as a higher strain rate results in a higher viscous stress which helps reduce the force
drop. The role of the machine stiffness in plastic instabilities was for instance studied by Petit
et al. (2018).



156 CHAPTER 5. APPLICATION TO WELD DEFECTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Machine displacement (mm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

zz
 

Figure 5.28: Acceleration of the strain increase in the specimen, due to the machine stiffness-
induced instability

The behavior of the meshes with 0, 10 and 30 defects is compared in Fig. 5.29, in simulations
with and without machine stiffness. The strain stress curves coincide almost perfectly until
the failure. Although simulations representing defects show an earlier failure, as expected, the
difference in strain values is negligible. Therefore explicitly meshing defects does not appear
necessary to represent the macroscopic mechanical behavior.
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Figure 5.29: Comparison of the response of three meshes of the EPF4 specimen: with no defects,
with the 10 or 30 largest defects explicitly meshed. Responses are almost indistinguishable.

5.5.3 Local comparison: evolution of defects and failure surface

The macroscopic mechanical behavior was found to be very similar between the different meshes
of the specimen EPF4, even for the one not representing explicitly defects. The comparison can
also be made from a more local point of view, by studying the evolution of defects, which is
known from the CT-images.

Firstly, the evolution of the morphology of the four largest defects in the simulation with 30
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Table 5.4: Some antidivergences useful for computing volume (first row), barycenter (second
row) and inertia matrix (last rows)

h H
1 (x,y,z)/3
x (x2,0,0)/2

y2 + z2 (x(y2 + z2),0,0)
−xy −(x2y,y2x,0)/4

defects is shown in Fig. 5.30. These four defects correspond to those labeled #1 to #4 in Fig. 5.19
and visible in Fig. 5.25. Their evolution is qualitatively very similar to the experimental one,
shown in Fig. 5.19. The meshes in the simulation are simplified when compared to those from
the CT-images, according to the procedure described in Fig. 5.23. More generally, the whole
specimen mesh and its defects (Fig. 5.17b) can be compared to the last CT-image before failure:
a good qualitative agreement is reached.

To study the evolution of defect morphology from a more quantitative point of view, the
volume and the morphology indicators (λ1 and λ2) of defects can be extracted from simulations
and compared to experimental results. Unlike CT-images where defects are represented by voxels,
the surface mesh of each defect is known, and the displacement of each node is computed during
the simulation. Volume information such as volume defect can then be extracted from the surface
mesh by the divergence theorem. If h is any scalar field defined in the defect, and H is a vector
field satisfying divH = h, the following relation holds:∫

Vde f ect

hdV =
∫

Sde f ect

H ·dS ' ∑
tri∈Sde f ect

StriH (x̄ tri) ·n tri (5.24)

where the surface integral is evaluated by summing the contribution of each triangular element
of barycenter x̄ tri, area Stri and outwards-pointing normal n tri. The Table 5.4 lists some fields h
with a possible "antidivergence" field H . With these functions, the volume, the barycenter and
the inertia of each defect can be computed from Eq. (5.1) and (5.4).

The evolution of the volume and morphology indicators of the four largest defects is shown
in Fig. 5.32. Results from the simulations with 10 or 30 defects are compared to those from
experimental CT-images. For the defects #1, #2 and #4, the evolution of the volume and the shape
is accurately described in the simulation. However, the defect #3 appears to stop evolving for
strain values εzz > 7%, contrary to what is observed in CT-images. As will be shown below, the
difference is due to the location of defect #3. Moreover the difference between the simulation
with 10 and 30 defects is not significant, so meshing more defects does not help representing
more accurately the deformation of the larger voids.

5.5.4 Fracture surfaces and ductile failure criteria

From the simulations, the fracture surfaces can also be extracted. The Gurson porosity f is the
natural indicator in the simulation to detect the position of the fracture surface. However another
ductile damage criterion can be constructed from the simulations on random microstructures in
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(a) Defect #1

(b) Defect #2

(c) Defect #3

(d) Defect #4

Figure 5.30: Evolution of the meshes of the four largest defects in the simulation of specimen
EPF4, with 30 meshed defects and machine stiffness. Each row corresponds to one defect. The
different columns correspond to strain levels of approximately 0% (initial image), 1.5%, 6.5%,
11.5% and 14.4% (shortly before failure).
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Figure 5.31: Mesh of the specimen with defects at the end of the simulation. A good agreement
in the shape of defects is found when compared to Fig. 5.18b.

chapter 4. Those simulations allowed obtaining a localization surface E∗loc(T,L), which can be
converted to ductile failure indicator. This indicator is here implemented and its use is illustrated
on the simulations of the EPF4 specimen.

As machine stiffness destabilizes simulations and hinders the accurate representation of
ductile failure, simulations without springs are used from now on to study fracture surfaces. The
presence of a spring may influence macroscopic quantities such as force through the specimen,
but is not supposed to affect the location of failure. In Fig. 5.33, the fracture zone is defined by
the elements where a local damage indicator is higher than some arbitrary threshold. For the
moment the damage indicator is the total porosity f coming from Gurson formulation (Eq. (5.16)),
which accounts for void growth and void nucleation. The results corresponds to strain values of
εzz ∼ 14%, corresponding to the beginning of the final softening of the specimen (see Fig. 5.29b).
For the simulation without meshed defects, the fracture zone is simply orthogonal to the tensile
axis, in the central notched zone of the specimen. For the specimen with 30 defects, the fracture
zone is however more complex, as it tries and joins defects. It was not possible to set the threshold
on f in such a way that the fracture surface be thin and completely cross the section of the
specimen, so a value of f ≥ 0.2 was chosen. Both defects #1 and #2 (the largest of the specimen)
appear to participate in this failure zone, so that this zone stays mostly orthogonal to the tensile
axis. The true fracture surface is clearer in Fig. 5.33c, which focuses on the equivalent plastic
strain (not a damage indicator): The failure surface goes through defect #1 and is therefore clearly
oblique, rather than orthogonal to the tensile axis. Note that the defect #3 is excluded from the
zone of maximum damage: after the onset of necking, it cannot deform further, in accordance
with the results from Fig. 5.31. In the previous fracture surfaces, the value of f = 1, theoretically
signifying the failure of the element, is never reached. This late failure is a known feature of the
above Gurson criterion, therefore the coalescence is generally modeled with an effective porosity
(Tvergaard and Needleman, 1984).

Another damage indicator can be created by adapting the response surface determined in
chapter 4 from simulations on random microstructures. Defaisse et al. (2018) describe the
procedure to convert a failure strain response surface in an uncoupled failure criterion. The
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Figure 5.32: Comparison of the evolution of the volume (first column) and morphology indicators
(second and third columns) in the simulation and in the EPF4 experiment Each row corresponds
to one of the four largest defects. All results are normalized by the initial value.
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(a) No defects, f ≥ 0.2

(b) 30 defects, f ≥ 0.2

(c) 30 defects, p≥ 0.3

Figure 5.33: Fracture zones in the simulations. The elements with a total porosity f ≥ 0.2 or
equivalent plastic strain p≥ 0.3 are highlighted. The outline of the mesh and the defects is shown
as a wireframe
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damage indicator is defined by integrating the inverse of the failure strain along the loading path:

D =
∫ 1

E∗loc(T,L)
dE (5.25)

In accordance with the previous chapter, the strain measure E is computed by projecting F∼ −1∼
along the first stress principal direction (whereas Defaisse et al. (2018) used for instance a von
Mises equivalent strain). The element fails when it reaches the value D = 1. If the loading path
is proportional, the denominator is constant so the value D = 1 is reached when E = E∗loc. The
elements are not eroded away when the value D = 1 is reached, so values D > 1 can be attained,
although they correspond to broken elements.

The indicator D is an uncoupled failure criterion inasmuch as it is completely separate
from plastic deformation and can thus be computed by post-processing after the finite element
simulation. On the contrary the Gurson criterion in (5.16) couples plasticity and damage since
the porosity f directly affects the mechanical behavior of the material, and its evolution needs to
be computed as part of the simulation. The damage criterion of Eq. (5.25) was implemented in
Z-set with the simplified expression of the localization response surface (see section 4.D).

The metamodel E∗loc(T,L) created in previous chapters represents the localization taking
place in random microstructures with initial porosity f0 = 6%. Using this response surface as
a model for the damage around weld pores implies several hypotheses, which do not strictly
apply, but the application of this model can still provide insights on ductile failure mechanisms.
Firstly, the weld pores are not randomly dispersed, and there is no clear separation of scales
between the weld pores and the geometry of the specimen to define a representative volume
element. Secondly, the initial porosity in the weld joint is not 6 %, but lower. However, the failure
strain in random microstructures increases with a lower initial porosity, so failure strain values
for f0 = 6% can act as lower bounds for the real value. Finally the material used in chapter 4 for
the matrix of random microstructures used the same elasticity and plasticity behavior as TA6V
in a weld joint, but viscous effects and damage, either by nucleation or void growth, were not
taken into account. The viscous effects should not be critical in the ductile failure behavior but
the new failure criterion is unable to represent damage by nucleation, and partly able to represent
damage by void growth: It represents the growth of initially present voids but not those newly
nucleated. The new failure criterion therefore represents damage mechanisms complementary
to the Gurson damage identified by Sarre (2018), and the two failure criteria can be used in
association. The main advantages of the failure criterion derived from random cell studies over
the Gurson criterion are its ability to represent the interaction between voids, and its accounting
for the effect of the Lode parameter.

The simulation of the specimen EPF4 with 30 voids and without machine stiffness was
post-processed and the damage indicator D was computed. This indicator is only defined in the
fusion zone, as the damage criterion was developed to represent unmeshed weld pores. In the
simulation, the stress state (see Fig. 5.34) shows strong local variations near defects, allowing to
test the effect of T and L on the ductile damage criterion.

The fracture zone corresponding to elements reaching D > 1 is shown in for the strain value
εzz ∼ 14%. As in Fig. 5.33, this corresponds to the failure of the specimen according to the
macroscopic softening. At approximately the same time, the failure zone with D > 1 starts
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(a) Stress triaxiality T (b) Lode parameter L

Figure 5.34: Local variations of the stress state in the specimen during ductile failure. Rep-
resentation in a plane cutting vertically the specimen in half. For the Lode parameter, due to
implementation choices, the opposite of our convention is used in the definition of L: uniaxial
tension corresponds here to L = 1.

crossing completely through the thickness of the specimen, giving another sign of the fracture of
the specimen. The fracture surface is finer and clearer than in Fig. 5.33 which used the Gurson
porosity. Moreover this new fracture surface agrees with the one determined from equivalent
plastic strain (Fig. 5.33c).

With the more clearly defined surface thanks to the new damage criterion, the simulated
fracture surface can be compared to the experimental one (Fig. 5.36). However the simulation
indicates a different fracture surface than the experimental results. Firstly, the macrophotography
of the specimen shows that, due to ductile fracture, the experimental surface is wedge-shaped
whereas the simulation finds a mostly flat surface. Moreover, both fracture surfaces contain a large
weld pore, which is likely responsible for failure. In the simulation, this large pore corresponds
to the defect #2. However in the experiment the defect #1 is more likely to have caused failure.
By comparing the SEM micrography and the macrophotography (their orientation by the y-axis
arrow), the central valley of the fracture surface descends from the large defect #b to the defect
#c, whereas the simulation indicates that the surface goes up from the large defect #2 to the
defect #a. This discrepancy makes it unlikely for the defect #2 to be responsible for failure. The
experiment and the simulation both indicated that one of the largest pores initiated failure but
the simulation did not replicate the correct fracture mechanism. The incorrect surface may be
due to too large finite elements far from the defects, which do not allow the development of the
correct mechanism during the simulation. Better results may be obtained with finer and more
homogeneous meshes.

5.6 Conclusion

Tensile tests were performed on TA6V specimens containing a weld joint. In such weld joints,
the fusion zone has a different mechanical behavior than the base metal, due to microstructural
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Figure 5.35: Fracture zones in the simulations according to the damage criterion. The elements
reaching a damage D = 1 are highlighted

(a) Two different views of the simulated fracture surface. Some elements are cut so as to show more clearly
the defects participating in fracture.

(b) SEM micrography and lateral macrophotography of the fracture surface

Figure 5.36: Comparison of the experimental and simulated fracture surfaces
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changes and weld defects. With X-ray tomography, the evolution of defects was monitored
throughout the tensile test. The experiments were finally simulated with Sarre’s (2018) model.
The main results follow.

• The specimens failed by ductile fracture and a significant ductility was found for some
specimens (with longitudinal welds). A fusion zone rich in weld pores is visible on the
fracture surfaces.

• Weld defects were detected and followed throughout the tensile test. Defects are initially
mostly spherical, and elongate along the tensile axis during the experiment. They also
increase moderately in volume.

• The defects identified in CT-images can be meshed and embedded in finite element simula-
tions of the experiment. Sarre’s model was found satisfactory in reproducing the macro-
scopic mechanical behavior, even without explicitly considering the defects. Meshing the
defects is more useful when studying local failure mechanisms.

• A good agreement was also reached between the observed and simulated evolutions of
defect morphology, except that the experimental necking band may be wider than the
simulated one.

• The localization strain response surface developed in earlier chapters was converted to a
ductile failure criterion, and this criterion was implemented as a post-processing operation
for finite element simulations. This criterion can be used in synergy with Sarre’s model
of coupled damage to analyze ductile failure. It aims to represent ductile behavior of the
weld joint around weld pores and take into account the effect of the Lode parameter. Using
this new damage criterion allowed determining more precisely the fracture surface in the
simulations.

The above results should be confirmed on other experiments, as only one specimen was up to
now simulated. Moreover, further simulations with finer and more homogeneous meshes should
be performed to try and replicate the experimental fracture surface.

The experimental results can also be extended in several ways. Firstly, due to the limited
ductility and the unforeseen presence of the recess, test on specimens with transverse weld joints
were difficult to interpret New experiments taking into account the above issues may help in
better comparing the mechanical behaviors of the base metal and the fusion zone. Moreover,
the weld joints appear to have low influence on the mechanical behavior due to the low overall
porosity. The ductile failure behavior of weld joints and the domain on which pores should be
explicitly considered could be better studying by varying weld joint porosity, even if it means
artificially introducing defects. Finally the ductile damage criterion constructed from response
surfaces on random microstructures was here applied only to (notched) tensile tests. It should be
tested on more general loading conditions and especially in shear conditions, so as to assess the
influence of the Lode parameter.
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Chapter 6

Conclusions and prospects

6.1 Conclusions

This work focused on the ductile behavior of materials with randomly dispersed voids, especially
in the context of pores within weld joints. The original objective was to better understand the
influence of preexisting voids on ductile fracture. Moreover it aimed to provide engineers with
a method to efficiently use non destructive control information so as to predict the mechanical
resistance under monotonic loading.

To this aim, the study focused on better understanding ductile fracture in the model microme-
chanical setting of a cell with a population of randomly dispersed voids, which is able to capture
the key mechanisms of void interaction during failure. From finite element simulations on such
cells, a ductile fracture criterion was also built by metamodelling. Ductile fracture was also
studied experimentally on real weld joints, using tomography to observe the deformation of pores
in situ. Simulating these experiments at the scale of the specimen allowed to make the connection
with the micromechanical cell simulations.

6.1.1 Computational homogenization of random microstructures

A better understanding of the influence of the defect population on ductile behavior was reached
by a micromechanical computational homogenization approach. Microstructures consisting of a
cubic elastoplastic matrix with randomly distributed voids were created, and these microstructures
were simulated by finite elements up to ductile fracture. Various loading conditions were
investigated; they were characterized by proportional loading with constant stress triaxiality and
Lode parameter and any loading orientation. This work thus provides the first ductile fracture
simulations of random microstructures, subjected to any prescribed constant (T,L) loading, and
especially accounts for the effect of loading orientation and cell anisotropy.

The behavior of unit cells (with a single void, commonly used in similar studies) and random
cells was compared. For both types of cells, failure was found in extension mode, in shear mode,
or a combination of these two modes. Strain localization bands are formed during failure, and
complex patterns are obtained in random cells. Whereas the dependence of failure strain on stress
triaxiality was similar for unit and random cells, their behavior with respect to the Lode parameter
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was found to be quite different: Random cells are more likely to fail early for shear-dominated
conditions. This difference is due to the random cells’ greater freedom in expressing shear
localization. Using unit cells therefore restricts this freedom and oversimplifies the localization
mechanisms and possible void interactions.

Two different criteria allowed to detect the macroscopic failure of the cell, and were compared.
A new coalescence criterion was constructed from a simple geometric interpretation of the form
of the macroscopic gradient deformation rate. A localization criterion, derived from Rice’s
mathematical analysis of ellipticity loss, was reimplemented and used for the first time to study
random microstructures subjected to arbitrary loading. This macroscopic localization criterion
was found more suited to complex loading conditions and also allowed to determine quantitatively
the localization mode: shear, extension or combined. It should thus be preferred in future studies.

The effect of loading orientation with respect to the frame naturally associated with the cubic
cell was also carefully studied. A strong anisotropy was found for localization strain, whereas
ductile behavior should only depend on stress invariants for an isotropic material. This anisotropy
is directly related to the boundary conditions and the cell’s symmetry. Moreover the unit cell
displays higher anisotropy than random cells. In order to obtain an isotropic response, the minimal
failure strain should be considered. Only considering diagonal loading then results in a strong
overestimation of failure strain.

The statistical dispersion arising from realizations of random microstructures was also eval-
uated. This dispersion is significant, and remains high even with increasing defect population
size.

6.1.2 Multifidelity metamodel for ductile failure

Simulations on random microstructures do not only give qualitative insight on ductile fracture,
they can also form the basis of a ductile damage criterion. Such a criterion can be constructed
from the response surface of localization strain depending on loading conditions. Damage can
then be computed by post processing finite element simulation results, and integrating elementary
damage increases throughout the loading path.

An accurate description of the response surface for random microstructures is then necessary.
A Gaussian process regression is used to construct the metamodel from simulations at various
loading conditions. However due to the high dimensionality of the problem (5D due to loading
orientation), and the high computational cost of simulations on random microstructures, a
multifidelity approach was developed to accelerate the construction of the response surface. This
multifidelity approach takes advantage of the information brought by numerous simulations on
the unit cell which acts as a coarse surrogate, easier to simulate but unable to represent properly
void interaction. Moreover this multifidelity approach is able to negate the anisotropy effect of
cell simulations and obtain an isotropic metamodel thanks to a two-stage strategy. Minimum
failure strains are extracted from a 5D response surface, then the isotropic model is constructed
by cokriging the resulting minimum failure strains for the unit and random cells.

Several information transfer strategies were investigated. Transferring parameters trained
on numerous unit cell simulations was found more efficient than using a linear model of core-
gionalization (or cokriging). The predictions of the metamodel were compared to test random
cell simulations, and a better agreement was found with the multifidelity approach than with a
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metamodel only using random cell training examples. Finally methods for adaptive design of
experiment were investigated. Whereas general trends were more quickly recovered than with
naive sampling, the adaptive design of experiment did not allow converging faster to the absolute
strain localization levels.

6.1.3 Experimental investigation of ductile fracture in weld joints

Whereas the previous results focused on simulated artificial cells, the ductile behavior of real weld
joints was also investigated with an experimental approach. In-situ tensile tests were performed on
TA6V welded specimens. The defect population and its evolution were observed with synchrotron
tomography. These experiments constitute the first in-situ observation of the pore deformation in
TA6V weld joints.

The macroscopic mechanical behavior and the analysis of fracture surfaces clearly indicated
ductile fracture. On successive tomography images, defects were seen to increase in volume and
elongate along the tensile axis.

The experiments were also simulated by finite elements. The largest defects were explicitly
considered in the specimen meshes. The mechanical behavior laws for the fusion zone and
the base metal were given by Sarre’s (2018) previously identified model. These are the first
micromechanically-informed simulations of weld joints allowing the prediction of specific
specimens’ failure.

The experimental macroscopic stress-strain response was well reproduced by the experiments.
Explicitly considering defects had little influence on this macroscopic response. A good agreement
between experiment and simulation was also reached for the more local evolution of defect
morphology. The uncoupled ductile damage model derived from simulations on random cells was
implemented and helped analyze the simulation of tensile experiments. It can represent different
damage mechanisms than Sarre’s (2018) coupled damage model. However these results should be
verified on more specimens, and finer meshes could be used to better replicate the experimental
fracture surface.

6.2 Innovative general-purpose numerical tools developed during
this work

Over the course of the study, several numerical tools were developed and implemented, and might
be of interest for future research.

For the computational homogenization of random microstructures, a procedure to create and
mesh a population of randomly dispersed voids in a matrix was developed. Moreover, Ling
et al.’s (2016)’s strategy for constant stress triaxiality and Lode parameter loading conditions was
extended to allow arbitrary loading orientations. Considering sufficiently numerous orientations
is necessary to account for the anisotropy induced by the shape of the simulation cell. Finally,
Rice’s criterion for macroscopic strain localization analysis was implemented in the Zset software.
This criterion, which considers the macroscopic tangent operator, can be used to detect ellipticity
loss at the cell-level, and also to stop simulations early on. It can be used for any cell simulation,
and not necessarily for ductile fracture of voided cells.
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A Gaussian Process Regression framework was used to obtain a metamodel of failure strain
for random cell simulations. The kriging methodology and the multifidelity approach are general
and may be used in many contexts. In this work, an original strategy was proposed to obtain a
metamodel of a minimum quantity over some input dimensions (whereas kriging is generally
used to interpolate directly between examples). Furthermore, strategies for adaptive designs of
experience were implemented.

Finally a workflow was developed for the analysis of tensile tests observed with X-ray tomog-
raphy. CT-images were filtered then segmented in order to identify voids. The correspondence
between defect populations on consecutive images was recovered with an image registration
algorithm. Moreover, defects were meshed and integrated in specimen meshes for finite ele-
ment simulations. Methods to quantify the evolution of defect morphology in experiments and
simulations were also implemented.

6.3 Prospects

Although this work provided some insights on the influence of voids in ductile fracture and
especially in weld joints, the results may be extended in many ways.

6.3.1 Extension of computational homogenization to other situations

Other void populations The computational homogenization considered a population of identi-
cal spheres. A large diversity of population characteristics could be also studied. Several defect
sizes and ellipsoidal voids (the orientation becomes important) could be used for example, as
was done by Vincent, Suquet, et al. (2014), Khdir et al. (2014), and Khdir et al. (2015) for yield
surfaces. The behavior of clusters of pores is also of interest. Micromechanical analyses could
also be performed on realistic defect populations, observed by tomography images.

Larger void populations Larger defect populations should be investigated in cell simulations,
so as to limit dispersion, and ascertain whether a limit behavior with negligible dispersion can be
obtained in the infinite defect population limit. However, simulations with large defect populations
suffer from prohibitive computational costs. New computational methods should therefore be
implemented. Finite element simulations could be parallelized, but periodic boundary conditions
can be an obstacle. Using Fast Fourier Transform methods, as Hure (2021) did, may provide an
alternative path for large computations, but the computation of the macroscopic tangent operator
for strain localization analysis is not directly possible.

Other material behaviors The macroscopic strain localization analysis can be used to investi-
gate different matrix material constitutive laws. For instance, a yield criterion whose surface hows
vertices, such as Tresca’s (whereas the von Mises criterion has a smooth surface), may be more
prone to localization (Needleman and Tvergaard, 1992). Moreover, the matrix could be sensitive
to damage, but the accurate description of the behavior past the local (but not macroscopic)
ellipticity loss may require regularization. Furthermore, crystal plasticity could be used (as was
done by Guo, Ling, Li, et al. (2022)), especially when considering the large grain size in weld
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joints. However this would require a fine distinction between crystal plasticity and simulation
anisotropy. Finally, viscoplastic behaviors should also be investigated but Rice’s localization
analysis is not directly applicable for such rate-dependent materials.

6.3.2 Ductile failure models based on micromechanical simulations

Truly isotropic cells Periodic boundary conditions and cubic cells entail anisotropy in failure
results. This anisotropy should be considered, lest the cell’s resistance be overestimated. It can be
reduced but not eliminated with larger defect populations. The present work proposed to consider
all loading orientations, but this is computationally expensive and hinders the development of
models. Simulation cells or boundary conditions inducing lower anisotropy should be developed.
Porous balls were tried in this work with limited results, but the search could continue on other
cell types. These cells should be highly symmetric and as close as possible to the sphere to limit
anisotropy, while still allowing identification of opposite faces. Although still of cubic symmetry,
Kelvin’s space-filling tetrakaidecahedron (or truncated octahedron) could for instance be tried
(Jang et al., 2010).

Enriched uncoupled damage model An uncoupled ductile damage model was obtained from
the localization results of cell simulations. Only the localization strain values were used. A richer
model could integrate, still with a Gaussian Process Regression, not only the failure strain but also
the failure mode, so as to provide several failure mechanisms. Moreover, the statistical dispersion
originating from multiple realizations of a random microstructure could also be modeled, so as to
provide a probabilistic failure criterion.

Full failure model from random microstructures The proposed uncoupled failure model
focuses only on the cell’s final failure, and does not represent the full behavior of the cell before
failure. Creating a ductile fracture model coupling plasticity and damage, so as to reproduce
exactly the macroscopic behavior of cells, remains an open question. Existing yield criteria,
such as Keralavarma et al.’s (2020), which also interprets failure as strain localization, could be
compared to random microstructure simulations and fitted. However the ductile damage model
could also be constructed in a more data-driven way, as Guo, Ling, Li, et al. (2022) did with
neural networks for unit cell simulations with crystal plasticity.

6.3.3 Experimental study of ductile fracture

More diverse experimental loading conditions The experiments showed that Sarre’s (2018)
model was able to reproduce correctly the behavior of TA6V in ductile fracture. However this
model was identified and tested on predominantly tensile loading conditions, and may not be
able to represent behavior in shear loading conditions. Yet, for the simulations on random
microstructures, the Lode parameter had a strong influence. The behavior of TA6V both as the
base metal, and in the fusion zone could therefore be experimentally investigated for a larger
diversity of loading conditions.
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Using a more ductile material Thanks to the tensile tests with tomography imaging, the
evolution of defect morphology was observed. However, the instant of failure could not be
captured, and defects had a limited influence on the ductile fracture behavior. If the understanding
of the influence of defects is prioritized, rather than the realistic description of TA6V weld joints,
other experiments could be performed to better observe ductile fracture. For instance, larger pores
with higher impact could be obtained by artificially introducing defects. Moreover, fracture could
be more easily investigated with more ductile metals, such as cast iron (Buljac, Shakoor, et al.,
2017).

6.3.4 Prediction of mechanical performance and justification of exemptions

Transition between homogenized model and explicit meshing In the proposed approach,
the largest defects were explicitly meshed, whereas the smallest were only represented by the
homogenized behavior. Further investigations should be performed to formalize the threshold
between the two representations. For instance, explicit meshed defects in a structure could be
enlarged until the macroscopic response differs significantly from the homogeneous material’s
response. This distinction is of practical interest as defects smaller than this threshold can be
more easily ignored, whereas larger defects require specific attention from engineers.

Defect criticality indicator Due to the limited influence of the voids in the tensile tests, the
choice of the voids to explicitly represent in simulations had little importance. The larger voids
were thus meshed for simplicity, but meshing the more dangerous defects would be more sensible.
Determining the criticality of a given defect for ductile damage is however not straightforward,
for it can be influenced by its shape, or by its neighborhood of defects (especially within clusters).
Criticality could for instance be quantified by a cell simulation of a defect and its neighborhood
(as for the random microstructures). Performing such simulations for each defect would however
be difficult in a production setting. A machine learning approach could therefore be developed to
try and predict the criticality of a cluster of defects. Krokos et al.’s (2022) methodology, initially
developed for maximum von Mises stress, could for instance be adapted.

Use of radiography In this work, defects were assumed to be identified and located in space
thanks to X-ray tomography. However, in practice, non-destructive controls often resort to radiog-
raphy only, which identifies the largest defects but only provides two-dimensional information
on their location. The preceding methodology can be used provided that the three-dimensional
position of defects is estimated. As a model of the defect population was constructed by Lacourt
(2019), possible locations of the defect can be estimated by inverse modelling: among all defect
populations yielding the same radiography, the one agreeing best with the generative model is
chosen.
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RÉSUMÉ

Lors d’un assemblage par soudage, des bulles de gaz peuvent être piégées au sein du cordon de soudure. Ces défauts
réduisent la résistance des pièces à la rupture ductile, mais peuvent être détectés par des moyens de contrôle non
destructifs comme la tomographie X. Cependant l’utilisation directe des défauts dans une simulation mènerait à des temps
de calcul prohibitifs. L’objectif de l’étude est d’analyser l’influence des pores sur la rupture ductile de pièces soudées, et de
proposer une méthode permettant de prendre en compte de façon simplifiée les images de tomographies afin de prédire
efficacement et précisément la résistance en rupture ductile.
L’influence sur la rupture ductile est étudiée par des simulations micromécaniques sur des cellules élastoplastiques
contenant une distribution aléatoire de pores, permettant de prendre en compte l’interaction entre défauts. La détection de
la rupture à l’échelle de la cellule par coalescence ou localisation, l’influence de l’orientation du chargement et la dispersion
pour différentes populations sont en particulier étudiées.
A partir des simulations sur microstructures aléatoires, la dépendance de la déformation à localisation aux conditions de
chargement peut être représentée par un métamodèle obtenu par krigeage. Une approche multifidélité est utilisée pour
combiner les résultats de cellules unitaires et aléatoires.
Enfin, la rupture ductile est étudiée expérimentalement par des essais observés par tomographie synchrotron, permettant
de suivre l’évolution des défauts. Les résultats expérimentaux sont comparés à la simulation, à la fois au niveau du
comportement macroscopique, et à celui de la déformation locale des défauts.

MOTS CLÉS

Rupture ductile, Homogénéisation numérique, Localisation de la déformation, Métamodèle, Tomographie X

ABSTRACT

During welding, gas bubbles can be trapped within the weld joint. These defects reduce the resistance to ductile fracture,
but can be detected by non-destructive controls such as X-ray tomography. However, the direct use of defects in a
simulation would lead to prohibitive computation times. The objective of the study is to analyze the influence of pores on
the ductile fracture of welded parts, and to propose a method to take into account the tomography images in a simplified
way so as to predict efficiently and precisely the resistance in ductile fracture.
The influence on ductile fracture is studied by micromechanical simulations on elastoplastic cells containing a random
distribution of pores, allowing to represent defect interaction. The study focuses on the detection of fracture at the cell
scale either by coalescence or localization, the influence of the loading orientation and the dispersion for different void
populations.
From simulations on random microstructures, the dependence of the localization strain on the loading conditions can be
represented by a metamodel obtained by kriging. A multi-fidelity approach is used to combine results from unit and random
cells.
Finally, ductile fracture is studied experimentally by means of tests observed by synchrotron tomography, allowing to follow
the evolution of defects. The experimental results are compared to the simulation, both at the level of macroscopic behavior,
and at the local level of the deformation of defects.
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