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Abstract

English

With the continually improving computational capacity of computers, machine learning
methods have provided novel solutions to problems in a variety of fields. In particular,
machine learning has been extensively used in the last decade in the field of computational
biochemistry and drug discovery in virtually all stages of this field, such as defining new
molecules, determining important sites in targeted proteins, designing adequate forcefields
based on experimental results, or improving the efficiency of sampling molecular conforma-
tions of a given system. This thesis focuses on the latter task of using machine learning
methods for enhanced sampling. More precisely, free energy biasing methods have proven
to be powerful tools to accelerate the simulation of important conformational changes of
molecules by modifying the sampling measure. However, most of these methods rely on
the prior knowledge of low-dimensional slow degrees of freedom, i.e. collective variables.
Alternatively, such low dimensional mappings can be identified using machine learning and
dimensionality reduction algorithms. In addition to being used to accelerate sampling, the
learned collective variables can also help acquire valuable insight into the studied system,
namely by facilitating the visualization of the different states of the system, as well as its
free energy landscape. In this work, important notions and definitions of molecular dynam-
ics are first presented before reviewing state of the art machine learning algorithms which
were devised or applied in the recent years for automatic collective variable discovery and
enhanced sampling. Then, the method developed during this thesis, coined ”free energy
biasing and machine learning with autoencoders” (FEBILAE), is introduced. This method
uses an iterative scheme to alternately generate new simulations and learn collective vari-
ables from these simulations using autoencoders. Finally, we present the application of
machine learning methods to a real system of interest. Here, autoencoders are used to learn
collective variables to perform biased simulations of the heat shock 90 (HSP90) chaperone
protein.

Francais

Avec l’amélioration continue de la capacité de calcul des ordinateurs, les méthodes d’apprentissage
automatique ont permis le développement de nouvelles solutions aux problèmes dans divers
domaines. En particulier, l’apprentissage automatique a été largement utilisé au cours de
la dernière décennie dans le domaine de la biochimie computationnelle et de la découverte et
développement de nouveaux médicaments. Cela inclut l’application de méthodes d’apprentissage
automatique pour la définition de nouvelles molécules, la détermination de sites impor-
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tants dans les protéines ciblées, la conception de champs de force adéquats fondés sur
des résultats expérimentaux ou encore l’amélioration de l’efficacité de l’échantillonnage
des conformations moléculaires d’un système donné. Cette thèse de doctorat se concen-
tre sur la dernière tâche consistant à utiliser des méthodes d’apprentissage automatique
pour améliorer l’échantillonnage en dynamique moléculaire. En effet, les simulations de dy-
namique moléculaire se sont avérées être un outil très utile en complément des expériences
en laboratoire. Malgré leur large utilisation pour capturer les phénomènes rapides, il existe
encore de nombreux cas où les échelles de temps accessibles aux simulations de dynamique
moléculaire sont bien plus petites que les échelles de temps nécessaires pour l’observation des
changements conformationnels importants du système, en raison de la présence de barrières
hautes dans le profil énergétique. Les méthodes de biaisage par l’énergie libre se sont avérées
être des outils puissants pour accélérer l’observation de tels changements en modifiant la
mesure d’échantillonnage. Cependant, la plupart de ces méthodes s’appuient sur la con-
naissance préalable de variable collective du système, c’est-à-dire des degrés de liberté de
faible dimension représentant les directions lentes du système moléculaire. Ces variables
collectives peuvent être identifiées à l’aide d’algorithmes d’apprentissage automatique et de
réduction de dimensionalité. En plus d’être utilisées pour accélérer l’échantillonnage, les
variables collectives construites par apprentissage automatique aident également à acquérir
une connaissance précieuse du système étudié, à savoir en facilitant la visualisation de ses
différents états, ainsi que de son profil d’énergie libre. Dans ce travail, d’importantes no-
tions et définitions de la dynamique moléculaire sont d’abord présentées avant de passer en
revue les algorithmes d’apprentissage automatique de pointe qui ont été conçus ou appliqués
ces dernières années pour la construction automatique de variables collectives. Ensuite, la
méthode développée au cours de cette thèse, baptisée ”Free energy biasing and machine
learning with autoencoders” (FEBILAE), est introduite. Cette méthode utilise un schéma
itératif pour générer alternativement de nouvelles simulations et apprendre les variables col-
lectives à partir de ces simulations en utilisant des autoencodeurs. Enfin, nous présentons
l’application de méthodes d’apprentissage automatique à un véritable système d’intérêt.
Ici, des autoencodeurs sont utilisés pour apprendre les variables collectives de la protéine
chaperone HSP90, dans le but d’effectuer des simulations biaisées de ce système.



Chapter 1

Introduction

In the last decades, molecular dynamics (MD) simulations have helped gain insight into the
microscopic and macroscopic properties of biomolecular processes. However, the time scales
accessible to MD simulations are often significantly smaller than the times needed for the
observation of slow conformational changes of the systems under study [1,2]. This is due to
the presence of energy or entropy traps in the energy landscape, which causes the system to
be stuck within metastable states and thus hinders the full exploration of the configurational
space. As a consequence, thermodynamic quantities (obtained from trajectorial averages)
can not be accurately estimated.

To cope with this issue, several methods for enhanced sampling have been designed to
mitigate the sampling difficulties associated with metastability [3,4]. Most of these methods
can be broadly divided into two categories according to whether or not they use collective
variables (CV), also known as reaction coordinates, which are low dimensional or coarse-
grained representations of the system. Collective variable free methods alter the canonical
distribution by e.g. modifying the system temperature or the system Hamiltonian in order
to accelerate crossing energetic or entropic barriers. This category includes, for example,
simulated tempering [5], parallel tempering [6], replica exchange MD [7], multicanonical
simulation [8], temperature-accelerated dynamics [9] or the Wang-Landau algorithm [10].
Collective variable based methods modify the system’s dynamics by adding a bias in order
to accelerate the dynamics by flattening the energy barriers along a chosen CV. Most of
these methods simultaneously calculate the free energy associated to these CVs. Notable
examples include metadynamics [11, 12], umbrella sampling [13, 14] and adaptive biasing
force (ABF) methods [15–18]. The efficiency of these methods crucially relies on the prior
knowledge of a proper low dimensional CV which contains most of the metastable degrees of
freedom of the dynamics, and thus in particular clearly distinguishes between the metastable
states. While in the case of simple systems these CVs may be determined from physical and
chemical knowledge, and/or by trial and error, in most cases, guessing a good CV can prove
challenging. Instead, data driven and machine learning methods can be used to determine
suitable CVs by computing (linear or non linear) functions of the molecular configuration
which optimize a given criterion based on metastability, state separation, etc.

This introduction is organized as follows:

• Section 1.1 first presents important notions of molecular dynamics, including elements
of statistical physics, examples of thermodynamic ensembles, and dynamics equations.
The section then moves on to definitions of collective variables and free energy, listing

9
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the different existing methods for free energy computations, and detailing in particular
ABF and extended system ABF, the methods used in this work. Finally, a discussion
is made on optimality criteria for collective variables.

• Section 1.2 lists the state of the art methods devised for the automatic discovery of
collective variables with machine learning algorithms. The methods are categorized
according to the type of data they use: input conformations only, input conformations
and their time evolution, or input conformations with known states.

• Section 1.3 finally summarizes our contributions in the field of machine learning based
CV discovery: first, the method we propose in [19], coined free energy biasing and
iterative learning with autoencoders (FEBILAE), presented in Chapter 2; and second,
in Chapter 3, the application of machine learning algorithms for collective variables
learning and biasing of a complex real life protein, the heat shock protein 90 (HSP90).
An additional contribution, namely a review paper entitled ”Machine learning force
fields and coarse-grained variables in molecular dynamics: application to materials
and biological systems” [20] is included in the appendix.

1.1 Molecular dynamics and free energy computations

In this section, we recall important elements and equations of statistical physics and molec-
ular dynamics. We refer the interested reader to [21–25] for a more comprehensive presen-
tation of the elements introduced in this section.

1.1.1 Elements of computational statistical physics

In the context of statistical physics applied to the study of molecular motions, the order of
magnitude of the quantities under study are small enough to capture changes and motions
at the atomic level. Taking into consideration the values of some key constants of statistical
physics, such as the proton mass (mp = 1.67 × 10−27 kg), or the Boltzmann constant
(kB = 1.381× 10−23 J/K), the average values of some quantities can be inferred. Energies
are thus of the order of kBT (where T is the room temperature), distances are measured in
Angstroms (1 Å = 10−10 m), and time is measured in femtoseconds (1 fs = 10−15 s). The
description of a system at the microscopic level requires following the dynamics of every
atom, at every timestep. For practical and computational reasons, this limits both the
number of atoms and the time horizon that can be considered. In 1977, one of the first
molecular simulations of a protein was reported [26]. It consisted of a 9.2 ps simulation of a
small 58-residue protein, the bovine pancreatic trypsin inhibitor in vacuum (∼ 500 atoms).
Today, notably large simulations include a 500 µs simulation of the Villin headpiece in solvent
involving 20, 000 atoms [27]; a 50 ns simulation of the complete satellite tobacco mosaic virus
in solvent involving over 1 million atoms [28]; and the folding simulations of various proteins,
over time horizons between 100 µs and 1ms involving ∼ 6, 000 to ∼ 35, 000 atoms [29]. All of
these simulations, and others reported in recent years, always involve a very small number
(often 1) of macromolecules, and a number of particles that is far from the Avogadro number
NA = 6.02 × 1023. Nevertheless, it is observed that MD can still be used for computing
macroscopic averages for a variety of quantities, yielding thermodynamic properties of the
system, such as the free energy. This is particularly useful when these quantities cannot
easily be computed from experiment, e.g. when a costly experimental setup is required.
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Moreover, MD provides a temporal and spatial microscope into the motions of a given
system, making it possible to link microscopic observations to the observations and intuitions
one could have about the macroscopic behavior of the system.

1.1.1.A Molecular system description

A system composed of N particles is typically described as a vector (q, p), called the con-
figuration of the system, where q = (q1, . . . , qN ) ∈ D are the positions of the particle, and
p = (p1, . . . , pN ) ∈ R3N are the associated momenta. The set D is defined by the boundary
conditions applied to the system. Many different choices can be used. Let us describe three
popular choices. The first one is to impose no boundary conditions, meaning the system is
free to visit the full physical space, i.e. D = R3N . This is commonly used when considering
systems in vacuo. The second possibility is to impose periodic boundary conditions, where
the simulated system is put inside a box, which is conceptually surrounded by translated
copies of itself. This choice is the most commonly used with solvated macromolecules as it
minimizes boundary effects. Each particle can interact with any other particle of the system,
or with one of its periodic images. Of course, the cutoff rc (for short-range interactions)
and the smallest translation value L (over all directions) are set so as to ensure that a given
particle may only interact with either the original particle or at most one of its periodic
images, that is to say, rc < L/2. Under such conditions, D = (LT)3N , where T = R/Z is the
one-dimensional torus. The third choice is that of reflective boundary conditions, when the
system is confined in a box and reflection rules are set for whenever the particle encounters
the boundary. The set D is in this case defined by the choice of the box size.

The interactions between the particles are represented by a potential energy function
V : q 7→ V (q). The total energy of the system is then given by the Hamiltonian:

H(q, p) = Ekin(p) + V (q), (1.1)

where the kinetic energy Ekin is defined as:

Ekin(p) =
1

2
pTM−1p, M =

m1I3 0
. . .

0 mNI3

 ,

with mi the mass of the ith particle.The Hamiltonian above is called separable, i.e. the q
and p related energy terms can be separated. In the next section, we discuss possible choices
for the potential energy function V , which is not as easily modeled as the kinetic energy.

1.1.1.B Interaction potentials

The ideal choice for the potential energy V is to derive it from first principles, by solving the
Schrödinger equation for a given atomic configuration to determine its electronic ground-
state energy and adding the Coulomb interactions between nuclei. Unfortunately, this so-
called ab initio approach requires a considerable amount of computations, which can only be
considered for very small systems. In the majority of cases, the ab initio potential is not an
option and empirical potentials or forcefields are used instead. Empirical forcefields are given
by an analytical form of the function V and a set of parameters involved in this analytical
form [23]. Once the analytical form is defined, a parameterization protocol is set to optimize
the parameters using either ab initio calculations, or available experimental data, e.g. by
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matching computed quantities to their experimental values [30–32]. Usually the analytical
function can be written by distinguishing the different interatomic interactions:

V = Vbonds + Vangles + Vtorsions + Vimproper + VVdW + VCoulomb. (1.2)

Here we give for each component, a brief definition and a typical example of its analytical
form. For this, we define for each pair of atoms (i, j), the vector ri,j = qi − qj , and the
distance ri,j = |qi − qj |.

• Vbonds is the sum over all pairs (i, j) of bonded atoms, of the covalent bond potentials,
e.g. vi,j = 1

2kb(ri,i+1 − r0)2.

• Vangles is the sum over all 3-tuples of atoms (i, j, k) such that the pairs (i, j) and

(j, k) are bonded, of the angle bending potentials, e.g. vi,j,k =
1

2
ka(θi,j,k − θ0)2 or

vi,j,k =
1

2
ka(cos(θi,j,k)−cos(θ0))2. Here, the angle θi,j,k can be defined from its cosine:

cos(θi,j,k) =
ri,j · rj,k
ri,jrj,k

.

• Vtorsions is the sum over 4-tuples of consecutively bonded atoms (i, j, k, l) of the dihedral
torsion potentials, e.g. vi,j,k,l = Un

2 (1 + cos(nφi,j,k,l)). Here, the dihedral angle is

defined from its cosine: cos(φi,j,k,l) = −ri,j × rj,k
ri,jrj,k

· rj,k × rk,l
rj,krk,l

.

• Vimproper is the sum over 4-tuples of atoms (i, j, k, l) such that i is bonded to the other

three atoms, of the improper torsion potentials , e.g. vimp
i,j,k,l =

kimp

2
(1 + cos(2φi,j,k,l)),

or vimp
i,j,k,l =

kimp

2
(φi,j,k,l − φ0)2. Here cos(φi,j,k,l) is defined using the same equation

as for dihedral torsions. This term is added to ensure the planarity of the group of
atoms (i, j, k, l), see 23 for further details.

• VVdW represents repulsive and Van der Waals interactions modeled e.g. by a Lennard

Jones potential as: VVdW =
∑

1≤i<j≤N

4εi,j

((
σi,j
ri,j

)12

−
(
σi,j
ri,j

)6
)

.

• VCoulomb represents Coulomb interactions Vc =
∑

1≤i<j≤N
ZiZj
ri,j

, where Zi is the charge

of particle i.

Some forcefield functions also include additional terms, such as: cross terms, i.e. terms
involving two bonds, or a bond and an angle for example; terms that account for hydrogen
bonds; or polarization terms [23]. According to the inclusions of these various terms, three
classes can be distinguished to categorize most force fields.

• Class I force fields: These force fields typically have a classical analytical function
of the form (1.2) without including any additional terms. Notable examples include
CHARMM [33], AMBER [34], GROMOS [35] and OPLS [36].

• Class II force fields: This category of forcefields adds cross terms, i.e. terms that
couple at least two intermolecular interactions (for example, bond-bond, bond-angle,
or angle-torsion cross terms). These additional terms help improve conformational en-
ergy calculations, and observation of vibrational spectra. This class includes MM2 [37],
MM3 [38], MM4 [39], MMFF [40], COMPASS [41], etc.
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• Class III force fields: polarizable force fields. These forcefields include an
explicit term for polarization using one of the three following methods: fluctuating
charges, induced dipoles, or Drude particles. PIPF [42], DRF90 [43], or AMOEBA [44]
are popular examples of this class. Classical software for forcefields such as CHARMM
and AMBER have also developed new versions of polarized forcefields. Note that the
addition of this term implies that the parameters of the potential function must be
re-estimated for the force field to be more accurate.

In recent years, other classes and types of forcefields have been devised, such as reactive
forcefields [45,46], which are able to handle reactions such as bond formation and breaking,
or machine learning (in particular deep networks) based forcefields [47–49].

1.1.1.C Thermodynamic ensembles

The macroscopic behaviour of the system, represented by a set of macroscopic quantites,
can be described using a probability measure µ over the phase space D×R3N . Macroscopic
quantities are computed as averages of an observable A over the phase space:

Eµ(A) =

∫
D×R3N

A(q, p)µ(dq dp).

The thermodynamic ensemble of the system is fully defined by the choice of µ. Here, we
present three main choices: the microcanonical ensemble NVE (fixed number of atoms,
volume and total energy), the canonical ensemble NVT (fixed number of atoms, volume and
temperature), and the isobaric-isothermal ensemble NPT (fixed number of atoms, pressure
and temperature).

• The microcanonical ensemble NVE is the ensemble naturally associated with the
Hamiltonian dynamics (see (1.5) below). It describes isolated systems with a fixed
total energy E and a fixed volume. The corresponding probability measure is the
uniform law over S(E), the set of all (q, p) ∈ D × R3N such that H(q, p) = E. The
probability measure can be derived by a limiting procedure, involving a small energy
variation ∆E, by introducing the set:

NE,∆E = {(q, p) ∈ D × R3N | E ≤ H(q, p) ≤ E + ∆E}.

The measure δH(q,p)−E(dq dp) can then be defined as follows: for any observable A,∫
S(E)

A(q, p)δH(q,p)−E(dq dp) = lim
∆E−→0

1

∆E

∫
NE,∆E

A(q, p)dq dp.

Finally, the microcanonical measure is obtained by normalizing δH(q,p)−E(dq dp) to
make it a probability measure (i.e. so that its integral sums to 1).

• The canonical ensemble NVT is an ensemble describing systems at a fixed tem-
perature and volume, with energy fluctuating around an average value. We assume
that e−βV ∈ L1(D), i.e e−βV is integrable over D. The canonical probability measure
µ is defined as:

µ(dq dp) = Z−1
µ e−βH(q,p)dq dp = Z−1

µ e−βV (q)e−βEkin(p)dq dp, (1.3)
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where β = (kBT )−1 and Zµ is a normalization constant called the partition function.
Because the Hamiltonian is separable, the canonical measure µ is a tensor product
of two probability measures, in the variables p and q respectively. The momenta and
positions are thus independent and can be sampled separately. The momenta p follow
a Gaussian distribution, making their sampling straightforward. The positions q follow
the more complex probability measure:

ν(dq) = Z−1
ν e−βV (q)dq, (1.4)

where Zν is a normalization constant.

• The isobaric isothermic ensemble NPT corresponds to simulations at fixed pres-
sure and temperature where the volume and energy thus fluctuate around average
values. A notable example is a periodic cubic box where the box size can vary to
maintain a fixed pressure. For simplicity, we write the expression of the probability
measure when the simulation domain is a rectangular box whose size can only vary in
one direction. We denote by x the periodic box length in that direction, and by L the
length of the remaining directions. Then,

D = Dx = (xT× (LT)2)N .

Using a uniform measure over all volumes as a reference a priori measure, and under
the constraint that the volume and energy are fixed on average, the NPT measure
is derived by maximizing the entropy with respect to the reference measure [22]. It
reads:

µNPT(dq dp dx) = Z−1
NPT e−βPL

2xe−βH(q,p)1q∈Dxdq dp dx.

Other thermodynamic ensembles exist of course, such as the grand canonical ensemble µVT
where the number of particles is only fixed on average. The most commonly used ensembles
for macromolecules are the NVT and NPT ensembles.

1.1.1.D Dynamics

In this subsection, we briefly define three examples of dynamics used to sample the prob-
ability measures presented in Section 1.1.1.C. The considered examples are Hamiltonian
dynamics, Langevin dynamics and overdamped Langevin dynamics. For each dynamics,
key properties are listed. We refer the interested reader to [22] for additional details and
proofs of these properties.

Hamiltonian dynamics. Hamiltonian dynamics are the adequate dynamics for describ-
ing isolated systems (NVE). The corresponding equations read:{

dqt = ∇pH(qt, pt)dt = M−1ptdt,

dpt = −∇qH(qt, pt)dt = −∇V (qt)dt,
(1.5)

with a provided initial state (q0, p0). The generator associated with this dynamics is:

Lham = pTM−1∇q −∇V T∇p. (1.6)

We denote by φt the flow associated with the dynamics, i.e. φt(q0, p0) = (qt, pt). The flow
φt satisfies the following properties:
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• Symmetry: φt ◦ φ−t = Id.

• Energy conservation: H ◦ φt = H.

• Volume preservation: for any measurable set B ⊂ D × R3N ,
∫
φt(B)

dq dp =
∫
B
dq dp.

• Simplecticity: (∇φt)TJ(∇φt) = J where J =

(
0 I3N
−I3N 0

)
.

• Reversibility: Considering S the momentum reversal function S(q, p) = (q,−p), it
holds that φ−t = S ◦ φt ◦ S.

Overdamped Langevin dynamics. Overdamped Langevin dynamics are stochastic dy-
namics which sample the position components of the canonical measure, under the equation:

dqt = −∇V (qt)dt+

√
2

β
dWt, (1.7)

where Wt is a standard 3N -dimensional Brownian process. Again, these dynamics can be
formulated using the associated generator defined with maximal domain on L2(ν):

Lod =
1

β
∆−∇V T∇. (1.8)

The generator Lod is self-adjoint with respect to the canonical measure ν, which means that
the dynamics are reversible. The canonical measure ν is invariant, i.e. for all smooth func-
tions of compact support φ,

∫
D Lodφ dν = 0. Finally, the overdamped Langevin dynamics

are ergodic with respect to the canonical measure, which means that for any observable
A ∈ L1(ν):

lim
T−→+∞

1

T

∫ T

0

A(qt)dt = Eν(A) a.s.

Langevin dynamics. Langevin dynamics are stochastic dynamics used to sample the
canonical measure (positions and momenta).The dynamics are described by the equations:{

dqt = M−1ptdt,

dpt = −∇V (qt)dt− γM−1ptdt+
√

2γ
β dWt,

(1.9)

where Wt is a standard 3N -dimensional Brownian process and γ > 0 is the friction coeffi-
cient. Hamiltonian and overdamped Langevin dynamics can both be considered as special
cases of Langevin dynamics [21]: Hamiltonian dynamics correspond to the case where the
dynamics are underdamped, i.e. γ = 0; while overdamped Langevin are obtained when
γ −→ ∞ (with an appropriate time rescaling), or when the mass matrix M = mI3N and
m −→ 0. The infinitesimal generator of the Langevin dynamics, i.e. the second order dif-
ferential operator associated with the dynamics, defined with maximal domain on L2(µ)
reads:

L = Lham + γLFD. (1.10)
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Here, Lham is the generator of the Hamiltonian dynamics (defined in (1.6)), and LFD repre-
sents the fluctuation dissipation part and is the generator of the Ornstein-Uhlenbeck process,
which is a Gaussian process on the momenta:

Lham = ∇pH · ∇q −∇qH · ∇p = pTM−1∇q −∇V T∇p ,

LFD = −pTM−1∇p +
1

β
∆p =

1

β
eβH div(e−βH∇p).

The operator Lham is antisymmetric while LFD is symmetric with respect to the inner
product on L2(µ). Thus, the adjoint of L is:

L∗ = −Lham + γLFD. (1.11)

The canonical measure µ is an invariant probability measure. Indeed, it is easily checked
that for all test functions φ,∫

D×R3N

Lφdµ = − 1

β

∫
D×R3N

(∇pe−βH · ∇qφ−∇qe−βH · ∇pφ)

+
γ

β

∫
D×R3N

div(e−βH∇pφ)

= 0.

Additionally, the Langevin dynamics are ergodic for the canonical measure µ: for any A ∈
L1(µ),

lim
T−→+∞

1

T

∫ T

0

A(qt, pt)dt = Eµ(A) a.s.

To describe the evolution of time averages, we define the semigroup of operators eτL defined
by the generator L: for any τ > 0 and any smooth function ϕ,

eτLϕ(q0, p0) = E(q0,p0)[ϕ(qτ , pτ )]

Numerical discretization of Langevin dynamics. For all but trivial systems, the so-
lutions to equations such as (1.9) cannot be analytically integrated, and need to be approxi-
mated by a numerical discretization in time: for a given small timestep ∆t, for each timestep
index k, a Markov process equation determining (qk+1, pk+1) from (qk, pk) is devised. Here,
(qk, pk) is a discrete approximation of (qk∆t, pk∆t), the continuous process at time k∆t. For
this, the Langevin operator L (see (1.10)) can be split into three sub-step operators. Indeed,
Lham can be decomposed as the sum of the position generator LA = pTM−1∇q and the
momenta (or velocity) operator LB = −∇V T∇p. Both of these operators correspond to de-
terministic motions. The stochastic substep is represented by LO = γLFD, the generator of
the Ornstein-Uhlenbeck process. These three generators define elementary dynamics which
are analytically integrable. For a given timestep ∆t,

A : pk+1 = pk, qk+1 = qk +M−1pk∆t (1.12)

B : pk+1 = pk −∇V (qk)∆t, qk+1 = qk (1.13)

O : pk+1 = α∆tp
k +

√
(1− α2

∆t)M

β
Gk, qk+1 = qk (1.14)
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where {Gk}k is a sequence of independent standard normal random vectors and α∆t =

e−γM
−1∆t. The one-step evolution operator e∆tL can then be approximated as a Trotter

factorization of the one-step operators e∆tLA and e∆tLB associated with the deterministic
substeps, and the one-step evolution operator e∆tLO associated with the stochastic substep.
Many discretization schemes can then be defined, depending on the order in which these
substeps are performed. Often the order is chosen so as to have a symmetrical factorization.
For example, the ”BAOAB” scheme [50, 51] can be written using the symmetric Strang
splitting [52]:

e∆tL = e
∆t
2 LBe

∆t
2 LAe∆tLOe

∆t
2 LAe

∆t
2 LB .

and thus corresponds to the equations:

pk+1/4 = pk −∇V (qk)∆t/2,

qk+1/2 = qk +M−1pk+1/4∆t/2,

pk+3/4 = α∆tp
k+1/4 +

√
(1− α2

∆t)M

β
Gk,

qk+1 = qk+1/2 +M−1pk+3/4∆t/2,

pk+1 = pk+3/4 −∇V (qk+1)∆t/2.

Here, α∆t = e−γM
−1∆t. For the remainder of Section 1.1, we assume that the system

follows Langevin dynamics (or overdamped Langevin when considering positions only), and
therefore samples the canonical measure.

1.1.2 Collective variables and free energy

The free energy of a system is an essential quantity in MD and thermodynamics. Its estima-
tion for a given system is the central point of many biomolecular studies [53]. We distinguish
between the absolute free energy, and the free energy difference between states, where states
are defined either by the value of a parameter λ of the Hamiltonian (the alchemical case), or
by the value of a given function ξ(q, p) = z of the phase space, called a reaction coordinate
or a collective variable (the reaction coordinate case).

1.1.2.A The absolute free energy

We start by recalling the definition of the absolute free energy.

Definition 1. The absolute free energy of a system is defined as a logarithm of the partition
function Zµ. For the canonical ensemble, the absolute free energy reads:

F = − 1

β
lnZµ = − 1

β
ln

∫
D×R3N

e−βH(q,p)dq dp.

The quantity F is also called the Helmholtz free energy. In the isobaric isothermal
ensemble, the free energy is instead called the Gibbs free energy. This definition is actually
in accordance with the thermodynamics definition of the free energy, F = U − TS where
U is the internal energy and S the entropy. This can indeed be checked by replacing each
of these quantities by its microscopic equivalent [22], namely the average energy UNVT =

Eµ(H) for U , and the entropy SNVT = −kB
∫
D×R3N

e−βH(q,p)

Zµ
ln
(

e−βH(q,p)

Zµ

)
dq dp for S. The
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absolute free energy is a quantity describing the system as a whole, but in most studies of
biomolecular processes, an important goal is to analyse differences, particularly free energy
differences, between various states within the same system, so that one is only interested
in the free energy up to an additive constant. A simple example is the computation of the
free energy difference between folded and unfolded states of a given protein, or the bound
versus unbound states of a ligand-protein system.

1.1.2.B The relative alchemical free energy

In the alchemical case, a state is defined as the value of a parameter λ involved in the
definition of the Hamiltonian Hλ, and thus the associated canonical measure µλ. In practice,
λ is a parameter of the forcefield potential function Vλ, hence the term ”alchemical”: the
nature of the particles changes according to the value of λ. This represents a physically
impossible transition, but it is feasible in computer simulations.

Definition 2. The free energy difference between states λ = λ1 and λ = λ2 can be computed
as:

F (λ2)− F (λ1) = − 1

β
ln
Zµ2

Zµ1

, (1.15)

where Zµi =
∫
D×R3N e−βHλi . Note that a simple computation makes it possible to write

the fraction in the above equation as an average quantity with respect to the law µ1:

F (λ2)− F (λ1) = − 1

β
ln
Zµ2

Zµ1

= − 1

β
ln


∫
D×R3N

e−βHλ2
(q,p)dq dp∫

D×R3N

e−βHλ1
(q,p)dq dp


= − 1

β
ln
[
Eµ1

(
e−β(Hλ2

(q,p)−Hλ1
(q,p))

)]
.

(1.16)

The last equality is easily obtained by rewriting the integrand of the integral in the numer-
ator as e−β(Hλ2

(q,p)−Hλ1
(q,p))e−β(Hλ1

(q,p). The free energy difference can thus be computed
as the µ1-average of the quantity e−β(Hλ2

(q,p)−Hλ1
(q,p)). This is the basis for free energy

perturbation methods, which we define in Section 1.1.3.A. Alternatively, the free energy
difference can be computed by integrating the derivative F ′(λ), which reads:

F ′(λ) = Eµλ
(
∂Hλ

∂λ

)
. (1.17)

We defined in Section 1.1.3.B thermodynamic integration methods, which integrate the
derivative F ′(λ) of the free energy.

1.1.2.C The relative free energy of a reaction coordinate

In the reaction coordinate case, a state is defined using the value of a reaction coordinate
(RC), also called a collective variable (CV). A reaction coordinate is a function ξ of the
phase space which contains information on the overall structure of the system. In most
cases, it actually only depends on the positions q, so that ξ : D −→ A ⊂ Rd where in practice
d � 3N . Classical examples are combinations of well defined functions of the molecule,
such as distances between residues, or dihedral angles. The coordinate ξ is always assumed
to satisfy rank(∇ξ) = d unless specified otherwise. A state z is then the collection of all
configurations q with the same value of ξ(q) = z.
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Definition 3. The free energy of state z is:

F (z) = − 1

β
ln


∫

Σ(z)×R3N

e−βH(q,p)δξ(q)−z(dq)dp

Zµ

,

where
Σ(z) = {q ∈ D | ξ(q) = z}.

The measure δξ(q)−z(dq), supported by Σ(z) satisfies δξ(q)−z(dq)dz = dq. It can also be
defined using the co-area formula (Equation (3.14) in Ref. 22) as:

δξ(q)−z(dq) =
σΣ(z)(dq)√

det(G)
,

where σΣ(z)(dq) is the surface measure over the manifold Σ(z) when D is equipped with the
standard Euclidean scalar product, and

G = (∇ξ)T∇ξ (1.18)

is the so-called Gram matrix. Note that the free energy F is related to the marginal
distribution µξ of the canonical measure µ along the coordinate ξ:

µξ(dz) =


∫

Σ(z)×R3N

e−βH(q,p)δξ(q)−z(dq)dp

Zµ

 dz = e−βF (z)dz.

The free energy can thus be viewed as a coarse grained potential function over the coor-
dinate ξ(q). Note also that, because the considered Hamiltonian is separable, the kinetic
energy term can be taken out of the free energy definition:

F (z) = − 1

β
ln


∫

Σ(z)

e−βV (q)δξ(q)−z(dq)

Zν

, Zν =

∫
D

e−βV (q)dq. (1.19)

The free energy difference between states z = z1 and z = z2 is thus:

F (z2)− F (z1) = − 1

β
ln


∫

Σ(z2)

e−βV (q)δξ(q)−z2(dq)∫
Σ(z1)

e−βV (q)δξ(q)−z1(dq)

.

This free energy difference allows to quantify the relative likelihoods of the configurations of
state z1 to those of state z2. The derivative of the free energy, called the mean force, reads:

∇F (z) =

∫
Σ(z)

f(q)e−βV (q)δξ(q)−z(dq)∫
Σ(z)

e−βV (q)δξ(q)−z(dq)
=

∫
Σ(z)

f(q)νξ(dq|z), (1.20)
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where νξ(.|z) is the measure ν conditioned to ξ(q) = z. The d-dimensional vector function
f = (f1, . . . , fd) is called the local mean force. Its analytical expression reads:

fi =

d∑
j=1

(G−1)i,j∇ξj · ∇V −
1

β
div

 d∑
j=1

(G−1)i,j∇ξj

 , (1.21)

where, we recall, G is defined in (1.18).

1.1.2.D Reaction coordinates, metastability and free energy biasing

The choice of the reaction coordinate ξ greatly impacts the relevance of the free energy
differences we want to compute. As mentioned above, the states we want to define represent
the gradual folding of a protein, or its binding to a ligand for example. Thus the coordinate
ξ should be chosen so as to describe these motions. In most cases, the dynamics of the
system under study are metastable, and the motions of interest are in fact rarely occurring
transitions between different metastable states (e.g. folded and misfolded states of a protein).
This is caused by the shape of the energy function, which contains local minima or entropic
traps (metastable states) separated by free energy barriers (transition states). This implies
that the coordinate ξ we are looking for is a slowly varying degree of freedom whose values
distinguish between the different states. The process (ξ(qt))t≥0 is thus also metastable, i.e.
its values may stay trapped inside some region of the space Rd before crossing to another
region, marking a transition of the system from one metastable state to another. Classical
examples of reaction coordinates are combinations of well defined simple functions of the
positions q, such as distances, dihedrals or contacts.

Note that the metastable character of the dynamics implies that the full exploration
of the configurational space takes a lot of time, so that sampling the canonical measure
using the dynamics defined in (1.7) or (1.9) raises computational difficulties. In this context
comes an important utilization of the relative free energy: biased sampling. Indeed, the free
energy along a coordinate ξ can be used to bias the potential of the system so as to make
the process (ξ(qt))t≥0 no longer metastable. More precisely, we consider a system evolving
under the potential V − F ◦ ξ instead of V . The Langevin dynamics under this potential
become: {

dqt = M−1ptdt,

dpt = −∇(V (qt)− F ◦ ξ(qt))dt− γM−1ptdt+
√

2γ
β dWt.

(1.22)

The marginal distribution µ̃ξ of the new canonical measure µ̃ along ξ is then, up to a
multiplicative constant:

µ̃ξ(dz) =

(∫
Σ(z)

e−β(V (q)−F◦ξ(q))δξ(q)−z(dq)

)
dz

=

(∫
Σ(z)

e−β(V (q)−F (z))δξ(q)−z(dq)

)
dz = Zνdz.

The marginal distribution along ξ under the potential V−F◦ξ is the uniform measure. Under
the new dynamics, the coordinate ξ is no longer metastable. This motivates the importance
of the choice of the reaction coordinate: The biased potential V − F ◦ ξ is only as effective
at sampling metastable motions of interest as ξ is at describing them. Figure 1.1 shows
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a simple illustration of biased sampling: The example is a 2 dimensional 3-well potential
system q = (x1, x2), for which the first coordinate x1 is enough to distinguish the 3 states,
and is thus used as a CV to bias the dynamics. A general discussion on optimality criteria
for reaction coordinates is given below in Section 1.1.5.

Figure 1.1: Free energy biasing example. The biased potential enables more frequent tran-
sitions between the two deep metastable states.

1.1.3 Computing free energy differences

The free energy differences defined in Section 1.1.2 cannot in most cases be analytically
computed and instead needs to be estimated using averages over sampled trajectories. In
this section, we list some of the methods used for computing free energy differences. We
distinguish between four classes of methods which we describe in each of the following
sections: Free energy perturbation and histogram methods, thermodynamic integration,
non-equilibrium methods and finally adaptive methods.

1.1.3.A Straightforward sampling methods

Free energy perturbation. Free energy perturbation methods allow to compute free
energy differences in the alchemical case. The method was first introduced by Zwanzig
in [54]. It relies on the expression of the free energy difference given in Equation (1.16):

F (λ2)− F (λ1) = − 1

β
ln
(
Eµ1

(e−β(Hλ2
−Hλ1

))
)

.

The average Eµ1
(e−β(Hλ2

−Hλ1
)) can then be approximated by sampling configurations from

the canonical measure µ1 and computing an empirical average of the observable e−β(Hλ2
−Hλ1

)
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over these samples. When the states λ1 and λ2 are too far apart, i.e. their respec-
tive distributions do not overlap, intermediate states can be considered and the difference
F (λ2)− F (λ1) can be computed as the sum of free energy differences between consecutive
states. This simple solution is called ”staging”.

Histogram methods. Histogram methods can be used with a reaction coordinate. Here,
the RC is assumed one-dimensional for simplicity. The method relies on the following
observation: for each z, the observable

χz,δz(q) =
1

δz
χ

(
ξ(q)− z
δz

)
satisfies:

Eµ(χz,δz) −−−→
δz→0

e−βF (z),

up to a multiplicative constant. Here χ must be a nonnegative function such that
∫
R χ = 1,

e.g. a Gaussian function or the indicator function of on interval such as [−1, 1]. This moti-
vates computing values of Eµ(χzi,δz) for a discretization z1, . . . , zk of the domain of interest
I of ξ. This can be done by sampling trajectories and computing ergodic (and discrete time)
averages of the quantities χzi,δz. However, metastability can complicate the computation of
these averages. Instead, histogram methods rely on sampling multiple shorter trajectories
centered around each bin by adding a bias to the potential. The trajectory centered around
bin i is then biased by a so called restrained potential Vi(q) = V (q) + 1

2εi
(ξ(q)− zi)2. The

parameter εi > 0 should be small enough so the dynamics are effectively restrained around
low values of ξ(q) − zi, but large enough to still allow some exploration around the center
zi, making the canonical probability distributions associated with Vi overlap, so all values
in I are sampled. The averages Eµ(χz,δz) are then computed using the concatenation of
the samples from all trajectories, with some reweighting procedure to take into account
the restraining potential. Methods to perform this concatenation include the weighted his-
togram analysis method [55,56] (WHAM) and extended bridge sampling [57–59] (multistate
Bennett acceptance ratio).

1.1.3.B Thermodynamic integration

Thermodynamic integration [60] relies on writing the free energy as the integral of the free
energy derivative. In the alchemical setting, the free energy difference writes

F (λmax)− F (λmin) =

∫ λmax

λmin

F ′(λ)dλ, (1.23)

where F ′(λ) is defined in (1.17). The idea is then to discretize the [λmin, λmax] interval
into k bins centered around λ1, . . . , λk, and sample µλi for each i ∈ 1, . . . , k. The aver-

ages Eµλi

(
∂Hλi

∂λ

)
are then estimated. The free energy difference can be approximated

from (1.23) using a quadrature method (e.g. a Riemann sum).
In the reaction coordinate case, the free energy is also computed as the integral of its

derivative:

F (z2)− F (z1) =

∫ 1

0

∇F (φ(θ))φ′(θ)dθ,
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where φ is a smooth path in Rd, and φ(0) = z1 and φ(1) = z2. In practice, when the reac-
tion coordinate is one-dimensional, the free energy is computed using a simple quadrature
method. When the RC is multi-dimensional, the Poisson equation is used instead:

∆F (z) = −div(∇F ). (1.24)

Estimating the derivative ∇F (z) for z = φ(θ) requires to sample conditional probabilities
µξ(dq|z). This can be done by projecting the usual dynamics (Langevin or overdamped
Langevin) on the submanifold Σ(z). We refer to Chapter 3 of 22 for more details.

1.1.3.C Non equilibrium methods

Nonequilibrium methods [61] compute the free energy difference between states as a nonlin-
ear average over nonequilibrium trajectories started at equilibrium from the first state. In
the alchemical case, the method starts from initial conditions (q0, p0) ∼ µλmin

. A schedule
for the evolution of the alchemical parameter is imposed by a function Λ ∈ C1([0, T ],R) such
that Λ(0) = λmin and Λ(T ) = λmax. The process (qt, pt) then follows a non-autonomous
SDE. The free energy is estimated using the Jarzynski nonequilibrium equality [62] derived
using a Feynman-Kac formula. This formula uses a definition of the workWt induced on the
system under the nonequilibrium dynamics and computes importance weights of nonequi-
librium simulations with respect to the equilibrium distribution as e−βWt . The quantity
e−β(F (λmax)−F (λmin)) is then computed as an average over multiple realizations and multiple
initial conditions of the exponential weights e−βWT . In practice, depending on the switching
schedule Λ, the distribution of the computed weights can be spread out, and only very small
values of Wt really count in the computed average. This can be solved by reducing the
variance of the work distribution [63,64].

In the reaction coordinate case, the method starts from initial conditions (q0, p0) ∼
µ(·|ξ(q) = zmin), and imposes a schedule z ∈ C1([0, T ],Rd) such that z(0) = zmin and
z(T ) = zmax by adding a constraining force to the dynamics to ensure ξ(qt) = z(t). A
generalization of the Jarzynski equality is then used to compute the free energy difference
as a nonlinear average over importance weights. It can be proven that thermodynamic inte-
gration methods are recovered from nonequilibrium methods in the limit T −→ ∞, whereas
free energy perturbation methods are recovered in the limit T −→ 0. For more details on
nonequilibrium free energy computations for both the alchemical and reaction coordinate
cases, we refer the interested reader to Chapter 4 of [22].

1.1.3.D Adaptive methods

Adaptive biasing methods are importance sampling methods where the free energy is si-
multaneously estimated and used to bias the potential. More precisely, we mentioned in
Section 1.1.2.D that, with the use of a reaction coordinate ξ which effectively describes the
metastability of the dynamics, one can apply a modified potential V −F ◦ξ to the dynamics
(as shown in (1.22)) in order to eliminate the metastability along ξ and thus help accelerate
the sampling of transitions between metastable states (see Figure 1.1). Unfortunately, the
value of F is unknown and cannot be derived directly from its analytical form. Adaptive
methods replace the free energy F by its estimation Ft at time t in the biased dynamics.
The potential becomes V −Ft ◦ ξ where the estimate Ft is updated on-the-fly in a way that
it gradually converges to F as the sampling proceeds. Two categories of adaptive biasing
techniques can be distinguished, depending on whether the free energy itself, or its deriva-
tive, the mean force, is approximated. We give below a general definition and an example
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equation for each category. For simplicity, we restrain ourselves to overdamped Langevin
dynamics. The extension to the general case of phase space dynamics such as Langevin is
straightforward.

Adaptive Biasing Potential. We first describe adaptive biasing potential (ABP) meth-
ods, where the free energy Ft is estimated and its gradient, the so-called mean force, is
then derived and used in the dynamics. A general framework for ABP in the overdamped
Langevin setting follows the equation:

dqt = −∇(V (qt)− Ft ◦ ξ(qt))dt+

√
2

β
dWt,

dFt(z)

dt
= Ft

(
− 1

β
ln
(
ψξ(t, z)

))
,

where ψξ(t, z) is the image by ξ of the law ψ(t, q) of the process qt:

ψξ(t, z) =

∫
Σ(z)

ψ(t, q)δξ(q)−z(dq),

and Ft : R −→ R is a family of continuous and strictly increasing functions (e.g. Ft(x) = x).
The general idea behind ABP methods is to penalize the regions (i.e. values z) of the coor-
dinate ξ that are visited by increasing their potential (through Ft(z)), thus favoring transi-
tions to unexplored regions. Notable examples of ABP methods include the Wang-Landau
algorithm [10, 65] (where the reaction coordinate is the potential energy) and metadynam-
ics [11,12].

Adaptive Biasing Force. Next, we discuss adaptive biasing force (ABF) methods [15–18]
where the free energy derivative, the mean force, is estimated directly as a vector field Γt,
and the free energy is subsequently obtained by numerical integration [66] of the mean force
(using, e.g., a simple quadrature method for a one dimensional RC and the Poisson equation
in (1.24) for a multi-dimensional RC). The equation of the dynamics of adaptive biasing
force in the overdamped Langevin setting is:

dqt =

−∇V (qt) +

d∑
j=1

[Γt(ξ(qt))]j · ∇ξj(qt)

 dt+

√
2

β
dWt,

dΓt(z)

dt
= Gt

(∫
Σ(z)

f(q)νξ(t, dq|z)− Γt(z)

)
,

(1.25)

for a family of vectors Gt(x) = {G1
t (x1), . . . ,Gdt (xd)} of continuous and strictly increasing

functions such that Git(0) = 0. Here, νξ(t, dq|z) is the distribution of qt conditional to a
fixed value of ξ = z:

νξ(t, dq|z) =
ψ(t, q)δξ(q)−z(dq)∫

Σ(z)
ψ(t, q)δξ(q)−z(dq)

, (1.26)

and f = (f1, . . . , fd) is the local mean force defined in (1.21). Note that, apart from the
case d = 1, the vector field Γt is not in general (i.e. for a general instantaneous distribution
ψ(t, q) ) a gradient. In the following section, more details on the adaptive biasing force
methods are provided.
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1.1.4 A focus on adaptive biasing force for free energy computa-
tions

The adaptive biasing force method and its variations are the methods of choice used in the
work presented in this thesis. This section further details the ABF method as well as its
extended version, the eABF method. For a more detailed presentation of ABF and eABF,
including the mathematical foundation of the methods and proofs of convergence, we refer
the interested reader to [15,21,22,67].

1.1.4.A Adaptive biasing force

For simplicity and ease of notation, we assume in this section and the following section that
the reaction coordinate is one-dimensional ξ : D 7→ A ∈ R, but the generalization to a
higher dimensional CV is straightforward.

Dynamics and updating formula. As mentioned in the previous section, the adaptive
biasing force method estimates the mean force associated with the collective variable ξ. For
a one-dimensional function ξ, (1.20) becomes:

F ′(z) =

∫
Σ(z)

f(q)e−βV (q)δξ(q)−z(dq)∫
Σ(z)

e−βV (q)δξ(q)−z(dq)

= Eν (f(q)|ξ(q) = z) , (1.27)

where ν is the canonical measure defined in (1.4) and f is the local mean force introduced
in (1.21), which, for a one-dimensional RC, simplifies as:

f = ∇V · ∇ξ
|∇ξ|2

− 1

β
div

(
∇ξ
|∇ξ|2

)
. (1.28)

Equation (1.27) shows that the derivative of the free energy F ′(z) is related to the con-
ditional average of the local mean force for a process following the measure ν. However,
conformations of the biased dynamics follow a different measure denoted by ψ(t, ·) at time
t. Note that by multiplying the numerator and denominator of (1.27) by the value eβFt(z),
one obtains:

F ′(z) = − 1

β

∫
Σ(z)

f(q)
e−β(V (q)−Ft◦ξ(q))δξ(q)−z(dq)∫

Σ(z)
e−β(V (q)−Ft◦ξ(q))δξ(q)−z(dq)

= Eνt (f(q)|ξ(q) = z) ,

where νt ∝ e−β(V−Ft◦ξ). Indeed, Ft ◦ ξ(q) = Ft(z) for all q ∈ Σ(z). Under the assumption
of instantaneous equilibrium of the process at each time t with respect to V − Ft ◦ ξ,
i.e. ψ(t, ·) = νt, this means that the mean force F ′ is directly recovered. Of course, the
assumption of instantaneous equilibrium is false, but the above equation can still be used
to approximate the mean force as

Γt(z) =

∫
Σ(z)

f(q)νξ(t, dq|z),
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where νξ(t, dq|z) is defined in (1.26). The dynamics, with the updating formula for Γt then
read: 

dqt = −∇V (qt)dt+ Γt(ξ(qt))∇ξ(qt)dt+

√
2

β
dWt,

Γt(z) =

∫
Σ(z)

f(q)νξ(t, dq|z) .

(1.29)

Remark 1. Note that the above dynamics and updating formula correspond to the special
case Gt(x) = x

τ in the limit τ −→ 0 of the updating formula of equation (1.25) with a
one-dimensional reaction coordinate.

For completeness, we also write here the equation of ABF used in conjunction with
Langevin dynamics:

dqt = M−1ptdt,

dpt = −∇V (qt)dt+ Γt(ξ(qt))∇ξ(qt)dt− γM−1ptdt+

√
2γ

β
dWt,

Γt(z) =

∫
Σ(z)

f(q)νξ(t, dq|z).

(1.30)

Under time continuous overdamped Langevin or Langevin dynamics with potential V −Ft◦ξ,
an empirical approximation Γεt (z) at time t of the mean force can then be computed as:

Γεt (z) =

∫ t
0
f(qs) δ

ε (ξ(qs)− z) ds∫ t
0
δε (ξ(qs)− z) ds

,

where ε > 0 and δε is a C∞ approximation of the Dirac mass, δε(z) = 1
εχ
(
z
ε

)
with χ a

smooth nonnegative function and
∫
A χ = 1. In practice, the biasing dynamics are applied

only for a domain of interest of the collective variable z ∈ [zmin, zmax]. This domain is
discretized into K bins and the value of Γt at each bin center zk for k ∈ {1, . . . ,K} is
approximated as

Γkt =

∫ t
0
f(qs)1{zk−ε≤ξ(qs)<zk+ε}(qs)ds∫ t
0
1{zk−ε≤ξ(qs)<zk+ε}(qs)ds

,

where ε = zmax−zmin

2K .

Convergence of the biasing force. The convergence of Γt to F ′ can be proven under
some assumptions on the potential V and the collective variable ξ. First we recall the
definition of logarithmic Sobolev inequalities.

Definition 4. A measure π2 is said to satisfy a logarithmic Sobolev inequality with con-
stant r if for all π1 absolutely continuous with respect to π2:

H(π1|π2) ≤ 1

2r
I(π1|π2).

Here, H(π1|π2) =
∫
R ln

(
dπ1

dπ2

)
dπ1 is the entropy of π1 with respect to π2 and I(π1|π2) =∫

R

∣∣∣∇ ln
(
dπ1

dπ2

)∣∣∣2 dπ1 is the Fisher information of π1 with respect to π2.
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We now state a proposition on the convergence of ABF.

Proposition 1. We make the following assumptions on ξ and V :

ξ is a smooth function such that 0 < |∇ξ(q)| ≤ m <∞;

sup
q∈D
|∇Σ(ξ(q))f(q)| ≤M <∞;

∃ ρ > 0 such that νξ(·|z) satisfies a logarithmic Sobolev inequality with constant ρ for all z ∈ A;

∃ R > 0 such that ψ∞ satisfies a logarithmic Sobolev inequality with constant R;

The constants m,M, ρ satisfy
mMβ

2
√
ρ
< 1.

When all the assumptions above are satisfied, under the biased Langevin (or overdamped
Langevin) dynamics (1.30) (or (1.29)), the biasing force Γt is proven to converge exponen-
tially fast to the mean force F ′.

We refer the interested reader to [68] or Section 5.2 of [22] for the proof of Proposition 1,
as well as quantitative estimates of the rate of convergence.

Proof of consistency. In general, under the assumption of convergence, a proof of con-
sistency of the ABF method can easily be written. We briefly give this proof in the general
case of ξ with values in A ⊂ Rd.

Theorem 1. Under the assumption of convergence for ABF, i.e. when

ψ(t, ·) −−−→
t→∞

ψ∞, ∂tψ(t, ·)) −−−→
t→∞

0

and
Γt −−−→

t→∞
Γ∞ where Γ∞ is a gradient,

then the limit Γ∞ is the mean force ∇F .

Proof. Under these assumptions, we have ψ∞ = Z−1
∞ e−β(V−F∞◦ξ) such that Γ∞ = ∇F∞,

and Z∞ is a normalizing constant. In the limit t −→∞, we then have:

G∞

(∫
Σ(z)

f(q)e−β(V (q)−F∞◦ξ(q))δξ(q)−z(dq)∫
Σ(z)

e−β(V (q)−F∞◦ξ(q))δξ(q)−z(dq)
− Γ∞(z)

)
= 0.

As Gt(0) = 0 and Git are continuous and strictly increasing, we thus have:

Γ∞(z) =

∫
Σ(z)

f(q)e−β(V (q)−F∞(z))δξ(q)−z(dq)∫
Σ(z)

e−β(V (q)−F∞(z))δξ(q)−z(dq)
= ∇F (z),

which allows to conclude F∞ = F .

1.1.4.B Extended system adaptive biasing force

Equation (1.28) shows that regular ABF requires the knowledge of second order derivatives
of the CV ξ to compute the local mean force f . The analytical expression of this quantity
is quite cumbersome for various choices of reaction coordinates, especially when ξ is vector
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valued. In particular, as the CVs considered in this work are based on neural networks which
may involve complex non-linear activation functions, extracting the second order derivatives
is computationally too expensive.

To overcome the limitations in computing the second term of the right hand side of (1.28),
a method coined extended system ABF (eABF) was devised [15, 67]. A fictitious degree of
freedom λ ∈ R is added to the configurational space. The potential of the extended system
becomes:

V ext(q, λ) = V (q) +
κ

2
|ξ(q)− λ|2 , (1.31)

where κ > 0 is a force constant. In the case of Langevin dynamics, a fictitious mass mλ

for the degree of freedom λ must also be defined. To bias the dynamics of this extended
system, the collective variable that is used is

ξext(x, λ) = λ ,

instead of the original collective variable ξ. The new extended local mean force does not
depend on the second (or any) derivatives of the collective variable ξ:

f ext(q) =
∂V ext

∂λ
(q) = κ(λ− ξ(q)).

Only the gradient of ξ is needed for computing the gradient of V ext. ABF can therefore
easily be applied to the new extended system. Denoting by ρ the momentum of λ, and by
M ext the extended mass matrix (which includes mλ), the Langevin dynamics of the eABF
trajectory are:


dqext
t = (M ext)−1pext

t dt,

dpext
t =

(
−∇V ext(qt, λt) + Γext

t (λt)u
)
dt− γ(M ext)−1pext

t dt+

√
2γ

β
dWt,

(1.32)

where qext
t = (qt, λt), p

ext
t = (pt, ρt), uT = (0, . . . , 0, 1) and Γext

t is the estimate at time t of
the mean force associated with the RC λ in the extended system:

Γext
t (λ) =

∫ t

0

f ext(qs) δ
ε (λs − λ) ds∫ t

0

δε (λs − λ) ds

.

Convergence of the extended free energy. The free energy F ext
κ associated with ξext

in the extended system is related to the free energy associated with ξ through a convolultion
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with a Gaussian kernel. Indeed, using (1.19),

e−βF
ext
κ (λ) =

∫
D

e−βV
ext(q,λ)dq∫

D

∫
A

e−βV
ext(q,z)dqdz

=

∫
D

e−β(V (q)+κ
2 |ξ(q)−λ|

2)dq∫
D

e−βV (q)

(∫
A

e−β
κ
2 |ξ(q)−z|

2

dz

)
dq

=
1

Zν

√
βκ

2π

∫
D

e−βV (q)e−β
κ
2 |ξ(q)−λ|

2

dq

=
1

Zν

√
βκ

2π

∫
A

∫
Σ(z)

e−βV (q)e−β
κ
2 |ξ(q)−λ|

2

δξ(q)−z(dq)dz

=

∫
A
χκ(λ− z)e−βF (z)dz

where χκ(z) =
√

βκ
2π e−β

κ
2 |z|

2

is a Gaussian kernel with variance 1/(κβ). Since χκ(z)dz −−−−→
κ→∞

δ0(dz) in the sense of distributions on A, it can be easily proven from the last equality that
the free energy F ext

κ converges to F when κ −→∞. In practice, a compromise must be made
in choosing the value of the spring force constant κ which should be large enough to ensure
that F ext

κ is close to F , but small enough so that the dynamics can still be discretized in
practice with a timestep ∆t which is not too small.

1.1.5 Collective variable optimality

As mentioned in Section 1.1.2.D, the choice of the reaction coordinate ξ greatly impacts the
sampling efficiency as well as the relevance of the computed free energy. In this section, we
discuss different physical or mathematical criteria for the choice of a reaction coordinate.
In general, and as mentioned above, ξ is a low dimensional function of the positions q. We
denote by d its dimension.

1.1.5.A Physical and chemical requirement: Interpretability

From a physical and biochemical standpoint, the RC should be interpretable. More precisely,
the RC should have a somewhat direct biophysical meaning linked to the structure and
physics of the system. We recall that one of the goals behind the definition of a RC (namely
within the scope of this work) is the computation of a free energy landscape. This free
energy landscape describes the system dynamically, i.e. determines the metastable states
(minima), and the free energy barriers to overcome in order to achieve transitions. Using a
physically interpretable RC makes it more straightforward to understand the obtained free
energy, or even to compare it to an experimentally measurable quantity. Simple examples
of an interpretable RC include interresidue distances, dihedral angles, root mean square
deviation from a reference conformation, or the radius of gyration.
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1.1.5.B Static requirement: Efficient sampling of the canonical measure

Another requirement on the RC comes from a static or thermodynamic perspective on the
system, i.e. when only the distributions of the system and of the RC at equilibrium are
examined. In general, an intuitive way to describe the RC is that ξ should be constructed
such that for a set of points (qi)1≤i≤n drawn from ν, ν is well sampled by (qi)1≤i≤n if νξ

is well sampled by ξ(qi). This sampling requirement can be stated from a biased sampling
point of view. Indeed, a natural optimality criterion for an RC is the efficiency of using it
in a free energy biased sampling procedure such as ABF or metadynamics. As mentioned
in Section 1.1.2.D, biasing along the RC ξ works best if it is metastable, i.e. if for a
dynamics qt sampling ν, the metastability of qt is encoded in the metastability of ξ(qt).
We formally defined this metastability as the RC having to accurately describe the slow
motions of interest. We explore in this section this statement from a mathematical and
from a practical point of view.

We use a mathematical definition of metastability in relation to the distributions νξ and
ν(dq|ξ(q) = z) as done in [69].

Definition 5. Assuming that the conditional means ν(dq|ξ(q) = z) (respectively the marginal
νξ) follow a logarithmic Sobolev inequality with coefficient ρ (respectively r), then

ξ is metastable if r � ρ. (1.33)

This criterion is roughly included in the assumptions listed in Section 1.1.4.A and
which are required for the convergence of ABF: the logarithmic Sobolev inequality sat-
isfied by ν(dq|ξ(q) = z) can be interpreted as a property ensuring that when sampling the
law νξ(·|z), e.g. through constrained dynamics [70], convergence to equilibrium is exponen-
tial with rate ρ (as made precise in Chapter 3 of [22]).

From a practical point of view, in order for the biasing along ξ to be efficient, the free
energy landscape of the RC should simply contain and adequately describe all of the energy
barriers and basins corresponding to these slow motions. Consequently, the RC itself should
distinguish between the different states of the system, metastable and transient. Indeed,
if ξ resolves the metastable states but confuses a metastable state with a transient one,
full sampling could still be impeded in the biasing simulation [71]. If all states are well
distinguished by ξ, the conditional distribution ν(dq|ξ(q) = z) is not supported inside more
than one state (metastable or transient), which again means that ν(dq|ξ(q) = z) is essentially
unimodal and thus easy to sample.

Finally, the static requirement can be formally linked to an assumption on which many
dimensionality reduction methods rely: That the support of the probability measure of
the data (here ν) actually stays approximately within a lower dimensional manifold (here of
dimension d), making it possible to represent the high dimensional data (here the positions q)
using a lower dimensional set of functions (i.e. the RC ξ). If this assumption is true, then
for a well chosen low dimensional embedding ξ, it can be assumed that fully sampling the
values of ξ should provide an efficient sampling of the original distribution ν, again implying
that the conditional probabilities ν(dq|ξ(q) = z) are easy to sample.

1.1.5.C Dynamical requirement: Markovianity and effective dynamics

The dynamical relevance of RCs is linked to the coarse grained dynamics of the collective
variable [72]. The RC is considered optimal if the full dynamics can be projected on it
without losing too much information on the important processes. More precisely, the RC



1.1. MOLECULAR DYNAMICS AND FREE ENERGY COMPUTATIONS 31

is Markovian and it can accurately determine dynamical quantities of interest, such as
transition mechanisms and transition rates between states, or time scales of the dynamics.
We consider here dynamics on positions only, e.g. overdamped Langevin. We also assume
D = R3N , and A = Rd . We denote by L the infinitesimal generator of the considered
dynamics.

Markovianity. For a given RC ξ, one can define the so called effective dynamics

dzt = b(zt)dt+

√
2

β
σ(zt)dBt,

where Bt is a d-dimensional Brownian process, and the functions b and σ can be equivalently
defined using different approaches such as Itô’s formula, the Mori-Zwanzig method and the
Galerkin method. We refer to [72, 73] for mathematical descriptions of these methods as
well as general formulas for the functions b and σ. Here, we provide the formula for b and
σ in the case of overdamped Langevin dynamics and a real valued RC:{

b(z) =
∫

Σ(z)

(
−∇V · ∇ξ + β−1∆ξ

)
(q)νξ(dq|z)

σ2(z) =
∫

Σ(z)
‖∇ξ(q)‖2νξ(dq|z).

We denote by L̃ the generator of the effective dynamics. The invariant measure correspond-
ing to these dynamics is νξ. The effective dynamics represent an approximation of a closed
form dynamics for the RC. The Markovianity criterion states that the RC is good if the law
of ξ(qt) and that of the effective dynamics variable zt are close. The Markovianity criterion
is closely linked to the static requirement introduced in the previous section. Formally, if ξ
is metastable, the evolution of the directions orthogonal to ξ, which represent fast motions,
can be averaged out for intermediate time scales, i.e. time scales longer than the relaxation
times of these fast directions but shorter than the relaxation times of the slow processes
described by ξ. A more mathematically rigorous link lies in that the same assumptions
on ξ stated for the sampling requirement (or for the convergence of ABF) can be used to
establish an error bound between the laws of ξ(qt) and zt. More precisely, if ν(dq|ξ(q) = z)
satisfies a logarithmic Sobolev inequality with coefficient ρ uniformly in z, then the relative
entropy of the law of ξ(qt) with respect to the law of zt is bound by a constant proportional
to 1

ρ2 . We refer to [69] and references therein for further details and proofs.

Properties of the effective dynamics and preservation of time scales. In [72], it
is proven that under some natural assumptions on the system and the RC, many structural
properties of the full dynamics qt, namely ergodicity and reversibility, are preserved by
the effective dynamics. The optimality of ξ is then measured in terms of the preservation
of dynamical properties of the dynamics. The dynamical properties to use for assessing
the optimality of the RC can differ according to the system under study and the process
or processes of interest. Examples of these dynamical quantities include inherent time
scales, reaction or transition rates, as well as transition probabilities. Here, we focus on
the preservation of the time scales linked to the slow processes of the dynamics, also called
relaxation rates, as an optimality criterion. The inherent time scales are related to the
eigenvalues of the infinitesimal generator L. We denote by the pairs {(λi, φi)}i∈N (resp.
{(λ̃i, φ̃i)}i∈N) the eigenvalues and normalized eigenfunctions of the generator L (resp. L̃),
ordered so that 0 = λ0 > λ1 ≥ λ2 ≥ ... (resp. 0 = λ̃0 > λ̃1 ≥ λ̃2 ≥ ...). We recall here
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that φ0 = 1 and that for i > 0, the ith implied timescale, i.e. the relaxation rate of the ith
slowest process of the system dynamics is ti = 1

λi
. A slow process of the system indicates

for example a transition between two metastable states. We assume here that the system
possesses a number d of slow processes of interest. Consequently, a spectral gap separates
the first d+1 eigenvalues from the rest: λd � λd+1. This means that we are only interested
in the preservation of the first d + 1 timescales. Note that we look here at the eigenvalues
of the generators, but it is also possible (and equivalent) to examine the eigenvalues of the
evolution semi-group eτL for some τ > 0. For a general RC ξ, the relationship between the
pairs (λi, φi) and (λ̃i, φ̃i) is given by the following theorem quoted from [72].

Theorem 2. For all i ∈ N (and thus in particular for all i < d+ 1), we have:

λi ≤ λ̃i ≤ λi +
1

β
‖∇(φi − φ̃i ◦ ξ)‖2L2(ν) . (1.34)

Theorem 2 indicates first that the eigenvalues are always overestimated by the effective
dynamics, and second that they are well approximated by the effective dynamics if the
eigenfunctions of the generator associated with the projected dynamics approximate the
original eigenfunctions well:

∀i < d+ 1 , φi ≈ φ̃i ◦ ξ. (1.35)

In [74,75], this criterion is proven to be equivalent to a property on the transition probability
pτ (x, ·) = p(·, τ |x, 0) of the dynamics, i.e. the probability distribution of xτ conditionally to
x0 = x. More precisely, ξ is considered an optimal reaction coordinates (from a timescales
preservation standpoint) if the transition probability can be approximated by a function of
ξ(x) alone:

pτ (x, ·) ≈ qτ (ξ(x), ·). (1.36)

This criterion is no longer linked to the eigenvalues or eigenfunctions themselves. In the
same work, a numerical computation of an RC which satisfies this requirement is introduced
using the so-called transition manifold M = {pτ (q, .)|q ∈ D}.

1.1.5.D Natural candidates

Energy. The potential energy itself as a collective variable

ξ(x) = V (x)

is an intuitive choice for fulfilling both the chemical and static requirements: The energy is
of course directly interpretable from a biophysical standpoint, and because the metastable
and transient states are by definition determined by the value of the potential energy, it
provides an ideal candidate for biased sampling. This choice of RC is in fact at the heart of
the Wang-Landau adaptive biasing potential algorithm [10, 65]. It also has the advantage
of being one dimensional, which is convenient for biased sampling. Note however that an
important practical problem arises with the use of the potential energy as a biasing CV,
namely the biasing range: It is not easy to set the maximal value of the potential energy in
order to sample (only) relevant configurations of the phase space. Setting it too high pushes
the system to visit unrealistic high energy regions, while setting it too low keeps the system
trapped in the starting state.
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Eigenfunctions of the generator. A natural candidate for the dynamical requirement
of preservation of the (d + 1 dominant) eigenvalues of the generator L is to use the (d + 1
dominant) eigenfunctions as the RC:

ξ(x) = (φ1(x) . . . , φd(x))T .

Indeed, this choice is proven to insure that the inequalities in Theorem 2 become equalities
for all 1 ≤ i ≤ d [72]. As the eigenfunctions of the generator (or transfer operator) of the
system describe the slow sub-processes, the resulting RC, while not containing a structural
description of the system, still contains some dynamical interpretation. In fact, it has
been observed that the eigenfunctions have (approximately) constant values on metastable
states [76]. This choice of RC does however present some practical drawbacks. First, the
infinitesimal generator of the dynamics is a (often) high dimensional differential operator,
its eigenvalue problem (or that of the transfer operator) is computationally expensive or
even impossible to solve numerically. Second, depending on the system under study, some
or all of the d sub-processes of interest (i.e. transitions between metastable states) can
be described by the same reaction coordinate if they lie within the same transition path,
making the corresponding eigenfunctions redundant. In this case, a lower dimensional RC
can be sufficient for describing all of the subprocesses, and its optimal dimension is the
dimension of the transition manifold [75, 77]. The eigenfunctions can then still be used to
assess the optimality of the lower dimensional RC ξ using, e.g. Theorem 2.

Committor function. When considering a transition process between two metastable
states A and B, the committor function pA(q) is the probability for the system to visit
state A before state B starting from the position q. Of course, we have pA(q) = 1 for all
q ∈ A and pA(q) = 0 for all q ∈ B. An extension of this definition to a d-state system is
a d − 1-dimensional function p = (pA1

, . . . , pAd−1
) where pAi(q) is the probability for the

system to reach state Ai before any other state. The last probability pAd can be computed
as pAd = 1− (pA1 + · · ·+ pAd−1

) , it is therefore unnecessary to include it. The choice

ξ(q) = (pA1(q), . . . , pAd−1
(q))

is often considered the optimal reaction coordinate, and satisfies all three requirements listed
above:

• While it does not provide a straightforward physical or chemical insight on the struc-
ture of the system, the committor function still is an interpretable quantity as it is
defined by the metastable states.

• By definition, the committor describes and distinguishes the metastable and transient
states: Its value is constant on the metastable states, and accurately traces transition
paths on transient states. This makes it a good candidate for biased sampling.

• The committor is in proven [74] to satisfy (1.36) thus preserving the time scales of
the full dynamics. Additionally, in [72], the authors also prove that the committor
function between states A and B is the reaction coordinate which perfectly preserves
the reaction rate between these states.

Because the committor is considered to be an optimal reaction coordinate in many cases [78–
80], it can be used to assess the quality of a collective variable ξ using e.g. the committor
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histogram test [81]: for each value z of the reaction coordinate (or rather for a discretization
z1 . . . zk of the coordinate), the committor is computed for multiple positions q ∈ Σ(z). The
reaction coordinate is then considered optimal for the description of the reaction process if
approximately similar values of the committor are obtained for all q ∈ Σ(z), indicating that
the RC and the committor have approximately the same isosurfaces. Unfortunately, this
choice of RC shares the same practical drawback as the eigenfunctions: the committor is
computationally expensive to compute for all positions q, and its dimensionality is equal to
the number of states, which can be higher than the actual number of coordinates needed to
describe the dynamics.

1.2 Machine Learning and data driven collective vari-
able discovery

We briefly discussed at the end of Section 1.1.2 the importance of the choice of the reaction
coordinate ξ, which greatly impacts the efficiency of the sampling and/or free energy com-
putation methods. Indeed, with a poor choice of CV, the free energy cannot: (i) provide an
efficient biasing of the dynamics, nor (ii) be used for analyzing motions of interest between
different states. It is thus important to use a reaction coordinate that allows to describe
the metastability of the system. In general, this choice can be made somewhat intuitively
for small and/or extensively studied systems. However, the more complex and/or larger
the system, the less trivial it is to manually select one or more collective variables. The
idea of automatically selecting or constructing the collective variable becomes an attractive
solution. For this purpose, many methods have been devised to construct CVs using sam-
pled configurations of a given system. In particular, as the recent years have witnessed a
surge in popularity for machine learning (ML) techniques in various fields, the discovery of
collective variables using machine learning has gained growing interest. In this section, we
provide concise presentations of some of the state of the art methods for data driven collec-
tive variable discovery. For a more complete overview on optimization and learning methods
for CV discovery and in molecular dynamics in general, we refer the reader to [20, 82, 83].
First, we present in Section 1.2.1 some necessary preprocessing steps for transforming the
sampled trajectories into suitable training data. In particular, the choice between Cartesian
and internal coordinates is discussed. We then proceed to our overview of some CV learning
methods by categorizing them according to the type of data they use. More precisely, we
distinguish three categories of CV discovery.

• Section 1.2.2 presents the first category of methods, which use only sampled confor-
mations, with no other knowledge but the sampling distribution. It includes classic
unsupervised learning algorithms.

• Section 1.2.3 then discusses the second class of methods. Here, the algorithms rely
on time series data, meaning that the data samples are obtained from one or more
MD trajectories. Many algorithms of this category aim at approximating the transfer
operator of the dynamics.

• Finally, the third category of methods, presented in Section 1.2.4, uses discrete state
information to apply supervised learning models. This means that a separation of the
space into a small number of states is known and used to classify the data samples.
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1.2.1 Choice of input features

Before applying a model to construct a collective variable from sampled configurations, it is
first necessary to pre-process the dataset of these sampled configurations in order to select
the type of input features that will be fed to the model. Often, only the representation
of the molecule, without the surrounding solvent, is considered relevant to the search of a
CV. The first step is thus to remove the solvent molecules. Moreover, some atoms are often
dismissed as they represent irrelevant fast motions that would only add noise to the data.
This famously includes hydrogen atoms, but can also be extended to more atoms depending
on the system under study. The description of the remaining atoms may be achieved by
a variety of features. Here, we briefly discuss three general choices: Cartesian coordinates,
internal coordinates and candidate collective variables.

Cartesian coordinates. Cartesian coordinates are the straightforward representation of
the data as they are the typical output of an MD simulation. This choice of coordinates
requires eliminating the overall rotational and translational motion of the molecule. Trans-
lational motion is simply eliminated by recentering each sampled conformation to the origin
of the Cartesian 3D space. Rotational motions can be eliminated by aligning the sampled
conformations to a pre-selected reference structure qref. For each sample, a rotation matrix
is computed to minimize the root-mean square deviation between the reference structure
and the rotated conformation. A variety of algorithms were devised for the efficient and
accurate computation of the rotation matrix, including notably the Kabsch algorithm [84],
quaternion-based methods [85–87], and other methods [88,89]. It is important to note that
these algorithms for removing the overall rotational motions are less efficient when applied
to flexible systems, such as folding proteins [90, 91]. This is due to the fact that internal
and overall motions for these systems are mixed in the Cartesian coordinates, and that the
alignment is dependent on the selection of the reference structure. New methods for im-
proving the separation between external and internal motions were devised [92–94], but the
most efficient method for fully eliminating rotational invariances is by using internal instead
of Cartesian coordinates.

Internal coordinates. Internal coordinates are, by definition, invariant with respect to
rotational as well as translational motions of the system. Several types of internal coordi-
nates can be used, such as interatomic distances, angles, or dihedral angles. Two problems
arise with the use of interatomic distances. First, the data dimensionality increases quadrat-
ically with respect to the number of atoms considered. Second, the obtained features are
usually highly correlated or even redundant. The same issues appear with angular coordi-
nates. This can be avoided by considering only a subset of atom pairs (or 3-tuples) which are
selected using a condition of some sort. In [95] for example, the authors use only distances
between inter-residue contacts in the native state of the studied protein (and define a thresh-
old for what is considered a contact). Dihedral angles are defined by sets of 4 consecutively
bonded atoms, therefore, using them as internal coordinates would not (or not consider-
ably) increase the data dimensionality. They represent a direct insight into the intrinsic
torsions within each residue of the molecule. When using dihedral angles (or bond angles),
their periodic nature must be taken into consideration. Indeed, most machine learning or
dimensionality reduction methods are not tailored to handle periodic data. Considering
for example the two angles −140° and 120°, their arithmetic average (−10°) and absolute
difference (260°) do not correspond respectively to the circular mean 170° and the actual
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distance 100°. These issues can be circumvented by defining a suitable metrics [96, 97], or
by using the sine and cosine transforms of the angles [98,99].

Candidate collective variables. When some preliminary information or expert knowl-
edge of the system is available beforehand, a more efficient representation can be obtained
by selecting a set of candidate physical or chemical CVs, which typically do not necessarily
describe the whole structure, but rather a specific part of the system. These candidate CVs
can include specific internal or Cartesian coordinates describing a small part of the system
that is identified as of interest. Other physical properties can also be used, for example the
root-mean square deviation with respect to a structure of interest (e.g. to the folded state
for a protein), the radius of gyration, the solvation state, etc. Some methods for collective
variables discovery rely on the availability of such inputs [78,100,101]. These methods have
the advantage of being much more interpretable as they output (combinations of) known
physical or chemical CVs.

For any choice of input representation and any other preprocessing procedures, we denote
by X ∈ Rn×D the obtained processed dataset of n elements xi ∈ RD, and in general by x
a point in the space X ⊆ RD of the processed conformations. We now seek to construct
a collective variable ξ : X → A ⊆ Rd with d < D which represents the data X in a low
dimensional space.

1.2.2 Using input features only

In this section, we present methods of CV discovery which only rely on the input dataset X.
We divide these methods into three subcategories: linear algorithms presented in Sec-
tion 1.2.2.A, nonlinear algorithms which are not based on neural networks or deep learning
methods in Section 1.2.2.B, and neural network based methods in Section 1.2.2.C. We note
that some of the methods below do not always output a clear mapping/function ξ from the
inputs x to the CV, some methods instead only providing a matrix Z ∈ Rn×d, which CV
values zi corresponding to each data sample xi in the original dataset X. This constitues an
issue as we often want to use the computed CV to apply a free energy biasing method, most
of which, including ABF and eABF, require a globally defined differentiable CV function ξ.
For each of the methods presented, we clarify whether such a mapping is provided (rather
than the matrix Z alone). Some methods devised to generate the mapping ξ using the
data X and Z are briefly discussed in Section 1.2.2.D.

1.2.2.A Linear dimensionality reduction

Principal Component Analysis. Principal component analysis is perhaps the most
commonly used linear dimensionality reduction method for the construction of collective
variables of biomolecular processes [98,102,103]. The method seeks to construct orthogonal
directions which maximize the variance of the dataset X. The first direction, or principal
component, is the direction of maximum variance. The ith principal component maximizes
the variance among all directions orthogonal to the components 1 through i − 1. The
components are constructed by diagonalizing the positive symmetric covariance matrix

C =
1

n

n∑
i=1

(xi − x̄)T (xi − x̄), where x̄ =
1

n

n∑
i=1

xi.
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The eigenvectors v1, . . . , vD of C associated with decreasing eigenvalues λ1 ≥ · · · ≥ λD are
such that each vk, for 1 < k ≤ D, is the direction of maximal variance over the subspace
orthogonal to span(v1, . . . , vk−1) (and v1 is the direction of maximal variance). The variance
explained by each eigenvector vi ∈ RD is determined by its associated eigenvalue λi, so
that the choice of d (which should be as small as possible while covering as much of the
data variance as possible) can be made by searching for a spectral gap in the eigenvalues
λd � λd+1. The CV ξ is then defined as the projection over the first d eigenvectors:

ξ(x) = (x · v1, . . . , x · vd).

Multidimensional scaling. Multidimensional scaling (MDS) is a class of dimensionality
reduction methods which construct a low dimensional representation Z of the dataset X
with the aim of preserving pairwise distances between data samples d(xj , xk). The repre-
sentation Z ∈ Rn×d minimizes a loss of the form:

c(X,Z) =

n∑
j,k=1

(
d(xj , xk)− d(zj , zk)

)2
.

In general, the solution to this optimization problem is obtained using an iterative algo-
rithm. However, another version of the algorithm, called classical MDS, obtains a closed
form solution by changing the loss function. Here we consider the case where d(·, ·) is the
Euclidean distance. In classical MDS, the optimization problem is replaced by:

argmin
Z∈Rn×d

c(X,Z), c(X,Z) = ‖JT (D2
X −D2

Z)J‖22 (1.37)

where D2
X(j, k) = ‖xj − xk‖2, D2

Z(j, k) = ‖zj − zk‖2 and J = In − 1
n1n is the so-called

centering matrix (here 1n is a n × n matrix of ones). It is easily proven that a solution to
this new minimization problem is obtained by computing the eigenvalue decomposition of
the centered matrix K of pairwise inner products: Kj,k = (xj − x̄)T (xk − x̄) = − 1

2J
TD2

XJ .
Given the eigenvectors vi ∈ Rn and corresponding eigenvalues λi of the matrix K, the
embedding Z = (zT1 , . . . , z

T
d ) which minimizes (1.37) satisfies: zi =

√
λivi. Importantly,

computing K and thus Z requires knowledge of the distance matrix D2
X alone (without

having access to the actual dataset X). The collective variable is then only given at the
data samples xi:

∀i ∈ {1, . . . , n}, ξ(xi) = zi,

where zi is the ith line of Z.

Remark 2. The MDS algorithm is actually only linear if the distance d is the Euclidean
distance. In this case, the representation Z recovered by classical MDS is in fact the same
as the PCA projection, i.e ZMDS = ZPCA. The main difference is in that PCA is based on
the D×D matrix C while MDS uses the n×n matrix K. MDS also does not need the actual
dataset X, but only the distance matrix DX . However, MDS does not compute projection
vectors, but rather directly computes the projected matrix of the dataset X.

1.2.2.B Nonlinear methods based on kernels or distances

In this section, we present methods for collective variables discovery and dimensionality
reduction for which nonlinearity is introduced by the use of distance functions other than
the Euclidean distance between data samples, and/or nonlinear kernel functions.
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The kernel trick. The kernel trick [104] is a method which allows to introduce nonlin-
earity into linear machine learning and dimensionality reduction techniques such as PCA.
The kernel trick represents the data X in a new higher dimensional space using a nonlinear
transformation φ. PCA, or more precisely MDS, can then be applied in this new space. The
idea is that, with a good choice of the nonlinear transformation φ, projecting the data into
the higher dimensional space will make it approximately linear. The ”trick” consists in the
fact that, in practice, the transformation φ is never computed explicitely, but is represented
by a kernel function h, such that the scalar product between pairs of transformed samples
can be computed as:

φ(xj)Tφ(xk) = h(xj , xk).

The matrix K = (h(xj , xk))1≤j,k≤n of pairwise inner products in the high dimensional
space is then used to apply MDS. As mentioned in the previous section, the obtained
directions are the principal components of PCA. Importantly, because the transformation
φ is never directly used, its dimensionality can be high, or even infinite. The dimension
is solely defined by the choice of the kernel h, which highly impacts the efficiency of the
kernel method. Of course choosing a linear kernel h(xj , xk) = (xj)Txk enables recovering
regular (linear) PCA. Other kernels include polynomial kernels or the popular Gaussian

kernel h(xj , xk) = 1√
2πσ

exp(−‖x
j−xk‖2
2σ2 ), where σ, the standard deviation of the kernel, is a

parameter to be adjusted.

Isomap. Isomap [105,106] is a nonlinear version of MDS, where the distance d(·, ·) is the
geodesic distance between pair of samples and is computed using a graph representation
of the data X. More precisely, using a k-nearest neighbor approach or a threshold value
for assigning neighbors, Isomap constructs a graph of the data where vertices are the data
samples xi. If two vertices are considered as neighbors, they are connected by edges whose
lengths are the Euclidean distances between the sample pair. The distance d(xj , xk) is then
computed as the shortest path between corresponding vertices in the constructed graph,
using e.g. Djikstra’s algorithm. Finally, MDS is applied using this definition of pairwise
distance, to obtain a representation Z of the original dataset.

Diffusion Maps. The following definition of the diffusion maps method is based on [107].
We refer to this paper for more details and proofs of the method. Diffusion maps [107–
109] compute approximations for the eigenfunctions φi and eigenvalues λi, 1 ≤ i ≤ d of
the infinitesimal generator Lod of the overdamped Langevin dynamics defined on L2(ν)
(see (1.8)). As discussed in Section 1.1.5.D, the dominant eigenfunctions of the generator
represent good collective variables, as they satisfy most RC optimality requirements listed
in Section 1.1.5.

The d-dimensional diffusion map is defined as the function:

Ψd,t(x) = (e−λ1tφ1(x), . . . , e−λdtφd(x)).

The approximations of the eigenvalues and eigenfunctions are computed using simulated
data. More precisely, given the dataset X = x1, . . . xn, the diffusion map is approximated
with the use of a kernel function hε(x, x

′) = exp
(
−|x− x′|2/2ε2

)
. Here ε is a predefined

parameter to measure the local neighborhood of each data point. The ε-density of xk is:

pε(x
k) =

n∑
j=1

hε(x
k, xj) .
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The pairwise kernel matrix is then computed as

K =

(
hε(x

k, xj)√
pε(xk)pε(xj)

)
1≤j,k≤n

,

and rescaled by a row normalization using the diagonal matrix with entries Dk =

n∑
j=1

Kk,j ,

to form the Markov matrix M = D−1K. It is proven that, if the data points x1 . . . xn are
sampled from the probability density ν of the overdamped Langevin dynamics, then when
n −→ ∞ and ε −→ 0, the operator (M − I)/ε converges in probability to the generator Lod.
The eigenvectors vi and eigenvalues ζi of (M − I)/ε are thus computed as an approximation
of the values of the eigenfunctions φi over the dataset X, and their corresponding eigenvalues
λi. The d-dimensional RC is then:

Z = (v1, . . . , vd).

Stochastic neighbour embedding. Stochastic neighbour embedding [110] (SNE) also
uses pairwise distances between data samples. Here, the pairwise distances are used to
compute a neighborhood probability function p over pairs of samples, where the probability
for a sample xk to be in the neighborhood of a sample xj is computed as

p(xk|xj) =
e−‖x

j−xk‖2/2σ2
j∑

l 6=k

e−‖x
j−xl‖2/2σ2

j

.

This probability function is non-symmetric in its arguments xj , xk, thus the actual neigh-
borhood probability between xj and xk is given by

Pjk =
p(xk|xj) + p(xj |xk)

2n
.

Given the desired low dimension d, a second probability density Q over the d-dimensional
representation Z ∈ Rn×d is then constructed as a Gaussian distribution in the original SNE;
or in the more popular t-SNE [111–113], as a Student’s distribution with parameter k = 1:

Qjk =
(1 + ‖zj − zk‖2)−1∑
l 6=k(1 + ‖zj − zl‖2)−1

.

The representation Z is then computed so as to minimize a distance between the distribu-
tions P and Q as measured, e.g. by the Kullback-Leibler divergence. The minimization
problem reads:

argmin
Z∈Rn×d

KL(P ||Q), KL(P ||Q) =

n∑
j=1

n∑
k=1,k 6=j

Pjk log

(
Pjk
Qjk

)
.

The CV is then obtained for each data sample xj as the low dimensional representation zj .
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1.2.2.C Nonlinear deep learning methods

Artificial neural networks (ANN) [114] are a subset of machine learning methods. Their
design is roughly based on the workings of the human brain, in that artificial neurons are
made to send signals to one another. More precisely, the neural network is composed of
several layers, each of which contains a number of neurons. The input layer contains as
many neurons as the dimensionality of the data we wish to apply the neural network to,
and the output layer neurons are meant to contain the information we wish to learn using
the network. Intermediate layers are used to increase the complexity of the network. Each
neuron in each layer is assigned a weight vector which connects it to the neurons of the
next layer. The value in each neuron is then computed as a weighted combination of the
values of the previous layer neurons (using each neuron’s assigned weight), passed through
a (often nonlinear) differentiable transformation called an activation function. The neural
network is trained by modifying the weights assigned to each neuron, so as to optimize a
target distance between the network’s predicted output (contained in the output layer) and
the real output.

Autoencoders. Autoencoders (AE) [115] are a type of neural network designed for un-
supervised learning tasks. The aim is usually to learn a low dimensional representation of
the data, called an encoding. The AE is composed of two parts: the encoder learns the
new representation and the decoder simultaneously learns to reconstruct the original data
from this representation. The AE thus seeks to approximate the identity function. When
the encoder is composed of one fully connected layer which reduces the dimension, together
with a linear activation function, its learned representation is essentially the same as that
of a PCA projection of the same dimensionality [116, 117]: more precisely, the two models
project on the same bottleneck linear space, but not using the same generating vectors. In
general, however, AEs are used with nonlinear activation functions. This allows for nonlin-
ear encoding functions, and thus potentially better encoders than those restricted to stay
within the smaller class of linear functions. AEs can have different topologies depending on
the learning task, the data size and dimensionality, etc. Here, we describe the general topol-
ogy for a symmetrical, fully connected, dimensionality reducing (bottleneck) autoencoder.
We denote by X ⊆ RD the data space, and by A ⊆ Rd a lower dimensional space (d < D).
The autoencoder can be represented by a mapping f = fdec ◦ fenc where fenc : X −→ A,
fdec : A −→ X . It is symmetrical in structure, fully connected, and contains 2L layers.
Each hidden layer is of dimension d` = d2L−` for ` = 1 . . . L, and the output layer is of
dimension d2L = D (note that, by convention, the input layer does not count as a layer of
the network). Each layer ` ∈ 1, . . . , 2L has an activation function g` and is connected to
the previous layer by a projection matrix W` ∈ Rd`×d`−1 , and a bias vector b` ∈ Rd` . There

are thus K =

2L∑
`=1

(d`d`−1 + d`) learnable real parameters denoted by (θ1, . . . , θK) ∈ RK . As

the activation functions are predefined and do not change during learning, the autoencoder
function is fully described by its parameters θ = (θk)k=1,...,K . We indicate this dependence
as fθ. The general formula for fθ is:

∀x ∈ X , fθ(x) = g2L [b2L +W2L g2L−1 (b2L−1 +W2L−1 . . . g1(b1 +W1x))] ,

where the activation functions are by convention applied element-wise: for z = (z1, . . . , zd`),
it holds that g`(z) = (g`(z1), . . . , g`(zd`)). Note that fθ, and thus fenc, are differentiable
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functions when all the activation functions (g`)1≤`≤2L are. The CV learned by this method
is represented by the encoder part of the model:

ξ(x) = fenc(x).

Figure 1.2 illustrates the typical structure of a symmetric autoencoder.
To make the model more robust to overfitting, and/or to make it learn useful information

about the data distribution, variations of the original AE model were devised. Regularized
autoencoders add regularization to the model, e.g. by introducing sparsity to the model
using `1 or `2 regularization, or white noise to the input data. Variational autoencoders
(VAE) [118] combine the autoencoder structure with variational Bayesian inference to pro-
duce a probabilistic encoder and decoder, which learn the latent space as a distribution from
which the encoding is sampled, rather than modeling it as a deterministic vector. A vari-
ety of methods make use of autoencoders or variational autoencoders in their CV learning
framework [93, 94, 100, 119–123]. Here, we present two methods which use AEs (or VAEs)
to iteratively learn CVs and perform enhanced sampling to generate additional data.

Autoencoders are a central part of FEBILAE, the iterative algorithm for CV learning and
biasing developed during this thesis and presented in Chapter 2 in the form of the article
published in [19]. In the rest of this section, we present two other iterative algorithms
which also use autoencoders: Molecular enhanced sampling with autoencoders (MESA) and
reweighted autoencoded variational Bayes for enhanced sampling (RAVE).

Molecular enhanced sampling with autoencoders. MESA [93] is an iterative method
for free energy biasing and CV discovery using bottleneck autoencoders. Starting from an
unbiased simulation, an autoencoder is trained to extract a first low dimensional CV ξ0. This
CV is then used to perform enhanced sampling (precisely umbrella sampling in the MESA
work) and thus sample additional data, exploring a larger region of the configurational
space. A new autoencoder is then trained on the new available biased data, resulting in
a new CV ξ1, and so on, until CV convergence is reached. This convergence is assessed
by applying a linear regression between consecutive CVs and computing a precision score
for this model. A final round of umbrella sampling is then performed to compute the free
energy surface of the final CV.

MESA also addresses the issues of rotational invariances between configurations with the
use of data augmentation as an alternative to the more straightforward rotational alignment
to a reference structure. By applying p ∈ N random rotations to each configuration, MESA
optimizes the autoencoder using the loss function:

L =

n∑
k=1

p∑
j=1

‖f
(
Rj(x

k)
)
−A(xk, xref)‖2,

where A(xk, xref) is the configuration xk aligned to the predefined reference structure qref,
Rj(x

k) is the jth rotation applied to xk, and f is the autoencoder function. Through this
loss, the autoencoder learns to apply an alignment of all configurations to the reference struc-
ture xref, and to ignore rotational differences between otherwise similar configurations. The
authors also suggest using more than one reference configuration to obtain an autoencoder
function that is independent of the orientation of the molecules.

In a subsequent work [94], innovations in autoencoder structure and loss function de-
sign are explored to improve the CVs learned by MESA. More precisely, multiple types of
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Figure 1.2: Example of an autoencoder topology. Here, the dimension of the data is D = 4
and there are 2L = 4 layers: 3 hidden layers (including the bottleneck) and the output
layer, of respective dimensions d1 = 6, d2 = 2, d3 = 6 and d4 = 4. The parameters can
be represented by four matrices W1, W2 (for the encoder) and W3, W4 (for the decoder),
such that: a = (a1, a2) = fenc(x) = g2(b2 + W2g1(b1 + W1x)) and x̃ = fdec(a) = g4(b4 +
W4g3(b3 +W3a)) where g1, . . . , g4 are activation functions, and b1, . . . , b4 are biases.

rotational alignments to the reference structure are tested, such as backbone atoms align-
ments, helix alignments, etc. As for the autoencoder structure, hierarchical layers are used
to obtain a ranking of the CV dimensions. Indeed, a regular encoder projects on a low
dimensional subspace whose dimensionality is predefined before training as the dimension
of the bottleneck layer, and whose coordinates are a priori equally important, unlike e.g.
PCA, where the directions are ranked by their corresponding eigenvalues. Hierarchical au-
toencoders modify layer to layer connections to ensure CV ranking. For example, if the
bottleneck layer contains d nodes (neurons), the first node is fully connected to the previous
layer, the second node is connected to e.g. 70% of the nodes from the previous layer and so
on. Decreasing levels of information are thus contained in each node.

Reweighted autoencoded variational Bayes for enhanced sampling. RAVE [100]
is also an iterative procedure for on-the-fly CV learning and biasing. It makes use of vari-
ational autoencoders as the learning model, which enables learning the distribution of the
latent variable p(z). In the original algorithm, the method selects a CV χ from a prede-
fined set of M candidate variables χ1, . . . , χM , by minimizing the Kullback-Leibler distance



1.2. MACHINE LEARNING AND DATA DRIVEN COLLECTIVE VARIABLE DISCOVERY43

between the (empirical) distribution p(χi(x)) of the candidate CVs and the learned distri-
bution of the encoder latent variable p(z). The distribution of the selected CV is then used
to bias the dynamics by changing the original potential V into Ṽ (x) = V (x)+ 1

β ln(p(χ(x))).
The CV learned in applications of RAVE is always 1-dimensional, but the method can in
theory be used with multi-dimensional CVs. The CV can be computed for any point x as:

ξ(x) = χ(x).

Alternatively, the VAE can be used to generate the CV

ξ(x) = fenc(x).

Note that the above equation is a simplification of the actual CV which is actually obtained
as a point drawn from the distribution p(z|x) learned by the model. If a deterministic
function is preferred, the mean of this distribution can for example be used instead as
the CV.

1.2.2.D Learning a differentiable CV mapping

Some of the methods presented above, e.g. diffusion maps and Isomap, share a major
limitation: the lack of a clear differentiable mapping from the data space to the coordinate
space. Indeed, the values ξ(xi) of the CV are only computed for the samples xi belonging
to the dataset X, making the method incompatible with most collective variable biasing
algorithms, namely ABF and eABF. Here, we list some methods devised to generate a CV
function ξ by interpolation when the CV discovery method does not.

A simple interpolation method is the kernel PCA projection, or equivalently the Nyström
extension formula [124]. This method computes the interpolation for kernel based meth-
ods (e.g. Isomap or diffusion maps) using the kernel function itself. More precisely, the
projection of the eigenvector vi over a new point x is computed as:

vi(x) =
1

λi

n∑
j=1

h(xj , x)

H(x)
vji ,

where h is the kernel function, vji is the eigenvector projection on xj andH(x) =
∑n
j=1 h(xj , x).

Smooth and nonlinear data driven CV [125] (SandCV) is another interpolation method
initially devised for Isomap, but which can be used with other CV learning methods. Given
a new configuration x that is not part of the initial dataset used to compute, e.g. the
Isomap, the SandCV mapping is defined as:

C(x) = (M−1 ◦ P)(x).

The function P is a projection of the sample x to its nearest neighbor in the initial dataset
X, andM is a parametrization of a function which maps the CVs to the samples, computed
as a linear combination of a number L of smooth basis functions associated to L landmark
points ηi selected from the CV space.

Methods for constructing differentiable mappings of a previously computed CV have
also been devised with the use of neural networks. For example, diffusion nets [126] use
neural networks to derive diffusion map CVs, where the input are samples xi from the
dataset X and the corresponding outputs are their projections using the computed diffusion
map eigenvectors. Similarly, the ANNcolvar [127] uses neural networks to map the input
coordinates X to a precomputed collective variable space. The trained neural network is
then used to predict the value of the CV for new samples.
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1.2.3 Using input features and time information

The methods presented in this section make use of time series data, i.e. sampled MD
trajectories. Most of these methods are more or less related in their formulation to the
Koopman transfer operator eτL, where τ > 0 is a preselected hyperparameter called the
lag-time and L is the generator of the dynamics under consideration. We begin this section
by briefly recalling the definition and properties of this operator. We then move on to
presenting popular state of the art methods whose aim is often to approximate (explicitly
or implicitly) the Koopman operator, or more precisely its eigenfunctions.

1.2.3.A Koopman models

The description of the Koopman models given here is based on [128] and [129], and we refer
to these papers for detailed proofs and results. Koopman models are a family of methods
which approximate the Koopman operator

Kτ = eτL,

defined by the following equation: for all bounded measurable observables f :

(Kτf)(x) = E (f(xt+τ )|xt = x) .

As the Koopman operator describes the average time evolution of the system observables, its
eigenfunctions and eigenmodes are relevant representations of the dynamics of the system. It
is thus reasonable to assume that the eigenfunctions corresponding to the largest eigenvalues
of the Koopman model can constitute suitable collective variables. In fact, the eigenfunctions
of the Koopman operator are also eigenfunctions of the generator L, which are proven to
be good collective variables by several requirements in Section 1.1.5. The eigenvalues λτi of
Kτ are also related to those of L:

λτi = eλiτ .

Of course, the Koopman operator is infinite dimensional and in most cases, its analytical
expression is unknown. Koopman models use a finite dimensional, data-driven approxi-
mation of the operator and apply spectral decompositions to obtain its dominant eigen-
pairs. The data consists of one (or several) trajectory X = (x1, . . . , xn) of n configurations,
and the corresponding τ -shifted conformations, which we denote by Y = (y1, . . . , yn). X
and Y are projected on a dictionary of basis functions Ψ = (Ψ1, . . . ,ΨM ). The input
data is thus M dimensional and is denoted by ΨX = (Ψ(x1), . . . ,Ψ(xn)) ∈ Rn×M and
ΨY = (Ψ(y1), . . . ,Ψ(yn)) ∈ Rn×M .

1.2.3.B Variational approach to conformational dynamics

The variational approach to conformational dynamics [130–132] (VAC) is based on the
variational Rayleigh principle:

Theorem 3. For a given self-adjoint operator K on a Hilbert space with d largest eigen-
values λ1, . . . , λd, it holds:

d∑
k=1

λk = sup

m∑
k=1

〈Kvk, vk〉 ,

where the maximization is taken over all possible orthonormal families of m vectors v1, . . . , vd,
i.e. 〈vi, vj〉 = δij. The maximum value is reached for the first m eigenvectors of the operator
K associated with λ1, . . . , λd.
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This theorem provides a way to approximate the eigenvectors of the Koopman operator
on the Hilbert space L2(ν): Given a dictionary of basis functions Ψ1, . . . ,ΨM , VAC seeks
orthonormal functions f1, . . . , fd in the space spanned by the basis functions:

fk =

M∑
i=1

aki Ψi = (ak)TΨ,

such that
d∑
k=1

〈Kτfk, fk〉L2(ν)

is maximized. Here, we assume the basis functions Ψ1, . . . ,ΨM to be orthonormal, i.e., the
covariance matrix (C0)ij = 〈Ψi,Ψj〉L2(µ) is the identity matrix. Note that 〈Kτfk, fl〉L2(µ) =

(ak)TCτa
l where

(Cτ )ij = 〈KτΨi,Ψj〉L2(µ) = Eν(Ψi(xτ )Ψj(x0))

is the time-lagged correlation matrix. This yields:

sup
f1,...,fd

orthonormal

d∑
k=1

〈Kτfk, fk〉L2(ν) = sup
a1,...,ad

orthonormal

d∑
k=1

(ak)TCτa
k = sup

a1,...,ad

orthonormal

d∑
k=1

〈Cτak, ak〉RM .

Using the variational principle of Theorem 3 on the operator Cτ on the Hilbert space RM ,
this maximum is reached by choosing the ak as the eigenvectors of Cτ corresponding to its
d dominant eigenvalues.

In the general case, the basis functions Ψ1, . . . ,ΨM are not orthonormal but can be

transformed into a set of orthonormal basis functions Ψ̃i =
∑
j=1MC

−1/2
0 (j, i)Ψj , which

changes the eigenvalue problem for choosing the optimal orthonormal vectors ak to:

Cτa
k = λkC0a

k.

The operator Cτ and C0 are in practice approximated with the time-lagged covariance
matrix and the covariance matrix respectively:

Cτ =
1

n− 1
ΨXΨT

Y , C0 =
1

n− 1
ΨXΨT

X .

The matrix

MVAC = C+
0 Cτ ∈ RM×M

is thus an M -dimensional approximation of Kτ (here, C+
0 denotes the Moore-Penrose inverse

of C0). Eigenfunctions of Kτ can thus be approximated by the eigenvectors φl ∈ RM of
MVAC, which solve the eigenvalue problem:

Cτφl = λlC0φl. (1.38)

In practice, the definitions of C0 and Cτ can also be made symmetrical

Csτ =
1

2(n− 1)
(ΨXΨT

Y + ΨY ΨT
X), Cs0 =

1

2(n− 1)
(ΨXΨT

X + ΨY ΨT
Y ) ,
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so that the eigenvalue problem (1.38) has real valued solutions. Note that, because the
Rayleigh principle holds only for self-adjoint operators, and Kτ is self-adjoint only when the
dynamics are reversible, VAC can only be applied in the reversible case. An extension of
the approach to the general case of non-reversible dynamics is the variational approach for
Markov processes [129] (VAMP).

Remark 3. The widely used time lagged independent component analysis (tICA) [133] is a
special linear case of VAC where the basis functions are the identity functions, i.e., when no
projection of the data is performed. In general, the choice of dictionary Ψ is the only part
of VAC which introduces nonlinearity, and greatly impacts the computed approximation.

The collective variable is then the projection over the d dominant eigenfunctions a1, . . . , ad:

ξ(x) = ((a1)TΨ(x), . . . , (ad)TΨ(x)).

1.2.3.C Extended dynamic mode decomposition

The extended dynamics mode decomposition (EDMD) [128] uses a norm minimization to
approximate the Koopman operator. More precisely, EDMD computes the matrix

MEDMD = ΨY Ψ+
X = (ΨY ΨT

X)(ΨXΨT
X)+ = CTτ C

+
0 = MT

VAC.

Its transpose MT
EDMD is the solution to the minimization problem:

min
K∈RM×M

‖ΨY −KTΨX‖2F = min
K∈RM×M

1

n

n∑
j=1

‖Ψ(yj)−KTΨ(xj)‖22 ,

where ‖.‖F is the Frobenius norm. This problem is then proven to converge, when n −→ ∞
to the minimization problem

min

M∑
i=1

||KτΨi − K̂Ψi||2L2(ν)

where the minimization is over all linear mappings K̂ : V −→ V, where V ⊂ L2(ν) is the space
spanned by the basis functions Ψi. We refer to [128] for a proof of the equivalence of the two
minimization problems. The transpose of the matrix MEDMD is thus an approximation of
the Koopman operator. Consequently, its left eigenvectors can be computed to approximate
the eigenfunctions of the Koopman operator. The obtained CV is the same as the VAC CV,
i.e. the eigenfunctions of the VAC matrix MVAC.

1.2.3.D Markov state models

Markov state models (MSM) [129, 134, 135] are methods for modeling random processes
using the Markovian assumption on states defined as subsets of the conformational space:
the next state of the system is determined only by the current state. MSMs are extensively
used in molecular dynamics [136, 137]. This section briefly summarizes the method. For
a more extensive overview of the method, its variations and advances, we refer the reader
to [134,135] and references therein.

A general framework in MSMs starts with the decomposition of the configuration space
into M states s1, . . . , sM . This decomposition is often done with the use of a classical
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clustering method (e.g. K-means) on available simulated data, making it a purely geometric
decomposition. Along with this decomposition, a lag time τ is defined. The lag time
is chosen short enough to resolve the relevant slow timescales of the dynamics, and long
enough to stay within the Markovian assumption: The probability of the new state of the
system at time tk+1 = tk + τ depends only on its state at time tk. MSMs are thus a way of
coarse graining the process under study: the smaller the number of states or the larger the
lag time, the coarser the dynamics. Once the states and the lag time are defined, the MSM
is constructed as a M×M transition matrix representing the transition probabilities during
the time span τ between each pair of states (diagonal values represent the probabilities for
each state to stay in the same state after τ). The transition matrix can be computed by,
e.g., a Maximum Likelihood estimator or using Bayesian methods for example [138–140].

Importantly, when conditions of reversibility and ergodicity are fulfilled, the MSM tran-
sition matrix is proven to approximate the Koopman operator [141]. In fact, MSMs can
be seen as a special case of VAC where the basis dictionary is defined as the M indicator
functions corresponding to the M states Ψi(x) = 1si(x). The eigenvalue decomposition of
the transition matrix is thus performed to gain more insight into the system dynamics and
the obtained eigenvectors are approximations of the transfer operator eigenfunctions.

Often, the initial M state decomposition is done using a very high number of states M .
Consequently, a possible additional step, called dynamical clustering, is to coarse grain the
MSM into a smaller number of states using the computed transition matrix [142–144].

1.2.3.E Learning the basis dictionary of Koopman models

As mentioned in Remark 3, the choice of the basis dictionary Ψ is crucial to methods such
as VAC, VAMP or EDMD. Indeed, the basis functions are the only step of these methods
that introduces non-linearity to the learned CVs. Additionally, the basis dictionary deter-
mines the space of matrices over which the Koopman operator is approximated (as linear
combinations of the basis functions). As a consequence the quality of the approximation
is deeply impacted by this choice. To automatize the selection of a proper dictionary, new
methods using neural networks coupled with a well defined optimization function were de-
vised. VampNets [145] use the VAMP variational principle [129] to construct a score for any
given basis dictionary. A neural network ΨNN which maps inputs to the basis functions is
then trained to optimize this score. Similarly, state free reversible VampNets [146] also use
neural networks to learn an optimal basis dictionary, but are restricted to reversible dynam-
ics and use VAC principles to construct their learning score. The more recent Deep-tICA
method [147] combines this neural network based approach for estimating eigenvectors of
tICA/VAC with the iterative procedure presented in works such as RAVE and MESA to
perform on the fly enhanced sampling and CV learning. Generally, the obtained CV is the
VAC/VAMP projection over the neural network learned dictionary mapping:

ξ(x) = ((a1)TΨNN(x), . . . , (ad)TΨNN(x)).

1.2.3.F Time-lagged autoencoder, variational dynamics encoders

Time lagged autoencoders [122] have the same general structure as the original autoencoders
described in Section 1.2.2.C, but learn to output a time lagged conformation instead of
the input conformation. In the same notations as used in Section 1.2.3.A, the learning
dataset is X and the desired output is Y (instead of X itself). The intuition is that the
obtained bottleneck will be optimized to learn the slowly varying features of the input,
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i.e. coordinates that do not change much in the time-lag τ , implying that the obtained
low dimensional representation will capture the slow modes of the dynamics. In a similar
fashion to the analogy between linear autoencoders and PCA transformation, it is shown
in [122] that linear time-lagged autoencoders actually learn the same CV as tICA (in the
reversible case). This implies that time-lagged autoencoders could be intuitively thought of
as a deep learning based approximation of VAC where the dictionary Ψ is learned as part
of the encoder.

Variational dynamics encoders [123] also introduce time-lag to learn slow CVs, but learn
these CVs using variational rather than regular autoencoders. As for regular autoencoders,
the collective variable is the encoder mapping and can be computed for any point x as

ξ(x) = fenc(x).

1.2.3.G Past-Future information bottleneck

In what could be seen as a variation of RAVE, the authors of the original method [100]
devised the past-future information bottleneck [119]. In this modification, the autoencoder
is trained to learn a time lagged conformation from the input conformation, instead of
the input itself. Additionally, the bottleneck CV is learned as a linear combination of
the predefined RCs χ1, . . . , χM , and its learned distribution is directly used in the biasing
procedure, instead of being matched to the distribution of a single putative RC χ. The CV
can be computed for any point x as

ξ(x) = fenc(x) =

M∑
i=1

wiχi(x).

1.2.4 Using input features and knowledge of conformational states

One of the least explored fields of ML for collective variable discovery is supervised learning.
This is more than justified by the fact that supervised learning models rely on the knowledge
of a label set y associated with the dataset X. In molecular dynamics, this label set assigns
for example a metastable state to each sample. Yet the assumption that these states are
known and distinguished makes supervised learning models non applicable in many cases.
Indeed, the assumption that not only are all the metastable states of the system known,
but that conformations corresponding to each of these states have been identified, is very
limiting. Especially, this implies that the transition to any new previously unknown state
can be difficult to achieve or determine. Nevertheless, in cases where all conformational
states are known and the samples can indeed be assigned to states, it seems essential to
include this information to the learning of a collective variable, as this will help recover a
CV which distinguishes the various conformational states by construction.

1.2.4.A Supervised learning decision functions as collective variables

Using simple supervised learning algorithms, namely support vector machine (SVM) and
logistic regression (LR), the decision functions learned to separate metastable states are
used as collective variables [148]. For simplicity, we consider a system formed of only two
metastable states A ⊂ X and B ⊂ X , such that A ∩B = ∅ .
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Support vector machine. Support vector machine (SVM) is a linear classifier which
separates the space of features using the hyperplane that maximizes the gap between the
two classes, i.e. the minimal distance between two points from different classes. The method
optimizes the projection coefficients w ∈ RD and the bias b ∈ R such that for every config-
uration xj ∈ RD with label yj = −1 (state A) or yj = 1 (state B):

yj(wTxj − b) ≥ 1 .

By optimizing w and b to satisfy the equality above for all xj and yj , the hyperplane
wTx − b = 0 represents a separation between the two classes: State A (i.e. class y = −1)
falls on one side of the hyperplane, and State B on the other. This version of SVM is called
hard-margin SVM and works under the assumption that the data is linearly separable. This
is often not the case, and instead the soft-margin version of the method is used, where the
optimal coefficients and bias are obtained by solving:

min
w∈RD,b∈R

n∑
j=1

max
(
0, 1− yj(wTxj − b)

)
+ λ‖w‖22 .

Here λ is a term used to determine a tradeoff between increasing the margin size (λ large)
and ensuring the datapoints are all classified correctly (λ small). The distance of each point
to the SVM hyperplane is then used as the collective variable, for any x:

ξ(x) =
wTx− b
‖w‖2

.

Logistic regression. Using the same notation as before, the logistic regression (LR)
classifier models the conditional probability P (y = 1|x) as a sigmoid function:

P (y = 1|x) = σ(wTx− b) ,

where σ(z) = 1
1+e−z . The coefficients w ∈ RD and bias b are then optimized to maximize

the log-likelihood of the model.

n∑
j=1

log(P (y = yj |xj) =

n∑
j=1

1yj=1 log(P (y = 1|xj)) + 1yj=−1 log(1− P (y = 1|xj))

=
n∑
j=1

1yj=1 log

(
1

1 + e−wT x+b

)
+ 1yj=−1 log

(
ew

T x−b

1 + e−wT x+b

)

=

n∑
j=1

log

(
1

1 + e−yj(wT x−b)

)
.

The loss to minimize is thus:

min
w∈RD,b∈R

n∑
j=1

log
(
1 + exp (−yj(wTxj − b))

)
+ λ‖w‖2 ,

where λ is a regularization parameter. The probability P (y = 1|x) represents the decision
function of the logistic regression model, and is used as a collective variable which can be
computed for any point x:

ξ(x) = P (y = 1|x) = 1− P (y = −1|x) = σ(wTx+ b).
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Alternatively, the odds ratio
P (y = 1|x)

1− P (y = 1|x)
can be used.

Note that any linear or nonlinear supervised learning method used for classification can
be used here instead of SVM or LR, as long as the corresponding decision function is a dif-
ferentiable mapping. Additionally, both SVM and LR can be extended to handle situations
with more than two classes, the corresponding decision function being d-dimensional when
the number of classes (i.e. states) is d+ 1.

1.2.4.B Linear discriminant analysis

Linear discriminant analysis (LDA) is a linear supervised learning method for classification
and dimensionality reduction which uses Fisher’s discriminant. Given the dataset X of
n samples, each belonging to one of C classes, the method separates the scatter (or the
covariance) matrix of the dataset into two components: the within scatter matrix

Sw(X) =

C∑
c=1

[∑
i∈sc

(xi − x̄c)(xi − x̄c)T
]

,

and the between scatter matrix

Sb(X) =

C∑
c=1

nc(x̄c − x̄)(x̄c − x̄)T .

Here, sc, nc and x̄c are respectively the set, the number and the mean of the samples
belonging to class c, and x̄ is the mean of all samples. The method then seeks to maximize
the Fisher discriminant:

max
W∈RD

J(W ), J(W ) =
WSb(X)WT

WSw(X)WT
. (1.39)

This optimization problem seeks a projection of the data ξ(X) = WX into the direction
W which maximizes the scatter between classes S̃b(ξ(X)) = WSb(X)WT , while minimizing
the scatter within each class S̃w(ξ(X)) = WSw(X)WT . The optimization problem (1.39)
is then reformulated and solved as a generalized eigenvalue problem:

Sb(X)W = λSw(X)W .

Note that the above eigenvalue problem has at most C − 1 non-zero eigenvalues as by
construction, Sb has rank at most C − 1. Indeed, Sb is a sum of C outer product matrices
(x̄c − x̄)(x̄c − x̄)T , thus each of rank at most 1, and

∑C
c=1 nc(x̄c − x̄) = 0.

The projection
ξ(x) = (W1x, . . . ,WC−1x)

is the learned CV.
In harmonic LDA [149] the computation of the within scatter matrix is changed into a

harmonic average instead of an arithmetic average of the class specific scatter matrices. The
obtained CV is shown to be in practice more efficient for class separation. In deep LDA [150],
the Fisher discriminant is used in the loss function of a nonlinear neural network, making the
network efficiently learn nonlinear descriptors or features, and use LDA on these descriptors
to obtain the CV.
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1.2.4.C Multitask learning, extended autoencoders

The autoencoder structure introduced in Section 1.2.2.C can be used to include information
on metastable states by adding a second output layer linked to the bottleneck CV layer and
independent of the decoder. This second output optimized on a supervised learning task
(e.g. state classification) simultaneously as the remainder of the autoencoder learns dimen-
sionality reduction and input reconstruction, in a multi-task learning fashion [151]. This
simple idea is the basis of the extended autoencoders introduced in [152], where the authors
use an autoencoder which includes the usual decoder output, and a nonlinear regression
output trained to learn the committor function. As mentioned above, both outputs are
independently computed from the bottleneck CV layer. Consequently, the learned CV con-
tains a mix of information necessary for both the decoder reconstruction and the accurate
prediction of the committor.

1.3 Main Contributions

In this section, I briefly describe the main contributions of this work. The first one in Sec-
tion 1.3.1 concerns our iterative algorithm for CV discovery, which uses sample reweighting
to ensure convergence of the learned CV. The second contribution, summarized in Sec-
tion 1.3.2 concerns the use of machine learning methods to learn collective variables, guide
biased simulations and sample transitions between metastable states of HSP90. I also par-
ticipated in the writing of an overview article [20] following a CECAM (Center Européen de
Calcul Atomique et Moléculaire) discussion meeting 1. The meeting was entitled ”Coarse-
graining with Machine Learning in Molecular Dynamics”. It was co-organized by Sanofi,
Ecole des Ponts ParisTech and Sorbonne University, and brought together a total of 29
participants.

1.3.1 Finding collective variables using autoencoders and biased
trajectories

Machine learning and dimensionality reduction models require a certain amount of good
quality data to learn relevant information. In the case of molecular dynamics, the availabil-
ity of a ”complete” trajectory, i.e. which visits the whole conformational states, is often the
initial problem at hand due to the presence of metastability. A natural solution to overcome
this difficulty is to use learning models in an iterative fashion. This can be done by training
a model to learn a suboptimal CV from available data, which does not cover the whole
space of conformations, then using this CV for enhanced sampling to generate additional
learning data, and so on. Autoencoders have been used in iterative methods for CV learn-
ing in previous literature. For example, molecular enhanced sampling with autoencoders
(MESA) [93, 94] is a framework that alternates between autoencoder learning of CVs and
free-energy biasing along those CVs. This kind of iterative procedure can in theory be used
for any of the dimensionality reduction models presented in Section 1.2 and any collective
variable biasing method, i.e. the reaction coordinate based free energy methods presented
in Section 1.1.3. However, it is important to recall that biased sampling makes the distribu-
tion of the sampled configurations drift from the Boltzmann–Gibbs density. Changing the
distribution of the data results in changing the loss function optimized by the model. In

1website: https://cermics-lab.enpc.fr/cecam_ml_md/

https://cermics-lab.enpc.fr/cecam_ml_md/
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the case of an iterative algorithm for CV learning and enhanced sampling, this implies that
at each iteration, the training data coming from a biased simulation has a different distri-
bution, and the model thus optimizes a different loss. This means that iterative models are
not guaranteed to converge to a certain CV, regardless of whether they end up obtaining a
good sampling of the conformational space.

Chapter 2 consists of a reprint of the work published in [19] where we present a new
iterative algorithm for CV learning with autoencoders, named FEBILAE for ”Free Energy
Biasing and Iterative Learning with AutoEncoders”. Our algorithm is inspired from methods
such as MESA, but adds a simple yet crucial reweighting step of the data sampled from free
energy biased simulations, so as to ensure the consistency of the optimized loss, and thus
the convergence of the learned CVs. Figure 1.3 shows the general framework of FEBILAE.

As mentioned above, this iterative algorithm can be used with any collective variable
based biasing technique and any dimensionality reduction method that provides a differ-
entiable mapping from the configurational space to the CV space. In this study, we use
autoencoders combined with eABF 1.1.4.B. This implementation is coined AE-ABF. The
method is applied to three systems of increasing complexity:

• A 2D toy system of a three well potential. This system is first used fto demonstrate
how the reweighting procedure can be essential for the convergence of the iterative
method. The AE-ABF method is then applied to this system, and convergence of the
CV, as well as full sampling of the conformational space are reached after 4 iterations.

• Alanine dipeptide in vacuum. This simple system is extensively used in ML applica-
tions for MD simulation analyses. Here, the AE-ABF methods learns a CV of alanine
dipeptide after 4 − 5 iterations. This CV is then proven upon extensive analysis to
be highly correlated to the dihedral angles Φ and Psi, and almost match them in
sampling efficiency.

• Chignolin mini-protein. AE-ABF is also applied to this small 10-residue protein, whose
folded, misfolded and unfolded states are adequately described by the learned autoen-
coder CV. This variable’s efficiency for biased sampling of the chignolin conformational
space is also showcased in comparison to a physically relevant CV of the system.

1.3.2 Exploring conformations of HSP90 using machine learning
guided biased simulations

The 90 kDa heat shock protein (HSP90) is a large protein of great interest in cancer re-
search, as well as many other diseases. Understanding its mechanism of action is central to
developing drugs which target this protein. Previous works on this system show that the
activity of the protein can be regulated by targetting a specific domain of it, the N-terminal
domain (NTD), which binds to the ATP.

In Chapter 3, we use machine learning and clustering methods to drive biased MD
of the solvated HSP90 NTD. First, clustering of various crystal structure of the NTD is
applied to determine the conformational states of this domain. This clustering model is
based on the dihedral angle values in a specific region of interest situated near the active
site (i.e. the ATP binding site) of the NTD. Six conformational clusters are identified (see
Figure 1.4) and conformations representing each states are selected. Then, short unbiased
MD simulations are run from each of the identified states, in order to compose a large and
structurally diverse dataset of conformations. This dataset is then used as a training set



1.4. RÉSUMÉ DE LA THÈSE EN LANGUE FRANCAISE 53

Figure 1.3: A general framework for FEBILAE

to learn collective variables of HSP90 using an autoencoder. The obtained autoencoder CV
is analyzed to assess its efficiency for distinguishing between the NTD conformation states.
Then, eABF simulations are performed using the autoencoder CV. To analyze the obtained
trajectories, a protocol is devised for detecting transitions between the previously identified
states. In this protocol, a pre-identification of possible transitions is first performed using the
values of the autoencoder CV visited during the biased simulations. Then, further analysis
is conducted, based on RMSD computations local to the region of interest near the active
site. Additionally, dihedral clustering and dihedral PCA, are used to further investigate the
structural changes in the active site region of interest throughout the biased simulation, and
link these changes to the observed transitions. Finally, a hydrogen bonds based analysis
is also conducted. While multiple biased simulations were performed withing this work,
the transition identification protocol is mainly illustrated on one 100 ns simulation which is
proven to achieve a transition between two of the identified states. Other biased simulations
which achieved transitions are also illustrated in supplementary results. Generally, the
obtained results show that the autoencoder CV provides a clear separation between the
identified states of the HSP90 NTD. Additionally, using this CV for eABF simulations is
shown to enable sampling of transitions between the conformational states.

1.4 Résumé de la thèse en langue francaise

Avec l’amélioration continue de la capacité de calcul des ordinateurs, les méthodes d’apprentissage
automatique ont permi le développement de nouvelles solutions aux problèmes dans divers
domaines. En particulier, l’apprentissage automatique a été largement utilisé au cours de
la dernière décennie dans le domaine de la biochimie computationnelle et de la découverte et
développement de nouveaux médicaments. Cela inclut l’application de méthodes d’apprentissage
automatique pour la définition de nouvelles molécules, la détermination de sites impor-
tants dans les protéines ciblées, la conception de champs de force adéquats fondés sur
des résultats expérimentaux ou encore l’amélioration de l’efficacité de l’échantillonnage
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Figure 1.4: Six identified conformational states of HSP90

des conformations moléculaires d’un système donné. Cette thèse de doctorat se concen-
tre sur la dernière tâche consistant à utiliser des méthodes d’apprentissage automatique
pour améliorer l’échantillonnage en dynamique moléculaire. En effet, les simulations de dy-
namique moléculaire se sont avérées être un outil très utile en complément des expériences
en laboratoire. Malgré leur large utilisation pour capturer les phénomènes rapides, il existe
encore de nombreux cas où les échelles de temps accessibles aux simulations de dynamique
moléculaire sont bien plus petites que les échelles de temps nécessaires pour l’observation des
changements conformationnels importants du système, en raison de la présence de barrières
hautes dans le profil énergétique.

Pour faire face à ce problème, plusieurs méthodes d’échantillonnage amélioré ont été
conçues pour atténuer les difficultés d’échantillonnage associées à la métastabilité. La plu-
part de ces méthodes peuvent être globalement divisées en deux catégories selon qu’elles
utilisent ou non des variables collectives (CV), également appelées coordonnées de réaction,
qui sont des représentations de petite dimension du système:
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• Les méthodes sans variables collectives modifient la distribution canonique en modi-
fiant par exemple la température ou l’hamiltonien du système pour accélérer le fran-
chissement de barrières énergétiques ou entropiques. Cette catégorie comprend, par
exemple, le Simulated Tempering, le Parallel Tempering, le Replica Exchange MD,
la simulation multicanonique, la dynamique accélérée par température citetemp4 ou
l’algorithme de Wang-Landau.

• Les méthodes utilisant des variables collectives modifient la dynamique du système en
ajoutant un biais afin d’accélérer la dynamique en aplatissant les barrières énergétiques
le long d’une CV choisi. La plupart de ces méthodes calculent simultanément l’énergie
libre associée à ces CV. Des exemples notables incluent la Metadynamics qui biaise
l’évolution du système en utilisant un potentiel construit comme une somme de vari-
ables gaussiennes centrées le long de la trajectoire de la CV; de même, l’Umbrella
Sampling ajoute un potentiel de biais le long des CV, souvent de forme harmonique,
pour forcer le système à visiter des régions intermédiaires entre des états métastables.
Les méthodes ABF pour adaptive biasing force ajoutent une force à la dynamique du
système afin d’éliminer toute force moyenne agissant le long des CV, rendant la dy-
namique plus diffusive le long de ces directions. L’efficacité de ces méthodes repose de
manière cruciale sur la connaissance préalable d’une ou plusieurs CV qui contiennent
la plupart des fonctions métastables de la dynamique, et distinguent ainsi clairement
les états métastables.

Dans des cas simples, la CV peut être choisie suivant l’intuition et la connaissance préalable
du système en question. C’est par exemple le cas de la dialanine, molécule pour laquelle
deux CV connues sont les angles dièdres φ et ψ. Pour les systèmes plus complexes, des
CV adéquates sont souvent difficiles à deviner. Dans ce cas, les variables collectives peuvent
être identifiées à l’aide d’algorithmes d’apprentissage automatique et de réduction de dimen-
sionalité. En plus d’être utilisées pour accélérer l’échantillonnage, les variables collectives
construites par apprentissage automatique aident également à acquérir une connaissance
précieuse du système étudié, à savoir en facilitant la visualisation de ses différents états,
ainsi que de son profil d’énergie libre.

Dans ce travail, d’importantes notions et définitions de la dynamique moléculaire sont
d’abord présentées avant de passer en revue les algorithmes d’apprentissage automatique de
pointe qui ont été conçus ou appliqués ces dernières années pour la construction automatique
de variables collectives. Ensuite, la méthode développée au cours de cette thèse, baptisée
”Free energy biasing and machine learning with autoencoders” (FEBILAE), est introduite.
Cette méthode utilise un schéma itératif pour générer alternativement de nouvelles sim-
ulations et apprendre les variables collectives à partir de ces simulations en utilisant des
autoencodeurs. Enfin, nous présentons l’application de méthodes d’apprentissage automa-
tique à un véritable système d’intérêt. Ici, des autoencodeurs sont utilisés pour apprendre les
variables collectives de la protéine chaperone HSP90, dans le but d’effectuer des simulations
biaisées de ce système.

1.4.1 Recherche de variables collectives à l’aide d’auto-encodeurs
et de trajectoires biaisées

Tout modèle d’apprentissage ou de réduction de dimensionnalité nécessite une certaine quan-
tité de données de bonne qualité pour apprendre des informations pertinentes. Dans le
cas de la dynamique moléculaire, le manque de données (échantillonnage incomplet) est le
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problème initial qui se pose. Une solution naturelle pour surmonter cette difficulté consiste à
utiliser des modèles d’apprentissage de manière itérative. Cela peut être fait en construisant
des modèles optimisées via les données disponibles, puis en utilisant les CV apprises pour
un échantillonnage amélioré afin de générer des données d’apprentissage supplémentaires,
et ainsi de suite. Les auto-encodeurs ont été utilisés dans des méthodes itératives pour
l’apprentissage de CV dans la littérature précédente. Par exemple, MESA (échantillonnage
amélioré par autoencodeurs) est une méthode qui alterne entre l’apprentissage par autoen-
codeur des CV et le biaisage d’énergie libre (plus précisément par Umbrella Sampling) le
long de ces CV. Notons tout d’abord que ce type de procédure itérative peut en théorie
être utilisé pour tout modèle de réduction de dimensionnalité et toute méthode de biais CV.
Cependant, il est important de noter qu’un échantillonnage biaisé fait dériver la distribution
des configurations échantillonnées de la densité de Boltzmann–Gibbs. La modification de
la distribution des données entrâıne la modification de la fonction optimisée par le modèle
d’apprentissage automatique.

Dans le cas d’algorithmes itératifs d’apprentissage de CV et d’échantillonnage amélioré,
cela implique qu’à chaque itération, les données d’apprentissage provenant d’une simulation
biaisée ont une distribution différente, et le modèle optimise une fonction différente. Cela
signifie que les modèles itératifs tels que MESA ne sont pas garantis de converger vers
une certaine CV, qu’ils finissent ou non par obtenir un bon échantillonnage de l’espace de
configuration.

Nous présentons ici un nouvel algorithme itératif pour l’apprentissage de CV avec auto-
encodeurs, nommé FEBILAE pour ”Free Energy Biasing and Iterative Learning with Au-
toEncoders”. Notre algorithme s’inspire de méthodes telles que MESA et ajoute une étape
simple mais cruciale de repondération des données obtenues de simulations biaisées, afin de
garder inchangée la fonction optimisée par les modèles d’apprentissage, ce qui permet la
convergence des CV apprises.

L’algorithme FEBILAE peut être utilisé avec toute méthode de biaisage basée sur des
variables collectives et toute méthode de réduction de dimensionnalité qui fournit une fonc-
tion différentiable de l’espace des configurations moléculaire à l’espace de CV. Dans ce
travail, nous utilisons des auto-encodeurs combinés avec ABF. Cette implémentation est
dénommée AE-ABF. La méthode est appliquée à trois systèmes de complexité croissante:

• Potentiel à trois puits en 2 dimensions. Ce système est d’abord utilisé pour montrer
comment la procédure de repondération peut être essentielle à la convergence de la
méthode itérative. La méthode AE-ABF est ensuite appliquée à ce système, et la
convergence de la CV, ainsi que l’échantillonnage complet de l’espace conformationnel
sont atteints après 4 itérations.

• Dialanine sous vide. Ce système simple est largement utilisé dans les applications
d’apprentissage automatique pour léanalyse de simulations en dynamique moléculaire.
Ici, les méthodes AE-ABF apprennent une CV dde la dialanine après 4− 5 itérations.
Il est ensuite prouvé, après une analyse approfondie, que cette CV est fortement
corrélée aux angles dièdres Φ et Psi, et qu’elle les égale presque en termes d’efficacité
d’échantillonnage.

• Chignoline. AE-ABF est également appliqué à cette petite protéine de 10 résidus,
dont les états replié, mal replié et déplié sont décrits de manière adéquate par la CV
apprise par auto-encodeur. L’efficacité de cette CV pour l’échantillonnage biaisé de
l’espace conformationnel de la chignoline est également présentée et comparée à une
CV physiquement pertinente du système.
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1.4.2 Exploration des conformations de HSP90 à l’aide de simula-
tions biaisées guidées par apprentissage automatique

HSP90 est une protéine d’un grand intérêt pour la recherche sur le cancer, ainsi que sur de
nombreuses autres maladies. La compréhension de son mécanisme d’action est essentielle au
développement de médicaments ciblant cette protéine. Des travaux antérieurs sur ce système
montrent que l’activité de la protéine peut être régulée en ciblant un domaine spécifique de
celle-ci, le domaine N-terminal (NTD), qui se lie à l’ATP.

Dans ce travail, nous utilisons des méthodes d’apprentissage automatique et de cluster-
ing pour guider les simulations biaisé du NTD de HSP90. Tout d’abord, diverses struc-
tures cristallines du NTD sont regroupées pour déterminer les états conformationnels de
ce système. Ce modèle de regroupement est basé sur les valeurs d’angles dièdres dans une
région d’intérêt spécifique située près du site actif (c’est-à-dire le site de liaison à l’ATP)
du NTD. Six clusters conformationnels sont identifiés (voir Figure 1.4) et les conformations
représentant chaque état sont sélectionnées. Ensuite, de courtes simulations moléculaires
non biaisées sont effectuées à partir de chacun des états identifiés, afin de composer un
ensemble de données de conformations vaste et structurellement diversifié. Cet ensemble de
données est ensuite utilisé comme ensemble d’apprentissage pour construire les variables col-
lectives de HSP90 à l’aide d’un auto-encodeur. La CV obtenue est analysée pour évaluer son
efficacité à distinguer les états confomationnels du NTD. Ensuite, des simulations ABF sont
effectuées à l’aide de la CV. Pour analyser les trajectoires obtenues, un protocole est mis au
point pour détecter les transitions entre les états précédemment identifiés. Dans ce proto-
cole, une pré-identification des transitions possibles est d’abord effectuée à partir des valeurs
de la CV visitées lors des simulations biaisées. Ensuite, une analyse plus approfondie est
effectuée, basée sur des calculs RMSD localisés à la région d’intérêt à proximité du site actif.
De plus, le clustering des angles dièdres et une ACP basée sue ces angles sont utilisés pour
étudier plus encore les changements structurels dans la région du site actif d’intérêt tout au
long de la simulation biaisée et lier ainsi ces changements aux transitions observées. Enfin,
une analyse basée sur les liaisons hydrogène est également effectuée. Bien que plusieurs simu-
lations biaisées aient été effectuées dans le cadre de ce travail, le protocole d’identification de
transitions est principalement illustré sur une simulation de 100 ns qui réalise une transition
entre deux des états identifiés. D’autres simulations biaisées qui ont réalisé des transitions
sont également illustrées dans des résultats supplémentaires. Généralement, les résultats
obtenus montrent que la CV de l’auto-encodeur fournit une séparation claire entre les états
identifiés du NTD. De plus, l’utilisation de cette CV pour les simulations ABF permet
l’échantillonnage des transitions entre les états conformationnels.
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Chapter 2

Chasing collective variables
using autoencoders and biased
trajectories

This chapter is a reprint of the article published in [19] to the Journal of Chemical Theory
and Computation.

2.1 Introduction

In the last decades, molecular dynamics (MD) simulations have helped gain insight into the
microscopic and macroscopic properties of biomolecular processes. However, the time scales
accessible to MD simulations are often significantly smaller than the times needed for the
observation of slow conformational changes of the systems under study [1,2]. This is due to
the presence of energy or entropy traps in the energy landscape, which causes the system to
be stuck within metastable states and thus hinders the full exploration of the configurational
space. As a consequence, thermodynamic quantities (obtained from trajectorial averages)
can not be accurately estimated.

To cope with this issue, several methods for enhanced sampling have been designed to
mitigate the sampling difficulties associated with metastability [3,4]. Most of these methods
can be broadly divided into two categories according to whether or not they use collective
variables (CV), also known as reaction coordinates, which are low dimensional or coarse-
grained representations of the system:

• Collective variable free methods alter the canonical distribution by e.g. modifying
the system temperature or the system Hamiltonian in order to accelerate crossing
energetic or entropic barriers. This category includes, for example, simulated temper-
ing [5], parallel tempering [6], replica exchange MD [7], multicanonical simulation [8],
temperature-accelerated dynamics [9] or the Wang-Landau algorithm [10].

• Collective variable based methods modify the system’s dynamics by adding a bias in
order to accelerate the dynamics by flattening the energy barriers along a chosen CV.
Most of these methods simultaneously calculate the free energy associated to these

59
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CVs. Notable examples include metadynamics [11, 12], which biases the system’s
evolution using a potential constructed as a sum of Gaussian variables centered along
the trajectory of the CV; likewise, umbrella sampling [13,14] adds a biasing potential
along the CVs, often of harmonic form, to force the system to visit intermediate
regions between metastable states. Adaptive biasing force (ABF) methods [15–17]
add a biasing force to the system dynamics so as to eliminate any average force acting
along the CVs, rendering the dynamics more diffusive along these directions. The
efficiency of these methods crucially relies on the prior knowledge of a proper low
dimensional CV which contains most of the metastable functions of the dynamics,
and thus in particular clearly distinguishes between the metastable states.

In simple cases, the CV can be chosen based on intuition and prior knowledge of the system
at hand. This is for example the case for alanine dipeptide [153], for which two known CVs
are the φ and ψ dihedral angles. For more complex systems, adequate CVs are often difficult
to guess. There have been attempts in the last years to extract CVs using dimensionality
reduction and machine learning (ML) methods [79].

Collective variable discovery methods range from simple linear projections such as prin-
ciple component analysis (PCA) or factor analysis, to more elaborate algorithms involving
non linear and/or dynamically relevant projections of the configurational space. Below, we
recall some notable works on automatic CV discovery and design, but we do not aim to
be exhaustive nor do we give a detailed comparison of these algorithms. For a more com-
plete overview on optimization and learning methods for CV discovery and in molecular
dynamics in general, we refer the reader to Refs.20, 82, 83. We choose here to distinguish
between three broad categories of methods: Operator-based methods, which aim at building
a coarse grained description of the dynamics; metastable state separation methods, which
use supervised machine learning; and unsupervised learning methods for dimensionality
reduction.

Operator-based methods account for the dynamical properties of the system under study
by using the approximation of a transfer operator or generator associated with the dynamics.
Notable examples are the variational approach to conformational dynamics [128,130] (VAC)
and its linear version, time lagged independent component analysis (tICA), the extended
dynamic mode decomposition [128,154] (EDMD), Diffusion Maps [107,108] or Markov State
Models [134, 135], which can also be considered a special case of VAC. Methods like VAC
can often be optimized by using a well defined dictionary of functions to represent the
system (instead of using the system coordinates in the case of tICA [133]). For instance,
VAMPNets [145] and state-free reversible VAMPNets [146] learn this dictionary using neural
networks.

Methods for metastable state separation use supervised learning for feature selection and
feature engineering [78,148,155]. Supervised learning models are trained on a labeled dataset
and learn a mapping from the datapoints to their labels. In CV discovery, the dataset is the
set of sampled configurations and the labels are usually their corresponding states (which are
thus assumed to be known). In particular, feature selection based CV learning uses a set of
candidate CVs as input features. Each feature is then given an importance score according
to its contribution to the learned model, and the most relevant features are selected as final
CVs. Feature engineering methods on the other hand compute a new CV from the input
features. Notable examples include Ref 148 where decision functions learned by support
vector machines are used as collective variables; Ref 156 where a 1-dimensional path CV is
constructed as a nonlinear combination of classifier CVs obtained from a supervised neural
network model; or Ref 150 where a neural network is also used in combination with an LDA
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objective function.

Unsupervised learning models for CV identification, on the other hand, are trained on
unlabeled datapoints (namely the sampled configurations without any additional informa-
tion). These learning models aim at recovering patterns and intrinsic properties of the vis-
ited configurational space. Currently, the most used non linear ML dimensionality reduction
method for CV discovery is auto-associative neural networks, also known as autoencoders
(AE) [115]. Autoencoders are a type of neural networks that aim at learning low dimen-
sional representations of the data. The network is composed of two parts. The first part
is the encoder that learns the representation or encoding of the input. The second part is
the decoder, it simultaneously learns to reconstruct the input from the encoding. Then,
the obtained encoding map can be used as a CV. Many state-of-the-art methods for CV
unsupervised learning include autoencoders in their framework. For example, time lagged
autoencoders [122] train the decoder to predict the time-lagged configuration instead of the
input configuration, thus factoring time evolution into the learned CV. Some works [121] use
variational autoencoders [118], a class of models which combine autoencoder structure with
Bayesian inference to learn a latent variable distribution through a probabilistic (instead
of deterministic) encoder and decoder, resulting in a generative decoder in addition to the
dimensionality reducing encoder. Variational dynamics encoders [123] employ the time-lag
refinement on variational autoencoders. To learn CVs which resolve the different metastable
states, the authors in Ref 120 use Gaussian mixture variational AEs. Another example is
Ref 152 where extended autencoders are used to predict the committor function. Of course,
many methods for unsupervised CV learning do not include autoencoders, instead using,
e.g. Bayesian models [157] or information theory based methods [158].

Naturally, any learning or dimensionality reduction model requires a certain amount of
good quality data to learn relevant information. In the case of molecular dynamics, the
lack of data (incomplete sampling) is the initial problem at hand. A natural solution to
overcome this difficulty is to use learning models in some iterative fashion. This can be
done by training models on available data and using the learned CVs for enhanced sampling
to generate additional learning data, and so on. Autoencoders have been used in iterative
methods for CV learning in previous literature. For example, molecular enhanced sampling
with autoencoders (MESA) [93, 94] is a framework that alternates between autoencoder
learning of CVs and free-energy biasing (more specifically umbrella sampling) along those
CVs. Note first that this kind of iterative procedure can in theory be used for any dimen-
sionality reduction model and any CV biasing method. However, it is important to note
that biased sampling makes the distribution of the sampled configurations drift from the
Boltzmann–Gibbs density. Changing the distribution of the data results in changing the
loss function optimized by any model. In the case of iterative algorithms for CV learning
and enhanced sampling, this implies that at each iteration, the training data coming from a
biased simulation has a different distribution, and the model optimizes a different loss. This
means that iterative models such as MESA are not guaranteed to converge to a certain CV,
regardless of whether they end up obtaining a good sampling of the configurational space.
Even in cases when the search for a collective variable of the system is not the goal, this
still poses the issue of how to design a stopping rule for the iterative procedure.

Here, we present a new iterative algorithm for CV learning with autoencoders, named
FEBILAE for ”Free Energy Biasing and Iterative Learning with AutoEncoders”. Our algo-
rithm is inspired from methods such as MESA, but adds a simple yet crucial reweighting
step of the data sampled from free energy biased simulations, so as to ensure the consistency
of the optimized loss, and thus the convergence of the learned CVs. Note that a reweighting
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protocol is also used in other iterative methods, notably the reweighted autoencoded varia-
tional Bayes for enhanced sampling (RAVE) [100,119]. RAVE uses a variational autoencoder
that takes as input one or more pre-selected variables and iteratively learns a CV and its
distribution. This CV is then used for biasing. In RAVE, the learned CV is always one
dimensional in practice and is learned as a linear combination of the preselected variables
(through a linear encoder). This is the key difference of the specific method compared to
FEBILAE: our CV is learned as a nonlinear function of the input coordinates, rather than a
linear combination of a preselected set of order parameters or candidate collective variables.
Consequently, the FEBILAE CV is representative of the whole system, and does not require
prior knowledge of the system to select the input, although it lacks interpretability.

The FEBILAE algorithm can be used with any collective variable based biasing technique
and any dimensionality reduction method that provides a differentiable mapping from the
configurational space to the CV space. Moreover, in order to accelerate convergence, we
propose an iterative procedure where information from each step, namely the trajectory
data, the estimated free energy, or the learned model, are judiciously used in the following
steps of the iterative procedure. We finally present the results of our implementation of
the algorithm, which we coin AE-ABF, as it uses ABF to perform enhanced sampling using
autoencoder learned CVs.

This article is organised as follows. We first provide in Section 2.2 an introduction to
autoencoders and their use for dimensionality reduction and then move on to a theoretical
analysis highlighting that the learned model is always dependent on the distribution of the
training data. We continue by demonstrating how a simple reweighting procedure of the
loss function can be applied to target a specific density distribution. We then introduce in
Section 2.3 our algorithm for iteratively learning a CV, and present some refinements that
can be incorporated to the method for more efficiency, and possibly for a faster convergence.
For an immediate illustration of the theoretical points made in Sections 2.2 and 2.3, we
intertwine the presentation of these theoretical concepts with numerical results obtained
on a 2-dimensional toy example. Section 2.4 then summarizes the practical details and
parameters of the implementation of AE-ABF for molecular systems. Finally, Section 2.5
presents the results obtained when applying AE-ABF to two different systems: alanine
dipeptide in vacuum, and solvated chignolin. Section 2.6 contains our conclusions and some
variants of the method which could be useful for applications to other systems. Finally,
additional results and details are given in the supplementary material.

2.2 Learning autoencoder collective variables from
(un)biased samples

We briefly introduce in Section 2.2.1 autoencoders and their use for dimensionality reduction.
Section 2.2.2 then recalls the usual processing steps required to convert trajectory data to
autoencoder inputs. We then describe in Section 2.2.3 how autoencoders are trained. We
can then make precise in Section 2.2.4 how the training is impacted by the distribution
of the data, and present a reweighting procedure to correct a bias in the distribution of
data points. Finally, Section 2.2.5 introduces a 2-dimensional toy example, which we use to
illustrate the points made in Sections 2.2.3 and 2.2.4 in particular.
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2.2.1 Autoencoders

Autoencoders (AE) [115] are a type of neural network designed for unsupervised learning
tasks. The aim is usually to learn a new representation of the data, called an encoding. The
AE is composed of two parts: the encoder learns the new representation and the decoder
simultaneously learns to reconstruct the original data from this representation. The AE
thus seeks to approximate the identity function. When the encoder is composed of one fully
connected layer which reduces the dimension, together with a linear activation function,
its learned representation is essentially the same as that of a PCA projection of the same
dimensionality [116, 117]: more precisely, the two models project on the same bottleneck
space, but not using the same vectors. In general, however, AEs are used with nonlinear
activation functions. This allows for nonlinear encoding functions, and thus potentially
better encoders than those restricted to stay within the smaller class of linear functions.

AEs can have different topologies depending on the learning task, the data size and
dimensionality, etc. Here, we describe the general autoencoder topology used in this work.
We denote by X ⊆ RD the data space, and by A ⊆ Rd a lower dimensional space (d < D).
Figure 2.1 presents the typical topology of the AEs used in our work. The autoencoder can
be represented by a mapping f = fdec ◦ fenc where fenc : X −→ A, fdec : A −→ X and ◦
is the function composition operator i.e. fdec ◦ fenc(x) = fdec (fenc(x)). It is symmetrical
in structure, fully connected, and contains 2L layers. Each hidden layer is of dimension
d` = d2L−` for ` = 1 . . . L, and the output layer is of dimension d2L = D (Note that, by
convention, the input layer does not count as a layer of the network). Each layer ` ∈ 1, . . . , 2L
has an activation function g` and is connected to the previous layer by a projection matrix

W` ∈ Rd`×d`−1 , and a bias vector b` ∈ Rd` . There are thus K =

L∑
`=1

d`d`−1+d` learnable real

parameters denoted by (p1, . . . , pK) ∈ RK . As the activation functions are predefined and
do not change during learning, the autoencoder function is fully described by its parameters
p = (pk)k=1,...,K . We indicate this dependence as fp. The general formula for fp is:

∀x ∈ X , fp(x) = g2L [b2L +W2L g2L−1 (b2L−1 +W2L−1 . . . g1(b1 +W1x))] ,

where the activation functions are by convention applied element-wise: for z = (z1, . . . , zd`),
it holds that g`(z) = (g`(z1), . . . , g`(zd`)). Note that fp, as well as fenc, are differentiable
functions when all the activation functions (g`)1≤`≤2L are.

2.2.2 From trajectory to training data

There is a distinction to be made between the configurational space of the simulation,
and the data space over which the learned model is optimized. Indeed, a preprocessing
step is usually necessary to obtain a usable dataset from the sampled molecular trajectory.
A notable example is the elimination of rotational and translational invariances through
centering and structural alignment of the configurations to a reference structure, or by using
internal coordinates (distances, angles, etc). Another example is using only a subset of the
coordinates to reduce the data dimensionality, for example by taking out solvent molecules
and hydrogen atoms, whose motions are often considered irrelevant. For the remainder of
the paper, we denote by q the configurations of the system, and by x the corresponding
post-processed data points. We however allow for an abuse of notation by keeping the same
notation for various objects whose argument is either q or x, depending on the context. For
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Figure 2.1: Example of an autoencoder topology. Here, the dimension of the data is D = 4
and there are 2L = 4 layers: 3 hidden layers (including the bottleneck) and the output
layer, of respective dimensions d1 = 6, d2 = 2, d3 = 6 and d4 = 4. The parameters can
be represented by four matrices W1, W2 (for the encoder) and W3, W4 (for the decoder),
such that: a = (a1, a2) = fenc(x) = g2(b2 + W2g1(b1 + W1x)) and x̃ = fdec(a) = g4(b4 +
W4g3(b3 + W3a)) where g1, . . . , g4 are activation functions, and b1, . . . , b4 are biases (not
shown in the topology).

example, the probability measures µ(dq) and µ(dx) are denoted by the same symbol, even
though µ(dx) is actually the image of µ(dq) by the application q 7→ x.

2.2.3 Learning from unbiased samples

Consider a probability distribution µ on X ⊂ RD. Typically in MD, µ is the Boltzmann-
Gibbs distribution and X is the configurational space of the system under study. We seek to
encode configurations of X sampled from µ in a smaller dimensional space A ⊂ Rd, where
d < D, using an autoencoder (AE). Theoretically, the optimal parameters pµ minimize the
expected loss

L(µ,p) = Eµ(‖X − fp(X)‖2) =

∫
X
‖x− fp(x)‖2 µ(dx) , (2.1)

where the subscript µ in Eµ indicates that X is a random variable distributed according
to µ. We denote by pµ a solution to the minimization of L(µ,p), provided it exists (which
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is always assumed here):

pµ ∈ argmin
p∈RK

L(µ,p). (2.2)

Note that pµ is a priori not unique, and depends of course on the distribution µ.

Empirical distribution

In practice, the optimization problem (2.2) is not easily solved, in particular because L is
unknown and must be approximated. For this, the distribution µ is replaced by an empirical
distribution µ̂ corresponding to an available dataset of N ∈ N points x1, . . . , xN drawn from
the distribution µ. In MD, these datapoints are typically the configurations sampled during
a simulation of the system, represented e.g by atomic positions or internal coordinates. The
autoencoder is thus optimized in practice using the empirical distribution:

µ̂ =
1

N

N∑
i=1

δxi .

The AE parameters are thus optimized in order to minimize the empirical loss:

L(µ̂,p) =
1

N

N∑
i=1

‖xi − fp(xi)‖2 . (2.3)

Using the law of large numbers (ergodic theorem), it holds that:

L(µ̂,p) −−−−→
N→∞

L(µ,p) almost surely,

which motivates minimizing with respect to p the empirical loss L(µ̂,p) instead of L(µ,p).
The optimization problem thus becomes:

Find pµ̂ ∈ argmin
p∈RK

L(µ̂,p). (2.4)

2.2.4 Learning from biased samples

To accelerate the exploration of the phase space of the system under study, MD simulations
can be biased to target another distribution than the Boltzmann-Gibbs reference measure.
The resulting dataset is thus not drawn from the original distribution of interest µ, but from
a biased distribution µ̃. Since we want to optimize the loss (2.1), we need to reweight the
configurations x sampled from µ̃ by a factor

w(x) =
µ(x)

µ̃(x)
.

Note that to ensure that w(x) is finite, we always assume that µ is absolutely continuous
with respect to µ̃ (i.e. µ(A) = 0 for all measurable sets A ⊂ X such that µ̃(A) = 0).

The reweighting corresponds to considering the loss function

L(µ,p) = L
(
µ

µ̃
µ̃,p

)
=

∫
X
‖x− fp(x)‖2 w(x)µ̃(dx). (2.5)
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Reweighting ensures that the same optimization problem as (2.2) is solved, even when the
data points are not distributed according to µ.

To approximate the expectation (2.5) with respect to µ̃, we again rely on an empirical
weighted distribution:

µ̂wght =

N∑
i=1

ŵiδxi ŵi =
µ(xi)/µ̃(xi)
N∑
j=1

µ(xj)/µ̃(xj)

. (2.6)

The new discrete loss is thus a weighted average loss over the µ̃ sampled data:

L(µ̂wght,p) =

N∑
i=1

ŵi‖xi − fp(xi)‖2 , (2.7)

which converges by the ergodic theorem almost surely to L(µ,p) when N −→∞.
Note that computing (ŵi)1≤i≤N only requires the knowledge of µ and µ̃ up to a multi-

plicative constant.

2.2.5 Learning from free energy biased simulations: 2D toy exam-
ple

This section provides a 2D example for free energy biasing. This system is then used to
illustrate the necessity of reweighting when training models over biased simulations. We
use throughout the section some common definitions of free energy and Boltzmann–Gibbs
density measure,recalled in Supp. Mat. Section 2.7.1.A for completeness.

Let us introduce the following three well potential, previously considered in other works [159]:

V (x1, x2) = 3e−x
2
1

(
e−(x2−1/3)2

− e−(x2−5/3)2
)
− 5e−x

2
2

(
e−(x1−1)2

+ e−(x1+1)2
)

+ 0.2x4
1 + 0.2(x2 − 1/3)4 .

(2.8)

In this example, the configurations q are represented by the 2 dimensional coordinates
of the particle: q = (x1, x2). The potential V has two deep wells centered at qL =
(−1.113,−0.03685), qR = (1.113,−0.03685), and a shallow well around qC = (0, 1.7566).
We consider the overdamped Langevin dynamics:

dqt = −∇V (qt) dt+

√
2

β
dBt, (2.9)

where Bt is a 2-dimensional Brownian motion. The dynamics are discretized using the
Euler–Maruyama scheme:

qj+1 = qj −∇V (qj)∆t+

√
2∆t

β
Gj , (2.10)

where {Gj}j≥0 is a sequence of independent standard normal random vectors and qj ≈ qj∆t.
We simulate a sample trajectory of this system, with inverse temperature β = 4 and time-
step ∆t = 10−3, starting from initial condition q0 = (−1, 0). Figure 2.2 gives a scatter plot
of this trajectory as well as the time evolution of the coordinate x1 .
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(a)

(b)

Figure 2.2: Simulations with the 2D three well potential (2.8) at β = 4. Left: Potential
function, two deep wells and one shallow well can be seen. Right: Overdamped Langevin tra-
jectory. Top. Scatter plot of the sampled points. Bottom: Time evolution of the coordinate
x1 through the example trajectory. Metastability is observed.

The metastability of the dynamics is quite well characterized by the direction x1, whereas x2

is not enough to distinguish between the two deep wells. In the sequel, we consider ξ1(q) = x1

and ξ2(q) = x2 as two different choices of CV.
The free energies corresponding to the CVs ξ1 and ξ2 are respectively:

F1(x1) = −β−1 ln

(∫
R

e−βV (x1,x2)dx2

)
, F2(x2) = −β−1 ln

(∫
R

e−βV (x1,x2)dx1

)
.

(2.11)

The quantities F1(x1) and F2(x2) can be easily approximated in this low dimensional ex-
ample by a numerical quadrature. We can therefore easily sample from the three following
probability measures: the unbiased Boltzmann-Gibbs probability distribution ν associated
with the potential V , and the biased Boltzmann-Gibbs probability distributions νFi associ-
ated with the biased potentials V − Fi ◦ ξi for i = 1, 2.

We now perform experiments to compare the results obtained from biased trajectories
using different collective variables, with those from an unbiased trajectory. For this, we first
simulate three trajectories. All three are long enough to sample the three potential wells of
our system. The first trajectory is unbiased, following (2.10) with a timestep ∆t = 10−3 for
N = 4×107 steps. Every 40th configuration is kept as a datapoint. The second trajectory is
free energy biased using ξ1(x1, x2) = x1 as CV, i.e., it follows (2.10) with potential V −F1◦ξ1
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instead of V , and a timestep ∆t = 10−3 for T = 2×106 steps. Configurations are saved every
2 timesteps. The third trajectory is free energy biased using ξ2(x1, x2) = x2 as a collective
variable, and using the same simulation settings as the second trajectory. Note that the
second and third trajectories are shorter: the duration of these trajectories were chosen so
that they visit the full configurational space. These three trajectories serve as our training
datasets. The datapoints are thus sampled respectively from the unbiased Boltzmann–Gibbs
measure µ = ν, the free energy biased Boltzmann–Gibbs measure µ̃1 = νF1 , and the free
energy biased Boltzmann–Gibbs measure µ̃2 = νF2

.
We next build five small autoencoders with the following topology: D = 2 (input data

dimensionality), 2L = 2 layers containing respectively 1 and 2 nodes, and g1(z) = tanh(z)
and g2(z) = z, the identity function. The number of parameters is thus K = 7 (including
3 bias parameters). We use tanh as the bottleneck activation function in order to obtain
a bounded learned collective variable with known bounds [−1, 1]. All five autoencoders
are initialized with the same random network parameters. We then separately train these
autoencoders for a maximum of 200 epochs each as follows:

• The first AE is trained on the unbiased trajectory;

• The second AE is trained on the ξ1-biased trajectory;

• The third AE is trained on the ξ1-biased trajectory, but with reweighting, meaning
that each data point xi = (xi1, x

i
2) contributes to the learning loss with

ŵi = N
µ(xi)/µ̃1(xi)
N∑
j=1

µ(xj)/µ̃1(xj)

= N
e−βF1(xi)

N∑
j=1

e−βF1(xj)

.

• The fourth AE is trained on the ξ2-biased trajectory;

• The fifth AE is trained on the ξ2-biased trajectory, but reweighted using

ŵi = N
µ(xi)/µ̃2(xi)
N∑
j=1

µ(xj)/µ̃2(xj)

= N
e−βF2(xi)

N∑
j=1

e−βF2(xj)

.

As discussed in Supp. Mat. Section 2.7.1.D, the multiplication by the number of samples N
allows to comply with the default normalization of the weights of the ML package we use. A
subset of the data is kept as validation set (here, 10%), and early stopping is applied when
the validation loss no longer improves for 20 consecutive epochs.

We compare the obtained encoders using heat maps. The values of the encoded bottle-
neck functions are computed over the (discretized) space (x1, x2) ∈ [−2, 2]× [−1, 2.5]. The
results are given in Figure 2.3. Note that the aim here is to compare encodings obtained
from the different models, and possibly to have insight on how these encodings depend on
the coordinates x1 and x2. Let us emphasize in particular that it is for example possible
to obtain a function of x1 instead of x1 itself as encoder variable. For this reason, and to
simplify the comparison between the obtained CVs, they are renormalized to have a range
that is exactly between 0 and 1:

ξnorm
AE (x) =

ξAE(x)− ξmin
AE

ξmax
AE − ξmin

AE

, (2.12)
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where ξmin
AE and ξmax

AE are respectively the minimum and maximum values taken by the
encoder function ξAE over the 2-dimensional space [−2, 2]×[−1, 2.5]. We draw two important
conclusions upon interpreting the obtained results:

• First, the encoding learned through unbiased training on the reference data obtained
from a long unbiased trajectory (top panel) is a function of x1, which we recall is
considered a good CV as it distinguishes the three potential wells. The direction x1

therefore corresponds to the target unbiased representation that we want to find using
the remaining models (in particular with the reweighted learning). The encodings
obtained from the reweighted training over the two biased trajectories (middle and
bottom right panels) also represent bijective functions of x1. The encodings obtained
through biased unweighted learning, however, encode different variables (middle and
bottom left panels). This is therefore an example where reweighting proves necessary
for obtaining results that are consistent with unbiased learning.

• It is interesting to note the difference between the CV obtained from biased learning
over the ξ1-trajectory (middle left panel) and the one obtained from the ξ2-trajectory
(bottom left panel). It is quite clear that the latter is closer to a monotonic function
of the target learning result, x1, than the former. These results can be intuitively
explained as follows: Free energy biasing changes the distribution along the CV (here
ξ1 or ξ2) to a uniform law, making the corresponding direction no longer relevant.
This prompts the model to learn other directions that are still relevant in the biased
simulation. In the case of the trajectory obtained by biasing with F1 ◦ ξ1, the x1

direction is no longer a relevant feature of the data space and the encoder does not
recover it. On the other hand, biasing using F2 ◦ ξ2 does not completely annihilate the
relevance of the variable x1 in the sampled data. This explains why the CV learned
from biasing with ξ2 is closer to x1.

This last point is very important as it means that if an iterative learning run is performed
without reweighting, then whenever a good CV is learned at iteration n, this CV may be
cancelled out in the next iteration, making convergence difficult to achieve.

2.3 Iterative reweighted learning of CVs with autoen-
coders

In this section, we introduce our algorithm for the iterative learning of a CV from biased
trajectory data. As mentioned in the introduction, our algorithm is in part inspired by the
work done in Refs. 93 and 94, where MESA, an iterative method for learning CVs on the fly
while performing enhanced sampling was devised. MESA alternates between learning CVs
with autoencoders and using those CVs for extrapolation with Umbrella Sampling, until
convergence.

The major difference between our algorithm and MESA is that we use reweighting of the
configurations sampled from free energy biasing to target the unbiased loss corresponding to
the Boltzmann-Gibbs distribution. Indeed, as observed in the experiments of Section 2.2.5,
training on biased data does not yield the same results (same encoded CVs) as with unbiased
data. Additionally, we saw that performing free energy biasing using a certain choice of CV
may make this direction irrelevant within the sampled data, which prevents the model from
learning it. This means first that a naive iterative learning algorithm without reweighting
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(a) No biasing

(b) Biasing with CV ξ1 = x1

(c) Biasing with CV ξ2 = x2

Figure 2.3: Heatmaps of the values of the encoder variables over the discretized 2D space
[−2, 2]× [−1, 2.5]: (a) Unbiased learning outputs a CV close to ξ1(x) = x1. (b) and (c) Left:
Training on biased simulations leads to learned CVs that depend on the free energy biasing.
Right: Reweighting enables learning a CV that is independent of the sampling procedure.

is not theoretically guaranteed to converge, as each new CV (learned with a new AE) is
different from the previous one; and second, that this can result in iterations of the algorithm
where the learned CV is not necessarily a relevant choice for the next free energy biasing.
Reweighting the loss is expected to solve this issue in the iterative method the same way it
did in the experiments shown in Section 2.2.5. At each step, we train the autoencoder on the
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reweighted loss, using the reweighting introduced in (2.7), so as to remove bias from the data
sampled in the free energy biasing simulation. Another major difference in our approach
compared to MESA is that we rely on adaptive techniques to sample configurations and
compute the free energy for reweighting them. Let us however emphasize that our approach
could also be used with other methods to compute free energy profiles.

We first give in Section 2.3.1 a detailed description of our algorithm. We then introduce
in Section 2.3.2 adaptive biasing methods in general and the adaptive biasing force method
in particular, as it constitutes our choice of biasing procedure. Then, some additions and
refinements of the algorithm are discussed in Section 2.3.3 to transfer information between
consecutive iterations of the algorithm. Finally, Section 2.3.4 provides a first application of
the algorithm to the 2-dimensional toy example introduced in Section 2.2.5.

2.3.1 Iterative algorithm for CV learning: General description

This section provides a description of the steps of our iterative algorithm, which we call
FEBILAE, for ”Free Energy Biasing and Iterative Learning with AutoEncoders”. The
algorithm is also summarized in the pseudo-code of Algorithm 1.

Initialization

The first step of the algorithm is to produce an initial unbiased trajectory to start from,
traj0. This requires providing the algorithm with a simulation setup S (dynamics, physical
conditions, etc), and an initial configuration q0. The trajectory traj0 is preprocessed as
necessary (see Section 2.2.2) to obtain an initial training dataset (x1, . . . , xN ) where N is
the number of samples, provided as an input to the method. As traj0 is unbiased, the
sample weights associated to this first training are uniform: ŵj = 1 for all j ∈ {1, . . . , N}.
A first autoencoder, AE0 is then initialized (with a given topology, hyper-parameters and
random parameters Ainit) and trained on this dataset. A first collective variable, ξ0, is thus
computed from AE0.

Iterative procedure and stopping rule

At each iteration i ≥ 1 of the algorithm, the following steps are performed:

• New trajectory. The previous CV ξi−1 is used to perform adaptive free energy bias-
ing under a given simulation method and setup SAB, and starting from the same initial
configuration q0 as the one used in the initialization step, or from a new initial con-
figuration (e.g. the last sampled configuration of the previous trajectory). The biased
trajectory traji is saved, along with the estimation of the free energy Fi corresponding
to the CV ξi−1.

• Preprocessing and sample weight computation. The trajectory is preprocessed
to obtain the new training dataset (x1, . . . , xN ), and the weight of each sampled dat-
apoint is computed as defined in (2.6) and (2.7) (with the weights multiplied by N in
order to comply with the default setting of the ML package used for implementation
, see Supp. Mat. Section 2.7.1.D).

• Autoencoder training and new CV. A new autoencoder, with the same topology
and initial parameters as in the previous iterations (Ainit), is trained on the new
dataset traji to optimize the reweighted loss (2.7). As mentioned in Section 2.2.1, the
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autoencoder has the advantage of outputting a mapping ξi from the input configuration
to the collective variable, as well as its gradient, which is also required for most CV
biasing methods. Additionally, the interval(s) of the CV, over which biasing is applied,
must be determined. These intervals can be estimated using the extreme values which
the CV takes over the training data traji.

• Stopping rule. The algorithm stops when one of the two following conditions is
met: either the algorithm has reached a given maximum number of iterations Imax,
or the CV has converged. The last step of each iteration thus requires to assess CV
convergence. In this paper, we consider that the learned CV has converged when the
new CV ξi can be mapped (using e.g. a simple regression model) to the previous
CV ξi−1, with a high enough precision score, higher than a given threshold smin. We
use linear regression as a mapping model to check whether ξi ≈ Φ(ξi−1). We refer
to Supp. Mat. Section 2.7.2 for a more detailed discussion on how to compute the
regression score. The value of smin depends on the system under study, the complexity
and dimension of the computed CVs, and the regression model used to compute the
regression score. It is determined separately for each of the systems studied in this
paper, using a bootstrap procedure made precise in Supp. Mat. Section 2.7.2. When
the algorithm stops, the last learned CV is kept as the final CV. Its free energy is
estimated and used to fully sample the configurational space of the system.

Remark 4 (CV dimensionality). When the optimal dimensionality of the CVs is unknown,
one can use the following method proposed in Ref.93 to determine it: several autoen-
coders Φ1, . . . ,ΦM , with different values for the dimensionality d of the bottleneck layer
(d ∈ {1, . . . ,M}), are all trained at each iteration. The optimal value of d is then deter-

mined by plotting the FVE (fraction of variance explained) 1 − σres(d)
σtot

as a function of d,
where

σres(d) =

N∑
i=1

‖xi − Φd(x
i)‖2,

is the residual sum of squares and

σtot =

N∑
i=1

‖xi − x̄‖2, x̄ =
1

N

N∑
i=1

xi,

is the total sum of squares. The optimal value of d corresponds to a plateau or ”knee” in the
FVE curve, meaning that no considerable improvement in the optimized loss is obtained by
adding another dimension to the bottleneck space. This is similar to what is done in PCA,
where spectral gaps in the distribution of eigenvalues are used to determine the optimal
number of principal components to keep.
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Algorithm 1: FEBILAE

Input: Initial condition q0, autoencoder topology and initialization parameters Ainit,
number of samples N , simulation procedure S and adaptive biasing procedure
SAB, maximum number of iterations Imax, minimum convergence score smin.

Output: CV ξfinal and corresponding PMF Ffinal.
Sample traj0 ← S(q0, N). Initialize autoencoder AE0 ← Ainit.
Train AE0 on traj0 with weights (ŵ0, . . . , ŵN ) = (1, . . . 1).
Extract the encoder function ξ0 : x 7→ ξ0(x).
Set i← 0, s← 0.
while i < Imax & s < smin do

Set i← i+ 1.
Sample (traji, Fi)← SAB(q0, N, ξi−1).

Compute weights (ŵj)1≤j≤N as ŵj = N
e−βFi(ξi−1(xj))

N∑
n=1

e−βFi(ξi−1(xn))

.

Initialize autoencoder AEi ← Ainit.
Train AEi on traji with sample weights (ŵj)1≤j≤N .
Extract the encoder function ξi : x 7→ ξi(x).
Set s← regscore(ξi−1, ξi).

Set ξfinal ← ξi.
Sample trajfinal, Ffinal ← SAB(q0, Nfinal, ξfinal) with Nfinal large enough to ensure
PMF convergence.

2.3.2 Sampling with the (extended) Adaptive Biasing Force method

With the exception of low dimensional systems (D ≤ 3) such as the example used in Sec-
tion 2.2.5, the free energy of a system associated with a given CV cannot be easily estimated.
Adaptive sampling algorithms replace the actual free energy F by an estimated function
Ft in the biased dynamics at time t, meaning that the potential becomes V − Ft ◦ ξ. The
estimate Ft is updated on-the-fly so that it converges to F as the molecular dynamics sim-
ulation proceeds. The two categories of adaptive biasing techniques are [160] Adaptive
Biasing Potential (ABP) methods, where the free energy Ft is estimated and its gradient,
the so-called mean force, is then used in the dynamics; and Adaptive Biasing Force (ABF)
methods where the mean force is estimated directly, and the free energy is subsequently
obtained by numerical integration through a Helmholtz projection [66].

In this work, we choose to work with ABF, and more precisely extended system ABF
(eABF) [67] for free energy biasing. We call this version of the algorithm AE-ABF. Sec-
tion 2.3.2.A gives a brief description of ABF. We then recall its main limitation, namely that
it requires the computation of the second order derivatives of the used CVs. This motivates
using eABF, which is described in Section 2.3.2.B.

2.3.2.A Adaptive biasing force

The adaptive biasing force method estimates the mean force associated with the collective
variable ξ. For ease of notation, we assume in this section and the following one that ξ is
one dimensional, with values in A ⊆ R, but the generalization to a higher dimensional CV
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is straightforward. By differentiating both sides of Equation (2.23), one obtains:

F ′(z) = − 1

β

∫
Σ(z)

f(q)
e−βV (q)δξ(q)−z(dq)

e−βF (z)
, (2.13)

where f is called the local mean force:

f = ∇V · ∇ξ
|∇ξ|2

− 1

β
div

(
∇ξ
|∇ξ|2

)
. (2.14)

Note that the equation above contains second order derivatives of ξ. Equation (2.13) shows
that the derivative of the free energy F ′(z) is related to the conditional average of the local
mean force as

F ′(z) = Eν (f(q)|ξ(q) = z) , (2.15)

with ν defined in (2.22). This suggests, for instance, that the biasing force at time t can be
estimated as follows when considering a single long trajectory:

Γt(z) =

∫ t
0
f(qs) δ

ε (ξ(qs)− z) ds∫ t
0
δε (ξ(qs)− z) ds

,

where ε > 0 and δε is an approximation of the Dirac mass.
The estimated mean force is then used to bias the dynamics with the force Γt(ξ(qt)).

For example, the dynamics of ABF used in conjunction with Langevin dynamics is:{
dqt = M−1pt dt,

dpt = −∇V (qt)dt+ Γt(ξ(qt))∇ξ(qt)dt− γptdt+
√

2γMβ−1dBt,

where M is the mass matrix and γ > 0 is the friction coefficient.

2.3.2.B Extended system Adaptive biasing force

Equation (2.14) shows that regular ABF requires the knowledge of second order derivatives
of the CV ξ to compute the local mean force f . The analytical expression of this quantity is
quite cumbersome for most choices of CVs, especially when ξ is vector valued. In particular,
as our CVs are encoder based mappings and can involve complex non-linear activation
functions, extracting the second order derivatives is not a viable option.

To overcome the limitations in computing the second term of (2.14), a method coined
extended system ABF (eABF) [67] was devised. A fictitious degree of freedom λ is added
to the configurational space and the new potential is:

V ext(q, λ) = V (q) +
κ

2
|ξ(q)− λ|2 , (2.16)

where κ is a force constant. The collective variable ξext(x, λ) = λ is used instead of the
original CV ξ. Using Equation (2.23), the resulting free energy F ext is a convolution of a
Gaussian kernel and the free energy associated with ξ:

e−βF
ext(λ) =

∫
A
χκ(λ− z)e−βF (z)dz ,



2.3. ITERATIVE REWEIGHTED LEARNING OF CVS WITH AUTOENCODERS 75

where χκ is a Gaussian kernel with variance 1/(κβ). When κ −→ ∞, F ext(λ) converges
to F (λ). Thus, a simple estimator of the real free energy F is to use F = F ext directly.
This naive estimator is biased of course, given that in practice κ < ∞. The new extended
mean force does not depend on second order derivatives of the CV ξ: Only the gradient of ξ
is needed for computing the gradient of V ext. ABF can therefore easily be applied to the
new extended system.

Denoting by ρ the momentum of λ, and by M ext the extended mass matrix (which
includes mλ, the fictitious mass of λ), the Langevin dynamics of the eABF trajectory are:{

dqext
t = (M ext)−1pext

t dt,

dpext
t =

(
−∇V ext(qt, λt) + Γext

t (λt)u
)
dt− γpext

t dt+
√

2γβ−1M extdBt,
(2.17)

where qext
t = (qt, λt), p

ext
t = (pt, ρt), uT = (0, . . . , 0, 1) and Γext

t is the estimate at time t of
the mean force associated with λ in the extended system:

Γext
t (λ) =

∫ t
0
f ext(qs) δ

ε (λs − λ) ds∫ t
0
δε (λs − λ) ds

, f ext(q) =
∂V

∂λ
(q) = κ(λ− ξ(q)).

In practice, the above equation is discretized in time using a timestep ∆t. Denoting by
qext,j , pext,j the approximations of qext

j∆t, p
ext
j∆t at iteration j, the estimated mean force Γext

t

is considered to be constant in discrete bins of ξext = λ centered around points z1 . . . , zk
(uniformly spaced, for simplicity of presentation): for all ` ∈ {1 . . . , k}, at time j∆t,

∀z ∈ [z` − ε, z` + ε[, Γext
j (z) =

∑j
i=0 f

ext(qext,i)1{z`−ε≤λi<z`+ε}∑j
i=0 1{z`−ε≤λi<z`+ε}

, (2.18)

where 2ε = zk−z1
k−1 .

2.3.3 Transferring information between algorithmic iterations

This section discusses two ways of using part of the information learned in previous iterations
to possibly improve or accelerate the learning or sampling in the next iteration. Following
the notation in Algorithm 1, the iteration index is denoted by i.

2.3.3.A Using previous trajectories

At each iteration, the training dataset can be a combination of a fixed number nT ≥ 1 of
previously sampled trajectories. Standard FEBILAE corresponds to nT = 1. Using more
than one trajectories provides the autoencoder with a larger, and therefore possibly more
complete dataset. This refinement of the algorithm is very straightforward, and is thus
directly included in the implementation used to obtain the results presented in Section 2.5.1
with nT = 2. The results of this simple addition on the 2-dimensional example as compared
to the basic algorithm are presented in Supp. Mat. Section 2.7.3.A.

2.3.3.B Free energy initialization

The algorithm AE-ABF as presented above starts each new eABF with a free energy profile
initialized to 0. However, as the CV progressively converges to an optimal value throughout
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the algorithm, the successive CVs from one iteration to the other are somewhat similar.
Therefore, the free energy profile at the end of the previous iteration of eABF could be used
to suggest a better initialization of the free energy or mean force for the new eABF run.

In order to make this discussion more precise, let us assume here again that the CV is
one dimensional for the simplicity of exposition, although our approach can be extended
to CVs of dimension larger or equal to 2. At iteration i, we call ξi : X −→ [ai, bi] the CV
used in (2.16) to perform the eABF simulation for this round, which we call eABFi. The
corresponding estimated free energy and mean force are respectively denoted by Fi and F ′i .

Before starting eABFi+1, we want to determine a function F̃i+1 (respectively F̃ ′i+1) as a
good initialization of the free energy (respectively the mean force) using the previous free
energy Fi and the CVs ξi and ξi+1. We first assume that the CVs have converged, namely
that:

ξi+1 = Φ ◦ ξi,

for some strictly monotonic function Φ ∈ C1([ai, bi]). We can then easily calculate Fi+1

from Fi under this assumption. Indeed, for Z = Φ(z),

e−βFi+1(Z) =

∫
Σi+1(Φ(z))

e−βV (q)δξi+1(q)−Φ(z)(dq),

where

Σi+1(Φ(z)) = {q ∈ RD|ξi+1(q) = Φ(z)} = {q ∈ RD|Φ(ξi(q)) = Φ(z)} = Σi(z).

By the co-area formula (Equation (3.14) in Ref. 22)

δξi+1(q)−Φ(z)(dq) =
|∇ξi(q)|
|∇ξi+1(q)|

δξi(q)−z(dq) =
1

|Φ′(z)|
δξi(q)−z(dq).

Therefore,

e−βFi+1(Φ(z)) =

∫
Σi(z)

e−βV (q) 1

|Φ′(z)|
δξi(q)−z(dq) =

1

|Φ′(z)|
e−βFi(z). (2.19)

The above equation provides an expression of Fi+1 from Fi when Φ is known. In practice,
we approximate Φ as an affine function using a linear regression model optimized using the
datapoints sampled from the trajectory of ABFi (and possibly also from previous trajectories
as suggested in Section 2.3.3.A). This provides an approximate mapping:

ξi+1(x) = ω1ξi(x) + ω2,

for which the following equality holds:

∀Z ∈ [ai+1, bi+1], e−βFi+1(Z) =
1

|ω1|
e
−βFi

(
Z−ω2
ω1

)
,

and thus

∀Z ∈ [ai+1, bi+1], Fi+1(Z) = Fi

(
Z − ω2

ω1

)
+

ln(ω1)

β
. (2.20)

Note that the additive constant ln(ω1)/β on the right hand side of the previous equality is
irrelevant, since free energies are defined up to an additive constant.
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Discretization. In practice, the ranges of ξi and ξi+1 are discretized into k bins centered
at {z1, · · · , zk} and {Z1, · · · , Zk}. The centers of the bins are matched as follows: if ω1 > 0,
then z` is associated with Z`; while if ω1 < 0, then z` is associated with Zk−`+1. The
initialization of the free energy Fi+1 is thus computed for each bin `′ of ξi+1 using its final
value in the corresponding bin ` of ξi, and Equation (2.20). In practice, because ABF uses
the mean force rather than the free energy, it is the mean force at each bin, Z`′ that is
initiated using the final estimate of the mean force in bin z`, i.e the value of the numerator
of Equation (2.18) for time N∆t. Additionally, the number of samples for each bin of ξi+1

is initialized with the values of the previous ABF run in the same manner (i.e. according to
the sign of ω1, using the final values (at time N∆t) of the denominator in Equation (2.18)).
The new ABF simulation, ABFi+1 is then actually equivalent to continuing an ABF run
with the CV ξi+1, instead of starting a new simulation.

Some results obtained with the free energy initialization scheme described in this section
are given in Supp. Mat. Section 2.7.3.B.

2.3.4 Two-dimensional toy example

In order to illustrate the methodology developed in this section, we come back to the 2
dimensional example introduced in Section 2.2.5, with the same parameters as in this section
unless otherwise specified. For this toy example, the routines for unbiased simulations as
well as eABF simulations were implemented in python using the numpy module.

We demonstrate on this simple 2D example that reweighting the sampled configurations
leads to a fast convergence to the CV ξ1(x) = x1 (which is the CV obtained by training on
a long unbiased trajectory), whereas not reweighting can lead the algorithm to be trapped,
continually learning different CVs between consecutive iterations. We start with the initial
unbiased simulation, which is purposedly stopped before it crosses the first energy barrier:
The trajectory is simulated starting from the initial condition q0 = (−1, 0), for 2 × 107

timesteps, with ∆t = 10−3, keeping 1 out of 50 datapoints. The time horizon of the
simulation is thus T = 2× 104, and the dataset contains N = 4× 105 samples belonging to
only one metastable state.

We then use this dataset to start two separate learning frameworks. The first one uses
reweighting at each iteration as discussed in Section 2.3.1. The second one does not use
reweighting before achieving a new round of training (i.e. the weights ŵj in (2.7) are all set
to 1). All autoencoders are initialized with the same parameters at each iteration, and are
trained using 80% of the data for training (and 20% for validation), with batch size b = 400,
and N/b = 8× 102 steps per epoch for a maximum of 100 epochs with early stopping when
the validation loss does not improve for 20 consecutive epochs. At each new iteration, for
both schemes, eABF is performed for 1.2× 106 timesteps with ∆t = 10−3, and 1 in every 3
configurations are kept. The time horizon of the simulation is thus T = 1.2 × 103 and the
datasets all contain N = 4× 105 samples. eABF is run with a force constant κ = 50. Note
again that the biased simulations have a smaller time horizon than the unbiased simulation,
since biasing accelerates the exploration of all states of the configurational space. The CV
intervals are determined using the range [zmin, zmax] of the values the CV takes over the
training data. Regardless of the chosen CV interval, we use a grid of 200 bins to discretize
the CV. Each simulation is started at the same point (x1, x2) = (−1, 0). The estimated
mean force over a certain bin is only applied after 100 samples are collected inside this bin.
Finally, the CV gradients needed for ABF are extracted from the autoencoders using keras

functions.
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Figure 2.4 illustrates heat maps of the encodings obtained at each iteration for both
schemes. All CVs were renormalized using Equation (2.12) to have a range within [0, 1]. As
shown in Figure 2.4 left, after only two iterations, the reweighted model finds the CV x1

and stabilizes. The biased model, on the other hand, learns a different direction at each new
iteration, so that the learned CV does not converge, but rather seems to oscillate between
two different functions.

2.4 Computational details

2.4.1 Software packages and libraries

We use the keras [161] library to wrap the tensorflow [162] neural network module in
python.

In order to construct an entirely automated code, all molecular simulations were per-
formed with the openmm software [163] within its python API. The adaptive biasing and
collective variable analysis were mainly performed using plumed [164–166]. To link these two
modules, we used the openmmplumed plugin module [167]. Additionally, the colvar [168]
abf integrate utility was used to recover the potential of mean force from the gradients
computed by eABF.

Our goal is to have an implementation that is automated and entirely runnable from
python. Consequently, our implementation is practical and easy to use, but not necessarily
computationally optimized.

2.4.2 Alanine dipeptide in vacuum

2.4.2.A Parameters

The algorithm was implemented with the following ML and MD parameters.

• Machine Learning. The input features are chosen as the Cartesian coordinates of
only the backbone atoms of alanine dipeptide, instead of the complete peptide, making
the input data x of dimension D = 3× 8 = 24. Structural rotational alignment (using
the Kabsch algorithm [84]) to a reference configuration and re-centering are included in
preprocessing to respectively eliminate rotational and translational invariances. Note
that the same reference structure, namely a configuration which falls within the C5
state, is used for all our experiments.

All autoencoders used for AE-ABF runs have the same symmetrical topology: In
addition to the input layer of dimension D = 24, the encoder contains two fully
connected layers, of respective dimensions G = 40 and d = 2 (computed using the
FVE curve as explained in Remark 4), and all activation functions are tanh. This
topology is the same as the one used by the authors of MESA [93, 94] on the same
system. Note however that additional experiments were done with G = 8 instead.
The obtained results (namely the learned CV) were the same.

We use the adam [169] optimization algorithm. The model is trained for a maximum
of 2000 epochs, and early stopping [170] is used to stop training when the validation
loss stops decreasing for 50 consecutive epochs, making the actual number of epochs
in practice approximately 300. The learning rate used is always η = 10−3.



2.4. COMPUTATIONAL DETAILS 79

Figure 2.4: Encodings obtained at each iteration of AE-ABF with (left) and without (right)
reweighting. Left: Reweighting guides learning to the same CV at each iteration, and the
algorithm quickly converges to the CV ξ1(x) = x1. Right: The simulations are biased using
a different free energy at each iteration. The CV does not stabilize.

At each new iteration of the algorithm, both the new trajectory and the previous one
are combined to construct the training set. As shown in Supp. Mat. Section 2.7.3.A
(for the 2D example), this can help the algorithm converge with smaller simulation
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times, as well as possibly speed up the convergence.

• Molecular Dynamics. All simulations (biased and unbiased) are performed using
the Amber ff99SB forcefield [171], under Langevin dynamics at a temperature T =
300 K, non periodic conditions with cutoff rc = 1nm, a friction coefficient γ = 1 ps−1,
no bond constraints and a timestep δt = 1 fs. For consistency, the same peptide
configuration is used as input in all runs, this configuration is obtained after 500 steps
of energy minimization.

For eABF simulations, collective variable biasing intervals are selected at each iteration
of the AE-ABF algorithm as the ranges (along the two CV directions) of the CV values
obtained from the encoders on the training data. A grid of a fixed value of 50 bins for
each of the two dimensions of the CV is used. The force constant κ is kept to its default

plumed value: κβ =
1

(δz)2
, where δz is the grid spacing. The fictitious mass mλ is set

to mλ = κ
( τ

2π

)2

, where τ = 0.5 is the default value for the relaxation time in plumed

(also called extended time constant in colvars). The estimated biasing force is applied
to a sampled point after a minimum of 500 samples are collected in the corresponding
bin. The gradients of the CVs are numerically estimated in plumed instead of being
extracted from the autoencoders. Additionally, plumed ensures a correct propagation
of all calculated forces with respect to any translational and rotational alignments
applied to the system.

2.4.2.B Simulation speed

Under the setup described in Sections 2.4.1 and 2.4.2.A, unbiased simulations ran with a
speed of ∼ 1500ns/day, while biased eABF simulations using encoder CVs had a speed of
∼ 200 ns/day. As a comparison, biased simulations using regular CVs of the system (namely
the dihedral angles Φ and Ψ) ran at a speed of ∼ 1000 ns/day. The computation of the
encoder CVs and their approximate derivatives in plumed is thus computationally quite
expensive compared to the other steps of the algorithm for this low dimensional system
in vacuum. Note that for larger systems, in particular solvated systems, the overhead will
be much smaller in proportion. Let us also emphasize again that no specific effort was
made to obtain a more efficient computational chain, as the focus of this work is primarily
methodological.

2.4.3 Chignolin in explicit solvent

Chignolin is a 10-residue miniprotein with a beta-hairpin structure. It is another well-
studied system, particularly for its distinct folding states captured using MD at accessible
timescales [29, 172]. Lacking an X-ray for the wild-type form, herein, we use the CLN025
mutant (PDB ID: 5AWL) in explicit solvent as a more realistic and challenging system of
our approach. After the addition of hydrogen atoms, the system contains 166 atoms.

2.4.3.A Parameters

For chignolin, the AE-ABF algorithm was implemented using the following parameters:

• Machine Learning. The selected input features are the Cartesian coordinates of
the Cα atoms of the chignolin miniprotein. The input data is thus of dimension
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D = 3 × 10 = 30. Similarly to alanine dipeptide, structural rotational alignment to
a reference structure, and centering are used to eliminate rotational and translational
invariances. The reference structure used is a folded state conformation.

The autoencoders used for AE-ABF runs have an encoder made of two fully connected
layers, of respective dimensions G = 10 and d = 2. All activation functions are tanh.
The adam optimization scheme is used for a maximum of 2000 epochs with early
stopping after no improvement over 50 consecutive epochs. The learning rate used is
η = 5× 10−4.

As for alanine dipeptide, each new autoencoder training uses both the new and the
previous trajectory as a combined dataset.

• Molecular Dynamics. Chignolin is solvated using a water box with a padding of at
least 1.2 nm. Na+ and Cl− ions are added to render the system neutral. All simulations
are performed using the Amber ff99SB-ILDN forcefield [173] and the TIP3P water
model [174], under Langevin dynamics at temperature T = 340K and friction coeficient
γ = 1 ps−1, with a timestep δt = 2 fs. Nonbonded interactions are computed with the
particle mesh Ewald with cutoff rc = 1 nm, and constrained hydrogen bonds (using
the LINCS algorithm [175]). All simulations are performed in the NVT ensemble. The
initial configuration for the simulations is obtained after a performing 1000 steps of
energy minimization. For eABF simulations, collective variable biasing intervals are
selected at each iteration of AE-ABF as the ranges (along the two CV directions) of
the CV values obtained from the encoders on the training data. The variables are
then rescaled to have a range of [−1, 1]. A grid of 50 bins with equal sizes is used for
each of the two dimensions of the CV. All other parameters are set to the same values
as for alanine dipeptide, with the exception of the force constant which was manually
set to κβ = 353.74. This change to a lower value of κ was made to ensure the stability
of the biased simulations. the other plumed parameters are the same as the ones used
on alanine dipeptide.

2.4.3.B Simulation speed

In the case of solvated chignolin, and under the computational framework described in
Sections 2.4.1 and 2.4.3.A, unbiased simulations ran at a speed of 500 − 600ns/day, while
biased simulations (using autoencoder CVs) ran at 50− 70ns/day.

2.5 Results

This section shows results of the AE-ABF algorithm applied to the systems of alanine
dipeptide in vacuum and solvated chignolin.

2.5.1 Alanine dipeptide in vacuum

Conventionally the 2D intrinsic manifold of alanine dipeptide in vacuum is described by
the Φ and Ψ backbone dihedrals [176, 177]. As mentioned in Remark 4, we have used the
plateau method to check that the bottleneck optimal dimensionality is indeed d = 2. See
Supp. Mat. Section 2.7.4 where we provide the FVE curve computed using a long unbiased
trajectory of alanine dipeptide.
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We first present in Section 2.5.1.A the ground truth CV, which is the CV obtained from
training an autoencoder over a long unbiased simulation. The quality of this CV is assessed
by measuring its ability to recover the free energy landscape of the dihedral angles Φ,Ψ.
Section 2.5.1.B contains the results of applying AE-ABF to alanine dipeptide. For a concise
presentation of this toy system, see Supp. Mat. Section 2.7.4.

2.5.1.A Autoencoder ground truth collective variable

The goal of AE-ABF is to obtain the same CV as the one we would obtain from training
an autoencoder on a long unbiased simulation, and to use this CV to bias the dynamics for
a better sampling. In order to check that the first goal is attained, we construct a reference
CV which will serve as a ground truth to compare our results to. Additionally, this ground
truth CV’s ability to efficiently bias the dynamics is assessed.

Constructing the ground truth CV. We first sample a 1.5 µs trajectory, saving frames
every 1.5 ps. The Ramachandran scatter plot of this trajectory is given in Figure 2.5a.
We then train an autoencoder of the same topology and the same initial parameters and
hyper-parameters (learning rate, activation functions, etc) as for the model described in
Section 2.4.2.A. The resulting CV’s projection on the 1.5 µs trajectory is plotted in Fig-
ures 2.5b and 2.5c. It can be observed that this ground truth CV first clearly separates
the C7ax state from the others, and also distinguishes between the C5 and C7eq states as
well as the dihedral angles (Φ,Ψ) do. Moreover, a strong correlation between the CVs and
the dihedral angles can be observed (visually illustrated by color plots of the Φ and Ψ with
respect to the CV space in Figures 2.5b and 2.5c). This correlation is further confirmed with
a high value of the regression score between the ground truth CV and (Φ,Ψ): R2 = 0.967.

Ground truth CV biasing efficiency. In order to assess the ground CV’s efficiency for
biasing the dynamics, we measure its ability to estimate the system’s free energy, i.e the
(Φ,Ψ) free energy surface. For this, we first run a long 500 ns eABF simulation using (Φ,Ψ)
as collective variables in order to obtain a reference free energy landscape F . We then run
a 500 ns eABF simulation using the ground truth CV. At any time t, the estimate Gt of
the CV’s free energy is then used to compute an approximation F̃t of F by reweighting

histograms: using k bins to discretize (Φ,Ψ) in each direction, the estimate F̃t
j,l

in the bin
[z1,j − ε, z1,j + ε)× [z2,l − ε, z2,l + ε) for 1 ≤ j, l ≤ k is given by:

exp(−βF̃t
j,l

) =

Nt∑
i=1

exp(−βGt ◦ ξ(xi))1{z1,j−ε≤Φ(xi)<z1,j+ε}1{z2,l−ε≤Ψ(xi)<z2,l+ε} , (2.21)

where ξ is the ground truth CV, Nt is the number of samples collected at time t and
2ε = 2π

k . When a certain bin (j, l) of the (Φ,Ψ) space is not visited, the corresponding value

of exp(−βF̃t
j,l

) is of course 0, making the free energy in these bins infinite. Instead, the

free energy F̃t
j,l

in these unvisited bins is made equal to the maximum of the free energy
values encountered in the visited bins.

The free energies F and F̃t are of course defined up to additive constants, which are cho-
sen in order minimize the error between these two quantities (see Remark 5 in Supp. Mat. Sec-
tion 2.7.5.A). Figure 2.6 shows the reference free energy, the free energy estimate at the final
time ˜F500 ns and the error per bin between these two values. The C7ax state is less precisely
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(a)

(b) (c)

Figure 2.5: (a) Ramachandran scatter plot of a 1.5 µs unbiased trajectory of alanine dipep-
tide in vacuum which visits the three metastable states of the molecule. (b) Scatter plot
of the autoencoder CVs learned from the unbiased trajectory, using Φ-based coloring. (c)
Scatter plot of the autoencoder CVs learned from the unbiased trajectory, using Ψ-based
coloring. The CVs are projected on the same 1.5 µs unbiased trajectory. The regions
corresponding to C5, C7eq and C7ax are approximately defined using Φ and Ψ values.

estimated in shape than the C5 and C7eq states, particularly at extreme values of Ψ, where
an incorrect local minimum is identified (Φ ≈ 1 and Ψ ≈ −2.5). In addition, some transition
regions are not visited during the simulation (dark purple regions in the middle plot of Fig-
ure 2.6). These regions include transition states located on the right and on the bottom left
of the C7ax basin, indicating that transitions between C7ax and C5/C7eq through those
paths are very rare. Similar errors in the free energy landscape, both in magnitude and
localization, were observed in similar works [93].

In order to further assess the sampling efficiency of dynamics biased by the free energy
associated with the ground truth CV, we also compute the number of transitions between
metastable states per nanosecond encountered in a typical eABF simulation. For this, we
run three eABF simulations of 50 ns each, using the ground truth CV as reaction coordinate,
and obtain an average number of transitions of about ∼ 63 per ns. This number is quite close
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Figure 2.6: Left. Reference free energy computed by eABF over Φ,Ψ. Middle. Estimate of
the free energy computed by reweighting histograms. Transition states located on the right
of the C7ax basin are not visited. Right. Filled contour plot of the difference β(F − F̃ ) in
each bin. The free energies are optimally aligned.

to the value of about ∼ 80 transitions per ns obtained for eABF simulations using (Φ,Ψ)
as collective variables. However, biasing with the ground truth CV does not enable the
sampling of the transition states on the right of C7ax in the Ramachandran plot, contrarily
to biasing with (Φ,Ψ). For more analysis on the sampling efficiency of the ground truth
CV, see Supp. Mat. 2.7.5, where this CV is compared against (Φ,Ψ), as well as a CV
obtained by training an autoencoder on configurations produced by a biased simulation
without reweighting.

2.5.1.B Results of AE-ABF

We now apply AE-ABF to this system, and compare our learned CVs to the ground truth
shown in Figure 2.5. Instead of stopping the algorithm at CV convergence, we run AE-ABF
for a fixed number of iterations Imax = 9 and later check at which iteration convergence
has occured. This is to check whether the algorithm really stabilizes at the converged CV.
We consider that convergence is reached at iteration i when the linear regression score
s(ξi, ξi−1) ≥ smin = 0.996.

To determine the simulation time per iteration of AE-ABF, a compromise should be
made between the duration of the simulation (which we want to be as small as possible)
and the time needed for the free energy estimate to be stable (indicating it has converged
to the free energy) so that it can be used for the reweighting of sampled data. The results
given below correspond to a simulation time of 10 ns per iteration. Other runs of AE-ABF
using larger values of simulation times were also performed, and gave similar results.

For each simulation, atomic positions are recorded every 100 timesteps. This corresponds
to N = 105 datapoints at each iteration. Figure 2.7 illustrates the sampled trajectories
(Ramachandran plots) through 7 iterations of AE-ABF on alanine dipeptide in vacuum.

To compare the consecutive learned CVs, we project the encoders obtained from each
iteration on the 1.5µs unbiased trajectory. Figure 2.8 shows scatter plots of the autoencoder
CVs in Φ and Ψ-based coloring. Regression scores between consecutive CVs, and between
the CVs from each iteration and the ground truth CV (illustrated in Figure 2.5) are also
given in Table 2.1. These regression scores are computed using data from the 1.5µs unbiased
trajectory, and serve only for the analysis of our results. Note that during the AE-ABF
algorithm itself, the regression scores between consecutive CVs are computed using the
AE-ABF trajectories (precisely the two last sampled trajectories at each iteration). This
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Iteration previous CV Ground Truth CV (Φ,Ψ)
0 − 0.9418 0.922
1 0.872 0.849 0.892
2 0.868 0.897 0.853
3 0.922 0.996 0.973
4 0.999 0.997 0.972
5 0.999 0.996 0.970
6 0.999 0.996 0.971
7 0.999 0.995 0.967
8 0.998 0.993 0.966
9 0.999 0.994 0.968

Table 2.1: Linear regression scores with AE-ABF for 9 iterations. Each line corresponds to
an iteration, where the regression score is computed between the learned CV and: the CV
from the previous iteration (2nd column); the ground truth CV of Figure 2.5 (third column);
and the 2D vector (Φ,Ψ) (fourth column). CV convergence occurs at iteration 4, where the
regression score is above 0.996. The regression score values show that the converged CV is
almost perfectly similar to the ground truth CV, and also explains very well Φ and Ψ.

is the score mentioned in Algorithm 1, which is in practice used to monitor convergence
during the algorithm and determine a stopping rule. These scores, which have values similar
to the ones obtained by comparing with the 1.5µs unbiased trajectory, are reported in
Supp. Mat. Section 2.7.4.

As illustrated in Figure 2.7, the consecutive eABF simulations all explore the three main
metastable states of alanine dipeptide in vacuum. Notably, the transition between the C7ax
and C7eq states is more and more sampled through the iterations. In particular, iteration
4 shows an increase of the number of sampled transition state configurations. As shown
in Figure 2.8 and Table 2.1, this coincides with the convergence of the learned CVs to a
good approximation of the ground truth CV obtained in Figure 2.5. In conclusion, we have
obtained virtually the same CV learned from a 1.5µs trajectory, after only 4 iterations of
AE-ABF, equivalent to a total of 40 ns of biased simulation time, in addition to the first
10 ns unbiased iteration.

2.5.2 Chignolin

This section provides results of AE-ABF applied to the solvated chignolin mini-protein [178].
We first present in Section 2.5.2.A the different conformational states of chignolin. Sec-
tion 2.5.2.B then illustrates the 5 separate long unbiased trajectories of chignolin that were
sampled in order to provide training data for learning a ground truth CV, which is presented
in Section 2.5.2.C. The results of AE-ABF applied to solvated chignolin are presented in
Section 2.5.2.D. Finally, the sampling efficiency of the autoencoder CV is compared to that
of more traditional choices of CV (namely well defined interatomic distances).

2.5.2.A Metastable states of chignolin

The chignolin miniprotein is a small 10-residue protein which folds into a β hairpin in water.
Three main states of the protein can be distinguished: the folded state, the misfolded state
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Figure 2.7: AE-ABF for 7 iterations (not all are shown here). Ramachandran scatter plots
of each trajectory. The first trajectory is unbiased. The coloring corresponds to values of
the first component of the CVs (Left) and the values of the second component of the CVs
(Right). Visually, the first component of the CV converges approximately to a function of
Φ, and the second component to a function of Ψ.
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Figure 2.8: Autoencoder CVs through 7 iterations of AE-ABF (in addition to the initial un-
biased iteration). The CVs are scatter plotted with Φ and Ψ colorings. The plots show that
the CV obtained with AE-ABF is very similar to the ground truth CV shown in Figure 2.5.
Plots were made using encoder projections over the same unbiased 1.5µs simulation.
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and the unfolded state [172]. These states are illustrated in Figure 2.9. The misfolded state
is characterized by the formation of an incorrect hydrogen bond between ASP3N (nitrogen
atom of residue 3: ASP) and GLY7O (oxygen atom of residue 7: GLY) instead of the correct
hydrogen bond between ASP3N and THR8O (oxygen atom of residue 8: THR) formed in
the folded state. In other words, the misfolded state is represented by small values of the
distance D(ASP3N-GLY7O) while the folded state corresponds to small values of D(ASP3N-
THR8O). The unfolded state shows a more open form of the hairpin and thus represents
higher values of both distances.

Figure 2.9: Three main states of chignolin in water. Left to right: Folded, misfolded and
unfolded. The difference between the folded and misfolded states can be observed here in
the orientation of the oxygen (red) atoms in GLY7 and THR8.

2.5.2.B Unbiased simulations

Following the protocol described in Section 2.4.3, we run 5 unbiased simulations of 2 µs each.
For each simulation, configurations are saved every 5000 timesteps, i.e 10 ps. The resulting
trajectories thus contain 2 × 105 configurations each. All simulations are started from the
same initial configuration in the folded state. Figure 2.10 shows the alpha carbon root mean
square deviation plotted for each trajectory. These RMSD values are computed with respect
to the initial folded conformation. The folded, misfolded and unfolded states correspond
approximately to RMSD values in ranges [0, 0.2], [0.2, 0.4] are [0.4, 0.8] respectively (these
values are expressed in nm). Each simulation accomplishes at least one transition among
these three states. Additionally, we include in Figure 2.10 the values of the two distances
of interest, D(ASP3N-GLY7O) and D(ASP3N-THR8O), observed during the simulations.

We also show in Figure 2.11 the free energy landscape for the reaction coordinate
(D(ASP3N-GLY7O),D(ASP3N-THR8O)) computed using these five simulations using a his-
togram of 50 bins in each direction. The folded and misfolded states correspond to local
minima, while the unfolded state is shallower and wider.

2.5.2.C The ground truth collective variable

The 5 simulations illustrated in the previous section are concatenated to form a dataset
of 106 points, which we use to learn a ground truth CV. We train an autoencoder of the
structure and parameters described in Section 2.4.3. The obtained CV is projected over
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Figure 2.10: Top. Alpha carbon RMSD and radius of gyration values over each trajectory.
Bottom. Scatter plots of values of the distances D(ASP3N-GLY7O) and D(ASP3N-THR8O)
sampled for each trajectory.

Figure 2.11: Free energy landscape of the 2D space formed by distances D(ASP3N-GLY7O)
and D(ASP3N-THR8O). The folded (F) and misfolded (MF) states correspond to two sep-
arate basins. The unfolded state covers a more scattered area.

the dataset in Figure 2.12 and colored according to the values of the distances D(ASP3N-
GLY7O) and D(ASP3N-THR8O). Figure 2.12 shows that the obtained CV separates the
misfolded and folded states into two clusters, while the unfolded state covers a large part of
the remaining space.

Similarly to alanine dipeptide, we seek to compare the CVs obtained by AE-ABF on
chignolin against this ground truth CV.
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Figure 2.12: Autoencoder CV projected over the unbiased trajectories and colored according
to values of D(ASP3N-GLY7O) (left) and D(ASP3N-THR8O) (right). Two clusters appear:
The top cluster (located at CV1 < 0 and CV2 > 0.5) corresponds to the misfolded state,
while the lower cluster (located at CV1 < 0 and −0.5 < CV2 < 0.5) represents the folded
state. The rest of the 2D space corresponds to the unfolded state.

2.5.2.D Results of AE-ABF

We apply AE-ABF to chignolin using a fixed number of 7 iterations. We consider that CV
convergence is reached when the regression score is higher than smin = 0.78, where smin is
computed using the bootstrapping procedure described in Supp. Mat. Section 2.7.2. The
first unbiased simulation had a time horizon of 100 ns and the following biased simulation
a time horizon of 50 ns. For each biased simulation, atomic positions are saved every 500
timesteps.

We compute the values of the carbon alpha RMSD and the two distances at each it-
eration. These values are plotted in Figure 2.13 to illustrate the gradual exploration of
the conformational space of chignolin throughout the iterations of AE-ABF. The obtained
plots clearly show that the learned CVs are able to accelerate crossing between the folded,
misfolded and unfolded states.

Additionally, we again compute the regression scores between consecutive CVs, as well
as between each CV and the ground truth CV. Results are presented in Table 2.2. The
obtained regression scores are generally much lower than those obtained for alanine dipep-
tide, but we still achieve convergence of the CV as defined by the threshold determined in
Supp. Mat. Section 2.7.2.

2.5.2.E Sampling with the autoencoder CV

The previous section shows that AE-ABF is able to sample the three states of Chignolin in
the course of one iteration, i.e. a 50 ns simulation. Here, we compare sampling efficiency
between the autoencoder CV (i.e the ground truth CV introduced in Section 2.5.2.C) and
the 2D CV composed of the distances (D(ASP3N,GLY7O), D(ASP3N,THR8O)). For each
CV, we sample 2 eABF simulations of 60ns each. The biasing domain for the autoencoder
CV (resp. the distances) is [−1, 1]2 (resp. [0.2, 1.75]2). We compare the regions of the space
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Figure 2.13: Six iterations of AE-ABF (in addition to the initial unbiased iteration). Left:
Evolution of carbon alpha RMSD for each iteration. Right: Sampled values of the two
distances. The final rounds of AE-ABF achieve a considerably better exploration of the
conformational states. (Not all iterations are shown).
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Iteration previous CV Ground Truth CV vector of distances
0 − 0.119 0.099
1 0.344 0.495 0.363
2 0.349 0.413 0.594
3 0.517 0.772 0.705
4 0.684 0.765 0.585
5 0.947 0.790 0.600
6 0.855 0.801 0.674

Table 2.2: Linear regression scores with AE-ABF for 6 iterations. Each line corresponds
to an iteration, where the regression score is computed between the learned CV and: the
CV from the previous iteration (2nd column); the ground truth CV (third column); and
the 2D vector (D(ASP3N,GLY7O), D(ASP3N,THR8O)) (fourth column). CV convergence
occurs at iteration 5 (regression score above 0.78). The regression score values show that the
converged CV is also well correlated with the ground truth CV. The CVs however do not
achieve high regression scores with the distances (D(ASP3N,GLY7O), D(ASP3N,THR8O)).

visited by the eABF runs. The comparison is done over the distance space, where three
regions are distinguished: [0.4, 0.8]×[0, 0.4] defines the folded state; [0, 0.4]×[0.4, 0.8] defines
the misfolded state, while the rest of the space represents the unfolded state. Figure 2.14
shows the sampled values of (D(ASP3N,GLY7O), D(ASP3N,THR8O)), while Figure 2.15
shows the state assignments for each sample to track transitions. It can first be observed that
the trajectories sampled with eABF using (D(ASP3N,GLY7O), D(ASP3N,THR8O)) cover
a wider region in the unfolded state. However, these trajectories achieve fewer transitions
to the misfolded and folded states, which are thus poorly sampled. This is possibly caused
by the small proportion of the space taken up by these states in the distance space (see e.g.
Figures 2.10 and 2.11) as opposed to the coordinate space (see Figure 2.12). Equivalently,
this can be viewed as an issue concerning the choice of the biased sampling interval for
(D(ASP3N,GLY7O), D(ASP3N,THR8O)). This issue does not arise for the autoencoder
CV as it takes values in a bounded domain, making the sampling interval straightforward
to determine.

2.6 Conclusion and Future Work

In this paper, we have given a new version of an iterative algorithm for collective variable
learning with autoencoders and enhanced sampling. Our method relies on a very impor-
tant reweighting procedure to ensure the convergence of the CV throughout the iterations.
This reweighting procedure was both validated theoretically and in practice on simple toy
examples. We have then fully described our method and have included some suggestions on
several improvements of the basic algorithm based on the transfer of information between
consecutive iterations. Finally, we have demonstrated the interest of our method on the
alanine dipeptide system in vacuum as well as on the solvated chignolin system.

Future work involves a more in depth analysis of the information transfer refinements
proposed in Section 2.3.3, specifically the free energy initialization procedure. Additionally,
a third form of information transfer, where the previously learned model could be used to
initialize the new learning model in a transfer learning fashion would also be interesting to
investigate.
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Figure 2.14: Sampled values of the distance space. Top: eABFs using (D(ASP3N,GLY7O),
D(ASP3N,THR8O)). Bottom: eABFs using the ground truth CV.

Figure 2.15: State assigned to each sample over 60ns eABF trajectories. Top: eABFs using
(D(ASP3N,GLY7O), D(ASP3N,THR8O)). Bottom: eABFs using the ground truth CV.

The application of our algorithm using other learning models than autoencoders could
also be explored. In particular, introducing an iterative algorithm with a transfer operator
based method such as VAC is a very attractive possibility. It would also be interesting
to explore whether using more sophisticated forms of neural networks e.g. convolutional
topologies, could add something to the learned representation. Moreover, the choice of the
data input representation is another part of the algorithm that could be optimized. So far,
we have only worked with the aligned Cartesian coordinates, but directly using internal
coordinates can prove efficient for more complex systems. In addition, more preprocessing
steps could be considered to normalize the data, to obtain a set of already independent input
variables, etc. For example, whitening transformations could be used to remove underlying
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correlations.
Finally, the application of AE-ABF to more complex systems is crucial to test what the

method can truly accomplish, and explore any possible limitations.

2.7 Additional definitions and results

2.7.1 Theoretical definitions and practical details

This section highlights some important theoretical and practical points on the implementa-
tion of FEBILAE.

2.7.1.A Collective variables and free energy biasing

In MD, a common choice for the biased distribution µ̃ is to consider a free energy biased
distribution. In order to make this concept precise, we recall in this section some definitions
on collective variables, free energy and free energy based biasing, including general formulas
for the Boltzmann–Gibbs measure and the free energy biased measure. Here, we consider
the positions of a given system q = (q1, . . . , qm), where qi ∈ R3 for systems in vacuum or
(LT)3 in the case of periodic boundary conditions in a cubic box. We denote by D = 3m
the dimensionality of the system. For this system, the marginal of the canonical measure ν
with respect to the positions q is defined as:

ν(dq) = Z−1
ν e−βV (q)dq , (2.22)

where V : RD → R is the potential energy function, Zν =
∫
RD e−βV (q)dq is a normalization

constant and β = (kBT )−1 is proportional to the inverse temperature. Here, ν corresponds
to the original distribution µ considered in (2.1).

The full sampling of the canonical measure by molecular dynamics simulations is typ-
ically infeasible because of metastability. Many methods aim at overcoming this issue. In
particular, free energy biasing methods change the original potential V to V −F ◦ ξ, where
F is the free energy associated with the collective variable ξ : RD → Rd. The CV ξ is often
chosen such that ξ(qt) = zt is a slow process given the dynamical evolution equation of
qt. The function ξ typically characterizes the conformational changes between metastable
states. Recall that the free energy associated with a CV ξ and the canonical measure ν is
(up to an irrelevant additive constant):

F (z) = − 1

β
ln

(∫
Σ(z)

e−βV (q) δξ(q)−z(dq)

)
, (2.23)

where Σ(z) = {q ∈ RD, ξ(q) = z} and the delta measure δξ(q)−z(dq) is supported on Σ(z).

The density of the image of ν by ξ is thus proportional to e−βF .
Free energy biasing corresponds to sampling the canonical measure associated with the

bias potential V − F ◦ ξ, that is:

νF (dq) ∝ e−β(V−F◦ξ)(q)dq . (2.24)

A simple computation shows that the marginal distribution in the ξ variable of this biased
measure is uniform. Indeed, the density of the image of νF by ξ is:∫

Σ(z)

e−β(V (q)−F◦ξ(q)) δξ(q)−z(dq) = eβF (z)e−βF (z) = 1 . (2.25)
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The biased measure e−β(V−F◦ξ)(q)dq thus has a uniform marginal law along ξ. This implies
that ξ(qt) is less metastable under the free energy biased dynamics.

The biasing procedure is however only as good as the CV used to perform it: if most of
the metastability of the system is captured by the CV ξ (i.e. when the CV effectively resolves
the metastable states), the method effectively renders the dynamics diffusive and annihi-
lates metastability; conversely, if the CV ξ fails to describe the most important metastable
directions, biasing along it will likely be ineffective. This last point motivates the need to
find a good choice of collective variable.

2.7.1.B Autoencoder optimization step

The autoencoder is typically trained using a gradient descent optimization algorithm: the
parameters p are sequentially modified at each optimization step using a steepest descent
algorithm with a stepsize η > 0 called the learning rate. In this paper, we use mini-
batching to approximate the gradient of the loss function, meaning that each optimization
step only uses a subset (a mini-batch) of the data to modify the parameters p. More
precisely, we denote by b the number of points in a mini-batch. The data is first randomly
reshuffled, then at each learning step r, the loss is computed as the mean loss over datapoints
xrb+1, . . . , x(r+1)b:

Lr(p) =
1

b

(r+1)b∑
i=rb+1

‖xi − fp(xi)‖2.

The parameters p are thus updated as follows:

pr = pr−1 − η∇pLr(pr−1).

To compute the gradient ∇pLr(pr−1), back-propagation is used. The learning proceeds
in epochs, where one epoch corresponds to the number of steps

⌊
N
b

⌋
required to visit the

entire dataset (with b.c the integer part of a number). A maximum number of epochs is
specified, after which training is stopped. The learning is usually stopped earlier, when the
loss no longer decreases. To assess this, part of the data is used as a validation set: This
subset is not used in training, and its mean loss is tracked to stop the gradient descent algo-
rithm when it no longer decreases. This procedure is called early stopping. The validation
loss is used instead of the total loss to stop the algorithm to avoid overfitting the dataset.

It is very important to note here that during learning and after, the model has access
to the gradient of the value of any neuron with respect to the value of any other neuron
from a previous layer (including the input). This is useful later, in the context of enhanced
sampling, one needs to extract the mapping of the encoder and its gradient.

2.7.1.C Multiple solutions

As mentioned in Section 2.2.3, the optimization problem does not necessarily have a unique
solution. In addition, the learning loss can have multiple local minima. More precisely, the
value pµ obtained at the end of learning, which corresponds to one local minimum, may
depend on the initial value given to p at the beginning of the learning, and on the value
of the learning rate η used in the gradient descent. As a consequence, when we want to
assess the impact of the distribution of the input data on the learned parameters, we make
sure that, for a given test case, the numerical setting (initial parameters and topology of
the autoencoder, optimization parameters, etc) are kept constant from one experiment to
another.
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2.7.1.D Sample weights normalization

For all the experiments performed in this paper, the weights used in Equation (2.7) are
the ones defined in Equation (2.6) multiplied by N . This is to follow the default weight
normalization used by the keras module in python, which we use for all our experiments,

and where the weights are normalized to sum to the number of samples:

N∑
i=1

wi = N , instead

of 1. Of course, this only adds a multiplicative factor to the loss, and thus does not change
anything to the learning from a theoretical viewpoint. This is simply a practical choice that
allows us to use default values for most of the parameters of the optimization procedure.

2.7.2 Regression score to assess CV convergence

The AE-ABF algorithm stops when the CVs learned from the new iteration are sufficiently
similar to the ones obtained from the previous iteration. We make precise in this section
how this similarity is quantified.

The R2 score in regression models

We consider a dataset Z = (z1, . . . , zN ), with zi ∈ Rp, and corresponding values (called
labels) Y = (y1, . . . , yN ), with yi ∈ Rp′ . We call an optimized regression model between Z
and Y a mapping M from the inputs z1, . . . , zN to the outputs y1, . . . , yN trained so as to
minimize the error

N∑
i=1

‖M(zi)− yi‖2,

where ‖ · ‖ is the Euclidean norm. Here we consider a linear model, which corresponds to
M(z) = Wz + b, for a given matrix W ∈ Rp×p′ , and bias vector b ∈ Rp′ .

The precision of this regression model, for the data Z and Y, can be assessed using the
R2 score, also called coefficient of determination:

R2(M,Z,Y) = 1−

N∑
i=1

‖yi −M(zi)‖2

N∑
i=1

‖yi − ȳ‖2
,

where ȳ =
1

N

N∑
i=1

yi. The R2 score is thus simply the fraction of variance explained by the

regression model M over the dataset (Z,Y). Note that this score is equal to 1 when the
model M is able to output exactly yi for each zi. On the other hand, a baseline model
which outputs M(zi) = ȳ for all i will have a R2 score equal to 0.

Using the R2 score for CV comparison

To compare two CVs ξ and ξ′ of dimensions p and p′ respectively, we use a test trajec-
tory (q1, . . . , qN ). We then optimize a linear regression model M between inputs Z =
(z1, . . . zN ) = (ξ(q1), . . . , ξ(qN )) and labels Y = (y1, . . . , yN ) = (ξ′(q1), . . . , ξ′(qN )). The
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CV score between ξ and ξ′ is then defined as the coefficient of determination R2(M,Z,Y).
Typically, p′ = p and ξ = ξi−1, the CV proposed at the i-th iteration of Algorithm 1, while
ξ′ = ξi.

Determining the threshold value smin

The stopping rule of Algorithm 1 requires determining a value smin of the R2 score above
which one can consider that the CVs are sufficiently similar in order to stop the loop. Note
that this value depends on various parameters, one of which is the size N of the datasets
that are used to learn the CVs. Let us illustrate one approach to determining smin. In
the setting considered in Section 2.5.1, the number of datapoints used for learning a new
model at each iteration of AE-ABF is N = 105. To determine a reasonable value for smin

with N = 105, we use the unbiased trajectories obtained as described in Sections 2.5.1.A
and 2.5.2.B. The unbiased dataset of Nref = 106 points is randomly split into 10 subsets
S1, . . . , S10. An autoencoder is trained on each subset Sk and a CV, ξk is learned. Then
the R2 score between pairs (ξk, ξ`) is computed. This provides 10×9

2 = 45 different values
of the R2 score when Nref/N = 10. This operation can be repeated r times to obtain 45r
realisations of the R2 score. This procedure allows to approximate the distribution of this
score for N = 105. We choose to define smin as the 5% percentile of this distribution, that
is to say, smin is such that 95% of the 45r values are larger than smin. Figure 2.16 shows the
regression scores computed for alanine dipeptide and chignolin. For alanine dipeptide, using
r = 30, and thus 1350 realisations of R2, we find smin ≈ 0.996. This motivates the choice of
the value smin = 0.996 considered in Section 2.5.1.A. For chignolin, using r = 15, and thus
675 realisations of R2, we find a much lower value: smin ≈ 0.78. The difference between
the two values obtained for two different systems shows the necessity of determining the
threshold smin for each new system.

Note that this method relies on having a large dataset (here Nref = 10N = 106 samples)
to sample N -sized subsets. In practice, this dataset may not be available at the beginning
of the simulation. However, a dataset of size N is sampled at each iteration of AE-ABF.
After a number Nit of iterations of the algorithm is achieved, the Nit datasets which have
been obtained can be compiled and used as a larger dataset of size Nref = NitN to deter-
mine smin. This means that Nit iterations of Algorithm 1 are performed without checking
the convergence of the CV, after which a value of smin is determined and Algorithm 1 is
continued as usual.

2.7.3 Transferring information between iterations

2.7.3.A Using trajectories from previous iterations

This section illustrates results of AE-ABF applied with a sliding window of nT = 1, 2 or 3
training trajectories: At iteration i ≥ 1, the autoencoder is trained on the last min(nT , i)
sampled trajectories.

Recall that the results for alanine dipeptide given in Section 2.5 correspond to an imple-
mentation of the algorithm which includes a sliding window of nT = 2 trajectories. Here, we
use the 2D system of Section 2.2.5 as an illustrative example. We use a reduced trajectory
horizon of only 2× 105 timesteps at each iteration with ∆t = 10−3 and save samples every
5 timesteps. We therefore sample relatively small trajectories that do not always visit the
three states of the configurational space, and simulations that are not sufficiently long the
free energy profile to converge. We demonstrate here that for this case, using the two or
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Figure 2.16: Histogram of the R2 scores obtained using subsets of N = 105 points out of
106 points. The vertical black line indicates the 5th percentile. Right. Alanine dipeptide.
Left. Chignolin.

three last trajectories for training (nT = 2 or 3 respectively) enables convergence, contrarily
to using only the new trajectory (nT = 1).

We run three instances of AE-ABF for 6 iterations each, using respectively a sliding
window of nT = 1, 2 and 3 trajectories. The corresponding CVs are plotted using an
unbiased test trajectory and shown in Figure 2.17. These plots show that learning on only
one trajectory is not enough to achieve convergence to the CV ξ(x, y) = x, because the free
energy does not converge, and the trajectories do not always explore the three metastable
states. However, combining the trajectories enables convergence, as it allows for the resulting
dataset to be complete (even if each trajectory only visits one of the two deep wells).

(a) nT = 1

(b) nT = 2

(c) nT = 3

Figure 2.17: CVs obtained at consecutive iterations of AE-ABF using different numbers nT
of previous trajectories as training data.
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2.7.3.B Results with free energy initialization on the 2D toy example

At each iteration of AE-ABF, an eABF run can be divided into two periods over each region
of the configurational space. The first period only ends when a good estimate of the free
energy has been computed. During this part of the simulation, the estimated bias is either
not applied (when not enough samples have been gathered in the corresponding bin), or is
not an accurate enough estimate to allow for a full exploration of the configuration space
and thus to obtain a correct free energy. The second period represents the actual biasing of
the system using the converged estimate. The free energy initialization scheme introduced
as a refinement of our algorithm in Section 2.3 allows to reduce the time required for the
first period, leaving more simulation time for the more important second period.

In this section, the free energy initialization procedure is implemented for the 2D three
well potential system, to observe in practice the accuracy of this initialization and its impact
on the convergence of the algorithm. This procedure is equivalent to running the same eABF
while changing the biasing CV at each iteration of AE-ABF. To keep this ongoing eABF
run consistent, at each new iteration, the simulation is started from the last sampled point
of the previous iteration.

Note that the mean force initialization established in Equation (2.20) assumes a strong
correlation between the consecutive CVs. Consequently, the initialization scheme is only
applied when the regression score between the consecutive CVs is high enough. We chose
to apply it when it is above R2

min = 0.9.
Here, we reduce the trajectory time horizon to only 5× 104 timesteps at each iteration

with ∆t = 10−3, saving samples every 5 timesteps. Training is done over a sliding window
of nT = 4 trajectories. Without using free energy initialization, this time horizon is not
enough to obtain CV convergence (even using nT = 4 trajectories for learning), because the
estimated free energy is far from stabilized.

Figure 2.18 shows the progressive convergence of the CV learned at each iteration to
a monotonic function of the coordinate x1, and the matching values of the free energy
initialization. It is directly observed that, as the learned CV stabilizes, the free energy
initialization is more and more accurate.

(a) Learned CVs

(b) Free Energies: initial guesses and final estimates

Figure 2.18: The initial guess of the free energy at iteration i (blue lines) is increasingly
more similar to the free energy estimate at the end of iteration i (orange lines), as the CV
converges (top scatter plots).
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2.7.4 Additional details and results on alanine dipeptide

2.7.4.A States and collective variables

Alanine dipeptide is a small molecule of 22 atoms, including 8 backbone atoms. Alanine
dipeptide in vacuum has been extensively studied and used in previous works, which makes
it a good choice for bench marking. Figure 2.19 shows the structure of the molecule and
highlights the three metastable states of alanine dipeptide in vacuum.

Figure 2.19: Alanine dipeptide. Left. Molecular structure. Right. Metastable states of the
molecule in vacuum represented on the Ramachandran space using the free energy profile
under a temperature of 300K (using 180bins in each direction). Transition times between
C5 and C7eq states are fairly short, unlike the transition times between these states and
the C7ax state.

2.7.4.B The FVE plateau method

Using the 1.5 µs unbiased trajectory obtained as described in Section 2.5.1.A, we train 10
different autoencoders with respective bottleneck dimensions 1, . . . , 10. We then compute as
explained in Remark 4 the FVE value for each model, and plot these values to find a visual
plateau in the FVE curve which allows to determine the optimal bottleneck dimensional-
ity. The obtained FVE curve is shown in Figure 2.20. A knee is observed at bottleneck
dimension d = 2.

2.7.4.C Real time regression scores of AE-ABF using the sampled trajectories

Table 2.1 above shows the R2 scores between consecutive CVs of AE-ABF, using the 1.5µs
unbiased trajectory. As mentioned in the latter section, Table 2.1 only serves to analyze
our results post run. In order to use the regression scores to establish a stopping rule, the
long unbiased trajectory can of course not be used. Instead, the last two sampled biased
trajectories are used at each iteration. Note that these trajectories are again reweighted to
obtain the unbiased regression score. Table 2.3 shows the obtained scores, compared to the
ones obtained by comparing to the reference CV constructed from the unbiased trajectory.
The scores are quite similar. In particular, the convergence of the CV happens at the same
iteration of AE-ABF for the score obtained from the long unbiased trajectory, and the ones
obtained from the AE-ABF trajectories.



2.7. ADDITIONAL DEFINITIONS AND RESULTS 101

Figure 2.20: FVE curve obtained using the 1.5µs unbiased trajectory as training data. The
plateau occurs at dimension d = 2.

Iteration over last 2 sampled trajectories over reference trajectory
0 − −
1 0.399 0.872
2 0.927 0.868
3 0.904 0.922
4 0.998 0.999
5 0.999 0.999
6 0.999 0.999
7 0.998 0.999
8 0.996 0.998
9 0.998 0.999

Table 2.3: Linear regression scores, AE-ABF for 9 iterations. Regression scores between
consecutive CVs computed during the AE-ABF run using the sampled biased trajectories
(first column), and using the long unbiased trajectory (second column).

2.7.5 Additional results: reweighted versus unweighted CVs

One of the goals of our algorithm is to find the same autoencoder CV that would have been
obtained using long unbiased simulations. The results in Section 2.5.1 demonstrate that this
goal is attained: The converged AE-ABF CV achieves a high regression score with respect to
the ground truth CV. We note however that the ground truth CV by construction contains
little information on transition states compared to metastable states, as it is trained on
unbiased simulations. Yet incorporating some of this information could potentially improve
the CV’s ability to sample these transition states. Consequently, a CV that is trained on
biased data may be more efficient in biasing the dynamics to enhance sampling.

In this section, we use the alanine dipeptide system to discuss this point. First, we
compare in Section 2.7.5.A the sampling properties of the ground truth CV of Figure 2.5
and a CV obtained from unweighted biased data. Second, we perform in Section 2.7.5.B
an AE-ABF run where the reweighting step is omitted. The sampled trajectories on this
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unweighted AE-ABF are visually compared to those of a regular AE-ABF.

2.7.5.A Comparison between the ground truth CV and a CV obtained from
unweighted biased trajectories

We compare here the ground truth CV shown in Figure 2.5 with a CV obtained from biased
data. The latter CV is constructed by training an autoencoder on a simulation of 300 ns
biased using the free energy associated with (Φ,Ψ), and applying no reweighting to the
data points. The biased trajectory visits the quasi-totality of the (Φ,Ψ) space and sample
multiple transitions. In this section, we denote by CVg and CVu the ground truth CV and
the CV obtained from biased data, respectively (the subscript ’u’ standing for ’unweighted’).
The projections of CVu and CVg on the unbiased 1.5 µs dataset are shown in Figure 2.21.

Figure 2.21: Projections of CVg (left) and CVu (right) over the 1.5 µs unbiased data, colored
according to Φ values for clarity.

To compare the two CVs, we use the following methods:

• Regression scores: we measure the CVs’ correlation to the dihedrals Φ and Ψ using
the value of the regression score between each CV and the (Φ,Ψ) vector. CVg achieves
a regression score of 0.967, whereas the regression score of CVu is 0.880. However,
these scores are computed over configuration from the 1.5 µs unbiased trajectory,
which contains only few transition states. We therefore also compute the regression
scores using this time the 300 ns (Φ,Ψ)-biased trajectory which served as training data
for learning CVu. This biased trajectory achieves a large number of transitions (over
5000 transitions between the C5-C7eq and the C7ax states). Over this trajectory, the
computed regression scores between the CVs and (Φ,Ψ) are in general significantly
lower. However, CVg still achieves a higher regression score (0.781) than CVu (0.410).
When measuring these regression scores over the transition states alone, both scores
are lower than 0.5, but this time CVu outperforms CVg (0.45 to 0.39). Here, transition
state regions were determined approximately using values of Φ, with transition states
corresponding to Φ ∈ [−0.5, 0.5] ∪ [1.8, 2.6].

These results indicate that in the case of alanine dipeptide, the unweighted CV does
not seem to gain valuable information over the ground truth CV from the transition
states in the dataset, and even loses (Φ,Ψ)-related information overall. One possible
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explanation can be the presence of ”unrealistic” conformations in the biased data that
are not canceled out by reweighting.

• Convergence of the free energy. We run two eABF simulations, using CVg and
CVu. As done in Section 2.5.1 for the final free (see in particular (2.21)), at any time
t of the obtained trajectory, the intermediate estimates Gt of the CV’s free energy can
be used to compute an intermediate approximation F̃t of the (Φ,Ψ) free energy F by
reweighting histograms.

The error between the current estimate of the mean force F̃t and the final estimate
F̃final obtained at the end of the simulation is computed at each timestep t as a weighted
`2-distance between these two quantities:

∆Ft =

√√√√√√√√√√
k∑

j,l=1

exp(−βF j,l) (F̃t
j,l − F̃ j,lfinal)

2

k∑
j,l=1

exp(−βF j,l)

, (2.26)

where the sum is over all bins (j, l) of (Φ,Ψ) and F j,l is the value of the reference free
energy in the bin j, l.

Remark 5. The free energies are defined up to additive constants. In this paper, two
values (e.g. estimates) F1 and F2 of the free energy are always optimally aligned by

shifting them so as to minimize the `2-distance defined in (2.26), where (F̃t
j,l− F̃ j,lfinal)

is replaced by (F j,l1 − F
j,l
2 ).

In order to assess the convergence speed of the free energy for each eABF run, we plot
the time dependent value ∆Ft. As a point of comparison, the same protocol is used
to compute approximations of F and their convergence speed using eABFs with the
dihedrals (Φ,Ψ). In all three cases, the biasing CV (i.e. the ground truth CV, the
(Φ,Ψ) dihedrals, or the CV obtained from unweighted biased data) is rescaled to have
a range in [−1, 1]2, and the number of bins in each direction is 50. Sampled points
are saved every 10 timesteps. The simulations are 250ns long, which allows for free
energy convergence. Figure 2.22 shows the value of β∆Ft as a function of the eABF
simulation time for the three CVs.

It can be observed that the ground truth CV free energy profile stabilizes within
a small simulation time comparable to that of the (Φ,Ψ) CV. This indicates that
the conformational space is relatively well explored in a small amount of time when
biasing with the ground truth CV. The convergence of the free energy profile for the
CV obtained from unweighted biased data is slower, and even seems to not completely
be reached at 250 ns.

• Sampling transition states: Finally, we compare CVg and CVu by estimating their
ability to sample transitions between the C5/C7eq and the C7ax states. For this, we
sample 2 eABF trajectories for each of CVg, CVu, and of (Φ,Ψ) for comparison. We
divide the Φ space into 4 regions: C5/C7eq, TS1, C7ax, and TS2, corresponding re-
spectively to: [−π,−0.5] ∪ [2.6, π], [−0.5, 0.5], [0.5, 1.7], and [1.8, 2.6]. We then plot
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Figure 2.22: Evolution of the distance β∆Ft between the final and current estimates of the
free energy profiles, as a function of time.

in Figure 2.23 the regions sampled along the 6 eABF simulations using the sampled
values of Φ. Figure 2.23 shows that CVg enables a more efficient sampling of regions
C5/C7eq, TS1 and C7ax than CVu. The CVu eABF trajectories seem to occasion-
ally stay trapped in the C5/C7eq basin. Neither CV enables very high sampling of
TS2 (compared to the other three regions, and especially compared to eABFs with
(Φ,Ψ)). However CVu eABF trajectories visit this region more often than CVg eABF
trajectories do.

In general, the obtained results suggest that CVg is more efficient at sampling than CVu.
The latter even seems to be a rather poor choice of CV. However, it is important to note
that our choice of a unweighted biased data does not constitute the only way of learning a
CV from biased data, nor of incorporating transition state information into the CV. One
could for instance only apply some partial reweighting to the data points, in order to remove
the most unlikely configurations under the Boltzmann–Gibbs measure, while still keeping
transition states associated with sufficiently low free energy barriers.

2.7.5.B AE-ABF without reweighting

This section presents the results of performing AE-ABF without reweighting. The un-
weighted AE-ABF is run for 9 iterations, using the same parameters as in Section 2.4.2.A,
but of course without the use of reweighting to unbias the training. Just as was done for the
reweighted results, we compute, for each iteration, the regression score of the learned CV
with respect to the previous CV and with respect to (Φ,Ψ). Table 2.4 shows the obtained
values. The regression scores between consecutive CVs are consistently lower than those
obtained with the reweighted AE-ABF. More importantly, these regression scores are lower
than the threshold smin = 0.996 determined in Supp. Mat. Section 2.7.2, indication that we
cannot consider the CV to be converged. It is also important to note that the regression
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Figure 2.23: State assigned to each sample over 50ns eABF trajectories. Top: eABFs using
CVg. Middle: eABFs using CVu. Bottom: eABFs using (Φ,Ψ).

scores between the CVs and (Φ,Ψ) is lower than with reweighted AE-ABF. These results
are in accordance with the results obtained in the comparison between the unbiased ground
truth and the biased CV in the previous section.

In addition, we plot in Figure 2.24 the sampled regions of the Ramachandran space
at each iteration. It can be observed that the sampled trajectories are similar to those
obtained with the regular weighted AE-ABF. Figure 2.25 shows the learned CV at each
iteration projected on the unbiased 1.5 µs trajectory. It can be seen that, as implied by the
values of the regression scores reported in Table 2.4, the learned CV does not converge.

While CVs trained on biased data do not seem to outperform CVs trained on unbiased
(or reweighted) data in this particular test case, we cannot generalize this statement to
every system. In cases where biased CVs would provide a sampling advantage, it would be
interesting to test a hybrid version of our iterative algorithm where two CVs are computed
at each iteration: one with reweighting to check the convergence of the algorithm, and one
without reweighting to perform the next round of enhanced sampling.
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Figure 2.24: AE-ABF for 8 iterations without reweighting (not all are shown here). Ra-
machandran scatter plots of each trajectory. The coloring corresponds to values of the first
component of the CVs (Left) and the values of the second component of the CVs (Right).
The sampled (Φ,Ψ) regions are generally the same as those sampled during reweighted
AE-ABF.
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Iteration previous CV (Φ,Ψ)
0 − 0.935
1 0.850 0.896
2 0.867 0.963
3 0.915 0.930
4 0.987 0.924
5 0.911 0.910
6 0.935 0.902
7 0.882 0.935
8 0.850 0.879
9 0.901 0.890

Table 2.4: Linear regression scores with unweighted AE-ABF for 9 iterations. Each line
corresponds to an iteration. The regression score is computed between the learned CV and:
the CV from the previous iteration (second column); the 2D vector (Φ,Ψ) (third column).
CV convergence does not occur. The regression score values with respect to (Φ,Ψ) are
generally lower than those obtained with reweighted AE-ABF.

Figure 2.25: Autoencoder CVs through 9 iterations of AE-ABF without reweighting. The
CVs are scatter plotted with Φ and Ψ colorings. The plots show that the CVs obtained at
each iteration are not visually similar to the ground truth CV shown in Figure 2.5, or to
each other.
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Chapter 3

Exploring conformations of
HSP90 using machine learning
guided biased simulations

Chapter 2 focused on the development of a machine learning algorithm for the automatic
discovery of collective variables. The algorithm we designed, FEBILAE, was implemented
and applied to relatively small systems, where the molecule of interest comprises no more
than 10 residues. In this chapter, we focus on the use of machine learning methods on
larger molecules, such as proteins, which are usual targets in drug discovery. Because of the
sizes of these systems and their often complex mechanism of action, a direct application of
elaborate algorithms like FEBILAE can prove tricky, in part because biased simulations of
these systems, even using a good CV, can take very long to achieve any desired transitions.
As FEBILAE starts with a sub-optimal CV, learned from a small unbiased simulation, it
is expected that applying it directly to large systems may be ineffective. Instead, in this
chapter, a preliminary study of the protein is performed to identify and gain important
knowledge on the states of the system before constructing a good collective variable using
an autoencoder. The CV is subsequently used in biased MD simulations to drive transitions
between the previously identified states. The autoencoder is thus used as an interpolator
which helps uncover possible paths connecting the states. The system under study in this
chapter is the N-terminal domain of the 90 kDa heat shock protein. In Section 3.1, we
introduce this system and state the goals of this study. Section 3.2 then describes the
numerical methods used in the preliminary study of the system in order to identify its
conformational states, the learning of collective variables based on these states, and the
simulations conducted throughout this work using the learned CVs. The results are then
discussed in Section 3.3, where the learned collective variable is used to drive biased MD, and
possible transitions are identified and confirmed based on structural definitions, including
RMSD and dihedral angle analysis. Finally, Section 3.4 presents our conclusions and possible
future directions.

109
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3.1 Introduction

In this section, we give a brief presentation of the HSP90 protein, and more specifically the
N-terminal domain, which is the site of the protein that will be studied in this chapter. We
then state the goals of this study.

3.1.1 HSP90: structural information and mechanism of action

The 90 kDa heat shock protein (HSP90) is a cluster of chaperone proteins involved in various
cellular processes [179–182]. It assists in the proper folding, stability and regulation of over
100 key cellular proteins, including proteins involved or required for tumor growth. Due
to these functions, HSP90 is considered a promising drug target to fight diseases such as
cancer, as well as Alzheimer’s disease and diabetes [183–185].

HSP90 is a homodimer, i.e. a protein composed of two identical polypeptide chains called
monomers (see Figure 3.1). Each monomer consists of three main structural domains, the
N-terminal domain (NTD), the middle domain and the C-terminal domain (CTD) [186,187].
The N-terminal and middle domains are linked by a charged linker domain, essential for the
chaperone function, helping with co-chaperone recognition [188].

HSP90’s mechanism of action is an exchange between open and closed conformations
on time scales ranging at least from milliseconds to several minutes [189]. It involves ATP
binding, co-chaperone proteins, and a client protein [190]. When HSP90 is in apo-form
(unbound), the two monomers are dimerized at their C-terminal domains. HSP90 is in this
case in an open conformation, where the dimer is L shaped (Figure 3.1a). Once the ATP
binds to the N-terminal domains and the inactive client protein binds to the middle domains,
HSP90 is in a partially closed state, but the N-terminal domains are not bound yet. Co-
chaperones are then recruited to help with the dimerization of the NTDs, and HSP90 shifts
to its closed conformation (the two proteins of the dimer seem to twist around each other,
forming a molecular clamp). This dimerization leads to the hydrolysis of the ATP molecules
and activates the client protein. The activated client protein consequently unbinds, the
NTDs are separated again, and the ADP and phosphate (which resulted from the ATP
hydrolysis) are released. The dimer thus returns to its apo conformation again. Figure 3.1
shows the secondary structures of the open and closed conformations of HSP90. Both
conformations were extracted from the Research Collaboratory for Structural Bioinformatic
Protein Data Bank (RCSB PDB), a freely accessible database for the 3D structures of
molecules.

The ATP binding occurs at the NTD of the protein [191]. The binding pocket is situated
within the α-helices formed by residues 28−51, 85−97 and 123−130 [192,193]. Because the
ATP binding is a central part of the mechanism of action of HSP90, the binding pocket has
been targeted in many drug-discovery efforts for ligand-based modulation of the protein’s
activity. In particular, common inhibitors of HSP90 activity such as geldanamycin, radicicol,
and their derivatives, act by binding specifically to the NTD, at or near the ATP pocket,
thus preventing the ATPase activity of HSP90 [193–195].

The NTD also contains a so called “lid” formed by amino acids 95 to 125, and composed
of two helical segments and a highly flexible loop adjacent to the ATP binding site [196].
This loop is formed by amino acids 105 to 114. It has been shown in previous studies
that this loop and the ATP lid itself present different conformations depending on the state
(unbound, ATP-bound, ADP-bound, etc) of the N terminal domain [195, 197–200]. In this
study, we base our analysis of HSP90 conformational states on this flexible loop. Figure 3.2
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(a) Open Conformation

(b) Closed Conformation

Figure 3.1: The two main conformations of HSP90. The C-terminal domain is represented
in blue, the middle domain in red and the N-terminal domain in purple. This figure was
prepared using PDB entries 2IOQ (open) and 2CG9 (closed) of the RCSB databank.

shows the structure of the NTD and the structure of the loop of interest for two different
conformations of the protein.

Despite the importance the ATP binding lid, and by extension the flexible loop of in-
terest, its mechanism is not yet entirely understood due to the large time and space scales
involved. Analysis of the protein dynamics within and between states is key to better un-
derstanding the HSP90 conformational cycle and the eventual targeting of this protein for
drug design purposes.

3.1.2 Molecular dynamics of HSP90

Molecular dynamics of the HSP90 system have been conducted in previous studies with
the aim of better understanding the mechanism of action of this protein and/or designing
specific inhibitors [201]. These studies include simulations of the entire dimerized system, or
of the NTD alone. In [202], the dissociation free energy of the NTD of HSP90 with ADP is
computed using thermodynamic integration (see Section 1.1.3.B) with the NTD-ADP dis-
tance as the reaction coordinate. In [203], the authors compare the visited conformations of
apo NTD to those of the NTD bound to 5 different inhibitors, and find significant changes
in the structure of the ATP binding pocket. In [204], the authors analyze MD simulations
of the NTD in its apo, ATP-bound, ADP-bound, and inhibitor bound conformations, and
observe that the ATP-bound state of HSP90 presents a closed lid conformation and a some-
what constrained structure in comparison to the more relaxed and flexible conformations
populated by the apo or ADP-bound and inhibitor bound states. In particular, the apo
HSP90 is shown to visit different conformations of the lid, and that ligand binding stabilizes
one conformation over the others. In another study [205], the same authors analyze the ef-
fect of the ATP binding on the other domains of HSP90, and locate possible allosteric sites 1

in the CTD and MD. In the same vein, the relationship between the NTD active site and

1Allosteric sites of a protein are regions distinct from the active site, but whose binding can still modulate
the protein activity, i.e. enhance or decrease it.
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allosteric sites of the CTD is examined in [206], where the full HSP90 and ATP complex is
simulated with and without a number of allosteric ligands which bind to the CTD. In [207],
the HSP90 system is also simulated in full, in apo and with ATP/ADP. The authors show
that the apo conformation is not restricted to the open conformation shown in Figure 3.1,
but can visit both stretched (i.e. the dimer angle reaching near 180◦) and compact states
(i.e. the dimer angle reaching near 0◦). Umbrella sampling is then used to compute the
free energy landscape over the dimer angle for the apo state, where the stretched and com-
pact states are shown to correspond to low-energy configurations of apo-HSP90. Despite
this conformational diversity of the apo state of HSP90, the NTD itself (as well as the
other domains) is not shown to undergo any important conformational changes. In [208],
simulations of the HSP90 dimer display motions spanning the whole molecule in relatively
short (100 ns) timescales. These motions may indicate the start of a large conformational
transition between two states of the protein.

Figure 3.2: Structure of the HSP90 N-terminal domain. Two different conformations of
the flexible loop: helix conformation in pink and loop conformation in blue. The two
conformations are superimposed.

3.1.3 Machine learning for protein dynamics

In many of the works and methods presented in Section 1.2, and many other works in the
field of machine learning based analysis of protein dynamics in general, the applications
mostly concern often small toy systems such as alanine dipeptide, or mini-proteins such as
chignolin, or Trp-Cage [19,93], and are sometimes extended to relatively larger fast-folding
proteins of 30 to 60 residues, such as the WW domain protein or the villin headpiece [123,
145, 146, 209]. However, the use of ML methods in studies of large proteins which present
complex conformational mechanisms is becoming more and more feasible. In particular,
autoencoders or autoencoder-based methods have been recently used in the analysis of
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protein dynamics. These applications include for example the use of RAVE and its variations
(see Section 1.2.2.C) to RNA-ligand binding in [210] where a reaction coordinate of the
RNA-ligand complex is learned, allowing for the computation of the free energy profile of
this system using metadynamics. Autoencoders are also used in [211] for the automatic
detection of allosteric sites in proteins using MD simulations. Another example is the
application of autoencoders coupled with PCA to automatically detect new conformations
of proteins [212]. Finally, variational autoencoders are trained to generate new protein
conformations [213] or protein variants [214].

Machine learning methods have also been used in the analysis of the dynamics of HSP90.
For example, supervised models are used to classify allosteric ligands of HSP90 into in-
hibitors or activators of the protein [215], and generally to predict the effect of different
allosteric modulators on the protein activity [216]. Linear and nonlinear supervised learn-
ing is also applied for the estimation of residence times (or conversely dissociation rates)
for different ligands [217], and the determination of local protein-ligand interactions which
affect the dissociation dynamics [218]. Principal component analysis is also often applied to
molecular dynamics simulations of HSP90 to analyze the collective motions of the protein,
and to compare the structural differences between apo and holo conformations [203, 219].
To the best of our knowledge, no works were published on the machine learning of collective
variables of HSP90.

3.1.4 Aim of this study: machine learning based analysis of HSP90
states and collective variables

In this chapter, we use data-driven methods to analyze conformational changes of HSP90,
focusing on the NTD loop of interest. The goals of this study are the following:

• Identify important existing conformational states of HSP90 using the loop of interest
of the NTD site. This is done using a clustering analysis over values of the dihedral
angles in the residues forming the loop.

• Automatically learn collective variables of the HSP90 N-terminal domain using ma-
chine learning models, specifically autoencoders, trained on simulations within the
previously identified states.

• Run free energy biasing simulations using the autoencoder CVs in an attempt to
sample transitions among the identified states of HSP90, and accurately identify these
transitions.The transitions are confirmed by analyzing the structure of the loop of
interest through RMSD calculations, dihedral angle analysis, and H-bonds formation
analysis.

These three points are naturally handled successively and guide the study presented in this
chapter.

3.2 Methodological approach and numerical methods

In this section, we present the methods and protocols used to perform the tasks enumerated
in Section 3.1.4. Section 3.2.1 describes the flexible loop based identification of conforma-
tional states of the NTD. Simulations started from each of these states are then run under
the simulation setup described in Section 3.2.2. The work described in these two sections
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(3.2.1 and 3.2.2) was mainly done by Dr. Marc Biancotto. Section 3.2.3 then describes the
protocol for choosing an autoencoder structure, including the number and size of layers.
Finally, Section 3.2.4 presents the biased simulations setup and methods for their analysis.

3.2.1 Data mining HSP90 structural diversity

As mentioned in Section 3.1.1, a highly flexible loop is located near the ATP binding site
of the NTD of HSP90. Many structures of the NTD in both apo and holo forms (i.e. with
and without a ligand bound to the active site respectively) are available in the protein data-
bank. These conformations display some specific structural differences in the loop of interest
(residues: 105-114). A total of 278 different conformations of the NTD were extracted from
external (RCSB PDB) and internal (Sanofi) sources. These structures were aligned and
necessary fixes were performed, including atom numbering and naming, determining un-
resolved residues, managing multiple chains per PDB, protonation 2 and adding missing
hydrogen atoms, etc. Then, the dihedral distribution of the loop of interest was used for
the clustering of the structures. More precisely, for each conformation, the sine and cosine
values of the dihedral angles Φ and Ψ of residues 105 to 114 were computed. The resulting
dataset, which contains 278 observations of 40 features (sine and cosine of the 2 dihedrals
from each of the 10 residues), was used to perform clustering of the structures using the
hierarchical clustering method implemented in scikit-learn. The metric used was the
Euclidean distance in the (sin, cos) 40-dimensional space, so that the distance between two
conformations α1 = (Φ1
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Six separate clusters were identified, indicating the existence of six key states. Two of these
states, which we define as states 1 and 2, exist in both apo and holo forms, while the rest of
the states have been experimentally resolved in holo conformations only. A representative
structure of each cluster was selected as the crystal structure with the highest resolution
reported on PDB 3. The so-obtained representative conformations are:

1 −→ 3T10 [199], loop out, AMPPCP-bound

2 −→ 3T0H [199], loop in, apo conformation

3 −→ 4AWQ [220], holo, bound to tropane derived inhibitor

4 −→ 6EYB [200], semi-helix

5 −→ 2YK9 [221], helix, bound to tricyclic imidazopyridine

6 −→ 3B28 [222], holo, bound to inhibitor CH5015765

For the remainder of the paper, each state is simply referred to by its associated number.
Figure 3.3 illustrates the shape of the flexible loop of interest for each state. Note that
here, we have reported these states as obtained from PDB. However, the ligand of each
conformation presented above was removed before any simulations. All MD described and

2Protonation is the adding of a hydrogen cation to an atom or ion
3In X-ray crystallography, resolution is the smallest distance between crystal lattice planes that is re-

solved. It is thus a measure of the quality of the obtained crystal structure.
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analyzed in this chapter is thus of unbound NTD. It is also important to recall here that
the states were defined based on the loop of interest alone (residue 105− 114), and are thus
not necessarily directly representative of the states of the whole HSP90 protein. Indeed, it
has been observed (see for example [204]) that the conformations of the lid (and thus of the
loop of interest) are not state specific, and that, for example, the energy landscape of the
NTD in apo state contains different conformations of the lid and of the loop of interest.

Figure 3.3: Structurally diverse conformations of the loop of interest corresponding to the
identified states of the NTD.

3.2.2 Dataset generation

3.2.2.A Preparing the structures

For each of the 6 states, the protein structures were specifically prepared to have the exact
same number and naming of atoms (3258 atoms), so that comparisons and structural align-
ments can be performed between different conformations. All simulations described in this
section were performed with Gromacs [223], using the AMBER99SB-ILDN [171] all-atom
force field for the description of the protein and the TIP4P [174] water model. All proteins
were solvated into a cubic box with an 11 Å buffer around the protein to ensure a suffi-
cient minimum separation of the protein from its periodic images. Na+ counterions were
randomly placed in the system to neutralize the total charge while 0.15 M of NaCl salt was
also added to resemble physiological conditions.

Before any production runs were performed, an energy minimization and a 5-step re-
strained MD relaxation protocol was followed, all run under constant pressure, temperature,
and number of particles (NPT ensemble). The restraint MD was performed as follows: first,
all heavy atoms of the system (i.e. all but hydrogen atoms) were restrained using a force
constant of 1000 kJ/mol·nm2 for 100 ps. Then, only the protein atoms were restrained using
a force constant of 1000 kJ/mol·nm2 for 100 ps. Two more 100 ps restrained MD with the
same force constant were performed with restraints only on backbone atoms and then only
on Cα carbons. Finally, a flat-bottomed restraint 4 was applied on the Cα carbons, with a

4Flat-bottomed restraint is used to restrain particles within a region of the simulation volume.
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force constant of 500 kJ/mol·nm2, starting above 2 Å from the reference structure and for
400 ps.

3.2.2.B Production runs

All production runs were performed in NPT, with a timestep of 2 fs. These runs consist,
for each of the 6 states, of 10 independent trajectories of 20 ns each, started from the
same configuration within that state, specifically the final conformation obtained from the
preproduction restraint MD described in Section 3.2.2.A. Configurations were saved every
2500 steps. Figure 3.4 shows for each state the mean and standard deviation of the RMSDs
over the 10 trajectories with respect to their initial conformation. For all the simulations,
the RMSD stays below 0.2 nm, with the exception of one simulation started from state 3
(not shown individually here). This trajectory was subsequently visualized in VMD [224]
and no abnormal behavior in the structure of the protein was noted.

The training dataset used in this work is the concatenation of these 60 independent
short MD trajectories. All configurations of this dataset are aligned to the same reference
structure, which is the starting conformation of state 1. Only the 207 Cα carbons of the
molecule are used in the input representation to avoid any noise created by the flexibility
of the protein side chains. Our training dataset is thus composed of a total of n = 240, 000
observations (configurations) of D = 3× 207 = 621 coordinates.

It was observed during the simulations described above that while states 4 and 5 were
separated in the initial clustering of the different crystal structures of HSP90, state 4 spon-
taneously and invariably transitions to state 5 (i.e to a structure that is classified as state
5 using the dihedral clustering procedure) during MD simulations. This prompts us to not
consider state 4 as a separate state when analyzing our MD simulations. For the remainder
of this chapter, the numbering of states is unchanged, the number 4 being simply removed.

3.2.3 Autoencoder architecture

The autoencoder architecture is determined by setting the number, type and size of the
layers. By definition, the input and output layers’ size is equal to the dataset dimensionality,
i.e. D = 621 as mentioned in Section 3.2.2.B. Similarly to the autoencoders used in Chapter
2, we use a symmetric architecture, and only fully connected layers (i.e. each neuron of
each layer is connected to all the neurons of the previous layer). The number and size of
the hidden layers determine the complexity of the model, and thus of the learned collective
variables. Generally, when layers are added, more complex representations can be modeled
by the autoencoder. However, it should be taken into account that more layers also require
a larger dataset for training and can lead to overfitting. Moreover, from a practical point of
view, the purpose of the autoencoder collective variable is to run biased sampling. The run
time of the biased sampling simulation dramatically increases with more complex collective
variables.

All of these points should be considered when selecting the autoencoder architecture.
Section 3.2.3.A describes the training setup for all the autoencoders used in this work. In
Section 3.2.3.B, we consider two different architectures to check whether adding a layer
improves the learned model. The size of the layers is chosen so as to gradually reduce the
dimensionality from input to bottleneck. However, the size of the bottleneck layer itself
determines the dimensionality of the learned CV, and is thus selected carefully as described
in Section 3.2.3.C.
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(a) State 1 trajectories (b) State 2 trajectories

(c) State 3 trajectories (d) State 4 trajectories

(e) State 5 trajectories (f) State 6 trajectories

Figure 3.4: Alpha carbon RMSDs mean and standard deviation over the 10 trajectories
computed for each state.

3.2.3.A Training

The autoencoders are constructed and trained using the Keras [161] library in Python. All
autoencoders are trained on 75% of the dataset, leaving 25% for validation. The learning
rate used is η = 10−4 with Adam optimization. We use a batch size of 1000 samples, and run
training for a maximum of 1000 epochs. Early stopping of the training, i.e. before the 1000
epochs are achieved, is applied when the validation loss does not improve for 40 consecutive
epochs. This monitoring of the validation loss is implemented in order to avoid overfitting
the model to the training dataset.
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3.2.3.B Number of hidden layers

The autoencoder should not contain too many layers because the encoder will later be used
as the CV in a biased sampling procedure. By running test simulations using encoders with
an increasing number of layers, we determined that having an encoder with more than 2
hidden layers in addition to the input and bottleneck layers is not feasible from a practical
point of view, because the run time of the corresponding biased simulations is too high:
on the machine used for the simulations performed in this work, and using an encoder of
3 hidden layers in addition to the bottleneck and input layers, one day is needed to run
an approximate 0.5 ns of simulation. To assess the necessity of using two hidden layers
instead of one in the encoder, we compare the performance of two different autoencoder
architectures:

• Structure S1, where the encoder contains one hidden layer between the input and bot-
tleneck layers: Input (621) −→ Hidden 1 (100) −→ Bottleneck (k) −→ Hidden 2 (100) −→
Output (621).

• Structure S2, the encoder contains two hidden layers: Input (621) −→ Hidden 1 (150) −→
Hidden 2 (40) −→ Bottleneck (k) −→ Hidden 3 (40) −→ Hidden 4 (150) −→ Output (621).

The numbers between brackets correspond to the size (i.e. number of neurons) of each
layer. The parameter k is thus the dimensionality of the bottleneck layer (the final layer
of the encoder, i.e. the CV) and will be determined in the next section. In the tests
described in this section, we use different values of k, ranging from 1 to 10. For each value
of k, two autoencoders with structures S1 and S2 are trained on the dataset described in
Section 3.2.2. To compare the two autoencoders, we plot the evolution of their training and
validation losses throughout training. While this was done for all values of k from 1 to 10,
for clarity we only show plots for k = 1, k = 5 and k = 10 in Figure 3.5. The same plots
with other values of k have shown similar results. It can be observed from Figure 3.5 that
the training of the autoencoders with structure S1 shows more stability, i.e. the evolution
of the validation and training losses is approximately the same. Conversely, structure S2

autoencoders (apart from the k = 10 autoencoder) overfit after ∼ 100 epochs. Overfitting is
however already handled by the early stopping procedure and is thus not an issue. For each
k, the optimal structure S1 model, i.e. the model with the optimal validation loss, reaches
approximately the same validation and training loss as the optimal S2 model. In particular,
for k = 1, it can be observed that S2 seems to outperform S1 on the training loss, but the
corresponding validation loss evolution shows that this actually corresponds to the S2 model
overfitting. The only advantage of structure S2 is that it finishes training in fewer epochs.
However, because S2 represents larger models, one training epoch takes longer to complete,
meaning that this lower number of epochs does not necessarily translate to faster convergence
in wall-clock time. More importantly, the most time consuming part of our procedure is
by several orders of magnitude the biased simulations, which run approximately 20 times
faster with an encoder CV from structure S1 than one from structure S2. We thus choose
structure S1 for the autoencoders used in this work.

3.2.3.C Bottleneck layer size

Now that we have determined the number of layers of our model, and the size of the hidden
layers, the optimal dimensionality k of the bottleneck layer should be selected. Here, we
are looking for the minimal number of variables which are sufficient to represent a maximal
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k = 1

k = 5

k = 10

Figure 3.5: Evolution of training and validation losses for two different autoencoder struc-
tures and three different values of the bottleneck layer size k.

portion of the patterns and features of the conformational space of the system of interest.
Numerically, this can be translated as a trade-off between the subspace dimensionality and
the amount of data variance covered by that subspace. In the case of PCA for example,
each eigenvalue represents the variance explained by its corresponding principal component.
The principal components with the highest eigenvalues are thus kept. More specifically, the
optimal dimension is chosen as the number of eigenvalues (ranked in decreasing order) for
which the spectral gap (distance to the first eigenvalue) is lower than a certain threshold.
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The advantage of PCA is that a single run is sufficient to determine the optimal dimension,
and it provides direct quantities to help determine this dimension: the eigenvalues. This is
not the case for autoencoders. We instead use the value of the fraction of variance explained
(FVE) to determine the dimensionality k, as was done for alanine dipeptide in Chapter 2 (see
Remark 4 and Appendix 2.7.4.B). More precisely, a set of 10 autoencoders, with bottleneck
layer dimensions ranging from k = 1 to k = 10, are all trained on the dataset. Then, in
order to compare these 10 models, we compute their corresponding FVEs:

FVE(k) = 1−

n∑
i=1

‖xi − φk(xi)‖2

n∑
i=1

‖xi − x̄‖2
,

where xi are the data samples, x̄ = 1
n

n∑
i=1

xi, and φk(xi) the output by the autoencoder with

bottleneck dimension k of the input xi. The optimal dimension k∗ corresponds to a plateau
or “knee” in the FVE curve (i.e. FVE plotted against bottleneck dimensions), meaning
no considerable improvement in the reconstructed output is obtained by adding another
dimension to the bottleneck manifold. Alternatively, the training or validation loss achieved
by each autoencoder can also be plotted. Figure 3.6 shows both the training and validation
loss curves, as well as the FVE curve computed over the training and validation sets, for k
varying from 1 to 10. Both plots in Figure 3.6 show a plateau at k = 5 CV coordinates.
However, the FVE (respectively loss) values do not increase (respectively decrease) by a
significant amount as the bottleneck size k increases, which means that increasing the CV
dimensionality does not significantly improve the reconstructed output. The additional
dimensions of the CV evidently learn directions that are of much lower variance compared
to the initial 1 dimensional bottleneck. A possible explanation is that these directions
correspond to learning noise in the training data. However, because the validation curves
are similar to the training curves, this hypothesis can be discarded. Additionally, plotting
the 1 dimensional bottleneck encoder CV over the training dataset shows that this direction
alone is actually not able to differentiate between all the identified states of HSP90. We
therefore argue that despite their relatively small variance, the additional dimensions may
still be of importance. We thus select the optimal dimensionality as k∗ = 5 as indicated by
the plateau in the plotted curves.

3.2.3.D Final autoencoder structure

In Figure 3.7, we present the final autoencoder structure used in this work. The autoen-
coder is composed of 4 layers with the following sizes: Input (621) −→ Hidden 1 (100) −→
Bottleneck (k = 5) −→ Hidden 2 (100) −→ Output (621). The activation function used for all
layers is hyperbolic tangent.

3.2.4 Molecular dynamics simulations

3.2.4.A Simulation setup and parameters

Apart from the simulations described in Section 3.2.2 which served to generate the train-
ing dataset, all biased and unbiased simulations subsequently mentioned were run using
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Figure 3.6: Left. Final training (blue) and validation (orange) loss obtained for each model.
Right. Fraction of variance explained, over the training (blue), and validation (orange)
dataset.

Figure 3.7: Architecture of the autoencoders used in this work.

OpenMM [163] under its Python API. The starting conformation for each state is the the last
conformation after the position restraint MD described in Section 3.2.2. The same forcefield
(Amber99SB-ILDN) and water model (TIP4P) were used, with a cubic box of 12 Å margin
around the protein. Simulations were run in the NVT ensemble, with a Langevin integra-
tor, a collision rate of 1 ps−1, a timestep of 2 fs, and temperature T = 300 K. All biased
simulations were performed using the extended system adaptive biasing force algorithm im-
plemented in PLUMED [164,165]. Each coordinate of the CV was discretized into 50 bins. All
other parameters of the ABF algorithm were kept to their default values in PLUMED (as was
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done for alanine dipeptide in Chapter 2).

3.2.4.B Analyzing the simulations

MD trajectories generated in this work are initially analyzed to ensure that the system re-
mains stable throughout the simulation. For this, the trajectories are visualized in VMD [224],
and several quantities (energy, temperature, density, whole protein RMSD, etc) are plotted
to ensure that their values are stable in average. Additionally, the trajectories are also
analyzed to define the system’s state along the trajectory and determine transitions. We
consider three indicators for determining the state of a conformation. We next describe each
of these analysis tools.

RMSD analysis. All RMSD computations are done using the mdtraj library in Python [225].
Only the α carbons are used in the RMSD computations. For each trajectory, RMSDs are
computed with respect to each of the 5 states, over the whole protein, and over the 10
residues forming the flexible loop of interest (105− 114). Additional details and results are
given in Section 3.3.2.B.

Dihedral angles analysis. The dihedral angles of the residues forming the flexible loop
are computed post simulation using mdtraj. The dihedral analysis uses the initial dihedral
clustering model which was used to define the states. The clustering distances, i.e. the dis-
tance of each conformation to the centers of the identified clusters, are used on the unbiased
trajectories to delimit the states/clusters from a dynamical (rather than crystal structure
based) viewpoint. This makes it possible to detect transitions in the biased trajectories
by computing these same distances. Details of the dihedral angle analysis and results are
provided in Section 3.3.2.C.

Hydrogen bonds analysis. As an additional analysis step, the Hygrogen bonds (H-
bonds) formed within the flexible loop are computed for each state using VMD. More pre-
cisely, the short unbiased trajectories are used to compute the frequency of H-bonds for each
state. These computations are used to determine a set of the H-bonds specific to each state,
making it possible to define a H-bonds-based fingerprint for each state, which can then be
used to spot (or rather confirm) transitions in subsequent biased simulations.

3.3 Results

This section presents the results obtained in this work. First, the autoencoder learned
collective variable is presented in Section 3.3.1. Second, a specific protocol for identifying
transitions in the biased simulations is presented in Section 3.3.2, and illustrated using one
of the simulated runs, for which a transition is indeed confirmed. Several other simulations
were run, some of which are presented in Section 3.3.2.E.

3.3.1 The autoencoder collective variable

Once the autoencoder is trained, the encoder is used as the learned collective variable. In
this section, this CV is analysed and its efficiency at describing and differentiating the 5
determined states of HSP90 is assessed.
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3.3.1.A Distribution of the 5 dimensional CV

We start by plotting the values of each of the 5 CV coordinates, which we refer to by CVi

for 1 ≤ i ≤ 5. For this, we separate our training dataset into the 5 conformational states
to observe how each coordinate of the CV varies from one state to another. The results are
shown in Figure 3.8.

CV1 CV2

CV3 CV4

CV5

Figure 3.8: Boxplots of the CV variation per state.

The results indicate that CV1 does not enable any separation between the 5 identified
states of HSP90. Next, the mean values of CV4 over each state are quite comparable and
range within ∼ [−0.25, 0.25]. This coordinate therefore does not provide a clear separation
between states either, contrarily to coordinates CV2, CV3 and CV5.
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3.3.1.B Further reduction of the CV dimensionality

Our final goal is to use the autoencoder CV to perform free energy biasing in order to
sample transitions between the states of HSP90. In theory, the 5-dimensional CV could
be used directly. In practice, the simultaneous biasing in 5 directions and estimation of
the free energy over this five dimensional space is prohibitively computationally expensive.
Indeed, because adaptive biasing methods such as ABF compute the free energy along the
d-dimensional CV, their efficiency significantly decreases for a large value of d. In practice,
ABF typically requires a low CV dimension of 1 to 3. Here, we use the boxplots illustrated in
Figure 3.8 above, as well as additional analyses and observations described below, to reduce
our CV dimensionality to 2, by selecting 2 of the 5 coordinates learned by the autoencoder.

As concluded in Section 3.3.1.A after examining the CV variation per state in Figure 3.8,
coordinates CV1 and CV4 fail to differentiate significantly between the 5 states and are thus
not expected to be helpful for driving transitions among these states. They are therefore
eliminated.

Next, to discriminate between the remaining three directions, we perform hierarchical
clustering over each pair of CVs, and select the CV pair whose clustering best separates
the 5 states. For this, we use the agglomerative clustering method, with Ward’s minimum
variance criterion to merge clusters: The method starts with as many clusters as the number
of datapoints in our dataset, and successively merges clusters by minimizing the variance
of the newly merged clusters. First, the agglomerative clustering is performed over the
5-dimensional CV space. Figure 3.9 illustrates the clusters obtained when stopping the
hierarchical clustering at 5 clusters, as well as a dendrogram showing how these 5 clusters
are grouped according to their distances from one another. Interestingly, the 5 states have a
clear visual correspondence to the 5 clusters (Figure 3.9a). The dendrogram in Figure 3.9b
shows that clusters L5 and L2 (i.e states 1 and 6) are the most similar (smallest distance)
compared to the the remaining states.

(a) (b)

Figure 3.9: (a) Clustering using 5 clusters over the 5-dimensional CV space. Vertical black
lines delimit the points inside each of the 5 conformational states. (b) Dendogram showing
how the 5 clusters are iteratively merged into one. Each cluster is represented by its label
number (L1 to L5) and the corresponding conformational state is indicated between brackets.
The y-axis corresponds to the distances between pairs of clusters.
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The same method is now used on all three CV pairs (CV2,CV3), (CV2,CV5) and
(CV3,CV5). The optimal clustering is selected as the one which separates the 5 states
with the highest accuracy, i.e. the lowest number of mislabeled points. The results indi-
cate that the optimal clustering is obtained when using the pair of coordinates (CV3,CV5).
For the remainder of the chapter, we refer to this coordinate pair as the autoencoder CV,
but keep the indexing CV3, and CV5. Figure 3.10 shows the results of the agglomerative
clustering applied to (CV3,CV5).

(a) (b)

Figure 3.10: Agglomerative clustering over the 2-dimensional CV space (CV3,CV5), instead
of the 5 dimensional CV as in Figure 3.9

To gain a clearer idea of the obtained CV space, we plot in Figure 3.11a the autoencoder
CV over the dataset of short unbiased trajectories started from each state (the samples
from each state are colored using a different color). The plot shows that the autoencoder
CV indeed differentiates between the five conformational states, making it a possibly good
choice for running a free energy biasing procedure.

Remark 6. Let us emphasize that while the final CV dimension is 2, it is necessary, or at
least more optimal, to obtain this 2-dimensional CV from the 5-bottleneck autoencoder rather
than using a 2-bottleneck autoencoder directly. We justify this choice by the fact that as an
unsupervised model trained for reconstruction of the input, the autoencoder will always have
to learn some features which do not necessarily distinguish between the metastable states (as
CV1 in Figure 3.8 for instance), but may nonetheless be important for data reconstruction
(e.g. features representing a large number of residues of the protein). This is especially
true for large proteins whose various states are sometimes only distinguished by motions
in relatively small functionally important regions. Training an autoencoder with a large
bottleneck size k∗ = 5 makes it possible to learn and separate features representing the
actual motions of interest from the features representing high variance directions that are
unrelated to these motions. Then, handpicking the d < k bottleneck dimensions of interest
ensures more efficiency for biasing, compared to directly learning a CV using a d-dimensional
bottleneck autoencoder.

To illustrate our point, we show in Figure 3.11b the CV obtained from a 2-dimensional
bottleneck autoencoder. The first coordinate of this CV fails to distinguish between any states,
the second coordinate does not make a clear separation between states 1 and 6. Agglomerative
clustering applied to this CV also shows that these 2 states are not well separated.
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(a) (b)

Figure 3.11: Scatter plot of the autoencoder CV, each point is colored according to its
corresponding state. Left: Coordinates 3 and 5 of the 5-dimensional bottleneck autoencoder.
Right: The 2 dimensional bottleneck autoencoder.

3.3.2 Free energy biasing: identifying transitions

As concluded from the analysis of Section 3.3.1, we use the coordinates CV3 and CV5 to
run ABF simulations using the framework described in Section 3.2.4.A. Multiple simulations
were started from each of the 5 states. To analyze the simulations and identify possible
transitions, we present in this section a protocol which starts with a first identification of
possible transitions in Section 3.3.2.A based on the visited regions of the CV space. Then,
the simulations are further analyzed to either confirm or dismiss the previously identified
transitions. This is done by first looking into the RMSD evolution of the simulations in
Section 3.3.2.B. Then, we present in Section 3.3.2.C an additional set of analysis based on
the dihedral angles of the loop of interest of the NTD, i.e. the angles that served to cluster
and define the states in the first place, as presented in Section 3.2.1. Finally, an additional
analysis step, based on tracking the formation of hydrogen bonds (H-bonds) in the loop of
interest, is presented in Section 3.3.2.D.

In this section, we detail the results obtained from only one of our simulations. Note
however that results on other biased simulations, for which the same protocol was used to
determine transitions, are provided in Section 3.3.2.E.

3.3.2.A A first identification of transitions

The biased simulation selected for illustration is 100ns long and is initiated from confor-
mational state 1. A preliminary step to identify possible transitions in the trajectory is to
look into the sampled values of the autoencoder CV, i.e. the biasing CV. These values give
first pointers into which regions of the CV space, and thus possibly which distinct protein
conformations, are visited during the simulation. Figure 3.12 shows the variations of the
CV coordinates as well as the scatter plot of the visited regions. In this biased simulation,
the distributions of the CV coordinates seem to indicate:

• A quick transition out of state 1. In fact, the simulation never seems to return to this
state.

• A transition to conformational state 3.
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Figure 3.12: Results of the 100 ns biased trajectory initiated from state 1 using (CV3,CV5)
for biasing. Left: Fluctuations of the two coordinates composing the biasing CV as a
function of time. Right: Distribution of visited conformations over the CV space. Ellipses
show approximate locations of the 5 conformational states as illustrated in Figure 3.11.

In order to confirm these initial observations, in particular the transition to state 3, addi-
tional analysis are performed.

3.3.2.B RMSD with respect to each conformational state

A first analysis is done by plotting the RMSD of the biased trajectory calculated with respect
to the initial conformation (i.e. energy minimized, and position restrained conformation) of
each of the 5 states, using only the Cα carbons of the specific loop of interest of the NTD.
Figure 3.13 shows the obtained RMSD plots. The minimal RMSD is at the beginning of
the simulation obtained with respect to the conformational state 1, i.e. the starting state,
as expected. However, the minimal RMSD shifts to the one with respect to conformational
state 3 after ∼ 30 ns of simulation time, until ∼ 55 ns of simulation time. These results are
a first confirmation of the possible transition from state 1 to state 3 observed from the CV
distribution.

3.3.2.C Dihedral angle analysis

The transitions between the 5 states can also be identified by looking into the dihedral angles
of the binding site loop. These are the same dihedral angles used to cluster crystal structures
of HSP90 into the 5 states as presented in Section 3.2.1, i.e the dihedrals of residues 105
to 114. We first use the clustering model itself on the biased trajectory to check whether
any frames from the trajectory are clustered within state (i.e. cluster) 3. We then apply
other methods, including dihedral PCA, for further analysis and comparison to unbiased
trajectories.

Clustering the biased trajectory. The clustering model trained to obtain the 6 original
states (as presented in Section 3.2.1) is used again here. More precisely, the distance of each
frame of the biased trajectory to each of the 5 cluster centers corresponding to states 1,
2, 3, 5 and 6 is computed and plotted. Recall that distances to cluster 4 are not plotted
as we have already discarded this state. As a point of comparison, the same distances are
plotted for the unbiased dataset of trajectories started from each state. The obtained plots
are illustrated in Figure 3.14.
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Figure 3.13: RMSD values of the biased trajectory with respect to each conformational
state. Vertical blue lines delimit the suspected transition to state 3.

Figure 3.14: Distances to each of the 5 cluster centroids representing the states. Left:
Unbiased trajectories started from each of the 5 states. Right: Biased trajectory. Vertical
blue lines delimit the suspected transitions to state 3.

The results obtained on the unbiased trajectories show that to label a conformation as
in state 3, its distance to the centroid of the corresponding cluster 3 should range between
2.8 and 4, and its distance to the remaining centroids should be higher than 4. The same
applies for all other states but state 5, for which the distances are smaller (see left plot of
Figure 3.14, column ”Unb 5”). The results obtained on the biased trajectory show that
the computed distances are compatible with a transition to state 3 between ∼ 30 ns and
∼ 55 ns, i.e. approximately the same time frame for which a transition was identified using
the previous methods.

We also note a small time frame around 25 ns where the conformations are closest to the
centroid of state 5 than to any other state. These sampled points are thus automatically
classified as state 5 configurations. However, their distances to the centroid 5, ranging
between 3 and 4, are actually higher than the typical distance observed in state 5 unbiased
trajectories, and which ranges between 1 and 2. This indicates that these conformations
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probably do not actually belong to state 5 (or any of the other states determined in the
beginning of this work). Importantly, this misclassification emphasizes the importance of
looking into the clustering distances, rather than simply trusting the cluster assignments.

Remark 7. We note that these “pseudo state 5” conformations are sampled just before the
part of the simulation identified as state 3, and may therefore belong to a transient state
between 1 and 3.

Dihedral PCA. Dihedral PCA can also be used to analyse possible transitions. Here, we
use dihedral PCA on the 278 crystal structures to reduce the 20 dihedrals into 2 principal
components. The obtained 2D space of the two principal components is plotted in the
left side of Figure 3.15, where each point represents one of the crystal structures, colored
according to its corresponding state/cluster. Note that we again discard state 4 from the
plots. The PCA projection is then applied to the biased trajectory in the right side of
Figure 3.15, where each point is colored according to their assumed state, determined as in
the previous paragraph by the closest centroid from the clustering.

Figure 3.15: Dihedral PCA over the dihedral angles of residues 105 to 114. Left: Dihedral
PCA of the crystal structure dihedrals. Points are colored accoridng to their states. Right:
Dihedral PCA projection on the biased trajectory. Points are colored according to the
cluster assigned using the dihedral clustering model (Figure 3.14)

Recall that the centroid distances in Figure 3.14 indicate that three states are presum-
ably sampled: 1 (the starting state), 3 (the possible transition in the 30− 55 ns timeframe)
and 5 (identified around time 25 ns), but with higher than normal centroid distances. We
note from Figure 3.15 that while the points identified as states 1 or 3 are correctly located in
the PC space, the conformations identified as state 5 are not. This reinforces our conclusion
of the previous paragraph that state 5 is not actually visited during this biased simula-
tions. Conversely, the obtained results corroborate the hypothesis of a state 3 transition.
Additionally, the location of the pseudo state 5 points, i.e. somewhat between the state 1
and state 3 regions of the PC space, is consistent with the observation made in Remark 7,
namely that these conformations may correspond to a transient state between 1 and 3.

Dihedral fingerprint. As a final analysis of the biased simulation using the dihedral
angles, we define a ”fingerprint” of each state computed as the range of values taken by
each dihedral angle in the loop, on each state. Because there are 10 residues and thus
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20 dihedral angles to consider, the obtained fingerprint can be hard to analyze. Here,
we use a LASSO classification model on the 278 crystal structures to select a subset of
dihedrals that is sufficient to separate the different states. More precisely, we train a simple
linear classification model (logistic regression) with `1-norm regularization. This so-called
Lasso regularization ensures sparsity in the trained model, so that only relevant and non
redundant features, i.e. dihedrals, are kept. The obtained model selected 6 dihedral angles,
whose values can be used to characterize each state. Again, we seek to define states 1 and 3
through the values of their dihedral angles. Figure 3.16 shows the ranges of these 6 dihedral
angle values on states 1 and 3, as well as the values visited during the biased simulation.
The ranges of the dihedral angles sampled during the biased simulations can be seen as
an interpolation between the typical values identified for states 1 and 3, indicating again
that a transition between these states has occurred. This is for example illustrated by the
values taken by dihedral angle Ψ112, which is colored in brown in Figure 3.16. This angle
ranges between 90◦ to 190◦ for state 1, and between 280◦ and 0◦ for state 3. Its values on
the biased simulation range in [290◦, 0]∪ [0◦, 200◦] thus interpolating the values observed in
both state 1 and state 3.

(a) Unbiased 1. (b) Unbiased 3.

(c) Biased simulation.

Figure 3.16: Values of the 6 Lasso selected dihedral angles for (a) state 1, (b) state 3, and
(c) the biased trajectory.
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3.3.2.D Hydrogen bonds analysis

As a final step analysis of our biased simulation, we observe the formation or breaking of
hydrogen bonds between the amino acids of the loop of interest. A hydrogen bond (H-bond)
is an electrostatic force of attraction between two atoms:

• a hydrogen atom that is bound to an electronegative atom (usually one of the elements
O, N or F), called the donor;

• another electronegative atom which has a lone pair of electrons, called the receiver.

Figure 3.17 shows an example of a H-bond. Structurally, a H-bond can be defined by

Figure 3.17: Example of a hydrogen bond (yellow dashed line) between donor atom N in
residue LYS112 (blue) and acceptor O in residue GLY108 (red).

two important criteria: the bond donor-acceptor distance and the bond acceptor-donor-
hydrogen angle, both of which should be smaller than a given threshold. Here, we choose
an angle threshold of 25◦ and a distance threshold of 0.35 nm. These values were chosen as
a compromise between the VMD and Gromacs default values.

The following procedure is applied for each of the 5 conformational states: Using the ten
20 ns trajectories of the initial training dataset, we define all hydrogen bonds that appear
in the backbone of the protein between residues 100 and 120. A total of 70 hydrogen bonds
appear in at least one of the 5 states, for at least one of the 10 short trajectories. For each H-
bond h and each conformational state i, we determine a mean mh,i and standard deviation
σh,i of the occurrence (percentage of appearance) of each of these bonds (the mean and
standard deviation are computed over the 10 trajectories we have). Then for each H-bond
h, we compute a general mean mh and standard deviation σh over the means mh,i. To rule
out bonds that appear similarly often in all states, or that appear very rarely in all bonds,
we keep only H-bonds with high enough values of mh and σh (i.e. such that: mh > 4% and
σh >

mh
4 ). This leaves us with 43 H-bonds, whose mean occurences and associated standard

deviations are plotted in Figure 3.18
We now use these H-bonds occurences to characterize each state. Here, we focus on

applying the H-bonds analysis to checking the transition from state 1 to state 3 in the
100 ns biased simulation we have worked on throughout Section 3.3. In order to target
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Figure 3.18: H-bonds occurence percentages for all states. State 1 (respectively state 3)
H-bonds are framed in black (respectively maroon)

our analysis specifically on transitions between states 1 and 3, we focus on the following
H-bonds:

• LYS116-LYS112: appears only in state 3 (∼ 70%).

• THR115-ALA111: appears only in state 3 (∼ 70%).

• ILE110-LEU107: appears only in state 3 (∼ 40%).
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• THR115-LYS112: appears only in state 1 (∼ 30%).

• LEU107-LEU103: appears only in state 1 (∼ 20%).

• ALA117-SER113: appears in state 3 (∼ 50%) much more often than in state 1
(< 5%).

• ASN106-ASP102: appears in state 1 (∼ 50%) more often than in state 3 (< 10%).

Now that we have narrowed everything down to these 7 H-bonds, we monitor their
appearance (formation and breakage) over the biased trajectory, in order to check whether
we can detect a transition from state 1 to state 3 using this information. In particular,
our focus is on characterizing possible conformations belonging to state 3. The 4 H-bonds
specific to this state are illustrated in Figure 3.19.

Figure 3.19: Four H-bonds determined as specific to state 3. Only main chain atoms are
shown. The H-bond THR115-ALA111 is the only one involving a side chain atom (its
hydrogen atom and donor atom, an oxygen atom of THR115, are side chain atoms and thus
not shown).

We first note that unfortunately, the H-bond THR115-ALA111 almost does not appear in
the biased trajectory (except at one single frame). This H-bond is formed by an oxygen atom
in the backbone of ALA111 (receiver) and an oxygen atom in the side chain of THR115. It
is the only one of the four state 3 identified H-bonds which includes a side chain atom. The
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remaining H-bonds’ occurrences in the biased simulation are plotted in Figure 3.20. The
obtained results indicate that over the 4 H-bonds linked to state 3, 3 of them are formed
during the biased simulation between 25 ns and 60 ns of simulation time. Moreover, of the
3 H-bonds that characterize state 1, only one keeps appearing throughout the whole the
simulations, the other two no longer form after the 20th nanosecond of simulation. Overall,
the results indicate that the protein exits state 1 and visits a conformational state that is
closest to state 3 than any of the 5 other identified states.

(a) LYS116-LYS112 (b) ILE110-LEU107 (c) ALA117-SER113

(d) THR115-LYS112 (e) LEU107-LEU103 (f) ASN106-ASP102

Figure 3.20: Occurence of the main H-bonds that distinguish conformation 1 and 3. Top:
state 3 linked H-bonds. Bottom: state 1 linked H-bonds.

3.3.2.E Additional biased simulations

All the results presented in Section 3.3.2 concern one biased trajectory of 100 ns started from
state 1. This simulation was chosen to illustrate the protocol we present here for confirming
transitions. However, to ensure that the obtained results were not specific to this one
trajectory, additional biased simulations were run and analyzed using the same protocol.
Here, we show the results of the dihedral analysis described in Section 3.3.2.C obtained for
some of these simulations. We focus on three simulations, which were started from states
1, 3 and 5 and were run for 200 ns each. These three simulations are shown in Figure 3.21
as examples of the biased simulations for which transitions were obtained. More generally,
out of 15 biased simulations of 200 ns each started from the different states, 9 achieved
identified transitions with high confidence, i.e. confirmed by the whole analysis protocol as
was done for the biased simulation presented in Section 3.3.2. 3 of the simulations do not
leave the initial state, and 3 leave the initial state but do not visit any other state defined
within this work.
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(a) Biased 1: Centroid distances
(b) Biased 1: Dihedral PCA

(c) Biased 3: Centroid distances
(d) Biased 3: Dihedral PCA

(e) Biased 5: Centroid distances
(f) Biased 5: Dihedral PCA

Figure 3.21: Dihedral angle analysis of three additional biased simulations. Left: Distances
to the centroids of the dihedral angle clustering. Right: Dihedral PCA projections.

3.4 Conclusions and future work

3.4.1 Discussion: machine learning based analysis of HSP90 states
and collective variables

The results described in Section 3.3 make it possible to conclude with regard to the initial
goals we set in the beginning of this Chapter (Section 3.1). The conformational states of
HSP90 were carefully defined using the clustering of a large number of PDB structures. The
obtained states are visually different from each other, and display some level of metastability
as showcased by the RMSD evolution of unbiased simulations in Figures 3.4 and 3.22. The
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autoencoder trained on the dataset of short unbiased simulations allows the construction
of a low dimensional CV able to clearly differentiate between the conformational states.
Additionally, the results obtained on the 100 ns biased simulation in Section 3.3.2 and the
additional biased simulations mentioned in Section 3.3.2.E show that this autoencoder CV
can be used to efficiently sample transition paths among the various states. Running biased
simulations using more classical choices of CVs, such as some dihedral angles of the loop of
interest, did not yield such transitions.

Of course, training the autoencoder on all 5 states was central to obtaining this CV. The
entire analysis is in fact based on the definition of the 5 states, which was done using the
clustering of the RCSB crystal structures using the flexible loop. The results are thus all
guided by this classification choice. While we argue that our classification of the states is well
defined, many other choices could have been applied, for example by basing the clustering
on the binding site itself rather than the flexible loop adjacent to it. The work presented
in this chapter falls within a supervised setting and is in this way different from the results
of the unsupervised method, AE-ABF (or more generally FEBILAE) presented in Chapter
2, where the state definitions did not impact the learning of the collective variable. Finally,
it is important to recall that the results may also depend on other choices in the machine
learning and molecular setup, including the autoencoder structure and training parameters,
the MD simulation parameters, namely the choice of the forcefield.

3.4.2 Uncovering transition paths between the conformations of
the unbound NTD

The obtained states differ by the conformation of the flexible loop of interest, originally due
to their binding (or lack thereof) with different ligands. We chose in this work to simulate
HSP90 unbound, i.e. by removing the ligand from the bound states and applying restrained
MD to stabilize the obtained systems. In Section 3.5, unbiased simulations as long as 200 ns
started from each of these states are shown to be stable as they do not achieve any transitions
between the identified states. This indicates that these conformations do exist within the
apo form of HSP90. Importantly, this is in accordance with other studies of the NTD, which
observe that the apo state visits varying conformations of the NTD lid [204, 226]. While
the stability of each of these state for the apo structure should be further examined using
more MD simulations, we can conclude in the extent of the present work that the 5 separate
conformational states of the flexible loop can all be visited in the apo form, and transitions
among these conformations have been achieved by biased sampling of the autoencoder CV.
We amphasize again that biased sampling applied with more traditional CVs, namely a
selection of the dihedral angles of the loop of interest, did not yield any transitions.

To the best of our knowledge, enhanced sampling of the HSP90 NTD alone in apo
form has not been performed. Unbiased sampling of the apo NTD shows some structural
motions of the loop of interest, but no clear transitions (e.g. between the helix conformation
of state 5 and the loop conformations of other states) is achieved in the µs timescale [226].
Many studies report enhanced sampling simulations of the bound NTD (taken separately
or within the whole dimer), where the collective variable used is often the distance between
the NTD and the ligand [200,202,227]. These simulations often aim to compute the binding
affinity of the NTD to the ligands, and consist of short dissociation trajectories to compare
a wide array of inhibitors. Some of these studies do differentiate between conformations
of the loop of interest [228], by, e.g. distinguishing between ligands which bind to the
various conformations (loop or helix). However, the aim of these works is not to drive



3.5. SUPPLEMENATRY RESULTS: ADDITIONAL UNBIASED SIMULATIONS 137

transitions among these conformations, and structural motions of the loop of interest during
the dissociation MD simulations are not reported/observed. In [207], Umbrella sampling of
the whole dimer, using the angle formed by the two monomers, is performed for the apo
structure, where the computed free energy surface shows the presence of two low energy
states corresponding to the stretched and compact conformations, but the authors report
no corresponding important motions in the NTD site itself.

3.4.3 Future work

A natural next step for this work is to compute the free energy landscape of the 2 dimen-
sional autoencoder CV. Because the identified states can somewhat be linked to apo or holo
conformations of the HSP90 protein, computing the free energy surface could provide in-
sights into binding mechanisms of the protein. Additionally, as mentioned in Section 3.4.1,
while we argue that our choice of state definition, based on the clustering of a large number
of crystal structures, is adequate, it is not the only way to obtain the initial states. Free
energy computations can help redefine the conformational states of HSP90, and possibly
discover new states in the local minima of the energy landscape, which were not included
in the initial analysis.

Finally, another possibility is to forgo state definitions altogether and to use only one
conformation of HSP90 to build the learning dataset. Such unbiased simulations are ex-
pected to be trapped within the initial state or only visit conformations close to it, and so
iterative algorithms such as AE-ABF, which was proven to work well on small systems in
Chapter 2, can be used. Assessing the efficiency of this method on a larger system such as
HSP90 presents an interesting challenge.

3.5 Supplemenatry Results: Additional unbiased simu-
lations

The trajectories used to generate the training dataset, and to characterize the states in
order to check for transitions, are short trajectories of 20 ns. We also sampled longer
200 ns unbiased trajectories from each state. This provides a simple sanity check that our
states, which were defined using structural clustering only, are metastable. Importantly,
these longer simulations also provide a fairer comparison to biased simulations, as they are
expected to further explore their respective states. We sample 5 unbiased 200 ns trajectories
per state. Figures 3.22 and 3.23 present one such simulation for each state by plotting the
RMSD of the loop of interest with respect to each state, and the dihedral clustering centroid
distances to each state, computed similarly to what was done for the biased simulation
in Section 3.3.2. As can be seen in Figures 3.22 and 3.23, the sampled simulations do
not leave their initial states, but visit apparent substates for which the dihedral centroid
distances are higher. The existence of these substates may be used to relax the definition
of the boundaries of each conformational state. For example, Plot (d) of Figure 3.23 shows
the dihedral centroid distances for an unbiased trajectory started from state 5. It can be
observed that after ∼ 45 ns of simulation time, the distances increase from their usual range
of [1, 2] (i.e. the range determined by the shorter unbiased simulations, see Figure 3.14, left,
column “Unb 5”) to a higher average of [2.5, 3.5]. After ∼ 85 ns of simulation time, the
distances fall back to the usual range.
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(a) Unbiased 1 (b) Unbiased 2 (c) Unbiased 3

(d) Unbiased 5 (e) Unbiased 6

Figure 3.22: RMSD of the Cα carbons of the loop of interest over 200-ns unbiased trajectories
started from the 5 predefined HSP90 states.

(a) Unbiased 1 (b) Unbiased 2 (c) Unbiased 3

(d) Unbiased 5 (e) Unbiased 6

Figure 3.23: Cluster centroid distances computed for 200-ns unbiased trajectories started
from the 5 predefined HSP90 states.
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[23] M.A. González. Force fields and molecular dynamics simulations. École thématique de la
Société Française de la Neutronique, 12:169–200, 2011.

[24] D. Frenkel, B. Smit, J. Tobochnik, S.R. McKay, and W. Christian. Understanding molecular
simulation. Computers in Physics, 11(4):351–354, 1997.

[25] M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Oxford university press, 2017.

[26] J.A. McCammon, B.R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature,
267(5612):585–590, 1977.

[27] G. Jayachandran, V. Vishal, and V.S. Pande. Using massively parallel simulation and Marko-
vian models to study protein folding: examining the dynamics of the villin headpiece. The
Journal of chemical physics, 124(16):164902, 2006.

[28] P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, and K. Schulten. Molecular
dynamics simulations of the complete satellite tobacco mosaic virus. Structure, 14(3):437–
449, 2006.

[29] K. Lindorff-Larsen, S. Piana, R.O. Dror, and D.E Shaw. How fast-folding proteins fold.
Science, 334(6055):517–520, 2011.

[30] J. Huang and A.D. MacKerell Jr. CHARMM36 all-atom additive protein force field: Valida-
tion based on comparison to NMR data. Journal of computational chemistry, 34(25):2135–
2145, 2013.

[31] J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case. Development and testing
of a general amber force field. Journal of computational chemistry, 25(9):1157–1174, 2004.

[32] M. Stroet, K. B Koziara, A.K. Malde, and A.E. Mark. Optimization of empirical force fields
by parameter space mapping: A single-step perturbation approach. Journal of chemical
theory and computation, 13(12):6201–6212, 2017.

[33] A.D. MacKerell Jr, D. Bashford, M.L.D.R. Bellott, R.L. Dunbrack Jr, J.D. Evanseck, M.J.
Field, S. Fischer, J. Gao, H. Guo, S. Ha, et al. All-atom empirical potential for molecular mod-
eling and dynamics studies of proteins. The journal of physical chemistry B, 102(18):3586–
3616, 1998.

[34] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C.
Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. A second generation force field for
the simulation of proteins, nucleic acids, and organic molecules. Journal of the American
Chemical Society, 117(19):5179–5197, 1995.



BIBLIOGRAPHY 141

[35] C. Oostenbrink, A. Villa, A.E. Mark, and W.F. Van Gunsteren. A biomolecular force field
based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter
sets 53A5 and 53A6. Journal of computational chemistry, 25(13):1656–1676, 2004.

[36] W.L. Jorgensen, D.S. Maxwell, and J. Tirado-Rives. Development and testing of the OPLS
all-atom force field on conformational energetics and properties of organic liquids. Journal of
the American Chemical Society, 118(45):11225–11236, 1996.

[37] N.L Allinger. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and
V2 torsional terms. Journal of the American Chemical Society, 99(25):8127–8134, 1977.

[38] N.L. Allinger, Y.H. Yuh, and J.-H. Lii. Molecular mechanics. The MM3 force field for hydro-
carbons. 1. Journal of the American Chemical Society, 111(23):8551–8566, 1989.

[39] N.L. Allinger, K. Chen, and J.-H. Lii. An improved force field (MM4) for saturated hydro-
carbons. Journal of computational chemistry, 17(5-6):642–668, 1996.

[40] T.A. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and
performance of MMFF94. Journal of computational chemistry, 17(5-6):490–519, 1996.

[41] H. Sun. COMPASS: an ab initio force-field optimized for condensed-phase applications
overview with details on alkane and benzene compounds. The Journal of Physical Chem-
istry B, 102(38):7338–7364, 1998.

[42] J. Gao, D. Habibollazadeh, and L. Shao. A polarizable intermolecular potential function for
simulation of liquid alcohols. The Journal of Physical Chemistry, 99(44):16460–16467, 1995.

[43] M. Swart and P.T. Van Duijnen. DRF90: a polarizable force field. Molecular Simulation,
32(6):471–484, 2006.

[44] J.W. Ponder, C. Wu, P. Ren, V.S. Pande, J.D. Chodera, M.J. Schnieders, I. Haque, D.L.
Mobley, D.S. Lambrecht, R.A. DiStasio Jr, et al. Current status of the AMOEBA polarizable
force field. The journal of physical chemistry B, 114(8):2549–2564, 2010.

[45] A.C.T. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard. ReaxFF: a reactive force field
for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001.

[46] T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier,
R. Engel-Herbert, M.J. Janik, H.M. Aktulga, et al. The ReaxFF reactive force-field: de-
velopment, applications and future directions. Computational Materials, 2(1):1–14, 2016.

[47] J. Behler. Perspective: Machine learning potentials for atomistic simulations. The Journal
of chemical physics, 145(17):170901, 2016.

[48] S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, and K.-R. Müller.
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Polytechnique Fédérale de Lausanne, Switzerland

⊥Sloan Kettering Institute, USA

#Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA

@Pritzker School of Molecular Engineering, 5640 South Ellis Avenue, University of

Chicago, Chicago, Illinois 60637, USA

4CEA-DAM, DIF, France

∇Structure Design and Informatics, Sanofi R&D, 94403 Vitry-sur-Seine, France

††University of Konstanz, Germany
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Abstract

Machine learning encompasses a set of tools and algorithms which are now becom-

ing popular in almost all scientific and technological fields. This is true for molecular

dynamics as well, where machine learning offers promises of extracting valuable in-

formation from the enormous amounts of data generated by simulation of complex

systems. We provide here a review of our current understanding of goals, benefits, and

limitations of machine learning techniques for computational studies on atomistic sys-

tems, focusing on the construction of empirical force fields from ab-initio databases and

the determination of reaction coordinates for free energy computation and enhanced

sampling.

1 Introduction

The atomistic representation of physical systems offers a precise description of matter. Sim-

plified models based on coarse-grained (CG) representations offer an alternative that can

significantly aid in the understanding of the physical properties of the systems under consid-

eration. Such representations can also be used as a surrogate model for enhanced sampling

methods (e.g. sampling large conformational changes using reduced models).

Both in the case of biochemical systems as well as in materials, a CG description can be

based on distance metrics for structural clustering,1 as well as on reaction coordinates: for

instance, the conformational changes of a complex molecule can be modeled by a few key

functions of the atomic positions, while a phase transition can be described by a change of the

average atomic coordination or box shape. In condensed matter physics, atomic descriptors

are employed to summarize the key features of atomic configurations in order to predict

forces and energies.2,3

In the past, reaction coordinates were defined using empirical methods and chemical

intuition, while more systematic approaches were employed for the definition of atomic de-

scriptors.4,5 During the last decade, the return and rise of Machine Learning (ML) techniques
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have initiated many efforts focusing on automating the definition of reaction coordinates or

descriptors that are able to successfully describe the underlying atomic systems.6–9 The

employed methods, both supervised and unsupervised, vary. The most commonly used

methods for the identification of reaction coordinates include Principal Component Anal-

ysis (PCA),10 diffusion maps,11,12 and auto-encoders.13–16 For atomic descriptors, common

choices are based on a judicious use of adjacency matrices and their generalizations, or on a

large set of feature vectors based on a set of basis functions.

We are witnessing many current attempts for automatically devising intuition-free collec-

tive variables, in particular for drug discovery applications.13,17 Although the initially very

high hopes raised by numerical potentials are now mitigated, there have been quite a few

systematic studies on the quality of the descriptors obtained by these approaches.18,19

A recent CECAM (Center Européen de Calcul Atomique et Moléculaire) discussion meet-

ing1 brought together a diverse audience of 29 participants from various scientific fields,

including chemistry, drug design, condensed matter physics, materials science, and math-

ematics, to exchange about state-of-the-art techniques for automatically building coarse-

grained information on molecular systems. In particular, we believe that the viewpoint and

experience of condensed matter physicists in devising atomic descriptors could prove useful

insights in devising reaction coordinates in a more systematic way. Mathematics offer, in

this framework, a common language for the discussion. One distinctive feature of this CE-

CAM meeting is that the emphasis was on the technical details of the underlying numerical

methods.

In the current review, we discuss the following highlights of the meeting:

• Machine learning force fields and Potential of Mean Force. ML techniques

have been recently employed in the development of force field (FF) parameters based

on quantum-mechanical calculations. More generally, ML techniques can be used to

define a surrogate model of any quantity that could be obtained from a quantum chem-

1See the conference website https://cermics-lab.enpc.fr/cecam ml md/

4



ical calculation, as a function of atomic coordinates (e.g. NMR chemical shieldings, IR

dipole moments, ...), making it possible to obtain an accurate estimate of experimental

observables. Such models are beginning to find merit due to their accuracy and versa-

tility. In Section 2, we review the factors that play an important role in the accuracy

and transferability of a force field. Specifically, we report the importance of the input

database and the choice of the regression method for the force field construction. The

use of prior physico-chemical knowledge in this construction of ML potentials is also

discussed.

• Dimensionality reduction and identification of meaningful collective vari-

ables. Another important issue discussed during the CECAM meeting is the dimen-

sionality reduction and the identification of meaningful CVs using ML techniques (see

Section 3). We considered the case when this identification relies on a database which

covers the full configuration space of the system under study (obtained for instance

by high temperature sampling, steered molecular dynamics, etc), and the case when

the data is restricted to a metastable state. Once a reaction coordinate is found, the

question of devising a good effective model along this coordinate can also be addressed

using machine learning techniques: either approximate free energies (for example by

potentials involving only 2, 3 or 4 body interactions), or approximate the terms in the

effective dynamics, namely the drift, diffusion coefficient, metric tensor and memory

terms, for example using projections à la Mori-Zwanzig.

• Applications of machine learning techniques in biological systems and drug

discovery. In Section 4, we discuss some “real world” applications, where MD simu-

lations coupled with ML techniques enable us to understand the biological complexity

at the atomic and molecular levels and provide us with interesting insights about the

thermodynamic and mechanistic behaviour of biological processes. In particular, we

highlight some examples of ML approaches applied in clustering and construction of
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Markov state models, we describe how ML methods facilitate enhanced sampling pro-

tocols through the use of efficient CVs and we mention some possible applications in

the drug discovery process. These examples illustrate the current state and potential

of the field of ML in the study of biological systems and drug discovery.

We close the review with some perspectives in Section 5.

2 Machine learning force fields and Potential of Mean

Force

Interactions between atoms are often modeled using empirical potentials with some pre-

scribed functional forms, as suggested by physical considerations. This provides computa-

tionally cheap (with a cost scaling linearly with the number of atoms) but somewhat inaccu-

rate potentials. On the contrary, ab-initio approaches provide more reliable, less uncertain

force fields, at the expense however of a large computational cost (typically scaling as the

number of electrons to the power 3). The promise of machine learning for force field compu-

tations is to predict forces and energies with accuracy arbitrary close to the level of ab-initio

approaches,20 but with a much smaller computational cost and scaling as a function of the

number of atoms. Ideally, these force fields should be able to describe chemical reactions.

This is typically done in practice by setting up a database of configurations with associated

forces and energies, summarizing atomic configurations through some descriptors of the lo-

cal environment, and predicting the forces and energies from these descriptors through a

function which has been trained by some (nonlinear) regression procedure to provide good

results on the database. The resulting potential is called a “numerical potential”.

There are three different factors to discuss the success of ML methods, whose relative

importance depend on the aims of the user: accuracy, computational cost, and transferability.

The latter concept means that a numerical potential computed for a given material in a given

thermodynamic range, can be used outside the fitting domain – for instance because it is
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used for other materials and systems than the ones it was trained on, and/or in a different

thermodynamic range than the one considered for the configurations in the database.

We first discuss in this section elements on the choice of the database, see Section 2.1. We

next present various choices for the descriptors and for associated ML regression methods,

see Section 2.2. We then discuss in Section 2.3 how to incorporate physical insights in order

to improve ML techniques, and we give some perspectives in Section 2.4. We end the section

by mentioning how ML approaches can also be used to derive CG potentials, see Section 2.5:

in this perspective, empirical force fields for all atom models are seen as the reference (they

are the counterpart of ab-initio databases in this context), and effective force fields describing

the interaction of coarse-grained variables are sought.

2.1 Setting up a database

One of the key factors that affects the accuracy and transferability of a force field is the

database used for its construction. This database defines the envelope of confidence (appli-

cability domain) for the potential as the subsequent regression method is efficient in interpo-

lation. It is often the case that a numerical potential has a poor transferability. Therefore,

for condensed matter systems, the database should sample the region of interest, i.e., the

thermodynamic conditions where the potential is going to be used. However, this represen-

tative part of the configurational space covers only a small fraction of the overall available

space. Hence, a systematic exploration is impossible, and physical intuition is often used

to constrain the search of new interesting configurations for learning. This makes the con-

struction of the database a rather laborious process. A first application of ‘active learning’

in this process, also still hand made, is proposed by Artrith and Behler in Ref. 21: two

different neural networks are optimized on the same database and, in case their predictions

on a new configuration differ too much this configuration should be included in the database.

Active learning, based on outlier detection (i.e., definition of a metric to detect parameters

corresponding to some extrapolation) is now routinely employed during the database con-
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struction.22 In this way, force field accuracy can be improved during the training procedure23

and the domain of applicability could be extended.24 The bottom line is that ‘on the fly’

learning25 enables to perform optimization and prediction at the same time.26 Typically, a

trade-off has to be found between the transferability of a potential (its robustness to changes

in the database) and its accuracy.

The representation of the database should also be meaningful: finding a proper space

for this representation allows to define an envelope of confidence for the potential. When

the potential is used, each new configuration can rapidly be plotted in this space to check

if it belongs to the database envelope (applicability domain), i.e., if the potential is used in

interpolation or in extrapolation. It then becomes a useful criterion for outlier detection.

What is globally accepted is that the methods should systematically be validated on test

data, different from the training data. In any case, one should be very careful about the

quality of the model for extrapolation.

2.2 Descriptors and regression methods

We present in this section the technical approaches to fit a potential on a database. We

distinguish the representation of the atomic configurations through descriptors, and the

subsequent regression allowing to fit the parameters of the chosen model. Typically, a very

simple descriptor, based on physical/chemical intuition or moment estimates for atomic

densities, should be combined with a complex regression such as a neural network; on the

other hand, more educated descriptors, for instance based on convolutional neural networks

and a scattering transform,27 can be fed into quite simple (bi)linear regression models.

2.2.1 Representing atomic configurations

It is almost never appropriate to use the Cartesian coordinates of atoms in a structure as

the input of a machine-learning scheme,28 because Cartesian coordinates do not conform

with the invariance of the target properties, e.g. permutation of the indices of identical
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atoms, rigid translations, rotations and reflections. For this reason, several different schemes

have been devised to map atomic configurations onto vectors of features that fulfil these

symmetry requirements. Usually, it is desirable for this mapping to be differentiable and

smooth, particularly in applications where one needs to compute forces as the derivative of

a machine-learning potential or CG force field.

One can roughly partition methods to represent atomic configurations into two classes.

Descriptors are often highly simplified representations of a structure, usually of much smaller

dimensionality than the number of degrees of freedom and incorporating some degree of

chemical intuition, or a heuristic understanding of the behavior of the system being studied.

Cheminformatics schemes to characterise the connectivity of a molecule, such as SMILES29

strings, are useful when dealing with databases of organic compounds. Steinhardt parame-

ters30 are often used to characterize the coordination of liquids and solids. Backbone dihedral

angles, or more complex indicators of secondary structure31 can be utilized to discard infor-

mation on the side chains of polypeptides. The dimensionality reduction that is intrinsic to

this family of methods typically induce loss of information, which may be desirable (when it

discards irrelevant details) or problematic: in the latter case, it is often more effective to use

a more complete description and then proceed with an automatic dimensionality reduction

algorithm, some of which will be discussed in Section 3.

Representations, on the other hand, attempt to provide a complete description of a

configuration. This family of features is typically used when building regression models for

energy and properties. Most of the time (particularly for condensed-phase applications, but

often also for isolated molecules) representations are not built for an entire structure, but

are instead used to describe atom-centered environments. This is advantageous, because

- by representing a structure as a collection of compact groups of atoms, and assuming

that the overall property can be computed as a sum of local contributions - it becomes

possible to train models that can be easily transferred between systems of different sizes,

and from simple to more complex configurations. Many of these systematic representations

9



- including e.g., SOAP (bi)spectrum,32 Behler-Parrinello symmetry functions,33 moment

tensor potentials,18 FCHL kernels34 - can be seen as projections on different basis of n-body

correlation functions,35 and offer a systematic and completely general way to describe atomic

configurations, that can be applied equally well to condensed phases, gas-phase molecules

and polypeptides.36

2.2.2 Choosing the regression method

Once the atomic descriptor has been chosen, the choice of the regression method to deter-

mine the force field is crucial and greatly depends on the system under study.37 A distinction

should be made between learning based on neural networks, and other regression methods

based on kernels or (bi)linear methods. Training neural networks is a complex non-convex

optimization problem in very high dimension (generally thousands of parameters are needed

to parameterize the networks under consideration). Already the computation of the gradient

of the objective function is non trivial and relies on clever numerical tricks, such as back-

propagation. Kernel-based methods or (bi)linear regression techniques lead, on the other

hand, to much better behaved optimization problems, which can even be solved analytically

through some matrix inversion on the Euler equation defining the minimizer.

The choice of the regression method also determines whether error estimators are avail-

able. For example a variance can be associated with a prediction when a kernel method is

used, whereas error quantification is harder using neural networks. Moreover, the robustness

of the potential depends on the regression method and its associated regularization (used

to alleviate overfitting issues). A simple (bi)linear method may be less accurate but more

robust. It may also be sufficient if the descriptors already provide enough information on

the system, as is the case for the descriptors obtained via convolutional neural networks in

Ref. 27.

In principle, both neural network (NN) and nonlinear kernel regression models are suf-

ficiently sophisticated to obtain a trustworthy representation of scalar potential-energy sur-
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faces (PES) or vector force fields of arbitrary complexity. However, in practice, choices

have to be made for the similarity measure between atomic configurations (in both kernel

regression methods and NN) or for the architecture of the neural network. The optimal

choices are not the same for different systems, i.e., descriptors/parameters that work well

for solids are not easily transferable to biological molecules and vice versa. Hence, many

ML developments are currently specific to either organic molecules or materials. That being

said, there is currently a growing interest in understanding the advantages and limitations of

the different existing approaches18,27,32,33,38–41 and developing truly general frameworks for

learning complex PES or force fields that work seamlessly for both organic and inorganic

matter.

2.2.3 Current methods and their performances

We list some key methods in Table 1. The first successful ML approaches were developed to

describe PES of defectless materials and their surfaces32,33,38 with the goal to enable efficient

and accurate Molecular dynamics (MD) of large supercells of elementary or binary materials.

The Behler-Parrinello NN approach33 or the kernel-based GAP approach of Csanyi32 are both

able to achieve accuracies of 1-2 meV/atom for some solids (C, Si, Cu, TiO2, among others).

There are several key differences between these two methods, the main ones being the NN

vs kernel approach and the different similarity measures between atomic configurations.

Both approaches typically require on the order of tens to hundreds of thousands reference

calculations at the DFT level for constructing the training dataset, in order to achieve 1-2

meV/atom accuracy. Recently, PES-fitting methods based on deep networks have also been

developed.41,42 These approaches often do not require any a priori definition of the similarity

measure; they are instead able to learn the similarity measure from the training data.

Constructing ML models for organic molecules is a field that faces somewhat differ-

ent challenges compared to ML models for solids and materials. While DFT calculations

are often deemed to provide sufficiently accurate reference data for solids, this is not the
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Table 1: Summary of some key learning methods for force field (FF) development.

Method Short description Ref.

Kernel-based Gaussian Combines a structural descriptor 32

approximation potentials and a kernel establishing the link

(GAP) between structure and energy

Behler-Parrinello NN Feed-forward NNs for each atom. 33,38

The potential energy is constructed

as the sum of local atomic energies

Deep NN (DTNN) No a priori similarity definition 41,42

needed, similarity is learned

Permutationally-invariant Uses polynomials of Morse variables 39,43

polynomials (PIP) in fitting PES

Gradient-domain ML Learns an explicit FF and obtains 7,40

(GDML) the PES via integration

case for organic molecules. The “gold standard” is coupled cluster CCSD(T) computations.

Quantum-chemical CCSD(T) calculations are however computationally expensive and it is

only possible to carry hundreds of such calculations even for simple molecules such as aspirin.

Early successful nonlinear PES models were based on permutationally-invariant polynomials

(PIP).39 More recent developments include the so-called gradient-domain machine learning

(GDML) approach7,40 for constructing molecular force fields. The GDML approach learns

an explicit force field and obtains the PES via integration, instead of the more conven-

tional approach to learning a PES and then taking its gradient to drive MD. This has two

advantages: (i) the usage of an explicit Hessian kernel that provides the maximum flexi-

bility, minimizes noise and prevents artifacts between forces and energies in the learning

process; (ii) a significant gain in data efficiency, since globally accurate force fields for small

molecules (accuracy of 0.2 kcal/mol and 1 kcal/mol/Å) can now be constructed using only

a few hundred molecular conformations for training. This data efficiency currently enables
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the construction of essentially exact force fields for molecules with up to 30-40 atoms.7

2.3 Synergy between physics, chemistry, mathematics and ML

approaches

ML approaches used to construct accurate PES and force fields have already been success-

ful and have enabled simulations of molecules and materials that were previously consid-

ered impossible. Ultimately, it would be worthwhile to achieve an optimal balance between

physics-based models and ML approaches to enable not only faster and more accurate simu-

lations, but also obtain insights into interactions of complex quantum-mechanical molecules

and materials. For example, the GAP, Behler-Parrinello, GDML, and PIP approaches dis-

cussed above already incorporate translational, rotational, and permutational symmetries of

molecules and materials in their internal representation of atomic interactions. Such sym-

metries were also made precise in the mathematical literature.18 In addition, by learning

simultaneously energy and forces such that the latter are (minus) the gradient of the former,

all of these methods enforce exactly energy conservation.

However, many more physical symmetries can and should be incorporated in ML ap-

proaches. For example, exact constraints are known for asymptotic forms of atomic inter-

action potentials. Also, some analytic and empirical results are known for series expansions

of interatomic potentials. Finally, there are mathematical results which provide rigorous

statements on the behavior of the potential energy functions in terms of the locality of the

interactions.19 The incorporation of such prior knowledge could improve the efficiency and

accuracy of ML potentials and ultimately also lead to novel analysis tools that offer new

insights into the complex nature of atomic interactions.44

It is also worth noting that electronic interactions in complex molecules and materials can

be rather long-ranged. For example, electrostatic interactions and plasmon-like electronic

fluctuations in molecules and nanostructures can lead to interatomic potentials extending

to at least 20-30 nanometers.45,46 Most current ML models explicitly or implicitly cut off
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interactions at an interatomic distance of 5-6 Å. Hence, by construction, these ML approaches

are not able to capture interactions extending over larger length scales. For this reason, it is

ultimately necessary to couple ML approaches that excel at capturing complex short-range

chemical bonding with explicit physics-based approaches to non-covalent interactions. It

is important to note that such physics-based models can also employ ML approaches to

learn short-range interaction parameters based on datasets of electrostatic moments and

polarizabilities. The recently developed IPML approach lies the foundation for unifying

ML force fields and physics-based interatomic potentials.47 An alternative approach based

on the definition of structure representations that incorporate long-range correlations with

the correct asymptotic behavior48 can simplify the simultaneous description of the multiple

length scales contributing to molecular interactions.

2.4 Perspectives for ML approaches to the determination of force

fields

We gather in this section some mathematical and numerical perspectives, as well as open

problems, on ML methods for force fields:

• A first perspective is the use of ML to learn the difference between already acceptable

empirical force fields and DFT models, as some form of preconditioning. Such an

approach greatly depends on the regression method. For example, for kernel methods,

it has been shown that a potential can be built on top of pre-existing two-body and

three-body classical potentials, improving the overall accuracy.49,50 On the contrary,

fitting differences between a good classical potential and an ab-initio potential with a

linear regression yields very poor results, since the difference is small (almost noisy)

and rugged (not smooth). It is observed that a simpler starting guess, such as the

Ziegler–Biersack–Littmark potential,51 yields better results, since this increases the

numerical stability and improves the accuracy.
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• A question related to the robustness of these learning techniques is whether it would

make sense to optimize potentials on a Pareto curve, where various properties of interest

are weighted in different manners in the cost function. Indeed, the optimization is

usually performed on a multi-objective cost function (including energy, force, stress,

and sometimes bond distances, ...). The so-obtained potential is a result of the user

arbitrary choice of the weighting parameters – infinitely many ‘optimal’ potentials can

be obtained depending on the choice of the weights. The naturally rising question here

is: is it possible to have a unified way of defining cost functions?

• An important practical concern is the sensitivity of the learnt parameters relatively

upon the data (for instance depending on the fraction of elements used for training vs.

testing).

• Another more theoretical question is: What is the numerical stability induced by

machine learning potentials on the time integration of Hamiltonian dynamics and its

variations? Indeed, some preliminary results suggest that machine learning potentials

may be smoother than current empirical potentials.

• For reasons which remain to elucidate, predicting intensive (as opposed to extensive)

properties seems to be very challenging.

2.5 Bottom-up coarse-graining force fields: From PES to FES

A classical particle-based coarse grained (CG) simulation model, where several atoms are

grouped together, can be viewed as a reduction of the dimensionality of the classical phase

space (see Figure 1). It requires the determination of an effective Hamiltonian that allows the

model to explore the phase space in the same way as an atomistic simulation would. Thus,

in the so-called bottom up coarse-graining strategies, the interactions in the CG model are

devised such that an accurate representation of a (known) atomistic sampling of the config-

urational phase space (mapped to the CG representation) is achieved. These methods use
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the underlying multidimensional potential of mean force (PMF) derived from the atomistic

simulation data as parameterization target, i.e., they try to reproduce a (typically high-

dimensional) free-energy surface (FES) as opposed to a PES. Naturally, this is of particular

relevance to the simulation of soft matter problems such as liquid state systems, soft mate-

rials and biological systems, where entropic effects, disorder and heterogeneity dominate the

overall properties of the system.

Figure 1: Particle-based coarse-graining: high dimensional free energy surfaces (FES) can
be extract from atomistic data and used as a basis for CG models.52,53

Free energies and potentials of mean force are not a direct output of a MD simulation.

They can be calculated by Boltzmann inversion of a (high-dimensional) probability density

distribution obtained from sampling configurations in phase space or from mean forces acting

on the interaction sites in the CG representation. In the past, several bottom-up coarse-

graining methods have been derived which - while all aiming for an effective Hamiltonian

that approximates a multidimensional PMF/FES - differ in terms of both the actual pa-

rameterization target (multidimensional PMFs/probability density distributions, structure

functions as low-dimensional representations of these PMFs; mean forces in the direction of
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selected CVs or relative entropies) and the type of CG interactions which are typically repre-

sented by low-dimensional potentials, i.e., pair interactions, or three-body interactions).54–58

Since these coarse-graining methods derive interactions from atomistic reference simulations,

they are intrinsically data driven. Consequently, ML-based approaches yield new types of

reference atomistic data and new types of CG interactions and parameterization methods.

On the one hand, ML methods can be used to determine dimensionality-reduced represen-

tations of the phase space and to derive or validate CG models by matching the sampling of

a (relatively complex) FES as opposed to low-dimensional target functions/properties. On

the other hand, ML methods can also be employed to identify suitable CVs that describe

the states and the dynamics of a system, which can then either be directly used in the CG

potentials or be employed to identify optimal CG representations and learn CG interactions.

This is discussed at length in Section 3.

Following the methodology of inferring all-atom potential energy functions from corre-

sponding quantum mechanical data, John and Csanyi have extended the Gaussian Approxi-

mation Potential (GAP-CG) approach to coarse-graining of simple liquid systems.59 In this

case, the many-body PMF is described via local multibody terms, based on local descriptors

and multidimensional functions which are determined by Gaussian process regression from

atomistic training data (instantaneous collective forces or mean forces). In a similar vein,

Zhang et al. developed a scheme, called the Deep Coarse-Grained Potential (DeePCG),

which uses a NN to construct a many-body CG potential for liquid water.60 The network

is trained with atomistic data in a manner similar to the force matching in the multi-scale

coarse-graining method,61 and in such a way that it preserves the natural symmetries of

the system. While the described two methods are related to the force-matching type of

bottom-up coarse-graining and use ML to significantly extend the complexity of the CG

interactions, Lemke and Peter follow a different strategy.52 A NN is used to extract high-

dimensional FES from atomistic MD simulation trajectories. The NN is trained to predict

conformational free energies by creating a classification problem between real MD confor-
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mations and fake conformations of a known distribution. With such a classification based

procedure it is possible to train the NN to return probability densities without requiring any

binning or normalization – which circumvents the problem of binning in high dimensional

space.62 By using the NN probability densities directly in a Monte Carlo type of sampling

of conformations, a (relatively) high-dimensional FES is thus used as effective CG Hamilto-

nian. This NN network model was successfully tested for several homo-oligopeptides.53 By

employing a convolutional NN architecture, the NN model could be simultaneously trained

on data of different chain lengths and could even make meaningful predictions for polymers

with chain lengths different from the ones in the training data. Thus, such an approach is

promising for the simulation of polymer systems where naturally training data are restricted

to chain lengths that are shorter than the intended polymers.

Coarse-graining of potential energy functions into free energy type interactions has a well

founded statistical interpretation. A difficult question is however whether some dynamical

properties are also preserved in this coarse-graining process, and to which extent.

3 Dimensionality reduction and identification of col-

lective variables

The objective of this section is to discuss various techniques to identify collective variables.

After some general considerations in Section 3.1, we first present the main two ideas to

build collective variables in Section 3.2, namely looking for high-variance or slow degrees of

freedom. We then discuss how this can be used to enhance the sampling of the canonical

ensemble on the example of diffusion maps in Section 3.3, before discussing dynamical aspects

in Sections 3.4 and 3.5.
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3.1 General considerations

Molecular systems are characterized by the fact that their long-time dynamical behavior

is typically governed by a small number of emergent collective variables (CVs).63–65 These

collective modes arise from cooperative couplings between the constituent atoms induced

by interatomic forces (e.g., covalent bonds, electrostatics, van der Waals interactions) and

possibly external fields (e.g., electric fields, hydrodynamic flows), and which render the

effective dimensionality of the system far lower than that of the full-dimensional phase space

in which the system Hamiltonian and equations of motion are formulated.64,65 In a dynamical

systems sense, the long-time evolution of the system is restrained to a low-dimensional

attractor or intrinsic manifold and its dynamics over these time scales may be described

within the Mori-Zwanzig projection operator formalism as evolving within a subspace of

slow collective variables to which the remaining degrees of freedom are effectively slaved.64

Traditional unbiased MD is not able to efficiently explore the whole kinetic landscape

with time scales spanning over orders of magnitude, from picoseconds to milliseconds. In

this scenario, one relies on extensive simulations together with some clever strategy to escape

metastable states. Such a strategy can only be devised if one is able to identify what defines

a “long-lived” state, which is equivalent to discovering meaningful collective variables (CVs)

or reaction coordinates.66

The methods described below aim at finding these CVs or states. As will become clear

later, depending on the objective, the focus may be different: gain insight/intuition on the

system, bias to exit metastable states, compute a free energy profile, set up a coarse-grained

dynamics simulation, cluster/classify configurations, etc.

19



3.2 Data-driven discovery of high-variance and slow collective vari-

ables

The inherently multi-body and emergent nature of the CVs means that they are exceedingly

challenging to intuit for all but the most trivial systems, and data-driven techniques present a

powerful means to systematically estimate them from molecular simulation data. The origins

of this data-driven approach can be traced back to pioneering work in the early 1990’s by

Toshiko Ichiye and Martin Karplus,67 Angel Garcia68 and Andrea Amadei, Antonius Linssen

and Herman Berendsen69 who applied PCA to molecular simulations of protein folding. Since

that time there has been an explosion of interest in the use of data science and machine

learning techniques to estimate CVs from molecular simulation data and the subsequent use

of these CVs to inform new understanding, perform molecular design, and guide enhanced

sampling.

Data-driven CV discovery typically employs unsupervised learning techniques that seek

low-dimensional parameterizations of the geometry of the data in the high-dimensional phase

space of atomic coordinates.70 This procedure can usually be cast as an optimization prob-

lem that maximizes some objective function, or equivalently minimizes some loss function,

over the data. The techniques can be categorized into linear and nonlinear methods. Lin-

ear techniques are restricted to discovering CVs that are linear combinations of the input

features, whereas nonlinear techniques can discover more general nonlinear functional rela-

tions. The more powerful and general nonlinear techniques are typically better suited to

the estimation of the complex emergent CVs in molecular systems, but linear techniques

should not be discounted since they are typically more robust, interpretable, and less data

hungry, and can also admit nonlinearities through feature engineering or the kernel trick.71

The importance of the choice of features in which the molecular system is represented to the

CV discovery tool should not be underestimated. Feature sets that contain and foreground

the important molecular behaviors and respect fundamental symmetries (e.g., translation,

rotation, permutation) can be critical to the success of CV discovery (particularly in the
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case of linear techniques), whereas poor choices that mask or discard essential information

or contain spurious symmetries can easily produce poor performance. What constitutes a

good choice of feature set is strongly system dependent and is typically reliant on some

combination of intuition, experience, and exploratory trial-and-improvement. We refer for

example to Ref. 72 for a discussion on the importance of the choice of the representation of

the data.

Although the details and specifics differ, most CV discovery techniques can be placed in

one of two categories: those that seek high-variance CVs and those that seek slow CVs (see

Figure 2).

High variance CVs maximally preserve the configurational variance in the high-dimensional

data upon projection into the low-dimensional space spanned by these CVs. Slow (i.e., max-

imally autocorrelated) CVs define a low-dimensional space that maximally preserves the

Figure 2: Representative methods for CV identification. All related citations are in the main
text.
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long-time kinetics of the system. Frequently the slow and high-variance collective modes are

related, but this is not always the case. Importantly, the estimation of slow CVs requires

data arranged in time series (e.g., MD trajectories) whereas the estimation of high-variance

CVs can be applied to data sampled without temporal ordering (e.g., Monte Carlo trajec-

tories). Notice however that methods exist to recover dynamical information according to

some artificial dynamics (e.g. reversible purely diffusive dynamics) upon non-time ordered

data to render it amenable to temporal analysis techniques.73

Let us also mention that recent advances in deep reinforcement learning (DRL) in robotics

opens up new avenues for deploying DRL to atomic and molecular systems. In all DRL

algorithms, a reward function, state and action space should be defined. In atomic systems,

state space can be atomic coordinate, action space can be the movement of atoms, and reward

can be defined as energy. DRL can be suitable replacement for finding transition paths and

can potentially be used to strengthen the string or nudged-elastic-band method.74,75

Before giving more details about the high-variance and slow CVs, let us mention that a

widespread definition of an optimal scalar-valued reaction coordinate in the rare event-field

is the committor function, i.e., in a system with two metastable states, the probability that

a given atomic configuration will evolve towards the products before reaching the reactants.

Such probability can in principle be estimated by generating a huge number of MD simu-

lations from each configuration of interest: even if such a procedure cannot be applied in

practice to the whole configuration space, the committor represents an ideal reaction coor-

dinate in some sense (we refer the reader to Ref. 76 or 77 (p.126) for example) and provides

tests and optimization strategies for candidate CVs .5,17,76,78–80

3.2.1 High-variance CV estimation

The best known high-variance CV estimation technique is PCA,10 also known as the Karhunen-

Loève transform,81–84 or proper orthogonal decomposition.85,86 This approach discovers an

orthogonal transformation of the input data to define a hyperplane approximation that pre-
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serves most of the variance in the data. Popular nonlinear techniques for high-variance CV

estimation include kernel and nonlinear PCA,87–90 independent component analysis (ICA),91

multidimensional scaling,92 sketch map93 locally linear embedding (LLE) ,94,95 Isomap,96–98

local tangent space alignment,99 semidefinite embedding / maximum variance unfolding,100

Laplacian and Hessian eigenmaps,101,102 and diffusion maps .11,103 These approaches differ in

their mathematical details, but can be broadly conceived of as nonlinear analogs of principal

component analysis that pass curvilinear manifolds through the data to define nonlinear pro-

jections into a low-dimensional subspace spanned by the learned CVs. Specialized techniques

for molecular simulations that integrate iterative high-variance CV discovery and accelerated

sampling of configurational space have been developed in recent years.13–15,104–114

The techniques described above can be coupled with enhanced sampling methods, which

use the uncovered CV’s to help the system leave metastable states. In this case, one actually

relies on CV estimates based on partial sampling.73 Let us describe a few methods in that

direction.

Diffusion-map-directed MD (DM-d-MD) uses diffusion maps to identify CVs spanning

the range of explored system configurations and then initializes new simulations at the fron-

tiers of this domain to drive sampling of new system configurations.113,114 Intrinsic map

dynamics (iMapD) employs diffusion maps to construct a nonlinear embedding of the high

dimensional simulation trajectory and then uses boundary detection algorithms with a lo-

cal principal components analysis to extrapolate into new regions of phase space at which

to seed new simulations.105 The Smooth And Nonlinear Data-driven Collective Variables

(SandCV) approach identifies nonlinear CVs using Isomap, expands them within basis func-

tions centered on a small number of landmark points, and then passes this parameterization

to the adaptive biasing force accelerated sampling technique to drive sampling along these

coordinates.109 Molecular enhanced sampling with autoencoders (MESA) employs autoen-

coding neural networks to discover nonlinear CVs for enhanced sampling without the need

for approximate basis function expansions.13,14 Reweighted Autoencoded Variational Bayes
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for Enhanced Sampling (RAVE) employs variational autoencoders to discover nonlinear CVs

that are compared at the level of their probability distributions with an ensemble of physi-

cal candidate variables to identify physical coordinates for accelerated sampling.15Recently,

Tiwary and co-workers extended their approach using the past–future information bottle-

neck principle on a novel deep neural network (linear encoder–stochastic decoder model).115

Interestingly, as the authors mention, the addition of a linear encoder part helps preserving

the interpretability of the CV. REinforcement learning based Adaptive samPling (REAP)

employs reinforcement learning to identify the dynamically-varying relative importance in

driving exploration of configurational space of each CV within a candidate set and then

adaptively seeds new simulations from configurations with high reward functions.104

3.2.2 Slow CV estimation

The identification of slow CVs is valuable and informative from many perspectives. From a

mechanistic perspective, these CVs reveal the collective modes that dictate the metastable

states of the system and the transitions between them. From a design perspective, they can

offer a blueprint for the structural, thermodynamic, and dynamic properties of the system.

From an enhanced sampling perspective, they provide good variables in which one can apply

biases to accelerate barrier crossing and improve exploration of configurational phase space.

A number of approaches have been proposed to analyze MD time series to estimate slow

CVs. The theoretical basis for these techniques is founded in the variational principle of

conformational dynamics (VAC),116 or in the (extended) dynamical mode decomposition

((E)DMD)117,118 that, respectively, frame the recovery of the slow CVs as a variational op-

timization or regression problem.16,119 Shortly, VAC estimates the slowest modes as linear

combinations of a priori defined basis functions of the input coordinates. In Time-lagged

independent component analysis (TICA) these basis functions are the coordinates them-

selves.116,120–126 In Markov state models, the slow CVs are approximated in a basis of in-

dicator functions defined over the data119,127 (see also the recent special issue Ref. 128 for
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the latest developments on Markov state models). Perron cluster analysis can be used to

reduce the large number of states uncovered by clustering methods along the trajectory, to a

few metastable states, see Ref. 129–131. Combining TICA with the kernel trick yields ker-

nel TICA (kTICA) that is capable of approximating the slow CVs with nonlinear functions

of the input features.116,132 Deep canonical correlation analysis (DCCA),133 the variational

approach for Markov processes nets (VAMPnets),134 and state-free reversible VAMPnets

(SRV)135 all employ Siamese neural networks to learn nonlinear featurizations of the input

coordinates as basis functions with which to approximate the slow CVs. Time-lagged au-

toencoders (TAEs) employ time-delayed autoencoding neural networks to learn slow CVs

into which the molecular trajectory can be projected (i.e., encoded) and also used to predict

the system state at the next time increment (i.e., decoded).16 Variational dynamics encoders

(VDEs) are similar to TAEs but employ a variational as opposed to traditional autoencod-

ing architecture that introduces stochasticity into the decoding of the learned CVs.136,137 In

a very recent study, Bonati et al. take a step further their initial Variationally Enhanced

Sampling (VES) method139 by representing the biasing potential using a neural network,

which makes it unnecessary to resort to CVs.138

Enhanced sampling can be conducted in the learned slow CVs in a similar manner to

that in the high-variance CVs, but the application of artificial biasing potentials perturbs the

true system dynamics and subsequent applications of slow CV estimation techniques to the

biased data must compensate for this effect.140–142 Moreover, it should be noted that, even

though in some cases such as the study of biomolecular systems, we are interested in rare

events and slow CVs are optimal, there are cases where the identified slow CVs have implied

timescales that are beyond the phenomenon-relevant scales. In this scenario, a non-optimal

solution would be to correct the kinetic model afterwards by removing undesired modes.

As Husic and Noé pointed out, such a strategy might become impractical when evaluating

multiple candidate models with nonequivalent modes. As a more general and automatic

solution, they propose to use deflation techniques to eliminate the leading slow CVs when
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these do not correspond to the kinetic processes of interest (e.g., folding).143

3.3 Enhanced sampling using local and global diffusion maps

Using the illustrative example of diffusions maps, we discuss in this section how to use the

proposed reaction coordinate to enhance sampling and somehow perform some extrapola-

tion procedure. Diffusion maps are a dimensionality reduction technique which allows for

identifying the slowly-evolving principal modes of high-dimensional molecular systems.11,12

It does so by computing an approximation of a Fokker-Planck operator on the trajectory

point-cloud sampled from a probability distribution (typically the Boltzmann-Gibbs distri-

bution corresponding to prescribed temperature). The construction is based on a normalized

graph Laplacian matrix. In an appropriate limit, the matrix converges to the generator of

overdamped Langevin dynamics. The spectral decomposition of the diffusion map matrix

thus yields an approximation of the continuous spectral problem on the point-cloud144 and

leads to natural CVs.

Since the first appearance of diffusion maps,11 several improvements have been pro-

posed including local scaling,145 variable bandwidth kernels146 and target measure maps

(TMDmap).147 The latter scheme extends diffusion maps on point-clouds obtained from a

surrogate distribution, ideally one that is easier to sample from. Based on the idea of im-

portance sampling, it can be used on biased trajectories, and improves the accuracy and

application of diffusion maps in high dimensions.147

Several algorithms have used diffusion maps to learn the CVs adaptively and thus en-

hance the dynamics in the learned slowest dynamics.13,105,113,114 These methods are based

on iterative procedures whereby diffusion maps are employed as a tool to gradually uncover

the intrinsic geometry of the local states and drive the sampling toward unexplored domains

of the state space, either through sequential restarting114 or pushing105 the trajectory from

the border of the point-cloud in the direction given by the reduced coordinates. All these

methods try to gather local information about the metastable states to drive global sam-
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pling. In,73 the authors focused on the construction of diffusion maps within a metastable

state by formalizing the concept of a local equilibrium based on the quasi-stationary distri-

bution.148 This local equilibrium guarantees the convergence of the diffusion map within the

metastable state. Moreover, the work provides the analytic form of the operator obtained

when metastable trajectories are used within diffusion maps.

Finally, since the collective variables provided by diffusion maps are only defined on the

sampled point cloud, one must apply extrapolation approaches. These might be very noisy

and, more importantly, lose their meaning outside the convex hull of the point cloud. As a

remedy, diffusion maps could be used as a tool to select collective variables from a database

of physical reaction coordinates, similarly to,17 providing more physical insight into the

abstract collective variables. This approach would allow to evaluate the CV outside the

point cloud and provide more physical meaning into the abstract collective variables.

The local-global perspective has motivated a method allowing on-the-fly identification of

metastable states as an ensemble of configurations along a trajectory, for which the diffusion

map spectrum converges. Secondly, an enhanced sampling algorithm based on QSD and

diffusion maps has been proposed. For the latter, the main idea is a sample from the QSD

allowing to build high-quality local CVs (within the metastable state) by considering the

most correlated physical CVs to the diffusion coordinates. Once the best local CVs have

been identified, one can use existing methods as metadynamics to enhance the sampling,

effectively driving the dynamics to exit the metastable state. The authors in73 demonstrate

this idea on a toy-model example showing improved sampling over the standard approach.

Diffusion maps can also be used to a compute the committor function,149 which pro-

vides dynamical information about the connection between two metastable states and can

be used as a reaction coordinate. Markov state models (MSM) can in principle be used

to compute committor probabilities,150 but high dimensionality makes grid-based methods

intractable. Similar work in this direction was done by.149,151,152 Diffusion-maps, especially

the TMDmap,147 can be used for committor computations in high dimensions. The low
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computational complexity aids in the analysis of molecular trajectories and helps to unravel

the dynamical behaviour at various temperatures.

As a future work, the quality of the diffusion map approximation could be improved by

introducing more sophisticated kernels or point-cloud approximations similarly to.149 Also,

diffusion maps could be extended to the approximation of generators of the underdamped

Langevin dynamics.

3.4 Extracting dynamical information from trajectory data

Once good CVs or metastable states have been identified, these can be used to extract

dynamical information. Let us describe in this section the approach followed by Thiede et

al.,151 which is based on a Galerkin projection of the infinitesimal generator.

The approach in151 builds on the MSM and related frameworks.116,118,129,153–158 Dynam-

ical statistics of interest are cast as solutions to equations involving the generator, i.e., the

operator that describes the evolution of functions of the dynamics over infinitesimal times.

Although the full generator cannot be determined in general, the equations can be solved

by a Galerkin approximation. In this approximation, the dynamical statistic of interest is

expanded in terms of a basis, and its generator equation is reduced to a linear form. The

contributing matrix elements (inner products of basis elements and the generator) can be

estimated from short MD trajectories. A key challenge is to generate basis sets consistent

with the boundary conditions. Thiede et al.151 considered two basis sets: indicator functions

that reprise MSMs and diffusion maps.11 The latter showed promise for capturing smoothly

varying dynamical statistics, such as committors and mean first-passage times with fewer

basis functions, but the efficiency of a given basis is likely to be problem specific. Because the

dynamical Galerkin approximation framework generalizes the notion of transition between

states, the sampled configurations can be replaced by short trajectory segments. This allows

treating memory that arises from incomplete description of the system by delay embed-

ding.159,160 This is an appealing alternative to extending the lag time in an MSM because
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it does not sacrifice time resolution. Going forward, it will be interesting to investigate

whether variational methods akin to those for elucidating time scales116,134 can be developed

to permit representation of the dynamical statistics in terms of nonlinear functions.

3.5 Tackling both Markovian and non-Markovian cases: Free en-

ergy, friction and mass profiles extracted from short MD tra-

jectories using Langevin models

In principle, the high-dimensional dynamics of a system composed by many atoms, when

projected onto one (or a few) CV, can be modeled by a generalized Langevin equation.161,162

Such stochastic differential equations contain several ingredients: a mass, a drift term cor-

responding to the mean force (gradient of the free energy landscape), a friction and a noise.

Projecting on a low-dimensional space yields, in general, non-Markovian dynamics, except

in the presence of time scale separation between CVs and bath coordinates and at coarse

time resolution.161

Clearly, the construction of optimal Langevin models along meaningful reaction coordi-

nates is appealing from several viewpoints.163 On one side, the complex many-body dynamics

is approximated by an equation that preserves physical intuition and is cheap to integrate.

On the other side, exact kinetic rates - free from transition state theory approximations -

between metastable states can be accessed more easily, by exploiting brute-force Langevin

simulations or more elaborate methods.164 Generalized Langevin models include by construc-

tion memory effects in the selected physically-measurable variables, effects that are missing

in standard Markov state models. Notice, however, that there are approaches to include

memory effects also in discrete state models.165

For all these reasons, several algorithms have been developed to recast MD data into

low-dimensional Langevin models.166–177 Usually, with these techniques, the terms of the

Langevin equation are estimated employing very long equilibrium MD trajectories that er-
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godically sample the whole relevant free energy landscape. Of course such data are seldom

available in complex applications featuring rare events, strongly limiting the scope to the

case of barriers smaller than a few kBT . Tackling the more general case of limited sampling

and non-equilibrium MD trajectories is much more involved.178

A possible and simple solution to this challenge - especially in the context of rare events -

has been proposed in Ref. 179: the parameters of a generalized Langevin equation are opti-

mized by minimizing the error between MD and Langevin probability distributions P (x, ẋ, t)

along the reaction coordinate x. Such out-of-equilibrium distributions are estimated from a

set of short unbiased trajectories initiated close to a barrier top (with random thermal veloc-

ities) and allowed to relax into the adjacent free energy minima, in the spirit of committor

analysis (a preliminary exploration of putative transition state structures can be nowadays

performed at a moderate cost using, e.g., the prejudice-free techniques of Ref. 180–182).

Employing both benchmark models and solvated proline dipeptide as a test case, numer-

ical evidence indicates that ∼100 short trajectories (of few picoseconds in the typical case of

a small solute in water) encode all the information needed to reconstruct free energy, friction,

and mass profiles.179 This approach, suitable also for high barriers of tens of kBT and non-

Markovian dynamics, provides the thermodynamics and kinetics of activated processes in a

conceptually direct way, employing only standard unbiased MD, at a competitive cost with

respect to existing enhanced sampling methods. Furthermore, the systematic construction

of Langevin models for different choices of CVs starting from the same initial data could

help in reaction coordinate optimization.

4 Application of machine learning techniques in bio-

logical systems and drug discovery

Two of biology’s biggest challenges are the prediction of protein structure based on its amino

acid sequence, i.e., protein folding, as well as the dynamical conformational changes of the
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three-dimensional structure of proteins, i.e., protein dynamics. Beyond the actual problem

of protein folding, which was recently set at a different basis after the breakthrough from

AlphaFold and the impressive one million time faster Artificial Intelligence (AI) solution

by AlQuraishi,183 the prediction of protein dynamics and mechanism of action is possible

through the use of MD simulations.

Recent advances in computer hardware and algorithms have led to simulations of protein

dynamics of size and time lengths that are intrinsic to biological processes. Dynamics of

protein plasticity and drug binding/unbinding mechanisms are a few of the key processes

that we would ideally like to capture through these large scale simulations. However, the

analysis and interpretation of the large amount of data that are produced by these simulations

is complex and should be carefully considered.184

As discussed in Section 3.2, despite the ever-growing time and length scales of simulations,

unbiased MD is not able to explore the whole kinetic landscape of complex systems and

carefully chosen, meaningful CVs can be used to represent the free energy surface of these

systems in order to reveal the regions of low energy, i.e., stable and metastable states, as well

as the barriers, i.e., transition states, between these regions.168,174,185 ML approaches have

recently started being used for the discovery of meaningful CVs,14,15,134,186,187 while iterative

schemes where CVs are being updated based on new simulation data provide promising

results for challenging systems.186,188,189

In this section, we first present an example of dimensionality reduction for building a

Markov State Model for the study of lysine methyltransferase SETD8 (see Section 4.1). We

next present some biological examples were adaptive MD/ML techniques can help gain access

to non-crystallographic conformational states of disease-related proteins for drug discovery

purposes (see Section 4.2). In Section 4.2.1, we discuss the possibility of conformational-

specific targeting of proteins using their metastable states as target conformations, while

in Section 4.2.2 we give some examples were ML techniques applied in MD simulations can

provide information about potential allosteric binding sites or protein activation mechanisms
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upon ligand binding.

4.1 Selection of efficient collective variables for MSMs: the exam-

ple of SETD8

Conformational changes in proteins span from thermal fluctuations of side chains and mo-

tions of active loops to major rearrangement of sub-domains, including unfolding and refold-

ing processes.190 The ability to unveil the mechanisms underlying protein function requires

quantifying the importance of these motions for the process of interest or, in other words,

obtaining a representative ensemble of conformations.

Besides the relevance for devising enhanced sampling strategies, the discovery of CVs is

decisive when analyzing simulation data sets by using, for instance, Markov State Models. In

this context, the conformational study of the protein methyltransferase SETD8, an epigenetic

enzyme essential in the regulation of the cell cycle, was discussed in.188

SETD8 is characterized by a dynamically rich behavior, which has proven to be essential

in enzymatic catalysis.191 In188 the authors combined experiments and simulation in an

attempt to span the up-to-that-time unexplored configurational space of SETD8. Several new

X-ray structures were obtained by trapping conformations with small-molecule ligands.192

These, in turn, were used to build hypothetical structures by manually combining fragments

observed in experiments.

The set of initial configurations was used to seed independent MD simulations in explicit

solvent, resulting in an extensive simulation database. The search of reaction coordinates

was done in different spaces of residue-residue distances, logistic distances, and backbone

dihedrals. These CVs, usually referred to as “features” in the MSMs literature, are arbitrary

choices, that have been traditionally based on human intuition and heuristics.193 This is

arguably the “achilles heel” of MSMs and has prompted the development of ML approaches

to bypass human intervention.16,134

Given that MSMs seek to approximate the slowest kinetic processes, it is essential to
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build such a model on top of data reflecting time scale separation.187 To this end, a common

approach is to apply dimensionality reduction techniques, such as tICA or PCA, to the

preselected set of features.120,125,193,194 In an MSM analysis of ultra-long simulations of 12

small proteins, Husic et al.193 showed tICA to consistently outperform PCA in producing

higher scoring (i.e., slower) MSMs that better approximate the true slow timescales of the

system dynamics. This is because PCA emphasizes large (high variance) motions, which can

be fast, while de-emphasizing, i.e., grouping together, rare motions. Still, a crucial limitation

of both methods is that, by construction, they yield a linear combination of features, which

can fail in capturing inherently nonlinear processes. This has prompted the development

of nonlinear approaches, including variations of tICA and autoencoders.136,195 To avoid the

issues discussed so far, others have opted to skip the dimensionality reduction stage by using

structural properties, such as RMSD196,197 and contact maps.195 The stage regarding data

representation ends with clustering the conformational snapshots into discrete states using

unsupervised ML protocols, such as the k-centers and k-means methods.198

Given the multiple subjective decisions involved in selecting features and algorithms to

represent the database, MSMs building must be allied with validation strategies. In this con-

text, Husic et al.193 emphasize the importance of using a kinetically-motivated dimensionality

reduction and cross-validation strategies to avoid over fitting. The study of SETD8188 uses

both structural and kinetic criteria, and 50:50 shuffle-split cross-validation scheme with ran-

dom divisions of the data into training and test sets (see Figure 3). As a result of such

an extensive validation, the specific study successfully quantified an ensemble of kinetically

relevant macrostates which, in addition, were validated with experiments.

4.2 Machine learning-driven MD simulations in drug discovery

The discovery of a new drug is a long, multi-step and expensive process. Any tool that can

speed up any of the steps involved would have big implications down the entire drug discovery

chain. Artificial intelligence is expected to significantly shape the future of many aspects of
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Figure 3: Construction of conformational landscapes of apo- and SAM-bound SETD8
through diversely seeded, parallel molecular dynamics simulations and Markov state mod-
els.(a) Combinatorial construction of structural chimeras using crystallographically-derived
conformations. (b) Workflow for dynamic conformational landscapes construction using
MSM. For more information we refer the reader to the original publication 188. (Image
source: Ref. 188. Use permitted under the Creative Commons Attribution License CC BY
4.0., https://creativecommons.org/licenses/by/4.0/).

drug discovery during the forthcoming decades. It is already used to design evidence-based

treatment plans for cancer patients, instantly analyze results from medical tests to escalate

to the appropriate specialist immediately, and most recently to conduct scientific research
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for early-stage drug discovery.

Proteins, the most common drug targets, are dynamic molecular machineries whose func-

tion is intimately linked to their conformations. Destabilization of the subtle equilibrium of

protein conformations can lead to severe pathologies, like in the well-known cases of KRAS

G12X oncogenic mutations and prion disease. In this context, knowledge of the conforma-

tional landscape of targeted proteins would provide an outstanding advantage for the design

of novel and original compounds stabilizing specific conformations of the protein.199

Experimentally, the protein conformational space is often limited to few conformations

that have been prone to crystallize. The use of GPUs and massive computational resources

has enabled for the in silico alternative, MD simulations, to gain an important place in the

first steps of drug discovery. Nevertheless, MD is limited to a few hundreds of microseconds

of simulation, which limits the conformational space exploration.

New molecular modeling approaches combining MD simulations and ML techniques can

help gain access to these non-crystallographic conformational states of a target protein. This

knowledge would allow focusing on specific conformations of the protein in order to alter or

restore its function. ML techniques can enable us to identify patterns in simulation data,

build models that explain the different conformational states of a target and predict potential

target-specific solutions for their druggability.13,15,186,187,189,200–203

As discussed in Section 3.1, good CVs can guide enhanced sampling MD simulations

in order to gain insights into long timescale dynamics of biomolecular systems. The diffi-

culty of the identification of such CVs and in most cases the complexity of their definition

has limited the number of available software for this purpose. PLUMED is an open-source,

community-developed library that has been widely used in enhanced-sampling simulations of

complex biological systems in combination with many MD engines, e.g., Amber, GROMACS,

NAMD, and OpenMM.204–208 Most importantly, PLUMED can be interfaced with the host

code using an API, accessible from multiple languages, including C++ and Python). This

last functionality is important for adaptive protocols used for the identification of optimal
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CVs using iterative learning algorithms based on well developed ML libraries like Keras,209

TensorFlow,210 PyTorch211 and Fastai.212 The MSM Builder package provides the user with

software tools for predictive modeling of long timescale dynamics of biomolecular systems

using statistical modeling to analyze physical simulations.213 Other tools that can be em-

ployed in MD/ML studies include among others MDTraj,214 ColVar module for VMD,200

OpenPathSampling.215

In all the above-mentioned methods, an identified set of meaningful CVs is needed in

order to perform enhanced sampling simulations. In their recent study, Noé et al. introduce

a novel approach where Boltzmann generators are used to learn to generate unbiased equilib-

rium samples from different metastable states.216 This approach opens new directions in the

exploration of bio-molecular simulations as the latent spaces learned by Boltzmann genera-

tors can be combined with existing sampling methods in order to address rare event-sampling

problems in complex systems.

4.2.1 Conformational-specific targeting of proteins using cryptic binding sites

Drugs are traditionally designed to bind to the primary active site of their biological targets

in order to induce a therapeutic effect. However, the high similarity between the orthosteric

pockets among most of the protein families, leads in several cases to adverse effects. A

new emerging direction in drug discovery is the use of alternative, transient, non-orthosteric

binding sites that are not apparent in the protein’s known crystallographic conformations

and where small molecules can bind and modulate the biological target’s function.

By binding to non-orthosteric sites of proteins, allosteric inhibitors can also exhibit a

better selectivity vs proteins from the same family, as illustrated by SAR156497, a highly

selective inhibitor of Aurora kinases.217 Well known drugs on the market work through this

kind of mechanism of action (e.g., Lapatinib or Imatinib), but this mechanism was described

a posteriori. Moreover, there are approved allosteric modulator drugs such as Cinacalcet

for the treatment of hyperparathyroidism and Maraviroc for the treatment of AIDS, as well
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as many candidates at different stages of development.218,219 Another aspect in targeting

non-orthosteric pockets in drug discovery relies on the fact that allosteric inhibitors will not

compete with endogenous ligands for binding, which can be critical when such endogenous

ligands have very strong affinity for their protein.

One of the successful efforts in this direction is the example of PI3Kα, where a novel non-

orthosteric pocket was identified using molecular dynamics (MD) simulations.220,221 In,220

the authors used Functional Mode Analysis222 and identified two dominant motions of PI3Kα

that influence both the active and allosteric pockets and are distinct between the wild-type

protein and its oncogenic counterpart. Current work aims at extending this approach to

other protein targets, where neural networks are employed in order to establish the link

between oncogenic mutations and the protein’s mode of action, with an ultimate goal to

identify druggable mutant-specific conformations.

Beyond single protein conformations, multimeric protein assembly also appears as a chal-

lenging area where ML could play a role in drug discovery. The recent example on TNFα for

instance shows the importance of how subtle changes in protein conformation can translate

into a distorded trimeric assembly of TNFα, impacting downstream signaling of TNFR1.

Small compounds stabilizing this asymmetrical TNFα trimer can then be designed to treat

or prevent TNFα-related diseases.223

4.2.2 Compound-specific effect of binding

Another promising direction in the drug discovery process is the compound-specific effect

of protein binding.224,225 For example, a small organic compound can be used to boost the

enzymatic activity of a protein enzyme or evaluate allosteric binders by the stabilization of

its active conformation. In finding allosteric binding sites, ML algorithms such as k-means

and Markov Models can significantly help in reducing the dimensions of drug binding events.

The connections between statistical mechanics principles, such as Boltzmann Machines, and

the discovery of the binding sites in proteins can be insightful. As an example, one can run
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thousands of small trajectories of drug binding and unbinding events and learn the reaction

coordinates using tICA (time-independent Component Analysis) in order to find the possible

allosteric binding sites.224 These trajectories can be generated using different initial seeds

(both different locations and orientations) and may range from 50 ns to 500 ns.

In the activation pathway of many proteins such as G Protein Coupled Receptors (GPCRs),

the conformational changes are subtle and are limited to the sequential motion of residue

switches triggering a signal from ligand to intracellular motifs. Finding these intricate mo-

tions in high dimensional space requires ML techniques to reduce the system’s dimensions.225

Among these methods, variational autoencoders (VAE) and tICA (sparse or kernel) can be

used to achieve learning and finding the reaction coordinates for such complex proteins.

5 Concluding remarks and perspective

Let us conclude this review by presenting some global perspectives on the interactions be-

tween machine learning approaches and molecular simulation, which are common to all the

situations we discussed – from devising numerical potentials based on ab-initio reference

data to the identification of collective variables in actual simulation of biological proteins.

First, we have seen that the aims of the coarse-graining procedures may be very differ-

ent in nature. From the material presented in this review, one can identify three major

purposes: (1) a modeling objective: using machine learning techniques to improve models,

for instance by better representing force fields and potential energy surfaces; (2) a numeri-

cal objective: improving the efficiency of numerical methods, for instance by devising good

collective variables to be used in conjunction with enhanced sampling techniques, such as

free energy biased sampling techniques; (3) a data analysis objective: providing an efficient

post-processing tool, as for instance a Markov state model to interpret the raw simulation

data from molecular dynamics and identify states of interest.

Concerning the choice of the learning methods, some common trends are shared by all
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methods, namely ensuring that one has access to a sufficiently rich database (sufficient

variability of configurations for force fields, long reactive trajectories to identify CVs) and

representing correctly the data (starting possibly with some putative CVs/descriptors, and

then using some regression from there to sparsify/optimally combine these initial guesses).

The precise choice of the learning method and the reduced model to work with, however,

depend very much on the goal and priority of the user, and the system under consideration.

The priority can be the accuracy (being as precise and as close as possible to some refer-

ence model, e.g., all-atom results when coarse-graining, or reproducing DFT energies when

constructing numerical potentials), the transferability (learning how to coarse-grain small

systems and extending the method to larger ones, learning energies at a given temperature

and using the potential at another one) or the CPU/GPU computational cost.

In this context, the method to be used for dimensionality reduction with minimal in-

formation loss greatly depends on the objective of each study. Linear methods generally

demand less computational power and their accuracy can be more easily assessed than for

nonlinear methods, thanks to built-in error estimators. Their results also admit a statisti-

cal interpretation in many situations. Nonlinear methods on the other hand usually have

a better approximation power and can tackle more complicated problems. In some cases,

they are effective only for specific data-sets and fail to generalize over real world data, i.e.,

they may be system/problem-dependent, even at the heavy computational cost needed to

accommodate non-linearity. There are, however, cases where it is useful to rely on nonlinear

functions to map a high-dimensional space into a meaningful reduced dimensional space such

as when studying complex protein dynamics where the leading structural or kinetic collective

variables are typically complex nonlinear functions of the atomic coordinates.

When using black box learning techniques, based for example on neural networks, a

problem which is often raised is the interpretability of the result. This is discussed for

example in80 which attempts to reconcile machine learning models (specifically a neural

network approach to optimal reaction coordinates) with physical insight by means of symbolic
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regression techniques, also known as genetic programming. Such techniques appear very

promising for the future, being able to distill fundamental natural laws from numerical

data.226

Another important element is the reproducibility of the results: one should favor ap-

proaches which are easy enough to cross-check and to repeat on various architectures. This

also requires the researchers to ensure that the coarse-graining technique they propose yield

robust results. For example, the results should not depend on the initial weights in a neural

network, or on the sampled point used as inputs. Finally, this includes considering well

established databases, or making databases available to other users/developers; and also

relying on standard and well maintained packages when using external libraries.

One idea which would help setting up common benchmarks and/or agreeing on common

aims/priorities would be to organize some competition or prediction contest, which should

ideally be simple enough so that even small groups can participate since this requires agree-

ing on common goals. Setting up the rules of such a competition would already be quite

an achievement. Another important idea would be to emphasize transferability in all ap-

proaches, and more systematically work with some databases of some sort and then test on

different databases.

Finally, the authors envisage that ML approaches similar to the ones presented herein

could be extended to non-classical MD quantum dynamics simulations. The combination

of affordable ab-initio-quality ML models and accelerated quantum dynamics techniques is

making once-prohibitive simulations feasible, as demonstrated by recent work using ML to

probe quantum statistics227,228 and dynamics.229–231 We expect that the combination with

more sophisticated sampling techniques shall extend even further the range of biological and

materials systems that are amenable to molecular dynamics simulations.
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tials: The Accuracy of Quantum Mechanics, without the Electrons. Phys. Rev. Lett.

2010, 104, 136403.

(33) Behler, J.; Parrinello, M. Generalized neural-network representation of high-

dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401.

(34) Faber, F. A.; Christensen, A. S.; Huang, B.; von Lilienfeld, O. A. Alchemical and

structural distribution based representation for universal quantum machine learning.

J. Chem. Phys. 2018, 148, 241717.

(35) Willatt, M. J.; Musil, F.; Ceriotti, M. Atom-density representations for machine learn-

ing. J. Chem. Phys. 2019, 150, 154110.
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